

Front-End	Web	Development:	The	Big
Nerd	Ranch	Guide
by	Chris	Aquino	and	Todd	Gandee

Copyright	©	2016	Big	Nerd	Ranch,	LLC

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	For	information	regarding
permissions,	contact

Big	Nerd	Ranch,	LLC
200	Arizona	Ave	NE
Atlanta,	GA	30307
(770)	817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The	10-gallon	hat	with	propeller	logo	is	a	trademark	of	Big	Nerd	Ranch,	LLC.

Exclusive	worldwide	distribution	of	the	English	edition	of	this	book	by

Pearson	Technology	Group
800	East	96th	Street
Indianapolis,	IN	46240	USA
http://www.informit.com

The	authors	and	publisher	have	taken	care	in	writing	and	printing	this	book	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

	

ISBN-10		0134432533

ISBN-13		978-0134432533

First	edition,	first	printing,	July	2016	
Release	E.1.1.1

Dedication

	
To	Mom	and	Dad,	for	buying	us	that	computer.	To	Dave	and	Glenn,	for	letting	your
little	brother	completely	hog	it.	And	to	Angela,	for	giving	me	a	life	away	from	the
screen.

	

	 —	C.A.

	

	 To	my	mom	and	dad,	thank	you	for	giving	me	room	to	find	my	own	way.	To	my	wife,
thank	you	for	loving	a	nerd. 	

	 —	T.G.

Acknowledgments
As	authors,	we	can	take	full	credit	for	typing	the	words	and	creating	the	diagrams.	(Yay,
us!)	But	the	whole	truth	is	that	we	would	still	be	staring	at	a	blank	page	if	not	for	the
efforts	of	an	army	of	contributors,	collaborators,	and	mentors.

Aaron	Hillegass,	for	believing	that	the	two	of	us	could	produce	a	work	worthy	of
the	Big	Nerd	Ranch	name.	Thank	you	for	your	immeasurable	faith	and	support.

Matt	Mathias,	for	guiding	us	through	the	development	of	this	book,	especially
during	the	crucial	last	mile.	You	made	sure	that	time	that	would	have	been	spent
watching	cat	videos	or	Downton	Abbey	reruns	was	instead	dedicated	to	writing.

Brandy	Porter,	for	the	care	and	(literal)	feeding	of	the	authors	on	numerous
occasions.	You	worked	your	magic	behind	the	curtain,	orchestrating	a	sequence
of	events	that	made	finishing	this	work	possible.	Thank	you.

Jonathan	Martin,	our	coinstructor	and	language	maven.	Thank	you	for
enthusiastically	teaching	the	in-progress	course	materials	on	which	this	book	is
based	and	offering	thoughtful	criticism	throughout	the	many	revisions.

Our	proofreaders,	technical	reviewers,	and	guinea	pigs:	Mike	Zornek,	Jeremy
Sherman,	Josh	Justice,	Jason	Reece,	Garry	Smith,	Andrew	Jones,	Stephen
Christopher,	and	Bill	Phillips.	Thank	you	for	volunteering	as	tribute.

Elizabeth	Holaday,	our	infinitely	patient	and	reassuring	editor.	Thank	you	for
breaking	us	out	of	the	echo	chamber,	being	the	voice	of	reason,	and	reminding	us
always	of	our	readers.

Ellie	Volckhausen,	who	designed	our	cover.

Simone	Payment,	our	proofreader,	who	kept	things	consistent.

Chris	Loper	at	IntelligentEnglish.com,	who	designed	and	produced	the	print	and
ebook	versions	of	the	book.	His	DocBook	toolchain	made	life	much	easier,	too.

Lastly,	thank	you	to	the	countless	students	who	have	taken	the	week-long	training.
Without	your	curiosity	and	your	questions,	none	of	this	matters.	This	work	is	a	reflection
of	the	insight	and	inspiration	you	have	given	us	over	the	span	of	those	many	weeks.	We
hope	the	otters	made	the	training	a	little	lighter.

Table	of	Contents
Introduction

Learning	Front-End	Web	Development

Prerequisites

How	This	Book	Is	Organized

How	to	Use	This	Book

Challenges

For	the	More	Curious

Using	an	eBook

I.	Core	Browser	Programming

1.	Setting	Up	Your	Development	Environment

Installing	Google	Chrome

Installing	and	Configuring	Atom

Atom	plug-ins

Documentation	and	Reference	Sources

Crash	Course	in	the	Command	Line

Finding	out	what	directory	you	are	in

Creating	a	directory

Changing	directories

Listing	files	in	a	directory

Getting	administrator	privileges

Quitting	a	program

Installing	Node.js	and	browser-sync

For	the	More	Curious:	Alternatives	to	Atom

2.	Setting	Up	Your	First	Project

Setting	Up	Ottergram

Initial	HTML

Linking	a	stylesheet

Adding	content

Adding	images

Viewing	the	Web	Page	in	the	Browser

The	Chrome	Developer	Tools

For	the	More	Curious:	CSS	Versions

For	the	More	Curious:	The	favicon.ico

Silver	Challenge:	Adding	a	favicon.ico

3.	Styles

Creating	a	Styling	Baseline

Preparing	the	HTML	for	Styling

Anatomy	of	a	Style

Your	First	Styling	Rule

The	box	model

Style	Inheritance

Making	Images	Fit	the	Window

Color

Adjusting	the	Space	Between	Items

Relationship	selectors

Adding	a	Font

Bronze	Challenge:	Color	Change

For	the	More	Curious:	Specificity!	When	Selectors	Collide…

4.	Responsive	Layouts	with	Flexbox

Expanding	the	Interface

Adding	the	detail	image

Horizontal	layout	for	thumbnails

Flexbox

Creating	a	flex	container

Changing	the	flex-direction

Grouping	elements	within	a	flex	item

The	flex	shorthand	property

Ordering,	justifying,	and	aligning	flex	items

Centering	the	detail	image

Absolute	and	Relative	Positioning

5.	Adaptive	Layouts	with	Media	Queries

Resetting	the	Viewport

Adding	a	Media	Query

Bronze	Challenge:	Portrait

For	the	More	Curious:	Common	Solutions	(and	Bugs)	with	Flexbox
Layouts

Gold	Challenge:	Holy	Grail	Layout

6.	Handling	Events	with	JavaScript

Preparing	the	Anchor	Tags	for	Duty

Your	First	Script

Overview	of	the	JavaScript	for	Ottergram

Declaring	String	Variables

Working	in	the	Console

Accessing	DOM	Elements

Writing	the	setDetails	Function

Accepting	arguments	by	declaring	parameters

Returning	Values	from	Functions

Adding	an	Event	Listener

Accessing	All	the	Thumbnails

Iterating	Through	the	Array	of	Thumbnails

Silver	Challenge:	Link	Hijack

Gold	Challenge:	Random	Otters

For	the	More	Curious:	Strict	Mode

For	the	More	Curious:	Closures

For	the	More	Curious:	NodeLists	and	HTMLCollections

For	the	More	Curious:	JavaScript	Types

7.	Visual	Effects	with	CSS

Hiding	and	Showing	the	Detail	Image

Creating	styles	to	hide	the	detail	image

Writing	the	JavaScript	to	hide	the	detail	image

Listening	for	the	keypress	event

Showing	the	detail	image	again

State	Changes	with	CSS	Transitions

Working	with	the	transform	property

Adding	a	CSS	transition

Using	a	timing	function

Transition	on	class	change

Triggering	transitions	with	JavaScript

Custom	Timing	Functions

For	the	More	Curious:	Rules	for	Type	Coercion

II.	Modules,	Objects,	and	Forms

8.	Modules,	Objects,	and	Methods

Modules

The	module	pattern

Modifying	an	object	with	an	IIFE

Setting	Up	CoffeeRun

Creating	the	DataStore	Module

Adding	Modules	to	a	Namespace

Constructors

A	constructor’s	prototype

Adding	methods	to	the	constructor

Creating	the	Truck	Module

Adding	orders

Removing	orders

Debugging

Locating	bugs	with	the	DevTools

Setting	the	value	of	this	with	bind

Initializing	CoffeeRun	on	Page	Load

Creating	the	Truck	instance

Bronze	Challenge:	Truck	ID	for	Non-Trekkies

For	the	More	Curious:	Private	Module	Data

Silver	Challenge:	Making	data	Private

For	the	More	Curious:	Setting	this	in	forEach’s	Callback

9.	Introduction	to	Bootstrap

Adding	Bootstrap

How	Bootstrap	works

Creating	the	Order	Form

Adding	text	input	fields

Offering	choices	with	radio	buttons

Adding	a	dropdown	menu

Adding	a	range	slider

Adding	Submit	and	Reset	buttons

10.	Processing	Forms	with	JavaScript

Creating	the	FormHandler	Module

Introduction	to	jQuery

Importing	jQuery

Configuring	instances	of	FormHandler	with	a	selector

Adding	the	submit	Handler

Extracting	the	data

Accepting	and	calling	a	callback

Using	FormHandler

Registering	createOrder	as	a	submit	handler

UI	Enhancements

Bronze	Challenge:	Supersize	It

Silver	Challenge:	Showing	the	Value	as	the	Slider	Changes

Gold	Challenge:	Adding	Achievements

11.	From	Data	to	DOM

Setting	Up	the	Checklist

Creating	the	CheckList	Module

Creating	the	Row	Constructor

Creating	DOM	elements	with	jQuery

Creating	CheckList	Rows	on	Submit

Manipulating	this	with	call

Delivering	an	Order	by	Clicking	a	Row

Creating	the	CheckList.prototype.removeRow	method

Removing	overwritten	entries

Writing	the	addClickHandler	method

Calling	addClickHandler

Bronze	Challenge:	Adding	the	Strength	to	the	Description

Silver	Challenge:	Color	Coding	by	Flavor	Shot

Gold	Challenge:	Allowing	Order	Editing

12.	Validating	Forms

The	required	Attribute

Validating	with	Regular	Expressions

Constraint	Validation	API

Listening	for	the	input	event

Associating	the	validation	check	with	the	input	event

Triggering	the	validity	check

Styling	Valid	and	Invalid	Elements

Silver	Challenge:	Custom	Validation	for	Decaf

For	the	More	Curious:	The	Webshims	Library

13.	Ajax

XMLHttpRequest	Objects

RESTful	Web	Services

The	RemoteDataStore	Module

Sending	Data	to	the	Server

Using	jQuery’s	$.post	method

Adding	a	callback

Inspecting	the	Ajax	request	and	response

Retrieving	Data	from	the	Server

Inspecting	the	response	data

Adding	a	callback	argument

Deleting	Data	from	the	Server

Using	jQuery’s	$.ajax	method

Replacing	DataStore	with	RemoteDataStore

Silver	Challenge:	Validating	Against	the	Remote	Server

For	the	More	Curious:	Postman

14.	Deferreds	and	Promises

Promises	and	Deferreds

Returning	Deferred

Registering	Callbacks	with	then

Handling	Failures	with	then

Using	Deferreds	with	Callback-Only	APIs

Giving	DataStore	a	Promise

Creating	and	returning	Promises

Resolving	a	Promise

Promise-ifying	the	other	DataStore	methods

Silver	Challenge:	Fallback	to	DataStore

III.	Real-Time	Data

15.	Introduction	to	Node.js

Node	and	npm

npm	init

npm	scripts

Hello,	World

Adding	an	npm	Script

Serving	from	Files

Reading	a	file	with	the	fs	module

Working	with	the	request	URL

Using	the	path	module

Creating	a	custom	module

Using	your	custom	module

Error	Handling

For	the	More	Curious:	npm	Module	Registry

Bronze	Challenge:	Creating	a	Custom	Error	Page

For	the	More	Curious:	MIME	Types

Silver	Challenge:	Providing	a	MIME	Type	Dynamically

Gold	Challenge:	Moving	Error	Handling	to	Its	Own	Module

16.	Real-Time	Communication	with	WebSockets

Setting	Up	WebSockets

Testing	Your	WebSockets	Server

Creating	the	Chat	Server	Functionality

First	Chat!

For	the	More	Curious:	socket.io	WebSockets	Library

For	the	More	Curious:	WebSockets	as	a	Service

Bronze	Challenge:	Am	I	Repeating	Myself?

Silver	Challenge:	Speakeasy

Gold	Challenge:	Chat	Bot

17.	Using	ES6	with	Babel

Tools	for	Compiling	JavaScript

The	Chattrbox	Client	Application

First	Steps	with	Babel

Class	syntax

Using	Browserify	for	Packaging	Modules

Running	the	build	process

Adding	the	ChatMessage	Class

Creating	the	ws-client	Module

Connection	handling

Handling	events	and	sending	messages

Sending	and	echoing	a	message

For	the	More	Curious:	Compiling	to	JavaScript	from	Other	Languages

Bronze	Challenge:	Default	Import	Name

Silver	Challenge:	Closed	Connection	Alert

For	the	More	Curious:	Hoisting

For	the	More	Curious:	Arrow	Functions

18.	ES6,	the	Adventure	Continues

Installing	jQuery	as	a	Node	Module

Creating	the	ChatForm	Class

Connecting	ChatForm	to	the	socket

Creating	the	ChatList	Class

Using	Gravatars

Prompting	for	Username

User	Session	Storage

Formatting	and	Updating	Message	Timestamps

Bronze	Challenge:	Adding	Visual	Effects	to	Messages

Silver	Challenge:	Caching	Messages

Gold	Challenge:	Separate	Chat	Rooms

IV.	Application	Architecture

19.	Introduction	to	MVC	and	Ember

Tracker

Ember:	An	MVC	Framework

Installing	Ember

Creating	an	Ember	application

Starting	up	the	server

External	Libraries	and	Addons

Configuration

For	the	More	Curious:	npm	and	Bower	Install

Bronze	Challenge:	Limiting	Imports

Silver	Challenge:	Adding	Font	Awesome

Gold	Challenge:	Customizing	the	NavBar

20.	Routing,	Routes,	and	Models

ember	generate

Nesting	Routes

Ember	Inspector

Assigning	Models

beforeModel

For	the	More	Curious:	setupController	and	afterModel

21.	Models	and	Data	Binding

Model	Definitions

createRecord

get	and	set

Computed	Properties

For	the	More	Curious:	Retrieving	Data

For	the	More	Curious:	Saving	and	Destroying	Data

Bronze	Challenge:	Changing	the	Computed	Property

Silver	Challenge:	Flagging	New	Sightings

Gold	Challenge:	Adding	Titles

22.	Data	–	Adapters,	Serializers,	and	Transforms

Adapters

Content	Security	Policy

Serializers

Transforms

For	the	More	Curious:	Ember	CLI	Mirage

Silver	Challenge:	Content	Security

Gold	Challenge:	Mirage

23.	Views	and	Templates

Handlebars

Models

Helpers

Conditionals

Loops	with	{{#each}}

Binding	element	attributes

Links

Custom	Helpers

Bronze	Challenge:	Adding	Link	Rollovers

Silver	Challenge:	Changing	the	Date	Format

Gold	Challenge:	Creating	a	Custom	Thumbnail	Helper

24.	Controllers

New	Sightings

Editing	a	Sighting

Deleting	a	Sighting

Route	Actions

Bronze	Challenge:	Sighting	Detail	Page

Silver	Challenge:	Sighting	Date

Gold	Challenge:	Adding	and	Removing	Witnesses

25.	Components

Iterator	Items	as	Components

Components	for	DRY	Code

Data	Down,	Actions	Up

Class	Name	Bindings

Data	Down

Actions	Up

Bronze	Challenge:	Customizing	the	Alert	Message

Silver	Challenge:	Making	the	NavBar	a	Component

Gold	Challenge:	Array	of	Alerts

26.	Afterword

The	Final	Challenge

Shameless	Plugs

Thank	You

Index

Introduction

Learning	Front-End	Web	Development
Doing	front-end	web	development	may	require	a	shift	in	perspective,	as	it	is	a	very
different	animal	from	development	for	other	platforms.	Here	are	a	few	things	to	keep	in
mind	as	you	are	learning.

The	browser	is	a	platform.

Perhaps	you	have	done	native	development	for	iOS	or	Android;	written	server-side	code
in	Ruby	or	PHP;	or	built	desktop	applications	for	OS	X	or	Windows.	As	a	front-end
developer,	your	code	will	target	the	browser	–	a	platform	available	on	nearly	every	phone,
tablet,	and	personal	computer	in	the	world.

Front-end	development	runs	along	a	spectrum.

At	one	end	of	the	spectrum	is	the	look	and	feel	of	a	web	page:	rounded	corners,	shadows,
colors,	fonts,	whitespace,	and	so	on.	At	the	other	end	of	the	spectrum	is	the	logic	that
governs	the	intricate	behaviors	of	that	web	page:	swapping	images	in	an	interactive	photo
gallery,	validating	data	entered	into	a	form,	sending	messages	across	a	chat	network,	etc.
You	will	need	to	become	proficient	with	the	core	technologies	all	along	this	spectrum,	and
you	will	often	need	to	use	multiple	technologies	in	synergy	to	create	a	good	web
application.

Web	technologies	are	open.

There	is	no	one	company	that	controls	how	browsers	should	work.	That	means	that	front-
end	developers	do	not	get	a	yearly	SDK	release	that	contains	all	the	changes	they	will
need	to	deal	with	for	the	next	twelve	months.	Native	platforms	are	a	frozen	pond	on	which
you	can	comfortably	skate.	The	web	is	a	river;	it	curves,	moves	quickly,	and	is	rocky	in
some	places	–	but	that	is	part	of	its	appeal.	The	web	is	the	most	rapidly	evolving	platform
available.	Adapting	to	change	is	a	way	of	life	for	a	front-end	developer.

This	book’s	purpose	is	to	teach	you	how	to	develop	for	the	browser.	As	you	follow	this
guide,	you	will	be	taken	through	the	process	of	building	a	series	of	projects.	Each	project
will	call	for	a	different	mixture	of	technologies	along	the	front-end	spectrum.	Because	of
the	sheer	number	of	front-end	tools,	libraries,	and	frameworks	available,	this	book	will
focus	on	the	most	essential	and	portable	patterns	and	techniques.

Prerequisites
This	book	is	not	an	introduction	to	programming.	It	assumes	you	have	experience	with	the
fundamentals	of	writing	code.	You	are	expected	to	be	familiar	with	basic	types,	functions,
and	objects.

That	said,	it	also	does	not	assume	you	already	know	JavaScript.	It	introduces	you	to
JavaScript	concepts	in	context,	as	you	need	them.

How	This	Book	Is	Organized
This	book	walks	you	through	writing	four	different	web	applications.	Each	application	has
its	own	section	of	the	book.	Each	chapter	in	a	section	adds	new	features	to	the	application
you	are	building.

Doing	the	work	of	building	these	four	applications	takes	you	from	one	extreme	of	the
front-end	spectrum	to	the	other.

Ottergram In	your	first	project,	you	will	create	a	web-based	photo	gallery.	Building
Ottergram	will	teach	you	the	fundamentals	of	programming	for	the
browser	using	HTML,	CSS,	and	JavaScript.	You	will	build	the	user
interface	manually,	learning	how	the	browser	loads	and	renders	content.

CoffeeRun Part	coffee	order	form,	part	checklist,	CoffeeRun	takes	you	through	a
number	of	JavaScript	techniques	including	writing	modular	code,	taking
advantage	of	closures,	and	communicating	with	a	remote	server	using
Ajax.	Your	focus	will	shift	from	manually	creating	the	UI	to	creating	and
manipulating	it	programmatically.

Chattrbox Chattrbox	has	the	shortest	section	and	is	the	most	distinct	of	the	apps.	You
will	use	JavaScript	to	build	a	chat	system,	writing	a	chat	server	with
Node.js	as	well	as	a	browser-based	chat	client.

Tracker Your	final	project	uses	Ember.js,	one	of	the	most	powerful	frameworks	for
front-end	development.	You	will	create	an	application	that	catalogs
sightings	of	rare,	exotic,	and	mythical	creatures.	Along	the	way,	you	will
learn	your	way	around	the	rich	ecosystem	that	powers	the	Ember.js
framework.

As	you	work	through	these	applications,	you	will	be	introduced	to	a	number	of	tools,
including:

the	Atom	text	editor	and	some	useful	plug-ins	for	working	with	code

documentation	resources	like	the	Mozilla	Developer	Network

the	command	line,	using	the	OS	X	Terminal	app	or	the	Windows	command	prompt

browser-sync

Google	Chrome’s	Developer	Tools

normalize.css

Bootstrap

jQuery	and	libraries	like	crypto-js	and	moment

Node.js,	the	Node	package	manager	(npm),	and	nodemon

WebSockets	and	the	wscat	module

Babel,	Babelify,	Browserify,	and	Watchify

Ember.js	and	addons	like	Ember	CLI,	Ember	Inspector,	Ember	CLI	Mirage,	and
Handlebars

Bower

Homebrew

Watchman

How	to	Use	This	Book
This	book	is	not	a	reference	book.	Its	goal	is	to	get	you	over	the	initial	hump	to	where	you
can	get	the	most	out	of	the	reference	and	recipe	books	available.	It	is	based	on	our	five-
day	class	at	Big	Nerd	Ranch,	and,	as	such,	it	is	meant	to	be	worked	through	from	the
beginning.	Chapters	build	on	each	other,	and	skipping	around	would	be	unproductive.

In	our	classes,	students	work	through	these	materials,	but	they	also	benefit	from	the	right
environment	–	a	dedicated	classroom,	good	food	and	comfortable	board,	a	group	of
motivated	peers,	and	an	instructor	to	answer	questions.

As	a	reader,	you	want	your	environment	to	be	similar.	That	means	getting	a	good	night’s
rest	and	finding	a	quiet	place	to	work.	These	things	can	help,	too:

Start	a	reading	group	with	your	friends	or	coworkers.

Arrange	to	have	blocks	of	focused	time	to	work	on	chapters.

Participate	in	the	forum	for	this	book	at	forums.bignerdranch.com,
where	you	can	discuss	the	book	and	find	errata	and	solutions.

Find	someone	who	knows	front-end	web	development	to	help	you	out.

http://forums.bignerdranch.com

Challenges
Most	chapters	in	this	book	end	with	at	least	one	challenge.	Challenges	are	opportunities	to
review	what	you	have	learned	and	take	your	work	in	the	chapter	one	step	further.	We
recommend	that	you	tackle	as	many	of	them	as	you	can	to	cement	your	knowledge	and
move	from	learning	JavaScript	development	from	us	to	doing	JavaScript	development	on
your	own.

Challenges	come	in	three	levels	of	difficulty:

Bronze	challenges	typically	ask	you	to	do	something	very	similar	to	what	you	did
in	the	chapter.	These	challenges	reinforce	what	you	learned	in	the	chapter	and
force	you	to	type	in	similar	code	without	having	it	laid	out	in	front	of	you.
Practice	makes	perfect.

Silver	challenges	require	you	to	do	more	digging	and	more	thinking.	Sometimes
you	will	need	to	use	functions,	events,	markup,	and	styles	that	you	have	not	seen
before,	but	the	tasks	are	still	similar	to	what	you	did	in	the	chapter.

Gold	challenges	are	difficult	and	can	take	hours	to	complete.	They	require	you	to
understand	the	concepts	from	the	chapter	and	then	do	some	quality	thinking	and
problem	solving	on	your	own.	Tackling	these	challenges	will	prepare	you	for	the
real-world	work	of	JavaScript	development.

You	should	make	a	copy	of	your	code	before	you	work	on	the	challenges	for	any	chapter.
Otherwise,	the	changes	that	you	make	may	not	be	compatible	with	subsequent	exercises.

If	you	get	lost,	you	can	always	visit	forums.bignerdranch.com	for	some
assistance.

http://forums.bignerdranch.com

For	the	More	Curious
Many	chapters	also	have	“For	the	More	Curious”	sections.	These	sections	offer	deeper
explanations	or	additional	information	about	topics	presented	in	the	chapter.	The
information	in	these	sections	is	not	absolutely	essential,	but	we	hope	you	will	find	it
interesting	and	useful.

Using	an	eBook
If	you	are	reading	this	book	on	a	eReader,	reading	the	code	may	be	tricky	at	times.	Longer
lines	of	code	may	wrap	to	a	second	line,	depending	on	your	selected	font	size.

The	longest	lines	of	code	in	this	book	are	86	monospace	characters,	like	this	one.
<link	href="https://cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css">

You	can	play	with	your	eReader’s	settings	to	find	the	best	for	viewing	long	code	lines.

If	you	are	reading	on	an	iPad	with	iBooks,	we	recommend	you	go	to	the	Settings	app,
select	iBooks,	and	set	Full	Justification	OFF	and	Auto-hyphenation	OFF.

When	you	get	to	the	point	where	you	are	actually	typing	in	code,	we	suggest	opening	the
book	on	your	Mac	(or	PC)	in	Adobe	Digital	Editions.	(Adobe	Digital	Editions	is	a	free
eReader	application	you	can	download	from	www.adobe.com/products/
digitaleditions.)	Make	the	application	window	large	enough	so	that	you	can	see
the	code	with	no	wrapping	lines.	You	will	also	be	able	to	see	the	figures	in	full	detail.

http://www.adobe.com/products/digitaleditions/

Part	I	
Core	Browser	Programming

1	
Setting	Up	Your	Development

Environment
There	are	countless	tools	and	resources	for	front-end	development,	with	more	being	built
all	the	time.	Choosing	the	best	ones	is	challenging	for	developers	of	all	skill	levels.
Throughout	the	projects	in	this	book,	we	will	guide	you	in	the	use	of	some	of	our
favorites.

To	get	started,	you	will	need	three	basic	tools:	a	browser,	a	text	editor,	and	good	reference
documentation	for	the	many	technologies	used	in	front-end	development.	Also,	there	are
several	extras	that	–	while	not	essential	–	will	make	your	development	experience
smoother	and	more	enjoyable.

For	the	purposes	of	this	book	we	recommend	that	you	use	the	same	software	we	use	to	get
the	most	benefit	from	our	directions	and	screenshots.	This	chapter	walks	you	through
installing	and	configuring	the	Google	Chrome	browser,	the	Atom	text	editor,	Node.js,	and	a
number	of	plug-ins	and	extras.	You	will	also	find	out	about	good	documentation	options
and	get	a	crash	course	in	using	the	command	line	on	Mac	and	Windows.	In	the	next
chapter,	you	will	put	all	these	resources	to	use	as	you	begin	your	first	project.

Installing	Google	Chrome
Your	computer	should	already	have	a	browser	installed	by	default,	but	the	best	one	to	use
for	front-end	development	is	Google	Chrome.	If	you	do	not	already	have	the	latest	version	of
Chrome,	you	can	get	it	from	www.google.com/chrome/browser/desktop
(Figure	1.1).

https://www.google.com/chrome/browser/desktop/

Figure	1.1		Downloading	Google	Chrome

Installing	and	Configuring	Atom
Of	the	many	text	editor	programs	out	there,	one	of	the	best	for	front-end	development	is
the	Atom	editor	by	GitHub.	It	is	a	good	choice	because	it	is	highly	configurable,	has	many
plug-ins	to	help	with	writing	code,	and	is	free	to	download	and	use.

You	can	download	Atom	for	Mac	or	Windows	from	atom.io	(Figure	1.2).

Figure	1.2		Downloading	Atom

Follow	the	installation	instructions	for	your	platform.	After	Atom	is	installed,	there	are
several	plug-ins	you	will	want	to	install	as	well.

Atom	plug-ins

The	primary	things	you	want	out	of	your	text	editor	are	documentation	lookup,
autocompletion,	code	formatting,	and	code	linting	(more	on	that	in	a	bit).	Atom	gives	you
some	of	these	features	by	default,	but	installing	a	few	plug-ins	will	make	it	even	better.

Open	Atom	and	reveal	its	Settings	screen.	On	a	Mac,	this	is	done	by	choosing	Atom	→
Preferences…	or	using	the	keyboard	shortcut	Command-,	(that	is,	the	Command	key	plus
the	comma).	On	Windows,	you	can	access	it	via	File	→	Settings	or	using	the	keyboard
shortcut	Ctrl-,.

On	the	lefthand	side	of	the	Settings	screen,	click	+	Install	(Figure	1.3).

https://atom.io

Figure	1.3		Atom’s	Install	Packages	screen

Here,	you	can	search	for	plug-in	packages	by	name.	Begin	by	searching	for	“emmet.”

Writing	a	lot	of	HTML	can	be	very	tedious	and	is	error-prone.	The	emmet	plug-in
(Figure	1.4)	lets	you	write	well-formatted	HTML	using	a	convenient	shorthand.	Click	the
Install	button	to	get	emmet.

Figure	1.4		Installing	emmet

Next,	search	for	“atom-beautify.”	The	atom-beautify	plug-in	(Figure	1.5)	helps	with	the
indentation	of	your	code,	which	helps	with	readability.	Again,	click	Install	to	get	this	plug-
in.

Figure	1.5		Installing	atom-beautify

Search	for	and	install	the	autocomplete-paths	plug-in	(Figure	1.6).	Very	often,	your	code	will
need	to	refer	to	other	files	and	folders	in	your	project.	This	plug-in	helps	by	offering
filenames	in	an	autocomplete	menu	as	you	type.

Figure	1.6		Installing	autocomplete-paths

Your	next	plug-in	to	install	is	the	api-docs	package	(Figure	1.7),	which	lets	you	look	up
documentation	based	on	keyword.	It	displays	the	documentation	in	a	separate	tab	in	the
editor.

Figure	1.7		Installing	api-docs

Next,	search	for	and	install	the	linter	package	(Figure	1.8).	A	linter	is	a	program	that	checks
the	syntax	and	style	of	your	code.	Make	sure	you	find	and	install	the	package	that	is	just
named	“linter.”	This	is	a	base	linter	that	works	with	language-specific	plug-ins.	You	will
need	it	in	order	to	use	the	other	linter	plug-ins	below.

Figure	1.8		Installing	linter

There	are	three	companions	to	linter	that	you	will	want	to	install	to	check	your	CSS,
HTML,	and	JavaScript	code.	Start	with	linter-csslint	(Figure	1.9),	which	ensures	that	your
CSS	is	syntactically	correct	and	also	offers	suggestions	about	writing	performant	CSS.

Figure	1.9		Installing	linter-csslint

The	next	linter	companion	plug-in	to	install	is	linter-htmlhint	(Figure	1.10),	which	confirms
that	your	HTML	is	well	formed.	It	will	warn	you	about	mismatched	HTML	tags.

Figure	1.10		Installing	linter-htmlhint

The	last	linter	companion	plug-in	to	install	is	linter-eslint	(Figure	1.11).	This	plug-in	checks
the	syntax	of	your	JavaScript	and	can	be	configured	to	check	the	style	and	formatting	of
your	code	(for	example,	how	many	spaces	lines	are	indented	or	how	many	blank	lines
come	before	and	after	comments).

Figure	1.11		Installing	linter-eslint

Chrome	and	Atom	are	now	ready	for	front-end	development.	There	are	just	a	few	more	steps
to	completing	your	coding	environment:	accessing	documentation,	learning	command-line
basics,	and	downloading	two	final	tools.

Documentation	and	Reference	Sources
Front-end	development	is	different	from	programming	for	platforms	like	iOS	and
Android.	Aside	from	the	obvious	differences,	front-end	technologies	have	no	official
developer	documentation	other	than	the	technical	specifications.	This	means	that	you	will
need	to	look	elsewhere	for	guidance.	We	recommend	that	you	familiarize	yourself	with	the
resources	below	and	consult	them	regularly	as	you	work	through	the	book	and	continue	on
with	front-end	development.

The	Mozilla	Developer	Network	(MDN)	is	the	best	reference	for	anything	to	do	with
HTML,	CSS,	and	JavaScript.	One	way	to	access	it	is	devdocs.io,	an	excellent
documentation	interface	(Figure	1.12).	It	pulls	documentation	from	MDN	for	core	front-
end	technologies	–	and	it	can	work	offline,	so	you	can	check	it	even	when	you	do	not	have
an	internet	connection.

Figure	1.12		Accessing	documentation	via	devdocs.io

Note	that	Safari	currently	does	not	support	the	offline	caching	mechanism	used	by
devdocs.io.	You	will	need	to	use	a	different	browser,	such	as	Chrome,	to	access	it.

You	can	also	use	MDN’s	website,	developer.mozilla.org/en-US	(Figure	1.13),
or	simply	add	“MDN”	as	a	search	engine	keyword	to	find	the	information	you	need.

http://devdocs.io
http://devdocs.io
https://developer.mozilla.org/en-US/

Figure	1.13		The	Mozilla	Developer	Network	website

Another	site	to	know	about	is	stackoverflow.com	(Figure	1.14).	Officially,	this	is
not	a	source	of	documentation.	It	is	a	place	where	developers	can	ask	each	other	about
code.	The	answers	vary	in	quality,	but	are	often	very	thorough	and	quite	helpful.	So	it	is	a
useful	resource	–	as	long	as	you	bear	in	mind	that	the	answers	are	not	definitive,	due	to	its
crowdsourced	nature.

Figure	1.14		The	Stack	Overflow	website

Web	technologies	are	always	changing.	Support	for	features	and	APIs	will	vary	from
browser	to	browser	and	over	time.	Two	websites	that	can	help	you	determine	which
browsers	(and	which	versions	of	individual	browsers)	support	what	features	are
html5please.com	and	caniuse.com.	When	you	need	information	about	feature
support,	we	suggest	starting	with	html5please.com	to	know	whether	a	feature	is
recommended	for	use.	For	more	detailed	information	about	which	browser	versions
support	a	specific	feature,	go	to	caniuse.com.

http://stackoverflow.com
http://html5please.com
http://caniuse.com
http://html5please.com
http://caniuse.com

Crash	Course	in	the	Command	Line
Throughout	this	book,	you	will	be	instructed	to	use	the	command	line	or	terminal.	Many
of	the	tools	you	will	be	using	run	exclusively	as	command-line	programs.

To	access	the	command	line	on	a	Mac,	open	Finder	and	go	to	the	Applications	folder,	then	the
Utilities	folder.	Find	and	open	the	program	named	Terminal	(Figure	1.15).

Figure	1.15		Finding	the	Terminal	app	on	a	Mac

You	should	see	a	window	that	looks	like	Figure	1.16.

Figure	1.16		Mac	command	line

To	access	the	command	line	on	Windows,	go	to	the	Start	menu	and	search	for	“cmd.”	Find
and	open	the	program	named	Command	Prompt	(Figure	1.17).

Figure	1.17		Finding	the	Command	Prompt	program	on	Windows

Click	it	to	run	the	standard	Windows	command-line	interface,	which	looks	like
Figure	1.18.

Figure	1.18		Windows	command	line

From	now	on,	we	will	refer	to	“the	terminal”	or	“the	command	line”	to	mean	both	the	Mac
Terminal	and	the	Windows	Command	Prompt.	If	you	are	unfamiliar	with	using	the	command
line,	here	is	a	short	walkthrough	of	some	common	tasks.	All	commands	are	entered	by
typing	at	the	prompt	and	pressing	the	Return	key.

Finding	out	what	directory	you	are	in

The	command	line	is	location	based.	That	means	that	at	any	given	time	it	is	“in”	a

particular	directory	within	the	file	structure,	and	any	commands	you	enter	will	be	applied
within	that	directory.	The	command-line	prompt	shows	an	abbreviated	version	of	the
directory	it	is	in.	To	see	the	whole	path	on	a	Mac,	enter	the	command	pwd	(which	stands
for	“print	working	directory”),	as	in	Figure	1.19.

Figure	1.19		Showing	the	current	path	using	pwd	on	a	Mac

On	Windows,	use	the	command	echo	%cd%	to	see	the	path,	as	in	Figure	1.20.

Figure	1.20		Showing	the	current	path	using	echo	%cd%	on	Windows

Creating	a	directory

The	directory	structure	of	front-end	projects	is	important.	Your	projects	can	grow	quickly,
and	it	is	best	to	keep	them	organized	from	the	beginning.	You	will	create	new	directories
regularly	during	your	development.	This	is	done	using	the	mkdir	or	“make	directory”
command	followed	by	the	name	of	the	new	directory.

To	see	this	command	in	action,	set	up	a	directory	for	the	projects	you	will	build	as	you
work	through	this	book.	Enter	this	command:

mkdir	front-end-dev-book

Next,	create	a	new	directory	for	your	first	project,	Ottergram,	which	you	will	begin	in	the
next	chapter.	You	want	this	new	directory	to	be	a	subdirectory	of	the	front-end-dev-
book	directory	you	just	created.	You	can	do	this	from	your	home	directory	by	prefacing
the	new	directory	name	with	the	name	of	the	projects	directory	and,	on	a	Mac,	a	slash:
mkdir	front-end-dev-book/ottergram

On	Windows,	you	use	the	backslash	instead:
mkdir	front-end-dev-book\ottergram

Changing	directories

To	move	around	the	file	structure,	you	use	the	command	cd,	or	“change	directory,”
followed	by	the	path	of	the	directory	you	want	to	move	into.

You	do	not	always	need	to	use	the	complete	directory	path	in	your	cd	command.	For
example,	to	move	down	into	any	subdirectory	of	the	directory	you	are	in,	you	simply	use
the	name	of	the	subdirectory.	So	when	you	are	in	the	front-end-dev-book	directory,
the	path	of	the	ottergram	folder	is	just	ottergram.

Move	into	your	new	project	directory:
cd	front-end-dev-book

Now,	you	can	move	into	the	ottergram	directory:
cd	ottergram

To	move	up	to	the	parent	directory,	use	the	command	cd	..	(that	is,	cd	followed	by	a
space	and	two	periods).	The	pair	of	periods	represents	the	path	of	the	parent	directory.
cd	..

Remember	that	you	can	check	your	current	directory	by	using	the	pwd	command	(or	echo
%cd%	on	Windows).	Figure	1.21	shows	the	author	creating	directories,	moving	between
them,	and	checking	the	current	directory.

Figure	1.21		Changing	and	checking	directories

You	are	not	limited	to	moving	up	or	down	one	directory	at	a	time.	Let’s	say	that	you	had	a
more	complex	directory	structure,	like	the	one	shown	in	Figure	1.22.

Figure	1.22		An	example	file	structure

Suppose	you	are	in	the	ottergram	directory	and	you	want	to	go	directly	to	the
stylesheets	directory	inside	of	coffeerun.	You	would	do	this	with	cd	followed	by
a	path	that	means	“the	stylesheets	directory	inside	the	coffeerun	directory	inside
the	parent	directory	of	where	I	am	now”:
cd	../coffeerun/stylesheets

On	Windows,	you	would	use	the	same	command	but	with	backslashes:
cd	..\coffeerun\stylesheets

Listing	files	in	a	directory

You	may	need	to	see	a	list	of	files	in	your	current	directory.	On	a	Mac,	you	use	the	ls
command	for	that	(Figure	1.23).	If	you	want	to	list	the	files	in	another	directory,	you	can
supply	a	path:
ls

ls	ottergram

Figure	1.23		Using	ls	to	list	files	in	a	directory

By	default,	ls	will	not	print	anything	if	a	directory	is	empty.

On	Windows,	the	command	is	dir	(Figure	1.24),	which	you	can	optionally	give	a	path:
dir

dir	ottergram

Figure	1.24		Using	dir	to	list	files	in	a	directory

By	default,	the	dir	command	will	print	information	about	dates,	times,	and	file	sizes.

Getting	administrator	privileges

On	some	versions	of	OS	X	and	Windows,	you	will	need	superuser	or	administrator
privileges	in	order	to	run	some	commands,	such	as	commands	that	install	software	or
make	changes	to	protected	files.

On	a	Mac,	you	can	give	yourself	privileges	by	prefixing	a	command	with	sudo.	The	first
time	you	use	sudo	on	a	Mac,	it	will	give	you	a	stern	warning,	shown	in	Figure	1.25.

Figure	1.25		sudo	warning

sudo	will	prompt	you	for	your	password	before	it	runs	the	command	as	the	superuser.	As
you	type,	your	keystrokes	will	not	be	echoed	back,	so	type	carefully.

On	Windows,	if	you	need	to	give	yourself	privileges	you	do	so	in	the	process	of	opening
the	command-line	interface.	Find	the	command	prompt	in	the	Windows	Start	Menu,	right-
click	it,	and	choose	Run	as	Administrator	(Figure	1.26).	Any	commands	you	run	in	this
command	prompt	will	be	run	as	the	superuser,	so	be	careful.

Figure	1.26		Opening	the	command	prompt	as	an	administrator

Quitting	a	program

As	you	proceed	through	the	book,	you	will	run	many	apps	from	the	command	line.	Some
of	them	will	do	their	job	and	quit	automatically,	but	others	will	run	until	you	stop	them.	To
quit	a	command-line	program,	press	Control-C.

Installing	Node.js	and	browser-sync
There	is	one	final	set-up	step	before	you	begin	your	first	project.

Node.js	(or	simply	“Node”)	lets	you	use	programs	written	in	JavaScript	from	the	command
line.	Most	front-end	development	tools	are	written	for	use	with	Node.js.	You	will	learn	lots
more	about	Node.js	in	Chapter	15,	but	you	will	begin	using	one	tool	that	depends	on	it,
browser-sync,	right	away.

Install	Node	by	downloading	the	installer	from	nodejs.org	(Figure	1.27).	The	version
of	Node.js	used	in	this	book	is	5.11.1,	and	you	will	likely	see	a	different	version	available
for	download.

Figure	1.27		Downloading	Node.js

Double-click	the	installer	and	follow	the	prompts.

When	you	install	Node,	it	provides	two	command-line	programs:	node	and	npm.	The	node
program	does	the	work	of	running	programs	written	in	JavaScript.	You	will	not	need	to
use	it	until	Chapter	15.	The	other	program	is	the	Node	package	manager,	npm,	which	is
needed	for	installing	open-source	development	tools	from	the	internet.

browser-sync	is	one	such	tool,	and	it	will	be	invaluable	to	you	throughout	the	book.	It
makes	your	example	code	easier	to	run	in	the	browser	and	automatically	reloads	the
browser	when	you	save	changes	to	your	code.

Install	browser-sync	using	this	command	at	the	command	line:
npm	install	-g	browser-sync

(The	-g	in	the	command	stands	for	“global.”	Installing	the	package	globally	means	that
you	will	be	able	to	run	browser-sync	from	any	directory.)

It	does	not	matter	what	directory	you	are	in	when	you	run	this	command,	but	you	will
probably	need	superuser	privileges.	If	that	is	the	case,	run	the	command	using	sudo	on	a
Mac:

https://nodejs.org/en/

sudo	npm	install	-g	browser-sync

If	you	are	on	Windows,	first	open	a	command	prompt	as	the	administrator,	as	shown
above.

When	you	start	browser-sync,	as	you	will	in	the	next	chapter,	it	will	run	until	you	press
Control-C.	It	is	a	good	idea	to	quit	browser-sync	when	you	are	done	working	on	a	project
for	a	while.	That	means	that	you	will	need	to	start	browser-sync	each	time	you	begin
work	on	the	first	two	projects	in	this	book	(Ottergram	and	CoffeeRun).

With	that,	you	have	the	tools	you	need	to	get	started	on	your	Ottergram	project!

For	the	More	Curious:	Alternatives	to	Atom
There	are	many,	many	text	editors	to	choose	from.	If	you	are	not	that	keen	on	Atom,	when
you	are	done	working	through	the	projects	in	this	book	you	may	want	to	try	out	one	of	the
following	two	options.	Both	are	available	for	free	for	Mac	and	Windows,	and	both	have	a
large	number	of	plug-ins	to	customize	your	development	experience.	Also,	like	Atom,	both
are	built	using	HTML,	CSS,	and	JavaScript,	but	run	as	desktop	applications.

Visual	Studio	Code	is	Microsoft’s	open	source	text	editor,	made	specifically	for	developing
web	applications.	It	can	be	downloaded	from	code.visualstudio.com
(Figure	1.28).

Figure	1.28		The	Visual	Studio	Code	website

Adobe’s	Brackets	text	editor	is	particularly	good	for	building	user	interfaces	with	HTML
and	CSS.	In	fact,	it	provides	an	extension	for	helping	you	work	with	Adobe’s	layered	PSD
image	files.	Brackets	is	available	from	brackets.io	(Figure	1.29).

https://code.visualstudio.com/
http://brackets.io/

Figure	1.29		The	Adobe	Brackets	website

2	
Setting	Up	Your	First	Project

When	you	visit	a	website,	your	browser	has	a	conversation	with	a	server,	another
computer	on	the	internet.

Browser:	“Hey	there!	Can	I	please	have	the	contents	of	the	file	named	cat-
videos.html?”

Server:	“Certainly.	Let	me	take	a	look	around	…	here	it	is!”

Browser:	“Ah,	it’s	telling	me	that	I	need	another	file	named	styles.css.”

Server:	“Sure	thing.	Let	me	take	a	look	around	…	here	it	is!”

Browser:	“OK,	that	file	says	that	I	need	another	file	named	animated-
background.gif.”

Server:	“No	problem.	Let	me	take	a	look	around	…	here	it	is!”

That	conversation	goes	on	for	some	time,	sometimes	lasting	thousands	of	milliseconds
(Figure	2.1).

Figure	2.1		The	browser	sends	a	request,	the	server	responds

It	is	the	browser’s	job	to	send	requests	to	the	server;	interpret	the	HTML,	CSS,	and
JavaScript	it	receives	in	the	response	from	the	server;	and	present	the	result	to	the	user.
Each	of	these	three	technologies	plays	a	part	in	the	user’s	experience	of	a	website.	If	your
app	were	a	living	creature,	the	HTML	would	be	its	skeleton	and	organs	(the	mechanics),
the	CSS	would	be	its	skin	(the	visible	layer),	and	the	JavaScript	would	be	its	personality
(how	it	behaves).

In	this	chapter,	you	are	going	to	set	up	the	basic	HTML	for	your	first	project,	Ottergram.
In	the	next	chapter,	you	will	set	up	your	CSS,	which	you	will	refine	in	Chapter	4.	In
Chapter	6,	you	will	begin	adding	JavaScript.

Setting	Up	Ottergram
In	Chapter	1,	you	created	a	folder	for	the	projects	in	this	book	as	well	as	a	folder	for
Ottergram.	Start	your	Atom	text	editor	and	open	the	ottergram	folder	by	clicking	File	→
Open	(or	File	→	Open	Folder…	on	Windows).	In	the	dialog	box,	navigate	to	the	front-
end-dev-book	folder	and	choose	the	ottergram	folder.	Click	Open	to	tell	Atom	to	use
this	folder	(Figure	2.2).

Figure	2.2		Opening	your	project	folder	in	Atom

You	will	see	the	ottergram	folder	in	the	lefthand	panel	of	Atom.	This	panel	is	for
navigating	among	the	files	and	folders	in	your	project.

You	are	going	to	create	some	files	and	folders	within	the	ottergram	project	folder	using
Atom.	Control-click	(right-click)	ottergram	in	the	lefthand	panel	and	click	New	File	in	the
pop-up	menu.	You	will	be	prompted	for	a	name	for	the	new	file.	Enter	index.html	and
press	the	Return	key	(Figure	2.3).

Figure	2.3		Creating	a	new	file	in	Atom

You	can	use	the	same	process	to	create	folders	using	Atom.	Control-click	(right-click)
ottergram	in	the	lefthand	panel	again,	but	this	time	click	New	Folder	in	the	pop-up.	Enter
the	name	stylesheets	in	the	prompt	that	appears	(Figure	2.4).

Figure	2.4		Creating	a	new	folder	in	Atom

Finally,	create	a	file	named	styles.css	in	the	stylesheets	folder:	Control-click
(right-click)	stylesheets	in	the	lefthand	panel	and	choose	New	File.	The	prompt	will
pre-fill	the	text	“stylesheets/”.	After	this,	enter	styles.css	and	press	the	Return	key
(Figure	2.5).

Figure	2.5		Creating	a	new	CSS	file	in	Atom

When	you	are	finished,	your	project	folder	should	look	like	Figure	2.6.

Figure	2.6		Initial	files	and	folders	for	Ottergram

There	are	no	rules	about	how	to	structure	your	files	and	folders	or	what	to	name	them.
However,	Ottergram	(like	the	other	projects	in	this	book)	follows	conventions	used	by
many	front-end	developers.	Your	index.html	file	will	hold	your	HTML	code.	Naming
the	main	HTML	file	index.html	dates	back	to	the	early	days	of	the	web,	and	the
convention	continues	today.

The	stylesheets	folder,	as	the	name	suggests,	will	hold	one	or	more	files	with	styling
information	for	Ottergram.	These	will	be	CSS,	or	“cascading	style	sheets,”	files.
Sometimes	developers	give	their	CSS	files	names	that	describe	what	part	of	the	page	or
site	they	pertain	to,	such	as	header.css	or	blog.css.	Ottergram	is	a	simple	project
and	only	needs	one	CSS	file,	so	you	have	named	it	styles.css	to	reflect	its	global
role.

Initial	HTML

Time	to	get	coding.	Open	index.html	in	Atom	and	add	some	basic	HTML	to	get	started.

Start	by	typing	html.	Atom	will	offer	you	an	autocomplete	option,	as	shown	in	Figure	2.7.
(If	it	does	not,	make	sure	you	installed	the	emmet	plug-in	as	directed	in	Chapter	1.)

Figure	2.7		Atom’s	autocomplete	menu

Press	the	Return	key,	and	Atom	will	provide	bare-bones	HTML	elements	to	get	you	started
(Figure	2.8).

Figure	2.8		HTML	created	using	autocomplete

Your	cursor	is	between	<title>	and	</title>	–	the	opening	and	closing	title	tags.	Type
“ottergram”	to	give	the	project	a	name.	Now,	click	to	put	your	cursor	in	the	blank	line
between	the	opening	and	closing	body	tags.	There,	type	“header”	and	press	the	Return	key.
Atom	will	convert	the	text	“header”	into	opening	and	closing	header	tags	with	a	blank	line
between	them	(Figure	2.9).

Figure	2.9		Header	tag	created	with	autocomplete

Next,	type	“h1”	and	press	Return.	Again,	your	text	is	converted	into	tags,	this	time	without
a	blank	line.	Enter	the	text	“ottergram”	again.	This	will	be	the	heading	that	will	appear	on
your	web	page.

Your	file	should	look	like	this:
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>ottergram</title>

		</head>

		<body>

				<header>

						<h1>ottergram</h1>

				</header>

		</body>

</html>

Atom	and	emmet	have	together	saved	you	some	typing	and	helped	you	build	well-formed
initial	HTML.

Let’s	examine	your	code.	The	first	line,	<!doctype	html>,	defines	the	doctype	–	it	tells
the	browser	which	version	of	HTML	the	document	is	written	in.	The	browser	may	render,
or	draw,	the	page	a	little	differently	based	the	doctype.	Here,	the	doctype	specifies
HTML5.

Earlier	versions	of	HTML	often	had	long,	convoluted,	and	hard	to	remember	doctypes,
such	as:
<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Often,	folks	had	to	look	up	the	doctype	each	time	they	created	a	new	document.

With	HTML5,	the	doctype	is	short	and	sweet.	It	is	the	one	that	will	be	used	throughout	all
of	the	projects	in	this	book,	and	you	should	use	it	for	your	apps.

After	the	doctype	is	some	basic	HTML	markup	consisting	of	a	head	and	a	body.

The	head	will	hold	information	about	the	document	and	how	the	browser	should	handle
the	document.	For	example,	the	title	of	the	document,	what	CSS	or	JavaScript	files	the
page	uses,	and	when	the	document	was	last	modified	are	all	included	in	the	head.

Here,	the	head	contains	a	<meta>	tag.	<meta>	tags	provide	the	browser	with	information
about	the	document	itself,	such	as	the	name	of	the	document’s	author	or	keywords	for
search	engines.	The	<meta>	tag	in	Ottergram,	<meta	charset="utf-8">,	specifies	that	the
document	is	encoded	using	the	UTF-8	character	set,	which	encompasses	all	Unicode
characters.	Use	this	tag	in	your	documents	so	that	the	widest	range	of	browsers	can
interpret	them	correctly,	especially	if	you	expect	international	traffic.

The	body	will	hold	all	of	the	HTML	code	that	represents	the	content	of	your	page:	all	the
images,	links,	text,	buttons,	and	videos	that	will	appear	on	the	page.

Most	tags	enclose	some	other	content.	Take	a	look	at	the	h1	heading	you	included;	its
anatomy	is	shown	in	Figure	2.10.

Figure	2.10		Anatomy	of	a	simple	HTML	tag

HTML	stands	for	“hypertext	markup	language.”	Tags	are	used	to	“mark	up”	your	content,
designating	their	purpose	–	such	as	headings,	list	items,	and	links.

The	content	enclosed	by	a	set	of	tags	can	also	include	other	HTML.	Notice,	for	example,
that	the	<header>	tags	enclose	the	<h1>	tag	shown	above	(and	the	<body>	tags	enclose	the
<header>!).

There	are	a	lot	of	tags	to	choose	from	–	more	than	140.	To	see	a	list	of	them,	visit	MDN’s
HTML	element	reference,	located	at	developer.mozilla.org/en-US/docs/
Web/HTML/Element.	This	reference	includes	a	brief	description	of	each	element	and
groups	elements	by	usage	(e.g.,	text	content,	content	sectioning,	or	multimedia).

Linking	a	stylesheet

In	Chapter	3,	you	will	write	styling	rules	in	your	stylesheet,	styles.css.	But	remember
the	conversation	between	the	browser	and	the	server	at	the	beginning	of	this	chapter?	The
browser	only	knows	to	ask	for	a	file	from	the	server	if	it	has	been	told	that	the	file	exists.
You	have	to	link	to	your	stylesheet	so	that	the	browser	knows	to	ask	for	it.	Update	the
head	of	index.html	with	a	link	to	your	styles.css	file.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>ottergram</title>

				<link	rel="stylesheet"	href="stylesheets/styles.css">

		</head>

		<body>

...

The	<link>	tag	is	how	you	attach	an	external	stylesheet	to	an	HTML	document.	It	has	two
attributes,	which	give	the	browser	more	information	about	the	tag’s	purpose	(Figure	2.11).
(The	order	of	HTML	attributes	does	not	matter.)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Figure	2.11		Anatomy	of	a	tag	with	attributes

You	set	the	rel	(or	“relationship”)	attribute	to	"stylesheet",	which	lets	the	browser
know	that	the	linked	document	provides	styling	information.	The	href	attribute	tells	the
browser	to	send	a	request	to	the	server	for	the	styles.css	file	located	in	the	stylesheets
folder.	Note	that	this	file	path	is	relative	to	the	current	document.

Save	index.html	before	you	move	on.

Adding	content

A	web	page	without	content	is	like	a	day	without	coffee.	Add	a	list	after	your	header	to
give	your	project	a	reason	for	living.

You	are	going	to	add	an	unordered	list	(that	is,	a	bulleted	list)	using	the		tag.	In	the
list,	you	will	include	five	list	items	using		tags,	and	in	each	list	item	you	will	include
some	text	surrounded	by		tags.

The	updated	index.html	is	shown	below.	Note	that	throughout	this	book	we	show	new
code	that	you	are	adding	in	bold	type.	Code	that	you	are	to	delete	is	shown	struck	through.
Existing	code	is	shown	in	plain	text	to	help	you	position	your	changes	within	the	file.

We	encourage	you	to	make	use	of	Atom’s	autocompletion	and	autoformatting	features.
With	your	cursor	in	position,	type	“ul”	and	press	Return.	Next,	type	“li”	and	press	Return
twice,	then	type	“span”	and	press	Return	once.	Enter	the	name	of	an	otter,	then	create	four
more	list	items	and	spans	in	the	same	way.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>ottergram</title>

				<link	rel="stylesheet"	href="stylesheets/styles.css">

		</head>

		<body>

				<header>

						<h1>ottergram</h1>

				</header>

				

						

								Barry

						

						

								Robin

						

						

								Maurice

						

						

								Lesley

						

						

								Barbara

						

				

		</body>

</html>

The		tags	nested	inside	each		tag	do	not	have	any	special	meaning.	They	are
generic	containers	for	other	content.	You	will	be	using	them	in	Ottergram	for	styling
purposes,	and	you	will	see	other	examples	of	container	elements	as	you	continue	through
this	book.

Next,	you	will	add	images	of	otters	to	go	with	the	names	you	have	entered.

Adding	images

The	resource	files	for	all	the	projects	in	this	book	are	at	www.bignerdranch.com/
downloads/front-end-dev-resources.zip.	They	include	five	Creative
Commons-licensed	otter	images	taken	by	Michael	L.	Baird,	Joe	Robertson,	and	Agunther
that	were	found	on	commons.wikimedia.org.

Download	and	unzip	the	resources.	Inside	the	ottergram-resources	folder,	locate
the	img	folder.	Copy	the	img	folder	to	your	ottergram/	project	directory.	(The	.zip
contains	other	resources,	but	for	now	you	will	only	need	the	img	folder.)

You	want	your	list	to	include	clickable	thumbnail	images	in	addition	to	the	titles.	You	will
achieve	this	by	adding	anchor	and	image	tags	to	each	item	in	your	ul.	We	will	explain
these	changes	in	more	detail	after	you	enter	them.	(If	you	use	autocompletion,	note	that
you	will	need	to	move	the		tags	so	that	they	follow	the	spans.)
...

				

						

								

										

										Barry

								

						

						

								

										

										Robin

								

						

						

								

										

										Maurice

								

						

						

								

										

										Lesley

								

						

						

								

										

										Barbara

								

						

				

...

If	your	lines	are	not	nicely	indented,	you	can	take	advantage	of	the	atom-beautify	plug-in	that
you	installed.	Click	Packages	→	Atom	Beautify	→	Beautify	and	your	code	will	be	aligned	and
indented	for	you.

Let’s	look	at	what	you	have	added.

The	<a>	tag	is	the	anchor	tag.	Anchor	tags	make	elements	on	the	page	clickable,	so	that
they	take	the	user	to	another	page.	They	are	commonly	referred	to	as	“links,”	but	beware:
They	are	not	like	the	<link>	tag	you	used	earlier.

http://www.bignerdranch.com/downloads/front-end-dev-resources.zip
https://commons.wikimedia.org

Anchor	tags	have	an	href	attribute,	which	indicates	the	resource	the	anchor	points	to.
Usually	the	value	is	a	web	address.	Sometimes,	though,	you	do	not	want	a	link	to	go
anywhere.	That	is	the	case	for	now,	so	you	assigned	the	“dummy”	value	#	to	the	href
attributes.	This	will	make	the	browser	scroll	to	the	top	of	the	page	when	the	image	is
clicked.	Later	you	will	use	the	anchor	tags	to	open	a	larger	copy	of	an	image	when	the
thumbnail	is	clicked.

Inside	the	anchor	tags	you	added	,	or	image,	tags	with	src	attributes	indicating
filenames	in	the	img	directory	you	added	earlier.	You	also	added	a	descriptive	alt
attribute	to	your	image	tags.	alt	attributes	contain	text	that	replaces	the	image	if	it	is
unable	to	load.	alt	text	is	also	what	screen	readers	use	to	describe	an	image	to	a	user	with
a	visual	impairment.

Image	tags	are	different	from	most	other	elements	in	that	they	do	not	wrap	other	elements,
but	instead	refer	to	a	resource.	When	the	browser	encounters	an		tag,	it	draws	the
image	to	the	page.	This	is	known	as	a	replaced	element.	Other	replaced	elements	include
embedded	documents	and	applets.

Because	they	do	not	wrap	content	or	other	elements,		tags	do	not	have	a
corresponding	closing	tag.	This	makes	them	self-closing	tags	(also	known	as	void	tags).
You	will	sometimes	see	self-closing	tags	written	with	a	slash	before	the	right	angle-
bracket,	like	.	Whether	to	include	the	slash	is	a	matter	of
preference	and	does	not	make	a	difference	to	the	browser.	In	this	book,	self-closing	tags
are	written	without	the	slash.

Save	index.html.	In	a	moment,	you	will	see	the	results	of	your	coding.

Viewing	the	Web	Page	in	the	Browser
To	view	your	web	page,	you	need	to	be	running	the	browser-sync	tool	that	you	installed
in	Chapter	1.

Open	the	terminal	and	change	directory	to	your	ottergram	folder.	Recall	from
Chapter	1	that	you	change	directory	using	the	cd	command	followed	by	the	path	of	the
folder	you	are	moving	into.	One	easy	way	to	get	the	ottergram	path	is	to	Control-click
(right-click)	the	ottergram	folder	in	Atom’s	lefthand	panel	and	choose	Copy	Full	Path
(Figure	2.12).	Then,	at	the	command	line,	type	cd,	paste	the	path,	and	press	Return.

Figure	2.12		Copying	the	ottergram	folder	path	from	Atom

The	path	you	enter	might	look	something	like	this:
cd	/Users/chrisaquino/Projects/front-end-dev-book/ottergram

Once	you	are	in	the	ottergram	directory,	run	the	following	command	to	open
Ottergram	in	Chrome.	(We	have	broken	the	command	across	two	lines	so	that	it	fits	on	the
page.	You	should	enter	it	on	a	single	line.)
browser-sync	start	--server	--browser	"Google	Chrome"

																			--files	"stylesheets/*.css,	*.html"

If	Chrome	is	your	default	browser,	you	can	leave	out	the	--browser	"Google	Chrome"
portion	of	the	command:
browser-sync	start	--server	--files	"stylesheets/*.css,	*.html"

This	command	starts	browser-sync	in	server	mode,	allowing	it	to	send	responses	when	a
browser	sends	a	request	to	get	a	file,	such	as	the	index.html	file	you	created.

The	command	you	entered	also	tells	browser-sync	to	automatically	reload	the	browser	if

any	HTML	or	CSS	files	are	changed.	This	makes	the	development	experience	much	nicer.
Before	tools	like	browser-sync,	you	had	to	manually	reload	the	page	after	every	change.

Figure	2.13	shows	the	result	of	entering	this	command	on	a	Mac.

Figure	2.13		Starting	browser-sync	in	the	OS	X	Terminal

You	should	see	the	same	output	on	Windows	(Figure	2.14).

Figure	2.14		Starting	browser-sync	in	the	Windows	Command	Prompt

Once	the	Ottergram	page	has	loaded	in	Chrome,	you	should	see	your	page	with	the
“ottergram”	heading,	“ottergram”	as	the	tab	label,	and	a	series	of	otter	photos	and	names
(Figure	2.15).

Figure	2.15		Viewing	Ottergram	in	the	browser

The	Chrome	Developer	Tools
Chrome	has	built-in	Developer	Tools	(commonly	known	as	“DevTools”)	that	are	among	the
best	available	for	testing	styles,	layouts,	and	more	on	the	fly.	Using	the	DevTools	is	much
more	efficient	than	trying	things	out	in	code.	The	DevTools	are	very	powerful	and	will	be
your	constant	companion	as	you	do	front-end	development.

You	will	start	using	the	DevTools	in	the	next	chapter.	For	now,	open	the	window	and
familiarize	yourself	with	its	major	areas.

To	open	the	DevTools,	click	the	 	icon	to	the	right	of	the	address	bar	in	Chrome.	Next,
click	More	Tools	→	Developer	Tools	(Figure	2.16).

Figure	2.16		Opening	the	Developer	Tools

Chrome	displays	the	DevTools	to	the	right	by	default.	Your	screen	will	look	something	like
Figure	2.17.

Figure	2.17		The	DevTools	showing	the	elements	panel

The	DevTools	show	the	relationship	between	the	code	and	the	resulting	page	elements.
They	let	you	inspect	individual	elements’	attributes	and	styles	and	see	immediately	how
the	browser	is	interpreting	your	code.	Seeing	this	relationship	is	critical	for	both
development	and	debugging.

In	Figure	2.17,	you	can	see	the	DevTools	next	to	the	web	page,	displaying	the	elements
panel.	The	elements	panel	is	divided	into	two	sections.	On	the	left	is	the	DOM	tree	view.
This	is	a	representation	of	the	HTML,	interpreted	as	DOM	elements.	(You	will	learn	much
more	about	DOM,	which	stands	for	“document	object	model,”	in	upcoming	chapters.)	On
the	righthand	side	of	the	elements	panel	is	the	styles	pane.	This	shows	any	visual	styles
applied	to	individual	elements.

Having	the	DevTools	docked	on	the	right	side	of	the	screen	while	you	are	working	is
usually	convenient.	If	you	want	to	change	the	location	of	the	DevTools,	you	can	click	the	

	button	near	the	upper-right	corner.	This	will	show	you	a	menu	of	options,	including
buttons	for	the	Dock	side,	which	will	change	the	anchor	location	of	the	DevTools
(Figure	2.18).

Figure	2.18		Changing	the	dock	side	of	the	DevTools

With	your	otters	and	markup	in	place	and	the	DevTools	open,	you	are	ready	to	begin
styling	your	project	in	the	next	chapter.

For	the	More	Curious:	CSS	Versions
The	version	history	of	CSS	includes	standard	versions	1,	2,	and	2.1.	After	2.1,	it	was
decided	that	the	standard	needed	to	be	broken	up	because	it	was	getting	too	big.

There	is	no	version	3.	Instead,	CSS3	is	a	blanket	term	for	a	number	of	modules,	each	with
its	own	version	number.

Table	2.1		CSS	versions,	real	and	imagined

Version
Number

Release
Year Notable	Features

1 1996 Basic	font	properties	(font-family,	font-style),	foreground	and
background	colors,	text	alignment,	margin,	border,	and	padding.

2 1998 Absolute,	relative,	and	fixed	positioning;	new	font	properties.

2.1 2011 Removed	features	that	were	poorly	supported	by	browsers.

“3” Various A	collection	of	different	specifications,	such	as	media	queries,	new
selectors,	semi-transparent	colors,	@font-face.

For	the	More	Curious:	The	favicon.ico
Have	you	ever	noticed	the	little	icon	that	appears	at	the	left	end	of	your	browser’s	address
bar	when	you	visit	most	websites?	Sometimes	they	also	appear	in	your	browser	tab,	as	in
Figure	2.19.

Figure	2.19		The	bignerdranch.com	favicon.ico

That	is	the	favicon.ico	image	file.	Many	sites	have	one,	and	browsers	request	one	by
default.	Because	Ottergram	does	not	have	one,	you	may	see	an	error	like	the	one	in
Figure	2.20	in	the	DevTools.

Figure	2.20		Error	about	missing	favicon.ico

Do	not	worry	about	this	error	if	it	appears.	It	will	not	affect	your	project.	However,	you
can	easily	add	a	favicon.ico	image	–	and	that	is	your	first	challenge.

Silver	Challenge:	Adding	a	favicon.ico
You	have	decided	that	you	like	otters	more	than	you	like	seeing	the	favicon.ico	error
message.	You	are	going	to	create	a	favicon.ico	file	using	one	of	the	otter	images.

Do	a	web	search	for	“favicon	generator”	and	you	should	see	a	list	of	websites	that	will	do
a	file	conversion	for	you.	Most	will	let	you	upload	an	image	and	then	provide	you	with	a
favicon.ico	version.

Choose	one	and	upload	any	one	of	the	otter	images.

Save	the	resulting	favicon.ico	file	in	the	same	folder	as	your	index.html	file.
Finally,	reload	your	browser.	Your	browser	tab	will	look	something	like	Figure	2.21.

Figure	2.21		Ottergram	with	a	favicon.ico

3	
Styles

In	this	chapter,	you	will	design	a	static	version	of	Ottergram.	In	the	chapters	that	follow,
you	will	make	Ottergram	interactive.

When	you	reach	the	end	of	this	chapter,	your	website	will	look	like	Figure	3.1.

Figure	3.1		Ottergram:	stylish

This	chapter	introduces	a	number	of	concepts	and	examples.	Do	not	worry	if	you	do	not
feel	that	you	have	mastered	all	of	them	when	you	get	to	the	end.	You	will	be	encountering
them	again	and	again	as	you	progress	through	this	book,	and	your	work	in	this	chapter	will

provide	a	solid	foundation	on	which	you	will	build	true	understanding.

Of	course,	we	can	only	introduce	you	to	a	tiny	fraction	of	all	the	styles	that	are	available	in
CSS.	You	will	want	to	consult	the	MDN	for	information	about	the	full	set	of	properties
and	their	values.

Front-end	developers	have	to	choose	between	two	approaches	to	styling	a	website:	start
with	the	overall	layout	and	work	down	to	the	smallest	details,	or	start	with	the	smallest
details	and	work	up	to	the	overall	layout.

Not	only	does	working	from	detail	to	big	picture	produce	cleaner,	more	reusable	code,	it
also	has	a	cool	name:	atomic	styling.	You	will	use	this	approach	as	you	style	the	otter
thumbnails	first,	then	the	thumbnail	list	layout.	In	the	next	chapter,	you	will	work	on	the
layout	of	the	site	as	a	whole.

Creating	a	Styling	Baseline
You	are	going	to	begin	by	adding	the	normalize.css	file	to	your	project.
normalize.css	helps	the	CSS	you	write	display	consistently	across	browsers.	All
browsers	come	with	a	set	of	default	styles,	but	the	defaults	are	different	from	browser	to
browser.	normalize.css	gives	you	a	good	starting	point	for	developing	your	own
custom	CSS	for	a	website	or	web	app.

normalize.css	is	freely	available	online.	You	do	not	need	to	download	it.	To	add	it	to
Ottergram,	you	only	need	to	link	to	it	in	index.html.

To	ensure	that	you	are	using	the	most	current	version	of	normalize.css,	you	are
going	to	get	its	address	from	a	content	sharing	site.	Go	to	cdnjs.com/libraries/
normalize	and	find	the	version	of	the	file	ending	with	.min.css.	(This	version	is	a
smaller	download	than	the	others,	with	the	extra	whitespace	stripped	out.)	Click	the	Copy
button	to	copy	its	address	(Figure	3.2).

http://cdnjs.com/libraries/normalize/

Figure	3.2		Getting	a	link	to	normalize.css	from	cdnjs.com

The	current	version	at	the	time	of	this	writing	is	3.0.3,	but	the	version	you	use	may	be
more	recent.

Open	your	Ottergram	folder	in	Atom,	then	open	index.html.	Add	a	new	<link>	tag	and
paste	in	the	address.	(In	the	code	below,	the	<link>	has	been	broken	into	two	lines	to	fit
on	the	page.	You	can	leave	yours	on	a	single	line.)
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>ottergram</title>

				<link	rel="stylesheet"

						href="https://cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css">

				<link	rel="stylesheet"	href="stylesheets/styles.css">

		</head>

...

Make	sure	that	you	add	the	<link>	tag	for	normalize.css	before	the	<link>	tag	for
styles.css.	The	browser	needs	to	read	the	styles	found	in	normalize.css	before	it
reads	yours.

And,	just	like	that,	your	project	can	take	advantage	of	this	useful	tool.	No	other	setup	is
required.

You	may	be	wondering	why	you	are	linking	to	an	address	on	a	completely	different	server.
In	fact,	it	is	not	unusual	for	an	HTML	file	to	specify	resources	located	on	different	servers
(Figure	3.3).

Figure	3.3		Requesting	resources	from	different	servers

In	this	case,	normalize.css	is	hosted	on	cdnjs.com,	a	public	server	that	is	part	of	a
content	delivery	network,	or	CDN.	CDNs	have	servers	all	around	the	world,	each	with
copies	of	the	same	files.	When	users	request	a	file,	they	receive	it	from	a	server	nearby,
cutting	down	on	the	load	time	for	that	file.	cdnjs.com	hosts	many	versions	of	popular
front-end	libraries	and	frameworks.

https://cdnjs.com/
https://cdnjs.com/

Preparing	the	HTML	for	Styling
In	the	last	chapter,	you	created	a	stylesheet	called	styles.css,	and	in	this	chapter	you
will	add	a	number	of	CSS	styling	rules	to	it.	But	before	you	get	started	adding	styles,	you
need	to	set	up	your	HTML	with	targets	for	your	styling	rules	to	refer	to.

You	are	going	to	add	class	attributes	identifying	the	span	elements	with	the	otters’	names
as	“thumbnail	titles.”	class	attributes	are	a	way	to	identify	a	group	of	HTML	elements,
usually	for	styling.	Your	“thumbnail	title”	class	will	allow	you	to	easily	style	all	the
names	at	once.

In	index.html,	add	the	class	name	thumbnail-title	as	an	attribute	of	the	spans	inside
the	li	elements,	as	shown:
...

				

						

								

										

										Barry

										Barry

								

						

						

								

										

										Robin

										Robin

								

						

						

								

										

										Maurice

										Maurice

								

						

						

								

										

										Lesley

										Lesley

								

						

						

								

										

										Barbara

										Barbara

								

				

...

In	a	moment,	you	will	use	this	class	name	to	style	all	the	image	titles.

Anatomy	of	a	Style
When	you	create	individual	styles,	you	do	so	by	writing	styling	rules,	which	consist	of	two
main	parts:	selectors	and	declarations	(Figure	3.4).

Figure	3.4		Anatomy	of	a	styling	rule

The	first	part	of	a	styling	rule	is	one	or	more	selectors.	Selectors	describe	the	elements	that
the	style	should	be	applied	to,	like	h1,	span,	or	img.	But	selectors	are	not	limited	to	tag
names.	You	can	write	selectors	that	apply	to	a	more	targeted	set	of	elements	by	increasing
the	selector’s	specificity.

For	example,	you	can	write	selectors	based	on	attributes	–	such	as	the	thumbnail-title
class	attribute	you	just	added	to	the		tags.	Selectors	based	on	attributes	are	more
specific	than	selectors	based	on	element	names.

In	addition	to	making	sure	that	styles	are	only	applied	to	a	limited	set	of	elements	(e.g.,
elements	with	the	class	name	thumbnail-title	versus	all		elements),	specificity
also	determines	the	selector’s	relative	priority.	If	a	stylesheet	contains	multiple	styles	that
could	apply	to	the	same	element,	the	styles	with	a	selector	of	higher	specificity	will	be
used	instead	styles	whose	selector	has	a	lower	specificity.	You	can	read	more	about
specificity	in	a	For	the	More	Curious	section	at	the	end	of	this	chapter.

Throughout	this	chapter,	you	will	be	introduced	to	a	number	of	different	kinds	of	selectors
that	vary	in	their	specificity.	Though	there	are	often	many	ways	to	target	the	same	element
for	styling,	understanding	specificity	is	key	to	choosing	the	best	selector	to	use	so	that
your	styles	are	maintainable.

The	second	part	of	a	styling	rule	is	the	declaration	block,	wrapped	in	curly	braces,	which
defines	the	styles	to	be	applied.	The	individual	declarations	within	the	block	each	include

a	property	name	and	a	value	for	that	property.

In	your	first	styling	rule,	you	will	use	the	class	attribute	you	just	added	as	a	selector	to
apply	styles	around	the	otters’	names.

Your	First	Styling	Rule
To	use	a	class	as	a	selector	in	a	styling	rule,	you	prefix	the	class	name	with	a	dot	(period),
as	in	.thumbnail-title.	The	first	styles	you	are	going	to	add	will	set	the	background	and
foreground	colors	for	the	.thumbnail-title	class.

Open	styles.css	and	add	your	styling	rule:
.thumbnail-title	{

		background:	rgb(96,	125,	139);

		color:	rgb(202,	238,	255);

}

You	will	learn	more	about	color	later	in	this	chapter.	For	now,	just	take	a	look	at	your
changes.	Save	styles.css	and	make	sure	browser-sync	is	running.	If	you	need	to
restart	it,	the	command	is:
browser-sync	start	--server	--browser	"Google	Chrome"

																			--files	"stylesheets/*.css,	*.html"

This	will	open	your	web	page	in	Chrome	(Figure	3.5).

Figure	3.5		A	slightly	more	colorful	Ottergram

You	can	see	that	you	have	set	the	background	for	the	thumbnail	titles	to	a	deep	gray-blue

and	the	font	color	to	a	lighter	blue.	Nice.

Continue	styling	the	thumbnail	titles:	Return	to	styles.css	and	add	to	your	existing
styling	rule	for	the	.thumbnail-title	class,	as	shown:
.thumbnail-title	{

		display:	block;

		margin:	0;

		padding:	4px	10px;

		background:	rgb(96,	125,	139);

		color:	rgb(202,	238,	255);

}

The	three	declarations	you	have	added	all	affect	an	element’s	box.	For	every	HTML	tag
that	has	a	visual	representation,	the	browser	draws	a	rectangle	to	the	page.	The	browser
uses	a	scheme	called	the	standard	box	model	(or	just	“box	model”)	to	determine	the
dimensions	of	that	rectangle.

The	box	model

To	understand	the	box	model,	you	are	going	to	look	at	its	representation	in	the	DevTools.
Save	styles.css,	switch	to	Chrome,	and	make	sure	the	DevTools	are	open	(Figure	3.6).

Figure	3.6		Exploring	the	box	model

Click	the	 	button	in	the	upper-left	of	the	elements	panel.	This	is	the	Inspect	Element
button.	Now	move	your	cursor	over	the	word	“ottergram”	on	the	web	page.	As	you	hover
over	the	word,	the	DevTools	surrounds	the	heading	with	a	blue-	and	peach-colored
rectangle	(Figure	3.7).

Figure	3.7		Hovering	over	the	heading

Click	the	word	“ottergram”	on	the	web	page.	Although	you	no	longer	see	the	multicolored
overlay,	the	element	is	now	selected	and	the	DOM	tree	view	in	the	elements	panel	will
expand	to	show	and	highlight	the	corresponding	<h1>	tag.

The	rectangular	diagram	in	the	lower-right	of	the	elements	panel	represents	the	box	model
for	the	h1	element.	You	can	see	that	the	regions	of	the	diagram	have	some	of	the	same
colors	as	the	rectangle	you	saw	overlaying	the	heading	when	you	inspected	it	(Figure	3.8).

Figure	3.8		Viewing	the	box	model	for	an	element

The	box	model	incorporates	four	aspects	of	the	rectangle	drawn	for	an	element	(which	the
DevTools	renders	in	four	different	colors	in	the	diagram).

content	(shown	in	blue)

the	visual	content	–	here,	the	text

padding	(shown	in	green)

transparent	space	around	the	content

border	(shown	in	yellow)

a	border,	which	can	be	made	visible,	around	the	content	and	padding

margin	(shown	in	peach)

transparent	space	around	the	border

The	numbers	in	Figure	3.8	are	pixel	values;	a	pixel	is	a	unit	corresponding	to	the	smallest

rectangular	area	of	a	computer	screen	that	can	display	a	single	color.	In	the	case	of	the	h1
element,	the	content	area	has	been	allocated	an	area	of	197	pixels	by	54	pixels	(your
values	may	be	different,	depending	on	the	size	of	your	browser	window).	There	is	padding
of	40	pixels	on	the	left	side.	The	border	is	set	at	0,	and	there	is	a	margin	of	16	pixels	above
and	below	the	element.

Where	did	that	margin	value	come	from?	Each	browser	provides	a	default	stylesheet,
called	the	user	agent	stylesheet,	in	case	an	HTML	file	does	not	specify	one.	Styles	that
you	specify	override	the	defaults.	Because	you	have	not	specified	values	for	the	h1
element’s	box,	the	default	styles	have	been	applied.

Now	you	are	ready	to	understand	the	styling	declarations	you	added:
.thumbnail-title	{

		display:	block;

		margin:	0;

		padding:	4px	10px;

		background:	rgb(96,	125,	139);

		color:	rgb(202,	238,	255);

}

The	display:	block	declaration	changes	the	box	for	all	elements	of	the	class
.thumbnail-title	so	that	they	occupy	the	entire	width	allowed	by	their	containing
element.	(Notice	in	Figure	3.6	that	the	background	color	for	the	titles	now	covers	a	wider
area.)	Other	display	values,	such	as	the	display:	inline	property	you	will	see	later,
make	an	element’s	width	fit	to	its	content.

You	also	set	the	margin	for	the	thumbnail	titles	to	0	and	the	padding	to	two	different
values:	4px	and	10px	(px	is	the	abbreviation	for	“pixels”).	This	sets	the	padding	to	specific
pixel	values,	overriding	the	default	size	set	by	the	user	agent	stylesheet.

Padding,	margin,	and	certain	other	styles	can	be	written	as	shorthand	properties,	in	which
one	value	is	applied	to	multiple	properties.	You	are	taking	advantage	of	this	here:	When
two	values	are	provided	for	the	padding,	the	first	is	applied	to	both	vertical	values	(top	and
bottom)	and	the	second	is	applied	to	both	horizontal	values	(left	and	right).	It	is	also
possible	to	provide	a	single	value	to	be	applied	to	all	four	sides	or	to	specify	a	separate
value	for	each	side.

To	sum	up,	your	new	declarations	say	that	the	box	for	all	elements	of	the	.thumbnail-
title	class	will	fill	the	width	of	its	container	with	no	margin	and	with	padding	that	is	4
pixels	at	the	top	and	bottom	and	10	pixels	at	the	left	and	right	sides.

Style	Inheritance
Next,	you	are	going	to	add	styles	to	change	the	size	and	appearance	of	the	text.

Add	a	new	styling	rule	in	styles.css	to	set	the	font	size	for	the	body	element.	To	do
this,	you	will	use	a	different	type	of	selector	–	an	element	selector	–	by	simply	using	the
element’s	name.
body	{

		font-size:	10px;

}

.thumbnail-title	{

		display:	block;

		margin:	0;

		padding:	4px	10px;

		background:	rgb(96,	125,	139);

		color:	rgb(202,	238,	255);

}

This	styling	rule	sets	the	body	element’s	font-size	to	10px.

You	will	rarely	use	element	selectors	in	your	stylesheets,	because	you	will	not	often	want
to	apply	the	exact	same	styles	to	every	occurrence	of	a	particular	tag.	Also,	element
selectors	limit	your	ability	to	reuse	styles;	using	them	means	that	you	may	end	up	retyping
the	same	declarations	throughout	your	stylesheets.	This	is	not	great	for	maintenance	if	you
need	to	alter	those	styles.

But,	in	this	case,	targeting	the	body	element	is	exactly	the	right	amount	of	specificity.
There	can	be	only	one	<body>	element,	and	you	will	not	be	reusing	its	styles.

Save	styles.css	and	check	out	your	web	page	in	Chrome	(Figure	3.9).

Figure	3.9		After	setting	the	body	font	size

Your	headline	and	thumbnail	titles	have	gotten	smaller.	You	may	–	or	may	not	–	have
expected	this.	While	the	headline	is	directly	within	the	body	element	where	you	declared

the	font-size	property,	the	thumbnail	titles	are	not.	They	are	nested	several	levels	deep.
However,	many	styles,	including	font	size,	are	applied	to	the	elements	specified	by	the
styling	rule	as	well	as	the	descendants	of	those	elements.

The	structure	of	your	document	can	be	described	using	a	tree	diagram,	as	in	Figure	3.10.
Representing	your	elements	as	a	tree	is	a	good	way	to	visualize	the	DOM.

Figure	3.10		Simplified	structure	of	Ottergram

An	element	contained	within	another	element	is	said	to	be	its	descendent.	In	this	case,
your	spans	are	all	descendents	of	the	body	(as	well	as	the	ul	and	their	respective	li),	so
they	inherit	the	body’s	font-size	style.

In	the	DevTools’	DOM	tree	view,	locate	and	select	one	of	the	span	elements.	In	the	styles
pane,	notice	the	boxes	labeled	Inherited	from	a,	Inherited	from	li,	and	Inherited	from	ul.	These	three
areas,	as	indicated,	show	styles	inherited	at	each	level	from	the	user	agent	stylesheet.
Under	Inherited	from	body,	you	can	see	that	the	font-size	property	has	been	inherited	from
the	style	set	for	the	body	element	in	styles.css	(Figure	3.11).

Figure	3.11		Styles	inherited	from	ancestor	elements

What	if	a	different	font	size	were	set	at	another	level,	such	as	the	ul?	Styles	from	the
closer	ancestor	take	priority,	so	a	font	size	set	in	styles.css	for	the	ul	would	override
one	set	for	the	body	and	a	font	size	set	for	the	span	element	itself	would	override	them
both.

To	see	this,	click	on	the	ul	element	in	the	DOM	tree	view.	This	will	allow	you	to	try	out
styles	on	the	fly.	The	styles	you	add	here	will	be	immediately	reflected	in	the	web	page
view,	but	will	not	be	added	to	your	actual	project	files.

At	the	top	of	the	styles	pane	in	the	elements	panel,	you	will	see	a	section	labeled
elements.style.	Click	anywhere	in	between	the	curly	braces	of	the	elements.style,	and
the	DevTools	will	give	you	a	prompt	(Figure	3.12).

Figure	3.12		Prompting	for	a	style	rule

Start	typing	font-size,	and	the	DevTools	will	suggest	possible	completions	(Figure	3.13).

Figure	3.13		Autocompletion	options	in	styles	pane

Choose	font-size,	then	press	the	Tab	key.	Enter	a	large	value,	such	as	50px,	and	press
Return.	You	may	need	to	scroll	the	page,	but	you	will	see	that	the	ul’s	font-size	has
overridden	the	body’s	(Figure	3.14).

Figure	3.14		Giving	the	ul	a	font-size	of	50px

Not	all	style	properties	are	inherited	–	border,	for	example,	is	not.	To	find	out	whether	a
property	is	inherited,	refer	to	the	property’s	MDN	reference	page.

Back	in	styles.css,	update	your	declaration	block	for	the	.thumbnail-title	class	to
override	the	body’s	font-size	and	use	a	larger	font.
body	{

		font-size:	10px;

}

.thumbnail-title	{

		display:	block;

		margin:	0;

		padding:	4px	10px;

		background:	rgb(96,	125,	139);

		color:	rgb(202,	238,	255);

		font-size:	18px;

}

For	elements	of	the	class	.thumbnail-title,	you	changed	the	font	size	to	18	pixels.

Save	styles.css	and	admire	your	thumbnail	titles	in	Chrome	(Figure	3.15).

Figure	3.15		Styled	thumbnail	titles

They	look	good,	but	the	user	agent	stylesheet	is	adding	underlines	to	the	.thumbnail-
title	elements.	This	is	because	you	wrapped	them	(along	with	the	.thumbnail-image

elements)	with	an	anchor	tag,	making	them	inherit	the	underline	style.

You	do	not	need	the	underlines,	so	you	are	going	to	remove	them	by	changing	the	text-
decoration	property	for	the	anchor	tags	in	a	new	styling	rule	in	styles.css.	What
selector	should	you	use	for	this	rule?

If	you	are	confident	that	you	want	to	remove	the	underlines	from	the	thumbnail	titles	as
well	as	any	other	anchor	elements	in	Ottergram,	you	can	simply	use	an	element	selector:
a	{

		/*	style	declaration	*/

}

(The	text	between	the	/*	*/	indicators	is	a	CSS	comment.	Code	comments	are	ignored	by
the	browser;	they	allow	the	developer	to	make	notes	in	the	code	for	future	reference.)

If	you	think	you	might	use	anchors	for	another	purpose	(and	will	want	to	style	them
differently),	you	can	pair	the	element	selector	with	an	attribute	selector,	like	this:
a[href]{

		/*	style	declaration	*/

}

This	selector	would	match	any	anchor	element	with	an	href	attribute.	Of	course,	anchor
elements	generally	do	have	href	attributes,	so	that	might	not	be	targeted	enough	to	match
only	the	thumbnail	images	and	titles.	To	make	an	attribute	selector	more	precise,	you	can
also	specify	the	value	of	the	attribute,	like	this:
a[href="#"]{

		/*	style	declaration	*/

}

This	selector	would	match	only	those	anchor	elements	whose	href	attribute	has	a	value	of
#.

By	the	way,	you	can	also	use	attribute	selectors,	with	or	without	values,	on	their	own,	such
as:
[href]{

		/*	style	declaration	*/

}

As	it	happens,	Ottergram	is	a	fairly	simple	project	and	you	will	not,	in	fact,	be	using
anchor	tags	for	anything	other	than	the	thumbnails	and	their	titles.	It	is	therefore	safe	to
use	an	element	selector,	and	you	should	do	so	because	it	is	the	most	straightforward
solution	with	the	right	amount	of	specificity.

Add	the	new	style	declaration	to	styles.css:
body	{

		font-size:	10px;

}

a	{

		text-decoration:	none;

}

.thumbnail-title	{

		...

}

Save	your	file	and	check	your	browser.	The	underlines	are	gone	and	your	thumbnail	titles
are	nicely	styled	(Figure	3.16).

Figure	3.16		After	setting	text-decoration	to	none

Note	that	you	should	not	remove	the	underlines	from	links	that	are	in	normal	text	–	text
that	is	not	an	obvious	heading,	title,	or	caption.	The	underlining	of	linked	text	is	an
important	visual	indicator	that	users	have	come	to	expect.	You	did	it	here	because	the
thumbnails	do	not	require	the	same	visual	cues.	Users	will	reasonably	expect	them	to	be
clickable.

In	the	rest	of	the	chapter,	you	will	use	class	selectors	to	style	the	thumbnail	images,	the
unordered	list	of	images,	the	list	items	(which	include	the	thumbnail	images	and	their
titles),	and,	finally,	the	header.	Go	ahead	and	add	class	names	to	the	h1,	ul,	li,	and	img
elements	in	index.html	so	they	are	ready	as	you	need	them.
...

		</head>

		<body>

				<header>

						<h1>ottergram</h1>

						<h1	class="logo-text">ottergram</h1>

				</header>

				

				<ul	class="thumbnail-list">

						

						<li	class="thumbnail-item">

								

										

										

										Barry

								

						

						

						<li	class="thumbnail-item">

								

										

										

										Robin

								

						

						

						<li	class="thumbnail-item">

								

										

										

										Maurice

								

						

						

						<li	class="thumbnail-item">

								

										

										

										Lesley

								

						

						

						<li	class="thumbnail-item">

								

										

										

										Barbara

								

						

				

...

By	adding	class	names	to	these	elements,	you	have	given	yourself	targets	for	the	styles
you	will	be	adding.

We	favor	class	selectors	over	other	kinds	of	selectors,	and	you	should,	too.	You	can	write
very	descriptive	class	names	that	make	your	code	easy	to	develop	and	maintain.	Also,	you
can	add	multiple	class	names	to	an	element,	making	them	a	flexible	and	powerful	tool	for

styling.

Be	sure	to	save	index.html	before	moving	on.

Making	Images	Fit	the	Window
Following	the	atomic	styling	pattern,	the	images	are	next	in	line	for	styling.	They	are	so
large	that	they	are	cut	off	unless	the	browser	window	is	also	large.	Add	a	styling	rule	for
.thumbnail-image	in	styles.css	to	make	the	thumbnails	fit	in	the	window:
...

a	{

		text-decoration:	none;

}

.thumbnail-image	{

		width:	100%;

}

.thumbnail-title	{

		...

}

You	set	the	width	to	100%,	which	constrains	it	to	the	width	of	its	container.	This	means
that	as	you	widen	the	browser	window,	the	images	get	proportionally	larger.	Check	it	out:
Save	styles.css,	switch	to	your	browser,	and	make	your	browser	window	larger	and
smaller.	The	images	grow	and	shrink	along	with	the	browser	window,	always	keeping
their	proportions.	Figure	3.17	shows	Ottergram	in	one	narrow	and	one	wider	browser
window.

Figure	3.17		Fitting	an	image	by	width

If	you	look	closely,	the	spacing	around	the	.thumbnail-titles	is	off,	so	that	it	appears
that	the	titles	go	with	the	images	below	them.	Fix	that	in	styles.css	by	setting	the
.thumbnail-image’s	display	property	to	block.

...

.thumbnail-image	{

		display:	block;

		width:	100%;

}

...

Now	the	space	between	the	image	and	its	title	is	gone	(Figure	3.18).

Figure	3.18		After	setting	.thumbnail-image	to	display:	block

Why	does	this	work?	Images	are	display:	inline	by	default.	They	are	subject	to	similar
rendering	rules	as	text.	When	text	is	rendered,	the	letters	are	drawn	along	a	common
baseline.	Some	characters,	such	as	p,	q,	and	y,	have	a	descender	-	the	tail	that	drops
below	this	baseline.	To	accommodate	them,	there	is	some	whitespace	included	below	the
baseline.

Setting	the	display	property	to	block	removes	the	whitespace	because	there	is	no	need	to
accommodate	any	text	(or	any	other	display:	inline	elements	that	might	be	rendered
alongside	the	image).

Color
It	is	time	to	explore	color	a	little	more	deeply.	Add	the	following	color	styles	for	the	body
element	and	the	.thumbnail-item	class	in	styles.css.
body	{

		font-size:	10px;

		background:	rgb(149,	194,	215);

}

a	{

		text-decoration:	none;

}

.thumbnail-item	{

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

}

...

You	have	declared	values	for	the	.thumbnail-item’s	border	twice.	Why?	Notice	that	the
two	declarations	use	slightly	different	color	functions:	rgb	and	rgba.	The	rgba	color
function	accepts	a	fourth	argument,	which	is	the	opacity.	However,	some	browsers	do	not
support	rgba,	so	providing	both	declarations	is	a	technique	that	provides	a	fallback	value.

All	browsers	will	see	the	first	declaration	(rgb)	and	register	its	value	for	the	border
property.	When	browsers	that	do	not	support	rgba	see	the	second	declaration,	they	will	not
understand	it	and	will	simply	ignore	it,	using	the	value	from	the	first	declaration.	Browsers
that	do	support	rgba	will	use	the	value	in	the	second	declaration	and	discard	the	value
from	the	first	declaration.

(Wondering	why	the	body’s	background	color	is	defined	with	integers	and	the
.thumbnail-item’s	border	color	is	defined	with	percentages?	We	will	come	back	to	that	in
just	a	moment.)

Save	styles.css	and	switch	to	your	browser	(Figure	3.19).

Figure	3.19		Background	color	and	borders

In	the	DevTools,	you	can	see	that	Chrome	supports	rgba.	It	denotes	that	the	rgb	color	is	not
used	by	striking	through	the	style	(Figure	3.20)

Figure	3.20		rgba	is	used	when	supported	by	browser

Now,	still	in	the	DevTools,	select	the	body.	In	the	styles	pane,	notice	the	declaration	for
the	background	color	that	you	just	added.	To	the	left	of	the	RGB	value	is	a	small	square
showing	you	what	the	color	will	look	like.

Click	that	square,	and	a	color	picker	opens	(Figure	3.21).	The	color	picker	lets	you	choose
a	color	and	will	give	you	the	CSS	color	value	in	a	variety	of	different	formats.

Figure	3.21		The	color	picker	in	the	styles	pane

To	see	the	background	color	in	different	color	formats,	click	the	up	and	down	arrows	to
the	right	of	the	RGBA	values.	You	can	cycle	through	HSLA,	HEX,	and	RGBA	formats.

The	HSLA	format	(which	stands	for	“hue	saturation	lightness	alpha”)	is	used	less
frequently	than	the	others,	partly	because	some	of	the	most	popular	design	tools	do	not

provide	HSLA	values	that	are	accurate	for	CSS.	If	you	are	curious	about	HSLA,	visit	the
HSLA	Explorer	at	css-tricks.com/examples/HSLaExplorer.

Take	a	look	at	the	HEX	value	for	the	background	color:	#95C2D7.	HEX,	or	hexadecimal,	is
the	oldest	color	specification	format.	Each	digit	represents	a	value	from	0	to	15.	(If	you
are	not	familiar	with	hexadecimal	numbers,	this	is	done	by	including	the	characters	A
through	F	as	digits.)	Each	pair	of	digits,	then,	can	represent	a	value	from	0	to	255.	From
left	to	right,	the	pairs	of	digits	correspond	to	the	intensity	of	red,	green,	and	blue	in	the
color	being	specified	(Figure	3.22).

Figure	3.22		HEX	values	correspond	to	red,	green,	and	blue	values

Many	find	HEX	colors	unintuitive.	A	modern	alternative	is	to	use	RGB	(red,	green,	and
blue)	values.	In	this	model,	each	color	is	also	assigned	a	value	from	0	to	255,	but	the
values	are	represented	in	more	familiar	decimal	numbers	and	separated	by	color.	As
mentioned	earlier,	for	more	capable	browsers	a	fourth	value	can	specify	the	opacity	or
transparency	of	the	specified	color,	from	0.0	(fully	transparent)	to	1.0	(fully	opaque).	The
opacity	is	officially	known	as	the	alpha	value	–	hence	the	A	in	RGBA.	The	RGBA	value
of	the	body’s	background	color	is	(149,	194,	215,	1).

As	an	alternative	to	declaring	integer	values	for	red,	green,	and	blue,	you	can	also	use
percentages,	as	you	did	for	the	.thumbnail-item	borders.	There	is	no	functional
difference	between	the	two	options.	Just	do	not	mix	percentages	and	integers	in	the	same
declaration.

By	the	way,	for	help	selecting	pleasing	color	palettes,	Adobe	provides	a	free	online	tool	at
color.adobe.com.

https://css-tricks.com/examples/HSLaExplorer/
https://color.adobe.com/

Adjusting	the	Space	Between	Items
Ottergram	now	has	some	nice	colors	reminiscent	of	otters’	ocean	home.	But	adding	the
colors	has	revealed	some	unwanted	whitespace	inside	the	border	of	the	.thumbnail-item
elements.	Also,	those	pesky	bullets	are	drawing	attention	away	from	the	glory	of	the
otters.

To	get	rid	of	the	bullets,	set	the	.thumbnail-list’s	list-style	property	to	none	in
styles.css:
...

.thumbnail-item	{

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

}

.thumbnail-list	{

		list-style:	none;

}

.thumbnail-image	{

		...

To	get	rid	of	the	whitespace,	you	will	use	the	same	technique	you	used	with	the
.thumbnail-image.	Each	.thumbnail-item	has	that	whitespace	by	default	to
accommodate	items	in	a	list,	just	as	the	.thumbnail-image	elements	had	whitespace	to
accommodate	neighboring	text.	Add	a	display:	block	declaration	for	.thumbnail-item
to	remove	it.
...

.thumbnail-item	{

		display:	block;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

}

...

With	those	additions,	the	bullets	and	the	excess	space	above	the	images	disappear,
resulting	in	the	more	polished	layout	shown	in	Figure	3.23.

Figure	3.23		Improved	layout

Why	use	a	bullet	list	if	you	do	not	want	bullets?	It	is	best	to	choose	HTML	tags	based	on
what	they	are	and	not	how	the	browser	will	style	them	by	default.	In	this	case,	you	want
an	unordered	list	of	images,	so	a	ul	is	the	way	to	go.	The	ul	container	for	your	images
will	let	you	style	them	as	a	scrolling	list	when	you	add	a	detail	image	to	your	project	in
Chapter	4.	The	fact	that	the	browser	represents	uls	with	bullets	by	default	is	not
important,	as	they	are	easily	removed.

Next,	you	are	going	to	adjust	the	spacing	of	the	items	in	the	list.	The	individual
.thumbnail-item	elements	currently	have	no	space	between	them.	You	are	going	to	add
margins	between	adjacent	thumbnails.

However,	you	do	not	want	to	add	a	margin	to	all	of	the	list	items.	Why	not?	Because	the
heading	already	has	a	margin,	so	the	first	list	item	does	not	need	one.	This	means	that	you
cannot	use	the	.thumbnail-item	class	selector,	at	least	not	on	its	own.	Instead,	you	will
use	selector	syntax	that	targets	elements	based	on	their	relationship	to	other	elements.

Relationship	selectors

Look	again	at	the	diagram	of	your	project	in	Figure	3.10.	It	looks	much	like	a	family	tree,
doesn’t	it?	This	similarity	gives	the	set	of	relationship	selectors	their	names:	descendent

selectors,	child	selectors,	sibling	selectors,	and	adjacent	sibling	selectors.

Relationship	selector	syntax	includes	two	selectors	(like	class	or	element	selectors)	joined
by	a	symbol	called	a	combinator	that	determines	the	targeted	relationship	between	them.
To	understand	how	relationship	selectors	work,	it	is	important	to	keep	in	mind	that	the
browser	reads	selector	syntax	from	right	to	left.	Let’s	look	at	some	examples.

A	descendent	selector	targets	any	element	of	one	specified	type	that	is	the	descendent	of
another	specified	element.	For	example,	to	select	any	span	element	that	is	the	descendent
of	the	body	element,	the	syntax	would	be:
body	span	{

		/*	style	declarations	*/

}

This	syntax	uses	no	combinator.	Because	it	is	read	from	right	to	left,	it	targets	any	span
descended	from	a	body,	which	in	the	current	code	means	the	thumbnail	titles.	It	would
also	affect	any	spans	that	might	be	added	within	the	header	or	elsewhere	within	the	body.

Note	that	you	can	also	use	a	class	selector	(or	attribute	selector,	or	indeed	any	type	of
selector)	within	a	relationship	selector,	so	the	selector	above	could	also	be	written	as:
body	.thumbnail-title	{

		/*	style	declarations	*/

}

Child	selectors	target	elements	of	a	specified	type	that	are	the	immediate	children	of
another	specified	element.	Child	selector	syntax	uses	the	combinator	>.	To	use	child
selector	syntax	to	target	all	the	spans	currently	in	Ottergram,	the	syntax	would	be:
li	>	span	{

		/*	style	declarations	*/

}

Reading	from	right	to	left,	this	selector	targets	any	span	that	is	the	immediate	child	of	a	li
element	–	again,	the	thumbnail	titles.

Sibling	selector	syntax	uses	the	combinator	~.	As	you	might	expect,	this	syntax	targets
elements	with	the	same	parent.	However,	because	of	the	directional	nature	of	relationship
selectors,	the	results	might	not	be	exactly	as	you	expect.	Take	this	example:
header	~	ul	{

		/*	style	declarations	*/

}

This	selector	targets	any	ul	that	is	preceded	by	a	header	with	the	same	parent	element.
This	selector	would	effectively	target	Ottergram’s	ul,	because	it	has	a	sibling	header	that
precedes	it	in	the	code.	However,	reversing	the	syntax	(ul	~	header)	would	result	in	no
elements	being	selected,	because	there	is	no	header	preceded	by	a	sibling	ul.

The	final	relationship	selector	type	is	the	adjacent	sibling	selector,	which	targets	elements
that	are	immediately	preceded	by	a	sibling	of	the	specified	type.	The	adjacent	sibling
combinator	is	+:
li	+	li	{

		/*	style	declarations	*/

}

This	syntax	would	select	all	li	elements	immediately	preceded	by	a	sibling	li.	The	result
is	that	the	declared	styles	would	be	applied	to	the	second	through	fifth	li	–	but	not	the
first,	because	it	is	not	immediately	preceded	by	another	li.	(Note	that	the	general	sibling
selector	and	the	adjacent	sibling	selector	would	work	the	same	way	at	the	moment,	due	to

Ottergram’s	relatively	simple	structure.)

Back	to	the	task	at	hand:	adding	a	margin	to	the	top	of	each	list	item	except	the	first.	If
you	used	a	descendent	or	child	selector	to	target	the	.thumbnail-item	class	or	the	span	or
li	elements,	the	margin	would	be	applied	to	all	five	thumbnails.	Because	you	want	to
style	all	but	the	first,	use	the	adjacent	sibling	syntax	in	styles.css	to	add	a	top	margin
to	only	those	thumbnails	that	are	immediately	preceded	by	another	thumbnail.
...

a	{

		text-decoration:	none;

}

.thumbnail-item	+	.thumbnail-item	{

		margin-top:	10px;

}

.thumbnail-item	{

		...

Save	your	file	and	check	out	the	results	in	your	browser	(Figure	3.24).

Figure	3.24		Spacing	between	adjacent	.thumbnail-item	elements

Note	that	the	DevTools	give	you	an	easy	way	to	find	out	the	nesting	path	of	an	element,
which	can	help	with	writing	relationship	selectors.	If	you	click	one	of	the	span	elements
inside	one	of	the	li	elements,	you	can	see	its	path	at	the	bottom	of	the	elements	panel
(Figure	3.25).

Figure	3.25		Nesting	path	shown	by	the	elements	panel

For	one	final	tweak	to	the	thumbnail	list’s	appearance,	return	to	styles.css	and
override	the	padding	that	the	ul	inherits	from	the	user	agent	stylesheet	so	that	the	images
are	no	longer	indented.
...

.thumbnail-list	{

		list-style:	none;

		padding:	0;

}

...

As	usual,	save	your	file	and	switch	to	your	browser	to	see	your	results	(Figure	3.26).

Figure	3.26		ul	with	padding	removed

Ottergram	is	starting	to	look	polished.	With	some	styling	for	the	header,	you	will	have	a
nice	static	web	page.

Adding	a	Font
Earlier,	you	added	the	.logo-text	class	to	the	h1	element.	Use	that	class	as	the	selector
for	a	new	styling	rule	in	styles.css.	Insert	it	after	the	styles	for	the	anchor	tag.	(In
general,	the	order	of	your	styles	only	matters	when	you	have	multiple	rule	sets	for	the
same	selector.	In	Ottergram,	the	styles	are	arranged	in	roughly	the	same	order	as	they
appear	in	the	code.	This	is	a	matter	of	preference,	and	you	are	free	to	organize	your	styles
as	you	see	fit.)
...

a	{

		text-decoration:	none;

}

.logo-text	{

		background:	white;

		text-align:	center;

		text-transform:	uppercase;

		font-size:	37px;

}

.thumbnail-item	+	.thumbnail-item	{

		...

First,	you	gave	the	header	a	white	background.	Then	you	centered	the	text	inside	the
.logo-text	element	and	used	the	text-transform	property	to	format	it	as	uppercase.
Finally,	you	set	the	font	size.	Your	results	will	look	like	Figure	3.27.

Figure	3.27		Styling	the	header

Ottergram	looks	great.	Great…	but	a	little	plain	for	a	website	with	otters.	To	add	some
pizzazz,	you	can	use	a	font	for	the	header	other	than	the	default	provided	by	the	user	agent
stylesheet.

We	included	some	fonts	in	the	resource	files	you	already	downloaded	and	added	to	your
project	directory.	To	use	them,	you	need	to	copy	the	fonts	folder	into	your	project.	Place
it	inside	your	stylesheets	folder	(Figure	3.28).

Figure	3.28		fonts	folder	inside	stylesheets	folder

Now	you	only	need	to	point	some	styles	to	those	fonts.

The	resource	files	include	many	formats	of	each	font.	As	usual,	different	browser	vendors
support	different	kinds	of	fonts.	To	support	the	widest	array	of	browsers,	you	need	to
include	all	of	them	in	your	project.	Yes,	all	of	them.

To	help	you	out,	the	@font-face	syntax	lets	you	give	a	custom	name	to	a	family	of	fonts
that	you	can	then	use	in	the	rest	of	your	styles.

An	@font-face	block	is	a	little	different	from	the	declaration	blocks	you	have	been	using.
Inside	of	the	@font-face	block	are	three	main	parts:

First,	the	font-family	property,	whose	value	is	a	string	identifying	the	custom
font	name	you	can	use	throughout	your	CSS	file.

Next,	several	src	declarations	specifying	different	font	files.	(Take	note	–	the
order	is	important!)

Last,	declarations	that	modify	the	font’s	presentation,	such	as	the	font-weight
and	the	font-style.

Add	an	@font-face	declaration	for	the	lakeshore	font	family	to	the	top	of	styles.css
and	a	style	declaration	to	use	the	new	font	for	the	.logo-text	class.
@font-face	{

				font-family:	'lakeshore';

				src:	url('fonts/LAKESHOR-webfont.eot');

				src:	url('fonts/LAKESHOR-webfont.eot?#iefix')	format('embedded-opentype'),

									url('fonts/LAKESHOR-webfont.woff')	format('woff'),

									url('fonts/LAKESHOR-webfont.ttf')	format('truetype'),

									url('fonts/LAKESHOR-webfont.svg#lakeshore')	format('svg');

				font-weight:	normal;

				font-style:	normal;

}

body	{

		font-size:	10px;

		background:	rgb(149,	194,	215);

}

a	{

		text-decoration:	none;

}

.logo-text	{

	background:	white;

	text-align:	center;

	text-transform:	uppercase;

	font-family:	lakeshore;

	font-size:	37px;

}

...

Admittedly,	getting	the	@font-face	declaration	just	right	can	be	tricky,	because	the	order
of	the	individual	url	values	is	important.	It	is	a	good	idea	to	keep	a	copy	of	the	declaration
for	reference.	You	can	also	look	into	Atom’s	snippets	documentation	at	flight-
manual.atom.io/using-atom/sections/snippets	to	see	how	to	create	your
own	code	“snippet,”	or	template.

After	declaring	the	custom	@font-face,	the	rest	of	your	CSS	has	access	to	the	new
lakeshore	value	for	the	font-family	property.	In	the	.logo-text	declaration,	you	set
font-family:	lakeshore	to	apply	the	new	font.

Save	styles.css,	switch	to	Chrome,	and	see	how	good	it	feels	to	have	a	web	page	as
stylish	as	an	otter	(Figure	3.29).

http://flight-manual.atom.io/using-atom/sections/snippets/

Figure	3.29		Applying	a	custom	font	to	the	header

You	did	a	lot	of	styling	work	in	this	chapter,	and	Ottergram	looks	great!	In	the	next
chapter	you	will	make	it	even	better	by	adding	interactive	functionality.

Bronze	Challenge:	Color	Change
Change	the	background	color	styles	for	body.	Use	the	color	picker	in	the	DevTools
(Figure	3.21)	to	help	you	choose	one.

For	a	more	sophisticated	color	palette,	go	to	color.adobe.com	and	create	your	own
scheme	for	the	body	and	.thumbnail-title	background	colors.

https://color.adobe.com/

For	the	More	Curious:	Specificity!	When	Selectors
Collide…
You	have	already	seen	how	you	can	override	styles.	You	included	the	link	for
normalize.css	before	the	one	for	styles.css,	for	example.	This	made	the
browser	use	normalize.css’s	styles	as	a	baseline,	with	your	styles	taking	precedence
over	the	baseline	styles.

This	is	the	first	basic	concept	of	how	the	browser	chooses	which	styles	to	apply	to	the
elements	on	the	page,	known	to	front-end	developers	as	recency:	As	the	browser	processes
CSS	rules,	they	can	override	rules	that	were	processed	earlier.	You	can	control	the	order	in
which	the	browser	processes	CSS	by	changing	the	order	of	the	<link>	tags.

This	is	simple	enough	when	the	rules	have	the	same	selector	(for	example,	if	your	CSS
and	normalize.css	were	to	declare	a	different	margin	for	the	body	element).	In	this
case,	the	browser	chooses	the	more	recent	declaration.	But	what	about	elements	that	are
matched	by	more	than	one	selector?

Say	you	had	these	two	rules	in	your	Ottergram	CSS:
.thumbnail-item	{

		background:	blue;

		}

li	{

		background:	red;

}

Both	of	these	match	your		elements.	What	background	color	will	your		elements
have?	Even	though	the	li	{	background:	red;	}	rule	is	more	recent,	.thumbnail-item
{	background:	blue;	}	will	be	used.	Why?	Because	it	uses	a	class	selector,	which	is
more	specific	(i.e.,	assigned	a	higher	specificity	value)	than	the	element	selector.

Class	selectors	and	attribute	selectors	have	the	same	degree	of	specificity,	and	both	have	a
higher	specificity	than	element	selectors.	The	highest	degree	of	specificity	goes	to	ID
selectors,	which	you	have	not	seen	yet.	If	you	give	an	element	an	id	attribute,	you	can
write	an	ID	selector	that	is	more	specific	than	any	other	selector.

ID	attributes	look	like	other	attributes.	For	example:
<li	class="thumbnail-item"	id="barry-otter">

To	use	the	ID	in	a	selector,	you	prefix	it	with	#:
.thumbnail-item	{

		background:	blue;

}

#barry-otter	{

		background:	green;

}

li	{

		background:	red;

}

In	this	example,	the		is	matched	by	all	three	selectors,	but	it	will	have	a	green
background	because	the	ID	selector	has	the	highest	specificity.	The	order	of	your	rulesets
makes	no	difference	here,	because	each	has	a	different	specificity.

One	note	about	using	ID	selectors:	It	is	best	to	avoid	them.	ID	values	must	be	unique	in
the	document,	so	you	cannot	use	the	id="barry-otter"	attribute	for	any	other	element	in
your	document.	Even	though	ID	selectors	have	the	highest	specificity,	their	associated
styles	cannot	be	reused,	making	them	a	maintenance	“worst	practice.”

To	learn	more	about	specificity,	go	to	the	MDN	page	developer.mozilla.org/
en-US/docs/Web/CSS/Specificity.

The	Specificity	Calculator	at	specificity.keegan.st	is	a	great	tool	for	comparing
the	specificty	of	different	selectors.	Check	it	out	to	get	a	more	precise	understanding	of
how	specificity	is	computed.

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity
http://specificity.keegan.st/

4	
Responsive	Layouts	with	Flexbox

One	of	the	duties	of	front-end	developers	is	to	provide	the	best	experience	to	users
regardless	of	what	device	or	browser	they	are	using.

This	was	not	always	the	prevailing	attitude,	and	the	companies	that	made	browsers	were
partly	to	blame.	In	the	early	days	of	the	web,	browser	makers	were	fighting	a	war.	Each
would	invent	new	nonstandard	features	in	an	attempt	to	out-do	the	others.	In	response,
web	developers	came	up	with	schemes	for	detecting	which	browser	was	requesting	a
document	and	what	screen	size	was	being	used.	Based	on	this	information,	a	different
version	of	the	document	was	served	out.

Sadly,	this	meant	that	front-end	development	became	weighed	down	with	creating
multiple	copies	of	every	page	on	a	site,	each	copy	built	with	the	markup	and	styles	that
would	work	for	a	specific	version	of	a	browser	running	at	a	particular	screen	size.
Maintaining	all	of	these	copies	was	both	time	consuming	and	frustrating.

Thankfully,	the	Browser	Wars	are	over,	and	browser	makers	now	strive	to	conform	to	the
same	set	of	standard	features	–	and	modern	front-end	developers	are	free	to	focus	on	a
single	codebase	for	a	website.	Gone	are	the	days	of	needing	to	create	browser-specific
versions	of	a	page.	But	that	does	not	mean	that	developers	can	no	longer	provide	tailored
pages	based	on	different	screen	sizes	or	orientations.	New	technologies	–	like	flexbox,
which	you	will	learn	about	in	this	chapter	–	allow	layouts	to	adjust	to	the	user’s	screen
size	without	requiring	duplicate	documents.

In	this	chapter,	you	are	going	to	expand	Ottergram	from	a	simple	list	of	images	to	a	proper
user	interface	ready	for	interactive	content.	Using	flexbox	and	CSS	positioning,	you	will
build	a	set	of	interface	components	that	adjust	as	needed	to	variations	in	the	size	of	the
browser	window	while	maintaining	the	overall	layout.	At	the	end	of	the	chapter,
Ottergram	will	feature	a	scrolling	list	of	thumbnail	images	and	an	area	that	displays	a
large,	detailed	version	of	a	single	image	(Figure	4.1).

Figure	4.1		Ottergram	with	flexible	layout

You	will	do	this	in	two	parts.	First,	you	will	add	the	minimal	markup	and	styles	necessary
to	show	the	large	image	on	the	page	and	to	make	the	thumbnails	smaller	and	scrollable.
Then,	you	will	add	styles	that	let	parts	of	the	page	stretch	and	shrink	as	the	window
changes	size	or	to	accommodate	screens	of	different	sizes.

Expanding	the	Interface
Since	the	introduction	of	the	iPhone,	the	trend	toward	accessing	the	internet	via	a
smartphone,	rather	than	a	desktop	or	laptop,	has	grown	steadily.

For	front-end	developers,	this	trend	has	meant	that	mobile-first	development	has	proven	to
be	the	best	design	approach:	designing	for	small	screens	first,	then	building	on	that	design
for	tablet-size	screens,	and	finally	building	up	to	a	desktop-sized	design.

Ottergram’s	simple	layout	is	already	mobile-friendly.	It	displays	the	text	and	images	at	a
scale	that	is	appropriate	for	smaller	screen	sizes.	Because	of	this,	you	can	move	right	into
adding	the	next	level	of	complexity	to	your	layout.

A	vertically	scrolling	list	of	otters	is	fine,	but	it	would	be	even	better	if	the	user	could	also
see	a	larger	version	of	the	images.	The	plan	for	Ottergram	is	to	make	the	thumbnail	list
scroll	horizontally	while	a	larger	detail	image	is	featured.	For	now,	the	detail	image	will	be
below	the	list.	This	plan	is	diagrammed	in	Figure	4.2.

Figure	4.2		New	layout	for	Ottergram

You	will	begin	by	adding	the	detail	image.

Adding	the	detail	image

For	now,	your	detail	image	will	be	fixed	to	a	single	image.	In	Chapter	6	you	will	add
functionality	so	that	the	user	can	click	on	a	thumbnail	to	make	any	image	the	detail	image.

Add	a	new	section	of	code	to	create	the	detail	image	in	index.html:
...

						<li	class="thumbnail-item">

								

										

										Barbara

								

						

				

				<div	class="detail-image-container">

						

						Stayin'	Alive

				</div>

		</body>

</html>

You	added	a	<div>	with	a	detail-image-container	class.	A	<div>	is	a	generic	container
for	content	–	usually	for	the	purpose	of	applying	styling	to	the	enclosed	content,	which	is
exactly	how	you	will	use	it.

Inside	the	<div>	you	added	an		tag	to	display	the	large	version	of	the	otter	image.
You	also	added	a	,	which	wraps	around	the	title	text	for	the	detail	image.	You	gave
the		and		tags	the	class	names	detail-image	and	detail-image-title,
respectively.

Save	index.html,	switch	to	styles.css,	and,	at	the	end,	constrain	the	width	of	your

new	.detail-image	class.
...

.thumbnail-title	{

		...

}

.detail-image	{

		width:	90%;

}

Save	styles.css	and	start	browser-sync	to	open	your	project	in	Chrome	(Figure	4.3).
(The	command	is	browser-sync	start	--server	--browser	"Google	Chrome"	--
files	"stylesheets/*.css,	*.html".)

Figure	4.3		Initial	styling	for	the	detail	image

Your	.detail-image	will	appear	at	the	bottom	of	the	page,	a	bit	narrower	than	your
thumbnails.	By	making	the	detail	image	90%	of	its	container’s	width,	you	have	left	a	little
space	next	to	it.	The	browser	puts	the	text	of	the	.detail-image-title	in	that	space.	(You
will	style	that	text	later	in	this	chapter.)

If	you	resize	the	page,	you	will	discover	a	bug:	The	detail	image	may	be	pushed	out	of
view	by	the	thumbnails	as	they	adjust	to	the	new	width.	You	will	address	this	problem
later	in	this	chapter.

Horizontal	layout	for	thumbnails

Next,	you	will	update	the	.thumbnail-list	and	.thumbnail-item	classes	so	that	the
images	scroll	horizontally.

To	help	you	test	your	scrolling,	duplicate	all	five		elements	in	index.html.	This
will	give	you	lots	of	content	to	scroll	through.	To	do	this,	simply	select	all	of	the	lines
between	<ul	class="thumbnail-list">	and	,	copy	them,	and	paste	the	result	just

above	the	.	You	should	end	up	with	10	list	items,	containing	images	otter1.jpg
through	otter5.jpg	twice.

Be	sure	to	save	index.html	when	you	are	done.	Duplicating	content	while	you	are
developing	is	a	good	technique	for	simulating	a	more	robust	project.	It	allows	you	to	see
how	your	code	handles	real-world	situations.

For	a	horizontally	scrolling	list	of	thumbnails,	each	thumbnail	must	be	constrained	to	a
specific	width	and	the	thumbnails	should	be	laid	out	horizontally	on	a	single	line.

The	display:	block	property,	which	you	have	used	several	times,	will	not	create	the
desired	effect.	It	causes	the	browser	to	render	a	line	break	before	and	after	the	element.
However,	a	related	style,	display:	inline-block,	is	perfect	for	this	situation.	With
inline-block,	the	element’s	box	is	drawn	as	if	you	declared	display:	block,	but	without
the	line	breaks	–	allowing	your	thumbnails	to	stay	lined	up	in	a	row.

Add	a	width	declaration	and	change	the	display	declaration	for	the	.thumbnail-item
class	in	styles.css.
...

.thumbnail-item	{

		display:	block;

		display:	inline-block;

		width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%,	0.8);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

}

...

(Note	that	Atom’s	linter	may	warn	you	that	“Using	width	with	border	can	sometimes	make
elements	larger	than	you	expect.”	This	is	because	the	width	property	only	applies	to	the
content	portion	–	not	the	padding	or	border	–	of	the	element’s	box.	You	do	not	need	to	do
anything	about	this	warning.)

With	the	.thumbnail-item	element’s	width	set	to	an	absolute	value	of	120px,	the
.thumbnail-image	is	effectively	fixed	as	well,	since	the	.thumbnail-image	adjusts	to	its
container’s	width.

Why	not	just	set	the	.thumbnail-image	to	width:	120px?	You	want	the	.thumbnail-
image	and	the	.thumbnail-title	to	be	the	same	width.	Instead	of	setting	the	width
property	for	each	of	these,	you	set	it	on	their	common	parent	element.	That	way,	if	you
need	to	change	the	width,	you	only	need	to	change	it	in	one	place.	Generally,	it	is	a	good
practice	to	have	inner	elements	adapt	to	their	containers.

Save	styles.css	and	check	your	page	in	Chrome.	You	can	see	that	the	.thumbnail-
item	elements	line	up	side	by	side	–	but	when	they	fill	the	width	of	their	container,	they
wrap	around	(Figure	4.4).

Figure	4.4		inline-block	creates	rows	that	wrap

To	get	the	scrolling	behavior	you	want,	set	.thumbnail-list	to	prevent	wrapping	and
allow	scrolling	in	styles.css.
...

.thumbnail-list	{

		list-style:	none;

		padding:	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

The	white-space:	nowrap	declaration	prevents	the	.thumbnail-item	elements	from
wrapping.	The	overflow-x:	auto	tells	the	browser	that	it	should	add	a	scrollbar	along	the
horizontal	space	(the	x	axis)	of	the	.thumbnail-list	element	to	accommodate	content
that	overflows	–	i.e.,	does	not	fit	within	the	.thumbnail-list.	Without	this	declaration,
you	would	have	to	scroll	the	entire	web	page	to	see	the	additional	thumbnails.

Save	your	file	again	and	take	a	look	at	the	results	in	your	browser.	The	thumbnails	are
now	in	a	single	row,	and	you	should	be	able	to	scroll	through	them	horizontally
(Figure	4.5).

Figure	4.5		Horizontally	scrolling	thumbnails

This	is	a	good	start	to	the	enhanced	Ottergram	interface.	It	works	just	fine	for	some	screen
sizes.	However,	it	is	not	perfect,	because	it	does	not	adapt	well	to	a	wide	range	of	sizes	–
especially	those	that	are	much	larger	or	smaller	than	the	computer	you	are	currently	using.

In	the	next	two	sections,	you	will	add	code	that	gives	Ottergram	a	more	fluid	layout	and
allows	its	UI	-	its	user	interface	-	to	shift	between	different	layouts	to	adapt	to	ranges	of
screen	sizes.

Flexbox
You	have	seen	display	styles	specifying	the	properties	block	and	inline.	Inline
elements,	like	the	thumbnail	items	in	your	newly	scrolling	list,	are	laid	out	next	to	one
another,	while	block	elements	occupy	their	own	horizontal	line.

Another	way	to	think	of	this	is	that	block	elements	flow	from	top	to	bottom	and	inline
elements	flow	from	left	to	right	(Figure	4.6).

Figure	4.6		Block	vs	inline	elements

The	display	property	tells	the	browser	how	an	element	should	flow	in	the	layout.	For
blogs	or	online	encyclopedias,	the	inline	and	block	values	work	well.	But	for
application-style	layouts	like	web-based	email	and	social	media	sites,	there	is	a	new	CSS
specification	that	allows	elements	to	flow	more	dynamically.	This	is	the	flexible	box
model,	or	flexbox.

Flexbox	CSS	properties	can	ensure	that	thumbnail	and	detail	areas	fill	the	screen	and
maintain	their	proportions	relative	to	one	another.	This	is	exactly	what	you	need	for
Ottergram.	You	can	also	use	flexbox	properties	to	center	the	contents	of	the	detail	area
both	horizontally	and	vertically,	a	task	which	is	notoriously	difficult	using	standard	box
model	properties.

Creating	a	flex	container

Before	you	add	your	first	flexbox	property,	set	your	<html>	and	<body>	elements	to
height:	100%	in	styles.css.	The	<html>	element	is	the	root	element	of	your	DOM
tree,	with	the	<body>	as	a	child	element	drawn	inside	of	it.	Setting	the	height	to	100%	for
both	of	them	allows	the	content	to	fill	the	browser	or	device	window.
@font-face	{

		...

}

html,	body	{

		height:	100%;

}

body	{

		font-size:	10px;

		background:	rgb(149,	194,	215);

}

...

Notice	that	you	have	grouped	two	selectors,	separated	by	a	comma,	in	this	styling	rule.
Selectors	of	any	type	can	be	combined	in	this	way	to	set	common	styles.

Notice	also	that	you	now	have	two	styling	rules	with	the	body	element	selector.	When	the
browser	sees	additional	styling	declarations	for	a	selector,	it	simply	adds	to	its	existing
styling	information	for	that	selector.	In	this	case,	it	first	sees	that	the	<body>	should	have	a
height	of	100%	and	stores	that	information.	When	it	reads	the	next	styling	rule	for	the
<body>,	it	stores	the	background	and	font-size	information	along	with	the	height	style.

Now	you	are	ready	to	create	your	first	flex	container.	When	an	element	is	a	flex	container,
it	can	control	how	its	child	elements	(its	flex	items)	are	laid	out.	Inside	a	flex	container,	the
size	and	placement	of	flex	items	occurs	along	the	main	axis	and	the	cross	axis
(Figure	4.7).

Figure	4.7		The	main	and	cross	axes	of	a	flex	container

Make	your	<body>	element	a	flex	container	by	adding	a	display:	flex	declaration	to	its
styling	rule	in	styles.css.
...

body	{

		display:	flex;

		font-size:	10px;

		background:	rgb(149,	194,	215);

}

...

If	you	saved	now,	your	browser	would	display	a	rather	sad-looking	Ottergram,	as	in
Figure	4.8.	This	is	because	the	main	axis	goes	from	left	to	right,	laying	the	flex	items	(all
the	children	of	the	<body>)	out	in	a	row.

Figure	4.8		Flex	items	laid	out	along	the	main	axis

However,	you	can	see	that	the	individual	items	shrink	to	accommodate	the	space,	instead
of	wrapping.	That	is	the	first	piece	of	good	news.	The	second	piece	of	good	news	is	that
you	can	fix	the	layout	with	just	one	style.	(Well,	almost.)

Changing	the	flex-direction

To	fix	the	layout,	set	the	<body>	element’s	flex-direction	to	column	in	styles.css:
...

body	{

		display:	flex;

		flex-direction:	column;

		font-size:	10px;

		background:	rgb(149,	194,	215);

}

...

This	swaps	the	main	and	cross	axes	for	the	flex	container,	as	illustrated	in	Figure	4.9.

Figure	4.9		Main	and	cross	axes	with	flex-direction:	column

After	changing	the	flex-direction	to	column,	Ottergram	is	back	to	normal	–	almost.
There	is	a	visual	bug	in	the	layout	when	the	browser	window	is	a	lot	wider	than	it	is	tall,
shown	in	Figure	4.10.

Figure	4.10		Missing	thumbnails	when	the	page	is	stretched	wide

You	will	remedy	this	by	adding	a	wrapper	element	and	applying	new	flexbox	properties.

Grouping	elements	within	a	flex	item

The	<body>	has	three	flex	items:	the	<header>,	the	.thumbnail-list,	and	the	.detail-
image-container.	No	matter	what	happens	during	the	development	(and	use)	of
Ottergram,	the	<header>	is	not	likely	to	change	much	in	its	layout	or	complexity.	It	is
going	to	be	at	the	top	of	the	page,	displaying	text.	That	is	about	it.

On	the	other	hand,	as	you	develop	Ottergram	the	.thumbnail-list	and	.detail-image-
container	and	their	contents	may	very	well	change	in	layout	and	complexity.	Also,
changes	to	one	of	these	items	are	likely	to	affect	the	other.

For	these	reasons,	you	are	going	to	group	the	.thumbnail-list	and	the	.detail-image-
container	in	their	own	flex	container.	To	do	this,	you	will	wrap	them	in	a	<main>	tag	with
a	class	name	of	.main-content	(Figure	4.11).

Figure	4.11		Wrapping	the	.thumbnail-list	and	.detail-image-container

Make	it	so	in	index.html:	Give	the	<header>	element	the	class	main-header,	then
wrap	the	.thumbnail-list	()	and	the	.detail-image-container	(<div>)	in	a
<main>	element	with	the	class	main-content.
...

		<body>

				<header>

				<header	class="main-header">

						<h1	class="logo-text">ottergram</h1>

				</header>

				<main	class="main-content">

						<ul	class="thumbnail-list">

						...

						

						<div	class="detail-image-container">

								

								Stayin'	Alive

						</div>

				</main>

...

.main-header	and	.main-content	are	now	the	two	flex	items	inside	the	<body>.

By	wrapping	the	.thumbnail-list	and	.detail-image-container	in	the	.main-content
element,	you	are	now	free	to	declare	a	height	for	the	<header>,	leaving	the	rest	of	the
<body>’s	vertical	space	for	the	.main-content	to	occupy.	That	way,	the	space	inside	of

.main-content	can	be	distributed	to	.thumbnail-list	and	.detail-image-container
without	affecting	the	header.

Save	index.html.	Now	that	you	have	the	markup	for	the	two	flex	items	inside	the
body,	you	can	set	their	sizes	relative	to	one	another	using	the	flex	property.

The	flex	shorthand	property

A	flex	container	distributes	its	space	to	the	flex	items	inside	of	it.	If	the	flex	items	do	not
specify	their	size	along	the	main	axis,	then	the	container	distributes	the	space	evenly	based
on	the	number	of	flex	items,	with	each	flex	item	getting	the	same	share	of	space	along	the
main	axis.	This	is	the	default,	illustrated	in	Figure	4.12.

Figure	4.12		Equal	distribution	of	space	between	three	flex	items

But	imagine	that	one	of	the	three	flex	items	in	Figure	4.12	is	a	bit	greedier	than	the	others
and	claims	two	shares	of	the	total	space.	In	that	case,	the	flex	container	divides	the	space
along	the	main	axis	into	four	shares.	The	greedy	item	occupies	two	of	them	(half	the
space)	and	the	other	items	get	one	share	each	(Figure	4.13).

Figure	4.13		Unequal	distribution	of	space	between	three	flex	items

In	Ottergram,	you	want	the	.main-content	element	to	be	the	greedy	element,	taking	up	as
much	space	along	the	main	axis	as	possible.	The	.main-header,	on	the	other	hand,	should
take	up	as	little	space	as	possible.

The	flex	property	lets	your	flex	items	specify	how	much	of	the	available	space	they	will

take	up.	It	is	a	shorthand	property,	as	shown	in	Figure	4.14.

Figure	4.14		The	flex	shorthand	property	and	its	values

We	strongly	recommend	that	you	use	flex	instead	of	the	individual	properties	it
represents.	It	protects	you	from	inadvertently	leaving	a	property	out	and	getting
unexpected	results.

The	first	value	is	the	one	to	focus	on	right	now,	as	it	determines	how	much	the	flex	item
can	grow.	By	default	flex	items	do	not	grow	at	all.	You	want	that	default	behavior	for	your
.main-header,	but	not	your	.main-content.

In	styles.css,	add	a	declaration	block	for	the	.main-header	class	selector,	specifying
a	flex	shorthand	property	with	default	values:	0	1	auto.
...

a	{

		text-decoration:	none;

}

.main-header	{

		flex:	0	1	auto;

}

.logo-text	{

		background:	white;

		...

The	value	0	1	auto	can	be	read	as,	“I	do	not	want	to	grow	any	larger;	I	will	shrink	as
needed;	please	calculate	my	size	for	me.”	The	end	result	will	be	that	the	.main-header
will	take	up	only	as	much	space	as	it	needs,	and	no	more.

Next,	add	a	declaration	block	for	.main-content,	setting	its	flex	to	1	1	auto.
...

.logo-text	{

		...

}

.main-content	{

		flex:	1	1	auto;

}

.thumbnail-item	+	.thumbnail-item	{

		...

The	first	value	in	.main-content’s	flex	declaration	corresponds	to	the	flex-grow
property.	A	value	of	1	tells	the	container,	“I	would	like	to	grow	as	much	as	possible.”
Because	its	only	sibling	has	declared	that	it	will	not	grow,	the	.main-content	element	will
grow	to	take	up	all	the	space	not	needed	for	the	.main-header.

The	<body>’s	two	flex	items,	the	.main-header	and	the	.main-content	elements,	occupy
the	flexible	space	according	to	their	needs.	Now	it	is	time	to	adjust	the	layout	of	the
.main-content	element.

Ordering,	justifying,	and	aligning	flex	items

Flexbox	also	allows	you	to	subdivide	flex	items	into	flex	containers.	This	technique	lets
you	focus	on	the	layers.	In	a	moment,	you	are	going	to	make	your	.main-content	a	flex
container.

Working	with	nested	flex	containers	is	an	exception	to	the	atomic	styling	approach	to
creating	the	look	and	feel	of	visual	components.	Instead	of	styling	the	smallest,	innermost
elements	first	and	then	working	your	way	out	to	the	largest	elements,	when	working	on	a
layout	with	flexbox	it	is	more	useful	to	start	with	the	outermost	elements	and	work	your
way	in.

Here	is	what	you	will	tackle	next.	You	will	change	the	.main-content	to	a	flex	container
with	a	vertical	main	axis.	Also,	you	will	specify	the	flex	properties	for	.main-content’s
flex	items	so	that	the	.thumbnail-list	takes	the	default	amount	of	space	and	.detail-
image-container	grows	to	fill	the	space	left	over.	Finally,	you	will	move	the
.thumbnail-list	below	the	.detail-image-container	(Figure	4.15).

Figure	4.15		Making	.main-content	a	flex	container

Make	these	changes	in	styles.css	by	adding	display:	flex	and	flex-direction:
column	to	.main-content’s	declaration	block,	adding	flex	properties	to	.thumbnail-
list’s	declaration	block,	and	writing	a	new	declaration	block	for	the	.detail-image-
container	class.
...

.main-content	{

		flex:	1	1	auto;

		display:	flex;

		flex-direction:	column;

}

...

.thumbnail-list	{

		flex:	0	1	auto;

		list-style:	none;

		padding:	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

.thumbnail-title	{

		...

}

.detail-image-container	{

		flex:	1	1	auto;

}

.detail-image	{

		...

You	might	be	wondering	why	you	are	not	defining	the	heights	of	the	.thumbnail-list
and	.detail-image-container	boxes	with	percentages,	the	way	you	defined	the	width	of
the	.detail-image.	Setting	the	height	of	the	.thumbnail-list	at,	for	example,	25%	and
the	.detail-image-wrapper	at	75%	seems	logical	–	but	it	would	not	work	the	way	you
intend.	The	interaction	with	the	width	property	of	the	.detail-image	would	result	in	the
.detail-image-container	being	much	too	large,	and	the	.thumbnail-list	would	end	up
either	too	small	or	too	large,	depending	on	the	window	size.

In	short,	using	the	flex	property	to	set	the	flex	items’	sizes	in	conjunction	with	the	one
fixed	size	you	care	about	–	the	width	of	the	.detail-image	–	is	the	way	to	go.

Now	to	move	the	thumbnail	list	below	the	detail	image.	By	default,	flex	items	are	drawn
in	the	order	that	they	appear	in	the	HTML.	This	is	known	as	source	order	and	is	the	main
way	that	developers	control	the	order	in	which	elements	are	drawn.

One	option	for	moving	the	detail	image	up	would	be	to	cut	and	paste	the	markup	for	the
detail	image	so	that	it	came	before	the	markup	for	the	.thumbnail-list	–	to	change	the
source	order.	However,	it	can	also	be	done	using	a	new	flexbox	property.

To	change	the	order	using	flexbox,	add	an	order	declaration	to	the	.thumbnail-list
selector	in	styles.css.
...

.thumbnail-list	{

		flex:	0	1	auto;

		order:	2;

		list-style:	none;

		padding:	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

The	order	property	can	be	assigned	any	integer	value.	The	default	value	is	0,	which	tells
the	browser	to	use	the	source	order.	Any	other	values,	including	negative	numbers,	tell	the
browser	to	draw	a	flex	item	before	or	after	other	flex	items.	Giving	.thumbnail-list	the
declaration	order:	2	tells	the	browser	to	draw	it	after	any	of	its	siblings	that	have	a	lower
value	for	order	–	such	as	.detail-image-container,	which	is	using	the	default.

Save	styles.css	and	switch	to	Chrome.	You	will	see	that	the	thumbnails	are	rendered
along	the	bottom	of	the	page	(Figure	4.16).

Figure	4.16		Changing	the	order	elements	are	drawn

Next,	you	will	continue	to	apply	display:	flex	as	you	work	on	the	layout	of	the
Ottergram	UI.	So	far,	you	have	worked	with	flex	containers	that	hold	only	a	couple	of	flex
items.	Make	the	.thumbnail-list	a	flex	container	so	that	you	can	further	explore	what
flexbox	can	offer	you.
...

.thumbnail-list	{

		flex:	0	1	auto;

		order:	2;

		display:	flex;

		list-style:	none;

		padding:	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

Do	not	panic	if	you	save	your	changes	and	see	that	the	thumbnails	are	rendered	oddly,	as
in	Figure	4.17.

Figure	4.17		Otters,	askew

To	fix	this,	replace	the	.thumbnail-item’s	width	declaration	with	a	pair	of	declarations,

one	for	min-width	and	another	for	max-width.	This	will	remove	the	variations	in	size	that
are	causing	the	strange	layout.

You	can	also	remove	the	declaration	block	that	sets	the	margin-top	for	.thumbnail-item
+	.thumbnail-item	elements.	It	is	no	longer	needed	for	this	layout.
...

.thumbnail-item	+	.thumbnail-item	{

		margin-top:	10px;

}

.thumbnail-item	{

		display:	inline-block;

		width:	120px;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

}

...

Next,	you	will	work	with	the	spacing	of	the	flex	items	inside	of	.thumbnail-list.	In
styles.css,	add	a	declaration	for	justify-content	to	the	.thumbnail-list	selector.
...

.thumbnail-list	{

		flex:	0	1	auto;

		order:	2;

		display:	flex;

		justify-content:	space-between;

		list-style:	none;

		padding:	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

The	justify-content	property	lets	a	flex	container	control	how	flex	items	are	drawn	on
the	main	axis.	You	used	space-between	as	the	value	to	make	sure	there	is	an	even	amount
of	spacing	around	each	individual	flex	item.

There	are	five	different	values	you	can	specify	for	justify-content.	Figure	4.18
illustrates	how	each	of	these	values	works.

Figure	4.18		Values	for	the	justify-content	property

You	have	tackled	the	layout	of	the	.thumbnail-list.	Next,	you	will	work	with	the
.detail-image-container	and	its	contents.

Centering	the	detail	image

The	detail	image	should	be	Ottergram’s	main	focus.	It	should	be	front	and	center	to	make
sure	that	the	user	is	admiring	the	majesty	of	the	otter.	It	should	also	be	adorned	with	a
snazzy	title.

To	center	the	detail	image,	you	will	first	wrap	the	image	and	its	title	in	a	container,	then
center	the	wrapper	inside	the	.detail-image-container.	This	idea	is	illustrated	in
Figure	4.19.

Figure	4.19		Framing	the	.detail-image	and	.detail-image-title

While	you	could	center	the	.detail-image	itself	inside	the	.detail-image-container,	it
would	be	difficult	to	correctly	offset	the	.detail-image-title,	because	both	the
.detail-image	and	the	.detail-image-container	are	dynamically	resizing.

An	intermediary	wrapper	element	is	a	useful	technique	for	this	situation.	It	will	constrain
the	size	of	the	.detail-image	and	serve	as	a	reference	for	positioning	the	.detail-
image-title.

In	index.html,	begin	by	adding	a	<div>	with	the	class	name	detail-image-frame:
...

						

						<div	class="detail-image-container">

								<div	class="detail-image-frame">

										

										Stayin'	Alive

								</div>

						</div>

				</main>

		</body>

</html>

Save	index.html.	Now,	in	styles.css,	add	a	declaration	block	for	.detail-image-
frame	with	a	single	style	declaration:	text-align:	center.	This	is	one	way	to	center
content	without	flexbox,	but	note	that	it	only	works	horizontally.
...

.detail-image-container	{

		flex:	1	1	auto;

}

.detail-image-frame	{

		text-align:	center;

}

.detail-image	{

		width:	90%;

}

Next,	to	center	the	.detail-image-frame	inside	the	.detail-image-container,	update
styles.css	to	make	.detail-image-container	a	flex	container.	Draw	its	flex	items	in
the	center	of	the	main	axis	(in	this	case,	horizontally	–	the	default)	with	justify-
content:	center,	and	add	a	new	flexbox	property,	align-items:	center,	to	draw	its
flex	items	in	the	center	of	the	cross	axis	(vertically).
...

.detail-image-container	{

		flex:	1	1	auto;

		display:	flex;

		justify-content:	center;

		align-items:	center;

}

...

Save	your	changes	and	enjoy	the	proud	otter,	nobly	centered	in	the	.detail-image-
container	(Figure	4.20).

Figure	4.20		After	centering	.detail-image-frame	inside	.detail-image-
container

Absolute	and	Relative	Positioning
Sometimes	you	need	to	place	an	element	in	an	exact	spot	inside	of	another	element.	CSS
gives	you	a	way	to	do	this	using	absolute	positioning.

You	will	use	absolute	positioning	to	place	the	detail-image-title	in	the	lower	left
corner	of	the	.detail-image-frame,	as	shown	in	Figure	4.21.

Figure	4.21		Absolutely	positioned	.detail-image-title

There	are	three	requirements	for	absolute	positioning.	The	absolutely	positioned	element
must	have:

	the	property	position:	absolute,	to	tell	the	browser	to	take	it	out	of	the
normal	flow	rather	than	laying	it	out	along	with	its	siblings

coordinates,	provided	using	one	or	more	of	the	top,	right,	bottom,	and	left
properties;	absolute	lengths	(such	as	pixels)	or	relative	lengths	(such	as
percentages)	may	be	used	as	values

an	ancestor	element	with	an	explicitly	declared	position	property	with	a	value
of	relative	or	absolute;	this	is	important	–	if	no	ancestor	has	a	declared
position	property,	the	absolutely	positioned	element	will	be	placed	relative	to
the	<html>	element	(the	browser	window)

A	word	of	warning:	It	might	be	tempting	to	use	position:	absolute	for	everything,	but	it

should	be	used	sparingly.	A	whole	layout	with	absolute	positioning	is	nearly	impossible	to
maintain	and	will	look	terrible	on	any	screen	size	other	than	the	one	it	was	developed	for.

When	specifying	a	coordinate,	you	are	really	specifying	the	distance	from	the	edge	of	the
element	to	the	edge	of	its	container,	as	shown	in	Figure	4.22.

Figure	4.22		Elements	are	absolutely	positioned	based	on	their	edges

Figure	4.22	has	two	examples	of	absolute	positioning.	In	the	first	one,	the	element	is
positioned	so	that	its	top	edge	is	50px	from	its	container’s	top	edge	and	its	left	edge	is
200px	from	its	container’s	left	edge.	The	second	example	shows	a	variation,	where	the
element	is	positioned	by	its	bottom	and	left	edges.

To	position	the	.detail-image-title,	start	by	declaring	the	.detail-image-frame	to

have	position:	relative	in	styles.css.	You	will	position	the	.detail-image-title
relative	to	it.
...

.detail-image-frame	{

		position:	relative;

		text-align:	center;

}

...

You	used	position:	relative	for	.detail-image-frame	because	you	want	it	to	remain
in	normal	flow.	You	also	want	it	to	serve	as	the	container	for	an	absolutely	positioned
descendant,	so	its	position	property	must	be	explicitly	defined.

At	the	end	of	styles.css,	add	a	declaration	block	for	the	.detail-image-title
selector.	For	now,	make	the	title	white	and	set	the	font	size	to	be	four	times	the	default.
...

.detail-image	{

		width:	90%;

}

.detail-image-title	{

		color:	white;

		font-size:	40px;

}

So	far,	so	good	(Figure	4.23).	But	so	basic.

Figure	4.23		Basic	text	styling	for	.detail-image-title

For	a	touch	of	style,	let’s	add	some	text	effects	to	the	.detail-image-title.	When
positioning	styled	text	elements,	bear	in	mind	that	the	element’s	box	may	change	due	to
the	visual	characteristics	of	a	custom	typeface	or	other	effects.	For	this	example,	you	will
do	all	of	the	text	styling	for	.detail-image-title	before	you	set	its	position.	Add	a
text-shadow	property	to	.detail-image-title	in	styles.css.

...

.detail-image-title	{

		color:	white;

		text-shadow:	rgba(0,	0,	0,	0.9)	1px	2px	9px;

		font-size:	40px;

}

As	the	name	suggests,	the	text-shadow	property	adds	a	shadow	to	text.	It	accepts	a	color
for	the	shadow,	a	pair	of	lengths	for	the	offset	(i.e.,	whether	the	shadow	falls	above	or
below	and	to	the	left	or	right	of	the	text),	and	a	length	for	the	blur	radius	–	an	optional	part
of	a	text-shadow	declaration	that	makes	the	shadow	larger	and	lighter	in	color	as	you
make	the	value	higher.

You	gave	your	shadow	the	color	attribute	rgba(0,	0,	0,	0.9)	to	make	it	a	slightly
transparent	black.	It	is	offset,	or	shifted,	1px	to	the	right	and	2px	below	the	text	(negative
values	would	place	it	to	the	left	or	above	the	text).	The	last	value	of	9px	is	the	blur	radius.
Figure	4.24	shows	your	new	shadow.

Figure	4.24		A	text-shadow	for	the	.detail-image-title

Try	adjusting	the	text-shadow	values	in	the	styles	pane	of	the	DevTool’s	elements	panel
to	get	a	feel	for	how	they	work	(Figure	4.25).

Figure	4.25		Exaggerating	the	text	shadow	using	the	DevTools

When	you	are	ready,	add	one	last	flourish	with	a	custom	font.	As	you	did	in	Chapter	3,
add	an	@font-face	declaration	in	styles.css	to	add	the	Airstream	font	to	your	project.
Add	a	font-family:	airstreamregular	declaration	to	.detail-image-title	to	put	it	to
use.
@font-face	{

				font-family:	'airstreamregular';

				src:	url('fonts/Airstream-webfont.eot');

				src:	url('fonts/Airstream-webfont.eot?#iefix')	format('embedded-opentype'),

									url('fonts/Airstream-webfont.woff')	format('woff'),

									url('fonts/Airstream-webfont.ttf')	format('truetype'),

									url('fonts/Airstream-webfont.svg#airstreamregular')	format('svg');

				font-weight:	normal;

				font-style:	normal;

}

@font-face	{

				font-family:	'lakeshore';

				...

}

...

.detail-image-title	{

		font-family:	airstreamregular;

		color:	white;

		text-shadow:	rgba(0,	0,	0,	0.9)	1px	2px	9px;

		font-size:	40px;

}

So	far,	so	stylish	(Figure	4.26)!

Figure	4.26		I	gotta	have	more	fancy

Now	that	you	have	finished	the	styling	of	.detail-image-title,	give	it	a	position:
absolute	declaration	so	that	the	browser	will	place	it	at	a	precise	location	within
.detail-image-frame.	Specify	that	location	with	bottom:	-16px	and	left:	4px,	to	put	it
just	below	the	bottom	edge	of	.detail-image-frame	and	a	little	bit	inside	the	left	edge	of
.detail-image-frame.	(Negative	values	are	fine	for	the	coordinates.)
...

.detail-image-title	{

		position:	absolute;

		bottom:	-16px;

		left:	4px;

		font-family:	airstreamregular;

		color:	white;

		text-shadow:	rgba(0,	0,	0,	0.9)	1px	2px	9px;

		font-size:	40px;

}

Save	styles.css,	and	you	will	see	in	the	browser	that	the	.detail-image-title	now
sits	below	and	near	the	left	of	the	otter	photo.	You	now	have	a	positively	chic	Ottergram	in
your	browser	(Figure	4.27).

Figure	4.27		Hello,	gorgeous!

Take	a	step	back	to	enjoy	the	fruits	of	your	labor.	Ottergram	has	a	dynamic,	fluid	layout
thanks	to	the	addition	of	flexbox	to	your	styles.	In	the	next	chapter	you	will	make	the
layout	adapt	to	different	browser	window	sizes.

5	
Adaptive	Layouts	with	Media	Queries

In	this	chapter,	you	will	explore	a	technique	for	turning	styles	on	and	off	based	on	the	size
of	the	browser	window	and	other	characteristics.	You	will	provide	an	alternate	layout	for
larger	screens	using	a	minimal	amount	of	code.	The	browser	will	be	able	to	switch
between	the	different	layouts	in	real	time,	as	the	browser	window	changes	size	–	without
reloading	the	page.	Figure	5.1	shows	the	original	layout	and	the	alternate	layout.

Figure	5.1		Two	Ottergram	layouts

The	industry	term	for	this	behavior	is	responsive	website.	Unfortunately,	this	term	is	often
a	point	of	confusion.	Some	think	that	it	means	“fast	website”	or	“website	with	visual
animations.”	We	prefer	to	call	it	an	adaptive	layout.

There	are	several	ways	of	including	alternate	styles	to	be	used	based	on	the	current
browser	conditions.	The	recommended	approach	is	to	write	your	styles	for	the	smallest
screen	and	then	provide	override	styles	in	media	queries	that	are	triggered	when	the
viewport	–	the	browser’s	viewable	area	–	is	larger	than	a	set	threshold.

On	a	traditional	browser	(like	the	one	you	are	using	while	developing	Ottergram),	the
viewport	is	the	area	shown	by	the	browser	window.	This	is	pretty	intuitive.	On	a	mobile
browser,	it	gets	more	complicated.	Mobile	browsers	have	multiple	viewports,	and	each
one	plays	a	role	in	how	a	page	is	rendered.

Front-end	developers	need	to	focus	on	the	layout	viewport	(sometimes	called	the	actual
viewport).	The	layout	viewport	tells	the	browser,	“Pretend	that	I’m	actually	980	pixels
wide	and	then	draw	the	page.”

Users	are	more	concerned	with	a	mobile	browser’s	visual	viewport.	This	is	the	thing	that

they	can	pinch	to	zoom	in	and	out	on	a	page	(Figure	5.2).

Figure	5.2		Visual	viewport	vs	layout	viewport

If	you	viewed	Ottergram	on	your	smartphone	right	now,	you	would	see	something	like
Figure	5.2,	with	the	browser	zoomed	in	on	the	upper-left	corner	of	the	page.	Needless	to
say,	even	though	a	mobile	user	can	zoom	out	manually,	you	do	not	want	Ottergram	to
behave	like	this	by	default.

Earlier	we	mentioned	that	you	are	taking	a	mobile-first	approach	to	developing	Ottergram.
That	was	mostly	true.	Your	markup	and	styles	were	written	in	a	mobile-friendly	way	–
using	a	minimal	amount	of	markup	and	styling	the	smallest	elements	first.	Now,	you	just
need	to	give	the	browser	information	about	the	layout	viewport	it	should	use.

Resetting	the	Viewport
In	Chapter	3	you	added	normalize.css	to	Ottergram.	This	ensured	that	any	browser
viewing	Ottergram	would	have	the	same	set	of	default	styles.	On	top	of	these	defaults,	you

could	confidently	add	your	own	CSS,	knowing	it	would	work	consistently	from	browser
to	browser.

You	will	do	something	similar	for	the	layout	viewport.	Just	as	every	browser	may	have	a
different	user	agent	stylesheet,	every	browser	may	have	a	different	default	layout
viewport.	However,	unlike	using	normalize.css,	you	are	not	going	to	reset	the
viewport	for	all	browsers	to	the	same	value.	Instead,	you	will	use	a	<meta>	tag	to	tell	all
browsers	to	display	Ottergram	at	the	best	size	for	the	device’s	physical	screen.

In	index.html,	add	a	<meta>	tag	that	tells	the	browser	that	the	width	of	the	layout
viewport	is	the	same	as	the	device’s	screen	width.	Make	sure	to	set	the	zoom	to	100%	by
setting	the	initial-scale	to	1.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<link	rel="stylesheet"

						href="https://cdnjs.cloudflare.com/ajax/libs/normalize/3.0.3/normalize.min.css">

				<link	rel="stylesheet"	href="stylesheets/styles.css">

				<title>Ottergram</title>

		</head>

...

Save	your	changes.	This	technique	sets	the	layout	viewport	to	the	ideal	viewport.	The
ideal	viewport	is	best	viewport	size	for	a	specific	device,	as	recommended	by	the	browser
maker.	This	varies	significantly,	since	there	are	many,	many	different	devices	and	quite	a
number	of	different	browsers.

Table	5.1	summarizes	the	different	types	of	viewports.

Table	5.1		Summary	of	the	different	viewports

Viewport Description Device

viewport The	area	equal	to	the	browser’s	window.	It	serves	as	the	<html>
element’s	container.

desktop,
laptop

layout
viewport

A	virtual	screen,	larger	than	the	actual	device	screen,	used	for
calculating	the	page	layout. mobile

visual
viewport

The	zoomable	area	that	a	user	can	see	on	a	device’s	screen.
Zooming	has	no	effect	on	the	page	layout. mobile

ideal
viewport

The	optimal	dimensions	for	a	specific	browser	on	a	specific
device. mobile

Start	browser-sync	and	make	sure	the	DevTools	are	open	in	Chrome.	Look	to	the	left	of
the	Elements	menu	item	and	find	the	Toggle	Device	Mode	button,	which	looks	like	this:	 .	It
is	shown	in	context	in	Figure	5.3.

Figure	5.3		Toggle	Device	Mode	button

Click	this	button	to	activate	device	mode.	You	will	see	that	the	web	page	view	now	shows
Ottergram	on	a	simulated	smartphone	screen.	There	is	a	menu	for	choosing	between
different	screen	sizes	based	on	popular	devices.	You	can	also	click	the	gray	bar	below	the
presets	to	toggle	between	small,	medium,	and	large	screen	sizes.	And	there	is	a	menu	for
quickly	choosing	a	screen	orientation	of	landscape	or	portrait.	Figure	5.4	shows	a
screenshot	of	the	device	mode	at	the	time	of	this	writing.	Yours	may	look	quite	different,
as	the	DevTools	undergo	regular	updates.

Figure	5.4		Using	device	mode	for	responsive	testing

You	can	see	that,	thanks	to	your	new	<meta>	element,	Ottergram	displays	well	on	a	small
screen,	such	as	a	smartphone.	For	devices	with	larger	screens,	such	as	tablets	or	laptops,	a
slightly	different	layout	may	be	more	appropriate.	Next,	you	will	apply	different	layout
styles	using	a	combination	of	flexbox	and	media	queries.

Click	the	 	button	again	to	deactivate	device	mode	before	you	continue.

Adding	a	Media	Query
Media	queries	let	you	group	CSS	declaration	blocks	and	specify	the	conditions	under
which	they	should	be	applied.	Those	conditions	may	be	something	like	“if	the	screen	is	at
least	640	pixels	wide”	or	“if	the	screen	is	wider	than	it	is	tall	and	has	a	high	pixel	density.”

The	syntax	begins	with	@media,	followed	by	the	conditions	to	be	matched.	Next	is	a	set	of
curly	braces	that	wraps	around	entire	declaration	blocks.	Let’s	see	what	this	looks	like.

Begin	your	first	media	query	at	the	end	of	styles.css.	You	will	create	a	media	query
that	will	activate	styles	when	being	viewed	on	any	kind	of	device	when	the	viewport	is	at
least	768	pixels	wide,	which	is	a	common	device	width	for	tablets.
...

.detail-image-title	{

		...

}

@media	all	and	(min-width:	768px)	{

		/*	Styles	will	go	here	*/

}

@media	is	followed	by	the	media	type	all.	Media	types	were	originally	intended	to
differentiate	between	devices,	such	as	smart	televisions	and	handheld	devices.
Unfortunately,	browsers	do	not	implement	this	accurately,	so	you	should	always	specify
all.	The	only	time	you	might	not	use	all	is	when	you	want	to	specify	styles	for	printing,
when	you	can	safely	use	the	media	type	print.

After	the	media	type,	you	write	the	conditions	for	applying	the	styles.	Here,	you	are	using
the	useful	condition	min-width.	You	can	see	that	conditions	look	similar	to	style
declarations.

To	achieve	the	effect	shown	in	Figure	5.1,	you	will	need	to	change	the	flex-direction	of
the	.main-content	element.	This	will	let	the	thumbnails	and	the	detail	image	sit	next	to
one	another.	You	do	not	want	the	thumbnails	to	cause	the	browser	to	scroll.	Instead,	they
should	continue	to	scroll	independently	of	the	browser	window.	For	that,	you	will	add
overflow:	hidden.

Add	those	styles	to	your	media	query	at	the	end	of	styles.css.
...

@media	all	and	(min-width:	768px)	{

		/*	Styles	will	go	here	*/

		.main-content	{

				flex-direction:	row;

				overflow:	hidden;

		}

}

You	would	be	in	for	a	shock	if	you	saved	and	then	stretched	your	browser	wide	enough	to
trigger	your	media	query.	At	the	moment,	your	page	looks	like	Figure	5.5.	Not	to	worry.
You	will	fix	this	with	only	a	few	more	lines	of	code.

Figure	5.5		Otters	in	disarray

The	thumbnails	need	to	be	displayed	in	a	column	instead	of	a	row.	This	is	easy	to	do,
because	you	used	flexbox	for	laying	them	out.	Add	a	declaration	block	inside	the	body	of
the	media	query	in	styles.css	setting	.thumbnail-list’s	flex-direction	to	column.
...

@media	all	and	(min-width:	768px)	{

		.main-content	{

				flex-direction:	row;

				overflow:	hidden;

		}

		.thumbnail-list	{

				flex-direction:	column;

		}

}

Save	styles.css.	That	has	improved	things	significantly	(Figure	5.6)!

Figure	5.6		After	setting	flex-direction	to	column

According	to	your	design,	the	thumbnails	should	go	on	the	left.	You	can	solve	this	by

changing	.thumbnail-list’s	order.	Earlier,	you	set	it	to	2	so	that	it	would	be	drawn	after
the	.detail-image-container.	Now,	set	it	to	0	within	the	media	query	in	styles.css
so	that	it	follows	the	source	order	and	is	drawn	before	the	.detail-image-container.
...

@media	all	and	(min-width:	768px)	{

		.main-content	{

				flex-direction:	row;

				overflow:	hidden;

		}

		.thumbnail-list	{

				flex-direction:	column;

				order:	0;

		}

}

Save	your	changes	and	confirm	that	the	thumbnails	are	drawn	on	the	left	side	of	the	page.

You	are	almost	there!	Add	a	few	more	styles	in	styles.css	for	the	.thumbnail-list
and	.thumbnail-items	to	make	the	sizing	and	spacing	a	little	nicer.
...

@media	all	and	(min-width:	768px)	{

		.main-content	{

				flex-direction:	row;

				overflow:	hidden;

		}

		.thumbnail-list	{

				flex-direction:	column;

				order:	0;

				margin-left:	20px;

		}

		.thumbnail-item	{

				max-width:	260px;

		}

		.thumbnail-item	+	.thumbnail-item	{

				margin-top:	20px;

		}

}

Once	again,	save	styles.css	and	switch	to	your	browser.	Your	layout	now	looks	sharp
whether	the	viewport	is	narrower	or	wider	(Figure	5.7).

Figure	5.7		Responsive	otters

Ottergram	is	making	steady	progress!	You	have	created	a	good-looking	website	with	a
layout	that	can	adapt	to	many	screen	sizes.	In	the	next	chapter,	you	will	begin	using
JavaScript	to	add	a	layer	of	interactivity	to	Ottergram.

Bronze	Challenge:	Portrait
Your	current	media	query	changes	the	layout	based	on	the	width	of	the	viewport.	You
could	look	at	this	in	a	different	way.	One	is	for	viewports	that	are	taller	than	they	are	wide,
and	the	other	is	for	viewports	that	are	wider	than	they	are	tall.	These	are	two	orientation
modes	that	your	viewport	can	be	in.

Check	MDN’s	documentation	for	media	queries	and	update	your	media	query	so	that	the
layout	changes	according	to	orientation	and	not	based	on	width.

For	the	More	Curious:	Common	Solutions	(and	Bugs)
with	Flexbox	Layouts
Philip	Walton	is	a	developer	who	maintains	two	very	important	flexbox	resources.	The
first	is	the	Solved	by	Flexbox	site	(philipwalton.github.io/solved-by-
flexbox),	which	offers	demos	of	common	layouts	implemented	using	flexbox	and	all
the	information	you	need	to	create	them	yourself.	Some	of	the	layouts	are	very	difficult	to
achieve	without	flexbox.

The	second	resource	is	the	Flexbugs	page	at	github.com/philipwalton/
flexbugs.	Flexbox	is	wonderful,	but	it	is	not	perfect.	Flexbugs	provides	solutions	and
workarounds	for	common	problems	that	developers	run	into	when	using	flexbox.	The
information	is	provided	by	members	of	the	development	community	who	have
encountered	these	bugs,	and	the	list	is	well	maintained.

https://philipwalton.github.io/solved-by-flexbox/
https://github.com/philipwalton/flexbugs

Gold	Challenge:	Holy	Grail	Layout
Be	sure	to	make	a	copy	of	your	code	before	attempting	this	challenge!	It	will	require
significant	changes	to	the	markup	and	styles.	Use	your	copy	for	working	on	the	challenge
and	leave	the	original	intact	for	starting	the	next	chapter.

Using	Solved	by	Flexbox	as	a	reference,	implement	the	Holy	Grail	layout	in	Ottergram.
Create	a	second	navigation	bar	with	thumbnails,	but	place	it	on	the	other	side	of	the
viewport.

Make	sure	to	add	a	footer	element	to	the	bottom	of	your	page.	Use	the	<footer>	tag	and
put	an	<h1>	inside	of	it.

6	
Handling	Events	with	JavaScript

You	know	what	is	cool	about	otters?	Among	other	things,	they	hold	hands	when	they	sleep
so	that	they	do	not	float	away.	Keep	this	image	in	mind	as	you	learn	to	work	with	event
callbacks	in	JavaScript.

JavaScript	is	a	programming	language	that	adds	interactivity	to	websites	by	manipulating
DOM	elements	and	CSS	styles	on	a	page.	It	was	originally	created	for	use	by	people	who
were	not	professional	programmers.	It	has	grown	in	power	and	popularity	and	is	now	used
for	many	kinds	of	application	development.	When	you	use	sites	like	Gmail	or	Netflix,	you
are	interacting	with	programs	written	in	JavaScript.	In	fact,	the	Atom	text	editor	is	actually
a	desktop	application	written	in	JavaScript.

Despite	its	power	and	widespread	use,	it	has	its	quirks,	like	any	programming	language.
As	you	continue	working	on	Ottergram	and	the	other	projects	in	this	book,	you	will	learn
to	navigate	the	rough	patches	of	the	language	and	to	take	advantage	of	its	best	parts.

There	are	several	versions	of	JavaScript,	and	you	will	use	three	of	them	for	the	projects	in
this	book.	They	are	all	revisions	of	a	standard	specification	known	as	ECMAScript	(or
“ES”).	Table	6.1	summarizes	them.

Table	6.1		JavaScript	versions	used	in	this	book

ECMAScript
Edition

Release
Date Notes

3 December
1999

Most	widely	supported	version;	encompasses	most	of	the
language	features	you	will	use,	such	as	variables,	types,	and
functions.

5 December
2009

Backward	compatible,	with	opt-in	enhancements	such	as	a
strict	mode	that	prevents	the	usage	of	the	more	error-prone
parts	of	the	language.

6 June
2015

Includes	new	syntax	and	language	features;	at	the	time	of
this	writing,	most	browsers	do	not	yet	support	ES6,	but	ES6
code	can	be	translated	into	ES5,	making	it	usable	by	most
browsers.

In	this	chapter,	you	will	use	JavaScript	to	make	Ottergram	interactive:	The	detail	image
and	detail	title	will	change	when	the	user	clicks	or	taps	one	of	the	thumbnails.

To	do	this,	you	are	going	to	write	a	JavaScript	function	–	a	set	of	steps	for	the	browser	to
follow	–	that	reads	the	URL	for	an	image	and	shows	it	in	the	detail	area.	Then	you	will
ensure	that	this	function	is	run	when	a	thumbnail	is	clicked.	You	will	also	write	a	separate
function	that	hides	the	detail	area	and	run	that	function	when	the	Escape	key	is	pressed.

At	the	end	of	the	chapter,	Ottergram	will	be	able	to	feature	any	otter	in	the	detail	image
(Figure	6.1).

Figure	6.1		Clicking	thumbnails	changes	detail	image	and	title

As	you	write	these	functions,	you	will	interact	with	the	page	using	a	set	of	predefined
interfaces	built	into	the	browser.	There	are	a	large	number	of	them,	and	the	code	will	only
walk	you	through	the	ones	necessary	for	the	task	at	hand.	If	you	are	curious,	you	can	find
more	in-depth	information	about	them	on	the	MDN	at	developer.mozilla.org/
en-US/docs/Web/API/Element.

Preparing	the	Anchor	Tags	for	Duty
Before	you	start	adding	interactive	features	with	JavaScript,	you	need	to	make	a	few
updates	to	the	markup.	Your	thumbnail	images	are	wrapped	in	anchor	tags,	but	those	tags
do	not	actually	link	to	any	resource.	Instead,	they	use	the	#	value	for	the	href	attribute,
which	tells	the	browser	to	stay	on	the	same	page.	In	order	to	make	a	click	on	a	thumbnail
do	anything	interesting,	you	need	to	fix	that.

First,	in	index.html,	remove	all	but	five	of	the	.thumbnail-item	elements.	You	no
longer	need	the	duplicates,	because	your	layout	is	in	good	shape.

Then,	change	the	anchor	tags’	href	properties	to	no	longer	use	the	dummy	value	#.
Instead,	set	the	values	to	be	the	same	as	each		tag’s	src	value.

Atom	can	help	you	make	these	changes,	taking	the	tedium	out	of	working	with	HTML.
Like	any	text	editor,	it	has	a	way	to	find	and	replace	text.	Select	Find	→	Find	in	Buffer	or	use
the	keyboard	shortcut	Command-F	(Ctrl-F).	This	will	open	the	Find	in	Buffer	panel	at	the
bottom	of	the	editor	window	(Figure	6.2).

https://developer.mozilla.org/en-US/docs/Web/API/Element

Figure	6.2		Using	Atom’s	find-and-replace	feature

Enter	“#”	in	the	Find	in	current	buffer	text	box	and	“img/otter.jpg”	in	the	Replace	in	current	buffer
text	box.	Then	click	Replace	All	in	the	lower	right.

This	will	change	all	of	the		tags	to	.	Now	it	is
just	a	matter	of	manually	adding	the	appropriate	number	to	each	one	(img/otter1.jpg,
img/otter2.jpg,	etc.).

Press	the	Escape	key	to	close	the	Find	in	Buffer	panel.	index.html	should	look	like	this:
...

						<ul	class="thumbnail-list">

								<li	class="thumbnail-item">

										

										

												

												Barry

										

								

								<li	class="thumbnail-item">

										

										

												

												Robin

										

								

								<li	class="thumbnail-item">

										

										

												

												Maurice

										

								

								<li	class="thumbnail-item">

										

										

												

												Lesley

										

								

								<li	class="thumbnail-item">

										

										

												

												Barbara

										

								

						

...

Next,	you	need	to	add	additional	properties	to	your	anchor	elements	so	you	can	access
them	using	JavaScript.	When	styling	with	CSS,	you	use	class	name	selectors	to	refer	to
elements	on	the	page.	For	JavaScript,	you	use	data	attributes.

Data	attributes	are	just	like	the	other	HTML	attributes	you	have	been	using	except	that,
unlike	attributes	such	as	src	or	href,	data	attributes	do	not	have	special	meaning	to	the
browser.	The	only	requirement	is	that	the	attribute	name	starts	with	data-.	Using	custom
data	attributes	lets	you	designate	what	HTML	elements	on	the	page	your	JavaScript
interacts	with.

Technically,	in	JavaScript,	you	could	access	elements	on	the	page	using	class	names.
Likewise,	you	could	use	data	attributes	in	your	selectors	for	styling.	But	you	really	should
not.	Your	code	will	be	much	more	maintainable	if	your	JavaScript	and	your	CSS	do	not
rely	on	the	same	attributes.

Update	your	anchor	tags	in	index.html	with	data	attributes.	Note	that	the	line	breaks	in
the	code	below	have	been	added	to	make	sure	that	everything	fits	nicely	on	the	page.	You
are	free	to	add	them	or	not,	as	you	prefer.	They	will	not	make	a	difference	to	the	browser.
...

								<li	class="thumbnail-item">

										<a	href="img/otter1.jpg"	data-image-role="trigger"

																																			data-image-title="Stayin'	Alive"

																																			data-image-url="img/otter1.jpg">

												

												Barry

										

								

										<li	class="thumbnail-item">

												<a	href="img/otter2.jpg"	data-image-role="trigger"

																																					data-image-title="How	Deep	Is	Your	Love"

																																					data-image-url="img/otter2.jpg">

												

												Robin

										

								

								<li	class="thumbnail-item">

										<a	href="img/otter3.jpg"	data-image-role="trigger"

																																			data-image-title="You	Should	Be	Dancing"

																																			data-image-url="img/otter3.jpg">

												

												Maurice

										

								

								<li	class="thumbnail-item">

										<a	href="img/otter4.jpg"	data-image-role="trigger"

																																			data-image-title="Night	Fever"

																																			data-image-url="img/otter4.jpg">

												

												Lesley

										

								

								<li	class="thumbnail-item">

										<a	href="img/otter5.jpg"	data-image-role="trigger"

																																			data-image-title="To	Love	Somebody"

																																			data-image-url="img/otter5.jpg">

												

												Barbara

										

								

...

Add	data	attributes	for	the	detail	image,	as	well:
...

						<div	class="detail-image-container">

								<div	class="detail-image-wrapper">

				

				Stayin'	Alive

								</div>

						</div>

...

Your	JavaScript	code	can	refer	to	these	data	attributes	to	access	specific	elements	on	the
page	because	the	browser	lets	you	use	JavaScript	to	make	queries	about	the	contents	of	a
web	page.	For	example,	you	can	query	for	any	elements	that	match	a	selector,	such	as
data-image-role="trigger".	If	the	query	finds	matches,	it	will	return	references	to	the
matching	elements.

When	you	have	a	reference	to	an	element,	you	can	do	all	sorts	of	things	with	the	element.
You	can	read	or	change	the	values	of	its	attributes,	change	the	text	inside	of	it,	and	even
get	access	to	the	elements	around	it.	When	you	make	changes	to	an	element	using	a
reference,	the	browser	updates	the	page	immediately.

In	this	chapter,	you	will	write	JavaScript	code	that	will	get	references	to	the	anchor	and
detail	image	elements,	read	the	values	from	the	anchor’s	data	attributes,	and	then	change
the	value	of	the	detail	image’s	src	attribute.	This	is	how	you	will	make	Ottergram
interactive.

You	may	have	noticed	that	the	anchor	tags	and	the	detail	image’s		tag	all	have	a
data-image-role	attribute,	but	their	values	are	different.

Using	the	same	data	attribute	names	for	the	anchor	and		tags	is	not	required,	but	it	is
a	good	practice.	It	reminds	you,	the	developer,	that	these	elements	will	be	part	of	the	same
JavaScript	behavior.

One	last	change	is	needed	in	your	HTML	before	you	begin	work	on	your	JavaScript:	You
need	to	tell	the	HTML	to	run	the	JavaScript.	Do	this	by	adding	a	<script>	tag	in
index.html.	This	<script>	tag	will	refer	to	the	file	scripts/main.js,	which	you
will	create	in	just	a	moment.
...

								</div>

						</div>

				</main>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

When	the	browser	sees	a	<script>	tag,	it	begins	running	the	code	in	the	referenced	file
immediately.	JavaScript	cannot	access	an	element	within	your	HTML	before	it	has	been
rendered	by	the	browser,	so	putting	the	<script>	tag	at	the	bottom	of	the	body	ensures
that	your	JavaScript	does	not	run	until	after	all	the	markup	has	been	parsed.

Your	HTML	is	now	ready	to	connect	with	the	JavaScript	you	are	about	to	write.	Be	sure	to
save	index.html	before	you	move	on.

Your	First	Script
Time	to	create	a	scripts	folder	and	the	main.js	file.	Recall	that	you	can	create
folders	from	within	the	Atom	editor.	Control-click	(right-click)	ottergram	in	the	lefthand
panel	and	click	New	Folder	in	the	pop-up.	Enter	the	name	scripts	in	the	prompt	that
appears.

Then,	Control-click	(right-click)	scripts	in	the	lefthand	panel	and	choose	New	File.	The
prompt	will	pre-fill	the	text	scripts/.	After	this,	enter	main.js	and	press	Return.

Make	sure	your	folder	structure	looks	like	Figure	6.3.

Figure	6.3		Ottergram	folder	structure

The	name	main.js	does	not	have	any	special	significance	for	the	browser,	but	it	is	a
common	convention	used	by	many	front-end	developers.

One	last	thing	before	you	dive	into	JavaScript.	You	need	to	start	browser-sync,	and	to	do
so	you	need	to	change	the	command	you	have	been	using	slightly:
browser-sync	start	--server	--browser	"Google	Chrome"

																			--files	"*.html,	stylesheets/*.css,	scripts/*.js"

You	added	the	path	scripts/*.js	to	the	list	of	files	so	that	browser-sync	will	watch	for
changes	to	the	JavaScript	as	well	as	the	HTML	and	CSS.

Overview	of	the	JavaScript	for	Ottergram
Before	you	start	coding,	it	is	always	good	to	have	a	plan.	Here	is	the	plain	English	version
of	what	you	need	to	do	with	Ottergram.

1.	 Get	all	the	thumbnails.

2.	 Listen	for	a	click	on	each	one.

3.	 If	a	click	occurs,	update	the	detail	image	with	info	from	that	thumbnail.

You	can	break	down	#3	into	three	subparts:

1.	 Get	the	image	URL	from	the	thumbnail’s	data	attribute.

2.	 Get	the	title	text	from	the	thumbnail’s	data	attribute.

3.	 Set	the	image	and	title	on	the	detail	image.

Here	is	that	same	plan	expressed	as	a	diagram	(Figure	6.4)

Figure	6.4		Plan	of	attack	for	Ottergram

This	chapter	will	walk	you	through	creating	the	code	starting	with	the	last	step.	This	is	the

“bottom-up”	approach,	and	it	works	well	when	writing	JavaScript.

Declaring	String	Variables
Your	first	JavaScript	task	is	to	create	string	variables	for	each	of	the	data	attributes	you
added	to	the	markup.	(If	those	are	unfamiliar	terms,	do	not	worry	–	we	will	explain	in	just
a	moment.)

At	the	top	of	main.js,	start	by	adding	a	variable	named	DETAIL_IMAGE_SELECTOR	and
assigning	it	the	string	'[data-image-role="target"]'.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

This	might	not	be	much	code,	but	it	is	worth	a	closer	look.	Let’s	start	in	the	middle,	with
the	=	symbol.	This	is	the	assignment	operator.	Unlike	in	mathematics,	the	=	symbol	in
JavaScript	does	not	mean	that	two	things	are	equal.	Instead,	it	means	“Take	the	value	on
the	righthand	side	and	give	it	the	name	on	the	lefthand	side.”

On	the	righthand	side	of	this	particular	assignment	is	a	string	of	text:	'[data-image-
role="target"]'.	A	string	is	just	a	sequence	of	characters	representing	text,	and	it	is
delimited	by	single	quotation	marks.	The	text	inside	the	single	quotes	happens	to	be	the
attribute	selector	for	your	detail	image.	This	is	a	clue	that	you	will	use	this	string	to	access
that	element.

On	the	lefthand	side	of	the	assignment	is	a	variable	declaration.	It	may	be	useful	to	think
of	a	variable	as	a	label	that	you	can	use	to	refer	to	some	value,	which	could	be	a	numeric
value,	a	string	(as	in	this	case),	or	some	other	type	of	value.	Using	the	var	keyword,	you
are	creating	a	variable	named	DETAIL_IMAGE_SELECTOR.

Next,	declare	variables	in	main.js	for	the	detail	title	selector	and	the	thumbnail	anchor
selector.	Assign	the	strings	for	these	selectors	as	well.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

var	DETAIL_TITLE_SELECTOR	=	'[data-image-role="title"]';

var	THUMBNAIL_LINK_SELECTOR	=	'[data-image-role="trigger"]';

As	the	name	variable	suggests,	their	values	can	be	reassigned	–	they	can	vary.	Writing
variable	names	in	all	capital	letters	is	a	convention	that	developers	sometimes	use	when
the	values	should	not	change.	Other	languages	have	constants	that	serve	this	purpose.
JavaScript	is	in	transition:	ES5	does	not	have	constants;	ES6	does	–	but,	as	we	said	earlier,
it	is	not	yet	fully	supported.	Until	constants	become	well	supported,	you	can	follow	this
convention	to	label	a	value	that	should	not	change.

As	an	aside,	strings	can	be	delimited	by	single	or	double	quotes.	You	are	free	to	use	either,
but	this	book	will	use	single	quotes	as	a	convention	and	we	suggest	that	you	follow	along
at	least	for	the	projects	in	this	book.

If	you	want	to	use	double	quotes,	you	have	to	escape	any	double	quotes	that	are	part	of	the
string	so	that	the	browser	does	not	incorrectly	parse	them	as	part	of	the	code.	To	escape	a
character,	you	precede	it	with	a	backslash,	like	this:
var	DETAIL_IMAGE_SELECTOR	=	"[data-image-role=\"target\"]";

Using	single	quotes	is	not	a	guarantee	that	you	will	not	need	to	escape	characters.	If	a
string	delimited	by	single	quotes	contains	single	quotes	–	or	apostrophes	–	you	have	to
escape	them.

Save	main.js.	With	these	variables	in	hand,	let’s	take	them	for	a	spin	in	Chrome’s
DevTools.

Working	in	the	Console
One	of	the	most	useful	parts	of	the	DevTools	is	the	console,	which	lets	you	enter
JavaScript	code	and	evaluate	it	immediately.	This	is	especially	useful	for	iteratively
developing	JavaScript	code	that	makes	changes	to	a	page.

In	the	DevTools,	click	on	the	Console	tab,	to	the	right	of	the	Elements	tab	(Figure	6.5).

Figure	6.5		Choosing	the	console	tab

The	console	has	a	prompt	where	you	can	enter	lines	of	code.	Click	to	the	right	of	the	
symbol	so	that	the	console	is	ready	for	input	(Figure	6.6).

Figure	6.6		The	console,	ready	for	input

Type	the	following	math	expression	into	the	console:
137	+	349

Press	the	Return	key.	The	console	will	print	out	the	result	(Figure	6.7).

Figure	6.7		Evaluating	a	math	expression

The	console’s	main	job	is	to	tell	you,	in	the	simplest	terms,	the	value	of	the	code	you	enter.

As	with	many	things	in	life,	order	matters.	If	you	need	certain	items	to	be	evaluated	as	a

group,	you	can	wrap	parentheses	around	them.	(This	is	much	easier	than	memorizing	the
order	in	which	JavaScript	would	do	this	without	the	parentheses.)	Enter	the	following
expression	in	the	console.
3	*	((2	*	4)	+	(3	+	5))

Press	the	Return	key,	and	the	console	will	crunch	the	numbers	in	the	correct	order
(Figure	6.8).	(By	the	way,	although	we	have	added	spaces	between	the	numbers	and
operators	for	the	sake	of	readability,	you	do	not	need	to	include	them.	The	console	does
not	care.)

Figure	6.8		Evaluating	a	more	complex	math	expression

Now,	on	to	using	your	variables.	You	can	clear	the	contents	of	the	console	by	pressing	the	
	icon	in	the	upper	left	of	the	console	panel	or	with	the	keyboard	shortcut	Command-K

(Ctrl-K).

Start	typing	DETAIL_IMAGE_SELECTOR.	As	you	type	the	first	few	letters,	you	can	see	that
the	console	already	knows	about	the	variables	you	created	and	provides	a	list	of
autocomplete	suggestions	(Figure	6.9).

Figure	6.9		The	console’s	autocomplete	menu

Press	the	Tab	key	and	let	the	console	autocomplete	the	variable	name	for	you.	When	you
press	the	Return	key,	the	console	reports	that	the	value	of	DETAIL_IMAGE_SELECTOR	is	the
string	"[data-image-role="target"]".

Figure	6.10		The	console	printing	a	variable’s	value

(The	console	always	prints	strings	with	double	quotes,	even	though	you	actually	used
single	quotes	in	main.js.)

Strings	are	one	of	five	primitive	value	types	in	JavaScript.	(Numbers	and	Booleans	are	two
of	the	others.)	They	are	“primitive”	because	they	represent	simple	values.	This	is	in
contrast	to	more	complex	values	in	JavaScript,	which	you	will	learn	about	next.

Accessing	DOM	Elements
You	have	just	seen	that	the	console	gives	you	access	to	the	variables	you	created.	Earlier
we	said	that	these	variables	could	be	used	for	accessing	elements	on	the	page.	You	can	try
that	now.	Enter	the	following	in	the	console:
document.querySelector(DETAIL_IMAGE_SELECTOR);

Press	the	Return	key.	It	will	show	you	the	HTML	for	the	detail	image.	Hover	over	this
HTML	in	the	console.	You	will	see	that	the	detail	image	is	highlighted	on	the	page,	just	as
if	you	clicked	HTML	in	the	elements	panel	(Figure	6.11).

Figure	6.11		HTML	in	the	console	corresponds	to	an	element	on	the	page

In	the	line	of	code	you	wrote	on	the	console,	the	word	document	is	the	variable	built	into
the	browser	that	gives	you	access	to	the	web	page.	Its	value	is	not	one	of	the	primitive
types.	It	is	a	complex	value,	whose	type	is	object.

The	document	object	corresponds	to	the	entire	page.	It	gives	you	access	to	a	number	of
methods	for	getting	references	to	elements	on	the	page.	Methods	are	a	type	of	function
(they	are	functions	with	an	explicitly	designated	owner,	but	you	do	not	need	to	worry
about	that	detail	right	now)	–	a	list	of	steps	for	the	browser	to	follow.	You	used	the
querySelector	method	in	the	line	you	entered	in	the	console.	The	dot	operator	(i.e.,
the	period)	in	document.querySelector	is	how	you	access	an	object’s	methods.

You	asked	the	document	to	use	its	querySelector	method	to	find	any	element
matching	the	string	'[data-image-role="target"]'.	querySelector	responded	with
a	reference	to	the	element	that	it	found,	the	detail	image	(Figure	6.12).

Figure	6.12		Access	to	the	page	provided	by	document	and
document.querySelector

And	now,	a	bit	of	terminology.	You	did	not	really	“ask”	the	page	for	matching	elements.
You	called	the	document’s	querySelector	method	and	you	passed	it	a	string.	The
method	returned	a	reference	to	the	detail	image	element.

When	you	call	a	method,	you	are	making	it	run	whatever	task	it	was	designed	to	perform.
You	will	often	need	to	pass	it	information	it	needs	to	do	that	task,	which	you	place	in
parentheses	after	the	method’s	name.	Then,	in	addition	to	its	assigned	tasks,	the	method
may	return	a	value	that	you	can	use.

Remember	that	DETAIL_IMAGE_SELECTOR	was	assigned	the	value	'[data-image-
role="target"]',	which	means	that	this	is	what	is	passed	to	querySelector.

Behind	the	scenes,	querySelector	uses	this	string	to	search	for	any	elements	that
match	that	selector.	When	it	searches,	the	document	is	not	actually	searching	the	page,	it	is
searching	the	document	object	model,	or	DOM.	The	DOM	is	the	browser’s	internal
representation	of	an	HTML	document.	It	builds	this	representation	as	it	reads	through	and
interprets	the	HTML.

In	JavaScript,	you	can	interact	with	the	DOM	using	the	document	object	and	its	methods,
such	as	querySelector.	For	each	HTML	tag,	there	is	a	corresponding	element	in	the
DOM,	and	you	can	interact	with	any	of	these	elements	using	JavaScript.	(Generally,	when
we	refer	to	an	“element,”	we	mean	a	“DOM	element.”)

In	the	console,	call	document.querySelector	again,	passing	it
DETAIL_IMAGE_SELECTOR	to	get	a	reference	to	the	element	for	the	detail	image.	But	this
time,	assign	the	reference	to	a	new	variable	named	detailImage:

var	detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);

Press	Return,	and	the	console	will	print	undefined	(Figure	6.13).	Do	not	panic!	This	is	not
an	error.

Figure	6.13		Declaring	a	variable	in	the	console

The	console	is	just	doing	its	job,	telling	you	that	there	is	no	resulting	value	from	declaring
a	variable.	In	JavaScript,	the	absence	of	a	value	is	represented	by	the	keyword	undefined.

That	does	not	mean	that	your	detailImage	variable	was	not	assigned.	To	check	it,	just
type	detailImage	in	the	console	and	press	Return.	You	will	see	the	HTML
representation	of	the	detail	image,	just	as	you	saw	when	you	entered
document.querySelector(DETAIL_IMAGE_SELECTOR)	(Figure	6.14).

Figure	6.14		Checking	the	value	of	detailImage

What	is	the	point	of	all	this?	By	assigning	a	reference	to	a	variable,	you	can	use	the
variable	name	any	time	you	want	to	refer	to	the	element.	Now,	instead	of	having	to	type
document.querySelector(DETAIL_IMAGE_SELECTOR)	every	time,	you	can	just	type
detailImage.

When	you	have	a	reference	to	the	detail	image,	it	is	easy	to	change	the	value	of	its	src
attribute.	In	the	console,	assign	detailImage.src	to	the	string	'img/otter2.jpg'.
detailImage.src	=	'img/otter2.jpg';

Using	the	dot	operator,	you	accessed	the	src	property	of	the	detailImage	object.	A
property	is	like	a	variable,	but	it	belongs	to	a	particular	object.	When	you	assign	(or	set)
src	to	the	string	'img/otter2.jpg',	you	will	see	that	a	different	otter	occupies	the	detail
image	area	(Figure	6.15).

Figure	6.15		Setting	the	src	property	of	the	detail	image

The	src	property	corresponds	to	the	src	attribute	of	the		tag	in	index.html.
Because	of	this	relationship,	another	way	to	achieve	the	same	result	is	to	use	the
detailImage’s	setAttribute	method.

Call	this	method	in	the	console	and	pass	it	two	strings:	the	name	of	the	attribute	and	the
new	value.
detailImage.setAttribute('src',	'img/otter3.jpg');

The	detail	image	changes	once	again	(Figure	6.16).

Figure	6.16		Using	setAttribute	to	change	the	image

You	now	have	all	the	pieces	you	need	to	create	an	automated	way	to	change	the	detail
image.	Get	ready	to	write	your	first	function!

Writing	the	setDetails	Function
You	have	been	working	with	methods	and	have	seen	that	they	can	be	invoked	to	cause	a
block	of	code	to	run.	Functions	and	methods	are	really	just	a	list	of	steps	that	you	would
like	to	use	again	and	again.	Calling	a	function	is	like	saying	“Make	a	sandwich”	instead	of
“Lay	out	two	slices	of	bread.	Put	prosciutto,	salami,	and	provolone	on	one	slice.	Put	the
other	slice	of	bread	on	top.”

You	will	write	seven	functions	for	Ottergram	in	this	chapter.	Your	first	function	will	do
two	things:	change	the	detail	image	and	the	detail	image	title.	Add	this	function
declaration	to	main.js.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

var	DETAIL_TITLE_SELECTOR	=	'[data-image-role="title"]';

var	THUMBNAIL_LINK_SELECTOR	=	'[data-image-role="trigger"]';

function	setDetails()	{

		'use	strict';

		//	Code	will	go	here

}

You	declared	a	function	named	setDetails	using	the	function	keyword.	When
declaring	a	function,	the	name	is	always	followed	by	a	pair	of	parentheses.	They	are	not
part	of	the	name,	however	–	you	will	find	out	what	they	are	for	soon.

After	the	parentheses	is	a	pair	of	curly	braces.	Inside	the	curly	braces	is	the	body	of	the
function.	The	body	will	contain	the	steps	the	function	needs	to	perform.	These	steps	are
more	formally	referred	to	as	statements.

The	first	line	of	your	function	is	the	string	'use	strict';.	You	will	use	this	string	at	the
beginning	of	all	your	functions	to	tell	the	browser	that	they	conform	to	the	most	recent
standard	version	of	JavaScript.	(There	is	more	about	strict	mode	in	a	For	the	More	Curious
section	at	the	end	of	this	chapter.)

The	other	line	in	the	setDetails	function	is	a	comment.	Like	CSS	comments,
JavaScript	comments	are	ignored	by	the	browser	but	useful	for	developers.	JavaScript
comments	that	are	only	one	line	can	be	written	this	way,	with	//.	For	comments	that	span
multiple	lines,	you	can	use	the	/*	*/	style.	Both	are	correct	in	JavaScript.

In	the	console,	you	have	already	tried	out	all	of	the	statements	needed	to	change	the	photo
in	the	detail	image.	Go	back	to	the	console	and	press	the	Up	arrow	key.	You	will	see	the
most	recent	statement	you	entered	copied	at	the	prompt.	The	Up	and	Down	arrows	allow
you	to	go	backward	and	forward	through	your	history	of	statements.

Using	the	arrow	keys,	find	the	statement	that	gets	a	reference	to	the	detail	image:	var
detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);.	Copy	this	line
from	the	console	and	paste	it	into	main.js	in	place	of	the	comment.	Then,	copy	and
paste	the	line	in	the	console	that	calls	the	detailImage.setAttribute	method:
detailImage.setAttribute('src',	'img/otter3.jpg');.

Your	setDetails	function	in	main.js	should	look	like	this:
...

function	setDetails()	{

		'use	strict';

		//	Code	will	go	here

		var	detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);

		detailImage.setAttribute('src',	'img/otter3.jpg');

}

Save	main.js	and	go	back	to	the	console.	Enter	the	following	and	press	Return	to	run
your	setDetails	function.
setDetails();

Entering	–	or	calling	–	the	name	of	a	function	followed	immediately	by	parentheses	makes
the	function	execute	all	of	the	code	in	its	body.	You	should	see	that	img/otter3.jpg	is
now	displayed	as	the	detail	image	(Figure	6.17).

Figure	6.17		Running	setDetails	to	change	the	image

setDetails	has	changed	the	detail	image,	but	not	the	detail	image	title.	You	want	it	to
do	both.	As	you	did	with	the	detail	image,	you	will	add	statements	to	get	a	reference	to	the
element	and	to	change	the	element’s	properties.

In	your	setDetails	function	in	main.js,	call	document.querySelector	again,
passing	it	DETAIL_TITLE_SELECTOR.	Assign	the	result	to	a	new	variable	named
detailTitle.	Then,	set	its	textContent	property	to	'You	Should	Be	Dancing'.
...

function	setDetails()	{

		'use	strict';

		var	detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);

		detailImage.setAttribute('src',	'img/otter3.jpg');

		var	detailTitle	=	document.querySelector(DETAIL_TITLE_SELECTOR);

		detailTitle.textContent	=	'You	Should	Be	Dancing';

}

The	textContent	property	is	the	text	(not	including	HTML	tags)	inside	of	an	element.

Save	your	changes	and	run	setDetails	in	the	console.	Now	the	image	and	title	change
(Figure	6.18).

Figure	6.18		Changing	the	image	and	title	using	setDetails

Accepting	arguments	by	declaring	parameters

setDetails	does	the	work	of	changing	the	detail	image	and	title.	But	every	time	you
run	it,	it	sets	the	image’s	src	to	'img/otter3.jpg'	and	the	title’s	textContent	to	'You
Should	Be	Dancing'.	What	if	you	want	to	use	other	images	and	text?

You	need	a	way	to	tell	setDetails	which	image	and	what	text	to	use	when	you	call	it.

To	achieve	this,	you	need	your	function	to	accept	arguments	–	values	that	are	passed	to	the
function	and	that	it	can	work	with.	And	to	do	that,	you	have	to	specify	parameters	in	the
function	declaration.

Add	two	parameters	to	setDetails	in	main.js:
...

function	setDetails(imageUrl,	titleText)	{

		'use	strict';

		var	detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);

		detailImage.setAttribute('src',	'img/otter3.jpg');

		var	detailTitle	=	document.querySelector(DETAIL_TITLE_SELECTOR);

		detailTitle.textContent	=	'You	Should	Be	Dancing';

}

Now,	use	those	parameters	in	place	of	'img/otter3.jpg'	and	'You	should	Be
Dancing':
...

function	setDetails(imageUrl,	titleText)	{

		'use	strict';

		var	detailImage	=	document.querySelector(DETAIL_IMAGE_SELECTOR);

		detailImage.setAttribute('src',	'img/otter3.jpg');

		detailImage.setAttribute('src',	imageUrl);

		var	detailTitle	=	document.querySelector(DETAIL_TITLE_SELECTOR);

		detailTitle.textContent	=	'You	Should	Be	Dancing';

		detailTitle.textContent	=	titleText;

}

Your	two	parameters,	imageUrl	and	titleText,	are	used	as	labels	assigned	to	values
passed	to	setDetails.	Save	main.js	and	try	it	out	in	the	console	to	see	this	working.

Call	setDetails	and	pass	it	the	values	'img/otter4.jpg'	and	'Night	Fever'.	(Make
sure	there	is	a	comma	between	them.)
setDetails('img/otter4.jpg',	'Night	Fever');

You	should	see	the	new	image	and	title	text,	as	in	Figure	6.19.

Figure	6.19		Passing	values	to	setDetails

There	is	an	important	distinction	between	arguments	and	parameters.	Parameters	are
defined	as	part	of	the	function.	In	JavaScript,	parameters	are	exactly	like	variables	that	are
declared	inside	a	function	body.	Arguments	are	values	you	supply	to	a	function	when	you
call	it.

Also,	be	aware	that	no	matter	what	variable	names	you	use	for	your	arguments,	their
values	are	always	mapped	to	the	parameter	names	so	they	can	be	used	inside	the	function
body.	For	example,	imagine	that	you	used	variables	for	the	image	URL	and	the	title	text.
When	you	call	setDetails,	you	pass	in	these	two	variables	as	arguments.
var	otterOneImage	=	'img/otter1.jpg';

var	otterOneTitle	=	'Stayin\'	Alive';

setDetails(otterOneImage,	otterOneTitle);

The	setDetails	function	accepts	the	values,	labels	them	with	the	parameter	names
imageUrl	and	titleText,	and	then	runs	the	code	inside	its	body.	That	code	uses	imageUrl

and	titleText,	passing	them	as	arguments	to	document.querySelector.

Like	variable	names,	parameter	names	are	just	labels	for	values.	You	can	use	whatever
parameter	names	you	like,	but	it	is	good	practice	to	use	descriptive	names,	as	you	have
done	here,	to	make	your	code	easier	to	read	and	maintain.

Returning	Values	from	Functions
You	have	completed	the	first	(or,	rather,	last)	item	on	the	plan	and	picked	up	some
JavaScript	know-how	along	the	way.	Now	you	will	move	on	to	the	next	two	items	on	the
list:	getting	the	image	and	the	title	from	a	thumbnail.	For	each	of	these,	you	will	write	a
new	function.

Add	a	function	declaration	in	main.js	for	imageFromThumb.	It	will	accept	a	single
parameter,	thumbnail,	which	is	a	reference	to	a	thumbnail	anchor	element.	It	will	retrieve
and	return	the	value	of	the	data-image-url	attribute.
...

function	setDetails(imageUrl,	titleText)	{

		...

}

function	imageFromThumb(thumbnail)	{

		'use	strict';

		return	thumbnail.getAttribute('data-image-url');

}

The	getAttribute	method	does	the	opposite	of	the	setAttribute	method	you
used	in	the	setDetails	function.	It	only	takes	a	single	argument,	the	name	of	an
attribute.

Unlike	setDetails,	the	imageFromThumb	function	uses	the	return	keyword.	When
you	call	a	function	that	has	a	return	statement,	it	gives	you	back	a	value.
querySelector	is	an	example	of	this.	When	you	called	it,	it	returned	a	value	that	you
then	assigned	to	a	variable.

Save	main.js	and	try	out	the	following	in	the	console,	pressing	Return	between	the
lines.
var	firstThumbnail	=	document.querySelector(THUMBNAIL_LINK_SELECTOR);

imageFromThumb(firstThumbnail);

The	console	reports	that	the	value	returned	was	the	string	"img/otter1.jpg",	because
imageFromThumb	returns	the	data-image-url	of	the	thumbnail.

Figure	6.20		Value	returned	from	imageFromThumb

Note	that	any	statements	that	come	after	a	return	statement	will	not	be	run.	A	return
statement	effectively	stops	a	running	function.

The	next	function	to	write	is	one	that	will	accept	a	thumbnail	element	reference	and	return
the	title	text.

Add	a	function	declaration	in	main.js	for	titleFromThumb,	with	a	thumbnail
parameter.	It	will	return	the	value	of	the	data-image-title	attribute.
...

function	imageFromThumb(thumbnail)	{

		...

}

function	titleFromThumb(thumbnail)	{

		'use	strict';

		return	thumbnail.getAttribute('data-image-title');

}

Save	main.js	and	try	this	function	out	in	the	console,	too:
var	firstThumbnail	=	document.querySelector(THUMBNAIL_LINK_SELECTOR);

titleFromThumb(firstThumbnail);

Figure	6.21		Value	returned	from	titleFromThumb

The	next	function	to	write	brings	the	three	other	functions	together	for	convenience,	so
that	you	do	not	need	to	call	them	separately.	It	will	accept	a	reference	to	a	thumbnail
element	and	then	call	setDetails,	passing	in	the	values	from	calling
imageFromThumb	and	titleFromThumb.

Add	setDetailsFromThumb	in	main.js.
...

function	titleFromThumb(thumbnail)	{

		...

}

function	setDetailsFromThumb(thumbnail)	{

		'use	strict';

		setDetails(imageFromThumb(thumbnail),	titleFromThumb(thumbnail));

}

Notice	that	setDetails	is	being	called	with	two	arguments	–	and	those	arguments	are
function	calls,	too.	How	does	this	work?

Before	setDetails	is	actually	called,	its	arguments	are	reduced	to	their	simplest
values.	First,	imageFromThumb(thumbnail)	runs	and	returns	a	value.	Then,
titleFromThumb(thumbnail)	runs	and	returns	a	value.	Finally,	setDetails	is
called	with	the	values	returned	by	imageFromThumb(thumbnail)	and
titleFromThumb(thumbnail).	Figure	6.22	shows	this	process.

Figure	6.22		Function	calls	as	arguments

Save	main.js.	You	have	completed	all	the	code	for	retrieving	data-attribute	values	from
thumbnails	and	using	those	values	to	update	what	is	shown	in	the	detail	image	and	title.

Moving	up	from	the	low-level	operations,	the	next	thing	to	do	is	write	code	that	will
perform	your	data	transfer	from	thumbnail	to	detail	when	the	user	clicks	a	thumbnail.

Adding	an	Event	Listener
Browsers	are	busy	pieces	of	software.	Every	tap,	click,	scroll,	and	keystroke	is	noticed	by
the	browser.	Each	of	these	is	an	event	that	the	browser	may	respond	to.	To	make	websites
more	dynamic	and	interactive,	you	can	trigger	your	own	code	when	one	of	these	events
occurs.	In	this	section,	you	will	add	event	listeners	to	each	of	your	thumbnails.

An	event	listener	is	an	object	that,	as	the	name	suggests,	“listens”	for	a	particular	event,
such	as	a	mouse	click.	When	its	assigned	event	occurs,	the	event	listener	triggers	a
function	call	in	response	to	the	event.

(Mouse	events,	like	clicks	and	double-clicks,	and	keyboard	events	like	keypresses	are
among	the	most	common	event	types.	For	a	complete	listing	of	events,	check	the	event
reference	in	the	MDN	at	developer.mozilla.org/en-US/docs/Web/
Events.)

The	addEventListener	method	is	available	on	every	DOM	element,	including	the
document.	As	before,	you	will	experiment	with	some	code	in	the	console	first	and	then	use
your	tested	code	to	write	functions	in	main.js.

Switch	to	Chrome	and	enter	the	following	code	in	the	console.	You	will	need	to	press	Shift-
Return	to	enter	the	line	breaks.	Press	Return	when	you	have	finished	typing	all	the	code.
document.addEventListener('click',	function	()	{

		console.log('you	clicked!');

});

The	code	you	entered	added	an	event	listener	for	the	document	object	that	is	listening	for
any	clicks	that	occur	on	the	page.	When	a	click	happens,	the	event	listener	will	print	“you
clicked!”	to	the	console	using	the	built-in	console.log	method	(Figure	6.23).

https://developer.mozilla.org/en-US/docs/Web/Events

Figure	6.23		Adding	a	listener	for	click	events

Click	on	the	header,	the	detail	image,	or	the	background.	You	should	see	that	the	text	“you
clicked!”	appears	printed	in	the	console.	(Do	not	click	the	thumbnails	–	those	will	take
you	away	from	Ottergram’s	index.html	page.	When	you	are	not	on	the	index.html
page,	none	of	your	markup,	CSS,	or	JavaScript	will	be	loaded	and	running	in	the	browser.)

addEventListener	accepts	two	arguments:	a	string	with	the	name	of	the	event	and	a
function.	This	function	will	be	run	by	addEventListener	any	time	the	event	occurs
for	the	element.	The	way	this	function	is	written	may	look	a	little	strange	at	first.	It	is	an
anonymous	function.

So	far,	you	have	worked	with	named	functions,	like	setDetails	and
titleFromThumb.	Named	functions	have	names	–	no	surprise	there	–	and	are	created
using	function	declarations.

You	can	also	write	literal	function	values,	the	same	way	you	can	write	literal	number
values	like	42	and	literal	string	values	like	"Barry	the	Otter".	Another	name	for	literal
function	values	is	anonymous	functions.

Anonymous	functions	are	frequently	used	as	arguments	to	other	functions,	like	the	one
you	passed	as	the	second	argument	to	document.addEventListener.	This	practice
of	passing	a	function	to	another	function	is	quite	common	in	JavaScript	and	is	known	as	a
callback	pattern	because	the	function	you	pass	in	as	an	argument	will	get	“called	back”	at
some	point	in	the	future.

It	is	perfectly	fine	to	use	a	named	function	as	a	callback,	but	many	front-end	developers
will	use	anonymous	functions	because	they	can	provide	more	flexibility	than	named
functions.	You	will	see	how	this	works	shortly.

Now	you	will	add	an	event	listener	for	an	individual	thumbnail.	Enter	the	following	in	the
console.	(Remember	to	use	Shift-Return	for	the	line	breaks	in	the	call	to

firstThumbnail.addEventListener.)
var	firstThumbnail	=	document.querySelector(THUMBNAIL_LINK_SELECTOR);

firstThumbnail.addEventListener('click',	function	()	{

		console.log('you	clicked!');

});

If	you	try	clicking	the	first	thumbnail	(Barry	the	Otter,	farthest	to	the	left),	your	browser
will	take	you	to	the	large	image	of	Barry.	What	happened?	Remember	that	each	thumbnail
is	wrapped	in	an	anchor	tag	with	an	href	that	points	to	an	image,	like
img/otter1.jpg.	This	is	the	normal	behavior	of	a	browser	when	a	user	clicks	a	link:
It	has	opened	the	file	indicated	by	the	href	attribute.

But	you	do	not	want	to	navigate	away	from	Ottergram	when	a	thumbnail	is	clicked,	and
you	should	not	have	to	change	your	anchor	tags	to	something	else.	Luckily,	you	can
handle	all	of	this	from	your	callback	function.

Recall	from	earlier	in	the	chapter	that	functions	carry	out	their	tasks	without	you	having	to
worry	about	the	details.	Usually	you	only	need	to	know	what	information	to	pass	as
arguments	and	what	information	will	be	returned.	When	you	pass	a	callback	function	as	an
argument,	there	is	one	more	thing	you	need	to	know:	what	information	will	be	passed	to
your	callback.

When	you	call	addEventListener,	you	are	telling	the	browser,	“When	the
firstThumbnail	is	clicked,	call	this	function”	–	and	then	the	browser	diligently	waits	for
that	element	to	be	clicked.	If	a	click	happens,	the	browser	makes	note	of	all	the	details
about	the	event	(such	as	the	exact	position	of	the	mouse,	whether	it	was	the	left	or	right
mouse	button,	and	whether	it	was	a	single	or	double	click).	The	browser	then	passes	an
object	with	this	information	to	your	function.	This	object	is	an	event	object.

This	relationship	is	diagrammed	in	Figure	6.24,	using	a	made-up	implementation	of
addEventListener.

Figure	6.24		Passing	an	anonymous	function	that	expects	an	argument

In	a	moment,	you	will	pass	an	anonymous	function	to	addEventListener,	just	like
before.	But,	this	time,	your	anonymous	function	will	expect	to	receive	an	argument.	Make
sure	Ottergram	is	on	the	index.html	page	and	enter	the	following	in	the	console:
var	firstThumbnail	=	document.querySelector(THUMBNAIL_LINK_SELECTOR);

firstThumbnail.addEventListener('click',	function	(event)	{

		event.preventDefault();

		console.log('you	clicked!');

		console.log(event);

});

The	browser	will	call	your	anonymous	function	each	time	firstThumbnail	is	clicked,
and	it	will	pass	your	anonymous	function	the	event	object.	Using	this	object	(which	you
have	labeled	event),	you	call	its	preventDefault	method.	This	method	will	stop	the
link	from	taking	the	browser	to	a	different	page.	Finally,	you	call	console.log	on	the
event	object	so	that	you	can	inspect	it	in	the	DevTools.

Now	click	on	the	first	thumbnail.	Your	browser	remains	on	the	Ottergram	page	and	the
event	is	logged	to	the	console:	MouseEvent	{isTrusted:	true}.	If	you	click	the
disclosure	arrow	next	to	MouseEvent,	you	should	see	quite	a	bit	of	information	about	the
event	(Figure	6.25),	including	the	mouse	coordinates	on	the	page,	which	mouse	button
was	clicked,	and	whether	any	special	modifier	keys	were	pressed	during	the	click.

Figure	6.25		Preventing	the	event	default	and	logging	the	event	object

For	now,	do	not	focus	on	the	different	properties	of	the	event	object.	Just	know	that	it
carries	lots	of	information	about	the	browser	event	that	was	triggered.

By	the	way,	it	is	not	required	that	the	callback	function’s	parameter	be	named	event	–	it
will	be	mapped	to	the	value	that	is	passed	in	no	matter	what	you	name	it.	You	can	use
whatever	parameter	names	you	like,	but	it	is	good	practice	to	use	descriptive	names,	as
you	have	done	here,	to	make	your	code	easier	to	read	and	maintain.

You	now	have	a	function	that	accepts	a	thumbnail	and	adds	an	event	listener.	Add	a

function	declaration	to	main.js	for	addThumbClickHandler.	It	should	define	a
parameter	named	thumb.

You	can	copy	your	experimental	addEventListener	code	from	the	console	and	paste
it	into	the	body	of	addThumbClickHandler.	Modify	it	so	that	you	are	calling
thumb.addEventListener.	For	now,	you	will	only	need	the	call	to
event.preventDefault	in	the	event	callback.
...

function	setDetailsFromThumb(thumbnail)	{

		...

}

function	addThumbClickHandler(thumb)

		'use	strict';

		thumb.addEventListener('click',	function	(event)	{

				event.preventDefault();

		});

}

Inside	the	event	callback,	you	have	access	to	the	thumb	parameter	declared	as	part	of
addThumbClickHandler.	Pass	it	to	a	call	to	setDetailsFromThumb.
...

function	addThumbClickHandler(thumb)	{

		'use	strict';

		thumb.addEventListener('click',	function	(event)	{

				event.preventDefault();

				setDetailsFromThumb(thumb);

		});

}

JavaScript,	like	many	other	programming	languages,	has	rules	about	defining	and
accessing	variables	and	functions.	The	anonymous	function	you	passed	to
addEventListener	is	able	to	access	the	setDetailsFromThumb	function
because	setDetailsFromThumb	was	declared	in	the	global	scope.	This	means	that	it
can	be	accessed	from	any	other	function	or	from	the	console.	The	same	is	true	for
variables	like	DETAIL_IMAGE_SELECTOR,	which	is	also	declared	in	the	global	scope.

However,	the	variables	detailImage	and	detailTitle,	which	you	declared	inside
setDetails,	are	only	available	within	the	body	of	setDetails.	You	cannot	access
them	from	the	console	or	from	other	functions.	These	variables	are	declared	in	the
function	scope	(or	local	scope)	of	setDetails.	A	function’s	parameters	work	very
much	like	variables	declared	inside	a	function.	They	too	are	part	of	that	function’s	scope.

Normally,	functions	cannot	access	variables	or	parameters	that	are	part	of	another
function’s	scope.	addThumbClickHandler	is	interesting	because	it	defines	the
parameter	thumb,	which	is	accessed	by	another	function	–	the	callback	function	you
passed	to	addEventListener.	This	is	possible	because	the	callback	function	is	part	of
addThumbClickHandler’s	scope.

You	can	read	more	about	how	all	of	this	works	in	a	For	the	More	Curious	section	at	the
end	of	this	chapter.

Accessing	All	the	Thumbnails
In	the	console,	you	added	an	event	listener	for	the	first	thumbnail.	Now	you	will	add	an
event	listener	for	all	of	the	thumbnails,	using	a	new	DOM	method.

When	you	retrieved	the	detail	image	and	the	detail	title,	you	used	the
document.querySelector	method	to	search	the	DOM	for	an	element	that	matched
the	selector	passed	in.	document.querySelector	will	only	return	a	single	value,
even	if	you	pass	in	a	selector	that	matches	multiple	elements.

The	document.querySelectorAll	method,	on	the	other	hand,	will	return	a	list	of
all	matching	elements.	Call	document.querySelectorAll(THUMBNAIL_LINK_SELECTOR)	in
the	console	and	examine	the	results.	You	should	see	the	list	of	anchor	element	results
(Figure	6.26).

Figure	6.26		document.querySelectorAll	returns	multiple	matching
elements

Knowing	this,	you	can	test	setDetailsFromThumb	properly.	In	the	console,	assign
the	result	of	calling	document.querySelectorAll(THUMBNAIL_LINK_SELECTOR)	to	a
variable	named	thumbnails.	Use	bracket	syntax	to	retrieve	the	fifth	element	from	the
thumbnails	list,	passing	it	to	setDetailsFromThumb.	Bracket	syntax	lets	you	specify
an	item	in	the	list	by	its	numerical	index.	The	index	starts	at	0,	so	the	fifth	item	is	at	index
4.

Here	is	your	code	for	the	console:
var	thumbnails	=	document.querySelectorAll(THUMBNAIL_LINK_SELECTOR);

setDetailsFromThumb(thumbnails[4]);

After	running	this	in	the	console,	you	can	see	that	an	item	from	the	thumbnails	list	can	be
passed	to	setDetailsFromThumb,	successfully	updating	the	detail	image	and	title
(Figure	6.27).

Figure	6.27		Passing	an	item	from	querySelectorAll	to
setDetailsFromThumb

In	main.js,	add	a	function	named	getThumbnailsArray	and	paste	in	the	code	that
retrieves	all	matching	elements	for	THUMBNAIL_LINK_SELECTOR	and	assigns	the	result	to	a
thumbnails	variable.
...

function	addThumbClickHandler(thumb)	{

		...

}

function	getThumbnailsArray()	{

		'use	strict';

		var	thumbnails	=	document.querySelectorAll(THUMBNAIL_LINK_SELECTOR);

}

Before	you	go	any	further,	there	is	a	small	“gotcha”	when	working	with	DOM	methods.
Methods	that	return	lists	of	elements	do	not	return	arrays.	Instead,	they	return	NodeLists.
Both	arrays	and	NodeLists	are	lists	of	items,	but	arrays	have	a	number	of	powerful
methods	for	working	with	collections	of	items,	some	of	which	you	will	want	for
Ottergram.

You	will	need	to	convert	the	NodeList	returned	from	querySelectorAll	to	an	array
using	an	odd-looking	bit	of	JavaScript.	Do	not	worry	about	this	syntax	right	now.	It	is	a
backward-compatible	way	to	convert	from	a	NodeList	to	an	array.	Make	this	change	in
main.js:
...

function	getThumbnailsArray()	{

		'use	strict';

		var	thumbnails	=	document.querySelectorAll(THUMBNAIL_LINK_SELECTOR);

		var	thumbnailArray	=	[].slice.call(thumbnails);

		return	thumbnailArray;

}

Now,	armed	with	all	of	the	otter	thumbnails,	you	can	connect	them	to	your	event	listening
code,	which	will	change	the	detail	image	and	title	in	response	to	a	click.

Iterating	Through	the	Array	of	Thumbnails
Connecting	the	thumbnails	to	your	event	handling	code	will	be	short	and	sweet.	You	will
write	a	function	that	will	be	the	starting	point	for	all	of	Ottergram’s	logic.	Other
programming	languages	have	a	built-in	mechanism	for	starting	an	application,	which
JavaScript	lacks.	But	not	to	worry	–	it	is	easy	enough	to	implement	by	hand.

Begin	by	adding	an	initializeEvents	function	at	the	end	of	main.js.	This
method	will	tie	together	all	of	the	steps	for	making	Ottergram	interactive.	First,	it	will	get
the	array	of	thumbnails.	Then,	it	will	iterate	over	the	array,	adding	the	click	handler	to
each	one.	After	you	have	written	the	function,	you	will	add	a	call	to
initializeEvents	at	the	very	end	of	main.js	to	run	it.

In	the	body	of	your	new	function,	add	a	call	to	getThumbnailsArray	and	assign	the
result	(the	array	of	thumbnails)	to	a	variable	named	thumbnails.
...

function	getThumbnailsArray()	{

		...

}

function	initializeEvents()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

}

Next,	you	need	to	go	through	the	array	of	thumbnails,	one	item	at	a	time.	As	you	visit	each
one,	you	will	call	addThumbClickHandler	and	pass	the	thumbnail	element	to	it.	That
may	seem	like	several	steps,	but	because	thumbnails	is	a	proper	array,	you	can	do	all	of
this	with	a	single	method	call.

Add	a	call	to	the	thumbnails.forEach	method	in	main.js	and	pass	it	the
addThumbClickHandler	function	as	a	callback.
...

function	initializeEvents()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

}

Note	that	you	are	passing	a	named	function	as	a	callback.	As	you	will	read	later,	this	is	not
always	a	good	choice.	However,	in	this	case	it	works	well,	because
addThumbClickHandler	only	needs	information	that	will	be	passed	to	it	when
forEach	calls	it	–	an	item	from	the	thumbnails	array.

Finally,	to	see	everything	in	action,	add	a	call	to	initializeEvents	at	the	very	end	of
main.js.
...

function	initializeEvents()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

}

initializeEvents();

Remember,	as	the	browser	reads	through	each	line	of	your	JavaScript	code,	it	runs	the
code.	For	most	of	main.js,	it	is	only	running	variable	and	function	declarations.	But
when	it	reaches	the	line	initializeEvents();,	it	will	run	that	function.

Save	and	return	to	the	browser.	Click	a	few	different	thumbnails	and	see	the	fruits	of	your
labor	(Figure	6.28).

Figure	6.28		You	should	indeed	be	dancing

Sit	back,	relax,	and	enjoy	clicking	some	otters!	There	was	a	lot	to	work	through	and
absorb	while	building	your	site’s	interactive	layer.	In	the	next	chapter	you	will	finish
Ottergram	by	adding	visual	effects	for	extra	pop.

Silver	Challenge:	Link	Hijack
The	Chrome	DevTools	give	you	a	lot	of	power	for	toying	with	pages	that	you	visit.	This
next	challenge	is	to	change	all	of	the	links	on	a	search	results	page	so	that	they	do	not	go
anywhere.

Go	to	your	favorite	search	engine	and	search	for	“otters.”	Open	the	DevTools	to	the
console.	With	the	functions	you	wrote	in	Ottergram	as	a	reference,	attach	event	listeners	to
all	of	the	links	and	disable	their	default	click	functionality.

Gold	Challenge:	Random	Otters
Write	a	function	that	changes	the	data-image-url	of	a	random	otter	thumbnail	so	that	the
detail	image	no	longer	matches	the	thumbnail.	Use	the	URL	of	an	image	of	your	choosing
(though	a	web	search	for	“tacocat”	should	provide	a	good	one).

For	an	extra	challenge,	write	a	function	that	resets	your	otter	thumbnails	to	their	original
data-image-url	values	and	changes	another	one	at	random.

For	the	More	Curious:	Strict	Mode
What	is	strict	mode,	and	why	does	it	exist?	It	was	created	as	a	cleaner	mode	of	JavaScript,
catching	certain	kinds	of	coding	mistakes	(like	typos	in	variable	names),	steering
developers	away	from	some	error-prone	parts	of	the	language,	and	disabling	some
language	features	that	are	just	plain	bad.

Strict	mode	provides	a	number	of	benefits.	It:

enforces	the	use	of	the	var	keyword

does	not	require	with	statements

places	restrictions	on	the	way	the	eval	function	can	be	used

treats	duplicate	names	in	a	function’s	parameters	as	a	syntax	error

All	this	just	for	adding	the	'use	strict'	directive	to	the	top	of	a	function.	As	a	bonus,	the
'use	strict'	directive	is	ignored	by	older	browsers	that	do	not	support	it.	(These
browsers	simply	see	the	directive	as	a	string.)

You	can	read	more	about	strict	mode	on	the	MDN	at	developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

For	the	More	Curious:	Closures
Earlier	we	mentioned	that	developers	often	prefer	to	use	anonymous	functions	as
callbacks	instead	of	named	functions.	addThumbClickHandler	illustrates	why	an
anonymous	function	is	a	better	solution.

Let’s	say	you	tried	to	use	a	named	function,	clickFunction,	for	the	callback.	Inside	of
that	function,	you	have	access	to	the	event	object	because	it	will	be	passed	in	by
addEventListener.	But	the	body	of	clickFunction	has	no	access	to	the	thumb
object.	That	parameter	is	only	accessible	inside	the	addThumbClickHandler
function.
function	clickFunction	(event)	{

		event.preventDefault();

		setDetailsFromThumb(thumb);	//	<---	This	will	cause	an	error

}

function	addThumbClickHandler(thumb)	{

		thumb.addEventListener('click',	clickFunction);

}

On	the	other	hand,	using	an	anonymous	function	does	give	it	access	to	the	thumb
parameter,	because	it	is	also	inside	of	addThumbClickHandler.	When	a	function	is
defined	inside	of	another	function,	it	can	use	any	of	the	variables	and	parameters	of	this
outer	function.	In	computer	science	terms,	this	is	known	as	a	closure.

When	the	addThumbClickHandler	function	runs,	it	calls	addEventListener,
which	associates	the	callback	function	with	the	click	event.	The	browser	keeps	track	of
these	associations,	internally	holding	a	reference	to	the	callback	function	and	running	the
callback	when	the	event	occurs.

Technically,	when	the	callback	is	eventually	executed,	the	variables	and	parameters	of
addThumbClickHandler	no	longer	exist.	They	went	away	when
addThumbClickHandler	finished	running.	But,	the	callback	“captures”	the	values	of
addThumbClickHandler’s	variables	and	parameters.	The	callback	uses	these
captured	values	when	it	runs.

For	a	deeper	dive,	read	up	on	closures	in	the	MDN.

For	the	More	Curious:	NodeLists	and
HTMLCollections
There	are	two	ways	to	retrieve	lists	of	elements	that	live	in	the	DOM.	The	first	one	is
document.querySelectorAll,	which	returns	a	NodeList.	The	other	is
document.getElementsByTagName,	which	differs	from
document.querySelectorAll	in	that	you	can	only	pass	it	a	string	with	a	tag	name,
like	"div"	or	"a",	and	also	in	that	it	returns	an	HTMLCollection.

Neither	NodeLists	nor	HTMLCollections	are	true	arrays,	so	they	lack	array	methods	such
as	forEach,	but	they	do	have	some	very	interesting	properties.

HTMLCollections	are	live	nodes.	This	means	that	when	changes	are	made	to	the	DOM,
the	contents	of	an	HTMLCollection	can	change	without	you	having	to	call
document.getElementsByTagName	again.

To	see	how	this	works,	try	the	following	in	the	console.
var	thumbnails	=	document.getElementsByTagName("a");

thumbnails.length;

After	getting	all	of	the	anchor	elements	as	an	HTMLCollection,	you	print	the	length	of
that	list	to	the	console.

Now,	remove	some	of	the	anchor	tags	from	the	page	using	the	elements	panel	in	the
DevTools:	Control-click	(right-click)	one	of	the	list	items	and	choose	Delete	element
(Figure	6.29).

Figure	6.29		Deleting	a	DOM	element	with	the	DevTools

Do	this	several	times,	then	enter	thumbnails.length	into	the	console	again.	You	should
see	that	the	length	is	different	(Figure	6.30).

Figure	6.30		The	length	value	changes	after	deleting	elements

Converting	NodeLists	and	HTMLCollections	to	arrays	not	only	makes	them	more
convenient	to	work	with	via	array	methods,	but	you	also	have	the	guarantee	that	the	items
in	the	array	will	not	change,	even	if	the	DOM	is	modified.

For	the	More	Curious:	JavaScript	Types
Throughout	the	chapter,	you	created	variables	so	you	could	refer	to	some	data	inside	your
functions.	Early	on,	we	told	you	that	strings,	numbers,	and	Booleans	are	three	of	the	five
primitive	data	types.	The	other	two	types	are	null	and	undefined.

Table	6.2	summarizes	the	properties	of	the	five	primitive	types.

Table	6.2		Primitive	data	types	in	JavaScript

Type Example Description

string “And	you	get	$100!	And	you
get	$100!	And…!”

Letters,	numbers,	or	symbols	enclosed	in
matching	quotation	marks.

number 42,	3.14159,	-1 Whole	numbers	and	decimals.

Boolean true,	false The	keywords	true	and	false,
corresponding	to	logical	true	and	false.

null null The	value	that	denotes	an	invalid	value.

undefined undefined The	value	of	a	variable	that	has	not	been
assigned	to	anything.

All	other	types	in	JavaScript	are	considered	compound	types	or	complex	types.	These
include	arrays	and	objects,	which	can	have	other	types	inside	of	them.	For	example,	you
wrote	a	function	that	produced	an	array	of	thumbnail	objects.	Arrays	also	have	properties
(like	length)	and	methods	(such	as	forEach).

You	will	continue	to	work	with	primitive	and	complex	data	types	throughout	this	book.

7	
Visual	Effects	with	CSS

In	the	last	chapter,	you	gave	Ottergram	the	ability	to	respond	to	user	interaction	by
changing	the	detail	image	when	the	user	clicks	a	thumbnail.	You	will	build	on	that	in	this
chapter	by	adding	three	different	visual	effects	to	Ottergram.

The	first	effect	is	a	simple	layout	change	that	involves	hiding	the	detail	image	and	letting
the	thumbnails	take	up	the	width	of	the	page.	When	the	user	clicks	a	thumbnail,	you	will
make	the	detail	image	reappear	and	return	the	thumbnails	to	their	previous	size.

The	other	two	effects	will	use	CSS	to	create	visual	animations	for	the	thumbnails	and	the
detail	image	(Figure	7.1).

Figure	7.1		Ottergram	with	transition	effects

Hiding	and	Showing	the	Detail	Image
Ottergram’s	users	may	want	to	be	able	to	scroll	through	the	thumbnails	without	the	detail
image	being	on	the	page	(Figure	7.2).

Figure	7.2		Detail	image	visible	and	hidden

To	make	this	happen,	you	need	to	be	able	to	apply	styles	to	your	.thumbnail-list	and
.detail-image-container	based	on	a	condition	that	will	turn	on	and	off	as	the	website	is
in	use.	You	could	do	this	by	creating	new	class	selectors,	like	.thumbnail-list-no-
detail	and	.hidden-detail-image-container,	and	add	those	classes	to	the	target
elements	with	JavaScript.	The	trouble	with	this	approach	is	that	it	would	be	inefficient.

The	event	that	will	cause	the	detail	image	to	hide	will	simultaneously	cause	the	thumbnail
list	to	reposition	itself.	It	is	a	single	event.	Adding	classes	to	your		and	<div>
elements	separately	does	not	reflect	this.

A	better	approach	is	to	use	JavaScript	to	add	a	single	class	selector	that	affects	the	layout
as	a	whole.	Then,	you	can	target	the	.thumbnail-list	and	.detail-image-container
when	they	are	descendents	of	the	new	selector.

You	are	going	to	dynamically	add	a	class	name	to	the	<body>	element	to	hide	the	detail
image	and	enlarge	the	thumbnails,	and	then	dynamically	remove	the	class	name	to	return
to	your	current	styles	(Figure	7.3).

Figure	7.3		Restyling	descendants	with	class	change	to	ancestor

This	technique	is	similar	in	two	ways	to	the	one	you	used	with	the	media	queries.

First,	it	involves	styles	that	are	activated	when	an	ancestor	meets	a	particular	condition.
With	media	queries,	that	ancestor	is	the	viewport	and	the	condition	is	a	minimum	width.
In	this	new	code,	the	ancestor	will	be	any	element	you	select	that	the	target	elements
share,	and	the	condition	will	be	that	the	ancestor	has	a	particular	class	name.

The	second	similarity	is	that	you	must	place	the	conditional	styles	after	the	other
declarations	for	the	affected	elements	in	your	stylesheet	because	these	conditional	styles
need	to	override	the	previous	declarations	when	they	are	active.

You	will	proceed	in	three	steps:

1.	 In	your	CSS,	define	the	styles	that	create	the	visual	effect	you	are	trying	to	get.
Also,	test	your	styles	in	the	DevTools.

2.	 Write	JavaScript	functions	to	add	and	remove	a	class	name	for	the	<body>
element.

3.	 Add	an	event	listener	to	trigger	your	JavaScript	function.

Creating	styles	to	hide	the	detail	image

To	hide	the	.detail-image-container,	you	will	add	a	declaration	that	sets	display:
none	for	this	element.	display:	none	tells	the	browser	that	the	element	should	not	be
rendered.

The	class	you	will	be	adding	dynamically	to	the	<body>	will	be	called	hidden-detail.
Therefore,	you	only	want	to	apply	display:	none	to	.detail-image-container	when	it
is	a	descendent	of	.hidden-detail.

Add	the	style	to	hide	the	detail	image	in	styles.css:
...

.detail-image-title	{

		...

}

.hidden-detail	.detail-image-container	{

		display:	none;

}

@media	all	and	(min-width:	768px)	{

		...

}

Now,	give	some	thought	to	what	your	.thumbnail-list	will	look	like.	Based	on	the
current	styles,	it	will	be	a	column	along	the	left	side	of	wider	screens	and	a	horizontal	row
at	the	top	of	narrower	screens.	A	centered	column	would	be	better	when	the	detail	image	is
hidden,	regardless	of	the	screen	size.

Add	styles	to	the	.thumbnail-list	and	.thumbnail-item	in	styles.css	when	they
are	descendents	of	.hidden-detail.
...

.hidden-detail	.detail-image-container	{

		display:	none;

}

.hidden-detail	.thumbnail-list	{

		flex-direction:	column;

		align-items:	center;

}

.hidden-detail	.thumbnail-item	{

		max-width:	80%;

}

@media	all	and	(min-width:	768px)	{

		...

}

Now,	the	.thumbnail-list	will	always	be	displayed	as	a	column	while	the	.detail-
image-container	is	hidden.

You	have	also	added	a	declaration	setting	the	width	of	the	.thumbnail-item	elements	to
max-width:	80%	when	the	detail	image	is	hidden.	This	overrides	the	max-width	styles	set
elsewhere	for	the	.thumbnail-items	so	that	they	will	become	the	focus	of	the	page.

When	the	.detail-image-container,	.thumbnail-list,	and	.thumbnail-item	elements
are	nested	anywhere	inside	of	an	element	with	the	class	hidden-detail,	these	new	styles
will	be	activated.

Note	that	you	added	these	before	your	media	queries.	As	you	already	know,	the	order	of
your	CSS	code	matters,	with	styles	that	appear	later	in	the	file	overriding	those	that	came
before.	In	general,	for	the	same	selector,	the	browser	uses	the	styles	it	has	seen	most
recently.	In	this	case,	however,	your	new	styles	use	selectors	that	are	more	specific	than
the	ones	that	appear	in	your	media	queries,	and	specificity	trumps	recency.

Generally,	it	is	best	to	keep	your	media	queries	at	the	end	of	the	file.	Your	media	queries
will	usually	reuse	the	same	selectors	from	existing	styles,	so	putting	them	at	the	end
makes	sure	that	your	media	queries	overwrite	those	existing	styles.	Also,	it	makes	your
media	queries	easier	to	locate,	because	they	are	always	at	the	end	of	the	file.

Save	your	file.	Before	you	write	the	JavaScript	that	depends	on	the	styles	you	have	added,
it	is	wise	to	test	them.	Start	browser-sync	(using	browser-sync	start	--server	--
browser	"Google	Chrome"	--files	"*.html,	stylesheets/*.css,	scripts/*.js")
and	open	the	DevTools.	In	the	elements	panel,	Control-click	(right-click)	the	<body>
element	and	choose	Add	Attribute	from	the	menu	that	appears	(Figure	7.4).

Figure	7.4		Choosing	the	Add	Attribute	menu	item

The	DevTools	provides	a	space	for	you	to	start	typing	inside	the	<body>	tag.	Enter
class="hidden-detail"	and	press	Return	(Figure	7.5).

Figure	7.5		Adding	the	hidden-detail	class	attribute

After	you	add	the	hidden-detail	class	to	the	<body>	in	the	DevTools,	the	detail	image
disappears	and	the	thumbnails	become	much	larger	–	just	as	you	intended	(Figure	7.6).

Figure	7.6		Layout	change	after	applying	hidden-detail	class

Writing	the	JavaScript	to	hide	the	detail	image

Next,	you	will	write	the	JavaScript	that	will	toggle	the	.hidden-detail	class	for	the
<body>	element.

In	main.js,	add	a	variable	named	HIDDEN_DETAIL_CLASS.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

var	DETAIL_TITLE_SELECTOR	=	'[data-image-role="title"]';

var	THUMBNAIL_LINK_SELECTOR	=	'[data-image-role="trigger"]';

var	HIDDEN_DETAIL_CLASS	=	'hidden-detail';

...

Now,	write	a	new	function	in	main.js	named	hideDetails.	Its	job	is	to	add	a	class
name	to	the	<body>	element.	You	will	use	the	classList.add	DOM	method	to
manipulate	the	class	name.
...

function	getThumbnailsArray()	{

		...

}

function	hideDetails()	{

		'use	strict';

		document.body.classList.add(HIDDEN_DETAIL_CLASS);

}

function	initializeEvents()	{

		...

}

...

You	accessed	the	<body>	element	using	the	document.body	property.	This	DOM	element
corresponds	to	the	<body>	tag	in	your	markup.	Like	all	DOM	elements,	it	gives	you	a
convenient	way	to	manipulate	its	class	names.

You	also	called	the	add	method	on	document.body	to	add	the	hidden-detail	class	to	the
<body>.

Listening	for	the	keypress	event

Now	you	need	a	way	to	trigger	the	detail	image	to	hide.	As	before,	you	will	use	an	event
listener,	but	this	time	your	event	listener	will	listen	for	a	keypress	instead	of	a	click.

We	use	the	term	“keypress”	generally	to	mean	pressing	and	releasing	a	key,	but	that
simple	process	actually	triggers	multiple	events.	When	the	key	is	first	depressed,	the
keydown	event	is	sent.	If	it	is	a	character	key	(as	opposed	to	a	modifier	key	like	Shift)	then
the	keypress	event	is	also	sent.	When	the	key	is	released,	the	keyup	event	is	sent.

For	Ottergram,	these	differences	are	minimal.	You	are	going	to	use	the	keyup	event.

In	main.js,	add	a	function	named	addKeyPressHandler	that	calls
document.body.addEventListener,	passing	it	the	string	'keyup'	and	an
anonymous	function	that	declares	a	parameter	named	event.	Inside	the	body	of	this
anonymous	function,	make	sure	to	preventDefault	for	the	event,	and	then
console.log	the	event’s	keyCode.
...

function	hideDetails()	{

		...

}

function	addKeyPressHandler()	{

		'use	strict';

		document.body.addEventListener('keyup',	function	(event)	{

				event.preventDefault();

				console.log(event.keyCode);

		});

}

function	initializeEvents()	{

		...

}

...

All	of	the	keypress	events	have	a	property	called	keyCode	that	corresponds	to	the	key
that	triggered	the	event.	The	keyCode	is	an	integer,	like	13	for	Return,	32	for	the	space
bar,	and	38	for	the	up	arrow.

Update	the	initializeEvents	function	in	main.js	so	that	it	calls
addKeyPressHandler.	You	need	to	do	this	so	that	the	<body>	element	can	listen	for
keyboard	events	when	the	page	loads.
...

function	initializeEvents()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

		addKeyPressHandler();

}

initializeEvents();

Save	and	switch	back	to	the	browser.	Make	sure	the	console	is	visible,	then	click	on	the
page	to	make	sure	that	the	focus	is	not	on	the	DevTools	–	otherwise,	the	event	listener	will
not	be	triggered.	Now	press	some	keys	on	your	keyboard.	You	will	see	numbers	printed	to
the	console	(Figure	7.7).

Figure	7.7		Logging	the	keyCode	to	the	console

You	want	to	hide	the	detail	image	when	the	Esc	key	is	pressed,	not	just	any	key.	If	you
press	the	Esc	key,	you	will	see	that	the	corresponding	event.keyCode	value	is	27.	You
will	use	that	to	make	your	event	listener	more	specific.

Add	a	variable	to	the	top	of	main.js	for	the	Esc	key’s	value.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

var	DETAIL_TITLE_SELECTOR	=	'[data-image-role="title"]';

var	THUMBNAIL_LINK_SELECTOR	=	'[data-image-role="trigger"]';

var	HIDDEN_DETAIL_CLASS	=	'hidden-detail';

var	ESC_KEY	=	27;

...

Now,	update	your	keyup	event	listener	to	call	hideDetails	when	the	value	of
event.keyCode	matches	the	value	of	ESC_KEY.
...

function	addKeyPressHandler()	{

		'use	strict';

		document.body.addEventListener('keyup',	function	(event)	{

				event.preventDefault();

				console.log(event.keyCode);

				if	(event.keyCode	===	ESC_KEY)	{

						hideDetails();

				}

		});

}

...

You	used	the	strict	equality	operator	(===)	to	compare	the	values	of	event.keyCode
and	ESC_KEY.	When	these	value	are	the	same,	you	call	hideDetails.

You	could	have	used	the	loose	equality	operator	(==)	to	compare	the	values	instead,	but	it
is	usually	best	to	use	the	strict	equality	operator.	The	major	difference	between	the
equality	operators	is	that	the	loose	equality	operator	will	automatically	convert	from	one
type	of	value	to	another.	The	strict	equality	operator	will	not	do	the	conversion.	With	strict
equality,	if	the	types	are	not	the	same,	then	the	result	of	the	comparison	is	always	false.

Many	front-end	developers	refer	to	this	automatic	type	conversion	as	type	coercion.	It	is
performed	when	values	need	to	be	compared	(when	using	an	equality	operator),	added
together	(in	the	case	of	numbers),	or	concatenated	(as	with	strings).

Because	of	this	automatic	conversion,	there	is	no	syntax	error	if	you	try	to	add	the	string
"27"	with	the	number	42	–	though	the	result	might	not	be	what	you	expect	(Figure	7.8).

Figure	7.8		JavaScript	will	automatically	convert	between	types

This	is	very	important	when	working	with	user-provided	data,	which	you	will	do	in
Chapter	10.

Save	main.js	and	test	your	new	functionality	in	the	browser	(Figure	7.9).

Figure	7.9		Poof!	Pressing	Esc	hides	the	detail	image	and	title

Showing	the	detail	image	again

There	is	one	small	but	important	piece	to	add:	making	the	detail	image	visible	again.	This
will	be	triggered	when	a	thumbnail	is	clicked.

You	used	classList.add	to	add	a	class	name	to	the	<body>	element.	You	will	use
classList.remove	to	remove	that	class	name	when	a	thumbnail	is	clicked.	Add	a
new	function	named	showDetails	to	main.js.
...

function	hideDetails()	{

		...

}

function	showDetails()	{

		'use	strict';

		document.body.classList.remove(HIDDEN_DETAIL_CLASS);

}

function	addKeyPressHandler()	{

		...

}

...

Now	add	a	call	to	showDetails	in	your	addThumbClickHandler	function	–	no
need	to	add	a	new	event	listener.
...

function	addThumbClickHandler(thumb)	{

		'use	strict';

		thumb.addEventListener('click',	function	(event)	{

				event.preventDefault();

				setDetailsFromThumb(thumb);

				showDetails();

		});

}

...

Save	main.js	and	switch	to	your	browser.	Try	out	your	new	functionality:	Hide	the
detail	image,	then	click	on	a	thumbnail	to	bring	it	back	(Figure	7.10).	The	otters	look	like
they	approve,	don’t	they?

Figure	7.10		Esc	hides	details;	click	shows	details

Now,	Ottergram	can	dynamically	adapt	its	layout	based	on	the	viewport,	using	media
queries,	as	well	as	in	response	to	user	input.

At	the	moment,	the	layout	changes	happen	abruptly.	In	the	next	section,	you	will	smooth

that	out	using	CSS	transitions.

State	Changes	with	CSS	Transitions
CSS	transitions	create	a	gradual	change	from	one	visual	state	to	another,	which	is	just
what	you	need	to	make	Ottergram’s	show/hide	effect	more	polished.

When	you	create	a	CSS	transition,	you	are	telling	the	browser,	“I	would	like	this	element’s
styles	to	change	to	these	new	properties,	and	I	would	like	for	that	change	to	take	exactly	as
long	as	I	tell	you.”

One	common	example	is	the	fly-out	menu	seen	on	many	sites,	such	as	the	small-screen
version	of	bignerdranch.com.	In	a	browser	with	a	narrow	viewport,	clicking	the
menu	icon	makes	the	navigation	menu	appear	from	the	top	–	but	it	does	not	appear	all	at
once.	Instead,	it	slides	down	from	the	header,	visually	animating	from	the	initial	state
(hidden)	to	the	end	state	(visible)	(Figure	7.11).	Clicking	the	menu	icon	again	causes	the
navigation	menu	to	slide	back	up	until	it	is	hidden	again.

Figure	7.11		Fly-out	navigation	on	bignerdranch.com

Before	you	create	the	transition	effect	for	showing	and	hiding	the	detail	image,	you	will
build	a	simpler	transition	for	your	thumbnails.

In	general,	you	should	create	transitions	in	three	steps:

1.	 Decide	what	the	end	state	should	be.	One	good	approach	is	to	add	the	CSS
declarations	for	the	end	state	to	the	target	element.	This	allows	you	to	see	them	in
the	browser	and	make	sure	that	they	look	the	way	you	intend.

2.	 Move	the	declarations	from	the	target	element’s	existing	declaration	block	to	a
new	CSS	declaration	block.	You	may	want	to	use	a	new	class	for	the	selector	for
the	new	block.

3.	 Add	a	transition	declaration	to	the	target	element.	The	transition	property
tells	the	browser	that	it	will	need	to	visually	animate	the	changes	from	the	current
CSS	values	to	the	end-state	CSS	values	and	that	the	transition	should	take	place
over	a	specific	period	of	time.

http://www.bignerdranch.com

Working	with	the	transform	property

Your	first	transition	will	increase	the	size	of	a	thumbnail	when	you	hover	over	it	with	the
cursor	(Figure	7.12).	However,	you	will	not	directly	change	the	width	or	height	styles.
You	will	use	the	transform	property,	which	can	alter	the	shape,	size,	rotation,	and	location
of	an	element	without	interrupting	the	flow	of	the	elements	around	it.

Figure	7.12		A	thumbnail	with	zoom	effect

The	target	element	for	this	transition	is	the	.thumbnail-item.	You	will	begin	by	adding	a
transform	declaration	directly	to	the	.thumbnail-item	element.

After	you	have	tested	it	and	determined	that	it	is	working	the	way	you	want,	you	will
move	the	transformation	to	a	new	.thumbnail-item:hover	declaration	block.	Finally,	you
will	add	a	transition	declaration	to	.thumbnail-item.

In	styles.css,	begin	by	adding	a	transform	declaration	to	.thumbnail-item.
...

.thumbnail-item	{

		display:	inline-block;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

		transform:	scale(2.2);

}

...

transform:	scale(2.2)	tells	the	browser	that	the	element	should	be	drawn	at	220%	of	its
original	size.	There	are	many	values	that	can	be	used	with	transform,	including	advanced
3D	effects.	The	MDN	has	good	coverage	of	them	at	developer.mozilla.org/en-
US/docs/Web/CSS/transform.

Save	and	view	the	changes	in	your	browser	(Figure	7.13).

https://developer.mozilla.org/en-US/docs/Web/CSS/transform

Figure	7.13		Dramatically	large	otter	thumbnails

You	can	see	that	the	thumbnails	are	now	much	larger	than	before.	In	fact,	they	are	too
large.	Change	the	value	so	that	they	are	only	a	little	bit	larger:
...

.thumbnail-item	{

		display:	inline-block;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

		transform:	scale(2.2);

		transform:	scale(1.2);

}

...

After	you	save,	you	should	see	that	the	otter	thumbnails	are	only	slightly	larger	than	their
original	size	(Figure	7.14).

Figure	7.14		Reasonably	large	otter	thumbnails

This	scale	for	the	thumbnails	looks	good,	so	you	can	move	on	to	the	next	step.

Adding	a	CSS	transition

Now	it	is	time	to	move	the	end-state	style	to	a	new	style	declaration	and	set	up	the
transition	for	the	.thumbnail-item	element.

When	the	user	hovers	the	mouse	cursor	over	a	thumbnail,	that	thumbnail	should	increase
its	scale	by	120%.	Add	a	declaration	block	to	styles.css	that	uses	the	modifier

:hover	to	designate	styles	that	should	only	be	applied	when	the	user	hovers	over	the
element.
...

.thumbnail-item	{

		display:	inline-block;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

		transform:	scale(1.2);

}

.thumbnail-item:hover	{

		transform:	scale(1.2);

}

...

The	proper	name	for	this	modifier	is	pseudo-class.	The	psuedo-class	:hover	matches	an
element	when	the	user	holds	the	mouse	cursor	over	it.	There	are	a	number	of	pseudo-class
keywords	that	describe	the	various	states	an	element	can	be	in.	You	will	encounter	some
when	you	work	with	forms	later	in	this	book,	and	you	can	search	the	MDN	to	learn	more.

Next,	make	this	change	happen	as	a	transition	by	adding	a	transition	declaration	to
.thumbnail-item	in	styles.css.	You	need	to	specify	the	property	to	animate	and	how
long	the	animation	should	take.
...

.thumbnail-item	{

		display:	inline-block;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

		transition:	transform	133ms;

}

.thumbnail-item:hover	{

		transform:	scale(1.2);

}

...

You	set	a	transition	for	the	transform	property.	This	tells	the	browser	that	it	will	need
to	animate	the	change,	but	only	for	the	transform	property.	You	also	specified	that	the
transition	should	take	place	over	a	period	of	133	milliseconds.

Save	and	give	your	new	transition	a	try.	You	should	see	that	each	thumbnail	enlarges	when
you	hover	over	it.	When	you	move	your	mouse	away,	the	transition	runs	in	reverse,	and
the	thumbnail	returns	to	its	original	size	(Figure	7.15).

Figure	7.15		Transition	occurs	when	hovering,	reverses	on	mouse	out

The	DevTools	give	you	a	handy	way	to	test	pseudo-class	states.	Go	to	the	elements	panel
and	expand	the	tags	until	one	of	the		tags	is	displayed.	Click	the	tag	so	that	it	is
highlighted	and	you	will	see	an	ellipsis	to	the	left.	Click	the	ellipsis,	and	in	the	contextual
menu	that	is	revealed	choose	:hover	from	the	list	of	pseudo-classes	(Figure	7.16).

Figure	7.16		Toggling	a	pseudo-class	in	the	elements	panel

An	orange	circle	appears	to	the	left	of	the		tag	in	the	elements	panel,	telling	you	that
one	of	the	pseudo-classes	has	been	activated	via	the	DevTools.	The	corresponding
thumbnail	will	remain	in	the	:hover	state,	even	if	you	mouse	over	it	and	then	mouse	away
from	it.

Open	the	contextual	menu	again,	by	clicking	the	orange	circle,	and	disable	the	:hover

state	before	you	continue.

Your	transition	is	nice,	but	there	is	a	small	bug.	Currently,	the	hover	effect	causes	parts	of
the	thumbnail	to	be	cut	off.	This	is	because	the	transform	applied	to	the	.thumbnail-
item	does	not	cause	its	parent	to	adjust	its	size.	The	solution	is	to	add	a	bit	of	padding	to
the	.thumbnail-list.	Change	the	vertical	padding	for	.thumbnail-list	in
styles.css.
...

.thumbnail-list	{

		flex:	0	1	auto;

		order:	2;

		display:	flex;

		justify-content:	space-between;

		list-style:	none;

		padding:	0;

		padding:	20px	0;

		white-space:	nowrap;

		overflow-x:	auto;

}

...

You	used	the	shorthand	for	the	padding	property.	The	first	value,	20px,	applies	to	the	top
and	bottom	padding,	while	the	second	value	applies	to	the	left	and	right	padding.	Make	a
similar	adjustment	inside	your	@media	query,	but	add	an	extra	padding	of	35px	to	the	left
and	right.
...

@media	all	and	(min-width:	768px)	{

		.main-content	{

		...

		}

		.thumbnail-list	{

				flex-direction:	column;

				order:	0;

				margin-left:	20px;

				padding:	0	35px;

		}

		...

Save	and	check	the	results	in	your	browser.	This	produces	a	nicer	effect	for	the	thumbnails
(Figure	7.17).

Figure	7.17		Extra	room	for	the	hover	effect	in	portrait	and	landscape

Using	a	timing	function

Your	hover	effect	is	looking	good!	But	it	lacks	that	visual	pop	that	would	make	it	really
special.	With	CSS	transitions,	you	can	not	only	specify	how	much	time	a	transition	should
take,	but	also	make	it	transition	at	different	speeds	during	that	time.

There	are	several	timing	functions	that	you	can	use	with	transitions.	By	default,	the	linear

timing	function	is	used,	which	makes	the	transition	animate	at	a	single,	constant	rate.	The
others	are	more	interesting,	and	give	the	transition	the	feeling	of	speeding	up	or	slowing
down.

Update	your	transition	in	styles.css	so	that	it	uses	the	ease-in-out	timing	function.
This	will	make	the	rate	of	the	transition	slower	at	the	beginning	and	end	and	faster	in	the
middle.
...

.thumbnail-item	{

		display:	inline-block;

		min-width:	120px;

		max-width:	120px;

		border:	1px	solid	rgb(100%,	100%,	100%);

		border:	1px	solid	rgba(100%,	100%,	100%,	0.8);

		transition:	transform	133ms	ease-in-out;

}

...

Save	and	then	hover	over	one	of	your	thumbnails.	The	effect	is	subtle,	but	noticeable.

There	are	a	number	of	timing	functions	available.	See	the	list	on	the	MDN	at
developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-
function.

Your	transition	uses	the	same	duration	value	and	timing	function	for	both	the	transition
to	the	end	state	and	the	transition	from	the	end	state.	That	does	not	have	to	be	the	case	–
you	can	use	different	values	depending	on	the	direction	of	the	transition.	If	you	specify	a
transition	property	on	both	the	beginning-state	declaration	and	the	end-state	declaration,
the	browser	uses	the	value	of	the	declaration	it	is	moving	toward.

It	might	be	easier	to	see	this	in	action.	For	a	quick	demonstration,	add	a	transition
declaration	to	.thumbnail-item:hover	in	styles.css.	(You	will	delete	it	after	trying	it
out	in	the	browser.)
...

.thumbnail-item:hover	{

		transform:	scale(1.2);

		transition:	transform	1000ms	ease-in;

}

...

Save	and	again	hover	over	one	of	the	thumbnails	in	the	browser.	The	scaling	effect	will	be
very	slow,	taking	a	full	second	to	complete.	This	is	because	it	is	using	the	value	declared
for	.thumbnail-item:hover.	Now,	move	your	mouse	off	of	the	thumbnail.	This	time,	the
transition	takes	133	milliseconds,	the	value	declared	for	.thumbnail-item.

Remove	the	transition	declaration	from	.thumbnail-item:hover	before	you	continue.
...

.thumbnail-item:hover	{

		transform:	scale(1.2);

		transition:	transform	1000ms	ease-in;

}

...

Transition	on	class	change

Your	second	transition	will	make	the	.detail-image-frame	look	like	it	is	zooming	in
from	very	far	away.

Instead	of	using	a	pseudo-class	selector	to	trigger	a	transition,	this	time	you	will	add	and
remove	class	names	with	JavaScript	to	trigger	a	transition.	Why?	Because	there	is	no

https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function

pseudo-class	that	corresponds	to	a	click	event.	Using	JavaScript	gives	you	much	more
control	over	how	and	when	these	UI	changes	are	triggered.

Also,	you	will	set	different	duration	times	for	the	beginning	and	end	of	the	transition.	The
end	result	will	be	that	when	you	click	a	thumbnail	the	corresponding	otter	image	will	be
used	for	the	detail	image.	It	will	immediately	be	sized	down	to	a	tiny	dot	in	the	center	of
the	detail	area,	then	it	will	transition	to	its	full	size	(Figure	7.18).

Figure	7.18		Clicking	a	thumbnail	scales	it	from	very	small	to	full	size

Start	by	adding	a	style	declaration	for	a	new	class	named	is-tiny	in	styles.css.
...

.detail-image-frame	{

		...

}

.is-tiny	{

		transform:	scale(0.001);

		transition:	transform	0ms;

}

.detail-image	{

		...

You	added	two	styles	for	.is-tiny.	The	first	scales	the	element	down	to	a	small	fraction
of	its	original	size.	The	second	specifies	that	any	transition	for	the	transform	property
should	last	0	milliseconds,	applying	the	style	change	immediately.	Put	another	way,	going
toward	the	.is-tiny	class	styles,	the	detail	image	will	effectively	have	no	transition.
Because	it	lasts	for	0	milliseconds,	there	is	no	need	to	specify	a	timing	function.

Next,	you	will	add	another	transition	declaration	with	a	333	millisecond	duration.	This
value	will	be	used	when	transitioning	away	from	the	.is-tiny	class,	making	the	detail
image	grow	to	normal	size	over	a	period	of	a	third	of	a	second.	Add	this	transition
declaration	to	the	.detail-image-frame	in	styles.css.
...

.detail-image-frame	{

		position:	relative;

		text-align:	center;

		transition:	transform	333ms;

}

...

Save	styles.css	before	you	move	on.

Triggering	transitions	with	JavaScript

Now	that	your	transition	styles	are	in	place,	you	need	to	trigger	them	with	JavaScript.	To
give	your	JavaScript	a	hook,	add	a	data	attribute	to	the	.detail-image-frame	element	in

index.html.
...

						<div	class="detail-image-container">

								<div	class="detail-image-frame"	data-image-role="frame">

				

				Stayin'	Alive

								</div>

						</div>

...

Save	index.html.	Now,	in	main.js,	you	just	need	to	add	variables	for	your	.is-tiny
class	and	data-image-role="frame"	selector,	and	then	you	will	update	showDetails
to	perform	the	class	name	changes	to	that	trigger	the	transition.

Begin	with	the	variables.	Add	a	DETAIL_FRAME_SELECTOR	variable	for	a	selector	string
'[data-image-role="frame"]'.	Also,	add	a	TINY_EFFECT_CLASS	variable	for	the	is-tiny
class	name.
var	DETAIL_IMAGE_SELECTOR	=	'[data-image-role="target"]';

var	DETAIL_TITLE_SELECTOR	=	'[data-image-role="title"]';

var	DETAIL_FRAME_SELECTOR	=	'[data-image-role="frame"]';

var	THUMBNAIL_LINK_SELECTOR	=	'[data-image-role="trigger"]';

var	HIDDEN_DETAIL_CLASS	=	'hidden-detail';

var	TINY_EFFECT_CLASS	=	'is-tiny';

var	ESC_KEY	=	27;

...

It	is	not	required	that	you	put	your	variables	in	this	order.	(It	makes	no	difference	to	the
browser.)	But	it	is	a	good	idea	to	keep	them	organized.	In	main.js,	all	of	the	selector
variables	are	grouped	together,	followed	by	the	class	variables,	followed	by	the	numeric
code	for	the	Escape	key.

Now,	update	showDetails	in	main.js	so	that	it	gets	a	reference	to	the	[data-image-
role="frame"]	element.	To	trigger	the	transition,	you	will	need	to	add	the
TINY_EFFECT_CLASS	and	remove	it.
...

function	showDetails()	{

		'use	strict';

		var	frame	=	document.querySelector(DETAIL_FRAME_SELECTOR);

		document.body.classList.remove(HIDDEN_DETAIL_CLASS);

		frame.classList.add(TINY_EFFECT_CLASS);

		frame.classList.remove(TINY_EFFECT_CLASS);

}

...

If	you	saved	this	and	tried	it	in	the	browser,	you	would	not	see	a	transition	take	place.
Why	not?	Because	the	TINY_EFFECT_CLASS	is	added	and	then	immediately	removed.	The
net	result	is	that	there	is	no	actual	class	change	to	render.	This	is	an	optimization	on	the
part	of	the	browser.

You	need	to	add	a	small	delay	before	removing	the	TINY_EFFECT_CLASS.	JavaScript,
however,	does	not	have	a	built-in	delay	or	sleep	function,	as	some	other	languages	do.
Time	for	a	workaround!

You	are	going	to	use	the	setTimeout	method,	which	takes	a	function	and	a	delay
(specified	in	milliseconds).	After	the	delay,	the	function	is	queued	for	execution	by	the
browser.

Add	a	call	to	setTimeout	after	calling	frame.classList.add	in	main.js.	Pass
it	two	arguments:	a	function	with	a	list	of	steps	to	perform	and	the	number	of	milliseconds
to	wait	before	invoking	that	function	argument.	There	is	only	one	step	to	perform,	and	that
is	to	remove	TINY_EFFECT_CLASS.
...

function	showDetails()	{

		'use	strict';

		var	frame	=	document.querySelector(DETAIL_FRAME_SELECTOR);

		document.body.classList.remove(HIDDEN_DETAIL_CLASS);

		frame.classList.add(TINY_EFFECT_CLASS);

		setTimeout(function	()	{

				frame.classList.remove(TINY_EFFECT_CLASS);

		},	50);

}

...

Let’s	take	a	closer	look	at	what	this	code	does.	First,	it	adds	the	.is-tiny	class	to	the
frame	element.	This	applies	your	transform:	scale(0.001).

Then,	the	browser	is	told	to	wait	50	milliseconds,	after	which	it	will	add	an	anonymous
function	to	its	execution	queue.	The	showDetails	function	finishes.	Fifty	milliseconds
later,	the	anonymous	function	is	queued	for	execution.	(Basically,	it	gets	in	line	for	the
CPU,	waiting	behind	any	other	functions	that	were	already	in	line.)

When	this	anonymous	function	runs,	it	removes	the	TINY_EFFECT_CLASS	from	the	frame’s
class	list.	This	causes	the	transform	transition	to	run	over	a	period	of	333	milliseconds,
making	the	frame	grow	to	its	normal	size.

Save	your	changes	and	admire	the	results.	Click	the	thumbnails	and	enjoy	those	wacky
otters	zooming	into	view.

Custom	Timing	Functions
Now,	for	some	icing	on	your	Ottergram	cake:	You	can	create	custom	timing	functions	for
your	transitions	instead	of	being	limited	to	the	built-in	ones.

Timing	functions	can	be	graphed	to	show	the	transition’s	progress	over	time.	Graphs	of
the	built-in	timing	functions	(from	the	site	cubic-bezier.com)	are	shown	in
Figure	7.19.

Figure	7.19		Built-in	timing	functions

The	shapes	in	these	graphs	are	known	as	cubic	Bezier	curves.	The	lines	in	the	graphs
describe	the	behavior	of	the	animation	over	time.	They	are	defined	by	four	points.	You	can
create	custom	transitions	by	specifying	the	four	points	that	define	a	curve.	Try	the
following	cubic-bezier	as	part	of	your	transition	declaration	for	.detail-image-
frame	in	styles.css.
...

.detail-image-frame	{

		position:	relative;

		text-align:	center;

		transition:	transform	333m	cubic-bezier(1,.06,.28,1);

}

...

Save	it	and	click	on	some	thumbnails	in	the	browser	to	see	the	difference	in	the	transition.

Thanks	to	developer	Lea	Verou	and	her	site	cubic-bezier.com,	creating	custom
timing	functions	is	painless	(Figure	7.20).

http://cubic-bezier.com
http://cubic-bezier.com

Figure	7.20		Creating	a	custom	timing	function	with	cubic-bezier.com

On	the	left	side	is	a	curve	with	red	and	blue	drag	handles.	The	curve	is	a	graph	of	how
much	of	the	transition	has	occurred	over	the	duration.	Click	and	drag	the	handles	to
change	the	curve.	As	it	changes,	the	decimal	values	at	the	top	of	the	page	change,	too.

On	the	right	side	are	the	built-in	timing	functions:	ease,	linear,	ease-in,	ease-out,	and
ease-in-out.	Click	on	one,	then	on	the	GO!	button	next	to	Preview	&	compare.	The	icons
representing	the	two	timing	functions	–	the	custom	cubic-bezier	and	the	built-in	function
–	will	animate,	allowing	you	to	see	your	custom	timing	in	action	and	compare	it	to	a	built-
in	option.

Create	a	custom	timing	function	and,	when	you	are	happy	with	it,	copy	and	paste	the
values	from	the	website	to	your	code	in	styles.css:
...

.detail-image-frame	{

		position:	relative;

		text-align:	center;

		transition:	transform	333m	cubic-bezier(your	values	here);

}

...

Congratulations!	Ottergram	is	feature-complete!	Save	your	file	and	admire	your	finished
product.	You	have	taken	Ottergram	from	a	simple,	static	web	page	to	an	interactive,
responsive	page	with	animated	visual	effects.

You	have	come	a	long	way,	and	hopefully	you	have	enjoyed	learning	about	the	basics	of
front-end	development.	It	is	time	to	wave	goodbye	to	the	otters,	because	you	will	be
starting	a	new	project	in	the	next	chapter.

For	the	More	Curious:	Rules	for	Type	Coercion
As	mentioned	in	Chapter	6,	JavaScript	was	originally	created	so	that	folks	who	were	not
professional	programmers	could	add	interactivity	to	web	pages.	It	was	thought	that	these
“regular	humans”	should	not	need	to	worry	about	whether	a	value	was	a	number,	an
object,	or	a	banana.	(Just	kidding	–	there	is	no	banana	type	in	JavaScript.)

One	of	the	ways	this	is	achieved	is	through	type	coercion.	With	type	coercion,	you	can
compare	two	values,	regardless	of	their	types,	using	the	==	operator	and	concatenate	two
values	using	the	+	operator.	When	you	do,	JavaScript	will	figure	out	a	way	to	make	that
work	–	even	if	it	has	to	do	something	a	little	weird,	like	changing	the	string	"2"	to	the
number	2.

This	has	mystified	programmers	and	nonprogrammers	alike.	Most	programmers	agree	that
it	is	best	to	use	strict	comparison	using	the	===	operator.	However,	the	rules	for	type
coercion	are	very	well	defined	in	the	language,	and	they	are	worth	knowing	about.

Let’s	say	you	are	trying	to	compare	two	variables:	x	==	y.	If	they	are	the	same	type	and
have	the	same	value,	the	comparison	results	in	a	Boolean	true.	The	only	exception	to	this
is:	If	either	x	or	y	have	the	value	NaN	(the	language	constant	meaning	“not	a	number”),
then	the	result	is	false.

However,	if	x	and	y	are	different	types,	things	get	a	bit	tricky.	Here	are	some	of	the	rules
JavaScript	applies:

These	comparisons	result	in	true:	null	==	undefined	and	undefined	==	null.

When	comparing	a	string	and	a	number,	first	convert	the	string	to	its	numerical
equivalent.	This	means	that	"3"	==	3	is	true,	and	"dog"	==	20	is	false.

When	comparing	a	Boolean	to	another	type,	first	convert	the	Boolean	to	a
number:	true	to	the	number	1,	and	false	to	the	number	0.	This	means	that	false
==	0	is	true,	and	true	==	1	is	also	true.

Finally,	if	you	compare	a	string	or	a	number	to	an	object,	first	try	to	convert	the
object	to	a	primitive	value.	If	that	conversion	does	not	work,	then	try	converting
the	object	to	a	string.

For	even	more	information,	check	out	the	MDN’s	discussion	at
developer.mozilla.org/en-US/docs/Web/JavaScript/
Equality_comparisons_and_sameness.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_and_sameness

Part	II	
Modules,	Objects,	and	Forms

8	
Modules,	Objects,	and	Methods

Over	the	next	seven	chapters,	you	will	build	a	shopping-cart	style	application	called
CoffeeRun	to	manage	coffee	orders	for	a	food	truck.	You	will	create	CoffeeRun	in	three
layers	of	code:	the	UI,	the	internal	logic,	and	the	server	communication.

In	this	chapter,	you	will	create	the	internal	logic	and	interact	with	it	through	the	DevTools
console,	as	shown	in	Figure	8.1.

Figure	8.1		CoffeeRun,	under	the	hood

Modules
CoffeeRun	is	more	complex	than	Ottergram,	so	it	is	important	to	organize	your	code	to
make	it	easier	to	debug	and	to	extend.	CoffeeRun	will	be	structured	in	components,	which
are	diagrammed	in	Figure	8.2.

Figure	8.2		Overview	of	components	and	interactions	in	CoffeeRun

Each	part	of	the	application	will	focus	on	one	area	of	responsibility.	The	code	for	your
application’s	internal	logic	will	manage	the	data.	The	UI	code	will	handle	events	and
DOM	manipulation	(much	like	the	code	for	Ottergram).	The	server	communication	code
will	talk	to	a	remote	server,	saving	and	retrieving	data	over	the	network.

JavaScript	was	created	for	writing	very	small	scripts	that	add	tiny	bits	of	interactivity,	not
for	writing	complex	applications.	CoffeeRun	is	not	extremely	complex,	but	it	breaks	the
threshold	for	what	should	be	accomplished	in	a	single	script	file.

To	keep	your	code	neatly	separated,	you	will	create	three	JavaScript	files	for	the	subsets	of
functionality	within	your	application.	You	will	have	different	files	for	your	internal	logic,
your	UI,	and	your	server	communication	code.	You	will	achieve	this	separation	by	writing
your	code	in	separate	units,	or	modules.

How	to	group	code	into	modules	is	entirely	up	to	the	developer.	Most	often,	code	is
grouped	around	concepts,	like	“inventory”	or	“food	menu.”	In	terms	of	code,	modules
group	related	functions	together.	Some	of	the	functions	will	be	available	externally,	while
others	will	only	be	used	internally	by	the	module.

Think	about	a	restaurant.	The	kitchen	has	lots	of	tools	and	ingredients	that	are	available
internally,	but	the	customers	only	see	a	menu	with	a	few	items.	That	menu	is	the
customer’s	interface	to	the	food-making	module	called	the	kitchen.

Likewise,	if	the	restaurant	has	a	bar,	the	drink-making	tools	and	ingredients	are	internal;
the	customer	can	only	access	the	items	on	the	drink	list,	which	is	their	interface	to	the
drink-making	module	called	the	bar.

As	a	customer,	you	cannot	borrow	the	butcher’s	knife	from	the	kitchen	or	use	the	blender
from	the	bar.	You	cannot	grab	an	extra	pat	of	butter	from	the	refrigerator	or	pour	an	extra
shot	in	your	cocktail.	You	are	restricted	to	the	interfaces	provided	by	the	kitchen	and	bar
modules.

Similarly,	each	of	CoffeeRun’s	modules	will	keep	some	of	its	functionality	private.	Only	a
portion	of	its	functionality	will	be	made	publicly	accessible,	so	that	other	modules	can
interact	with	it.

For	CoffeeRun,	you	will	continue	to	work	in	ES5,	which	is	the	best-supported	version	of
JavaScript	as	of	this	writing.	(Your	next	project,	Chattrbox,	will	use	the	most	recent
version,	ES6).	ES5	does	not	have	a	formal	way	to	organize	code	into	self-contained
modules,	but	you	can	get	the	same	kind	of	organization	by	putting	related	code	(variables
and	functions)	inside	the	body	of	a	function.

The	module	pattern

Code	can	be	organized	using	functions,	but	it	is	a	common	practice	to	use	a	variation	of	a
regular	function	for	this	purpose.	Before	you	get	started	with	your	new	project,	let’s	take	a
brief	look	at	the	module	pattern	for	organizing	code,	examining	how	a	function	from
Ottergram	could	be	rewritten	as	a	module.

Here	is	the	code	for	a	basic	module:
(function	()	{

		'use	strict';

		//	Code	will	go	here

})();

If	this	is	the	first	time	you	have	seen	this	pattern,	it	probably	looks	rather	odd.	This	is
known	as	an	immediately	invoked	function	expression	(or	IIFE),	and	it	is	best	to	examine	it
from	the	inside	out.

The	main	part	of	it	is	the	anonymous	function:
function	()	{

		'use	strict';

		//	Code	will	go	here

}

You	worked	with	anonymous	functions	in	Ottergram,	so	this	should	be	familiar.

Here,	however,	the	anonymous	function	is	enclosed	in	parentheses:
(function	()	{

		'use	strict';

		//	Code	will	go	here

})

These	enclosing	parentheses	are	very	important	because	they	tell	the	browser,	“Please	do
not	interpret	this	code	as	a	function	declaration.”

The	browser	sees	the	parentheses	and	says,	“Ah.	OK.	I	get	that	I	am	looking	at	an
anonymous	function.	I	will	hold	off	from	doing	anything	with	it.”

Most	of	the	time,	you	use	an	anonymous	function	by	passing	it	as	an	argument.	In	this
case,	you	are	calling	it	immediately.	This	is	done	with	the	empty	pair	of	parentheses:
(function	()	{

		'use	strict';

		//	Code	will	go	here

})()

When	the	browser	sees	the	empty	parentheses,	it	realizes	that	you	want	it	to	invoke
whatever	comes	before	them,	and	says,	“Oh!	I	see	that	I’ve	got	an	anonymous	function
that	I	can	run!”

You	may	be	thinking,	“This	is	both	crazy	and	useless.”	Actually,	you	have	already	written
code	that	works	similarly.	Recall	Ottergram’s	initializeEvents	function.	After	you
declared	it,	you	called	it	immediately	and	never	called	it	again.	Here	is	that	code	for
reference.
function	initializeEvents()	{																	//	Function	declared

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

		addKeyPressHandler();

}

initializeEvents();																										//	Function	called

The	purpose	of	this	function	was	to	bundle	some	steps	together	and	run	them	when	the

page	loads.	Here	is	that	same	code,	rewritten	as	an	IIFE.	(You	do	not	need	to	change	your
Ottergram	code;	this	is	just	to	illustrate	the	concept.)
function	initializeEvents()	{

(function	()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

		addKeyPressHandler();

}

})();

initializeEvents();

IIFEs	are	useful	when	you	want	to	run	some	code	once	without	creating	any	extra	global
variables	or	functions.	To	understand	why	this	is	important,	consider	the	variables	and
functions	you	wrote	for	Ottergram.

In	Ottergram,	you	built	up	a	collection	of	useful	functions	and	then	called	them	as	needed.
These	functions	had	names	like	getThumbnailsArray	and
addKeyPressHandler.	Luckily,	these	names	were	unique.	If	you	had	tried	to	define
two	functions	with	the	same	name,	the	first	one	would	have	simply	been	replaced	by	the
second	one.

When	you	define	functions	or	variables,	they	are	added	to	the	global	namespace	by
default.	This	is	the	browser’s	registry	of	all	of	the	function	and	variable	names	for	your
JavaScript	program,	along	with	any	built-in	functions	and	variables.	More	generally,	a
namespace	is	the	means	by	which	code	is	organized:	Code	is	organized	in	namespaces	the
same	way	files	on	your	computer	are	organized	in	folders.

In	CoffeeRun,	you	may	have	functions	that	could	reasonably	have	the	same	name,	like
add	or	addClickHandler.	Instead	of	adding	them	to	the	global	namespace,	where
they	could	be	accidentally	overwritten,	you	can	declare	them	inside	of	a	function.	This
protects	them	from	being	accessed	or	overwritten	by	code	outside	of	the	function.

As	you	group	code	together	in	a	module,	you	will	want	to	make	some,	but	not	all,	of	the
functionality	accessible	to	the	world	outside	of	the	module.	To	do	this,	you	will	take
advantage	of	the	fact	that	IIFEs,	like	any	function,	can	accept	arguments.

Modifying	an	object	with	an	IIFE

IIFEs	are	not	only	good	for	running	set-up	code,	like	Ottergram’s	initializeEvents.
They	are	also	good	for	running	code	that	augments	an	object,	which	is	usually	passed	in	as
an	argument.	To	illustrate	how	this	works,	our	friend	initializeEvents	will	be	used
once	again.

Here	is	a	version	of	initializeEvents	whose	job	is	to	modify	the	thumbnails	by
adding	a	click	handler.	(To	simplify	things,	the	addKeyPressHandler	call	has	been
removed.)
function	initializeEvents()	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

}

initializeEvents();

In	this	form,	initializeEvents	modifies	an	array	of	thumbnails	using

addThumbClickHandler.	But	it	could	also	receive	the	array	as	an	argument.	To	do
that,	you	would	declare	a	parameter	as	part	of	the	function	definition.	Then,	when	you	call
it,	you	would	pass	in	the	array,	like	this:
function	initializeEvents(thumbnails)	{

		'use	strict';

		var	thumbnails	=	getThumbnailsArray();

		thumbnails.forEach(addThumbClickHandler);

}

var	thumbnails	=	getThumbnailsArray();

initializeEvents(thumbnails);

To	rewrite	this	as	an	IIFE,	you	would	remove	the	function	name,	wrap	the	function	in
parentheses,	and	add	a	pair	of	empty	parentheses	to	invoke	the	function:
(function	initializeEvents(thumbnails)	{

		'use	strict';

		thumbnails.forEach(addThumbClickHandler);

})();

var	thumbnails	=	getThumbnailsArray();

initializeEvents(thumbnails);

However,	you	would	still	need	to	pass	in	the	array	of	thumbnails	as	an	argument.	You	can
do	this	by	moving	the	call	to	getThumbnailsArray.	Instead	of	assigning	the	result	to
a	variable,	you	would	pass	the	result	to	your	IIFE:
(function	(thumbnails)	{

		'use	strict';

		thumbnails.forEach(addThumbClickHandler);

})(getThumbnailsArray());

var	thumbnails	=	getThumbnailsArray();

In	this	version	of	the	code,	an	array	(resulting	from	calling	getThumbnailsArray)	is
passed	in	to	the	IIFE.	The	IIFE	receives	this	array	and	places	the	label	thumbnails	on
it.	Inside	the	body	of	the	IIFE,	the	event	listeners	are	attached	to	each	item	in	the	array
(Figure	8.3).

Figure	8.3		IIFE	modifying	its	arguments

Anything	can	be	passed	to	an	IIFE	for	modification.	Your	CoffeeRun	IIFEs	will	be	passed
the	window	object.	But	instead	of	attaching	their	module	code	directly	to	the	global
namespace,	they	will	attach	code	to	a	single	App	property	within	the	global	namespace.
Every	CoffeeRun	module	will	be	contained	in	its	own	file	and	loaded	into	the	browser	by
an	individual	<script>	tag.	An	overview	of	this	process	is	shown	in	Figure	8.4.

Figure	8.4		<script>	tags	load	modules,	which	modify	window.App

Setting	Up	CoffeeRun
Enough	theory	–	let’s	get	to	work.	Because	this	is	a	new	project,	start	by	creating	a	new
directory.	Open	Atom	and	choose	File	→	Add	Project	Folder….	Select	your	front-end-
dev-book	directory	and	click	New	Folder.	Name	the	new	folder	coffeerun	and	click
Open.

Next,	Control-click	(right-click)	your	new	coffeerun	folder	in	Atom’s	navigation	panel.
Choose	New	File	and	enter	index.html	for	the	filename.	Control-click	(right-click)	on
coffeerun	again	and	choose	New	Folder.	Name	the	folder	scripts.

In	your	front-end-dev-book	folder,	you	should	now	have	a	folder	for	each	of	your
projects,	ottergram	and	coffeerun,	with	similar	file	structures	(Figure	8.5).

Figure	8.5		Creating	files	and	folders	for	CoffeeRun

If	you	already	have	a	terminal	session	open	and	running	browser-sync,	close	browser-
sync	using	Control-C.	If	you	do	not,	open	a	new	terminal	window.	Either	way,	change	to
your	new	coffeerun	directory	(refer	to	the	commands	in	Chapter	1	if	you	are	not	sure
about	how	to	do	this)	and	start	browser-sync	again.	As	a	reminder,	the	command	to	start
it	is	browser-sync	start	--server	--files	"stylesheets/*.css,	scripts/*.js,
*.html".

In	index.html	add	the	basic	skeleton	of	your	document.	(Remember,	Atom’s
autocomplete	will	do	most	of	this	for	you;	just	start	typing	“html.”)
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

		</head>

		<body>

		</body>

</html>

You	are	now	ready	to	create	your	first	module!

Creating	the	DataStore	Module
The	first	module	you	will	write	will	store	coffee	order	information	in	a	simple	database,
not	unlike	writing	down	the	orders	by	hand.	Each	order	will	be	stored	by	the	customer’s
email	address.	To	get	started,	you	will	only	keep	track	of	a	text	description	of	the	order,
like	“quadruple	espresso”	(Figure	8.6).

Figure	8.6		Initial	structure	of	CoffeeRun’s	database

Later,	you	will	also	keep	track	of	the	size,	flavor,	and	caffeine	strength	of	each	coffee
order.	The	customer’s	email	address	will	serve	as	the	unique	identifier	for	the	entire	order,
so	all	of	the	order	details	will	be	associated	with	a	single	email	address.	(Sorry,	coffee
addicts!	Only	one	order	per	customer.)

Create	a	new	file	called	scripts/datastore.js.	Next,	in	index.html,	add	the
<script>	tag	to	include	the	new	file	in	your	project.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

		</head>

		<body>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

		</body>

</html>

Save	index.html.	In	scripts/datastore.js,	begin	with	the	basic	IIFE	for	your
module	structure:
(function	(window)	{

		'use	strict';

		//	Code	will	go	here

})(window);

Now	that	the	skeleton	of	your	module	exists	and	has	a	corresponding	<script>	tag,	it	is
time	to	attach	it	to	the	namespace	for	your	application.

Adding	Modules	to	a	Namespace
Many	other	programming	languages	have	special	syntax	for	creating	modules	and
packaging	them	together.	ES5	does	not.	Instead,	you	can	get	the	same	kind	of	organization
using	objects.

You	can	use	objects	to	associate	any	kind	of	data	with	a	key	name.	In	fact,	this	is	precisely
how	you	will	organize	your	modules.	Specifically,	you	will	use	a	single	object	as	the
namespace	for	your	CoffeeRun	application.	This	namespace	is	where	individual	modules
register	themselves,	which	makes	them	available	for	use	by	your	other	application	code.

There	are	three	steps	to	using	IIFEs	to	register	modules	in	a	namespace:

1.	 Get	a	reference	to	the	namespace,	if	it	exists.

2.	 Create	the	module	code.

3.	 Attach	your	module	code	to	the	namespace.

Let’s	see	what	that	looks	like	in	practice.	Update	your	IIFE	in	datastore.js	as	shown.
We	will	explain	the	code	after	you	enter	it.
(function	(window)	{

		'use	strict';

		//	Code	will	go	here

		var	App	=	window.App	||	{};

		function	DataStore()	{

				console.log('running	the	DataStore	function');

		}

		App.DataStore	=	DataStore;

		window.App	=	App;

})(window);

In	the	body	of	the	IIFE,	you	declared	a	local	variable	named	App.	If	there	is	already	an
App	property	of	the	window,	you	assign	the	local	App	to	it.	If	not,	the	label	App	will	refer
to	a	new,	empty	object,	represented	by	{}.	The	||	is	the	default	operator,	otherwise
known	as	the	logical	or	operator.	It	can	be	used	to	provide	a	valid	value	(in	this	case,	{})
if	the	first	choice	(window.App)	has	not	yet	been	created.

Each	of	your	modules	will	do	this	same	check.	It	is	like	saying	“Whoever	gets	there	first:
Go	ahead	and	start	a	new	object.	Everyone	else	will	use	that	object.”

Next,	you	declared	a	function	named	DataStore.	You	will	add	more	code	to	this
function	shortly.

Finally,	you	attached	DataStore	to	the	App	object	and	reassigned	the	global	App
property	to	your	newly	modified	App.	(If	it	did	not	already	exist	and	you	had	to	create	it
as	an	empty	object,	you	must	attach	it.)

Save	your	files	and	switch	over	to	the	browser.	Open	the	DevTools,	click	on	the	tab	for	the
console,	and	call	your	DataStore	function	with	the	following	code:
App.DataStore();

DataStore	runs	and	prints	some	text	to	the	console	(Figure	8.7).

Figure	8.7		Running	the	App.DataStore	function

Notice	that	you	did	not	need	to	write	window.App.DataStore();.	This	is	because	the
window	object	is	the	global	namespace.	All	of	its	properties	are	available	to	any	JavaScript
code	you	write,	including	in	the	console.

Constructors
IIFEs	let	you	take	advantage	of	function	scope	to	create	namespaces	to	organize	large
pieces	of	your	code.	There	is	another	use	of	functions	that	makes	them	act	like	factories
for	objects	that	all	have	similar	properties	and	methods.	In	other	languages,	you	might	use
a	class	for	this	kind	of	organization.	Strictly	speaking,	JavaScript	does	not	have	classes,
but	it	does	give	you	a	way	to	create	custom	types.

You	have	already	started	to	create	the	DataStore	type.	Now	you	will	customize	it	in
two	steps.	In	the	first	step,	you	will	give	it	a	property	that	will	be	used	internally	for
storing	data.	In	the	second	step,	you	will	give	it	a	set	of	methods	for	interacting	with	that
data.	You	do	not	need	to	give	other	objects	direct	access	to	that	data,	so	this	type	will
provide	an	external	interface	through	a	set	of	methods.

Object	factory	functions	are	called	constructors	in	JavaScript.

Add	the	following	code	to	the	body	of	the	DataStore	function	in	datastore.js.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		function	DataStore()	{

				console.log('running	the	DataStore	function');

				this.data	=	{};

		}

		App.DataStore	=	DataStore;

		window.App	=	App;

})(window);

The	job	of	a	constructor	is	to	create	and	customize	a	new	object.	Inside	the	body	of	the
constructor,	you	can	refer	to	that	new	object	with	the	keyword	this.	You	used	the	dot
operator	to	create	a	property	named	data	on	your	new	object	and	assigned	an	empty
object	to	data.

You	may	have	noticed	that	you	capitalized	the	first	letter	of	DataStore.	This	is	a
convention	in	JavaScript	when	naming	constructors.	It	is	not	necessary,	but	it	is	a	good
practice	as	a	way	to	tell	other	developers	that	the	function	should	be	used	as	a	constructor.

To	differentiate	a	constructor	from	a	regular	function,	you	use	the	keyword	new	when	you
call	it.	This	tells	JavaScript	to	create	a	new	object,	set	up	the	reference	from	this	to	that
new	object,	and	to	implicitly	return	that	object.	That	means	it	will	return	the	object
without	an	explicit	return	statement	in	the	constructor.

Save	and	return	to	the	console.	To	learn	how	to	use	a	constructor,	you	are	going	to	create
two	DataStore	objects	(or	instances)	and	add	values	to	them.	Begin	by	creating	the
instances.
var	dsOne	=	new	App.DataStore();

var	dsTwo	=	new	App.DataStore();

You	created	these	DataStore	instances	by	calling	the	DataStore	constructor.	At	this
point,	each	has	an	empty	data	property.	Add	some	values	to	them:
dsOne.data['email']	=	'james@bond.com';

dsOne.data['order']	=	'black	coffee';

dsTwo.data['email']	=	'moneypenny@bond.com';

dsTwo.data['order']	=	'chai	tea';

Then	inspect	the	values:
dsOne.data;

dsTwo.data;

The	results	tell	you	that	each	instance	holds	different	information	(Figure	8.8).

Figure	8.8		Saving	values	to	instances	of	the	DataStore	constructor

A	constructor’s	prototype

Using	a	DataStore	instance,	you	can	manually	store	and	retrieve	data.	But,	in	its
current	form,	DataStore	is	just	a	roundabout	way	of	creating	an	object	literal,	and	any
module	that	will	use	a	DataStore	instance	has	to	be	coded	to	use	the	data	property
directly.

This	is	not	good	software	design.	It	would	be	better	if	DataStore	provided	a	public
interface	for	adding,	removing,	and	retrieving	data	–	all	while	keeping	the	details	of	how	it
works	a	secret.

The	second	part	of	creating	your	custom	DataStore	type	is	to	provide	these	methods
for	interacting	with	the	data.	The	goal	is	for	these	methods	to	serve	as	the	interface	that
other	modules	use	when	they	interact	with	a	DataStore	instance.	To	accomplish	this,
you	will	make	use	of	a	very	cool	feature	of	JavaScript	functions,	the	prototype	property.

Functions	in	JavaScript	are	also	objects.	This	means	that	they	can	have	properties.	In
JavaScript,	all	instances	created	by	a	constructor	have	access	to	a	shared	storehouse	of
properties	and	methods:	the	prototype	property	of	the	constructor.

To	create	these	instances,	you	used	the	new	keyword	when	you	called	the	constructor.	The
new	keyword	not	only	creates	your	instance	and	returns	it	but	also	creates	a	special	link
from	the	instance	to	the	constructor’s	prototype	property.	This	link	exists	for	any	instance
created	when	the	constructor	is	created	with	the	new	keyword.

When	you	add	a	property	to	the	prototype	and	assign	it	a	function,	every	instance	you
create	with	the	constructor	will	have	access	to	that	function.	You	can	use	the	keyword
this	inside	of	the	function	body,	and	it	will	refer	to	the	instance.

To	see	this	in	action,	create	the	add	function	in	datastore.js	as	a	property	of	the
prototype.	You	can	also	delete	the	call	to	console.log.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		function	DataStore()	{

				console.log('running	the	DataStore	function');

				this.data	=	{};

		}

		DataStore.prototype.add	=	function	(key,	val)	{

				this.data[key]	=	val;

		};

		App.DataStore	=	DataStore;

		window.App	=	App;

})(window);

You	gave	DataStore.prototype	the	property	add	and	you	assigned	a	function	to	it.	That
function	takes	two	arguments,	key	and	val.	Inside	the	function	body,	you	used	those
arguments	to	make	changes	to	the	instance’s	data	property.

In	terms	of	how	DataStore	works	with	coffee	orders,	it	will	store	the	order	information
(the	val),	using	the	customer’s	email	address	(the	key).

You	are	not	setting	up	a	true	database,	but	DataStore	works	well	enough	for
CoffeeRun.	It	is	able	to	save	some	information,	val,	under	the	unique	identifier	specified
by	key.	Because	you	are	using	a	JavaScript	object	for	storage,	each	key	is	guaranteed	to	be
a	unique	entry	in	the	database.	(In	a	JavaScript	object,	a	property	name	is	always	unique,
like	function	names	within	a	namespace.	If	you	tried	to	store	different	values	using	the
same	key,	you	would	just	overwrite	any	previous	values	for	that	key.)

This	aspect	of	JavaScript	objects	fulfills	the	one	major	requirement	of	any	database:
keeping	the	individual	pieces	of	data	separate.

Save	your	code	and	switch	back	to	the	browser.	Create	an	instance	of	DataStore	in	the
console	and	use	its	add	method	to	store	some	information.
var	ds	=	new	App.DataStore();

ds.add('email',	'q@bond.com');

ds.add('order',	'triple	espresso');

ds.data;

Inspect	the	data	property	to	confirm	that	it	works	(Figure	8.9).

Figure	8.9		Calling	a	prototype	method

Adding	methods	to	the	constructor

The	next	thing	to	do	is	to	create	methods	for	accessing	the	data.	In	datastore.js,	add
a	method	to	look	up	a	value	based	on	a	given	key	and	one	to	look	up	all	keys	and	values.
...

		DataStore.prototype.add	=	function	(key,	val)	{

				this.data[key]	=	val;

		};

		DataStore.prototype.get	=	function	(key)	{

				return	this.data[key];

		};

		DataStore.prototype.getAll	=	function	()	{

				return	this.data;

		};

		App.DataStore	=	DataStore;

		window.App	=	App;

})(window);

You	created	a	get	method	that	accepts	a	key,	looks	up	the	value	for	it	in	the	instance’s
data	property,	and	returns	it.	You	also	created	a	getAll	method.	It	is	almost	the	same,
but	instead	of	looking	up	the	value	for	a	single	key,	it	returns	a	reference	to	the	data
property.

You	can	now	add	and	retrieve	information	from	a	DataStore	instance.	To	complete	the
cycle,	you	need	to	add	a	method	for	removing	information.	Add	that	to	datastore.js
now.
...

		DataStore.prototype.getAll	=	function	()	{

				return	this.data;

		};

		DataStore.prototype.remove	=	function	(key)	{

				delete	this.data[key];

		};

		App.DataStore	=	DataStore;

		window.App	=	App;

})(window);

The	delete	operator	removes	a	key/value	pair	from	an	object	when	your	new	remove
method	is	called.

With	that,	you	have	completed	the	DataStore	module,	which	provides	the	most
important	part	of	the	CoffeeRun	application.	It	can	store	data,	provide	stored	data	in
response	to	queries,	and	delete	unnecessary	data	on	command.

To	see	all	of	your	methods	in	action,	save	your	code	and	go	to	the	console	after	browser-
sync	has	reloaded	your	browser.	Enter	the	following	code,	which	exercises	all	of	the
methods	of	DataStore:
var	ds	=	new	App.DataStore();

ds.add('m@bond.com',	'tea');

ds.add('james@bond.com',	'eshpressho');

ds.getAll();

ds.remove('james@bond.com');

ds.getAll();

ds.get('m@bond.com');

ds.get('james@bond.com');

As	shown	in	Figure	8.10,	DataStore’s	instance	methods	should	now	work	as	expected.
These	methods	are	exactly	the	way	that	other	modules	will	interact	with	your	application’s
database.

Figure	8.10		Working	with	DataStore	using	only	its	prototype	methods

Your	next	module	will	use	the	same	structure:	an	IIFE	with	a	parameter	for	the	namespace
to	modify.	But	it	will	provide	completely	different	functionality	from	DataStore.

Creating	the	Truck	Module
The	next	module	you	will	write	is	the	Truck	module,	which	will	provide	all	of	the
functionality	for	managing	the	food	truck.	It	will	have	methods	for	creating	and	delivering
orders	and	for	printing	a	list	of	pending	orders.	Figure	8.11	shows	how	the	Truck	module
will	work	with	the	DataStore	module.

Figure	8.11		Truck	module	interacting	with	DataStore	module

When	a	Truck	instance	is	created,	it	is	given	a	DataStore	object.	A	Truck	has
methods	for	working	with	coffee	orders,	but	it	should	not	need	to	worry	about	how	to
store	and	manage	that	information.	Instead,	the	Truck	just	passes	those	duties	to	the
DataStore.	For	example,	when	you	call	the	Truck’s	createOrder	method,	it	calls
the	DataStore’s	add	method.

Create	the	scripts/truck.js	file	and	add	a	<script>	tag	for	it	to	index.html.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

		</head>

		<body>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

		</body>

</html>

Save	index.html.	In	truck.js,	set	up	your	module	with	an	IIFE	and	a	constructor
for	the	Truck	type.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		function	Truck()	{

		}

		App.Truck	=	Truck;

		window.App	=	App;

})(window);

Next,	you	will	add	parameters	to	your	constructor	so	that	each	instance	will	have	a	unique
identifier	and	its	own	DataStore	instance.	The	identifier	is	just	a	name	for
differentiating	one	Truck	instance	from	another.	The	DataStore	instance	will	play	a
much	more	important	role.

Add	the	new	parameters	in	truck.js.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		function	Truck(truckId,	db)	{

				this.truckId	=	truckId;

				this.db	=	db;

		}

		App.Truck	=	Truck;

		window.App	=	App;

})(window);

You	declared	parameters	for	the	truckId	and	the	db,	then	you	assigned	each	of	them	as
properties	to	the	newly	constructed	instance.

The	Truck	instances	will	need	methods	for	managing	coffee	orders,	and	you	will	add
those	next.	Order	data	will	include	an	email	address	and	a	drink	specification.

Adding	orders

The	first	method	to	add	is	createOrder.	When	this	method	is	called,	the	Truck
instance	will	interact	with	its	db	property	through	the	DataStore	methods	you	declared
earlier.	Specifically,	you	will	call	DataStore’s	add	method	to	store	a	coffee	order,
using	the	email	address	associated	with	the	order.

Declare	this	new	prototype	method	in	truck.js.
...

		function	Truck(truckId,	db)	{

				this.truckId	=	truckId;

				this.db	=	db;

		}

		Truck.prototype.createOrder	=	function	(order)	{

				console.log('Adding	order	for	'	+	order.emailAddress);

				this.db.add(order.emailAddress,	order);

		};

		App.Truck	=	Truck;

		window.App	=	App;

})(window);

You	log	a	message	to	the	console	in	createOrder,	then	you	store	the	order	information
using	db’s	add	method.

Using	the	add	method	was	as	simple	as	referring	to	the	Truck’s	db	instance	variable	and
calling	add.	You	did	not	need	to	specify	the	App.DataStore	namespace	or	mention
the	DataStore	constructor	anywhere	in	this	module.	Instances	of	Truck	are	designed
to	work	with	anything	that	has	the	same	method	names	as	a	DataStore.	There	is	no
need	for	Truck	to	know	any	details	beyond	that.

Save	your	file	and	test	createOrder	in	the	console	using	the	following	entries:

var	myTruck	=	new	App.Truck('007',	new	App.DataStore());

myTruck.createOrder({	emailAddress:	'dr@no.com',	coffee:	'decaf'});

myTruck.createOrder({	emailAddress:	'me@goldfinger.com',	coffee:	'double	mocha'});

myTruck.createOrder({	emailAddress:	'm@bond.com',	coffee:	'earl	grey'});

myTruck.db;

Your	results	should	look	like	Figure	8.12.

Figure	8.12		Taking	Truck.prototype.createOrder	for	a	test	drive

When	the	console	prints	the	value	of	myTruck.db,	you	will	need	to	click	the	 	icon	so
that	you	can	see	the	nested	properties	(such	as	the	dr@no.com	property	inside	the	data
object).

Removing	orders

When	an	order	is	delivered,	the	Truck	instance	should	remove	the	order	from	its
database.	Add	a	new	deliverOrder	method	to	the	Truck.prototype	object	in
truck.js.
...

		Truck.prototype.createOrder	=	function	(order)	{

				console.log('Adding	order	for	'	+	data.emailAddress);

				this.db.add(data.emailAddress,	order);

		};

		Truck.prototype.deliverOrder	=	function	(customerId)	{

				console.log('Delivering	order	for	'	+	customerId);

				this.db.remove(customerId);

		};

		App.Truck	=	Truck;

		window.App	=	App;

})(window);

You	assigned	a	function	expression	to	Truck.prototype.deliverOrder.	This
function	accepts	a	customerId	argument,	which	it	then	passes	to	this.db.remove.

The	value	of	customerId	should	be	the	email	address	associated	with	an	order.

Just	like	createOrder,	deliverOrder	is	only	interested	in	calling	the	remove
method	of	this.db.	It	does	not	need	any	details	about	how	remove	actually	works.

Save	and	switch	to	the	console.	Create	a	Truck	instance,	add	a	few	orders	with
createOrder,	and	then	make	sure	that	deliverOrder	removes	them	from	the
instance’s	db.	(You	can	press	Return	or	Shift-Return	after	each	call	to	createOrder	and
deliverOrder,	but	make	sure	you	press	Return	after	each	myTruck.db	entry.)
var	myTruck	=	new	App.Truck('007',	new	App.DataStore());

myTruck.createOrder({	emailAddress:	'm@bond.com',	coffee:	'earl	grey'});

myTruck.createOrder({	emailAddress:	'dr@no.com',	coffee:	'decaf'});

myTruck.createOrder({	emailAddress:	'me@goldfinger.com',	coffee:	'double	mocha'});

myTruck.db;

myTruck.deliverOrder('m@bond.com');

myTruck.deliverOrder('dr@no.com');

myTruck.db;

As	you	enter	these	test	commands,	you	will	see	that	the	order	information	in	myTruck.db
changes	after	you	call	deliverOrder	(Figure	8.13).

Figure	8.13		Removing	order	data	with	Truck.prototype.deliverOrder

Note	that	the	console	shows	you	the	state	of	the	data	at	the	time	you	click	the	 	icon.	If
you	do	not	inspect	the	values	in	myTruck.db	until	after	calling	deliverOrder,	it	will
seem	as	though	the	data	was	never	added	(Figure	8.14).

Figure	8.14		Console	shows	values	at	time	of	clicking	arrow	icon

Debugging
Your	last	method	to	add	to	the	Truck.prototype	object	is	printOrders.	This	method
will	get	an	array	of	all	of	the	customer	email	addresses,	iterate	through	the	array,	and
console.log	the	order	information.

The	code	for	this	method	is	very	similar	to	other	functions	and	methods	you	have	already
written.	But	it	will	start	out	with	a	bug,	which	you	will	find	using	Chrome’s	debugging
tools.

Let’s	take	this	step	by	step.	Start	by	creating	the	basic	version	of	printOrders	in
truck.js.	In	the	body,	you	will	retrieve	all	the	coffee	orders	from	the	db	object.	Then
you	will	use	the	Object.keys	method	to	get	an	array	containing	the	email	addresses
for	the	orders.	Finally,	you	will	iterate	through	the	email	address	array	and	run	a	callback
function	for	each	element	in	the	array.
...

		Truck.prototype.deliverOrder	=	function	(customerId)	{

				console.log('Delivering	order	for	'	+	customerId);

				this.db.remove(customerId);

		};

		Truck.prototype.printOrders	=	function	()	{

				var	customerIdArray	=	Object.keys(this.db.getAll());

				console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

				customerIdArray.forEach(function	(id)	{

						console.log(this.db.get(id));

				});

		};

		App.Truck	=	Truck;

		window.App	=	App;

})(window);

Inside	the	new	printOrders	method,	you	call	this.db.getAll	to	retrieve	all	the
orders	as	key/value	pairs	and	pass	them	to	Object.keys,	which	returns	an	array
containing	only	the	keys.	You	assign	this	array	to	the	variable	customerIdArray.

When	you	iterate	through	this	array,	you	pass	a	callback	to	forEach.	In	the	body	of	that
callback,	you	try	to	get	the	order	associated	with	an	id	(the	customer	email	address).

Save	and	return	to	the	console.	Create	a	new	instance	of	Truck	and	add	some	coffee
orders.	Then	try	your	new	printOrders	method.
var	myTruck	=	new	App.Truck('007',	new	App.DataStore());

myTruck.createOrder({	emailAddress:	'm@bond.com',	coffee:	'earl	grey'});

myTruck.createOrder({	emailAddress:	'dr@no.com',	coffee:	'decaf'});

myTruck.createOrder({	emailAddress:	'me@goldfinger.com',	coffee:	'double	mocha'});

myTruck.printOrders();

Instead	of	a	list	of	the	coffee	orders,	you	will	see	the	error	Uncaught	TypeError:	Cannot
read	property	'db'	of	undefined	(Figure	8.15).

Figure	8.15		Error	when	printOrders	is	run

This	is	one	of	the	most	common	errors	that	you	will	see	when	writing	JavaScript.	Many
developers	find	it	especially	frustrating	because	it	can	be	hard	to	pinpoint	the	cause.
Knowing	how	to	use	the	debugger,	as	you	are	about	to	do,	is	key	to	locating	the	problem.

Locating	bugs	with	the	DevTools

Debugging	requires	you	to	reproduce	the	error	as	you	progressively	isolate	the	buggy
code.	The	Chrome	debugger	makes	this	process	(almost)	enjoyable.

When	an	error	occurs,	the	console	shows	you	the	filename	and	the	line	number	of	the	code
that	caused	the	error.	(In	Figure	8.15,	the	reference	is	to	truck.js:30;	your	line	number
might	be	different.)	Click	that	text	to	open	the	offending	line	of	code	in	the	debugging
tools	(Figure	8.16).

Figure	8.16		Viewing	the	error	in	the	debugging	tools

You	are	now	viewing	the	sources	panel	of	the	DevTools.	Click	the	red	icon	in	the	problem
line	to	see	the	error	information	(Figure	8.17).

Figure	8.17		Error	line	called	out	in	the	sources	panel

This	error	message	indicates	that	the	browser	thinks	you	are	trying	to	read	a	property
named	db,	but	that	the	object	it	belongs	to	does	not	exist.

The	next	step	is	to	run	the	code	just	up	to	the	line	that	is	causing	the	error	and	then	check
the	value	of	that	object.	In	the	sources	panel,	click	the	line	number	to	the	left	of	the	line
with	the	error	flag.	This	sets	a	breakpoint	for	the	debugger,	telling	the	browser	to	pause
just	before	it	tries	to	run	this	line.	When	you	set	a	breakpoint,	the	line	number	on	the	left
turns	blue	and	an	entry	is	added	to	the	breakpoints	panel	on	the	right	(Figure	8.18).

Figure	8.18		Setting	a	breakpoint

Press	the	Escape	key	to	show	the	console	at	the	bottom	of	the	sources	panel	(Figure	8.19).
This	is	also	known	as	the	drawer.	You	will	need	to	be	able	to	see	the	code	in	the	sources
panel	and	interact	with	the	console	at	the	same	time.

Figure	8.19		Showing	the	console	drawer

Run	myTruck.printOrders();	again	in	the	console.	The	browser	will	activate	the
debugger,	and	your	code	will	pause	at	the	breakpoint	(Figure	8.20).

Figure	8.20		Debugger	paused	at	breakpoint

When	the	debugger	pauses,	you	have	access	to	all	of	the	variables	that	are	available	at	that
point.	Using	the	console,	you	can	check	the	values	of	the	variables,	looking	for	signs	of
trouble.

Try	to	reproduce	the	error	by	evaluating	parts	of	the	line	of	code	with	the	error	flag.	Start
with	the	code	that	is	nested	furthest	inside	of	any	parentheses.	In	this	case,	that	is	the	id
variable.	When	you	enter	that	on	the	console,	it	reports	that	the	value	is	m@bond.com
(Figure	8.21).

Figure	8.21		Inspecting	the	innermost	value

Because	that	did	not	reproduce	the	error,	try	the	code	just	outside	that	set	of	parentheses,
this.db.get(id).	Evaluate	it	on	the	console.	You	should	see	that	the	error	is	reported
(Figure	8.22).

Figure	8.22		Reproducing	the	error

Now	you	can	further	isolate	the	cause.	Begin	evaluating	that	same	piece	of	code,	but
remove	parts	of	it,	starting	from	the	right.	You	will	do	this	until	the	error	is	no	longer
printed.	Start	with	this.db.get.	After	that,	enter	this.db.	The	console	continues	to	report
the	error	(Figure	8.23).

Figure	8.23		The	search	continues

Finally,	enter	this.	You	are	now	at	the	point	where	the	error	is	not	happening
(Figure	8.24).

Figure	8.24		Trimming	down	the	code	to	find	the	cause	of	the	error

Why	does	this	have	the	value	undefined	inside	of	your	callback?	Inside	of	a	callback
function,	this	is	not	assigned	to	an	object.	You	need	to	explicitly	assign	one.

This	situation	is	different	from	your	Truck.prototype	methods,	where	this	refers	to
the	instance	of	Truck.	Even	though	the	callback	is	inside	of
Truck.prototype.printOrder,	it	has	its	own	this	variable,	which	is	not	assigned
to	a	value	and	is	therefore	undefined.

Before	fixing	your	code,	you	should	be	familiar	with	two	other	ways	you	could	have
located	the	bug.	If	you	mouse	over	the	different	parts	of	the	code	in	the	sources	panel,	the

debugger	will	show	you	their	values.	With	the	mouse	over	this,	it	shows	you	that	its
value	is	undefined	(Figure	8.25).

Figure	8.25		Hovering	the	mouse	reveals	values

To	the	right	of	the	code	is	the	scope	panel,	which	contains	a	list	of	variables	available.	You
can	see	that	values	for	id	and	this	are	shown	–	and,	again,	that	this	is	undefined
(Figure	8.26).

Figure	8.26		Variable	values	shown	in	scope	panel

Click	the	blue	 	button	at	the	top	of	the	right	hand	panel	(Figure	8.27).	This	unpauses
your	code,	allowing	it	to	resume	execution.

Figure	8.27		Debugger	control	panel

Before	moving	on,	remove	the	breakpoint	by	clicking	the	blue	line	number	again.	The
blue	indicator	will	disappear	(Figure	8.28).

Figure	8.28		Click	the	line	number	to	toggle	a	breakpoint

Now,	it	is	time	to	fix	that	pesky	bug!

Setting	the	value	of	this	with	bind

In	JavaScript,	the	keyword	this	inside	of	a	function	is	automatically	assigned	a	value
when	you	call	that	function.	For	constructor	functions	and	for	prototype	methods,	the
value	of	this	is	the	instance	object.	The	instance	is	called	the	owner	of	the	function	call.
Using	the	keyword	this	gives	you	access	to	the	properties	of	the	owner.

As	we	said	earlier,	for	callback	functions	this	is	not	automatically	assigned	to	an	object.
You	can	manually	specify	what	object	should	be	the	owner	by	using	a	function’s	bind
method.	(Remember	that	JavaScript	functions	are	actually	objects	and	can	have	their	own
properties	and	methods,	such	as	bind.)

The	bind	method	accepts	an	object	argument	and	returns	a	new	version	of	the	function.
When	you	call	the	new	version,	it	will	use	the	object	argument	passed	in	to	bind	as	the
value	of	this	inside	of	the	function’s	body.

Inside	the	forEach	callback,	this	is	undefined	because	the	callback	has	no	owner.	Fix
that	by	calling	bind	and	passing	it	a	reference	to	the	Truck	instance.

Add	the	call	to	bind	in	truck.js.
...

		Truck.prototype.printOrders	=	function	()	{

				var	customerIdArray	=	Object.keys(this.db.getAll());

				console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

				customerIdArray.forEach(function	(id)	{

						console.log(this.db.get(id));

				}.bind(this));

		};

...

Outside	the	body	of	the	forEach	callback,	the	keyword	this	refers	to	the	Truck
instance.	By	adding	.bind(this)	immediately	after	the	anonymous	function	–	but	inside
the	parentheses	for	the	forEach	call	–	you	are	passing	forEach	a	modified	version	of
the	anonymous	function.	This	modified	version	uses	the	Truck	instance	as	its	owner.

Save	and	confirm	that	the	orders	are	printed	correctly.	You	will	need	to	re-declare
myTruck	and	run	createOrder	again.

Your	output	should	look	like	Figure	8.29.

Figure	8.29		printOrders	works	after	using	bind(this)

Initializing	CoffeeRun	on	Page	Load
Your	DataStore	and	Truck	modules	work	correctly.	You	have	been	able	to	instantiate
a	new	Truck	on	the	console,	supplying	it	a	new	DataStore	as	part	of	its	creation.

Now	you	are	going	to	create	a	module	that	performs	these	same	steps	when	the	page
loads.	Create	a	scripts/main.js	file	and	add	a	<script>	tag	to	index.html.
<!doctype	html>

<html>

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

		</head>

		<body>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>>

				<script	src="scripts/truck.js"	charset="utf-8"></script>>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

Save	index.html.	You	are	going	to	add	an	IIFE	to	main.js,	as	you	have	done	with
the	other	modules,	but	this	time	you	will	not	need	to	export	any	new	properties	to
window.App.	Set	up	main.js	as	shown:
(function	(window)	{

		'use	strict';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

})(window);

The	job	of	this	module	is	to	receive	the	window	object	for	use	inside	the	function	body.	It
also	retrieves	the	constructors	you	defined	as	part	of	the	window.App	namespace.

Technically,	you	can	just	write	all	of	your	code	with	the	full	names	(e.g.,	App.Truck	and
App.DataStore),	but	your	code	is	more	readable	when	you	have	shorter	names.

Creating	the	Truck	instance

Now,	just	as	you	did	on	the	console,	you	will	create	an	instance	of	Truck,	providing	it	an
id	and	an	instance	of	DataStore.

Call	the	Truck	constructor	in	main.js,	passing	it	an	id	of	ncc-1701	and	a	new
instance	of	DataStore.
(function	(window)	{

		'use	strict';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

})(window);

This	is	nearly	the	same	as	the	code	you	entered	in	the	console	earlier,	but	you	do	not	need
to	prefix	Truck	or	DataStore	with	App,	because	you	created	local	variables	that	point
to	App.Truck	and	App.DataStore.

At	this	point,	your	application	code	is	nearly	complete.	However,	you	still	cannot	interact
with	the	instance	of	Truck.	Why	not?	The	variable	is	declared	inside	of	a	function,	the
main	module.	Functions	protect	their	variables	from	being	accessed	by	code	outside	of	the
function,	including	code	you	write	on	the	console.

So	that	you	can	interact	with	the	instance	of	Truck,	export	it	to	the	global	namespace	in
main.js.
(function	(window)	{

		'use	strict';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		window.myTruck	=	myTruck;

})(window);

Save	your	work	and	go	back	to	the	console.	Reload	the	page	manually	to	make	sure	that
any	prior	work	you	did	in	the	console	has	been	cleared	out.

Start	typing	myTruck	and	you	should	see	that	the	console	is	trying	to	autocomplete	it
(Figure	8.30).	That	means	that	it	found	the	myTruck	variable	that	you	exported	as	a
property	of	the	window	object.

Figure	8.30		The	console	finds	myTruck	in	the	global	namespace

Call	myTruck.createOrder	a	few	times,	providing	it	some	test	data.	You	can	do	this
easily	by	letting	the	console	autocomplete	your	previous	calls	to	createOrder
(Figure	8.31).

Figure	8.31		Console	autocompleting	previous	calls	to	createOrder

Alternatively,	enter	the	following	code	to	confirm	that	everything	functions	as	expected.
myTruck.createOrder({	emailAddress:	'me@goldfinger.com',	coffee:	'double	mocha'});

myTruck.createOrder({	emailAddress:	'dr@no.com',	coffee:	'decaf'});

myTruck.createOrder({	emailAddress:	'm@bond.com',	coffee:	'earl	grey'});

myTruck.printOrders();

myTruck.deliverOrder('dr@no.com');

myTruck.deliverOrder('m@bond.com');

myTruck.printOrders();

After	exercising	the	methods	createOrder,	printOrders,	and	deliverOrder,
you	should	see	something	like	Figure	8.32.

Figure	8.32		One	busy	coffee	truck

Congratulations!	You	have	completed	the	foundation	of	CoffeeRun.	It	does	not	have	a	UI
yet,	but	you	will	add	that	in	upcoming	chapters.	And	you	will	not	need	to	make	changes	to
the	core,	because	the	UI	will	simply	call	the	Truck.prototype	methods	you	have	already
written	and	tested.

This	is	the	advantage	of	the	modular	approach:	You	can	work	on	your	application	in
layers,	knowing	that	each	new	layer	is	built	on	working	code	in	the	underlying	modules.

Bronze	Challenge:	Truck	ID	for	Non-Trekkies
In	main.js,	pass	in	a	different	string	for	the	truckId.

(Some	good	options	include	“Serenity,”	“KITT,”	or	“Galactica.”	“HAL”	is	probably	a	bad
idea.)

For	the	More	Curious:	Private	Module	Data
Inside	a	module,	your	constructors	and	prototype	methods	have	access	to	any	variables
declared	inside	the	IIFE.	As	an	alternative	to	adding	properties	to	the	prototype,	this	is	a
way	to	share	data	between	instances	but	make	it	hidden	from	any	code	outside	the	module.
It	looks	like	this:
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	launchCount	=	0;

		function	Spaceship()	{

				//	Initialization	code	goes	here

		}

		Spaceship.prototype.blastoff	=	function	()	{

				//	Closure	scope	allows	access	to	the	launchCount	variable

				launchCount++;

				console.log('Spaceship	launched!')

		}

		Spaceship.prototype.reportLaunchCount	=	function	()	{

				console.log('Total	number	of	launches:	'	+	launchCount);

		}

		App.Spaceship	=	Spaceship

		window.App	=	App;

})(window);

Other	languages	provide	a	way	to	declare	a	variable	as	private,	but	JavaScript	does	not.
You	can	take	advantage	of	closure	scope	(a	function	using	variables	declared	in	the	outer
scope)	to	simulate	private	variables.

Silver	Challenge:	Making	data	Private
Update	your	DataStore	module	so	that	the	data	property	is	private	to	the	module.

Are	there	any	reasons	you	would	not	want	to	do	this?	What	happens	if	you	declare
multiple	instances	of	DataStore?

For	the	More	Curious:	Setting	this	in	forEach’s
Callback
We	told	a	small	fib	earlier.	Using	bind	is	not	the	only	way	to	set	the	value	of	this	for
the	callback	to	forEach.

Look	at	the	documentation	for	Array.prototype.forEach	on	MDN
(developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Array/forEach).	You	can	see	that	forEach	takes	an	optional
second	argument,	which	it	will	use	as	the	value	of	this	in	the	callback.

That	means	that	you	could	have	also	written	the	printOrders	method	like	so:
...

Truck.prototype.printOrders	=	function	()	{

		var	customerIdArray	=	Object.keys(this.db.getAll());

		console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

		customerIdArray.forEach(function	(id)	{

				console.log(this.db.get(id));

		},	this);

};

...

bind,	however,	is	a	useful	method	that	you	will	see	again	in	the	coming	chapters.
Truck.prototype.printOrders	provided	a	good	opportunity	to	introduce	you	to
the	syntax.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/forEach

9	
Introduction	to	Bootstrap

In	this	chapter,	you	will	create	the	HTML	markup	for	your	UI.	You	will	use	the	styles
provided	by	the	popular	Bootstrap	CSS	framework	to	give	your	UI	a	bit	of	polish	without
having	to	create	the	CSS	yourself.	This	way,	you	can	focus	on	the	application	logic	in
JavaScript,	which	you	will	do	in	Chapter	10.

You	will	be	creating	the	UI	for	the	CoffeeRun	app	in	two	parts.	The	first	consists	of	a	form
into	which	a	user	can	enter	a	coffee	order	with	all	of	its	details	(Figure	9.1).	In	the	second
part,	the	existing	coffee	orders	will	be	displayed	in	a	checklist.	Each	of	these	parts	will
have	a	corresponding	JavaScript	module	to	handle	user	interaction.

Figure	9.1		CoffeeRun	styled	with	Bootstrap

Adding	Bootstrap

The	Bootstrap	CSS	library	provides	a	collection	of	styles	that	you	can	use	for	your	sites	and
applications.	Because	of	its	popularity,	you	may	not	want	to	use	Bootstrap	for	your	user-
facing	production	site	without	making	some	customizations.	Otherwise,	your	site	may	end
up	looking	like	everyone	else’s.	However,	Bootstrap	is	great	for	quickly	creating	good-
looking	prototypes.

As	you	did	with	normalize.css	in	Ottergram,	you	will	get	Bootstrap	by	loading	it	from
cdnjs.com.	Use	version	3.3.6	of	Bootstrap,	which	is	at	cdnjs.com/libraries/
twitter-bootstrap/3.3.6.	(To	find	the	most	current	version	for	your	own
projects,	search	cdnjs.com	for	“twitter	bootstrap.”)

Make	sure	to	get	the	link	for	bootstrap.min.css	(Figure	9.2),	not	one	for	the	theme
or	fonts.

Figure	9.2		cdnjs.com	page	for	twitter-bootstrap

After	you	have	copied	the	link,	open	index.html	and	add	a	<link>	tag	with	the	URL.
(Although	we	had	to	wrap	the	href	attribute	around	to	a	second	line	to	fit	on	this	page,
you	should	enter	it	on	one	line.)
...

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

				<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootst

rap/3.3.6/css/bootstrap.min.css">

		</head>

...

http://cdnjs.com
https://cdnjs.com/libraries/twitter-bootstrap/3.3.6
http://cdnjs.com

How	Bootstrap	works

Bootstrap	can	provide	out-of-the-box	responsive	styling	for	your	website	or	web	app.	Most
of	the	time,	you	will	just	need	to	include	the	CSS	file	and	then	add	classes	to	your	markup.
One	of	the	main	classes	you	will	use	is	the	container	class.

Add	the	container	class	to	your	<body>	element	in	index.html.	While	you	are	there,
add	a	header	to	your	page	as	well.
...

				<title>coffeerun</title>

				<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootst

rap/3.3.6/css/bootstrap.min.css">

		</head>

		<body>

		<body	class="container">

				<header>

						<h1>CoffeeRun</h1>

				</header>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

The	container	class	acts	as	a	wrapper	for	all	the	content	that	needs	to	adapt	to	the	size	of
the	viewport.	This	provides	basic	responsive	behavior	to	the	layout.

Save	index.html,	make	sure	browser-sync	is	running,	and	view	your	page.	It	should
resemble	Figure	9.3.

Figure	9.3		Header	styled	with	Bootstrap

Although	there	is	not	much	to	your	page	yet,	notice	that	there	is	already	a	comfortable
amount	of	padding	around	your	header	and	that	it	has	a	font	style	applied	to	it.

Bootstrap	has	styles	for	a	huge	number	of	different	visual	elements.	CoffeeRun	will	just
scratch	the	surface,	but	you	will	get	a	chance	to	explore	more	styles	in	a	later	chapter.	For
now,	it	is	time	to	add	the	markup	for	the	order	form.

Creating	the	Order	Form
Add	a	<section>	tag,	two	<div>s,	and	a	<form>	to	index.html,	below	the	<header>
element	you	just	created.
...

				<header>

						<h1>CoffeeRun</h1>

				</header>

				<section>

						<div	class="panel	panel-default">

								<div	class="panel-body">

										<form	data-coffee-order="form">

												<!--	Input	elements	will	go	here	-->

										</form>

								</div>

						</div>

				</section>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

...

The	<form>	tag	is	going	to	be	where	all	the	important	stuff	happens.	You	gave	it	a	data-
coffee-order	attribute	with	the	value	form.	In	CoffeeRun,	you	will	use	data	attributes	for
accessing	DOM	elements	from	JavaScript,	just	as	you	did	in	Ottergram.

For	layout,	you	added	two	<div>	tags.	It	is	not	important	that	you	use	<div>	tags,
specifically.	What	is	important	is	that	you	are	applying	the	panel,	panel-default,	and
panel-body	classes	to	them.	These	are	Bootstrap	classes	that	will	trigger	styles	for	you.

Remember,	<div>s	are	just	general-purpose	block-level	containers	for	other	markup.	They
take	up	as	much	horizontal	space	as	provided	by	their	containing	parent	element.	They
will	be	used	often	in	CoffeeRun,	and	you	will	see	them	throughout	the	examples	in	the
Bootstrap	documentation.

You	may	be	wondering	why	the	<section>	tag	wraps	around	your	<div>	and	<form>	tags.
<div>s	have	no	semantic	meaning.	<section>s	do:	they	logically	group	other	markup.
This	one	will	house	the	UI	for	the	form.	You	could	easily	have	another	<section>	of	the
page	that	is	for	some	other	piece	of	the	UI.

Adding	text	input	fields

The	main	piece	of	information	that	you	care	about	is	the	coffee	order	itself.	If	you	have
been	in	a	coffee	shop	in	the	last	decade,	you	know	how	complicated	orders	can	get.	For
now,	you	will	use	a	single-line	text	field	to	represent	an	order.	Later	you	will	add	more
fields	to	capture	more	information	about	the	order.

When	you	use	Bootstrap	for	your	forms,	you	add	extra	<div>	elements	that	are	solely	for
applying	styles	defined	in	the	Bootstrap	library.

Add	another	<div>	to	index.html	with	the	class	form-group.	The	form-group	Bootstrap
class	provides	consistent	vertical	spacing	for	form	elements.	Then	add	<label>	and
<input>	elements.
...

						<div	class="panel	panel-default">

								<div	class="panel-body">

										<form	data-coffee-order="form">

												<!--	Input	elements	will	go	here	-->

												<div	class="form-group">

														<label>Coffee	Order</label>

														<input	class="form-control"	name="coffee">

												</div>

										</form>

								</div>

						</div>

...

The	form-control	class	is	another	one	defined	by	Bootstrap.	It	provides	layout	and
typography	styling	for	your	form	elements.

Save	index.html	and	check	the	results	in	the	browser	(Figure	9.4).

Figure	9.4		Input	field	for	a	coffee	order

Your	<input>	element	defaults	to	a	single-line	text	field.	Other	than	its	form-control
class,	it	has	one	attribute:	name.	When	a	form	is	submitted,	the	data	will	be	sent	to	a	server,
and	the	name	attribute	will	be	sent	with	that	data.	If	you	think	about	form	data	as	a
key/value	pair,	then	the	name	attribute	is	the	key	and	the	data	that	the	user	types	in	the	field
is	the	value.

Linking	a	label	and	a	form	element

<label>	tags	are	important	usability	enhancements	for	your	form	elements.	You	tell	a
<label>	what	form	element	it	is	labeling	by	setting	its	for	attribute	to	match	the	id
attribute	of	the	form	element.

In	index.html,	add	for	and	id	attributes	to	your	<label>	and	<input>	form	elements,
respectively.	Give	both	attributes	the	same	coffeeOrder	value.
...

						<div	class="panel	panel-default">

								<div	class="panel-body">

										<form	data-coffee-order="form">

												<div	class="form-group">

														<label	for="coffeeOrder">Coffee	Order</label>

														<input	class="form-control"	name="coffee"	id="coffeeOrder">

												</div>

										</form>

								</div>

						</div>

...

When	a	<label>	is	linked	to	a	form	element,	you	can	click	the	<label>’s	text	on	the	page
and	it	will	make	the	linked	form	element	active.	You	should	always	link	your	<label>s	to
their	form	elements.

To	see	this	in	action,	save	index.html,	switch	to	the	browser,	and	click	the	Coffee	Order
label	text.	The	<input>	should	gain	focus,	ready	for	you	to	start	typing	(Figure	9.5).

Figure	9.5		Clicking	the	linked	label	causes	the	input	to	gain	focus

Adding	autofocus

Because	this	is	the	first	field	on	the	screen,	you	want	the	user	to	be	able	to	enter	text	in	it
as	soon	as	the	page	loads,	instead	of	having	to	click.

To	achieve	this,	add	an	autofocus	attribute	to	the	<input>	in	index.html.
...

												<div	class="form-group">

														<label	for="coffeeOrder">Coffee	Order</label>

														<input	class="form-control"	name="coffee"	id="coffeeOrder"	autofocus>

												</div>

...

Save	your	changes	to	index.html	and	return	to	the	browser.	You	will	see	that	the	text
input	field	has	a	cursor	and	a	highlight	as	soon	as	the	page	loads	(Figure	9.6).

Figure	9.6		Input	field	with	autofocus	on	page	load

Notice	that	the	autofocus	attribute	does	not	have	a	value.	It	does	not	need	one.	The	mere
presence	of	the	autofocus	attribute	in	an	<input>	tag	tells	the	browser	to	activate	that
field.	The	autofocus	attribute	is	a	Boolean	attribute,	which	means	that	its	only	possible
values	are	true	and	false.	You	only	need	to	add	the	attribute	name	to	the	tag	in	order	to
set	its	value.	When	it	is	present,	it	has	the	value	true.	When	it	is	not	present,	the	attribute
is	considered	false.

Adding	an	email	input	field

When	you	created	your	Truck	and	DataStore	modules,	you	tracked	orders	by	the
customer’s	email	address.	Now	you	will	capture	that	information	using	another	<input>
element.

Add	another	.form-group	element	to	index.html	with	a	<label>	and	an	<input>.	For
the	<input>	element,	set	the	type	as	email,	the	name	to	emailAddress,	and	the	id	to
emailInput.	Also,	add	a	value	attribute,	set	to	an	empty	string.	This	ensures	that	this	field
is	blank	when	the	page	loads.	Finally,	link	the	<input>	and	the	<label>	using	the	id.
...

										<form	data-coffee-order="form">

												<div	class="form-group">

														<label	for="coffeeOrder">Coffee	Order</label>

														<input	class="form-control"	name="coffee"	id="coffeeOrder"	autofocus>

												</div>

												<div	class="form-group">

														<label	for="emailInput">Email</label>

														<input	class="form-control"	type="email"	name="emailAddress"

																id="emailInput"	value="">

												</div>

										</form>

...

Save	index.html	and	check	the	browser	to	see	your	new	form	field	(Figure	9.7).

Figure	9.7		Input	field	for	an	email	address

Showing	example	input	with	placeholder	text

Sometimes	users	appreciate	a	suggestion	about	what	they	should	enter	into	a	text	field.	To
create	example	text,	use	the	placeholder	attribute.

Add	a	placeholder	attribute	to	your	new	<input>	element	in	index.html.
...

												<div	class="form-group">

														<label	for="emailInput">Email</label>

														<input	class="form-control"	type="email"	name="emailAddress"

																id="emailInput"	value=""	placeholder="dr@who.com">

												</div>

...

Save	your	file.	The	result	will	look	like	Figure	9.8.

Figure	9.8		Placeholder	text	in	the	email	input

The	value	of	the	placeholder	attribute	appears	in	the	text	field	until	the	user	enters	some
text,	at	which	point	it	disappears.	If	the	user	deletes	all	of	the	text	in	the	field,	the
placeholder	text	appears	again.

Offering	choices	with	radio	buttons

Next,	you	want	the	user	to	be	able	to	specify	the	size	of	their	coffee	drink.	They	should	be
able	to	choose	between	short,	tall,	and	grande	–	and	they	should	not	be	able	to	choose
more	than	one	size.	For	this	kind	of	data	input,	you	can	use	<input>	fields	whose	type
attribute	is	set	to	radio.

The	markup	for	your	radio	buttons	will	be	different	from	your	other	<input>	fields.	Each
radio	button	will	have	an	<input>	field,	wrapped	by	a	<label>	element.	The	<label>	will
be	wrapped	in	a	<div>	whose	class	is	also	radio.

The	<label>	elements	will	not	need	the	for	attribute	that	you	added	to	the	<label>s	for
the	coffee	order	and	email.	Because	the	<input>	is	wrapped	with	the	<label>,	they	are
automatically	linked.

In	case	you	are	wondering	why	the	HTML	is	different	for	radio	buttons,	it	is	because
Bootstrap	styles	them	differently	from	the	other	form	elements.

When	writing	your	own	code,	you	can	choose	to	wrap	an	<input>	element	in	a	<label>	or
to	use	the	for	attribute	–	both	are	correct.	But,	when	you	use	Bootstrap,	you	must	follow	its
patterns	and	conventions	for	the	styles	to	work	as	expected.	Refer	to	the	Bootstrap
documentation	for	examples	of	how	to	structure	your	HTML	(getbootstrap.com/
css/#forms).

In	index.html,	add	the	markup	for	your	radio	buttons	just	after	the	email	<input>.
...

														<div	class="form-group">

																<label	for="emailInput">Email</label>

http://getbootstrap.com/css/#forms

																<input	class="form-control"	type="email"	name="emailAddress"

																		id="emailInput"	value=""	placeholder="dr@who.com">

														</div>

														<div	class="radio">

																<label>

																		<input	type="radio"	name="size"	value="short">

																		Short

																</label>

														</div>

														<div	class="radio">

																<label>

																		<input	type="radio"	name="size"	value="tall"	checked>

																		Tall

																</label>

														</div>

														<div	class="radio">

																<label>

																		<input	type="radio"	name="size"	value="grande">

																		Grande

																</label>

														</div>

												</form>

...

You	gave	all	three	of	your	radio	inputs	the	same	value	for	the	name	attribute	(size).	This
tells	the	browser	that	only	one	of	them	can	be	selected	(or	“checked”)	at	a	time.	You	gave
the	Tall	radio	button	a	Boolean	attribute	named	checked.	This	works	the	same	way	that
autofocus	does:	When	it	is	present,	the	value	of	the	attribute	is	true	and	when	it	is	absent
it	is	false.

Save	index.html	and	take	a	look	at	your	new	radio	buttons	(Figure	9.9).

Figure	9.9		Radio	buttons	for	coffee	sizes

Try	clicking	either	a	radio	button	or	the	text	next	to	it.	Either	way,	that	radio	button	should
indicate	that	it	was	selected.

Adding	a	dropdown	menu

Some	folks	are	crazy	for	flavored	coffee.	You	want	to	give	them	the	option	to	choose	from
a	few	different	flavors.	By	default,	no	flavor	shot	will	be	added.

You	could	use	a	set	of	radio	buttons	for	this,	but	you	might	add	many	more	flavors	to	the
list.	To	make	sure	that	the	flavor	choices	do	not	clutter	up	the	UI,	you	will	use	a	dropdown
menu.

To	create	a	dropdown	menu	styled	with	Bootstrap,	add	a	<div>	to	index.html	with	the
class	form-group.	Create	a	<select>	element	with	the	class	form-control.	Bootstrap
will	style	this	element	as	a	dropdown.	Link	it	to	its	<label>	with	the	id	flavorShot.
Inside	of	the	<select>,	add	an	<option>	element	for	each	of	the	menu	items	you	want	to
display,	giving	each	of	them	a	matching	value.
...

												<div	class="radio">

														<label>

																<input	type="radio"	name="size"	value="grande">

																Grande

														</label>

												</div>

												<div	class="form-group">

														<label	for="flavorShot">Flavor	Shot</label>

														<select	id="flavorShot"	class="form-control"	name="flavor">

																<option	value="">None</option>

																<option	value="caramel">Caramel</option>

																<option	value="almond">Almond</option>

																<option	value="mocha">Mocha</option>

														</select>

												</div>

										</form>

								</div>

						</div>

...

Each	of	the	<option>	elements	provides	one	of	the	possible	values,	while	the	<select>
element	specifies	the	name.

Save	index.html	and	check	that	your	dropdown	is	displayed	with	all	of	the	options
you	added	(Figure	9.10).

Figure	9.10		Coffee	flavor	dropdown

By	default,	the	first	<option>	element	is	selected.	You	can	also	add	the	selected	Boolean
attribute	to	an	option	element,	if	you	want	one	other	than	the	first	to	be	selected
automatically.

You	set	the	value	attribute	to	an	empty	string	for	the	first	dropdown	item.	If	you	left	off
the	value	attribute	completely,	the	browser	would	have	used	the	string	"None"	as	the
value.	It	is	best	to	set	the	value	attribute,	as	you	should	never	assume	that	browsers	will
do	what	you	expect.

Adding	a	range	slider

Not	everyone	wants	a	killer	coffee	buzz.	You	want	to	let	users	choose	a	value	between	0
and	100	for	the	strength	of	their	coffee.	On	the	other	hand,	you	do	not	want	them	to	have
to	type	in	an	exact	value.

For	this,	add	an	<input>	element	in	index.html	whose	type	is	range.	This	creates	a
range	slider.	The	<input>	and	<label>	should	be	linked	and	wrapped	in	a	<div>	with	the
form-group	class.	Go	easy	on	your	coffee	customers	and	provide	a	default	value	of	30.
...

																<option	value="mocha">Mocha</option>

														</select>

												</div>

												<div	class="form-group">

														<label	for="strengthLevel">Caffeine	Rating</label>

														<input	name="strength"	id="strengthLevel"	type="range"	value="30">

												</div>

										</form>

...

Save	index.html	and	try	out	your	new	slider	in	the	browser.	It	will	look	like
Figure	9.11.

Figure	9.11		Slider	for	caffeine	strength

Adding	Submit	and	Reset	buttons

The	last	thing	to	do	in	the	markup	is	to	add	a	Submit	button.	As	a	usability	convenience,
you	should	also	add	a	Reset	button	to	clear	the	form,	in	case	the	user	wants	to	start	over.

Normally,	Submit	buttons	are	just	an	<input>	element	whose	type	is	submit.	Likewise,
Reset	buttons	are	<input>	elements	whose	type	is	reset.	However,	to	take	advantage	of
Bootstrap’s	CSS,	you	will	use	a	<button>	element	instead.

In	index.html,	add	two	<button>	elements	with	the	class	names	btn	btn-default.
Set	the	type	of	the	first	one	to	submit,	and	set	the	type	of	the	second	one	to	reset.	In
between	the	opening	and	closing	tags,	put	Submit	and	Reset	as	descriptive	text.
...

												<div	class="form-group">

														<label	for="strengthLevel">Caffeine	Rating</label>

														<input	name="strength"	id="strengthLevel"	type="range"	value="30">

												</div>

												<button	type="submit"	class="btn	btn-default">Submit</button>

												<button	type="reset"	class="btn	btn-default">Reset</button>

										</form>

...

When	you	save	your	changes,	your	browser	will	add	the	buttons	at	the	bottom	of	the	form
(Figure	9.12).

Figure	9.12		Submit	and	Reset	buttons

Your	Submit	button	will	not	do	anything	yet.	That	is	coming	in	the	next	chapter.	However,
your	Reset	button	will	reset	the	values	to	their	defaults.

These	buttons	have	a	pair	of	classes	that	might	seem	redundant.	This	is	a	convention	of
Bootstrap	and	is	purely	for	styling.	The	btn	class	provides	all	of	the	standard	visual
properties	of	a	Bootstrap	button.	This	includes	rounded	corners	and	padding.	The	btn-
default	class	adds	a	white	background	color.

You	have	used	the	Bootstrap	UI	framework	to	style	your	CoffeeRun	app.	By	applying
Bootstrap’s	pattern	of	markup	and	class	names,	your	app	will	have	a	consistent	look	and
feel	for	a	variety	of	screen	sizes	and	browser	versions.

To	learn	more	about	what	Bootstrap	has	to	offer,	look	through	the	excellent	documentation
at	getbootstrap.com/css.

http://getbootstrap.com/css/

Bootstrap	is	particularly	good	for	quickly	styling	an	app	while	you	focus	on	the	application
logic.	In	the	next	chapters,	you	will	do	just	that.

10	
Processing	Forms	with	JavaScript

CoffeeRun	is	off	to	a	good	start.	It	has	two	JavaScript	modules	that	handle	its	internal
logic	and	an	HTML	form	styled	with	Bootstrap.	In	this	chapter,	you	will	write	a	more
complex	module	that	connects	the	form	to	the	logic,	allowing	you	to	use	the	form	to	enter
coffee	orders.

Recall	from	Chapter	2	that	browsers	communicate	with	servers	by	sending	requests	for
information	for	a	particular	URL.	Specifically,	for	every	file	that	the	browser	needs	to
load,	it	sends	a	GET	request	to	the	server	for	that	file.

When	the	browser	needs	to	send	information	to	a	server,	such	as	when	a	user	fills	out	and
submits	a	form,	the	browser	takes	the	form	data	and	puts	it	in	a	POST	request.	The	server
receives	the	request,	processes	the	data,	and	then	sends	back	a	response	(Figure	10.1).

Figure	10.1		Traditional	server-side	form	processing

In	CoffeeRun,	you	will	not	need	to	send	the	form	data	to	a	server	for	processing.	Your
Truck	and	DataStore	modules	serve	the	same	purpose	as	traditional	server-side	code.
Their	job	is	to	handle	the	business	logic	and	data	storage	for	your	application.

Because	this	code	lives	in	the	browser	and	not	on	a	server,	you	need	to	capture	the	data
from	the	form	before	it	goes	out.	In	this	chapter	you	will	create	a	new	module	called
FormHandler	to	do	just	that.	In	addition,	you	will	add	the	jQuery	library	to	CoffeeRun
to	help	you	with	your	work.	As	you	build	out	CoffeeRun	over	the	next	few	chapters,	you
will	use	more	of	jQuery’s	powerful	features.

Creating	the	FormHandler	Module
The	FormHandler	module	will	prevent	the	browser	from	trying	to	send	form	data	to	a
server.	Instead,	it	will	read	the	values	from	the	form	when	the	user	clicks	the	Submit	button.
Then	it	will	send	that	data	to	a	Truck	instance,	using	the	createOrder	method	you
wrote	in	Chapter	8	(Figure	10.2).

Figure	10.2		Application	architecture	of	CoffeeRun	with	App.FormHandler

Create	a	new	file	called	formhandler.js	in	your	scripts	folder	and	add	a
<script>	tag	for	it	in	index.html.
...

										</form>

								</div>

						</div>

				</section>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

Like	your	other	modules,	FormHandler	will	use	an	IIFE	to	encapsulate	the	code	and
attach	a	constructor	to	the	window.App	property.

Open	scripts/formhandler.js	and	create	an	IIFE.	Inside	the	IIFE,	create	an	App
variable.	Assign	it	the	existing	value	of	window.App.	If	window.App	does	not	exist	yet,
assign	it	an	empty	object	literal.	Declare	a	FormHandler	constructor	function,	and
export	it	to	the	window.App	property.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		function	FormHandler()	{

				//	Code	will	go	here

		}

		App.FormHandler	=	FormHandler;

		window.App	=	App;

})(window);

So	far,	this	code	follows	the	familiar	pattern	you	used	in	your	Truck	and	DataStore

modules.	It	will	be	different	soon,	though,	in	that	it	will	import	and	use	jQuery	to	do	its
work.

Introduction	to	jQuery

The	jQuery	library	was	created	by	John	Resig	in	2006.	It	is	one	of	the	most	popular
general-purpose	open-source	JavaScript	libraries.	Among	other	things,	it	provides
convenient	shorthands	for	DOM	manipulation,	element	creation,	server	communication,
and	event	handling.

It	is	useful	to	be	familiar	with	jQuery,	because	there	is	so	much	code	that	has	been	written
using	it.	Also,	many	libraries	have	copied	jQuery’s	conventions.	In	fact,	jQuery	has
directly	influenced	the	standard	DOM	API	(document.querySelector	and
document.querySelectorAll	are	two	examples	of	this	influence).

jQuery	will	not	be	covered	in	depth	right	now.	Instead,	aspects	of	it	will	be	introduced	as
needed	to	help	you	build	more	complex	parts	of	CoffeeRun.	Should	you	want	to	explore
jQuery	further,	check	out	the	documentation	at	jquery.com.

As	you	did	with	Bootstrap,	you	will	add	a	copy	of	jQuery	to	your	project	from
cdnjs.com.	Go	to	cdnjs.com/libraries/jquery	to	find	version	2.1.4	and	copy
its	address.	(There	may	be	a	more	recent	version	available,	but	you	should	use	2.1.4	for
CoffeeRun	to	avoid	any	compatibility	issues.)

Add	jQuery	in	a	<script>	tag	in	index.html.
...

						</div>

				</section>

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.4/jquery.min.js"

						charset="utf-8"></script>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

...

Save	index.html.

Importing	jQuery

FormHandler	will	import	jQuery	the	same	way	that	it	is	importing	App.	The	reason	for
doing	this	is	to	make	it	explicit	that	your	module	is	using	code	that	is	defined	elsewhere.
This	is	a	best	practice	for	coordinating	with	team	members	and	for	future	maintenance.

In	formhandler.js,	create	a	local	variable	named	$	and	then	assign	it	the	value
window.jQuery.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	FormHandler()	{

				//	Code	will	go	here

		}

		App.FormHandler	=	FormHandler;

		window.App	=	App;

})(window);

http://jquery.com
http://cdnjs.com
https://cdnjs.com/libraries/jquery/

When	you	added	the	jQuery	<script>	tag,	it	created	a	function	named	jQuery	as	well	as
a	variable,	named	$,	pointing	to	the	function.	Most	developers	prefer	to	use	$	in	their
code.	In	keeping	with	that	practice,	you	are	importing	window.jQuery	and	assigning	it	to
the	local	variable	$.

Wondering	why	$	is	used	for	the	variable	name?	JavaScript	variable	names	can	contain
letters,	numbers,	the	underscore	(_),	or	the	dollar	sign	($).	(They	can	only	start	with
letters,	underscores,	or	dollar	signs,	though	–	not	numbers.)	The	creator	of	jQuery	chose
the	$	variable	name	because	it	is	short	and	unlikely	to	be	used	by	any	other	code	in	a
project.

Configuring	instances	of	FormHandler	with	a	selector

Your	FormHandler	module	should	be	usable	with	any	<form>	element.	To	achieve	this,
the	FormHandler	constructor	will	be	passed	a	selector	matching	the	<form>	element	in
index.html.

Update	formhandler.js	to	add	a	parameter	called	selector	to	the	FormHandler
constructor.	Throw	an	Error	if	it	is	not	passed	in.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	FormHandler(selector)	{

				//	Code	will	go	here

				if	(!selector)	{

						throw	new	Error('No	selector	provided');

				}

		}

		App.FormHandler	=	FormHandler;

		window.App	=	App;

})(window);

Error	is	a	built-in	type	that	lets	you	formally	signal	that	there	is	an	unexpected	value	or
condition	in	your	code.	For	now,	your	Error	instance	will	simply	print	out	your	message
on	the	console.

Save	and	try	instantiating	a	new	FormHandler	object	without	passing	it	an	argument
(Figure	10.3).	(Remember	to	start	browser-sync,	if	it	is	not	already	running.)

Figure	10.3		Instantiating	a	FormHandler	object	without	passing	arguments

This	is	the	first	step	in	making	FormHandler	more	reusable.	In	Ottergram,	you	created
variables	for	the	selectors	you	used	in	your	DOM	code.	You	will	not	be	doing	that	with	the
FormHandler	module.	Instead,	you	will	use	the	selector	that	was	passed	in	to	the

constructor	and	use	jQuery	to	find	the	matching	elements.

jQuery	is	most	often	used	for	finding	elements	in	the	DOM.	To	do	that,	you	call	the
jQuery	$	function	and	pass	it	a	selector	as	a	string.	In	fact,	you	use	it	the	same	way	you
have	been	using	document.querySelectorAll	(although	jQuery	works	differently
under	the	hood,	as	we	will	explain	in	a	moment).	It	is	common	to	refer	to	this	as	“selecting
elements	from	the	DOM”	with	jQuery.

Declare	an	instance	variable	named	$formElement	in	formhandler.js.	Then	find
a	matching	element	in	the	DOM	using	that	selector	and	assign	the	result	to
this.$formElement.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	FormHandler(selector)	{

				if	(!selector)	{

						throw	new	Error('No	selector	provided');

				}

				this.$formElement	=	$(selector);

		}

		App.FormHandler	=	FormHandler;

		window.App	=	App;

})(window);

Prefixing	a	variable	with	$	is	a	sign	that	the	variable	refers	to	elements	selected	using
jQuery.	This	prefix	is	not	a	requirement	when	using	jQuery,	but	it	is	a	common	convention
used	by	many	front-end	developers.

When	you	use	jQuery’s	$	function	to	select	elements,	it	does	not	return	references	to
DOM	elements,	the	way	that	document.querySelectorAll	does.	Instead,	it	returns
a	single	object,	and	the	object	contains	references	to	the	selected	elements.	The	object	also
has	special	methods	for	manipulating	the	collection	of	references.	This	object	is	called	a
“jQuery-wrapped	selection”	or	“jQuery-wrapped	collection.”

Next,	you	want	to	make	sure	that	the	selection	successfully	retrieved	an	element	from	the
DOM.	jQuery	will	return	an	empty	selection	if	it	does	not	find	anything	–	it	will	not	throw
an	error	if	the	selector	does	not	match	anything.	You	will	need	to	check	manually,	because
FormHandler	cannot	do	its	work	without	an	element.

The	length	property	of	a	jQuery-wrapped	selection	tells	you	how	many	elements	were
matched.	Update	formhandler.js	to	check	the	length	property	of
this.$formElement.	If	it	is	0,	throw	an	Error.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	FormHandler(selector)	{

				if	(!selector)	{

						throw	new	Error('No	selector	provided');

				}

				this.$formElement	=	$(selector);

				if	(this.$formElement.length	===	0)	{

						throw	new	Error('Could	not	find	element	with	selector:	'	+	selector);

				}

		}

		App.FormHandler	=	FormHandler;

		window.App	=	App;

})(window);

Your	FormHandler	constructor	can	be	configured	to	work	with	any	<form>	element
based	on	the	selector	passed	in.	Also,	it	keeps	a	reference	to	that	<form>	element	as	an
instance	variable.	This	ensures	that	your	code	will	not	make	make	unnecessary	trips	to	the
DOM.	This	is	a	performance	best	practice.	(The	alternative	is	to	call	$	over	and	over,
which	re-selects	the	same	elements	each	time.)

Adding	the	submit	Handler
The	next	step	is	for	FormHandler	to	listen	for	the	submit	event	on	the	<form>	element
and	run	a	callback	when	it	occurs.

To	make	the	FormHandler	module	more	reusable,	you	will	not	hardcode	the	submit
handler	code.	You	will	instead	write	a	method	that	accepts	a	function	argument,	adds	the
submit	listener,	and	then	calls	the	function	argument	inside	that	listener.

First,	add	a	prototype	method	called	addSubmitHandler	to	formhandler.js.
...

				if	(this.$formElement.length	===	0)	{

						throw	new	Error('Could	not	find	element	with	selector:	'	+	selector);

				}

		}

		FormHandler.prototype.addSubmitHandler	=	function	()	{

				console.log('Setting	submit	handler	for	form');

				//	More	code	will	go	here

		};

		App.FormHandler	=	FormHandler;

...

Instead	of	using	the	addEventListener	method	as	you	did	with	Ottergram,	you	will
use	jQuery’s	on	method.	It	is	similar	to	addEventListener	but	provides	added
conveniences.	For	now,	though,	you	will	use	it	the	same	way	you	would	use
addEventListener.	(You	will	take	advantage	of	some	of	the	extra	conveniences	in
the	next	chapter.)
...

				if	(this.$formElement.length	===	0)	{

						throw	new	Error('Could	not	find	element	with	selector:	'	+	selector);

				}

		}

		FormHandler.prototype.addSubmitHandler	=	function	()	{

				console.log('Setting	submit	handler	for	form');

				//	More	code	will	go	here

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

				});

		};

...

The	on	method	accepts	the	name	of	the	event	and	a	callback	to	run	when	the	event	is
triggered.	Its	callback	should	expect	to	receive	the	event	object.	You	called
event.preventDefault	to	ensure	that	submitting	the	form	does	not	take	the	user
away	from	the	CoffeeRun	page.	(You	did	the	same	thing	with	the	thumbnail	links	in
Ottergram.)

Extracting	the	data

When	the	form	is	submitted,	your	code	should	read	the	user	input	from	the	form,	then	do
something	with	that	data.	In	the	submit	handler	in	formhandler.js,	create	a	new
variable	named	data.	Assign	it	an	object	literal.	It	will	hold	the	value	of	each	element	of
the	form.
...

		FormHandler.prototype.addSubmitHandler	=	function	()	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	$(this).serializeArray();

						console.log(data);

				});

		};

...

Inside	your	submit	handler	callback,	the	this	object	is	a	reference	to	the	form	element.
jQuery	provides	a	convenience	method	(serializeArray)	for	getting	the	values	from
the	form.	In	order	to	use	serializeArray,	you	need	to	“wrap”	the	form	using	jQuery.
Calling	$(this)	gives	you	a	wrapped	object,	which	has	access	to	the	serializeArray
method.

serializeArray	returns	the	form	data	as	an	array	of	objects.	You	are	assigning	that	to
a	temporary	variable	named	data	and	logging	it	to	the	console.	To	get	an	idea	of	what
serializeArray	looks	like,	save	your	file	and	run	the	following	code	in	the	console:
var	fh	=	new	App.FormHandler('[data-coffee-order="form"]');

fh.addSubmitHandler();

Next,	fill	out	the	form	with	some	test	data	and	click	the	Submit	button.	You	should	see	the
array	printed	to	the	console.	Click	the	 	next	to	a	couple	of	the	Object	items	in	the
array.	You	should	see	something	like	Figure	10.4.

Figure	10.4		serializeArray	returns	form	data	as	an	array	of	objects

You	can	see	that	each	object	in	the	array	has	a	key	that	corresponds	to	the	name	attribute	of
a	<form>	element	and	the	user-supplied	value	for	that	element.

Now	you	can	iterate	through	the	array	and	copy	the	values	from	each	element.	Add	a	call
to	the	forEach	method	to	serializeArray	in	formhandler.js	and	pass	it	a
callback.	As	the	callback	is	run	for	each	object	in	the	array,	it	will	use	the	object’s	name
and	value	to	create	a	new	property	on	the	data	object.
...

		FormHandler.prototype.addSubmitHandler	=	function	()	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	$(this).serializeArray();	{};

						$(this).serializeArray().forEach(function	(item)	{

								data[item.name]	=	item.value;

								console.log(item.name	+	'	is	'	+	item.value);

						});

						console.log(data);

				});

		};

...

To	see	this	in	action,	save	your	changes	and	run	your	test	code	again	in	the	console	before
filling	out	the	form:
var	fh	=	new	App.FormHandler('[data-coffee-order="form"]');

fh.addSubmitHandler();

When	you	fill	out	the	form	and	click	the	Submit	button,	you	should	see	that	the	information
you	entered	is	copied	to	the	data	object	and	logged	to	the	console	(Figure	10.5).

Figure	10.5		Form	data	is	copied	in	the	iterator	callback

Accepting	and	calling	a	callback

Now	that	you	have	the	form	data	as	a	single	object,	you	need	to	pass	that	object	to	your
Truck	instance’s	createOrder	method.	But	FormHandler	has	no	access	to	the
Truck	instance.	(And	it	would	do	no	good	to	create	a	new	Truck	instance	here.)

You	can	solve	this	by	making	addSubmitHandler	accept	a	function	parameter,	which
it	can	call	inside	the	event	handler.

In	formhandler.js,	add	a	parameter	called	fn.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

...

The	submit	handler	callback	will	be	called	any	time	the	form’s	submit	event	is	triggered
in	the	browser.	When	that	happens,	you	want	the	fn	function	to	be	called.

Call	fn	inside	the	submit	handler	callback	in	formhandler.js	and	pass	it	the	data
object	that	contains	the	user	input.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				...

						console.log(data);

						fn(data);

				});

		};

...

Now,	when	a	FormHandler	instance	is	created,	any	callback	can	be	passed	to
addSubmitHandler.	From	then	on,	when	the	form	is	submitted,	the	callback	will	be
invoked	and	will	be	passed	whatever	data	the	user	entered	into	the	form.

Using	FormHandler
In	main.js,	you	need	to	instantiate	a	FormHandler	instance	and	pass	it	the	selector	for
the	<form>	element:	[data-coffee-order="form"].	Create	a	variable	at	the	top	of
main.js	for	this	selector	so	that	it	can	be	reused	if	needed.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	App	=	window.App;

...

Next,	create	a	local	variable	called	FormHandler	and	assign	it	to	App.FormHandler.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	FormHandler	=	App.FormHandler;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		...

At	the	end	of	the	main.js	module,	call	the	FormHandler	constructor	and	pass	it	the
FORM_SELECTOR	variable.	This	will	make	sure	that	the	instance	of	FormHandler	will
work	with	the	DOM	element	matching	that	selector.	Assign	the	instance	to	a	new	variable
called	FormHandler.
...

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	FormHandler	=	App.FormHandler;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		window.myTruck	=	myTruck;

		var	formHandler	=	new	FormHandler(FORM_SELECTOR);

		formHandler.addSubmitHandler();

		console.log(formHandler);

})(window);

When	you	save	your	code	and	return	to	the	browser,	the	console	should	report	Setting
submit	handler	for	form,	showing	that	addSubmitHandler	was	called	when	the
page	loaded.	However,	if	you	fill	out	and	submit	the	form,	you	will	get	an	error
(Figure	10.6).

Figure	10.6		Calling	addSubmitHandler	on	page	load

This	is	because	you	did	not	pass	anything	to	addSubmitHandler.	You	will	correct	that
in	the	next	section.

Registering	createOrder	as	a	submit	handler

You	want	createOrder	to	be	called	each	time	a	submit	event	occurs.	But	you	cannot
just	pass	a	reference	to	createOrder	to	formHandler.addSubmitHandler.	This
is	because	createOrder’s	owner	changes	when	it	is	invoked	inside	of	the	event	handling
callback.	With	a	different	owner,	the	value	of	this	inside	the	body	of	createOrder	will
not	be	the	Truck	instance,	thus	causing	an	error	when	createOrder	runs.

Instead,	you	will	pass	a	bound	reference	to	myTruck.createOrder	to
formHandler.addSubmitHandler.

Update	formhandler.js	with	this	change.	Make	sure	to	bind	the	method	reference
so	that	its	owner	is	guaranteed	to	be	myTruck.
...

		window.myTruck	=	myTruck;

		var	formHandler	=	new	FormHandler(FORM_SELECTOR);

		formHandler.addSubmitHandler(myTruck.createOrder.bind(myTruck));

		console.log(formHandler);

})(window);

Could	you	have	added	bind	to	the	definition	of	the	original	prototype	method?	When
defining	prototype	methods,	you	have	access	to	the	instance,	but	only	inside	the	method
body.	bind	requires	you	to	have	a	reference	to	the	intended	owner	of	the	invocation	–	a
reference	that	must	be	available	outside	of	the	method	body.	As	you	have	no	way	of
referencing	the	instance	from	outside	the	method	body,	you	cannot	bind	the	original
prototype	method.

Save	and	fill	out	your	form.	After	you	submit,	you	should	be	able	to	call
myTruck.printOrders	and	see	that	the	data	you	entered	into	the	form	has	been	added	to
the	list	of	pending	orders,	as	shown	in	Figure	10.7.

Figure	10.7		createOrder	is	called	when	the	form	is	submitted

UI	Enhancements
It	would	be	nice	if	the	form	were	cleared	of	its	old	data	after	it	was	submitted,	so	that	the
user	could	immediately	start	entering	the	next	order.	Resetting	the	form	is	as	simple	as
calling	the	<form>	element’s	reset	method.

Find	the	FormHandler.prototype.addSubmitHandler	method	in	formhandler.js.	At
the	end	of	the	this.$formElement.on('submit'...)	callback,	add	a	call	to	the	form’s
reset	method:
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	{};

						$(this).serializeArray().forEach(function	(item)	{

								data[item.name]	=	item.value;

								console.log(item.name	+	'	is	'	+	item.value);

						});

						console.log(data);

						fn(data);

						this.reset();

				});

		};

...

Save	and	enter	some	data	into	the	form.	When	you	submit	the	form,	you	should	see	that
the	data	is	cleared	out.

Finally,	add	one	last	tweak	to	the	UI.	When	a	form	field	is	ready	for	input,	it	has	focus,	as
you	saw	in	the	last	chapter.	To	set	the	focus	on	a	specific	form	field,	you	can	call	its
focus	method.	(The	autofocus	attribute	you	added	to	the	coffee	order	field	only	takes
effect	when	the	page	first	loads.)

You	can	conveniently	access	the	individual	form	fields	via	the	form’s	elements	property.
The	elements	property	is	an	array	of	the	form’s	fields,	which	you	can	refer	to	by	their
indices,	starting	with	0.

In	formhandler.js,	right	after	the	call	to	this.reset	in	the	submit	handler
callback,	invoke	the	focus	method	on	the	first	field.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	{};

						$(this).serializeArray().forEach(function	(item)	{

								data[item.name]	=	item.value;

								console.log(item.name	+	'	is	'	+	item.value);

						});

						console.log(data);

						fn(data);

						this.reset();

						this.elements[0].focus();

				});

		};

...

CoffeeRun	is	now	jQuery-powered	and	can	accept	user	input!	You	have	bridged	the	gap
between	your	HTML	and	your	JavaScript	modules.	In	the	next	chapter,	you	will	complete
the	picture	by	creating	interactive	DOM	elements	based	on	the	data	captured	from	the
form.

Bronze	Challenge:	Supersize	It
Add	another	size	option	for	coffee	orders	–	one	with	an	inspiringly	large-sounding	name,
such	as	“Coffee-zilla.”

Add	a	new	order	using	this	extra-large	size	and	check	your	application	data	in	the	console
to	make	sure	it	is	being	saved	correctly.

Silver	Challenge:	Showing	the	Value	as	the	Slider
Changes
Create	a	handler	for	the	slider’s	change	event.	As	the	value	of	the	slider	changes,	show	the
number	next	to	the	label	for	the	slider.

As	an	extra	challenge,	change	the	color	of	the	number	(or	the	label)	to	reflect	the	intensity
of	the	caffeine	strength.	Use	green	for	weaker	coffee,	yellow	for	regular	strength	coffee,
and	red	for	very	strong	coffee.

Gold	Challenge:	Adding	Achievements
When	users	submit	an	order	for	the	largest,	strongest	coffee	with	a	flavor	shot,	unlock	an
achievement:	Bring	up	a	Bootstrap	modal	to	inform	them	of	their	amazing	intensity	and
commitment	to	flavor.	Ask	them	if	they	would	like	to	use	their	achievement,	and,	if	so,
add	an	additional	form	field	that	is	only	visible	when	their	email	address	is	entered	in	the
email	field.	It	should	let	them	choose	one	or	more	power-up	options	for	their	coffee,	like
time	travel,	mind	reading,	or	bug-free	code.

Refer	to	the	documentation	at	getbootstrap.com/javascript	for	information	on
how	to	include	and	trigger	Bootstrap’s	modal	behaviors.	(You	will	need	to	add	a	<script>
tag	from	cdnjs.com	for	Bootstrap’s	JavaScript	code.)

http://getbootstrap.com/javascript/

11	
From	Data	to	DOM

In	the	last	chapter,	you	built	the	FormHandler	module.	It	serves	as	a	bridge	between	the
form	that	the	user	interacts	with	and	the	rest	of	your	code.	By	intercepting	its	submit
event,	you	supply	the	user’s	input	to	your	Truck	module,	which	saves	it	to	its
DataStore	instance.

In	this	chapter,	you	will	build	the	other	piece	of	UI	code,	the	CheckList	module.	Like
the	Truck	module,	it	will	receive	data	from	the	FormHandler,	but	its	job	is	to	add	a
checklist	of	pending	orders	to	the	page.	When	a	checklist	item	is	clicked,	the	CheckList
will	remove	it	from	the	page	and	signal	the	Truck	to	remove	it	from	the	DataStore.
Figure	11.1	shows	CoffeeRun	equipped	with	its	checklist	of	pending	orders.

Figure	11.1		Keep	those	orders	coming!

Setting	Up	the	Checklist
You	will	continue	to	use	Bootstrap	classes	for	styling	your	form	elements.	Begin	in
index.html	by	adding	a	pair	of	<div>	elements	with	the	Bootstrap	class	names	panel,
panel-default,	and	panel-body,	as	you	did	for	your	coffee	order	form.	Inside	of	them,
add	a	header	and	another	<div>	that	will	hold	the	actual	checklist	items.	This	markup

should	be	added	after	the	<div>s	that	hold	your	form.
...

				<header>

						<h1>CoffeeRun</h1>

				</header>

				<section>

						<div	class="panel	panel-default">

								<div	class="panel-body">

										<form	data-coffee-order="form">

												...

										</form>

								</div>

						</div>

						<div	class="panel	panel-default">

								<div	class="panel-body">

										<h4>Pending	Orders:</h4>

										<div	data-coffee-order="checklist">

										</div>

								</div>

						</div>

				</section>

...

As	before,	you	added	<div>s	to	carry	the	styling	provided	by	Bootstrap.	The	main	part	of
your	checklist	is	the	[data-coffee-order="checklist"]	element.	It	will	be	the	target	for
the	JavaScript	that	creates	an	individual	coffee	order	checklist	item	and	adds	it	to	the
DOM.

Save	index.html,	start	browser-sync,	and	make	sure	CoffeeRun	shows	an	empty
Pending	Orders	area	(Figure	11.2).

Figure	11.2		After	adding	the	markup	for	the	checklist	items

Now	you	are	ready	to	dive	back	into	the	JavaScript.

Creating	the	CheckList	Module
Create	a	new	file	in	your	scripts	folder	called	checklist.js	and	add	a	link	to	it	in
index.html:
...

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.4/jquery.js"

						charset="utf-8"></script>

				<script	src="scripts/checklist.js"	charset="utf-8"></script>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

...

Save	index.html.	In	checklist.js,	add	the	standard	module	code	using	an	IIFE.
Import	the	App	namespace	and	jQuery,	assigning	each	to	a	local	variable.	Create	a
constructor	for	CheckList,	making	sure	to	confirm	that	there	is	a	selector	passed	in	and
that	the	selector	matches	at	least	one	element	in	the	DOM.	At	the	end	of	the	IIFE,	export
the	CheckList	constructor	as	part	of	the	App	namespace.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	CheckList(selector)	{

				if	(!selector)	{

						throw	new	Error('No	selector	provided');

				}

				this.$element	=	$(selector);

				if	(this.$element.length	===	0)	{

						throw	new	Error('Could	not	find	element	with	selector:	'	+	selector);

				}

		}

		App.CheckList	=	CheckList;

		window.App	=	App;

})(window);

The	CheckList	module	will	need	three	methods	to	do	its	work.	One	will	create	a
checklist	item,	including	the	checkbox	and	the	text	description.	Think	of	this	group	of
elements	as	a	row	in	a	table.

Another	method	will	remove	a	row	from	the	table.	The	third	method	will	add	a	listener	for
click	events,	so	that	your	code	knows	when	to	remove	a	row.

The	first	method	you	will	tackle	is	the	one	to	create	a	row	for	a	new	order.	Figure	11.3
shows	how	CheckList	will	add	checklist	items	to	the	page	when	the	order	form	is
submitted.

Figure	11.3		Order	of	events	when	the	order	form	is	submitted

Creating	the	Row	Constructor
You	cannot	create	the	markup	in	index.html	for	the	checklist	items,	because	they	need
to	be	added	after	the	page	has	already	been	rendered,	in	response	to	form	submissions.
Instead,	you	will	add	a	Row	constructor	to	the	CheckList	module.

The	Row	constructor	will	be	in	charge	of	creating	all	the	DOM	elements	necessary	to
represent	a	single	coffee	order,	including	the	checkbox	and	text	description.	But	the	Row
constructor	will	not	be	exported	to	the	App	namespace.	It	will	only	be	used	internally	by
one	of	the	CheckList.prototype	methods.

Add	the	Row	constructor	in	checklist.js,	just	before	the	App.CheckList	=
CheckList;	statement.	It	should	accept	an	argument	called	coffeeOrder	that	will	be	the
same	data	that	is	sent	to	Truck.prototype.createOrder.
...

				this.$element	=	$(selector);

				if	(this.$element.length	===	0)	{

						throw	new	Error('Could	not	find	element	with	selector:	'	+	selector);

				}

		}

		function	Row(coffeeOrder)	{

				//	Constructor	code	will	go	here

		}

		App.CheckList	=	CheckList;

		window.App	=	App;

})(window);

Creating	DOM	elements	with	jQuery

Your	Row	constructor	will	use	jQuery	to	build	DOM	elements.	You	will	declare	variables
for	the	individual	elements	that	make	up	a	checklist	item.	Then	the	constructor	will
append	them	together	into	a	subtree	of	DOM	elements,	as	shown	in	Figure	11.4.	The
CheckList	will	take	that	subtree	and	attach	it	to	the	page’s	DOM	tree	as	a	child	of	the
[data-coffee-order="checklist"]	element.

Figure	11.4		CheckList	creates	a	row	and	appends	its	DOM	elements

(The	“[39x]”	in	the	order	description	represents	the	caffeine	strength.)

The	DOM	subtree	created	by	the	Row	constructor	in	Figure	11.4	is	the	equivalent	of	the
following	markup:
<div	data-coffee-order="checkbox"	class="checkbox">

		<label>

				<input	type="checkbox"	value="chewie@rrwwwgg.com">

				tall	mocha	iced	coffee,	(chewie@rrwwwgg.com)	[39x]

		</label>

</div>

A	<div>	with	a	checkbox	class	is	used	to	house	your	<label>	and	an	<input>	element.
The	checkbox	class	will	apply	the	appropriate	Bootstrap	styles	to	the	<div>.	The	data-
coffee-order	attribute	will	be	used	in	your	JavaScript	when	you	need	to	trigger	the	click
action	on	the	checkbox.

Note	that	the	type	attribute	of	your	<input>	is	also	checkbox.	This	tells	the	browser	to
draw	the	input	as	a	checkbox	form	element.	A	plain	text	description	of	the	order	comes
right	after	the	<input>.	The	<label>	wraps	both	the	checkbox	input	and	the	plain	text
description.	This	turns	the	text	and	the	input	into	a	click	target	for	the	checkbox.

You	will	create	the	<label>,	<div>,	and	<input>	elements	one	at	a	time.	Then	you	will
manually	place	the	elements	inside	of	one	another	to	create	a	DOM	subtree	that	you	will
attach	to	the	live	DOM	(the	DOM	tree	currently	shown	on	the	page).	You	will	also	create
a	string	that	holds	the	text	description	of	the	order,	like	“tall	mocha	iced	coffee,
(chewie@rrwwwgg.com)	[39x].”

To	create	these	elements,	you	will	use	jQuery’s	$	function.	Up	to	now,	you	only	used	the
$	function	to	select	elements	from	the	DOM,	but	it	can	also	be	used	to	create	them.

First,	you	are	going	to	create	the	<div>	by	calling	the	$	function	in	the	Row	constructor	in
checklist.js.	Pass	it	two	arguments	describing	the	DOM	element	you	want	it	to
create.	Make	the	first	argument	a	string	with	the	HTML	tag	of	the	DOM	element,	in	this
case	'<div></div>'.	Make	the	second	argument	an	object	that	specifies	the	attributes	that
jQuery	should	add	to	the	<div>.	The	key/value	pairs	of	the	object	literal	are	translated	into
the	attributes	of	the	new	element.

The	result	is	a	DOM	element	created	by	jQuery	that	you	will	assign	to	a	new	variable
called	$div.	This	will	not	be	an	instance	variable	(that	is,	it	is	just	$div	and	not
this.$div).	It	is	prefixed	with	the	$	to	denote	that	it	is	not	a	plain	DOM	element,	but	one
that	jQuery	created	a	reference	to.

Make	it	so	in	checklist.js.
...

		function	Row(coffeeOrder)	{

				//	Constructor	code	will	go	here

				var	$div	=	$('<div></div>',	{

						'data-coffee-order':	'checkbox',

						'class':	'checkbox'

				});

		}

...

Notice	that	your	two	property	names	are	in	single	quotation	marks.	You	might	assume
from	this	that	you	should	always	use	single	quotes	around	property	names	when	creating	a
DOM	element	using	jQuery,	but	actually	that	is	not	the	case.	Property	names	that	have
special	characters	(like	the	dash)	need	to	be	in	quotes,	otherwise	it	is	considered	a	syntax
error.	Valid	characters	that	can	be	used	in	a	property	name	(or	a	variable	name)	without
single	quotes	are	the	letters	of	the	alphabet,	numerical	digits,	the	underscore	(_),	and	the
dollar	sign	($).

'class'	is	in	single	quotes	because	“class”	is	a	JavaScript-reserved	word,	so	single	quotes
are	needed	to	prevent	the	browser	from	reading	it	as	JavaScript	(which	would	also	result
in	a	syntax	error).

Next,	create	the	<label>	element	in	checklist.js	with	the	$	function	but	without	an
object	argument.	It	does	not	need	any	extra	attributes.
...

		function	Row(coffeeOrder)	{

				var	$div	=	$('<div></div>',	{

						'data-coffee-order':	'checkbox',

						'class':	'checkbox'

				});

				var	$label	=	$('<label></label>');

		}

...

Now,	create	the	<input>	element	for	the	checkbox	by	calling	the	$	function	and	passing	it
the	HTML	for	an	<input>	tag.	For	the	second	argument,	specify	that	the	type	should	be	a
checkbox	and	that	the	value	should	be	the	email	address	of	the	customer.	Because	none	of
these	property	names	use	special	characters,	you	do	not	need	to	put	them	in	single	quotes.
...

		function	Row(coffeeOrder)	{

				var	$div	=	$('<div></div>',	{

						'data-coffee-order':	'checkbox',

						'class':	'checkbox'

				});

				var	$label	=	$('<label></label>');

				var	$checkbox	=	$('<input></input>',	{

						type:	'checkbox',

						value:	coffeeOrder.emailAddress

				});

		}

...

By	setting	the	value	to	the	customer’s	email	address,	you	are	associating	the	checkbox
with	the	customer’s	coffee	order.	Later,	when	you	add	the	click	handler,	you	can	identify
which	coffee	order	was	clicked	based	on	the	email	address	in	the	value	attribute.

The	last	thing	to	create	is	the	text	description	that	will	be	displayed	next	to	the	checkbox.
You	will	build	a	string	for	this	by	concatenating	the	pieces	using	the	+=	operator.

Create	a	variable	called	description	in	checklist.js.	Set	it	to	the	size	property
of	the	order,	then	add	a	comma	and	a	space.	If	a	flavor	was	provided,	concatenate	it	using
+=.	Then	concatenate	the	coffee,	emailAddress,	and	strength	values.	The	emailAddress
should	be	wrapped	in	parentheses	and	the	strength	should	be	in	brackets	and	followed	by
the	letter	“x.”	(The	parentheses	and	brackets	are	not	for	syntactic	purposes,	just	for
formatting	the	text.)
...

		function	Row(coffeeOrder)	{

				...

				var	$checkbox	=	$('<input></input>',	{

						type:	'checkbox',

						value:	coffeeOrder.emailAddress

				});

				var	description	=	coffeeOrder.size	+	'	';

				if	(coffeeOrder.flavor)	{

						description	+=	coffeeOrder.flavor	+	'	';

				}

				description	+=	coffeeOrder.coffee	+	',	';

				description	+=	'	('	+	coffeeOrder.emailAddress	+	')';

				description	+=	'	['	+	coffeeOrder.strength	+	'x]';

		}

...

The	+=	concatenation	operator	does	addition	and	assignment	in	one	step.	That	means	that
the	following	two	lines	of	code	are	equivalent:
description	+=	coffeeOrder.flavor	+	'	';

description	=	description	+	coffeeOrder.flavor	+	'	';

You	now	have	all	the	individual	parts	of	the	checklist	item	and	are	ready	to	append	them
to	one	another	(Figure	11.5).

Figure	11.5		Assembling	the	individual	DOM	elements	into	a	subtree

You	will	do	this	in	three	steps:

1.	 Append	the	$checkbox	to	the	$label

2.	 Append	the	description	to	the	$label

3.	 Append	the	$label	to	the	$div

More	generally,	you	will	build	the	subtree	by	working	from	left	to	right,	bottom	to	top.

This	approach	is	similar	to	how	you	developed	your	CSS	for	Ottergram	in	Chapter	3,	by
beginning	with	the	smallest,	innermost	elements	and	working	your	way	up.

In	checklist.js,	use	the	jQuery	append	method	to	connect	the	elements	together.
This	method	accepts	either	a	DOM	element	or	a	jQuery-wrapped	collection	and	adds	it	as
a	child	element.
...

		function	Row(coffeeOrder)	{

				...

				description	+=	coffeeOrder.coffee	+	',	';

				description	+=	'	('	+	coffeeOrder.emailAddress	+	')';

				description	+=	'	['	+	coffeeOrder.strength	+	'x]';

				$label.append($checkbox);

				$label.append(description);

				$div.append($label);

		}

...

Your	Row	constructor	can	now	create	and	assemble	the	subtree	of	elements	using	the
coffee	order	data	passed	in.	However,	because	Row	will	be	used	as	a	constructor	and	not
as	a	regular	function,	it	cannot	simply	return	this	subtree.	(In	fact,	constructors	should
never	have	a	return	statement;	JavaScript	automatically	returns	a	value	for	you	when	you
use	the	keyword	new	with	a	constructor.)

Instead,	make	the	subtree	available	as	a	property	of	the	instance	by	assigning	it	to
this.$element	in	checklist.js.	(This	name	was	chosen	just	to	follow	the
convention	used	with	your	other	constructors;	it	does	not	have	any	special	meaning	by
itself.)
...

		function	Row(coffeeOrder)	{

				...

				$label.append($checkbox);

				$label.append(description);

				$div.append($label);

				this.$element	=	$div;

		}

...

The	Row	constructor	is	ready	for	work.	It	can	build	up	the	DOM	subtree	necessary	to
represent	an	individual	coffee	order	with	a	checkbox.	It	holds	on	to	that	DOM
representation	in	an	instance	variable.

Creating	CheckList	Rows	on	Submit
Next,	you	will	add	a	method	to	CheckList	that	will	use	the	Row	constructor	to	create
Row	instances.	It	will	append	each	Row	instance’s	$element	to	the	live	DOM	on	the
page.

In	checklist.js,	add	a	method	to	CheckList.prototype	called	addRow.	It	should
accept	an	argument	called	coffeeOrder,	which	will	be	an	object	that	contains	all	of	the
data	for	a	single	coffee	order.

In	this	new	method,	create	a	new	Row	instance	by	calling	the	Row	constructor	and	passing
it	the	coffeeOrder	object.	Assign	the	new	instance	to	the	variable	rowElement.	Then,
append	the	rowElement’s	$element	property	(which	contains	the	DOM	subtree)	to
the	CheckList	instance’s	$element	property	(which	is	a	reference	to	the	container	for
the	checklist	items).
...

		function	CheckList(selector)	{

				...

		}

		CheckList.prototype.addRow	=	function	(coffeeOrder)	{

				//	Create	a	new	instance	of	a	row,	using	the	coffee	order	info

				var	rowElement	=	new	Row(coffeeOrder);

				//	Add	the	new	row	instance's	$element	property	to	the	checklist

				this.$element.append(rowElement.$element);

		};

		function	Row(coffeeOrder)	{

				...

This	is	all	you	need	to	do	to	add	the	Row’s	DOM	subtree	to	the	page.	Save
checklist.js.

In	main.js,	add	a	variable	for	the	selector	that	matches	the	entire	checklist	area,	[data-
coffee-order="checklist"].	Then,	import	the	CheckList	module	from	the	App
namespace	to	a	local	variable,	CHECKLIST_SELECTOR.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	CHECKLIST_SELECTOR	=	'[data-coffee-order="checklist"]';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	FormHandler	=	App.FormHandler;

		var	CheckList	=	App.CheckList;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

...

Now	you	can	instantiate	a	CheckList	instance	to	add	checklist	items.

You	might	be	tempted	to	just	add	another	call	to
formHandler.addSubmitHandler,	but	this	would	not	work	the	way	you	might
expect.	Why	not?	Each	time	you	call	addSubmitHandler,	it	registers	a	new	callback
that	resets	the	form	(by	calling	this.reset).

Consider	the	following	code:
...

//	Instantiate	a	new	CheckList

var	checkList	=	new	CheckList(CHECKLIST_SELECTOR);

var	formHandler	=	new	FormHandler(FORM_SELECTOR);

formHandler.addSubmitHandler(myTruck.createOrder.bind(myTruck));

//	This	will	not	do	what	you	want!

formHandler.addSubmitHandler(checkList.addRow.bind(checkList));

...

This	code	registers	two	callbacks	that	will	run	when	the	form	is	submitted.	After	the	first
submit	handler	(myTruck.createOrder)	is	called,	the	form	gets	reset.	When	the
second	submit	handler	(checkList.addRow)	is	called,	there	is	no	information	left	in
the	form.	The	result	is	that	the	data	is	added	to	the	DataStore,	but	a	checklist	item	does
not	get	added	to	the	page.

To	get	around	this,	you	need	to	pass	a	single	anonymous	function	to
formHandler.addSubmitHandler	and	have	that	anonymous	function	call	both
myTruck.createOrder	and	checkList.addRow.

Also,	each	of	these	methods	needs	to	be	bound	to	a	specific	instance	(meaning	its	this
keyword	needs	to	be	set).	You	have	been	using	bind	to	set	the	value	of	this,	but	you	will
use	a	different	technique	here.

Manipulating	this	with	call

The	call	method	works	similarly	to	bind	to	set	the	value	of	this.	The	difference
between	the	two	is	that	while	bind	returns	a	new	version	of	the	function	or	method,	it
does	not	invoke	it.	call	actually	invokes	the	function	or	method	and	allows	you	to	pass
in	the	value	of	this	as	the	first	argument.	(If	you	need	to	pass	any	other	arguments	to	the
function,	you	just	add	them	to	the	argument	list.)	call	runs	the	body	of	the	function	and
returns	any	value	that	would	normally	be	returned.

You	need	to	use	call	instead	of	bind	here	because	you	need	to	invoke
myTruck.createOrder	and	checkList.addRow	in	addition	to	setting	the	value
of	this.

In	main.js,	remove	the	existing	invocation	of
formHandler.addSubmitHandler.	Add	a	new	call	to
formHandler.addSubmitHandler	and	pass	it	an	anonymous	function	that	expects
a	single	argument,	data.	Inside	the	anonymous	function,	use	the	call	methods	of
myTruck.createOrder	and	checkList.addRow	to	set	the	value	of	this,	passing
the	data	object	as	the	second	argument.
...

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		window.myTruck	=	myTruck;

		var	checkList	=	new	CheckList(CHECKLIST_SELECTOR);

		var	formHandler	=	new	FormHandler(FORM_SELECTOR);

		formHandler.addSubmitHandler(myTruck.createOrder.bind(myTruck));

																															function	(data)	{

				console.log(formHandler);

				myTruck.createOrder.call(myTruck,	data);

				checkList.addRow.call(checkList,	data);

		});

})(window);

You	have	created	a	single	submit	handler	function	that	invokes	both	createOrder	and
addRow.	When	it	invokes	them,	it	passes	the	correct	value	of	this	and	the	data	from	the
form.

Save	your	changes	and	try	out	your	checklist	functionality	in	the	browser	by	entering

some	data	and	submitting	the	form.	When	you	submit	each	order,	you	will	see	it	added	to
the	Pending	Orders	checklist,	as	in	Figure	11.6.

Figure	11.6		Submitting	the	form	adds	an	item	to	the	checklist

Delivering	an	Order	by	Clicking	a	Row
You	are	almost	there!	CoffeeRun’s	users	can	fill	out	the	form	to	add	orders.	When	they
submit	the	form,	it	adds	the	order	information	to	the	application’s	database	and	draws	a
checklist	item	for	the	order.

Next,	users	should	be	able	to	check	off	the	checklist	items.	When	a	checklist	item	is
clicked,	meaning	that	the	order	has	been	delivered,	the	order	information	should	be
deleted	from	the	database	and	the	checklist	item	should	be	removed	from	the	page.
Figure	11.7	shows	this	process.

Figure	11.7		Sequence	diagram:	clicking	a	checklist	item

First,	you	will	create	the	functionality	for	removing	the	checklist	item	from	the	page.

Creating	the	CheckList.prototype.removeRow	method

When	you	create	a	Row,	the	value	of	the	<input>	is	set	to	the	customer’s	email	address.
removeRow	will	use	the	email	address	argument	to	find	the	right	CheckList	item	to
remove	from	the	UI.	It	will	do	that	by	creating	an	attribute	selector	to	find	the	<input>
whose	value	attribute	matches	the	email	address.

When	it	has	found	the	matching	element,	it	will	move	up	the	DOM	until	it	finds	the
[data-coffee-order="checkbox"].

This	is	the	<div>	that	wraps	around	all	of	the	elements	that	are	part	of	a	row.	Finally,	with
that	<div>	selected	using	jQuery,	its	.remove	method	can	be	called,	removing	the
element	from	the	DOM	and	also	cleaning	up	any	event	listeners	that	were	attached	to	any
element	in	that	DOM	subtree.

Add	the	removeRow	method	in	checklist.js	and	specify	an	emailAddress
parameter.	Use	the	$element	instance	property	to	search	for	any	descendant	elements
whose	value	attribute	matches	the	email	parameter.	From	that	matching	element,	add	a
call	to	closest	to	search	for	an	ancestor	whose	data-coffee-order	attribute	is	equal	to
"checkbox".	Finally,	call	remove	on	that	element.	(You	will	notice	some	new	syntax	in
this	code,	which	we	will	explain	after	you	enter	it.)
...

		CheckList.prototype.addRow	=	function	(coffeeOrder)	{

				...

		};

		CheckList.prototype.removeRow	=	function	(email)	{

				this.$element

						.find('[value="'	+	email	+	'"]')

						.closest('[data-coffee-order="checkbox"]')

						.remove();

		};

		function	Row(coffeeOrder)	{

				...

Here,	you	have	chained	several	method	calls	together.	jQuery	is	designed	so	that	you	can
write	multiple	method	calls	for	an	object	like	a	list	of	steps.	You	only	include	the
semicolon	at	the	end	of	the	very	last	method	call.

The	requirement	for	chaining	is	that	a	method	must	return	a	jQuery-wrapped	selection	in
order	to	have	another	method	call	chained	to	it.	find	returns	a	jQuery-wrapped	selection,
as	does	closest.	This	allows	you	to	chain	the	three	method	calls	together.

Notice	that	you	used	this.$element.find.	This	does	a	scoped	selection:	Instead	of
searching	the	entire	DOM,	it	only	searches	the	descendants	of	the	checklist,	which	you
have	a	reference	to	with	this.$element.

Removing	overwritten	entries

Save	your	file	and	switch	to	the	browser.	Using	your	form,	enter	two	orders	for	the	same
email	address.	Make	the	coffee	for	the	first	“order	1”	and	for	the	second	“order	2.”	After
submitting	both	orders,	call	myTruck.printOrders	in	the	console.	Figure	11.8	shows
the	result.

Figure	11.8		Orders	for	same	email	address	remain	in	UI

You	decided	early	on	to	allow	only	one	open	order	per	customer.	Because	you	are	using	a
simple	key/value	store	for	your	data,	any	subsequent	orders	for	the	same	customer	email
address	overwrite	the	existing	one.	So,	as	the	console	shows,	“order	2”	is	the	only	pending
order.	“Order	1”	has	been	overwritten.

But	the	checklist	does	not	reflect	this	–	it	still	shows	rows	for	both	“order	1”	and	“order
2.”	When	you	add	a	row	for	an	order,	you	need	to	make	sure	that	any	existing	rows
associated	with	the	same	customer	email	address	are	removed.

Now	that	you	can	remove	rows	based	on	the	customer’s	email	address,	this	is
straightforward.	In	checklist.js,	update	the	addRow	prototype	method	so	that	the
first	thing	it	does	is	call	removeRow,	passing	in	the	email	address	of	the	customer.
...

		CheckList.prototype.addRow	=	function	(coffeeOrder)	{

				//	Remove	any	existing	rows	that	match	the	email	address

				this.removeRow(coffeeOrder.emailAddress);

				//	Create	a	new	instance	of	a	row,	using	the	coffee	order	info

				var	rowElement	=	new	Row(coffeeOrder);

				//	Add	the	new	row	instance's	$element	property	to	the	checklist

				this.$element.append(rowElement.$element);

		};

...

Save	checklist.js	and	verify	in	the	browser	that	the	first	order’s	checklist	item	is
removed	when	a	second	order	with	the	same	email	is	submitted.

Now	that	you	can	remove	a	checklist	row	from	the	UI,	turn	your	attention	to	handling	the
checklist	click	event.

Writing	the	addClickHandler	method

To	handle	clicks	to	the	checklist,	you	will	use	the	same	event	handler	registration
technique	that	you	used	with	FormHandler.

FormHandler.prototype.addSubmitHandler	accepts	a	function	argument,	fn,
and	then	registers	an	anonymous	function	to	handle	the	submit	event	of
this.$formElement.	Inside	of	that	anonymous	function,	fn	is	invoked.	Here	is	that
method	definition	for	reference:
		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	{};

						$(this).serializeArray().forEach(function	(item)	{

								data[item.name]	=	item.value;

								console.log(item.name	+	'	is	'	+	item.value);

						});

						console.log(data);

						fn(data);

						this.reset();

						this.elements[0].focus();

				});

		};

This	makes	FormHandler.prototype.addSubmitHandler	flexible,	because	it
can	be	passed	any	function	that	needs	to	run	when	the	form	is	submitted.	This	way,
FormHandler.prototype.addSubmitHandler	does	not	need	to	know	the
details	of	that	function	or	what	steps	it	takes.

You	will	add	a	prototype	method	to	CheckList	called	addClickHandler	that	will
work	the	same	way	as	FormHandler’s	addSubmitHandler.	That	is,	it	will:

1.	 Accept	a	function	argument.

2.	 Register	an	event	handler	callback.

3.	 Invoke	the	function	argument	inside	the	event	handler	callback.

CheckList.prototype.addClickHandler	differs	from
FormHandler.prototype.addSubmitHandler	in	that	it	will	listen	for	a	click
event	and	bind	the	callback	to	the	CheckList	instance.

In	checklist.js,	add	the	addClickHandler	method	and	specify	a	parameter
named	fn.	Listen	for	a	click	event	using	jQuery’s	on	method.

Inside	the	event	handler	function,	declare	a	local	variable	named	email	and	assign	it
event.target.value,	which	is	the	customer’s	email	address.	Then	call	removeRow,

passing	it	email.	After	that,	invoke	fn	and	pass	it	email	also.	Make	sure	to	use
bind(this)	to	set	the	context	object	of	the	event	handler	function.
...

		function	CheckList(selector)	{

				...

		}

		CheckList.prototype.addClickHandler	=	function	(fn)	{

				this.$element.on('click',	'input',	function	(event)	{

						var	email	=	event.target.value;

						this.removeRow(email);

						fn(email);

				}.bind(this));

		};

		CheckList.prototype.addRow	=	function	(coffeeOrder)	{

				...

When	you	registered	the	event	handler	callback	with	this.$element.on,	you	specified
click	as	the	event	name.	But	you	also	passed	in	a	filtering	selector	as	the	second
argument.	The	filtering	selector	tells	the	event	handler	to	run	the	callback	function	only	if
the	event	was	triggered	by	an	<input>	element.

This	is	a	pattern	called	event	delegation.	It	works	because	some	events,	like	clicks	and
keypresses,	propagate	through	the	DOM,	meaning	each	ancestor	element	is	informed
about	the	event.

Any	time	you	need	to	listen	for	an	event	on	elements	that	are	dynamically	created	and
removed,	such	as	the	checklist	items,	you	should	use	event	delegation.	It	is	easier	and
more	performant	to	add	a	single	listener	to	the	dynamic	elements’	container	and	then	run
the	handler	function	based	on	what	element	triggered	the	event.

Notice	that	you	do	not	call	event.preventDefault	inside	the	event	handler.	Why	not?	If
you	called	event.preventDefault,	the	checkbox	would	not	actually	change	its	visual
state	to	show	a	checkmark	in	the	box.

Also,	notice	that	you	bind	the	event	handler	callback	to	this,	which	refers	to	the
instance	of	CheckList.

Calling	addClickHandler

addClickHandler	needs	to	be	connected	to	deliverOrder.	Go	to	main.js	to
make	that	connection.	Pass	a	bound	version	of	deliverOrder	to
checkList.addClickHandler.
...

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		window.myTruck	=	myTruck;

		var	checkList	=	new	CheckList(CHECKLIST_SELECTOR);

		checkList.addClickHandler(myTruck.deliverOrder.bind(myTruck));

		var	formHandler	=	new	FormHandler(FORM_SELECTOR);

...

Save	your	changes	and	add	some	coffee	orders	in	the	form.	Click	either	the	checkbox	or
the	text	of	one	of	the	checklist	items,	and	it	will	be	removed	(Figure	11.9)!

Figure	11.9		Clicking	a	checklist	item	removes	it

You	have	learned	how	to	create	dynamic	form	elements	and	work	with	the	events	they
generate.	You	were	able	to	associate	each	one	with	a	specific	coffee	order	by	using	the
email	address	as	an	identifier.

Using	these	techniques,	you	completed	the	modules	that	manage	the	UI,	turning	what	was
a	console-only	application	into	one	that	could	be	used	for	a	real-world	task.

You	have	completed	two	of	the	three	major	parts	of	CoffeeRun.	The	internal	logic	governs
the	data	within	the	application.	The	form	elements,	FormHandler,	and	CheckList
provide	the	interactive	UI.	The	next	chapters	deal	with	preparing	and	exchanging	data
with	a	remote	server.

Bronze	Challenge:	Adding	the	Strength	to	the
Description
You	have	decided	that	the	strength	of	the	coffee	is	a	more	important	piece	of	information
and	should	be	the	first	part	of	the	description.

Change	the	way	you	are	writing	the	order	descriptions	so	that	the	coffee	strength	is	at	the
beginning	of	the	description	text.

Silver	Challenge:	Color	Coding	by	Flavor	Shot
Color	code	your	orders	based	on	the	flavor	shot.	Based	on	the	options	chosen	for	each
coffee,	display	the	row	in	the	checklist	with	a	different	background	color.

Make	sure	that	the	text	has	enough	contrast	with	the	background	color.

Gold	Challenge:	Allowing	Order	Editing
Allow	existing	orders	to	be	edited.	You	will	need	to	change	the	way	the	checklist	works.

If	the	user	double-clicks	an	order,	load	it	back	into	the	form	for	editing.	If	the	user	only
clicks	once,	gray	out	the	row.	After	a	few	seconds,	treat	the	item	as	if	it	were	delivered	and
remove	it	from	the	checklist	and	from	the	application’s	data.

As	an	extra	bonus,	make	sure	that	after	the	user	finishes	editing	the	existing	row	is
updated	in	place,	not	removed	and	replaced	with	a	new	row.

12	
Validating	Forms

CoffeeRun	is	humming	along!	Users	can	enter	coffee	orders	in	the	form,	and	the	order
information	is	processed	and	stored.	But	what	would	happen	to	your	app	–	and	your	coffee
truck	–	if	someone	submitted	an	order	with	missing	or	unusable	information?

Not	to	worry.	You	can	easily	handle	these	scenarios	with	a	little	bit	of	code	to	make	sure
the	data	is	OK	for	your	application	to	use.	In	fact,	this	is	an	essential	step	if	you	ever	send
data	back	to	a	server.	Almost	every	modern	browser	is	prepared	to	validate	form	data
when	it	is	submitted.	All	you	need	to	do	is	provide	the	rules.

In	this	chapter,	you	are	going	to	learn	two	techniques	for	form	validation.	The	first
technique	is	to	add	validation	attributes	to	the	HTML,	allowing	the	browser’s	built-in
validation	mechanisms	to	take	effect.	The	second	is	to	write	your	own	validation	code	in
JavaScript,	using	the	Constraint	Validation	API.

The	required	Attribute
The	most	basic	form	of	validation	is	to	check	whether	a	field	has	a	value	and	is	not
completely	empty.	This	kind	of	check	does	not	make	sense	for	fields	with	default	values,
like	your	size,	flavor,	and	strength	fields.	But	it	is	just	what	you	need	for	your	order	and
email	fields	–	you	definitely	do	not	want	orders	to	be	submitted	with	those	fields	left
blank.

In	index.html,	add	the	required	Boolean	attribute	to	the	order	and	email	fields.
...

												<div	class="form-group">

														<label	for="coffeeOrder">Order</label>

														<input	class="form-control"	name="coffee"	id="coffeeOrder"

																autofocus	required	/>

												</div>

												<div	class="form-group">

														<label	for="emailInput">Email</label>

														<input	class="form-control"	type="email"	name="emailAddress"

														id="emailInput"	value=""	placeholder="dr@who.com"

																required	/>

												</div>

...

Remember	that	a	Boolean	attribute	should	not	be	assigned	a	value.	If	you	make	the
mistake	of	writing	something	like	required="false",	the	value	will	be	true	and	the	field
will	be	required!	The	browser	only	cares	about	the	existence	of	the	attribute	and	ignores
any	value	assigned.

That	point	bears	repeating:	If	a	Boolean	attribute	exists	for	an	element,	the	browser
considers	the	value	to	be	true,	regardless	of	the	value	you	set	for	it.

Save	index.html,	make	sure	browser-sync	is	running,	and	load	CoffeeRun	in	the
browser.	Try	submitting	the	form	without	filling	out	either	or	both	of	the	required	fields.
You	will	see	a	warning,	as	in	Figure	12.1.

Figure	12.1		Errors	when	required	fields	are	blank

Also,	notice	that	there	are	no	console	messages	from	your	submit	handlers.	The	submit
event	only	fires	after	the	browser	validates	your	form	(Figure	12.2).

Figure	12.2		Two	possible	sequences	of	events	when	a	form	is	validated

Validating	with	Regular	Expressions
Making	a	field	required	is	an	easy	way	to	ensure	that	the	user	does	not	leave	the	field
blank.	But	what	if	you	want	to	be	specific	about	what	should	go	into	a	field?	This	kind	of
validation	calls	for	the	pattern	attribute.

After	the	required	attribute	on	your	order	<input>,	add	a	pattern	attribute.	Assign	it	a
specially	formatted	string	called	a	regular	expression,	which	we	will	explain	in	a	moment.
...

												<div	class="form-group">

														<label	for="coffeeOrder">Order</label>

														<input	class="form-control"	name="coffee"	id="coffeeOrder"

																autofocus	required	pattern="[a-zA-Z\s]+"	/>

												</div>

...

A	regular	expression	is	a	sequence	of	characters	for	pattern	matching.	The	regular
expression	[a-zA-Z\s]+	matches	any	character	from	the	set	consisting	of	lowercase	letters
(a-z),	uppercase	letters	(A-Z),	and	whitespace	characters	(\s),	repeated	one	or	more	times
(+).

In	short,	when	you	submit	the	form	this	field	will	only	be	valid	if	it	contains	letters	or
spaces.

Save	and	reload.	See	what	happens	if	you	put	symbols	or	numbers	into	the	order	field	and
try	to	submit	the	form.

Constraint	Validation	API
The	most	robust	way	to	validate	a	form	field	in	the	browser	is	to	write	a	validation
function.	You	can	use	validation	functions	in	conjunction	with	the	Constraint	Validation
API	to	trigger	built-in	validation	behavior.

But	there	is	a	catch,	and	it	is	not	a	small	one:	The	Constraint	Validation	API	has	poor
support	in	Apple’s	Safari	browser.

Despite	this	oversight,	it	is	important	to	write	code	that	targets	standard	behavior	and	then
add	a	JavaScript	library	that	adds	support	for	noncompliant	browsers.	(You	can	read	more
about	this	in	the	section	called	For	the	More	Curious:	The	Webshims	Library	at	the	end	of
this	chapter.)

Suppose	your	coffee	truck	is	only	for	employees	of	your	company,	so	you	want	to	make
sure	that	the	customer	is	an	employee.	One	way	to	do	this	would	be	to	ensure	that	the
email	address	that	is	submitted	is	from	your	company’s	domain.

You	could	use	a	pattern	attribute	for	your	emailAddress	field.	But	this	problem	is	a	good
one	for	learning	the	Constraint	Validation	API.	(Also,	after	you	work	through	the	next
chapter,	you	could	expand	beyond	a	simple	email	domain	check	and	query	a	remote	server
to	find	out	whether	the	email	address	actually	exists.)

Create	a	new	file,	scripts/validation.js,	to	hold	your	validation	functions.	Add
a	<script>	tag	in	index.html	for	your	new	module.
...

						</div>

				</section>

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.4/jquery.js"

						charset="utf-8"></script>

				<script	src="scripts/validation.js"	charset="utf-8"></script>

				<script	src="scripts/checklist.js"	charset="utf-8"></script>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

Save	index.html.	In	validation.js,	add	an	IIFE	module	that	creates	an	empty
object	literal,	assigns	it	to	a	variable	named	Validation,	and	then	exports	that	variable
to	the	App	namespace.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	Validation	=	{

		};

		App.Validation	=	Validation;

		window.App	=	App;

})(window);

Your	new	Validation	module	will	only	be	used	for	organizing	functions,	so	it	does	not
need	to	be	a	constructor.

Add	a	method	called	isCompanyEmail.	This	method	will	test	an	email	address	against
a	regular	expression	and	return	true	or	false.	(Feel	free	to	change	the	email	domain
specified.)

(function	()	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	Validation	=	{

				isCompanyEmail:	function	(email)	{

						return	/.+@bignerdranch\.com$/.test(email);

				}

		};

		App.Validation	=	Validation;

		window.App	=	App;

})(window);

You	created	a	literal	regular	expression	by	putting	a	pattern	between	the	forward	slashes,
//.	Inside	the	slashes,	you	specify	a	string	that	consists	of	one	or	more	characters	(.+),
followed	by	“@bignerdranch.com”	–	you	also	used	a	backslash	to	indicate	that	the	period
in	bignerdranch.com	should	be	treated	as	a	literal	period.	(Normally,	a	period	in	a
regular	expression	is	a	wildcard	that	matches	any	character.)	The	“$”	at	the	end	of	regular
expression	means	that	“@bignerdranch.com”	should	be	at	the	end	of	the	string	–	there
should	be	no	more	characters	that	appear	after	it.

This	regular	expression	is	an	object	and	has	a	test	method.	You	can	pass	a	string	to	the
test	method,	and	it	will	return	a	Boolean	–	true	if	the	regular	expression	matches	the
string	and	false	if	not.	(For	a	list	of	other	regular	expression	methods,	see
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/RegExp.)

Test	your	App.Validation.isCompanyEmail	function	on	the	console
(Figure	12.3).

Figure	12.3		Testing	App.Validation.isCompanyEmail	on	the	console

You	now	have	a	function	that	can	check	for	valid	email	addresses.	The	next	thing	to	do	is
to	connect	it	to	the	form.

Listening	for	the	input	event

When	should	you	use	this	function?	There	are	several	events	that	the	input	field	could
trigger	while	a	user	is	filling	out	the	form.	One	occurs	as	the	user	types	each	character.
Another	is	when	the	user	removes	focus	from	the	field.	Or	you	could	run	the	function
when	the	form	is	submitted.

The	Constraint	Validation	API	requires	that	invalid	fields	be	marked	prior	to	submission.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

If	any	fields	are	invalid,	the	browser	stops	short	of	triggering	the	submit	event.	So	doing
the	check	on	submit	is	too	late.

The	event	triggered	when	the	user	removes	focus	from	a	field	is	known	as	a	blur	event.	It
is	not	a	good	choice	for	validation,	either.	Suppose	the	user’s	cursor	is	in	the	email	input,
so	that	field	has	focus.	If	the	user	then	presses	the	Return	key,	this	would	trigger	form
submission,	but	the	blur	event	would	not	be	triggered	and	any	validation	tied	to	it	would
not	be	performed.

So	the	validation	check	will	need	to	happen	as	the	user	enters	each	character.	Update	the
FormHandler	module	in	formhandler.js	with	an	addInputHandler	prototype
method.	It	should	add	a	listener	for	the	input	event	of	the	form.	Like	the
addSubmitHandler	method,	it	should	accept	a	function	argument.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				...

		};

		FormHandler.prototype.addInputHandler	=	function	(fn)	{

				console.log('Setting	input	handler	for	form');

		};

		App.FormHandler	=	FormHandler;

		window.App	=	App;

...

Attach	the	listener	for	the	input	event	using	jQuery’s	on	method.	Make	sure	to	use	the
event	delegation	pattern	to	filter	out	events	created	by	anything	but	the
[name="emailAddress"]	field.
...

		FormHandler.prototype.addInputHandler	=	function	(fn)	{

				console.log('Setting	input	handler	for	form');

				this.$formElement.on('input',	'[name="emailAddress"]',	function	(event)	{

						//	Event	handler	code	will	go	here

				});

		};

		App.FormHandler	=	FormHandler;

		window.App	=	App;

...

Inside	the	event	handler,	extract	the	value	of	the	email	field	from	the	event.target
object.	Then	console.log	the	result	of	running	addInputHandler’s	function
argument	fn	and	passing	it	the	value	of	the	email	field.
...

		FormHandler.prototype.addInputHandler	=	function	(fn)	{

				console.log('Setting	input	handler	for	form');

				this.$formElement.on('input',	'[name="emailAddress"]',	function	(event)	{

						//	Event	handler	code	will	go	here

						var	emailAddress	=	event.target.value;

						console.log(fn(emailAddress));

				});

		};

		App.FormHandler	=	FormHandler;

		window.App	=	App;

...

Save	formhandler.js.

Associating	the	validation	check	with	the	input	event

In	main.js,	import	Validation	from	the	App	namespace	and	assign	it	to	a	local
variable.
...

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	FormHandler	=	App.FormHandler;

		var	Validation	=	App.Validation;

		var	CheckList	=	App.CheckList;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

...

With	the	Validation	object	imported,	you	can	connect	it	to	FormHandler’s	new
addInputHandler	method.

At	the	end	of	main.js,	pass	Validation.isCompanyEmail	to	the
addInputHandler	method	of	the	formHandler	instance:
...

		formHandler.addSubmitHandler(function	(data)	{

				myTruck.createOrder.call(myTruck,	data);

				checkList.addRow.call(checkList,	data);

		});

		formHandler.addInputHandler(Validation.isCompanyEmail);

})(window);

Save	and	reload.	Fill	out	the	email	field	and	see	what	appears	on	the	console.	As	you	type
a	valid	email	address,	the	console	will	show	a	number	of	false	results,	printed	by	the
console.log(fn(emailAddress));	line	in
FormHandler.prototype.addInputHandler.	When	you	have	finished	typing	a
valid	email	address,	you	will	see	true	printed	in	the	console	(Figure	12.4).

Figure	12.4		Logging	the	email	validation	check

Your	validation	function	is	run	each	time	a	character	is	entered	(or	removed)	from	the
email	field.	When	you	have	confirmed	that	it	is	correctly	checking	your	input,	you	can	use
it	to	show	a	custom	error	message.

Triggering	the	validity	check

Now	that	you	can	reliably	test	that	the	email	address	is	from	your	company’s	domain,	you
should	notify	the	user	if	the	validation	fails.	You	will	use	the	setCustomValidity
method	for	the	event.target	to	mark	it	as	invalid.

In	formhandler.js,	remove	the	console.log	statement	and	replace	it	with	a	variable
for	a	warning	message	and	an	if/else	clause.	If	the	fn(emailAddress)	call	returns	true,
clear	the	custom	validity	of	the	field.	If	it	returns	false,	assign	the	message	variable	to	a

string	with	the	warning	message	and	set	the	custom	validity	to	message.
...

		FormHandler.prototype.addInputHandler	=	function	(fn)	{

				console.log('Setting	input	handler	for	form');

				this.$formElement.on('input',	'[name="emailAddress"]',	function	(event)	{

						var	emailAddress	=	event.target.value;

						console.log(fn(emailAddress));

						var	message	=	'';

						if	(fn(emailAddress))	{

								event.target.setCustomValidity('');

						}	else	{

								message	=	emailAddress	+	'	is	not	an	authorized	email	address!'

								event.target.setCustomValidity(message);

						}

				});

		};

...

You	passed	in	the	error	message	that	should	be	shown	to	the	user.	If	there	is	no	error,	you
still	have	to	call	setCustomValidity,	but	with	an	empty	string	as	the	argument.	This
has	the	effect	of	marking	the	field	as	valid.

The	validation	check	that	occurs	as	you	type	only	marks	the	field	as	valid	or	invalid.	It
does	not	display	the	error	message.	When	you	press	the	Submit	button,	the	browser	checks
for	invalid	fields	and	displays	the	validation	message	if	it	finds	any.

To	try	it	out,	submit	the	form	after	entering	an	email	address	that	does	not	match	the
domain.	Right	after	you	press	the	Submit	button,	you	should	see	your	custom	validation
message	appear	as	a	warning	next	to	the	field	(Figure	12.5).

Figure	12.5		Only	valid	email	addresses	allowed!

Styling	Valid	and	Invalid	Elements
CoffeeRun	now	validates	both	the	order	field	and	the	email	address.	Now	it	is	time	to
enhance	the	UI	by	visually	marking	invalid	fields.	For	this	very	short	piece	of	CSS,	you
will	add	one	ruleset	in	a	<style>	tag	to	the	<head>	in	index.html.
...

		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

				<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootst

rap/3.3.6/css/bootstrap.min.css">

				<style>

						form	:invalid	{

								border-color:	#a94442;

						}

				</style>

		</head>

...

This	adds	a	border	to	any	field	inside	your	form	that	has	the	pseudo-class	:invalid.	This
pseudo-class	is	automatically	added	by	the	browser	when	the	form	runs	its	validation
checks.

Save	and	return	to	the	browser.	Press	the	Tab	key	a	few	times	(or	click	outside	of	the	text-
entry	fields)	to	focus	on	a	form	element	other	than	the	order	or	email	fields.	The	two
required	fields	will	have	a	reddish	border	color	(Figure	12.6).

Figure	12.6		Trust	us:	These	borders	are	red

It	would	be	more	appropriate	for	the	border	to	only	appear	on	an	invalid	field	that	is
required	and	has	focus.	Add	two	more	pseudo-classes	to	your	selector	in	index.html:
		<head>

				<meta	charset="utf-8">

				<title>coffeerun</title>

				<link	rel="stylesheet"	href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootst

rap/3.3.6/css/bootstrap.min.css">

				<style>

						form	:focus:required:invalid	{

								border-color:	#a94442;

						}

				</style>

		</head>

...

You	have	specified	that	fields	that	have	the	three	pseudo-classes	:focus,	:required,	and
:invalid	will	get	the	new	border	color	(Figure	12.7).

Figure	12.7		:invalid	border	color	only	for	field	with	focus

CoffeeRun	is	developing	into	a	fully	featured	web	app.	In	the	next	two	chapters,	you	will
sync	the	data	to	a	remote	server	using	Ajax.

Silver	Challenge:	Custom	Validation	for	Decaf
Add	another	function	to	your	Validation	module.	It	should	accept	two	arguments:	a
string	and	an	integer.	If	the	string	contains	the	word	“decaf”	and	the	integer	is	greater	than
20,	the	function	should	return	false.

Add	listeners	for	the	coffee	order	text	field	and	for	the	caffeine	strength	slider.	Trigger	the
custom	validation	for	whichever	field	is	currently	being	edited	and	caused	the	validation
failure.

For	the	More	Curious:	The	Webshims	Library
As	mentioned	earlier,	one	notable	browser	that	does	not	support	the	Constraint	Validation
API	is	Apple’s	Safari	browser.	Should	you	need	to	support	Safari,	you	can	use	a	library,	or
polyfill,	that	simulates	the	API	for	browsers	that	do	not	implement	it.

One	library	that	will	provide	Constraint	Validation	in	Safari	is	the	Webshims	Lib,	which
you	can	download	from	github.com/aFarkas/webshim.

Actually,	the	Webshims	library	can	act	as	a	polyfill	for	many,	many	features.	Setting	it	up
and	using	it	is	straightforward.	(However,	it	does	do	a	lot	of	different	things,	and	it	is	easy
to	get	lost	in	the	documentation.)

Here	is	how	you	use	it	with	CoffeeRun	so	that	Safari	works	with	your	Validation
module.	First,	download	a	zip	file	from	the	project	page:	github.com/aFarkas/
webshim/releases/latest.	Unzip	the	file	and	put	the	js-webshim/webshim
folder	in	your	coffeerun	directory	(next	to	index.html	and	your	scripts	folder).

Add	a	<script>	tag	in	index.html	for	the	webshim/polyfiller.js	file.
...

						</div>

				</section>

				<script	src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.4/jquery.js"

						charset="utf-8"></script>

				<script	src="webshim/polyfiller.js"	charset="utf-8"></script>

				<script	src="scripts/validation.js"	charset="utf-8"></script>

				<script	src="scripts/checklist.js"	charset="utf-8"></script>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

Then,	add	these	lines	to	main.js:
...

		var	Validation	=	App.Validation;

		var	CheckList	=	App.CheckList;

		var	webshim	=	window.webshim;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		...

		formHandler.addInputHandler(Validation.isCompanyEmail);

		webshim.polyfill('forms	forms-ext');

		webshim.setOptions('forms',	{	addValidators:	true,	lazyCustomMessages:	true	});

}(window));

This	imports	the	webshim	library	and	then	configures	it	for	use	with	forms.

Finally,	there	is	one	quirk	with	the	library	that	you	need	to	know.	Anywhere	you	use
setCustomValidity,	you	must	wrap	the	objects	with	jQuery.	For	CoffeeRun,	you
need	to	wrap	the	event.target	objects	of	the	addInputHandler	function	in
formhandler.js:
...

		FormHandler.prototype.addInputHandler	=	function	(fn)	{

				console.log('Setting	input	handler	for	form');

				this.$formElement.on('input',	'[name="emailAddress"]',	function	(event)	{

						var	emailAddress	=	event.target.value;

						var	message	=	'';

						if	(fn(emailAddress))	{

								$(event.target).setCustomValidity('');

						}	else	{

								message	=	emailAddress	+	'	is	not	an	authorized	email	address!'

								$(event.target).setCustomValidity(message);

https://github.com/aFarkas/webshim
https://github.com/aFarkas/webshim/releases/latest

						}

				});

		};

...

The	authors	of	Webshim	chose	to	implement	the	polyfill	functionality	entirely	as	an
extension	of	jQuery.	Other	than	this	wrapping,	you	do	not	need	to	modify	your	code.

After	you	save	your	changes,	you	can	test	your	validation	in	Safari.	You	should	see	that	it
also	reports	an	issue	if	you	forget	to	fill	out	the	coffee	order	or	if	you	enter	an	invalid
email	address	(Figure	12.8).

Figure	12.8		Using	Webshim	as	a	Safari	polyfill

Webshim	goes	well	beyond	providing	form	validation.	You	should	browse	through	the
documentation	to	see	what	else	it	can	do	for	you	on	your	projects.

13	
Ajax

In	the	last	chapter,	you	used	the	browser’s	built-in	validation	to	ensure	that	the	user
entered	data	that	fit	CoffeeRun’s	parameters.	After	doing	those	checks,	you	can	feel
confident	about	sending	that	data	to	the	server.

At	the	moment,	the	FormHandler.prototype.addSubmitHandler	method	calls
the	event	object’s	preventDefault	method	to	keep	the	browser	from	sending	a
request	to	the	server.	Normally,	the	server	sends	back	a	response	that	causes	the	page	to
reload.	Instead,	you	are	extracting	the	data	that	the	user	enters	into	the	form	and	updating
the	form	and	the	checklist	with	JavaScript.

In	this	chapter,	you	will	create	a	RemoteDataStore	module	that	sends	a	request	to	the
server	and	handles	the	response	(Figure	13.1).	But	it	will	do	this	in	the	background	using
Ajax,	without	causing	the	browser	to	reload.

Figure	13.1		CoffeeRun	at	the	end	of	the	chapter

Ajax	is	a	technique	for	communicating	with	a	remote	server	via	JavaScript.	The
JavaScript	usually	changes	the	contents	of	a	web	page	using	data	returned	by	the	server
without	reloading	the	browser.	This	can	improve	the	experience	of	using	a	web
application.

Originally,	the	term	“Ajax”	was	an	acronym	for	“asynchronous	JavaScript	and	XML,”	but

it	is	now	used	generically	for	this	style	of	asynchronous	data	communication,	regardless	of
what	technologies	are	actually	involved.	(Asynchronous	communication	means	that	the
app,	having	sent	a	request,	does	not	have	to	wait	for	a	response	from	the	server	before
continuing	with	other	tasks.)	Ajax	is	now	the	standard	mechanism	for	sending	and
receiving	data	in	the	background.

XMLHttpRequest	Objects
At	the	core	of	Ajax	is	the	XMLHttpRequest	API.	In	modern	browsers,	you	can	instantiate
new	XMLHttpRequest	objects,	which	allow	you	to	send	requests	to	servers	without	causing
a	page	reload.	They	perform	their	work	in	the	background.

Using	XMLHttpRequest	objects,	you	can	attach	callbacks	to	different	stages	of	the
request/response	cycle,	much	in	the	same	way	that	you	listen	to	events	on	DOM	objects.
You	can	also	inspect	the	XMLHttpRequest	object’s	properties	to	access	information	about
the	status	of	the	request/response	cycle.	Two	useful	properties	are	response	and	status,
which	are	updated	as	soon	as	any	changes	occur.	The	response	property	contains	the	data
(such	as	HTML,	XML,	JSON,	or	another	format)	sent	back	by	the	server.	The	status	is	a
numeric	code	that	tells	you	whether	the	HTTP	response	was	successful	or	not.	These	are
officially	known	as	HTTP	Status	Codes.

Status	codes	are	grouped	in	ranges,	and	these	ranges	have	basic	meanings.	For	example,
the	status	codes	in	the	200-299	range	are	success	codes,	while	status	codes	in	the	500-599
range	mean	that	there	was	a	server	error.	You	will	often	see	these	ranges	referred	to
generically,	as	in	“2xx”	or	“3xx”	statuses.

Table	13.1	shows	some	of	the	more	common	codes.

Table	13.1		Common	HTTP	status	codes

Status
Code Status	Text Description

200 OK The	request	was	successful.

400 Bad
Request The	server	did	not	understand	the	request.

404 Not	Found The	resource	could	not	be	found,	often	because	the	file	or	path
name	did	not	match	anything	on	the	server.

500
Internal
Server
Error

The	server	encountered	an	error,	such	as	an	unhandled	exception
in	the	server-side	code.

503 Service
Unavailable

The	server	could	not	handle	the	request,	often	because	it	is
overloaded	or	down	for	maintenance.

jQuery	has	a	number	of	methods	that	create	and	manage	XMLHttpRequest	objects	and
provide	a	concise,	backward-compatible,	cross-browser	API.	It	is	not	the	only	library

available	for	managing	Ajax	requests,	but	many	other	libraries	simply	follow	jQuery’s
lead.	You	will	be	using	jQuery’s	get	and	post	methods	to	work	with	Ajax	GET	and	POST
requests	and	the	jQuery	ajax	method	to	handle	DELETE	requests.

RESTful	Web	Services
You	are	going	to	enhance	CoffeeRun	by	using	a	remote	web	service	to	store	your
application	data.	The	server	you	will	use	has	been	created	specifically	for	this	book.

The	CoffeeRun	server	provides	a	RESTful	web	service.	“REST”	stands	for
“representational	state	transfer,”	which	is	a	style	of	web	service	that	relies	on	HTTP	verbs
(GET,	POST,	PUT,	DELETE)	and	URLs	that	identify	resources	on	the	server.

Frequently,	the	URL	path	(the	part	that	comes	after	the	server	name)	will	refer	either	to	a
collection	of	things	(such	as	/coffeeorders)	or	to	individual	things,	specified	by	an	ID
(such	as	/coffeeorders/[customer	email]).

This	difference	affects	how	the	HTTP	verbs	apply.	For	example,	when	working	with	a
collection,	a	GET	request	retrieves	a	list	of	all	items	in	the	collection.	With	an	individual
item,	a	GET	request	retrieves	all	of	the	details	for	that	item.

The	URL	and	HTTP	verb	patterns	are	summarized	in	Table	13.2.

Table	13.2		Example	of	RESTful	URL	and	HTTP	verb	patterns

URL	Path GET POST PUT DELETE

/coffeeorders
list	all
records

create	one
record - delete	all

records

/coffeeorders/a@b.com
get	the
record - update	the

record
delete	the
record

The	RemoteDataStore	Module
In	a	moment,	you	will	create	a	new	module	called	RemoteDataStore.	The	job	of
RemoteDataStore	will	be	to	talk	to	a	server	on	behalf	of	the	rest	of	the	application.	It
will	have	all	the	same	methods	as	DataStore	–	add,	get,	getAll,	and	remove	–
which	it	will	use	to	communicate	with	the	server	(Figure	13.2).

Figure	13.2		DataStore	vs	RemoteDataStore

You	will	be	able	to	use	an	instance	of	RemoteDataStore	in	place	of	DataStore
without	having	to	change	your	Truck,	FormHandler,	or	CheckList	modules.	(You
will	not	be	deleting	your	DataStore	module,	though.	You	might	want	to	create	a	future
enhancement	allowing	CoffeeRun	to	switch	between	the	two	storage	modules	based	on
whether	the	app	is	running	online	or	offline.)

RemoteDataStore’s	methods	will	communicate	asynchronously	with	the	server	by
sending	a	network	request	in	the	background.	When	the	browser	receives	the	response
from	the	server,	it	has	an	opportunity	to	invoke	a	callback.

Each	of	RemoteDataStore’s	methods	will	accept	a	function	argument	that	will	be
invoked	after	the	response	arrives	with	any	data	from	the	server.

Create	a	new	scripts/remotedatastore.js	file	and	add	a	<script>	tag	for	it	in
index.html.
...

				<script	src="scripts/validation.js"	charset="utf-8"></script>

				<script	src="scripts/checklist.js"	charset="utf-8"></script>

				<script	src="scripts/formhandler.js"	charset="utf-8"></script>

				<script	src="scripts/remotedatastore.js"	charset="utf-8"></script>

				<script	src="scripts/datastore.js"	charset="utf-8"></script>

				<script	src="scripts/truck.js"	charset="utf-8"></script>

				<script	src="scripts/main.js"	charset="utf-8"></script>

		</body>

</html>

Save	index.html.	In	remotedatastore.js,	import	the	App	namespace	and
jQuery,	then	create	an	IIFE	module	with	a	constructor	named	RemoteDataStore.	The
constructor	should	accept	an	argument	for	a	remote	server	URL	and	throw	an	error	if	a

URL	is	not	passed	in.	At	the	end	of	the	module	definition,	export	the
RemoteDataStore	to	the	App	namespace:
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	$	=	window.jQuery;

		function	RemoteDataStore(url)	{

				if	(!url)	{

						throw	new	Error('No	remote	URL	supplied.');

				}

				this.serverUrl	=	url;

		}

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

})(window);

Sending	Data	to	the	Server
The	first	method	you	will	create	is	the	add	method	to	store	customer	order	data	on	the
remote	web	service.

Add	a	prototype	method	to	RemoteDataStore.	Like	DataStore’s	add	method,	it
will	accept	arguments	called	key	and	val.	Note	that	it	is	not	required	for	you	to	use	the
same	parameter	names,	but	it	is	good	practice	to	keep	them	consistent.
...

		function	RemoteDataStore(url)	{

				...

		}

		RemoteDataStore.prototype.add	=	function	(key,	val)	{

				//	Code	will	go	here

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Using	jQuery’s	$.post	method

Inside	the	RemoteDataStore	module,	you	will	use	jQuery’s	$.post	method.	This
method	sends	a	POST	request	in	the	background	as	an	XMLHttpRequest	object
(Figure	13.3).

Figure	13.3		RemoteDataStore	uses	jQuery	for	Ajax

The	$.post	method	only	requires	two	pieces	of	information:	the	URL	of	the	server	to
send	the	request	to	and	what	data	to	include.

In	remotedatastore.js,	update	the	body	of	the	add	method	so	that	it	calls
$.post,	passing	it	this.serverUrl	and	the	val.
...

		RemoteDataStore.prototype.add	=	function	(key,	val)	{

		//	Code	will	go	here

				$.post(this.serverUrl,	val);

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Notice	that	the	key	argument	is	not	used.	It	is	kept	as	part	of	the	method	declaration	so

that	the	add	method	of	RemoteDataStore	is	identical	to	the	add	method	of
DataStore.	Both	take	the	coffee	order	information	as	the	second	argument.	For	the
RemoteDataStore,	this	is	the	crucial	part.

Adding	a	callback

Like	many	jQuery	methods,	$.post	can	accept	additional,	optional	arguments.	You	are
going	to	pass	it	a	callback	function	as	a	third	argument.	When	the	response	arrives	from
the	server,	this	function	will	be	called	and	the	data	in	the	response	will	be	passed	to	it.

This	is	similar	to	the	event	handling	code	you	have	written	–	you	register	a	function	to	run
at	some	point	in	the	future.	When	handling	events,	this	point	is	something	like	a	mouse
click	or	a	form	submission.	When	handling	remote	data,	it	is	the	the	arrival	of	a	response
from	the	server.

Add	an	anonymous	function	as	the	third	argument	to	$.post.	This	anonymous	function
should	expect	an	argument,	which	you	will	label	serverResponse.	Print	this
serverResponse	to	the	console	using	console.log.
...

		RemoteDataStore.prototype.add	=	function	(key,	val)	{

				$.post(this.serverUrl,	val,	function	(serverResponse)	{

						console.log(serverResponse);

				});

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Now	$.post	knows	three	things:	who	to	talk	to,	what	to	say,	and	what	to	do	with	the
information	it	gets	back	in	the	response.

After	you	save	these	changes	to	remotedatastore.js,	start	browser-sync	and	open
the	console	in	your	browser.	Instantiate	a	RemoteDataStore	object	with	the	URL
shown	below,	which	is	the	address	of	the	test	server	created	for	this	book.	(Once	again,
this	line	is	broken	in	order	to	fit	on	the	page;	enter	it	on	one	line.)
var	remoteDS	=	new	App.RemoteDataStore

				("http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders");

Now	invoke	its	add	method,	passing	it	some	test	data:
remoteDS.add('a@b.com',	{emailAddress:	'a@b.com',	coffee:	'espresso'});

In	the	console,	look	at	what	was	printed	from	your	console.log	statement
(Figure	13.4).

Figure	13.4		Console	showing	result	of	calling	RemoteDataStore.add

The	object	in	the	console’s	log	statement	contains	some	information	sent	back	by	the
server	in	its	response:	the	coffee	and	emailAddress	information,	in	addition	to	some
bookkeeping	data	that	will	vary	from	server	to	server.

Inspecting	the	Ajax	request	and	response

In	the	DevTools,	open	the	network	panel	by	clicking	Network	in	the	menu	at	the	top
(between	Sources	and	Timeline).	This	panel	shows	a	list	of	requests	that	your	browser	has
made	and	lets	you	inspect	each	of	them	for	more	information	(Figure	13.5).

Figure	13.5		Viewing	Ajax	requests	in	the	network	panel

Your	network	panel	will	likely	have	many	network	requests	in	the	list.	Clear	it	out	by
clicking	the	 	icon	near	the	upper	left	of	the	DevTools.	Then	activate	the	console	drawer
at	the	bottom	so	you	can	see	the	console	as	well	as	the	network	panel.	You	can	do	this	by

pressing	the	Escape	key	on	your	keyboard	or	by	clicking	the	 	icon	in	the	upper	right.
This	will	open	a	menu	with	the	option	Show	console.

The	console	drawer	will	appear	at	the	bottom	of	the	DevTools	(Figure	13.6).

Figure	13.6		Console	drawer	open	below	the	network	panel

In	the	console,	enter	the	following:
var	remoteDS	=	new	App.RemoteDataStore

				("http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders");

remoteDS.add('a@b.com',	{emailAddress:	'a@b.com',	coffee:	'espresso'});

You	will	see	a	new	entry	in	the	network	panel	(Figure	13.7).

Figure	13.7		Ajax	request	in	network	panel

To	find	out	more	about	the	request,	click	on	its	entry	(Figure	13.8).	You	may	find	it	easier

to	view	the	details	if	you	hide	the	console	drawer.

Figure	13.8		Request	details

The	details	include	some	general	information	about	the	request	at	the	top	and	the	form
data	at	the	bottom.	In	the	middle	are	panes	that	show	the	request	and	response	headers.
Headers	are	metadata	and	options	that	have	been	specified	for	the	request	and	response.

Of	all	this	data,	the	status	code	(in	the	General	pane)	and	the	Form	Data	pane	are	usually	the
most	useful	while	developing	and	debugging	Ajax	requests.

Retrieving	Data	from	the	Server
Your	RemoteDataStore	module	can	save	individual	coffee	orders	to	the	server.	The
next	thing	to	do	is	add	a	getAll	prototype	method	so	that	it	can	retrieve	all	orders	from
the	server.	Get	it	started	in	remotedatastore.js:
...

		RemoteDataStore.prototype.add	=	function	(key,	val)	{

				...

		};

		RemoteDataStore.prototype.getAll	=	function	()	{

				//	Code	will	go	here

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Next	you	will	add	a	call	to	jQuery’s	$.get	method.	Like	$.post,	you	will	pass	it	the
server	URL.	But	you	will	not	pass	it	any	data,	because	you	are	retrieving	information
instead	of	saving	information.	You	will	need	to	pass	it	a	function	argument	so	that	it
knows	what	to	do	with	the	data	when	it	comes	back	from	the	server.

Call	$.get	in	RemoteDataStore.prototype.getAll.
...

		RemoteDataStore.prototype.getAll	=	function	()	{

				//	Code	will	go	here

				$.get(this.serverUrl,	function	(serverResponse)	{

						console.log(serverResponse);

				});

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Save	and	return	to	the	DevTools	in	the	browser.

Inspecting	the	response	data

In	the	console,	instantiate	a	RemoteDataStore	with	the	same	URL	as	before.	(Pro	tip:
Instead	of	re-typing	the	very	long	line	with	the	URL,	you	can	use	the	up	and	down	arrow
keys	to	cycle	through	statements	you	have	entered	into	the	console.)	Then	call	its	getAll
method:
var	remoteDS	=	new	App.RemoteDataStore

				("http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders");

remoteDS.getAll();

In	the	network	panel	of	the	DevTools,	you	will	see	that	the	GET	request	went	out.	It	should
return	within	a	few	dozen	milliseconds.	Some	coffee	order	info	(from	data	preloaded	on
the	server)	will	appear	in	the	console	(Figure	13.9).

Figure	13.9		Inspecting	the	response	from	getAll

You	may	see	slightly	different	results,	depending	on	what	has	been	added	to	the	server.
However,	getting	any	result	shows	that	you	are	successfully	retrieving	data	from	the
server.

Adding	a	callback	argument

You	can	retrieve	the	data	from	the	server,	but	you	cannot	return	it	from	getAll.	This	is
because	getAll	only	makes	the	initial	Ajax	request;	it	does	not	handle	the	response.

Instead,	you	pass	a	response	handling	callback	to	$.get.	Your	response	handling
callback	will	work	like	the	event	handling	callbacks	you	have	written	–	in	both	cases,	the
callback	should	expect	to	receive	an	argument.	This	means	that	the	response	data	is	only
available	inside	the	body	of	the	callback.	How	will	you	access	it	outside	of	that	callback?

If	you	pass	getAll	a	function	argument,	you	can	call	that	function	inside	the	$.get
callback.	There,	you	have	access	to	both	the	function	argument	and	the	server	response.

Add	the	function	argument	and	call	in	remotedatastore.js:
...

		RemoteDataStore.prototype.getAll	=	function	(cb)	{

				$.get(this.serverUrl,	function	(serverResponse)	{

						console.log(serverResponse);

						cb(serverResponse);

				});

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

The	getAll	method	retrieves	all	the	coffee	orders	on	the	remote	server	and	passes	them

to	the	callback	cb	function	that	is	passed	in.

You	also	need	to	implement	the	get	method,	which	retrieves	a	single	coffee	order	by	the
customer	email	address.	Like	getAll,	it	will	accept	a	function	argument,	which	it	will
call	and	pass	the	retrieved	coffee	order.

Add	this	implementation	of	get	to	remotedatastore.js:
...

		RemoteDataStore.prototype.getAll	=	function	(cb)	{

				...

		};

		RemoteDataStore.prototype.get	=	function	(key,	cb)	{

				$.get(this.serverUrl	+	'/'	+	key,	function	(serverResponse)	{

						console.log(serverResponse);

						cb(serverResponse);

				});

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

Save	your	changes	to	remotedatastore.js.	Enter	the	following	code	in	the	console,
passing	an	empty	anonymous	function	to	remoteDS.get.	(It	is	expecting	a	function
argument,	but	you	only	want	to	take	it	for	a	quick	test.)
var	remoteDS	=	new	App.RemoteDataStore

				("http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders");

remoteDS.get('a@b.com',	function	()	{});

Your	console	will	look	something	like	Figure	13.10.

Figure	13.10		Testing	RemoteDataStore.prototype.get

Deleting	Data	from	the	Server
Using	Ajax,	you	can	now	save	orders	to	the	server	and	retrieve	orders	from	the	server.	The
last	thing	to	do	is	to	delete	orders	from	the	server	when	they	are	delivered.

To	do	this,	you	will	send	an	HTTP	request	to	the	URL	for	an	individual	order.	As	you	did
with	RemoteDataStore.prototype.get,	you	will	use	the	server	URL,	but	you
will	append	a	slash	and	the	customer’s	email	address.

You	will	be	sending	the	server	a	DELETE	request.	DELETE	is	one	of	the	HTTP	verbs.	The
server	knows	to	remove	the	data	associated	with	that	customer’s	email	address	if	it
receives	a	DELETE	request	at	that	URL.

Using	jQuery’s	$.ajax	method

jQuery	provides	the	$.get	and	$.post	methods	as	a	convenience	because	these	are	the
two	most	common	HTTP	verbs	used.	For	example,	a	GET	request	is	used	whenever	the
browser	asks	for	an	HTML,	CSS,	JavaScript,	or	image	file	(among	others).	A	POST	request
is	used	most	often	when	a	form	is	submitted.

jQuery	does	not	provide	a	convenience	method	for	sending	DELETE	requests	via	Ajax.
Instead,	you	will	need	to	use	the	$.ajax	method.	($.get	and	$.post	actually	call
$.ajax	for	you,	specifying	GET	and	POST	as	the	HTTP	verbs.)

In	remotedatastore.js,	add	the	remove	prototype	method.	In	it,	call	the	$.ajax
method,	passing	it	two	arguments.	The	first	argument	is	an	individual	coffee	order’s	URL,
made	up	of	the	server	URL,	a	slash,	and	the	key	(the	customer’s	email	address).	The
second	argument	is	an	object	that	contains	the	options,	or	settings,	for	the	Ajax	request.
The	only	option	you	need	to	specify	for	the	remove	method	is	that	the	type	is	DELETE.
...

		RemoteDataStore.prototype.get	=	function	(key,	cb)	{

				...

		};

		RemoteDataStore.prototype.remove	=	function	(key)	{

				$.ajax(this.serverUrl	+	'/'	+	key,	{

						type:	'DELETE'

				});

		};

		App.RemoteDataStore	=	RemoteDataStore;

		window.App	=	App;

...

(There	are	many	options	available	for	Ajax	requests,	which	you	can	read	about	at
api.jquery.com/jquery.ajax.)

Save	and	return	to	the	console.	Instantiate	a	new	RemoteDataStore	and	invoke	the
remove	method.	Pass	it	the	email	address	for	the	test	orders	you	have	created.	Finally,
call	getAll	to	confirm	that	it	is	no	longer	included	in	the	orders	returned	from	the	server.
var	remoteDS	=	new	App.RemoteDataStore

				("http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders");

remoteDS.remove('a@b.com');

remoteDS.getAll();

If	you	inspect	the	response	from	the	server	for	the	DELETE	request,	you	can	see	that	the

http://api.jquery.com/jquery.ajax/

server	sends	back	information	about	what	it	did	(Figure	13.11).	(As	we	mentioned	earlier,
other	servers	may	provide	different	information	in	the	response.)

Figure	13.11		Inspecting	the	response	from	a	DELETE	request

Replacing	DataStore	with	RemoteDataStore
Your	RemoteDataStore	module	is	complete.	It	is	time	to	replace	your	DataStore
instance	with	a	RemoteDataStore	instance.

Open	main.js.	Begin	by	importing	RemoteDataStore	from	the	App	namespace.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	CHECKLIST_SELECTOR	=	'[data-coffee-order="checklist"]';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	RemoteDataStore	=	App.RemoteDataStore;

		var	FormHandler	=	App.FormHandler;

...

Also,	add	a	new	variable	called	SERVER_URL	and	assign	it	a	string	with	the	URL	of	the
CoffeeRun	test	server.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	CHECKLIST_SELECTOR	=	'[data-coffee-order="checklist"]';

		var	SERVER_URL	=	'http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders';

		var	App	=	window.App;

		var	Truck	=	App.Truck;

		var	DataStore	=	App.DataStore;

		var	RemoteDataStore	=	App.RemoteDataStore;

...

Next,	create	a	new	instance	of	RemoteDataStore,	passing	it	SERVER_URL.
...

		var	RemoteDataStore	=	App.RemoteDataStore;

		var	FormHandler	=	App.FormHandler;

		var	Validation	=	App.Validation;

		var	CheckList	=	App.CheckList;

		var	remoteDS	=	new	RemoteDataStore(SERVER_URL);

		var	webshim	=	window.webshim;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());

		window.myTruck	=	myTruck;

...

Finally,	instead	of	passing	the	Truck	constructor	a	new	instance	of	DataStore,	pass	it
remoteDS.	Because	DataStore	and	RemoteDataStore	have	methods	with	the
same	names	and	take	(mostly)	the	same	arguments,	this	change	will	work	seamlessly.
...

		var	RemoteDataStore	=	App.RemoteDataStore;

		var	FormHandler	=	App.FormHandler;

		var	Validation	=	App.Validation;

		var	CheckList	=	App.CheckList;

		var	remoteDS	=	new	RemoteDataStore(SERVER_URL);

		var	webshim	=	window.webshim;

		var	myTruck	=	new	Truck('ncc-1701',	new	DataStore());	remoteDS);

		window.myTruck	=	myTruck;

...

Save	your	changes	and	go	back	to	the	browser.	Enter	some	coffee	order	information	and
submit	the	form.	Keep	the	network	panel	open	while	you	do	so.	You	should	see	network
transactions	for	every	coffee	order	you	add	through	the	form	or	deliver	via	the	checklist
(Figure	13.12).

Figure	13.12		Saving	coffee	orders	to	the	remote	server

Congratulations!	CoffeeRun	is	fully	functional	and	is	integrated	with	a	remote	web
service.

The	next	chapter	is	the	final	one	for	CoffeeRun.	It	does	not	add	any	new	features.	Instead,
it	focuses	on	refactoring	your	existing	code	so	you	can	learn	a	new	pattern	for	working
with	asynchronous	code.

Silver	Challenge:	Validating	Against	the	Remote
Server
Your	validation	code	currently	does	a	simple	domain	check.	Update	your	validation	code
so	that	it	also	checks	whether	an	email	address	has	already	been	used	for	an	order	that
exists	on	the	server.	Prevent	the	form	from	being	submitted	if	that	address	has	been	used
and	provide	an	appropriate	validation	warning.

You	may	want	to	open	a	second	browser	window	for	CoffeeRun	and	enter	different	coffee
orders	in	the	two	windows.

Pay	attention	to	how	often	a	request	is	sent	to	the	server	when	doing	this	validation	check.
(You	can	see	these	in	the	DevTools	network	panel.)	Can	you	find	a	good	way	to	minimize
the	number	of	requests?

For	the	More	Curious:	Postman
One	of	the	best	tools	for	sending	test	requests	to	a	server	is	Postman,	a	free	plug-in	for
Chrome.	It	lets	you	build	HTTP	requests	and	specify	the	HTTP	verbs,	form	data,	headers,
and	user	credentials	(Figure	13.13).

Figure	13.13		The	Postman

Postman	is	an	indispensable	tool	for	exploring	an	API	before	you	write	your	server
communication	code.	Download	it	from	the	Chrome	web	store,	chrome.google.com/
webstore.	(Search	for	“Postman”	to	find	it.)

https://chrome.google.com/webstore/

14	
Deferreds	and	Promises

In	CoffeeRun,	your	modular	code	has	helped	you	avoid	the	dreaded	“spaghetti	code”	that
can	easily	happen	when	you	mix	event-handling	(UI)	code	with	your	application’s	internal
logic.

Your	modules	interact	via	function	arguments,	also	known	as	callbacks.	Callbacks	are	a
fine	solution	for	situations	in	which	you	have	code	that	only	depends	on	a	single,
asynchronous	step.	Figure	14.1	shows	a	simplified	version	of	one	asynchronous	flow	from
CoffeeRun.

Figure	14.1		Asynchronous	flow	for	adding	a	coffee	order

What	happens	when	you	have	many	dependent	asynchronous	steps?	One	option	is	to	nest
lots	of	callbacks,	but	this	quickly	becomes	unwieldy	and	dangerous.	With	a	simplified
version	of	your	submit	handler	code	that	does	extra	error	checking,	that	approach	might
look	like	this:
formHandler.addSubmitHandler(function	(data)	{

		try	{

				myTruck.createOrder(function	(error)	{

						if	(error)	{

								throw	new	Exception(error)

						}	else	{

								try	{

										saveOnServer(function	(error)	{

												if	(error)	{

														throw	new	Exception({message:	'server	error'});

												}	else	{

														try	{

																checkList.addRow();

														}	catch	(e2)	{

																handleDomError(e2);

														}

												}

										})

								}	catch	(e)	{

										handleServerError(e,	function	()	{

												//	Try	adding	the	row	again

												try	{

														checkList.addRow();

												}	catch	(e3)	{

														handleDomError(e3);

												}

										});

								}

						}

				});

		}	catch	(e)	{

				alert('Something	bad	happened.');

		}

});

Promises,	which	you	will	learn	about	in	this	chapter,	are	a	better	solution.	That	same
series	of	steps	might	be	expressed	as	a	chain	of	Promises	like	this:
formHandler.addSubmitHandler()

		.then(myTruck.createOrder)

		.then(saveOnServer)

		.catch(handleServerError)

		.then(checkList.addRow)

		.catch(handleDomError);

Promises	provide	a	way	to	architect	very	complex	asynchronous	code	in	a	manageable
way,	and	in	this	chapter	you	will	use	them	to	simplify	the	architecture	of	CoffeeRun.
Promises	are	a	relatively	new	feature,	but	they	are	well	supported	in	recent	browsers,
including	Chrome.

In	CoffeeRun,	you	are	mainly	interested	in	performing	the	next	step	if	the	current	one
succeeds	without	errors.	Promises	make	this	simple.	Instead	of	relying	on	callback
arguments,	you	will	return	Promise	objects,	which	will	let	you	decouple	your	modules
even	further.

Promises	and	Deferreds
Promise	objects	are	always	in	one	of	three	states:	pending,	fulfilled,	or	rejected
(Figure	14.2).

Figure	14.2		Three	states	of	a	Promise	object

Every	Promise	object	has	a	then	method	that	is	triggered	when	the	Promise	becomes
fulfilled.	You	can	call	then	and	pass	it	a	callback;	when	the	Promise	is	fulfilled,	the
callback	is	invoked	and	passed	whatever	value	the	Promise	received	when	doing	its
asynchronous	work.

You	can	also	chain	multiple	then	calls	together.	Instead	of	writing	functions	that	accept
and	then	invoke	callbacks,	it	is	better	to	return	Promise	objects	and	let	the	caller	chain	a
then	off	of	that	Promise.

You	are	going	to	start	with	jQuery’s	Deferred	object,	which	works	similarly	to	a	Promise
for	simple	use	cases.

jQuery’s	$.ajax	methods	(including	$.post	and	$.get)	return	a	Deferred.
Deferred	objects	have	methods	that	let	you	register	callbacks	for	two	of	their	states:

fulfilled	and	rejected.	You	are	going	to	start	by	updating	RemoteDataStore	so	that	it
returns	the	Deferreds	produced	by	jQuery’s	Ajax	methods.	Later,	you	will	modify	your
other	modules	to	register	callbacks	with	the	Deferreds.

Returning	Deferred
Take	advantage	of	the	Deferred	objects	returned	by	jQuery’s	$.ajax	methods.	In
remotedatastore.js,	update	the	prototype	methods	so	that	they	return	the	result	of
calling	$.get,	$.post,	and	$.ajax.
...

		RemoteDataStore.prototype.add	=	function	(key,	val)	{

				return	$.post(this.serverUrl,	val,	function	(serverResponse)	{

						console.log(serverResponse);

				});

		};

		RemoteDataStore.prototype.getAll	=	function	(cb)	{

				return	$.get(this.serverUrl,	function	(serverResponse)	{

						console.log(serverResponse);

						cb(serverResponse);

				});

		};

		RemoteDataStore.prototype.get	=	function	(key,	cb)	{

				return	$.get(this.serverUrl	+	'/'	+	key,	function	(serverResponse)	{

						console.log(serverResponse);

						cb(serverResponse);

				});

		};

		RemoteDataStore.prototype.remove	=	function	(key)	{

				return	$.ajax(this.serverUrl	+	'/'	+	key,	{

						type:	'DELETE'

				});

		};

...

Because	they	now	return	the	Deferred	produced	by	jQuery’s	Ajax	methods,	it	is	not
absolutely	necessary	for	get	and	getAll	to	accept	callbacks.	To	account	for	the
possibility	of	no	callback,	add	an	if	statement	to	check	that	cb	was	passed	in	before
invoking	it.
...

		RemoteDataStore.prototype.getAll	=	function	(cb)	{

				return	$.get(this.serverUrl,	function	(serverResponse)	{

						if	(cb)	{

								console.log(serverResponse);

								cb(serverResponse);

						}

				});

		};

		RemoteDataStore.prototype.get	=	function	(key,	cb)	{

				return	$.get(this.serverUrl	+	'/'	+	key,	function	(serverResponse)	{

						if	(cb)	{

								console.log(serverResponse);

								cb(serverResponse);

						}

				});

		};

...

Save	remotedatastore.js.	Since	the	RemoteDataStore	methods	return
Deferreds,	you	will	need	to	update	the	Truck	methods	to	do	the	same.	For	now,	you	will
focus	on	createOrder	and	deliverOrder.

Open	truck.js	and	add	a	return	to	these	two	methods	where	you	call	them	on
this.db.
...

		Truck.prototype.createOrder	=	function	(order)	{

				console.log('Adding	order	for	'	+	order.emailAddress);

				return	this.db.add(order.emailAddress,	order);

		};

		Truck.prototype.deliverOrder	=	function	(customerId)	{

				console.log('Delivering	order	for	'	+	customerId);

				return	this.db.remove(customerId);

		};

...

Save	truck.js.	Truck	now	returns	the	Deferreds	that	RemoteDataStore
produces.	When	using	Promises	and	Deferreds,	it	is	a	best	practice	to	return	them	from
your	functions.	Returning	them	lets	any	object	that	calls	createOrder	or
deliverOrder	register	callbacks	that	are	triggered	when	the	asynchronous	work	is
finished.

In	the	next	section,	you	will	do	just	that.

Registering	Callbacks	with	then
$.ajax	returns	a	Deferred,	which	has	a	then	method.	The	then	method	registers	a
callback	that	is	run	when	the	Deferred	is	resolved.	When	the	callback	is	invoked,	it	is
passed	the	value	sent	back	in	the	server	response	(Figure	14.3).

Figure	14.3		Deferred	object	invokes	callbacks	registered	with	then

Start	with	a	simple	usage	of	then.	In	main.js,	your	submit	handler	calls
createOrder	and	addRow.	Change	this	so	that	addRow	is	registered	as	a	callback	of
createOrder.

Open	main.js	and	update	the	call	to	formHandler.addSubmitHandler.	Chain	a
.then	to	the	invocation	of	createOrder.	Pass	it	a	callback	that	runs
checkList.addRow.
...

		formHandler.addSubmitHandler(function	(data)	{

				myTruck.createOrder.call(myTruck,	data);

						.then(function	()	{

								checkList.addRow.call(checkList,	data);

						});

		});

...

Instead	of	invoking	addRow	immediately	after	createOrder,	you	are	making
addRow	dependent	on	createOrder	completing	without	errors	or	exceptions.

Handling	Failures	with	then
then	accepts	a	second	argument,	which	is	invoked	when	the	Deferred	shifts	to	the
rejected	state.	To	see	this	in	action,	add	a	second	function	argument	(making	sure	to	add	a
comma	between	the	two	function	arguments)	to	formHandler.addSubmitHandler
in	main.js.	Inside	of	this	function,	show	an	alert	with	a	simple	error	message.
...

		formHandler.addSubmitHandler(function	(data)	{

				myTruck.createOrder.call(myTruck,	data)

						.then(function	()	{

								checkList.addRow.call(checkList,	data);

						},

						function	()	{

								alert('Server	unreachable.	Try	again	later.');

						}

);

		});

...

At	the	top	of	main.js,	misspell	the	server	name	so	that	Ajax	requests	fail.	(This	change
will	only	be	temporary,	so	you	may	want	to	simply	cut	a	section	out	of	the	URL	that	you
can	paste	back	in	later.)
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	CHECKLIST_SELECTOR	=	'[data-coffee-order="checklist"]';

		var	SERVER_URL	=	'http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders/';

		var	App	=	window.App;

...

Save	your	changes,	make	sure	browser-sync	is	running,	and	open	CoffeeRun	in	the
browser.	Fill	out	the	form.	You	should	see	an	alert	pop	up	when	you	submit	it
(Figure	14.4).

Figure	14.4		Alert	shown	when	Ajax	call	fails

Restore	the	SERVER_URL	to	http://coffeerun-v2-rest-
api.herokuapp.com/api/coffeeorders/.	You	can	also	delete	the	function
argument	that	shows	the	alert.
(function	(window)	{

		'use	strict';

		var	FORM_SELECTOR	=	'[data-coffee-order="form"]';

		var	CHECKLIST_SELECTOR	=	'[data-coffee-order="checklist"]';

		var	SERVER_URL	=	'http://coffeerun-v2-rest-api.herokuapp.com/api/coffeeorders/';

		...

		formHandler.addSubmitHandler(function	(data)	{

				myTruck.createOrder.call(myTruck,	data)

						.then(function	()	{

								checkList.addRow.call(checkList,	data);

						},

						function	()	{

								alert('Server	unreachable.	Try	again	later.');

						}

);

		});

...

Using	then	to	register	callbacks	maps	onto	the	way	Promises	work.	If	the	Promise
changes	state	to	fulfilled,	one	set	of	callbacks	is	run.	If	the	Promise	changes	state	to
rejected,	the	other	set	of	callbacks	is	run.

Using	Deferreds	with	Callback-Only	APIs
Sometimes	you	will	need	to	coordinate	your	Deferred-based	code	with	callback-only
APIs,	such	as	event	listeners.

Currently,	formHandler.addSubmitHandler	resets	the	form	and	focuses	on	the
first	element	–	no	matter	what	happens	with	the	Ajax	request.	However,	you	only	want
those	things	to	happen	if	the	Ajax	request	is	successful.	Put	another	way,	you	only	want
those	things	to	happen	if	the	Deferred	is	fulfilled.

How	can	you	know	whether	the	Deferred	is	fulfilled?	Your	function	argument	to
addSubmitHandler	can	return	the	Deferred,	and	inside	of	addSubmitHandler
you	can	chain	a	.then	call	to	the	Deferred.

In	main.js,	add	a	return	keyword	to	the	callback.
...

		formHandler.addSubmitHandler(function	(data)	{

				return	myTruck.createOrder.call(myTruck,	data)

						.then(function	()	{

								checkList.addRow.call(checkList,	data);

						});

		});

...

Save	main.js.	Next,	open	formhandler.js,	find	the	addSubmitHandler
method,	and	locate	the	call	to	the	anonymous	function,	fn.	Because	that	anonymous
function	now	returns	a	Deferred,	you	can	chain	a	call	to	.then	on	the	end	of	it.	Use
.then	to	register	a	callback	that	resets	the	form	and	focuses	on	the	first	element.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				console.log('Setting	submit	handler	for	form');

				this.$formElement.on('submit',	function	(event)	{

						event.preventDefault();

						var	data	=	{};

						$(this).serializeArray().forEach(function	(item)	{

								data[item.name]	=	item.value;

								console.log(item.name	+	'	is	'	+	item.value);

						});

						console.log(data);

						fn(data);

						.then(function	()	{

								this.reset();

								this.elements[0].focus();

						});

				});

		};

...

Before,	you	had	three	sequential	statements:	invoke	the	callback,	reset	the	form,	and	focus
on	the	first	form	element.	Now,	you	have	one	statement	that	depends	on	the	result	of	the
previous	statement.	You	invoke	the	callback	and	–	if	the	promised	work	finishes	execution
normally,	without	encountering	an	exception	–	then	you	reset	the	form	and	focus	on	the
first	form	element.

There	is	just	one	concern.	When	you	register	a	callback	function	with	.then,	that
callback	function	has	a	new	scope.	You	need	to	.bind	that	anonymous	function	so	that
the	value	of	this	is	set	to	the	FormHandler	instance.

Make	this	change	in	formhandler.js.
...

		FormHandler.prototype.addSubmitHandler	=	function	(fn)	{

				...

						fn(data)

								.then(function	()	{

										this.reset();

										this.elements[0].focus();

								}.bind(this));

				});

		};

...

Save	formhandler.js.

Similarly,	you	only	want	to	remove	an	item	from	the	checklist	if	the	call	to
Truck.prototype.deliverOrder	is	successful.

Chain	a	call	to	.then	off	the	function	passed	to	addClickHandler	in
checklist.js.	Remember	to	.bind	the	value	of	this	for	the	anonymous	function.
...

		CheckList.prototype.addClickHandler	=	function	(fn)	{

				this.$element.on('click',	'input',	function	(event)	{

						var	email	=	event.target.value;

						this.removeRow(email);

						fn(email);

								.then(function	()	{

										this.removeRow(email);

								}.bind(this));

				}.bind(this));

		};

...

Save	checklist.js.	Recall	that	you	invoke	addClickHandler	in	main.js:
checkList.addClickHandler(myTruck.deliverOrder.bind(myTruck);

There	is	no	need	to	make	any	changes	to	this	method	call.	Because
Truck.prototype.deliverOrder	is	returning	the	Deferred,
addClickHandler	will	work	as	written.

All	of	your	data	is	remote,	which	means	you	need	to	load	it	and	draw	checklist	items	for
each	coffee	order.	You	can	use	the	Truck.prototype.printOrders	method	along
with	the	CheckList.prototype.addRow	method	to	do	this.

You	will	make	two	changes	to	printOrders.	First,	you	will	update	printOrders	to
work	with	Deferreds.	Then,	you	will	add	a	function	argument	to	printOrders	which	it
will	call	as	it	iterates	through	the	data	to	print.

In	truck.js,	your	code	for	Truck.prototype.printOrders	currently	looks	like
this:
...

		Truck.prototype.printOrders	=	function	()	{

				var	customerIdArray	=	Object.keys(this.db.getAll());

				console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

				customerIdArray.forEach(function	(id)	{

						console.log(this.db.get(id));

				}.bind(this));

		};

...

Update	this	implementation	to	call	and	return	this.db.getAll,	chaining	a	.then	to
it.	Pass	an	anonymous	function	to	.then	and	set	its	this	keyword	using	.bind:
...

		Truck.prototype.printOrders	=	function	()	{

				return	this.db.getAll()

						.then(function	(orders)	{

								var	customerIdArray	=	Object.keys(this.db.getAll());

								console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

								customerIdArray.forEach(function	(id)	{

										console.log(this.db.get(id));

								}.bind(this));

						}.bind(this));

		};

...

Your	anonymous	function	expects	to	receive	an	object	containing	all	of	the	coffee	order
data	retrieved	from	the	server.	Extract	the	keys	from	that	object	and	assign	them	to	the
variable	named	customerIdArray.
...

		Truck.prototype.printOrders	=	function	()	{

				return	this.db.getAll()

						.then(function	(orders)	{

								var	customerIdArray	=	Object.keys(this.db.getAll());	orders);

								console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

								customerIdArray.forEach(function	(id)	{

										console.log(this.db.get(id));

								}.bind(this));

						}.bind(this));

		};

...

Likewise,	change	the	console.log	statement	so	that	it	does	not	call	this.db.get(id).
It	should	use	the	allData	object,	which	already	has	all	of	the	coffee	orders.	You	should
not	make	an	extra	Ajax	call	for	each	item	that	needs	to	be	printed.
...

		Truck.prototype.printOrders	=	function	()	{

				return	this.db.getAll()

						.then(function	(orders)	{

								var	customerIdArray	=	Object.keys(orders);

								console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

								customerIdArray.forEach(function	(id)	{

										console.log(this.db.get(id));	orders[id]);

								}.bind(this));

						}.bind(this));

		};

...

printOrders	should	take	an	optional	function	argument.	You	need	to	check	whether	it
was	passed	in	and,	if	it	was,	invoke	it.	When	you	invoke	it,	you	will	pass	it	the	current
coffee	order	allData[id].
...

		Truck.prototype.printOrders	=	function	(printFn)	{

				return	this.db.getAll()

						.then(function	(orders)	{

								var	customerIdArray	=	Object.keys(orders);

								console.log('Truck	#'	+	this.truckId	+	'	has	pending	orders:');

								customerIdArray.forEach(function	(id)	{

										console.log(orders[id]);

										if	(printFn)	{

												printFn(orders[id]);

										}

								}.bind(this));

						}.bind(this));

		};

...

Save	truck.js.	In	main.js,	invoke	printOrders	and	pass	it
checkList.addRow.	Make	sure	that	addRow	is	bound	to	the	CheckList	instance.
...

		formHandler.addInputHandler(Validation.isCompanyEmail);

		myTruck.printOrders(checkList.addRow.bind(checkList));

		webshim.polyfill('forms	forms-ext');

		webshim.setOptions('forms',	{	addValidators:	true,	lazyCustomMessages:	true	});

})(window);

Save	and	return	to	the	browser.	CoffeeRun	should	show	the	existing	coffee	orders	in	the
checklist.	Manually	reload	to	confirm	that	the	checklist	is	repopulated	each	time.	Inspect
the	network	panel	and	see	that	Ajax	requests	are	taking	place	(Figure	14.5).

Figure	14.5		Drawing	orders	on	page	load

Giving	DataStore	a	Promise
By	returning	Deferreds	from	RemoteDataStore’s	methods,	you	have	a	flexible	way
to	use	the	data	sent	back	from	the	server.

But	you	may	have	noticed	that	RemoteDataStore’s	methods	now	stray	far	away	from
how	DataStore’s	methods	work.	If	you	were	to	swap	a	regular	DataStore	back	in,
you	would	see	that	it	no	longer	works	with	your	application	(Figure	14.6).

Figure	14.6		Uh	oh.	DataStore	is	no	longer	compatible

In	Figure	14.6,	you	can	see	that	instantiating	a	Truck	with	a	regular	DataStore	throws
errors	and	fails	to	work	correctly	with	the	UI.	CoffeeRun	expects	a	Promise-based
DataStore	in	order	to	function	correctly.

To	remedy	this	situation,	you	are	going	to	change	DataStore’s	four	methods	so	that
they	return	Promises.

jQuery’s	Deferred	objects	have	treated	you	well.	However,	because	DataStore	is	not
using	the	jQuery	$.ajax	methods	you	have	been	using	to	access	Deferreds,	you	will
need	to	use	the	native	Promise	constructor	to	create	and	return	Promises.

Creating	and	returning	Promises

In	datastore.js,	you	are	going	to	update	the	add	method.	But	first,	create	a

Promise	variable	and	assign	it	the	value	window.Promise.	While	not	absolutely
necessary,	it	is	a	good	idea	to	continue	this	pattern	of	importing	anything	from	the	global
scope	that	you	will	need	inside	of	your	module.

Inside	the	add	method,	create	a	new	variable	called	promise.	Assign	it	a	new	instance
of	Promise.	Make	sure	to	return	the	promise	variable	at	the	end	of	add.
(function	(window)	{

		'use	strict';

		var	App	=	window.App	||	{};

		var	Promise	=	window.Promise;

		function	DataStore()	{

				this.data	=	{};

		}

		DataStore.prototype.add	=	function	(key,	val)	{

				this.data[key]	=	val;

				var	promise	=	new	Promise();

				return	promise;

		};

...

The	Promise	constructor	needs	a	function	argument.	Pass	it	an	anonymous	function	that
accepts	two	function	arguments,	resolve	and	reject.
...

		DataStore.prototype.add	=	function	(key,	val)	{

				this.data[key]	=	val;

				var	promise	=	new	Promise(function	(resolve,	reject)	{

				});

				return	promise;

		};

...

When	the	Promise	does	its	work,	it	will	invoke	the	anonymous	function	argument	and
pass	it	two	values:	resolve	and	reject.	The	resolve	function	is	invoked	to	change
the	state	of	the	Promise	object	to	fulfilled.	The	reject	function	is	invoked	to	change	the
state	of	the	Promise	object	to	rejected.

Next,	move	the	data	storage	line	(this.data[key]	=	val;)	down	into	the	body	of	the
anonymous	function.	To	make	sure	that	this.data	correctly	refers	to	the	DataStore’s
data	instance	variable,	bind	the	anonymous	function	to	this.
...

		DataStore.prototype.add	=	function	(key,	val)	{

				this.data[key]	=	val;

				var	promise	=	new	Promise(function	(resolve,	reject)	{

						this.data[key]	=	val;

				}.bind(this));

				return	promise;

		};

...

Resolving	a	Promise

At	the	very	end	of	the	anonymous	function,	invoke	resolve	with	no	argument.
...

		DataStore.prototype.add	=	function	(key,	val)	{

				var	promise	=	new	Promise(function	(resolve,	reject)	{

						this.data[key]	=	val;

						resolve(null);

				}.bind(this));

				return	promise;

		};

...

Why	use	null	as	the	argument?	adding	a	value	to	the	DataStore	does	not	produce	a
value,	so	there	is	nothing	for	it	to	resolve	to.	When	you	need	to	explicitly	return	a	non-

value	you	should	use	null.	(You	could	also	use	resolve(val)	to	give	the	next	function	in
the	chain	access	to	the	freshly	stored	value.	For	CoffeeRun,	this	is	not	necessary,	and
therefore	not	included	as	part	of	the	example.)

Promise-ifying	the	other	DataStore	methods

You	could	manually	update	the	other	three	methods	using	this	same	pattern	of	code.	But
instead	of	retyping	all	that	code,	create	a	helper	function	called
promiseResolvedWith	to	create	a	Promise,	resolve	it,	and	return	it.	Update
DataStore.prototype.add	to	use	this	helper.
...

		function	DataStore()	{

				this.data	=	{};

		}

		function	promiseResolvedWith(value)	{

				var	promise	=	new	Promise(function	(resolve,	reject)	{

						resolve(value);

				});

				return	promise;

		}

		DataStore.prototype.add	=	function	(key,	val)	{

				var	promise	=	new	Promise(function	(resolve,	reject)	{

						this.data[key]	=	val;

						resolve(null);

				}.bind(this));

				return	promise;

				return	promiseResolvedWith(null);

		};

...

promiseResolvedWith	is	a	reusable	form	of	the	Promise	code	you	wrote	in	the	add
method.	It	accepts	a	parameter	called	value,	creates	a	new	variable	named	promise,
and	assigns	it	to	a	new	instance	of	Promise.	It	passes	an	anonymous	function	to	the
Promise	constructor	that	accepts	two	arguments:	resolve	and	reject.	Inside	the
anonymous	function,	you	invoke	resolve	and	pass	it	the	value	argument.

In	promiseResolvedWith,	you	do	not	need	to	bind	the	function	argument	to	this,
as	there	are	no	references	to	this	that	need	to	be	maintained.

Update	the	other	methods	to	use	promiseResolvedWith.	Pass	get	and	getAll	the
value	you	were	returning	in	the	non-Promise	version.	Pass	null	to	remove.
...

		DataStore.prototype.get	=	function	(key)	{

				return	this.data[key];

				return	promiseResolvedWith(this.data[key]);

		};

		DataStore.prototype.getAll	=	function	()	{

				return	this.data;

				return	promiseResolvedWith(this.data);

		};

		DataStore.prototype.remove	=	function	(key)	{

				delete	this.data[key];

				return	promiseResolvedWith(null);

		};

...

Finally,	update	main.js	to	use	a	DataStore	instead	of	a	RemoteDataStore.
...

		var	remoteDS	=	new	RemoteDataStore(SERVER_URL);

		var	webshim	=	window.webshim;

		var	myTruck	=	new	Truck('ncc-1701',	remoteDS);	new	DataStore());

		window.myTruck	=	myTruck;

...

After	making	these	changes,	save	your	code	and	take	CoffeeRun	for	another	spin.	You

should	see	that	it	works	correctly	using	DataStore,	but	makes	no	Ajax	requests
(Figure	14.7).

Figure	14.7		CoffeeRun	is	done!

CoffeeRun	has	taken	you	on	quite	a	journey!	Along	the	way,	you	wrote	some	pretty
serious	JavaScript	using	IIFEs,	callbacks,	and	Promises.	You	also	got	a	taste	of	jQuery,
which	you	used	to	manipulate	DOM	elements	and	communicate	with	a	RESTful	web
service.

It	is	time	to	part	ways	with	CoffeeRun	and	move	on.	The	next	app,	Chattrbox,	is	a	full-
stack	chat	application.	You	will	not	only	create	the	front-end	code	but	also	write	the
server.	Do	not	worry	if	this	is	your	first	server	application.	You	will	still	be	using
JavaScript,	just	not	for	the	browser.	Get	ready	to	work	with	Node.js!

Silver	Challenge:	Fallback	to	DataStore
If	you	are	lucky,	you	have	a	nice,	stable	network	connection	all	the	time.	But	you	should
be	prepared	in	case	your	connection	goes	down	while	using	CoffeeRun.

Update	CoffeeRun	so	that	it	uses	a	DataStore	when	its	Ajax	requests	cannot	reach	the
server.

To	make	sure	that	this	is	working,	turn	off	your	computer’s	network	connection	while
loading	and	saving	coffee	orders.

Part	III	
Real-Time	Data

15	
Introduction	to	Node.js

Node.js	is	an	open-source	project	that	lets	you	write	JavaScript	that	runs	outside	the
browser.

When	you	write	JavaScript	for	the	browser,	your	code	is	given	access	to	global	objects
like	the	document	and	window,	as	well	as	other	APIs	and	libraries.	With	Node,	your	code
can	access	the	hard	drive,	databases,	and	the	network	(Figure	15.1).

Figure	15.1		JavaScript	running	in	browser	vs	via	Node

Using	Node,	you	can	create	anything	from	command-line	tools	to	web	servers.	Over	the
next	four	chapters,	you	will	use	Node	to	help	create	a	real-time	chat	application	called
Chattrbox	(Figure	15.2).

Figure	15.2		Chattrbox:	strictly	for	important	conversations

Chattrbox	will	consist	of	two	parts:	a	Node.js	server	and	a	JavaScript	app	running	in	the
browser.	The	browser	will	connect	to	the	Node	server	and	receive	the	HTML,	CSS,	and
JavaScript	files.	At	that	point,	the	JavaScript	app	in	the	browser	will	begin	handling	real-
time	communication	over	WebSockets.	This	process	is	diagrammed	in	Figure	15.3.

Figure	15.3		Network	diagram	of	the	Chattrbox	application

You	will	learn	about	WebSockets	in	the	next	chapter.	This	chapter	focuses	on	getting	you
familiar	with	Node.

Node	and	npm
When	you	installed	Node.js	in	Chapter	1,	you	got	access	to	two	command-line	programs:
node	and	the	Node	package	manager,	npm.	You	may	recall	that	npm	allows	you	to	install
open-source	development	tools,	like	browser-sync.	The	node	program	does	the	work	of
running	programs	written	in	JavaScript.

Most	of	your	work	will	be	with	npm	in	this	chapter.	The	npm	command-line	tool	can
perform	a	variety	of	tasks,	like	installing	third-party	code	that	you	can	incorporate	into
your	project	and	managing	your	project’s	workflow	and	external	dependencies.	In	this
chapter,	you	will	be	using	npm	to:

create	the	package.json	file,	using	npm	init

add	third-party	modules,	using	npm	install	--save

run	frequently	used	tools	saved	in	package.json’s	scripts	section

Node	is	much	more	than	the	node	and	npm	commands.	It	also	includes	a	number	of	useful
modules	that	provide	constructors	to	help	you	do	things	like	work	with	files	and	folders,
communicate	over	a	network,	and	handle	events.	Also,	when	writing	JavaScript	for	Node

you	will	have	access	to	utility	functions	that	facilitate	JavaScript’s	interaction	with	the
Node	module	ecosystem.	For	example,	Node	provides	a	much	simpler	module	pattern	than
the	IIFEs	you	used	for	CoffeeRun.

The	package.json	file	mentioned	above	is	a	file	that	acts	as	your	Node	project’s
manifest.	It	holds	your	project’s	name,	version	number,	description,	and	other	information.
More	important,	it	is	where	you	can	store	configuration	settings	and	commands	for	npm	to
use	when	testing	and	building	your	application.

You	could	create	this	file	by	hand,	but	it	is	much	easier	to	let	npm	do	it	for	you.

npm	init

Create	a	directory	in	your	projects	folder	named	chattrbox.	In	your	terminal	program,
change	to	that	directory	and	run	npm	init	to	have	npm	create	package.json.

npm	will	prompt	you	for	information	about	the	project.	It	will	also	offer	default	answers,
which	are	fine	for	now.	Press	the	Return	key	to	accept	the	defaults	(Figure	15.4).

Figure	15.4		Running	npm	init

Open	the	chattrbox	project	folder	in	Atom.	You	will	see	that	the	package.json	file
was	indeed	created	for	you	(Figure	15.5).

Figure	15.5		package.json	contents	after	npm	init

npm	scripts

In	package.json,	notice	the	section	labeled	"scripts".	This	is	for	commands	that	you
might	need	to	run	again	and	again	while	working	on	your	project.

As	you	build	Chattrbox,	you	will	add	to	the	"scripts"	section	of	package.json	to
make	your	development	workflow	more	efficient.	Create	your	first	npm	workflow	script	by
adding	a	"start"	script	(note	that	you	must	add	a	comma	to	the	end	of	the	"test"	line):
...

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",

				"start":	"node	index.js"

		},

...

This	lets	you	start	your	Node	server	by	running	npm	start	from	the	command	line.

Hello,	World
To	introduce	you	to	the	world	of	writing	JavaScript	outside	the	browser,	you	are	going	to
start	with	a	classic	Hello,	World	program.	Create	a	new	file	named	index.js	within	your
chattrbox	folder	and	type	the	following,	which	we	will	explain	after	you	have	entered
it:
var	http	=	require('http');

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		res.end('<h1>Hello,	World</h1>');

});

server.listen(3000);

On	the	first	line,	you	used	Node’s	built-in	require	function	to	access	the	http	module
included	with	Node.	This	module	provides	a	number	of	tools	for	working	with	HTTP
requests	and	responses,	such	as	the	http.createServer	function.

http.createServer	takes	in	one	argument,	a	function.	This	function	is	called	for
every	HTTP	request.	You	may	recognize	this	as	the	callback	pattern	you	used	with
browser	events	–	except	that	in	this	case	it	is	a	server-side	event	(receiving	an	HTTP
request)	that	triggers	the	callback.

In	your	callback,	you	log	a	message	to	the	console	and	write	some	HTML	text	to	the
response.	In	Node,	it	is	common	to	use	req	and	res	as	the	variable	names	for	HTTP
request	and	response	objects.

Finally,	you	tell	the	server	to	listen	on	port	3000	using	server.listen.	This	is
commonly	referred	to	as	“binding	to	a	port.”

Save	your	files.	To	see	your	Node	server	in	action,	run	the	command	npm	start.	The
terminal	results	are	shown	in	Figure	15.6.

Figure	15.6		Running	index.js	via	npm	start

Next,	open	your	browser	to	http://localhost:3000.	Your	results	will	look	like
Figure	15.7.	(Note	that	in	some	browsers	other	than	Chrome,	you	may	see	your	HTML	as
plain	text.	These	browsers	are	expecting	either	a	doctype	or	an	extra	piece	of	metadata	in
the	response	declaring	that	the	response	should	be	interpreted	as	HTML.	You	will	address
this	as	one	of	the	challenges	at	the	end	of	the	chapter.)

http://localhost:3000

Figure	15.7		Accessing	your	Node	server	in	a	browser

Unlike	when	you	ran	Ottergram	and	CoffeeRun,	there	is	no	JavaScript	to	see	in	the
browser.	By	the	time	you	see	this	page,	your	JavaScript	code	has	already	done	its	work	on
the	server.

Return	to	your	terminal.	You	should	see	that	console.log	printed	Responding	to	a
request	when	the	request	was	received	(Figure	15.8).

Figure	15.8		console.log	when	request	arrives

Adding	an	npm	Script
In	addition	to	letting	you	write	command-line	JavaScript	programs,	Node	gives	you	a	way
to	orchestrate	your	workflow	as	you	develop	these	programs.	It	is	a	powerful	feature	that
you	should	take	advantage	of.	To	see	how	this	works,	you	will	add	a	bit	of	automation	to
your	project.

Take	running	your	server,	for	example.	Every	time	you	want	to	try	something	new	in	your
code,	you	have	to	repeat	a	few	steps:

make	the	change	to	the	code	in	your	editor

switch	to	your	terminal

press	Control-C	to	stop	the	program

run	npm	start	to	start	your	program	again

You	could	write	a	program	to	automate	the	work	of	restarting	your	service.	You	are	in
luck,	though	–	someone	has	already	written	it	for	you,	in	a	module	called	nodemon.
Integrating	nodemon	into	your	workflow	early	on	will	make	writing	your	program	a	much
smoother	experience.

In	the	terminal,	stop	your	program	and	run	the	following	command	to	install	the	nodemon
module:
npm	install	--save-dev	nodemon

You	will	see	the	lines	below,	in	which	npm	is	warning	you	about	some	blank	fields	in	your
package.json	file.	Do	not	be	alarmed	–	just	be	aware	that	npm	is	a	stickler	for	details.
npm	WARN	chattrbox@1.0.0	No	description

npm	WARN	chattrbox@1.0.0	No	repository	field.

Notice	the	--save-dev	option	that	you	used	in	this	npm	install	command.	It	tells	npm	to
help	you	keep	a	list	of	any	third-party	modules	your	application	depends	on.	That	list	is
stored	in	your	package.json	file.	If	necessary,	all	of	the	dependencies	in	that	list	can
be	installed	by	running	the	npm	install	command	(with	no	arguments).	This	means	that	when
you	are	sharing	your	code	you	do	not	need	to	include	all	of	the	third-party	modules	as
well.

If	you	look	in	your	package.json	file,	you	will	see	that	npm	created	a	new
"devDependencies"	section	for	you,	with	an	entry	for	nodemon.
...

		"author":	"",

		"license":	"ISC",

		"devDependencies":	{

				"nodemon":	"^1.9.1"

		}

Now,	update	your	package.json	to	add	another	item	to	the	"scripts"	section:
...

"scripts":	{

		"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",

		"start":	"node	index.js",

		"dev":	"nodemon	index.js"

},

...

In	the	terminal,	restart	your	node	program	via	your	new	npm	script	using	the	command	npm
run	dev.	Note	that	the	command	is	not	simply	npm	dev.	This	differs	from	npm	start	in
that	npm	assumes	that	certain	commands	(like	start)	will	exist.	For	custom	npm	scripts,
you	must	specify	that	you	want	to	run	them.

You	should	see	that	nodemon	is	now	managing	your	node	program	(Figure	15.9).

Figure	15.9		Running	via	npm	run	dev

In	index.js,	change	"Hello,	World"	to	"Hello,	World!!"	and	save	the	changes.
nodemon	notices	and	restarts	your	node	program	automatically	(Figure	15.10).

Figure	15.10		nodemon	restarts	when	your	code	changes

As	you	continue	to	work	with	node	and	npm	in	the	following	chapters,	you	will	periodically
pull	in	a	new	module	to	help	out.

Serving	from	Files
Being	able	to	write	and	run	JavaScript	on	your	server	is	nice.	Most	servers	will	want	to
vend	out	and	process	content	living	in	files,	too.	Your	next	job	is	to	make	your	server	read
files	from	a	subfolder	and	send	them	in	a	response	back	to	the	browser.	This	is	similar	to
what	browser-sync	was	doing	for	you	in	earlier	chapters.

Create	a	new	folder	named	app	inside	of	your	chattrbox	project	folder.	In	it,	create	an
index.html	file	with	the	following	text:
Hello,	File!

You	do	not	need	any	actual	HTML	in	this	file	–	it	only	needs	some	content	that	can	be
read.	Your	project	folder	should	look	like	Figure	15.11.

Figure	15.11		Chattrbox	project	layout

Reading	a	file	with	the	fs	module

In	index.js,	import	the	Node.js	file	system	module,	fs,	and	call	its	readFile	method.
var	http	=	require('http');

var	fs	=	require('fs');

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		res.end('<h1>Hello,	World</h1>');

		fs.readFile('app/index.html',	function	(err,	data)	{

				res.end(data);

		});

});

server.listen(3000);

The	readFile	method	takes	a	file	name	and	a	callback.	Inside	your	callback,	you	sent
the	contents	of	the	file	instead	of	the	HTML	text	using	res.end.

Notice	that	your	callback	accepts	an	err	argument	as	well	as	the	data	from	reading	the

file.	This	is	a	Node.js	programming	convention	that	we	will	discuss	later	in	this	chapter.

nodemon	should	have	restarted	your	program,	so	you	can	go	directly	to	your	browser	and
reload.	In	your	browser,	you	should	see	exactly	what	you	wrote	in	your	index.html
file:
Hello,	File!

This	is	a	good	start,	but	your	chat	application	will	need	to	do	more	than	serve	a	single
HTML	file.	That	HTML	file	may	request	other	CSS	or	JavaScript	files.	To	fulfill	those
requests,	your	node	program	will	need	to	understand	what	file	is	being	requested	and
where	to	look	for	the	requested	file.	You	will	work	on	that	next.

Working	with	the	request	URL

First,	you	need	to	get	the	URL	path	from	the	request	object.	If	the	path	is	just	'/',	it	is
best	to	return	the	index.html	file.	This	is	a	common	convention	from	the	early	days	of
the	web.

Otherwise,	you	should	try	to	return	the	file	the	request	object	is	asking	for.

In	index.js,	update	your	callback	to	check	what	file	the	browser	is	requesting.
var	http	=	require('http');

var	fs	=	require('fs');

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		var	url	=	req.url;

		var	fileName	=	'index.html';

		if	(url.length	>	1)	{

				fileName	=	url.substring(1);

		}

		console.log(fileName);

		fs.readFile('app/index.html',	function	(err,	data)	{

				res.end(data);

		});

});

server.listen(3000);

Using	the	request	object’s	url	property,	you	can	see	whether	the	browser	is	asking	for	the
default	(index.html)	or	another	file.	If	it	is	another	file,	you	call
url.substring(1)	to	strip	off	the	first	character,	which	will	be	a	'/'.

For	now,	you	are	just	logging	the	filename	to	the	console.

After	nodemon	restarts	your	program,	try	going	to	http://localhost:3000/woohoo	or	any
other	path,	including	the	default	'/'	path.	The	results	in	your	terminal	will	look	something
like	Figure	15.12.

Figure	15.12		Logging	the	requested	file	path

(Recall	from	Chapter	2	that	browsers	will	automatically	ask	for	a	favicon.ico	file,	so
you	may	see	a	request	for	it	logged	to	the	terminal	as	well.)

Now	it	is	time	to	make	use	of	this	path	information.

Using	the	path	module

You	could	just	pass	the	fileName	to	fs.readFile,	but	it	is	better	to	use	the	path
module,	which	has	utilities	for	handling	and	transforming	file	paths.	One	small	but
important	reason	for	using	the	module	is	that	some	operating	systems	use	a	forward	slash
and	some	use	a	backslash.	The	path	module	handles	these	differences	with	ease.

Update	index.js	to	import	the	path	module	and	use	it	to	find	the	file	that	was
requested.
var	http	=	require('http');

var	fs	=	require('fs');

var	path	=	require('path');

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		var	url	=	req.url;

		var	fileName	=	'index.html';

		if	(url.length	>	1)	{

				fileName	=	url.substring(1);

		}

		console.log(fileName);

		var	filePath	=	path.resolve(__dirname,	'app',	fileName);

		fs.readFile('app/index.html'filePath,	function	(err,	data)	{

				res.end(data);

		});

});

server.listen(3000);

Test	a	few	filepaths	in	the	browser	to	make	sure	your	application	still	works	the	same.	The
default	path	should	return	index.html,	and	nonexistent	paths	(like	'/woohoo/')	should
show	nothing	and	log	out	their	filename.

Next,	create	a	test.html	file	in	the	app	folder.	Write	the	following	inside	it:
Hola,	Node!

Try	to	access	it	in	the	browser.	Your	node	program	should	return	it	without	any	trouble
(Figure	15.13).

Figure	15.13		Retrieving	test.html

You	have	added	code	that	successfully	serves	a	specific	file	based	on	the	URL	path.	The
next	thing	to	do	is	abstract	out	that	functionality	into	its	own	module.

Creating	a	custom	module

Your	callback	has	(at	least)	two	jobs.	It	figures	out	what	file	is	being	requested,	and	it
reads	that	file	to	send	back	in	the	response.	To	make	the	code	a	bit	more	modular	and
maintainable,	one	of	those	responsibilities	should	be	moved	to	its	own	module.

In	CoffeeRun,	you	declared	modules	in	an	IIFE	that	assigned	a	value	to	a	property	of	the
global	namespace.	Modules	in	Node	programs	work	differently.	You	still	write	your
module	code	in	a	file	by	itself,	but	you	do	not	need	the	IIFE.

Create	a	new	file	called	extract.js	in	the	same	directory	as	your	index.js	(not	in
the	app	directory).	Add	a	function	called	extractFilePath	that	finds	the	appropriate
file.	(This	code	is	very	similar	to	what	you	already	wrote	in	index.js.)
var	path	=	require('path');

var	extractFilePath	=	function	(url)	{

		var	filePath;

		var	fileName	=	'index.html';

		if	(url.length	>	1)	{

				fileName	=	url.substring(1);

		}

		console.log('The	fileName	is:	'	+	fileName);

		filePath	=	path.resolve(__dirname,	'app',	fileName);

		return	filePath;

};

You	have	taken	much	of	the	code	from	index.js	and	placed	it	in	its	own	function,	called

extractFilePath.	Next,	make	the	extractFilePath	function	available	so	that
other	modules	can	import	it	with	require.	To	do	this,	assign	extractFilePath	to	a
global	variable	named	module.exports.	This	is	a	special	variable	provided	by	Node.
Whatever	value	is	assigned	to	it	is	the	value	other	modules	are	able	to	import.	Any	other
variables	or	functions	will	not	be	visible	to	other	modules.
...

		filePath	=	path.resolve(__dirname,	'app',	fileName);

		return	filePath;

};

module.exports	=	extractFilePath;

This	new	line	tells	Node	that	when	you	import	the	extract	module	by	calling
require('./extract'),	the	value	returned	is	the	extractFilePath	function.	Do	that
now	in	index.js.

Using	your	custom	module

Update	index.js	to	use	your	new	extract	module	instead	of	handling	those
responsibilities.
var	http	=	require('http');

var	fs	=	require('fs');

var	path	=	require('path');

var	extract	=	require('./extract');

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		var	url	=	req.url;

		var	fileName	=	'index.html';

		if	(url.length	>	1)	{

				fileName	=	url.substring(1);

		}

		console.log(fileName);

		var	filePath	=	path.resolve(__dirname,	'app',	fileName);

		var	filePath	=	extract(req.url);

		fs.readFile(filePath,	function	(err,	data)	{

				res.end(data);

		});

});

server.listen(3000);

You	imported	your	custom	module	using	the	require	function.	You	assigned	the	value
of	the	module	to	the	new	variable	extract.	Now	you	are	able	to	use	the	extract
function	just	as	you	would	the	extractFilePath	function.

After	nodemon	has	reloaded	your	code,	test	some	URL	paths	and	confirm	that	the	default
index.html	and	test.html	still	load.	Also,	make	sure	that	nonexistent	paths	come
up	as	a	blank	page	and	without	an	error.

Error	Handling
One	last	job	remains.	When	a	file	cannot	be	found,	it	is	better	to	return	an	error	code	than
to	silently	pretend	that	all	is	well.	To	do	that,	you	will	need	to	detect	when
fs.readFile	returns	an	error	instead	of	a	file.

In	JavaScript,	it	is	common	to	pass	callbacks	to	API	methods.	The	same	is	true	for	Node.js,
and	callbacks	typically	take	in	an	error	as	their	first	argument.	Because	the	error	comes
before	the	result,	you	are	forced	to	at	least	see	the	error,	whether	or	not	you	handle	it.

In	index.js,	check	for	a	file	error	and	write	a	404	error	code	if	one	is	found:
var	http	=	require('http');

var	fs	=	require('fs');

var	extract	=	require('./extract');

var	handleError	=	function	(err,	res)	{

		res.writeHead(404);

		res.end();

};

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		var	filePath	=	extract(req.url);

		fs.readFile(filePath,	function	(err,	data)	{

				if	(err)	{

						handleError(err,	res);

						return;

				}	else	{

						res.end(data);

				}

		});

});

server.listen(3000);

Save	your	changes.	After	nodemon	restarts,	go	to	a	nonexistent	path,	such	as
http://localhost:3000/woohoo.	Open	the	network	panel	in	the	DevTools,	and	you
should	see	the	error	code,	as	in	Figure	15.14.

Figure	15.14		404	Status	code	in	the	network	panel

In	your	callback,	the	very	first	thing	you	do	is	check	whether	this	err	argument	has	a
value	that	is	not	null	or	undefined	and	do	something	with	it.	In	this	example,	you	pass
the	error	information	along	to	the	function	handleError	and	then	return	to	exit	the
anonymous	callback.

Errors	should	never	be	silently	discarded.	A	simple	404	will	do	fine	for	now,	which	is
what	handleError	does.

This	pattern	–	“errors	first,	return	early”	–	is	one	of	the	best	practices	that	is	a	part	of	the
Node	ecosystem.	All	of	the	modules	that	come	with	Node	follow	this	pattern,	as	do	most
open-source	modules.

You	have	built	a	working	web	server	with	just	a	few	dozen	lines	of	JavaScript,	using
patterns	(such	as	callbacks)	that	you	were	already	familiar	with.

Node	provides	a	rich	set	of	modules	for	working	with	networks	and	files,	such	as	the	http
and	fs	modules	you	used	in	this	project.	Thanks	to	Node’s	require	and	module.exports
keywords,	you	can	modularize	your	own	code	very	easily.

Over	the	next	three	chapters,	you	will	continue	to	build	the	Chattrbox	server	as	well	as	a
working	front	end.

For	the	More	Curious:	npm	Module	Registry
There	are	a	wealth	of	available	packages	that	can	be	installed	via	npm.	You	can	search	or
browse	these	packages	in	the	Module	Registry,	www.npmjs.com.

Make	sure	to	look	at	the	documentation	for	npm	at	docs.npmjs.com.	You	might	also
be	interested	in	creating	your	own	modules	for	others	to	use.	If	so,	see
docs.npmjs.com/getting-started/creating-node-modules.

https://www.npmjs.com
https://docs.npmjs.com
https://docs.npmjs.com/getting-started/creating-node-modules

Bronze	Challenge:	Creating	a	Custom	Error	Page
When	you	go	to	a	path	for	a	file	that	does	not	exist,	you	currently	get	a	blank	browser
page	and	a	404	status	code.

For	this	challenge,	create	a	special	error	page	to	display	to	the	user	instead	of	returning	the
error	as	a	status	code.

For	the	More	Curious:	MIME	Types
Have	you	ever	wondered	how	a	computer	knows	how	to	open	a	movie	file	with	a	video
player	and	a	PDF	with	a	document	viewer?	Your	computer	keeps	a	table	of	file	types	and
the	programs	associated	with	those	file	types.	It	infers	a	file’s	type	by	looking	at	the	file
extension	(e.g.,	.html	or	.pdf).

A	browser	needs	those	same	associations	so	that	it	knows	whether	to	render	the	response
as	HTML,	use	a	plug-in	to	play	music,	or	download	a	file	to	the	hard	drive.	But	HTTP
responses	do	not	have	file	extensions.	Instead,	the	server	must	tell	the	browser	what	type
of	information	is	in	the	response.

It	does	this	by	specifying	the	MIME	type	or	media	type	in	the	response’s	Content-Type
header.	For	example,	Figure	15.15	shows	what	you	would	see	in	the	network	panel	of	the
DevTools	if	you	inspected	the	response	for	www.bignerdranch.com.

Figure	15.15		Inspecting	the	Content-Type	header	on
www.bignerdranch.com

The	Content-Type	header	is	set	to	text/html	–	the	MIME	type	for	HTML.	You	can	set
this	header	in	your	projects.	This	is	what	that	would	look	like	for	Chattrbox:

https://www.bignerdranch.com
http://www.bignerdranch.com

...

var	server	=	http.createServer(function	(req,	res)	{

		console.log('Responding	to	a	request.');

		var	filePath	=	extract(req.url);

		fs.readFile(filePath,	function	(err,	data)	{

				if	(err)	{

						handleError(err,	res);

						return;

				}	else	{

						res.setHeader('Content-Type',	'text/html');

						res.end(data);

				}

		});

});

server.listen(3000);

(Note	that	you	must	set	the	header	before	you	end	the	response.)

To	find	out	more	about	MIME	types	in	general,	check	out	en.wikipedia.org/
wiki/Media_type.	For	more	about	setting	headers	in	your	Node	programs,	go	to
nodejs.org/api/http.html#http_response_setheader_name_value.

https://en.wikipedia.org/wiki/Media_type
https://nodejs.org/api/http.html#http_response_setheader_name_value

Silver	Challenge:	Providing	a	MIME	Type	Dynamically
Dynamically	provide	a	MIME	type	for	your	responses	based	on	the	file	type.	To	help	you
with	this	task,	install	the	mime	module	using	npm.	Information	and	documentation	about
the	mime	module	is	available	at	github.com/broofa/node-mime.

Add	different	files	to	your	app	folder,	including	plain	text,	PDFs,	audio	files,	and	movies.
Make	sure	that	your	browser	is	displaying	each	type	correctly.

https://github.com/broofa/node-mime

Gold	Challenge:	Moving	Error	Handling	to	Its	Own
Module
Take	the	code	that	does	the	file	reading	and	error	handling	and	move	it	into	its	own
module.

Also,	make	the	module	configurable	so	that	when	you	import	it	you	can	specify	what	base
folder	the	static	HTML,	CSS,	and	JavaScript	are	in.

16	
Real-Time	Communication	with

WebSockets
With	regular	GET	and	POST	requests,	your	browser	has	to	make	a	new	request	and	wait	for
a	response	for	each	exchange	of	data	with	the	server.	As	you	learned	in	earlier	chapters,
this	is	also	the	case	with	Ajax	requests.	While	Ajax	requests	do	not	cause	page	reloads,
they	do	generate	just	as	much	network	traffic,	with	each	request	and	response	requiring	a
little	bit	of	overhead	to	produce	and	process.

WebSockets,	on	the	other	hand,	provides	a	two-way	communication	protocol	over	HTTP.
It	creates	a	single	connection	and	keeps	it	open	for	real-time	communication	(Figure	16.1).

Figure	16.1		Multiple	Ajax	requests	vs	a	single	WebSockets	connection

With	WebSockets,	web	applications	can	go	beyond	saving	and	loading	remote	data.	Push
notifications,	collaborative	document	editing,	and	real-time	chat	are	just	the	beginning.
WebSockets	makes	it	possible	for	servers	to	handle	the	load	of	the	Internet	of	Things	(e.g.,
smart	lights,	smart	locks,	smart	cars).	Traditional	techniques	like	Ajax	polling	are
ineffective	at	coordinating	such	intense	traffic.

In	this	chapter,	you	will	build	a	chat	client	and	server.	If	you	were	to	use	Ajax	to	build
this,	you	would	have	to	juggle	at	least	two	connections	–	one	to	poll	for	new	messages	and
a	second	to	send	messages.	Using	WebSockets,	you	can	accomplish	the	same	thing	with	a
single	connection.

When	you	reach	the	end	of	the	chapter,	Chattrbox	will	be	able	to	handle	multiple,

simultaneous	chat	clients,	sending	new	messages	along	to	each	client	(Figure	16.2).

Figure	16.2		Pirate	chat-arr

Setting	Up	WebSockets
To	set	Chattrbox	up	with	WebSockets,	you	are	going	to:

1.	 install	the	ws	module

2.	 create	a	WebSockets	server

3.	 add	chat	functionality	to	the	server

4.	 accommodate	new	users	by	having	the	server	send	them	the	message	history

Begin	at	the	beginning.

The	http	module	that	comes	with	Node.js	gives	you	a	simple	way	to	start	an	HTTP	server

so	that	browsers	can	talk	to	the	server.

Similarly,	the	ws	module	gives	your	Node.js	programs	an	easy	way	to	communicate	via
WebSockets.	There	are	several	modules	that	implement	WebSockets	for	Node.js,	but	ws	is
the	standard	implementation	and	performs	well.

Begin	by	installing	the	ws	WebSockets	module	in	your	Chattrbox	directory.	(Do	not	be
alarmed	if	you	see	warnings	from	npm	about	a	missing	description	or	repository	field	for
your	project.)
npm	install	--save	ws

Next,	create	a	file	in	Chattrbox’s	root	folder	named	websockets-server.js.	Add
the	following	code	to	import	the	ws	module	and	start	listening.
var	WebSocket	=	require('ws');

var	WebSocketServer	=	WebSocket.Server;

var	port	=	3001;

var	ws	=	new	WebSocketServer({

				port:	port

});

console.log('websockets	server	started');

You	imported	the	ws	module	with	the	require	statement.	The	module	contains	a	Server
property	that	you	will	need	in	order	to	create	a	working	WebSockets	server.

The	code	var	ws	=	new	WebSocketServer(/*...*/);	does	just	that.	When	this	runs,	the
WebSockets	server	is	established	and	bound	to	the	specified	port	(here,	3001).

Unlike	the	module	you	created	in	extract.js,	you	will	not	need	a	module.exports
assignment.	The	code	in	websockets-server.js	will	run	when	it	is	imported.	It
handles	all	initialization	and	events	related	to	the	WebSocket.

Now	that	you	have	a	WebSockets	server,	the	first	thing	you	will	do	with	it	is	handle
connections.	In	websockets-server.js,	establish	a	callback	for	any	connection
events	for	your	WebSockets	server:
var	WebSocket	=	require('ws');

var	WebSocketServer	=	WebSocket.Server;

var	port	=	3001;

var	ws	=	new	WebSocketServer({

				port:	port

});

console.log('websockets	server	started');

ws.on('connection',	function	(socket)	{

		console.log('client	connection	established');

});

The	event-handling	syntax	is	similar	to	jQuery’s.	You	will	notice	that	many	JavaScript
libraries	(in	Node	and	in	the	browser)	use	this	style.

Your	event-handler	callback	accepts	a	single	argument	named	socket.	When	a	client
makes	a	connection	to	your	WebSockets	server,	you	have	access	to	that	connection	via	this
socket	object.

Before	you	write	the	chat	server	code,	you	will	set	up	your	server	to	repeat	any	messages
sent	to	it.	This	is	commonly	known	as	an	echo	server.

Add	the	echo	functionality	in	websockets-server.js	by	registering	a	callback	for
any	message	events	generated	by	the	client	connection.
...

console.log('websockets	server	started');

ws.on('connection',	function	(socket)	{

		console.log('client	connection	established');

		socket.on('message',	function	(data)	{

				console.log('message	received:	'	+	data);

				socket.send(data);

		});

});

You	registered	the	event	handler	directly	on	the	socket	object.	Your	message	event
callback	is	passed	any	information	sent	by	the	client.	For	now,	you	are	simply	sending	it
back	to	the	same	socket	connection.

You	will	see	this	in	action	in	just	a	moment.

You	could	run	your	WebSockets	server	by	itself	with	the	command	node	websockets-
server.js,	but	it	is	just	as	easy	to	connect	it	to	index.js.	This	has	the	benefit	of	taking
advantage	of	nodemon	to	automatically	reload	your	code	when	you	make	changes	to	either
websockets-server.js	or	index.js.

At	the	top	of	index.js,	add	a	require	statement	to	import	the	websockets-server
module.
var	http	=	require('http');

var	fs	=	require('fs');

var	extract	=	require('./extract');

var	wss	=	require('./websockets-server');

...

Save	your	file	and	nodemon	will	reload	your	code,	making	it	ready	for	you	to	try	out.

Testing	Your	WebSockets	Server
One	way	to	easily	test	your	server	is	to	use	the	wscat	npm	module.	wscat	is	a	tool	for
connecting	to	and	communicating	with	a	WebSockets	server.	The	module	provides	a
command-line	program	that	you	will	use	as	a	chat	client.

Open	a	second	terminal	window	and	install	wscat	globally.	You	may	need	to	run	this
command	with	administrator	privileges.	(If	you	need	a	refresher,	refer	to	Chapter	1.)
npm	install	-g	wscat

When	wscat	is	installed,	you	are	ready	to	connect	to	your	WebSockets	server.

In	the	second	terminal	window,	run	the	command	wscat	-c	ws://localhost:3001.	You
should	see	the	message	connected	(press	CTRL+C	to	quit)	in	the	second	terminal
window	and	'client	connection	established'	in	the	first	window.

In	the	second	terminal	window,	enter	some	text	at	the	prompt.	Each	time	you	type	some
text	and	press	the	Return	key,	your	text	will	be	repeated	by	the	WebSockets	server,	as
shown	in	Figure	16.3.

Figure	16.3		Testing	the	server	with	wscat

Now	that	you	have	confirmed	that	you	are	able	to	communicate	with	your	server	via
WebSockets,	it	is	time	to	add	the	real	functionality	that	will	power	Chattrbox’s	chat
system.

Creating	the	Chat	Server	Functionality
With	your	WebSockets	server	up	and	running,	you	are	now	ready	to	build	out	your	chat
server.	Your	chat	server	needs	to	do	a	few	things:

keep	a	log	of	the	messages	sent	so	far	to	the	server

broadcast	older	messages	to	new	people	joining	the	chat

broadcast	new	messages	to	all	clients

Keeping	a	log	of	messages	as	your	users	send	them	is	necessary	in	order	to	send	the
message	history	to	new	users,	so	you	will	tackle	that	first.

In	websockets-server.js,	create	an	array	to	hold	on	to	messages.
var	WebSocket	=	require('ws');

var	WebSocketServer	=	WebSocket.Server;

var	port	=	3001;

var	ws	=	new	WebSocketServer({

				port:	port

});

var	messages	=	[];

console.log('websockets	server	started');

...

If	you	were	creating	a	more	robust	chat	system,	you	might	store	your	messages	in	a
database.	For	now,	a	simple	array	is	fine.

Next,	call	messages.push(data)	to	add	each	new	message	to	your	array	as	it
arrives.
...

ws.on('connection',	function	(socket)	{

		console.log('client	connection	established');

		socket.on('message',	function	(data)	{

				console.log('message	received:	'	+	data);

				messages.push(data);

				socket.send(data);

		});

});

Just	like	that,	you	have	an	array	of	all	the	messages	that	have	been	received	by	your	chat
server.

The	next	step	is	to	allow	new	users	to	see	all	the	previous	messages.	Update	the
connection	event	handler	in	websockets-server.js	to	send	out	all	the	old	messages
to	each	new	connection	as	it	arrives.
...

ws.on('connection',	function	(socket)	{

		console.log('client	connection	established');

		messages.forEach(function	(msg)	{

				socket.send(msg);

		});

		socket.on('message',	function	(data)	{

				console.log('message	received:	'	+	data);

				messages.push(data);

				socket.send(data);

		});

});

As	soon	as	a	connection	is	made,	the	server	iterates	through	the	messages	and	sends	each
one	to	the	new	connection.

The	last	job	is	to	send	new	messages	to	all	the	users	as	each	new	message	comes	in.
WebSockets	keeps	track	of	your	connected	users	for	you.	Use	this	mechanism	in
websockets-server.js	to	rebroadcast	your	received	messages.
...

ws.on('connection',	function	(socket)	{

		console.log('client	connection	established');

		messages.forEach(function	(msg)	{

				socket.send(msg);

		});

		socket.on('message',	function	(data)	{

				console.log('message	received:	'	+	data);

				messages.push(data);

				ws.clients.forEach(function	(clientSocket)	{

						clientSocket.send(data)

				});

				socket.send(data);

		});

});

The	ws	object	keeps	track	of	all	connections	via	its	clients	property.	It	is	an	array	that
you	can	iterate	through.	In	your	iterator	callback,	you	only	need	to	send	the	message	data.

Finally,	because	you	end	up	sending	your	message	to	your	own	socket	when	you	iterate
over	all	the	sockets,	you	no	longer	need	the	call	to	socket.send(data).	Deleting	it
cleans	things	up	nicely.

First	Chat!
Let’s	test	the	new	functionality.	Make	sure	that	nodemon	has	reloaded	your	code.	(If	you
need	to,	you	can	manually	stop	nodemon	with	Control-C	and	restart	it	with	npm	run	dev.)

Open	a	third	terminal	window	and	run	the	command	wscat	-c	http://localhost:3001.
(You	should	have	one	terminal	running	nodemon	and	two	running	wscat.)	Enter	some	chat
messages	in	the	two	windows	connected	to	the	server.

After	you	have	chatted	with	yourself	for	a	bit,	open	a	fourth	terminal	and	run	wscat	-c
http://localhost:3001.	This	chat	client	should	be	sent	all	the	previous	messages.

If	everything	went	well,	you	should	see	something	like	Figure	16.4.

Figure	16.4		Chatting	with	some	friends

Congratulations!	You	have	written	a	fully	functional	chat	server	using	WebSockets	–	and
it	took	less	than	two	dozen	lines	of	JavaScript.

For	the	More	Curious:	socket.io	WebSockets	Library
The	ws	npm	module	is	a	perfectly	fine	WebSockets	implementation.	But,	admittedly,	it	is
lacking	in	a	few	ways.	For	example,	WebSockets	connections	sometimes	get	dropped,	but
the	ws	module	provides	no	way	to	automatically	reconnect.

Another	problem	is	that	ws	lives	in	Node.js.	That	means	that	it	is	only	available	on	the
server.	In	your	client-side	JavaScript,	you	would	need	to	learn	a	totally	different	library
that	accomplishes	essentially	the	same	task.

On	top	of	that,	on	the	client	side	you	may	have	additional	challenges:	What	if	your
browser	is	old	and	does	not	support	WebSockets?	You	would	need	to	provide	a	fallback
mechanism	of	some	kind.

socket.io	(socket.io)	provides	a	solution	to	these	problems.	For	browsers,	it	provides
backward-compatible	fallbacks,	including	a	Flash	implementation.	In	addition,	it	has	been
ported	to	a	number	of	other	platforms,	including	iOS	and	Android.

http://socket.io

For	the	More	Curious:	WebSockets	as	a	Service
If	you	are	interested	in	a	real-time	platform	as	a	service,	you	may	want	to	look	into
firebase	(www.firebase.com).	If	socket.io	tries	to	make	writing	your	server
simpler,	firebase	goes	one	step	further:	It	provides	the	entire	server	for	you,	including
mechanisms	for	clients	to	share	and	synchronize	data.	firebase	provides	solutions	for
web,	iOS,	and	Android.

https://www.firebase.com/

Bronze	Challenge:	Am	I	Repeating	Myself?
Update	your	message	handler	so	that	every	message	received	is	sent	twice	to	each	user.

Test	it	out	using	wscat	and	confirm	that	each	message	is	repeated.

For	a	really	interesting	effect,	increment	the	number	of	repetitions	by	one	each	time	a	new
message	is	sent.

Silver	Challenge:	Speakeasy
In	the	United	States,	it	was	illegal	to	produce	or	sell	alcohol	during	the	1920s.	In	response,
“speakeasies”	were	created:	secret	establishments	that	sold	alcoholic	beverages	and
required	a	password	before	patrons	were	allowed	to	enter.

Create	a	speakeasy	version	of	your	chat	program	–	but	without	the	alcohol.	Hide	all
messages	from	a	user	until	they	enter	a	secret	password.	(“Swordfish”	is	a	good	one,	for
historical	reasons.)

When	users	enter	the	password,	send	them	all	previous	messages	and	allow	them	to	see
new	messages.

Gold	Challenge:	Chat	Bot
You	used	the	WebSocket.Server	property	to	create	the	chat	server.	You	can	also
programmatically	create	a	chat	client	by	using	WebSocket	as	a	constructor.

The	following	line	is	an	example:
var	chatClient	=	new	WebSocket('http://localhost:3001');

The	documentation	at	github.com/websockets/ws	has	a	simple	example	of
sending	and	receiving	text	data.

Create	a	chat	bot	that	automatically	connects	to	the	chat	server.	It	should	greet	each	new
user	but	otherwise	remain	silent	unless	directly	spoken	to.	For	example,	if	your	chat	bot
responds	to	the	name	“Jinx,”	you	could	type	“Jinx,	put	Max	in	space,”	and	your	chat	bot
would	respond	appropriately.	(The	appropriate	response	is	up	to	you.)

Make	sure	that	the	code	for	your	chat	bot	is	in	a	separate	module,	not	built	directly	into	the
chat	server	code.

https://github.com/websockets/ws

17	
Using	ES6	with	Babel

The	JavaScript	language	was	created	in	1994,	received	a	few	updates	in	1999,	but	went
unchanged	from	1999	to	2009.	A	set	of	small	changes	was	introduced	in	2009,	resulting	in
the	version	of	JavaScript	known	as	ES5,	or	the	fifth	edition	of	the	standard.

In	2015,	a	number	of	language	improvements	were	added	as	the	sixth	edition	of	the
standard.	Many	of	these	new	language	features	were	influenced	by	languages	like	Ruby
and	Python.	Technically,	this	sixth	edition	is	named	ES2015,	but	it	is	more	commonly
known	as	ES6.

ES6	is	well	supported	by	Google	Chrome,	Mozilla	Firefox,	and	Microsoft	Edge.	These	are
evergreen	browsers,	meaning	that	they	self-update	without	the	user	needing	to	manually
download	and	install	the	latest	version.	As	Google,	Mozilla,	and	Microsoft	have	added
more	and	more	ES6	compatibility	to	their	browsers,	they	have	been	able	to	roll	out	these
enhancements	quickly	to	their	users.

However,	non-evergreen	and	most	mobile	browsers	have	poor	support	for	ES6.
Figure	17.1	shows	the	percentage	of	ES6	features	supported	by	recent	versions	of	desktop
and	mobile	browsers.	(In	the	figure,	IE	=	Internet	Explorer,	FF	=	Mozilla	Firefox,	CH	=	Google
Chrome,	SF	=	Safari,	KQ	=	Konqueror,	and	AN	=	Android.)

Figure	17.1		ES6	feature	support	as	of	spring	2016

If	you	would	like	a	closer	or	up-to-date	look	at	browser	support	for	ES6,	go	to
kangax.github.io/compat-table/es6/	to	check	out	the	latest	information.
The	table’s	creator,	Juriy	Zaytsev,	updates	the	data	frequently.

Support	may	be	spotty	among	older	browsers,	but	we	love,	love,	love	ES6.	It	is	a	beautiful
thing,	and	it	is	worth	the	effort	to	switch	over	as	soon	as	possible	rather	than	waiting	until
support	is	universal.

In	this	chapter,	you	will	begin	working	on	the	user-facing	portion	of	Chattrbox,	which	you
will	write	using	a	number	of	ES6	features.	To	make	sure	your	application	works	on	all
browsers,	you	will	use	the	open-source	tool	Babel	to	take	care	of	compatibility.

There	is	one	item	of	housekeeping	to	take	care	of	before	you	begin.	So	that	you	can	focus
on	learning	ES6	and	using	Babel,	the	index.html	and	stylesheets/styles.css
files	for	Chattrbox	are	provided	for	you	at	www.bignerdranch.com/downloads/
front-end-dev-resources.zip.	Download	the	.zip	file	and	extract	the	contents
(including	the	entire	stylesheets/	folder)	into	your	chattrbox/app	directory.
(index.html	will	replace	your	existing	copy	of	index.html.)

Also,	one	note:	While	working	through	the	code	in	this	chapter,	you	may	see	a	warning	in
the	console	about	the	MIME	type	of	your	CSS	files.	It	is	safe	to	ignore	this	warning.

Onward	and	upward!	By	the	end	of	this	chapter,	Chattrbox	will	communicate	over
WebSockets	with	your	chat	server	(Figure	17.2).

http://kangax.github.io/compat-table/es6/
http://www.bignerdranch.com/downloads/front-end-dev-resources.zip

Figure	17.2		Chattrbox	at	the	end	of	this	chapter

Tools	for	Compiling	JavaScript
Babel	is	a	compiler.	Its	job	is	to	translate	ES6	syntax	into	the	equivalent	ES5	code	to	be	run
by	a	browser’s	JavaScript	engine	(Figure	17.3).

Figure	17.3		Building	ES5	code	from	ES6	files

To	use	Babel	effectively,	you	will	need	to	install	a	few	npm	modules	to	create	an	automated
build	process.	You	will	use	Babel	to	compile	your	ES6	code	to	ES5,	Browserify	to	bundle
your	modules	together	into	a	single	file,	and	Babelify	to	make	the	two	work	together.

Additionally,	you	will	use	Watchify	to	trigger	the	build	process	any	time	you	save	changes
to	your	code	(Figure	17.4).

Figure	17.4		Compilation	workflow

First,	you	need	to	install	Babel.	It	has	a	few	different	moving	parts,	depending	on	your
needs.	In	your	case,	you	will	need	the	ability	to	compile	in	two	ways:	from	the	command
line	and	programmatically.	The	tools	babel-cli	and	babel-core,	respectively,	will
address	these	needs.	You	will	also	need	to	install	a	Babel	configuration	suitable	for
compiling	the	ES6	standard,	which	is	called	babel-preset-es2015.

Run	the	following	npm	commands	in	your	chattrbox	directory	to	install	the	appropriate
Babel	tooling.	(If	you	need	a	refresher	on	how	to	run	npm	install	-g	with	administrator
privileges,	refer	to	Chapter	1.)
npm	install	-g	babel-cli

npm	install	--save-dev	babel-core

npm	install	--save-dev	babel-preset-es2015

Now	you	need	to	configure	Babel	to	compile	using	the	es2015	preset	you	installed.	Create
a	file	called	.babelrc	in	your	root	chattrbox	folder	and	add	the	following
configuration	information	to	it:
{

		"presets":	[

				"es2015"

],

		"plugins":	[]

}

Finally,	install	Babelify,	Browserify,	and	Watchify	to	the	chattrbox/node_modules/
directory:
npm	install	--save-dev	browserify	babelify	watchify

You	will	be	using	these	three	tools	later	in	this	chapter,	after	you	have	Babel	up	and
running.

The	Chattrbox	Client	Application
You	already	built	the	Chattrbox	server,	which	serves	out	the	static	files	and	handles
communication	over	WebSockets.	The	client	application	will	send	and	receive	messages
to	and	from	the	server	over	WebSockets.	It	will	define	a	format	for	individual	messages.
The	user	will	be	able	to	view	the	messages	in	a	list	as	well	as	create	new	messages	by
entering	text	into	a	form.

Those	responsibilities	will	be	handled	by	three	modules:

the	ws-client	module	will	manage	the	WebSockets	communication	for	the
client

the	dom	module	will	display	data	to	the	UI	and	handle	form	submissions

the	app	module	will	define	the	structure	of	messages	and	pass	messages	between
ws-client	and	dom

Figure	17.5	diagrams	the	relationships	among	the	three	modules.

Figure	17.5		Chattrbox	application	modules

In	your	chattrbox/app	folder,	create	scripts,	scripts/dist,	and
scripts/src	subfolders,	as	shown	in	Figure	17.6.

Figure	17.6		chattrbox/app	folder	structure

Now,	create	four	JavaScript	files	in	scripts/src:

app.js

dom.js

main.js

ws-client.js

Your	file	structure	should	look	like	Figure	17.7.

Figure	17.7		chattrbox/app

app.js,	dom.js,	and	ws-client.js	correspond	to	the	modules	shown	in
Figure	17.5.	The	main.js	file	will	contain	the	code	that	initializes	your	application.

First	Steps	with	Babel
Now	that	you	have	your	tools	installed	and	your	files	in	place,	it	is	time	to	get	started	with
ES6.

For	the	moment,	you	will	use	Babel	from	the	command	line.	Later,	you	will	add	it	to	your
npm	scripts	so	that	compilation	happens	automatically.	That	way,	as	you	work	with	new
ES6	features	you	can	focus	on	the	new	syntax	without	worrying	about	running	extra
commands	in	the	terminal.

Class	syntax

The	first	ES6	feature	you	will	use	for	building	the	Chattrbox	client	is	the	class	keyword.
It	is	important	to	keep	in	mind	that	the	ES6	class	keyword	does	not	work	exactly	like
classes	in	other	programming	languages.	Instead,	ES6	classes	merely	provide	a	shorter
syntax	for	constructor	functions	and	prototype	methods.

Open	app.js	and	define	a	new	class	called	ChatApp.
class	ChatApp	{

}

In	this	chapter,	ChatApp	will	not	do	much.	Ultimately,	though,	ChatApp	will	be
responsible	for	most	of	your	application	logic.

The	definition	of	the	class	is	currently	empty.	Add	a	constructor	method	with	a
console.log	statement:
class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

		}

}

constructor	is	a	method	that	is	run	any	time	you	create	a	new	instance	of	a	class.
Usually,	the	constructor	will	set	values	for	properties	belonging	to	the	instance.

Next,	create	an	instance	of	ChatApp	in	app.js,	right	after	the	class	declaration:
class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

		}

}

new	ChatApp();

Let’s	give	your	code	a	test	run.	Open	a	second	terminal	window	and	switch	to	Chattrbox’s
root	directory,	where	package.json,	index.js,	and	app/	live.	You	will	use	this
window	to	run	your	build	commands	and	keep	the	other	one	open	for	running	your	server.

To	test	your	code,	use	Babel	to	compile	app/scripts/src/app.js	and	output	the
result	to	app/scripts/dist/main.js:
babel	app/scripts/src/app.js	-o	app/scripts/dist/main.js

If	you	do	not	see	anything	happen	in	your	terminal,	that	is	normal	–	and	good	news.	Babel
will	not	report	anything	on	the	command	line	unless	there	is	an	error	(Figure	17.8).

Figure	17.8		Babel	works	quietly

Make	sure	your	Node	server	is	running	in	your	other	terminal	(with	npm	run	dev),	and
open	your	browser	to	http://localhost:3000.	Now	you	will	see	your	results
(Figure	17.9).

Figure	17.9		Hello,	ES6!

Your	app/index.html	sources	the	main.js	you	generated	from	app.js.	And
because	app.js	creates	a	new	ChatApp,	the	code	in	ChatApp’s	constructor	is	run,
logging	out	“Hello	ES6!”

Now	that	you	have	confirmed	that	Babel	is	working	with	a	single	JavaScript	file,	it	is	time
to	start	working	with	multiple	modules.

Using	Browserify	for	Packaging	Modules
One	thing	that	ES5	does	not	have	is	a	built-in	module	system.	When	you	built	CoffeeRun,
you	used	a	workaround	that	let	you	write	modular	code	–	but	depended	on	modifying	a
global	variable.

ES6	provides	true	modules,	like	those	in	many	other	programming	languages.	Babel
understands	ES6	module	syntax,	but	there	is	no	equivalent	ES5	code	for	it	to	convert	to.
That	is	why	Browserify	is	necessary.

Figure	17.10	shows	how	Browserify	and	Babel	will	work	together.

Figure	17.10		Converting	from	ES6	modules	to	ES5	modules	with	Babel	and
Browserify

By	default,	Babel	converts	ES6	module	syntax	into	the	equivalent	Node.js-style	require	and
module.exports	syntax.	Browserify	then	converts	Node.js	module	code	into	ES5-friendly
functions.

Open	package.json	and	add	a	configuration	section	for	Browserify:
...

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&

					exit	1",

				"start":	"node	index.js",

				"dev":	"nodemon	index.js",

		},

		"browserify":	{

				"transform":	[

						["babelify",	{"presets":	["es2015"],	"sourceMap":	true}]

]

		},

...

This	tells	Browserify	to	use	Babelify	as	a	plug-in.	It	passes	two	options	to	Babelify:	First,	it
activates	the	ES2015	compiler	option.	It	also	turns	on	the	sourceMap	option,	which	helps
with	debugging.	You	will	learn	how	to	debug	with	source	maps	as	you	build	the	rest	of
Chattrbox.

You	will	also	want	to	write	some	scripts	for	common	Browserify	tasks,	as	you	did	for
nodemon.	Write	those	in	your	"scripts"	section	in	package.json.	(Remember	to	add
the	comma	at	the	end	of	"dev":	"nodemon	index.js".)
...

		"scripts":	{

				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1",

				"start":	"node	index.js",

				"dev":	"nodemon	index.js",

				"build":	"browserify	-d	app/scripts/src/main.js	-o	app/scripts/dist/main.js",

				"watch":	"watchify	-v	-d	app/scripts/src/main.js	-o	app/scripts/dist/main.js"

		},

		"browserify":	{

				"transform":	[

						["babelify",	{"presets":	["es2015"],	"sourceMap":	true}]

]

		},

...

The	first	script,	build,	uses	the	browserify	command	directly.	The	second	script,	watch,
uses	watchify	to	rerun	browserify	whenever	your	code	changes.	(It	serves	a	similar
purpose	to	nodemon.)

Now	to	use	the	ES6	module	system.	In	ES6	modules,	you	must	explicitly	export	the	pieces
of	your	module	you	want	others	to	use.	Update	app.js	to	export	your	ChatApp	class
rather	than	simply	creating	an	instance.
class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

		}

}

new	ChatApp();

export	default	ChatApp;

You	specified	that	ChatApp	is	the	default	value	available	from	the	app	module.	Some	of
your	other	modules	will	export	multiple	values.	When	you	only	need	to	export	a	single
value,	it	is	best	to	use	export	default.

In	main.js,	import	the	ChatApp	class	and	create	a	new	instance	of	it.
import	ChatApp	from	'./app';

new	ChatApp();

main.js	is	importing	the	ChatApp	class	that	app.js	exported.	After	the	import,	you
create	a	new	instance	of	the	ChatApp	class.

One	important	note	here:	The	name	ChatApp	is	not	significant	in	main.js.	Because
ChatApp	is	the	default	export	from	app.js,	writing	import	MyChatApp	from	'./app',
for	example,	would	assign	the	default	export	value	to	the	local	MyChatApp	name.
Naming	it	ChatApp	is	a	best	practice,	however,	because	that	is	its	name	inside	app.js.

Running	the	build	process

Next,	go	to	your	terminal	and	run	your	build	script:
npm	run	build

npm	will	run	your	build	command,	which	will	then	run	browserify.	As	it	runs	each
command,	it	will	show	you	what	it	is	doing.	Browserify	itself	will	be	silent,	though,	unless
there	is	an	error	(Figure	17.11).

Figure	17.11		Running	Browserify	via	npm	run	build

When	Browserify	is	successful,	it	will	package	your	en-Babeled	main.js	in	your
app/dist/	folder,	just	as	you	did	earlier	by	hand.

Now	to	reload	your	browser	and	see	the	output.	You	added	no	new	functionality,	other
than	restructuring	where	the	call	to	ChatApp’s	constructor	lives.	So	you	should	see	the
same	message	in	the	console	that	you	saw	earlier	(Figure	17.12).

Figure	17.12		Hello	again!

The	next	piece	to	integrate	is	Watchify.	Watchify	will	do	the	same	thing	for	running	your
Browserify	build	that	nodemon	did	for	running	your	Node.js	server:	It	will	automatically
trigger	a	rebuild	every	time	you	modify	one	of	your	source	files.

Start	Watchify	to	kick	off	the	build	process	any	time	you	make	a	change	to	your	code:
npm	run	watch

Watchify	will	confirm	that	it	is	running	(Figure	17.13).

Figure	17.13		Running	Watchify	via	npm	run	watch

Watchify	is	a	bit	chattier	than	Browserify.	Every	time	it	runs	Browserify,	it	tells	you	how	many
bytes	it	wrote	to	the	file.	That	is	not	terribly	interesting,	but	it	does	tell	you	when	the
output	changes.	Leave	Watchify	running	in	one	of	your	terminals	as	you	continue	to	work
on	Chattrbox.	(Your	server	should	still	be	running	in	the	other	terminal.)

Adding	the	ChatMessage	Class
Chatting	between	two	terminals	is	fun	(and	makes	you	look	cool	at	the	coffee	shop),	but	it
is	time	to	upgrade	to	sending	messages	from	browser	to	browser.	You	will	write	a	helper
class	that	handles	constructing	and	formatting	message	data.

There	are	three	pieces	of	information	you	will	want	to	track	for	each	message.	You	need	to
know	the	text	of	the	message,	who	sent	it,	and	at	what	time.

JavaScript	Object	Notation	–	more	commonly	known	as	JSON	(pronounced	“Jason,”	per
creator	Douglas	Crockford)	–	is	a	lightweight	data-interchange	format.	You	have	already
been	using	JSON	for	your	package.json	file.	It	is	human	readable	and	language
independent,	and	it	is	ideal	for	sending	and	receiving	the	kind	of	data	you	want	to
exchange	with	Chattrbox.

Here	is	a	sample	message	formatted	as	JSON:
{

		"message":	"I'm	Batman",

		"user":	"batman",

		"timestamp":	614653200000

}

Chattrbox	message	data	will	come	from	two	different	sources.	One	source	is	in	the	client,
when	the	user	fills	out	the	form.	The	other	source	is	the	server,	when	the	message	is	sent
over	a	WebSocket	connection	to	other	clients.

When	message	data	comes	from	the	form,	you	will	need	to	add	the	username	and
timestamp	before	sending	it	to	the	server.	When	the	data	comes	from	the	server,	all	three
pieces	of	information	should	be	included.	How	should	you	handle	this	discrepancy?	There
are	a	number	of	options.	Let’s	briefly	look	at	a	few	of	them,	including	some	that	take
advantage	of	some	handy	ES6	features.

Create	a	class	to	represent	individual	chat	messages	in	app.js.
class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

		}

}

class	ChatMessage	{

		constructor(data)	{

		}

}

export	default	ChatApp;

The	first	way	to	approach	the	problem	is	a	simple	constructor	that	accepts	the	message
text,	username,	and	timestamp.	(Do	not	make	this	change	in	your	file.	It	is	only	an
example.)
...

class	ChatMessage	{

		constructor(message,	user,	timestamp)	{

				this.message	=	message;

				this.user	=	user	||	'batman';

				this.timestamp	=	timestamp	||	(new	Date()).getTime();

		}

}

...

You	have	seen	this	pattern	a	number	of	times.	You	assign	the	parameter	values	to	instance
properties,	providing	fallbacks	for	username	and	timestamp	using	the	||	operator.

This	is	fine,	but	ES6	gives	you	a	more	compact	way	to	write	this	same	pattern	using
default	arguments.
...

class	ChatMessage	{

		constructor(message,	user='batman',	timestamp=(new	Date()).getTime())	{

				this.message	=	message;

				this.user	=	user;

				this.timestamp	=	timestamp;

		}

}

...

This	syntax	makes	it	obvious	which	values	must	be	passed	in	and	which	ones	are	optional.
You	can	see	that	only	the	message	argument	is	mandatory.	The	others	have	defaults.

This	version	of	the	constructor	can	handle	messages	received	from	the	server	or	created	by
the	form.	But	it	requires	that	the	caller	know	the	order	of	arguments,	which	can	get
cumbersome	for	functions	and	methods	that	have	three	or	more	arguments.

An	alternative	to	this	is	for	the	constructor	to	receive	a	single	object	as	argument,	with	the
key/value	pairs	specifying	the	values	for	message,	user,	and	timestamp.	For	that,
you	can	use	the	destructuring	assignment	syntax.
...

class	ChatMessage	{

		constructor({message:	m,	user:	u,	timestamp:	t})	{

				this.message	=	m;

				this.user	=	u;

				this.timestamp	=	t;

		}

}

...

Destructuring	may	look	a	little	odd,	but	here	is	how	it	works.	You	call	the	constructor	like
this:
new	ChatMessage({message:	'hello	from	the	outside',

																	user='adele25@bignerdranch.com',	timestamp=1462399523859});

The	destructuring	syntax	looks	for	the	key	message	in	the	argument.	It	finds	the	value
'hello	from	the	outside'	and	assigns	it	to	a	new	local	variable	m.	This	variable	can
then	be	used	inside	the	body	of	the	constructor.	The	same	thing	happens	for	the
username	and	timestamp	properties.

But	with	this	syntax	you	lose	the	convenience	of	the	default	parameters.	Luckily,	you	can
combine	the	two	techniques.	This	final	version	of	the	constructor	is	the	one	you	should
add	to	app.js:
...

class	ChatMessage	{

		constructor(data){

				message:	m,

				user:	u='batman',

				timestamp:	t=(new	Date()).getTime()

})	{

				this.message	=	m;

				this.user	=	u;

				this.timestamp	=	t;

		}

}

...

In	this	version,	you	are	plucking	values	out	of	the	object	that	is	passed	to	the	constructor.
For	any	values	that	do	not	exist,	defaults	are	provided.

While	default	arguments	can	only	exist	as	part	of	a	function	(or	constructor)	definition,
destructuring	can	be	used	as	part	of	an	assignment.	You	might	also	write	the	constructor
like	this:
...

class	ChatMessage	{

		constructor(data)	{

				var	{message:	m,	user:	u='batman',	timestamp:	t=(new	Date()).getTime()}	=	data;

				this.message	=	m;

				this.user	=	u;

				this.timestamp	=	t;

		}

}

...

OK,	the	detour	is	over.	Time	to	get	back	to	building	Chattrbox!

Your	ChatMessage	class	stores	all	of	the	important	information	as	properties,	but	its
instances	also	inherit	ChatMessage’s	methods	and	other	information.	That	makes
ChatMessage	instances	unsuitable	for	sending	through	WebSockets.	A	stripped-down
version	of	that	information	is	necessary.

Write	a	serialize	method	in	app.js	to	represent	the	data	in	ChatMessage’s
properties	as	a	plain	JavaScript	object.
...

class	ChatMessage	{

		constructor({

				message:	m,

				user:	u='batman',

				timestamp:	t=(new	Date()).getTime()

		})	{

				this.user	=	user;

				this.message	=	message;

				this.timestamp	=	timestamp;

		}

		serialize()	{

				return	{

						user:	this.user,

						message:	this.message,

						timestamp:	this.timestamp

				};

		}

}

export	default	ChatApp;

Your	ChatMessage	class	is	now	ready	for	use.	It	is	time	to	move	on	to	the	next	module
for	Chattrbox.

Creating	the	ws-client	Module
The	ws-client.js	module	will	handle	communicating	with	your	Node	WebSocket
server.

It	will	have	four	responsibilities:

connecting	to	the	server

performing	initial	setup	when	the	connection	is	first	opened

forwarding	incoming	messages	to	their	handlers

sending	outgoing	messages

Check	out	how	those	responsibilities	relate	to	your	other	components	(Figure	17.14).

Figure	17.14		ws-client’s	interfaces

As	you	build	out	your	client,	you	will	get	a	tour	of	some	new	ES6	features	as	well.

Connection	handling

First,	build	out	your	collection	handling.	Begin	by	opening	ws-client.js	and
declaring	a	variable	for	the	WebSocket	connection.
let	socket;

This	declaration	uses	a	new	way	of	defining	variables	in	ES6	called	let	scoping.	If	you	use
let	scoping	to	declare	a	variable	–	using	the	keyword	let	instead	of	var	–	your	variable
will	not	be	hoisted.

Hoisting	means	that	the	variable	declarations	get	moved	to	the	top	of	the	function	scope	in

which	they	are	created.	This	is	something	that	the	JavaScript	interpreter	does	behind	the
scenes.	Unfortunately,	it	can	lead	to	hard-to-find	errors.

You	will	read	more	about	hoisting	at	the	end	of	the	chapter.	For	now,	know	that	let	is	a
safer	way	to	declare	variables	in	if/else	clauses	and	in	the	body	of	loops.

Now,	add	a	method	to	ws-client.js	to	initialize	your	connection.
let	socket;

function	init(url)		{

		socket	=	new	WebSocket(url);

		console.log('connecting...');

}

The	init	function	connects	to	the	WebSockets	server.	Next,	you	want	to	wire	up	ws-
client.js	to	ChatApp	in	app.js.

To	be	a	functioning	module,	ws-client.js	needs	to	specify	what	it	exports.	You	need
to	export	a	single	value:	an	object	code	with	the	exported	functions	as	its	properties.	You
are	going	to	use	the	same	export	default	syntax	that	you	used	at	the	beginning	of	the
chapter	–	plus	an	additional	bit	of	ES6	handiness.

Add	the	export	to	the	end	of	ws-client.js,	as	shown.
...

function	init(url)		{

		socket	=	new	WebSocket(url);

		console.log('connecting...');

}

export	default	{

		init,

}

Notice	that	you	did	not	have	to	specify	the	property	names.	This	syntactic	shortcut	is	the
equivalent	of:
export	default	{

		init:	init

}

If	the	key	and	value	have	the	same	name,	ES6	allows	you	to	omit	the	colon	and	the	value.
The	key	will	automatically	be	the	variable	name,	and	the	value	will	automatically	be	the
value	associated	with	that	name.	This	feature	of	ES6	is	the	enhanced	object	literal	syntax.

Now	that	you	have	the	ws-client	module	set	up,	it	is	time	to	import	the	values	it
provides	in	app.js.	Begin	by	adding	an	import	statement	to	the	top	of	app.js:
import	socket	from	'./ws-client';

class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

		}

}

...

socket	will	be	the	object	you	exported	from	ws-client.js.

Next,	in	the	ChatApp	constructor,	call	socket.init	with	the	URL	of	your	WebSocket
server.
import	socket	from	'./ws-client';

class	ChatApp	{

		constructor()	{

				console.log('Hello	ES6!');

				socket.init('ws://localhost:3001');

		}

}

...

Your	npm	script	should	rebuild	the	code	for	you.	(You	may	need	to	restart	npm	run	watch
and	npm	run	dev	in	separate	windows,	if	you	have	let	one	or	both	of	them	stop.)	Reload
your	browser	and	you	should	see	'connecting...'	logged	to	the	console,	as	shown	in
Figure	17.15.

Figure	17.15		Message	logged	on	WebSocket	initialization

With	that,	you	have	the	skeleton	of	your	app	up	and	running.

Handling	events	and	sending	messages

When	your	App	module	calls	init,	a	new	WebSocket	object	is	instantiated	and	a
connection	is	made	to	the	server.	But	your	App	module	needs	to	know	when	this	process
has	completed	so	that	it	can	do	something	with	the	connection.

The	WebSocket	object	has	a	set	of	special	properties	for	handling	events.	One	of	these	is
the	onopen	property.	Any	function	assigned	to	this	property	will	be	called	when	the
connection	to	the	WebSocket	server	is	made.	Inside	this	function,	you	can	carry	out	any
steps	that	need	to	be	made	upon	connecting.

In	order	for	the	ws-client	module	to	be	flexible	and	reusable,	you	will	not	hardcode	the
steps	that	the	App	module	needs	to	make	upon	connecting.	Instead,	you	will	use	the	same
pattern	you	used	for	registering	click	and	submit	handlers	in	CoffeeRun.

Add	a	function	called	registerOpenHandler	to	ws-client.js.
registerOpenHandler	will	accept	a	callback,	assign	a	function	to	onopen,	and	then
invoke	the	callback	inside	the	onopen	function.
let	socket;

function	init(url)		{

		socket	=	new	WebSocket(url);

		console.log('connecting...');

}

function	registerOpenHandler(handlerFunction)	{

		socket.onopen	=	()	=>	{

				console.log('open');

				handlerFunction();

		};

}

...

This	function	definition	is	different	from	what	you	have	written	before.	This	is	a	new	ES6
syntax	called	an	arrow	function.	Arrow	functions	are	a	shorthand	for	writing	anonymous
functions.	Apart	from	being	a	bit	easier	to	write,	arrow	functions	work	exactly	the	same	as
anonymous	functions.

registerOpenHandler	takes	a	function	argument	(handlerFunction)	and
assigns	an	anonymous	function	to	the	onopen	property	of	the	socket	connection.	Inside	of
this	anonymous	function,	you	call	the	handlerFunction	that	was	passed	in.

(Using	an	anonymous	function	is	more	complicated	than	writing	socket.onopen	=
handlerFunction.	This	pattern	will	serve	you	well	when	you	need	to	respond	to	an	event
but	have	intermediary	steps	that	must	happen	before	forwarding	it	on	–	like	writing	a	log
message,	as	you	have	done	here.)

Next,	you	need	to	write	an	interface	for	handling	messages	as	they	come	in	over	your
WebSockets	connection.	Write	a	new	method	called	registerMessageHandler	in
ws-client.js.	Assign	an	arrow	function	to	the	socket’s	onmessage	property;	this
arrow	function	should	expect	to	receive	an	event	argument.
...

function	registerOpenHandler(handlerFunction)	{

		socket.onopen	=	()	=>	{

				console.log('open');

				handlerFunction();

		};

}

function	registerMessageHandler(handlerFunction)	{

		socket.onmessage	=	(e)	=>	{

				console.log('message',	e.data);

				let	data	=	JSON.parse(e.data);

				handlerFunction(data);

		};

}

...

Arrow	function	parameters	go	inside	the	parentheses,	just	as	they	do	for	regular	functions.

The	Chattrbox	client	receives	an	object	from	the	server	in	its	onmessage	callback	inside
registerMessageHandler.	This	object	represents	the	event	and	has	a	data
property	that	contains	the	JSON	string	from	the	server.	Each	time	you	receive	a	string,	you
convert	the	string	to	a	JavaScript	object.	You	then	forward	it	along	to
handlerFunction.

The	last	bit	is	the	piece	that	will	actually	send	the	message	to	your	WebSocket.	Write	this
in	ws-client.js	as	a	function	called	sendMessage.	You	will	do	this	in	two	parts.
First,	you	will	turn	your	message	payload	(containing	the	message,	the	username,	and	the
timestamp)	into	a	JSON	string.	Then	you	will	send	that	JSON	string	to	the	WebSocket
server.
...

function	registerMessageHandler(handlerFunction)	{

		socket.onmessage	=	(e)	=>	{

				console.log('message',	e.data);

				let	data	=	JSON.parse(e.data);

				handlerFunction(data);

		};

}

function	sendMessage(payload)	{

		socket.send(JSON.stringify(payload));

}

...

Finally,	add	exports	for	your	new	methods	using	the	enhanced	object	literal	syntax.
...

function	sendMessage(payload)	{

		socket.send(JSON.stringify(payload));

}

export	default	{

		init,

		registerOpenHandler,

		registerMessageHandler,

		sendMessage

}

With	that,	ws-client.js	has	everything	it	needs	to	communicate	back	and	forth	with
the	server.	Your	last	job	in	ws-client.js	will	be	to	test	it	by	sending	a	message.

Sending	and	echoing	a	message

Update	the	ChatApp	constructor	in	app.js.	After	calling	socket.init,	call
registerOpenHandler	and	registerMessageHandler,	passing	them	arrow
functions.
import	socket	from	'./ws-client';

class	ChatApp	{

		constructor()	{

				socket.init('ws://localhost:3001');

				socket.registerOpenHandler(()	=>	{

						let	message	=	new	ChatMessage({	message:	'pow!'	});

						socket.sendMessage(message.serialize());

				});

				socket.registerMessageHandler((data)	=>	{

						console.log(data);

				});

		}

}

...

When	the	connection	is	open,	you	are	immediately	sending	a	dummy	message.	And	when
a	message	is	received,	you	are	logging	it	to	the	console.

Save	your	code	and	reload	the	browser	when	the	build	process	finishes.	You	should	see
that	a	message	was	sent	and	echoed	back	(Figure	17.16).

Figure	17.16		Call	and	response	with	WebSockets

Excellent	work!	You	have	two	of	the	three	primary	modules	for	Chattrbox	working.	You
will	finish	Chattrbox	in	the	next	chapter	by	creating	a	module	that	connects	your	existing
modules	to	the	UI.	This	module	will	draw	new	messages	to	the	message	list	and	send
messages	when	the	form	is	submitted.

For	the	More	Curious:	Compiling	to	JavaScript	from
Other	Languages
There	are	quite	a	few	languages	that	will	compile	to	JavaScript.	Here	is	a	short	list:

CoffeeScript:	coffeescript.org

TypeScript:	www.typescriptlang.org

C/C++:	kripken.github.io/emscripten-site

One	of	the	most	prominent	is	CoffeeScript,	which	provides	shorthand	syntax	for	some	of
the	most	common	patterns	(e.g.,	the	arrow	syntax	for	anonymous	functions).	In	fact,
CoffeeScript	had	a	significant	influence	on	ES6.

Google,	Microsoft,	Mozilla,	and	others	are	collaborating	on	a	project	to	standardize	an
assembly	language	for	JavaScript	engines,	called	WebAssembly.	The	goal	is	to	create	a
high-performance,	low-level	language	that	can	be	compiled	to	from	many	different
languages.

The	intention	for	WebAssembly	is	to	supplement	JavaScript	–	not	replace	it	–	and	to
capitalize	on	the	strengths	of	multiple	languages.	JavaScript	is	good	at	creating	browser-
based	applications,	for	example,	but	not	at	rendering	math-intensive	game	graphics.	C	and
C++,	meanwhile,	excel	at	rendering	game	code.	Rather	than	porting	C++	code	over	to
JavaScript	and	potentially	introducing	bugs,	it	could	be	compiled	to	WebAssembly.

The	WebAssembly	project	sprang	out	of	an	earlier	project	called	asm.js,	which	specified	a
subset	of	the	JavaScript	language	for	writing	high-performance	code.

For	more	information	about	asm.js	and	WebAssembly,	check	out	this	blog	post	by	the
creator	of	JavaScript:	brendaneich.com/2015/06/from-asm-js-to-
webassembly.

http://coffeescript.org/
http://www.typescriptlang.org/
http://kripken.github.io/emscripten-site/
https://brendaneich.com/2015/06/from-asm-js-to-webassembly/

Bronze	Challenge:	Default	Import	Name
In	main.js,	your	import	statement	creates	a	local	variable	named	ChatApp.	What
happens	if	you	change	this	to	ApplicationForChatting?

Try	it	(making	sure	you	also	change	the	new	statement	on	the	next	line)	and	find	out
whether	it	still	works.	If	so,	why?	If	not,	why	not?

Silver	Challenge:	Closed	Connection	Alert
In	the	ws-client	module,	add	another	function	called	registerCloseHandler.	It
should	take	a	callback	that	is	invoked	when	the	close	event	is	triggered	on	the	socket.

In	main.js,	use	registerCloseHandler	to	alert	the	user	that	the	connection	is
closed.	Then,	test	it	to	make	sure	it	works.

How	can	you	test	it?	Obviously,	you	cannot	close	the	browser	window.	You	will	need	to
close	the	other	end	of	the	connection.

For	an	added	bonus,	write	a	function	that	attempts	to	reconnect.	You	can	either	use	a
setTimeout	or	you	can	prompt	the	user	for	confirmation	(search	the	MDN	for	details).

For	the	More	Curious:	Hoisting
JavaScript	was	created	so	that	nonprofessional	programmers	could	create	web	content
with	some	basic	interactivity.	Although	the	language	has	features	intended	to	make	code
error-resistant,	some	of	its	features	end	up	causing	errors	in	practice.	One	of	these	features
is	hoisting.

When	the	JavaScript	engine	interprets	your	code,	it	finds	all	of	the	variable	and	function
declarations	and	moves	them	to	the	top	of	the	function	they	are	in.	(Or,	if	they	are	not	in	a
function,	they	are	evaluated	before	the	rest	of	the	code.)

This	is	best	illustrated	with	an	example.	When	you	write	this	code:
function	logSomeValues	()	{

		console.log(myVal);

		var	myVal	=	5;

		console.log(myVal);

}

it	is	interpreted	as	though	you	had	written:
function	logSomeValues	()	{

		var	myVal;

		console.log(myVal);

		myVal	=	5;

		console.log(myVal);

}

If	you	called	logSomeValues	the	console,	you	would	see	this:
>	logSomeValues();

undefined

5

Notice	that	it	is	only	the	declaration	that	is	hoisted.	The	assignment	stays	in	place.
Naturally,	this	can	cause	confusion,	especially	if	you	were	to	try	to	declare	variables	in	an
if	statement	or	inside	of	a	loop.	In	other	languages,	the	curly	braces	denote	a	block,	which
has	its	own	scope.	In	JavaScript,	curly	brace	blocks	do	not	create	scope.	Only	functions
create	scope.

Take	a	look	at	another	example:
var	myVal	=		11;

function	doNotWriteCodeLikeThis()	{

		if	(myVal	>	10)	{

				var	myVal	=	0;

				console.log('myVal	was	greater	than	10;	resetting	to	0');

		}	else	{

				console.log('no	need	to	reset.');

		}

		return	myVal;

}

You	might	expect	that	‘myVal	was	greater	than	10;	resetting	to	0’
would	be	printed	to	the	console	and	the	value	0	returned.	Instead,	this	is	what	would	be
printed:
>	doNotWriteCodeLikeThis();

no	need	to	reset.

undefined

The	declaration	var	myVal	is	moved	to	the	top	of	the	function,	so	before	the	if	clause	is
evaluated,	myVal	has	a	value	of	undefined.	The	assignment	stays	inside	the	if	block.

Function	declarations	are	also	hoisted,	but	in	their	entirety.	That	means	that	this	works	just
fine:

boo();

//	Declare	after	calling:

function	boo()	{

		console.log('BOO!!');

}

JavaScript	moves	the	entire	function	declaration	block	to	the	top,	allowing	the	invocation
of	boo	to	happen	without	any	problems:
>	boo();

BOO!!

let	statements	are	immune	to	hoisting.	const	statements,	which	let	you	declare	variables
that	cannot	be	reassigned,	are	also	immune.

For	the	More	Curious:	Arrow	Functions
We	fibbed.	Arrow	functions	do	not	work	exactly	like	anonymous	functions.	For	some
situations,	they	are	better.

In	addition	to	providing	shorter	syntax,	arrow	functions:

work	as	though	you	had	written	function	()	{}.bind(this),	making	this
work	as	expected	in	the	body	of	the	arrow	function

allow	you	to	omit	the	curly	braces	if	you	only	have	one	statement

return	the	result	of	the	single	statement	when	curly	braces	are	omitted

For	example,	here	is	CoffeeRun’s	CheckList.prototype.addClickHandler
method:
CheckList.prototype.addClickHandler	=	function(fn)	{

		this.$element.on('click',	'input',	function	(event)	{

				var	email	=	event.target.value;

				fn(email)

						.then(function	()	{

								this.removeRow(email);

						}.bind(this));

		}.bind(this));

};

Replacing	the	anonymous	functions	with	arrow	functions	makes	this	code	a	bit	clearer:
CheckList.prototype.addClickHandler	=	(fn)	=>	{

		this.$element.on('click',	'input',	(event)	=>	{

				let	email	=	event.target.value;

				fn(email)

						.then(()	=>	this.removeRow(email));

		});

};

The	work	that	addClickHandler	is	doing	is	more	apparent	without	the	extra	noise	of
function	and	.bind(this).

18	
ES6,	the	Adventure	Continues

Chattrbox	is	a	working	application,	but	right	now	it	focuses	on	“under	the	hood”	business
logic.	It	connects	to	the	WebSockets	server.	It	defines	a	message	format	and	is	able	to	send
and	receive	messages.

In	this	chapter,	you	will	complete	Chattrbox	by	wiring	up	the	UI	layer.	You	will	continue
to	use	Node	and	npm	to	manage	your	build	process	and	act	as	a	server,	and	at	the	end	of	the
chapter	you	will	have	a	fully	functional	web-based	chat	app	(Figure	18.1).

Figure	18.1		The	completed	Chattrbox

When	you	built	CoffeeRun,	you	created	FormHandler	and	CheckList	modules	that
corresponded	to	the	form	and	the	list	area.	You	will	use	the	same	pattern	with	Chattrbox
for	creating	the	ChatForm	and	ChatList	modules.

You	will	also	create	a	UserStore	module	that	will	hold	information	about	the	current
chat	user.	These	will	make	Chattrbox	more	robust	and	make	its	main	modules	more
reusable.

Installing	jQuery	as	a	Node	Module
Chattrbox	will	make	use	of	jQuery	for	DOM	manipulation.	But	you	will	not	load	jQuery
from	cdnjs.com,	as	you	did	for	CoffeeRun,	nor	will	you	use	a	<script>	tag	in	your
HTML,	the	way	you	have	been	integrating	client-side	dependencies.

With	Browserify,	this	is	no	longer	necessary.	Browserify	automatically	builds	your	JavaScript
dependencies	into	your	application	bundle	to	be	used	in	your	browser.	So,	all	you	need	to
do	to	integrate	jQuery	is	include	it	via	import,	and	Browserify	will	take	care	of	the	rest.

Begin	by	installing	the	jQuery	library	to	the	node_modules	folder:
npm	install	--save-dev	jquery

Open	dom.js	to	begin	writing	this	module.	The	dom.js	module	will	use	jQuery,	so	add
an	import	statement	to	include	it.
import	$	from	'jquery';

Later	in	this	chapter,	you	will	install	and	use	another	third-party	library.	When	you	do,	you
will	follow	these	same	steps	for	installing	and	importing	it.

Creating	the	ChatForm	Class
As	you	did	with	CoffeeRun,	you	will	create	an	object	to	manage	the	form	element	in	the
DOM.	This	will	be	the	ChatForm	class.	Using	ES6	classes	will	make	your	code	a	bit
more	readable	than	your	code	from	CoffeeRun.

Creating	a	ChatForm	instance	and	initializing	its	event	handlers	will	occur	in	two
separate	steps,	because	a	constructor’s	job	should	only	be	to	set	the	properties	of	an
instance.	Other	work	(like	attaching	event	listeners)	should	be	done	in	other	methods.

Define	ChatForm	in	dom.js	with	a	constructor	that	accepts	selectors.	In	the
constructor,	add	properties	for	the	elements	the	instance	will	need	to	track.
import	$	from	'jquery';

class	ChatForm	{

		constructor(formSel,	inputSel)	{

				this.$form	=	$(formSel);

				this.$input	=	$(inputSel);

		}

}

Next,	add	an	init	method	that	will	associate	a	callback	with	the	form’s	submit	event.
...

class	ChatForm	{

		constructor(formSel,	inputSel)	{

				this.$form	=	$(formSel);

				this.$input	=	$(inputSel);

		}

		init(submitCallback)	{

				this.$form.submit((event)	=>	{

						event.preventDefault();

						let	val	=	this.$input.val();

						submitCallback(val);

						this.$input.val('');

				});

				this.$form.find('button').on('click',	()	=>	this.$form.submit());

		}

}

In	the	init	method,	you	used	an	arrow	function	for	the	submit	handler.	Inside	the	arrow
function,	you	prevented	the	default	form	action,	retrieved	the	value	from	the	input	field,
and	then	passed	that	value	to	submitCallback.	Finally,	you	reset	the	value	of	the
input.

To	make	sure	the	form	submits	when	the	button	is	clicked,	you	added	a	click	handler	that
causes	the	form	to	fire	its	submit	event.	You	did	this	by	getting	the	form	element	with
jQuery	and	then	calling	jQuery’s	submit	method.	You	used	the	single-expression	version
of	the	arrow	function,	allowing	you	to	omit	the	curly	braces.

To	make	this	module	useful,	you	need	to	export	ChatForm.	In	the	previous	chapter,	you
used	export	default	for	this	purpose.	This	allowed	you	to	export	a	single	value	for	the
module.	In	some	cases,	you	used	a	plain	JavaScript	object	to	package	up	multiple	values
within	that	single	default	value.

In	this	chapter,	you	will	use	named	exports	to	export	multiple	named	values	instead	of	a
single	default	value.

Export	ChatForm	as	a	named	value	to	users	of	this	module	by	adding	the	export
keyword	just	before	the	class	declaration.

...

export	class	ChatForm	{

		constructor(formSel,	inputSel)	{

				this.$form	=	$(formSel);

				this.$input	=	$(inputSel);

		}

		...

Easy	enough.	Now	to	import	ChatForm	in	app.js.

In	Ottergram	and	CoffeeRun,	you	used	the	var	keyword	for	selector	strings.	In	ES6,	you
can	declare	constants	for	this	purpose,	because	the	values	of	the	strings	will	not	change.
Like	let,	const	is	block-scoped,	meaning	that	it	is	visible	to	any	code	inside	the	same	set
of	curly	braces.	When	it	is	outside	all	curly	braces	(which	will	be	the	case	here),	it	is
visible	to	any	code	in	the	same	file.

In	app.js,	import	the	ChatForm	class	and	create	constants	for	the	form’s	selector	and
message	input	selector.	Also,	create	an	instance	of	ChatForm	in	ChatApp’s	constructor
function.
import	socket	from	'./ws-client';

import	{ChatForm}	from	'./dom';

const	FORM_SELECTOR	=	'[data-chat="chat-form"]';

const	INPUT_SELECTOR	=	'[data-chat="message-input"]';

class	ChatApp	{

		constructor()	{

				this.chatForm	=	new	ChatForm(FORM_SELECTOR,	INPUT_SELECTOR);

				socket.init('ws://localhost:3001');

				socket.registerOpenHandler(()	=>	{

						let	message	=	new	ChatMessage('pow!');

						socket.sendMessage(message.serialize());

				});

				socket.registerMessageHandler((data)	=>	{

						console.log(data);

				});

		}

}

...

When	you	imported	ChatForm,	you	wrapped	it	in	curly	braces:	{ChatForm}.	This
signifies	a	named	import.	The	named	import	for	ChatForm	declares	a	local	variable
named	ChatForm	and	binds	it	to	the	value	from	the	dom	module	of	the	same	name.

Connecting	ChatForm	to	the	socket

In	the	last	chapter,	you	sent	a	dummy	message:	"pow!".	Now	you	are	ready	to	send	real
form	data	from	ChatForm.

Inside	the	socket.registerOpenHandler	callback,	you	will	initialize	the	ChatForm
instance.	It	is	important	to	do	this	after	the	socket	is	open,	instead	of	initializing
immediately	after	creating	the	instance.	By	waiting,	you	prevent	your	user	from	entering
chat	messages	before	they	can	actually	be	sent	to	the	server.	(That	would	be	a	bad	thing.)

Remember	that	ChatForm’s	init	method	accepts	a	callback.	This	callback	will	be	used
to	handle	form	submissions.

In	app.js,	delete	your	dummy	message	code	and	replace	it	with	a	call	to
ChatForm.init,	passing	it	a	callback	that	sends	message	data	coming	from	ChatForm	to
your	socket.
...

class	ChatApp	{

		constructor()	{

				this.chatForm	=	new	ChatForm(FORM_SELECTOR,	INPUT_SELECTOR);

				socket.init('ws://localhost:3001');

				socket.registerOpenHandler(()	=>	{

						let	message	=	new	ChatMessage('pow!');

						socket.sendMessage(message.serialize());

						this.chatForm.init((data)	=>	{

								let	message	=	new	ChatMessage(data);

								socket.sendMessage(message.serialize());

						});

				});

				socket.registerMessageHandler((data)	=>	{

						console.log(data);

				});

		}

}

...

Let’s	look	at	what	ChatApp	is	doing	now.	First,	it	opens	the	socket	connection	to	the
server.	When	the	connection	is	open,	ChatApp	initializes	your	instance	of	ChatForm
with	a	form	submission	callback.

Now,	when	the	user	submits	a	message	in	the	form	the	ChatForm	instance	will	take	that
data	and	send	it	to	ChatApp’s	callback,	and	the	callback	will	then	package	it	up	as	a
ChatMessage	and	send	it	to	the	WebSockets	server.

Creating	the	ChatList	Class
That	takes	care	of	sending	outgoing	chat	messages.	Your	next	job	is	to	display	new
messages	from	the	server	as	they	come	in.	To	do	that,	you	will	create	a	second	class	in
dom.js	representing	the	list	of	chat	messages	the	user	sees.

ChatList	will	create	DOM	elements	for	each	message,	which	will	display	the	name	of
the	user	who	sent	the	message	and	the	message	text.	In	dom.js,	create	and	export	a
class	definition	for	a	new	class	called	ChatList	to	fulfill	this	role:
import	$	from	'jquery';

export	class	ChatForm	{

		...

}

export	class	ChatList	{

		constructor(listSel,	username)	{

				this.$list	=	$(listSel);

				this.username	=	username;

		}

}

ChatList	accepts	the	attribute	selector	and	the	username.	It	needs	the	attribute	selector
so	that	it	knows	where	to	attach	the	message	list	elements	it	creates.	And	it	needs	the
username	so	it	can	see	which	messages	were	sent	by	your	user	and	which	were	sent	by
everyone	else.	(Your	messages	will	be	displayed	differently	from	those	sent	by	other
users.)

Now	that	ChatList	has	a	constructor,	it	also	needs	to	be	able	to	create	DOM	elements
for	messages.

Add	a	drawMessage	method	to	ChatList.	It	will	expect	to	receive	an	object
argument,	which	it	will	destructure	into	local	variables	for	the	username,	timestamp,	and
text	associated	with	the	message.	(To	make	it	clearer	what	the	destructuring	assignment	is
doing,	single	character	local	variables	are	used.)
...

export	class	ChatList	{

		constructor(listSel,	username)	{

				this.$list	=	$(listSel);

				this.username	=	username;

		}

		drawMessage({user:	u,	timestamp:	t,	message:	m})	{

				let	$messageRow	=	$('',	{

						'class':	'message-row'

				});

				if	(this.username	===	u)	{

						$messageRow.addClass('me');

				}

				let	$message	=	$('<p>');

				$message.append($('',	{

						'class':	'message-username',

						text:	u

				}));

				$message.append($('',	{

						'class':	'timestamp',

						'data-time':	t,

						text:	(new	Date(t)).getTime()

				}));

				$message.append($('',	{

						'class':	'message-message',

						text:	m

				}));

				$messageRow.append($message);

				$(this.listId).append($messageRow);

				$messageRow.get(0).scrollIntoView();

		}

}

Your	drawMessage	method	creates	a	row	for	the	message	with	the	username,
timestamp,	and	the	message	itself	displayed.	If	you	are	the	sender	of	the	message,	it	adds
an	extra	CSS	class	for	styling.	It	then	appends	your	message’s	row	to	ChatList’s	list
element	and	scrolls	the	new	message	row	into	view.

With	that,	ChatList	is	ready	to	rock.	Time	to	integrate	it	into	ChatApp.

In	app.js,	update	the	dom	import	statement	so	that	it	also	imports	ChatList.	Add	a
const	for	the	list	selector,	then	instantiate	a	new	ChatList	in	the	constructor.
import	socket	from	'./ws-client';

import	{ChatForm,	ChatList}	from	'./dom';

const	FORM_SELECTOR	=	'[data-chat="chat-form"]';

const	INPUT_SELECTOR	=	'[data-chat="message-input"]';

const	LIST_SELECTOR	=	'[data-chat="message-list"]';

class	ChatApp	{

		constructor()	{

				this.chatForm	=	new	ChatForm(FORM_SELECTOR,	INPUT_SELECTOR);

				this.chatList	=	new	ChatList(LIST_SELECTOR,	'wonderwoman');

				socket.init('ws://localhost:3001');

				...

You	are	almost	up	and	running.	The	final	step	to	getting	basic	chat	functionality	is	to	draw
new	messages	as	they	come	in	by	calling	chatList.drawMessage.	Do	this	in
registerMessageHandler	in	app.js:
...

class	ChatApp	{

		...

				socket.registerMessageHandler((data)	=>	{

						console.log(data);

						let	message	=	new	ChatMessage(data);

						this.chatList.drawMessage(message.serialize());

				});

		}

}

...

You	create	a	new	ChatMessage	using	the	incoming	data,	then	you	serialize	the
message.	This	is	a	precautionary	step	to	strip	away	extra	metadata	that	might	have	been
added	to	the	data.	Creating	a	new	ChatMessage	from	the	socket	data	gives	you	your
message,	and	this.chatList.drawMessage	draws	that	serialize	message	into
your	browser.

Time	to	give	it	a	whirl.	If	you	have	not	already,	start	Watchify	(with	npm	run	watch)	and
nodemon	(with	npm	run	dev).	Open	or	refresh	your	browser	and	type	in	a	message
(Figure	18.2).

Figure	18.2		Seeing	your	own	chat	message

Hooray!	You	now	have	a	working	chat	application.	It	just	needs	a	few	design	touches	for
some	polish.

Using	Gravatars
Gravatar	is	a	free	service	that	lets	you	associate	a	profile	picture	with	your	email	address.
Gravatar	makes	each	user’s	profile	image	available	via	a	specially	formatted	URL.	For
example,	Figure	18.3	shows	the	Gravatar	of	one	of	our	test	accounts.

Figure	18.3		Gravatar	image	example

See	the	end	of	the	URL?	That	is	a	unique	identifier	generated	from	the	user’s	email
address.	This	identifier	is	called	a	hash	and	is	easy	to	generate	with	the	help	of	a	third-
party	library	called	crypto-js.

Add	crypto-js	to	your	project	using	npm:
npm	install	--save-dev	crypto-js

crypto-js	is	now	installed	in	your	project’s	local	node_modules	folder	and	ready	for	use.

When	you	create	strings	in	JavaScript,	you	often	need	to	concatenate	the	string	with	some
other	value.	ES6	provides	a	better	way	to	create	strings	that	include	values	from
expressions	and	variables,	called	template	strings.	You	will	use	this	feature	to	create	the
URL	for	accessing	Gravatar	images.

In	dom.js,	add	another	import	statement	for	the	md5	submodule	of	the	crypto-js
library,	using	a	/	to	separate	the	name	of	the	main	module	and	the	name	of	the	submodule.
Then,	write	a	createGravatarUrl	function	that	accepts	a	username,	generates	an
MD5	hash,	and	returns	the	URL	for	the	Gravatar.
import	$	from	'jquery';

import	md5	from	'crypto-js/md5';

function	createGravatarUrl(username)	{

		let	userhash	=	md5(username);

		return	`http://www.gravatar.com/avatar/${userhash.toString()}`;

}

...

Take	note:	In	return	`http://www.gravatar.com/avatar/${userhash.toString()}`,
those	are	not	single	quote	characters.	They	are	backticks,	located	just	below	the	Escape
key	on	most	US	keyboard	layouts.

Inside	the	backticks,	you	can	use	the	${userhash.toString()}	syntax	to	include
JavaScript	expression	values	directly	in	your	string.	Here,	you	refer	to	the	variable
userhash	and	call	its	toString	method,	but	any	expression	is	valid	inside	of	the	curly
brackets.

Next,	use	this	function	to	display	the	Gravatar	in	new	messages.	At	the	bottom	of

ChatList’s	drawMessage	method	(still	in	dom.js),	create	a	new	image	element	and
set	its	src	attribute	to	the	user’s	Gravatar.
...

				$message.append($('',	{

						class:	'message-message',

						text:	m

				}));

				let	$img	=	$('',	{

						src:	createGravatarUrl(u),

						title:	u

				});

				$messageRow.append($img);

				$messageRow.append($message);

				$(this.listId).append($messageRow);

				$messageRow.get(0).scrollIntoView();

...

Run	your	chat	app,	and	you	should	see	a	Gravatar	pop	up	this	time	(Figure	18.4).

Figure	18.4		Showing	a	Gravatar

Sadly,	there	is	no	Gravatar	for	the	wonderwoman	username.	As	a	result,	you	get	the
unexciting	default	Gravatar.

Prompting	for	Username
It	would	be	really	cool	to	be	Wonder	Woman.	But	it	is	more	cool	to	be	a	JavaScript
developer	using	Chattrbox.	(Especially	because	real	users	actually	have	Gravatars.)	In
order	to	know	who	is	using	Chattrbox,	you	will	need	to	prompt	users	for	their	usernames.

It	is	the	responsibility	of	the	dom	module	to	interact	with	the	UI,	so	create	a
promptForUsername	function	in	dom.js.	Add	it	to	the	exports	instead	of	making	it
part	of	ChatForm	or	ChatList.
...

function	createGravatarUrl(username)	{

		let	userhash	=	md5(username);

		return	`http://www.gravatar.com/avatar/${userhash.toString()}`;

}

export	function	promptForUsername()	{

		let	username	=	prompt('Enter	a	username');

		return	username.toLowerCase();

}

...

In	the	promptForUsername	function,	you	created	a	let	variable	to	hold	the	text
entered	by	the	user.	(The	prompt	function	is	built	into	the	browser	and	returns	a	string.)
Then	you	returned	a	lowercase	version	of	that	text.

Next,	you	will	need	to	update	app.js	to	use	this	new	function.	Update	the	import
statement	for	the	dom	module	and	call	the	promptForUsername	function	to	get	a
value	for	the	username	variable:
import	socket	from	'./ws-client';

import	{ChatForm,	ChatList,	promptForUsername}	from	'./dom';

const	FORM_SELECTOR	=	'[data-chat="chat-form"]';

const	INPUT_SELECTOR	=	'[data-chat="message-input"]';

const	LIST_SELECTOR	=	'[data-chat="message-list"]';

let	username	=	'';

username	=	promptForUsername();

class	ChatApp	{

		...

Now,	update	ChatMessage	to	use	that	username	as	the	default.	Remember,	only
messages	received	from	the	server	have	a	data.user	value.
...

class	ChatMessage	{

		constructor({

				message:	m,

				user:	u='batman',	username,

				timestamp:	t=(new	Date()).getTime()

...

Finally,	pass	the	username	to	the	ChatList	constructor:
...

class	ChatApp	{

		constructor()	{

				this.chatForm	=	new	ChatForm(FORM_SELECTOR,	INPUT_SELECTOR);

				this.chatList	=	new	ChatList(LIST_SELECTOR,	'wonderwoman'	username);

				...

After	the	build	process	completes,	reload	your	browser	and	enter	a	username	in	the	prompt
(Figure	18.5).

Figure	18.5		Prompting	for	a	username

Now,	try	sending	messages.	You	should	see	your	selected	username	echoed	back	at	you,	as
well	as	the	Gravatar	associated	with	that	username	(Figure	18.6).

Figure	18.6		Your	user’s	name

Gravatars	are	assigned	using	email	addresses.	If	you	do	not	have	one	associated	with	your
email	address,	try	diana.prince@bignerdranch.com	or	clark.kent@bignerdranch.com.

User	Session	Storage
Typing	the	username	each	time	you	reload	the	page	gets	tedious.	It	would	be	better	to
store	that	username	in	the	browser.	For	simple	storage,	the	browser	provides	two	APIs	for
storing	key/value	pairs	(with	one	limitation	–	the	value	must	be	a	string).	These	are
localStorage	and	sessionStorage.	The	data	stored	in	localStorage	and	sessionStorage	is
associated	with	your	web	application’s	server	address.	Code	from	different	sites	cannot
access	each	other’s	data.

Using	localStorage	would	work.	But	you	might	only	want	to	keep	the	username	until
you	close	the	tab	or	the	window,	so	in	this	case	you	will	use	the	sessionStorage	API.	It	is
just	like	localStorage,	but	the	data	is	erased	when	the	browsing	session	ends	(either	by
closing	the	browser	tab	or	the	window).

You	will	create	a	new	set	of	classes	to	manage	your	sessionStorage	information.

Create	a	new	file	named	storage.js	in	the	app/scripts/src	folder	and	add	a
class	definition:
class	Store	{

		constructor(storageApi)	{

				this.api	=	storageApi;

		}

		get()	{

				return	this.api.getItem(this.key);

		}

		set(value)	{

				this.api.setItem(this.key,	value);

		}

}

Your	new	Store	class	is	generic	and	can	be	used	with	either	localStorage	or
sessionStorage.	It	is	a	thin	wrapper	around	the	Web	Storage	APIs.	You	specify	which
storage	API	you	want	to	use	when	you	instantiate	one.

Notice	that	there	are	references	to	this.key,	which	is	not	set	in	the	constructor.	This
implementation	of	Store	is	not	intended	to	be	used	on	its	own.	Instead,	you	use	it	by
building	a	subclass	that	defines	the	key	property.

Create	a	subclass,	using	the	extends	keyword,	that	you	can	use	for	storing	the	username
in	sessionStorage:
class	Store	{

		constructor(storageApi)	{

				this.api	=	storageApi;

		}

		get()	{

				return	this.api.getItem(this.key);

		}

		set(value)	{

				this.api.setItem(this.key,	value);

		}

}

export	class	UserStore	extends	Store	{

		constructor(key)	{

				super(sessionStorage);

				this.key	=	key;

		}

}

UserStore	only	defines	a	constructor,	which	performs	two	actions.	First,	it	calls
super,	which	invokes	the	Store’s	constructor,	passing	it	a	reference	to

sessionStorage.	Second,	it	sets	the	value	of	this.key.

Now	the	value	of	api	is	set	for	the	Store,	and	the	value	of	key	is	set	for	the
UserStore	instance.	This	means	that	all	the	pieces	are	in	place	for	a	UserStore
instance	to	invoke	the	get	and	set	methods.

UserStore	will	be	what	app.js	will	use,	so	that	is	what	you	export	here.

Now	to	use	your	new	UserStore.	Import	UserStore	into	app.js,	create	an
instance,	and	use	it	to	stash	the	username:
import	socket	from	'./ws-client';

import	{UserStore}	from	'./storage';

import	{ChatForm,	ChatList,	promptForUsername}	from	'./dom';

const	FORM_SELECTOR	=	'[data-chat="chat-form"]';

const	INPUT_SELECTOR	=	'[data-chat="message-input"]';

const	LIST_SELECTOR	=	'[data-chat="message-list"]';

let	username	=	'';

let	userStore	=	new	UserStore('x-chattrbox/u');

let	username	=	userStore.get();

if	(!username)	{

		username	=	promptForUsername();

		userStore.set(username);

}

class	ChatApp	{

		...

Run	Chattrbox	one	more	time	in	your	browser.	This	time,	you	should	only	be	prompted
for	your	username	when	you	initially	load	the	page.	Subsequent	reloads	should	have	the
same	username	you	initially	entered.

To	confirm	that	your	username	is	being	stored	in	sessionStorage,	you	can	use	the
resources	panel	in	the	DevTools.	After	you	click	to	activate	the	resources	panel,	you	will
see	a	list	on	the	left.	Click	the	 	next	to	the	Session	Storage	item	in	the	list,	revealing
http://localhost:3000.	Click	this	URL	to	reveal	the	data	being	stored	by
UserStore	(Figure	18.7).

Figure	18.7		The	resources	panel	in	the	DevTools

At	the	bottom	of	this	list	of	key	value	pairs,	there	are	buttons	for	refreshing	the	list	and	for
deleting	items	from	the	list.	You	can	use	these	if	you	need	to	manually	modify	the	stored
data.

http://localhost:3000

Formatting	and	Updating	Message	Timestamps
Your	messages	have	timestamps	that	are	not	very	human-friendly.	(Seriously,	who	tells
time	by	the	number	of	milliseconds	since	January	1,	1970?)	To	provide	nicer	timestamps
(such	as	“10	minutes	ago”),	you	will	add	a	module	called	moment.	Install	it	using	npm	and
save	it	as	a	development	dependency:
npm	install	--save-dev	moment

Each	of	your	messages	stores	its	timestamp	as	a	data	attribute.	Write	an	init	method	for
ChatList	that	calls	the	built-in	function	setInterval,	which	takes	two	arguments:	a
function	to	run	and	how	often	that	function	should	be	run.	Your	function	will	update	each
message	with	a	human-readable	timestamp.

To	set	the	timestamp	string,	use	jQuery	in	dom.js	to	find	all	elements	with	a	data-time
attribute	whose	value	is	the	numerical	timestamp.	Create	a	new	Date	object	using	that
numerical	timestamp	and	pass	the	object	to	moment.	Then	call	the	fromNow	method	to
produce	the	final	timestamp	string	and	set	that	string	as	the	element’s	HTML	text.
...

		drawMessage({user:	u,	timestamp:	t,	message:	m})	{

				...

		}

		init()	{

				this.timer	=	setInterval(()	=>	{

						$('[data-time]').each((idx,	element)	=>	{

								let	$element	=	$(element);

								let	timestamp	=	new	Date().setTime($element.attr('data-time'));

								let	ago	=	moment(timestamp).fromNow();

								$element.html(ago);

						});

				},	1000);

		}

}

You	are	running	this	function	every	1,000	milliseconds.	To	make	sure	a	human-readable
timestamp	appears	immediately,	update	drawMessage.	Use	moment	to	create	a
formatted	timestamp	string	when	the	message	is	first	drawn	to	the	chat	list.
...

		drawMessage({user:	u,	timestamp:	t,	message:	m})	{

				...

				$message.append($('',	{

						'class':	'timestamp',

						'data-time':	t,

						text:	(new	Date(t)).getTime()

						text:	moment(t).fromNow()

				}));

				...

Finally,	update	app.js,	adding	a	call	to	this.chatList.init	inside	the
socket.registerOpenHandler	callback:
...

class	ChatApp	{

		constructor	()	{

				this.chatForm	=	new	ChatForm(FORM_SELECTOR,	INPUT_SELECTOR);

				this.chatList	=	new	ChatList(LIST_SELECTOR,	username);

				socket.init('ws://localhost:3001');

				socket.registerOpenHandler(()	=>	{

						this.chatForm.init((text)	=>	{

								let	message	=	new	ChatMessage({message:	text});

								socket.sendMessage(message.serialize());

						});

						this.chatList.init();

				});

				...

Save	and	let	your	npm	scripts	compile	your	changes.	Refresh	the	browser	and	start

chatting.	You	should	see	your	new	timestamps	appear	with	your	message	text.	After	a
couple	of	minutes,	you	will	notice	that	the	message	timestamps	update	(Figure	18.8).

Figure	18.8		Not-so-secret	identities

You	have	come	to	the	end	of	the	road	with	Chattrbox.	Though	it	only	spanned	a	few
chapters,	it	had	quite	a	few	moving	parts.	You	learned	how	to	write	two	kinds	of	servers	in
Node.js:	a	basic	web	server	and	a	WebSocket	server.	You	built	the	client	application	using
ES6,	utilizing	Babel	and	Browserify	to	compile	your	code	to	ES5	so	that	Chattrbox	can	be
used	in	older	browsers,	and	you	automated	your	workflow	with	npm	scripts.

Chattrbox	is	the	culmination	of	the	techniques	you	have	learned	so	far.	The	next
application,	Tracker,	will	introduce	you	to	Ember.js,	a	framework	for	building	large
applications.	It	will	build	on	your	hard-won	knowledge	of	modularity,	asynchronous
programming,	and	workflow	tools.

Bronze	Challenge:	Adding	Visual	Effects	to	Messages
Give	new	messages	a	visual	effect.	You	can	fade	them	in	or	have	them	slide	in.	(Check
jQuery’s	Effects	documentation	for	options.)

For	an	added	challenge,	apply	this	effect	only	to	truly	new	messages	–	not	to	messages
already	in	the	chat	that	are	loaded	by	the	app	when	users	first	sign	on	or	refresh	their
browser.

How	can	you	tell	which	messages	are	old	and	which	are	new?	Each	message	has	a	data
attribute	that	can	help	you	tell	whether	it	is	more	than	a	second	or	two	old.

Silver	Challenge:	Caching	Messages
If	you	are	in	the	middle	of	a	chat	and	need	to	reload	the	browser,	all	of	your	messages
disappear.	It	is	nice	that	your	UserStore	remembers	your	username	–	but	it	would	be
better	if	you	also	had	a	similar	mechanism	for	caching	chat	messages.

Create	a	MessageStore	that	subclasses	Store.	It	should	store	messages	as	they	come
in,	making	sure	not	to	store	the	same	message	more	than	once.

When	the	page	loads,	Chattrbox	should	get	any	cached	messages	from	MessageStore.
Decide	if	you	would	like	messages	to	persist	even	if	the	browser	tab	is	closed	and	re-
opened.	(If	so,	what	alternative	to	sessionStorage	would	you	use?)

Gold	Challenge:	Separate	Chat	Rooms
This	challenge	will	require	you	to	modify	both	the	server	and	client	applications.

Add	separate	chat	rooms	for	your	users.	After	they	enter	their	username,	prompt	them	to
enter	the	name	of	the	chat	room	they	would	like	to	use.

When	users	are	logged	in	to	a	chat	room,	they	should	only	receive	messages	for	that	room
over	the	WebSocket	connection.	You	might	need	to	change	how	you	store	messages	on	the
server,	how	you	send	messages	to	the	client,	or	both.

For	an	added	challenge,	show	a	dropdown	of	available	chat	rooms	in	the	client	UI	so	that
users	can	switch	from	room	to	room.	When	changing	to	another	room,	make	sure	that	any
new	messages	are	received	from	the	server	and	displayed	in	the	chat	list.

Part	IV	
Application	Architecture

19	
Introduction	to	MVC	and	Ember

Model-View-Controller	(MVC)	is	an	extremely	useful	software	design	pattern.	It	works
well	in	web	applications,	allowing	you	to	build	structure	in	separate	layers.	This	chapter
introduces	the	MVC	pattern	and	walks	you	through	installing	and	setting	up	Ember,	a
framework	for	MVC.	The	next	few	chapters	focus	on	individual	pieces	of	the	pattern	as
you	create	a	new	application	layer	by	layer.

There	are	many	interpretations	of	MVC,	especially	in	the	front-end	world.	Figure	19.1
shows	the	interpretation	we	will	use.

Figure	19.1		The	Model-View-Controller	pattern

Here	is	a	breakdown	of	what	each	layer	does:

	Models	manage	data.	When	data	changes,	the	model	tells	anyone	who	is
listening.

	Views	manage	the	user	interface.	They	handle	the	presentation	of	models	and
listen	for	any	changes.	Also,	when	UI	events	fire	in	response	to	user	input,	they
call	handler	functions	in	the	controller.

	Controllers	hold	application	logic.	They	retrieve	model	instances	and	give	them
to	views.	They	also	contain	handler	functions	that	make	changes	to	model

instances.

If	this	seems	circular,	it	is.	The	three	pieces	work	together.	Application	data	flows	from
the	models	to	the	view.	Event	data	flows	from	the	view	to	the	controller.	Controllers
trigger	data	changes	in	the	model	based	on	UI	events.

You	may	be	wondering	how,	then,	you	get	into	the	circular	pattern	of	MVC.	In	Chapter	8,
you	created	the	CoffeeRun	application	and	enclosed	all	the	functionality	you	needed	in	the
Window.App	object.	Each	added	module	had	a	specific	role	in	the	application	and	was
named	for	its	functionality.	The	MVC	pattern	needs	an	initial	set-up	function,	like	creating
a	new	Truck,	to	load	controllers.	Controllers,	in	turn,	load	models	and	views.

Your	next	application,	called	Tracker,	will	load	an	initial	DOM	state	in	an	HTML	file	as
only	an	empty	<body>	tag.	The	scripts	to	initialize	your	application	will	be	loaded	from
this	HTML	file	as	well.	In	the	MVC	pattern,	views	(HTML	content)	are	dynamically
rendered	depending	on	the	route	and	state	of	the	data	(models).

The	application	you	are	going	to	build	will	require	more	than	CoffeeRun’s	seven	modules.
The	MVC	pattern	helps	you	break	up	modules	into	functionality-specific	files	and
maintain	consistent	organization	–	whether	you	have	a	dozen	modules	or	a	hundred.

Tracker
Your	Tracker	application	will	include	URL	routing,	one	of	the	best	features	of	web
applications.	It	will	have	models	to	define	the	data,	controllers	to	handle	user	actions,
templates	to	define	the	UI,	and	routes	to	assign	the	models	to	the	templates.	As	you	build
the	application,	you	will	pick	up	some	new	patterns	and	techniques	that	will	make	your
code	lightweight	and	elegant.

Your	customer	for	the	Tracker	application	is	a	cryptozoologist,	traveling	the	world	in
search	of	animals	like	Bigfoot,	chupacabras,	the	Loch	Ness	Monster,	and	unicorns.	This
client	wants	an	app	for	tracking	these	mysterious	creatures	and	recording	information
about	any	sightings.	The	requirements	may	change	(and	they	usually	do),	but	to	begin
with	the	user	should	be	able	to:

list	existing	sightings

add	new	sightings

link	creatures	to	sightings

see	the	latest	sightings	via	flash	messages

Each	sighting	should	have	the	following	model	data	and	associations:

Sighting	model	attribute Attribute	type

date	creature	was	seen date	object

location string

creature creature	model	key

witness(es) array	of	witness	keys

Each	creature	should	have	the	following	model	data:

Creature	model	attribute Attribute	type

name string

type string

image	path string

And	each	witness	should	have	the	following	model	data	and	associations:

Witness	model	attribute Attribute	type

first	name string

last	name string

full	name string:	concatenation	of	first	name	and	last	name

email string

sighting(s) array	of	sighting	keys

Building	Tracker	will	be	slightly	different	than	building	the	previous	applications	in	this
book.	It	will	more	closely	resemble	real-world	application	development.	There	will	be
more	code	in	sections	and	less	instant	feedback.	However,	you	will	get	a	realistic	sense	of
app	development	and	will	build	a	satisfyingly	complex	app	(Figure	19.2).

Figure	19.2		Finished	Tracker	app

Ember:	An	MVC	Framework
As	you	build	Tracker,	you	will	learn	the	basic	pattern	of	web	application	development
using	Ember,	one	of	the	leading	MVC	frameworks.	Ember	incorporates	concepts	and
naming	conventions	that	allow	for	rapid	development.	As	you	build	your	application,	you
will	learn	the	Ember	fundamentals.

As	described	on	Ember’s	homepage	(emberjs.com),	Ember	is	“a	framework	for	building
ambitious	web	applications.”	In	contrast	to	a	library	like	jQuery,	a	framework	like	Ember
informs	your	app’s	structure	and	often	includes	scaffolding	tools,	which	are	scripts	to
create	boilerplate	files	in	the	correct	directories.	Since	its	inception	in	2011,	the	Ember
community	has	been	building	a	diverse	ecosystem	of	libraries	and	tooling	to	accelerate
development.

You	will	start	your	Ember	journey	with	Ember	CLI,	Ember’s	tool	for	scaffolding,	development,
testing,	and	building.	If	you	are	not	familiar	with	the	term	CLI,	it	stands	for	“command-
line	interface.”	You	will	create	a	new	project,	load	dependencies,	generate	your	Ember
objects,	and	build	and	run	your	Tracker	application	from	this	tool.

Installing	Ember

To	get	started,	you	will	need	to	install	some	tools.

First,	make	sure	you	are	using	the	latest	version	of	Node.js	(>0.12.0).	You	can	check	your
version	with	the	terminal	command	node	--version.	At	the	time	of	this	writing,	Node	is	at
version	5.5.0.	(Yeah,	that	is	a	large	difference	from	the	minimum	requirement	of	0.12.0.
For	more	on	the	history	of	when	and	why	Node	jumped	from	version	0.12.0	to	4.0.0,	check
out	Wikipedia’s	article	at	en.wikipedia.org/wiki/Node.js.)

If	necessary,	download	an	updated	version	of	Node.js	from	nodejs.org.

Once	Node	is	up	to	date,	you	are	ready	to	install	Ember	CLI	using	the	following	terminal
command:
npm	install	-g	ember-cli@2.4

The	installation	may	take	a	few	minutes.	If	you	get	this	error:	Please	try	running	this
command	again	as	root/Administrator,	then	there	is	an	issue	with	owner	permissions.
Do	not	rerun	the	install	command	with	sudo,	as	npm	and	sudo	do	not	play	well	together.
Instead,	run	this	command:	sudo	chown	-R	$USER	/usr/local.	Then	rerun	the	original
install	command	(without	sudo).

You	may	get	other	errors	when	you	install	Ember	CLI	that	have	to	do	with	incompatibility
with	your	existing	system.	Most	errors	have	instructions	for	repairing	the	install	process.
Some	install	errors	will	require	basic	internet	searches	to	update	existing	programs
running	on	your	computer.	If	you	need	more	information,	the	Ember	CLI	website	has	a	page
for	common	issues	at	ember-cli.com/user-guide/#commonissues.

Next,	install	Bower,	another	asset	management	tool.

http://emberjs.com
https://en.wikipedia.org/wiki/Node.js
https://nodejs.org
http://ember-cli.com/user-guide/#commonissues

npm	install	-g	bower

Bower	and	npm	are	required	to	create	an	Ember	application.

Next,	install	the	Ember	Inspector	plug-in	for	Chrome.	To	do	this,	open	Chrome	and,	in	the
address	bar,	enter	chrome://extensions/.	At	the	bottom	of	the	extension	page,	click	Get
more	extensions.	Search	for	“Ember	Inspector”	(Figure	19.3),	click	Add	to	Chrome,	and	follow
the	prompts	to	install	the	extension.

Figure	19.3		Installing	the	Ember	Inspector	extension	for	Chrome

Ember	CLI	uses	a	program	called	Watchman	when	it	is	running.	Watchman	is	a	command-line
tool	that	integrates	with	browsers	to	enable	live	reload	of	applications.

On	a	Mac,	you	can	install	Watchman	via	Homebrew.	Homebrew,	a	package	manager	for	OS	X,
can	be	downloaded	using	a	terminal	command	you	can	copy	from	its	website,	brew.sh.
Once	Homebrew	is	installed,	install	Watchman	(version	3.0.0	or	greater)	with	this	terminal
command:
brew	install	watchman

Instructions	for	installing	Watchman	on	Windows	can	be	found	at
facebook.github.io/watchman/docs/install.html

With	that,	you	have	the	tools	you	need	to	begin	your	Ember	project,	Tracker.

Creating	an	Ember	application

Ember’s	emphasis	on	conventions	and	patterns	allows	you	to	create	an	application	with
minimal	code.	The	framework	does	a	lot	of	the	work	behind	the	scenes,	generating	a
number	of	objects	and	events	when	your	application	starts.	As	you	build	out	more	of	the
Tracker	app,	you	will	use	your	own	objects	in	place	of	the	ones	Ember	created	for	you.

In	the	terminal,	navigate	to	your	projects	folder.	The	command	ember	new	[project
name]	will	create	a	directory	and	will	scaffold	all	the	necessary	files	to	start	developing.

Create	a	new	Ember	app	called	tracker:
ember	new	tracker

http://brew.sh/
https://facebook.github.io/watchman/docs/install.html

Creating	a	new	Ember	application	may	take	a	few	minutes.	As	you	can	see	from	the
terminal	output,	some	of	which	is	shown	below,	the	ember	new	command	creates	the	base
project	files	and	directory	structure.	Also,	it	uses	npm	and	Bower	to	load	external	library
assets.	These	libraries	are	essential	to	running	an	Ember	application	and	also	to	running	the
server	to	compile,	build,	and	test	your	application.
installing	app

		create	.bowerrc

		create	.editorconfig

		create	.ember-cli

		create	.jshintrc

		create	.travis.yml

		create	.watchmanconfig

		create	README.md

		create	app/app.js

		create	app/components/.gitkeep

		create	app/controllers/.gitkeep

		create	app/helpers/.gitkeep

		create	app/index.html

		create	app/models/.gitkeep

		create	app/router.js

		create	app/routes/.gitkeep

		create	app/styles/app.css

		create	app/templates/application.hbs

		.	.	.

Successfully	initialized	git.

Installed	packages	for	tooling	via	npm.

Installed	browser	packages	via	Bower.

When	Ember	has	finished	setting	up	the	Tracker	app,	verify	that	everything	is	working	by
starting	a	local	server.

Starting	up	the	server

In	a	moment,	you	are	going	to	use	the	command	ember	server	(or	ember	s,	for	those
looking	to	save	a	few	keystrokes)	to	build	your	application	and	start	a	server	so	that	you
can	access	it	locally.	As	a	convenience,	ember	server	watches	your	files	for	changes	and
restarts	the	build/serve/watch	process	to	make	sure	you	only	see	the	latest	code	in	the
browser	(much	like	the	browser-sync	tool	you	used	in	Ottergram	and	CoffeeRun).

Ember	CLI	uses	the	Broccoli	program	for	compilation.	If	you	have	programmed	in	languages
like	Java	or	Objective-C,	you	may	think	of	“compilation”	a	bit	differently	than	what	it
means	in	JavaScript.	In	this	case,	Broccoli	combines	all	of	the	JavaScript	files	needed	to	run
your	application,	while	ensuring	that	all	dependencies	are	met.

It	is	time	to	fight	for	the	user.	Change	directories	into	the	Tracker	folder	and	start	up	the
server:
cd	tracker

ember	server

In	Chrome,	open	a	new	browser	window	and	go	to	http://localhost:4200	to	see	your
new	Ember	app	in	action	(Figure	19.4).	You	will	also	want	to	open	the	Ember	tab	in	the
DevTools,	as	shown.

Figure	19.4		Ember	server

As	mentioned	above,	Ember	CLI	will	reload	the	browser	page	when	you	make	changes	to
the	application	files.	This	is	called	Livereload,	and	you	will	see	it	mentioned	in	the
terminal	output	as:
Livereload	server	on	http://localhost:49152

In	Figure	19.4,	notice	that	both	the	console	and	Ember	Inspector	list	various	components	that
were	generated	for	you,	along	with	their	versions.	This	book	uses	version	2.4	of	both
Ember	and	Ember	Data.	At	the	time	of	publication,	Ember	CLI	generates	a	2.x	Ember
application,	as	you	can	see	by	the	version	numbers	in	the	figure.	If	you	see	version
numbers	starting	with	1.x.x,	you	may	have	skipped	the	step	to	install	or	update	Ember-CLI.

(Note	that	the	Version	you	see	after	starting	a	server	in	the	terminal	is	the	version	of	Ember
CLI,	not	the	version	of	the	actual	Ember	app	you	are	launching.)

External	Libraries	and	Addons
Ember	CLI	is	set	up	to	offer	developers	speed	in	many	ways,	including	adding	code	from	the
open-source	community.	In	previous	chapters,	you	added	node	modules	to	your	local
environment	via	npm.	Earlier	in	this	chapter	we	discussed	loading	external	libraries	via
Bower,	another	package	manager.

Ember	CLI	works	well	with	both	of	these	package	managers.	Installing	libraries	or	tools	is
done	with	simple	commands	like:
npm	install	[package	name]	--save-dev

npm	install	[package	name]	--save

bower	install	[package	name]	--save

When	using	external	libraries,	these	command-line	tools	load	files	to	the	directories
bower_components	and	node_modules.

You	used	Bootstrap	for	CoffeeRun,	and	you	are	going	to	start	Tracker	with	it	as	well.	To	add
Bootstrap	with	Bower,	enter	the	following	command	in	the	terminal:
bower	install	bootstrap-sass	--save

You	have	now	loaded	the	Bootstrap	library	locally,	with	all	its	JavaScript	and	style	files.
You	will	roll	this	library	into	the	Ember	CLI	build	process	so	that	you	can	ship	your
application	with	the	Bootstrap	assets	your	application	needs.

The	modern	web	workflow	for	developing	scripts	and	styles	includes	compilation.	You	are
going	to	add	a	tool	to	help	reduce	the	complexity	of	compilation:	ember-cli-sass	will	handle
converting	SCSS	stylesheets	to	CSS	during	the	Ember	CLI	build	process.	SCSS,	commonly
referred	to	as	“Sass,”	adds	many	familiar	programmatic	constructs	to	your	stylesheets	like
variables,	functions,	loops,	and	key/value	pairs	–	without	losing	the	CSS	syntax	you	know
and	love.

Install	ember-cli-sass	from	the	terminal:
ember	install	ember-cli-sass

ember-cli-sass	is	an	example	of	an	Ember	addon.	Addons	(www.emberaddons.com)	are
projects	that	have	added	external	libraries	or	configuration	code,	created	helpers	or
components,	or	done	some	other	type	of	heavy	lifting	for	you.	Ember	CLI	makes	it	easy	to
add	these	existing	projects	to	your	project	with	the	ember	install	command.

Note	that	Ember	CLI	is	a	relatively	new	tool,	and	addons	can	be	out	of	sync.	If	you	run	into
problems	with	a	particular	addon,	visit	the	issues	page	at	the	addon’s	GitHub	repository.

You	have	just	added	the	ability	to	compile	SCSS	files.	Now	you	need	to	change	the
app/styles/app.css	to	be	a	.scss	file.	Rename	app/styles/app.css	to
app/styles/app.scss.	Restart	the	Ember	server	when	you	are	done	so	the	new	CLI
tools	initialize.

To	test	the	new	CLI	tool,	you	are	going	to	add	a	SCSS	variable	to	your	stylesheet.	With	a
$	as	a	prefix,	create	a	name/value	pair	to	test	the	SCSS	compilation	in
app/styles/app.scss:
$bg-color:	coral;

html	{

https://www.emberaddons.com

		background:	$bg-color;

}

Check	your	browser.	Your	page	now	displays	a	background	color	(Figure	19.5).

Figure	19.5		Compiling	SCSS:	test

Next,	you	will	add	Bootstrap	styles	and	scripts	to	your	project.	Earlier	you	added	the	SCSS
version	of	Bootstrap	via	bower	install	bootstrap-sass.	To	add	the	library	to	your
stylesheet,	you	will	need	to	import	the	style	library	into	your	file	and	configure	Ember	CLI
to	build	your	application	with	those	assets.

Configuration
Broccoli,	the	compilation	engine	we	mentioned	earlier,	requires	some	configuration	when
adding	new	JavaScript	and	stylesheet	assets.

Ember-CLI	generates	a	configuration	file	named	ember-cli-build.js.	This	file	is
where	you	can	inject	dependencies	and	configure	the	output	structure	of	your	application.
For	Tracker,	you	will	only	be	adding	external	libraries	and	settings	for	SCSS	compilation.

Open	ember-cli-build.js,	assign	a	variable	to	the	directory	path	to	bootstrap,
and	add	Bootstrap’s	stylesheets	directory	to	the	key	includePaths	in	the
sassOptions:
...

var	EmberApp	=	require('ember-cli/lib/broccoli/ember-app');

module.exports	=	function(defaults)	{

		var	bootstrapPath	=	'bower_components/bootstrap-sass/assets/';

		var	app	=	new	EmberApp(defaults,	{

				//	Add	options	here

				sassOptions:	{

						includePaths:	[

								bootstrapPath	+	'stylesheets'

]

				}

		});

		//	...	Template	comments	...

		//	Create	paths	to	bootstrap	assets

		//	Add	assets	to	app	with	import

		app.import(bootstrapPath	+	'javascripts/bootstrap.js');

		return	app.toTree();

};

You	have	added	a	configuration	for	Ember	CLI	to	look	for	*.scss	files	in	the
bower_components/bootstrap-sass/assets/stylesheets	directory.	Save
your	file	and	restart	the	Ember	server	so	the	new	configuration	can	load	with	the
application.

You	can	now	use	the	@import	directive	in	your	app.scss	file	to	import	Bootstrap’s	styles:
$bg-color:	coral;

html	{

		background:	$bg-color;

}

//	----------------------------

//	bootstrap	variable	overrides

//	----------------------------

//	end	bootstrap	variable	overrides

@import	'bootstrap';

The	@import	directive	adds	the	contents	of	bootstrap.scss	to	app.scss,	which
will	be	created	by	the	Ember	CLI	build	process.	Bootstrap’s	file	is	found	in	the	directory
bower_components/bootstrap-sass/assets/stylesheets/.

In	ember-cli-build.js,	you	added	Bootstrap’s	JavaScript	components	to	the
application	build	process	with	app.import(bootstrapPath	+
'javascripts/bootstrap.js');.	An	import	in	the	CLI	build	configuration	adds	the	file
to	the	list	of	assets	to	be	concatenated	into	a	single	dist/assets/vendor.js	file.
Bootstrap’s	bootstrap.js	has	individual	JavaScript	modules	for	collapsing	DOM	elements,
modals,	tabs,	dropdowns,	and	many	others	all	in	a	single	file.	Adding	all	the	JavaScript

components	is	probably	overkill,	but	in	the	future	you	can	tweak	your	ember-cli-
build.js	configuration	to	only	add	the	specific	components	you	need.

After	you	add	assets,	you	should	always	make	sure	they	are	working	before	you	move
forward.	In	the	app	directory,	there	is	an	index.html	file	–	but	this	is	not	the	place	to
test	your	new	Bootstrap	code.	This	file	is	mainly	for	the	build	process.

Instead,	all	of	your	HTML	elements	will	be	added	to	application	templates,	in	the
app/templates	directory.	You	will	learn	about	templates	in	greater	detail	in
Chapter	23.

For	now,	add	a	Bootstrap	NavBar	component	to	app/templates/application.hbs:
<h2	id="title">Welcome	to	Ember</h2>

{{outlet}}

<header>

		<nav	class="navbar	navbar-default">

				<div	class="container-fluid">

						<!--	Brand	and	toggle	get	grouped	for	better	mobile	display	-->

						<div	class="navbar-header">

								<button	type="button"	class="navbar-toggle	collapsed"

										data-toggle="collapse"	data-target="#top-navbar-collapse">

										Toggle	navigation

										

										

										

								</button>

								Tracker

						</div>

						<!--	Collect	the	nav	links,	forms,	and	other	content	for	toggling	-->

						<div	class="collapse	navbar-collapse"	id="top-navbar-collapse">

								<ul	class="nav	navbar-nav">

										

												Test	Link

										

										

												Test	Link

										

								

						</div><!--	/.navbar-collapse	-->

				</div><!--	/.container-fluid	-->

		</nav>

</header>

<div	class="container">

		{{outlet}}

</div>

You	have	added	Bootstrap’s	NavBar	component	with	specific	HTML	attributes:	IDs,	class
names,	and	data	attributes.	Also,	the	existing	{{outlet}}	has	been	moved	from	the	main
containing	element	to	inside	a	<div>	element.	This	piece	of	code	is	how	templates	nest
child	templates.	You	will	learn	more	about	the	{{outlet}}	in	the	next	chapter.

The	result	of	your	code	is	shown	in	Figure	19.6.

Figure	19.6		Bootstrap	NavBar

The	NavBar	component	is	responsive	and	shows	a	collapse	button	when	the	browser
window	is	less	than	768px	wide.	This	button	responds	to	click	events	by	opening	and
closing	the	list	of	links	(Figure	19.7).	The	event	listener	setup	for	the	collapse	feature	is
the	code	written	in	the	bootstrap.js	file.

Figure	19.7		Testing	Bootstrap	NavBar‘s	collapse	component

Congratulations	–	you	have	an	Ember	app	up	and	running!	You	installed	tools	to	generate
code,	compile	assets,	load	dependencies,	and	serve	the	app.	You	now	have	a	solid	starting
point	for	building	the	rest	of	your	app	in	upcoming	chapters.

For	the	More	Curious:	npm	and	Bower	Install
The	options	--save-dev	and	--save	at	the	end	of	the	commands	npm	install	and	bower
install	add	key/value	pairs	of	library	names	and	versions	to	a	JSON	for	each	tool.	In	the
case	of	Bower,	the	JSON	is	bower.json;	for	npm	–	as	you	saw	in	Chattrbox	–	it	is
package.json.

For	example,	in	bower.json	the	key/value	pairs	added	in	this	chapter	were:
{

		"name":	"tracker",

		"dependencies":	{

				"ember":	"~2.4.3",

		}

}

The	file	bower.json	lists	the	dependency	ember.js	with	its	minimum	version	number.
The	libraries	and	assets	listed	will	not	be	saved	to	your	development	project	repository	or
version	control	system,	only	the	bower.json	file.	A	developer	who	checks	out	the	code
can	run	bower	install	and	npm	install	to	create	a	local	environment	for	development.

Bronze	Challenge:	Limiting	Imports
Change	ember-cli-build.js	to	only	import	the	collapse.js	and
transition.js	files.	When	you	do	this,	your	vendor.js	will	be	smaller	in	size	and
your	NavBar	component	will	still	work.

Before	you	make	any	changes,	find	dist/assets/vendor.js	and	note	the	number
of	lines	of	code	(or	file	size).	Make	the	change	and	compare	the	new	file	size.

Silver	Challenge:	Adding	Font	Awesome
Font	Awesome	is	a	UI	library	for	adding	commonly	used	icons	to	your	project.	The	icons
can	be	scaled,	just	like	a	font.	Add	Font	Awesome	with	Ember	CLI	addons	and	add	an	icon
to	app/templates/application.hbs.	Check	out	the	addon’s	GitHub	repository
for	more	information.

Gold	Challenge:	Customizing	the	NavBar
Bootstrap	is	written	in	SCSS	and	makes	liberal	use	of	variables	and	functions.	When	you
use	the	SCSS	version	in	your	project,	you	can	control	how	the	library	compiles	its	style
rules.	You	can	even	create	Bootstrap	themes	to	modify	the	default	variables.

Change	the	background-color,	border-radius,	and	padding	value	of	the	NavBar	by	only
adding	or	changing	variables	in	your	app/stylesheets/app.scss.

20	
Routing,	Routes,	and	Models

At	this	point,	you	have	the	shell	for	your	Tracker	application.	Now	you	need	to	decide
what	pages	–	or	routes	–	your	application	will	contain.

Routing	is	like	a	traffic	cop:	When	a	user	pulls	up	a	specific	URL,	routing	directs	the	user
to	the	data	that	makes	up	that	page.	In	earlier	projects,	you	built	event	listeners	for	form
submission	and	button	clicks.	Routing	is	like	an	event	listener,	but	it	watches	for	changes
to	the	current	URL.

Every	website	uses	some	form	of	routing.	For	example,	if	you	go	to
www.bignerdranch.com/we-teach/,	the	server	maps	the	route	/we-teach/	to	the
HTML	files	in	a	folder	on	the	server	named	we-teach.	Other	servers	may	do	it	differently:
Instead	of	retrieving	static	HTML	files,	they	may	run	a	function	that	outputs	some	HTML.

An	Ember	app	can	do	the	same	thing,	but	without	asking	a	server	for	the	HTML.	When
your	app	needs	to	go	to	a	different	screen,	it	will	update	the	URL	with	a	new	route	name.
The	Router,	which	is	a	child	of	the	main	application	object,	has	event	listeners	and
handlers	for	URL	changes.	Using	the	new	route,	it	does	a	lookup	in	its	routing	table	and
finds	an	Ember.Route	object.	The	Router	then	calls	a	series	of	methods	from	this	route
object,	which	starts	the	process	of	getting	the	data	needed	for	the	next	screen.	This	process
of	callbacks	is	called	route	lifecycle	hooks.

Creating	routes	is	fundamental	to	Ember	development.	Ember’s	naming	conventions	assume
you	will	be	creating	associated	controllers	and	templates	with	names	that	match	your
routes.	So,	for	example,	when	you	create	a	route	called	sightings,	the	router	will	map	a
request	for	/sightings	to	SightingsRoute,	which	in	turn	sets	up	a	SightingsController
and,	finally,	renders	a	app/templates/sightings.hbs	template.

In	this	chapter,	you	will	learn	about	Ember	application	constructs	and	use	Ember	CLI	to
create	Tracker’s	route	module	files	and	templates.	Routes	are	the	key	to	an	Ember
application,	and	work	in	this	chapter	will	set	you	up	to	develop	your	app	over	the	next	five
chapters.

Figure	20.1	shows	Tracker	at	the	end	of	this	chapter.

https://www.bignerdranch.com/we-teach/

Figure	20.1		Tracker	app

ember	generate
Ember	CLI	provides	a	scaffolding	tool	called	generate	that	can	be	useful	while	you	are
learning	Ember’s	conventions	and	naming	patterns.	You	will	use	ember	generate,	or	ember
g	for	short,	to	create	files	and	add	boilerplate	code	to	your	project.

Recall	that	Tracker’s	purpose	is	to	record	sightings	of	cryptids	–	creatures	like	the
Sasquatch.	It	will	track	information	about	sighting	events,	cryptids,	and	witnesses.	It	will
need	quite	a	few	routes:

Route Route	path Route	data

index /index no	data	–	redirects	to	sightings

sightings /sightings list	of	sightings

cryptids /cryptids list	of	cryptids

witnesses /witnesses list	of	witnesses

sighting /sighting individual	sighting	details

cryptid /cryptid individual	cryptid	details

witness /witness individual	witness	details

sightings	index /sightings/index landing	page	for	sightings	list

sightings	new /sightings/new form	to	create	new	sighting

sighting	index /sighting/:sighting_id/index landing	page	for	individual	sighting

sighting	edit /sighting/:sighting_id/edit form	to	edit	individual	sighting

You	will	create	all	of	these	with	ember	generate.	Open	the	terminal	and	navigate	to	your
tracker	directory.	Run	the	following	commands,	one	line	at	a	time,	to	generate	your
routes:
ember	g	route	index

ember	g	route	sightings

ember	g	route	sightings/index

ember	g	route	sightings/new

ember	g	route	sighting

ember	g	route	sighting/index

ember	g	route	sighting/edit

ember	g	route	cryptids

ember	g	route	cryptid

ember	g	route	witnesses

ember	g	route	witness

This	will	look	something	like	Figure	20.2.

Figure	20.2		Generating	routes

Now,	take	a	look	at	what	ember	g	created	for	you.	You	should	have	new	files	under	the
routes/	and	templates/	directories.

Open	app/routes/index.js	and	notice	that	the	module	imports	Ember	and	exports
an	Ember.Route:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

});

The	method	.extend	creates	a	new	subclass	of	an	Ember.Route	and	accepts	a	JavaScript
object	as	its	argument.	Using	the	ES6	module	syntax,	you	can	create	individual	modules
for	each	route.

Ember	CLI	will	automatically	find	the	Ember.Route	module	you	just	created	and	import	it
into	your	app	–	whether	you	use	the	generate	command,	as	you	did	here,	or	create
modules	manually.	generate	is	convenient	because	it	adds	some	boilerplate	code	to	the
file.

Open	app/templates/index.hbs,	which	Ember	CLI	also	generated	for	you.	This
template	will	be	used	for	the	IndexRoute.	It	has	a	single	line	in	it:	{{outlet}}.

You	probably	remember	this	bit	of	code	from	the	last	chapter,	when	you	were	editing	the
templates/application.hbs	file.	This	helper	allows	templates	to	nest	content	between
routes.	You	will	learn	more	about	the	{{outlet}}	helper	shortly.

For	now,	leave	this	line	in	app/templates/index.hbs	alone	and	add	an	HTML
<h1>	element	above	it:
<h1>Index	Route</h1>

{{outlet}}

Now	start	up	the	app	with	ember	server.	Leave	the	server	running	while	working	on	your
project.	If	you	need	to	interact	with	the	Ember	CLI	(for	example,	to	generate	more	modules),
just	open	a	second	terminal	window.	The	server	will	load	the	new	modules	into	your	Ember
app	and	reload	your	browser.

In	Chrome,	navigate	to	http://localhost:4200.	Your	app	should	look	like	Figure	20.3.

Figure	20.3		Index	route

You	should	see	the	NavBar	elements	from	app/templates/application.hbs	and
the	<h1>	element	from	app/templates/index.hbs.	How	did	this	element	get	here?

When	you	created	your	application,	a	number	of	files	were	generated	for	you,	including

app.js	and	router.js.	The	app.js	file	is	the	starting	point	for	your	application,
and	it	handles	things	like	initialization.	It	has	functions	to	create	a	new	Ember	app,	much
like	creating	a	new	Truck	in	CoffeeRun.

In	particular,	the	Ember	app	will	instantiate	a	Router	object	and	an	ApplicationRoute
object	when	the	application	is	loaded	or	restarted.	These	two	Ember	objects	control	your
application.

In	your	router.js	file,	you	will	register	routes	to	associate	URLs	with	specific	pages.
Each	route	can	be	configured	with	a	few	options.	You	can	even	create	nested	routes.	This
powerful	feature	of	Ember	lets	you	reuse	content	and	logic	on	different	screens.

Open	router.js	and	take	a	look	at	the	method	that	registers	your	routes:
import	Ember	from	'ember';

import	config	from	'./config/environment';

const	Router	=	Ember.Router.extend({

		location:	config.locationType

});

Router.map(function()	{

		this.route('sightings',	function()	{

				this.route('new');

		});

		this.route('sighting',	function()	{

				this.route('edit');

		});

		this.route('cryptids');

		this.route('cryptid');

		this.route('witnesses');

		this.route('witness');

});

export	default	Router;

Router.map	is	being	passed	a	callback.	Inside	this	callback,	the	route	method
registers	your	routes.	This	method	also	takes	callbacks.	Ember	converts	these	nested
callbacks	into	a	hierarchy	of	routes.	At	the	top	of	this	hierarchy	is	the	ApplicationRoute.

When	you	visit	the	URL	for	a	nested	route,	Ember	uses	the	HTML	from	the	parent
template.	Inside	that	parent	template,	it	will	look	for	an	{{outlet}}	helper,	which
indicates	“This	is	where	you	should	put	the	HTML	from	the	child	template.”

Let’s	see	how	this	works	in	your	app.

Ember	renders	the	content	of	the	ApplicationRoute	with	the	content	of	the	IndexRoute
nested	inside.	Behind	the	scenes,	Ember	is	checking	for	a	file	called	index.js	in	the
routes/	folder	of	your	project.	You	can	create	a	landing	page	for	any	route	by	creating	an
index.js	in	the	corresponding	folder.	In	fact,	this	is	a	common	practice	that	you	should
use	in	your	own	Ember	apps.

You	may	have	noticed	that	there	are	no	references	to	index	routes	in	router.js.	Ember
autogenerates	the	index	route	for	all	parent	routes	with	nested	child	routes,	just	as	though
they	appeared	in	router.js:
...

Router.map(function()	{

		this.route('index');

		this.route('sightings',	function()	{

				this.route('index');

				this.route('new');

		});

		this.route('sighting',	function()	{

				this.route('index');

				this.route('edit');

		});

		this.route('cryptids');

		this.route('cryptid');

		this.route('witnesses');

		this.route('witness');

});

...

Nesting	Routes
Routes	allow	you	to	structure	data	in	views.	Like	folders,	nested	routes	group	together
related	routes	under	a	base	URL.	It	is	helpful	to	think	of	parent	routes	as	representing
nouns	and	child	routes	as	representing	verbs	or	adjectives:
//	Parent	route	is	noun

this.route('sightings',	function()	{

		//	Child	route	is	verb	or	adjective

		this.route('new');

});

sightings	is	a	parent	route	representing	sightings,	which	are	things	(nouns),	and	new	is	a
nested	route	representing	the	action	of	creating	a	sighting	(a	verb).	this.route	is	used
to	build	up	the	URL	including	the	parent	and	child.

With	template	nesting,	parts	of	your	site	can	be	rendered	on	all	routes	(such	as
navigation),	while	others	will	only	show	on	more	specific	routes	(like	IndexRoute	on	the
root	URL).	You	will	instruct	each	route	on	how	to	retrieve	its	data	using	callback
functions.

Now,	you	are	going	to	edit	some	of	the	template	files	you	generated	along	with	your
routes	and	navigate	to	different	pages	of	your	application.	The	code	you	are	adding	in	this
section	is	temporary,	but	it	will	allow	you	to	see	the	relationship	between	your	routes.

To	begin,	open	the	app/templates/sightings.hbs	template	file	and	add	an	<h1>
element	above	the	existing	{{outlet}}	helper.
<h1>Sightings</h1>

{{outlet}}

Next,	edit	the	app/templates/sightings/index.hbs	template.	Add	another
<h1>	element,	and	this	time	delete	the	{{outlet}}	helper.	Parent	templates	use
{{outlet}}	to	nest	child	views.	app/templates/sightings/index.hbs	is	a
child	template	without	any	nested	route,	so	it	does	not	need	an	{{outlet}}	helper.
{{outlet}}

<h1>Index	Route</h1>

Save	your	files	and	point	your	browser	to	http://localhost:4200/sightings/
to	see	the	results	(Figure	20.4).

http://localhost:4200/sightings/

Figure	20.4		Sightings:	nested	routes

Next,	edit	app/templates/sightings/new.hbs.	This	route	tree	also	ends	with
this	child	route,	so	delete	{{outlet}}	and	add	an	<h1>	element.
{{outlet}}

<h1>New	Route</h1>

Now,	change	the	URL	in	your	browser	to	http://localhost:4200/sightings/new
(Figure	20.5).

Figure	20.5		Sightings:	new	route

Your	Tracker	app	now	has	nested	routes	rendering	a	template	for	the	parent
app/templates/sightings.hbs	file	and	for	each	child:
app/templates/sightings/index.hbs	and
app/templates/sightings/new.hbs.	The	parent	template	uses	{{outlet}}	to
nest	the	views.

Ember	Inspector
The	Ember	Inspector	gives	you	an	easy	way	to	see	all	of	your	application’s	routes.	Click	the
Routes	menu	item	in	the	Ember	Inspector	to	see	them	(Figure	20.6).

Figure	20.6		Route	structure

That	is	a	lot	of	routes!	Even	more	than	you	generated.	Notice	that	there	are	numerous
routes	ending	in	loading	and	error.	These	are	autogenerated	routes	for	the	lifecycle	states
of	loading	data	in	routes.	Like	index	routes,	these	objects	are	created	by	Ember	to	fill	gaps
to	get	from	one	route	state	to	another	route	state.

Assigning	Models
The	next	step	is	to	get	data	to	each	route	using	the	route’s	model	callback.	Each
Ember.Route	has	a	method	to	assign	a	model	(which,	remember,	is	the	data	backing	the
template)	to	a	controller.	This	method,	called	model,	returns	data	as	a	Promise.

Under	the	hood,	the	Ember	app	initializes	the	Route	object	when	the	URL	changes.	This
Route	object	has	four	hooks	to	set	itself	up:	beforeModel,	model,	afterModel,	and
setupController.

We	will	focus	on	the	model	callback	for	now.

Add	some	dummy	data	in	the	model	callback	in	the	SightingsRoute,
app/routes/sightings.js:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model(){

				return	[

						{

								id:	1,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						},

						{

								id:	2,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						},

						{

								id:	3,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						},

						{

								id:	4,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						},

						{

								id:	5,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						},

						{

								id:	6,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						}

];

		}

});

Notice	the	syntax	of	the	model	hook:
model()	{

		[your	code	goes	here]

}

This	is	ES6	shorthand	for:
model:	function()	{

		[your	code	goes	here]

}

Throughout	the	next	chapters	you	will	be	using	this	syntax	to	define	your	object	methods
in	Ember.

The	model	callback	is	a	place	to	retrieve	data	needed	to	render	a	template.	The	route
lifecycle	methods	in	an	Ember.Route	return	objects	for	each	hook.	The	model	hook	will
eventually	return	data	to	a	setupController	hook,	which	sets	a	property	named

model	on	SightingsController.	You	can	access	this	data	in	your	templates:
app/templates/sightings.hbs	and
app/templates/sightings/index.hbs.

Edit	app/templates/sightings/index.hbs	as	shown.	We	will	explain	the	code
after	you	enter	it.
<h1>Index	Route</h1>

<div	class="panel	panel-default">

		<ul	class="list-group">

				{{#each	model	as	|sighting|}}

						<li	class="list-group-item">

								{{sighting.location}}	-	{{sighting.sightedAt}}

						

				{{/each}}

		

</div>

This	code	might	look	strange	if	you	have	never	used	template	languages.	The	words	in	the
double	curlies	({{	}})	are	essentially	JavaScript	functions	disguised	as	statements.	In
English,	these	lines	say,	“For	each	sighting	in	the	model	property	(which	is	expected	to
be	an	array),	render	an		element	with	the	sighting’s	location	and	sightedAt	date.”

You	will	learn	about	{{	}}	syntax	in	general	and	{{#each}}	in	particular	in	Chapter	23.

Switch	to	http://localhost:4200/sightings	in	your	browser,	where	your	app
should	look	like	Figure	20.7.

Figure	20.7		Index	model	listing

You	have	now	completed	the	first	half	of	the	route	cycle	by	passing	data	to	the	template
for	it	to	display.	In	the	next	chapter,	you	will	explore	the	Handlebars	templating	language.
This	language	allows	you	represent	the	state	of	your	application	with	properties	from	a
controller,	rendering	only	necessary	DOM	elements	as	the	state	of	the	application	changes.

http://localhost:4200/sightings

beforeModel
As	described	above,	the	route	object	calls	a	sequence	of	functions,	starting	with
beforeModel.	This	function	is	a	good	place	to	check	the	state	of	the	application	before
retrieving	data.	It	is	also	a	good	place	to	reroute	a	user	who	cannot	be	on	a	page,	such	as	to
check	for	user	authentication.

You	will	use	beforeModel	to	unconditionally	transition	the	user	to	a	new	page.	The
IndexRoute	is	a	good	place	to	do	this.	You	may	want	to	add	a	dashboard	in	the	future,	but
for	now	the	landing	page	will	be	sightings.

In	app/routes/index.js,	add	a	beforeModel	callback:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		beforeModel(){

				this.transitionTo('sightings');

		}

});

Now,	when	you	navigate	to	http://localhost:4200/	the	URL	changes	to
http://localhost:4200/sightings,	and	you	should	see	the	sightings	list	from
app/templates/sightings/index.hbs.

The	last	two	routing	hooks,	afterModel	and	setupController,	will	not	be	used	in
Tracker.	When	creating	a	route	file,	you	are	cloning	the	Ember.Route	object	and
overwriting	the	method,	much	like	an	interface	in	languages	like	Java.	The
setupController	hook	will	run	by	default	to	set	the	model	property	on	the	route
object’s	controller.

At	this	point,	your	application	has	some	basic	routes	that	outline	its	functionality:	a
landing	page,	a	list	of	sightings,	and	a	route	for	adding	a	new	sighting.	You	created
templates	for	your	routes	and	added	model	data	to	the	sightings	route.	You	rerouted	the
index	route	to	the	sightings	index.	You	are	off	to	a	great	start!

In	the	next	chapter,	you	will	learn	about	Ember.Models,	adapters,	computed	properties,	and
storage	mechanisms.

http://localhost:4200/
http://localhost:4200/sightings

For	the	More	Curious:	setupController	and	afterModel
The	hook	setupController	is	for	setting	properties	on	a	controller	that	will	render
those	properties.	It	is	possible	to	run	the	default	behavior	of	setting	the	controller’s
model	property	while	setting	other	active	controller	properties	with	this._super:
setupController(controller,	model)	{

		this._super(controller,	model);

		//	this.controllerFor('[other	controller]').set("[property	name]",	[value]);

}

The	hook	afterModel	is	run	after	the	model	hook	(which	is	a	Promise)	is	resolved.
Note	that	there	are	special	cases	where	the	model	hook	would	not	be	called	because	the
Promise	has	already	been	resolved.	In	these	cases,	afterModel	is	called	before
setupController	and	can	be	used	as	a	method	to	test	the	integrity	of	the	model	data
before	passing	it	to	the	controller.

21	
Models	and	Data	Binding

For	the	next	part	of	the	Tracker	app,	you	will	focus	only	on	the	data	layer.

You	have	already	worked	quite	a	bit	with	data	in	the	form	of	object	literals.	You	have
created	and	modified	objects	and	their	properties,	and	you	have	created	functions	to
quickly	make	objects	with	default	values.	You	know	how	to	store	data	in	localStorage
and	sessionStorage.

In	Tracker,	you	are	going	to	work	with	data	in	the	form	of	models.	Models	are	essentially
functions	that	create	objects	with	specific	properties	and	methods.	They	are	the
architecture	of	data	flowing	through	your	application.

Ember	has	an	object	class	that	can	take	care	of	your	initial	need	to	define	your	app’s	data
architecture:	Ember.Object.	All	Ember	classes	inherit	from	this	class.	With	a	simple
definition	and	naming	pattern,	Ember	gives	you	the	power	to	create,	retrieve,	update,	and
destroy	model	instances	while	the	app	is	running.

However,	for	your	modern	application	you	need	more	than	what	Ember.Object
provides.	Your	models	need	to	be	able	to	persist	themselves	when	business	logic	asks
them	to	retrieve	or	save	data	from	a	data	source.

Enter	Ember	Data,	a	JavaScript	library	built	on	top	of	Ember.Object,	which	will	help
you	add	model-specific	functionality.	Ember	Data	adds	classes	built	on	Ember.Object
that	abstract	the	complexity	of	working	with	various	data	sources:	RESTful	APIs,
localStorage,	and	even	static	fixture	data.

Ember	Data	also	adds	an	in-memory	store	for	data.	The	data	store	is	where	you	create,
retrieve,	update,	and	delete	your	model	instances.

Model	Definitions
Ember	CLI	has	already	loaded	the	Ember	Data	library,	so	you	are	ready	to	build	your	models.

In	the	last	chapter,	you	used	ember	g	route	[route	name]	to	make	Ember	CLI	create	route
files	for	you.	You	can	also	use	ember	generate	to	create	a	model	file	with	the	command
ember	g	model	[model	name].

Create	the	model	files	you	will	need	to	back	your	routes	for	cryptids,	sightings,	and
witnesses:
ember	g	model	cryptid

ember	g	model	sighting

ember	g	model	witness

Cryptids	will	have	a	model	definition	in	the	file	app/models/cryptid.js.	Open	this
file	and	add	attributes	for	name,	cryptid	type	(species),	profile	image,	and	sightings	to	the
cryptid	model:

import	DS	from	'ember-data';

export	default	DS.Model.extend({

		name:	DS.attr('string'),

		cryptidType:	DS.attr('string'),

		profileImg:	DS.attr('string'),

		sightings:	DS.hasMany('sighting')

});

Ember	Data,	referenced	here	as	DS	(for	“data	store”),	has	an	attr	method	that	is	used	to
specify	model	attributes.	When	data	is	parsed	from	the	source,	attr	returns	the	value.	If
you	give	attr	an	attribute	type,	it	will	be	coerced	to	that	type.	If	you	do	not	set	the
attribute	type,	your	data	will	be	passed	through	to	the	appropriate	key	unchanged.

There	are	a	few	attribute	types	built	in:	string,	number,	boolean,	and	date.	You
can	also	create	custom	model	attributes	using	transforms,	which	you	will	learn	about	in
Chapter	22.

attr	can	also	take	a	second	argument	to	specify	default	values.	This	optional	argument	is
a	hash	with	a	single	key:	defaultValue.	Here	are	some	examples:
name:	DS.attr('string',	{defaultValue:	'Bob'}),

isNew:	DS.attr('boolean',	{defaultValue:	true}),

createdAt:	DS.attr('date',	{defaultValue:	new	Date()}),

numOfChildren:	DS.attr('number',	{defaultValue:	1})

In	the	cryptid	definition,	you	used	the	string	attribute	type	for	the	name,
cryptidType,	and	profileImg	attributes.	(Why	a	string	type	for	profileImg?
It	will	reference	the	image	path,	not	the	image	itself.)

The	sightings	attribute	uses	a	different	method	to	define	its	data:	hasMany.	This
method	is	part	of	Ember	Data’s	relationship	methods.	When	you	query	a	RESTful	API	for	a
cryptid,	it	will	have	associated	sightings.	That	association	will	be	returned	as	an	array	of
sighting	ids	referencing	an	instance	of	a	sighting	model.

Ember	Data	has	methods	to	handle	one-to-one,	one-to-many,	and	many-to-many	relationship
types:

Relationship “Owning”	model “Owned”	model

one-to-one DS.hasOne DS.belongsTo

one-to-many DS.hasMany DS.belongsTo

many-to-many DS.hasMany DS.hasMany

The	first	argument	is	the	model	to	associate.	In	your	app,	a	cryptid	will	have	many
sighting	instances	(you	would	be	surprised	how	often	people	see	these	creatures).	The
second	argument	is	an	optional	hash	which,	similar	to	attr’s	second	argument,	is	a
configuration	object	to	set	values	when	evaluating	the	function.	It	contains	an	async	key
and	a	value	(with	a	default	of	true).

Model	relationships	could	require	requests	to	a	server	to	retrieve	other	model	data.	For
cryptids,	a	request	to	sightings	is	needed	to	display	sighting	data	for	each	cryptid.	The
same	is	true	for	the	inverse	relationship	of	sightings	belonging	to	a	cryptid.	The	default
value,	async:	true,	requires	a	separate	request	and	API	endpoint	to	retrieve	the	linked
data.

If	your	API	has	the	ability	to	send	all	the	data	together,	you	can	set	the	async	value	to
false.	For	the	Tracker	app,	leave	the	value	as	the	default,	true.

Next,	open	the	model	for	witnesses	in	app/models/witness.js	and	add	attributes
for	a	witness’s	first	and	last	name,	email	address,	and	recorded	sightings:
import	DS	from	'ember-data';

export	default	DS.Model.extend({

		fName:	DS.attr('string'),

		lName:	DS.attr('string'),

		email:	DS.attr('string'),

		sightings:	DS.hasMany('sighting')

});

You	defined	a	witness	to	be	an	object	that	contains	a	first	name	(fName),	a	last	name
(lName),	an	email	address	(email),	and	a	many-to-many	relationship	to	sightings
(sightings).

Finally,	open	your	third	model	file:	app/models/sighting.js.	Add	attributes	to
your	sightings	model	for	the	who,	what,	where,	and	when	of	the	sighting	as	well	as	the
date	the	sighting	was	recorded:
import	DS	from	'ember-data';

export	default	DS.Model.extend({

		location:	DS.attr('string'),

		createdAt:	DS.attr('date'),

		sightedAt:	DS.attr('date'),

		cryptid:	DS.belongsTo('cryptid'),

		witnesses:	DS.hasMany('witness')

});

Sightings	are	defined	much	like	witnesses	and	cryptids,	with	basic	properties	defined	as
strings.	The	location	is	a	value	the	user	will	input	in	the	app,	while	createdAt	and
sightedAt	will	be	added	server-side	when	the	sighting	has	been	added	to	the	database.

The	relationship	for	the	property	cryptid	is	something	new,
DS.belongsTo(‘cryptid’).	This	method	is	a	one-to-many	relationship	linking	a
cryptid	instance	to	the	sighting	instance	–	one-to-many	because	each	cryptid	will
have	many	sightings.

createRecord
When	the	application	initializes,	Ember	Data	creates	store,	a	local	store	object.	this.store
is	the	object	that	will	create,	retrieve,	update,	and	delete	all	of	the	Tracker	app’s	model
records.	Ember	injects	the	store	object	in	all	Routes,	Controllers,	and	Components.	In	the
scope	of	route	methods,	you	have	access	to	the	store	from	this.

To	create	a	record,	you	will	call	this.store.createRecord.	This	method	expects
two	arguments:	a	model	name,	as	a	string,	and	record	data,	as	an	object.

Open	app/routes/sightings.js.	Delete	your	dummy	sightings	and	create	three
new	sighting	records,	each	with	a	location	value	as	a	string	and	a	sightedAt
value	as	a	new	Date:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

				return	[

						{

								id:	1,

								location:	'Asilomar',

								sighted_at:	new	Date('2016-03-07')

						},

						...

						{

								id:	6,

								location:	'Asilomar',

								sightedAt:	new	Date('2016-03-07')

						}

];

				let	record1	=	this.store.createRecord('sighting',	{

						location:	'Atlanta',

						sightedAt:	new	Date('2016-02-09')

				});

				let	record2	=	this.store.createRecord('sighting',	{

						location:	'Calloway',

						sightedAt:	new	Date('2016-03-14')

				});

				let	record3	=	this.store.createRecord('sighting',	{

						location:	'Asilomar',

						sightedAt:	new	Date('2016-03-21')

				});

				return	[record1,	record2,	record3];

		}

});

In	Chapter	20,	the	sightings	route	model	returned	an	array.	Instead	of	returning
JavaScript	objects,	you	have	created	three	sighting	records	and	returned	these	records	in
an	array.	Run	ember	server,	if	it	is	not	running	already,	to	see	your	new	records	on	the
sightings	route,	http://localhost:4200/sightings	(Figure	21.1).

http://localhost:4200/sightings

Figure	21.1		create	sightings

This	example	shows	that	creating	Ember	Data	models	is	very	similar	to	creating	JavaScript
objects.	The	advantage	to	having	Ember	Data	model	objects	is	all	the	methods	these	objects
give	you.	Let’s	start	with	get	and	set.

get	and	set
At	the	core	of	Ember	Data’s	model	records	is	an	Ember.Object.	This	object	definition
contains	the	methods	get	and	set.	Unlike	most	languages,	JavaScript	does	not	force	the
use	of	getters	and	setters	on	object	instances.	Ember	applies	the	concepts	of	getters	and
setters	with	these	methods	to	force	a	function	to	be	run	when	changing	an	object	property.
This	allows	Ember	to	add	event	triggers	to	set	and	make	programmers	be	intentional
when	getting	properties.

The	get	method	takes	a	single	argument,	the	property	name,	to	retrieve	the	property
value.	Try	it	out	in	the	app/routes/sightings.js	model	callback.
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

				let	record1	=	this.store.createRecord('sighting',	{

						location:	'Atlanta',

						sightedAt:	new	Date('2016-02-09')

				});

				console.log("Record	1	location:	"		+		record1.get('location'));

				...

				return	[record1,	record2,	record3];

		}

});

Reload	your	browser.	Make	sure	the	DevTools	are	open	and	select	the	JavaScript	console
tab.	You	should	see	the	log	notes	from	Ember,	ending	with	the	line:	“Record	1	location:
Atlanta.”

Next,	back	in	app/routes/sightings.js,	set	the	value	of	record1’s
location	after	creating	the	record	and	before	you	log	the	property.
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

				let	record1	=	this.store.createRecord('sighting',	{

						location:	'Atlanta',

						sightedAt:	new	Date('2016-02-09')

				});

				record1.set('location',	'Paris,	France');

				console.log("Record	1	location:	"	+	record1.get('location'));

				...

				return	[record1,	record2,	record3];

		}

});

Reload	the	browser	and	you	will	see	that	the	console	reflects	the	set	value:	“Record	1
location:	Paris,	France”	(Figure	21.2).

Figure	21.2		set	location

These	are	basic	examples	of	get	and	set.	When	setting	a	property	on	a	model	record,
you	can	also	assign	other	model	records	to	the	record	property	in	order	to	create	a
relationship	between	two	model	records	for	properties	that	were	defined	with	hasMany
or	belongsTo.

Computed	Properties
Computed	properties	are	a	huge	part	of	managing	model	properties	for	your	templates	and
components.	Ember.computed	is	a	method	that	takes	the	values	of	scoped	properties
and	returns	a	value	when	the	method	ends.	Invoking	the	following,	for	example,	would
give	you	a	computed	property	with	the	object’s	first_name	property	changed	to
lowercase:
Ember.computed('first_name',	function(){

		return	this.get('first_name').toLowerCase();

});

In	this	example,	Ember.computed	is	acting	as	an	event	listener	for	changes	to
first_name.	You	do	not	have	to	change	the	set	method	to	trigger	an	event,	you	do	not
have	to	add	an	event	listener,	and	you	do	not	have	to	change	the	first_name	property.
All	you	do	is	create	a	new	property	that	returns	the	value	you	want.

The	use	of	computed	properties	is	fairly	global	in	Ember.	You	will	also	be	creating
computed	properties	for	components	in	Chapter	25.	A	computed	property	is	used	either	as
a	decorator	for	a	view	or	component,	like	the	example	above,	or	to	retrieve	specific	data
embedded	deep	in	the	model	object.

“Decorating”	data	means	formatting	it	a	certain	way	–	such	as	making	a	string	lowercase.
Data	from	an	API	is	not	always	formatted	the	way	you	want	it.	Decorators	are	functions
that	input	arguments	and	output	objects	or	arrays	to	be	used	specifically	for	the	view	layer
of	an	application.	The	formatting	or	construction	of	new	decorated	data	generally	does	not
return	to	the	database.	For	this	reason,	decorators	are	generally	added	to	a	controller,
unless	every	page	is	rendering	data	from	a	model	that	is	not	formatted	in	the	database.

Add	a	computed	property	for	a	fullName	to	your	witness	model	in
app/models/witness.js.
import	DS	from	'ember-data';

export	default	DS.Model.extend({

		fName:	DS.attr('string'),

		lName:	DS.attr('string'),

		email:	DS.attr('string'),

		sightings:	DS.hasMany('sighting'),

		fullName:		Ember.computed('fName',	'lName',	function(){

				return	this.get('fName')	+	'	'	+	this.get('lName');

		})

});

(If	the	autorestarting	server	complains,	be	sure	you	added	the	trailing	comma	to	the
sightings	property	declaration.	It	is	an	easy	one	to	miss.)

The	property	you	added	to	the	witness	model	is	a	function	that	will	be	invoked	every
time	fName	and	lName	change.	Computed	properties	can	take	any	number	of	arguments
as	observed	properties	with	the	final	argument	being	the	function	to	return	a	value.	Each
argument	that	is	a	property	will	trigger	the	function	argument	to	be	invoked.

Open	app/routes/witnesses.js	and	create	a	new	witness	record	to	test	the
computed	property	of	the	witness	model:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

				let	witnessRecord	=	this.store.createRecord('witness',	{

						fName:	"Todd",

						lName:	"Gandee",

						email:	"fake@bignerdranch.com"

				});

				return	[witnessRecord];

		}

});

To	get	your	witness	data	onscreen,	edit	app/templates/witnesses.hbs	to	use	the
same	{{#each}}	iterator	used	in	app/templates/sightings/index.hbs:
{{outlet}}

<h1>Witnesses</h1>

<div	class="row">

		{{#each	model	as	|witness|}}

				<div	class="col-xs-12	col-sm-6	col-md-4">

						<div	class="well">

								<div	class="thumbnail">

										<div	class="caption">

												<h3>{{witness.fullName}}</h3>

												<div	class="panel	panel-danger">

														<div	class="panel-heading">Sightings</div>

												</div>

										</div>

								</div>

						</div>

				</div>

		{{/each}}

</div>

Navigate	to	http://localhost:4200/witnesses	and	check	out	the	results	(Figure	21.3).

Figure	21.3		Witnesses	listing

In	this	view,	you	added	the	listing	of	witnesses	(which,	at	the	moment,	includes	just	one
witness)	and	used	a	computed	property	to	display	the	witness’s	fullName	property.	This
property	was	generated	from	the	values	you	added	when	creating	the	witness	record.	With
witnessRecord.set,	you	can	supply	a	different	first	name	or	last	name	before	the
model	callback	returns	the	record	to	see	the	property	change.

You	have	come	pretty	far	in	these	first	few	chapters	on	Ember!	You	can	now	define	your

data	models,	create	records,	create	computed	properties,	and	get	and	set	property	values.
In	a	moment,	you	will	read	about	retrieving,	updating,	and	destroying	records	using	an
API.

In	the	next	chapter,	you	will	learn	about	using	adapters,	serializers,	and	transforms	to	link
your	data	models	with	data	on	the	web.

For	the	More	Curious:	Retrieving	Data
As	mentioned	above,	the	data	store	manages	model	data	and	knows	how	to	retrieve	it.	In
the	previous	chapter,	you	returned	data	in	the	SightingRoute	model	callback	with	an
array.	In	Chapter	22,	you	will	retrieve	model	data	in	this	route	and	return	data	as	a
Promise	using	this.store.findAll	and	other	data	retrieval	methods.

Below	is	a	table	of	methods	Ember	Data’s	store	object	has	at	its	disposal	for	retrieving	data
from	an	API,	storing	it	in	memory,	and	returning	it	to	the	requester.

Request	type Retrieve	all	records Retrieve	a	single	record

find	persisted	and	local	records findAll findRecord

find	local	records	only peekAll peekRecord

find	filtered	records query queryRecord

Retrieval	methods	come	in	several	flavors:	persisted	and	local,	local	only,	and	filtered
persisted	and	local.	Most	use	cases	call	for	findAll	and	findRecord.	The	arguments
for	each	match	closely	to	the	API	endpoints	that	Ember	Data	will	create	to	request	the	data
from	the	API.

For	findAll,	the	only	required	argument	is	the	model	name.	For	example,	a	request	for
all	the	witnesses	would	be	findAll(‘witness’).	Notice	the	singular	name?
Remember,	this	argument	is	the	model	name.	Ember	Data	will	make	sure	the	request	has	a
plural	name	when	it	builds	the	Ajax	URL	/witnesses/.

For	findRecord,	an	additional	argument	is	needed	to	indicate	a	specific	record.	This
argument	is	the	identifier,	usually	the	id	of	the	record,	such	as
this.store.findRecord('witness',	5).	When	called,	findRecord('witness',	5)	will
create	a	request	for	data	at	/witnesses/5.

For	peekAll	and	peekRecord,	the	same	arguments	are	needed	to	retrieve	data.
Invoking	these	methods	will	return	the	data	immediately,	not	as	a	Promise.

Querying	your	API	for	data	is	another	way	to	form	requests.	If	your	API	supports	query
parameters,	or	params,	for	individual	endpoints,	Ember	Data’s	query	and	queryRecord
are	great	options.	Like	the	other	store	methods,	these	methods	take	the	model	name	as
their	first	argument.	The	last	argument	is	the	query	object,	whose	key/value	pairs	are
converted	into	query	string	values.	For	query,	the	request	will	find	all	records	filtered	by
keys	and	values.	queryRecord	is	used	when	you	know	the	request	will	return	a	single
record.

For	example,	calling
this.store.query('user',{fName:	"todd"})

would	produce	this	request:	/users/?f_name=todd.	Alternatively,
this.store.queryRecord('user',	{email:	'me@test.com'})

would	produce	this	request:	/users?email=me@test.com.

All	of	these	store	methods	leverage	adapters,	which	you	will	read	about	in	the	next
chapter.

For	the	More	Curious:	Saving	and	Destroying	Data
Updating	(i.e.,	saving)	and	destroying	records	are	the	next	logical	steps	after	creating	and
retrieving.	(There	is	a	mnemonic	for	this:	CRUD,	which	stands	for	“create,	read,	update,
destroy.”)	The	methods	save	and	destroyRecord	are	available	directly	on	model
instances.	These	methods	trigger	requests	through	the	adapter	to	update	the	data	store.
They	return	Promise	objects,	so	you	can	chain	callbacks	with	.then	to	do	something	with
the	returned	data.

As	you	saw	in	this	chapter,	set	is	the	way	to	change	property	values	on	your	model
records.	If	you	change	a	value	locally	in	the	app,	the	data	will	be	different	from	the
persisted	source.	Therefore,	after	you	change	a	value	with	set,	you	should	save	your
data.	You	can	do	this	with	modelRecord.save.	Saving	a	model	will	tell	the	store	to
make	a	request	to	the	API	with	a	POST	or	PUT,	depending	on	the	state	of	the	record.

Although	this	was	not	mentioned	above,	when	retrieving	data	the	store	will	make	get
requests	for	data.	When	saving	data,	requests	are	sent	with	a	type	POST	when	the	data	does
not	exist	in	the	persisted	source	and	PUT	when	the	data	does	exist	and	is	being	updated.

When	you	call	createRecord,	as	noted	earlier,	you	are	not	saving	the	data	to	the
database.	You	are	merely	making	an	in-memory	object.	Calling	save	is	for	creation	and
updating.

Destroying	records	is	the	last	step.	Like	the	methods	for	retrieving	and	updating	records,
modelRecord.destroyRecord	uses	a	request	method	–	in	this	case	DELETE	–	to
remove	a	record	from	the	persisted	source.	The	store	then	removes	the	record	from
memory.	Like	save,	destroyRecord	is	actually	two	function	calls	in	one,
deleteRecord	and	save,	because	deleteRecord	only	deletes	the	record	locally.
destroyRecord	is	more	commonly	used	because	it	combines	these	steps	into	a	single
action.

Bronze	Challenge:	Changing	the	Computed	Property
The	fullName	computed	property	currently	uses	fName	and	lName.	Change	the	bound
properties	to	be	email	and	fName	to	create	a	fullName	that	displays	as	Todd	-
tgandee@bignerdranch.com.

Silver	Challenge:	Flagging	New	Sightings
Add	a	new	Boolean	attribute	to	sightings,	isNew.	Give	this	attribute	a	defaultValue
of	false.	Add	this	property	to	one	of	your	created	records	and	set	it	to	true.	Navigate	to
the	sightings	route	and	use	the	Ember	Inspector	in	Chrome	to	review	the	data	for	the	route.
Only	one	sighting	instance	should	have	an	isNew	property	set	to	true.

Gold	Challenge:	Adding	Titles
The	witnesses	need	a	proper	title,	such	as	Mr.	Gandee.	Add	a	title	property	to	the
model,	then	set	it	for	each	witness	record	except	one.	Add	an	object	argument	with	a
defaultValue.	Pick	an	interesting	default	title	for	instances	without	a	specified	title.
After	creating	the	title	property	and	supplying	your	created	record	with	some	new	data,
add	a	computed	property	to	display	the	titleName.

Have	fun	with	your	default	title.	Wikipedia	has	a	nice	list	of	titles
(en.wikipedia.org/wiki/Title).	“Mahatma	Gandee”	sounds	pretty	good…

https://en.wikipedia.org/wiki/Title

22	
Data	–	Adapters,	Serializers,	and

Transforms
Applications	require	data	going	in	and	out	of	the	interface.	Connecting	to	a	data	source	is
an	important	aspect	of	developing	an	application.	Otherwise,	you	have	a	complex	system
of	forms,	events,	and	listings	with	no	data	to	display.

In	this	chapter,	you	will	learn	some	of	the	basics	of	wiring	up	a	data	source	in	Ember.	You
will	use	an	API	created	for	this	book	and	create	an	adapter	for	your	application.

This	chapter	is	a	little	different	from	the	other	chapters	in	the	book.	It	has	more
information	and	less	coding.	However,	this	chapter	will	give	you	an	important	real-world
view	of	application	development	with	a	server	and	database	that	may	not	be	under	your
control.	In	the	next	chapter	you	will	return	to	your	regularly	scheduled	coding.

As	mentioned	in	Chapter	21,	adapters	are	the	translators	of	your	application.	When	you
communicate	with	a	data	source,	your	application	will	need	to	request	and	send	data	in	a
variety	of	ways.	Ember	Data	comes	with	built-in	adapter	objects	to	handle	some	of	the	most
common	data	scenarios:	JSONAPI	and	generic	“RESTful”	APIs.

You	are	going	to	use	the	JSONAPIAdapter	object	to	connect	to	a	data	source	and	return
JSONAPI-formatted	data.	The	RESTAdapter	object	is	set	of	methods	to	work	with	data
formatted	from	APIs	generated	from	Rails	and	ActiveRecord	plug-ins	for	Rails.

The	JSONAPI	spec	was	created	to	give	API	consumers	a	predictable	and	scalable	pattern
for	sending	and	receiving	data	from	servers.	While	there	are	numerous	server	languages	–
and	API	object	pattern	conventions	for	each	–	JSONAPI	set	out	to	be	a	pattern	any	language
could	use	so	that	front-end	applications	were	not	affected	by	a	change	in	server
technology.	You	can	find	out	more	about	JSONAPI	at	its	website,	jsonapi.org.

In	this	chapter,	you	will	also	learn	about	security	issues	as	well	as	serializers,	which	are
the	translation	layer	in	the	adapter	flow.	Finally,	you	will	be	introduced	to	transforms,	the
tool	to	coerce	your	data	into	the	types	your	models	expect.	Adapters,	serializers,	and
transforms	work	together	as	shown	in	Figure	22.1.

http://jsonapi.org/

Figure	22.1		Adapter,	serializers,	and	transforms

At	the	end	of	this	chapter,	Tracker	will	look	like	Figure	22.2.

Figure	22.2		Tracker	at	the	end	of	this	chapter

Adapters
The	Ember	team	has	built	their	framework	with	specific	conventions	in	mind.	Adapters	are
a	large	part	of	those	conventions.	The	JSONAPIAdapter	will	communicate	with	a	REST	API
for	all	requests	originating	from	the	store.	Each	request	will	add	the	model	name	and
appropriate	attribute	data	to	a	relative	path	of	the	domain.

To	generate	a	specific	URL	for	Ajax	requests,	the	adapter	needs	the	properties	host	and
namespace.	The	adapter	makes	Ajax	requests	and	expects	the	JSON	responses	to	be
formed	with	a	particular	structure.	For	example,	the	JSONAPIAdapter	would	expect	a
response	for	witnesses	on	a	GET	request	to	look	like	this:
{

"links":	{

		"self":	"http://bnr-tracker-api.herokuapp.com/api/witnesses"

},

"data":	[

		{

				"id":	"5556013e89ad2a030066f6e0",

				"type":	"witnesses",

				"attributes":	{

						"lname":	"Gandee",

						"fname":	"Todd"

				},

				"links":	{

						"self":	"/api/witnesses/5556013e89ad2a030066f6e0"

				},

				"relationships":	{

						"sightings":	{

						"data":	[],

						"links":	{

								"self":

								"/api/witnesses/5556013e89ad2a030066f6e0/relationships/sightings"

								}

						}

				}

		}

]

}

With	each	response,	for	example,	the	type	of	each	object	is	expected	to	be	the	model
name	requested,	in	order	to	resolve	all	records	for	that	model	type.	Also,	an	id	is	expected
to	be	the	primary	key	for	each	individual	model	object.

Begin	by	generating	an	application	adapter:
ember	g	adapter	application

Your	application	will	be	making	requests	to	the	Big	Nerd	Ranch	Tracker	API.	As	we	have
said,	the	JSONAPIAdapter	property	values	require	a	host	URL	and	a	namespace,	which	is
added	to	the	end	of	the	host	when	making	an	Ajax	request	for	model	data.	Open
app/adapters/application.js	and	declare	the	host	and	namespace.
import	JSONAPIAdapter	from	'ember-data/adapters/json-api';

export	default	DS.JSONAPIAdapter.extend({

		host:	'https://bnr-tracker-api.herokuapp.com',

		namespace:	'api'

});

Like	other	Ember	classes,	naming	patterns	also	apply	to	adapters	–	and	adapters	can	be
created	to	customize	any	model’s	API	needs.	Irregularities	in	the	data	structure	on	the
server	can	be	contained	in	a	single	adapter	rather	than	forcing	all	models	to	conform	to
edge	cases.

What	you	have	added	to	app/adapters/application.js	is	a	global	setting	for	all
data	requests.	This	is	all	you	need	for	Tracker,	because	the	API	is	sending	all	JSON
responses	from	the	same	host	and	namespace.	But	if	the	witness	model,	for	example,
needed	a	different	namespace	or	host,	you	could	create	an
app/adapters/witness.js	file	and	configure	that	particular	adapter	for	witness
requests.

Next,	you	need	to	retrieve	your	data	from	the	API	via	the	store.	The	API	has	cryptids	and
witnesses	ready	to	go.

Open	app/routes/witnesses.js.	Delete	the	dummy	data	and	replace	it	with	a	call
to	the	retrieval	method	you	learned	in	Chapter	21.
...

		model(){

				let	witnessRecord	=	this.store.createRecord('witness',	{

						fname:	"Todd",

						lname:	"Gandee",

						email:	"fake@bignerdranch.com"

				});

				return	[witnessRecord];

				return	this.store.findAll('witness');

		}

});

Now,	restart	your	application	from	the	terminal	with	ember	server	and	point	your
browser	to	http://localhost:4200/witnesses	(Figure	22.3).

http://localhost:4200/witnesses

Figure	22.3		Witnesses	listing

Like	most	lifecycle	flows	in	Ember,	adapters	have	a	number	of	methods	that	get	your	data
from	the	API	to	the	store	and	to	your	routes,	controllers,	and	templates.	The	purpose	of	a
specific	adapter,	like	the	JSONAPIAdapter,	is	to	handle	a	broad	pattern	and	deal	with	an
expected	input/output	for	each	model.	Our	example	uses	a	Node.js	server	backed	by	a
MongoDB	database	using	a	json-api	node	module	to	have	API	endpoints	that	work	with
JSONAPI-spec’d	data.

Working	with	an	API	that	has	a	specific	pattern	to	follow	(with	minor	edge	cases	of
irregularity)	makes	for	a	happy	programmer.	You	also	might	need	to	handle	some	extra
data	in	your	request,	like	authentication	or	request	headers.	Adapters	can	be	customized	to
deal	with	any	scenario.

Ember	previously	had	built-in	adapters	for	other	data	source	scenarios,	like	localStorage
and	fixture	data.	These	adapters,	and	others,	are	now	addons.	They	can	be	added	via	Ember
CLI	when	your	model	data	needs	to	sync	with	other	sources.

If	you	find	that	you	have	to	hack	together	an	adapter,	dive	into	the	documentation	to	find
your	answers.	Some	methods	and	properties	of	note	are:	ajaxOptions,	ajaxError,
handleResponse,	and	headers.

At	this	point,	your	app	is	making	requests	to	a	server	to	receive	a	collection	of	witnesses.
Before	you	move	on	to	reading	about	the	content	security	policy,	serializers,	and
transforms,	you	will	use	the	same	method,	this.store.findAll,	to	retrieve	all	the
cryptid	records	from	the	API.	Because	there	is	no	view	template	for	cryptids,	you
will	examine	the	returned	records	with	the	Ember	Inspector.

Add	the	method	call	to	app/routes/cryptids.js:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model(){

				return	this.store.findAll('cryptid');

		}

});

Now	that	you	have	the	data	returning,	reload	the	app	in	the	browser	and	navigate	to
http://localhost:4200/cryptids.	Use	the	Ember	Inspector	to	examine	the
returning	data:	In	the	DevTools,	select	the	Ember	tab	and	click	Data,	then	cryptid(4)
(Figure	22.4).

Figure	22.4		Cryptid	data

Up	to	this	point,	there	has	not	been	a	need	to	use	the	Ember	Inspector	in	depth.	It	is	used	here
to	show	you	how	to	examine	in-memory	data.	Ember	retrieves	the	data	from	the	API	and
populates	the	store	with	the	correct	model	data.	When	debugging	issues	with	model	data,
tracing	the	path	of	the	request	can	be	tedious.	The	Ember	Inspector	should	be	the	first	place
to	look	when	you	have	this	problem.

http://localhost:4200/cryptids

Content	Security	Policy
Ember	makes	use	of	a	new	security	layer	in	JavaScript	for	detecting	cross-origin	requests
before	they	hit	your	server.	The	working	standard	is	called	Content	Security	Policy.
Ember	CLI	has	a	contentSecurityPolicy	object	to	add	the	appropriate	information.	The
defaults	are	fairly	strict	when	it	comes	to	requesting	data,	scripts,	images,	styles,	and	other
file	types	outside	of	your	app’s	domain.

There	is	an	addon	to	set	some	defaults	and	integrate	the	security	policy	into	your	app:
ember-cli-content-security-policy.	You	do	not	need	it	for	Tracker,	but	it	is	good	to	know	about.
This	addon	makes	it	easier	to	add	environment	variables	to	set	the	security	policy.	The
security	policy	object	will	work	with	the	browser	specification	content-security-
policy.	This	browser	spec,	available	in	some	newer	browsers,	is	a	standard	introduced	to
prevent	cross-site	scripting	and	other	code	injection	attacks	resulting	from	execution	of
malicious	content	in	the	application.

Here	is	an	example	of	the	contentSecurityPolicy	object:
module.exports	=	function(environment)	{

		...

		//	config/environment.js

		ENV.contentSecurityPolicy	=	{

				'default-src':	"",

				'script-src':	"",

				'font-src':	"",

				'connect-src':	"",

				'img-src':	"",

				'style-src':	"",

				'media-src':	null

		}

		...

}

Each	line	of	the	security	policy	creates	a	whitelist	–	a	set	of	safe	paths	–	for	each	type	of
request.	default-src	is	a	catch-all	setting	and	is	originally	set	to	null	to	force
programmers	to	whitelist	the	settings	they	need.	Other	settings,	like	script-src	and
connect-src,	are	for	requests	external	to	the	application	domain,	like	https://bnr-
tracker-api.herokuapp.com.

For	more	information,	see	the	MDN	Content	Security	Policy	page	and	the	GitHub
repository	for	the	Ember	CLI	addon.

https://bnr-tracker-api.herokuapp.com

Serializers
When	data	comes	in	and	goes	out,	the	JSON	structure	is	serialized	and	deserialized.	The
adapter	uses	the	serializer	to	get	the	data	in	and	out	of	the	store	to	build	and	resolve
request/response	data.

You	can	create	a	serializer	with	ember	g	serializer	[application	or	model	name],
which	will	create	a	serializer	file	with	boilerplate	code,	like	this:
import	DS	from	'ember-data';

export	default	DS.JSONAPISerializer.extend({

});

The	serializer	is	an	object	assigned	to	the	serializer	property	in	the	adapter.	Without	a
specific	serializer	file	in	your	application,	Ember	will	use	a	default	adapter	and	serializer,
the	JSONAPIAdapter	and	JSONAPISerializer.

When	you	include	a	new	serializer	for	the	application,	that	serializer	will	be	used	as	the
defaultSerializer	for	the	corresponding	app/adapters/application.js	file.
Using	the	model’s	name	as	the	command	option	in	ember	g	serializer	allows	you
customize	serialization	of	data	for	a	specific	model.

As	with	the	JSONAPIAdapter,	the	configuration	should	only	be	changed	if	your	API	does
not	conform	to	the	JSONAPI	specification	or	if	you	have	strange	edge	cases.	If,	in	your	own
project,	you	were	to	need	changes	to	request	or	response	data,	here	are	some	methods	to
investigate	in	the	Ember	Data	documentation:	keyForAttribute,
keyForRelationship,	modelNameFromPayloadKey,	and	serialize.

keyForAttribute	is	a	method	to	transform	attribute	names	from	the	model	to	a
keyname	sent	in	the	request.	This	method	expects	three	arguments:	key,	typeClass,
and	method.	For	the	JSONAPISerializer,	this	method	returns	the	key	dasherized,
meaning	that	any	underscores	or	camelcasing	in	the	keyname	will	be	converted	to	dashes.
For	example,	if	a	model	has	a	property	first_name,	the	request	object	will	have	a	key	of
first-name.	If	your	API	expects	first_name,	you	will	need	to	make	a	change	to	your	the
keyForAttribute	method	to	resolve	the	naming	issue.

keyForRelationship	follows	the	same	process,	only	for	relationship	keys.	If	your
model	names	contain	underscores	you	will	need	to	edit	this	method	for
JSONAPISerializer	when	you	have	linked	models	with	belongsTo	or	hasMany
relationships.	Some	APIs	expect	relationships	to	add	a	suffix	of	_id	or	_ids	for	these
relationships.	This	is	the	method	to	make	that	change.

The	bnr-tracker-api	you	are	using	for	Tracker	uses	the	appropriate	JSONAPI	key	names
with	dashes,	such	as	cryptid-type.	You	will	not	need	to	add	a	serializer	in	your	app.
However,	for	illustration,	here	is	an	example	of	using	the	Ember	utility	method
Ember.String.underscore	to	change	the	attribute	keys	of	the	incoming	and
outgoing	JSON	data.
import	Ember	from	'ember';

import	DS	from	'ember-data';

var	underscore	=	Ember.String.underscore;

export	default	DS.JSONAPISerializer.extend({

		keyForAttribute(attr)	{

				return	underscore(attr);

		},

		keyForRelationship(rawKey)	{

				return	underscore(rawKey);

		}

});

Ember	provides	a	number	of	string	manipulation	methods	on	the	Ember.String	object.
Ember.String.underscore	converts	a	string	with	dashes	or	camelcase	to	use	an
underscore	to	separate	words.

The	serializer	methods	are	called	during	the	lifecycle	of	a	request	for	data,	such	as
this.store.findAll('witness').	One	way	to	examine	the	callback	flow	of	a	data
request	would	be	to	add	a	debugger	statement	in	this	code	to	see	what	comes	in	and	what
goes	out	of	the	method.

Here	is	an	example:
import	Ember	from	'ember';

import	DS	from	'ember-data';

var	underscore	=	Ember.String.underscore;

export	default	DS.JSONAPISerializer.extend({

		keyForAttribute(attr)	{

				let	returnValue	=	underscore(rawKey);

				debugger;

				return	returnValue;

				return	underscore(rawKey);

		},

		keyForRelationship(rawKey)	{

				return	underscore(rawKey);

		}

});

When	working	with	a	new	API,	this	style	of	debugging	comes	in	handy.	You	have	access
to	the	Ember.String	object	for	when	you	need	to	manipulate	the	attr	argument	to
serialize	your	key	names.	Thankfully,	Ember	and	the	Ember	community	build	adapters	and
serializers	for	numerous	API	patterns.

Transforms
Ember	Data	gives	you	the	ability	to	transform	data	from	your	API	to	fit	the	needs	of	your
application.	You	have	already	seen	in	Chapter	21	that	Ember	Data	has	built-in	transforms	–
the	methods	DS.attr(‘string’),	DS.attr(‘boolean’),
DS.attr(‘number’),	and	DS.attr(‘date’).

When	you	add	a	transform	to	your	application,	you	can	call	DS.attr	with	your	target
attribute	type.	Transforms	are	like	JavaScript	coercion	–	they	take	a	value	and	return	the
value	in	a	specified	type.

Here	is	an	example	of	a	basic	DS.attr(‘object’)	transform:
export	default	DS.Transform.extend({

		deserialize(value)	{

				if	(!Ember.$.isPlainObject(value))	{

						return	{};

				}	else	{

						return	value;

				}

		},

		serialize(value)	{

				if	(!Ember.$.isPlainObject(value))	{

						return	{};

				}	else	{

						return	value;

				}

		}

});

The	transform	has	two	methods:	deserialize	and	serialize.	The	first,
deserialize,	tests	whether	the	incoming	data	is	an	object	and	returns	it.	Otherwise,	it
returns	an	empty	object.	The	second,	serialize,	returns	the	outgoing	data	if	it	is	an
object,	and	otherwise	returns	an	empty	object.	The	transforms	guarantee	that	the	data
returning	from	the	API	and	going	out	to	the	API	are	the	type	defined	in	the	model.

For	the	More	Curious:	Ember	CLI	Mirage
One	the	most	common	blockers	for	front-end	application	development	is	the	API.	A
number	of	problems	can	come	up:	the	API	might	not	have	been	created,	the	API	might	be
in	development,	or	the	API	might	be	behind	a	firewall	while	you	are	developing.

The	easiest	solution	to	an	inaccessible	API	is	using	static	text	or	fixture	data.	But	this
solution	might	introduce	a	number	of	other	issues,	like	changing	the	application	logic	to
suit	the	inaccessible	data,	changing	the	requests	to	this.store,	or	changing	the	adapter	or
serializer.

Ember	CLI	Mirage	is	an	addon	that	will	proxy	the	requests	to	specific	API	routes.	You	can	set
up	models	to	establish	relationships,	set	up	factories	to	seed	data,	create	fixture	data	for
specific	responses,	and	define	CRUD	routes	to	intercept	specific	requests	to	the	API.	Once
these	are	set	up,	you	can	develop	as	though	the	API	were	in	place.

While	Mirage	is	enabled,	all	requests	will	be	diverted	to	the	local	Mirage	setup.

At	the	time	of	printing,	ember-cli-mirage	is	in	version	0.2.0-beta.8.	You	are	going	to
explore	Mirage	in	just	a	moment	as	part	of	a	challenge.	To	find	out	more	about	Ember	CLI
Mirage,	visit	www.ember-cli-mirage.com.

In	the	next	chapter,	you	will	bring	together	the	concepts	of	the	last	three	chapters	and
create	a	working	application	that	routes	requests	and	displays	data.	In	Chapter	24,	you	will
create,	edit,	and	delete	content.	You	will	see	the	power	of	Ember	Data,	adapters,	and
serializers	when	you	can	call	save	and	destroyRecord	on	models	and	your	data	is
sent	to	the	API	without	much	heartache.

http://www.ember-cli-mirage.com/

Silver	Challenge:	Content	Security
Adding	layers	of	security	in	an	application	is	always	important.	As	mentioned	above,	there
is	a	new	browser	API	for	Content	Security	Policy,	and	Ember	has	an	environment	object	to
handle	configuring	your	application’s	whitelist	policy.	Install	the	addon	and	follow	the
console	errors	to	make	sure	your	application’s	external	request	endpoints	are	added	to	the
policy.

Gold	Challenge:	Mirage
Ember	CLI	Mirage	is	a	great	addition	to	your	development	arsenal.	It	allows	you	to	develop
your	application’s	API	needs	before	the	back-end	team	finishes	their	stack.

Install	ember-cli-mirage	from	your	terminal	to	start	using	it:
ember	install	ember-cli-mirage

Next,	to	turn	Mirage	on	and	off,	add	an	environment	variable	to
config/environment.js:
if	(environment	===	'development')	{

		//	ENV.APP.LOG_RESOLVER	=	true;

		//	ENV.APP.LOG_ACTIVE_GENERATION	=	true;

		//	ENV.APP.LOG_TRANSITIONS	=	true;

		//	ENV.APP.LOG_TRANSITIONS_INTERNAL	=	true;

		//	ENV.APP.LOG_VIEW_LOOKUPS	=	true;

		ENV['ember-cli-mirage']	=	{

				enabled:	true

		}

}

Finally,	add	fake	data	in	the	form	of	factories	for	your	witness	and	cryptid	endpoints.

To	work	with	your	Tracker	app,	you	can	retrieve	a	configured	app/mirage	directory
from	the	supplied	example	assets	in	Tracker/Data_Chapter/mirage-example.
We	will	keep	the	example	up	to	date	for	current	releases	of	the	addon.

23	
Views	and	Templates

The	V	in	MVC	is	for	views.	In	Tracker,	the	views	will	be	templates.	Templates	are
processed	with	JavaScript	to	create	HTML	elements.	This	allows	you	to	change	the	DOM
without	firing	off	a	new	request	to	the	server.

In	this	chapter,	you	will	be	creating	template	files	and	adding	the	data	retrieved	in	the
route	model	hook.	The	template	language	and	helper	functions	built	into	Ember	will	allow
you	to	create	templates	with	minimal	effort	beyond	regular	HTML	syntax.

By	the	end	of	this	chapter,	you	will	have	created	listings	like	Figure	23.1.

Figure	23.1		Sightings	listing

Handlebars
You	will	be	using	Handlebars,	a	powerful	language	for	creating	dynamic	templates.	It	is
similar	to	server-side	templating	languages	like	PHP,	JSP,	ASP,	and	ERB.	It	includes	HTML
element	tags	and	delimiters	to	process	data	objects.

In	Handlebars,	the	delimiters	are	double	curly	braces,	like	{{}}.	Inside	the	“double	curlies,”
you	can	render	strings	of	data	and	execute	limited	logic	using	helper	methods.	You	have

seen	two	helper	methods	like	this	already:	{{outlet}}	and	{{#each}}.

Ember’s	implementation	of	Handlebars	recently	transitioned	to	a	new	mechanism,	nicknamed
“HTMLBars.”	Some	of	the	details	of	the	language	in	this	chapter	are	from	HTMLBars,
but	are	applicable	to	older	versions	of	Ember	(at	least	back	to	version	1.13.x)	as	well.

Models
In	Ember,	templates	are	always	backed	by	models.	This	means	that	an	object	(or	array	of
objects)	will	be	passed	as	an	argument	when	the	template	is	rendered	to	a	string	of	HTML
and	appended	to	the	DOM.

The	model	object	can	have	properties	with	strings,	arrays,	or	other	objects.	When	writing
templates	with	Ember	and	Handlebars,	you	access	this	object	with	the	double	curlies.

When	you	want	to	display	the	value	of	a	model	property,	you	write	{{model.name}},
where	name	is	a	property	on	the	model	object.	The	dot	syntax	should	feel	familiar,	but	do
not	be	fooled	into	thinking	any	JavaScript	code	can	go	within	the	curlies.

Helpers
Handlebars	templates	are	strings	interpolated	by	JavaScript	functions.	When	the	function
comes	across	double	curlies,	it	tries	to	resolve	the	instance	of	the	delimiter	with	an	object
property	or	invoke	a	nested	function	to	return	a	string.	These	nested	functions	are	called
helpers	and	are	created	in	the	application.	There	are	a	few	helpers	built	into	the	Handlebars
library,	and	Ember	adds	some	of	its	own.

Helpers	can	take	two	forms.	The	first	are	inline	helpers,	which	use	the	syntax	{{[helper
name]	[arguments]}}.	The	arguments	can	include	a	hash	of	options,	such	as:
{{input	type="text"	value=firstName	disabled=entryNotAllowed	size="50"}}

More	complex	helpers	use	a	block	syntax:
{{#[helper	name]	[arguments]}}

		[block	content]

{{/[helper	name]}}

For	example,	if	you	wanted	to	present	a	sign-in	link	only	to	users	who	were	not	already
logged	in,	you	could	use	something	like	the	block	below:
{{#if	notSignedIn}}

		Sign	In

{{/if}}

For	block	helpers,	content	can	be	passed	to	the	block	to	augment	the	output	with	dynamic
segments.	Handlebars’	built-in	conditionals,	described	in	the	next	section,	are	block	helpers.

You	are	going	to	use	helpers	to	render	sections	of	your	templates	for	sightings	and
cryptids	as	well	as	the	NavBar.

Conditionals

Conditional	statements	let	you	introduce	basic	control	flow	into	Handlebars	templates.	Their
syntax	looks	like	this:
{{#if	argument}}

		[render	block	content]

{{else}}

		[render	other	content]

{{/if}}

Or,	alternatively,	like	this:
{{#unless	argument}}

		[render	block	content]

{{/unless}}

Conditional	statements	take	a	single	argument	that	resolves	to	a	truthy	or	falsy	value.
(Those	are	not	typos.	A	truthy	value	is	one	that	evaluates	to	true	in	a	Boolean	context.	All
values	are	truthy	except	those	defined	as	falsy:	the	values	false,	0,	””,	null,	undefined,	and
NaN.)

Time	to	get	to	work.	Open	app/templates/sightings/index.hbs	and	add	a
conditional	statement	so	that	sighting	entries	display	either	the	location	or,	if	there	is	no
location	data,	a	polite	warning	about	the	missing	data.
<div	class="panel	panel-default">

		<ul	class="list-group">

				{{#each	model	as	|sighting|}}

						<li	class="list-group-item">

								{{sighting.location}}	-	{{sighting.sightedAt}}

						

				{{/each}}

		

</div>

<div	class="row">

		{{#each	model	as	|sighting|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<div	class="caption">

										{{#if	sighting.location}}

												<h3>{{sighting.location}}	-	{{sighting.sightedAt}}</h3>

										{{else}}

												<h3	class="text-danger">Bogus	Sighting</h3>

										{{/if}}

								</div>

						</div>

				</div>

		{{/each}}

</div>

You	changed	the	DOM	structure	of	your	sightings	template	to	start	outputting	sighting
information	in	the	form	of	styled	elements	using	Bootstrap’s	wells	style.	The	use	of	{{#if}}
and	{{else}}	allows	you	to	render	different	HTML	when	the	location	of	the	sighting	has
not	been	added.

Now	you	need	to	change	the	data	sent	from	the	route	to	the	template	to	see	the	results	of
your	new	conditional.	In	your	sightings	route	model	in	app/routes/sightings.js,
set	the	location	property	of	one	sighting	to	the	empty	string.
...

		model(){

				...

				let	record3	=	this.store.createRecord('sighting',	{

						location:	'Asilomar',

						sightedAt:	new	Date('2016-03-21')

				});

				return	[record1,	record2,	record3];

		}

});

Start	your	server	and	point	your	browser	to	http://localhost:4200/sightings
to	see	the	new	list	of	sightings	(Figure	23.2).

http://localhost:4200/sightings

Figure	23.2		Bogus	sighting

The	conditional	statement	evaluated	the	truthy	value	of	the	empty	string	for	the	last
sighting	instance.	Thus,	the	template	rendered	the	block	content	with	the	text	“Bogus
Sighting.”

Loops	with	{{#each}}

You	have	already	used	the	{{#each}}	block	helper	in	the	index	template.	This	helper
renders	each	object	in	the	array	as	an	instance	of	the	content	in	the	block.	The	argument
for	{{#each}}	is	the	array	as	an	|instance|	contained	in	the	block	argument.	The	block
will	only	render	if	the	argument	passed	in	to	{{#each}}	is	an	array	with	at	least	one
element.

Like	the	{{#if}}	block	helper,	this	helper	supports	an	{{else}}	block	that	will	render
when	the	array	argument	is	empty.

Use	{{#each}}	{{else}}	{{/each}}	to	create	a	listing	of	all	recorded	cryptids	–	or,	if
there	are	none,	the	text	“No	Creatures”	–	in	app/templates/cryptids.hbs:
{{outlet}}

<div	class="row">

		{{#each	model	as	|cryptid|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<div	class="caption">

										<h3>{{cryptid.name}}</h3>

								</div>

						</div>

				</div>

		{{else}}

				<div	class="jumbotron">

						<h1>No	Creatures</h1>

				</div>

		{{/each}}

</div>

Similar	to	sightings,	you	are	listing	the	cryptids	in	styled	wells.	The	{{else}}	block
allows	you	to	include	a	condition	in	your	template	when	there	are	no	items	in	the	array
you	are	listing.	Your	app	can	render	a	different	element	for	this	conditional	of	an	empty
model	array.

Navigate	to	http://localhost:4200/cryptids	to	see	your	new	cryptid	listing
(Figure	23.3).

Figure	23.3		Cryptids	listing

Now,	in	app/routes/cryptids.js,	remove	the	model	callback	by	commenting	out
the	return	statement	to	exercise	the	else	of	your	conditional.
...

		model(){

				//	return	this.store.findAll('cryptid');

		}

});

Reload	http://localhost:4200/cryptids.	Your	cryptid	listing	is	now	blank
(Figure	23.4).

http://localhost:4200/cryptids
http://localhost:4200/cryptids

Figure	23.4		Empty	cryptids	listing

With	{{each}}	{{else}}	{{/each}},	you	can	have	conditional	views	based	on	the
presence	of	data	and	very	little	conditional	logic.	Now	that	you	have	seen	(and	tested)	the
wonders	of	conditional	iterators,	return	app/routes/cryptids.js	to	its	previous
state:
...

		model(){

				//	return	this.store.findAll('cryptid');

		}

});

Binding	element	attributes

Element	attribute	values	can	be	rendered	from	controller	properties	just	as	element	content
is	rendered	between	DOM	element	tags.	In	earlier	versions	of	Ember,	there	was	a	helper	to
bind	attributes	called	{{bind-attr}}.	Now,	thanks	to	HTMLBars,	you	can	you	just	use
{{}}	to	bind	a	property	to	the	attribute.

Attribute	binding	is	common	with	element	properties	like	class	and	src.	Your	cryptids
have	an	image	path	in	their	data,	so	you	can	dynamically	bind	their	src	property	to	a
model	attribute.

Add	an	image	to	the	cryptid	listing	in	app/templates/cryptids.hbs:
<div	class="row">

		{{#each	model	as	|cryptid|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<img	class="media-object	thumbnail"	src="{{cryptid.profileImg}}"

										alt="{{cryptid.name}}"	width="100%"	height="100%">

								<div	class="caption">

										<h3>{{cryptid.name}}</h3>

								</div>

						</div>

				</div>

		{{else}}

				<div	class="jumbotron">

						<h1>No	Creatures</h1>

				</div>

		{{/each}}

</div>

You	will	need	to	add	the	cryptid	images	from	your	course	assets	to	the	directory
tracker/public/assets/image/cryptids.	When	the	Ember	server	is	running,
the	public	directory	is	the	root	for	assets.	For	a	production	application	you	may	need	to
configure	these	paths,	but	for	development,	public/assets	is	a	good	place	to	work.
These	files	are	copied	to	the	dist	directory	where	your	application	is	compiled	and
served.

When	deploying	an	application	to	a	server	and	adding	images	to	persisted	data	you	need	to
be	conscious	of	the	path	to	the	actual	image	file.	In	our	example,	we	are	serving	the
images	from	the	same	directory	as	our	application,	and	the	database	stores	the	relative
path	of	the	image	to	our	application.

Before	HTMLBars,	the	{{bind-attr}}	helper	could	be	used	as	an	inline	ternary	operation
for	assigning	properties	based	on	a	Boolean	property.	Now,	you	can	use	the	inline	{{if}}
helper.	This	is	common	when	your	UI	has	styles	that	represent	true	and	false	states	of	a
specific	property.

Use	the	ternary	form	in	app/templates/cryptids.hbs	to	handle	missing	images:
<div	class="row">

		{{#each	model	as	|cryptid|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<img	class="media-object	thumbnail"	src="{{cryptid.profileImg}}"

										src="{{if	cryptid.profileImg	cryptid.profileImg

										'assets/images/cryptids/blank_th.png'}}"

										alt="{{cryptid.name}}"	width="100%"	height="100%">

								<div	class="caption">

								...

Unlike	the	block	{{#if}}	helper,	the	inline	{{if}}	helper	does	not	yield	block	content.
The	inline	helper	evaluates	the	first	argument	as	a	Boolean	and	outputs	either	the	second
or	third	argument.

Here,	you	are	evaluating	the	truthiness	of	{{cryptid.profileImg}}	for	the	first	argument.
If	it	is	truthy,	the	output	is	the	cryptid’s	image	path.	Otherwise,	a	placeholder	image	is
specified.

You	can	use	a	dynamic	value	as	an	argument	to	all	inline	helpers.	You	can	also	pass	any
JavaScript	primitive	as	an	argument,	such	as	a	string,	number,	or	Boolean.

Before	you	look	at	the	results	of	your	conditional,	create	a	cryptid	without	an	image	path
in	the	beforeModel	hook	in	app/routes/cryptids.js:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		beforeModel(){

				this.store.createRecord('cryptid',	{

						"name":	"Charlie",

						"cryptidType":	"unicorn"

				});

		},

		model(){

				return	this.store.findAll('cryptid');

		}

});

Now	reload	http://localhost:4200/cryptids	and	check	out	your	new	images

http://localhost:4200/cryptids

(Figure	23.5).

Figure	23.5		Cryptids	listing	with	images

Links

As	discussed	in	Chapter	20,	routing	is	unique	to	browser-based	applications.	Ember	listens
to	a	couple	of	event	hooks	to	manage	routing	in	your	application.	For	this	reason,	you
should	create	links	with	{{#link-to}}	block	helpers.	This	helper	takes	the	route
(represented	by	a	string)	as	the	first	argument	to	create	an	anchor	element.	For	example,
{{#link-to	'index'}}Home{{/link-to}}	creates	a	link	to	the	root	index	page.

To	see	how	this	works,	you	are	going	to	update	your	main	navigation	with	links	using
{{#link-to}}	helpers.

Begin	in	app/templates/application.hbs.	Replace	the	NavBar’s	test	links	with
links	to	your	sightings,	cryptids,	and	witnesses:
...

						<div	class="collapse	navbar-collapse"	id="top-navbar-collapse">

								<ul	class="nav	navbar-nav">

										

												Test	Link

										

										

												Test	Link

										

										

												{{#link-to	'sightings'}}Sightings{{/link-to}}

										

										

												{{#link-to	'cryptids'}}Cryptids{{/link-to}}

										

										

												{{#link-to	'witnesses'}}Witnesses{{/link-to}}

										

								

						</div><!--	/.navbar-collapse	-->

Now	that	you	have	links	to	your	listing	pages,	reload	your	app	and	test	them.	Click
around.	Hit	the	back	button.	You	have	a	working	web	app!	Take	a	moment	to	celebrate.

Your	next	task	is	to	make	the	images	on	the	cryptids	page	link	to	an	individual	page	for
each	creature.	To	do	this,	you	will	take	advantage	of	the	fact	that	the	{{#link-to}}	helper
can	take	multiple	arguments	to	customize	the	link.	In
app/templates/cryptids.hbs,	wrap	the		tag	with	a	link	to	a	specific
cryptid	using	cryptid.id	as	the	second	argument:
...

				<div	class="media	well">

						{{#link-to	'cryptid'	cryptid.id}}

								<img	class="media-object	thumbnail"

								src="{{if	cryptid.profileImg	cryptid.profileImg

								'assets/images/cryptids/blank_th.png'}}"

								alt="{{cryptid.name}}"	width="100%"	height="100%">

						{{/link-to}}

						<div	class="caption">

								<h3>{{cryptid.name}}</h3>

						</div>

				</div>

...

Now	that	you	have	links	to	the	cryptid	route	and	the	anchor	has	a	path	to	cryptids/
[cryptid_id],	you	will	need	to	edit	router.js	so	the	CryptidRoute	knows	to
expect	a	dynamic	value.
...

Router.map(function()	{

		this.route('sightings',	function()	{

				this.route('new');

		});

		this.route('sighting',	function()	{

				this.route('edit');

		});

		this.route('cryptids');

		this.route('cryptid',	{path:	'cryptids/:cryptid_id'});

		this.route('witnesses');

		this.route('witness');

});

...

Try	it	out.	You	should	see	a	blank	page	after	clicking	one	of	the	cryptid	images.	This	is
good.	Your	app	is	routing	you	to	the	CryptidRoute,	which	is	rendering	the
app/templates/cryptid.hbs,	singular.	That	file	is	currently	blank.

If	you	clicked	on	Charlie	the	unicorn’s	image,	you	probably	got	an	error.	Recall	that	his
record	was	created	in	the	beforeModel	hook	and	does	not	have	an	id.	That	means	that
the	value	it	tries	to	pass	to	the	{{#link-to}}	helper	is	null.

This	is	a	good	time	to	remove	that	beforeModel	hook.	Creation	should	be	reserved	for
pages	creating	new	cryptids,	which	we	will	cover	in	Chapter	24.

Remove	the	hook	from	app/routes/cryptids.js.
...

		beforeModel(){

				this.store.createRecord('cryptid',	{

						"name":	"Charlie",

						"cryptidType":	"unicorn"

				});

		},

		model(){

				return	this.store.findAll('cryptid');

		}

...

Next,	add	the	request	for	cryptid	data	in	the	app/routes/cryptid.js	(singular).
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model(params){

				return	this.store.findRecord('cryptid',	params.cryptid_id);

		}

});

The	cryptid_id	dynamic	route	parameter	is	passed	to	the	route’s	model	hook	as	an
argument.	You	use	this	parameter	to	call	the	store’s	findRecord	method.

Now,	edit	the	template	for	an	individual	cryptid,	app/templates/cryptid.hbs,	to
show	the	cryptid’s	image	and	name.
{{outlet}}

<div	class="container	text-center">

		

		<h3>{{model.name}}</h3>

</div>

The	model	passed	to	this	template	is	a	single	object,	not	an	array	of	objects	to	iterate
over.	The	this.store.findRecord	method	returns	a	single	cryptid	instance.	In
the	template,	the	model	is	this	instance	and	the	properties	are	retrieved	using	{{model.
[property-name]}}.

In	the	browser,	use	your	NavBar	to	navigate	to	Cryptids	and	then	click	one	of	the	cryptid
images	to	view	its	detail	page	(Figure	23.6).

Figure	23.6		Cryptid	detail	page

You	will	explore	{{#link-to}}	more	in	future	chapters.	Remember,	helpers	are	functions
that	are	invoked	when	the	template	is	rendered.	Ember	comes	with	its	own,	but	you	are	not
limited	to	the	built-in	helpers.

Custom	Helpers
The	sighting’s	sightedAt	date	property	is	displayed	as	an	ugly	raw	date	string.	To
format	your	dates	more	nicely,	you	are	going	to	use	the	same	moment	library	you	used	in
Chattrbox.

Add	moment	from	the	terminal:
bower	install	moment	--save

Then,	use	app.import	to	add	moment	to	your	vendor	assets	in	ember-cli-build.js:
...

		//	Add	assets	to	app	with	import

		app.import(bootstrapPath	+	'javascripts/bootstrap.js');

		app.import('bower_components/moment/moment.js');

		return	app.toTree();

};

Changes	to	your	server	configurations	require	a	restart,	so	after	you	change	the	ember-
cli-build.js,	stop	your	Ember	server	(Control+C)	and	start	it	back	up	(ember
server).

Now	you	need	to	generate	the	helper	module	from	the	terminal:
ember	g	helper	moment-from

From	here,	you	will	create	a	function	that	will	return	HTML	as	a	string.	The	function	will
have	a	date	as	an	argument,	and	it	will	process	the	date	with	the	moment.js	library.	You
will	surround	the	date	with	an	HTML		tag	and	apply	a	Bootstrap	text	utility	to	the
element.

Open	the	generated	file,	app/helpers/moment-from.js,	and	create	this	new
function:
import	Ember	from	'ember';

export	function	momentFrom(params/*,	hash*/)	{

		return	params;

}

export	function	momentFrom(params)	{

		var	time	=	window.moment(...params);

		var	formatted	=	time.fromNow();

		return	new	Ember.Handlebars.SafeString(

				''

				+	formatted	+	''

);

}

export	default	Ember.Helper.helper(momentFrom);

Now	that	you	have	created	the	helper,	use	it	in	your
app/templates/sightings/index.hbs	template:
...

										{{#if	sighting.location}}

												<h3>{{sighting.location}}	-	{{sighting.sightedAt}}</h3>

												<p>{{moment-from	sighting.sightedAt}}</p>

										{{else}}

...

The	moment-from	helper	takes	a	single	argument	and	returns	the	formatted	date	as	a	string
of	HTML.	When	you	use	a	custom	helper	to	render	HTML	elements,	Ember	provides	the
Ember.Handlebars.SafeString	method	to	output	clean	markup.

Check	out	your	newly	formatted	dates	(Figure	23.7).

Figure	23.7		Sightings	moment.js	date

The	moment.js	library	takes	the	date	object	and	formats	it	as	something	like	“2	months
ago.”	That	looks	much	better	than	“Tue	Feb	9	2016	19:00:00	GMT-0500	(EST)”!	(There
are	many	options	in	moment.js	for	formatting	dates	–	explore	momentjs.com	to	find
out	more.)

By	creating	a	helper	to	output	the	specific	text,	you	can	remove	some	logic	from	the
template.	Custom	helpers	allow	you	to	cut	down	on	repetition	and	centralize	UI
formatting.	This	is	the	first	step	to	abstracting	your	code	into	Ember	Components,	which	you
will	learn	about	in	Chapter	25.

In	this	chapter,	you	learned	to	display	basic	model	properties	and	customize	your
templates	with	conditionals	and	loops.	You	bound	HTML	element	attributes	to	properties
and	created	new	routes	with	dynamic	attributes	to	load	individual	records	as	the	model
backing	the	template.	Finally,	you	used	helpers	for	linking	to	pages	and	rounded	out	your
understanding	of	helpers	by	building	your	own	helper	to	format	dates.

In	the	next	chapter,	you	will	complete	the	application	lifecycle	by	creating	and	editing	data
with	controllers.	You	will	learn	about	actions,	retrieve	multiple	collections	from	your	data
store,	and	create	decorators.

http://momentjs.com

Bronze	Challenge:	Adding	Link	Rollovers
The	links	you	created	need	some	rollover	content.	To	achieve	this,	add	a	title	attribute	to
your	{{#link-to}}	helpers.	The	title	should	be	the	sighting’s	cryptid	name.

Silver	Challenge:	Changing	the	Date	Format
The	{{moment-from}}	helper	has	made	the	date	less	clunky,	but	now	it	is	not	as
informative	as	it	should	be.	Review	the	moment	documentation	and	change	the	output	of
the	helper	to	format	the	date	as	“Sunday	May	31,	2016.”

Gold	Challenge:	Creating	a	Custom	Thumbnail	Helper
The	markup	for	the	cryptid	thumbnails	seems	a	bit	long.	Create	a	custom	helper	to	display
cryptid	thumbnails	by	passing	the	image	path	to	the	helper.	Clean	up	your	code	by	using
the	helper	in	all	the	places	the	cryptid	images	appear.

24	
Controllers

Controllers	are	the	last	piece	of	the	MVC	pattern.	As	you	learned	in	Chapter	19,
controllers	hold	application	logic,	retrieve	model	instances	and	give	them	to	views,	and
contain	handler	functions	that	make	changes	to	model	instances.

The	controllers	you	will	build	in	this	chapter	will	not	be	particularly	large	pieces	of	code.
That	is	the	idea	behind	MVC:	distributing	the	complexity	of	an	application	to	the	places	it
belongs.	Managing	the	data	is	the	job	of	the	models,	and	handling	the	UI	is	the	province	of
the	views.	The	controller	only	needs	to,	well,	control	the	models	and	views.

Without	your	knowledge,	Ember	has	been	adding	controller	objects	to	your	application
when	it	is	running.	Controllers	are	a	proxy	between	the	route	object	and	the	template,
passing	the	model	through.	When	you	do	not	add	a	controller	object,	Ember	knows	that	the
model	data	is	sufficient	to	pass	to	the	template,	and	it	does	that	for	you.

Creating	a	controller	in	Ember	allows	you	to	define	the	events	or	actions	to	listen	for	when
the	route	is	active.	It	also	allows	you	to	define	decorator	properties	to	augment	model	data
you	want	to	display	without	persisting	it.

One	of	the	goals	of	the	Tracker	application	is	for	the	user	to	be	able	to	create	new
sightings.	For	this	goal,	you	will	need	to	create	a	route,	a	controller,	controller	properties,
and	controller	actions.

You	have	already	created	the	new	sighting	route,	app/routes/sightings/new.js.
For	this	page,	you	are	you	going	to	create	a	new	sighting	record	and	load	the	collections	of
cryptids	and	witnesses.	Each	new	sighting	will	need	the	relationships	of	belonging	to	a
cryptid	and	having	one	or	many	witnesses.	The	form	you	will	create	will	look	like
Figure	24.1.

Figure	24.1		Tracker’s	New	Sighting	form

When	you	have	all	of	that	set	up,	you	will	create	a	controller	to	manage	events	from	the
new	sighting	form.	You	will	also	expand	on	your	work	to	allow	existing	sightings	to	be
edited	and	deleted.

New	Sightings
The	SightingsRoute’s	model	that	you	have	set	up	returns	all	the	sightings.	For	the	new
sightings	model,	you	will	return	the	result	of	creating	a	single	new,	empty	sighting.	Also,
you	will	return	a	set	of	Promises	for	the	cryptids	and	witnesses.	To	do	this	you	will	return
Ember.RSVP.hash({}).

Let’s	get	started.	Open	app/routes/sightings/new.js	and	add	a	model	hook	to
return	a	collection	of	Promises	as	an	Ember.RSVP.hash:
...

export	default	Ember.Route.extend({

		model()	{

				return	Ember.RSVP.hash({

						sighting:	this.store.createRecord('sighting')

				});

		}

});

When	this	route	is	active,	a	new	record	of	a	sighting	is	returned.	If	you	were	to	return	to
the	sightings,	you	would	see	a	blank	entry,	because	you	created	a	new	record.	You	will
handle	the	dirty	records	(model	data	that	has	been	changed	but	not	saved	to	the	persisted
source)	toward	the	end	of	this	chapter.	For	now,	know	that	createRecord	has	added	a
new	sighting	to	the	local	collection.

When	creating	a	new	sighting,	you	will	need	the	list	of	cryptids	and	witnesses.	Here,
Ember.RSVP.hash({})	is	used	to	say	you	are	returning	a	hash	of	Promises.	The	only	key
is	sighting,	which	means	that	your	model	reference	in	the	template	will	need	to	do	a
look-up	on	model.sighting	to	reference	the	sighting	record	you	created.

Add	the	retrieval	methods	for	cryptids	and	witnesses	to	this	hash	(do	not	neglect	the
comma	after	this.store.createRecord('sighting')).
...

export	default	Ember.Route.extend({

		model()	{

				return	Ember.RSVP.hash({

						sighting:	this.store.createRecord('sighting'),

						cryptids:	this.store.findAll('cryptid'),

						witnesses:	this.store.findAll('witness')

				});

		}

}

Next,	you	are	going	to	use	<select>	tags	in	your	new	sightings	template	to	present	the
lists	of	cryptids	and	witnesses	to	the	user.	But	before	you	set	up	your	template	with	the
new	model	data,	you	will	need	an	Ember	CLI	plug-in	that	makes	it	easy	to	use	<select>
tags	with	bound	properties.

From	the	command	line,	install	emberx-select:
ember	install	emberx-select

You	will	use	this	component,	usually	called	x-select,	in	your	template.	This	saves	you	from
writing	onchange	actions	for	each	<select>	tag.

Restart	ember	server	before	using	the	x-select	component.

With	all	the	model	data	set	up,	you	can	now	edit	the	template,
app/templates/sightings/new.hbs,	to	create	the	new	sighting	form:
<h1>New	Route</h1>

<h1>New	Sighting</h1>

<form>

		<div	class="form-group">

				<label	for="name">Cryptid</label>

				{{#x-select	value=model.sighting.cryptid	class="form-control"}}

						{{#x-option}}Select	Cryptid{{/x-option}}

						{{#each	model.cryptids	as	|cryptid|}}

								{{#x-option	value=cryptid}}{{cryptid.name}}{{/x-option}}

						{{/each}}

				{{/x-select}}

		</div>

		<div	class="form-group">

				<label>Witnesses</label>

				{{#x-select	value=model.sighting.witnesses	multiple=true	class="form-control"}}

						{{#x-option}}Select	Witnesses{{/x-option}}

						{{#each	model.witnesses	as	|witness|}}

								{{#x-option	value=witness}}{{witness.fullName}}{{/x-option}}

						{{/each}}

				{{/x-select}}

		</div>

		<div	class="form-group">

				<label	for="location">Location</label>	{{input	value=model.sighting.location

						type="text"	class="form-control"	name="location"	required=true}}

		</div>

</form>

Wow!	That	has	got	everything	you	have	been	working	on	–	and	more.	The	route	is	using	a
new	Ember.RSVP	method,	the	template	is	using	helpers,	and	the	new	{{x-select}}	and
{{x-option}}	components	are	used.

The	{{x-select}}	component	is	built	to	use	the	<select>	element	to	assign	a	value	to	a
property.	It	is	designed	to	work	just	like	a	<select>	element	in	the	Ember	data-binding
environment.	You	assign	the	value	to	the	sightings	model’s	cryptid	property	and	the
component	will	handle	the	onchange	event	when	a	new	option	is	selected.	This	works
because	the	cryptid	property	needs	a	cryptid	model	record	as	its	value.

For	the	witnesses,	there	is	an	extra	attribute,	multiple=true,	which	will	allow	your	users
to	select	multiple	witnesses	for	a	sighting.	Multiple	selections	will	translate	into	a
collection	of	hasMany	witnesses.

Before	you	go	any	further,	you	will	need	to	add	a	link	to	the	sightings	route	template	so
you	have	a	way	to	get	to	the	sightings.new	route.	Open
app/templates/sightings.hbs	and	take	care	of	that.
<h1>Sightings</h1>

<div	class="row">

		<div	class="col-xs-6">

				<h1>Sightings</h1>

		</div>

		<div	class="col-xs-6	h1">

				{{#link-to	"sightings.new"	class="pull-right	btn	btn-primary"}}

						New	Sighting

				{{/link-to}}

		</div>

</div>

{{outlet}}

Your	link	takes	advantage	of	the	simplicity	of	Bootstrap	formatting	to	create	a	button.	Load
http://localhost:4200/sightings	to	see	it	(Figure	24.2).

Figure	24.2		New	Sighting	button

Now	you	have	the	ability	to	navigate	to	the	sightings.new	route.	The	new	button	adds	a
link	to	create	a	new	sighting	from	anywhere	in	the	sightings	route	tree	structure.

Also,	notice	that	when	you	are	on	the	sightings.new	route,	the	button	is	active.	Ember	has
thought	of	it	all,	giving	an	active	class	to	a	link	even	when	the	current	route	is	the	link’s
route.	Having	an	active	state	on	a	button	or	link	signifies	the	current	route	in	the	form	of
UI	cues.

http://localhost:4200/sightings

Actions	are	the	key	to	handling	form	events	–	or	any	other	events	in	your	app.	The
actions	property	is	a	hash	where	you	assign	functions	to	keys.	The	keys	will	be	used	in
the	templates	to	trigger	the	callback.

You	are	ready	to	create	the	controller	for	the	sightings.new	route,	using	this	terminal
command:
ember	g	controller	sightings/new

Ember	creates	the	app/controllers/sightings/new.js	file.	Open	it	and	add	the
create	and	cancel	actions	you	will	need	to	create	sightings:
import	Ember	from	'ember';

export	default	Ember.Controller.extend({

		actions:	{

				create()	{

				},

				cancel()	{

				}

		}

});

When	creating	a	form	element,	the	action	attribute	usually	has	a	URL	to	which	you
submit	the	form.	With	Ember,	the	form	element	only	needs	the	name	of	a	function	to	run.

In	app/templates/sightings/new.hbs,	have	the	form	element	set	the	action	for
submit.	Also,	add	Create	and	Cancel	buttons:
<h1>New	Sighting</h1>

<form	{{action	"create"	on="submit"}}>

...

		<div	class="form-group">

				<label	for="location">Location</label>	{{input	value=model.location

						type="text"	class="form-control"	name="location"	required=true}}

		</div>

		<button	type="submit"	class="btn	btn-primary	btn-block">Create</button>

		<button	{{action	'cancel'}}	class="btn	btn-link	btn-block">Cancel</button>

</form>

Atom	may	complain	about	the	syntax	of	the	lines	with	the	{{action}}	helpers.	You	can
ignore	its	complaints.	(You	can	also	install	Language-Mustache	and	enable	it	in	Atom’s
preferences	so	that	Atom	recognizes	this	syntax.	The	package	can	be	found	at	atom.io/
packages/language-mustache.)

The	two	{{action}}	helpers	have	string	arguments	matching	the	actions	you	created	in
app/controllers/sightings/new.js.	Actions	are	bound	to	event	handlers.	The
{{action}}	helper	accepts	an	argument,	on,	to	which	the	action	is	assigned.	A	click	event
listener	is	assigned	to	the	action	if	you	do	not	add	the	on	argument	to	the	helper.

In	the	new	sightings	form,	you	added	on="submit"	to	specify	that	the	create	action	will
be	called	on	submit.	You	did	not	give	an	on	argument	to	the	cancel	button,	on	the	other
hand,	so	the	event	bound	with	the	action	will	be	a	click.

Your	form	now	works	to	submit	and	cancel	using	controller	actions,	but	those	actions	need
some	code.	Start	with	the	create	action.	Update
app/controllers/sightings/new.js	to	complete	the	sighting,	save	it,	and
return	to	the	sightings	listing.
...

		actions:	{

				create()	{

						var	self	=	this;

						this.get('model.sighting').save().then(function()	{

								self.transitionToRoute('sightings');

						});

				},

				cancel()	{

				}

https://atom.io/packages/language-mustache

		}

});

When	the	form	is	submitted,	create	is	called.	First,	you	set	a	reference	to	the	controller
with	self.	Next,	you	get	the	sighting	model	and	call	save.

The	last	step	is	saving	to	the	persistent	source.	There	is	a	flag	on	the	model	for
hasDirtyAttributes	that	is	set	to	false	when	a	model	is	saved.

Saving	a	model	returns	a	Promise.	You	chained	that	Promise	with	then,	which	takes	a
function	to	be	called	when	the	model	has	been	saved	successfully.	Finally,	you	return	to
the	sightings	listing	with	transitionToRoute.

Check	out	your	form	at	http://localhost:4200/sightings/new
(Figure	24.3).

Figure	24.3		New	Sighting	form

Fill	in	the	form	and	click	Create.	Although	you	successfully	added	a	new	sighting,	your
sightings	list	route	model	is	still	returning	the	records	created	inline.	Open
app/routes/sightings.js,	delete	the	dummy	data,	and	replace	it	with	a	call	to	the
store	to	retrieve	the	sightings.
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

				let	record1	=	this.store.createRecord('sighting',	{

						location:	'Atlanta',

						sightedAt:	new	Date('2016-02-09')

				});

				record1.set('location',	'Paris,	France');

				console.log("Record	1	location:	"	+	record1.get('location'));

				let	record2	=	this.store.createRecord('sighting',	{

						location:	'Calloway',

						sightedAt:	new	Date('2016-03-14')

http://localhost:4200/sightings/new

				});

				let	record3	=	this.store.createRecord('sighting',	{

						location:	'',

						sightedAt:	new	Date('2016-03-21')

				});

				return	[record1,	record2,	record3];

				return	this.store.findAll('sighting',	{reload:	true});

		}

});

Now	your	app	has	creation	and	retrieval.

Notice	the	second	argument	of	findAll,	the	object	literal	with	the	single	key	reload.
This	argument	tells	the	store	to	request	fresh	data	from	the	API	each	time	the	route	model
is	called.	Adding	this	argument	makes	it	explicit	that	you	always	want	the	freshest	data
each	time	you	view	the	list.

Next,	the	cancel	action	needs	to	delete	the	in-memory,	dirty	sighting	instance.	You	will
use	model.deleteRecord,	as	you	did	in	Chapter	21.	Add	it	to
app/controllers/sightings/new.js.
...

		actions:	{

				create()	{

						var	self	=	this;

						this.get('model.sighting').save().then(function()	{

								self.transitionToRoute('sightings');

						});

				},

				cancel()	{

						this.get('model.sighting').deleteRecord();

						this.transitionToRoute('sightings');

				}

		}

...

After	deleting	the	record,	the	user	will	be	returned	to	the	listing.	This	scenario	works	when
the	user	clicks	the	cancel	button,	but	what	happens	when	the	top	navigation	is	used	to	go
back	to	the	listing	or	another	route?

If	you	do	not	destroy	the	dirty	record,	it	will	stay	in	memory	while	the	user’s	session	is
active.	To	destroy	the	record	you	will	use	an	action	in	the	route.

In	the	lifecycle	of	a	route,	there	are	actions	called	at	different	states	and	transitions.	You
can	override	these	actions	to	customize	callbacks	for	different	stages	of	your	route
transition.

Open	app/routes/sightings/new.js	and	override	the	willTransition	action	to
ensure	that	dirty	records	are	deleted:
...

		model(){

				return	Ember.RSVP.hash({

						sighting:	this.store.createRecord('sighting'),

						cryptids:	this.store.findAll('cryptid'),

						witnesses:	this.store.findAll('witness')

				});

		},

		actions:	{

				willTransition()	{

						var	sighting	=	this.get('controller.model.sighting');

						if(sighting.get('hasDirtyAttributes')){

								sighting.deleteRecord();

						}

				}

		}

});

The	action	willTransition	will	fire	when	the	route	changes.	Using	deleteRecord
will	destroy	the	model	object,	but	only	when	the	model	property	hasDirtyAttributes	is
true.

You	have	now	covered	your	bases	with	a	dirty	record	on	creation.	You	are	also	set	up	to
save	to	a	persistent	data	source	with	minimal	changes	to	the	controller.

Editing	a	Sighting
After	creating	and	reading	data,	CRUD	tells	us	that	updating	is	the	next	step.	You	have	an
edit	route	for	a	sighting,	but	you	need	to	put	it	to	use	by	updating	the	sighting	listing	with
a	button	to	navigate	to	the	edit	route.	You	also	need	to	add	a	form	with	sighting	fields	to
the	edit	template;	have	the	edit	route’s	model	retrieve	witnesses,	cryptids,	and	the
sighting;	and	add	route	parameters	to	the	edit	route	object	in	app/router.js.	Finally,
you	need	to	create	a	controller	to	add	actions	for	the	edit	form.

Let’s	start	with	adding	an	Edit	button	in	app/templates/sightings/index.hbs.
To	give	more	context	to	the	list,	add	the	name	and	image	of	the	cryptid	that	was	sighted	as
well.
...

						<div	class="media	well">

								<img	class="media-object	thumbnail"	src="{{if	sighting.cryptid.profileImg

										sighting.cryptid.profileImg	'assets/images/cryptids/blank_th.png'}}"

										alt="{{sighting.cryptid.name}}"	width="100%"	height="100%">

								<div	class="caption">

										<h3>{{sighting.cryptid.name}}</h3>

										{{#if	sighting.location}}

												<h3>{{sighting.location}}</h3>

												<p>{{moment-from	sighting.sightedAt}}</p>

										{{else}}

												<h3	class="text-danger">Bogus	Sighting</h3>

										{{/if}}

								</div>

								{{#link-to	'sighting.edit'	sighting.id	tagName="button"

										class="btn	btn-success	btn-block"}}

										Edit

								{{/link-to}}

						</div>

...

Load	http://localhost:4200/sightings	and	check	out	your	new	Edit	button
(Figure	24.4).

http://localhost:4200/sightings

Figure	24.4		Sightings	list	with	Edit	button

Now	add	the	dynamic	parameters	to	the	edit	route	in	router.js.
...

		this.route('sighting',	function()	{

				this.route('edit',	{path:	"sightings/:sighting_id/edit"});

		});

...

Add	the	retrieval	methods	for	sightings,	cryptids,	and	witnesses	to	the	route	in
app/routes/sighting/edit.js:
...

export	default	Ember.Route.extend({

		model(params)	{

				return	Ember.RSVP.hash({

						sighting:	this.store.findRecord('sighting',	params.sighting_id),

						cryptids:	this.store.findAll('cryptid'),

						witnesses:	this.store.findAll('witness')

				});

		}

});

Next,	add	the	form	elements	to	app/templates/sighting/edit.hbs,	as	you	did
when	creating	a	new	sighting.
{{outlet}}

<h1>Edit	Sighting:

		<small>

				{{model.sighting.location}}	-

				{{moment-from	model.sightin.sightedAt}}

		</small>

</h1>

<form	{{action	"update"	model	on="submit"}}>

		<div	class="form-group">

				<label	for="name">Cryptid</label>

				{{input	value=model.sighting.cryptid.name	type="text"	class="form-control"

						name="location"	disabled=true}}

		</div>

		<div	class="form-group">

				<label>Witnesses</label>

				{{#each	model.sighting.witnesses	as	|witness|}}

						{{input	value=witness.fullName	type="text"	class="form-control"

								name="location"	disabled=true}}

				{{/each}}

		</div>

		<div	class="form-group">

				<label	for="location">Location</label>

				{{input	value=model.sighting.location	type="text"	class="form-control"

						name="location"	required=true}}

		</div>

		<button	type="submit"	class="btn	btn-info	btn-block">Update</button>

		<button	{{action	'cancel'}}	class="btn	btn-block">Cancel</button>

</form>

You	are	almost	there;	the	controller	is	the	final	step.	You	need	to	set	the	form	{{action}}
to	update.	Also,	because	Tracker	is	only	going	to	allow	location	changes	at	this	point,	you
will	render	the	cryptid	and	witnesses	in	disabled	input	fields.

Create	the	controller:
ember	g	controller	sighting/edit

Open	app/controllers/sighting/edit.js	and	add	the	update	and	cancel
actions:
import	Ember	from	'ember';

export	default	Ember.Controller.extend({

		sighting:	Ember.computed.alias('model.sighting'),

		actions:	{

				update()	{

						if(this.get('sighting').get('hasDirtyAttributes')){

								this.get('sighting').save().then(()	=>	{

										this.transitionToRoute('sightings');

								});

						}

				},

				cancel()	{

						if(this.get('sighting').get('hasDirtyAttributes')){

								this.get('sighting').rollbackAttributes();

						}

						this.transitionToRoute('sightings');

				}

		}

});

Similar	to	creating	model	records,	updating	is	as	easy	as	calling	save.	You	only	want	to
call	the	API	when	your	record	has	changed,	hence
sighting.get('hasDirtyAttributes').	Ember	has	thought	of	it	all!

Notice	the	use	of	Ember.computed.alias.	This	is	a	computed	property	assigned	so	you	do
not	have	to	type	as	much	when	calling	on	the	active	sighting.	You	can	alias	any	property
to	get	quick	access,	especially	if	the	properties	are	nested.

Deleting	a	Sighting
Every	so	often	a	reported	cryptid	sighting	turns	out	to	be	a	hoax.	While	this	may	be	rare,
you	do	need	a	way	to	delete	old	or	debunked	data.	Recall	from	Chapter	21	that	destroying
records	is	achieved	by	calling	record.destroyRecord.	Simple	enough.

Make	it	so:	Add	a	delete	button	to	your	template	in
app/templates/sighting/edit.hbs.
		<button	type="submit"	class="btn	btn-info	btn-block">Update</button>

		<button	{{action	'cancel'}}	class="btn	btn-block">Cancel</button>

</form>

<hr>

<button	{{action	'delete'}}	class="btn	btn-block	btn-danger">

		Delete

</button>

In	addition	to	the	new	button,	you	added	a	horizontal	rule	(a	simple	line)	between	the	form
elements	to	separate	the	Update	and	Cancel	buttons	from	the	new	Delete	button.	The	<hr>	is	a
UI	tool	you	are	using	to	indicate	that	deleting	a	sighting	is	a	separate	process	from	editing
a	sighting.

Next,	add	the	delete	action	to	your	controller,
app/controllers/sighting/edit.js:
...

				cancel()	{

						if(this.get('sighting').get('hasDirtyAttributes')){

								this.get('sighting').rollbackAttributes();

						}

						this.transitionToRoute('sightings');

				},

				delete()	{

						var	self	=	this;

						if	(window.confirm("Are	you	sure	you	want	to	delete	this	sighting?"))	{

								this.get('sighting').destroyRecord().then(()	=>	{

										self.transitionToRoute('sightings');

								});

						}

				}

		}

});

The	delete	action	adds	a	window.confirm	to	get	the	user’s	confirmation.	Aside	from	the
conditional,	this	action	is	like	the	others:	get	the	model,	call	a	method,	and	add	an	async
then	to	call	when	the	API	request	is	done.

Now	navigate	to	http://localhost:4200/sightings	and	click	the	Edit	button
for	one	of	your	sightings	to	view	the	app/templates/sightings/edit.hbs	and
its	new	Delete	button	(Figure	24.5).

Figure	24.5		Edit	Sighting	form

The	cycle	is	now	complete:	creation	to	destruction.

Route	Actions
Actions	are	not	just	for	controllers.	Routes	can	declare	the	actions	for	templates	and
override	lifecycle	actions.	When	an	action	is	called,	it	bubbles	up	from	the	template	to	the
controller	to	the	route	and	to	parent	routes.

A	route	can	therefore	act	as	the	controller	when	a	controller	definition	is	not	needed.	This
might	seem	contradictory	after	all	our	talk	about	separating	the	application	concerns,	but
Ember	really	split	the	controller’s	job	into	two	units:	route	information	and	controller	logic.
Sometimes	the	route	file	has	more	logic	and	sometimes	the	controller	has	more	logic.	The
file	separation	allows	for	small	digestible	chunks	of	code	when	the	other	file	has
numerous	actions	or	decorators.

To	see	how	this	works,	you	are	going	to	move	the	create	and	cancel	actions	from
app/controllers/sightings/new.js	to
app/routes/sightings/new.js.	Making	this	change	will	also	broaden	your
perspective	on	methods	and	objects	passed	between	these	files	–	and	it	will	be	good
practice	for	when	you	only	want	a	route	file	and	components	controlling	an	application
view.	(You	will	learn	about	components	in	the	next	chapter.)

First,	add	the	actions	to	app/routes/sightings/new.js:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		model()	{

		...

		},

		sighting:	Ember.computed.alias('controller.model.sighting'),

		actions:	{

				willTransition()	{

						var	sighting	=	this.get('controller.model.sighting');

						if(sighting.get('hasDirtyAttributes'))	{

								sighting.deleteRecord();

						}

				},

				create()	{

						var	self	=	this;

						this.get('sighting').save().then(function(data)	{

								self.transitionTo('sightings');

						});

				},

				cancel()	{

						this.get('sighting').deleteRecord();

						this.transitionToRoute('sightings');

				}

		}

});

You	also	created	an	Ember.computed.alias	for	the	sighting	object	in	the	route.	The	major
difference	in	accessing	the	controller’s	model.sighting	object	from	the	route	is	where
that	object	lives.	The	model	on	the	“new”	route	is	not	the	same	as	the	model	on	the	“new”
controller.	To	access	the	sighting	object	you	use	get('controller.model.sighting').
Creating	an	alias	to	this	object	will	save	you	from	typing	that	out	each	time.

Now,	delete	the	actions	from	app/controllers/sightings/new.js:
import	Ember	from	'ember';

export	default	Ember.Controller.extend({

		actions:	{

				create()	{

						var	self	=	this;

						this.get('model.sighting').save().then(function()	{

								self.transitionToRoute('sightings');

						});

				},

				cancel()	{

						this.get('model.sighting').deleteRecord();

						this.transitionToRoute('sightings');

				}

		}

});

Make	sure	your	application	has	reloaded	(or	restart	ember	server).	Navigate	to	http://
localhost:4200/sightings/new	and	create	a	new	sighting	to	make	sure	you	can
still	run	the	route	actions.

At	this	point,	app/controllers/sightings/new.js	is	irrelevant.	You	can	delete
this	file.	Ember	will	still	create	the	controller	object	while	the	app	is	running,	but	you	do
not	need	the	empty	file	cluttering	up	the	app	directory.

This	chapter	focused	on	Ember	controllers	to	show	you	how	to	create	actions	and
properties	for	your	templates,	transition	to	new	routes	after	saving	data,	and	destroy
records	on	cancel	or	a	route	change.	Actions	allow	you	to	change	the	model	data	backing
your	application	with	a	simple	callback.	The	controller	properties	allow	you	to	have	page-
specific	properties	before	adding	relationships	to	the	model	data.	Last,	you	have
completed	the	basic	CRUD	actions	of	updating	and	deleting	records	from	an	edit	route.

Ember	allows	rapid	development	by	making	the	creation	of	controllers	optional	for	when
you	need	these	specific	details	for	your	routes.	Beyond	these	features,	controllers	allow
you	to	fine-tune	your	views	and	have	control	over	your	model	data.	Actions	are	the	key	to
user	interaction.	Furthermore,	actions	can	live	on	routes,	controllers,	and	components	–
which	are	the	subject	of	the	next	(and	final)	chapter.

http://localhost:4200/sightings/new

Bronze	Challenge:	Sighting	Detail	Page
Create	a	sighting	detail	page	with	app/templates/sighting/index.hbs	and
app/routes/sighting.js	to	display	the	cryptid	image,	location,	and	list	of
witnesses.	Add	an	Edit	button	for	good	measure.	(Hint:	You	can	add	your	actions	on	the
route.)

Silver	Challenge:	Sighting	Date
When	creating	and	editing	a	sighting,	add	a	sightingDate	property	to	the	controller	and
an	input	that	is	bound	to	that	property.	Use	either	a	basic	text	input	or
input[type="date"]	to	capture	the	sighting	date.	Convert	the	date	to	an	ISO8601	string
using	moment	and	set	the	sighting	property	sightingAt	with	that	date	string.

Gold	Challenge:	Adding	and	Removing	Witnesses
When	creating	a	new	sighting,	build	a	list	of	witnesses	from	a	select	onchange	action.
Create	a	new	property	for	the	list	of	witnesses.	On	create,	add	the	objects	to	the	sightings
property	witnesses.

While	on	the	page,	make	the	collection	of	selected	witnesses	render	as	a	list	with	a	Remove
button.	Use	the	select	element	as	a	way	to	add	to	the	list	while	removing	the	options
from	the	select	element.	You	will	need	two	actions:	addWitness	and	removeWitness.

25	
Components

Components	are	objects	that	hold	the	properties	of	controllers	and	views	in	Ember.	The
concept	behind	components	is	to	have	reusable	DOM	elements	that	have	their	own	context
or	scope.	Components	accept	attributes	to	customize	the	content	rendered	inside	their
templates.	Also,	components	can	allow	actions	to	be	assigned	to	properties	from	a	parent
controller	or	parent	route	(Figure	25.1).

Figure	25.1		Component	property

As	you	assess	the	architecture	of	your	application,	you	will	start	to	see	elements	grouped
together	with	minor	differences	throughout	many	routes	and	templates.	If	a	grouping	of
elements	can	be	removed	from	the	template	and	described	with	variables	depicting	the
elements’	state,	it	is	a	prime	candidate	to	become	a	component.

This	chapter	will	show	you	relatively	simple	examples	of	wrapping	DOM	elements	in
JavaScript	objects	to	be	used	across	multiple	routes.	Much	like	the	helpers	you	saw	in
Chapter	23,	components	take	arguments	in	the	form	of	attributes	to	produce	HTML.	They
also	have	the	added	feature	of	having	their	own	actions	and	scoped	properties	to	update
themselves	upon	user	interaction.

This	chapter	will	only	show	you	the	tip	of	the	iceberg	of	scalable	application	development.
Ember	applications	in	production	rely	heavily	on	components	to	create	consistent	user
interfaces	and	maintainable	code	bases	that	sometimes	span	hundreds	of	routes.	However,
the	examples	you	see	here	will	provide	a	foundation	of	understanding	for	future	projects
where	you	want	to	turn	your	route	templates	into	reusable	pages	or	single	elements.

Iterator	Items	as	Components
An	example	of	grouped	elements	that	can	often	become	a	component	is	elements	rendered

in	{{#each}}	iterators.	There	may	be	a	<div>	container	element	with	a	particular
className	based	on	the	iterator	object,	a	title,	an	image	path,	a	button	with	an	action,
and/or	styles	based	on	the	object’s	property	states.	To	make	these	easily	reusable,	you	can
wrap	all	the	DOM	code	in	a	component	template	and	create	a	component	JavaScript	file	to
handle	the	decorators	and	actions	that	a	controller	would	normally	handle.

Your	sightings	list	is	built	with	an	{{#each}}	iterator,	and	you	are	going	to	create	your
first	component	to	represent	a	sighting	list	item.	Start	by	generating	a	component	via	Ember
CLI	in	the	terminal:
ember	g	component	listing-item

This	creates	three	files:	app/components/listing-item.js,
app/templates/components/listing-item.hbs,	and	the	test	file
tests/integration/components/listing-item-test.js.

Now	that	the	component	is	created,	you	need	to	find	the	code	you	want	the	component	to
replace.	Open	app/templates/sightings/index.hbs	and	locate	this	block	of
code.	You	will	be	moving	part	of	this	code	to	the	component	in	a	moment.	For	now,	just
take	a	look	at	it.
<div	class="row">

		{{#each	model	as	|sighting|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<img	class="media-object	thumbnail"	src="{{if	sighting.cryptid.profileImg

										sighting.cryptid.profileImg	'assets/images/cryptids/blank_th.png'}}"

										alt="{{sighting.cryptid.name}}"	width="100%"	height="100%">

								<div	class="caption">

										<h3>{{sighting.cryptid.name}}</h3>

										{{#if	sighting.location}}

												<h3>{{sighting.location}}</h3>

												<p>{{moment-from	sighting.sightedAt}}</p>

										{{else}}

												<h3	class="text-danger">Bogus	Sighting</h3>

										{{/if}}

								</div>

								{{#link-to	'sighting.edit'	sighting.id	tagName="button"

										class="btn	btn-success	btn-block"}}

										Edit

								{{/link-to}}

						</div>

				</div>

		{{/each}}

</div>

The	container	<div>	with	the	col-xs-12	class	(that	is,	the	shaded	<div>)	needs	to	be	on
this	specific	page.	It	is	a	visual	container	for	the	layout,	specifying	the	size	of	its	content.
If	you	were	to	add	this	container	to	your	sightings	list	component,	the	container	size
would	be	fixed	for	every	instance	of	the	component	across	the	site.

However,	the	<div	class="media	well">	container	and	its	contents	can	be	moved	to	a
component.	This	component	can	then	be	added	to	any	size	of	container	while	holding	the
characteristics	of	a	single	item	in	a	list.	The	component	will	contain	the	major	elements	of
the	item	being	listed	–	mainly	the	media	container	and	the	image,	title,	and	Edit	button.

Open	app/templates/components/listing-item.hbs	and	begin	by	adding
the	image	and	cryptid	name:
<img	class="media-object	thumbnail"	src="{{imagePath}}"	alt="{{name}}"

		width="100%"	height="100%">

<div	class="caption">

		<h3>{{name}}</h3>

		{{yield}}

</div>

A	component	represents	a	single	DOM	element.	Everything	in	the	component	template,
then,	is	a	child	of	that	DOM	element.	By	default,	Ember’s	HTMLBars	uses	JavaScript	to

create	<div>	elements	and	renders	the	component	template	inside	them.

The	code	you	just	wrote	adds	an	image	and	a	caption	with	a	name	to	the	<div>	element
created	by	a	{{#listing-item}}	component.	Just	like	other	templates,	the	component	has
dynamic	portions	that	are	variables	you	will	pass	in.	(We	will	discuss	the	{{yield}}	in	a
moment.)

When	you	add	this	component	to	the	route	template,	it	will	render	this:
<div>

		<img	class="media-object	thumbnail"	src="[cryptid's	imagePath	string]"

				alt="[cryptid's	name	string]"	width="100%"	height="100%">

		<div	class="caption">

				<h3>[cryptid's	name	string]</h3>

				{{yield}}

		</div>

</div>

The	dynamic	portions	of	the	template,	{{name}}	and	{{imagePath}},	will	be	attributes
provided	to	the	component.	The	{{yield}}	is	where	you	can	pass	child	elements	to	the
component	to	render	in	a	specific	location	of	the	DOM	node	structure.	The	component
template	file	acts	a	layout	or	master	set	of	elements,	and	the	{{yield}}	is	for	elements
you	need	to	add	with	each	instance	of	the	component.	You	will	use	it	later	in	the	chapter.

While	this	is	not	exactly	the	markup	you	are	replacing	in
app/templates/sightings/index.hbs,	it	is	a	good	starting	point.

Replace	your	existing	code	in	app/templates/sightings/index.hbs	with	the
component.
<div	class="row">

		{{#each	model	as	|sighting|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								<img	class="media-object	thumbnail"	src="{{if	sighting.cryptid.profileImg

										sighting.cryptid.profileImg	'assets/images/cryptids/blank_th.png'}}"

										alt="{{sighting.cryptid.name}}"	width="100%"	height="100%">

								<div	class="caption">

										<h3>{{sighting.cryptid.name}}</h3>

										{{#if	sighting.location}}

												<h3>{{sighting.location}}</h3>

												<p>{{moment-from	sighting.sightedAt}}</p>

										{{else}}

												<h3	class="text-danger">Bogus	Sighting</h3>

										{{/if}}

								</div>

								{{#link-to	'sighting.edit'	sighting.id	tagName="button"

										class="btn	btn-success	btn-block"}}

										Edit

								{{/link-to}}

						</div>

						{{#listing-item	imagePath=sighting.cryptid.profileImg

								name=sighting.cryptid.name}}

						{{/listing-item}}

				</div>

		{{/each}}

</div>

You	have	replaced	a	lot	of	code	with	a	single	line.	Some	functionality	was	removed	in	the
process,	but	you	will	fix	that	soon.	The	next	step	is	adding	the	container	styles	back	on	the
component	element.	It	is	missing	the	"media"	and	"well"	Bootstrap	styles.

Open	app/components/listing-item.js	and	add	a	classNames	property	to
the	listing-item	component:
import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["media",	"well"]

});

The	property	classNames	passes	its	value	to	the	classNames	attribute	of	the	<div>
element	created	by	the	component.

Now	the	rendered	component	looks	like	this:
<div	class="media	well">

		<img	class="media-object	thumbnail"	src="[imagePath	string]"	alt="[name	string]"

				width="100%"	height="100%">

		<div	class="caption">

				<h3>[name	string]</h3>

				{{yield}}

		</div>

</div>

Next,	you	will	add	elements	to	the	{{yield}}	section	of	the	component	template	to	make
the	implementation	of	this	component	instance	unique	to	the	sightings	route.	First,	in
app/templates/sightings/index.hbs,	add	the	component’s	contextual	content
that	will	render	in	the	{{yield}}:
...

						{{#listing-item	imagePath=sighting.cryptid.profileImg

								name=sighting.cryptid.name}}

								{{#if	sighting.location}}

										<h3>{{sighting.location}}</h3>

												<p>{{moment-from	sighting.sightedAt}}</p>

								{{else}}

										<h3	class="text-danger">Bogus	Sighting</h3>

								{{/if}}

								{{#link-to	'sighting.edit'	sighting.id	tagName="button"

										class="btn	btn-success	btn-block"}}

										Edit

								{{/link-to}}

						{{/listing-item}}

This	code,	which	should	look	familiar,	reinstates	the	sighting	location	and	time	as	well	as
the	Edit	button.

Components	for	DRY	Code
Time	to	DRY	up	your	code.

Say	what?	DRY	is	a	programming	principle	that	stands	for	“don’t	repeat	yourself.”	In
other	words,	if	you	write	something	down,	write	it	down	in	just	one	place.

Both	the	listings	for	sightings	and	cryptids	use	an	element	with	class="media	well"	with
images	and	titles.	So	this	is	some	code	that	can	be	DRYed	up.	The	component	does	not
match	exactly	to	the	cryptid	listing	item,	but	that	is	where	the	{{yield}}	comes	in.

Add	the	new	{{#listing-item}}	component	to	the	cryptids	listing.	In
app/templates/cryptids.hbs,	replace	the	<div	class="media	well">	element
and	its	child	elements:
<div	class="row">

		{{#each	model	as	|cryptid|}}

				<div	class="col-xs-12	col-sm-3	text-center">

						<div	class="media	well">

								{{#link-to	'cryptid'	cryptid.id}}

										<img	class="media-object	thumbnail"

												src="{{if	cryptid.profileImg	cryptid.profileImg

												'assets/images/cryptids/blank_th.png'}}"

												alt="{{cryptid.name}}"	width="100%"	height="100%">

								{{/link-to}}

								<div	class="caption">

										<h3>{{cryptid.name}}</h3>

								</div>

						</div>

						{{#link-to	'cryptid'	cryptid.id}}

								{{listing-item	imagePath=cryptid.profileImg	name=cryptid.name}}

						{{/link-to}}

				</div>

		{{else}}

				<div	class="jumbotron">

						<h1>No	Creatures</h1>

				</div>

		{{/each}}

</div>

Did	you	notice	that	there	is	a	difference	between	the	way	you	referenced	your	component
in	the	two	templates?	The	sightings	iterator	uses	the	{{yield}}	to	add	elements	inside	the
<div	class="caption">	and	the	cryptids	template	does	not.	When	you	want	a	component
to	only	use	the	code	in	the	component	template	file,	you	can	use	an	inline	component,
written	without	the	hash	(#)	–	{{listing-item}}	–	as	you	did	here.	With	this	syntax,	there
is	no	closing	HTMLBars	element	({{/listing-item}}).

To	add	a	link	to	the	component,	you	wrapped	the	component	with	a	{{#link-to}}.	In	the
old	iterated	elements,	only	the	image	linked	to	the	cryptid	detail	page.	Now	the	entire
element	links	to	the	cryptid	detail.	This	example	shows	the	flexibility	of	components	to
conform	to	the	context	of	different	route	templates	while	rendering	similar	content.	You
could	also	add	more	attributes	to	the	component	to	account	for	the	need	for	a	link	inside
the	component	template.

Data	Down,	Actions	Up
Next,	you	will	add	a	component	to	be	controlled	by	a	state	change	in	the	application.
Specifically,	you	will	create	a	flash	alert	to	display	a	message	when	you	create	a	new
listing.

One	of	the	tenets	of	components	is	“data	(or	state)	down	and	actions	up.”	Unlike
controllers,	components	should	not	change	the	state	of	an	application;	they	should	pass
changes	up	through	actions.	The	state	of	a	component,	on	the	other	hand,	should	be	passed
in	from	a	parent	template	–	data	down	(Figure	25.2).

Figure	25.2		Component	Data	Down	Actions	Up

A	component	could	easily	replace	a	controller	by	passing	a	route’s	model	directly	to	the
component	without	the	need	for	a	controller’s	decorators	or	actions.

You	will	create	a	new	component	and	actions	and	add	the	component	to	the
app/templates/application.hbs	file	to	render	a	global	message	when	a	new
sighting	is	created.

First,	generate	the	new	component	in	the	terminal:
ember	g	component	flash-alert

The	{{flash-alert}}	component	will	be	a	container	element	for	a		alert	title
and	a	text	message.

Open	and	edit	app/templates/components/flash-alert.hbs	to	make	it	so:
{{yield}}

{{typeTitle}}!	{{message}}

Edit	the	component	file	app/components/flash-alert.js	and	add	classNames:
import	Ember	from	'ember';

export	default	Ember.Component.extend({

		classNames:	["alert"]

});

Now	the	component	will	render	the	following	elements:
<div	class="alert">

		{{typeTitle}}!	{{message}}

</div>

Class	Name	Bindings
This	container	gives	the	impression	that	it	will	display	the	correct	message,	but	the	styling
will	not	give	you	context	to	its	alert	type.	Bootstrap	has	state-variant	styles	for	alert
components:	"alert-success",	"alert-info",	"alert-warning",	and	"alert-danger".

In	order	to	set	the	correct	alert	type,	you	will	add	one	of	these	classes	with	a	computed
property	and	class	name	binding.

Start	with	the	computed	property	in	app/components/flash-alert.js:
...

export	default	Ember.Component.extend({

		classNames:	["alert"],

		typeClass:	Ember.computed('alertType',	function()	{

				return	"alert-"	+	this.get('alertType');

		})

});

Here,	you	added	a	computed	property	for	typeClass,	which	will	be	used	to	add	a
className	to	the	component’s	<div>	element.	The	computed	property	expects	a	property
called	alertType,	which	you	will	add	later,	and	returns	a	string	with	"alert-"	prefixing
the	"alertType".	This	allows	you	to	pass	in	a	property	with	a	value	of	"success",
"info",	"warning",	or	"danger"	to	supply	the	context	of	the	alert.	You	will	be	using	this
same	alertType	property	for	another	computed	property.

Finally,	add	the	className	bindings	in	the	app/components/flash-alert.js	file
for	classNames	bound	to	component	properties:
...

export	default	Ember.Component.extend({

		classNames:	["alert"],

		classNameBindings:	['typeClass'],

		typeClass:	Ember.computed('alertType',	function()	{

				return	"alert-"	+	this.get('alertType');

		})

});

This	adds	a	className	to	the	classNames	array	from	the	value	of	the	computed	property
typeClass.	When	you	set	the	alertType	property,	the	style	changes	on	the	component.

Using	classNameBindings	is	specific	to	the	classNames	attribute	on	an	element.	There	is
a	complementary	Ember	component	property	for	the	other	attributes:	attributeBindings.
You	can	bind	component	properties	to	the	attributes	of	the	component’s	element.	A	basic
example	is	setting	the	href	of	a	link	to	a	computedProperty.	For	example:
export	default	Ember.Component.extend({

		attributeBindings:	['href',	'customHREF:href'],

		href:	"http://www.mydomain.com",

		customHREF:	"http://www.mydomain.com"

});

With	attribute	bindings	you	can	set	all	the	component’s	attributes	with	the	state	data
passed	into	the	component.	To	explore	this	further,	check	out	the	Ember	documentation
online.

Next,	add	a	computed	property	to	display	the	alert	type	as	a	string.	The	component
template	is	expecting	a	property	typeTitle,	so	you	have	to	add	this	computed	property	to
app/components/flash-alert.js:
import	Ember	from	'ember';

export	default	Ember.Component.extend({

		...

		typeClass:	Ember.computed('alertType',	function()	{

				return	"alert-"	+	this.get('alertType');

		}),

		typeTitle:	Ember.computed('alertType',	function()	{

				return	Ember.String.capitalize(this.get('alertType'));

		})

});

Now	you	have	a	string	in	the	message	bound	to	the	alert	type	that	is	capitalized	and	is	a
	element	in	the	template.	You	have	bound	a	class	name	and	a	decorated	property
to	the	component	by	computing	the	value	of	each	from	data	passed	into	the	component	via
the	alertType	property.

Next	you	need	to	add	your	component	to	your	page	in
app/templates/application.hbs:
<header>

		...

</header>

<div	class="container">

		{{flash-alert}}

		{{outlet}}

</div>

This	component	is	an	inline	component,	meaning	there	will	be	no	elements	to	render	in
the	{{yield}}	and	the	component	template	does	not	need	a	{{yield}}.

Data	Down
At	this	point	the	alert	does	not	have	any	state	data	to	render	content	and	classNames,	only
containers.	Pass	in	the	state	of	the	component	in
app/templates/application.hbs:
...

		{{flash-alert	message="This	is	the	Alert	Message"	alertType="success"}}

		{{outlet}}

</div>

Start	the	server	and	open	your	browser	to	http://localhost:4200/sightings
to	see	the	{{flash-alert}}	component	rendered	with	the	inline	data	you	supplied
(Figure	25.3).

Figure	25.3		Flash	alert

Now	that	the	alert	is	on	the	screen,	you	want	to	set	the	properties	of	message	and
alertType	dynamically.	You	will	need	an	application	controller	to	achieve	this.	Using	the
Ember	CLI	generator,	add	the	controller:
ember	g	controller	application

The	application	controller	will	maintain	the	dynamic	state	of	the	{{flash-alert}}
component.	The	controller	will	need	properties	to	maintain	the	state	of	the	alert.	Add	the
following	property	to	app/controllers/application.js:
import	Ember	from	'ember';

export	default	Ember.Controller.extend({

		alertMessage:	null,

		alertType:	null,

		isAlertShowing:	false

http://localhost:4200/sightings

});

You	added	properties	that	will	be	set	by	an	action.	Now	you	have	controller	properties	to
pass	to	the	flash-alert	component	in	app/templates/application.hbs:
...

</header>

<div	class="container">

		{{#if	isAlertShowing}}

				{{flash-alert	message="This	is	the	Alert	Message"	alertType="success"}}

																										alertMessage	alertType=alertType}}

		{{/if}}

		{{outlet}}

</div>

The	controller’s	properties	can	now	be	set	from	an	action.	The	application	only	needs	to
render	the	component	when	the	isAlertShowing	property	is	set	to	true	and	when	the
other	properties	have	values.	The	action	to	set	these	properties	will	be	coming	from
controllers	all	over	the	application.	How	do	you	bubble	these	actions	up?	Ember	does	it	for
you	(Figure	25.4).

Figure	25.4		Flash	alert	process

You	have	to	add	an	action	to	a	route.	You	can	call	an	action	from	a	controller,	and	it	will
hit	the	current	controller,	then	the	current	route,	the	parent	routes,	then	the	application
route.

Because	your	flash-alert	is	in	the	app/templates/application.hbs,	you	need
an	application	route.	Create	one:

ember	g	route	application

You	will	see	this	message	returned	in	the	command	line:
[?]	Overwrite	app/templates/application.hbs?

Enter	n	or	no	to	continue.	You	do	not	want	to	overwrite	the	template	file	you	just	created.
You	only	want	to	add	the	JavaScript	file	app/routes/application.js.

Next	you	will	need	to	edit	the	route	in	app/routes/application.js:
import	Ember	from	'ember';

export	default	Ember.Route.extend({

		actions:	{

				flash(data){

						this.controller.set('alertMessage',	data.message);

						this.controller.set('alertType',	data.alertType);

						this.controller.set('isAlertShowing',	true);

				}

		}

});

Actions	Up
Now	you	have	an	action	to	set	the	flash-alert	to	display	the	appropriate	message.	You
just	need	to	pass	the	action	some	data.	That	data	will	be	an	object	with	keys	for	alertType
and	message.

The	alertType	will	be	a	part	of	both	the	message	and	the	style	with	Bootstrap	alert	variants:
"success",	"warning",	"info",	or	"danger".	Calling	the	action	from	a	controller	will
look	like	this:
this.send('flash',	{alertType:	"success",	message:	"You	Did	It!	Hooray!"});

You	will	be	adding	the	call	to	the	application	action	after	creating	a	new	sighting.	In
app/routes/sightings/new.js,	add	the	following:
...

				create()	{

						var	self	=	this;

						this.get('sighting').save().then(function(data){

								self.send('flash',	{alertType:	"success",	message:	"New	sighting."});

								self.transitionTo('sightings');

						});

...

Now	navigate	to	create	a	new	sighting	by	clicking	the	New	Sighting	button.	Select	a	cryptid
and	a	witness,	type	a	new	location,	and	click	Save.	Once	the	sighting	is	saved	in	the
database,	the	app	will	route	you	to	the	list	of	sightings	with	a	new	flash	message	at	the	top
of	the	list	(Figure	25.5).

Figure	25.5		Flash	alert	–	new	sighting

The	last	step	is	adding	the	action	and	event	that	will	remove	the	alert	from	the	screen.	You

only	want	to	show	the	flash-alert	after	you	have	created	a	new	message,	so	you	need	to
flip	the	switch	to	hide	the	alert	when	you	remove	it.

In	app/controllers/application.js,	add	an	action	called	removeAlert:
...

export	default	Ember.Controller.extend({

		alertMessage:	null,

		alertType:	null,

		isAlertShowing:	false,

		actions:	{

				removeAlert(){

						this.set('alertMessage',	"");

						this.set('alertType',	"success");

						this.set('isAlertShowing',	false);

				}

	}

});

This	will	set	isAlertShowing	to	false,	set	the	alertMessage	to	an	empty	string,	and	set
the	alertType	to	"success".

Next,	send	the	removeAlert	action	to	the	component.	Add	the	following	to
app/templates/application.hbs:
...

</header>

<div	class="container">

		{{#if	isAlertShowing}}

				{{flash-alert	message=alertMessage	alertType=alertType}}

						close=(action	"removeAlert")}}

		{{/if}}

		{{outlet}}

</div>

The	syntax	close=(action	"removeAlert")	probably	looks	weird.	This	is	new	to	Ember
2.0	and	is	called	a	closure	action.	The	function	literal	is	passed	through	to	be	called	from
the	component	as	an	attribute	named	close,	much	like	an	alias.

Older	versions	of	Ember	had	a	more	complex	version	of	this	flow.	Closure	actions	are	more
than	just	functions	passed	from	an	object	as	an	argument	under	the	hood.	To	find	out	more
about	closure	actions,	visit	the	EmberJS	blog	post	about	the	features	for	version	1.13	and
2.0	at	emberjs.com/blog/2015/06/12/ember-1-13-0-released.html.

Next,	you	need	to	call	this	action	from	the	component.	Components	are	instances	of	DOM
elements;	thus,	they	have	key/value	pairs	representing	DOM	element	events.	You	can	add
a	declaration	of	a	click	event	listener	and	Ember	will	add	the	listener	to	the	<div>	element
wrapping	the	template.	Add	the	following	to	app/components/flash-alert.js:
import	Ember	from	'ember';

export	default	Ember.Component.extend({

		...

		typeTitle:	Ember.computed('alertType',	function()	{

				return	Ember.String.capitalize(this.get('alertType'));

		}),

		click()	{

				this.get('close')();

		}

});

The	property	close,	when	called,	will	invoke	the	action	"removeAlert"	defined	on	the
application	controller.	By	using	a	closure	action,	you	have	assigned	a	component’s
property	to	a	function	defined	in	the	parent	controller	and	tied	the	component’s
functionality	to	the	scope	of	its	parent.	You	can	add	a	flash-alert	at	any	level	and	assign
different	functionality	to	close	based	on	its	context.

You	have	added	a	component	that	responds	to	data	going	down	to	customize	the
component	and	to	actions	going	up	to	set	the	external	state	of	the	component	from	the

http://emberjs.com/blog/2014/06/12/ember-1-13-0-released.html

parent	controller.	This	the	lifecycle	of	a	component:	data	down,	actions	up.	Keep	this
pattern	in	mind	when	creating	components.

Throughout	the	Application	Architecture	chapters	you	have	learned	about	the	structure	of
modern	applications	built	with	Ember.	You	have	learned	about	the	patterns	of	MVC	and
how	this	framework	helps	you	separate	concerns	with	pre-built	JavaScript	objects.	It	also
helps	you	maintain	sanity	with	naming	patterns,	scaffolding,	build	tools,	and	conventions.
From	here	you	can	feel	confident	creating	a	new	app	with	ember	new.	You	can	dive
straight	into	your	application	needs	modeling	data,	creating	routes,	and	building
components.

The	Ember	community	maintains	this	wonderful	framework	and	continues	to	build	in
efficiencies	as	JavaScript	matures.	This	framework	is	built	by	people	who	have	struggled
with	the	same	challenges	you	will	face	as	you	hone	your	JavaScript	skills.	Remember	to
ask	questions	when	something	does	not	work,	help	fix	bugs	when	you	find	something	that
is	broken,	and	give	back	when	you	can.	You	are	now	part	of	the	greater	JavaScript
community.

Bronze	Challenge:	Customizing	the	Alert	Message
The	{{flash-alert}}	you	trigger	when	adding	a	sighting	is	generic.	Add	the	sighting
location	and	date	to	the	message.

Silver	Challenge:	Making	the	NavBar	a	Component
Make	the	NavBar	in	the	application	template	a	component.	Add	a	property	state	to	show
two	versions	of	the	navigation.	Add	conditional	statements	in	the	NavBar	component	for
showing	specific	links.

Gold	Challenge:	Array	of	Alerts
Restructure	the	flash-alert	component	to	accept	an	array	of	alerts	with	different	alert
types	and	messages.	You	may	need	to	have	multiple	warnings	on	the	screen	at	the	same
time.	Use	an	Ember.ArrayProxy	in	place	of	the	individual	properties	setting	the	alert.	Add
to	the	array	with	the	message,	type,	and	a	new	index	property	so	that	you	can	remove	the
item	from	the	array	when	you	click	it.

26	
Afterword

Congratulations!	You	are	at	the	end	of	this	guide.	Not	everyone	has	the	discipline	to	do
what	you	have	done	and	learn	what	you	have	learned.	Take	a	quick	moment	to	give
yourself	a	pat	on	the	back.

Your	hard	work	has	paid	off:	You	are	now	a	front-end	developer.

The	Final	Challenge
We	have	one	last	challenge	for	you:	Become	a	good	front-end	developer.	Good	developers
are	good	in	their	own	ways,	so	you	must	find	your	own	path	from	here	on	out.

Where	might	you	start?	Here	are	some	ideas:

Write	code.	Now.	You	will	quickly	forget	what	you	have	learned	here	if	you	do	not	apply
your	knowledge.	Contribute	to	a	project	or	write	a	simple	application	of	your	own.
Whatever	you	do,	waste	no	time:	Write	code.

Learn.	You	have	learned	a	little	bit	about	a	lot	of	things	in	this	book.	Did	any	of	them
spark	your	imagination?	Write	some	code	to	play	around	with	your	favorite	thing.	Find
and	read	more	documentation	about	it	–	or	an	entire	book,	if	there	is	one.	Also,	check	out
the	JavaScript	Jabber	podcast	for	some	thoughtful	and	entertaining	discussion	about	the
latest	developments	in	front-end	development	(devchat.tv/js-jabber).

Meet	people.	Local	meetups	are	a	good	place	to	meet	like-minded	developers.	Lots	of	top-
notch	front-end	developers	are	active	on	Twitter.	And	you	can	attend	front-end
conferences	to	meet	other	developers	(maybe	even	us!).

Explore	the	open	source	community.	Front-end	development	is	exploding	on
www.github.com.	When	you	find	a	cool	library,	check	out	other	projects	from	its
contributors.	Share	your	own	code,	too	–	you	never	know	who	will	find	it	useful	or
interesting.	We	find	the	WDRL	(Web	Development	Reading	List)	mailing	list	to	be	a	great
way	to	see	what	is	happening	in	the	front-end	community	(wdrl.info).

https://devchat.tv/js-jabber
http://www.github.com
https://wdrl.info/

Shameless	Plugs
You	can	find	us	on	Twitter.	Chris	is	@radishmouse	and	Todd	is	@tgandee.

If	you	enjoyed	this	book,	check	out	the	other	Big	Nerd	Ranch	Guides	at
www.bignerdranch.com/books.	We	also	have	a	broad	selection	of	week-long
courses	for	developers,	where	we	make	it	easy	to	learn	a	book’s	worth	of	stuff	in	only	a
week.	And	of	course,	if	you	just	need	someone	to	write	great	code,	we	do	contract
programming,	too.	For	more	info,	go	to	www.bignerdranch.com.

http://www.bignerdranch.com/books
http://www.bignerdranch.com

Thank	You
Without	readers	like	you,	our	work	would	not	exist.	Thank	you	for	buying	and	reading	our
book.

Index
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

Symbols

+=	(concatenation	operator),	Creating	DOM	elements	with	jQuery
.	(dot	operator),	Accessing	DOM	Elements
:focus	pseudo-class,	Styling	Valid	and	Invalid	Elements
:hover	pseudo-class,	Adding	a	CSS	transition
:invalid	pseudo-class,	Styling	Valid	and	Invalid	Elements
:required	pseudo-class,	Styling	Valid	and	Invalid	Elements
<a>	tag,	Adding	images
<body>	tag,	Initial	HTML
<div>	tag

about,	Adding	the	detail	image,	Creating	the	Order	Form

for	styling	with	Bootstrap,	Adding	text	input	fields

<form>	tag,	Creating	the	Order	Form
<h1>	tag,	Initial	HTML
<head>	tag,	Initial	HTML
<hr>	tag,	Deleting	a	Sighting
	tag,	Adding	images
<input>	tag

for	checkboxes,	Creating	DOM	elements	with	jQuery

for	radio	buttons,	Offering	choices	with	radio	buttons

for	range	sliders,	Adding	a	range	slider

for	reset	buttons,	Adding	Submit	and	Reset	buttons

for	submit	buttons,	Adding	Submit	and	Reset	buttons

for	text	input,	Adding	text	input	fields

linking	to	<label>	tag,	Linking	a	label	and	a	form	element,	Offering	choices	with	radio	buttons

<label>	tag

about,	Linking	a	label	and	a	form	element

linking	to	<input>	tag,	Linking	a	label	and	a	form	element,	Offering	choices	with	radio	buttons

<link>	tag,	Linking	a	stylesheet
<meta>	tag,	Initial	HTML
<option>	tag,	Adding	a	dropdown	menu

<script>	tag,	Preparing	the	Anchor	Tags	for	Duty
<section>	tag,	Creating	the	Order	Form
<select>	tag,	Adding	a	dropdown	menu
	tag,	Adding	content
<style>	tag,	Styling	Valid	and	Invalid	Elements
<title>	tag,	Initial	HTML
	tag,	Adding	content
=	(assignment	operator),	Declaring	String	Variables
==	(loose	equality	operator),	Listening	for	the	keypress	event
===	(strict	equality	operator),	Listening	for	the	keypress	event
@font-face	declaration,	Adding	a	Font
@import	directive,	Configuration
@media	declaration,	Adding	a	Media	Query
{{#each}}	helper,	Loops	with	{{#each}}
{{#if}}	helper,	Conditionals
{{#link-to}}	helper,	Links
{{action}}	helper,	New	Sightings
{{if}}	helper,	Binding	element	attributes
{{outlet}}	helper,	ember	generate,	Nesting	Routes
{{x-select}}	component,	New	Sightings
{{yield}}	helper,	Iterator	Items	as	Components
||	(default/logical	or	operator),	Adding	Modules	to	a	Namespace

A

<a>	tag,	Adding	images
absolute	positioning,	Absolute	and	Relative	Positioning
{{action}}	helper,	New	Sightings
actual	viewport	(see	layout	viewport)
add	method,	Writing	the	JavaScript	to	hide	the	detail	image

addEventListener	method,	Adding	an	Event	Listener
afterModel	method,	For	the	More	Curious:	setupController	and	afterModel
Ajax

about,	Ajax

and	jQuery,	XMLHttpRequest	Objects

XMLHttpRequest	API,	XMLHttpRequest	Objects

align-items	flexbox	property,	Centering	the	detail	image
alt	attribute,	Adding	images
anchor	tags	(see	<a>	tag)
anonymous	functions

about,	Adding	an	Event	Listener

vs	named	functions	in	callbacks,	For	the	More	Curious:	Closures

arguments,	Accepting	arguments	by	declaring	parameters
arrow	functions

about,	Handling	events	and	sending	messages

vs	anonymous	functions,	For	the	More	Curious:	Arrow	Functions

assignment	operator	(=),	Declaring	String	Variables
asynchronous	communication

about,	Ajax

in	callbacks,	Adding	a	callback	argument

Atom

autocompletion	with	emmet,	Initial	HTML,	Adding	content

copying	the	project	path,	Viewing	the	Web	Page	in	the	Browser

creating	a	file,	Setting	Up	Ottergram

creating	a	folder,	Setting	Up	Ottergram

finding	and	replacing	text,	Preparing	the	Anchor	Tags	for	Duty

installing,	Installing	and	Configuring	Atom

opening	a	project,	Setting	Up	Ottergram

plug-ins,	Atom	plug-ins

snippets,	Adding	a	Font

atomic	styling

about,	Styles

flexbox	as	an	exception	to,	Ordering,	justifying,	and	aligning	flex	items

attr	method,	Model	Definitions,	Transforms
attribute	selectors,	Style	Inheritance
attributes

about,	Linking	a	stylesheet

alt,	Adding	images

autofocus,	Adding	autofocus,	UI	Enhancements

Boolean,	Adding	autofocus,	The	required	Attribute

checked,	Offering	choices	with	radio	buttons

class,	Preparing	the	HTML	for	Styling

data,	Preparing	the	Anchor	Tags	for	Duty

for,	Linking	a	label	and	a	form	element

href,	Linking	a	stylesheet,	Adding	images

id,	Linking	a	label	and	a	form	element

name,	Adding	text	input	fields

pattern,	Validating	with	Regular	Expressions

placeholder,	Showing	example	input	with	placeholder	text

rel,	Linking	a	stylesheet

required,	The	required	Attribute

src,	Adding	images

type,	Offering	choices	with	radio	buttons

autofocus	attribute,	Adding	autofocus,	UI	Enhancements

B

Babel

about,	Tools	for	Compiling	JavaScript

for	compiling,	Class	syntax

installing,	Tools	for	Compiling	JavaScript

Babelify

about,	Tools	for	Compiling	JavaScript

installing,	Tools	for	Compiling	JavaScript

beforeModel	method,	beforeModel
belongsTo	method,	Model	Definitions
bind	method

about,	Setting	the	value	of	this	with	bind,	Registering	createOrder	as	a	submit	handler

vs	call,	Manipulating	this	with	call

binding	to	a	port,	Hello,	World

blur	event,	Listening	for	the	input	event
<body>	tag,	Initial	HTML
Boolean	attributes,	Adding	autofocus,	The	required	Attribute
Booleans,	For	the	More	Curious:	JavaScript	Types
Bootstrap

adding,	Adding	Bootstrap

btn	class,	Adding	Submit	and	Reset	buttons

btn-default	class,	Adding	Submit	and	Reset	buttons

checkbox	class,	Creating	DOM	elements	with	jQuery

container	class,	How	Bootstrap	works

documentation,	Adding	Submit	and	Reset	buttons

form-control	class,	Adding	text	input	fields,	Adding	a	dropdown	menu

form-group	class,	Adding	text	input	fields

installing	with	Bower,	External	Libraries	and	Addons

borders,	The	box	model
Bower,	installing,	Installing	Ember
box	model,	Your	First	Styling	Rule
bracket	syntax,	Accessing	All	the	Thumbnails
Brackets,	For	the	More	Curious:	Alternatives	to	Atom
breakpoints

removing,	Locating	bugs	with	the	DevTools

restarting	paused	code,	Locating	bugs	with	the	DevTools

setting,	Locating	bugs	with	the	DevTools

browser-sync

installing,	Installing	Node.js	and	browser-sync

running,	Viewing	the	Web	Page	in	the	Browser

Browserify

about,	Tools	for	Compiling	JavaScript

and	JavaScript	dependencies,	Installing	jQuery	as	a	Node	Module

installing,	Tools	for	Compiling	JavaScript

browsers

communication	with	servers,	Setting	Up	Your	First	Project

support	for	JavaScript	versions,	Using	ES6	with	Babel

support	for	web	technologies,	Documentation	and	Reference	Sources

user	agent	stylesheet,	The	box	model

bulleted	list	(see		tag)

C

call	method	vs	bind,	Manipulating	this	with	call
callbacks

about,	Adding	an	Event	Listener

anonymous	functions	in,	Adding	an	Event	Listener

named	functions	in,	Iterating	Through	the	Array	of	Thumbnails

named	vs	anonymous	functions	in,	For	the	More	Curious:	Closures

caniuse.com,	Documentation	and	Reference	Sources
cdnjs.com,	Creating	a	Styling	Baseline
change	event,	Silver	Challenge:	Showing	the	Value	as	the	Slider	Changes
checkboxes	(see	<input>	tag)
checked	attribute,	Offering	choices	with	radio	buttons
child	selectors,	Relationship	selectors
Chrome	(see	Google	Chrome)
class	attribute

(see	also	individual	class	names)

about,	Preparing	the	HTML	for	Styling

adding	dynamically,	Writing	the	JavaScript	to	hide	the	detail	image

as	a	selector,	Your	First	Styling	Rule

removing	dynamically,	Showing	the	detail	image	again

vs	data	attributes,	Preparing	the	Anchor	Tags	for	Duty

class	selectors,	Your	First	Styling	Rule
classes	in	JavaScript,	Class	syntax
classList.add	method,	Writing	the	JavaScript	to	hide	the	detail	image

classList.remove	method,	Showing	the	detail	image	again
click	event,	Adding	an	Event	Listener
close	event,	Silver	Challenge:	Closed	Connection	Alert
closures,	For	the	More	Curious:	Closures
code	comments

CSS,	Style	Inheritance

HTML,	Writing	the	setDetails	Function

JavaScript,	Writing	the	setDetails	Function

color	formats,	Color
color	functions,	Color
command	line	(see	terminal	commands)
compound	(or	complex)	types,	For	the	More	Curious:	JavaScript	Types
concatenation	operator	(+=),	Creating	DOM	elements	with	jQuery
connection	events,	Setting	Up	WebSockets

console

about,	Working	in	the	Console

entering	line	breaks,	Adding	an	Event	Listener

logging	statements,	Adding	an	Event	Listener

opening	in	the	drawer,	Locating	bugs	with	the	DevTools,	Inspecting	the	Ajax	request	and	response

console.log	method,	Adding	an	Event	Listener
constants,	Declaring	String	Variables,	Creating	the	ChatForm	Class
constructor	method,	Class	syntax
constructors

about,	Constructors,	Creating	the	ChatForm	Class

implicit	returns,	Constructors

naming	conventions,	Constructors

prototype	property,	A	constructor’s	prototype

content	delivery	networks,	Creating	a	Styling	Baseline
controllers	in	MVC,	Introduction	to	MVC	and	Ember
create	method,	New	Sightings
createRecord	method,	createRecord
crypto-js,	Using	Gravatars
CSS

about,	Setting	Up	Ottergram

history,	For	the	More	Curious:	CSS	Versions

properties	(see	properties)

selectors	(see	selectors	(in	CSS))

styling	rules,	Anatomy	of	a	Style

CSS	transitions

creating,	State	Changes	with	CSS	Transitions

triggering	with	JavaScript,	Triggering	transitions	with	JavaScript

cubic-bezier	property,	Custom	Timing	Functions
cubic-bezier.com,	Custom	Timing	Functions

D

data	attributes

about,	Preparing	the	Anchor	Tags	for	Duty

accessing	DOM	elements	with,	Preparing	the	Anchor	Tags	for	Duty

vs	class	attributes,	Preparing	the	Anchor	Tags	for	Duty

debugging

breakpoints

(see	also	breakpoints)

Chrome	debugger,	Locating	bugs	with	the	DevTools

declaration	blocks,	Anatomy	of	a	Style
default	(logical	or)	operator	(||),	Adding	Modules	to	a	Namespace
Deferred	objects

about,	Promises	and	Deferreds

callbacks	with	then,	Registering	Callbacks	with	then,	Using	Deferreds	with	Callback-Only	APIs

DELETE	requests,	RESTful	Web	Services,	Deleting	Data	from	the	Server,	Using	jQuery’s	$.ajax	method
descendent	selectors,	Relationship	selectors
deserialize	method,	Transforms
destroyRecord	method,	For	the	More	Curious:	Saving	and	Destroying	Data
devdocs.io,	Documentation	and	Reference	Sources
Developer	Tools	(see	DevTools)
DevTools

about,	The	Chrome	Developer	Tools

adding	a	pseudo-class	to	an	element,	Adding	a	CSS	transition

adding	an	attribute	to	an	element,	Creating	styles	to	hide	the	detail	image

console	(see	console)

device	mode,	Resetting	the	Viewport

Ember	Inspector,	Installing	Ember,	Starting	up	the	server,	Ember	Inspector

opening,	The	Chrome	Developer	Tools

viewing	Ajax	requests,	Inspecting	the	Ajax	request	and	response

display:	block	property,	The	box	model,	Making	Images	Fit	the	Window,	Flexbox
display:	flex	property,	Creating	a	flex	container
display:	inline	property,	Making	Images	Fit	the	Window

display:	inline-block	property,	Horizontal	layout	for	thumbnails,	Flexbox
display:	none	property,	Creating	styles	to	hide	the	detail	image
<div>	tag

about,	Adding	the	detail	image,	Creating	the	Order	Form

for	styling	with	Bootstrap,	Adding	text	input	fields

doctype,	Initial	HTML
document	object,	Accessing	DOM	Elements
document	object	model	(DOM),	Style	Inheritance,	Accessing	DOM	Elements
documentation	resources

caniuse.com,	Documentation	and	Reference	Sources

html5please.com,	Documentation	and	Reference	Sources

Mozilla	Developer	Network,	Documentation	and	Reference	Sources

stackoverflow.com,	Documentation	and	Reference	Sources

dot	operator	(.),	Accessing	DOM	Elements
dropdown	menu	form	fields	(see	<select>	tag)
DS.attr	method,	Model	Definitions,	Transforms
DS.belongsTo	method,	Model	Definitions
DS.hasMany	method,	Model	Definitions
DS.hasOne	method,	Model	Definitions

E

{{#each}}	helper,	Loops	with	{{#each}}
ease-(in/out/in-out)	timing	functions,	Custom	Timing	Functions
element	selectors,	Style	Inheritance
elements	property,	UI	Enhancements
Ember

about,	Ember:	An	MVC	Framework

actions	property,	New	Sightings

adapters,	Data	–	Adapters,	Serializers,	and	Transforms

addons,	External	Libraries	and	Addons

afterModel	method,	For	the	More	Curious:	setupController	and	afterModel

ApplicationRoute	object,	ember	generate

attribute	binding,	Class	Name	Bindings

beforeModel	method,	beforeModel

building	and	running	a	project,	Starting	up	the	server

class	name	binding,	Class	Name	Bindings

closure	actions,	Actions	Up

components,	Components

computed	properties,	Computed	Properties

Content	Security	Policy,	Content	Security	Policy

controllers,	Controllers

create	method,	New	Sightings

createRecord	method,	createRecord

creating	a	project,	Creating	an	Ember	application

deserialize	method,	Transforms

destroyRecord	method,	For	the	More	Curious:	Saving	and	Destroying	Data

DS.attr	method,	Model	Definitions,	Transforms

DS.belongsTo	method,	Model	Definitions

DS.hasMany	method,	Model	Definitions

DS.hasOne	method,	Model	Definitions

Ember	Data,	Models	and	Data	Binding,	Data	–	Adapters,	Serializers,	and	Transforms

.extend	method,	ember	generate

findAll	method,	For	the	More	Curious:	Retrieving	Data

findRecord	method,	For	the	More	Curious:	Retrieving	Data

generating	adapters,	Adapters

generating	components,	Iterator	Items	as	Components

generating	controllers,	New	Sightings

generating	custom	helpers,	Custom	Helpers

generating	models,	Model	Definitions

generating	routes,	ember	generate

generating	serializers,	Serializers

get	method,	get	and	set

JSONAPIAdapter	object,	Data	–	Adapters,	Serializers,	and	Transforms,	Adapters

model	method,	Assigning	Models

models,	Models	and	Data	Binding

naming	conventions,	Routing,	Routes,	and	Models

nesting	routes,	Nesting	Routes

nesting	templates,	Nesting	Routes

peekAll	method,	For	the	More	Curious:	Retrieving	Data

peekRecord	method,	For	the	More	Curious:	Retrieving	Data

query	method,	For	the	More	Curious:	Retrieving	Data

queryRecord	method,	For	the	More	Curious:	Retrieving	Data

route	lifecycle	hooks,	Routing,	Routes,	and	Models

route	method,	ember	generate,	Nesting	Routes

Route	object,	Assigning	Models

Router	object,	Routing,	Routes,	and	Models,	ember	generate

Router.map	method,	ember	generate

save	method,	For	the	More	Curious:	Saving	and	Destroying	Data

serialize	method,	Transforms

serializers,	Data	–	Adapters,	Serializers,	and	Transforms,	Serializers,	Transforms

set	method,	get	and	set

setupController	method,	Assigning	Models,	beforeModel,	For	the	More	Curious:	setupController	and
afterModel

store	object,	createRecord

templates,	Configuration,	Views	and	Templates

transforms,	Data	–	Adapters,	Serializers,	and	Transforms

transitionToRoute	method,	New	Sightings

URL	routing	in,	ember	generate,	Nesting	Routes

x-select,	New	Sightings

{{outlet}}	helper,	ember	generate,	Nesting	Routes

Ember	CLI	Mirage,	For	the	More	Curious:	Ember	CLI	Mirage
Ember	CLI,	installing,	Installing	Ember
Ember	Inspector

about,	Starting	up	the	server,	Ember	Inspector

installing,	Installing	Ember

Ember.computed	method,	Computed	Properties
Ember.computed.alias	property,	Editing	a	Sighting
Ember.Object	class,	Models	and	Data	Binding,	get	and	set
enhanced	object	literals,	Connection	handling
Error	type,	Configuring	instances	of	FormHandler	with	a	selector
escaping	characters,	Declaring	String	Variables
event	delegation,	Writing	the	addClickHandler	method

event	listeners,	Adding	an	Event	Listener,	Listening	for	the	keypress	event
event	objects,	Adding	an	Event	Listener
events

about,	Adding	an	Event	Listener

blur,	Listening	for	the	input	event

change,	Silver	Challenge:	Showing	the	Value	as	the	Slider	Changes

click,	Adding	an	Event	Listener

close,	Silver	Challenge:	Closed	Connection	Alert

connection,	Setting	Up	WebSockets

input,	Listening	for	the	input	event

keydown,	Listening	for	the	keypress	event

keypress,	Listening	for	the	keypress	event

keyup,	Listening	for	the	keypress	event

message,	Setting	Up	WebSockets

onchange,	New	Sightings

submit,	Adding	the	submit	Handler

export	keyword,	for	named	exports,	Creating	the	ChatForm	Class
.extend	method,	ember	generate
extends	keyword,	User	Session	Storage

F

favicon.ico,	For	the	More	Curious:	The	favicon.ico
filtering	selectors,	Writing	the	addClickHandler	method

findAll	method,	For	the	More	Curious:	Retrieving	Data
findRecord	method,	For	the	More	Curious:	Retrieving	Data
firebase,	For	the	More	Curious:	WebSockets	as	a	Service

flexbox

about,	Responsive	Layouts	with	Flexbox

display:	flex	property,	Creating	a	flex	container

flex	containers,	Creating	a	flex	container,	Ordering,	justifying,	and	aligning	flex	items

flex	items,	Creating	a	flex	container

flex	shorthand	property,	The	flex	shorthand	property

flex-basis	property,	The	flex	shorthand	property

flex-direction	property,	Changing	the	flex-direction

flex-grow	property,	The	flex	shorthand	property

flex-shrink	property,	The	flex	shorthand	property

Flexbugs	resource,	For	the	More	Curious:	Common	Solutions	(and	Bugs)	with	Flexbox	Layouts

main	and	cross	axes,	Creating	a	flex	container

order	property,	Ordering,	justifying,	and	aligning	flex	items

Solved	by	Flexbox	resource,	For	the	More	Curious:	Common	Solutions	(and	Bugs)	with	Flexbox	Layouts

flexible	box	model	(see	flexbox)
focus	method,	UI	Enhancements
:focus	pseudo-class,	Styling	Valid	and	Invalid	Elements
Font	Awesome,	Silver	Challenge:	Adding	Font	Awesome
@font-face	declaration,	Adding	a	Font

fonts,	adding,	Adding	a	Font
for	attribute,	Linking	a	label	and	a	form	element
forEach	method,	Iterating	Through	the	Array	of	Thumbnails,	For	the	More	Curious:	Setting	this	in	forEach’s	Callback
<form>	tag,	Creating	the	Order	Form
function	scope,	Adding	an	Event	Listener
functions

about,	Handling	Events	with	JavaScript,	Writing	the	setDetails	Function

anonymous,	Adding	an	Event	Listener

anonymous	vs	named	in	callbacks,	Iterating	Through	the	Array	of	Thumbnails,	For	the	More	Curious:
Closures

arguments	and	parameters,	Accepting	arguments	by	declaring	parameters

arrow,	Handling	events	and	sending	messages,	For	the	More	Curious:	Arrow	Functions

as	arguments,	Returning	Values	from	Functions

as	objects,	A	constructor’s	prototype

callbacks,	Adding	an	Event	Listener

calling,	Writing	the	setDetails	Function

declaring,	Writing	the	setDetails	Function

exporting	instances	to	the	global	namespace,	Creating	the	Truck	instance

named,	Adding	an	Event	Listener

properties	of,	A	constructor’s	prototype

returning	a	value,	Returning	Values	from	Functions

G

get	method,	get	and	set
GET	requests,	RESTful	Web	Services,	Using	jQuery’s	$.ajax	method
getAttribute	method,	Returning	Values	from	Functions
global	namespace,	The	module	pattern
global	scope,	Adding	an	Event	Listener
Google	Chrome

Developer	Tools	(see	DevTools)

installing,	Installing	Google	Chrome

Gravatars,	Using	Gravatars

H

<h1>	tag,	Initial	HTML

Handlebars

about,	Handlebars

binding	element	attributes,	Binding	element	attributes

conditionals,	Conditionals

creating	custom	helpers,	Custom	Helpers

helpers,	Helpers

links,	Links

loops,	Loops	with	{{#each}}

hasMany	method,	Model	Definitions
hasOne	method,	Model	Definitions
<head>	tag,	Initial	HTML
Homebrew,	installing,	Installing	Ember
horizontal	rule	(see	<hr>	tag)
<hr>	tag,	Deleting	a	Sighting
href	attribute,	Linking	a	stylesheet,	Adding	images
HTML,	Initial	HTML
HTML	attributes	(see	attributes)
HTML	elements

accessing	in	JavaScript,	Writing	the	JavaScript	to	hide	the	detail	image

list,	Initial	HTML

replaced,	Adding	images

HTML	tags

<a>,	Adding	images

<body>,	Initial	HTML

<div>,	Adding	the	detail	image,	Creating	the	Order	Form

<form>,	Creating	the	Order	Form

<h1>,	Initial	HTML

<head>,	Initial	HTML

<hr>,	Deleting	a	Sighting

,	Adding	images

<input>,	Adding	text	input	fields,	Offering	choices	with	radio	buttons

<label>,	Linking	a	label	and	a	form	element

<link>,	Linking	a	stylesheet

<meta>,	Initial	HTML

<option>,	Adding	a	dropdown	menu

<script>,	Preparing	the	Anchor	Tags	for	Duty

<section>,	Creating	the	Order	Form

<select>,	Adding	a	dropdown	menu

,	Adding	content

<style>,	Styling	Valid	and	Invalid	Elements

<title>,	Initial	HTML

,	Adding	content

about,	Initial	HTML

list,	Initial	HTML

self-closing,	Adding	images

html5please.com,	Documentation	and	Reference	Sources
HTMLCollections,	For	the	More	Curious:	NodeLists	and	HTMLCollections
HTTP	status	codes,	XMLHttpRequest	Objects
HTTP	verbs

about,	RESTful	Web	Services

and	URL	paths,	RESTful	Web	Services

I

id	attribute,	Linking	a	label	and	a	form	element
ID	selectors,	For	the	More	Curious:	Specificity!	When	Selectors	Collide…

ideal	viewport,	Resetting	the	Viewport
{{if}}	helper,	Binding	element	attributes
{{#if}}	helper,	Conditionals
image	tags	(see		tag)
	tag,	Adding	images
immediately	invoked	function	expressions	(IIFEs)

about,	The	module	pattern

modifying	an	object	with,	Modifying	an	object	with	an	IIFE

implicit	return,	Constructors
@import	directive,	Configuration
import	keyword,	for	named	imports,	Creating	the	ChatForm	Class
input	event,	Listening	for	the	input	event
<input>	tag

for	checkboxes,	Creating	DOM	elements	with	jQuery

for	radio	buttons,	Offering	choices	with	radio	buttons

for	range	sliders,	Adding	a	range	slider

for	reset	buttons,	Adding	Submit	and	Reset	buttons

for	submit	buttons,	Adding	Submit	and	Reset	buttons

for	text	input,	Adding	text	input	fields

linking	to	<label>	tag,	Linking	a	label	and	a	form	element,	Offering	choices	with	radio	buttons

:invalid	pseudo-class,	Styling	Valid	and	Invalid	Elements

J

JavaScript

classes,	Class	syntax

compiling	ES6	to	ES5,	Tools	for	Compiling	JavaScript

compiling	from	other	languages,	For	the	More	Curious:	Compiling	to	JavaScript	from	Other	Languages

default	arguments,	Adding	the	ChatMessage	Class

destructuring	assignment	syntax,	Adding	the	ChatMessage	Class

functions,	Handling	Events	with	JavaScript

types	(see	types)

variable	naming	conventions,	Importing	jQuery

versions,	Handling	Events	with	JavaScript,	Using	ES6	with	Babel

jQuery

$	variable,	Importing	jQuery

$.ajax	method,	Using	jQuery’s	$.ajax	method

$.get	method,	Retrieving	Data	from	the	Server

$.post	method,	Using	jQuery’s	$.post	method

about,	Introduction	to	jQuery

adding,	Introduction	to	jQuery

append	method,	Creating	DOM	elements	with	jQuery

Deferred	objects,	Promises	and	Deferreds

for	managing	Ajax	requests,	XMLHttpRequest	Objects

length	property,	Configuring	instances	of	FormHandler	with	a	selector

on	method,	Adding	the	submit	Handler

serializeArray	method,	Extracting	the	data

jQuery-wrapped	selections,	Configuring	instances	of	FormHandler	with	a	selector,	Extracting	the	data
JSON,	Adding	the	ChatMessage	Class
JSONAPI,	Data	–	Adapters,	Serializers,	and	Transforms
justify-content	property,	Ordering,	justifying,	and	aligning	flex	items,	Centering	the	detail	image

K

keyCode	property,	Listening	for	the	keypress	event
keydown	event,	Listening	for	the	keypress	event
keypress	event,	Listening	for	the	keypress	event
keyup	event,	Listening	for	the	keypress	event

L

<label>	tag

about,	Linking	a	label	and	a	form	element

linking	to	<input>	tag,	Linking	a	label	and	a	form	element,	Offering	choices	with	radio	buttons

layout	viewport,	Adaptive	Layouts	with	Media	Queries,	Resetting	the	Viewport
linear	timing	function,	Using	a	timing	function,	Custom	Timing	Functions
<link>	tag,	Linking	a	stylesheet
{{#link-to}}	helper,	Links
linting,	Atom	plug-ins
list-style	property,	Adjusting	the	Space	Between	Items
local	scope,	Adding	an	Event	Listener
localStorage	vs	sessionStorage,	User	Session	Storage
logical	or	(default)	operator	(||),	Adding	Modules	to	a	Namespace
loose	equality	operator	(==),	Listening	for	the	keypress	event

M

Mac	Terminal,	opening,	Crash	Course	in	the	Command	Line
margin	property,	The	box	model
margins,	The	box	model
MDN	(see	Mozilla	Developer	Network)
@media	declaration,	Adding	a	Media	Query
media	queries

about,	Adding	a	Media	Query

location	in	stylesheet,	Creating	styles	to	hide	the	detail	image

media	types,	Adding	a	Media	Query,	For	the	More	Curious:	MIME	Types
message	events,	Setting	Up	WebSockets

<meta>	tag,	Initial	HTML
methods

(see	also	functions)

(see	also	individual	method	names)

MIME	types,	For	the	More	Curious:	MIME	Types
mobile-first	development,	Expanding	the	Interface
model	method,	Assigning	Models
Model-View-Controller	(MVC),	Introduction	to	MVC	and	Ember
models	in	MVC,	Introduction	to	MVC	and	Ember
modules

about,	Modules

exporting,	Using	Browserify	for	Packaging	Modules

importing,	Using	Browserify	for	Packaging	Modules

pattern,	The	module	pattern

moment,	Formatting	and	Updating	Message	Timestamps
Mozilla	Developer	Network,	Documentation	and	Reference	Sources
MVC	(see	Model-View-Controller	(MVC))

N

name	attribute,	Adding	text	input	fields
named	exports,	Creating	the	ChatForm	Class
named	functions

about,	Adding	an	Event	Listener

vs	anonymous	functions	in	callbacks,	Iterating	Through	the	Array	of	Thumbnails,	For	the	More
Curious:	Closures

named	imports,	Creating	the	ChatForm	Class
namespaces

about,	The	module	pattern

adding	modules	to,	Adding	Modules	to	a	Namespace

using	objects	as,	Adding	Modules	to	a	Namespace

new	keyword,	Constructors,	A	constructor’s	prototype
Node.js

about,	Introduction	to	Node.js

custom	modules,	Creating	a	custom	module

error	handling,	Error	Handling

fs	module,	Reading	a	file	with	the	fs	module

fs.readFile	method,	Reading	a	file	with	the	fs	module

http	module,	Hello,	World

http.createServer	function,	Hello,	World

installing,	Installing	Node.js	and	browser-sync

module.exports,	Creating	a	custom	module

nodemon	module,	Adding	an	npm	Script

npm	install	—save-dev	option,	Adding	an	npm	Script

npm	Module	Registry,	For	the	More	Curious:	npm	Module	Registry

path	module,	Using	the	path	module

require	function,	Hello,	World

server.listen	function,	Hello,	World

starting	a	Node	server,	Hello,	World

ws	module,	Setting	Up	WebSockets

NodeLists,	Accessing	All	the	Thumbnails,	For	the	More	Curious:	NodeLists	and	HTMLCollections
normalize.css,	installing,	Creating	a	Styling	Baseline
null	type,	For	the	More	Curious:	JavaScript	Types
numbers,	For	the	More	Curious:	JavaScript	Types

O

objects,	Accessing	DOM	Elements
onchange	event,	New	Sightings
<option>	tag,	Adding	a	dropdown	menu
order	flexbox	property,	Ordering,	justifying,	and	aligning	flex	items
{{outlet}}	helper,	ember	generate,	Nesting	Routes
overflow	property,	Adding	a	Media	Query
overflow-x	property,	Horizontal	layout	for	thumbnails

P

package.json

about,	Node	and	npm

creating,	npm	init

padding,	The	box	model
padding	property,	The	box	model
parameters	(in	JavaScript	functions),	Accepting	arguments	by	declaring	parameters
pattern	attribute,	Validating	with	Regular	Expressions
peekAll	method,	For	the	More	Curious:	Retrieving	Data
peekRecord	method,	For	the	More	Curious:	Retrieving	Data

pixels	(px),	The	box	model
placeholder	attribute,	Showing	example	input	with	placeholder	text
position:	absolute	property,	Absolute	and	Relative	Positioning
position:	relative	property,	Absolute	and	Relative	Positioning
POST	requests,	RESTful	Web	Services,	Using	jQuery’s	$.ajax	method
Postman,	For	the	More	Curious:	Postman
preventDefault,	Adding	the	submit	Handler
primtive	types,	Working	in	the	Console,	For	the	More	Curious:	JavaScript	Types
Promises

about,	Promises	and	Deferreds

creating,	Creating	and	returning	Promises

prompt	function,	Prompting	for	Username
properties

about,	Anatomy	of	a	Style

align-items,	Centering	the	detail	image

border,	The	box	model

cubic-bezier,	Custom	Timing	Functions

display:	block,	The	box	model,	Making	Images	Fit	the	Window,	Flexbox

display:	flex,	Creating	a	flex	container

display:	inline,	Making	Images	Fit	the	Window

display:	inline-block,	Horizontal	layout	for	thumbnails,	Flexbox

display:	none,	Creating	styles	to	hide	the	detail	image

elements,	UI	Enhancements

flex,	The	flex	shorthand	property

flex-basis,	The	flex	shorthand	property

flex-direction,	Changing	the	flex-direction

flex-grow,	The	flex	shorthand	property

flex-shrink,	The	flex	shorthand	property

justify-content,	Ordering,	justifying,	and	aligning	flex	items,	Centering	the	detail	image

list-style,	Adjusting	the	Space	Between	Items

margin,	The	box	model

order,	Ordering,	justifying,	and	aligning	flex	items

overflow,	Adding	a	Media	Query

overflow-x:	auto,	Horizontal	layout	for	thumbnails

padding,	The	box	model

position:	absolute,	Absolute	and	Relative	Positioning

position:	relative,	Absolute	and	Relative	Positioning

prototype,	A	constructor’s	prototype

shorthand,	The	box	model

text-align,	Centering	the	detail	image

text-decoration,	Style	Inheritance

text-shadow,	Absolute	and	Relative	Positioning

textContent,	Writing	the	setDetails	Function

transform,	Working	with	the	transform	property

white-space,	Horizontal	layout	for	thumbnails

width,	Making	Images	Fit	the	Window

prototype	property,	A	constructor’s	prototype
pseudo-classes

:focus,	Styling	Valid	and	Invalid	Elements

:hover,	Adding	a	CSS	transition

:invalid,	Styling	Valid	and	Invalid	Elements

:required,	Styling	Valid	and	Invalid	Elements

about,	Adding	a	CSS	transition

testing	in	DevTools,	Adding	a	CSS	transition

push	method,	Creating	the	Chat	Server	Functionality
PUT	requests,	RESTful	Web	Services

Q

query	method,	For	the	More	Curious:	Retrieving	Data
queryRecord	method,	For	the	More	Curious:	Retrieving	Data
querySelector	method,	Accessing	DOM	Elements
querySelectorAll	method,	Accessing	All	the	Thumbnails

R

radio	button	form	fields	(see	<input>	tag)
range	slider	form	fields	(see	<input>	tag)
recency	(in	CSS),	For	the	More	Curious:	Specificity!	When	Selectors	Collide…

regular	expressions,	Validating	with	Regular	Expressions,	Constraint	Validation	API

rel	attribute,	Linking	a	stylesheet
relationship	selectors,	Relationship	selectors
remove	method,	Showing	the	detail	image	again
replaced	elements,	Adding	images
required	attribute,	The	required	Attribute
:required	pseudo-class,	Styling	Valid	and	Invalid	Elements
reset	buttons	(see	<input>	tag)
reset	method,	UI	Enhancements
resource	files,	Adding	images
RESTful	web	services,	RESTful	Web	Services

return	statement,	Returning	Values	from	Functions
rgb	and	rgba,	Color
route	method,	ember	generate,	Nesting	Routes
Router.map	method,	ember	generate

S

save	method,	For	the	More	Curious:	Saving	and	Destroying	Data
<script>	tag,	Preparing	the	Anchor	Tags	for	Duty
scrolling,	Horizontal	layout	for	thumbnails
<section>	tag,	Creating	the	Order	Form
<select>	tag,	Adding	a	dropdown	menu
selectors	(in	CSS)

about,	Anatomy	of	a	Style

attribute,	Style	Inheritance

child,	Relationship	selectors

class,	Your	First	Styling	Rule

descendent,	Relationship	selectors

element,	Style	Inheritance

grouping,	Creating	a	flex	container

ID,	For	the	More	Curious:	Specificity!	When	Selectors	Collide…

modifying	with	pseudo-classes,	Adding	a	CSS	transition

relationship,	Relationship	selectors

sibling,	Relationship	selectors

specificity,	Anatomy	of	a	Style,	For	the	More	Curious:	Specificity!	When	Selectors	Collide…

specificity	vs	recency,	Creating	styles	to	hide	the	detail	image

self-closing	tags,	Adding	images
serialize	method,	Transforms

sessionStorage	vs	localStorage,	User	Session	Storage
set	method,	get	and	set
setAttribute	method,	Accessing	DOM	Elements
setCustomValidity	method,	Triggering	the	validity	check
setTimeout	method,	Triggering	transitions	with	JavaScript
setupController	method,	Assigning	Models,	beforeModel,	For	the	More	Curious:	setupController	and	afterModel
shorthand	properties,	The	box	model
sibling	selectors,	Relationship	selectors
	tag,	Adding	content
specificity	calculator,	For	the	More	Curious:	Specificity!	When	Selectors	Collide…

src	attribute,	Adding	images
stackoverflow.com,	Documentation	and	Reference	Sources
strict	equality	operator	(===),	Listening	for	the	keypress	event
strict	mode,	For	the	More	Curious:	Strict	Mode
strings,	Declaring	String	Variables,	For	the	More	Curious:	JavaScript	Types
style	inheritance

about,	Style	Inheritance

overriding,	The	box	model

<style>	tag,	Styling	Valid	and	Invalid	Elements
stylesheets

about,	Setting	Up	Ottergram

linking,	Linking	a	stylesheet

user	agent	stylesheet,	The	box	model

styling	rules	(in	CSS),	Anatomy	of	a	Style
subclasses,	User	Session	Storage
submit	buttons	(see	<input>	tag)
submit	event,	Adding	the	submit	Handler
super	method,	User	Session	Storage

T

template	strings,	Using	Gravatars
terminal	commands

about,	Crash	Course	in	the	Command	Line

changing	directories,	Changing	directories

creating	a	directory,	Creating	a	directory

installing	tools	with	npm,	Installing	Node.js	and	browser-sync

listing	files,	Listing	files	in	a	directory

quitting	a	program,	Quitting	a	program

showing	the	current	directory,	Finding	out	what	directory	you	are	in

using	administrator	privileges,	Getting	administrator	privileges

text	input	form	fields	(see	<input>	tag)
text-align	property,	Centering	the	detail	image
text-decoration	property,	Style	Inheritance
text-shadow,	Absolute	and	Relative	Positioning
textContent	property,	Writing	the	setDetails	Function

then	method,	Registering	Callbacks	with	then,	Using	Deferreds	with	Callback-Only	APIs
this	keyword

about,	Constructors,	A	constructor’s	prototype

in	callbacks,	Locating	bugs	with	the	DevTools

setting	value	with	bind,	Setting	the	value	of	this	with	bind

setting	value	with	call,	Manipulating	this	with	call

timing	functions

about,	Using	a	timing	function,	Custom	Timing	Functions

custom,	Custom	Timing	Functions

ease-(in/out/in-out),	Custom	Timing	Functions

linear,	Using	a	timing	function,	Custom	Timing	Functions

<title>	tag,	Initial	HTML
transform	property,	Working	with	the	transform	property

transition	declaration,	Adding	a	CSS	transition
transitionToRoute	method,	New	Sightings
type	attribute,	Offering	choices	with	radio	buttons
type	coercion,	Listening	for	the	keypress	event,	For	the	More	Curious:	Rules	for	Type	Coercion
types

Boolean,	For	the	More	Curious:	JavaScript	Types

compound	(or	complex),	For	the	More	Curious:	JavaScript	Types

null,	For	the	More	Curious:	JavaScript	Types

number,	For	the	More	Curious:	JavaScript	Types

primitive,	Working	in	the	Console,	For	the	More	Curious:	JavaScript	Types

string,	For	the	More	Curious:	JavaScript	Types

undefined,	For	the	More	Curious:	JavaScript	Types

U

	tag,	Adding	content

Uncaught	TypeError,	Locating	bugs	with	the	DevTools
undefined	type,	For	the	More	Curious:	JavaScript	Types
unordered	list	(see		tag)
URL	paths	and	HTTP	verbs,	RESTful	Web	Services

URL	routing

about,	Routing,	Routes,	and	Models

and	Ember	routes,	ember	generate,	Nesting	Routes

user	agent	stylesheet,	The	box	model

V

validation

and	event	handling,	The	required	Attribute

with	pattern,	Validating	with	Regular	Expressions

with	required,	The	required	Attribute

with	validation	functions,	Constraint	Validation	API

variables

about,	Declaring	String	Variables

declaring,	Declaring	String	Variables

hoisting,	Connection	handling,	For	the	More	Curious:	Hoisting

let	scoping,	Connection	handling,	For	the	More	Curious:	Hoisting

viewports

about,	Adaptive	Layouts	with	Media	Queries,	Resetting	the	Viewport

actual	viewport	(see	layout	viewport)

ideal	viewport,	Resetting	the	Viewport

layout	viewport,	Adaptive	Layouts	with	Media	Queries,	Resetting	the	Viewport

resetting,	Resetting	the	Viewport

visual	viewport,	Adaptive	Layouts	with	Media	Queries,	Resetting	the	Viewport

views	in	MVC,	Introduction	to	MVC	and	Ember
Visual	Studio	Code,	For	the	More	Curious:	Alternatives	to	Atom
visual	viewport,	Adaptive	Layouts	with	Media	Queries,	Resetting	the	Viewport

W

Watchify

about,	Tools	for	Compiling	JavaScript

installing,	Tools	for	Compiling	JavaScript

Watchman,	installing,	Installing	Ember
Web	Storage	APIs,	User	Session	Storage
WebAssembly,	For	the	More	Curious:	Compiling	to	JavaScript	from	Other	Languages
WebSockets

about,	Real-Time	Communication	with	WebSockets

handling	connections,	Setting	Up	WebSockets

installing,	Setting	Up	WebSockets

npm	ws	module,	Setting	Up	WebSockets

onopen	property,	Handling	events	and	sending	messages

socket.io,	For	the	More	Curious:	socket.io	WebSockets	Library

white-space	property,	Horizontal	layout	for	thumbnails
width	property,	Making	Images	Fit	the	Window

Windows	Command	Prompt,	opening,	Crash	Course	in	the	Command	Line
wscat	module,	Testing	Your	WebSockets	Server

X

{{x-select}}	component,	New	Sightings

Y

{{yield}}	helper,	Iterator	Items	as	Components

	Title Page
	Acknowledgments
	Table of Contents
	Dedication
	Introduction
	Learning Front-End Web Development
	Prerequisites
	How This Book Is Organized
	How to Use This Book
	Challenges
	For the More Curious
	Using an eBook

	I. Core Browser Programming
	1. Setting Up Your Development Environment
	Installing Google Chrome
	Installing and Configuring Atom
	Atom plug-ins

	Documentation and Reference Sources
	Crash Course in the Command Line
	Finding out what directory you are in
	Creating a directory
	Changing directories
	Listing files in a directory
	Getting administrator privileges
	Quitting a program

	Installing Node.js and browser-sync
	For the More Curious: Alternatives to Atom

	2. Setting Up Your First Project
	Setting Up Ottergram
	Initial HTML
	Linking a stylesheet
	Adding content
	Adding images

	Viewing the Web Page in the Browser
	The Chrome Developer Tools
	For the More Curious: CSS Versions
	For the More Curious: The favicon.ico
	Silver Challenge: Adding a favicon.ico

	3. Styles
	Creating a Styling Baseline
	Preparing the HTML for Styling
	Anatomy of a Style
	Your First Styling Rule
	The box model

	Style Inheritance
	Making Images Fit the Window
	Color
	Adjusting the Space Between Items
	Relationship selectors

	Adding a Font
	Bronze Challenge: Color Change
	For the More Curious: Specificity! When Selectors Collide…

	4. Responsive Layouts with Flexbox
	Expanding the Interface
	Adding the detail image
	Horizontal layout for thumbnails

	Flexbox
	Creating a flex container
	Changing the flex-direction
	Grouping elements within a flex item
	The flex shorthand property
	Ordering, justifying, and aligning flex items
	Centering the detail image

	Absolute and Relative Positioning

	5. Adaptive Layouts with Media Queries
	Resetting the Viewport
	Adding a Media Query
	Bronze Challenge: Portrait
	For the More Curious: Common Solutions (and Bugs) with Flexbox Layouts
	Gold Challenge: Holy Grail Layout

	6. Handling Events with JavaScript
	Preparing the Anchor Tags for Duty
	Your First Script
	Overview of the JavaScript for Ottergram
	Declaring String Variables
	Working in the Console
	Accessing DOM Elements
	Writing the setDetails Function
	Accepting arguments by declaring parameters

	Returning Values from Functions
	Adding an Event Listener
	Accessing All the Thumbnails
	Iterating Through the Array of Thumbnails
	Silver Challenge: Link Hijack
	Gold Challenge: Random Otters
	For the More Curious: Strict Mode
	For the More Curious: Closures
	For the More Curious: NodeLists and HTMLCollections
	For the More Curious: JavaScript Types

	7. Visual Effects with CSS
	Hiding and Showing the Detail Image
	Creating styles to hide the detail image
	Writing the JavaScript to hide the detail image
	Listening for the keypress event
	Showing the detail image again

	State Changes with CSS Transitions
	Working with the transform property
	Adding a CSS transition
	Using a timing function
	Transition on class change
	Triggering transitions with JavaScript

	Custom Timing Functions
	For the More Curious: Rules for Type Coercion

	II. Modules, Objects, and Forms
	8. Modules, Objects, and Methods
	Modules
	The module pattern
	Modifying an object with an IIFE

	Setting Up CoffeeRun
	Creating the DataStore Module
	Adding Modules to a Namespace
	Constructors
	A constructor’s prototype
	Adding methods to the constructor

	Creating the Truck Module
	Adding orders
	Removing orders

	Debugging
	Locating bugs with the DevTools
	Setting the value of this with bind

	Initializing CoffeeRun on Page Load
	Creating the Truck instance

	Bronze Challenge: Truck ID for Non-Trekkies
	For the More Curious: Private Module Data
	Silver Challenge: Making data Private
	For the More Curious: Setting this in forEach’s Callback

	9. Introduction to Bootstrap
	Adding Bootstrap
	How Bootstrap works

	Creating the Order Form
	Adding text input fields
	Linking a label and a form element
	Adding autofocus
	Adding an email input field
	Showing example input with placeholder text

	Offering choices with radio buttons
	Adding a dropdown menu
	Adding a range slider
	Adding Submit and Reset buttons

	10. Processing Forms with JavaScript
	Creating the FormHandler Module
	Introduction to jQuery
	Importing jQuery
	Configuring instances of FormHandler with a selector

	Adding the submit Handler
	Extracting the data
	Accepting and calling a callback

	Using FormHandler
	Registering createOrder as a submit handler

	UI Enhancements
	Bronze Challenge: Supersize It
	Silver Challenge: Showing the Value as the Slider Changes
	Gold Challenge: Adding Achievements

	11. From Data to DOM
	Setting Up the Checklist
	Creating the CheckList Module
	Creating the Row Constructor
	Creating DOM elements with jQuery

	Creating CheckList Rows on Submit
	Manipulating this with call

	Delivering an Order by Clicking a Row
	Creating the CheckList.prototype.removeRow method
	Removing overwritten entries
	Writing the addClickHandler method
	Calling addClickHandler

	Bronze Challenge: Adding the Strength to the Description
	Silver Challenge: Color Coding by Flavor Shot
	Gold Challenge: Allowing Order Editing

	12. Validating Forms
	The required Attribute
	Validating with Regular Expressions
	Constraint Validation API
	Listening for the input event
	Associating the validation check with the input event
	Triggering the validity check

	Styling Valid and Invalid Elements
	Silver Challenge: Custom Validation for Decaf
	For the More Curious: The Webshims Library

	13. Ajax
	XMLHttpRequest Objects
	RESTful Web Services
	The RemoteDataStore Module
	Sending Data to the Server
	Using jQuery’s $.post method
	Adding a callback
	Inspecting the Ajax request and response

	Retrieving Data from the Server
	Inspecting the response data
	Adding a callback argument

	Deleting Data from the Server
	Using jQuery’s $.ajax method

	Replacing DataStore with RemoteDataStore
	Silver Challenge: Validating Against the Remote Server
	For the More Curious: Postman

	14. Deferreds and Promises
	Promises and Deferreds
	Returning Deferred
	Registering Callbacks with then
	Handling Failures with then
	Using Deferreds with Callback-Only APIs
	Giving DataStore a Promise
	Creating and returning Promises
	Resolving a Promise
	Promise-ifying the other DataStore methods

	Silver Challenge: Fallback to DataStore

	III. Real-Time Data
	15. Introduction to Node.js
	Node and npm
	npm init
	npm scripts

	Hello, World
	Adding an npm Script
	Serving from Files
	Reading a file with the fs module
	Working with the request URL
	Using the path module
	Creating a custom module
	Using your custom module

	Error Handling
	For the More Curious: npm Module Registry
	Bronze Challenge: Creating a Custom Error Page
	For the More Curious: MIME Types
	Silver Challenge: Providing a MIME Type Dynamically
	Gold Challenge: Moving Error Handling to Its Own Module

	16. Real-Time Communication with WebSockets
	Setting Up WebSockets
	Testing Your WebSockets Server
	Creating the Chat Server Functionality
	First Chat!
	For the More Curious: socket.io WebSockets Library
	For the More Curious: WebSockets as a Service
	Bronze Challenge: Am I Repeating Myself?
	Silver Challenge: Speakeasy
	Gold Challenge: Chat Bot

	17. Using ES6 with Babel
	Tools for Compiling JavaScript
	The Chattrbox Client Application
	First Steps with Babel
	Class syntax

	Using Browserify for Packaging Modules
	Running the build process

	Adding the ChatMessage Class
	Creating the ws-client Module
	Connection handling
	Handling events and sending messages
	Sending and echoing a message

	For the More Curious: Compiling to JavaScript from Other Languages
	Bronze Challenge: Default Import Name
	Silver Challenge: Closed Connection Alert
	For the More Curious: Hoisting
	For the More Curious: Arrow Functions

	18. ES6, the Adventure Continues
	Installing jQuery as a Node Module
	Creating the ChatForm Class
	Connecting ChatForm to the socket

	Creating the ChatList Class
	Using Gravatars
	Prompting for Username
	User Session Storage
	Formatting and Updating Message Timestamps
	Bronze Challenge: Adding Visual Effects to Messages
	Silver Challenge: Caching Messages
	Gold Challenge: Separate Chat Rooms

	IV. Application Architecture
	19. Introduction to MVC and Ember
	Tracker
	Ember: An MVC Framework
	Installing Ember
	Creating an Ember application
	Starting up the server

	External Libraries and Addons
	Configuration
	For the More Curious: npm and Bower Install
	Bronze Challenge: Limiting Imports
	Silver Challenge: Adding Font Awesome
	Gold Challenge: Customizing the NavBar

	20. Routing, Routes, and Models
	ember generate
	Nesting Routes
	Ember Inspector
	Assigning Models
	beforeModel
	For the More Curious: setupController and afterModel

	21. Models and Data Binding
	Model Definitions
	createRecord
	get and set
	Computed Properties
	For the More Curious: Retrieving Data
	For the More Curious: Saving and Destroying Data
	Bronze Challenge: Changing the Computed Property
	Silver Challenge: Flagging New Sightings
	Gold Challenge: Adding Titles

	22. Data – Adapters, Serializers, and Transforms
	Adapters
	Content Security Policy
	Serializers
	Transforms
	For the More Curious: Ember CLI Mirage
	Silver Challenge: Content Security
	Gold Challenge: Mirage

	23. Views and Templates
	Handlebars
	Models
	Helpers
	Conditionals
	Loops with {{#each}}
	Binding element attributes
	Links

	Custom Helpers
	Bronze Challenge: Adding Link Rollovers
	Silver Challenge: Changing the Date Format
	Gold Challenge: Creating a Custom Thumbnail Helper

	24. Controllers
	New Sightings
	Editing a Sighting
	Deleting a Sighting
	Route Actions
	Bronze Challenge: Sighting Detail Page
	Silver Challenge: Sighting Date
	Gold Challenge: Adding and Removing Witnesses

	25. Components
	Iterator Items as Components
	Components for DRY Code
	Data Down, Actions Up
	Class Name Bindings
	Data Down
	Actions Up
	Bronze Challenge: Customizing the Alert Message
	Silver Challenge: Making the NavBar a Component
	Gold Challenge: Array of Alerts

	26. Afterword
	The Final Challenge
	Shameless Plugs
	Thank You

	Index

