

Bit Toys Plugin: Integration Guide
© 2017 Bit Toys Inc., All Rights Reserved.

Version 1.30 - 6/2/2017
support@bit-toys.com

Overview

This guide walks you through the API basics of the Bit Toys Plugin , including initialization,
methods, and events for each of the features. The Bit Toys Plugin supports identifying,
authenticating, and ownership management of physical objects through Native NFC (Android
only), Bluetooth NFC (Android and iOS), Audio Tags, and QR. Please review Bit Toys
Plugin Licensing Agreement.PDF and refer to Bit Toys Plugin Getting
Started.pdf for initial setup.

Initialization

The Bit Toys Plugin must be initialized using a Unique Identifier, which is used for toy ownership
assignments. This Unique Identifier can be a hashed Device ID, a unique User ID within your
own systems, a COPPA compliant ID, etc.. For example:

private void Start()
{

BitToys.inst.Init("User_ID_Example01");
}

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 1

mailto:support@bit-toys.com

Bit Toys Toy Object

BitToys.Toy is a class defined inside the Bit Toys Plugin and contains information useful for
each toy instance. These fields are:

string bitToysId; // unique toy identifier in Bit Toys database

string styleId; // the "type" of toy (T-Rex, Triceratops, etc.)

string ownerId; // the ID of the owner (the Unique Identifier set from

Initialization)

string skuId; // the product identifier for the toy (when applicable)

BitToys.CustomData customData;// additional per-toy info (when applicable)

Bit Toys ID
Every toy has a unique bitToysId on the Bit Toys Platform, and this value does not
change. We strongly recommend you use the same ID inside your code and systems to
keep track of the same physical object.

Style ID
Specific types of physical objects are identified using styleId . For example, your
application supports 3 types of toys: Blue Car, Red Car, and Green Car. Each type
would have its own unique styleId , such as blueCar , while each instance of that styleId
would have its own unique bitToysId . Work with Bit Toys to define a list of styleId for
your application.

SKU ID
If defined with Bit Toys, each BitToys.Toy object can be a child of a skuId . Similar to
bitToysId , a skuId is a unique identifier for a group of BitToys.Toy objects. This skuId
can be used to keep track of specific toy bundles.

Custom Data
If defined with Bit Toys, each bitToysId can have specific per-toy data bucket. This extra
info is application-defined and can be accessed through the toy’s customData member
object, which provides an interface for adding, removing, and modifying user-defined
fields. See Custom Data section.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 2

Time to Live
If defined with Bit Toys, each styleId has its own TTL (time to live) value that allows the
BitToys.Toy object to live in the device’s encrypted cache. This allows the BitToys.Toy
object be accessible during offline / airplane mode during the TTL duration. TTL
refreshes when the app connects online and fetches the list of toys again.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 3

Fetch Owned Toys

Upon application launch and application wake, it is recommended that the app retrieves a list of
toys owned by the Unique Identifier specified during initialization with this method:

BitToys.inst.FetchOwnedToys();

It will trigger the Bit Toys Plugin to contact the Bit Toys Platform and asynchronously download
and cache the list of owned BitToys.Toy objects. This operation will either succeed or fail. If
successful, it will trigger the BitToys.inst.onFetchToyList_OK event and return
List<BitToys.Toy> containing all the toys owned by the user.

If the device is offline, FetchOwnedToys() will check the encrypted cache instead.
BitToys.inst.onFetchToyList_OK will trigger and return a list of all cached BitToys.Toy
objects that are still within their TTL. Identify cached BitToys.Toy objects via the val bool . If no
valid BitToys.Toy objects are in the cache, BitToys.inst.onFetchToyList_OK will trigger
with an empty list.

If fetching of the list fails, then BitToys.inst.onFetchToyList_Fail will trigger and return
an enum, BitToys.FailReason , and a string .

BitToys.FailReason may assume one of the following values:

enum FailReason
{

TOY_NOT_FOUND, // The toy code does not exist in the database
NETWORK_ERROR, // A catchall for all network problems
APP_MISMATCH, // The toy isn't configured for this application Id
REQUEST_DENIED, // Catchall for toy claiming problems
API_ERROR // An internal problem with the plugin
THROTTLED, // Custom Data is being saved too often
OPERATION_ALREADY_IN_PROGRESS, // The Plugin process is already running
DATA_VERSION_MISMATCH // Custom Data is out of sync with the server

}

The string argument in this event provides additional information on why the operation has
failed.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 4

Claim Toy

Claiming ownership of a toy is accomplished automatically when a valid toy is detected using
any of the supported inputs: NFC, Audio Tags, QR, etc. When a toy is detected, the Bit Toys
Plugin will attempt to claim it on the Bit Toys Platform. Then one of two events will trigger:

If claim is successful, the BitToys.inst.onClaimToy_OK event will trigger and return a
BitToys.Toy object representing the toy whose ownership was just transferred to the local user.

If the device is offline, the cache will be checked for a valid BitToys.Toy object that matches the
scanned toy and is still within it’s TTL. If there’s a valid object,
BitToys.inst.onClaimToy_OK will trigger and the valid BitToys.Toy object will be returned.
Identify cached BitToys.Toy objects via the val bool .

In claim fails, the BitToys.inst.onClaimToy_Fail event will trigger and return an enum,
BitToys.FailReason , and a string similar to BitToys.inst.onFetchToyList_Fail.

The APP_MISMATCH BitToys.FailReason might occur here. APP_MISMATCH happens when
the toy belongs to the same product line as the application but isn’t signed for the current app.
For example, ExampleStudio is developing 2 applications: FOO & BAR. Both apps use the Bit
Toys Platform, but they each have their own set of toys. If FOO scans a toy made for BAR, the
error APP_MISMATCH will trigger and a URL will be returned in the string parameter of
BitToys.inst.onClaimToy_Fail. This URL can be used to direct users to download BAR,
which is the app that the toy belongs to.

For other errors, the string parameter may contain additional information on the failure.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 5

Claim via Native NFC
Currently, only Android allows third party access to its NFC reader module. Enable Uses
Native NFC within the Bit Toys Plugin and incorporate necessary Android Manifest
permissions. See Bit Toys Plugin Getting Started.pdf for details. Then
simply place the NFC token near the Android device's NFC reader to begin the claim
process mentioned above with appropriate callbacks. No additional code is required.

If the device’s NFC ability is turned off when the application launches, or when the
application resumes after being in the background. The
BitToys.inst.bittoys_Alert callback will trigger and return an enum value
USER_MUST_ENABLE_NFC. This can be used to prompt the users to enable NFC.

If NFC is then enabled, the BitToys.inst.bittoys_Alert callback will trigger
again, this time with the enum value NFC_JUST_ENABLED.

Claim via QR Code Scanner
Enable Uses QR within the Bit Toys Plugin and request necessary permission to the
device camera. Then use this method to invoke the QR code scanner:

BitToys.inst.qr_ScanAndClaim();

This will pause the Unity instance, bring up a QR code scanner and start searching for a
QR code. If a valid QR code is detected, the Bit Toys Plugin will automatically attempt to
claim it on the Bit Toys Platform.

Claim via Audio Tags
Enable Uses Audio Tag within the Bit Toys Plugin and request necessary permission to
the device microphone. Then simply plug the Audio Tag into the device's headphone
jack to begin the claim process mentioned above with appropriate callbacks. No
additional code is required.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 6

Claim via Bluetooth NFC Reader
Enable Uses Bluetooth Reader in the Big Toys Plugin and request necessary permission
to the device Bluetooth. Before the Bluetooth Reader can be used by the application. It
must first be paired with the device. The Bit Toys Plugin will attempt to discover and
connect to a reader with the following method:

BitToys.inst.ble_QuickConnectReader();

This will discover and attempt to connect to a valid Bluetooth Reader continuously. It will
only stop when a reader is connected or is stopped manually. Additionally, this method
will return a bool , which is a flag used to know if a discovered reader is currently trying to
connect but hasn’t finished the connection process yet.

The method:

BitToys.inst.ble_CancelQuickConnect();
is used to manually stop the quick connect loop.

Once connected, the method:

BitToys.inst.ble_Disconnect();
will disconnect any connected Bluetooth Readers.

If the device’s Bluetooth ability is turned off when the application launches, or when the
application resumes after being in the background, the
BitToys.inst.bittoys_Alert callback will trigger and return an enum value
USER_MUST_ENABLE_BLUETOOTH. This can be used to prompt the users to enable
Bluetooth.

If Bluetooth is then enabled, the BitToys.inst.bittoys_Alert callback will trigger
again, this time with the enum value BLUETOOTH_JUST_ENABLED.

Once the Bluetooth Reader is successfully paired, place a NFC token on top of the
reader will start the claim process mentioned above with appropriate callbacks.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 7

Bluetooth LED
Each Bluetooth Reader is fitted with a RGB LED light. This LED light can be configured
to various brightness and pulse speed for each color channel, thus resulting in an array
of different effects. Additionally, the LED can be configured to change its behavior
based on the state of the device, such as when it has detected a NFC tag or if there’s an
error reading a tag.

Examples of each of the configurable states:

//Method: SetLED_Connected(Red, Green, Blue, Red Pulse, Green Pulse, Blue
Pulse).
//When device is connected and idle, the light is solid bright blue.
BitToys.inst.ble_SetLED_Connected(0, 0, 255, 0, 0, 0);
//When a tag is detected and being read, change the light to a bright
pulsing green
BitToys.inst.ble_SetLED_nfcTagDetected(0, 255, 0, 0, 15, 0);
//If a tag fails to read properly, change it to bright pulsing Red.
BitToys.inst.ble_SetLED_nfcTagError(255, 0, 0, 15, 0, 0);
//If a tag is read correctly, change the light to bright solid green.
BitToys.inst.ble_SetLED_nfcTagOK(0, 255, 0, 0, 0, 0);

Each of these methods have the same parameters, from left to right:
Red: Red channel brightness from 0 - 255
Green: Green channel brightness from 0 - 255
Blue: Blue channel brightness from 0 - 255

Setting each Red, Green and Blue channel to 0 will turn off the LED light.

Red Pulse: Red channel blink speed from 0-100
Green Pulse: Green channel blink speed from 0-100
Blue Pulse: Blue channel blink speed from 0-100

Each increment of 1 in Pulse value represents an 100-millisecond blink cycle from off to
on to off. The higher the Pulse value, the slower the blink. 0 represents a solid color.
100 represents a 10-second blink cycle. By changing Pulse value for each of the color
channels, you can create various rainbow effects as different channels come on and off
over time.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 8

Low Battery Warning
If the Bluetooth Reader's battery dips below an acceptable voltage, the callback
BitToys.inst.ble_onBatteryLow will trigger and return a string ID for the reader.
Prolonged low battery state will impact the Bluetooth Reader's ability to properly detect
NFC tags and result in shorter read distance, longer read time, and even complete read
failures. Therefore it is strongly recommended that you inform the end-users to change
their batteries.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 9

Remove Toy

Removing a toy will simply remove a claimed toy from the user's owned toy list. It will no longer
be available to the user and no longer returned when fetching the toy list. A toy can be removed
by either using the Toy Code , which is an identifier physically embedded inside the toy, or by
using a BitToys.Toy bitToysId .

To remove a toy, simply use the method:

//1st parameter is bitToysId or Toy Code and 2nd Parameter is a bool
"isBitToysId"
//When the bool is true, it'll read the first parameter as a bitToysId,
when false, it'll read it as a Toy Code.

//Remove the toy with the bitToysId: "exampleBitToysId".
BitToys.inst.RemoveToy("exampleBitToysId", true);

//Remove the toy with the Toy Code: "294FOO"
BitToys.inst.RemoveToy("294FOO", false);

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 10

Custom Data

BitToys.CustomData is a class defined inside the Bit Toys Plugin and is used to set and retrieve
additional info for each toy. When a BitToys.Toy object is retrieved, either by claiming it as a
new toy or by fetching a toy list, it will also contain the BitToys.CustomData object. Use the
BitToys.CustomData object to create new data or read/update existing data. Additionally,
BitToys.inst.GetCustomData(btId) can be used to pull a toy’s Custom Data at any
time.

BitToys.CustomData supports single and array entries of the following types:

string bool float int

Global and Local Custom Data
BitToys.CustomData supports both local and global Custom Data. Local Custom Data is
data that is only retrieved on an app-by-app basis and only pertains to a single
application. Global Custom Data is data that can be used across multiple applications.
For example:

ExampleStudio is building 2 applications: FOO and BAR. Both apps can scan and use
the toy named ExampleToy . Local Custom Data created in FOO for ExampleToy will
only be usable in FOO. Scanning ExampleToy via BAR would not return the Local
Custom Data created in FOO. However, if Global Custom Data is created for
ExampleToy using FOO. It can be retrieved, used and updated using BAR and vise
versa.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 11

Updating and Creating Data
The following section is an example of how to create new data or update data that
already exist in Custom Data.

BitToys.Toy toyExample; //The retrieved BitToys.Toy object.

//Creating single entries for local data. If entry already exists, overwrite.
toyExample.customData.SetBool("Bool Example", true);
toyExample.customData.SetFloat("Float Example", 3.14f);
toyExample.customData.SetInt("Int Example", 1);
toyExample.customData.SetString("String Example", "string");

//Creating single entries for global data. If entry exists, overwrite.
toyExample.customData.SetFloat_Global("Global Float", 11.11f);
toyExample.customData.SetString_Global("Global Name", "Nickname");

In the above example, we use a Set<type> method. The 1st parameter is a string type.
This is the field identifier used to retrieve or overwrite data. The 2nd parameter is
whatever type of data you’re trying to set. So for SetBool() , the 2nd parameter is a
bool type, while using SetString() , the 2nd parameter is a string type, and so on.
Set will never create array entries. If Set is used on a field that has multiple entries, Set
will overwrite the first value (index 0).

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 12

In this next section, we will add multiple array entries. If data already exists, the Bit Toys
Plugin will add a new entry to the end of the array. If data doesn’t exist, it will create an
entry.

BitToys.Toy toyExample; //The retrieved BitToys.Toy object.

//Adding array entries for both global and local data

//Two local data entries under "boolMultiple", 1 false and 1 true
toyExample.customData.AddBool("boolMultiple", false);
toyExample.customData.AddBool("boolMultiple", true);

//Two local data entries under "floatMultiple".
toyExample.customData.AddFloat("floatMultiple", 1.14f);
toyExample.customData.AddFloat("floatMultiple", 2.14f);

//Two global data entries under "intMultiple".
toyExample.customData.AddInt_Global("intMultiple", 2);
toyExample.customData.AddInt_Global("intMultiple", 3);

//Two global data entries under "stringMultiple".
toyExample.customData.AddString_Global("stringMultiple", "string1");
toyExample.customData.AddString_Global("stringMultiple", "string2");

Retrieving Data
Simply using Get<type> will retrieve the data if it exists. An optional index parameter
can be used to retrieve a value in the array. If no index is presented, the first value is in
the array is retrieved. Additionally, an additional parameter is used and returned if the
Get fails. For example:

//Grab local data string at index 1 for field "stringMultiple"
//If field doesn't exist, or index doesn't exist, return "string2" instead.
toyExample.customData.GetString("stringMultiple", 1, "string2");

//Grab global data string at index 0 for field "globalInts"
//If field doesn't exist, return -1 instead.
toyExample.customData.GetInt_Global("globalInts", -1);

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 13

Removing Data
Each field can be removed using Remove(fieldName) . An entry in a field array can
be removed using RemoveAt(fieldName) . Or the entire BitToys.CustomData object
can be cleared using ClearAll_Local() . For example:

//Remove the entire "boolSingle" and "intMultple" fields from local data.
toyExample.customData.Remove("boolSingle");
toyExample.customData.Remove("intMultiple");

//Remove the first array entry of "stringSingle"
// and the 2nd entry from "boolMultiple" from local data.
toyExample.customData.RemoveAt("stringSingle", 0);
toyExample.customData.RemoveAt("boolMultiple", 1);

//Remove all fields and values from local customData
toyExample.customData.ClearAll_Local();

//Remove the entire "intGlobal" fields from global data
toyExample.customData.Remove_Global("intGlobal");

//Remove the 2nd entry from the global data field "floatGlobal"
toyExample.customData.RemoveAt_Global("floatGlobal",1);

//Remove all fields and values from global customData
toyExample.customData.ClearAll_Global();

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 14

Saving Changes
Up until now, all changes have been made on the local system. If the app were to shut
off, none of these changes will have been saved to the server and therefore, the next
data retrieval will be the old data set. It’s important to remember to push the changes to
the server so they get saved. Both Local Custom Data and Global Custom Data need to
be saved, but are handled from a single call: SendAsync() .

toyExample.customData.SendAsync(); //Save all customData changes

Once called, the application will send the data to be saved to the server. This process
takes some time and will notify the app via 1 of 2 callbacks when completed. If your
application needs to know when this process is completed, it must subscribe to these
callbacks. For example:

BitToys.inst.onPutCustomData_Fail += OnPutData_Fail;
BitToys.inst.onPutCustomData_OK += OnPutData_Success;
private void OnPutData_Fail(string _id, BitToys.FailReason reason, string text)
{
 Debug.Log("Updating customData for id: " + _id + " failed: " + reason + " " + text);
}
private void OnPutData_Success(BitToys.Toy _toy)
{
 Debug.Log("Updating customData succeeded for toy: " + _toy.bitToysId);
}

It’s important to note that SendAsync() should not be used more than once per
second. Otherwise it will result in a BitToys.inst.onPutCustomData_Fail
callback with the FailReason being THROTTLED.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 15

Events

The Bit Toys Plugin provides events to help keep track of various states. These events are
designed to aid and improve your overall end-user experience. It is up to your application to
subscribe and handle each of these events:

BitToys.inst.onFetchToyList_OK += OnGotToyList_Success;
BitToys.inst.onFetchToyList_Fail += OnGotToyList_Fail;
BitToys.inst.onClaimToy_OK += OnClaimToy_Success;
BitToys.inst.onClaimToy_Fail += OnClaimToy_Fail;
BitToys.inst.onGetToy_Fail += OnGetToy_Fail;
BitToys.inst.onGetToy_OK += OnGetToy_Success;

BitToys.inst.qr_onSawQR += OnSaw_QR;
BitToys.inst.nfc_onSawTag += OnSaw_NFC;
BitToys.inst.audiotag_onSawTag += OnSaw_AudioTag;
BitToys.inst.audiotag_onTagGone += OnGone_AudioTag;
BitToys.inst.ble_onSawTag += OnSaw_BLE;
BitToys.inst.ble_onTagGone += OnGone_BLE;

BitToys.inst.ble_onDeviceConnected += OnDeviceConnected;
BitToys.inst.ble_onDeviceLost += OnDeviceLost;
BitToys.inst.ble_onDeviceConnectFailed += OnDeviceConnectFailed;
BitToys.inst.ble_onBatteryLow += OnBleBatteryLow;

BitToys.inst.bittoys_Alert += OnAlert;

BitToys.inst.onGetCustomData_OK += OnGetData_Success;
BitToys.inst.onGetCustomData_Fail += OnGetData_Fail;
BitToys.inst.onPutCustomData_OK += OnPutData_Success;
BitToys.inst.onPutCustomData_Fail += OnPutData_Fail;

BitToys.inst.onFetchToyList_OK will trigger after an attempt to get the owned toys list is
successful. This will return a list of BitToys.Toy objects that are owned by the Unique Identifier
set in initialization. It will also return a bool value used to determine if the list is from the Bit
Toys Platform or from the local encrypted cache. See Fetch Owned Toys section.

BitToys.inst.onFetchToyList_Fail will trigger after an attempt to get the owned toys list
fails. This will return a BitToys.FailReason enum that provides information on why it failed. If
applicable, it will also return a string value that contains detailed information on the failure. See
Fetch Owned Toys section.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 16

BitToys.inst.onClaimToy_OK will trigger after an attempt to claim ownership of a scanned
toy is successful. This will return a BitToys.Toy object of the newly scanned and claimed toy. It
will also return a bool value used to determine if the BitToys.Toy object came from the Bit Toys
Platform or from the local encrypted cache. See Claim Toy section.

BitToys.inst.onClaimToy_Fail will trigger after an attempt to claim a scanned toy fails.
This will return a BitToys.FailReason enum that provides information on why it failed. If
applicable, it will also return a string value that contains detailed information on the failure. See
Claim Toy section.

BitToys.inst.onGetToy_OK will trigger after an attempt to retrieve information for a toy
using the method GetToy() is successful. This will return a single BitToys.Toy object. See
Get Toy section.

BitToys.inst.onGetToy_Fail will trigger after an attempt to retrieve information for a toy
using the method GetToy() failed. This will return a BitToys.FailReason enum that provides
information on why it failed. If applicable, it will also return a string value that contains detailed
information on the failure. See Get Toy section.

BitToys.inst.qr_onSawQR will trigger when a valid QR code is detected but before the
claim process occurs.

BitToys.inst.nfc_onSawTag will trigger when a valid NFC tag is detected by the native
NFC reader but before the claim process occurs.

BitToys.inst.audiotag_onSawTag will trigger when a valid Audio Tag is detected but
before the claim process occurs.

BitToys.inst.audiotag_onTagGone will trigger when the device can no longer detect a
previously detected Audio Tag.

BitToys.inst.ble_onSawTag will trigger when the Bluetooth Reader detects a valid NFC
tag but before the claim process occurs. It will return a string containing the Bluetooth Reader’s
ID.

BitToys.inst.ble_onTagGone will trigger when the Bluetooth Reader can no longer detect
a previously detected tag. It will return a string containing the Bluetooth Reader’s ID.

Bittoys.inst.ble_onDeviceConnected will trigger if a valid Bluetooth Reader has been
paired after the method BitToys.inst.ble_QuickConnectReader() is called.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 17

BitToys.inst.ble_onDeviceLost will trigger if a connected Bluetooth Reader has lost its
connection and is no longer reachable. This event will return a string containing the Bluetooth
Reader's ID.

BitToys.inst.ble_onDeviceConnectFailed will trigger if a valid Bluetooth Reader has
been found but did not connect properly. If applicable, this event will return a string with details
on the failure.

BitToys.inst.ble_onBatteryLow is an event used to notify the application that the
connected Bluetooth Reader has a low battery and will return a string ID for the reader.

BitToys.inst.bittoys_Alert can trigger when the app is launched, and/or when the app
is resumed after being put in the background, and a device feature is turned off when the app
needs it on. This callback will return a BitToys.Alert enum value, and a string with additional
details when applicable:

USER_MUST_ENABLE_BLUETOOTH,
USER_MUST_ENABLE_NFC,
BLUETOOTH_JUST_ENABLED,
NFC_JUST_ENABLED

See Native NFC and Bluetooth NFC Reader sections.

BitToys.inst.onGetCustomData_OK will trigger if an attempt to retrieve a toy’s Custom
Data using BitToys.inst.GetCustomData(btId) is successful. This event will return a
single BitToys.Toy that contains the latest saved Custom Data object. See Custom Data
section.

BitToys.inst.onGetCustomData_Fail will trigger if any attempt to get a toy’s Custom
Data fails. This includes when a toy is retrieved using ClaimToy() , GetToy() or
FetchOwnedToys() , as well as GetCustomData() . This event will return a string btId to
identify which toy failed, a BitToys.FailReason enum that provides information on why it failed
and if applicable, a string value that contains detailed information on the failure. See Custom

Data section.

BitToys.inst.onPutCustomData_OK will trigger if an attempt to save Custom Data using
SendAsync() is successful. This event will return a single BitToys.Toy object that contains the
latest Custom Data . See Custom Data section.

BitToys.inst.onPutCustomData_Fail will trigger if an attempt to save Custom Data

using SendAsync() fails. This event will return a string btId to identify which toy failed, a
BitToys.FailReason enum that provides information on why it failed and if applicable, a string
value that contains detailed information on the failure. See Custom Data section.

Bit Toys Plugin: Integration Guide v1.30 (CONFIDENTIAL)

support@bit-toys.com page 18

