
C - Cedar/Mesa Interoperability

Author: Raymond T.li (RLi:ESCP10:Xerox, MS: ESCN-102, Phone: 8*823 - 7370)

Date: Aug 7, 1992

Filed: [DeAnza:PARC:Xerox]/lntegration Tools/C-CEDAR/MESA INTEROPERABILITY

Version: 1.0

Revision history:

XEROX
Advanced Technology & Competency Development
Systems Competency
Imaging Platform Development
EI Segundo, Ca.

~ ... XEROX
~O~Pr1Vate
""'{j'y Data

ACKNOWLEDGEMENTS

There were many people who provided the support needed to create this

document. I would especially like to acknowledge the following individuals:
Hans Boehm, John Corwin, Jim Foote, Peter Hantos, Tom Horton, Alan Ishigo,

Christian Jacobi, Swen Johnson, Sandy Kobayashi, Gene McDaniel, Michael Plass,
Xavier Riley, Mike Spreitzer, Marvin Theimer, John Wenn, Marjan White and all the

PARC folks who reviewed the material and provided critical feedback on the Pre­

Release Draft of this document.

TABLE OF CONTENTS

1.0 Introduction .. .

1.1 Purpose .. 1
1.2 Intended Audience .. 2
1.3 Document Scope .. 2
1.4 Organization of this document 2
1.5 References ... 3

2.0 Cedar Environment .. 5 $0

2.1 General Overview ... 5 $ 0
2.2 Portable Common Runtime .. 7 $ 0
2.3 Applications within the Cedar Environment 9 $ 0

3.0 Syntax/Mechanics of Cedar/C Interoperability 11 $ 0

3.1 Calling C procedures from within a Cedar module 11 0
3.2 Calling Cedar/Mesa procedures from within a C module 15 0

3.2.1 Access Cedar/Mesa procedures via External Names 16 0
3.2.2 Access Cedar/Mesa procedures via DEFINITIONS interface 20 0

3.3 Incorporating C and Cedar/Mesa modules together 21 $0
3.4 Delivering software as a package 22 $ 0
3.5 Remote Procedure Calls ... 24 $ 0

3.5.1 Example: Creating an RPC based application 27 0
3.6 Debugging PCR-based Applications . ~ .. 37 0
3.7 Case Study: Integrating EGRET with WASABI 42 $0

4.0 Porting C to the Cedar environment 45 $ 0

4.1 Protocol for the porting process 46 0

APPENDICES

Appendix A - Unix system call replacements 47 0
Appendix B - Unimplemented UNIX system calls 49 0
Appendix C - Selected Reference Materials 51 $ 0

LEGEND: For an explanation of the II $" and "0" symbols, please refer to Section 1.2.

IPD I 55&T I Software Environments & Tools

IPO I SS&T I Software Environments & Tools

1.0 E90 Introduction

1.1 E90 Purpose

IPO / 55&T I Software Environments & Tools

C - Cedar/Mesa Interoperability

There has been much effort towards developing mixed­
language (Cedar/Mesa and C programming language) software
systems within the Cedar environment. This emphasis can be
attributed to three factors. First, management has decided to
take advantage of the huge existing base of Mesa code. For
example, there are approximately 1.5 - 2 million lines of Mesa
code (400+ work years of labor) associated with DocuTech
which could be reused. The use of this code necessitates the
additional layer of runtime support provided by the Cedar
environment. Second, usage of industry-standard
programming languages like C for new code development have
been emphasized over Xerox-proprietary Mesa language in
recent years. Finally, systems have made increased use of
commercially purchased C-based third-party software.

The purpose of this document is to present issues involved in
engineering mixed-language (Cedar/Mesa and C programming
language) software systems within the Cedar environment. An
example of such a system is PClS 1.0. Designed to interpret and
decompose HP PClS page description language (POL) into a
format for printing or display, this software combines the C­
based PCl5decomposer with Cedar/Mesa based imaging and
font support facilities.

The development of software systems has often been driven by
the creation of interface specifications between functional
components. Although this activity plays an important role in
the engineering process, it is not sufficient for development of
software within the Cedar environment. Sole use of interfaces
for system development neglects to recognize the large roles
played by the Cedar runtime environment (PCR) and the UNIX
operating system. The in-depth discussion of the Cedar
environment should provide an understanding of the
complexities of engineering such a software system.

The document will also provide application programmers with
a methodology for porting C software to this platform.

1

.. - """ I m~~ '1'1' cnurcftADlLl1 T

1.2 e 0 Intended Audience

1.3 e 0 Document Scope

The intended audience of this document can be divided into
two categories, architects and programmers. The former are
responsible for the high-level system design while the latter
perform the implementation.

Sections of this document may only be applicable to one
category of readers. In order to allow readers quick access to
material of interest, presence of the character $ preceding the
section header text denotes recommended reading for
architects and 0 denotes material aimed at programmers.
Note that the categorization of each section reflects the
author's views and as such are subjective.

It is assumed that readers are familiar with the Cedar/Mesa and
C programming languages and have knowledge of basic
operating system concepts. They should also have access to the
Cedar environment in order to facilitate access to referenced
reading materials and examples.

Material covered in this document are geared toward the Cedar
environment running atop SunOS 4.1. With the transition of
SUN SPARC stations to SunOS 5.0 in the near future, the Cedar
environment software is undergoing major revisions. Facilities
provided by the new release will definitely change to take
advantage of the capability of SunOS 5.0 to handle multiple
threads. This may invalidate information provided in sections 2
and 4 of this document, at the very least.

1.4 e 0 Organization of this document

2

Section 2 provides an in-depth discussion of the Cedar
environment and the underlying Portable Common Runtime
software. Section 3 describes the syntax required for calling
procedures written in another language, methods of
incorporating C & Cedar/Mesa modules together
(configurations, packages), Remote Procedure Calls and
debugging of Cedar-based systems. Many examples are
presented for reinforcement purposes, including a detailed case
study of the Wasabi 1.0 Postscript Decomposer. Section 4
describes some of the problems involved with porting C code to
the Cedar environment and provides a protocol for doing the
porting process. The remainder of the document consists of
these appendices:

Appendix A: Table of UNIX system call replacements
Appendix B: Table of unimplemented UNIX system calls
Appendix C: Selected reference materials

IPO I SS&T I Software Environments & Tools

1.5 EB 0 References

IPO I SS&T, Software Environments & Tools

C - CEDAR I MESA INTEROPERABlllTY

The asterisk character denotes the presence of this article
within Appendix C.

-- Portable Cedar Basement

*[1] An Introduction to the Portable Cedar Basement
Documentation Weiser,M. April 26, 1989 Documentation
roadmap for PCR, CedarCore and BasicCedar
Filed as: [PCedar2.0]/Oocumentation/PCedarBasementlntroduction.tioga

*[2] An Overview of the Portable Cedar Basement Hauser,c. &
Weiser,M. April 26, 1989 High-level introduction to the
concepts and facilities of the Portable Cedar system.
Filed as: [PCedar2.0]/Documentation/PCedarOverview.tioga

*[3] The Portable Common Runtime Approach to
Interoperability Weiser,M., Demers,A. & Hauser,c. May, 1989
Covers PCR design principles and implementation.
Filed as:
[PCedar2.0]/Oocumentation/PortableCommonRuntimeApproach.tioga

*[4] Experiences Creating a Portable Cedar Atkinson,R.,
Demers,A., Hauser,c., Jacobi,C., Kessler,P. & Weiser,M. March
23,1989 Strategy used to make Cedar language portable
across many different architectures
Filed as: [Cedarl O.l]/CedarDoc/ExperiencesCreatingAPortableCedar.tioga

-- Cedar/Mesa Language

[5] Mesa Language Manual. Version 6.0 October, 1988
Reference manual for Mesa, a subset of Cedar language
Filed as: [BitBucket:OSBU North:Xerox}/Release 6.0lText/Mesa Language
Manual

[6] Cedar Language Overview Foote,J., et al. May 13, 1992,
Describes the Cedar language as an extension of Mesa
Filed as: [Cedarl0.1}/CedarOoclLanguageOverviewDoc.tioga

[7] Cedar/Mesa Language Changes Atkinson,R. Aug 26, 1991
Summarizes additions to the Cedar language to make it
portable to other machine architectures, eg, SPARC/PCR
platform
Filed as: [Cedar10.1)/MimosaOnly/LanguageChangesSummary.tioga

-- Cedar/C Interoperability

*[8] C2ClnterLanguageDoc.tioga Jacobi,C. May 13, 1991
Discuss ways Cedar modules can access C procedures and vice
versa.
Filed as: [Cedarl 0.1]/C2C/C2ClnterLanguageDoc. tioga

*[9] Salient Mesa and C Intercallability Litman Jan 22, 1988
Describes intercallability between Mesa and C, as supported by
Salient language tools

[10] UXStrings.mesa Cedar/Mesa interface for conversion of
strings between UNIX format and Cedar representation,
ROPE. Filed as: [Cedar1 0.1]lUXStrings/UXStrings.mesa

UXProcs.mesa Cedar/Mesa interface for conversion of
procedure variables between Cedar and C programs
Filed as: [Cedar10.1]/UXStrings/UXProcs.mesa

InstallationComfortsDoc Hauser,c. & Kessler,P. May 13,
1991 Describe interfaces that provide the ability to bind
to procedures in the run-time Cedar/Mesa interfaces.
Filed as:
[Cedar1 0.1]/lnstallationComforts/lnstallationComfortsDoc. tioga

3

C .. CEDA.,1t ! MESA !NTEROPEP~BILITY

4

-- Configurations, Packages

*[11] Using Cinder Swinehart, Subhana, litman,A., Foote,J.
May 20, 1991 Among other things, it describes C/Mesa
language construct to facilitate building mUltiple language
configurations.
Filed as: [Cedar10.1j/Cinder/CinderDoc.tioga

*[12] Building A Packaged World_ Weiser,M. Jan. 1, 1991
Provides a step-by-step description for building a packaged
PCedar world
Filed as: [PCedar2.0j/Documentation/BuildingAPackagedWorld.tioga

*[131 PCRDoc --Portable Common Runtime Atkinson,R. May.
24, 1989 Describes PCR operating switches
Filed as: [PCedar2.0j/Documentation/PCRDoc.tioga

-- Remote Procedure Calls
[14] Network Interfaces Programmer's Guide, chapter 2,3 & 4
Sun Microsystems Introduces the concepts of remote
procedure calls and the use of the "rpcgen" compiler to help
programmer's write RPC applications

*[15] CedarRPCGenDoc Theimer,M., Orr,WS May 26, 1992
Describes program that accepts interface specifications in Sun's
RPC language and emits stubs written in Cedar. The stubs
allows C and Cedar programs to communicate via remote
procedure call using Sun's RPC protocol.
Filed as: [Cedar10.1j/CedarRPCGen/CedarRPCGenDoc.tioga

*[16] Sun RPC Runtime Demers,A., Hauser,C., Plass,M. Jan 7,
1992 Describes general structure of Cedar/Mesa-based Sun RPC
remote programs.
Filed as: [Cedar10.1j/SunRPCRuntime/SunRPCRuntimeDoc.tioga

[17] Example of a Cedar/Mesa-based Sun RPC remote program:
SunEcho
Filed as: [PCedar2.0j/Documentation/SunEchoDoc.tioga,[PCedar2.0j/SunEchol+

-- Debugging
[18] Debugging Tools Manual Sun Microsystems Describes the
standard UNIX dbx and dbxtool debuggers

*[19] The Cirio Debugver Sturgis,H., Theimer,M. and others
June 12, 1992 User's gUide to the Cirio debugger
Filed as: [Cedar10.1)/Cirio/CirioDoc.tioga

-- Porting process
*[20] Experiences from the Salient project group on porting
Viewpoint to run on UNIX-based SUN workstations

*[21] UnixSysCalls Hauser,c., Demers,A., Weiser,M., Plass.M.
Aug 7, 1991 Summarizes the UNIX system call interface for
Cedar/Mesa programmers.
Filed as: [Cedar10.1j/UnixSys/UnixSysCalisDoc.tioga

[22] Cedar/Mesa interfaces and implementation modules for
Unix system calls.
Filed as: [Cedar10.1j/UnixSys/UnixSysCalis.mesa,[PCedar2.0)/UnixSys/*.mesa

[23] PCR C interfaces for Unix system calls, threads (monitors)
Filed as: [PCR dirjIlNCLUDE/xr/UIO.h, [PCR dirj/lNCLU DE/xr/Threads.h

-- Miscellaneous

[24] Cheops Principles of Operation version 1.71
Filed as: [Enterprise:ESCP10:xeroxjIlPD Projectslver 1.71 Cheops principles of
Operation(ip).

IPD ! SS&T I Software Environments & Tools

2.0 90 Cedar Environment

2.1 90 General Overview

IPO I SS8<T I Software Environmenu 8< Tools

C - CEDAR I MESA INTEROPERABILITY

The Cedar environment was built beginning in 1978 by the CSL
organization to support the Cedar/Mesa programming
language on the Dorado workstation. For many years this
language and environment ran only on these D-machines; an
effort later began to make it portable to different machine
architectures. The resulting portable Cedar environment,
named PCedar, is able to run on operating systems such as
SUNOS Unix (version 4.0), Mach and on a bare homebuilt
machine serving as the main operating system. Distinctions
between PCedar and Cedar have now disappeared; references
to the Cedar environment implies portability.

The Cedar environment is a software layer which lies atop a
SUN SPARC workstation running UNIX, It provides run-time
support facilities for the Cedar/Mesa programming language,
although it's services are language-independent. It has been
used successfully with C, Scheme, Modula3 and Lisp.

This environment is composed of several layers. The lowest
layer is called the Portable Common Runtime (PCR). It is written
in primarily C code (with a small amount of assembly code) and
provides a language and operating system independent base
for modern languages, although it's primary use is to support
the Cedar/Mesa programming language. The runtime support
facilities offered by PCR include light-weight processes
(multiple thread support), low-level 110, garbage collection and
dynamic loading of modules. A detailed discussion of the PCR
implementation occurs later in this document; this knowledge
is necessary in understanding the complexities of porting multi­
language software systems to the Cedar environment.

The final layers of the Cedar environment specifically provide
support for Cedar/Mesa programming. The software
immediatedly above PCR, CedarCore, provides full functionality
for the language itself. It supports language constructs such as
SIGNALS, PROCESS, ROPE and low level arithmetic, logical and
storage overlay operations. The top layer, BasicCedar, contains
services considered essential for most Cedar-based applications.
Services include debugging support, hash tables, ti me
functions, 10, additional ROPE support and access to the UNIX
operating system. In addition, there are many available
software packages that provide specialized services to the user
application program (referred to as Miscellaneous Cedar Run­
Time code).

Figure 2.1 illustrates the Cedar environment sitting above the
UNIX operating system. It shows the functional components
comprising the Portable Common Runtime, CedarCore and
BasicCedar layers.

5

C - CEDAR I MESA INTEROPERABILITY

..

PORTABLE CEDAR BASEMENT INTERNALS

Debugger I BootPackages BasicTime 10 Basic Packages ProcessProps UNIX II BasicCedar I
(Handling Host- Cedar 1/0 Commander, Access • SySCalis
uncau~ht independent Stream, Queue, Association • UXStrings
Signa s) timer services pipes, etc. RopeFile, lists for • UXIOlmpl

RopeList, etc. processes

Runtime Rope Safe Register VM Real RasterOp faces Comm I CedarCore I ~
Support SUppa Storage Ref Litera limp Package Package Package

Errors, Atom, List, Rope.rope, Acquire Real PCedar Processor.id XNS access
Signals, Ref Queue, Rope.txt, stora~e Numbers version and support, local

etc. etc. Ref.txt, whic support of BitBlt type host's XNS \.:.

Atom support might be characteristics ",

virtual

I I
THREADS 110 I GARBAGE COLLECTION COMMAND LOOP

Figure 2.1

6 IPD I SS&T I Software Environments & Tools

C - CEDAR J MESA INTEROPERABIUTY

2.2 E9 0 Portable Common Runtime

IPO! SS&T I Software Environments & Tools

A process or task is defined as an instance of a program in
execution. Associated with each process is an address space
that represents the set of all addresses available to the
program. In the traditional UNIX environment, each process
(heavyweight process) consists of a single locus (thread) of
control.

The Cedar environment, namely the_pCR layer, implements the
concept of threads (lightweight process) within the UNIX
environment. The PCR approach is to have a small fixed
number of processes, called "virtual processors" (VPs), that act
like virtual CPUs and can support multiple threads of control.
Although seen by the underlying UNIX kernel as a single
process, each VP can spawn off multiple execution threads and
schedule processing time for each thread in a time-sharing
manner. Each thread runs strictly sequentially and has it's own
program counter and stack information; however, all threads
share the same address space (global variables are shared) and
other process resources such as open files, UNIX timers, UNIX
signals (signal handlers). It should be noted that threads aren't
bound to a VP but are collectively supported by all VPs. When a
thread becomes ready, it gets scheduled on the next available
VP.

The ability for VPs to support multiple threads simulate parallel
processing and are ideal for systems running on a
multiprocessor hardware platform. It is also well suited for
applications involving a high degree of concurrent processing
such as in server/client relationships.

PCR supports automatic deallocation of dynamic storage
(garbage collection). This functionality prevents problems
associated with dangling pointers (pointer used after the
referenced storage has been deallocated) and storage leaks
(storage becomes inaccessible without being deallocated for
reuse). In addition, symbol table management capabilities exist
to support the static/dynamic linking and loading of modules.

PCR provides additional heavyweight processes called I/O
processors (lOPs). Some are associated with file descriptors and
used to cir~umvent the limitations imposed by UNIX on the
maximum number of open files available to a process; these are
classified as either Streams lOP or Standard lOP. The former is
implemented with System V style streams while the latter
possess the standard UNIX style device driver implementation.
Other lOPs (Slave lOP) aren't associated with file descriptors; an
example is the CirioNub program which supports debugging in
the Cedar Environment.

7

,. _ ,.CnAD I uceA .UTCDnDCDADIi rrv
~ - _ .. _".." _ I •• I ""1 .. .-""' ... ,_, •

8

The user can-provide the peR software with operating
parameter values upon startup (a list of all available parameters
is provided in [Ref 13]), including the number of virtual and 10
processors. A minimal peR environment should consist of 4
UNIX processes: 1 VP, 1 Slave lOP, 1 Standard lOP and 1 Stream
lOP). More stream lOPs are needed if the application utilizes
greater than 30 open streams simultaneously; likewise,
additional standard lOPs are needed- if you require more than
256 open file descriptors.

To summarize, peR contains two types of processes, VPs and
lOPs. Each VP is capable of running multiple threads; including
threads to perform garbage coliectiDn, dynamic loading and
execution of user application code. Threads aren't fixed to a
particular VP and share a common virtual address space; this
shared space significantly reduces the cost of complex
interactions and data exchanges required by the peR
implementation.

IPD ! SS&T I Software Environments & Tools

2.3 E9 0 Applications within the Cedar environment

IPO i SS&T I Software Environments & Tools

Figure 2.2 illustrates the configuration occupied by a
Cedar/Mesa and C software application within the Cedar
environment.

-

Besides providing a pictorial representation of the layers
comprising the Cedar environment, it shows that Cedar/Mesa
code is supported by the CedarCore, BasicCedar and Misc. Cedar
Run-Time layers. Implementation within these modules are
ultimately handled by the PCR and SunOS software lying below
(vertical black arrows) .. On the other hand, C-based code are
supported by the facilities that PCR and SunOS provides.

With the ability for C and Cedar/Mesa modules to interact using
communication techniques discussed in section 3.1 and 3.2, C
code can also access the Cedar/Mesa based services offered by
the CedarCore, BasicCedar and Misc. Cedar Run-Time layers.
This ability to interact extends to Cedar/Mesa programs
utilizing C based services; in fact, most Cedar/Mesa based
BasicCedar routines for accessing UNIX system calls are basically
veneers for the underlying C-based PCR function. Despite the
wide opportunities for interoperability using system services,
most such interactions will exist between Cedar/Mesa and C
based user-application programs, as shown by the horizontal
black arrow.

9

t.. UDAR I MESA INTEROPERABILITY

I··· .. .

I

10

PCR-BASED SOFTW~ ~RE ARCHITECTURE

• ... ~ - CEDAR APPLICATIONS

c
AF 'PL.

CODE SIZES:

1/0 handling and PCR
Misc. System Calls

.. . .

Misc. Cedar Run-Time/BasicCedar/CedarCore: ~ 70,000 lines of Cedar,
PCR: ~ 60,000 lines of C code

Figure 2.2

Port
Cel

Basel

able
:far
l1ent

IPD I SS&T / Software Environments & Tools

C - CEDAR I MESA INTEROPERA81LITY

3.0 EB 0 Syntax/Mechanics of Cedar!C Interoperability

In order to fully understand the mechanics of the Cedar I C
interoperability issue, it is necessary to explain that Cedar based
code is translated by the Mimosa compiler into machine­
dependent C code that is very efficient, difficult to read and
normally unseen by the programmer [Ref 4]. This intermediate
C code is then fed to the target machine's C compiler to
generate the executable object file. This translation process
provides the means by which Cedar/C interoperability can
occur. ~

3.1 0 Calling C procedures from within a Cedar/Mesa module

IPD / S5& T ! Software Environments & Tools

Support for calling a C procedure within Cedar/Mesa is
provided by the inclusion of "MACHINE CODE" procedures
within the language. The syntax for declaring a "MACHINE
CODE" procedure is quite similar to that of other procedures
and includes the following elements (If unfamiliar with
declaring procedures, refer to chapter 5 of the Mesa Language
Manual version 6.0 [Ref 5]):

a. MACHINE CODE (Me) procedure name

b. Procedure Type: includes parameters required and results
returned by the C procedure. Field specifications for the
parameter and result records follow the standard
Cedar/Mesa language syntax. However, each field type
must correspond bitwise to the type expected by the
underlying C procedure.

There are several cases where this correspondence isn't
trivial. First, if the C procedure expects a "UNIX string U

(pointer to a NUL terminated array of chars, char *), the MC
procedure must declare the corresponding parameter as
type uUXStrings.UnixString". Second, if the C procedure
expects a procedure variable, the MC procedure must
declare the correspondi ng parameter as type
U UXProcs.CProc" .

c. Immediatedly following the" =" character with the string
"TRUSTED MACHINE CODE" initializes and defines the
procedure

d. Procedure Body: consists of a series of one or more
interpreted string literals separated by a semicolon. There
are numerous valid constructs within a string literal; a
detailed discussion can be found in the
C2ClnterLanguageDoc.tioga document [Ref 8].

11

... - ... "..,""" I mc:~ In ICKUl"cKAIIIUTT

12

Illustrated b1!low are examples of procedure bodies for a
Cedar/Mesa procedure Procto access C procedure C_Proc.

void C_Proc (character. num)
char character; int num;

{ 1* This is the C procedure which is being called *1 }

-

-- CedarlMesa procedure for calling C_Proc
-- This should account for the vast majority of cases
Proc: PROC [c: CHAR. n:INT] = TRUSTED MACHINE CODE {

"c Proc·
}; -
-- CedarlMesa procedure for calling a C_Proc requiring an
-- include file "inc.h" from Cedar include directory
--Iusrlinclude/cedar
Proc: PROC [c: CHAR, n:INT] = TRUSTED MACHINE CODE {

"inc.C_Proc"
};

-- CedarlMesa procedure for calling a C_Proc requiring an
-- include file Minc.h ll from UNIX include directory
Proc: PROC [c: CHAR, n:INT] = TRUSTED MACHINE CODE {

"<inc.h>.C Proc"C Proc
}; --
-- CedarlMesa procedure for calling a C_Proc requiring an
-- include file "inc.h" from current working directory
Proc: PROC [c: CHAR, n:lNT] = TRUSTED MACHINE CODE {

.. \ "inc.h\".C Proc·
}; -

There are many valid constructs supported within the
procedure body of a 'MACHINE CODE' procedure (a detailed
discussion of the procedure body syntax can be found in the
C2ClnterLanguageDoc.tioga document [Ref 8]). These allow the
Cedar programmer to call C procedures, include C header files,
define symbolic constants and macros, insert C code into the
intermediate machine-based C code produced during
translation (eg, introduce variables, procedures), invoke
defined macros and introduce constant and variable values into
Cedar expressions.

The following examples illustrate some permutations that the
procedure body can assume:

o File: IPCedar2.0/basicpackages/Comma nderl mpl.mesa
"MACHINE CODE' procedure name: getenv

oFile: IPCedar2.0/bootpackages/Terminationlmpl.mesa
"MACHINE CODE' procedure name: XRExitWorld

oFile: IPCedar2.0/CedarPreBasicsExtras/XRLoaderUtils.mesa
"MACHINE CODE' procedure name: RequireFrom

oFile: IPCedar2.0ICFontSolution/CFontSolutionlmpl.mesa
"MACHINE CODE' procedure name: GetMasklnner

oFile: IPCedar2.0/DReallDRealFnslmpl.mesa
"MACHINE CODE' procedure name: DRealExpl

oFile: IPCedar2.0/FloatingPoint/DRealSupportlmpl.mesa
"MACHINE CODE' procedure name: help

IPO I SS&T I Software Environments & Tools

IPD I SS&T I Software Environments & Tools

To invoke the...~ procedure 'C_Proc' defined by the example on
the previous PC!ge, these statements must be included within
the Cedar/Mesa program:

int: INT;
character: CHAR;
Proc[character, number];

Invoking the C procedure involves specifying the "MACHINE
CODE" procedure name and supplying arguments for each
parameter. Arguments are passed by value and not reference.
The type of each argument value must be compatible with it's
corresponding parameter type. In most cases, this presents no
problem; in some situations, the supplied argument value must
be converted to a compatible form beforehand. The next few
paragraphs present cases where this conversion is required.

C procedure expects a "Unix compatible string" (char *) as an
argument: Since Cedar/Mesa programs deal with the "ROPE"
construct instead, there must exist a "transducer" which
converts any ROPE values to an equivalent Unix-compatible
value prior to the invocation process. This conversion process is
handled by utilizing the "Create" procedure within the
"UXStrings.mesa" interface. Likewise, any "Unix compatible
strings" returned by the resulting MC procedure must be
transformed by the UXStrings.ToRope procedure before this
data can be used by the remainder of the Cedar/Mesa program.
Refer to these Cedar modules from the /PCedar2.0 directory for
real, on-line examples:

o Cirio/CirioDeltaFaceSunlmpl.mesa
o loadstateTool/loadstateToollmpl.mesa
o NetworkStream/NetworkStreamlmpl.mesa

C procedure expects a procedure variable argument: The Cedar
procedure argument must be compatible with the procedure
type expected by the invoked C function in terms of the
parameters and results. It must be transformed by the
"FromCedarProc" procedure defined within the
"UXProcs.mesa" interface into a form (UXProc.CProc) which
can then utilized by the invoked C procedure. Likewise, the
UXProcs interface defines a procedure, "ToCedarProc" that
converts C procedure variables into Cedar procedure values;
clients can then lOOPHOLE this into the right procedure type.
Refer to these Cedar modules from the IPCedar2.0 directory for
real, on-line examples:

o Compiler/ ADotOutExtrasAccesslmpl.mesa
o GCOps/GCCallBacklmpl.mesa
o TCl/TCL.mesa

13

14

Here is an example of a Cedar/Mesa procedure calling a C
routine; it is so.urce code for the Cedar debugger, Cirio.

Cedar/Mesa fHe: CirioDeltaFaceSunlmpl.mesa (caller)

DIRECTORY
-- This interface converts UNIX strings to ROPE and vice versa
UXStrings USING [ToRope, UnixString];

CirioDeltaFaceSunlmpl: CEDAR PROGRAM
IMPORTS UXStrings -- list of imported interfaces
EXPORTS -- list of exported interlaces -- =
BEGIN
-- Cedar/Mesa definition of record passed to C proc
-- CirioNubLocalPCtolnfo. It overlays-the CirioNubPClnfo
-- structure defined in CirioNub Types.h and included by C prog
-- that implements this procedure.
SWPClnfoPtr: TYPE = POINTER TO SWPClnfo;
SWPClnfo: TYPE = MACHINE DEPENDENT RECORD [
proeName, fileName,
guessEmbeddedFileName: UXStrings.UnixString,

procSymlD, fileSeqNum, guessEmbeddedFileSymlD: CARD];

-- Target definition of record structure containing processed
-- data returned from calling C proc CirioNubLocalPCto/nfo
PClnfo: TYPE = REF PClnfoBody;
PClnfoBody: TYPE = RECORD [
proeName: Rope.ROPE,
procSymlD, fileSeqNum, guessEmbeddedFileSymlD: CARD,
fileName, guessEmbeddedFileName: PFSNames.PATH];

SameWorldPCtolnfo: PUBLIC PROC[pe: CARD]
RETURNS[PClnfo] = TRUSTED

BEGIN
-- Definition of MACHINE CODE procedure, PCtolnfolnner
PCtolnfolnner: PROC [pe: CARD, buf: SWPClnfoPtr]
RETURNS [INT] = TRUSTED MACHINE CODE {

·CirioNubLoeaIPCtolnfo"
}; - of procedure PCtolnfolnner

info: PClnfo;
buf: SWPClnfo;
info ~ NEW[PClnfoBodyJ;
THROUGH [1 •• 3J DO

--Invoking the C procedure CirioNubLoca/PCto/nfo
result: INT ~ PCtolnfolnner[pe, @buf];

ENDLOOP;
-- Processing data returned by C proc CirioNubLocalPCtolnfo
-- including converting variables of UNIX string type to ROPE
info.procName ~ UX.ToRope[buf.proeName];
info.procSymlD ~ buf.procSymID;
info.fileName ~

PFS.PathFromRope[UXStrings.ToRope(buf.fileName)];
info.fileSeqNum ~ buf.fileSeqNum;
info.guessedEmbeddedFileName ~

PFS.PathFromRope(
UXStrings.ToRope[buf.guessedEmbeddedFileName));

info.guessedEmbeddedFileSymlD ~
buf.guessedEmbeddedFileSymID;

RETURN(info];
END; -- of procedure SameWorldPCtolnfo
END. -- of program module CirioDeltaFaceSunlmpl

IPO I SS&T I Software Environments & Tools

C· CEDAR I MESA INTEROPERABIUTY

Here is the C PFocedure being invoked and it's include file

C header file: CiiioNubTypes.h (include file for callee)

/* other definitions of other structures and variables */
/* Defines structure passed to C proc CirioNubLocalPCtolnfo */
typedef struct CirioNubPClnfoRep {
char *procName;
unsigned procSymlO;
char *filename;
unsigned fileSeqNum;
char *guessedEmbeddedFileName;
unsigned guessedEmbeddedFileSymlO;

} *CirioNubPClnfo;

C file: Cir;oNubLoca/Procs.c (callee)

/* other includes */
#indude uxr/CirioNubTypes.hu
/* other processing */
/* This;s the C procedure being called within Cedar/Mesa proc
/* SameWorldPCtolnfo shown on previous page */
CirioNublocalPCtolnfo(pc, buf)
unsigned pc;
CirioNubPClnfo buf;

{
/* Process information */

}

3.2 0 (ailing Cedar/Mesa procedures from within a (module

IPO! SS&T I Software Environments & Tools

There are two ways to invoke a Cedar/Mesa procedure from a C
procedure. The recommended method involves forcing the
compiled Cedar/Mesa procedure to both assume a programmer
defined name and become publicly accessible. A rather obscure
method utilizes the InstaliationComforts procedures to access
Cedar/Mesa procedures via the DEFINITIONs module interface.

1S

.. - U:UI'I\ I MC::!A 11'1 I I:KUl'tKAl5lUTT

3.2.1 0 Access Cedar/Mesa procedures via External Names

16

This method involves imposing programmer-defined procedure
names during the process when a Cedar/Mesa program is
translated into machine-dependent C code by the Mimosa
compiler and making it publicly accessible. Unless specified
within the language syntax construct described below,
CedarMesa procedures are translated by Mimosa into static C
functions (function inaccessible/invisible to other modu les)
with compiler-generated names.

The following steps are performea on the encompassing
Cedar/Mesa module.

1. Define a "MACHINE CODE" procedure "ExternaINames" with
the following syntax (boldface symbols are included literally).

ExternalNames: PROC [] = TRUSTED MACHINE CODE {
UAExternaINames\nU;
< Proc name equiv list>

};

<Proc name equiv list> : =
< Proc name equiv> < Proc name equiv list> I empty

< Proc name equiv> : =
II <Cedar proc name> <C proc name> \n";

<Cedar proc name> : = Cedar/Mesa procedure called
<C proc name> : = Functionally-equiv C proc created by the
Mimosa compiler. This name is used by C programs to call
procedure.

For example, the code below enables Cedar/Mesa procedures
MesaProc1 and MesaProc2 to be accessible to C code via
invoking Proc1, Proc2 respectively.

ExternalNames: PROq] = TRUSTED MACHINE CODE {
II A ExternaINames\n" ;
"MesaProc1 Proc1\n";
"MesaProc2 Proc2\n";

};

The only restrictions are that the Cedar/Mesa procedure must
be unique and exist on the top level (not a nested procedure).

2. Invoke " ExternalNames" procedure within the mainline code
of the Cedar/Mesa module. This step must be carried out in
order to make the Cedar/Mesa procedure accessible.

3. Compile the Cedar/Mesa module.

IPO / S58.T! Software Environments 8. Tools

IPO I SS&T i Software Environments & Tools

C - CEDAR I MESA INTEROPERABIUTY

Invoke a Cedar/Mesa procedure by supplying <C proc name>
along with it's arguments and in certain situations (discussed
below), a pointer to locations for storing the return results.
Arguments are passed by value. The type of each argument
value must be compatible with it's corresponding parameter
type; the same rule applies for the procedure results.

Determining the exact syntax of the procedure call is
complicated due to restrictions imposed by the Mimosa
compiler under two conditions.

First, Cedar/Mesa procedures that expect a parameter record
occupying more than 16 machine wG-rds (due to a combination
of large number of parameters/data structures) are invoked by
placing procedure arguments within a C structure with
corresponding data types and passing the pointer address
instead.

Second, means of specifying the result record varies according
to whether the Cedar/Mesa procedure return results record
occupying more than 1 machine word.

o If the return data occupies one machine word or less (at most
1 return variable of integer, character or pointer type), the
caller C code should utilize an assignment statement. The
return variable should be to the left of the assignment and
the procedure name along with the arguments on the right
side.

o If the return data occupies more than one machine word (
more than 1 return variable, records), the caller C code
should allocate sufficient room to store the return data and
provide this address within the procedure call, immediatedly
preceding input arguments.

Return data of type character occupies exactly one machine
word (32 bits), although only the least significant byte contains
the actual character. In order to access the return value, the C
program can define a structure, occupying 1 word, that utilizes
the "bit field" construct within the C programming language to
extract the character data. This is shown by the sample
program shown on the next page (refer to defined type
CHAR_TYPE and the call to "record_ops" within the C
program).

For real on-line examples of C accessing Cedar/Mesa
procedures, reference files within the IPCedar/CFontSolution
directory. It contain numerous Cedar/Mesa procedures being
made externally visible in addition to the C modules that
reference these functions.

17

.. - II~ I MC:~ IN II:Kut't:KAISIUTY

18

The followi~g is an example of a C procedure calling a
Cedar/Mesa p[ocedure using ExternalNames.

Cedar/Mesa program

CedarMesaProg: CEDAR PROGRAM =
BEGIN

ArgumentRecord: TYPE = RECORD-{
int7, int2, int3: INT

];

Multiply: PROCEDURE lop 7, op2: INT] RETURNS [INT] =
{
RETURN [op7*op2];

};

Change: PROC[op7, op2: REFINT] =
{
op7"+-op7" + 70;
op2" +- op2" + 20;

};

Record: PROCEDURE[op7, op2: INT, value: CHAR]
RETURNS [int1,int2: INT,

char 7 : CHAR, int3: INT, char2: CHAR] =
{
RETURN [(op1*op2), (op7 +op2), value+ 1, 89, 'L];

};

RecordPtr: PROCEDURE [argument: ArgumentRecord]
RETURNS [answer: REF ArgumentRecord] =

{
answer +- NEW[ArgumentRecord +­
[argument.int1 + argument.int2 + argument.int3,
argument.int7-argument.int2-argument.int3,
argument.int7 *argument.int2*argument.int3]];

};

-- Four Cedar/Mesa procedures made accessible to C .
-- programs; Multiply, Change, Record & RecordPtr.
-- They are accessed as multiply _ops, change_ops,
-- record_ops and recordptr _ops respectively * /
Externa/Names: PROC [] = TRUSTED MACHINE CODE {

.. " ExternalNamesl n";
"Multiply multiply_opsin";
"Change change_opsin";
"Record record_opsin";
"RecordPtr recordptr _opsin";

};

-- The procedure defining the ExternalNames must be invoked
-- in order for things to take effect 'It /

Externa/Names[];

END.

IPO I SS&T I Software Environments & Tools

'PD I 55& T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABIUTY

C Program, c(Hog.c

void XRJunjp'rog()
{
intanswer;
char char Jesuit;

/* Used to capture return results of type char, where data is
stored in the least significant byt-e of a machine word * /

typedef struct {
unsigned int dummy: 24;
unsigned int character: 8;

} CHAR_TYPE;

/* Defines structure storing the output results from calling
Cedar/Mesa procedure record_ops */

struct Result_Struct {
int int1, int2;
CHAR TYPE char1;
intint3;
CHAR TYPE char2;

} *resu'it;

/* Defines structure holding the input arguments passed
into Cedar/Mesa procedure recordptr _ops */

struct ArgRecord {
int int1, int2, int3;

} argument, *resultptr, *recordptr _ops();

/* Access Cedar/Mesa procedure multiply_ops */
op1 = 8; op2 = 11;
answer = multiply_ops(op1, op2);

/* Create storage for output results from calling record_ops */
result = (struct Result Struct *) XR malloc(
sizeof(struct Resultjtruct»; -

/* Access Cedar/Mesa procedure record_ops */
record_ops(result, op1, op2, 'A,);
/* Access the returned character data, charf * /
char Jesuit = (char) result- > char1.character;
XRJree(result);

/* Access Cedar/Mesa procedure recordptr _ops * /
argument.int1 = 6; argument.int2 = 8; argument.int3 = 4;
resultptr = recordptr_ops(argument);

/* Access Cedar/Mesa procedure change_ops */
change_ops(&op1, &op2);
}

19

C - CEDAR i MESA INTEROPERABILITY

3.2.2 0 Access Cedar/Mesa procedures via DEF-INITIONS interface

20

The second way of calling a Cedar/Mesa procedure within C is
provided by a collection of procedures within
/PCedar/lnstaliationComforts that allows a C module to access
Cedar/Mesa procedures through it's exported DEFINITIONS
module interface [Ref 10].

This example illustrates how access to proc MesaProc (defined
in interface Mesa Interface. mesa) is attained.

#include <xrI8asicTypes.h>
cJ'roc()
{
XR_MesaProc mesaJ'roc, XR_ProcFromNamedlnterface();
mesaJ'roc = XR_ProcFromNamedlnterface(

"Mesalnterface", "MesaProc", 0);
}

Once access is attained, invoking the Cedar/Mesa procedure is
done by specifying the string
(*(mesa_proc- > mp_proc» (args, mesa_proc- > mp_x)

IPO I SS&T I Software Environments 8. Tools

C - CEDAR I MESA INTEROPERABIUTY

3.3 e 0 Incorporating C and Cedar/Mesa modules together

IPD / 55&T I Software Environments & Tools

In order for C and Cedar/Mesa procedures to successfully call
one another, all "cross-language external" symbols must be
made accessible to the callers at run-time. There are several
ways to ensure that symbols are-loaded onto the Cedar
environment prior to establishing access.

The best way of incorporating mixed-language modules
together would be to utilize the Cedar/Mesa concept of a
configuration; users unfamiliar with_~his construct should refer
to Mesa Language Manual chapter 7 [Ref 5]. The "STATIC
REQUESTSu feature was added to the C/Mesa language to
enable configurations containing modules of different
languages. This feature follows the "EXPORTS" clause within a
C/Mesa language syntax and consists of the words "STATIC
REQUESTS" followed by a list of one or more C object files to be
linked into the configuration. Each C object filename should be
enclosed within double quotes.

Example:
Foo: CONFIGURATION
IMPORTS --list of imported Cedar/Mesa interface modules
EXPORTS --list of exported Cedar/Mesa interface modules
-- Files foo.c and foof.c are C module components
STATIC REQUESTS "foo.o", "fo01.0"
CONTROL -list of Cedar/Mesa implementation modules =
BEGIN
--list of Cedar/Mesa program modules or configurations

END.

Configurations are the preferred means of building large multi­
module software systems because they present a simple, easily
reproducible description and the ability to nest configurations
together encourages development along functional lines.

Two other methods of incorporating these modules exist,
although their use is not recommended. First, the modules can
be compiled separately and independently run. The one caveat
is that modules containing called procedures must be run
before any of the calling modules. This requires the modules to
be executed in an ordered fashion. Second, modules may be
compiled separately, however the caller program initiates
dynamic loading of necessary support modules via PCR calls
prior to making the call.

Inaccessible "cross-language" symbols are not detected until
run-time when these external references are resolved. During
execution of the "Run" command from the Cedar Commander
viewer, either an error message is generated expressing the
inability to resolve an undefined UNIX-level symbol or the
program crashes and immediatedly brings up the Cirio
debugger.

21

C • CEDAR I ME5A INTEROPE't~8!l!TY

3.4 $ 0 Delivering software as a package

22

Many application software projects developed within the Cedar
environment are delivered to customers who are unfamiliar
with and have no need for a user·interactive Cedar
environment running atop the SUN workstation. In these
situations, the software should be developed and delivered as a
"package". It consists of a single UNIX object file (a.out) which
contains all the necessary code needed to run the application
within a foreign host environment.

The following software elements are-found within a packaged
world:

1. Cedar Basement

o PCR : Sits atop the SUN OS and provides runtime support for
garbage collection, dynamic loading and lightweight
processes (threads)

o CedarCore: Supports the Cedar programming language

o BasicCedar: Provides useful facilities for Cedar programs

2. Miscellaneous Runtime code

3. Application software

Here are the steps needed to create an optimized package
named FooPackage using the INSTALLED version of the PCR
software. Assume that the user application is composed of
Cedar/Mesa program modules FoolmpI1.mesa, Foolmpl2.mesa
and C module foo_c.c. (Boldface symbols are included literally)

1. Retrieve (XRHome] < INSTALLED> LIB> OptTh reads-spare>
DebugNub.o SystemDaemon.o
Interp.o XRRoot.o
LibrarySearchingLoad.o xr.a
symfind.o libxrc.a

2. Create FooWorld.config (defines package components)

FooWorld: CONFIGURATION
EXPORTS ALL
STATIC REQUESTS "XRRoot.o", UDebugNub.o",

"SystemDaemon.o". "symfind.o",
"LibrarySearchingLoad.o". "Interp.o"

CONTROL CedarCore. BasicCedar.
<MiscCedar Runtime configs/modules>,
Foolmpl1, Foolmpl2, FoolWorldlmpl =

BEGIN
CedarCore:
BasicCedar:
<Misc Cedar Runtime configs/modules>:
Foolmpl1;
Foolmpl2;
FooWorldlmpl;
END.

IPD ! 55&T' Software Environments & Tools

IPD I 5S&T I Software Environments & Tools

C • CEDAR I MESA INTEROPERABILITY

<Misc Cedar -R-untime configs/modules> represents all the
external Cedar~software packages which provide a service that
is ultimately r~ferenced by the user's applications code.

Restrictions on configuration file specifications:
o Within the CONTROL section: packages are listed in the

order in which they are to be started. CedarCore and
BasicCedar must precede all others. User application
modules are usually placed near the end of the list with
FooWorldlmpl (see step 3) being last.

o Within the configuration body:
CedarCore must be listed first. The order of the other
modules doesn't matter.
All module names appearin-g in the CONTROL section
must appear here and vice versa.
No duplicate names allowed

3. Create FooWorldlmpl.mesa (defines PCR operating params)

FooWorldlmpl: CEDAR PROGRAM =
BEGIN

DefineDefaultArgs: PROC = TRUSTED MACHINE CODE {
- + char defaultArgs[] = \" -msgs 0 -slaveiop 1 -mem
550000 -stack 90000 \ \ \n-;
- -tmpdir • -nodbxscript -- -h 4000000 -
install_and_runJ)ackage --\ .; \n. -;

};
DefineDefaultArgs[];

END.

The PCR operating parameters can be adjusted by changing the
string item shown within DefineDefaultArgs procedure; the list
of possible switch/value pairs are defined in [Ref 13}.

4. Create sun4-03/FooPackage.Makelt (drives package creation)

-- sun4-03/FooPackage.Makelt
-- {sun4-03/FooWorld.c2c.o }
ComplexRsh -cmd ·/bin/cc -Qpath
IprojectJpcedar2.0Ilanglld/sparc/-Bstatic -0 sun4-
03/FooPackage sun4-03/FooWorld.c2c.o
Ipseudo/xrhomellNSTALLED/LlB/OptThreads-sparc/xr .a
Ipseudo/xrhomeIlNSTALLED/LIB/OptThreads-sparcllibxrc.a -
1m-

The second line of the file, -{ sun4-03/FooWorld.c2c.o } ,
indicates that the package is defined by the FooWorld
configuration file and that the object file must be built before
the packag~ can be generated.

5. Create FooWorld.mob.switches (switch for package creation)

-hm-g

6. Initiate creation of package by entering this command:
MakeDo sun4-03/FooPackage

For additional assistance on building a packaged world, refer to
"BuildingAPackagedWorld.tioga n (Ref [[12]) and examples for
viewer packages in [PCedar2.0) < PackagedWorlds >

23

C", CEDAR! MESA INTEROPEP~!L!TY

3.5 EB 0 Remote Procedure calls

24

Remote Procedure Calls (RPC) provide a means of
communication between two UNIX processes. RPC implements
a logical client to server communications system designed
specifically for the support of network appli :ations. The model
supported includes a client that initiates a request for service
by the server. Depending upon whether the RPC
implementation is synchronous or asynchronous, the client may
wait (block) for notification on completion of the service. This
communication occurs between processes on the same or
different machines. As Figure 3.1 and the Wasabi example
(discussed in section 3.7) illustrate, remote procedure calls can
be used between applications differing in implementation
language and run-time software platform.

There are several reasons why Remote Procedure Calls can be
used when creating a large software system. First, since it
provides communications across a network, the software
system can be distributed across more than one machine.
Second, it enables the system's functional components to
become more autonomous; the engineering process becomes
simplified because separate components can be treated more
independently.

The PPO system (Production POL Option) provides a good
example. The Postscript decomposer,WASABI, is written in
Cedar/Mesa and running in the Cedar environment. A second
component, EGRET is written in C and running on the standard
UNIX environment. Developed separately by two different
organizations, the two components interact through the use of
remote procedure calls. Otherwise, the EGRET software would
have to be ported into the Cedar environment. This loose
coupling of two "stand-alone" components by RPCs provides
the required system functionality while eliminating the need to
port EGRET's foreign C code into the Cedar environment.

The RPC mechanism adds additional layers of communication
protocol to the interaction between server and client processes.
The overhead incurred for RPC calls generated and serviced
locally (no network access required) by the same SPARCstation 2
running under SunOS 4.1.1 is a minimum of 2.2 msec. In
addition, numerous potential problems are introduced by using
RPCs including inability to locate remote server, unsupported
remote program/procedure/transport protocol, server/client
crashes and unreliable data transport.

IPD I 55& T . ~oftware Environments & Tools

C - CEDAR I MESA INTEROPERABIUTY

... , .. .

RPC-BASEI [) SOFTWARE ARCHITECTURE

. ,: : I ~ ~

RPC's

C
APPL.

C
APPL.

Figure 3.1

.~

................................. -., .. .

..... _ I rrn ... I r_~~. ___ r_ .. : ____ ... _ ... D T __ I .. 25

~ - ~fDAR (MfSA INTIROPERABILITY

26

There are UNI~CC and Cedar facilities, namely rpcgen and
CedarRPCGen, which simplify the process of programming
applications to use the Remote Procedure Calls; applications
generated using CedarRPCGen are implemented in the
Cedar/Mesa language while rpcgen generates C based code.
Both facilities are essentially compilers which accept a remote
program interface written in the R~C Language and produce
the following output files: header/interface module, client and
server stub programs containing the RPC system calls needed
for the data transfer process and a program to perform data
conversion to a format required for transport over the network.
Combining the header module, client stub and a user-created
client program (ca"s remote procecfure) will create the client
program; likewise, combining the header module, server stub
and a user-created server program (implements remote
procedure functionality) wi" create the server program.

Figures 3.2, 3.3 on pages 35,36 illustrate the process of creating
RPC based applications for a mixed language system consisting
of a Cedar-based server and a C-based client. The former is
created using the CedarRPCGen utility provided by the
Cedar10.1 environment while the latter is using the rpcgen
UNIX facility. No special adaptation is required for developing
a RPC between applications differing in implementation
language and software platform; it involves using the same RPC
language-based protocol specification, independently applying
the CedarRPCGen/rpcgen facilities with it's associated
methodology to generate each side of the RPC connection and
then combining.

For more details on using rpcgen and CedarRPCGen, consult the
referenced documents (Ref 14-17) and the example discussed
on the next few pages.

For those individuals who are interested in developing transport independent
RPC-based client/server applications: SunSoft, Inc has made a product
announcement for the ONC RPC Application ToolKit 1.0. Running atop SunOS
4.1.x and Solaris 1.0 SPARCsystems, this advanced development platform
enables C software developers to create client-server applications that run
unmodified across a range of operating systems, hardware platforms and
networks.

IPO I 55&T / Software Environments & Tools

c· aDAR I MESA INTEROPERABILITY

3.5.1 0 Example: Creating an RPC based application

IPD I SS&T! Software Environments & Tools

For more details on rpcgen, RPC protocol specification language, CedarRPCGen
and other real·life examples, consult Ref 14-17

Assume that our application consists-<>f two remote procedures
printmessage: remote display of inputted text string
addition: adds input operands (integer and numeric string)

In order to use the rpcgen or CedarRPC facilities, it is necessary
to create a remote program interface.clefinition (files should
have a .x extension) using the RPC Language (see Ref 14 for
complete syntax description). The protocol specification for
this particular example is shown below:

/* msg.x: RPC protocol specification * /

structops {
intnum;
string s< >;

};

typedef struct ops OPERANDS;

program MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE (string) = 1;
int ADDITION (OPERANDS) = 2;

} = 1;
} = 0x20000099;

Notice that one version (MESSAGEVERS, value 1) of remote
program "MESSAGEPROG" has been declared and assigned
program number Ox20000099. It contains the procedures
"printmessage" and "addition".

27

Applications based upon C:

28

In order to utilize the rpcgen utility, C-based client and server
modules to invpke and implement the remote procedures
respectively must be written.

Here is the server module (msg_server.c) which implements the
example remote procedures:

#incJude < stdio.h > _
#incJude < rpc/rpc.h > /* always needed * /
#include "msg.h" /* generated by rpcgen */

int *printmessage_1(msg)

{
char **msg;

static int result;
FILE *f;

f = fopen("/dev/console H
, "WU

);

if(f = = NULL) {
result = 0;
return (&result);

}
fprintf(f, "PrintMessage proc: %s\n", *msg);
fclose(f);
result = 1;
return (&result);

} /* printmessage_1 * /

int *addition_1(operand)
OPERANDS *operand;

{
static int result;
FILE *f;

result = atoi(operand->s) + operand->num;

if «f=fopen(H /dev/console·, "w"» 1= NULL){
fprintf(f, a Addition proc: %d\n", result);
fclose(f);

}

return (&result);
} /* addition_1 * /

Comparing the remote procedure declarations between the C
server and the RPC protocol specification, three items should be
noted in the former:

1. procedures take pointers to their arguments, rather than
arguments themselves. Notice that UNIX type" char *" is
equivalent to RPC language type "string"

2. procedures return pointers to their results
3. procedure names formed by converting the protocol

specification name to lower-case letters, appending the
underscore character and finally the version number.

IPO I SS&T / Software Environments & Tools

Applications based upon C:

IPO! SS&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABILrrY

Here is the client module (ms9_client.c) which invokes the
remote proced~r.es:

#include <Stdio.h>
#include < rpc/rpc.h > /* always needed *1
#include ·msg.hu /* generated by rpcgen *1

main(argc, argv)

{

intargc;
char *argv[]:

CLIENT *cl:
int *result:
char *server;
char *message:
OPERANDS addition_ops:

if (argc 1= 3){

}

fprintf(stderr, ·usage: %s host message\n-, argv[O]):
exit(1):

server = argv[1];
message = argv[2];

1* Client is utilizing the TCP transport mechanism *1
cI = clnt_create(server, MESSAGEPROG,

MESSAGEVERS, "tcp"):
if (el = = NULL) {

clntJKreateerror(server):
exit(1);

}

/* Invoke remote printmessage procedure *1
result = printmessage_1(&message, eI);
if (result = = NULL) {

}

clnt.J)error(eI, server):
exit(1);

if (*result = = 0) {
fprintf(stderr, -%s: %s couldn't print your message\n",

argv[O], server);
exit(1);

}
printf(-Message delivered to %sl\n", server):

1* Invoke remote Addition procedure * /
addition_ops.num = 5;
addition_ops.s = "45";
printf("Addition arguments: %d %s\n",

addition_ops.num, addition_ops.s):
result = addition_1(&addition_ops, eI):
if (result = = NULL) {

clnt.J)error(eI, server);
exit(1):

}
printf("Addition results: %d\n", *result):

exit(O):
} 1* main *1

29

I.. - I..CUAK I MC)A INTfROPfRABILITY

Applications based upon C:

30

Several point-sshould be noted regarding the client module:
1. A client bandle, "cI", is created using the RPC library

clnt_createO. This handle is then passed as the last
argument to the skeleton routines associated with the
remote procedures (routine names are identical to those
specified in the server module. The difference is that the
former is created by rpcgen, directly invoked by the client
and expects the client handle as the last argument).

2. The transport mechanism upon which the Sun RPC is based
is specified by the last argument to clnt_createO. Two
different mechanisms are supported, UDP/IP and TCP/IP.
In order for the RPC connection to be successful, the client
must specify a mechanism sUPQorted by the server.

3. Failures to the RPC mecha nism cause the remote
procedure to return with the NULL value.

Creating the C-based RPC application consists of performing
these steps (shown in boldface type) within the unix shell.

1. % rpcgen mS9.x

Runs the rpcgen facility and automatically generates the
following files needed to implement RPCs:

msg.h (include in both client & server modules)
msg_svc.c (server stub program)
msg_clnt.c (client stub program)
msg_xdr.c (conversion of data types between

machine/network format)

2. % cc mS9_server.c mS9_svc.c mS9_xdr.c -0 mS9_server

Creates server program, msg_server, that implements
the printmessage and addition RPC procedures for
UDP & TCP transports (by default, rpcgen generates server
code for both transport mechanisms).

3. % mS9_server

Executes the server program.

4 .. % cc mS9_client.c mS9_clnt.c mS9_xdr.c -0 mS9_client

Creates client program, msg_c1ient, which uses the
TCP/IP transport mechanism to invoke the
printmessage and addition Remote Procedure Calls.

5. % mS9_client <your machine name> <your message>

Executes the client program, either on another SUN
workstation (the executable msg_c1ient must be
copied onto the remote machine first) or a separate
unix shell window.

IPO / SS&T I Software Environments & Tools

Applications based upon Cedar/Mesa:

IPO I SS&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABILITY

Utilizing the same RPC protocol specification (msg.x), the next
example dem():f'lstrates the steps in creating a Cedar/Mesa
based RPC application. The easiest method is by using the
CedarRPCGen utility; the user must create the Cedar/Mesa
client and server module to invoke and implement
remote procedures printmessage and addition.

Here is the server module (msgServeI'"Main.mesa) for the RPC
application defined by msg.x.

DIRECTORY
Commander. Convert. 10. msg. Rope,
SunRPC.SunRPCBinding;

msgServerMain: CEDAR PROGRAM
IMPORTS Commander. Convert. 10. msg. SunRPCBinding =
BEGIN OPEN msginterface: msg:

out: 10.STREAM:

PRINTMESSAGE: msginterface.printmessageProc = {
10.PutF1 [out. "PrintMessage: %g\n", 10.rope[in]):
res _ 4}:

ADDITION: msginterface.additionProc = {
res _ in.num + Convert.lntFromRope(in.s)}:

msgServer: Commander.CommandProc = {
p1: SunRPC.Server _

msginterface.MakeM ESSAGEPROG 1 Server[
NIL,PRINTMESSAGE. ADDITION):

p2: SunRPC.Server _
msginterface.MakeM ESSAG EPROG 1 Server[

NIL.PRINTMESSAGE. ADDITION):
out cmd.out:
10.putRope[out. ·Start up server\n"]:
[) _ SunRPCBinding.Export[unboundServer: p1.

transport: TCP. reExport: TRUE];
[) _ SunRPCBinding.Export[unboundServer: p2.

transport: UDP. reExport: FALSE]};

usage: Rope.ROPE= "implements msg.x RPCs-;
Commander .Registerr msgServer", msgServer. usage);

END.

Several items regarding the server module should noted:
1. DEFINITION module msg.mesa should be imported.

This fire is automatically generated by CedarRPCGen
and defines types and procedures needed by
both server and client modules.

2. Implementation procedures for the RPCs printmessage
and addition must be explicitly specified using proc
MakeMESSAGEPROG1Server defined in msg.mesa.

3. The transport mechanism, TCP/IP or UDP/IP, supported
by the server can be explicitly specified as an argument
to the SunRPCBinding.Export proc. If left unspecified, the
latter is assumed.

31

Applications based up~)n Cedar/Mesa:

32

Here is the client module (msgClientMain.mesa) for the RPC
application d~fi.ned by msg.x.

DIRECTORY
Commander, 10, msg, Rope, SunRPC,
SunRPCAuth, SunRPCBinding, ThisMachine;

msgClientMain: CEDAR PROGRAM
iMPORTS Commander, 10, msg, SunRPC, SunRPCAuth,

SunRPCBinding, ThisMachine =
BEGIN OPEN msginterface: msg;

msgClient: Commander.CommandProc = {
thisMachineName: Rope.ROPE _ ThisMachine.Name[];
h: SunRPC.Handle _ SunRPCBinding.lmport[

hostName: thisMachineName,
pgm: msginterface.MESSAGEPROG,
version: msginterface.MESSAGEVERS);

h1: msginterface.MESSAGEPROG1;
success, addresult: INT32;
addops: msginterface.OPERANDS = [num: 45, s: "35"];

-- Call message proc
h1 _ msginterface.MakeMESSAGEPROG1Client[h,

SunRPCAuth.lnitiateQ];
success _ h1.printmessage[h1. "Hi server\n "1;
IF (success> 0) THEN 10.PutRope[cmd.out, ·Sent OK\n til
ELSE 10.PutRope[cmd.out, "Errors sending message\n"1;

-- Call addition proc
addresult _ h1.addition[h1, addops);
10.PutF[cmd.out, "Addition results: %g + %g = %g\n",

10.int[addops.num1, 10.rope[addops.s),
10.int[addresult]J;

SunRPC.Destroy[h) };

-- mainline code
usage: Rope.ROPE = "Client for msg RPC.";
Commander.Register["msgClientU

, msgClient. usage1;
END.

Several items regarding the client module should be noted:
1. DEFINITION module msg.mesa should be imported.

This file is automatically generated by CedarRPCGen
and defines types and procedures needed by both
server and client modules.

2. The client module identifies the remote program by
invoking SunRPCBinding.lmport procedure with
arguments specifying the server machine name, program
and version number. In addition, the client can also
specify the transport mechanism; UPD/IP is assumed
unless otherwise specified.

3. In order to access the remote procedures, the client
must invoke proc MakeMESSAGEPROG1C1ient defined
in msg.mesa and save the returned access pointer. This
variable is used to invoke the remote procedures; notice
the access pointer is the first argument in the proc call.

IPD I 55&T I Software Environments & Toois

Applications based upon Cedar/Mesa:

IPO / SS&T ! Software Environments 8. Tools

C - CEDAR I MESA INTEROPERABILITY

Create the Cea-ar/Mesa based RPC application by performing
the steps shown in boldface type.

1. cowpoke% cedarrpcgen msg.x

The Cedar10.1 version of the cedarrpcgen program is
run from the UNIX command shell. It automatically
generates the following Cedar/Mesa files:

msg.mesa (imported by both client & server modules)
msgServerlmpl.mesa (server stub program)
msgClientlmpl.mesa (client stub program)
msgGetPut.mesa (interface for data type conversion)
msgGetPutlmpl.mesa (implements type conversion)

Two file modifications must be made in order for the
build process to be successful:

a. msgServerlmpl.mesa = remove reference to
the ROPE interface within the IMPORT list.

b. msgGetPutlmpl.mesa = remove reference to
the msg interface within the EXPORT list.

2. Create msgServer.config to define the server program

msgServer: CONFIGURATION
IMPORTS Commander,Convert,IO,

SunRPC, SunRPCBinding
CONTROL msgServerMain, msgServerlmpl =

BEGIN
msgServerMain;
msgServerlmpl;
msgGetPutlmpl;

END.

3. % MakeDo sun4/msgServer.c2c.o

Build the msgServer executable by typing the above
command into a Cedar viewer.

4. % Require Cedar SunRPCBinding SunRPCBinding
% Run msgServer

. Execute the msgServer program by typing the above
commands into a Cedar viewer.

5. Create msgClient.config to define the client program

msgClient: CONFIGURATION
IMPORTS Commander,IO,SunRPC,

, SunRPCAuth, SunRPCBinding,ThisMachine
CONTROL msgClientMain =

BEGIN
msgClientMain;
msgClientlmpl;
msgGetPutlmpl;

END.

6. % MakeDo sun4/msgClient.c2c.o

Build the msgClient executable by typing the above
command into a Cedar viewer.

7. % Require Cedar SunRPCBinding SunRPCBinding
% Run msgClient

Execute the msgClient program by typing the above
commands into a different Cedar viewer.

33

Mixed language RPC applications:

34

Remote procedure calls provide a means for Cedar/Mesa and
C based applic~tions to communicate and interact. As a result
of compatibility between applications generated by using the
rpcgen and CedarRPCGen utility, creating such a mixed
language RPC application is quite simple. It involves following
these steps.

a. Use the CedarRPCGen utility as discussed previously to
generate the Cedar/Mesa based server and client
programs.

b. Use the rpcgen utility as discussed previously to
generate the C based server and client
programs.

c. Use appropriate server and client programs. The only
caveat is that transport mechanism expected by the client
must be supported by the server.

An example of a mixed language (Cedar/Mesa and C)
application can be provided using server and client components
built earlier for the msg.x RPC protocol specification. In this
case, we are assuming the presence of a interactive Cedar
environment upon which the Cedar/Mesa component resides.

An illustration of the steps involved in creating a RPC
application consisting of a Cedar/Mesa server and a C client is
provided by figures 3.2 and 3.3 .

However, a variation upon this example demonstrates that the
Cedar /Mesa component can be packaged (section 3.4) into a
single executable containing the application, Cedar support
code and support software for Remote Procedure Calls. This
example consists of a Cedar/Mesa server and a C client; no
changes were made to the C client and only minor edits were
made to ServerMain.mesa so that RPC service for procedures
printmessage and addition are provided when the packaged
world executable is run. The application code can be retrieved
and built by typing the following text string to a UNIX
command shell:

% /home/rayli/RPC/get_RPC_example.csh
It will take approximately 4 minutes for the C client,
Cedar/Mesa server files to be retrieved onto the current
directory, compiled and linked. Upon completion, the server
and client programs can be invoked by typing the following
into a UNIX command shell:

% sun4/msg2ServerWorldPackage
Runs Cedar/Mesa server

% msg_c1ient <server machine> <string>
Run C client on another machine or another shell tool

(PO I SS&T; Software Environments 8. Tools

"" - ""CUI''' I mc.~", I c."ur~'V'\lJI~11 ,

CREATING RPC APPLICATION: CEDAR/MESA SERVER

msgServerlmpl
(Server Stub)

msgServerMain
(Server Program)

msg.x
(RPC Language
Specification)

CedarRPCGen
Facility

.... ______________ ________ .II'-_______ ""I' ••••••••••••••••••••

msgGetPut
msgGetPutlmpl

(Transport
. Conversion)

msgServer
(Server Process)

.

msg
(Header Info)

. . •

msgClientlmpl
(Client Stub)

". -(: , U
• t/a ••••• • .,....:

.-
. t.. I .

•

.
•

.

. ..

.

•

.:: ·m~9Ciien"t"·····
.: (Client Process) . :

msgClientMain
(Client Program)

Figure 3.2

35

\. - \.tUAK I Mt)A IN I tKUPERABIUTY

...

36

msg_svc.c
(Server Stub)

CREATING RPC APPI LlCATION: C CLIENT

A (RPC;:S' U Specifi

g.x
rlguage
cation)

RPc
Faci

-Gen
ilitv

•••••••• II ••••••••••• ...-___ ...L ___ --,..-______ -,

t
c":l

~ ~

_xdr.c msg.h msg_clnt.c
sport (Header Info) (Client Stub)

msg.h
(Header Info)

msg_clnt.c
(Client Stub) nion)

" ~ u ...
I

U "\.. .
~...rt •••

. :
. t.

msg_server.c
(Server Program)

.................................•

mS9_server :
(Server Process) • .

.
•

............................... .
•

.
•

.
•

Figure 3.3

msg_client.c
(Client Program)

IPO I SS&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABlllTY

3.6 0 Debugging peR-based Applications

RemoteDebugTool1 dbx

IPO I SS&T I Software Environments & Tools

The material in this section is taken from information gathered
by John Wenn. It is also based upon SOLARIS 1.0 and does not
apply to SOLAR IS 2.0 and SunOS 5.0.-

Debugging PCR-based applications is supported by the
debugger stub program, OebugNub.o, which is automatically
loaded into PCR upon start-up and runs as a slave lOP process.
OebugNub provides the interface--for debugger/debuggee
interactions via a reserved UNIX socket. Socket number 4815 is
reserved for the first instance of PCR on a workstation with
additional instances being assigned socket 4816,4817, etc; the
identity of this reserved socket can be acquired by running
"ShowCirioPort" from the Cedar Commander.

There are currently three methods available for debugging
PCR-based applications: RemoteOebugTool/dbx, Cirio and a
combination of the two. Each will be discussed in the following
sections.

The combination of RemoteDebugTool (ROD and dbx can be
used to debug modules written in the C programming
language. RemoteOebugTool is a UNIX program developed at
PARC CSl that attaches to the DebugNub stub and supports the
display and manipulation of threads/memory addresses within
an executing PCR world. It runs from a UNIX shell on either the
same or different SUN workstation running PCR; the
debuggee's workstation name and reserved DebugNub socket
should be supplied on the command line as follows:

% RemoteOebugTool <machine name> <socket #>
This message below will appear:

Connecting to cowpoke (port 4815) ... Oebuggee protocol
version 7.
(rdt):

A description of all ROT commands is available by typing the
"?" character.

Used in conjunction with RemoteOebugTool is the standard
UNIX dbx/dbxtool utility to perform source-level debugging.
This combination enables the PCR users to debug C-based
program modules that were explicitly written in the C language
or those translated from Cedar/Mesa by the Mimosa compiler.
To invoke dbx on the PCR environment, the C shell script XRDBX
must be executed. This script prepares the PCR world for UNIX­
level debugging by transforming symbol table information
automatically generated by PCR during dynamic loading into
an a.out format before invoking an instance of the dbx
interpreter. Source level debugging can now occur using the
facilities provided by dbx; a description of all dbx commands be
acquired by either typing "help" at the dbx prompt (dbx) or by
referencing SUN's" Debugging Tools Manual" [Ref 18].

37

38

This typescriptJ:temonstrates the steps required to debug a PCR­
based applicatip,!'l using RemoteOebugToolldbx on SUN
cowpoke. The debuggee (Reverse.c2c.o) contains a C-based
module reverse_c.c upon which dbx will be utilized. This
example uses three different tty windows for the PCR
Commander, RemoteOebugTool and dbx [distinguished by the
prompts %, (rdt) and (dbx) respectively). User-issued
commands are shown in boldface, sy~tem responses in italics
and explanations in the smaller font size.

a.ln window #1, start PCR world with application loaded
cowpoke % X11ViewersWorid
% cd Icowpoke/rayli/test
% run Reverse.ac.o
% ShowCirioPort
4815
Use this socket number as an argument in invoking RemoteOebugTool
% Is ItmpIlLsymtab.pid*
ILsymtab.pid927
The value 927 represents the process 10 of the UNIX process underlying
PeR and will be used for initiating the XROBX script. peR continually
maintains a symbol table file, Ilsymtab.pid*, that reflects the name and
relocation value of each dynamically loaded module. Should
debugging using dbx be desired, a simulated object file representing a
statically linked version of the current PeR state is built on the fly.

b. In window #2, start up RemoteOebugTool
cowpoke% RemoteOebugTool cowpoke 4815
Connecting to cowpoke (port 4815) ... Debuggee
protocol version 7.
(rclt): uni
(rclt):

c.ln window #3, prepare to invoke XROBX by creating a text
file XROBXlnner containing the process 10 of the UNIX
process underlying PCR and the symbol table file
XROBXlnner. Once the XROBX completes, the PCR
world remains frozen until the dbx command dbx is issued.

cowpoke % cat > XRDBXlnner
set core = 927
set model = ItmpllLsymtab.pid927

. cowpoke% XRDBX
Debugging with symbols from file ItmpIILsymtab.pid927,
source in IpseudolxrhomellNSTALLEDISRC, and state in
927.
Transforming symtab file ... done.
Reading symbolic information ...
Read 43177 symbols
(dbx)"

d. Perform debugging (eg, setting breakpoints) using dbx on
reverse c.c
(dbx) ignore 30 2 11 10
(dbx) file reverse_c.c
(dbx) stop in proc1
(dbx) stop at 250
(dbx) cont

e. Run PCR-based application program

f. To quit debug session while keeping the PCR world alive
(dbx) detach
(dbx) quit
(rdt) disconnect
(rdt) quit

IPO J 55&T J Software Environments & Tools

Cirio

combo of Cirio. RemoteDebugToolldbx

IPD I 55&T j Software Environments & Tools

C - CEDAR I MESA INTEROPERAI5ILJTT

Cirio is a softVl(are tool created by PARC CSL that runs in PCR
and provides ~ebugging support for PCR-based application
programs. Cirio currently handles programs written in
Cedar/Mesa and a limited subset ofthe C programming
language; users interested in a detailed description of the C
language constructs understood by Cirio should contact PARC
ortheir local Cedar Support personnel. The ultimate goal of
Cirio is to provide support for an open-ended spectrum of
programming languages.

Cirio has two versions. The same-world version runs in the same
PCR world as the debuggee and can De created in response to
an unforseen error or upon encountering a previously set
breakpoint. The remote version provides debug access to a
different PCR world which may either on the same or different
SUN workstation. In order for a remote PCR world to be
debugged, the remote version of Cirio must attach to the
OebugNub stub running as a slave lOP within the PCR world. In
order to invoke the remote Cirio, the d.ebuggee's machine
name and OebugNub port number should be supplied to the
Commander viewer:

% CirioRemote machineName portNumber

A detailed description of the capabilities of Cirio is beyond the
scope of this document; for more information concerning Cirio
debugging, users should consult [Ref 19].

PCR applications may be debugged using a combination of
Cirio and RemoteDebugToolldbx. Because the OebugNub
program provides only one interface port, only one debugger
can be active at any time. Using a particular debugger involves
detaching the other debugger from the client and attaching
itself. Any breakpoints set during the debug session are
ignored and the application program runs to completion when
the debugger is detached.

The table shown on the following two pages illustrates a
comparison of the features offered by the Cirio and
RemoteOebugTool/dbx debuggers.

39

COMPARING RDT/DBX AND CIRIO DEBUGGERS

Debug Feature
RDT/dbx Cirio

Command
Cirio Command

Status
General Specific

-

call Stack List ca II stack where Summary Release

Up/Down call stack up {down WalkStack Release

-- Variables Print expression print <expr> Release*

Print expression always display -- ---
Type of expression whatis <expr> ? Release*

Set variable assign / set <var> :;:: <exp> Release+

Local variables dump ShowFrame Release +

Breakpoints Set breakpoint stop SetBreak Release*

Clear breakpoint delete { clear ClearBreak Release*

Execute commands at break 1 when --- --
Status of breakpoints status ListBreaks Release

Connect to prog Start program from debugger -- - ---

- Debug from fatal error -- uncaught signal Release

Debug running local program -- set break Release

Debug running remote prog XRDBX CirioConnectToWorid Release

Run I Trace Run program -- --- ---
Continue execution cont Proceed Release

Trace execution1 trace --- ---

Stop at next line (into procs) step --- Planned

Stop at next line (ignore procs) -- Planned

Call procedure -- <Proc(a]> Release@

Kill current thread kill Kill Release

Abort current thread abort Abort Release

Files IDirectories Add dir to search path use AddDir Release

List search path use ListDir Release

Remove dir from search path -- RemoveDir Release

Change current dir cd -- ---
Show source position <always>2 ShowSourcePosition Release +

40 IPD ' SS&T i Software Environments & Tools

C - CEDAR I MESA INTEROPERABILITY

COMPARING RDT/DBXAND CIRIO DEBUGGERS

Debug Feature
RDT/dbx Cirio

Command
Cirio Command

Status
General Specific

Threads Focus on thread examine Detailed Release

Set current thread examine SetCurrentThread Release

-- Print thread info display PrintCurrentThread Release

Add thread to list --- AddThread Release

List th reads display ListAvaiiableThreads Release

Breakpoint stop all threads <always> ToggleBreakStopAIl Release

Freeze thread freeze Freeze Release

Remote Debug Start remote debug connect CirioConnectToWorld Release

Stop remote debug disconnect CirioDisconnect Release

Kill remote client quit KiliWorld Release

Stop remote client stop StopRemoteWorld Release

Resume remote client cont ResumeRemoteWorld Release

. Resume (1 virtual processor) uniprocessor ResumeVPO Release

Mise commands Help help CirioHelp Release

Stop tool ctrl-C Stop Release

Create menu menu2 -- --
Add new button button2 --- ---

Alias dbx command alias --- --
Execute file with dbx cmds source --- ---

Set language -- Language Development

Automatically set language <done> -
Keep window state <done> --

Release* = This works in the release version for Cedar code. It works in the Development version for C code

Release + = Release version works for Cedar code. It works (with restrictions) in Development version for C

code. Cirio currently has problems with complex C expressions that include arrays and pointers.

Release@ = This works for Cedar code while local debugging. It does not work for C code in local

debugging, and does not work for anything while remote debugging.

Planned

Planned

Footnote 1 = Dbx has many options on when a breakpoint is executed. They include: at a line number, only if

a condition is true, if a variable changes, and at the start of a procedure. The when and trace

command have simi liar options.

Footnote 2 = This command only works in dbxtool.

IPD / SS&T! Software Environments & Tools 41

... - ... "' ... "'" , m",;>A '"' cnVl'l:KADILII Y

3.7 ~0 Case Study: Integrating EGRET* witb,WASABI

42

An example of a mixed language system within the Cedar
environment is Wasabi 1.0 (see Figure 3.4). A component of
the Production POL Option system (PPO 1.0), Wasabi interprets
and decomposes Postscript POL level 1 data to the selected
output device pixel level. This page information is then passed
back to EGRET for subsequent output on a printer or display
device.

Functional components ofWasabi:

Mustard: Provides an RPC interface to EGRET
PSPackage: Postscript Interpreter
Imager: Common Cedar Imager
CFontSolution: Common Font Rasterizer
PrintColor: Handles gray shades, half-toning for black/white

Wasabi is implemented by a combination of Cedar/Mesa and C
code with the majority being CedariMesa based (> 90%).
CFontSolution is the only component that contains C code; it
utilizes font rasterization services provided by the C-based Font
Solution software originally developed by WRC on a standard
UNIX platform. This software was ported to the Cedar
environment and combined with Cedar/Mesa mod ules
providing the rasterizer with necessary character/font
information such as character metrics. This exchange is
implemented using the "EXTERNAL NAMES" technique (section
3.2.1) to enable the C-based software to access Cedar/Mesa
procedures. All CFont Solution and Cedar/Mesa modules are
incorporated into a Cedar/Mesa configuration module (section
3.3) named CFontSolution.

Wasabi is packaged (section 3.4) into a single binary executable
containing the Cedar Basement, Miscellaneous Runtime and
the application-specific Postscript Decomposer code. This
package contains all the facilities required to run Wasabi on
SUNOS 4.1.x. Although it occupies a single executable/address
space, Wasabi spawns off several UNIX processes (section 2.2)
related to the Portable Common Runtime implementation
within the Cedar Environment. The exact number of processes
is provided by the user along with a number of other PCR
operating parameters during package creation.

* Unfortunately both the Host PDL Decompression Daemon and the whole
binary is called "EGRET". creating minor confusion for the novice reader.
For the sake of clarity. the term EGRET in this document will refer to the
whole binary shown on the left hand side of Figure 3.4.

IPD I SS&T I Software Environments & Tools

Printer
ESS

PRODUCTION POL OPTION (PPO 1.0) ARCHITECTURE

"Start Decomposition"
+ Postscript Stream

"Decomposition
Completed"

EGRET

HEIS

" EGRET··
BINARY

•

rRPC;s'!
, ,

WASABI
PACKAGED

WORLD

...... Shared 1 1 ~ CFlo~t-
" ... 1 Memory'")f:·~· .. =·=· .. ····· - -- .,.: So utlon

U:~~~~· Tr::::e::er
--.1

1 Shared
Disk

PortLib

Note: The two binaries are in separate address
space with some shared memory Figure 3.4

.... - _~, ,--.. .1 •• _.,,_. _._ .. _._ ••

4)

... - 11"" I mC:;)A '1'1' tKUl'tKAlSILJTY

44

Functional components of EGRET:

EGRET: Host POL Decompression Daemon
HEIS: Host Environment Interface,

(Coordinates decomposition)
Penguin: Provides an RPC interface to Wasabi
Transport Layer: Places compressed page onto shared disk
Chameleon: Provides data compression
PortLib: Portability Library

EGRET is implemented using the C programming language and
coordinates the entire process of Postscript POL decomposition,
including driving Wasabi. It runs atop SUNOS 4.1 as a separate
process (private address space) from Wasabi. A mechanism is
required to pass the following information between these two
processes: job control information, printing commands,
Postscript POL data, rasterized frame buffer and detected
errors. A combination of Remote Procedure Calls (section 3.5)
and shared memory are used to implement the information
exchange capability.

Use of Remote Procedure Calls between the EGRET and Wasabi
processes enabled both to interact, yet remain separate in the
following criterion: UNIX processes, address space, runtime
environment. This separation allows each system to be
designed, developed, implemented and debugged with a
greater degree of independence. It also means that there is no
need to port the EGRET software into the Cedar Environment
which may not be such a simple task (section 4). The
disadvantages of this implementation method are related to
complexities introduced when the software is not totally
integrated and time delays caused by the additional layers of
communication protocol (RPC) introduced.

IPD I 5S&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABILIl T

4.0 E9 0 Porting C to the Cedar environment

IPO! SS&T I Software Environments & Tools

There are potential problems involved in porting C code written
on foreign software platforms, eg, using standard UNIX
libraries (eg, libc.a), to the Cedar environment. These obstacles
are related to the fact that Cedar supports multiple-threaded
processes while the UNIX programming model allows only one
thread per process. This code may be incompatible within a
multiple threaded environment and not "thread-safe".

Operating within the context of a thread and not a
heavyweight process, user code must be "a good citizen" and
not interfere with the operation of the Cedar/PCR
environment. The following rules should be obeyed.

a. Do not invoke any system calls which affect the operation or
properties of the UNIX heavyweight process since the
operating system state is being shared with other threads in
the process. For example, setting any limits on maximum
system resources consumed by the process, such as the
number of file descriptors that may be supported.

b. Refrain from the use of UNIX signals and signal handlers. The
signal mechanism is used frequently during the
implementation of the PCR. For example, the signal
SIGALRM is used by the PCR scheduler to schedule a new
thread for execution.

c. Refrain from using the interval timer because PCR is using it
for scheduling purposes.

Any source code must also be reentrant or monitored. This
refers to a condition whereby multiple processes are
concurrently executing within a procedure with the integrity of
any global data being preserved. A vehicle for providing
synchronized access to shared data is a monitor. This
mechanism enforces mutual exclusion by allowing only one
process executing within at any time.

45

4.1

46

o Protocol for the porting process

a. Get rid of the UNIX I/O system calls (eg, open, read, write, etc)
and replace with a new set of PCR I/O interface calls. The
tables shown in the next section lists the "thread-safe"
equivalents for the UNIX I/O system calls. [Warning:
although these procedures should be safe, there are no
absolute guarantees].

Stored on thefile drawer [Kent: ESCP10:Xerox]/RLi are UNIX
csh command files convert2PCR.csh and convert2PCR.data
which takes a C program and gene-r.ates an equivalent
"thread-safeN C program whereby all instances of UNIX 1/0
system calls (see section A of the Appendix) are replaced by
their PCR function equivalents. Users should retrieve these
two files and execute the following command within the
UNIX shell interpreter:
convert2PCR.csh < Input C filename> <Output C filename>

A second means of replacing the UNIX 110 system calls is to
retrieve the C header file stored as
[Kent:ESCP10:Xerox]/RLildefinePCR.h and include within all
C program modules. This header file utilizes the token
substitution facilities provided by the C compiler
preprocessor.

b. Any routines with global or static variables may be protected
by a monitor if there is a possibility that more than one
thread is executing here at the same time. A monitors is a
collection of procedures, variables and data structures
packaged in a manner where global data integrity is
guaranteed by insuring only one process can be active in the
monitor at any instant. This technique was used by
developers of Wasabi during integration of the font
processing software package.

Monitors are available to both Cedar/Mesa and C
programmers. It is available as a built-in language feature
within Cedar/Mesa [Ref 5] and implemented by C-based PCR
function calls such as XR_MonitorEntry and XR_MonitorExit
(defined within PCR threads interface Threads.h [Ref 23]).
Another alternative would be to redefine global variables in
a thread-private manner.

c. Be careful about allocating memory using malloc. The
garbage collector needs to know about any dynamic memory
that is being allocated. The preferred routine for memory
allocation is GC malloc. The function GC malloc atomic can
be used if the referent object will not contain any pointers;
this may be used for storing large bitmaps.

d. Don't use UNIX signals. The PCR code uses several of the
signals to perform various actions such as SIGBUS to detect
writes to protected pages, SIGALRM to do time slicing
amongst threads.

IPO / SS&T / Software Environments & Tools

C - CEDAR / MESA INTEROPERABIUTT

AppendixA. o UNIX system call replacements

This table illustrates the equivalent PCR functional replacements (C and Cedar/Mesa version) for the
UNIX system calls (information taken from [Ref 21- 23]. Refer to these documents for more details).
Special mention for those items marked by a numerical superscript are at the end of the table.

UNIXC PCRC PCR Cedar/Mesa
accept XR_Accept Un ixSysCaIIs.Accept
access XR_Access
bind XR_Bind UnixSysCalls.Bind
_chmod XR_ChMod UnixSysCalls.ChMa:c;t
close XR_Close UnixSysCalls.Close

connect XR_Connect UnixSysCalls.Connect
errno1 XR_GetErrno UnixErrno.GetErrno

XR_SetErrno UnixErrno.SetErrno
fchmod XR_FChMod UnixSysCalls.FChMod
fcntl2 XR_FCntl
fork XR_Fork UnixSysCaIIExtensions.Spawn

UnixSysCallExtensions.CDSpawn

fprintf4 XR_FPrintF
fstat XR]Stat UnixSysCalls.FStat
fstatfs XR_FStatFS UnixSysCa lis. FStatFS
fsync XR_FSync UnixSysCalls.FSync
ftruncate XR_FTruncate UnixSysCalls.FTruncate

getdents XR_GetDEnts Un ixSysCa IIs.GetDEnts
getdomainname XR_GetDomainName UnixSysCalls.GetDomainName
getdtablesize XR_GetDTableSize UnixSysCalls.GetDTableSize
getegid XR_GetEGID UnixSysCalls.GetEGID
geteuid XR_GetEUID UnixSysCalls.GetEUID

getgid XR_GetGID UnixSysCalls.GetGID
getgroups XR_GetGroups UnixSysCalls.GetGroups
gethostid XR_GetHostID UnixSysCalls.GetHostlD
gethostname XR_GetHostName UnixSysCalls.GetHostName
getmsg XR_GetMsg . UnixSysCalls.GetMsg

getpagesize XR_GetPageSize UnixSysCalls.GetPageSize
getpeername XR_GetPeerName UnixSysCalls.GetPeerName
getpgrp XR_GetPGrp Un ixSysCalls.GetPGrp
getpid XR_GetPID UnixSysCalls.GetPID
getppid XR_GetPPID UnixSysCalls.GetPPID

getrusage XR_GetRUsage UnixSysCalisExtras.GetRUsage
getsockname XR_GetSockName UnixSysCalls.GetSockName
getsockopt XR_ GetSockOpt UnixSysCalls.GetSockOpt
gettimeofday XR_GetTimeOfDay UnixSysCalls.GetTimeOfDay
getuid XR_GetUID UnixSysCalls.GetUID

ioctl2 XRJOCtl UnixSysCalls.lOCtl
kill XR_Kill U nixSysCalls.KiII
killpg XR_KiIIPG UnixSysCalls.KiIIPG
link XR_Link UnixSysCalls.Link
listen XR_Listen UnixSysCalls.Listen

IPD I SS&T I Software Environments & Tools 47

_ ___- "vrl;"""gILII ,

48

UNIXC
Iseek
Istat
malloc
mincore

mkdir
mknod
mmap
mprotect
msync

munmap

open
poll3

printf4
profil

putmsg
read
readlink
readv
recv

recvfrom
rename
rmdir
send
sendto

setsockopt
shmat
shmctl
shmdt
shmget

shutdown
socket
sprintf4
stat
statfs

symlink

sync
truncate
unlink
utimes

write
writev

Notes:

PCRC
XR_LSeek
XR_LStat
GC_mal\oc
XR_MlnCore

XR_MkDir
XR_MkNod
XR_MMap
XR_MProtect
XR_MSync

XR_MUnmap
XR_Open
XR_PolI
XR_PrintF
XR_Profil

XR_PutMsg
XR_Read
XR_ReadLink
XR_ReadV
XR_Recv

XR_RecvFrom
XR_Rename
XR_RmDir
XR_Send
XR_SendTo

XR_SetSockOpt
XR_ShmAt
XR_ShmCtl
XR_ShmDt
XR_ShmGet

XR_Shutdown
XR_Socket
XR_SPrintF
XR_Stat
XR_StatFS

XR_SymLink
XR_Sync

XR_Truncate
XR_Unlink
XR_UTimes

XR_Write
XR_WriteV

PCR Cedar/Mesa
Unix5ysCalls.LSeek
U n ixSysCa lis. LStat

UnixSysCalls.MlnCore

Unix5ysCalls.M kDi r
Un ix5ysCalls.M kNod

Unix5ysCalls.Open
Unix5ysCalls.Poll

U nix5ysCalls.Profil

Unix5ysCalls.PutMsg
Unix5ysCalls.Read
Unix5ysCalls.ReadLink
UnixSysCalls.ReadV
Unix5ysCalls.Recv

Unix5ysCalls.RecvFrom
Unix5ysCalls.Rename
UnixSysCalls.RmDir

UnixSysCa IIs.Send
UnixSysCalls.SendTo

U nixSysCalls.SetSockOpt

Un ixSysCalls.5hutdown
Unix5ysCalls.Socket

Unix5ysCa Ils.Stat
UnixSysCalls.StatFS

UnixSysCalls.SymLink
UnixSysCalls.5ync
UnixSysCalls.Truncate
Unix5ysCalls.Unlink
UnixSysCalls.UTimes

UnixSyscalls.write
UnixSysCalls.WriteV

, Retrieving the error code incurred in a UNIX system call involves invoking a function rather than accessing
external variable ·errno·

2 Extremely dangerous to use. Only some uses will work, others will thwart PCR implementation. Try to avoid
use if possible. In all cases, do not manipulate the "no delay· or "no blocking" flags. PCR uses these flags
internally as part of it's I/O system

3 Only a restricted form is allowed. Only one file descriptors can be examined and it must be valid
4 A maximum of eight print format variables allowed

IPO I SS&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABILITY

Appendix B. o Unimplemented UNIX system calls

Some UNIX system calls are not valid or unimplemented within the Cedar environment. A list of the
unimplemented UNIX system calls are shown below along with the indexed reason for this exclusion. For
a more detailed explanation, refer to UnixSysCalisDoc.tioga [Ref 21].

Function Reason Function Reason

acct 2 select 1 Use poll equiv
adjtime 2 semctl 5
asyocdaemon 4 semget 5
audit 2 semop 5
auditon 2 setauid 2

auditsvc 2 sbrk 4
brk 4 setgroups 3
chdir 3 sethostname 2
chown 2 setitimer 4
chroot 2 setpgrp 3

creat 1 Use open equiv setregid 3
dup 4 setreuid 3
dup2 4 setpriority 3
execve 4 setrlimit 3
exit 4 settimeofday 2

fchown 2 setuseraudit 2
flock 4 shmctl 4
getauid 2 shmget 4
getdir(mtries 1 Use getdent equiv shmop 4
getitimer 4 sigblock 3

getpriority 3 sigpause 3
getrlimit 3 sigsetmask 3
mmap 4 sigstack 3
mount 2 segvec 3
mprotect 4 socketpair 4

msgctl 5 swapon 2
msgget 5 syscalJ 4
msgop 5 umask 3
munmap 4 uname 1 Use gethostname equiv
nfssvc 4 unmount 2

pipe 5 vadvise 3
ptrace 3 vhangup No meaning in PCR
quotactl 2 wait 4
reboot 2 waitS 4
recvmsg 1 Use recv, recvfrom equiv wait4 4
sendmsg 1 Use send, sendto equiv

Reasons for exclusion from Cedar environment
1. The function is obsolete or can be emulated with other calls
2. Function is available only to the super user or affects only the global Unix state
3. Affects the properties of a single UNIX heavy-weight process
4. It's use interferes with the PeR kernel implementation.
5. Within peR tasks, use of shared memory, monitors and condition variables are recommended.

For communicating with other UNIX processes outside PCR, use FIFO files (aka pipes).

IPO I S5&T I Software Environments & Tools 49

50 IPO I SS&T I Software Environments & Tools

C - CEDAR I MESA INTEROPERABILITY

Appendix C: Selected Reference Materials

IPO i SS&T I Software Environments & Tools S1

An 1nttoduction to the Portable Cedar Basement Documentation - DRAFT

An Introduction to the Portable Cedar
Basement Documentation

Mark Weiser

• Copyright 1989 Xerox Corporation. All rights reserved.

Use and copying of this software and preparation of derivative works based

upon this software are permitted. Any distribution of this software or

derivative works must comply with all applicable United States export

control laws. This software is made available AS IS, and Xerox Corporation

makes no warranty about the software, its performance or its conformity to

any specification. Any person obtaining a copy of this software is requested

to send their name and post office or electronic mail address to PCRCoordinator.pa@xerox.com, or

PCR Coordinator

XeroxPARC

3333 Coyote tiill Rd.

Palo Alto. CA 94304

Abstract: This document is an overview of the organization of a set of documents which
together describe the Portable Cedar Basement. You should certainly read (or at least
browse) this first before trying to tackle the others.

Created by: Mark Weiser

Maintained by: Mark Weiser (weiser.pa)

Keywords: PCR, Cedar, PCedar, documentation

XEROX

For Internal Use Only - draft

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

An Introduction to the Portable Cedar Basement Documentation - DRAFT

Introduction

This document is an overview of the organization of a set of documents which together
describe the Portable Cedar Basement You should certainly read (or at least browse) this first
before trying to tackle the others.

DEFINITION: The Portable Cedar Basement is that code. provided by PARC 10 ssu. needed for
runtime support of B WS and Viewpoint code running on Sun platforms.

As a consequence of this definition. the Mimosa compiler and friends are not part of the Portable Cedar Basement
because they are tools for doing the BWS and VP port but are not actually used for runtime support in applications.
Similarly. documentation about PViewers on Suns. or the Cedar environment on Suns generally. is not part of the
Portable Cedar Basement

The Portable Cedar Basement consists of two parts:
LPCR
2. Cedar/Mesa Support

Part L PCR. contains no Cedar or Mesa specific code. and is written completely in C. PCR
should never be used directly by Cedar or Mesa programmers. Mesa interfaces exist in
Cedar/Mesa Support for accessing all PCR functionality. However, the PCR documentation is
sometimes the best source of information about what is really going on.

Part 2. Cedar Support. itself contains three parts:
a. CedarPreBasics
b. CedarCore
c. BasicCedar

Part 2.a. CedarPreBasics, is the first layer of direct Cedar support. CedarPreBasics itself is
written entirely in C. CedarCore is almost all Cedar/Mesa. with two small C-Ianguage modules.
BasicCedar is all Cedar/Mesa. For much more information about these layers and what is in them.
see PCedarOverview.tioga.

The next section gives an outline of the complete set of documents. and a brief description of
each. All the documentation is at least indirectly referenced in
[pCedarL2]<Top>PCedarBasementDoc.df. A bringover of PCedarBasementDoc.df should get
your hanrjs on everything referenced here to whatever depth.

Outline

1. Introduction - all controlled by {PCedar}.2j<Top)PCedarBasementDoc.df
A. PeedarBasementIntroduction.tioga - This document
B. PeedarOverview.tioga - An overview of all the code and interfaces in the

basement. and pointers to more detailed documentation and status.
11 PeR - all controlled by {PCedarl.2j<Top)PCRDoc.df

A. Tbe Portable Common Runtime Approach to Interoperability - technical paper
about PCR. as submitted to SOSP.

B. Detailed PeR interfaces
1. TbreadslnterfaceDoc.tioga
2. GClnterfaceDoc.tioga

PCEDAR 1.2 • FOR INTERNAL USE ONLY

2

An Introduction to the Portable Cedar Basement Documentation - DRAFf

3. LoadinginterfaceDoc.tioga
4. CommandlooplnterfaceDoc.tioga
5. CleanUpNeededDoc.tioga - where we admit our mistakes but pledge to do

better.
C. PCRDoc.tioga - how to actually run PCR

_- D. PCRSymtabUtilitiesDoc.tioga - ldhide. transform +-symtab. etc,
m. Cedar Support

A. ExperiencesCreatingAPortableCedar.tioga - technical paper about Cedar support.
to appear in SIGPLAN '89 conference. Controlled by
[PCedarl.2]<Top)PCedarDoc.dj

B. CedarPreBasics - all controlled by [PCedarl.2}<TopXedarPreBasics-Source.df
1. CedarPreBasicsInterfaceDoc.tioga - description of the various

CedarPreBasics routines. except for installation support.
2. InstallationNotes.tioga, InstallationSupport.mesa - documentation of the

installation support part of CedarPreBasics.
C. CedarCore - documentation accessible via

[PCedarl.2}<TopXedarCoreDocumentationWorlddJ
1. RuntimeSupport -- mesa and tioga
2. RopePackage -- mesa only
3. SafeStoragePackage -- mesa only
4. RegisterRefLiteralImpl -- mesa and tioga
5. VMPackage -- mesa and tioga
6. RealPackage -- mesa and tioga
7. RasterOpPackage -- mesa and tioga
8. Faces -- mesa and tioga
9. Communication-- mesa and tioga

D. BasicCedar - documentation accessible via
[PC edarl.2}<Top)BasicC edarDocumentation W orlddf
1. Debugger -- mesa only
2. BootPackages -- mesa only (but BasicPackages refers to. out of date)
3. BasicTimePackage -- mesa only
4. IOPackage -- mesa and tioga
5. Greet -- mesa only
6. BasicPackages -- mesa and tioga (tioga out of date)
7. ProcessPropsImpl-- mesa only
8. UnixSysPackage -- mesa and tioga
9. UXStringsPackage -- mesa and tioga
to. UXIOImpl-- mesa only

PCEDAR 1.2 • FOR INTERNAL USE ONLY

3

PCedarOverView

An Overview of the Portable Cedar
Basement

Carl Hauser, Mark Weiser

• Copyright 1989 Xerox Corporation. All rights reserved.

Use and copying of this software and preparation of derivative works based

upon this software are permitted. Any distribution of this software or

derivative works must comply with all applicable United States export

control laws. This software is made available AS IS. and Xerox Corporation

makes no warranty about the software. its periormance or its conformity to

any specification. Any person obtaining a copy of this software is requested

to send their name and post office or electronic mail address to PCRCoordinator.pa@xerox.com. or

PCR Coordinator

Xerox PARC

3333 Coyote t-lill Rd.

Palo Alto. CA 94304

Abstract: This is high-level introduction to the low-level concepts and facilities of the
Portable Cedar (PCedar) system. It superficially describes the major components of the
system referring the reader to more detailed documentation of the individual components.
More importantly, it describes the relationships between these components. Therefore, this
document is a good starting place for people wanting to understand more about PCedar as
a whole.

Created by: Carl Hauser

Maintained by: Carl Hauser (chauser.pa>

Keywords: Cedar, CedarPort, CedarTuning, mesa, portableCedar, Sun

XEROX

For Internal Use Only

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

PCedarOvervfew

1. Introduction

Portable Cedar (pCedar) is a reimplementation of the Cedar system in use at the Computer
Science Laboratory of the Xerox Palo Alto Research Center. PCedar is intended to make the
unique collection of features of Cedar available to a much wider audience by allowing the system
to run on ingustry-standard hardware. In this introduction. I will briefly introduce the low levels
(basement) of the PCedar system. trying to show how they fit together. Later sections will deal
with each of these in some detail.

PCedar is implemented on top of PARes so-called Portable Common Runtime (PeR). PeR
provides garbage collection. lightweight threads. and dynamic program loading in a language­
independent fashion. PeR also provides a simple command interpreter used to control dynamic
loading of other parts of the system. PCedar uses these facilites of the PCR to implement the Cedar
language constructs surrounding the Cedar notion of PROCESS and various facilities involving
garbage-collected. dynamically-typed allocable storage. The PeR is intended to support other
languages as well. We intend to promote its use for languages such as C. Modula-l LISP. and
C++ . PCR is written mostly in C. with a smattering of machine-dependent and operating-system­
dependent assembly code. It is maintained with make files on a Unix system.

In order to resolve references through interfaces and to support the particular runtime type
encoding used by the Cedar compiler. more support is needed than provided by PCR. The
CedarPreBasics layer contains this support CedarPreBasics registers new commands with PCR's
command interpreter to allow Cedar/Mesa programs to be installed and run. CedarPreBasics is
written excluSively in C. CedarPreBasics and the remaining components of PCedar are
maintained using the DF software and other tools in the Cedar and PCedar environments.
CedarPreBasics is documented in CedarPreBasicsInterfaceOoc.tioga. InstallationNotes.tioga. and
InstallationSupportmesa.

Once CedarPreBasics is available. Cedar/Mesa programs can be run with intermodule. type
checked reference resolution performed by CedarPreBasics. The next layer to be loaded is
CedarCore which completes the runtime support for the language (amongst other things).
CedarCore contains the code supporting Cedar/Mesa SIGNALS together with interfaces and
implementations connecting the Cedar language view of PROCESSes to the PCR implementation.
CedarCore also provides interfaces for machine-independent. commonly used. low level
arithmetic. logical. and storage overlay operations (Basics. PBasics. PBasics16. Checksum).
CedarCore also contains the implementations for the Cedar language primitives ROPE and ATOM.
Once CedarCore has been run. programs using the full Cedar/Mesa language may be run.
CedarCore is written mostly in Cedar with a bit of C (which (c)(sh)ould now probably be
removed).

Above CedarCore lies BasicCedar. We have gathered many commonly used facilities into this
package so that they are available to all Cedar programmers. Various hash tables (Reffab and
friends). access to the operating system (UnixSysCalls). time (BasicTime). Cedar's 10 streams (10).
and some debugging support (Debugger) are examples of the facilities found here. The distinction
you should draw between CedarCore and BasicCedar is that CedarCore supports the Cedar
language while BasicCedar embodies low-level aspects of the Cedar programming environment:
those facilities deemed so important that they should be available to every Cedar program.
Although this distinction has not been followed exactly in dividing packages between CedarCore
and BasicCedar it probably should have been. BasicCedar is written entirely in Cedar.

We have now anived at the point where the system stops being so precisely layered.
Futhermore. it begins to look and feel a lot like Cedar on D-Machines. Above the BasicCedar
level many of the programs for PCedar share much of their source code with their D-Machine

PeEDAR 1.2 • FOR INTERNAL USE ONL Y

2

PCedarOverView

counterpans (DCedar). The interested reader can gain a fair appreciation of PCedar from this
level up by reading [Swinehart et al. A Structural View of the Cedar Programming Environment.
Xerox PARC Report CSL-86-1].

2.PCR

The components of PCR are Threads. GC. Loading. and Commandloop.

2.1 Threads

The components of threads are described in a number of C-Ianguage ".h" header fIles. There
are basically two pans to the threads world: one for threads themselves and related activities
(monitors. condition variables. exception handling. etc.). and one for 1/0. Threads themselves are
described by the header files: BasicTypes.h. Ermo.h. Threads.h. and ThreadsBackdoor.h. 110 is
described by the interfaces Cour.h. SPPEmu.h. ThreadsMsg.h. ThreadsSlaveIOP.h. UIO.h.
ThreadsFrameBuffer.h. courier.h. and courmux.h.

None of the C interfaces are appropriate for Cedar or Mesa programmers. who should instead
use UnixSysCalls for lowest-level 1/0 operations (and preferably use something higher like
StreamIO instead of lowest level 1/0). and the Process interface or Mesa language mechanisms for
threads interactions.

Full documentation for PCR threads is in ThreadsInterfaceDoc.tioga. which has the following
sections:

Time -- milliseconds to/from ticks. timeouts.
Monitors -- initialize. enterlleave monitors.
Condition Variables (CV's) -- abort wait timeout on conditions.
Context Save/Restore -- setjmp/longjmp replacements for internal use.
SignaVError Inter/ace -- general mechanisms for integrating threads with Unix signals.
Thread properties -- attach and query general client thread-specific data.
Thread Priorities -- change priorities.
Thread Create/Destroy runtime support -- fork. join. detach. abort etc.
Doing low level output from threads -- very raw message output Deprecated.
E rrno -- using Unix ermo in threads.

2.2 Garbage CoUection

The garbage collector provides language-independent automatic storage management for all
clients of PCR and above. PCR provides only garbage collected storage--there is no other kind of
storage. Mesa and Cedar programs should not access the PCR storage management interfaces
directly. but use the Mesa NEW construct or other Mesa interfaces.

Full documentation the storage management interface is provided by GClnterfaceDoc.tioga
which has the following sections:

Externally Visible Variables -- XR +-gcIgnoreDataAndBSS and XR +-gcVersioIt
Informational Routines -- look at global storage statistics
Routines to Control Behavior -- control collector behavior. include progress printing.
Routines to cause behavior-- the allocation routines.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

3

PCedarOver0ew

Unix interface replacements -- alternative allocation interfaces.
To be called by initializing world -- not for client use.
Finalization -- still in flux.
Things used by the GC world -- INTERNAL USE ONLY.

2.3 Dynamic loading

The dynamic loader provides a mechanism for loading C and Cedar code into the PCR
system. There are basically two calls: one to load a file (load" file) and one to interrogate symbols
in the file (get .. sym .. val). There are also lots of variants of these, and various other interrogatory
routines (e.g. XR .. GetNumLoadedProcedureSymbolsO). The interface to the dynamic loader is
probably the least clean of any in PCR.

Full documentation is in LoadingInterfaceDoc.tioga,

2.4 Commandloop

These routines implement the very basic PCR user interface, which is just a simple command
interpreter (read-eval-print loop). These routines are NOT intended for direct use by Cedar or
Mesa programmers. There are Cedar/Mesa interfaces which provide equivalent functionality in
cleaner ways. These routines provide access to the PCR Unix command line, parsing of
arguments. e~.

Full documentation is in CommandioopInterfaceDoc.tioga.

3. CedarPreBasics

CedarPreBasics contains a number of interfaces for raw support of the Cedar language.
CedarPreBasics is written in C. By including CedarPreBasics into PCR one can then run a subset
of Cedar (no signals, no ref-literals, no ropes. no processes). All the routines in CedarPreBasics are
for internal use only. No routines in CedarPreBasics are for direct calling by Cedar/Mesa or C
applications. CedarPreBasics contains support for installation and management ci Cedar
interfaces and start traps, floating-point arithmetic. bit and byte moves, REF management, and
several other miscellaneous things. CedarPreBasics also registers some additional commands with
the PCR command interpreter.

Full documentation is in CedarPreBasicsInterfaceDoc.tioga. which has the following sections:
I nstallationSupport -- start traps, interfaces, cedar symbols
CompilerSingleReal -- floating-point number support
Cmds -- register some additional commands. no procedural interface
Basics -- some basic routines required by the code generated by the Mimosa backend
Safestorage -- -literal and storage management interfaces from Cedar to PCR
Cedarextra -- additional routines required by the code generated by the Mimosa backend

4. CedarCore

PCEDAR 1.2 • FOR INTERNAL USE ONLY

4

PCedarOverView

The components of CedarCore are (February L 1989) RuntirneSupport RopePackage.
SafeStoragePackage. RegisterRefLiteralImpL VMPackage. RealPackage, RasteIOpPackage, Faces.
and Communication.

4.1 RuntimeSupport

The components of RuntirneSupport are RuntirneErrorIrnpL SignalslmpL ChecksumIrnpL
UnboundIrnpL ProcessIrnpL and BasicsIrnpl. In addition to these Cedar implementation modules,
RuntirneSupport also contains two C modules: SignalSupport and ProcessSupport

RuntimeErrorImpl

This module exports defined signal and error values to the RuntirneError interface. Things
here and in SignalsIrnpl and SignalSupport are carefully arranged so that. for example.
RuntirneError.Aborted is identical to the language builtin Signal ABORTed and similarly for other
language builtins. RuntimeErrorImpl also defines other signals and errors that could be raised as a
result of programs doing illegal things in the language (NarrowRefFault. for example. is defined
here).

SignalsImpl and SignalSupport

These modules support the Cedar/Mesa SIGNAL and ERROR language feature. There are two
aspects of this' feature. First each process needs a signal handling environment maintained for it as
it enters and leaves scopes protected by catch phrases. To do this, the compiler generates calls to
XR .. PushHandler() and XR .. PopHandleI(). These are implemented in SignalSupport They
maintain a stack of handlers. The second aspect of signal handling is actually raising and catching
signals. The Mimosa-generated code for raising a signal is a calIon XR .. RaiseError() or
XR .. RaiseSignalO. These are implemented in SignalSupport but the code there simply calls
procedures in SignalsIrnpL SignalsIrnpLSignalHandler does the real work.

The initialization of SignalsIrnpl connects the ERROR and SIGNAL values declared in
RuntirneErrorIrnpl and the procedures declared in SignalsIrnpl into the C external name space by
passing them to a procedure in SignalSupport SignalSupport assigns these values to C external
variables. This is a hand-crafted import into C from Mesa. Better ways are available to do this
and it deserves a second look.

The design of the PCedar signal handling machinery is intended to provide sufficiently similar
semantics to the PrincOps design that programs using SIGNAL and ERROR in the usual ways will
not be affected.

The PCedar design is actually somewhat more powerful than the PrincOps design and
interacts better with INLINE procedures. The conservative approach to programming with the new
design is to continue using common DCedar signal handling idioms. This will also be necessary to
maintain source code compatibility between DCedar and PCedar.

As noted above. PCedar uses dynamic handler establishment which is expected to be
somewhat slower. relative to procedure calL than the (static) DCedar mechanism.

ChecksumImp/

ChecksumIrnpl provides INLINE and callable procedures for computing 16 bit checksums of
sequences of 16 bit words. The computed checksum should agree with what's computed in

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

5

PCedarOverview

DCedar for the same sequence. This is important because these checksums are passed over the
network.

The declaration of Checksum.ComputeChecksum had to change from DCedar because
PCedar POINTER variables have 4-byte alignment while DCedar POINTER variables have 2-byte
alignment In order to be able to compute checksums starting at positions with 2-byte alignment,
another parameter is required giving the offset from a 4-byte aligned target

Do we need a standard 32 bit checksum program for intemalJPCedar only use?

U nboundI mpl

This module installs code used by the installation support component of CedarPreBasics to
raise RuntimeError.UnboundProcedureFault Since CedarPreBasics is written in C it is hard to do
signalling there. This is another instance of Mesa-C intercalling that needs to be revisited.

Processlmpl and ProcessSupport

Together. these provide the needed connection between Cedar/Mesa and the threads
implemented in PeR. For the most part operations on threads. monitors and condition variables in
Mesa programs can be translated directly into PeR calls. The two exceptions are: WAIT on a
condition variable. where the PeR .Jrimitive returns a failure indication if the thread is aborted
while waiting: but the Cedar/Mesa" specification requires that the ABORTed error be raised; and
JOIN with another thread. where the PeR primitive returns a failure indication if the joined process
is invalid. but the language specification requires the InvalidProcess error be raised.
ProcessSupport provides the XR+-JoinO and and XR+-Wait() procedures to be called from
Mimosa-generated code and implements them with appropriate calls on the PeR and signal
machinery.

ProcessImpl implements the Cedar/Mesa Process interface by making calls on the PeR.

JOIN and Process.Detach are now implemented safely because the runtime uses enough bits
for process IDs that they need never be reused. However. the language still treats them as unsafe.
For programs to be portable between the DCedar and PCedar worlds they must continue to treat
all uses of JOIN and Process. Detach as UNSAFE.

Basicslmpl (and the Basics. PBasics and PBasicsJ6 interfaces).

BasicsImpl implements the FillBytes and FillWords procedures of the Basics interface. Most
of the procedures in the Basics interface and all of those in PBasics and PBasics16 are INUNE.
These interfaces define low level types and operations. The philosophy is as follows: Basics is an
interface describing types and operations in the "natural" word length of the machine. For PCedar
it is mostly 32-bit oriented. whereas in DCedar it is 16-bit oriented PBasics is explicitly 32-bit
oriented in both worlds while PBasics16 is 16-bit oriented in both worlds.

Clients are encouraged to write portable code using the PBasics and PBasics16 interfaces.

PBasics and PBasics16 incorporate operations and descriptions that reside in DCedar's
PrincOps and PrincOpsUtils interfaces. Programs using PrincOps or PrincOpsUtils must change
for PCedar. If PBasics and PBasics16 don't have enough functionality to allow porting they need
to be extended or you need to look elsewhere.

PeEDAR 1.2 • FOR INTERNAL USE ONLY

6

PCedarOvervlew

4.2 RealPackage

Various operations on Cedar/Mesa REAL numbers. This is not language support per se.
Hence. it is a candidate for moving to BasicCedar.

4.3 RopePackage

This supports the Cedar Rope.ROPE type and its friends.

4.5 SafeStoragePackage

Most importantly. SafeStoragePackage contains AtomImpl supporting the Cedar ATOM type.
It also has implementations for the List. RetQueue, SafeStorage, and UnsafeStorage interfaces.
This particular packaging occurs for historical reasons and should be revisited.

SafeStorageImpl has procedures for creating objects of arbitrary type and for examining the
type of objects. Both are used in Atomlmpl. There's a lot of cruft here including procedures that
are unimplemented because their utility in PCedar is questionable while the code was stolen from
Cedar.

4.4 RegisterRefi..iteralImpl - see also SafeStorage interface in CedarPreBasics

Further support for Rope.RoPE, Rope.Text REF TEXT and ATOM. The problem that this
package solves is that objects of these types must be in allocated storage, prefixed by correct type
codes. The compiler, of course, has no way to produce such things. Instead, it produces a STRING
value and a call to XR +-GetRetLiteralO with that string and a type as argument
XR +-GetRetLiteralO is itself part of SafeStorage in CedarPreBasics. When RegisterRetLiteralImpl
is sTARTed it registers itself with SafeStorage so that when XR +-GetRetLiteralO is called. the call is
passed along to RegisterRetLiteralImpl.Create.

(Note that the compiler distinguishes the type of quoted character strings by the context in
which they appear. Thus "abc" may sometimes be a Rope.RoPE, sometimes a Rope.Text.
sometimes a REF TEXT and sometimes a STRING. This package doesn't have to worry about it--the
compiler already chose an appropriate type.)

There are two important consequences of this design: first. nothing containing a Rope.RoPE.
Rope.Text. REF TEXT or ATOM literal may be installed before RegisterRetLiteralImpl is STARTed.
Given the way Cinder generates code and the current expressive power of the configuration
language the practical consequence of this is that nothing in CedarCore may contain ATOM or
Rope.RoPE literals. The second consequence is that a version mismatch on the Rope interface will
often manifest itself as an occurrence of the error RegisterRetLiteral.UnknownType instead of a
runtime interface version mismatch.

4.6 VMPackage

A mere shadow of its Cedar counterpart. VMPackage for PCedar contains only routines for
acquiring large chunks of storage and doesn't worry about its being vinual storage. CountedVM is
also also available for getting help from the garbage collector in tracking large chunks of memory.

Beware: fmalization isn't implemented. so dropping CountedVM objects on the floor
constitutes a storage leak. This needs attention when fmalization is implemented.

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

7

4.7 RasterOpPackage

RasterOp is a replacement for the BITBLT functionality. but written in Peedar. See
RasterOpDoc for details. This probably should move up to BasicCedar.

4.8 Faces _-

ProcessorFaceIrnpl.mesa and FacesSupportc make up this package. ProcessorFace provides
access to the processor id and type. FacesSupportc uses the C preprocessor and its conditional
compilation facility to provide a runtime distinction between spare and mc68020 processors. This
also should probably move up to BasicCedar.

4.9 Communication

XNSIrnpl provides access to infonnation about the local host's XNS host number and its
characteristics. This should also probably move up to BasicCedar. as well. It depends on
ProcessorFace. so if Faces moves, Communication must also.

Some fine tuning of the system organization is indicated: PCedar supports DARPA Internet
protocols at least as well as XNS and no mention of them is made in these low levels. What have
we done?

5. BasicCedar

Components of BasicCedar are Debugger. BootPackages, BasicTimePackage. IOPackage.
Greet. BasicPackages. ProcessPropsIrnpl. UnixSysPackage. UXStringsPackage. UXIOImpi.

5.1 Debugger

This program is called when otherwise-uncaught signals occur. It has a fixed list of well­
known signals whose identity it can print on the system error stream (using XR .. DebugPutChar).
After printing the fact that an errvr occurred, the debugger invokes the PCR debugger. stopping
the PCR world (much like the "swatted" state (815 or 915) on a DMachine). This state can then be
examined using dbx.

It should be possible to continue using the PeR in which an uncaught error occurred, but the
thread in which it occurred will be frozen unless you thaw it using the PCR debugger. You do this
in response to the "(stopped):" prompt The command is "thaw <threadnum>" where
<threadnum> is the number with the "*" next to it in the list of threads. This will cause the
ABORTED error to be raised in the thread. Programs like the Cedar command tool deal
gracefully with ABORTED. even though they don't like other signals and errors.

5.2 BootPackages

A collection of useful features: CardTabImpL ReITabImpl. SymTabImpL RandomImpl.
SystemSiteImpl.

CardTabImpL ReITabImpl. SymTabImpl: hash tables associating CARD. REF and ROPE keys
with REF values. respectively. The hash tables adjust their size as they are loaded.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

8

PCedarOvervfew

RandomImpl: a random number generator.

SystemSite: supplies information about the default GV and XNS registries/domains at the
location the system is being run. These currently default to "pa" and "PARC:Xerox". We need to
invent a way for these to be initialized properly. I think in Cedar it is controlled by the
Machine.profile.

5.3 BasicTimePackage

Provides both time-of-day and fine grain timer services in a host-independent fashion. The
principle module here is BasicTimelmpl which relies on the HostTime. The implementation of
HostTime is host dependent For Unix. we provide HostTimeUnixImpl as part of this package.

5,4 IOPackage

IOPackage provides the Cedar abstraction known as the IO.STREAM. It also has programs for
formatting various Cedar objects onto streams and for parsing text on streams into Cedar values.
There is also a collection of implemented streams: an empty input stream, a bit-bucket output
stream. pipes. and ways to make streams from ROPES and v.v.

5.5 Greet

A silly little program that announces itself whenever BasicCedar is started. Useful for
identifying the running version of BasicCedar. provided Greet is kept up to date. Also exports the
System Version interface.

5.6 BasicPackages

Another collection of useful packages: CommanderImpL PriorityQueueImpL RopeFilelmpl.
RopeListImpl. RedBlackTreeImpL ScaledImpL Prop Imp 1. These have more dependencies than
BootPackages, so they are separated to provide a reasonable build order.

CommanderImpl: a registration mechanism for commands (as used in CommandTool)
together with procedures for executing commands in particular property list environments.

PriorityQueueImpl: just what you'd expect

RopeFileImpl: makes a buffered Rope.RoPE from the contents of a file. Fragments of the fIle
are read as needed when references occur within the ROPE.

RopeListImpl: utilities for dealing with lists of ROPES. (Wouldn't you just love a polymorphic
language?)

RedBlackTreeImpl: a package for maintaining mappings from REFS to REFS where the client
provides an ordering for the key REFS. Contrast this with RefTab which has similar function but
cannot do ordered lookups or enumerations.

ScaledImpl: fixed point arithmetic with 16 bits before and after the binary point

PropImpl: REF to REF association lists.

5.7 ProcessPropsImpl

Every process has an a-list (association list). ProcessProps gives access to it in a structured

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

9

PCedarOvervfew

way.

5.8 UoixSysPackage

The UnixSysCalls interface is the only approved way of using Unix facilities from PCedar. It
defines procedures for each of the Unix system calls that has been implemented. A few more
system calls"deserve implementation. and the remainder are either very difficult or nonsensical in
the multithreaded world. There are also interfaces controlled by the same OF file (UnixSys.df)
describing many of the data structures used across the system call interface. and an interface called
UnixSysCallsExtensions with procedures for some of the system-call-like extensions provided by
PCR.

5.9 UXStriogsPackage

One problem in using the UnixSysCalls interface is that Unix system calls expect their
character string parameters to be null-terminated with no preceding length fields. whereas all the
Cedar/Mesa string objects are unterminated with preceding length fields. UXStrings is a way to
back and forth between these types.

UXStringsPackage also provides UXProcs for going back and forth between C procedure
values (the address of executable code) and Mesa procedure values (the address of a procedure
descriptor).

5.10 UXIOImpl

UXIO has procedures for creating Cedar IO.STREAMS on Unix file system objects: named files
and standard files.

6. Conclusion

This ends our brief tour of the PCedar Basement

Appendix A . Component Catalog

[pCedar1.2] below is a Pseudoserver standing for [nadreck-nfs]<pixeIDpcedar1.2>

2.PCR

2.1 Threads

Code Type: C

Location: palain:/jaune/xrhome/INSTALLED/threads

Will PCR run without this component: No.

Object code size: 80344 + 5592 bytes

10

Restrictions on use: 1. backing file must be on local machine. 2. Requires VP = 1 for packaged

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

PCedarOverview

use.

Features not yet implemented: none.

Special tools/switches/etc. for building: none

Is the structure/location of component/element expected to:

Be removed or relocated in architecture: no.

Be rewritten or written: A rewrite for better debugging support throughout PCR is now
underway (4/23/89). A rewrite for greater portability will be done someday soon.

Documentation:

[pcedarl.2]<Documentation>ThreadslnterfaceDoc.tioga

(Controlled by [pcedar1.2]<top>PCRDoc.dt).

Test code:

Status: test code is in palain:/jaune/xrhome/INSTALLED/threads

2.2 Garbage CollectiOn/Storage Management

Code Type: C

Location~ palain:/jaune/xrhome/INSTALLED/gc

11

Will PCR run without this component: No. This is the only legal method of obtaining non­
stack storage. and PCR needs this. There is an interface for turning off the garbage collection part
of PCR Storage Management.. at the peril of running out of storage. PCR Storage Management
has no explicit free.

Object code size: 16k code. l.4k data. on aSP ARC (bytes)

Restrictions on use: 1. Current collector is stop-the-world. which can affect interactive or real
time programs. 2. Pointers must not be hidden from the collectors view: e.g. by XOR them with a
constant 3. Only pointers to the beginning of objects count for holding onto them. 4. GC
performance is greatly improved if large pointer-free blocks are allocated through an alternative
interface which inform the collector that they have no pointers.

Features not yet implemented: O. Finalization. 1. Parallel collection. to get around stop-the­
world. 2. Generational collection. to do most collections faster. 3. Counting pointers to the middle.
4. Using Cedar/Mesa type information to locate pointers faster and more accurately.

Special tools/switches/etc. for building: -DPRINTSTATS - gather statistics after each
collection.

-DPRINTTIMES - gather timing information

-DNTFY +- KL UDG E - to run with Sun View windows

-DFINALIZE - to include the fmalization code

Is the structure/location of component! element expected to:

Bug fixes: The basic collector has been extremely solid for 9 months--no bugs. The proposed
new features required a complete rewrite--there will be bugs then.

Be removed or relocated in architecture: no.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

PCedaIOverview

Be rewritten or written: Yes. all of the proposed changes except fmalization require more-or-
less a rewrite from scratch.

Documentation:

[pcedar1.2]<Oocumentation)GCInterfaceDoc.tioga

(Controlled by [pcedar1.2]<top)PCRDoc.df).

Test code:

Status: There is test code in the gc subdirectory of the PCR/INSTALLED world To find out
how to run the test code. read the makefile there. This test code has been built up during GC
development work. is used on new releases. and has found many bugs before final release.

2.3 Dynamic loading

Code Type: C

Location: palain:/jaune/xrhome/INSTALLED/loading

Will PCR run without this component: yes. if no dynamic loading is done and no DBX
debugging is done.

Object code size: 12408 + 1056 bytes

Restrictions on use: none

Features not yet implemented: Dynamic library searching. support for COFF files.

Special tools/switches/etc. for building: none

Is the structure/location ofcomponentlelement expected to:

Change; bug fixes: Dynamic library searching will be added soon.

Be removed or relocated in architecture:, no

Be rewritten or written: no

Documentation:

Type: [pcedar1.2]<Oocumentation>LoadingInterfaceDoc.tioga

Test code:

Status: written. in palain:/jaune/xrhome/INSTALLED/loading.

3. CedarPreBasics

Code Type: C

Location: [pcedar1.2]<Top)CedarPreBasics.df. [pcedar1.2]<Top)CedarPreBasicsExtras.df

Will PCR run without this component: yes

Object code size: 114848+4760 bytes

Restrictions on use: none

Features not yet implemented: unload. Debugging-related queries.

12

Special tools/switches/etc. for building: makedo: switches are supplied by files included in

PCEDAR 1.2 • FOR INTERNAL USE ONLY

PCeda:cOvervfew

the dfs.

Is the structure/location of component/element expected to:

Change: bug fLx.es: Loadstate-related aspects will have to be enhanced to suppon debugging
and unload.

Be remGved or relocated in architecture: no

Be rewritten or written: see change above

Documentation:

Type: Installation suppon is described. roughly, in
[pcedarl.2]<Documentation> InstallationS upportmesa and InstallationNotes. tioga. These
documents are very old and need updating to confonn to the later designs that were actually
implemented.

Test code:

Status: never to be written by CSL

4. CedarCore

Code Type: Cedar

Location~ ~ location ~

Will PCR run without this component: ~?~

Object code size: ~ bytes~ bytes

Restrictions on use: ~details~

Features not yet implemented: ~details~

Special tools/switches/etc. for building:~details~

Is the structure/location of component/element expected to:

Change: bug fIxes: ~details~

Be removed or relocated in architecture: ~details~

Be rewritten or written: ~details~

Documentation:

Type: ~Func Spec. Test Spec/Plan. plain text. etc.~

Test code:

Status: ~written. to be written. never to be written ~

4.1 RuntimeSupport

Code Type: Mostly Cedar, some C

Location: [pCedarl.2]<Top)RuntimeSuppon-Suite.df

Will PCR run without this component: No.

Object code size: ~ bytes~ bytes

PCEDAR 1.2 • FOR INTERNAL USE ONLY

13

Restrictions on use: ~details~

Features not yet implemented: ~details~

Special tools/switches/etc. for building: none

Is the structure/location of component! element expected to:

Change: bug flxes: a new implementation of the SIGNAL machinery is planned within the
next couple of weeks (from March 29.1989).

Be removed or relocated in architecture: no

Be rewritten or written: see changes above.

Documentation:

Type: ~Func Spec, Test Spec/Plan, plain text etc.~

Test code:

14

Status: never to be written by CSL (although DSBU test suites do considerable checking of
this component). You might want to flll this in with what you know.

4.2 Rea/Package

Code Ty~e: Mesa

Location: [pCedar1.2]<Top>Real-Suite.df

Will PCR run without this component: no

Object code size: ~ bytes~ bytes

Restrictions on use: ~details~

Features not yet implemented: ~details~

Special tools/switches/etc. for building: none

Is the structure/location of component!element expected to:

Change; bug flxes: no

Be removed or relocated in architecture: no

Be rewritten or written: no

Documentation:

Type: [pCedar1.2]<Documentation)FloatingPointDoc.tioga. This corresponds to the real
arithmetic used in PrincOps Cedar: it needs updating in consultation with R. Atkinson to
correspond to the PCedar implementation.

Test code:

Status: David Goldberg and Brian Lyles have done some accuracy testing for the
mathematical functions in RealPackage. Contact them for details.

4.3 RopePackage

Code Type: ~C, Cedar~

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

PCedarOvervI~\V

Location: .. location.

Will PCR run without this component: .. H

Object code size: .. bytes. bytes

ResUictions on use: "details~

Features not yet implemented: .. details.

Special tools/switches/etc. for building: "details~

Is the structure/location of component! element expected to:

Change: bug fIxes: "details~

Be removed or relocated in architecture: .. details.

Be rewritten or written: .. details.

Documentation:

Type: .. Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

Status: "written. to be written. never to be written.

4.5 SafeStoragePackage

Code Type: .. C. Cedar.

Location: .. location.

Will PCR run without this component: .. ?

Object code size: .. bytes. bytes

Restrictions on use: "details~

Features not yet implemented: .. details.

Special tools/switches/etc. for building: .. details.

Is the structure/location of component! element expected to:

Change; bug fixes: .. details.

Be removed or relocated in architecture: .. details.

Be rewritten or written: .. details.

Documentation:

Type: .. Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

Status: "written. to be written. never to be written.

4.4 RegisterRe/Literallmpi

Code Type: .. C. Cedar.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

15

Location: ~ location.

Will PCR run without this component: ~?

Object code size: ~bytes. bytes

Restrictions on use: ~details.

Features not yet implemented: ~details.

Special tools/switches/etc. for building: ~details.

Is the structure/location of component/element expected to:

Change: bug fIxes: ~details.

Be removed or relocated in architecture: ~details.

Be rewritten or written: ~details.

Documentation:

Type: ~Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

S tatus: ~ written. to be written. never to be written.

4.6 VMPackage

Code Type: ~c, Cedar.

Location: ~ location.

Will PCR run without this component: ~?

Object code size: ~ bytes. bytes

Restrictions on use: ~details.

Features not yet implemented: ~details.

Special tools/switches/etc. for building: ~details.

Is the structure/location of component/element expected to:

Change: bug fIxes: ~details.

Be removed or relocated in architecture: ~details.

Be rewritten or written: ~details.

Documentation:

Type: ~ Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

S tatus: ~ written. to be written. neverto be written.

4.7 RasterOpPackage

Code Type: ~C. Cedar.

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

16

PCedarOvervfew

Location: ~location.

Will PCR run without this component: ~?~

Object code size: ., bytes. bytes

Restrictions on use: .. details.

Features not yet implemented: "details~

Special tools/switches/etc. for building: ~details.

Is the structure/location of component/element expected to:

Change: bug fIxes: ~details.

Be removed or relocated in architecture: ~details.

Be rewritten or written: ~details.

Documentation:

Type: ~Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

Status: ~written. to be written. never to be written.

4.8 Faces

Code Type: .,C. Cedar.

Location: ~location.

Will PCR run without this component: ~?

Object code size: ~ bytes. bytes

Restrictions on use: ~details.

Features not yet implemented: ~details.

Special tools/switches/etc. for building: ~details.

Is the structure/location of component! element expected to:

Change: bug fIxes: ~details.

Be removed or relocated in architecture: ~details.

Be rewritten or written: ~details.

Documentation:

Type: ~ Func Spec, Test Spec/Plan. plain text. etc. ~

Test code:

S tatus: ~ written. to be written. never to be written.

4.9 Communication

Code Type: ~C. Cedar.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

17

PCedarOverv~w.

Location: .location.

Will PCR run without this component: .?

Object code size: • bytes. bytes

Restrictions on use: .details.

Features not yet implemented: .details.

Special tools/switches/etc. for building: .details.

Is the structure/location of component/element expected to:

Change; bug fixes: .details.

Be removed or relocated in architecture: .details.

Be rewritten or written: .details.

Documentation:

Type: .Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

Status: .written. to be written. never to be written.

5. BasicCedar-

Code Type: .C. Cedar.

Location: .location.

Will PCR run without this component: .?

Object code size: • bytes. bytes

Restrictions on use: .details.

Features not yet implemented: .details.

Special tools/switches/etc. for building: .details.

Is the structure/location of component/element expected to:

Change: bug flxes: .details.

Be removed or relocated in architecture: .details.

Be rewritten or written: .details.

Documentation:

Type: .Func Spec. Test Spec/Plan. plain text. etc .•

Test code:

Status: .written. to be written. never to be written.

5.1 Debugger

Code Type: .C. Cedar.

PCEDAR 1.2 • FOR INTERNAL USE ONLY

18

PCedatOver0ew

Location: ~location~

Will PCR run without this component: .?~

Object code size: • bytes~ bytes

Restnctions on use: .details~

Features not yet implemented: .details~

Special tools/switches/etc. for building: .details~

Is the structure/location of component/ element expected to:

Change: bug fIxes: .details~

Be removed or relocated in architecture: .details~

Be rewritten or written: .details~

Documentation:

Type: • Func Spec. Test Spec/Plan. plain text etc .•

Test code:

Status: ~written. to be written. never to be written.

Code Type: .c. Cedar.

Location: .location.

Will PCR run without this component: .?

Object code size: • bytes. bytes

Restrictions on use: .details~

Features not yet implemented: .details.

Special tools/switches/etc. for building: .detaiIs.

Is the structure/location of component/element expected to:

Change: bug fIxes: .details.

Be removed or relocated in architecture: .details.

Be rewritten or written: .details.

Documentation:

Type: • Func Spec. Test Spec/Plan. plain text etc .•

Test code:

Status: • written. to be written. never to be written.

5.2 BootPackages

Code Type: .c. Cedar~
Location: ~location.

Will PCR run without this component: .?

PCEDAR 1.2 • FOR INTERNAL USE ONLY

19

Object code size: ~ bytes~ bytes

Restrictions on use: ~details~

PCedarOverview

Features not yet implemented: ~details~

Special tools/switches/etc. for building: ~details~

Is the stIucture/location of component/ element expected to:

Change: bug fIxes: ~details~

Be removed or relocated in architecture: ~details~

Be rewritten or written: ~details~

Documentation:

Type: ~ Func Spec. Test Spec/Plan. plain text. etc. ~

Test code:

Status: ~written. to be written. neverto be written~

5.3 BasicTimePackage

Code Type: ~C. Cedar~

Location: ~location~

Will PCR run without this component: ~?~

Object code size: ~ bytes~ bytes

Restrictions on use: ~details~

Features not yet implemented: ~details~

Special tools/switches/etc. for building: ~details~

Is the structure/location of component/element expected to:

Change; bug fIxes: ~details~

Be removed or relocated in architecture: ~details~

Be rewritten or written: ~details~

Documentation:

Type: ~ Func Spec. Test Spec/Plan. plain text. etc. ~

Test code:

Status: ~written. to be written. never to be written ~

5.4 IOPackage

Code Type: .c. Cedar~
Location: .location~

Will PCR run without this component: ~?~

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

20

Object code size: ~ bytes~ bytes

Restrictions on use: ~details~

PCedarOverView

Features not yet implemented: ~details~

Special tools/switches/etc. for building: ~details~

Is the -structure/location of component/ element expected to:

Change: bug fixes: ~details~

Be removed or relocated in architecture: ~details~

Be rewritten or written: ~details~

Documentation:

Type: ~ Func Spec. Test Spec/Plan. plain text, etc. ~

Test code:

Status: ~written. to be written. never to be written.

5.5 Greet

Code Type: ~c. Cedar~

Location: .. location.

Will PCR run without this component: .. H

Object code size: .. bytes~ bytes

Restrictions on use: "details~

Features not yet implemented: "details~

Special tools/switches/etc. for building: ~details~

Is the structure/location of component/element expected to:

Change; bug fixes: "details~

Be removed or relocated in architecture: "details~

Be rewritten or written: ~details.

Documentation:

Type: .. Func Spec. Test Spec/Plan. plain text, etc .•

Test code:

Status: ~written. to be written. never to be written ~

5.6 BasicPackages

Code Type: ~C. Cedar~

Location: ~location~

Will PCR run without this component: ~?~

PCEDAR 1.2 • FOR INTERNAL USE ONLY

21

Object code size: .bytes. bytes

Restrictions on use: .details.

PCedaIOvervie~w.

Features not yet implemented: .details.

Special tools/switches/etc. for building: "details~

Is the structure/location of componenVelement expected to:

Change: bug ftxes: .details.

Be removed or relocated in architecture: .details~

Be rewritten or written: .details~

Documentation:

Type: .Func Spec. Test Spec/Plan. plain text etc.~

Test code:

Status: .written. to be written. never to be written~

5.7 ProcessProps!mpi

Code Type: .C. Cedar~ .
Location: .location.

Will PCR run without this component: .?~

Object code size: .bytes. bytes

Restrictions on use: .details~

Features not yet implemented: .details~

Special tools/switches/etc. for building: .details~

Is the structure/location of componenVelement expected to:

Change; bug ftxes: .details~

Be removed or relocated in architecture: .details~

Be rewritten or written: .details~

Documentation:

Type: • Func Spec. Test Spec/Plan. plain text etc. ~

Test code:

Status: .written. to be written. never to be written~

5.8 UnixSysPackage

Code Type: Mesa

Location: [pCedar1.2](fop)UnixSys-Suite.df

Will PCR run without this component: .?~

PCEDAR 1.2 • FOR INTERNAL USE ONLY

22

Object code size: ~ bytes~ bytes

Restrictions on use: "details~

PCedarOverView

Features not yet implemented: see UnixSysCalls.mesa

Special tools/switches/etc. for building: none

Is the structure/location of component/element expected to:

Change: bug fixes: no plans. Implementation bugs can be fixed. Problems with the interface
will have to be addressed with Extras interfaces.

Be removed or relocated in architecture: plans call for moving Cedar to a less SunOS-specific
syscalls interface sometime in the future (not PCedar1.2)

Be rewritten or written: not in PCedar1.2

Documentation:

Type: See the interface modules in the package.

Test code:

Status: never to be written by CSL

5.9 UXStringsPackage
~

Code Type: Cedar

Location: [pCedar1.2](fop)UXStrings-Suite.df

Will PCR run without this component: .. H

Object code size: .. bytes~ bytes

Restrictions on use: "details~

Features not yet implemented: none

Special tools/switches/etc. for building: none

Is the structure/location of component/ element expected to:

Change: bug fixes: no

Be removed or relocated in architecture: no

Be rewritten or written: no

Documentation:

Type: see interfaces in package

Test code:

Status: never to be written by CSL

5.10 UXIOlmpl

Code Type: Cedar

Location: part of the 10 package controlled by [pcedar1.2]<Top)IO-Suite.df

PCEDAR 1.2 • FOR INTERNAL USE ONL Y

23

PCedarOvervi"ew

Will PCR run without this component: .? ..

Object code size: • bytes" bytes

Restrictions on use: .details"

Features not yet implemented: .details ..

Speciariools/switches/etc. for building: none

Is the structure/location of component/element expected to:

Change: bug fixes: no

Be removed or relocated in architecture: yes: for CSL use, UXIO will be supplanted by PFS
sometime during the life of PCedar1.2. UXIO can remain available (with little attention from
CSL) indefinitely.

Be rewritten or written: no

Documentation:

Type: see UXIO.mesa

Test code:

Status: never to be written by CSL

PCEDAR 1.2 • FOR INTERNAL USE ONLY

24

The Portable Common Runtime Approach to
I nte rope ra bi lity

Mark Weiser, Alan Demers, Carl Hauser

~CSL·89·xx~ ~Month 1989~

© Copyright 1987 Xerox Corporation. All rights reserved.

Abstract: Operating system abstractions do not always reach high enough for direct use by a

language or applications designer. The gap is filled by language-specific runtime

environments, which become more complex for richer languages (Common Lisp needs more

than C++ needs more than C). But language-specific environments discourage integrated

multi-lingual environments, and also make porting hard (for instance, because of operating

system dependencies). To help solve this, we have built the Portable Common Runtime (PCR),

a language-independent and operating-system-independent base for modern languages. PCR

offers four interrelated facilities: threads (light-weight processes), low-level 1/0 (including

network sockets), storage management (including universal garbage collection), and symbol

table management (including static and dynamic linking and loading). These are the four that

languages and applications must share if they are going to tightly interoperate: threads so they

can each multi-process while respecting each other's critical sections, 1/0 so they can share

low-level device handles, storage management so they can pass pointers in the presence of

garbage collection, and symr,ol table management so they can intercall and interload. PCR is

"common" because these facilities can be shared among different languages, usually without

recompiling. So far we have implemented C, Cedar, Scheme, and Common Lisp intercalling,

and can use pre-existing C and CommonLisp (Kyoto) binaries. PCR is "portable" because it

uses only a small set of operating system features. So far it has been run on SunOS Unix™

(version 4.0), Mach, and on a bare homebuilt machine with PCR itself serving as the main

operating system. PCR is about 20,000 lines of C code, and about 200 lines of assembler. It is

in everyday use by about ten developers at Xerox PARC (as of March 1989), and its source code

is available for use by other researchers and developers.

Submitted to SOSP.

CR Categories and Subject Descriptors: ~Class No~ [~Major Classification~]:

~Classification Topic~ - ~Descriptors, Descriptors, ... Computing Reviews categories from

The Portable Common Runtime Appro~h to Interoperability - DRAFT

January 1982 CACM go here~;

Additional Keywords and Phrases: ~keywords, keywords~

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

DRAFT - For Distribution Outside Xerox - DRAFT

XEROX PARCo CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

1

2 The Portable Common Runtime App~ch to Interoperability - DRAFT

Introduction

The Problem~ interoperating languages

Although there are many facets to interoperability. one remains largely unassailed: tightly coupled
interoperating languages. By tightly coupled. we mean to imply that an application as real-time or

sophisL.lted as a device driver or a database management system might have different parts written in

different languages. The parts could share data structures. memory. and threads of control. We also
prefer to interoperate without giving one language a primary role. We believe the choice of a language
should be determined by the semantic model needed. not by the degree of support from the operating

environment

The Portable Common Runtime solution

Ordinarily the level of abstraction below the language designer's is that of the operating system. We

are not proposing a new operating system. but a run-time layer. We take this approach because we are
interested in interoperating with existing languages and operating systems. not in making a clean break.

There are many clean-break operating systems--interoperating is the greater intellectual challenge. A

second reason for taking a runtime approach is that our abstractions are not alternatives to. but are
built on top of. typical operating system abstractions such as virtual memory. communications. and fIle

system. The next generation of operating systems will build abstractions such as garbage collection into

their kernels. We are exploring this in practice now with the Portable Common Runtime (PCR).

PCR differs from other runtimes both in the sophistication of some of its features. and the paucity of

oth~rs. Compared with the Unix standard library. for instance. it offers the new features of threads and

garbage collection and dynamic loading. but does not offer string functions or sophisticated printing or

input scanning. Our choice is to focus deliberately on those features which languages must share to
tightly interoperate. while avoiding other features in a runtime library that are not so important to

interoperation. We assume that features we do not implement can continue to be done on a language­
dependent basis without seriously reducing interoperation. For instance. Cedar strings contain a

length. C strings are null-terminated One can write in either language routines which convert one

representation to the other. so there is no fundamental interoperability issue. This is not true for

garbage collection. say. or process model: if two programs do not share a single underlying abstraction.

they must live in separate worlds.

PCR fails to solve the whole problem of language and application interoperation in at least two ways.

First it does nothing for data representation. For some kinds of interoperation. such as between

spreadsheets and graphing programs. this is the key issue. Other attacks on interoperation. such as

XEROX PARCo CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

The Portable Common Runtime ApprOO~b. to Interoperability - DRAFI' 3

remote procedure call and Presentation Manager [Apik and Diehl 1988], do impose a standard method
of data exchange. Second. PCR says nothing about a user inteIface. Again.-other approaches, like

Open Look and Motif. address this.

For additional alternatives to our approach. see the penultimate section of this paper on Related Work

PCR Design Principles

The PCR design was constrained by the following principles:

1. live above the operating system.

2. let dumb applications stay dumb.

3. permit the use of existing compilers. libraries. and binaries.

4. let sophisticated applications be written.

Living above the operating system meant in the first place, avoiding changes to operating system
kernels. and the second place, not duplicating operating system functions. Therefore. for instance,
PCR on Mach [Accetta et al1986] maps PCR threads into Mach threads. However. PCR does require
from its base certain functions not always available from every operating system. We require the ability
to protect pages of memory. and to catch and restart from protection failures. We require that the
operating system provide a fIle system. These features are available more and more, and so we traded
off loss ofponability to older O.S:s for much greater functionality. We have not been averse to kernel
changes to improve efficiency (for instance. altering SunOS 4.0 to have user-controlled virtual dirty

bits). but we do not require them.

Letting dumb applications stay dumb means that as we added potentially inteIfering new features,
older programming styles can mostly remain intact For instance. although we garbage collect C code.
we do not require that C programmers replace their 'malloc' and 'free' calls. PCR simply ignores the
'free's. and invisibly collects 'malloc'ed space. Binary fIles that can be dynamically loaded in PCR can

also be statically linked using the vanilla Unix 'ld' command. PCR is not peIfect in this respect, as the
details in following sections make clear. but it achieves a useful compromise between backward
compatibility and new function. as the next paragraph indicates.

By pennitting the use of existing compilers. libraries. and binaries. we help to enforCe on ourselves our
rule of letting dumb applications stay dumb. We co-exist with a machine's native stack and calling
conventions. so compiler back-ends do not have to change, and we accept standard relocatable object
file fonnat so precompiled code continues to work. For example. the complete Sun View window
system library operates unrecompiled. dynamically loaded and garbage collected in peR. One thing
that cannot work is dynamically load binaries from which relocation information has been lost

By saying we want to permit sophisticated applications. we mean applications most naturally expressed

XEROX PARCo CSL·89·xx. MA Y.1989 • For Distribution Outside Xerox

4 The Portable Common Runtime Appr~ch to lnteroperability - DRAfT

using knowledge of PCR details. For instance. an application managing many concurrent activities will

use the threads facilities. The language which has stretched our interfaces farthest has been

CommonLisp. because it already has notions of dynamic loading and of garbage collection. We had to

make sure we offered facilities on top of which ComrnonLisp language implementors could work. For

example. an _implementation using tagged pointers must be able to co-exist ~ith our collector. In

generaL our solutions were of two types: make the interfaces more generaL and provide for upcalls

[Clark 1985] when there was no other way.

Design and Implementation of peR

Threads

The PCR threads interface offers the usual semantics of monitors. monitor locks. condition variables.

fork/join. aborting, etc. [Hoare 1974. Brinch-Hansen 1975]. As indicated above, we have worked to

make the interface general enough to be used cooperatively by many different languages. PCR threads

meet the runtime requirements of languages such as Cedar/Mesa [Swinehart et al 1986], Modula-2 +.
Modula-3. ComrnonLisp. and ARGUS [Liskov et al 1987]: and can easily simulate other threads

packages such as Coopers C-Threads for Mach. Sun's lwp [Sun 1988a], Bershad's [Bershad et al1988],

Doeppner's at Brown University. etc. The following overview highlights noteworthy features of our

implementation.

Threads implementations fall into two categories: inside or outside the OS kernel. Implementations

inside the kerneL such as Mach [Accetta et al1986] or V [Cheriton and ZwaenepoeI1983], have explicit

knowledge of multiple threads per address space. and the OS scheduler treats such threads separately.

XEROX PARe. CSL-89-xx. MAY. 1989 . For Distribution Outside Xerox

~

The Portable Common Runtime Appro~cb to Interoperability - DRAFf 5

Implementations outside the kernel generally use coroutines in a single heavyweight process.
Coroutine implementations can be faster at thread switching. because they avoid any overhead

associated with entering and leaving the kernel (similar to the speedup achieved by {Synthesis} [pu et

al 1988]. although via a different method). However. their reliance on only one heavyweight process
introduces a __ serious problem: if that process ever blocks. all threads are bl~~ked. Techniques for
avoiding blocking--use of the Unix non-blocking 110 primitives. for example--can alleviate this

problem. but they cannot entirely eliminate it since some kinds of blocking (e.g. page faults) cannot be
predicted or even detected outside the kernel. Our implementation avoids both of these problems.

Our approach to running PCR threads in an operating system like Unix. which has no notion of a

lightweight process. is to have a small number of heavyweight processes act as a pool of "virtual
processors" ("VPs") to execute the many threads. All VPs execute code and data out of a common

shared address space. Each VP is treated by the PCR scheduler exactly like a cpu in a shared-memory

multiprocessor system.

In the normal case of a thread blocking predictably (e.g. by waiting on a monitor lock or condition) or

being preempted at a timeslice. scheduling a new thread under this scheme is essentially a coroutine

jump within a ·single VP. Non-blocking 110 and other techniques are used to make most instances of
thread blocking predictable, and thus avoid most instances of VP blocking. Occasionally. however. a

thread blocks unpredictably. say for a page fault or fIle system I/O. In that case the VP running the

thread blocks: but the remaining VP's are still available for heavyweight process scheduling by the OS.

and continue to run other threads. On a uniprocessor. assuming the number of available VP's exceeds

the number of unpredictably blocked threads. the net effect is just to trade a heavyweight process

switch (between VP's) for a lightweight switch (between threads in a single VP): some threads continue

to make progress at all times. This design has an advantage on true multiprocessors as well: Since the

operating system kernel for a multiprocessor can be expected automatically to schedule multiple ready­

to-run processes on multiple processors. PCR should get true multiprocessing (depending only on a

reasonable base kernel implementation) with no change to the implementation.

The PCR implementation relies on a relatively small number of underlying kernel features. chief of

which is the ability to share memory among heavyweight processes. Since this feature exists in OS/2.

the Unix SVID. Mach. SunOS. Berkeley Unix. and many other modern operating systems. we

anticipate no serious portability problem. Other OS features required by PeR are the ability for

heavyweight processes to interrupt one another and to catch interrupts. and the ability to define a
medium-grained interval timer (our scheduler wakes up ten times a second for time-slicing). Our

implementation runs better if it can also write-protect pages (used for stack red-zoning and parallel

garbage collection). catch and restart from protection violations. and remap pages to different
addresses. However. PCR can run in pure real memory if necessary. as illustrated by the

implementation on our home-brew processor board.

XEROX PARCo CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

6 The Portable Common Runtime Approach to Interoperability - DRAFf

Debugging of threads is currently a bit ugly. and we are working to improve it At present there are a

few interactive commands by which one can stop all VP's. run on a single VP. freeze or thaw individual

threads. or 'examine' an individual thread. Examining works like this: before examining, a normal

debugger (say Unix dbx) is pointed at a prespecified VP. and a breakpoint is set at a well-known

location ("XR '" ExamineMe"). When the examine corrunand is given for a __ thread, the thread is

scheduled on that VP. and forced to execute through the breakpoint location. The specified VP hits the

breakpoint with the desired thread's stack appearing as the main process stack. so the debugger is

happy.

110

The I/O interface currently provided by PCR is a nearly-exact emulation of the Unix 110 system calls.

This is certainly the least portable aspect of the PCR design. and we plan eventually to replace it

However. developing the ultimate general-purpose. powerful and fully portable 110 interface will

involve substantial research and effort: the current design was simple to produce (we copied it) and has

enabled us to write PCR -based applications and validate some implementation techniques.

One limitation-of Unix (and some other systems as well) is particularly troublesome when combined

with the implementation of threads described above: the maximum number of open files that a single

heavyweight process can hold is much less than the total number of open files supported by the system.

In "normal" use of Unix. with each heavyweight process running a single application, the open file

limit is large enough to be uninteresting. But we want to implement network servers and other large

systems using PCR; it is important that the per-heavyweight-process resource limitations of Unix not

translate into system-wide resource limitations for PCR.

To deal with this problem, our implementation on top of Unix uses additional heavyweight processes

as "110 processors"("IOP's"), essentially to serve as caretakers for me descriptors. It works as follows:

A file is opened by allocating a file descriptor slot in one of the lOP's and sending a message to that

lOP asking it to open the file. While the file remains open. its "real" descriptor remains in the lOP: the

descriptor slots of the VP's are treated as an LRU cache of copies. To perform 110 on a descriptor. a

thread first ensures that a copy of that descriptor exists in the VP's descriptor cache. If necessary. the

least recently used descriptor in the cache is replaced by a copy of the desired descriptor. which is

transferred from the corresponding lOP using Unix-domain IPC (Berkeley Unix) or stream operations

(Unix System V). Currently. all VP's maintain identical file descriptor caches. though this constraint

could be relaxed at the cost of some complexity in the implementation. The thread then attempts a

non-blocking 110 operation on the descriptor. If the operation fails because it would block. the thread

sends a message to the lOP asking to be notified when the descriptor becomes ready. It then waits on a

condition variable. allowing the VP to schedule a different thread without blocking. Eventually the

descriptor becomes ready and the lOP notifies the waiting thread. which wakes up and retries the 110

XEROX PARCo CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

The Portable Common Runtime Approach·,to Interoperability - DRAFT 7

operation. This scheme works well under the obvious condition that the "working set" of descriptors

fits in the VP's descriptor cache.

User code sees none of this. of course. We impose a layer of indirection in the file descriptors. and
mimic all the ysual Unix I/O system call layer (read. write. open) by our own compatible calls. We

do the same for the Berkeley Unix socket-oriented calls and the System V stream-oriented calls.

This I/O design will enable us to implement very large systems using PCR. at the cost of occasionally

having to fault copies of descriptors into the VP descriptor caches.

Storage Management

In order to work for languages which cannot guarantee pointer locations. the Portable Common
Runtime uses a conservative collection scheme as implemented by Boehm [Boehm and Weiser 1988].

There are actually two storage allocation systems which have been implemented for PCR. The fIrst is a

direct adaptation of Boehm's Russell collector, with additions for typed objects and fmalization. The
second is a new implementation which is real-time. parallel. generational but noncopying. and handles

pointers to the. interior of objects. Because of its unique features. this second implementation is
described in more detail in a separate paper [Weiser in preparation]. Here we focus on the highlights

common to both collectors. and in particular on the mechanisms common to both for fInalizing objects

in a conservative world. and for allowing application defined pointer defmition.

Garbage collectors can be either reference counting or mark-and-sweep. Reference counting collectors

require overhead on each pointer manipulation. mark-and-sweep collectors require lots of work for

each collection. Conservative collectors are a new type of mark-and-sweep collector. They have only

uncertain knowledge about where pointers actually occur [Bartlett 1988], but are careful to err on the

conservative side of assuming something is a pointer or not PCR collectors are all at least potent;.ally

conservative so they can work with unsafe pointer languages like C.

As Bartlett and Boehm have shown. conservative or partially conservative collectors have been shown

to work for many languages. For PCR they have been extended in two ways: fmalization. and

extendable pointer representations.

Finalization is the method by which an application can request that it get a last chance to look at an

object before it is freed. The application can abort the free at that point. or let it continue. In PCR.
fInalization works as follows: finalization may be requested for any object by passing it to the PCR

routine ·RegisterForFinalization'. RegisterForFinalization returns a handle to the object The handle

may be turned into a true pointer to the object at any time. but does not count as a pointer for purposes
of collection (Le. an object with a handle can still be fInalized). The pointer to the object is

remembered inside the collector in a place where it will not ordinarily be used to mark the object

XEROX PARCo CSL·89-xx. MAY. 1989 - For Distribution Outside Xerox

8 The Portable Common Runtime Appro~ch to Interoperability - DRAFT

During each collection. after the mark phase but before sweeping, the PCR collector executes the

algonthm below:

1. Foreach unmarked finalizable object 0 :

2. foreach pointer p in 0:

3. mark pt. and mark all pt's descendants

4. Foreach finalizable object 0 still unmarked:

5. place 0 on a finalization queue

Note that because most objects have already been marked. the marking through of step 3 will usually

terminate quickly.

This algorithm has the difficulty of never fmalizing circular lists. The circularity of such lists must be

broken by using a RegisterForFinalization handle for one of the links. rather than an actual pointer.

This handle doesn't count as a reference. so finalization still occurs.

An alternative' implementation. that was formerly used in Cedar. uses a dangerous technique of

'package ref counts'. which means lying to the collector about how many references actually exist, and

having no way to tell a known from an unknown reference. Our method. using explicit handles which

can be turned into a pointer. is safer and less error prone.

Finalization is tricky however it is done. but it is not frequently programmed directly. For instance, in

the two million lines of Cedar code in use at P ARC, there are only twelves calls that register objects for

finalization. A bit of care in proper programming practice. therefore. is ok. However. doing without

finalization is not possible: these twelve modules include stream and network 110. so indirectly almost

everyone uses finalization.

The PCR collector is conservative and so works even for languages that pennit any word in memory to

contain a pointer (such as C). However. for some languages (such as Cedar and Lisp) it is possible to

tell exactly when a bit pattern is a pointer. To improve performance for such languages. the PCR

design has the notion of a pointer-fmding upcall. We have tried this in conjunction with third party

Common Lisp implementations that use tagged pointers. The pointer-finding up call works like this:

All objects in PCR are typed by the kind of pointer-finding upcall needed to deduce their pointers.

This upcalHype is intended to be based on language family type: one for tagged pointers. one for

pointers dependent upon type of language-dependent data structure. another for conservative pointer­

finding, etc. Language families register their pointer-fmding upcall, and a root-finding upcall. with the

collector at runtime. and receive a language-family type in return. All allocations in that family must

then be made with that language family type as a parameter. During the mark phase of a collection.

XEROX PARC, CSL·89,xx. MAY. 1989 . For Distribution Outside Xerox

Th~ Portable Common Runtime APproacp.to Interoperability - DRAFT 9

PCR does the following: it calls all root-finding callbacks to find any language dependent roots. It also
marks the global roots known to it such as the threads stacks and the registers. Finally. it marks
through all the objects. up calling as necessary to find each pointer.

The cost of the upcall is not large: measured at 2 microseconds per object on a 20 Mhz 68020
(sun-3/60). arid between 300 and 500 nanoseconds per object on a 16 Mhz SPARe (sun-4/260). This is
roughly comparable to the cost of conservatively examining a word in the object to see if it is a pointer.
which requires at least a range check to see if it could be a value in the heap. Thus the upcall wins if it
can reject non-pointers better than the conservative check, with at least a constant win of one pointer
check. For instance. even supposing an absurdly high rate of pointers in objects of 25%. an upcall
which positively identified such pointers in objects (by using an object type field say). and spent an
average of three conservative checktimes per pointer per object doing so. would on average be a win for
all objects of size greater than 2 words.

Our most widely used PCR implementation today (March 1989) uses a collector based on Boehm's
[Boehm and Weiser 1988], modified to keep a type word before the first word of the object Its

collection speed is about a half second per megabyte of active object space (assuming no paging) on a
Sun-4/260 (16 Mhz SPARC).

Symbol Table Management

Finally we come to a part of the PCR that does dynamic linking and loading. stack walking. and helps
out debuggers. This part of the PCR consists of three components. The first is responsible for external
object file format The second is responsible for internal management. and symbol resolution. The
third does stack walking.

Component one. external object file format reads object files into internal form where the object code
can then be relocated and undefined names resolved against the rest of che PCR load state. In addition.
this component is responsible for maintaining a simulated object flle whose appearance is that of a
normal object file representing the state of PCR if it had been statically linked. This simulated object
file can be used for debugging the dynamic state of PCR at anytime using unmodified native operating
system debuggers, for instance DBX.

(For performance reasons the simulated object flle is not actually rebuilt at each dynamic load.
Instead. a record is kept in the file of the name and relocation value of each dynamically loaded
module, and then the simulated object file is built on the fly should debugging be necessary.)

Component two. the internal symbol manager. is responsible for relocating loaded object modules and
resolving undefined symbol references. It will also dynamically search libraries for symbols not
resolved in the current PCR load state. calling back to the external object module for interpreting
libraries. This module is architecture dependent. because instruction and data formats differ among

XEROX PARCo CSL·89-xx. MAY. 1989· For Distribution Outside Xerox

10 The Portable Common Runtime ApprQach to Interoperability - DRAFr

architectures.

The internal symbol manager can also be used for dynamically asking for the value of a previous
symbol. and thus fmding previously loaded modules by hand. If multiple modules defme the same
externally visible symbols. the most recently loaded module is used.

Component three implements a version of the Unix setjmpllongjmp by which return can be made to
an arbitrary (cooler) point on the stack. We use our own setjmp/longjmp. because we require that the
registers be returned to their values at the time the call frame was last left Some Unix longjmp's do
this (like Berkeley's Vax implementation. and Sun SPARC). some do not (like Sun 68020). By
ensuring that setjmp/longjmp restore registers to their most recent values. we can use setjmp/longjmp
for signal handling without inhibiting optimization. Full register-restoring longjmp may be impossible
to implement on some machines. depending upon the optimization strategies. For instance. the late­
register-binding strategies of the compilers and loaders for the DECWRL Titan would make such a
longjmp very difficult to write.

Each dynamically loaded module is checked for two special names: 'XR ~install' and 'XR ~run'. If
present these are called in that order. XR ~install is there for any language-dependent symbol binding
routines (Cedai" and Lisp use it for instance). XR ~run is the entry point to actually start executing the
loaded code.

The dynamic loading code is fully compatible with existing Unix programs and libraries. Anything
which can be dynamically loaded can also be statically bound into an instance ofPCR. This enables us
to debug PCR-based applications using dynamic loading. and then. using those same modules. easily
construct a single executable program indistinguishable from any other executable binary on the
machine. We use this. for instance. to make some of our common tools. like the Cedar compiler and
Postscript and Interpress decomposers. look like ordinary Unix programs.

Although we have done no optimization (symbol table searches are linear. for instance!) dynamic
loading is quick. faster than Sun Unix ld. The reason seems to be that ld has many general cases to
handle. and must also build an output file. while we simply load and relocate in place.

Related Work

Our work builds on previous research in light-weight processes. garbage collection. library

management. etc .. and reference to these are in the main body of the text In this section we collect the
discussion about alternative approaches to language interoperability.

One current approach to language interoperability. exemplified in Mercury [Liskov et al 1988] and
HRPC [Bershad et al 1987]. uses client-server models of interoperation where remote procedure call
connects. and insulates. applications in different languages. The problem here is the lack of tight

XEROX PARCo CSL·89·xx. MAY. 1989 . For Distribution Outside Xerox

The Portable Common Runtime ApproactJ,.to Interoperability - DRAFT 11

coupling. Remote procedure calL even when local but across address spaces. is usually much more
expensive than calls within the same address space. When the language-partitioning and the

clienVserver partitioning match. RPC does well. When they do not match. they force the application

writer to introduce artificial distinctions.

Another approach to language interoperability uses a common base language to -which other languages

must conform. The foreign function call interfaces in Common Lisp [Sun 1988b. Franz 1988]. are

examples of this approach. The problem here is that the privileged language enjoys easier debugging.

better access to services. and more attention from developers. The choice of language in which to write

an application becomes distorted by issues beyond appropriate language semantics. and the languages
interoperate assymmetrically.

A third approach to language interoperability is to standardize on a common intermediate form. This

is a variation on the privileged language approach, permitting different languages to interoperate as

long as they use a common compiler back-end. In spite of several attempts in this direction [e.g.

Tanenbaum et al 1983], the restrictions on language designers and implementors have proven too

severe for wide adoption. We hope our more modest approach (agreement on important parts of the

run-time environment). by analogy with the success of common operating systems. will prove better in

practice.

A fourth "approach" is to say that language interoperability is bunk. Either there is one true language.

or what really matters is not language but environment Proponents of these views either focus efforts

on inventing new languages to solve all their problems [U.S. DOD 1983] or in developing the single

language environment as in Smalltalk [Goldberg and Robson 1983], Interlisp [Xerox 1985]. Cedar

[Swinehart et al1986], or the new DARPA environments proposal [Gabriel 1989]. We think different

problems are attacked better in different languages, and that software engineers and computer

scientists should not be restricted to a single semantic arrow in their quivers.

Experience and Conclusions

The Portable Common Runtime is in daily use by about twenty researchers at PARe. We are running

about 500.000 lines of Cedar code on top of PCR as of March 1989. with more ported everyday

[Atkinson et al1989]. PCR is the lowest-level foundation of future work in PARC's Computer Science

and Electronic Documents Labs. PCR is about 20.000 lines of C. and about 200 lines of assembler.

Several of our uses push hard on the PCR facilities. For instance, we have an X window client which

creates several threads per window. We also have an Interpress printer driver which reuses lots of free

storage. and so stretches the collection facilities. To bring up a full Cedar world on our Sun

workstations, more than 60 large modules (totalling over 5 megabytes) must be dynamically loaded.

We routinely use PCR to intercall between C and Cedar. and intercalling with Kyoto Common Lisp

XEROX PARCo CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

12 The Portable Common Runtime Apprqa!;:h to Interoperability - DRAFT

receives a small amount of use. A small part of the Kyoto runtime was changed to use the PCR
collector and dynamic loader: otherwise it is unchanged. We have tested the dynamic loading and
automatic garbage collection of large pre-existing Sun View applications. merely relinked to be
relocatable instead of executable. and they run fme.

Most of our -use of PCR is under SunOS 4.0. on SPARC-based processors. -We also have a small
amount of 68020 and Mach use. The use which shows PCR's portability best is on CSL's own SP ARC­
based computer. which has no operating system at all but talks through a shared memory connection to
another processor running the Cedar operating system. Thus this PCR has nothing Unix-like nearby to
rely upon. Bringing up this PCR from our original SunOS SPARC-based version took less than a
month.

The perfonnance of PCR is difficult to quantize: relative to what? Our main use is for Cedar. and the
standard Cedar machine of the past was a Dorado. about a 4 MIPS machine. Therefore. comparing
PCR on an 8 MIPS Sun ought to show things running twice as fast On a few measures this works out:
for instance. storage allocation times. On a few measures PCR is worse. such as thread switch time.
largely because of overhead in saving register windows on the SPARe. For another comparison.
Gabriel's lisp ~enchmarks on Kyoto Commonlisp have about the same perfonnance with or without
PCR. Generally we do not see PCR itself as a perfonnance bottleneck for our applications.

For the future. we hope to see PCR in wider use. both inside and outside PARC and Xerox. The

source code and documentation for PCR is available from the Computer Science Laboratory at PARC
for a copying charge. no license required. We hope to interest other portable language efforts. such as
C++ , Objective C. and Modula-3. in using PCR as their base. And finally. we hope to see at least the
facilities offered by PCR --threads. language-independent garbage collection, and user-controlled
dynamic linking and loading--available in all future operating systems.

References

(Accetta et al1986)
Accetta. J. 1.. Baron. R. V .. Bolosky. W .. Golub. D. B.. Rashid. R. F. Tevanian. A .. and Young. M.
W., "Mach: A New Kernel Foundation for UNIX Development". Proceedings of Summer Usenix.
July. 1986.

(Apik and Diehl 1988)

Apik, S .. and Diehl. S .. "Presentation Manager and LAN Manager", BYTE. Vol. 13(10). October
1988. pp. 157-159.

(Atkinson et al1989)
Atkinson, R.. Demers. A .. Hauser. Coo Jacobi. Coo Kessler. P. and Weiser. Moo "Experiences Creating
a Portable Cedar". to appear in the 1989 ACM SIGPLAN Conference on Programming Language

XEROX PARCo CSL-89-xx. MAY, 1989 - For Distribution Outside Xerox

The Portable Common Runtime Approacl! toInteroperability - DRAFf

Design and Implementation. June 1989.

(Bartlett 1988)

13

Bartlett J. F .. "Compacting Garbage Collection with Ambiguous Roots". DEC Western Research
Lab Research Report 8812. February 1988.

(Bershad et al-1987)
Bershad. B. N .. Ching. D. T .. Lazowska. E. D .. Sanislo. J. and Schwartz. M .. "A Remote Procedure
Call Facility for Interconnecting Heterogeneous Computer Systems". IEEE Transactions on
Software EngineeringSE·13. 8. August 1987. pp. 880-894.

(Bershad et a11988)
Bershad. B. N .. Lazowska. E. D .. Levy. H. M .. Wagner. D. B .. "An Open Environment for Building
Parallel Programming Systems". Proceedings ACM/SIGPLAN PPEALS 1988 Parallel
Programming: Experience with Applications. Languages and Systems. SIGPLAN Notices. Vol. 23(9).

September 1988. pp. 1-9.

(Boehm and Weiser 1988)
Boehm. H-J.. and Weiser. M .. "Garbage Collection in an Uncooperative Environment". Software­
Practice and Experience. Vol. 18(9). September 1988. pp. 807-820.

(Brinch-Hansen 1975)
Brinch-Hansen. P .• "The Programming Language Concurrent Pascal". IEEE Transactions on
Software EngineeringSE·1. 2. June. 1975. pp.199-207.

(Cheriton and Zwaenepoel1983)
Cheriton. D. and Zwaenepoel. W. "The Distributed V Kernel and its Perfonnance for Diskless
Workstations". Proceedings of the Ninth ACM Symposium on Operating Systems Principles. Bretton
Woods. NH. October, 1983. pp. 128-140.

(Clark 1985)
Clark. D. "The Structuring of Systems Using Upcalls", Proceedings of the Tenth ACM Symposium
on Operating Systems Principles. Orcas Island. W A. December. 1985. pp. 171-180.

(Franz 1988)
Franz Inc .• "Foreign Functions". Allegro Common Lisp User Guide. Release 2.2. Section 10. January

1988.

(Gabriel 1989)
Gabriel. D .. Ed. "Draft Report on Requirements for a Common Prototyping System". SIGPLAN

Notices. V. 24. No.3. March 1989. pp.93-166.

(Goldberg and Robson 1983)
Goldberg. A. and Robson. D .. Smalltalk-80: the language and its implementation. Addison-Wesley.
1983.

(Hoare 1974)

XEROX PARCo CSL·89·xx. MAY. 1989 • For Distribution Outside Xerox

14 The Portable Common Runtime Apprpach to Interoperability - DRAFT

Hoare. C. A. R .. "Monitors: An Operating System Structuring Concept". CACM 17. 10. October.

1974. pp. 549-557.

(Liskov et al1987)
Liskov. B .. Curtis. Doo Johnson. P. and Scheifler. R. "The Implementation of Argus". Proceedings of
the Eleventh ACM Symposium on Operating Systems Principles. Austin. TX November. 1987. pp.

111-122.

(Liskov et al1988)
Liskov. B.. Bloom. T .• Gifford. D .. Scheifler. R .. and Weihl. W .. "Communication in the Mercury
System". Proc. of the 21st Annual Hawaii Intl Con/. on System Sciences. Kailua-Kona. HI. January

1988. pp.178-187.

(pu et al1988)

Pu. C. and Massalin. H. and Ioannidis. 1.. "The {Synthesis} Kernel". Computing Systems. Vol 1(1).

Winter 1988. pp. 11-32.

(Sun 1988a)

Sun Microsystems. "Lightweight Process Library". SunOS Reference Manual Sun Release 4.0. 1988.

section 3L

(Sun 1988b) •

Sun Microsystems. "Working Beyond the Lisp Environment". Sun Common Lisp 3.0 Advanced
User's Guide. chapter 5. part no. 800-3049-10. August 1988.

(Swinehart et al1986)
Swinehart. D .. Zellweger. P .. Beach. R.. Hagmann. R .. "A Structural View of the Cedar

Programming Environment". TOPLAS 8.4. October. 1986.

(Tanenbaum et al1983)

Tanenbaum. A.S .. van Staveren. H .. Keizer. E. G .. Stevenson. J. Woo "A Practical Tool Kit for
Making Portable Compilers". Communications of the ACM. Vol. 26(9). September 1983. pp.

654-660.

(Weiser in preparation)

Weiser. Moo "Garbage Collection as an Operating System Primitive". in preparation.

(U.S. OOD 1983)

U. S. Department of Defense. Reference Manual for the Ada Programming Language. ANSI/MIL­

STD 1815 A. January. 1983.

(Xerox 1985)

Xerox Corporation. Interlisp-D Reference Manual. October. 1985.

XEROX PARC, CSL-89-xx. MAY. 1989 - For Distribution Outside Xerox

Experiences Creating a Portable Cedar

Russ Atkinson, Alan Demers, Carl Hauser, Christian Jacobi, Peter Kessler, and
Mark Weiser

CSL-89-~.

@ Copyright 1989 Association of Computing Machinery. Printed with permission.

Abstract: Cedar is the name for both a language and an environment in use in the Computer
Science laboratory at Xerox PARC since 1980_ The Cedar language is a superset of Mesa, the
major additions being garbage collection and runtime types. Neither the language nor the
environment was originally intended to be portable, and for many years ran only on D-machines
at PARC and a few other locations in Xerox. We recently re-implemented the language to make
it portable across many different architectures. Our strategy was, first, to use machine­
dependent C code as an intermediate language, second, to create a language-independent
layer known as the Portable Common Runtime, and third, to write a relatively large amount of
Cedar-specific runtime code in a subset of Cedar itself. By treating C as an intermediate code
we are able to achieve reasonably fast compilation, very good eventual machine code, and all
with relatively'small programmer effort. Because Cedar is a much richer language than C, there
were numerous issues to resolve in performing an efficient translation and in providing
reasonable debugging. These strategies will be of use to many other porters of high-level
languages who may wish to use C as an assembler language without giving up either ease of
debugging or high performance. We present a brief description of the Cedar language, our
portability strategy for the compiler and runtime, our manner of making connections to other
languages and the Unix operating system, and some measures of the performance of our
"Portable Cedar".

CR Categories and Subject Descriptors: 0.3.4 [Programming languages]: Processors

- Code generation, compilers, run-time environments; 0.2.7 [Software Engineering]:

Distribution and Maintenance - Portability.

Additional Keywords and Phrases: Languages, Portable Cedar

This paper appears in Proceedings of the SIGPLAN '89 Conference on Programming Language

Design and Implementation, Portland, Oregon, June 21-23, 1989.

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

Experiences Creating a Portable Cedar 1

Introduction

Cedar is a large complicated language with many machine dependent constructs. Its original

compiler was targeted for a single proprietary architecture. the D-machine [Lampson and Pier]. A large

amount of Cedar code is in use (over 2 million lines). All of these constraints seemed to make a

portable Cedar language, and a portable Cedar environment almost impossible. We have a success

stOI), to report: it was not that bad. Furthermore. our success story is one with many lessons, both

detailed and generaL for others attempting to make portable versions of modem languages and

environments.

One key lesson is that C [Kernighan and Ritchie] is a feasible portable intermediate language if

you treat it as pure intermediate code. People complain that the original C++ implementation

[Stroustrup] generates intermediate C which must be actually worked with by people (e.g. for

debugging); people worry that C intermediate code means inefficient final code (although there have

been few measurements to support this. it remains folklore). Our generated C is machine dependent

(along a few efficiency-driven dimensions like word length and byte order), very efficient. almost

completely unreadable, and almost never seen by humans. We use unmodified Unix· source

debugging tools on Cedar-language source. We present measurements that our code is as efficient as

directly comp~ed hand-written C code for both simple (e.g. dhrystone) and complicated (e.g. page

rendering) programs.

A second key lesson is our technique of implementing modem language features in a portable

language-independent and operating system-independent layer. Our experience is that a featureful

language like Cedar (or, we conjecture. Smalltalk-80t [Goldberg and Robson] or Common LISP

[Steele] or Modula-3 [Cardelli. et ai.], etc.) need neither force its language requirements onto the depths

of the operating system (as Cedar formerly did and Lisp-machine-style Lisps [Weinreb and Moon] still

do). nor develop a thick insulating layer from the operating system (as most Unix LISPs do), Our

approach to integrating Cedar into its base system is lightweight and consists of several layers which

together provide the language-independent features like garbage collection. exception handling,

runtime types, and threads. We have run identical large Cedar applications on D-machines running

the Cedar environment on Sun SPARCt and Motorola 68020 processors running SunOS. on 68020's

running Mach [Accetta, et at.], and on homebrew imbedded SPARC-based controller boards with no

operating system at all.

length: 1.5 in thickness: 0.4 pt
* Unix is a trademark of AT&T Bell Laboratories.

f Smalltalk·80 is a trademark ofParcPlace Systems. Inc.

t SPARe is a Irademark of Sun Microsystems. Inc.

XEROX PARe. CSL·89-~~. ~MARCH~. 1989

-.
2 Experiences Creating a.P'ortable Cedar

Related Work

We think of the C language as our target machine language, and can then use any competent C

compiler as a platform. Several other translators have used C at various levels to take advantage of its

wide availability. Where the source language is reasonably close to C. a preprocessor is sufficient, as

the first C+--+ implementation shows. However. C has also been used for larrguages whose features

differ substantially from C [Yuasa and Hagiya] [Bartlett] [Weiner and Ramakrishnan]. Rather than

generate C source. some translators use just the code generation phase of the C compiler to achieve a

measure of target machine independence [Feldman] [Kessler]. Languages other than C have been

sometimes been chosen as targets in an attempt to be portable [Albrecht, et all.

Mimosa: A Compiler from Cedar to C

The Mimosa compiler translates the Cedar language into machine dependent C. There is a front

end. compiling into a simple intermediate form. and a back end translating from the intermediate form

to C code. Another back end generates machine code for the Xerox Dragon processor [McCreight]. In

the future. back ends may generate other machine codes. other assembler languages. or other versions

ofC.

Although treating C as merely an intermediate language has significant advantages. the decision to

keep program maintenance in Cedar was made independently on the merits of the Cedar language.

We were not willing to do a one-time translation from Cedar to C (even readable C). For example,

such things as compiler-generated runtime checks should not be exposed to the programmer for

maintenance.

Front end

The front end is a descendant of the Mesa (Xerox] compiler used to generate code for the D­

machine. It has been substantially modified over the past three years to be retargetable. We

parameterized the front end to cover a large variety of architectures. Word size. addressing granularity,

and byte order are the most important of these parameters. Other parameters include floating point

format and restrictions on contiguous addresses (if any). While this parameter space does not cover the

entire range of commercial machines. we intend it to cover most widely used processors. Currently we

suppon the Motorola 68020 and Sun SPARC processors.

The Cedar language itself exposes details of the target machine. so the parameterization of the

front end affects the semantics of the Cedar language, We have adopted a set of guidelines so

programmers can keep code portable. As an example. Cedar has a type. INTEGER. that is meant to be

used for fast signed arithmetic operations: an INTEGER value occupies one machine word (normally

determined by register width). In cases where the machine also supports a wider arithmetic operation.

LONG INTEGER is provided. although for most machines the two types are the same. In cases where

specific widths are required. for example, to describe externally constrained data. the types INT16 and

XEROX PARCo CSL-89-~~. ~ MARCH~. 1989

Experiences Creating a P<?rtable Cedar 3

INT32 can be used to specify machine integers with specific numbers of representation bits.

The front end has 2M bytes of source in 120 source files, or about 50K lines of code. This does not

include a package which manipulates the tree-structured intermediate form shared between front end

and back end. The source for that package has 5K lines of code in 12 files. Taking both of these
sections as the-front end gives about 55K lines of source in 132 files,

Everything in the front end was affected by the retargeting. and some files were completely
rewritten. The use of an intermediate code is completely new. The old code generator was changed to
produce the intermediate code, in 16 files and over 8K lines of code, A few other files are completely

new, for about 30% of the source lines. Since substantial changes have been made to other parts of the
compiler. it would be reasonable to estimate that over 50% of the source lines have received major

change (not counting the lines that were completely discarded). We estimate that about 2 person-years
overall were spent in redoing the front-end.

Back end

The back-end generates machine dependent C code from intermediate form. It was written

completely from scratch for the port. consists of 10K lines of Cedar in 24 modules. and took about 6
person-months to write.

We originally chose C so we could start compiler work before we had selected a target architecture.

The platforms we want to run on all come with C compilers. many of them with target-specific
optimizers. By choosing e as the machine code to be generated. a high degree of portability is

achieved. However. we chose to generate efficient C for a specific target machine. rather than

generating portable C. Being one step removed from the actual machine makes it harder to control
. .

certain details such as layout of local frames. allocation of registers. etc .. Parameterization of the back

end provides enough knowledge of the target architecture to generate production-quality C. However.

the parameterization of the back end for the Motorola and SPARe architectures is identical. since the
architectures do not differ in ways that affect the generated e code.

We also chose C because it was lenient enough for our needs. A language with stronger type rules
would have hindered us more than it would have helped. There is hardly any type information in our

C source. in part because C types and Cedar types are only partly compatible. and in part because we

wanted to avoid many of the type coercions that are part of the semantics of C. All of the variables and
parameters in our generated C are unsigned words or bytes. and are cast whenever it is necessary to

generate typed operations. Since the front end lays out records. arrays and non-local references to

frames. the back end generates more addressing arithmetic than is usual in hand-coded C. This leads to

C code that is barely readable, but has good performance. By not exposing the intermediate e source

to human readers we can transform a program to enhance its performance without caring about loss of

readability. For example. we can access a single bit of a packed structure more efficiently if it happens

to be a sign bit Often the code includes constructs that even a e programmer would balk at. though

fortunately our C compilers are able to process it

XEROX PARCo CSL·89-~~. ~ MARCH •. 1989

4 Experiences Creating a Portable Cedar

Only some of the primitive operations of the Cedar language have corresponding operations in C.
More complex features. such as nested procedures. are implemented in C with standard compiler

techniq ues. There is no direct way to translate Cedar's signals or lightweight processes into the C

language: this discrepancy is resolved by introducing a runtime system. The implementation of such

features in Cis by procedures and data structures implemented in the runtime system. just as it would

be if we were directly compiling Cedar into machine code.

peR: A Runtime System

The Cedar runtime environment. to which the generated C code is targeted. is written mostly in

Cedar. the rest is written in C. except for a small amount of assembler code.

The environment is built in layers. The lowest layer is akin to an operating system. and provides

dynamic loading. threads support. and storage management (including garbage collection). This is

about 20K lines of C code and less than a 100 lines of assembler (either SPARC and Motorola 68020 at

the moment). This layer is not specific to Cedar. and is in fact intended to provide a language­

independent base for high level languages. Called the Portable Common Runtime (PCR). it is

described elsewhere [Weiser. et al.l. The PCR is described below only where its functionality is

particularly important to implementing Cedar features.

The next layer provides the lowest level of Cedar-specific support: imports and exports of Cedar

interfaces: and a smalilibrary of basic utilities like bit moves and typed storage allocation. It is about

5K lines of C. Called CedarPreBasics, it is the last layer of non-Cedar code. and supports the complete

Cedar language except for the ATOM. LIST and ROPE data types. and exception handling.

Support for the remaining features of Cedar is provided by the penultimate layer. called

CedarCore. which contains 400 lines of C code and 10K lines of Cedar. From CedarCore on. the full

Cedar language is supported. The final support layer. BasicCedar. while not necessary for the language

itself. contains services that are considered essential for most Cedar applications. For example it

includes several kinds of hash table mechanisms and a general-purpose stream lIO package.

Cedar lightweight processes, interface binding, and exception handling are handled by the runtime

system. Portable implementations of these features are discussed below. They are representative of the

functionality found in each layer of the runtime system.

Threads

The Cedar language includes a primitive operation FORK. which creates a new "lightweight"

process (or thread) running in the same address space as its parent The language also has a MONITOR

mechanism based on [Hoare], including variables of type CONDITION with WAIT, NOTIFY and

BROADCAST primitives to provide synchronization between processes. An ABORT operation can be

used to wake up a process that may be waiting on an unspecified condition.

XEROX PARCo CSL·89·~~. ~MARCH~. 1989

Experiences Creating a Po~ble Cedar 5

The D-machine Cedar implementation had microcode support for processes. but such support is
not essential. Efficient threads implementations on conventional hardware already exist as part of
Mach [Accetta elal.]. In addition. Unix-based threads packages of varying degrees of sophistication are
becoming widely available [Cooper] [Kepecs] [Doeppner). It is important to note. however. that Cedar
is quite demapding in this area if the excellent "feel" of the D-machine implementation is to be

retained. It would not be acceptable if a compute-bound thread could seize the processor. or if
execution of an I/O operation by a single thread caused all other threads to block. Thus. a simple
coroutine threads package. which might be adequate in a simulation environment, would not meet our
needs. The PCR threads package provides the features we require in a reasonably portable way by
using the signal handling, shared memory and asynchronous I/O features available in advanced Unix
systems. Some advanced debugging facilities. such as the ability to freeze. examine and thaw
individual threads under program control will be needed for eventual implementation of a full
debugger.

Interface binding

The CedarPreBasics layer implements the loadstate: the dynamically constructed mapping from
interface items to their implementations. The loadstate implementation is responsible for the final
steps in static type checking which insures that dynamically loaded modules mesh correctly with the
already-existing types in the system.

An interesting aspect of the loadstate implementation was the method we chose to convey type,
import. and export infonnation from the Mimosa compiler to the loadstate. The D-machine Cedar
compiler incorporates parts of its symbol tables in the files containing executable code. The D-machine
loadstate implementation shares knowledge of these data structures with the compiler. and can

interpret them to build the loadstate. In making Cedar portable we realized that issues of byte order,
cross compilation. and perfonnance strongly argue against sharing symbol table structures. Instead the
necessary infonnation is conveyed in executable code, encapsulated in an installation procedure for
each module. When a module is dynamically loaded into a running Cedar world its installation
procedure is called. calling in tum upon the loadstate to type check and bind imported and exported
interfaces.

Exception handling

Cedar's signal mechanism lets programmers write uncluttered code for nonnal cases, isolating the
code for exceptional cases in catch phrases. Since signals propagate over procedure call boundaries, the

exceptional cases can be handled where it makes most sense to do so. Enable scopes are either blocks
or single procedure applications. Every catch phrase ends by disposing of the signal in one of three

ways: it is rejected. forcing catch phrases in ancestral procedure frames to examine and dispose of the
signal: it is resumed supplying a value for the original signal application; or it is tenninated

XEROX PARC, CSL-89-.~, • MARCH~, 1989

6 Experiences Creating a p:ortable Cedar

TeITI1ination forces the procedure call stack to be unwound to the procedure invocation where the

catch phrase was established. which then continues execution with variable values as of the time that

the locus of control last left that frame.

Our implementation of Cedar's signal semantics uses a per-thread catch stack to record active

catch phrases.- Entering and exiting enable scopes must be cheap because they are part of the execution

path in frequent cases. Raising signals and processing them according to the catch stack can be more

expensive because it happens relatively infrequently. Entering an enable scope requires pushing

several words of data onto the catch stack. Le. about the cost of a procedure call. Raising a signal

requires traversing the catch stack. invoking each catch phrase in turn and processing its result: reject

resume or terminate. The catch stack interpretation is itself Cedar code and uses Cedar signals.

The hardest problem in this area was the correct implementation of the termination case of a catch

phrase. We use essentially the C library setjmp and longjmp procedures. but for Cedar we must ensure

that local variables are restored to their state at the time of the last callout of the frame. In the case of a

register machine. this means restoring the registers to the values they had when the stack frame was last

left (not necessarily their values at setjmp time). On the SP ARC processor or the V AX these semantics

are provided by the setjmp and longjmp in the standard library. For the 68020, a considerably more

complicated m~hanism is required. Our implementation of longjmp for the 68020 walks up the frame

stack. restoring registers by interpreting the procedure entry code for each active procedure to

determine the registers saved there. For some language implementations on some processors this

becomes much more difficult: the C implementation for the DEC WRL Titan processor. for instance.

saves and restores registers at arbitrary points in the program text making a principled register­

restoring stack walk difficult [powell].

One of the noticeable features is the system level approach. The compiler front end notes the

scope of each catch phrase and compiles each catch phrase into a separate procedure. The compiler

back end generates code to enter and exit the enable scopes at the appropriate points. Exiting enable

scopes is complicated by certain styles of exits from blocks. The runtime system then implements the

signal handling mechanism. Three pieces of the system share responsibility for this language feature.

Building on Unix and C

One of our major goals in making Cedar run on commercial hardware was to take advantage of

software developed in the larger computing community. Further, we wished to begin making Cedar's

superior facilities for building large systems available in the Unix environment To this end several

tools have been developed and the Cedar language has been extended. Intercalling between Cedar and

C programs is provided. First Cedar programs can call arbitrary C entry points using a new variant of

the MACHINE CODE construct in the Cedar language. Of course. such uses are inherently unsafe. so

their use is restricted. Second. tools are available to generate the necessary calis on the loadstate to

import Cedar procedures and variables into C programs. Finally. tools to describe Cedar data

XEROX PARe. CSL-89-~~. ~MARCH~. 1989

Experiences Creating a P9rtable Cedar 7

structures in C and vice versa have been written.
Using these facilities. we have described a substantial portion of the Unix system call interface in

Cedar interfaces. including file and socket I/O. Cedar programs use Cedar interfaces for type-checked

access to C procedures. Applications of this technique include an X window client [Scheifler and

Gettys] and a$unRPC-based Mimosa compilation server.

Performance and Practice

Porting Effort

One of the advantages of retargeting an existing translator is that you have on hand a large body of

code to translate. We quickly gained considerable experience with porting code from the D-machine
version of Cedar. We have also gained experience with writing code such that it runs unmodified on

several machine architectures.

In excess of 365K lines of Cedar code have been poned in the year that the compiler has been

available. These packages range in size from small (IK lines for an arbitrary-precision number

package) to huge (the compiler itself is SOK lines). A measure of our success in using the same source
for both architectures is that only 12K lines of architecture-specific code has been created for the pon

so far. The modular structure of the Cedar language has allowed us to hide those architecture-specific

implementations behind interfaces that exist in both worlds. The layered structure of Cedar
encourages us to believe that most of the architecture-specific implementations that are needed for

applications have already been written.

The first reasonably large program to be poned was a Scheme [Rees and Clinger] interpreter: 14

files with 9K lines of Cedar. This occurred in January. 1988. and took one person approximately a
month (including discovering many compiler and runtime bugs). The next large program was the

Cedar Imager [Swinehart. et all. soon followed by an interpreter for the Interpress page description

language. together consisting of 60 modules and 40K lines of code. It took one person about three
elapsed months. This code was older and more tuned for efficiency. and so uncovered more compiler

and runtime bugs. The compiler itself was poned some months after that and took about 6 elapsed

weeks.

Some programs are more easily poned than others. In general. Cedar programs that do not exploit
knowledge of the D-machine (e.g. word size. addressing granularity. or other hardware features) can

just be compiled with the new compiler and run on C platfoliIlS. In some cases. data structures can be

preserved across architectures by the use of types with specific representations. though possibly at some

cost in execution speed.

XEROX PARe. CSL-89-~~. ~MARCH~.1989

8 Experiences Creating a Pprtable Cedar

Performance of generated code.

In practice. the performance of code generated by Mimosa for a given task is comparable to the

performance of hand-written C code for the same task. In some cases the hand-written C code is
slightly better. although this gap continues to narrow as the compiler gains maturity.

In one caSe. Dhrystone II [Weicker]. the Mimosa-generated C code for the Cedar version actually
runs faster than the hand-written C code. The reason is that Cedar strings are word-aligned and length­

containing. while C strings are zero terminated. Faster routines for string comparison and string
copying. gave the Cedar code a significant advantage for this program. This example illustrates one of
the dangers of performing naive comparisons between compilers and between languages.

For good display and printing performance using bitmap graphics it is important to have fast bit
block moving operations. One particular routine. written in Cedar. performs a bitwise OR of a block

into unaligned memory. This routine. running on a Sun-41260. transfers blocks that are 20 bits wide by
20 bits high at over 34.000 blocks per second. A careful examination of the C code produced by the

Mimosa compiler revealed no significant room for improvement

We do not pay an execution penalty for writing in Cedar and then translating to C code. This

result is in agreement with similar results for other languages [Bartlett]. Since we can exploit

optimizing C cOmpilers. we can get good performance without our having to invest in the expertise
needed to generate production quality machine code for our current and future platforms.

Debugging

We think of the C language as the assembler language of our target architecture. but we are not
willing to debug using only assembler level debugging tools. We use the dbx debugger provided with

most of our piatforrns to access the implementation details of the generated C code [Linton]. Dbx

supports several languages. but in all those translators debugging inforrnation is provided solely by the
front end. and is passed unchanged through the assembler. Since we are using the C compiler as our

assembler. providing debugging inforrnation is a little more complex. Some of the information needed

for debugging is known only to our front-end. e.g. decisions about parameter passing. record layout
etc .. and all type inforrnation. Some of the information needed for debugging is known only to the C

compiler. e.g .. frame layouts. register allocations. addresses of procedures. etc. These two sources of

information are merged during a post-processing step by replacing the name. type. and location
inforrnation from the C compiler with the corresponding information from the Cedar front-end. Dbx

then sets and reports breakpoints by reference to Cedar source and uses the Cedar names for the

corresponding C variables and procedures. Since we were not willing to modify dbx. we make do with
the type system permitted by dbx's interpreter and dbx's pretty-printing of data structures.

Since Cedar. and in fact the PCR in general. supports dynamic loading, we have worked out a
scheme for using dbx on dynamically constructed load images. As each module is dynamically loaded

the runtime system dribbles symbol table and relocation information to a log file. When the debugger

XEROXPARC.CSL-89-~~. ~MARCH~.1989

Experiences Creating a Pprtable Cedar 9

is invoked. the log me is used to construct a synthetic a.out file. with only a symbol table. representing
the state of the currently loaded modules. The synthetic a.out can be used toaebug the dynamically
constructed process.

A better job of supporting Cedar (and inter-language) debugging is awaiting the construction of
something like the Cedar Abstract Machine [Swinehart. et al.]. We think we can impose such a system
on a C platfolTIl in the same way we have handled dynamic loading in the PCR: any data structures we
need can be constructed at load time by executing code in the module being loaded. This technique
frees us from all but the very lowest levels of interactions with the target platform and allows us to be
independent of the debuggers provided on those platforms.

Conclusions and Recommendations

We have taken a featurefullanguage designed to be executed on a proprietary architecture and
made it portable by having its compiler generate C. We have taken a large body of code written in that
language and ported it to industry-standard platforms using the new compiler. We have achieved
excellent efficiency - as good as hand-coded C - and we have gained leverage from work already
done for other languages and other systems. We have learned several important lessons along the way,
including how to use C as an assembler language, how to use C debuggers for debugging Cedar source,
and how language-independent layers can support what are ordinarily language-dependent runtime
features like threads and garbage collection. The techniques we have developed will be of growing
importance as the computing world is based increasingly on interoperability and the use of existing
tools.

Acknowledgments

We thank the following people who helped us build and use the Mimosa compiler and the
language tools that support it: Jean-Christophe Cuenod, Jim Foote, Linda Howe. Bill Jackson.
Christian LeCocq, Andy Litman, Eduardo Pelegri -L!opart. Bryan Lyles, Michael Plass, and all our
other colleagues who have been willing to help us fmd the bugs in the system. We also thank the
program committee members who gave us feedback on the extended abstract

References

Accetta. J.1 .. Baron. R.V., Bolosky, W .. Golub, D.B .. Rashid, R.F. Tevanian. A .. and Young. M.W ..
"Mach: A New Kernel Foundation for UNIX Development". Proceedings of Summer Usenix. July,
1986.

Albrecht, P., Garrison. P., Graham. S .. Hyerle. R.. Ip. P .. Krieg-Bruckner. B.. "Source-To-Source
Translation: Ada to Pascal and Pascal to Ada". Proceedings of the ACM·SIGPLAN Symposium on
the Ada Programming Language. SIGPLAN Notices. 15. 11. November. 1980.

XEROX PARCo CSL·89·.,~. "MARCH •. 1989

10 Experiences Creating a ;Portable Cedar

Bartlett. 1.. "SCHEME-)C a Portable Scheme-to-C Compiler". Research Report 89/1. DEC Western
Research Laboratory. January. 1989.

Cardelli. L.. Donahue. J .. Glassman. L.. Jordan. M., Kalsow. B., and Nelson, G., "Modula-3 Report".
DEC Systems Research Center. August. 1988.

Cooper. E. and Draves. R .. "C Threads". Department of Computer Science. Carnegie-Mellon
University, Pittsburgh. PA. March. 1987.

Doeppner. T.W. Jr.. "Thread Calls". unpublished manuscript. Brown University, 1987.

Feldman, S.l.. "Implementation of a Portable Fortran 77 Compiler Using Modern Tools". Proceedings
of the ACM SIGPLAN 1979 Symposium on Compiler Construction. SIGPLAN Notices. 14. 8.

August. 1979. pp. 98-106.

Goldberg. A. and Robson. D .. "Smalltalk-80: the language and its implementation". Addison-Wesley.
1983.

Hoare. C.A.R .. "Monitors: An Operating System Structuring Concept", CACM, 17. 10, October. 1974.

Kepecs. J.H .. "Lightweight Processes for UNIX Implementation and Applications". Summer
Conference Proceedings. Portland 1985. USENIX Association. 1985.

Kernighan. B.W. and Ritchie. D.M .. The C Programming Language, Prentice-Hall, 1978.

Kessler. P.B.. "The Intermediate Representation of the Portable C Compiler, as Used by the Berkeley
Pascal Compiler'. Unpublished manuscript. Computer Science Division, EECS. University of
California. Berkeley. CA. ApriL 1983.

Lampson. B. and Pier. K .. "A Processor for High-Performance Personal Computer", SIGARCH/IEEE
Proceedings of the i h Symposium on Computer Architecture. La Baule, May, 1980. pp. 146-160.

Linton. M.A.. "dbx". Berkeley UNIX User's Manual. Computer Science Division, EECS. U. C.
Berkeley. California. April. 1986.

McCreight. E .. "The Dragon Processor', Proceedings of the Second International Conference on
Architectural Supportjor Programming Languages and Operating Systems (ASPLOS II). Palo Alto.
October. 1987. pp. 65-69.

PowelL M. private communication.

Rees.1.. and Clinger, W. (Eds.), "Revised3 Report on the Algorithmic Language Scheme", SIGPLAN
Notices. 21.12. December. 1986.

Scheifler. R. and Gettys. 1.. "The X Window System". ACM Transactions on Graphics. 5. 2, April 1986.
pp.79-109.

Steele, G., Common LISP: The Language. Digital Press, 1984.

Stroustrup. B.. The C++ Programming Language. Addison-Wesley, 1986.

Swinehart. D .. Zellweger. P .. Beach. R .. Hagmann. R.. "A Structural View of the Cedar Programming
Environment". TOPLAS. 8. 4. October. 1986.

Weicker. R .. "Dhrystone Benchmark: Rationale for Version 2 and Measurement Rules". SIGPLAN

XEROX PARCo CSL-89-~~. ~MARCH~.1989

Experiences Creating a Rortable Cedar 11

Notices. 23. 8. August 1988.
-

Weiner. J.L. and Ramakrishnan. S .. "A Piggy-Back Compiler for Prolog", Proceedings of the
SIGPLAN '88 Conference on Programming Design and Implementation. SIGPLAN Notices. 23. 7.

June. 1988.

Weinreb. D . .and Moon. D .. Lisp Machine Manual, MIT AI Lab. 1981.

Weiser. M .. Demers. A.. and Hauser. c., "The Portable Common Runtime Approach to
Interoperability". submitted to Twelfth ACM Symposium on Operating Systems Principles.

Yuasa. T. and Hagiya. M. Kyoto Common Lisp Report. Research Institute for Mathematical Sciences.
Kyoto University, no date.

Xerox Corporation. Mesa Language Manual. XDE3.0-3001. Version 3.0. November. 1984

Appendix - Code Examples

Here is a small example Cedar program with one global variable, a global procedure. some local

variables, and a nested procedure that makes several non-local variable accesses. This program is not a
typical Cedar program.

Test: CEDAR PROGRAM = {

global: INT;

Outer: PROC D = {
local: INT;

}.

a: PACKED ARRAY [0 . .31] OF [0 .. 15];

Nested: PROC [index: [0 . .31]] = {
local +- global + a{index];

};

Nested[index: 5];
};

Below is the C code which is generated for the example program. It begins with type declarations

which declare everything to be unsigned integers or characters or types constructed from those basic

types. Symbols from the Cedar code have had unique suffixes added to to them, so that similar names
don't interfere in the C code (which has much more restrictive name scopes).

The translation of the outer procedure is straightforward. since all it does is set up a procedure

descriptor for the nested procedure and call it with the appropriate actual parameters. Procedure
descriptors are used for nested procedures. as well as for procedure variables and procedure
parameters,

XEROX PARC, CSL-89-~ ~. ~ MARCH ~. 1989

12 Experiences Creating a:Portable Cedar

The fIrst two lines of the nested procedure set up its addressing environment: a pointer to the

global frame and a static link derived from the procedure descriptor passed as-its last argument. The

remaining line is the translation of the body of the nested procedure. The non-local references are

fairly self-explanatory. The fIrst use of the index variable selects a byte offset within the array. and the

second use o(the index variable selects either a 0 bit or a 4 bit shift of the selected byte.
- --

typedefunsigned word. *ptr:

typedefunsigned char byte. *bPt:

typedef struct {word ro. fl. fl. D. f4. 5. f6. f7} W8;

typedef word (*fPt)():

typedefstruct {word ro. fl. fl} W3:

typedefstruct {W8 f: W3 r} Wll;

static void Nested_600:

static void Outer_300 {

Wll var_l406:

}:

(* « (ptr) &var_1406) + 4)) = «(word) (fPt) Nested_60»;

. (* « (ptr) &var_1406) + 5» = 1:

(void) Nested_60(5. (word) « (bPt) &var_1406)+ 16Y" var_1390 .. /):

static void Nested_60(index_1330. formal_1438)

word index_1330:

{

}:

word formal_1438:

register ptr gf_1422 = (ptr) &globalfrarne;

formal_1438 = (formal_1438 - 16);

(* « (ptr) formal_1438) + 6)) = «(* « (ptr) gf_1422)+4Y" global_1190"/) + «(*
(bPt) «((bPt) formal_1438)+28) + (index_1330» 1»») (4 - «(index_1330 &

1) « 2»» & 017»;

XEROX PARCo CSL-89-"., .. MARCH •. 1989

Calling C procedures from Cedar
Trusted Machine Code Procedures

Usage of a prefix and underscore is recomended: otherwise the name could crash with a
compiler generated name.

Also dont use names with exactly one underscore followed by a single letter and then digits: the
compiler generates those too.

The +- character in Cedar is an underscore.

Warning: not all features are ratificated by the language design commitee: some features might
change. but it seems unlikely.

It might be good to stick to the "Simple". the "Complex" and the "ExternalNames" example.
The "Crazy" examples and the "More complete syntax" contain features of questionable
value.

Simple examples

1) Include just a plain C procedure

PutChar: PROC [ch: CHAR] = TRUSTED MACHINE CODE {
"Mumble"
}:

generates
Mumble(ch)

However. normally you have to get a declaration of the procedure you are calling. so this
case might be a little bit oversimplified.

2) Include a C procedure with an include file from the standard Cedar place

PutChar: PROC [ch: CHAR] = TRUSTED MACHINE CODE {
"Foo.Mumble"
}:

generates
#include <cedar/Foo.h>

Mumble(ch)
This case is made to look like in Cedar external procedure: e.g. the extension .h for the

include file need not be specified.

3) Include a C procedure with an include file from the standard Unix place

PutChar: PROC [ch: CHAR] = TRUSTED MACHINE CODE {
"<Foo.h>.Mumble"

1

}:

generates
#include <Foo.h>

Mumble(ch)
Here we are thinking Unix: specify a unix h file including the .h.

4) Include a C procedure with an include file from the working directory

PutChar: PROC [ch: CHAR] = TRUSTED MACHINE CODE {
...... Foo.h Mumble"
}:

generates
#include "Foo.h"

Mumble(ch)
Here we are thinking Unix: specify a unix h file including the .h.

Complex ex~mples

DRealAddl: UNSAFE PROC [ret. x. y: PDREAL] = UNCHECKED MACHINE CODE {
.. + extern void XR ~DRealAddI (ret x. y) W2 *ret, *x. *y; {\n":
" DReaIPtr(ret) = DReaIPtr(x) + DRealPtr(y):\n":
" }:\n":
".XR~DRealAddI":

}:

Note that machine code procedures can use multiple lines.
The" +" denotes that the following stuff is included after the type declarations of the module.
In this exarnpole DRealPtr needs to be definerd:

DefDRealPtr: PROC = TRUSTED MACHINE CODE {
.. + # define DRealPtr(x) (*«double *) (x»)\n."
}:

Here we note that there is no actual procedure to be called: the machine code text has nothing
following the period. This machine code procedure was thought to be called in the
module initialization to provide common definitions.

Crazy examples

Using assignments and declarations
Avoid usage of this feature for assignments and declarations: it is quite baroque

2

E.g. for the Unix ermo feature [Its brain damaged to use global variables. but Unix users
have no choice]. BTW: it is better to use the runtime feature than to trY to do this with
machine code procedures. The runtime feature is much more correct E.g, the runtime
feature knows how to deal with multiple threads. whereas this method does not.

ErrNo: PROC [] RETURNS [INT] = TRUSTED MACHINE CODE {
--call a variable, and make sure it is declared (extern)
"!$errno"
}:

ClearErr: PROC [] = TRUSTED MACHINE CODE {
--include this statement as is
"@errno = 0"
};

EvenMoreUgly: PROC [] RETURNS [INT] = TRUSTED MACHINE CODE {
--make a declaration as is. e.g. to jool C2C's types
--and make a call to this variable
.. + extern int evenMoreUgly:.$evenMoreUgly"
}:

P: PR~[] = {
i. k: INT:
ClearErr[];
i +- ErrNo[]:
k +- EvenMoreUglyO:
}:

generates
extern word errno;
extern int evenMoreUgly;

errno = 0;
i+-543435 = (word) errno;

More complete syntax

You wouldn't believe how archaic machine code procedures are parsed. It is better to stick to
the well supported examples than to understand the complete parsing algorithm. When new
features need to be included I intend to keep the simple examples correct but can't make any
guarantees about the general algorithm.

First split the text into the piece for the declarations [prefix part], and, the piece to be included
in line [procedure name part]; this is done at the position of the rightmost dot To the left of
the dot is the prefix part to the right of the dot is the procedure name part

prefix part syntax:

3

We introduce the entry: thats the unit used in caching; Each entry is cached and handled
only once: this is used to get only single includes. Users must be carefull and use exactly
the same spelling if two machine code procedures have same entries. -

consume leading %: it says that each line is a separate entry
other leading letter: this starts the single entry for the whole preflx part

~try: -
entries are cached: the same entry is induded only once into a C file; An entry may be

multiple lines: separated by either In or actual lines in the source.
leading": makes an # include"
leading (: makes an # include C ..
leading *: include the rest of the entry before the type declarations
leading +: include the rest of the entry after the type declarations
leading -: include .h file from standard Cedar place
leading =: include .h file from standard Xr place
alphabetic leading letter: think cedar module name: adds include .h file from standard

Cedar place.
"adds include.h file" means: Rope.Cat{"(standard-placel", entry. ".h>"]

procedure name part syntax:
leading !: make line to declare the name [extern]
leading &: don't use (void), even if procedure has no return parameters
leading $: no paranthesis, e.g. for constants, variables
leading' @: no paranthesis, don't use (void) e.g. for constants, variables
leading:: stop consuming further leading letters [so reserved characters can be used in the

name]
alphabetic leading letter: this starts the name

Calling Cedar procedures from C
The "problem"

1) Make the generated C procedure have a C name under progranuner control.
2) Make sure the "signature" calling sequence of the Cedar procedure matches the C

procedure.

There are currently two methods to force progranuner deflned procedure names.
a) Use TRUSTED MACHINE CODE to specify inside the program what the names should be
b) Use an external file to defme the names of the procedures.

As of today method b) has fallen out of my favor. A void this because I might retract it
when I can make sure all uses are flxed.

Warning
This mechanism makes Cedar procedures available for extern use without enforcing the

module initialization to run flrst However, correct behaviour of Cedar procedures may
depend on doing the module initializations.

a) Name definition using TRUSTED MACHINE CODE procedures

4

Example:

ExternalNames: PROC 0 = TRUSTED MACHINE CODE {
"1'ExtemalNames\n":
"Xyz XR ... Xyz\n":
"Foo XR ... Foo\n":
}:

In this example, the trusted machine code procedure ExtemalNames must be used, so C2C
will actually see it in the code tree.

The line "tExternaINames\n": specifies that this machine code procedure has the purpose
of defining C names.

This makes the Cedar procedure Xyz have the C name XR ... Xyz: as well as the Cedar
procedure Foo have the C name XR ... Foo.

It is required [but not tested] that all CedarProcedureName's are existing top level
procedures.

It is an error if multiple procedures [even if not top level] with name CedarProcedureName
exist

Design rational
Th~ external name can be explicitely specified [and is not simply a translation of the

Mesa name]. This allows to make "exportable" names with prefix and underscore.

b) Name definition using external file
A void this because I might retract it The problem is, that usage of an external file needs a

special switch and knowledge by several programming enviroIllllent tools.

Uses -R switch to mimosa to make exteRnal procedure declarations.
This causes reading in a modulename.externalProcs file describing external names of

procedures. Only the procedures described in .extemalProcs file will get external names.

Syntax of .externalProcs files
File is line oriented
Lines starting with" -" are comments
The first non comment line must be

extern procs
All other non comment lines have the fonn

CedarProcedureName CProcedureName
The CedarProcedureName must have the syntax of a Cedar name.
The CProcedureName must have the syntax of a C name.

Syntactical Restrictions
It is required [but not tested] that all CedarProcedureName are existing top level

procedures.
It is an error if multiple procedures [even if not top level] with name
CedarProcedureName exist

Module name is used instead of file name to fmd .extemalProcs flle. [As long as C2C

5

does not know file names]

Questionable
Are the names of features part of the mesa program or not? ogically they might not

have anything to do with the mesa program. but then why did we care in first place.

Comparison with Custer [see Custer's own doc]

Custer allows a C program to simulate the Cedarish import mechanism; it requires the C
program to be specialy written for this purpose. Custer has the advantage of full Cedarish
re-importing possibilities.

This simply eXDOrts Cedar procedures the C-ish way: no version checking or reloading is
possile. Its advantages are less work and, it works for unmodified C programs not
knowing that they call Cedar procedures. By not requiring to modify the caller, this
mechanism may also be used from Languages other than C.

Other Interoperability Hillts
See the modules UXProcs. UXStrings.

UXProcs contains procedures to transfer between Mesa procedure values and C procedure
values. This module hides the fact that procedure values in Mesa have one level of indirection
more then procedure values in C.

UXStrings contains procedures to transfer between Cedar ropes and Unix strings. The
problems are the immutability requirements of Cedar ropes and the null termination of unix
strings.

6

Indional Specification
; Salient
Mesa and C Intercallability

Working draft-not approved by any working group -

Author: Litman

Date: 1/22/88

Filed: (Kg: OSBU North: Xerox)/SalientDesignWorking/lntercallabi lity
(Kg: OSBU North: Xerox)/SalientDesignWorking/lntercallability .ip

Revision history:

Approvals:

David Elliott
Manager, Advanced Software Development

Ron Boyd
Manager, Network Services & Communications

XEROX
DOCUMENT SYSTEMS BUSINESS UNIT
Workstations and Network Systems
Advanced Software Development
Sunnyvale EI Segundo

linda Bergsteinsson
Manager, Workstation Applications

~.I!!.. XEROX
~O~Private
"""lJ'y Data

1 Introduction

2 Mesa calling C

2.1 MACHINE CODE

Intercallability

This document describes intercallability between Mesa and C,
as supported by Salient language tools. Paradigms for software
design are proposed which guarantee as much type safety as
possible.

Readers are assumed to be familiar with:
Mesa
C
basic workings of Mesa to C translation
basic C development tools (cc, lint, Id)

Support for Mesa calling C is provided by a new form of
MACHINE CODE procedure. If a string literal appears in a
MACHINE CODE procedure, it is converted by Mimosa into a C
procedure call. For instance,

Add: PROqa,b: CARDINAL] RETURNS[CARDINAL] =
MACHINE CODE { "cadd" };

Add[1,2];

appears in the C output after compilation as

cadd(1,2);

Such MACHINE CODE procedures may appear in either
interfaces or programs. Arguments passed to a MACHINE CODE
procedure are Mesa expressions, not C expressions.

In the above example, while the call to Add is typechecked by
the Mesa compiler, the call to cadd is not type checked by the C
compiler. If cadd expected three arguments rather than two,
an error would occur at runtime. We can take advantage of the
type checking that C provides by defining cadd in a header file,
and including the header file in the C output. This is done by
specifying the header file in the MACHINE CODE procedure.
Say the header file is called header.h. Then

11'111 t:K~LLAISILII l

2.2 Transducers

2.3 Sherman

,

Add: PROCJa,b: CARDINAL] RETURNS[CARDINAL] =
MACHINfCODE {"<header.h>.cadd"};

Add[1, 2]; ~ ..

appears in the C output after compilation as

#include < header.h >
cadd(1,2);

In the C output, the include line appears before the procedure
containing the call. The header file may also be included as
follows:

Add: PROC[a,b: CARDINAL] RETURNS[CARDINAL] =
MACHINE CODE {"\"header.h\".cadd"};

Add[1,2];

appears in the C output after compilation as

#include "header.h"
cadd(1,2);

To do: talk about C procedures as first class objects.

To implement a Mesa interface procedure using calls to UNIX
or other C libraries, arguments to the procedure must be
converted into C variables and passed to the desired library
routines. We call the code that does this a transducer.
Converting Mesa variables to C variables is described in
[Yamamoto].

A transducer may be long and complicated. If one were
implementing NSFile by calls into the UNIX file sytem, for
instance, converting the Mesa arguments into C variables
would be tricky, and several calls into UNIX might be needed
for each NSFile procedure.

A transducer may be simple. If one were implementing a
procedure

Alloc: PROC [nwords: INT] RETURNS [LONG POINTER];

in the obvious way, the transducer could merely multiply
nwords by two to get the number of bytes and pass that to
malloc, a C library routine.

A transducer may not be needed at all if the parameters of the
Mesa interface procedure are compatible with the parameters
of the C procedure.

Sherman is a program which translates a Mesa symbol table
into a C header file. The header file may be used to typecheck C
files by defining C "equivalents" of Mesa types. By equivalent

Salient

INTERCALLABILITY

2.4 Schemes

2.4.1 C Transducer

2.4.2 Mesa Transducer

we mean that:. the bit layout of the C and Mesa types is the
same. Some attempt is made to preserve symbol names for
readability, but symbol names are modified or created where
necessary to make a valid header file.

There are cases where Sherman fails. These are listed in
Sherman Restrictions.doc. Because- Sherman may make
mistakes, we consider the typechecking enabled by Sherman to
be weaker than Mesa interface typechecking or C header
typechecking.

Sherman is entirely optional in th~ intercallability schemes
described below. If Sherman is not used, C headers may be
written by hand.

There are two recommended schemes for Mesa calling C,
depending on whether the transducer is written in C or Mesa.
The choice should be based on the programmer's personal
preference for Mesa or C, and any other advantages the
programmer perceives.

To do: talk about Lint

Figure 1 shows the scheme for a C transducer. The application is
some client whose source code we'd rather not modify. The
interface might be, say, a public BWS interface. Each procedure
in the interface has been changed to a MACHINE CODE
procedure that contains the name of a C routine implemented
in transducer.c. Interface.h was produced automatically by
Sherman from Interface.bcd. UNIX.h represents either a UNIX
header, some other C library header, or a header which the
programmer has created.

The major work in this scheme is writing transducer.c. Adding
the MACHINE CODE to Interface. mesa can be done in one step
using the XDE editor.

Figure 2 shows the scheme for a Mesa transducer. Again, the
application is some client whose source code we'd rather not
modify. In this scheme, the interface is not modified either. The
interface procedures are implemented in transd ucer. mesa. A
bridge interface containing the MACHINE CODE procedures
has been written by hand.

The major work in this scheme is writing transducer. mesa, but
writing Bridge.mesa requires work as well. If the programmer
is calling into UNIX or an existing C library, Bridge.mesa is
created manually by translating the procedure types from

INTERCALLABILITY

Mesa Interface typechecking

C Header typechecking

................ Sherman typechecking Interface.mesa
(don't change
procedure definitions,
just add MACHINE CODE)

3 C calling Mesa

transducer.c

Figure 1 - C transducer scheme

Application.mesa
(don't touch)

IJNIX.h and UNIX.c into equivalent Mesa types. This hand
translation is not typechecked, and so must be done carefully.
It may be helpful to use Sherman to convert the Bridge back
into a header file, and check that it matches the original.

If the programmer is calling into a C library they have just
written, then Bridge.h can be created automatically using
Sherman. In this case we have the Sherman typechecking
shown in the figure.

Support for C calling Mesa has not been designed yet. It is
believed that C calling Mesa will not be as common as Mesa
calling C, and so it has lower priority.

Converting C variables to Mesa is presumed to be easier than
converting Mesa variables to C, since the Mesa type system

Salient

INTERCALLABILITY

~
I
I

I
I

Mesa Interface typechecking

C Header typechecking

Sherman typechecking

Bridge.mesa
(MACHINE CODE)

,
Transducer.mesa

Figure 2 - Mesa transducer scheme

Interface.mesa
(don't touch)

Application.mesa
(don't touch)

subsumes C. Hence the transducers may be simpler for C calling
Mesa.

In order to call a public Mesa procedure, a C program must
access the procedure through an interface, in the same way
that another Mosa program would. An interface with the
correct version Ceil be found by calling into the Mesa runtime.
0/Ve may provide runtime routines which relax the version
checking.)

It is possible to write the runtime calls by hand, although this is
tedious. Here are two vague ideas for automatically generating
the runtime calls:

The programmer puts a special construct into the C source
code whereever there is a Mesa call. Then either a
preprocessor or a postprocessor creates and inserts the
runtime calls.

Develop a tool similar to Sherman. It reads a Mesa interface
and produces a transducer containing the appropriate
runtime calls to access the interface.

INTERCALLABllITY

4 References

6

Yamamoto, "Language Interoperability," [Goofy:OSBU
North:Xeroxl < PortDesignWorking > Language.
Interoperability.ip. This needs to be rewritten for Salient.

Salient

LSING THE CINDER

Using Cinder

© Copyright 1988 Xerox Corporation. All rights reserved.

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Internal Xerox Use Only

1

Introduction

Cinder is- a revision of the Mesa Binder for the Portable Cedar project The-idea is that to get
the bindings we desire in a C environment we replace the work done by the Binder and the Loader
with a set of runtime calls. Cinder takes a C/Mesa file and produces a C module containing the set
of runtime calls to InstallationSupport which is part of the Portable Cedar library. The C module
can then be compiled and linked with the component modules of the configuration. which are
translated into C by· Mimosa. Cinder produces a Mesa object file (with extension .mob) which
represents the configuration. and is used as input for further Cindering. Cinder also produces a
UNIX script (with extension .id) which can be run on a UNIX machine to produce an executable
file.

Cinder does version checking on the components of the configuration. The Mesa runtime also
does version checking at load time. but most users prefer to be told about version mismatches at
Cinder time. Version checking can be disabled with a switch (see below).

This document does not describe the C/Mesa language that is used to specify the production
of system configurations from independent modules. [See the C/Mesa section (section 7.9) of the
Mesa Language Manual for that] However. additions to the C/Mesa language which facilitate
multiple langua.ge configurations and loading on demand is described in this document

Installing Cinder

BringOver the public part ofCinder.DF from the Mimosa directory. into a directory that will
be on your search path when you want to use it -- preferably to a Commands subdirectory [See
CompilerDoc].

Invoking Cinder

Like the Compiler. there ought to be a simple Cinder command that allows full path names
and the "slash"-style fonnat in file names. and a ComplexCinder command providing a wider
range of configuration options but restricting filename specifications (due to conflicts in the
syntax).

At present. the one and only Cinder command has the "ComplexCinder" syntax. but it
includes a simple option which most people use most of the time.

[see CreateButtonDoc] for ways to produce Command tool buttons for invoking Cinder.

The "Cinder" command -- simple version

Syntax

Most users will only need to issue Cinder commands of the fonn:

CEDAR X - FOR INTERNAL XEROX USE ONLY

2

% Cind switches configurationFileName

where configurationFileName is a simple flleName (default extension ".config"). which
may not include host or directory specifications. and switches is either omitted or the string
"/S", which evokes a useful symbol-copy option.

Semantics --

Reminder: [See the C/Mesa section (section 7,9) of the Mesa Language Manual for a
description of the syntax and semantics of Cedar configuration files].

This simple form of the Cind command is almost always sufficient to produce even the most
complicated systems.

Examples

% Cind DoSomethingPackage

where "DoSomethingPackage.Config" contains:
DoSomethingPackage: CONFIGURATION

IMPORTS Atom. DoSomethingPrivate, Process
EXPORTS DoSomething
CONTROL DoFiIst. DoSecond. DoThird = {

DoFirst:
DoSecond:
DoThird;

}.

This produces "DoSomethingPackage.c" and "DoSomethingPackage.mob" from the
configuration description and from the previously-compiled modules "DoFirstmob".
"DoSecond.mob" and "DoTbird.mob". The output file "DoSomethingPackage.mob" contains a
description of the resulting configuration.

% Cind /S DoSornethingPackage

This does the same thing, but includes all the symbols, rather than references to the
components that contained them. in the output mob file.

CEDAR X - fOR INTERNAL XEROX USE ONLY

3

The "Cinder" command -- complete syntax

Syntax

The full Cinder syntax includes the following forms:

-

% Cind outputFile ..

globalSwitches inputFile[idl: fIlel. id2: file2 idn: ruen] localS witches

% Cind [mob: mobFile. symbols: symbolFile] ..

globalSwitches inputFile[id(...] localS witches

File names may not include host or directory specifications. Switches are letter strings
introduced by the "/" character. A "-" or" -" preceding a switch specifies a FALSE
setting.

Semantics

Recommendo.tion: Ignore this second form of the command The full syntax is included for
completeness. 'Mesa was designed to allow configurations either to be self-contained by including
copies of everything in their inputs. or to contain only references to earlier configurations from
which symbol information could be obtained at load time. The second Cinder form allows one to
be explicit about where to put everything, and under what names. The local and global switches
provide an abbreviated way to specify what copy options should be invoked. At the present time.
Cinder apparently supports the full syntax. but will not produce the separate output fIles. Cedar
configurations are always single .mob files that optionally contain symbols from all their
components.

The outputFile may be omitted. resulting in an output rue derived from the input name. as in
the previous section.

The id list may also be omitted. If present. it allows on~ to specify the file names from which
any or all of the component names mentioned in the configuration fIle should be obtained. Cinder
will assume that the rue name matches the component name for any component that is not
mentioned in this list This feature continues the grand Mesa tradition of allowing renaming at all
levels as formal parameters are bound to actual values. This binding list form. along with the
ability to name the output fIle explicitly. can occasionally be useful when a named component has
multiple implementations from which other configurations must select

Examples

% Cind DidSomething ..
DoSomethingPackage[DoFirst: PrimusImpl. DoThird: TertiusImpl]

This produces a configuration named "DidSomething.mob". using the same
configuration mentioned in the previous example. However. the fIle "PrimusImpl.mob"
will be used to supply the component named "DoFirst" (which must appear as the
configuration or program name in the source used to produce "PrimusImplmob"). and
similarly for the "DoThird" component "DoSecond". as before. comes from

CEDAR X - FOR INTERNAL XEROX USE ONLY

4

"DoSecond.mob".

C/Mesa Language Changes

Two language constructs. "STATIC REQUESTS" and "DYNAMIC REQUESTS", have
been added to C/Mesa to facilitate building multiple language configurations and loading on
demand. Both constructs are added to the C/Mesa file after the EXPORTS clause, and each is
followed by a list of filenames.

For static requests. Cinder puts the filenames in the "ld" command of the ".ld" file: this
allows non-Mesa derived object files to be linked into the configuration. Static Requests should be
used to link a module written in C into a configuration. for instance.

For dynamic requests. Cinder puts the filenames in runtime calls to XR ~request("file"),
which are executed when the configuration is installed. XR ~request is a cedarboot routine that
loads the fIle if it has not already been loaded. Dynamic Requests should be used to access
common packages. Note that the interface checldng is done by the loader. and the file found at
loadtime may not export the interface you wanted.

Examples

Foo: CONFIG
IMPORTS .. .
EXPORTS .. .
STATIC REQUESTS "foo.o", ...
DYNAMIC REQUESTS "/usr/locaVlib/cedar/BarPackage", ...
CONTROL ...

When this configuration is sent through Cinder, "foo.o" will appear in the link command in
Foo.ld. "XR ~request(/usr/local/lib/cedar/BarPackage") will appear in Foo.c.

Switches

StandardDefaults: PACKED ARRAY CHAR ['a . .'z] OF BOOL - [
FALSE, -- A Copy aff (code and symbols)
FALSE. -- B TRUE => make in staff proc call XR~StartCedarModule
FALSE. -- C Copy code
FALSE. -- D Call debugger error
TRUE. -- E Make installation procs be extern rather than static
FALSE. -- F Unused
TRUE. -- G TR UE = > errlog goes to cinder./og. FALSE = > use root.errlog
FALSE, -- H TRUE => Link together a packaged world The "MakeBoot" switch
FALSE. -- I Unused
FALSE. -- J FALSE => old behaviour. ie -Ixrc -1m. TRUE => no library search
FALSE. -- K Unused
FALSE. -- L Unused (used to be the If/cr swtich - makedo still issues it. but irs obsolete)
FALSE. -- M MakeDo switch - if true => generate .c2e.e extension vs..C

CEDAR X - FOR INTERNAL XEROX USE ONLY

5

Log

FALSE. -- N Unused
FALSE. -- 0 Unused
FALSE. -- P Pauseafterconfig with errors
FALSE. -- Q Generate .ldfile with cc -pic
FALSE. -- R Generate .ldfile with no -r option to ld
FALSE.., -- S Copy symbols
FALSE. -- T Generate .ldfile with cc -PIC
FALSE. -- U Unused
FALSE. -- V Do version checking on the inputfiles
FALSE. -- W Pauseafterconfig with warnings
FALSE. -- X Copy compressed symbols (not implemented)
FALSE. -- Y Unused
FALSE];-- Z Unused

Cinder produces a file named Cinder.log on the working directory. It opens a viewer on this
file if there were any errors during binding.

Cinder and UserProfile

Default settings for Cinder switches can be specified in the user profile by including a
Cinder.Switches entry. [See the compiler/binder section of UserProfileDoc]. You might want to
include the following entry in your profile. in order to copy symbols when binding. but be sure to
override it when you produce componentsforaCedar Release:

Cinder.Switches: S

Cinder and PCR-Packaged Worlds

The cinder includes mild support for building PCR-Pacakged applications. Starting with PCR
version 2+-14 the packaged world semantics have been architected such that most of the work of
creating a package can be done by Cinder. To use the Cinder to create a packaged application:

1. Create a config file which describes all of the Cedar code to be contained in your
application. For example. the PCedarTools.config looks like:

PCedarTools: CONFIGURATION
EXPORTS ALL
CONTROL CedarCore. BasicCedar. CommanderSysPImpi. CommanderOpsImpl.

UnixDirectoryImpI. DatagramSocketImpl. MiscRegistry Impi. S ystemN amesImpi.
AlPaImpl. PFSPackage. RopeFileOnPFSImpl. FSOnPFSImpl. TFSOnPFSImpl.

CEDAR X - FOR INTERNAL XEROX USE ONLY

6

PFSCommandsImpL PFSPrefixMaplnit RunCommandsImpl.
CommanderBasicCommandsImpL CommanderFileCommandsImpL
CommandToolCompatibilitylmpl. FileNamesOnPFSImpL IntTolntTabImpL
UserProfilelmpL LoaderlmpL StructuredStreamsPackage. MimosaStubsImpL
DisplayStubs. TRope. TJaMPackage. RosaryImpL TBasePackage.
TiogaExecCommands. TextReplaceImpl. IntCodePackage. MobMapperImpl.
Mimosa. C2CPackage. Cinder. MobListerUtilsPackage. XLister. SimpleStreamslmpl.
CedarProcessImpl. VersionMaplmpl. ArgsPackage. ExtendADotOutPackage.
DFPackage. DFCommandsImpl. MoberyImpl. ContainersStubsImpl.
ButtonStubslmpL MakeDoPackage. StandardMMCmds. CcCommandsImpl.
MakeDoCommands. PCedarToolsImpl. CommanderOnStandardStreamslmpl ~ {

CedarCore:
BasicCedar:
CommanderS ysPImpl:

PCedarToolsImpl:
CommanderOnStan dardStreamsIrnpl:
}.

2. Then include a C string (no. a Mesa STRING won't do!) in your configuration which will
be used by PCR at startup time to describe the default command line arguments. For
example. PCedarToolsImpl.mesa (part ofPCedarTools.config) includes the lines:

DefineDefaultArgs: PROC = TRUSTED MACHINE CODE {
" + char *defaultArgs = \" -msgs 0 -slaveiop 1 -mem 550000 -stack 90000 \ \ \n":
"-unpdir. -- -h 4000000 -install~and"'run"'package --\":\n.";
}:

-- mainline code:
DefineDefaultArgsD:

3. Then create a .switches file for your config which directs MakeDo to use Cinders -h flag.
For exarnple. PCedarTools.mob.switches:

Ohm

4. Then create a sun4>Package.MakeIt and sun4-03>Package.MakeIt file which directs
MakeDo to link the config with a version of the PCR. For example,
sun4-03>PCedarT oolsPackage.Makelt:

-- { sun4-03/PCedarTools.c2c.o }

ComplexRsh -cmd ncc -Qpath Inet/kimballlusr2/pjames/lang/ldisparcl -Bstatic-o
sun4-03/PCedarToolsPackage Ipseudo/xrhome/3 ... OX/LIB/OptThreads­
sparc/XRRooto Ipseudol xrhome/3 ... OX/LIB/OptThreads-sparc/DebugN u b.o
sun4-03/PCedarTooIs.c2c.o Ipseudo/xrhome/3 ~O.x/LIB/OptThreads-sparc/xr.a
Ipseudo/xrhome/3'" OX/LIB/OptThreads-span:/libxrc.a"

5. Then run MakeDo to build your package.

CEDAR X - FOR INTERNAL XEROX USE ONLY

7

BuildingAPackagedWorld tioga
Copyright 11991 by Xerox Corporation. All rights reserved
Weiser. January 1. 1991 11:51 pm PST

Buildi-ng A Packaged World

Mark Weiser
January 1 , 1991

Copyright 1 1991 by Xerox Corporation. All rights reserved.

Abstract: Making a packaged PCedar world is a pain, and could be automated.
Meanwhile, here is a description of the current steps. It all starts with an existing packaged
world which is similar to (but smaller than) what you want. You run the base world, run the
commands in that world that will load everything you want to be included, and then use the
dynamic load output to edit the base world's .df's, . mesa, and .config. Along the way there
are a few rules of thumb.

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

DRAFT - For Internal Xerox Use Only - DRAFT

1

Introduction

A packaged world is a Unix a.out flle that contains a number ofPCedar p~ickages and code to
start them automatically when the file is run.

A packaged PCedar world is somewhat analogous to a DCedar boot flle.

PCedar is always ready to dynamically load new applications when they are invoked by typing
their name to a Cedar Commander. (A Commander is like a Unix shell. or a Lisp listener). A
packaged world has some applications "pre-loaded", so they can start immediately.

PCedar is almost always run from a packaged world. The smallest such world is
Commanderworld. which contains just enough code to start a Cedar Commander listening to a tty.
and load other things as needed. Other common packaged worlds are XII Viewers World,
Raw Viewers World. and Printing World

There are several reasons for making a packaged world:
1. To start up more quickly. A packaged world starts much more quickly than the same

world dynamically loaded.
2. To tnake more efficient use of VM and swap. A packaged world contains its non­

dynamically loaded code in the nonnal Unix text space. This can be several
megabytes for a large package (XllViewersWorld has 5.6MB just for code as of
1/1/91). This space is more compactly allocated in the text area than when it is
dynamically loaded. Unix also recognizes the a.out text area as read-only, and pages
in directly from the a.out rather than using additional disk swap space.

3. To decrease the work of the garbage collector (GC). Some GC overhead is required for
skipping over dynamically loaded program files. Pages in the a.out text area are not
seen by the collector.

4. To simplify the environment needed to run PCedar. PCedar dynamic loading requires a
complicated system of files in well-known places to work. As long as it does not try
to dynamic load, a packaged world needs none of this (with a few exceptions. like if
it needs fonts for viewers or imaging). Packaged worlds are thus more portable and
less dependent on the PARC PCedar environment conventions.

Building a packaged world breaks up into two parts: initializing a new world. and adding to an
old world. To make a new kind of packaged world. one initializes a new world by making a copy
of all the appropriate files from an old world. Then, one treats the new world as an old world. and
adds to it

Initializing a New World

Finding a world to start from.

To make a new world. find an old packaged world to start from. Right now the
"PackagedWorlds" directory in PCedar2.0 is a bad place to start because it contains three
packaged worlds at the same time, and it hard to tease them apart Perhaps someday soon there

2

will be a separate "PackageinitWorld". Meanwhile. the cleanest place to start (but far from the
smallest) is PrintingWorld.

For the sake of generality we'U call the starting world StartingWorld below. We'll call the new
package you want to make NewWorld.

Turning the aId world into a new world

Create a clean -ux directory called NewWorld. Give it sun4-03 and sun4 subdirectories. like
this:

mkdir NewWorld
cd NewWorld
mkdir sun4-o3

Now bringover the StartingWorld into NewWorld:
bringover -m StartingWorld-Suite.df

note well: the bringover creates symbolic links. If you do the work below from PCedar. the
links will be broken at the proper time and all will be well. Otherwise, disaster may happen as you
accidently change the original flles instead of your copy.

Finally. do a lot of renaming. First. the files. There will be the following ten flles that need to
have the StartingWorld part of their name changed to NewWorld. (Other flles starting with
StartingWorld.like StartingWorldlmpl.c2c.c and StartingWorldImpl.mob, can be ignored.):

rename NewWorld-Suite.df ~ StartingWorld-Suite.df
rename NewWorld-PCR.df ~ StartingWorld-PCR.df
rename NewWorld-Source.df ~ StartingWorld-Source.df
rename NewWorld.config ~ StartingWorld.config
rename NewWorldlmpl .mesa ~ StartingWorldlmpl.mesa
rename NewWorldDoc.tioga ~ StartingWorldDoc.tioga
rename NewWorld-sun403.df ~ StartingWorld-sun403.df
rename BuildNewWorld.cm ~ BuildStartingWorld.cm
rename NewWorld ~ StartingWorld
rename sun4-o3/NewWorldPackage.Makelt ~

sun4-o3/StartingWorldPackage.Makelt

Now inside the files.

1. The four .drs must have their internal references to any files on the above list. and any
other files referencing StartingWorld files (now including things like
StartingWorldlmpl.mob) changed to the new name.

2. NewWorldImpl.mesa and NewWorld.config must have their packagenames changed to
the NewWorld form. NewWorld.config has a reference to StaringWorldImpl that needs to
be changed to NewWorldImpl. Generally, look all around and use common sense.

3. sun4-03/NewWorldPackage.Makelt will have references to two StaringWorld mes:
StartingWorld.c2c.o and StartingWorldPackage. Change these to their new world form.

4. BuildNewWorldcm needs to have all its references to StartingWorld files changed to the
appropriate NewWorld files.

5. NewWorld is a shell script that will eventually need to be placed in

3

/project/pcedar2.0/bin by Willie-Sue. Edit it to replace references to StartingWorld files to
NewWorld files.

6. Of course. NewWorldDoc.tioga needs to be completely redone. [please take the time to
write some documentation.]

7. Don't forget to change the initial comment node in each file to refer to the new name.

Now check. You should be able say the following and construct a new world that acts just like
the starting world:

BuildNewWorld

Then the following command will execute it:

sun4-03/NewWorldPackage -thread 80

Note that this is not the nonnal way to execute this world. which will be via the NewWorld shell script. which will set
all sorts of other parameters to the world. But this is enough to give a quick test. (The "-thread 80" is because the
default number of threads. 40. is too small for many worlds. The symptom of running out of threads is the world
quietly stopping. The RemoteDebugTool or Cirio will show a number of threads equal to the maximum.)

If the above worked, you have new initialized a new package world just like the old package
world, and you are ready to add new things to it See the next section.

If the above did not work, then you may have made a mistake, or these instructions may
contain a mistake. Try grepping all the files for the word "StartingWorld" or "Starting". They
should not appear anywhere.

If you find a mistake in these instructions. please let me know.

Add to an Old World

In this section. we assume you have a packaged world already working for you, and you want
to add some contents. To continue the names used in the previous section. we will call the world
you are modifying "NewWorld". There are now four files that need lots of editing: NewWorld­
PCR.df, NewWorld-sun403.df. NewWorld.config. and NewWorldImp1.mesa All must be
updated to reflect the things you want to add to your packaged world.

Finding out what to add

The easiest way to fmd out what to add is to first run the existing packaged world that you
want to augment To a commander in that world, execute a sufficient number of commands to
dynamically load all the things you want added to the packaged world. Then execute the
"installed" command. Save that all that Commander output! The output of the "installed"
command and the names of all the .c2c.o's that were loaded will be used in the following steps.

Preparing a working directory

Now you want to make a place into which to bringover the packaged world to be modified.
Create a clean -ux directory called NewWorld (-vux is still a little bit broken for these purposes).
Give it a sun4-03 [and sun4?] subdirectories, like this:

mkdir NewWorld
cd NewWorld

4

mkdir sun4-o3

Now bringover NewWorld into the new directory:
bringover -m NewWorld-Suite.df

Modifying the .drs

This is the most tedious part For each .c2c.o loaded you must add it to the -sun401df file,
and add its corresponding .mob fJ.le to the -PCR file. For instance, if the loader gave you the
message:

Ran IPCedar/HostCoordination/sun4-03/HostAndTerminallmpl.c2c.o!1

Then add the following to NewWorld-PCR.df:
Imports [pCedar2.O]<T op)HostCoordination-PCR.df Of - =

Using [HostAndTerminalimpl.mob]

and add the following to NewWorld-sun403.df:
Imports [pCedar2.0]<Top)HostCoordination-sun403.dfOf - =

Using [sun4-03)HostAndTerminallmpl.c2c.o]

Probably you need to already know how to use .df fJ.les to make sense of the above. If you are
not a .df fJ.le user. get someone who is to help you.

Modifying the •. config

The .config consists of three parts that matter for this step: "STATIC REQUESTS", "CONTROL".
and "- {" (the main body). Editing each part is discussed below.

For parts two and three, the assumption is made that the name of a package is the same as the
name as the file it is in. Since much of make do and tiogacomforts break down without this
assumption. it is a pretty safe one. If things keep going wrong and you are at wits end question
your assumptions.

STATIC REQUESTS

The first part has the keywords "STATIC REQUESTS". Files mentioned h~re are C-based not
Cedar-based "glue" files that do not fit into the normal rules for Cedar 9ackages. These files
generally have all of the following characteristics:

the word "Glue" in its name
name ends in ".0", but not ".c2c.o"
the file has no corresponding" .mob" file
the loader announced when loading the file: "(it has no install or start proc)".

If any of the dynamically loaded files fit these clues. add them here. Some typical glue files
mentioned under STATIC REQUESTS are: "ThreadsTLl.o", "XNSRouterGlue.o". "CMUXGlue.o".
"NetworkStreamSupportTCPGlue.o", and "PCRCmdGlueImpl.o".

Once you put a file in the STATIC REQUESTS line. do not also mention its name anywhere else
in the .config file.

CONTROL

Packages are listed here in the order in which they are to be started. Generally you add to the

5

end (almost!) of this list and in the order in which the ftles were dynamically loaded (since that
was the order they were started. and it worked). The package names are not quite added to the end
of the list because two special packages must be mentioned second-to-Iast and last

Second-to-Iast must come NewWorldlmpL the package resulting from the
NewWorldImpLmesa that we will be editing in the next section. Last must come
CommanderOnStandardStreamsImpL since this starts the command interpreter on the current
stdin stream and consequently never returns.

- {(main body)

Following the CONTROL section is simply a listing of all the packages which are to be included
in the packaged world. CedarCore must be the first file mentioned. otherwise order does not
matter. Just add your new package names to the end. These will be exactly the same names that
you added to the CONTROL section. above.

A duplicate name here will cause MakeDo to mysteriously crash. Make sure each name appears exactly once.

Modifying the .mesa

NewWorldImpLmesa is the final file that needs detailed editing. Generally it contains lots of
mysterious stuff that is better left alone. But there are two lines that need your attention:
DefineDefaultArgs
and .
[) .. CommanderOps.DoCommandRope["Installed ...

The line beginning DefineDefaultArgs enables you to set different defaults for your packaged
world. The values set in DefineDefaultArgs are overridden by specific values given on the Unix
command line when your package world is run. otherwise they become the default It is generally
kind to set values for -thread and -mem as small as possible for your package world to run.
Finding the smallest value can only be done by trial and error. unfortunately. If in doubt. don't
change this line. But if your packaged world change involves running significantly many new
programs that may have reason to create threads. you may want to up the -thread argument
Generally playing with these values is a black art. but you need to know that a wrong value can
mess you up.

The line beginning [) .. CommanderOps.DoCommandRope["Installed is any easy one to get
right Remember way back when you ran your packaged world you ran the "installed" command
after you had loaded everything you wanted in the package? Well. now you want to shift-select the
output of the "installed" command you did back then into the list of names following the world
Installed above. Just replace all the words following InstaUed up to the closing quote (") with the
saved output of the "installed" command. This step ensures that your packaged world is told
about all the things it has inside.

The function of some of the other lines in NewWorldImpLmesa are pretty obvious. like:
[J ~ CommanderOps.DoCommand["CommandsFromProfile

CommandTool.NoViewersBootCommands", Na];

F eel free to change these if you feel adventurous.

Build, Test, Repeat

Now you need to try your world out fix the bugs that may have occured during the editing

6

steps. try again. and repeat In order to debug the .dfs during this ~tage. it is useful to srnodel and
bringover at each round. Thus steps are:

1. smodel NewWorld-Suite.df

lao (click RESET on any viewers you had open which were modified by the srnodel step. like
viewers on .df files).

2. bringover NewWorld-Suite.df. This brings over any new files you added to the .dffiles.

3. BuildNewWorld

4. try running sun4-03/NewWorldPackage (don't forget the -thread argument. if you need
it See above).

5. Repeat

For an even more serious test. after the "smodel" delete the directory and everything in it and
really start from scratch with the bringover step. Don't forget to make the sun4-03 and sun4
subdirectories, as needed.

If you are successfully building sun4-03/NewWorldPackage's at each step, then be careful
because each of your smodel steps is moving five or more megabytes onto a shared backup disk
containing Ipseudo/pcedar2.0 that can fill up quickly. You may want to delete
sun4-03/NewWorldPackage before doing the smodel step. Smodel will complain. but work fine.
Of course. don't delete it when you are finally done. that's when you want it to go.

Things that can go wrong

This section will try to be a placeholder for hints and tricks that people accumulate.

1. The final step in BuildNewWorld forks off a Unix "ld" process that will require at least
twice as much VM as the final a.out is large. It is not uncommon to not have enough VM
available. and to have this step die with a message like: "ld: lusr/lib/ertO.o: out of memory
for relocation symbols". or some variation. If this happens you can use the unix command
"pstat -s" to see how mueh VM is available, and try to make more. You may need to kill off
your Viewers world and do the final step from a PCedarTools world, or do it while bridged
or rlogined to another machine with more VM at the moment

2. If your packaged world uses more threac,is than are specified in the command line or the
NewWorldImpl.mesa. then it will mysteriously come to a quiet and sedentary state of
nothing happening. Use Cirio or the RemoteDebugTool to look at it and count the number
of threads. If they are exactly equal to the number of default threads. you are likely out of
threads. Try running the packaged world again with a -threads value somewhat larger on
the command line.

Appendix·· complete example of adding packages to PrintingWorld

This appendix contains a transcript of the main steps in adding the package NetCommander
to PrintingWorld. It consists of two major parts: a Unix shell transcript. and a Cedar Commander
transcript First the Unix. trying to find out what to load. The transcripts have been augmented
with comments explaining what is going on.

Initial Unix shell transcript

7

Run Printing World in a Unix shelL.

zwilnik% PrintingWorld
Running Ipseudo/pcedar2.0/printingworldlsun4-03/printingworldpackage. -4-
Welcome to Basic PCedar 2.0.5 of September 25.19902:20:01 pm PDT.
Using Ipce<hlr/EssentialStyles/cedar.stylel15 ... ok
[[COMMANDER +- INITIAL +-COMMAND = II
Commander %

Now give the NetCommandercommand to PrintingWorld and save the resulting list o/loadedfiles.

Commander % NetCommander
Ran IPCedar/NetworkStream/sun4-o3/NetworkNameImpl.c2c.o!2
Ran IPCedar/SunRPCRuntime/sun4-03/SunRPCRuntime.c2c.o!3
Ran IPCedar/SunPMap/sun4-03/SunPMapClientStub.c2c.o!2
Ran IPCedarlSun YP/sun4-o3/Sun YPBindClientStub.c2c.o!3
Ran IPCedarlSun yP Isun4-03/S un YPClientStub.c2c.o!3
Ran IPCedarlSun YP/sun4-03/Sun YPFindImplP.c2c.o!4
Ran IPCedarlSun yP Isun4-03/Sun YPAgentImpl.c2c.o!4
Ran IPCedar/NetworkStream/sun4-o3/NetworkNameSunYPImpl.c2c.o!3
Ran IPCedar/NetworkStream/sun4-03/NetworkNameEtcHostsImpl.c2c.o!4
Ran IPCedariCommTimerlsun4-03/ConunTimerImpl.c2c.o!2
Ran IPCedar/NetworkStream/sun4-03/NetworkStreamImpl.c2c.o!3
Loaded IPCedar/NetworkStreamlsun4-o3/NetworkStreamSupportTCPGlue.o!! (it has no install
or start proc)
Ran IPCedar/N etworkStream/sun4-o3/NetworkStreamS upportTCPImpl.c2c.o!3
Ran IPCedar/NetworkStream/sun4-o3/NetworkStreamTCPImpl.c2c.o!!
Ran IPCedar/N etworkS tream/sun4-o3/N etworkStreamSPPOnBasicStreamImpl.c2c.o! 2
Ran IPCedar/N etCommanderlsun4-03/N etCommanderImpl.c2c.o!!

Now do the "installed" command for use later.

Commander % installed
Args Artwork BackStop BasicCedar CedarCore CedarProcess CodeTimer Commander
CommandTool ConunTimer CrRPC CubicSplinePackage DES DisplayStubs Draw2d Feedback
FS GargoyleCore GargoyleModeler GGToIP Imager ImagerFontFilter ImagerMemory Interp
Interpress InterpressToCompressedIP Lines2d Math NamedColors NetCommander
NetworkName NetworkStream PCRCmd PFS ProcStream Rosary StackTrace SunPMapClient
SunRPCRuntime SunYPAgent TBase TFonnat TFS TiogaExecConunands TiogaImager
TiogaImagerCommands TJaM TRope UserCredentials UserProfile UserProfileCommands
Viewers XNSAuthentication XNSBasicTypes XNSClearinghouse XNSCredentials XNSPrint
XNSPrintingClient XNSPrintingUI XNSServerLocation XNSStuff XNSTransport
Commander %

That sail for the unix side. for now.

PCedar Commander transcript

8

Make afresh directory. and bringover Printing World into it.

% cd PrintingWorld
Not a directory: InetJgharlanelzunilmarkiPrintingWorld
% mkdir PrintingWorld
Ran IPCedar/UnixComrnands/sun4-o3/UnixSpawnImpl.c2c.o!4 (s = 15572 m= October 31.
199012:06:19 pm PST) --
Ran IPCedar/UnixComrnands/sun4-o3/UnixCommandslmpl.c2c.o!3 (s = 12490 m = March
6. 199010:52:55 am PST)
% cd PrintingWorld
I net! gharlane/zunilmarkiPrinting Worldl
% mkdir sun4-o3
% qbo -m PrintingWorld-Suite.df

-- many many lines of output omitted

o errors. 0 warnings. 178 files acted upon
%

go to work on the PrintingWorldimpl.mesafile.

% is *.mesa
Inet!gharlane/zuni/markiPrintingWorldl
PrintingWorldImpLmesa 242121-Nov-90 15:07:02 PST

-- 1 files, 2421 total bytes
% Open PrintingWorldImpLmesa

Created Viewer: Inet! gharlane/zunilmarkiPrintingWorld/PrintingWorldImpl.mesa
% -- edit in the results of the installed command

go to work on the PrintingWorldconfigfile

% Is *.confIg
InetJgharlane/zunilmarkiPrintingWorldi
PrintingWorld.config 395121-Nov-90 15:12:54 PST

-- 1 fIles. 3951 total bytes
% -- edit in the .c2c.o's that needed to be loaded into the confIg file. twice, in order.
% Open PrintingWorld.config

Created Viewer: Inet! gharlane/zunilmarkiPrintingWorldiPrintingWorld.confIg

go to work on the .dfs

% -- edit in mentions of the .c2c.o·s that were loaded.
% Open PrintingWorld-sun403.df

Created Viewer: Inet! gharlane/zunilmarkiPrintingWorldiPrintingWorld-sun403.df
% -- edit in mentions of the .mobs corresponding to the .c2c.o's
% open PrintingWorld-PCR.df

Created Viewer: Inet!gharlane/zunilmarkiPrintingWorldiPrintingWorld-PCR.df

9

smodeL bringover. and try to build

% srnodel PrintingWorld-Suite.df

-- many messages omitted

% qbo -m PrintingWorld-Suite.df
% Is *.crn
Inetigharlane/zunilmarkJPrintingWorldi
BuildPrintingWorld.crn 56212-0ct-90 00:09:50 PDT

-- 1 flIes, 562 total bytes
% BuildPrintingWorld
Forking Mimosa -le PrintingWorldImpl
Done with Mimosa -Ie PrintingWorldImpl
Forking Cind ohm Printing World

10

Forking MMCCMesa -class sun4 -name PrintingWorldImpl-dir sun4-03/ -mSw "-c -03" -uSw ""
Done with MMCCMesa -class sun4 -name PrintingWorldImpl-dir sun4-o3/ -mSw "-c -03" -uSw

Cinding: PrintingWorld-hm no errors. 23 warnings.
End of cinding
W
Forking MMCCConfig -class sun4 -name PrintingWorld -dir sun4-o3/ -mSw "-c -03" -uSw ""
-raux sun4-03)XNSRouterGlue.o sun4-o3)PCRCmdGlueImpl.o
sun4-03)NetworkStreamSupportTCPGlue.o sun4-o3XMUXGlue.o [long list omitted]
Done with MMCCConfig -class sun4 -name PrintingWorld -dir sun4-03/ -mSw "-c -03" -uSw ""
-raux sun4-o3)XNSRouterGlue.o sun4-o3)PCRCmdGlueImpl.o
sun4-03>N etworkStreamSupportTCPGlue.o sun4-o3XMUXGlue.o [long list omitted]
Forking Source [netj(gharlane>zuni>mark>PrintingWor/(Dsun4-03)Printing WorldPac kage.M akeI t
Done with Source
[netj(gharlane)zunvmark>PrintingWor/(Dsun4-o3)PrintingWorldPackage.MakeIt
Failed: Cind ohm PrintingWorld
1 step failed; 4 ok.
2 goals 0 K; 0 not
%

-- the 1 step failed is just the warning messages from the cind step. It is the "2 goals 0 K" that really
counts.

-- tried running PrintingWorldPackage, all workedfine. See second Unix transcript. below.

-- All done. so do a final smodel. and call it quits.

% smodel PrintingWorld-Suite.df
Start: PrintingWorld-Suite.df
Start: PrintingWorld-PCR.df
[net](gharlane)zuni)mark>PrintingWorld>PrintingWorld.c2c.c --)
[pcedar2.0]<PrintingWorld>PrintingWorld.c2c.c {0l-Jan-91 15:24:11 PST}
[net](gharlane)zuni)mark>PrintingWorld>PrintingWorldImpl.c2c.c --)
[pcedar2.0]<printingWorld>PrintingWorldImpl.c2c.c {0l-Jan-9115:23:47 PST}
[net](gharlane)zuni)mark>PrintingWorld>PrintingWorld.mob --)
[pcedar2.0]<PrintingWorld>PrintingWorld.mob {0l-Jan-9115:24:11 PST}

[net]<gharlane)zuni>marlOPrintingWorld>PrintingWorldImpl.mob --)
[pcedar2.0](PrintingWorld>PrintingWorldlmpl.mob {01-Jan-9115:23:47 PST-}
PrintingWorld-PCR.df --) [pCedar2.0]<Top)PrintingWorld-PCR.df {Ol-Jan-91 15:35:57 PST}
(" #.)
End: PrintingWorld-PCR.df
Start: PrintingWorld-Source.df
[net]<gharlahe)zuni>marlOPrintingWorld>PrintingWorldImpl.mesa --)
[pcedar2.0]<PrintingWorld>PrintingWorldlmpLmesa {0l-Jan-9115:21:21 PST}
PrintingWorld-Source.df --) [pCedar2.0]<Top)PrintingWorld-Source.df {0l-Jan-9115:36:17 PST}
C#')
End: PrintingWorld-Source.df
Start: PrintingWorld-sun403.df
[net](gharlane)zuni>marlOPrintingWorld>sun4-o3>PrintingWorldImpl.c2c.o --)
[pcedar2.0j<PrintingWorld>sun4-o3)PrintingWorldImpl.c2c.o {01-Jan-9115:24:28 PST}
[net](gharlane)zuni>marlOPrintingWorld>sun4-o3>PrintingWorldPackage --)
[pCedar2.0j<PrintingWorld>sun4-o3)PrintingWorldPackage {01-Jan-9115:29:30 PST}
PrintingWorld-sun403.df --) [pCedar2.0]<Top)PrintingWorld-sun403.df {01-Jan-91 15:36:25
PST} C#')
End: PrintingWorld-sun403.df
End: PrintingWorld-Suite.df(DF me is unchanged)
10 files acted upon

11

-- After the $model. try the PrintingWor/d command in a shelL from the usual Printing World
command Check that it gets the new versionfrom the smodeL check everything else.

-- all done.

Final Unix Transcript

zwilnik% cd PrintingWorld
zwilnik% cd sun4-o3
zwilnik% PrintingWorldPackage -threads 30
Welcome to Basic PCedar 2.0.5 of December 11.199011:23:21 am PST.
Using Iprojectlpcedar2.0/irnagerfontslstyles/cedar.style ... ok
[[COMMANDER ~ INITIAL~COMMAND =]]
Commander % netcommanderon 4800
Connection command: NetCommander [13.1.101.88]:4800 TCP
Commander %

-- All is well. the NetCommand command did no dynamic loading.

PCRDoc - FOR DISTRIBUTION 00TSIDE XEROX - DRAFT

PCRDoC-tioga
Russ Atkinson (RRA) December 1. 198812:00:07 pm PST
Weiser. May 24. 19895:35:09 pm PDT

PCRDoc

.. Portable Common Runtime

Russ Atkinson et. al.

• Copyright 1989 Xerox Corporation. All rights reserved.

Use and copying of this software and preparation of derivative works based

upon this software are permitted. Any distribution of this software or

derivative works must comply with all applicable United States export

control laws. This software is made available AS IS. and Xerox Corporation

makes no warranty about the software. its performance or its conformity to

any specification. Any person obtaining a copy of this software is requested

to send their name and post office or electronic mail address to PCRCoordinator.pa@xerox.com. or

PCR Coordinator

Xerox PARC

3333 Coyote Hill Rd.

Palo Alto, CA 94304

Abstract: PCR is a program that provides runtime support for garbage collection, dynamic
loading of modules, and lightweight processes (threads). Its primary use currently is to
support the Cedar programming language, but it is not limited to such use. PCR can be
used to mix Cedar code, C code, and (even) Kyoto Common Lisp code.

Created by: Russ Atkinson et. al.

Maintained by: Mark Weiser <Weiser.pa)

Keywords: PCR, Cedar, PCedar, Sun, garbage collection, dynamic loading, lightweight
processes, threads, xrsh

XEROX

For Distribution Outside Xerox

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

PCRDoc - FOR DISTRIBUTION OWTSIDE XEROX - DRAFf

1. Introduction

PCR is a program that provides runtime support for garbage collection. dynamic loading of
modules. and lightweight processes (threads). Its primary use now is to support the Cedar
programming language. but it is not limited to such use. PCR can be used to mix Cedar code. C
code. and (~ven) Kyoto Common Lisp code.

Warning! This documentation is tentative and temporary. It currently applies to the threads and
non-threads variants ofPCR. Non-threads is rarely used--assume you are using threads unless you
know otherwise. Please let Mark Weiser know about mistakes.

2. Switches, Commands, and Variables

Switches

Switches that always work

Switches are taken from the command line that starts PCR. These switches come after the threads
switches on the command line.

-c[+] name

-c- name

-d

-0

-g

-G

-h #bytes

-1

-m

-n

-N

-t

-tmp dir

-v

Read cmds from name after BasicDotLoadeeCommands and
.xrboot

Read cmds from name before any other command files

Don't create OBX init file.

Don't maintain a debugging symtab file (increases dynamic
loading speed slightly)

Turn on garbage collector verbose mode (default is off).pcr

Turn off garbage collection. Never try to collect Storage grows
without bound.

Add (#bytes) to heap before starting.

Don't attempt to initialize dynamic loading (default is off)

Be miserly in growing the heap (minimizes working set at the
expense of extra GC's.)

Don't read cmds from BasicOotLoadeeCommands

Don't read cmds from .xrboot

Turn off printing timing info after each pcr command (default is
on)

Use directory dir for temporary files (default is /tmp/)

Turn on dynamic loader verbose mode.

2

PCRDoc - FOR DISTRIBUTION OUTSIDE XEROX - DRAfT

Switches/or Threads only

The switches below. for controlling details of the threads world. must preceed the switches above
in the command line. The special switch " __ " separates the two. Thus the generic PCR command
line is:

PCE. [threads-switches]* -- [non-threads switches)*

If the " __ " is missing. the threads-switches will be reinterpretted again as non-threads switches. Usually this causes no
damage. just lots of error messages.

The threads switches are pretty much for wizards only. About the only thing you might want to
change on your own is the "-thread" switch. to increase the maximum number of threads.

-vp number

-slave number

-iop number

-thread number

-mem number

-swapdir filename

-log logfilename

-[no]dbp

-[no)trace

Commands

Number of virtual processors. Default is 1. Must be 1 for
packaged applications.

Number of slave processors. Default is O. For future use.

Number of lOP processors. Default is 3, of which one is the
garbage collector process, leaving 2 to cache file descripters.

Maximum number of simultaneous threads. Default is 20.

Size of startup system memory. The default is the right size for
non-packaged applications. This value must be enlarged.. by trial
and error. for packaged applications.

Filesystem directory in which to create a backing file for shared
memory used by PCR. Because of bugs in SunOS. this directory
cannot be on an NFS mounted partition. but must be on the local
disk.

File into which threads tracing output should be printed.
WARNING--FOR THREADS WIZARDS ONLY.

dbp is the de-bugger process. This switch is for use by CIRIO. or
other special debuggers. WARN ING--FOR THREADS WIZARDS ONLY.

This switch turns on or off internal tracing of the ilireads code.
Traces are printed to the log me specifed by the -log switch.
WARNING--FOR THREADS WIZARDS ONLY.

End of the threads switches. All of the switches up to and
including this one will not be passed on for further switch
processing by PCR.

Commands can be issued to the small command interpreter in PCR.

? help

@name

call subr

print a brief help message

read commands from name

call subroutine subr in last dynamically loaded module (subr must
be a full internal name. including .. +-" prefix. E.g .• to call C

3

PCRDoc - FOR DISTRIBUTION ODTSIDE XEROX - DRAfT

callall subr

dbx.debug

gc switch

q. quit

set var value

show var

uload unixload

procedure "main". use "call +-main".
-

call subroutine subr. Same interpretation of subr as for "call"
command.

start running a dbxtool pointed at the current cedarboot THIS
PROBABLY DOES NOT WORK AVOID.

turn garbage collection on (switch: on) or off (switch: off). Note:
turning collection off with this switch will still take working set
hits when the GC would have run. because it will still go through
the motions of collecting without actually doing so. Use the -G
switch to really make the GC go dead

leave PCR forever

set the value of var to value. For C variables var should include
the " +-" prefix.

print the value of variable var. For C variables var should include
the " +-" prefix.

load a unix .0 into the PCR world. Following the file name exactly
one of the following switches may occur: -r -d. -d means don't
update the debugger file, -r means don't try to run this file after
loading it

Command lookup is case-insensitive, so "HeLp" is equivalent to "help".

Environment Variables

The pcr looks certain environment variables when starting up.
XR" HOME - Should be set to the location where the PCR was created from the

distribution tape.
XR .. VERSION - Should be set to the version of pcr that you wish to run. The default is

INSTALLED.
XR"CONFIG - Should be set to either PseudoThreads or Thre9.ds, depending on the type

of pcr world you wish to be running on.
XR" MACH - Should be set to the target machine architecture (currently mc68020 or

spare), default is the machine on which it is currently running.

lusr/local/bin/pcr is a shell script which executes
${XR~HOME}/${XR~VERSION}/BIN/${XR~CONFIG}-${XR~MACH}/PortableCommonR
un time

LmRARIES

The Portable Common Runtime has a set of libraries that can be used by regular C program to
link against so that they may run on top of the pcr. The libraries are /ibxrc.a, libxrpixrect.a,
and xr.a. They can be found in:
${XR~HOME}/${XR~VERSION}/LIB/${XR~CONFIG}-${XR~MACH}/

4

PCRDoc - FOR DISTRIBUTION OOTSIDE XEROX - DRAFf

3. Additional infonnation

The uload command loads in a module. The me name of a .0 format file should be given as the
argument. After each load command a synthetic symbols file is placed in the temporary directory
with the name symtab.pidXXX where XXX is the process id of cedarboot If the .0 me contains
procedures with the names "XR +-install" or "XR +-run". these are called after loading, XR +- install
first The procedures do not need to be externally visible to be called. (E.g:- for C they can be
declared static_)

When PCR first starts, the shell command file XrDBX is written into the working directory.
XrDBX can be used to start a dbx debugger on the most recently started version of PCR in that
working directory.

The call command calls a procedure in the most recently loaded module. The C language internal
name should be used (Le. the declared name should be prefaced with an underscore.) When the
call returns some statistics will be printed.

The set and show commands can be used to print and change the values of 32-bit variables_ For
instance. "set +-safe+-to+-gc+-print 0" will set the value of the variable "safe+-to+-gc+-print" to O.
Notice the leading '+-'--this is necessary for C generated names. The command "show
+-safe+-to+-gc+-print" will print the value of this variable. 32 bits are set or read each time -- using
set or show on variables of smaller size may give unpredictable results.

The quit command cleanly exits cedarboot removing any temporary files that it might have
created.

The debug command starts up dbxtool on the current instance of PCR. Note that if you use the
debug command, and later the load command. the old dbxtool will not know about anything in the
later load. In order to run dbxtool you must be running cedarboot inside Sun View and not from a
remote login or Bridge.

5

cedarrpcgen~

Theimer. April 21. 19928:36 pm PDT
Willie-So May 26. 19924:29 pm PDT

ceda rrpcgen Doc

SunRPC stubs for Cedar

Marvin Theimer

• Copyright 1992 Xerox Corporation. All rights reserved.

Abstract: cedarrpcgen is a modified version of Sun's RPCGen that accepts interface
specifications in Sun's RPC language and emits stubs written in Cedar. The stubs allows C
and Cedar programs to communicate via remote procedure call using Sun's RPC protocol.

Created by: Marvin Theimer

Maintained by: Marvin Theimer (Theimer:PARC:XeroX>

Keywords: RPC, Stub compiler, Sun RPC

XEROX

For Internal Xerox Use Only

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

cedarrpcgen.qx:

1. Using cedarrpcgen

Invoking cedarrpcgen

cedarrpcgen is a C program that must be run from a Unix command shell. To run the stub
generator. u-se the command

/projecticedarlO.l/bin/cedarrpcgen module.x

where module.x is the name of the file containing the interface specification. This command
will generate up to five files (where "module" is replaced by the actual name supplied):

module.mesa -- A Cedar interface for this module.
moduleClientImpl.mesa -- Client stu bs that export the interface and make RPC calls

using the S unRPC or S unRPCS tream package.
moduleServerImpl.mesa -- Server stubs that import the interface and incoming RPC

requests into calls on the interface.
moduleGetPutmesa -- An interface for marshalling and unmarshalling the types in

module.mesa.
moduleGetPutImpl.mesa -- Its implementation.

If no options are specified. then cedarrpcgen will produce stubs for CedarlO.O. Options can
be used to produce either UDP or TCP stubs for PCedar2.0:

-PCedar -- Produce PCedar2.0 stubs that use SunRPC to produce UDP-based
RPC calls.

-PCedarStream -- Produce PCedar2.0 stubs that use SunRPCStream to produce TCP-
based RPC calls.

Two additional options are available that provide "creature comforts" in the generated Cedar
stubs. It is envisioned that users will normally invoke these options; they are not the default for the
sake of backwards compatibility.

-p -- Strip module name prefixes from symbol names. For example. if
the type definition foo+-bar exists in the RPC interface file foo.x then this option will
cause the Cedar stubs to use the name foo.bar instead offoo.foobar. This option also
provides a slightly modified version of naming for union types that produces more
readable Cedar code.

-e -- Expand procedure input arguments. SunRPC.x files allow
specification of only a single input argument to a procedure. This option will expand
any procedure input variable that is a record type into a list of arguments comprised
of the fields of the record definition in the emitted Cedar stubs (both the client and
the server stubs).

Note: For PCedar2.0 you can either produce UDP-based stubs or TCP-based stubs. but not
both. I could have made the TCP-based stubs be emitted under different file names - so that one
could produce both sets of stubs - but have not made that extension because PCedar2.0 will soon
be obsolete and current PCedar2.0 clients need one or the other. but not both.

Input files

The input language is Sun's RPC language. For a detailed description. see "rpcgen
Programming Guide". in the Network Programming manual.

CEDAR 10.11 FOR INTERNAL XEROX USE ONLY

2

cedarIpcgenDOt

Require files

To run the resulting code in Cedar. you will need require files to ensure that the proper
packages are running. For the client the file should look like this:

-- ~module~Client.require
-- eopyright • 1990 by Xerox Corporation. All rights reserved.
-- Generic require file for cedarrpcgen clients.

-- SunRPC and SunRPCAuth
require PCedar SunRPCRuntime SunRPCRuntime

-- SunPMapClient
require PCedar SunPMap SunPMapClient

-- The client stub.
run ~module~GetPutImpl
run ~module~ClientImpl

For the server. it should read:

DF files

-- ~module~Server.require
-- Copyright. 1990 by Xerox Corporation. All rights reserved.
-- Generic require file for cedarrpcgen servers.

-- SunPMapLocal
require PCedar SunPMap SunPMapLocal

-- SunRPC
require PCedar SunRPCRuntime SunRPCRuntime

-- The server stub
run "module~GetPutImpl
run .. Y ourServerImplementation ~
run .. module~ServerImpl

Your package-PCR.df should contain the following lines to get the .mob files needed to
compile the stubs:

Imports [pcedar2.0]<T op)SunRPCRuntime-PCR.df Of - =
Using [SunRPC.mob. SunRPCAuth.mob]

Imports [pcedar2.0]<Top)RuntimeSupport-PCR.dfOf - =
Using [Basics.mob]

Imports [pcedar2.0]<Top)SunPMap-PCR.dfOf - =
Using [SunPMap.mob. SunPMapLocal.mob)

CEDAR 10.1 • FOR INTERNAL XEROX USE ONLY

3

cedarrpcgenD<f ..

Imports [pcedar2.0]<Top>Communication-PCR.dfOf,... =
Using [Arpa.mob]

Imports [pcedar2.0]<Top)SunPMap-PCR.dfOf ... =
Using [SunPMapClientmobl

Run-time considerations

cedarrpcgen produces an "interface object" for each program defined in module.x. Interface
objects contain a procedure variable for each procedure defined in the corresponding SunRPC
program. Interface objects are imported into a client program using the procedure ImportFooN,
where Foo is the name of the program and N is the version number of the program. Interface
objects are exported by server programs using the procedure ExportFooN.

The best way to get a feeling for how to use the stubs produced by cedarrpcgen is to look at
the example program in the cedarrpcgen directory. The forty two program in this directory is an
example that is currently compiled for use with UDP (the ImportFoo and ExportFoo routines to
use with TCP are shown as comments). The program uses three different .x mes: fortytwo.x,
fourtwo.x. and fortyone.x. fortytwo.x includes the other two. The client program is named
fortytwoClient and the server program is named fortytwoServer. See their respective config files
for more information about their composition.

Note: The fortytwo program also illustrates a problem with SunRPC· in PCedar2.0; namely
that XR +-DepositField for real and double real numbers doesn't seem to work. If you run either
fortytwoClient or fortytwoServer against some other server or client respectively, then you will see
them get part of the way through execution and then generate an exception signal. This problem is
supposedly fixed in CedarlO.l.

2. Generated code

This section describes how the various types allowed in Sun's RPC language are translated
into Cedar code.

Simple types

The simple data types in C translate as follows
boo 1 BOOLEAN

char BYTE

u+-char BYTE

short INTl6

u+-short CARD16

int INT32

u+-int CARD32

1 on g INT32

u+-long CARD32

Note that c h a r arrays may not do what you expect as they transmit a 32-bit word for each
character. Instead, try stri ng or opaque.

CEDAR 10.1 • FOR INTERNAL XEROX USE ONLY

4

cedarrpcgenpoc

Structures

Structures are translated component by component

Unions

Unions are translated into REFs to variant records. with the first field being the tag type
declared in the RPC file. and the actual Cedar tag being an anonymous enumeration. The case
anns specified in the RPC description are used in a SELECT statement to marshall and unmarshall
the correct variant. Warning: The value o/the user-defined tag field must match the Cedar tag or
the marshalling routines will get an exception trying to NARROW a REF.

When unions are transmitted. an allocation is done on the receiving side to hold the incoming
value.

Fixed-length Arrays

Fixed-length arrays are translated into packed arrays of the corresponding type.

Variable-length arrays

Variable-length arrays are translated into REFs to SEQUENCES with a max length of "size".
When a variable-length array is transmitted. a new sequence is allocated on the receiving side.

Pointers

Pointers are translated into REFs. The data pointed to by the pointer is transmitted. and an
allocation is done on the receiving side to hold the incoming data. If the transmitted pointer is
NIL. then the receiver winds up with a NIL pointer. Pointers can thus be used to transmit
recursive data structures. such as linked li~ts. but the stack frame is used for each pointer when
marshalling or unmarshalling.

Strings

All strings are converted to ROPEs. regardless of max length.

Opaque

Opaque data declared as a fixed-length array is converted to a packed array of BYTE.
Opaque data declared as a variable-length array is translated to a REF TEXT. regardless of max
length.

3. An Example

The directory containing the source code for cedarrpcgen also contains an example client­
server set of programs that employ cedarrpcgen. The SunRPC interface files for this example are:

fortytwo.x
fourtwo.x

CEDAR 10.1 • FOR INTERNAL XEROX USE ONL Y

5

cedarrpcgenDqC

fortyone.x
The client program that uses the RPC interface defined by these files is:

fortytwoClientMain.mesa
while the server program that implements the interface is:

fortytwoServerMain.mesa

To recompile and run this example do the steps listed below. You will obtain two programs:
fortytwoClient and fortytwoServer. (You will also get cedarrpcgen recompiled if the local version
in your directory is out-of-date.) Note: These two programs currently expect to be running on the
same host (I haven't yet added a command-line parameter to the client to allow specification of a
host for the server).

From a Unix command shell issue the commands
cedarrpcgen -p -e forty two. X

cedarrpcgen -p -e fourtwo.x
cedarrpcgen -p -e fortyone.x

From a Cedar commandtool issue the command
makedo -df CedarRPCGen

From a Cedar commandtool issue the commands (assuming an -ux working directory)
pma /cedar/cedarrpcgen -ux:$(pwd)
fortytwoServer

From another Cedar commandtool issue the commands
pma /cedar/cedarrpcgen -ux:$(pwd)
fortytwoClient

Note: In PCedar you end up in the Cirio debugger because PCedar doesn't correctly implement
the floating point case for RPc.

CEDAR 10.1 • FOR INTERNAL XEROX USE ONL Y

6

Sun RPC Runtime

Copyright. 1987. 1990.1992 by Xerox Corporation. All rights reserved.

Sun RPe Runtime

Runtime support for Sun RPC on UDP and

NetworkStreams

A. Demers

© Copyright 1987, 1990 Xerox Corporation. All rights reserved.

Abstract: As the name suggests, SunRPCRuntime is a collection of (client and server)
runtime support routines for RPC using the Sun protocols. Clients may choose to create
UDP handles through the SunRPCOnUDP interface or TCP handles (actually
NetworkStream handles) through the SunRPCOnNetworkStream interface. The created
handles are then passed to procedures in SunRPC, itself, to do the work.

Created by: A. Demers

Maintained by: A. Demers (Demers.pa>

Keywords: Interoperability, Sun, RPC, UDP, TCP, NetworkStream

XEROX

For Internal Xerox Use Only

1

Xerox Corporation
. Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Sun R.PC Runtime

1. Impenetrable description

A number of Sun RPC remote programs are described in Sun documentation and elsewhere.
We have client implementations for quite a few of them. and servers for a couple. They all have
the following structure.

For remote program Blort there are Mesa interfaces Blort.mesa. BlortClient.mesa. and
BlortServer.mesa. Blort.mesa consists of Mesa type defmitions corresponding to the data types and
procedures of Biort. BlortClient.mesa and BlortServer.mesa, which are identical except for their
names, consist of procedure declarations using the types from Blort.mesa. Clients of Blort import
from BlortClient.mesa: the server exports to BlortServer.mesa. A Mesa program
BlortClientStub.mesa does serializationldeserialization on the client side. It exports to
BlortClient.mesa and invokes the communication primitives defined in SunRPC.mesa. Another
Mesa program, BlortServerStub.mesa. does serializationldeserialization on the server side. It
registers itself with SunRPCOnUDP.mesa or SunRPCOnNetworkStream to be invoked when an
R.PC call is received and imports from BlortServer.mesa.

This structure is a bit baroque. but please adhere to it See Section 3 for info about
automatically generating these files.

2. How to understand it, really ...

Leek at 8ft e)t8fflJ'!e. A fea3eftfteb' ~t'fMgMf6f'Ward elieftt i~ the Stift~4FS eiieftt I'aekage eft
CeaarChest. I 6eft't yet ftft'le ft geed exMftJ'!e ef ft ~ef'l'ef: there is ft StifLQMftJ' 3ef'Ver. ettt it's
slightl)· fteftStilft6M'6 smee it's the eft!)' SttftRPC I'regfMft that listefts at ft well k:ft6'"Tfft UDP "eft

Look at an example: the LocalRegistry package contains examples of both a client and a
server using UOP transport

3. cedarrpcgen (Marvin Theimer)

Look at /projectlubi/src/utils/cedarrpcgen/ (source) and /projectlubi/bin/cedarrpcgen
(executable) for a Sun rpcgen-based stub generator using this runtime package.

4. A scheme stab at machine-generated stubs (Michael Plass)

Look at RPCGenerate.scheme, and Example.rpc. You may be able to figure it out Or maybe
not: be warned it needs some polishing to make it real. In particular. its outputs are partitioned
and named differently than section 1 suggests: this inconsistency ought to be fixed.

Try this:

% Bringover -p /PCedar/Top/SunRPCRuntime-Source.df
Start: [pCedar](fop)SunRPCRuntime-Source.df!7
[net]<palain>palain>plass)try)SunRPCRuntime-Source.df <-­
[pCedar2.0](fop)SunRPCRuntime-Source.df {1l-May-90 15:54:00 PDT}

PCEDAR2.0 - FOR INTERNAL XEROX USE ONL Y

2

Sun RPC Runtime

[net]<palain>palain>plass)try)Examp Ie.rpc < -- [pCedar2.0]<SunRPCRuntime)Example.rpc! 1
{lO-May-90 10:14:54 PDT}
[net]<palain>palain>plass)try)RPCGenerate.scheme <-­
[pCedar2.0]<SunRPCRuntime)RPCGenerate.scheme!3 {1l-May-90 14:35:45 PDT}
[net]<palain>palain>plass)try)RPCGenerate.$cheme <-­
[pCedar2.0]<SunRPCRuntime)RPCGenerate.$cheme!1 {1l-May-90 14:36:17 PDT}
End: [pCedar]<Top)SunRPCRuntime-Source.df!7
4 files~acted upon
{ 20.75 sec}

% Scheme
(user) (load "RPCGenerate")
(cedarsunrpcgen)
(user) (cedarsunrpcgen "Example.rpc")
ExampleSunRPC.mesa ... ExampleXDRImpl.mesa '" ExampleSunRPCClientImpl.mesa '"
ExampleSunRPCServerImpl.mesa ... # !unspecified
(user) (quit)
{ 43.19 sec}

%

PCEDAR2.0 - FOR INTERNAL XEROX USE ONLY

3

.~ "

CIRIO DEBUGGER

The Cirio Debugger

a multi-language, multi-target-world debugger

Howard Sturgis and Marvin Theimer

© Copyright 1989,1990, 1991, 1992 Xerox Corporation. All rights reserved.

Abstract: Cirio is a debugger intended to support the debugging of systems written in
multiple programming languages and running on multiple target machines. Currently Cirio
understands the Cedar and C programming languages and understands about programs
run on D-machines or in PCR-based systems. The current version is still very much a
prototype, with much of its functionality missing.

Created by: Howard Sturgis and Marvin Theimer

Maintained by: Howard Sturgis <Sturgis.pa> and Marvin Theimer <Theimer.pa>

Keywords: debugging

XEROX

For Internal Xerox Use Only

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

CIRIO DEBUGGER

Cirio News

June 2,1992

(1) Changed Cirio's C type parsing protocol (in RCfW and ObjectFiles) to return a
CirioTypes.Type (rather than a "DotOType" string).

(2) This allows Cirio to accomodate different C type grammars.

April 27, 1992

(1) Fixed the bug introduced last time around.

(2) Made another small improvement in the handling of gee output

April,1992

(1) Made some changes to the handling of Sun a.out files so that gcc results as well as Sun ee
results can be interpreted. Also improved the handling of Sun cc output Also
introduced a bug.

(2) Added a rudimentary attempt at finding C source meso Adding directories to the global
search list helps.

March 30, 1992

(1) Workaround for the following AIX ld bug installed in XCOFFFiles.mesa.

On AIX (both 3.1.5 & 3.2). it seems static symbols are not relocated by ld. This
causes Cirio to be unable to fmd the correct "versionS tamp" address for cinded
object files. Single object mes work fine.

(2) Perfonnance improvement for Cirio's inital connection time found and implemented by
Carl Hauser. It seems to be about twice as fast now.

(3) Minor change to hot frame detection. It should now do a better job of predicting the hot
frame for uncaught errors. It sure would be nice if PCR could provide this
infonnation.

March 6, 1992

RS6000 debugging works.

March 5,1992

New Features:

(1) Opaque types can now be "seen" remotely. This functionality requires suppon in
CedaICore and new DebugNub functionality.

(2) Some RS6000 remote debugging capability. All of the following functions are working:

Connection manip ulation

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

2

CIRIO DEBUGGER

connect to / disconnect from an RS6000 pcr world
stop / resume / kill execution of an RS6000 pcr world

Thread manipulation
select (add) threads by fllter (callingdebugger. ready, all)
list available threads
get thread summary
detail thread
proceed. abort. etc. thread

Frame manipulation
walk stack
show source position
show frame .
expression evaluation including ampersand procedures, GLOBAL V ARS and

EXPRTYPE

Basically everything except breakpoints is working. Breakpoints should be finished
shortly.

User Interlace Changes:

(3) [Viewers]
Added Find and Word buttons to CirioRemote Viewers interface.

(4) [Command Line]
Improved CommandLineCirio to give a helpful message when a command is issued
out of context

(5) [Command Line]
Changed the Walks tack command in CommandLineCirio to accept "Co" for
"Cooler" and "W" for "Wanner". The syntax is now:

WalkStack [[Co[oler] I W[anner] [NumberOtFrames]] I AbsoluteFrameNumber] [C I
Cedar]

Bug Fixes:

(6) Timeout errors during attempts to StopRemoteWorld now do not cause a Cirio crash.

February 13, 1992

(1) Added another &-proc:
&RdXStringBody: PROC [addr: CARD. char-count: CARD];

&RdXString couldn't be used when only an XStringBody was available.

Also fixed a problem with the implementation.

(2) Fixed memory dump procedures. The last release only printed 3 out of every 4 words.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

3

CIRIO DEBUGG~

(3) NIL answers to KillRemoteWorld verification in CommandLineCirio are now handled
correctly.

(4) CirioHelp command in Command Line cirio only displays currently available
commands. instead of all CommandLineCirioCommands. If "all" is passed in as an
argument all commands are listed.

(5) New argument ("listed") accepted for Kill Freeze. Proceed. Abort. and Summary
commands in CommandLineCirio. When the new argument is supplied. the
invoked command does its operation on all threads that have been added.

(6) XCOFF stab reader now parses stab strings better. and source positions can be
detennined.

February 3, 1992

(1) Cirio now understands how to do pointer comparisons (=, #, <. >, < =. > =). e.g.
&1 ~@r
105F5588H@
&2~@s

105F558CH@
&3 ~ @s=@r
FALSE
&4~@s=@r+4
TRUE

&5 ~ @s#@r+4
FALSE

&6 ~ @s<@r+4
FALSE

&7 ~ @s>=@r+4
TRUE

(2) Corrected thread id displaying - it sometimes displayed the wrong number even though
it did the right operation.

January 29, 1992

(1) Attempts to print unbound variant records now result in an error message - not a crash.

(2) Attempts to print sequences with integer indices now succeed.

(3) Corrected CommandLineCirio's treatment of thread indices which caused confusion
when threads numbers were not contiguous.

January 23,1992

(1) Added three more &-procs:
&RdMem: PROC [addr: CARD, bytes: INTEGER. base: CARD]:

&IndirectRdMem: PROC [addr: CARD. bytes: INTEGER. base: CARD]:

&RdXString: PROC [XString-var-byte-address: CARD. char-count CARD]:

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

4

CIRIO DEBUGGER

(2) An error is raised when trying to default variables for AmpersandProcs when no
procedure with this functionality exists. This condition was not-previously checked
for.

January 17, 1992

Moved SameBreakWorld* into CirioBase to eliminate the need to recompile Druid to track
Cirio changes.

January 16, 1992

(1) Cirio·s flle location searching order has been modified. Cirio now searches:
(1) in the user supplied and default working directories
(2) in the version maps
(3) in the locations found in the object files
(4) in other locations it stumbles across.

(2) A new default working directory has been included in Cirio -
"-compiled:/CirioCompiledData/". This internal working directory contains the
mobs that Cirio needs to make a connection. This makes Cirio startup slightly faster
and makes Cirio significantly easier to distribute to sites without PCedar releases.

January 10, 1992

(1) Types and values are now printed on streams, instead of converted to ropes.
StructuredStreams are used to format the output nicely with whitespace.

(2) Opaque types are now seen through. in the local case.

(3) Bound COMPUTED and OVERLAID variant record types now work correctly.
(Bound non-COMPUTED non-OVERLAID variant record types are now slightly
wrong --- the tag is missing).

(4) Most non-understood typestring contructs now produce broken types. rather than
invalidating the whole typestring analysis. Array and procedure constructions are
now understood.

January 6, 1992

(1) New Command: ChangeCirioMessageLevel

Usage: ChangeCirioMessageLevel [level]
Valid levels: urgent: Only displays necessary messages

normal: Displays necessary and informative
messages

debug: All messages available are displayed
If no level is supplied. then the current level is displayed.

Proflle Entry:
Cirio.MessageLevel urgent I normal I debug

default is "normal"

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

5

CIRIO DEBUGGER

There are still problems throughout Cmo with using this, because notali output goes
through SystemInterface.ShowReport Not all levels are guaranteed correct

December 23. 1991

(1) FlJ,rther internal reoganization in the inexorable march toward righteousness. Type
graph cycles are now broken at REFs when analyzing mob data structures. Records
from mobs continue to defer analysis of their fields, just for laziness' sake.

(2) Introduced some analysis of typestrings, applied in the case of REF ANYs. A REF
ANY value now appears as a REF to the actual type of the referent. when debugging
locally and the analysis of the type string describing that type succeeds. The analysis
will fail if an opaque or painted type from a module not in the $Intennediate version
map is encountered. The analysis will also fail on various other unimplemented
cases.

(3) Added two more &-procs:
&GetTypestring: PROC [code: CARD] RETURNS [string, why Not: Rope.RoPE]:

&GetConcreteTypecode: PROC [opaque: CARD] RETURNS [concrete: CARD, why Not:
Rope.RoPE]:

December 13, 1991

(1) Breakpoints can now be set in C code. Because C doesn't have any general way of
testing whether a given object fIle was compiled from a given version of a source fIle
(unlike Mesa, which records the source file's create date in the object fIle), the
breakpoint-setting operation always works on the most recently loaded object code
compiled from the indicated source.

(2) Fixed a swarm of bugs introduced in the October upheaval in connection with multi­
word procedure parameters.

December 6,1991

Fixed two bugs:
(1) A small bug in "CirioRemote" argument parsing.
(2) A bug (#2869) in ObjectFile parsing. The problem would show itself with a message
like:

"failure due to internal Cirio error: redefinition of dotOType (0.282)"

November 27, 1991

The CirioRemote command will now accept an initial list of working directories on the
command line. This feature is useful if you are trying to debug a world that uses different
versions of basic files, e.g. Rope.mob. The syntax is:

CirioRemote <hostname) [<portnumber) [<listOfWorkingDirectories)]]

For example:

CEDAR 7.0 - FORINTERNALXEROXUSEONLY

6

CIRIO DEBUG9ER

CirioRemote swift 4815 INewCedarFiles IMyTestFiles IMyFriendsTestFiles

October 17. 1991

During the past few months. Cirio has been undergoing some major changes. The goal of
these changes is to make Cirio a multi-target debugger - specifically-to support XSofrs
product goals.

Cirio's treatment of object files. stacks. memory. breakpoints, etc. was revised so that several
target-specific implementations could co-exist peacefully.

The SPARC/SunOS4* target should be functionally equivalent to the previous version of
Cirio.

The RS6000/XCOFF target is still undergoing changes and is not yet ready for use.

August 17, 1991

(1) Made both local and remote connections start out with this list of directories to
search for files: IPCedar2.0/Ciriol. IPCedar2.0/CirioThings/. /PCedar2.0/ Atom/.
/PCedar2.0/Rope/. This makes the navel-examination done at startup succeed even

• in the absense of version maps. The fIles needed are currently:
CirioThings/CirioRopeHelper.mob. Cirio/CCTypesJrnpl.mob.
Cirio/Cirio Types.mob. Cirio/N ew AmpersandProcs.mob,
Cirio/New AmpersandProcsImpl.mob. Rope/Rope.mob. and
Atom/ AtomPrivate.mob. For C interpretation, the fIle
/CedarCommon2.0/F amousFiles/ c.kipperedParse Tables is also needed.

August 9, 1991

(1) 'CirioRemote localhost' should now work reasonably on a machine that's not
running NIS (nee YP) and an automounter.

August 8, 1991

(1) Added machine language to those barely understood by Cirio. Cirio cannot
interpret any machine-language expressions or statements. But it can print machine­
language frames. Such a printout lists the PC. SP. and the input, local. and output
registers. When used in conjunction with the disassembler in SparcAids. and the
memory dumping available in the Cedar language. this might be just enough to do
some debugging of optimized code.

(2) Made the 'frame banner' (what's printed as you WalkS tack into a frame) more
infonnative: if the frame is in optimized code. the code base address and module
offset are now printed: they were already being printed when the fram is in
unoptimized code. The code base address is where the code of the containing object
file starts in memory: the module offset is where the code of the compilation unit
responsible for the frame in question starts within all the code of the containing
object file.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

7

CIRIO DEBUGGER

July 12, 1991

(1) Cilio now catches the error that occurs when it interprets an expression that tries to
divide by zero.

(2) When the remote world goes away, Cilio now stores that information so that it

July 3,1991

-- doesn't try further interactions. The breakcheckdaemon already- noticed when the
remote world went away, but didn't record this fact in any data structure, it only
stopped its own train of action.

(1) New Command added

+-
Usage: +- (expression)

(2) Fixed procedure called after QuitWorld is called so that it wouldn't try outputting to
a non-existent viewer.

(3) Increased the intelligence of hot frame detection. Added some cases to the check
procedure for finding hot frames.

July 2, 1991 -

(1) Cirio now prints less information about a procedure when the printing depth is less
than 3.

(2) Cirio now prints some symbolic information about a procedure implemented in an
optimized module. When the printing depth is deep (>2), such a procedure is
printed as "loadedFile.guessedComponent.cProcName": 10adedFile is the UNIX
name of a file that UNIX ran (such as "/tmp/CommanderWorldPackage") or the
PCR incremental loader loaded (such as
"/pseudo/pcedar2.0/ crrpc/sun4-03/ crrpcimpl.c2c.o. -4-"); guessedC omponent is a
guess at the UNIX file name of the compilation unit (such as
"IOCommonImpl.c2c.o") within the loaded file: and cProcName is the C-Ievel name
of the procedure (such as "+-DefaultEndOf+-P960"). When the printing depth is
shallow, the loaded Fife is omitted.

(3) Added another ampersand procedure to give access to the incremental loader in the
debuggee (ie, not for casual users).

&GetFileEntry: PROC [seqNum: CARD] RETURNS [REF FileEntry];
This procedure provides direct access to a CirioNub procedure.

June 8,1991

(1) Cilio should now fmd frame extensions and global links (which I think it doesn't
use) that are misplaced by Mimosa into the NIL context In user-ese, that means
Cilio is now able to determine the addresses of more local variables than before.

(2) Cilio now knows where Mimosa hides the variables local to an ENABLE scope.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

8

CIRIO DEBUGGER

June 5,1991

(1) Added the 'CirioBugTreatment' command, which offers the option to change how
Cirio reacts to its own uncaught errors (some of which are due to bugs, and some of
which are due to erroneous input). The command takes one optional argument.
indicating the new treatment: 'catch'. the old and default behavior. means to catch
and report the error: 'reject' means to not catch the error: and '01.' means to first call
XR +-CallDebugger (which punts directly to the debug nub for remote debugging)
and then catch and report the error. When invoked with no arguments.
'CirioBugTreatment' simply reports the current state.

June 4,1991

(1) Major internal re-organization. There is no longer a distinction between type-time
and structure-time --- at least for the Cedar part: the C part has been left working the
old way, so this revision of Cirio can be brought to a timely conclusion.

(2) The static links out of procedures with no local variables now can be seen. The static
links out of ENABLE scopes now can be seen.

(3) Data whose size is not a multiple of 32 bits now are correctly extracted from REF
targets and local frames.

(4) Variant records now print without crashing.

(5) Broken remote-Cirio tools can now be deleted.

May 5,1991

(1) Made a few changes to the way Stack Summaries and Frames are presented:

(1.1) Cirio now attempts to determine the first "interesting frame" and begin the summary
with that frame. In general. the "interesting frame" will be the one that caused the
debugger to be invoked, raised an error, etc. [The "interesting frame" is determined
heuristically since pcr doesn't currently save this infonnation. Hopefully the next
version of pcr will be able to supply it]

The "interesting frame" is indicated by the characters" =)" displayed in the left
margin. If you select another frame by "walking the stack". the selected frame is
indicated by the characters "-)" displayed in the left margin. The only way to see a
frame "hotter" than the "interesting frame" is to "walk the stack" to select it

The summary will start with the "hotter" of the selected frame or the "interesting
frame". For example:

quick summary for thread with index 1
debug message = ClientRequest

-) 6: +-CallDebugger+-P60 (pc = 88H, from CirioThingsImpl.c2c.o)
LoadStateAccessImpl reports no guessedEmbeddedFUe for abs PC = 19326128

7: unreadable frame
=) 8: +-TestSort+-P300 (pc=8COH. from QuickSortTesto)

9: +-NoName+-QS76 (pc=EFCH, from QuickSortTesto)

CEDAR 7.0 - FOR INTERNAL XEROX USEONLY

9

CIRlO DEBUGGfR

10: ~ XR ~ Enable (pc = 5CH, from SignalsImpl.c2c.o)
11: ~RunQuickSortTest~P360 (pc = A8CH. from QuickSortTesto)
12: ~QuickSortTest~PO (pc=208H. from QuickSortTesto)
13: ~DoStartProgram~P3180 (pc=44COH. from

Ins tallationScopesImpl.c2c.o)
14: ~DoStartConfig~P3120 (pc = 4424H, from InstallationScopesImpl.c2c.o)
15: ~XR~StartCedarModule (pc=4814H. from --

InstallationScopesImpl.c2c.o)
16: ~ XR ~ run ~QuickSortTestConfig (pc = 118H. from QuickSortTestConfig

or QuickSortTestConfig.o)

(1.2) When detailing a thread. the "interesting frame" is automatically selected - you don't
need to "walk the stack" to select it prior to doing operations like SourcePosition.
ShowFrame, etc.

(1.3) Show Frame now includes the address of the frame in the information displayed
about the frame. (This address can be used to directly access the frame when Cirio
doesn't tell you what you wanted to know.) The new output looks like this:

Showing frame:
(frame address: 1461888)
tIn

<node of unknown type (frame's procedures not implemented»
Arguments--

t(min:l0, max: 19]
Results--

t[]
Variables--

---Global Frame ommitted---

10

(2) Changed the "Listed threads:" control buttons interface slightly. The "Listed
threads:" buttons now appear only if threads have been added via the
"CallingDebugger", "Ready" or "All" threads selection buttons.

April 12. 1991

(1) Added a new set of buttons to the Viewer user interface to provide thread control for a
set of "Listed threads:". These buttons are similar to the ones provided for
individual thread controL but operate on ALL threads appearing in the threads list

(2) Some useful (and perhaps previously undocumented) operators for use in expression
evaluation:

'@Foo' prints the address of Foo
'FooT prints the type of Foo
'Foo!' each'!, increases the print depth (by 1) and width (by 10) of Foo
'Foo$' turns on copious debugging output for the evaluation of Foo - this is not for
the faint of heart!

CEDAR 7.0 - FOR INTERNAL XEROX USEONLY

CIRIO DEBUGGER 11

March 20, 1991

(1) Added StackCirio.ClearBreakPointAtPosition to support specifying a "break to clear"
by it's source flle position (analagous to SetBreak). This functionality is currently
only available from the CommandLine or dbxtool user interface - it is not yet
available from the Viewers user interface.

(2) Fixed several address faults.

January 13, 1991

(1) Attention for breakpoint is implemented. When PCR world(Debugnub.o) get a
SIGINT. an message "SIGINT: debuggee needs attention." will appear in
RemoteCirio I CommandLineCirio. Latest PCR(3~4. dated Jan 14, 1991) is
required.

(2) As the deamon is introduced for WaitSigO, the communication between Cirio and
Debunnub.o becomes slow in RemoteWorld Running.(Each WaitSigO takes 2
second) But usual debugging is done in RemoteWorld stopping. So it will affect
only Stop Remote World/ResumeRemote World.

December 13 .. 1990

(1) Atoms will print out (as '$''pname'" for an ATOM with 'pname as its print-name).

(2) Non-understood types will be printed as raw bits, if the length is known.

(3) Broken nodes and types should now include a description of the problem in their
printing.

(4) ShowFrame omits the global frame (which is now accessible via GLOBAL V ARS).
Unless the print depth is greater than 3, which is the default - and there's currently no way to override the
default

(5) The stack summaries come in two flavors: (1) with the embedded-module-relative
PC. and (2) without Flavor 1 is under the left mouse button on the summary screen
button. and Flavor 2 is under the middle mouse button.

(6) The stack-specific buttons in a remote Cirio tool now include one. named '''''. that
offers all the functions of the others: these buttons have been PopUpButtons for a
while now.

(7) You can now. in principle. take the address of any value with a runtime address.
However. the result is always a POINTER TO .. , never a POINTER TO
READONL Y .. ! Be careful not to store through such pointers! Some kinds of
values. such as procedures in global frames, don't actually support taking their
addresses.

(8) Cirio works a little better now when you load multiple copies and versions of a
program. The remaining bug I know about is that the SetBreak operations are not
sufficiently choosy about matching up a loaded program with the source indicated.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRIO DEBUGGER 12

December 7,1990

(1) 'GLOBALVARS[Foo], denotes the global variables of the most recently loaded
instance of module Foo. 'GLOBAL V ARS[Foo, 3]' denotes the global variables of
the 4th most recently loaded instance of module Foo, The GLOBAL VARS
construct may appear on the left side of an assignment

(2) 'EXPRTYPE[e]' denotes the statically apparent type of expression 'e'.

September 4, 1990

(1) Fixed PopUpDriver2 to call LocalCirio.ReleaseConnection where it should.
resulting in faster creation of new local debug tools. Thanks to Carl Hauser for
finding this problem and fix.

August 31, 1990

(1) The user now controls the language being interpreted. When Cirio's attention is
focused on a particular stack. there's a 'Language' button that is used to control the
language used in that stack.

(2) C source line numbers can now be reported: it still will not open a viewer for you.

(3) Cenditional expressions (test?iffrue:ifNot) now work. + = and friends now work (but
they evaluate the left argument twice).

(4) Procedure values now exist (although you still cannot call them).

(5) Adding integers to pointers now works. The "ptr[idx]" syntax works.

August 28,1990

(1) C debugging gets better.

'Global' variables (static. extern. and common) should work now.

Assignment should work now.

(2) Opaque values should no longer cause address faults.

August 22,1990

(1) C debugging begins to appear. Not available yet:

Anything involving C source locations (this includes anything involving breakpoints
in Ccode).

'Global' variables (static, extern, and common). Note that this means ShowFrame
will always fail.

Assignment

Procedure values.

'Ampersand-variables' (and -procedures). I think the way to approach these is to

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRIO DEBUGGER

make 'ampersand' be a logical concept bound to one of underscore (+-) or
octo thorpe (#) in C.

User control over which language is interpreted.

(2) The prompt tells you the language in which your expressions will be interpreted. A
:- prompt that looks like '&42 ~ . indicates Cedar; a prompt like ·/·_~7 • / . indicates C.

(3) Various other kinds of cleanup:

I now believe that variables used inside an ENABLE or ! but declared outside should
be visible from frames outside the ENABLE or!. Actually. this has been the
case for quite a while. but I was confused by other bugs that appeared when I
tried this case.

A ROPE that was NIL used to cause a crash: it no longer does.

It's now possible to see SEQUENCE values.

(4) It's still so impossible to see an opaque value that you'll get an address fault if you try.

July 20, 1990

(1) Cirio now has some more ampersand procs. to make it possible to build ROPE
parameters passable to the &Lookup .. procedures. This is an interim solution: there
is a deeper bogon that needs to be annihilated. Don't try to get ROPEs made with
these procedures into the target world (aka debugee). neither by passing them to
target-world procedures nor by storing them into target-world data structures nor by
any other method you can think of: I don't know what will happen if you try, but I
know it won't be helpful. In just the same way, don't try to pass target-world ROPEs
to the &Lookup .. or the .. LocalRope .. procedures. Doing these things could cause
memory smashes!

&MakeLocaIRope5: PROC [cL c2. c3. c4. c5: CHAR] RETURNS [ROPE];

Makes a ROPE in the debugger (not debugee. aka target) containing up to 5
characters. The first space an following characters, if any. are not included in the
result.

&MakeLocalRopelO: PROC [cL c2. c3. c4. c5, c6, c7, c8. c9, cIO: CHAR] RETURNS [ROPE}:

Makes a ROPE in the debugger (not debugee. aka target) containing up to 10
characters. The first space an following characters. if any. are not included in the
result.

&LocalRopeConcat: PROC [base. rest: ROPE] RETURNS [ROPE};

Like Rope.Concat.

&LocalRopeCat: PROC [rL r2. r3. r4. r5: ROPE} RETURNS [ROPE};

Like Rope. Cat.

&LocaIRopeSubstr: PROC [base: ROPE. start len: INT] RETURNS [ROPE];

Like Rope.Substr.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

13

CIRIO DEBUGGER

Spring 1990

(1) A few &Lookup .. procedures weren't documented. They follow. The &Lookup ..
procedures are mainly useful for debugging the debugger; they provide lower-level
access to loadstate infonnation in the debuggee.

&LookupFileEntryByStemName: PROC [stemName: ROPE. numToSkip: INT] RETURNS
[name: ROPE. type. value. size. fJJ.eSeqNum: CARD];

This procedure provides direct access to a CirioNub procedure.

&LookupSymEntryByName: PROC [sym: ROPE. caseSensitive: BOOLEAN, externOnly:

June 8,1990

BOOLEAN. numToSkip: INT] RETURNS [name: ROPE. type, value, size,
fileSeqNum: CARD):

This procedure provides direct access to a CirioNub procedure.

(0) Cirio now understands ROPEs as such (and Rope.Texts, too). Don't be discouraged
by all the things you can't do with them --- you can't do those things with REFs
either.

(1) • Cilio now has more ampersand procs.

&MemDump: PROC [addr: CARD, bytes: INTEGER +- 16];
The given address is rounded down to the nearest word boundary. Prints, in hex and as

characters. the contents of the indicated bytes in the target world. Until the debugee
CirioNub is improved. don't give invalid addresses. Note that when debugging from
PCedar. defaUlt values don't work (yet).

&IndirectMemDump: PROC [addr: CARD. bytes: INTEGER +- 16];
Like &M emDump. but first reads the address to start dumping from the word at the

given address (which isfirst rounded down to the nearest word boundary).

&PokeCard: PROC [ad dr. val: CARD. mask: CARD +- OFFFFFFFFH];
The given address is rounded down to the nearest word boundary. Alters a 32-bit word.

or a subset thereof, in the target world. The value and mask are treated as CARDs:
the i's bit of the val and mask affect the i's bit of the word-interpreted-as-a-CARD
at the rounded address. Until the debugee CirioNub is improved. don't give invalid
addresses.

(2) It is now possible to take the address (with @)ofmany kinds ofvaraibles.

(3) It is now possible to assign to the referent of a REF <some numeric type>.

(4) When cross-debugging (from D to P), correct byte orders are now used.

14

(5) The version map usage has been slightly changed (hopefully for the better). In
PCedar. you want the following proflle entries:

VersionMap.sourceMaps: [pCedar2.0]<VersionMap)PCedarSource. VersionMap
VersionMap.lntermediateMaps:

[pcedar2.0]<VersionMap)PCedarIntermediate. VersionMap

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

C1RIO DEBUGGER 15

VersionMap.ExecutableMaps:
[pCedar2.01<VersionMap)PCedarSparcExecutable. VersionMap
[pCedar2.0]<V ersionMap)PCedarSparcOptExecutable. VersionMap

In DCedar. you need the same entries. except that the names are
VersionMap.PSourceMaps. VersionMap.PlntennediateMaps. and
Versioru\1ap.PExecutableMaps. respectively.

April 17, 19902:31:02 pm PDT

(0) When a Cirio tool starts up. it spends an initial period examining its navel" in order
to construct the ampersand procedures. This period may include several messages
about its activities. The period is completed when the tool prints its date and time.
followed by the "&1 +- .. prompt

WARNING: until certain low level locks are repaired. one should avoid loading any
packages into the PCedar world until a tool completes its initial period.

(1) Cirio now has ampersand vars. A Cirio prompt now has the fonn: "&n +- ", where n
starts at 1 and increases for each expression evaluated. After evaluation. &n will
continue to hold the result of the evaluation. Further. one can name ones own
ampersand vars. e.g .. one might type "&foo +- exp".

(2) Cirio now has a small collection of ampersand procs. These are procedures that are part
of Cirio which can be invoked through expressions typed into the typescript

(a) &dr[byte-address. word-count1

Accepts two 32 bit cardinal values. Prints the decimal value of word-count
32-bit words. starting at byte-address.

(b) &RdRope[rope-var-byte-address. char-count1

Accepts two 32 bit cardinal values. The first is the address of a rope variable
(not the rope). The second is the number of characters to print Handles
ropes built up from components. (Reads the rope structure and converts to a
sequence of characters.)

As an example of use. assume that rope is a visible variable of type
Rope.Rope.

First evaluate the expression "@rope". This will proceduce a byte­
address of the rope variable. for example. 2345678B.

Second. evaluate "&RdRope[2345678B.l00]".

(c) &LookupMatchingSymEntryByValue[symld: CARD. val: CARD.
wantedTypes: CARD. ignoreClasses: CARD. numToSkip: 1NT]

This procedure provides direct access to a CirioNub procedure. It's behavior
is a teensy bit complicated. See me or Alan.

A typical call might be:

CEDAR 7.0 - fOR INTERNAL XEROX USE ONLY

CIRIO DEBUGGER

&LookupMatchingSymEntryByValue{O.12345. 37777777777B. O. 0]
-

(d) &LookupMatchingSymEntry By Name[symld: CARD. pattern: Rope.RoPE.
caseSensitive: BOOLEAN. wantedTypes: CARD. ignoreClasses: CARD.
numToSkip: INT]

This procedure provides direct access to a CirioNub procedure. It's behavior
is a teensy bit complicated. See me or Alan. (This procedure is not usable on
the Sun until we get Rope.RoPE procedure parameters working.)

March 21, 1990 11:12:31 am PST

It has become harder to find mobs and other files both remotely from a D-Machine and
locally from a Sun. The difficulties have to do with PFS naming conventions.

work-around

Use AddDir to add the full path name of the directory from which the file was executed. BE
SURE to use bracket syntax. but DO NOT include "-vux:" or "-ux:". (In order to avoid using
"~vux:" or "-ux:". you can make an appropriate prefix map entry.)

Introduction

The Grand and Glorious Goal

To debug anything. anywhere. anytime. anyhow.

16

In practice. this probably means support for the PCR "world": being able to debug a program
running in a PCR world. irrespective of what languages it's parts were written and what machine
that world happens to be running on. For example, if a Scheme application has called a Cedar
library package, which in turn makes use of a C procedure. then you should be able to look at the
call stacks for the application and see the call frame of each procedure shown in a form appropriate
to the language it was written in. You should also be able to utter expressions to the debugger for
each call frame in the language in which the call frame's procedure was written in.

Specifically. Cirio allows one to examine and modify the current state of some target world,
from the point of view of some context in that world. Typically, one does this by evaluating
expressions in some language appropriate to the current context These expressions can include
the invocation of procedures which in tum may instigate fairly complex changes in the target
world. One may also plant and remove breakpoints in the target world If execution in a target
world thread encounters a breakpoint that thread will discontinue execution and may be used as a
context for debugging,

Cirio has been designed so that (in theory) adding new languages and new target-worlds is
easy. This has been done by employing an object-oriented approach for the architecture. so that
the details of each language and each target world are hidden to the extent possible.

The Current State of Affairs

Cirio currently only understands the Cedar programming language. although it has handled C
in the past and will probably do so again. We will restrict this document to describing the use of

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRlO DEBUGG~

Cirio to debug PCR worlds.

Cirio is generally invoked through a tool. Versions of this tool can be used to debug the same
world as that in which it is running. other versions can be used to debug a remote world.

(1) There is a same-world version of the tool that runs in PCedar on Suns. providing
.: debugging access to that PCedar world.

(2) There is a remote version of the tool that runs in PCedar on Suns. providing
debugging access to other PCR worlds on the same Sun or on remote Suns.

(3) There is a remote version of the tool that runs on D-Machines. providing debugging
access to PCR worlds on remote Suns.

What You Need to Know About Cirio

To use Cirio you need to know/do several things. A summary is given here: each item is
described in more detail later on.

You need to install and run an appropriate Cirio debug tool.

You need to know how to operate th·o ~irio debug tools.

You need to ensure that the PCR world you wish to debug remotely includes the necessary
Cirio support code as a part of it

You need to understand the current limitations of the Cirio tools.

Same-World debugging

Obtaining a Same-World Cirio debug tool

17

Same-World debugging is by far the simplest mode of operation. The same-world Cirio
debug tool provides debugging access to a single PCR thread. The tool may be created in response
to an unforseen error (uncaught SIGNAL or ERROR) or upon encountering a previously set
breakpoint

To prepare for this mode of operation. one simply executes the following command:

CirioLocal

This will load the necessary support code for Cirio as well as register Cirio as the local
debugger. Following this command one may obtain a Cirio tool in either of two ways. (1) If some
thread encounters a previously set breakpoint or if some thread not running under the direct
control of the CedarCommander generates an uncaught SIGNAL or ERROR. then an instance of the
same-world Cirio tool will "pop-up" in the left hand viewer column. This tool will have as its
context the thread that encountered the breakpoint or generated the uncaught SIGNAL or ERROR.
(2) If a thread running under the direct control of the CedarCommander generates an uncaught
SIGNAL or ERROR. then the Commander reports the situation as follows:

*** Uncaught ERROR or SIGNAL: unrecognized error
*** Do you want to try to debug this?

Typing "y" followed by a carriage return will cause an instance of the same-world Cirio tool to
"pop-up" in the left hand viewer column. This tool will have as its context the thread that

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

CIRIO DEBUGG~

generated the uncaught SIGNAL or ERROR.

In addition. one may also obtain an instance of the same-world Crno tool by executing the
following command:

Interpreter

This version of the tool permits the setting and clearing of breakpoints:- but has no thread
context to debug. (Executing this command also performs the preparatory functions provided by
executing CirioLocal.)

Using a Same-World Cirio debug tool

The same-world Cirio debug tool provides debugging access to a single PCR thread. The tool
viewer is divided into two windows. The top window provides a collection of buttons for invoking
specific actions and the lower window contains a type script. Cirio uses the typescript to issue
reports on actions in progress. as well as accepting expressions from the user for evaluation.

Top row of buttons in the upper window

SetBreak:

If the user left-clicks this button while there is a current selection in some Mesa file. then
Cirio will endeavor to find a loaded instance of that fIle and plant a breakpoint at the
beginning of the smallest statement including the first character of the selection.

ListBreaks:

If the user left-clicks this button. then Cirio provides a list (in the typescript window) of the
current breakpoints. (Unfortunately. at present time this list does not include the source
position of the breakpoints.)

CfearBreak{s):

If the user left-clicks this button while the current stack frame under examination (see the
WalkS tack button described below) is at a breakpoint. then Cirio will clear that breakpoint

If the user middle-clicks this button. then Cirio will clear all current breakpoints.

AddDir:

18

If the user left-clicks this button while there is a current selection containing a directory
path name, then Crno will enter that path name its collection of possible locations for
finding fIles.

FfushCache:

If the user left-clicks this button. then Cirio will forget the fact that it has been unable to
find certain files. This is useful if one has just moved a previously unfound file into a
directory in which Crno might look for it

Stop:

Terminates the Summary list operation. (perhaps someday it will tenninate other
operations.)

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRIO DEBUGGER

Second row of buttons in the upper window

frame: n:

This is not a button. but rather a status field showing the index of the current frame in the
thread under examination. Hot frames have smaller index numbers than cold frames. The
hottest visible frame has index O.

Summary:

Produces (in the typescript window) a list of the frames in the thread under examination.
hottest frame first

WalkStack:

Moves the focal point within the frame currently under examination. The semantics are a
tiny bit complicated. but left click moves one frame colder and right click moves one frame
hotter. In more detail. the action depends on which mouse button is clicked. as well as
whether the shift or control keys are down. as follows:

(a) the mouse buttons mean:
left: move to cooler frame
middle: move to specified frame
right: move to hotter frame

• (b) the shift key means: read current selection for a number
(c) the control key means: work in terms of Cedar frames

Thus. for example. shift-middle with 5 selected means move to the frame with index 5.

One should be aware that working in terms of Cedar frames is fairly expensive. Further.
one should observe that not all combinations of mouse buttons and keys make sense.

ShowFrame:

If the user left-clicks this button. then Cirio displays the contents of the variables visible to
the frame currently under examination. This includes the variables in all enclosing blocks.
including the global frame.

19

At the moment this operation is fairly slow. i'his is due to some injudicious mechanisms
used for displaying the value of procedure constants. together with the fact that the global
frame typically contains many procedure constants.

SourcePosition:

If the user left-clicks this button. then Cirio attempts to locate the Mesa file containing the
procedure executing in the frame currently under examination. If the flle can be found. and
if various other files can also be found. then Cirio opens a viewer on the Mesa flle. After
opening the file. Cilio places a feedback selection at the beginning of the smallest statement
containing the current pc of the frame.

Proceed'

Cirio returns control to the procedure that invoked the debugger.

Abort:

Cilio raises ABORTED in the thread under examination.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRIO DEBUGG~

typescript window

Cirio uses this window to report actions to the user and to accept expressions for evaluation
from the user. The reports are self explanatory.

It is the intention that if one types an expression (followed by a carriage return) in a language
appropriate-to the frame currently under examination. then Cirio will attempt to evaluate that
expression in the context of that frame. For example. if one types the name of a variable visible to
the frame currently under examination. then Cirio will print out the current value of that variable.
Since assignments are expressions in Cedar. if Cedar is an appropriate language. then one can
change the current values of variables by typing appropriate assignment expressions. Further.
procedure invocations are also expressions. so one can invoke (visible) procedures by typing the
appropriate expressions.

At the moment there are numerous limitations on this facility. Cirio understands only Cedar.
Cirio does not understand all Cedar value types. (In particular. this includes REF ANY and
OPAQUE. Further. Cirio's understanding of Rope.RoPE is very limited.) Cirio is frequently unable
to find variables that it knows exist

If Cirio does not understand a value type. it prints "?,??". If Cirio does not understand how to
find a variable. it prints "Node?".

Using a Cirio Same-World Interpreter tool

20

The interpreter tool (obtained by executing Interpreter) is very similar to the Same-World
debugger tooL except that this tool has no thread under examination. Thus. only the first row of
buttons is available. but they behave exactly as described above. The typescript window also
behaves exactly as described above: however. there are no visible variables to use in expressions.

Remote Debugging

Preparing a Remote PeR world to be remote debugged

One must anticipate the future desirf; to remote debug a PeR world at creation time.

(1) The PCR world must contain a Cirio Nub running in a slave lOP.
(2) This nub will be connected to some port
(3) The PCR world must have certain auxiliary packages loaded.
(4) You must know the port number.

The easy way

Items (1). (2), and (3) will be accomplished automatically if you start the PeR world with the
shell command:

CedarCommander

In this case. if there are no other PCR worlds on the same Sun and you have not set the shell
envirionment variable: CirioPoft then the port number will be 4815. ("for 815", for those of you
who have done remote debugging in the old D-Cedar world. This number is complements of AI
Demers.)

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

CIRIO DEBUGG.ER

If there are other PCR worlds on the same Sun. then the Cilio Nub will select the first unused
port number that it finds. trying the numbers 4815. 4816 in succession.

temporary problem

At the _moment. CedarCommander does not load the neccessary auxiliary packages. These
will be loaded if you execute "CirioLocal" in a command tooL or if you include the following in
your CommandTool.BootCommands user profile entry:

run IPCedar/Cirio Things/Cilio ThingsImpl
run /PCedar/Cirio Things/Registe:rSaveRestore.o

Item (4): You must know the port number.

There are four ways to learn your port number:

(a) Know that if you have started the easy way. there are no other PCR worlds on the
same Sun. and you have not set the shell envilionment variable: CirioPort. then the
port number will be 4815.

(b) It appears in the pcr type script in the following form

pcr: CallAlI +-CilioN ubStart

'CilioNubinstall v 6 ... returns 4815

21

(c) If your are in a viewers world. Execute "CirioPortButton" in some command tool.
before you perform any operation that invokes the same-world or remote Cirio
debugger (such as Interpreter. CirioLocaL or CilioRemote). This will create a
button in the upper right hand region of your Cedar viewers containing the Cirio
Port number. If you execute "CirioPortButton" too late. the button will appear. but
the number displayed will be (incorrectly) O. If you execute this command without
first have created a Cirio Nub running in a slave lOP, I don't know what will
happen.

(d) Execute "ShowCirioPort" in some command tooL before you perform any operation
that invokes the same-world Cirio debugger (such as Interpreter CirioLocaL or
CilioRemoce). This will print the port number in the typescript in which you
executed ShowCirioPort. If you execute "CilioPortButton" too late. the number
displayed will be (incorrectly) O. If you execute this command without first have
created a Cilio Nub running in a slave lOP. I don't know what will happen.

The hard way

If your prefer to roll your own. here are some helpful hints (your author is NOT an expert in
these matters):

(1) The PCR world must contain a Cilio Nub running in a slave lOP.
(a) "-slave I"

as a threads parameter to your per will provide a slave lOP.

(b) UnixLoad /pseudo/xrhome/INSTALLED/LIBlThreads­
sparc/DebugN ub.o
in your per script will load a CilioDebugNub.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

CIRlO DEBUGGER 22

(c) CallAll +-CirioNubStart
in your pcr script will will start the debug nub.

(2) This nub will be connected to some port: you must know the port number.

setenv CirioPort num

as a shell command will specify a specific port number forthe debug nub. (If
this port is busy. the nub will fail to connect to a port. and will report -2 as its
port number.) If you have not set this environment variable, then the debug
nub will hunt for a usable port as described above.

In any case. the chosen port number will be reported as described above.

(3) The PCR world must have certain auxiliary packages loaded

(a) You can load them with the following commands in your
CommandTool.BootCommands user profile entry:

run /PCedar/Cirio Things/Cirio ThingsImpl

run /PCedar/CirioThings/RegisterSaveRestore.o

(b) or you can load them by executing the following in a CommandTool:

CinoLocal

{c) It would be nice if you could load them by commands in your pcr script then
your would would be degbuggable "early on". However, because the
auxiliary packages are in a versioned directory. the following DOES NOT
work:

LoadAndRun /pseudo/pcedar2.0/CirioThings/CirioThingsImpl

LoadAndRun /pseudo/pcedar2.0/Cirio Things/RegisterSaveRestore.o

Obtaining a Remote Cirio debug tool

In PCedar. execute the following command:

CirioRemote machineName [portNumberj

Where machineName is the name of the debuggee (or "localhost" if one intends to debug a
different PCedar invocation on the same machine). Where portNumber is the number of the port
to which the Cino nub on the debuggee is connected. This number need not be supplied if it is
"4815", the default [Note Well: Do not attempt to apply a remote Cino debug tool to the same
PCR world in which it is running.]

On a D-machine, execute the following commands:

pushv commands

qbo -p [CedarChest7.0]<top>Cirio.df

pop

CirioRemote machineName [portNumberj

Using a Remote Cirio Debug tool

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

CIRIO DEBUGGER 23

Killing the World and Killing Cirio

The most important thing to know about the remote Cirio debug tool is how to kill both it and
the remote world you are trying to debug. You can kill the tool by clicking on the Destroy button
in its viewer banner. This will destroy the debug tooL but will leave the remote PCR world
unchanged. That is. if the remote world was stopped by Cirio. then killing Cirio will leave the
remote world stopped. (As described below. you can reattach a new debug tooUo your PCR world
if you so desire.)

To cleanly kill the remote PCR world you can click the guarded button KillRemoteWorld.
This will invoke the equivalent ofPCedarCleanUp (without asking any questions).

Stopping/Starting the World

When the Cirio debug tool comes up. it has not yet done anything to the remote PCR world.
You must click the StopRemoteWorld button to use Cirio's other features. This button is a toggle
button the will either stop the entire PCR world or start it running again, depending on what state
Cirio thinks it is currently in (the current state is displayed in the top. middle part of the viewer). If
Cirio thinks the world is already stopped then the button will read ResumeRemoteWorld instead of
StopRemote World.

Reconnecting to the World

As mentioned above. you can destroy your Cirio debug tool while leaving the remote PCR
world untouched (and possibly stopped). To reattach a new debug tooL simply reinvoke Cirio (i.e.
issue the CirioRemote command) as you did before. This will bring up a new debug tool viewer
and you can now continue debugging. Note: you cannot have more than one existing debug tool
attached to a particular PCR world. If a debug tool is already attached. then a second tool that
attempts to attach will simply hang, waiting for a response from the PCR world's Cirio support
code. The response will not be provided until the first debug tool is destroyed.

The new debug tool will not remember the state of the old destroyed one. Thus. it will come
up thinking that the remote world is running and that there are no breakpoints set The
StopRemoteWorld button is idempotent, so you can click on it anyway to tell Cirio that you wish to
debug something. Note that any old breakpoints that were set by the old incarnation of the debug
tool will be unknown to the new incarnation. I'm not sure what will happen if you try to set a
breakpOint on top of an already existing one. Ask Peter Kessler.

Controlling Threads

When Cirio thinks the remote world is stopped, it will display a new line of buttons, which
will include CallingDebugger, Ready, and All. If some thread has tried to call the debugger. either
by faulting or by hitting a breakpoint, then clicking the CallingDebugger button will show a
"button" line that tells the thread number (and some other stuff) and provides a set of buttons to
invoke against that thread. Clicking on CallingDebugger when none has called the debugger does
nothing. Clicking on the Ready button will display "button" lines for all threads that are either
ready or running. Clicking on the All button will display "button" lines for all threads.

Each "button" line contains information about the thread together with thread-specific
buttons The information is as follows, from left to right:

The thread index (followed by a colon)
The thread priority

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

CIRlO DEBUGGER 24

The thread scheduling state (e.g .. Run. CVWait MWWait etc).

A Debugger message (e.g .. None and CallingDebugger).

The buttons displayed for a thread can be used to control it as well as obtain information
about it The most important control button to know about is the Pred button. which proceeds a
thread that has called the debugger. You must click this button to get past a breakpoint (in
addition to clicking the ResumeRemoteWorld button to get the whole world running again).

Thread-Specific Button Commands

Each thread button line contains two information buttons: Quick and Detailed. Clicking on
Quick will generate a summary of the call stack for the thread. showing each procedure name and
the file from which the procedure was loaded. For example.

quick summary for thread with index 0
debug message = None
~ XR ~ Switch (from ThreadsS witch. 0)
~ XR ~ Yield (from Threads2.0)
~XR~Idle (from Threads2.0)
~XR~ForkJumpProc (from Threadsl.o)
~XR~Jumpee (from Threadsl.o)

Clicking on Detailed provides access to each individual call frame of the thread's state. A new
row of buttons is displayed and information is printed about the top-most call frame on the
thread's call stack (designated frame 0).

SetBreak etc

Whenever Cirio believes that the target world is stopped. Cirio displays a row of buttons
including SetBreak. The buttons in this row behave exactly as do the corresponding buttons in a
same-world Cirio tool.

Thread examination buttons

After clicking Detailed for some thread. Cirio displays a row of buttons including WalkS tack.
This is an abreviated set of buttons corresponding to those described for a same-world Cirio tool as
"Second row of buttons in the upper window". From left to right we have:

frame:tn

This is not a button, but rather a status field showing the index of the thread under
examination together with the index of the current frame.

WalkS tack

(Behaves exactly as for a same-world Cirio tool.)

ShowFrame

(Behaves exactly as for a same-world Cirio tool.)

SourcePosition

(Behaves exactly as for a same-world Cilio tool.)

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

CIRIO DEBUGqER 25

Typescript window

(Behaves exactly as for a same-world Cirio tool.)

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

During Salient R1.0 and R1.1 development, there were several developers who
wanted to write C code that ran inside the PCR world or wanted to use UNIX library
routines. Due to the light-weight process scheme that PCR implements, there are
significant restrictions on doing this. The following list describes the restrictions that
we know about. The bottom line is that you should try at all costs to avoid using
UNIX library routines and that you should carefully review this li~t of restrictions
before writing C code that will run inside the PCR world (Le. inside the GlobalView
envirnoment).

1. Don't make UNIX I/O system calls. PCR wants to control all of the I/O done in
GlobalView so that one thread does not block the whole PCR world. Likewise, don't
make any shared memory calls or mapped file system calls. UnixSysCallTranslation.o
provides a potential workaround, but as far as we know there aren't many users of
It, so there may be some hidden issues with it. For example, there may be some tricks
that have to be done when making a PCR package (such as XWSPackage for
GlobalView) that contains Unix5ysCaIITranslation.o.

2. Be careful about using global (or static) variables in the C routine. Unless they are
protected by a monitor lock, they will cause problems if more than one thread calls
the C routine at about the same time. PCR provides some hooks to handle the global
variable named" errno", but that is the only one.

3. Be careful about allocating memory using malloc and/or sbrk. peR garbage
collector needs to know about memory that is being allocated in the huge
GlobalView address space, and it has its own allocation routines. There is a routine
named malloc in peR that is intended to be usable in the same way as C malloc, but it
allocates collectible storage and GlobalView tries to avoid using collectible storage
due to possibl-e performance degradation when the garbage collector runs.

4. Don't use UNIX signals. The various UNIX processes that make up peR uses
SIGUSR 1 to signal each other to perform various actions. Also, the garbage collector
catches 51GB US to detect writes to protected pages. And PCR uses SIGALRM to do
time slicing amongst the threads. And there are probably other signal
considerations as well. If you really must use UNIX signals, there is a limited
capability in PCR that might provide the desired functionality.

5. Don't use UNIX library routines that do any of the things listed above. For
example, printfO makes system calls; sleep() uses SIGALRM; scanf() has a static
variable.

6. Be careful about writing slave lOP code that calls maliocO, since it will call the PCR
malloc routine and PCR's garbage collector does not handle slave lOP memory.

7. Be careful about writing slave lOP code that calls UNIX library routines which
contain global variables, since such variables will be shared between all the slave
lOP's; sleep() is an example of a library routine that contains a global variable.

8. In order to prevent one thread from blocking the entire peR world, peR breaks up
I/O requests into 16KB chunks. This might affect liD done through special device
drivers. (We encountered a problem with the Rank Xerox scanner driver in this area
in Salient R 1.1.)

9. Don't manipulate the" no delay" or .. non-blocking" flags when using peR's
XRJOCtl and XR_FCntl routines. PCR uses this flag internally as part of its liD system.

U nixSysCall5p?c

Michael Plass. August 7.1991 11:38 am PDT

U nixSysCalis

Carl Hauser, Alan Demers, Mark Weiser

© Copyright 1988 Xerox Corporation. All rights reserved.

Abstract: This is a Unix(tm) system call interface for PCedar. In order to access Unix
system calls from PCedar, you MUST go through the UnixSysCalis interface. Every Unix
system call in SunOS 4.0 Unix is mentioned in this interface, but some are mentioned only
as comments and must not be called. Explanations for why things are not available in this
interface, and prospects for future inclusion, are documented here. For more information
about exactly what a syscall does in Unix, see the SunOS 4.0 Unix volume 2 documentation.

Created by: Carl Hauser, Alan Demers

Maintained by: Carl Hauser (chauser.pa)

Keywords: Unix, system calls

XEROX

For Internal Xerox Use Only

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

UnixS ysCallspoc

1. Introduction

What's going on

As of March 30. 1989. the Portable Common Runtime. also known as PCR. underlies all uses
of Mesa or Cedar on Sun workstations. Even though PCR can live on top of Unix. it does not
allow free access through to Unix. PCR is like a little operating system in itself. When using PCR.
you must use the PCR system calls. Not all Unix system calls are PCR system calls (and vice
versa).

As a convenience for Cedar/Mesa programmers using PCR on Unix. a number of Unix
system calls have been made accessible in the UnixSysCalls interface. The implementation of this
interface is NOT to directly call the Unix kerneL Most routines are implemented via a fairly
complex route. via PCR IOP·s. It is never safe to call the Unix kernel directly from PCR or
PCedar.

See UnixSysCallExtensions for some interesting PCR system calls that are not Unix system
calls. See below for why not all Unix system calls are available in UnixSysCalls. See UIO.b for
the C-Ianguage interfaces directly into the PCR Unix system call emulations.

General Principles for inclusion/exclusion in UnixSysCal1s

Three principles were used in choosing to include or exclude a Unix system call in
UnixSysCalls. The meta-principle is: include as little as possible.

Principle 1: If it is obsolete or can be emulated via other calls. don't include it (Ex: CREA Tis
obsolete. and can be emulated by OPEN.)

Principle 2: If it is available only to the super user. or affects only global Unix state, or is a
brash and bold Unixism. don't include it (Ex: MOUNT.)

Principle 3: If its use would interfere with the PCR kernel implementation. or simply will
not work given the PCR implementation. don't include it or implement only a non­
interfering subset (Ex: FLOCK cannot work with multiple VP's. only a subset of
POLL is implemented.)

There is also a sub-principle. which is: some things are hard. and they are not done yet but
perhaps they won't be necessary for a while.

Principle 1 follows immediately from the meta-principle. and will not be explained further.

Principle 2 is more subtle, and stems from the philosophy that PCR. Cedar. and Mesa are
sharing the machine with other programs. Therefore. it is not necessary that every system call be
available--one always can execute a regular Unix program (via UnixSysCaIlExtensions.Spawn) to
get at the others. Furthermore. it is undesirable to do things which affect the global Unix system
state. System calls which affect or detect a property of a single Unix heavy-weight process are also
generally not implemented. because PCR is a long-lived amalgam of multiple Unix processes and
does not make sense to probe or alter the state of just one of those.

Finally. principle 3 reflects a bit of the PCR implementation showing through. PCR
implemented on Unix reserves some Unix features for its own use (like passing around me
descriptors via Unix domain sockets). because if others also try to use them it can get very
confused.

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

2

U nixSysCallsDoc

blocking 110. because the duped descriptor sometimes does. and sometimes doesn't inherit the
non-blocking properties.

EXECVE - reads a new executable image on top of an existing Unix heavy-weight process. PCR
owns all the heavy-weight processes. cannot permit itself to be overwritten.

EXIT - terminates the current Unix heavy-weight process. PCR owns all the heavy-weight
processes. cannot allow one to terminate.

FCNTL - The full properites of FCNTL would permit the user to thwart PCR's control of fIle
descriptor properties which it needs for the lOP implementation. A subset of FCNTL semantics
could be permitted. but is not now implemented or planned.

FLOCK - this locks a file for access by a single Unix heavy-weight process. Since PCR is
multiple such processes. it could deadlock itself by letting one lock out others.

FORK. VFORK - makes a new Unix heavy-weight process. PCR owns all the heavy-weight
processes. cannot permit a new one. However. see UnixSysCallExtensions.spawD for a way to do
the same thing from a light-weight process.

GETITIMER. SETITIMER - peR uses the interval timer for itself. Process.Pause. and
XR+-TicksSinceBoot and timeouts on condition variables have a granularity of about lOOms and
should be adequate for most uses.

IOCTL - this is in the interface. but use is extremely dangerous. only some uses will work. but
no checking is made of those uses. A void IOCTL if at all possible. and then only use with
permission o~ the PCR implementors.

MMA:P. MUHr-tA:P. MPROTECf eftflftge 'Iifatal: fftefftat;' fftltpl'mg. These aWeet ani)' a siftgle
May)' weigfit Uftix I'feeess. etlt e'ieft warse. PCR tlses ffttll'l'ift! afte tlftIfttlJ'l'mg fef its a'#ft
i:fttefftal: I'tlfI'ases. afte ftee6s ta !mev .. WM is eiem! Wftat

NFSSVC. ASYNCDAEMON - causes the current Unix heavy-weight process to dive forever into
the kernel. PCR owns all the heavy-weight processes. doesn not like them diving away forever.

SlIMCfL. SlHdOEf. SlIMOp tftese are the SYStefft Y sharee fftefftafY ffttll'l'i:ftg I'rimiti'+es. These
aWeet only a siftgle liell'IY wetglit Unix I'reeess. etlt e'ieft 'Jl6fSe, PCR tftinks it O'liftS the mill'.

SOCKETPAIR - this one could be done. but hasn't been.

SYSCALL - this is an escape hatch to all the other calls. so cannot be permitted

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

5

U nixSysCallsDoc

W orkarounds

For workarounds. the following general rules apply: workarounds for calls excluded by
principle 1 are specified in the descriptions below. For calls excluded by principle 2. the
workaround is almost always to use UnixSysCallExtensions.Spawn to use a real Unix process. For
calls excluded by principle 3. workarounds are very very hard. in some cases impossible. and
should not l::fe counted on.

2. Detailed explanation of unimplemented system calls

System calls not implemented because they are obsolete or can be emulated (principle 1)

CREAT - obsolete. see OPEN.

GETDIRENTRIES - obsolete. see GETDENTS.

RECVMSG - most uses can be emulated with RECV or RECVFROM. Use of RECVMSG to send or
receive a Unix file descriptor is reserved to PCR itself.

SENDMSG - most uses can be emulated with SEND or SENDTO. Use of RECVMSG to send or
receive a Unix file descriptor is reserved to PCR itself ..

SELECT - tan be emulated with POLL Furthermore. is hard.

UNAME - can be emulated with gethostname.

System calls not implemented because they are Unixisms (principle 2)

ACCESS· depends on properties of a single Unix heavy-weight process.

ACCT - can only be executed by super user. and affects global Unix state.

ADJTIME· can only be executed by super user. and affects global Unix state.

AUDIT· can only be executed by super user. and affects global Unix state.

AUDITON . can only be executed by super user. and affects global Unix state.

AUDITSVC . can only be executed by super user. and affects global Unix state.

CHDlR - affects the properties of a single Unix heavy-weight process.

CHOWN, FCHOWN - can only be executed by super user.

CHROOT - can only be executed by super user.

GETAUID. SETAUID - can only be executed by super user.

GETPRIORITY. SETPRIORITY - samples and affects the properties of a single Unix heavy-weight
process.

GETRLIMIT. SETRLIMIT - samples and affects the properties of a single Unix heavy-weight
process.

GETRUSAGE s8ffi~les aRe afteets tile !3l'ef'elties ofa si:B:gle Ufttx Heay;' ... ,eight ~fOeess.

SETGROUPS . can only be executed by super user. affects the properties of a single Unix heavy-

CEDAR 7.0 - FOR INTERNAL XEROX USE ONLY

3

UnixSysCalls~c

weight process.

SETHOSTNAME - can only be executed by super user. affects global Unix sta-te.

SETTIMEOFDAY - can only be executed by super user. affects global Unix state.

MOUNT. UN MOUNT - can only be executed by super user. affects global Unix state.

MSYNC ~ can only be executed by super user. affects global Unix state.

MSGCTL. MSGGET. MSGOP - these are the System V interprocess communication primitives.
They are not needed within PCR tasks. where shared memory. monitors. and condition variables
work much better. For communicating with other Unix processes outside PCR. we recommend
FIFO fIles.

PIPE - this is the original Unix interprocess communication primitives. They are not needed
within peR tasks. where shared memory. monitors. and condition variables work much better.
For communicating with other Unix processes outside PCR. we recommend FIFO flIes.

PTRACE - this monitors one Unix heavy-weight process from another.

QUOTACTL - can only be executed by super user. affects global Unix state.

REBOOT - can only be executed by super user. affects global Unix state.

SEMCTL. SEMGET. SEMOP - these are the System V semaphor primitives. They are not needed
within PCR tasks. where shared memory. monitors. and condition variables work much better.
Furthennore. blocking on a semaphor would block the entire PCR world. For communicating
with other Unix processes outside PeR. we recommend FIFO flIes.

SEfPGRP - affects the properties of a single Unix heavy-weight process.

SETREGID. SETREUID - samples and affects the properties of a single Unix heavy-weight
process.

SETUSERAUDIT - can only be executed b¥ super user, affects global Unix state.

SIGBLOCK. SIGPAUSE. SIGSETMASK. SIGSTACK. SIGVEC - these sample and control Unix signals.
which are nothing like Cedar/Mesa signals. Unix signals make sense only in a single Unix heavy­
weight process. and only one without threads.

SWAPON - can only be executed by super user. affects global Unix state.

UMASK - affects the properties of a single Unix heavy-weight process.

v ADVISE - affects the virtual memory paging algorithm of a single Unix heavy-weight process.

VHANGup· this releases a Unix control tenninal. This should not have any meaning in PCR.
so should not be necessary.

WAIT. W AlT3. W AIT4 - causes one Unix process to hang waiting for. or check the status of.
another Unix process. See UnixSysCallExtensions.spawn for how to do an implicit fork/wait
safely from a PeR thread.

System caDs not implemented because they will not work with PCR (principle 3)

BRK. SBRK - allocates storage in a single Unix heavy-weight process. All allocation must be via
PCR allocation primitives.

DUP. DUP2 - duping a fue descriptor can sometimes interfere with PCR's need to use non-

CEDAR 7.0 - FOR INTERNAL XEROX USE ONL Y

4

