
COMP 251 Study guide

Francis Piche

February 12, 2018

1

Contents

1 Disclaimer 5

2 Preliminaries 5

I Recursive Algorithms 5

3 Divide + Conquer Algorithms 6
3.1 MergeSort . 6
3.2 Binary Search . 7
3.3 Run Time of Divide + Conquer in General 7
3.4 Aside on Recurrences: Domain Transformation 8

4 Master Theorem 9
4.1 Tree Method to Prove Master Theorem 12

5 Multiplication 13
5.1 Grade School Multiplication 13
5.2 Russian Peasant Multiplication 13
5.3 Divide + Conquer Multiplication 13
5.4 Fast Fourier Transforms . 14
5.5 Multiplying Matrices . 15
5.6 Fast Exponentiation . 16

6 The Median Problem 17
6.1 The Selection Problem . 17
6.2 Median of Medians . 18

7 Finding the Closest Pair of Points in the Plane 19
7.1 Exhaustive Search . 19
7.2 2-D case . 19
7.3 Widening the Bottleneck . 20
7.4 The Finished Algorithm . 21
7.5 The Runtime (Enhanced) . 21

II Graph Algorithms 21

2

8 Theorems About Undirected Graphs 22
8.1 Handshaking Lemma . 22
8.2 Leaf Existence . 22
8.3 Number of edges in a Tree . 23
8.4 Halls Theorem . 23

9 Breadth First Search 24
9.1 Generic Search Algorithm . 24

9.1.1 Revised Generic Search Algorithm 24
9.1.2 The Running Time . 25
9.1.3 Validity . 25

9.2 Search Trees . 26
9.3 Choices of Bags . 26
9.4 BFS Trees . 26

9.4.1 Structure . 26
9.4.2 BFS on Bipartite Graphs 27

10 Depth First Search 27
10.1 DFS Trees . 27
10.2 Recursive DFS . 28
10.3 Ancestral Edges . 28
10.4 Previsit and Postvisit . 29
10.5 Directed Graph BFS Tree Structure 30
10.6 Example: Directed Acyclic Graphs 30
10.7 Example: Topological Ordering 31

III Greedy Algorithms 31

11 Scheduling 32
11.1 Task Scheduling . 32

11.1.1 Running Time . 33
11.2 Class Scheduling . 33

11.2.1 First Start . 33
11.2.2 Shortest-Duration . 33
11.2.3 Minimum Conflict . 34
11.2.4 Last Start . 34

3

12 The Shortest Path Problem 36
12.1 Dijkstra’s Shortest Path Algorithm 36

12.1.1 Special Case, All Arcs Have Distance 1 36
12.1.2 Shortest Path Graph 36
12.1.3 Shortest Path Tree . 37
12.1.4 The Running Time . 38

13 Huffman Codes 38
13.1 Data Encoding . 38

13.1.1 Morse Code . 39
13.2 Prefix Codes . 39
13.3 Binary Tree Representations 39

13.3.1 Letter to Leaf Assignment 40
13.3.2 Tree Shape . 41

13.4 The Key Formula . 41
13.5 The Algorithm . 42

13.5.1 Proof Of Correctness 42
13.5.2 Running Time . 42

14 Minimum Spanning Tree Problem 43
14.1 Kruskal’s Algorithm . 43
14.2 Prim’s Algorithm . 43
14.3 Boruvka’s Algorithm . 43
14.4 Running Times . 43

14.4.1 Kruskal’s Running Time 43
14.4.2 Prim’s Running Time 44
14.4.3 Boruvska’s Running Time 44

14.5 Proof That They All Work . 44
14.6 The Cycle Property . 45
14.7 The Reverse Delete Algorithm 46

14.7.1 Runtime of Reverse Delete 46
14.7.2 Proof of Reverse Delete 46

15 The Clustering Problem 46
15.1 Maximum Spacing Clustering 47
15.2 Reverse-Delete Clustering Algorithm 48

15.2.1 Proof Of Reverse-Delete Clustering 48

4

1 Disclaimer

The material of this document was transcribed from Prof. Adrian Vetta’s
lecture recordings for COMP251 in the winter of 2018. Extra notes, clarifi-
cations or interpretations added by me may not be correct. All images are
taken directly from Prof. Adrian Vetta’s lecture slides. I claim no ownership
over these images or the content taken from the slides.

2 Preliminaries

In this course an algorithm is considered good if it:

• Works

• Runs in polynomial time. Meaning it runs, in O(nk) time. Where n is
(always) the size of the problem. (Number of elements in a list to be
sorted etc.)

• Scales multiplicatively with computational power. (If your computer is
twice as fast, the problem is solved at least twice as fast)

A bad algorithm is one that:

• Doesn’t always work

• Runs in exponential time or greater. Meaning: O(kn) time.

• Does not scale well with computational power. (Your computer is twice
as fast, but barely any performance boost).

Part I

Recursive Algorithms
I won’t be going into detail on the specifics of things like how recursion works,
MergeSort, BinarySearch, solving recurrences, Big O, etc. as it’s considered
prerequisite material. If you need some review, my COMP250 study guide
is still publicly available.

5

3 Divide + Conquer Algorithms

Examples:

• MergeSort

• BinarySearch

3.1 MergeSort

The MergeSort algorithm involves splitting a list of n elements in half, sorting
each half recursively, and merging the sorted lists back into one. It takes
time T (n

2
) to sort the list of half size, and time O(n) to merge the list back

together. So the recurrence relation for MergeSort is given by:

T (n) = 2T (
n

2
) + cn

where c is some constant.

Theorem 1. MergeSort runs in time O(nlog(n)).

Proof. Add dummy numbers (extra ”padding” to the list), until n is a
power of two. n = 2k. We can do this because O() gives an upper bound,
and adding numbers will make our solution take longer than the real one.
Doing this will make solving the recurrence easier.

Unwinding the formula:

T (n) = 2(2(T (
n

4
) + c

n

2
) + cn

= 22(T (
n

4
) + 2cn)

= 23(T (
n

8
) + 3cn)

= 24(T (
n

16
) + 4cn)

Notice we have a pattern emerging.

= 2k(T (1)) + kcn

Recall 2k = n, so k = log2(n) and T (1) = 1 so:

= n+ nlog2(n)

Which is O(nlogn).

6

3.2 Binary Search

Binary search involves splitting your sorted list into two, and searching that
half. So our recurrence is given by:

T (n) = T (
n

2
) + c

where c represents the constant work (comparisons, setting new bounds etc.)

Theorem 2. Binary Search is O(log2(n)).

Proof. Again we add dummy numbers so that n is a power of two. n = 2k

We begin with our recurrence:

T (n) = T (
n

2
) + c

= T (
n

4
) + c+ c

= T (
n

8
) + c+ c+ c

= T (
n

2k
) + kc

= T (1) + log2(n)

since k = log2(n) which is O(log2(n)).

3.3 Run Time of Divide + Conquer in General

Divide and Conquer is a technique of solving problems that involves taking
one large problem of size n , and breaking it down into a smaller problems
of size n

b
, and solving those problems recursively. They are then combined

to produce a solution in time poly-time: O(nd).

So the run-time of a divide and conquer algorithm is:

T (n) = aT (
n

b
) +O(nd)

In the case of MergeSort, a = 2, b = 2, d = 1.

In the case of BinarySearch, a = 1, b = 2, d = 0.

7

3.4 Aside on Recurrences: Domain Transformation

Note that the recurrence for MergeSort is really:

T ′(n) ≤ T ′(bn/2c) + T ′(dn/2e) + cn

Which we simplified by adding dummy entries. However, we can also say
this:

T ′(n) ≤ 2T ′(
n

2
+ 1) + cn

But the +1 doesn’t fit with our previous method.

We’ll use domain transformation to solve this, starting with:

T (n) = T ′(n+ 2)

≤ T ′(
n+ 2

2
+ 1) + c(n+ 2)

plugging in our expression from above

≤ T ′(
n+ 2

2
+ 1) + c′(n)

absorbing the +2 into c.

= T ′(
n

2
+ 2) + c′(n)

simplifying the fraction.

= T (
n

2
) + c′n

from our domain transformation at the beginning. Solving this the usual
way, we get:

T (n) = O(nlog(n))

But again from our domain transformation:

T (n) = T ′(n+ 2)

, so
T ′(n) = T (n− 2) = O(nlog(n))

So we’ve shown that T ′(n) has the same upper bound as T (n).

8

4 Master Theorem

Theorem 3. If T (n) = aT (n/b) + O(nd) for constants a > 0, b > 1, d ≥ 0,
then: 

O(nd) if a < bd

O(ndlog(n)) if a = bd

O(nlogb(a)) if a > bd

These cases are just a few that occur often in practice when dealing with
divide + conquer algorithms.

Proof. First we’ll need two things. One is the geometric series, and the other
is a law of logarithms. Professor Vetta proved them in class, and honestly I
doubt you’d be asked to prove them on an exam, but it’s good proof practice
to go through them so I’ll do it here.

l∑
k=0

xk =
1− xl+1

1− x

Proof:

Starting with:

(1− x)
l∑

k=0

xk

We can expand it out:

=
l∑

k=0

xk −
l∑

k=0

xk+1

Simplifying the sigma notation:

=
l∑

k=0

xk −
l+1∑
k=1

xk

All terms will cancel except:

= x0 − xl+1 = 1− xl+1

9

Divide through by 1− x

=
1− xl+1

1− x
Our second fact to derive is this law of logs:

xlogb(y) = ylogb(x)

Using the power rule of logarithms:

logb(x)logb(y) = logb(y
logb(x))

similarly,
logb(x)logb(y) = logb(x

logb(y))

so,
logb(x

logb(y)) = logb(y
logb(x))

Now we’re ready for the proof.

Assume n is a power of b, and split up the problem into all it’s chunks.

T (n) = nd + a(
n

b
)d + a2(

n

b2
)d + ...+ al(

n

bl
)d

(this is just if you’d ”unwound” the whole recursion down to it’s simplest
form like we did in the MergeSort/Binary Search proofs.)

Each term is the amount of work it will take at each level of the recur-
sion.

Notice you can factor out:

= nd(1 + a(
1

b
)d + a2(

1

b2
)d + ...+ al(

1

bl
)d

= nd(1 + (
a

b
)d + (

a

bd
)2 + ...+ (

a

bd
)l)

That looks like a geometric series! So let’s look at the cases:

Case 1: a < bd

Applying the geometric series formula:

10

= nd
l∑

k=0

(
a

bd
)

= nd
1− (a

bd
)l+1

1− a
bd

we can remove the a
bd
l+1 term with this inequality (since the term doesn’t

depend on n):

≤ nd
1

1− a
bd

which is O(nd).

Case 2: a = bd

Since a
bd

= 1:

= nd(1 + 1 + 1 + ...+ 1)

There are l + 1 terms, but we said n was a power of b, (n = bl) so, l =
logb(n),thus:

= nd(logb(n) + 1)

which is O(ndlogb(n))

Case 3: a > bd

Again from geometric series, and multiplying through by -1:

nd
(a
bd

)l+1 − 1
a
bd
− 1

Again this inequality holds:

≤ nd
(a
bd

)l+1

a
bd
− 1

Which is O(nd(a
bd

)l) which we can simplify:

(
n

bl
)dal

11

but n = bl, so:
= (1)al

= alogb(n)

now by our second fact:
= nlogb(a)

which is O(nlogb(a))

It’s much more important to understand the proof than it is to memorize
the theorem.

4.1 Tree Method to Prove Master Theorem

A more intuitive way to think of the proof is with a Recursion Tree.

The root node of the tree has label n, and each node has a children (ex-
cept the leaves). a is called the branching factor. Each child is labelled n

bd

where d is the depth. The labels represent the size of the sub problems.

The number of nodes at each level is ad.

Case 1 is when the root level ”dominates” all other levels, so the running
time is just O(f(n)) where f(n) is the amount of work at the root level.

Case 2 is when all levels are roughly the same weight. So the total run-
ning time is just O(f(n)l) where l is the number of levels.

Case 3 is when the leaves dominate, so the running time is O(al) since the
leaves each take time O(1), and there are al of them.

12

5 Multiplication

5.1 Grade School Multiplication

This takes n2 multiplications when you multiply two n-digit numbers. so the
runtime is Ω(n2)

5.2 Russian Peasant Multiplication

Super weird looking algorithm but it works!

Mult(x,y){

if x = 1 then output y

if x is odd then output y + Mult(floor(x/2),2y)

if x is even then output Mult(x/2, 2y)

}

This actually comes from if you take the binary representation of x: say
x = 4610 then x = 1011102. The bits that are 1’s will have the y added step,
and the zero bits will just have the doubling step. Weird right?

Notice that this means the number of steps is just the number of bits in
x. The number of digits in the result will be at most 2n, so if we need to
then add these, we add at most n numbers of 2n digits so takes time O(n2)

5.3 Divide + Conquer Multiplication

Notice that a number x can be written as:

x = xnxn−1...xn
2
+1x

n

2
...x2x1

where the xi are the digits.

Then we have:
x = 10

n
2 xL + xR

where n is the number of digits, xL is the first n
2

digits, and xR is the last n
2

13

So by expanding:

xy = (10nxLyR + 10
n
2 (xLyR + xRyL) + xRyR

Notice that this now involves four products of n
2

digit numbers. So the
recursion is:

T (n) = 4T (
n

2
) +O(n)

We have a = 4,b = 2,d = 1, which is case 3 of the master theorem.

Which means the running time is:

O(nlog2(4))

which simplifies to:
O(n2)

Thanks to Gauss, we can actually use this fact:

xLyR + xRyL = xRyR + xLyL − (xR − xL)(yR − yL)

which is actually only 3 unique products. (adding is cheap)

So our new running time is:

T (n) = 3T (
n

2
) +O(n)

which is case 3 of the master theorem, so

O(nlog2(3))

= O(n1.59)

5.4 Fast Fourier Transforms

These are O(nlog(n)) for multiplying n-bit numbers. They’ll be studied more
in-depth at the end of the course (time-permitting).

14

5.5 Multiplying Matrices

There are n multiplications to calculate each entry of the result matrix, and
there are n2 entries, so O(n3)

Using divide + conquer, divide into 4 sub-matrices:
x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
. .
xd1 xd2 xd3 . . . xdn

 =

[
A B
C D

]

So if we let:

x =

[
A B
C D

]
y =

[
E F
G H

]
then:

XY =

[
AE +BG AF +BH
CE +DG CF +DH

]
So multiplying involves eight products with n

2
xn
2

and the recurrence is:

T (n) = 8T (
n

2
) +O(n2)

which is Case 3 of the master theorem, so runtime is O(nlog28) which is O(n3),
no improvement.

There actually is a trick to do better.

Claim:

XY =

[
AE +BG AF +BH
CE +DG CF +DH

]
is the same as: [

S1 + S2 − S4 + S6 S4 + S5

S6 + S7 S2 − S3 + S5 − S7

]
where:

S1 = (B −D)(G+H)

S2 = (A+D)(E +H)

15

S3 = (A− C)(E + F)

S4 = (A+B)H

S5 = A(F −H)

S6 = D(G− E)

S7 = (C +D)E

which is only 7 products! (The additions are negligible)
So we have:

T (n) = 7T (
n

2
) +O(n2)

Which is Case 3 of the master theorem, so O(nlog2(7))which is O(n2.81)

5.6 Fast Exponentiation

Method of taking exponents in a fast way, since doing:

x ∗ x ∗ x ∗ x... ∗ x

is super slow.

FastExt(x,n){

if n=1 output x

else

if n is even output FastExp(x, floor(n/2))^2)

if n is odd output FastExp(x, floor(n/2))^2)*x

}

So our recurrence looks like:

T (n) = T (floor(
n

2
) +O(1)

(since we’re halving the problem, and doing some constant work at each step)

This is Case 2 of the Master Theorem, so the runtime is O(log2n)

16

6 The Median Problem

6.1 The Selection Problem

Want to find the kth smallest number in a set S.

Select(S,k)
If | S |= 1 then output x1.

Else:
Set SL = all numbers less than x1
Set SR = all numbers greater than x1
If | SL |= k− 1 then output x1 (since if you have k-1 things smaller than x1,
that can only mean x1 is the kth smallest element)
If | SL |> k− 1 then output Select(SL, k) (since that means the kth smallest
element must be within that set)
If | SL |< k − 1 then output Select(SR, k-1-| SL |)(-1 since you know its
not x1, and - | SL | since you know its not in any of those, so you want the
k-1-| SL |-th element of SR.)

The runtime of this algorithm is almost entirely dependent on the choices of
pivots, since if you get a ”bad” pivot every time, then you would recurse on
a set of size n-1.

T (n) = (n− 1) + T (n− 1)

.

.

.

=
1

2
(n(n+ 1))

which is O(n2).
We could instead choose our pivot randomly.

The pivot would separate the list into sizes from n
4

to 3n
4

with probabil-
ity 1

2
, and so the pivot would be good half the time. So the expected running

time is:

T (n) ≤ 1

2
T (

3n

4
) +

1

2
T (n) +O(n)

17

1

2
T (n) ≤ 1

2
T (

3n

4
+O(n)

T (n) ≤ T (
3n

4
) +O(n)

which satisfies Case 1 of the master theorem which is O(n).

But what if we want to be certain that the worst case will never happen?

6.2 Median of Medians

Divide the set S into groups of size 5. Sort each group and find the median
of each group. If you were to find the median of these medians,there would
always be less than 7

10
n elements in your two groups, which is pretty good.

The reason this comes up is:

There’s n
5

groups overall. Imagine the everything was sorted. Each group of 5
is sorted, and the groups are sorted by their medians. So there’s ≤ n

5
∗ 1

2
= n

10

groups to the left of the median of medians. There’s 3 elements above than
the median in its own group, so there’s ≤ 3n

10
elements smaller (to the top left)

than the median, which means there’s ≤ 7n
10

elements larger (to the bottom
right) than the median.

So the max size of the sets is 7n
10

Finding the median of the medians is done recursively, by partitioning into
5 groups, and putting a recursive call on finding the pivot.

So the recursive formula is:

T (n) ≤ T (
7n

10
) + T (

n

5
) +O(n)

Notice the Master Theorem doesn’t apply here, instead we need to use
the recursion tree method.

First our problem of size n is broken into two problems, one of size 7n
10

and
the other size 2n

10
. Continuing down recursively, we actually get one side of

18

the tree ending before the other. Namely, the 7n
10

side will reach the leaves
later than the 3n

10
side.

However, up until the point that this end is reached, we’re doing (9
10

)ln work
at each level. Beyond this, the work needed at each level only decreases,
so it’s ≤ (9

10
)ln These terms are geometrically decreasing, so the first term

dominates, and we get O(n).

7 Finding the Closest Pair of Points in the

Plane

How fast can we solve this?

7.1 Exhaustive Search

Calculate the distance between every pair of points, choose the shortest pair-
wise distance. O(n2). Is there a faster algorithm?

In one-Dimension, notice that the closest pair of points needs to be next
to each other on the line. So we only need to find how far each pair is.
(n− 1 distances to calculate).

7.2 2-D case

Simply taking the closest in their x-coordinate (or y coordinate) doesn’t work
since they could be close in x but very far in y.

A divide + conquer approach is to separate the points into two groups of
size n

2
, so we want our dividing line to pass through the median x-coordinate.

We can now recursively search for the closest pairs in each group.

But what if the closest pair is between the two groups?

19

So we have to check to see if there’s a better solution with an endpoint
in each group. How can we do this efficiently? (This is the bottleneck step).

7.3 Widening the Bottleneck

Notice that by solving the subproblems recursively we can find the smallest
distance between two points in both the left and right subproblems call this
δ. So we know that if a better solution exists, it will be within δ from the
dividing line.

This seems much better! But what if all the points are within δ of the
dividing line? Well then this doesn’t help much.

There’s actually a trick we can do.

We can break up the area into squares of size δ
2
, and no two points will

lie in the same square. This is because if two points are in the same square,
then there are on the same side of the dividing line. These points are within
δ
√
2
2

(by construction of the boxes)from eachother, but this is < δ, so this
contradicts the minimality of δ.

We can now use this fact to derive another fact:

Suppose there’s a point on either side of the dividing line with distance
less than δ. We can prove that there will be at most 10 points between them
in the y-ordering. (Within the area filled with boxes).

Proof

Since the squares are of size δ
2
, then the two points are either on the same

row, or one is within two rows above the other. (or else it would be further
than δ) Now, since there can only be one point per-box, there’s at most 10
points between them. (count the boxes for yourself!)

Now recall the 1-D case, we can now just look at every pairwise distance
on a group where the points are at most 11 apart (rather than the ones that
are next to each other as before). So you need to find the distance between
a given point, and the next 11 distances.

20

So at most 11n distances to calculate.

7.4 The Finished Algorithm

• Find the point with the median x-coordinate

• Partition using this point

• Recursively find the closest pair of points in each half

• Find the closest pair within the small range given by δ, by checking the
nearest 11 points (in the y-ordering) for each point.

• Among the three pairs found, (left, right, crossing) output the closest
pair.

7.5 The Runtime (Enhanced)

Two subproblems of size n
2
, and the work at each level is: finding the median

O(n), partitioning O(n), making the smaller group (within δ of dividing line)
O(n), applying the 1-D algorithm O(n). So our recurrence looks like:

T (n) = 2T (
n

2
) +O(n)

which is case 2 of the master theorem, so nlog(n).

Part II

Graph Algorithms
For a review of basic graph terminology, see my COMP250 study guide. And
I’m going to assume you took MATH240 and know the basics of graph theory
from there. Lecture 7 had a review of these basics, but I wont include them
here. I will only go over the theorems that were proved.

21

8 Theorems About Undirected Graphs

8.1 Handshaking Lemma

Theorem 4. In an undirected graph, there are an even number of vertices
with odd degree.

Proof. We start with:

2 | E |=
∑
v∈V

deg(v)

Since each edge is double counted when summing the degrees. (Each edge
(u, v) contributes 1 degree to u and 1 degree to v)

This is the same as:

=
∑
v∈Odd

deg(v) +
∑

v∈Even

deg(v)

(the sum of the vertices of even degree plus the odd degree ones)

Rearranging we get: ∑
v∈Odd

= 2 | E | −
∑

v∈Even

deg(v)

Now we know at the sum of the even degrees is even, and we know that 2x
is even for any x. So the right hand side is always even. Therefore the left
hand side must be even. But for the sum of odd numbers to be even, there
must be an even number of odd terms.

8.2 Leaf Existence

Theorem 5. Lemma: A tree T with n ≥ 2 vertices has at least one leaf.

Proof. A tree is connected, which means there’s no vertices with degree 0. A
leaf is a vertex with degree 1, so to get a contradiction, assume every vertex
has degree ≥ 2.

Take the longest path P = v1, v2, v3...vl−1, vl

22

But every vertex has degree greater than 2, so vl has a neighbour x 6= vl−1
so vl forms an edge with something in the path which would create a cycle
and thus be a contradiction (since all trees have no cycles). If the neighbour
was not on the path, then P was not the longest path.

8.3 Number of edges in a Tree

Theorem 6. A tree with n vertices has n− 1 edges

Proof. By induction:

Base Case:

A tree on one vertex has zero edges
linebreak Induction Step:

Assume that any tree on n − 1 vertices has n − 2 edges. Take a tree with
n ≥ 2 vertices. By the previous lemma, there exists a leaf vertex v. Let
T ′ = T − v. Then T ′ is a tree on n − 1 vertices, which has n − 2 edges by
the induction hypothesis. Adding back v, we get that T is a tree on n − 1
vertices with n− 2 vertices.

8.4 Halls Theorem

Theorem 7. A bipartite graph, with | X |=| Y | contains a perfect matching
⇔ ∀S ⊆ X, | Γ(S) |≥| S |

Proof. (⇒)
If there is a set S ⊆ with | Γ(S) |<| S |, then the graph cannot have a perfect
matching, since there would not be enough things in the neighbourhood for
the things in S to match to.
(⇐)
Take a maximum cardinality matching M in the graph. If M is perfect we’re
done, if not, then there exists a vertex x0 who is not matched in X. If
Halls condition holds, then x0 has a neighbour y0. Suppose y0 is matched to
x1. Again if Halls condition holds, then x0, x1 have another neighbour say y1.

We now repeat this process until eventually it terminates (it will since we

23

have a finite number of vertices). It will terminate when we reach xk who is
unmatched.

We now create an m-alternating path from yk to x0. This path is m-
augmenting, so we augment, and receive a larger matching. Contradiction,
M was not maximal.

9 Breadth First Search

9.1 Generic Search Algorithm

Put root into bag

while bag not-empty

remove v from the bag

if v is unmarked

mark v

for each arc(v,w)

put w into the bag

A vertex is discovered when it is marked. Notice that there can be mul-
tiple copies of a vertex in the bag, and that this actually wont affect our
performance.

9.1.1 Revised Generic Search Algorithm

Instead of adding vertices, we’ll add arcs.

Put (*,r) into a bag

while bag not-empty

remove (u,v) from the bag

if v is unmarked

mark v

set p(v) to u //keep track of "predecessor" of v

for each arc(v,w)

put (v,w) into the bag

24

Keeping track of the predecessor will be useful later.

9.1.2 The Running Time

We look at each arc out of v only once, when v is first marked. The arc
is then added to the bag once, and removed once. So, we get a runtime
proportional to the number of arcs.

⇒ O(m)

9.1.3 Validity

Theorem 8. Let G be a connected, undirected graph. Then the search
algorithm finds every vertex in G.

Proof. We need to show that every vertex v is marked by the algorithm. We
will use induction on the length of the smallest path from the vertex to the
root.

Base Case:
k = 0 then v is the root, and only the root exists, so trivially true.
Induction Step:
Assume true for a path of length k − 1 from the root. Now assume there is
a path P with k edges from v to r. So let

P = {v = vk, vk−1, ..., v1, v0 = r}

Then there is a path:

Q = {u = vk−1, ..., v1, v0 = r}

So by the induction hypothesis, u is marked. Then after we mark u, all edges
incident to u would have been added, so (u, v) would have been added. And
so later, (u, v) would be removed and v would be marked.

We can prove that for directed graphs, every vertex that has a directed
path from r is marked in the same way.

25

9.2 Search Trees

Theorem 9. The predecessor edges made by the search algorithm on a
connected, undirected graph G is a tree rooted at r.

Proof. By induction on the number of marked vertices, k.
Base Case: k = 1
Induction Step:
Assume true for the first k−1 vertices. Let v be the kth vertex to be marked.
Assume v was marked when we removed the edge (u, v). This means that u
is the predecessor of v. But (u, v) was added to the bag when we marked u,
so u must be in the set of the first k− 1 vertices to be marked. Thus, by the
induction hypothesis, when we add the edge (p(v), v) = (u, v), we are adding
a leaf, so the new graph formed is still a tree.

9.3 Choices of Bags

We can use a Queue to get BFS, if we use a Stack we get DFS, if we use a
Priority Queue, we get minimum spanning tree.

9.4 BFS Trees

The edges are added to the queue in order of their distance from r. The
vertices are marked in order of their distance from r.

Theorem 10. For any vertex v, the path from v to r given by the search
tree T of predecessor edges is a shortest path.

Proof. Left as exercise.

9.4.1 Structure

The structure of these trees can be broken down into ”layers”, where each
layer is the set of vertices at a given distance from the root.
Any vertex v ∈ Sl is at distance l from r in T , and the same is true in the
whole graph G.
This implies that for every edge in the graph that is not in the tree (u, v), u
and v are either in the same layer or in adjacent layers. If this was not the
case, say u was in S3 and v was in S6, then we could get from the root to v
in less than 6 steps.

26

9.4.2 BFS on Bipartite Graphs

Theorem 11. A graph G is bipartite ⇔ it contains no odd length cycles.

Proof. ⇒
Assume G contains an odd length cycle C.

C = {v0, v1...v2k}

Without loss of generality we can assume v0 ∈ Y , therefore v1 ∈ X, and so
on. We eventually get down to v2k ∈ X but it is a cycle so v2k forms an
edge with v0, and we said v0 ∈ Y , which means v2k ∈ Y , it can’t be both in
X and in Y , contradiction.
⇐
Assume G has no odd length cycles. Choose a root vertex r, and run BFS.
Let X be the set of all odd layers of the BFS tree. Let Y be the set of all
even layers of the BFS tree. Since every edge in the graph goes to either
adjacent layers or the same layer, we know that if we have no edges in the
same layer, then we’ll have that every edge goes from X to Y .

Assume there’s a non-tree edge (u, v) with u and v in the same layer. Let z
be the closest common ancestor of u and v in the search tree. Let P be the
path from u to z in the tree, and let Q be the path from v to z in the tree.
The length of P is the same as Q since u and v are in the same layer. But
then the cycle

C = P ∪Q ∪ (u, v)

has an odd number of edges. So (u, v) cannot exist.

10 Depth First Search

We use the generic search algorithm using a stack.

10.1 DFS Trees

The DFS tree is much different than the BFS tree. DFS partitions the edges
of an undirected graph into two types:
Tree Edges: Predecessor edges in the DFS tree at T
Back Edges: Edges where one endpoint is the ancestor of the other endpoint

27

in T.

Here (u,v) is a back edge.

We cannot have Cross Edges: Where neither endpoint is an ancestor of
the other.

10.2 Recursive DFS

We can also do DFS recursively:

RecursiveDFS(r)

mark r

for each edge (r,v)

if v is unmarked

set p(v) = r

RecursiveDFS(v)

10.3 Ancestral Edges

Theorem 12. Let T be a DFS tree in an undirected graph G. Then for every
edge (u, v) either u is an ancestor of v in T or v is an ancestor of u.

Proof. Wlog assume u is marked before v. At the time u is marked, the
algorithm will recurse on each arc incident to u.

28

Case 1: v is unmarked when the RecursiveDFS(u) examines (u, v).
Then the parent of v is then u, and so (u, v) is an ancestral tree edge.
Case 2: v is already marked. But v was marked after u, so it was marked
during RecursiveDFS(u). So we have a series of vertices

{u = w0, w1...wl−1, wl = v}

where p(wk) = wk−1 (the parent of each vertex is the previous vertex). This
means that u is an ancestor of v, so (u, v) is a back edge.

Corollary Every non-tree edge is a back edge.

10.4 Previsit and Postvisit

The way DFS explores the vertices of a graph is given by this picture:

We can add a ”clock” that will keep track of the order in which the vertices
were visited.

Pre(v) is the time at which we arrive at a subtree rooted at v. Post(v)
is the time at which we leave a subtree rooted at v.

So we can represent each vertex by an interval of time. If we take the interval
for every vertex, we get what’s called a Laminar Family. Meaning, every
interval is either completely disjoint, or completely overlapping.

If we draw an edge between each interval and the smallest interval that con-
tains it, we actually build up the DFS tree again!

29

10.5 Directed Graph BFS Tree Structure

Now we can have four types of edges:
Tree arcs: Same as before
Forward Arcs: Arcs (u, v) where u is an ancestor of v
Backward Arcs: Arcs (u, v) where v is an ancestor of u
Cross Arcs: Non-Ancestral arcs (u, v) where u is marked after v. Note that
the other way around is not possible because after visiting v, we must visit
all descendants of it, before moving back up the tree and going down the
other branch containing u.
We still have intervals. In a tree arc (u, v), the interval of v is contained
in the interval of u. In a forward arc, the same is true. In a backward arc
however, the interval of u is contained in the interval of v. In cross arcs, the
intervals of u and v are disjoint.
So we have this list of properties:
For tree arcs:

post(v) < post(u)

For forward arcs:
post(v) < post(u)

For backward Arcs:
post(u) < post(v)

For cross arcs:
post(u) < post(v)

So the only different one is for backward arcs.

10.6 Example: Directed Acyclic Graphs

How can we determine if a graph is acyclic?

Theorem 13. A directed graph G is acyclic ⇔ DFS produces no backward
arcs.

Proof. ⇒
Suppose DFS gives a backward arc (u, v). By definition, then u is a descen-
dant of v in the DFS tree T . Then there exists a path:

P = {v = v0, v1, ..., vk = u}

30

which means P ∪ (u, v) is a directed cycle in G.
⇐
Assume DFS gives no backward arcs. Suppose there’s a directed cycle:

C = {v0, v1, ..., vk, v0}

Since there’s no backward arcs we have that:

post(v0) > post(v1) > ... > post(vk) > post(v0)

But post(v0) can’t be greater than itself.

Corollary There is a linear time algorithm to test whether or not a graph
is acyclic. Just run DFS and check if any arc is a backward arc.

10.7 Example: Topological Ordering

A topological ordering is when the vertices of a graph can be horizontally
ordered such that every arc is from right to left.

Theorem 14. A directed graph G has a topological ordering ⇔ DFS pro-
duces no backward arcs.

Proof. ⇒ If DFS produces a backward arc then G contains a cycle C. Let
the cycle:

C = {v0, v1, ..., vk, v0}

where, wlog, v0 is the leftmost vertex of the cycle in the order. But then
v0, v1 goes from left to right, which is not allowed.
⇐
Assume DFS gives no backward arcs. Then for every arc (u, v) we have:
post(u) > post(v)
so simply order the vertices by their post numbers.

31

Part III

Greedy Algorithms

11 Scheduling

11.1 Task Scheduling

A firm can process 1 task a time. The job of customer i takes ti time. We
want to minimize the sum of the waiting times. Any job cannot be started
until the previous one is finished.

First, we sort the jobs by length, shortest to longest. Simply schedule them
in that order.

We must now prove this works.

Theorem 15. The greedy algorithm outputs an optimal schedule.

Proof. We will use an exchange argument.
Let the greedy algorithm schedule in the order: {1, 2, ..., n}
Assume there’s a better schedule S. Then there must be a pair of jobs i and
j such that:

Job i is scheduled immediately before job j by schedule S

Job i is longer than job j

If we don’t have this property, then it’s sorted. The waiting time of job
i is currently when job i finishes, and the waiting time of job j is when job
j finishes.

Swap jobs i and j. Everything else stays the same. Specifically, the waiting
time of every unchanged job stays the same.

Now the new waiting time of job j is better than both of the old ones,
and the waiting time of job i is the same as the waiting time of the old job
j.

32

So this configuration is better, and that contradicts the assumption that S
was an optimal schedule.

11.1.1 Running Time

All we did was sort, so it’s O(nlog(n))

11.2 Class Scheduling

There is one classroom. There’s a set I = {1, 2, .., n} of classes that want to
use the room class i has a start time si and a finish time fi . The goal is to
book as many classes as possible.

This is also known as the interval selection problem.

11.2.1 First Start

Select the class that starts earliest, iterate on the remaining classes that do
not conflict with this one.

This doesn’t work because the first class might also be the longest.

11.2.2 Shortest-Duration

Select the shortest class first, then iterate.

33

Doesn’t work because might just be in an unlucky position.

11.2.3 Minimum Conflict

Select the class that conflicts with the fewest number of classes first. Then
iterate.

Doesn’t work because we might get a configuration like this:

Here the optimal solution has 4 classes, but we chose the configuration that
has only 3, we chose i since i conflicts with only 2, whereas the red ones all
conflict with 3 or 4. Next time we iterate, we just have two stacks of 3, so we
can choose any from the left or right, and we’re stukc with having at most 3
classes in our solution.

11.2.4 Last Start

Select the class that starts last, and iterate on the classes that do not conflict
with this selection.

This one works!

It is symmetric to selecting the class that finishes first, then iterating on
the classes that don’t conflict with this selection.

Here’s the pseudocode:

FirstFinish(I)

Let class1 be the class with the earliest finish time

Let X be the set of classes that clash with class1

output {1} U FirstFinish(I\X)

34

Lemma There is some optimal solution that selects Class 1.
Proof
Recall the classes are indexed such that f1 ≤ f2 ≤ ... ≤ fn.

Take an optimal schedule S and assume Class 1 is not in it. Let i be the
lowest index class in S.

We claim we can replace i with 1. We know that fi is before sj for any
j ∈ S. But f1 is before sj, so we know Class 1 doesn’t conflict with any class
in S − {j}.

So this ordering is at least as good as before, and contains class 1.

Theorem 16. The first-finish algorithm outputs an optimal schedule.

Proof. By induction on the cardinality of the optimal solution | opt(I) |

Base Case:
Let the solution have size 1, then this is trivially the optimal solution.

Induction Step:
Assume true for size k. Let the optimal solution have size k+ 1. First finish
outputs {1} ∪ FirstF inish(I − X). But by the lemma, 1 is part of some
optimal solution, S∗.

This means S∗ − {1} is an optimal solution with size k. So by the induction
hypothesis, we have an optimal solution.

There are at most n iterations of the algorithm, and it takes n time to
find the class that finishes earliest in each iteration. So O(n2), but you could
get it down to O(nlogn) if you’re careful about implementation.

35

12 The Shortest Path Problem

If every arc a has a length associated to it (a weight), la, then the length of
a path P is:

l(P) =
∑
a∈P

la

How do we then find the shortest path from s to every other vertex in the
graph.

It turns out, we can find all the shortest paths in one go!

12.1 Dijkstra’s Shortest Path Algorithm

Initially set the distance from the first vertex s to itself to be 0, and set every
other vertex to have distance ∞.

Now take the vertex v with the smallest distance label. Since we just have 0
and the rest are ∞, it’s obvious to choose s. Now look at every arc coming
out of this vertex.

For each arc (s, v) coming out of the s, check to see if the distance from
s to v is less than what v is marked as. v is currently marked as infinity, so
yes it is. We then update the predecessor arc of v to be (s, v).

Now go back and find the vertex with the smallest distance, add it to the set
of vertices we’re done with, and repeat from here.

This algorithm is honestly super confusing and you should probably look
at videos and try lots of examples on paper.

12.1.1 Special Case, All Arcs Have Distance 1

In this case, we actually get exactly Breadth First Search! Try it out ;).

12.1.2 Shortest Path Graph

Let Sk be the set of vertices in S at the end of the kth iteration, where S is
the set of vertices we’re ”done with”.

36

Let T k be the set of arcs in T at the end of the kth iteration, where T
is the set of arcs we fix to be in our final result.

Notice that all arcs in T k are between vertices in Sk because when we add a
vertex to S, we add the arc between it and it’s predecessor (another vertex
in S), to T . This means that Gk = (Sk, T k) is a directed graph.

Finally, Gn is the final output of the algorithm.

12.1.3 Shortest Path Tree

Theorem 17. The Graph Gk is a directed tree rooted as s.

Proof. Base Case: k=1
S1 only contains s, and T 1 is empty. One vertex is a trivial tree.

Induction Step:
Assume true for Gk−1. Let vk be the vertex added to S at the kth iteration.
So Sk = Sk−1 ∪ {vk}. This means that T k = T k−1 ∪ (pred(vk), vk). So vk
has in-degree 1, and out-degree 0, which means vk is a leaf. So Gk is still a
directed tree rooted at s.

Theorem 18. Gk gives the true shortest path distances from s to every
vertex in Sk.

Proof. Base Case: k = 1
Trivially true. The label, d(s) is 0, which is the shortest path distance, d∗(s)

Induction Step:
Assume true for Gk−1. That is, dk−1(v) = d ∗ (v)∀v ∈ Sk−1

Let vk be the vertex added to S in the kth iteration. Take the shortest
path P from s to vk that uses as many arcs in common to Gk as possible.
(basically this path follows the tree, then eventually jumps out to get to vk
and we’re assuming this is faster than just following the tree).

Let x be the last vertex of Gk−1 in P . Let y /∈ Sk be the vertex after x
in P . If this y doesn’t exist, (there’s no vertex after x) then we’re done, since

37

that means P ⊆ Gk. Assume it does exist.

Since y is on the shortest path from s to vk and the arc-lengths are non-
negative, each sub-path is also a shortest path. So the path from s to y is
shorter than the path from s to vk.

Since we’re assuming P is the optimal path:

d ∗ (y) ≤ d ∗ (vk) < dk(vk)

But since x ∈ Sk−1 we have:

dk(y) ≤ dk−1(x) + l(x, y)

(basically meaning that the distance from s to y is at most the distance from
x to y.) And by our induction hypothesis:

= d∗(x) + l(x+ y)

and by our assumption:
= d ∗ (y)

So we’ve now proved:
dk(y) ≤ d ∗ (y) < dk(vk)

Which contradicts our choice of vk, since dk(y) < dk(vk).

12.1.4 The Running Time

There are n iterations, there are at most n distance updates at each iteration.
So at most O(n2) but again we can improve it to O(mlogn) using a heap.

13 Huffman Codes

13.1 Data Encoding

Suppose we want to encode the alphabet in binary. How many bits do we
need to encode every letter?

Five bits since 25 ≥ 26

38

How do we measure the quality of an encoding? A natural measure would
be the length of the encoding. But what if some letters are used very often?
We would want these to have a smaller size.

Let fi be the frequency at which a letter i appears in the alphabet. Then:

cost =
∑
i∈A

lifi

13.1.1 Morse Code

Morse code follows this idea. It uses less bits for the frequently used letters,
and less bits for the less common ones. But there’s problem with it. It
cannot be binary because it’s ambiguous whether 101 means 101 or 1, 0, 1.
So Morse code is actually ternary. It uses pauses to signify the end of a letter.

How can we get around this?

13.2 Prefix Codes

A coding system is prefix-free if no codeword is a prefix of another codeword.
Morse is not prefix free, since in 1101, 1 means t, 11 means m , 110 means g
and 1101 means q. So t is a prefix of m is a prefix of g is a prefix of q.

13.3 Binary Tree Representations

We can use a binary tree T to represent a prefix-free binary code. Each left
edge has label 0 and each right edge as label 1.

The leaf vertices are the letters of the alphabet. The codeword for a let-
ter are the labels on the path from root to leaf.

Theorem 19. A binary coding system is prefix-free ⇔ it has a binary tree
representation.

Proof. (⇐)
In a binary tree representation the letters are at the leaves. This means that
the path Px from the root to leaf x and the path Py from the root to a leaf

39

y must diverge at some point.

So the codeword for x cannot be a prefix of the codeword for y.

(⇒)
Given a binary coding system, we can define a binary tree recursively. A let-
ter whose code word started with a 0 is placed in the left subtree. Otherwise
it is placed in the right subtree. Then just recurse on the next letter.

Observe that the cost of the tree is:

cost(T) =
∑
i∈A

fidi(T)

where di is the depth of the node i.

Proof

We have the definition of cost:

cost(T) =
∑
i∈A

fili(T)

The length of the word is just the sum of the edges in the word

=
∑
i∈A

∑
e∈Pi

1

Which is exactly the same as the depth in the tree.

=
∑
i∈A

fidi(T)

13.3.1 Letter to Leaf Assignment

How should we assign letter to leaves? The least frequent letters should be
at the deepest leaf. So, we can just sort all the frequencies, and start adding
each least frequent letter to the deepest leaf.

40

13.3.2 Tree Shape

But what should the shape of the tree be?

Let ne =
∑

i∈A:e∈Pi
fi be the number of letters (weighted by frequency) whose

root-leaf aths use edge e in T. (How many letters use this edge)

cost(T) =
∑
e∈T

ne

Proof
We start with our first observation:

cost(T) =
∑
i∈A

fidi(T)

The depth is just the sum of the edges in the path from root to the vertex.

=
∑
i∈A

fi
∑
e:e∈Pi

1

Changing the order of summation:

=
∑
e∈T

∑
i∈A:e∈Pi

fi

Which is exactly our definition.

=
∑
e∈T

ni

13.4 The Key Formula

The key to designing a good coding system is the following formula:

Theorem 20. Let T̂ be the tree formed from T by removing a pair of sibling-
leaves a and b and labelling it’s parent by z where fz = fa + fb then:

cost(T) = cost(T̂) + fa + fb

Observation 1 is telling us that the least frequent letters should be siblings,
and observation 2 tells us how to find the optimal shape of the tree.

41

13.5 The Algorithm

Huffman(A,f)

if A has two letters then

encode one letter with 0 and the other with 1

else

let a and b be the most infrequent letters

merge a and b into a new node z with frequency z = a + b

recurse on the new set

create the tree by adding a and b as children of z in the

completed tree

13.5.1 Proof Of Correctness

Theorem 21. The Huffman Coding Algorithm gives the minimum cost en-
coding.

Proof. By Induction on the size of A.

Base Case: | A | =2
Each letter has codeword length 1.

Induction Step:
Assume works for | A | = k. Take | A |= k + 1. Let a and b be the least
frequent letters. Then a and b are siblings in the optimal solution, and for
any T̂ :

cost(T) = cost(T̂) + fa + fb

so the best choice of T̂ is the optimal solution for Â, but by the induction
hypothesis, this is what we did in the last step of the algorithm.

13.5.2 Running Time

There are n-2 iterations, each iteration takes O(n) to find the two least
frequent letters and update the alphabet.So, O(n2). Again, with heaps we
can get it to O(nlog(n)).

42

14 Minimum Spanning Tree Problem

Given a graph, each edge e has a cost ce, where all edge costs are distinct.

So the cost of a tree T is:
c(T) =

∑
e∈T

ce

14.1 Kruskal’s Algorithm

Sort the edges {e1, e2, ..., em} by cost, least to greatest.
Set T = φ
For each i = {1, 2, ...,m}
Let ei = (u, v)
if u and v are in different components of the tree, then add this edge to T .

14.2 Prim’s Algorithm

Set T = {a}
If V (T) 6= V (G) then
Let e be the minimum cost edge in δ(T) (edges leaving a vertex in T)
At this edge to T . (and it’s vertices)

14.3 Boruvka’s Algorithm

Set T = φ
If T has more than one component {S1, S2, ..., Sl} then
For i = {1, 2, ..., l} let ei be the minimum cost edge in δ(Si)
Add all of these edges to the tree.

14.4 Running Times

14.4.1 Kruskal’s Running Time

It takes O(mlogm) to sort the edges, and there’s m iterations of the loop.
Within the loop we have to search the tree to see if u and v are in different
components. This takes time O(n) .

43

So we have:
O(mlogm+mn) = O(mn)

14.4.2 Prim’s Running Time

We have n iterations of the loop. Within the loop, we have to exhaustively
search for the minimum edge in time O(m).

So:
O(mn)

14.4.3 Boruvska’s Running Time

We have at most n components, finding the minimum edge takes O(m), and
there are ≤ logn iterations.

So:
O(mnlogn)

14.5 Proof That They All Work

First, notice that for a chicken to cross a road and get to a chicken coop, it
must cross the road an odd number of times.

We’ll also need this fact:

Theorem 22. The Cut Property of a minimum spanning tree is this: Assume
the edge costs are distinct. If e is the cheapest edge in some cut δ(S) then e
is in the minimum spanning tree.

Proof. Let e = (u, v) be the cheapest edge in a cut δ(S) recall that δ(S) is
the edges leaving a subset of vertices S.

Let T ∗ be a minimum spanning tree, and to get a contradiction, assume
e /∈ T∗.

Since T ∗ is a spanning tree there is a unique path P in T ∗ from u to v.

44

Observation. If ê ∈ P then (T ∗ \ê ∪ e is a spanning tree. (Basically we
can replace an edge from the path joining u, v with u, v itself).

If a chicken is walking along P must cross the cut δ(S).

Observation. There is at least one edge ê ∈ P ∩ δ(S).

We know from the beginning that e is the lowest cost edge, so

cê > ce

⇒ (T ∗ −ê) ∪ e
is a cheaper spanning tree than T ∗. This contradicts the assumption that T ∗

was the minimum cost tree.

This proves all our algorithms simultaneously.

In the case of Prim’s algorithm, we literally added edges based on if they
were the minimum edge in the cut δ(T), so it directly uses this theorem.

In Baruvka’s algorithm,we add edges from the cut δ(S) for each compo-
nent, so again using the theorem.

In Kruskal’s algorithm, we add edges if u, v are in different components.
Let S be one of the two. Then ei is the cheapest edge in δ(S) since we look
at edges by order of cost. So this one also works.

14.6 The Cycle Property

Theorem 23. Assume distinct edge costs. If e is the most expensive edge
in some cycle C, the e is not in the MST.

Proof. Let e = (u, v) be the most expensive edge in the cycle C.

So P = C − e is a path from u to v.

Assume for a contradiction that e is in the MST T ∗.

45

Let (S, V − S) be the cut introduced by T ∗ − e.

Observation 1: If ê ∈ δ(S) then (T ∗ − e) ∪ ê is a spanning tree.(basically
we can replace e with ê and get a spanning tree, since ê also joins the two
sets.)

Observation 2: There is at least one edge ê ∈ P ∩ δ(S) (there’s an edge
that crosses the cut that is also part of the path.)

But cê < ce so we can replace e by ê which contradicts the fact that T ∗

was the MST.

14.7 The Reverse Delete Algorithm

Sort the edges by cost, most expensive to cheapest.

For each edge:
If G \{ei} is connected then set G = G \{ei}

So basically take the most expensive edge, and if the graph is still con-
nected without it, then throw it away.

14.7.1 Runtime of Reverse Delete

There are m iterations, and at each one need to check that graph is still
connected (using BFS or DFS) in O(m). So the running time is O(m2)

14.7.2 Proof of Reverse Delete

First notice that G \{ei} being connected means there was a cycle including
ei, and since we’ve sorted in reverse order, ei is the most expensive edge, so
by the cycle property, this algorithm works.

15 The Clustering Problem

Given a collection of objects, O we want to partition the objects into a set
of clusters {S1, ..., Sk}. A ”good” clustering has similar objects in the same

46

clusters.

We represent the problem by a weighted graph G.

There is a vertex for each object O, and an edge between each pair of objects.

The weight dij ≥ 0 of an edge represents the disimilarity of object i and
object j.

The quality of a clustering has no optimal definition. (Depends on appli-
cation)

15.1 Maximum Spacing Clustering

Maximize the distances between the clusters. In other words, partition the
vertices into k clusters so that the minimum distance between two vertices
in different clusters is maximized.

Given a clustering {S1, S2, ..., Sk} we define the distance between two clusters
as:

d(Sl, Sm) = mini∈Sl,j∈Smdij

So here we just want to maximize the minimum black line (here it’s 2) so the
quality is (2).

47

15.2 Reverse-Delete Clustering Algorithm

Sort the edges by cost, highest to lowest.

For each edge:
If G \{ei} has k components or less, then set G = G \{ei}

Notice, this is exactly the MST problem, where in MST, k = 1

15.2.1 Proof Of Reverse-Delete Clustering

First, observe this:

Theorem 24. A connected graph contains a spanning tree as a subgraph

Proof. Simply grow a BFS tree from any root vertex.

Next, observe this fact:

Theorem 25. We can remove an edge, and the number of components in-
creases by at most 1.

Proof. Originally, u, v are in the same component S1. S1 contains a spanning
tree T .

Case 1: e is not in T . Then S1 remains a component after deletion of e

Case 2: e is in T for every spanning tree in S1. Then S1 is broken into
two components on the deletion of e.

Now our algorithm:

Proof. Let el be the edge whose deletion causes the number of components
to increase from k − 1 to k.

This means that the algorithm deleted all the edges up to el.

When we delete el we have the clustering S = {S1, ..., Sk}

But this means that only the edges up to el can cross between the clus-
ters. Since we organized these to be largest to smallest, that means el is the

48

shortest edge between two clusters. So the quality is determined by el.

We now need to show that this is the optimal solution.

Any other clustering S∗ = {S∗1 , ..., S∗k} with k components must separate
the endpoints of at least one edge with an endpoint in the edges up to el
from below. (edges smaller than el).

But then we’ll have separated two clusters by an edge shorter than el which
is worse than S.

49

