

COSBench User Guide
Version 2.8.6

Nov., 2015

Wang, Yaguang

This document describes how to install, configure, and run COSBench (a cloud storage benchmark tool)

step by step, explains how to define workloads using configuration files, and provides reference

examples.

Document Number: 328791-001US

COSBench User Guide | 2

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY

THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,

INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL

PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL

PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information. The products described in this document may contain design defects or errors known

as errata which may cause the product to deviate from published specifications. Current characterized errata are

available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and

before placing your product order. Copies of documents which have an order number and are referenced in this

document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site

http://www.intel.com/.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products. For more

information go to http://www.intel.com/performance.

*Other names and brands may be claimed as the property of others.

Copyright © 2013 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel

Corporation in the U.S. and other countries.

0413/RJM/MESH/PDF 328791-001US

Contents

1 Introduction ... 11

1.1 Reference Hardware Configuration .. 12

1.2 System Requirements ... 12

1.3 Supported Cloud Object Storage System Matrix .. 13

1.4 What’s in the Rest of This Guide ... 13

2 Installing COSBench ... 15

2.1 Installing the Operating System .. 15

2.1.1 Installing the Java Runtime Environment (JRE) .. 16

2.1.2 Installing Curl ... 16

2.2 Installing COSBench .. 17

2.2.1 Preparation .. 17

2.2.2 Installation ... 17

2.3 Directory Structure ... 18

http://www.intel.com/
http://www.intel.com/performance

COSBench User Guide | 3

2.3.1 Scripts ... 18

2.3.2 Sub-directories ... 19

2.4 Verifying Install ... 19

2.4.1 Launching COSBench .. 19

2.4.2 Checking Controllers and Drivers ... 20

2.4.3 Testing the Install ... 21

2.5 Deploying COSBench ... 22

3 Configuring and Running .. 23

3.1 General .. 23

3.2 Configuring the Controller .. 23

3.2.1 Conf/controller.conf .. 23

3.3 Configuring the Driver ... 24

3.3.1 Conf/driver.conf ... 24

3.4 Starting Drivers ... 25

3.5 Starting Controllers ... 28

3.6 Submitting Workloads .. 29

3.6.1 Defining Workloads .. 29

3.6.2 Submitting Workloads ... 32

3.6.3 Checking Workload Status ... 33

3.7 Stopping Drivers and Controllers .. 34

3.8 Configuring Tomcat ... 35

3.9 Workload management .. 35

4 Configuring Workloads .. 36

4.1 Introduction .. 36

4.2 Selection Expression (also referred to as Selector) .. 36

4.2.1 Overview .. 36

4.2.2 Selector .. 37

4.2.3 Allowable Combinations .. 38

4.3 Workload ... 38

4.3.1 General Format .. 38

COSBench User Guide | 4

4.3.2 Attributes ... 39

4.4 Auth ... 39

4.4.1 General Format .. 39

4.4.2 Attributes ... 39

4.4.3 Authentication Mechanisms .. 39

4.5 Storage .. 42

4.5.1 General Format .. 42

4.5.2 Attributes ... 42

4.5.3 Storage Systems ... 42

4.6 Work Stage .. 47

4.6.1 General Format .. 48

4.6.2 Attributes ... 48

4.7 Work .. 48

4.7.1 General Format .. 48

4.7.2 Attributes ... 50

4.8 Special Work ... 51

4.8.1 General Format .. 51

4.8.2 Supported Special Work... 51

4.9 Operation .. 54

4.9.1 General Format .. 54

4.9.2 Attributes ... 54

4.9.3 Supported operations .. 54

4.9.4 Examples .. 58

4.10 Additional comments .. 59

4.10.1 Overview .. 59

4.10.2 Division strategy ... 59

5 Results .. 61

5.1 Structure ... 61

5.2 Per-Run Data ... 61

5.2.1 Overall Performance Data (e.g., w1-demo.csv) ... 62

COSBench User Guide | 5

5.2.2 Timeline Data (e.g., s3-main.csv) ... 62

5.2.3 Response-Time Histogram Data (e.g., w1-demo-rt-histogram.csv) .. 62

5.2.4 Response Time breakdown (e.g., s3-main.csv) .. 63

5.2.5 Workload-config.xml .. 63

5.2.6 Workload.log .. 63

5.3 Metrics .. 64

5.3.1 Throughput (Operations/s or Op/s) ... 64

5.3.2 Response Time (in ms) ... 64

5.3.3 Bandwidth (MB/s) .. 64

5.3.4 Success Ratio (%) .. 64

5.3.5 Other Metrics ... 64

6 FAQs ... 65

6.1 General .. 65

6.2 Swift .. 68

6.3 AmpliStor .. 69

6.4 S3 ... 71

6.5 Ceph .. 71

6.6 CDMI ... 71

Appendix A. Sample Configurations ... 73

Swift .. 73

AmpliStor .. 74

COSBench User Guide | 6

Revision History

Revision Date Description

0.5 July 14, 2012 Initial version

0.6 July 18, 2012 Add “init” and “dispose” stages in AmpliStor* example

and description for special stages

0.7 July 20, 2012 Add “nsroot” to storage parameter list to access

AmpliStor v2.5 namespace; by default, it’s

“/namespace”, set to “/manage/namespace” for v2.5

0.8 July 24, 2012 Change default listening ports:

 8088->18088

 8089->18089

 9088->19088

 9089->19089

0.9 August 1, 2012 Change example port numbers to 19088 and 18088 to

avoid confusion

1.0 August 9, 2012 Add one section to describe data results and one section

for FAQs

1.1 August 13, 2012 Add one paragraph in result to explain metrics

 Modify AmpliStor sample to reflect v2.5 needs

 Add parameter list

1.2 August 24, 2012 Enhance content based on internal and external user

feedback

1.3 August 30, 2012 Add Red Hat screenshot

 Change runtime from 60 to 300 for AmpliStor

example to avoid confusion

 Remove internal link for package downloading

 Fix one bug in “cleanup” stage of Swift sample

1.4 September 14, 2012 Fix inconsistencies

1.5 September 17, 2012 Change default OS to Ubuntu* 12.04.1 LTS desktop

1.6 November 2, 2012 Major modifications:

 Transfer all scripts to Ubuntu 12.04.1 compatible

 Add OS installation steps

 Add object integrity check parameter

 Add details about selector description

 Add details about directory structure

 Move workload configuration section from Appendix

A to main body

COSBench User Guide | 7

Revision Date Description

1.7 November 13, 2012 Minor modifications:

 Correct batch script names

 Add one item in FAQ for handling “OOM” error

1.8 November 20, 2012 Change parameter “url” to “auth_url” for swauth and

keystone to avoid confusion

1.9 January 14, 2013 Add parameter “tenant_name” for keystone

 Add items in FAQ to explain testing with large

objects

2.0 January 25, 2013 Correct two minor typographic errors

 Add explanation about histogram data

 Reword FAQ #12

2.1 February 19, 2013 Constrain supported AmpliStor versions to v2.3 and

v2.5

 Minor formatting modifications

2.2 March 7, 2013 Fix one typo from “apt-get” to “apt-get install”

 Correct one word from “turn-around point” to

“tipping point”

 Add section 6.1.14 for how to split read/write

 Enhance section 6.1.6 for how to reuse data

 Minor rewording from “policy” to “policy UID” in

section 6.3.1

 Enhance section 6.1.7 for configuring multiple same

stages

 Add section 6.3.3 for how to simplify policy UID

setting

2.3 March 8, 2013 Add explanation about using “ps” in section 3.7

 Add explanation about how to do pre-test in section

6.2.2

 Reword section 6.1.12 to explain conditions for using

only one worker

 Replace “Excel” with “spreadsheet program” in

section 5.2.2

 Add case for multiple client daemons in AmpliStor

section of Appendix A

 Add explanation for what commands do in section

2.2.2

 Add example controller configuration to show

multiple drivers supporting in section 3.2.1

 Correct one typographic error in section 6.1.9

2.4 March 13, 2013 Change “enlarging” to “expanding” and add example

COSBench User Guide | 8

Revision Date Description

2.5 March 29, 2013 Change “127.0.0.1” to “192.168.250.36” in text and

screen captures of sections 2.4.3, 3.5, 3.6, 4.4.3, and

Appendix A

 Add AmpliStor v3.1 in section 1.1

 Remove mention of licensing in section 2.3.1

2.6 April 7, 2013 Add package list information in section 2.1 and

provide one separate pkg.lst

 Add “retry” parameter for auth to overcome failures

at high concurrent requests for authentication.

 Change “mandatory” to “required” in section 3.2.1

2.7 July 22, 2013 Add filewrite usage information in section 4.9 (from

Niklas)

 Add sequential selector in section 4.2.2 (from Niklas)

 Change the measurement unit for bandwidth from

MiB/s (=1024*1024 Byte/s) to MB/s (=1000*1000

Byte/s).

2.7.1 July 29, 2013 Add S3 configuration information in section 4.5.3

 Add S3 FAQ in section 6.4

 Change mailing list url in section 1

 Add supported storage system matrix in section 1.3

2.7.2 August 27, 2013 Minor rewording

2.8 October 31, 2013 Add direct auth for swift in section 4.5.3

 Add sproxyd adapter parameter list in section 4.5.3

 Add “delay” stage in section 4.8.2

 Add tomcat related configuration information,

including web authentication for web console in new

section 3.8

 Add configurable “archive” folder in section 3.2

 Add workload management information in section

3.9

 Add sentences about multiple stages in workload

configuration UI page in section 3.6.1

 Add histogram selector in section 4.2.2

2.8.1 November 14, 2013 Add section 4.10 to describe additional hints like

data division strategy for workload configuration.

 Correct sentences in section 4.2.2 for range selector,

 Add FAQ 6.1.17 to explain how to use range selector

in normal stage.

 Add “afr” parameter in section 4.7.2

COSBench User Guide | 9

Revision Date Description

2.8.2 Feb 13, 2014 Add parameter “pool_size” for Scality sproxyd

adapter in section 4.5.3.

 Add explanation for “nsroot” parameter in section

6.3.4.

 Update the binary package link in section 2.2.1

 Correct description for histogram selector to

emphasis the number is weight instead of

percentage in section 4.2.2.

 Add “httpauth” authentication mechanism in section

4.4.

 Add “cdmi” storage type in section 4.5.

2.8.3 May 12, 2014 Added advanced config UI related information in

section 3.6.1 and 3.6.2

 Add cvstool as optional prerequisites if user may

need it to process generated results.

 Add “driver” parameter in section 4.7.2.

 Add section 6.5 for ceph FAQ.

 Update compatibility list in section 1.3.

 Add section 5.2.4 for response time breakdown

information.

 Add section 6.6 for CDMI FAQ.

 Add cdmi_swift in section 4.5.3.

 Add FAQ in 6.2.4 for tempauth.

2.8.4 July 3, 2014 Add “policy” parameter in swift for storage policy

feature in section 4.5.3.

 Add one FAQ entry to explain how to enable storage

policy for swift in section 6.2.5

 Correct the extension of tomcat configuration files

from .conf to .xml in section 3.8

 Add one FAQ entry to explain how to make multiple

drivers running on the same physical node in section

6.1.18.

2.8.5 Oct. 22, 2014 Add librados storage parameters in section 4.5.3.1.9

 Add FAQ entry to explain how to change logging

level to disclose more detailed information for

trouble shooting in section 6.1.19

 Add “caching” parameter for Auth in section 4.4.3

 Add new “list” operator in section 4.9.3

COSBench User Guide | 10

Revision Date Description

2.8.6 Sept. 2, 2015 Correct the selector to “r” in the sample workload

snippet in section 6.1.17

 Update the procedure to cover the case to start

multiple drivers on one node in section 3.4

 Add “transfer_rate” parameter for swift storage,

then “max_connections” and “path_style_access”

parameters for S3 storage in section 4.5.3

2.8.7 Nov. 2, 2015 Add “region” parameter for keystone authentication

in section 4.3.3

COSBench User Guide | 11

1 Introduction
COSBench is a distributed benchmark tool to test cloud object storage systems, it supports a few cloud

object storage systems so far (see 1.3 “Supported Cloud Object Storage System Matrix”). COSBench also

allows users to create adaptors for additional storage systems. Please refer to the “COSBench Adaptor

Development Guide” for details.

COSbench consists of two key components:

 Driver (also referred to as COSBench Driver or Load Generator):

o Responsible for workload generation, issuing operations to target cloud object storage,

and collecting performance statistics.

o Can be accessed via http://<driver-host>:18088/driver/index.html.

 Controller (also referred to as COSBench Controller):

o Responsible for coordinating drivers to collectively execute a workload, collecting and

aggregating runtime status or benchmark results from driver instances, and accepting

workload submissions.

o Can be accessed via http://<controller-host>:19088/controller/index.html.

COSBench User Guide | 12

The controller and driver can be deployed on the same node or different nodes, and the node can be a

physical machine or virtual machine (VM) instance.

Intel source code for COSBench is being released under the Apache 2.0 license, and hosted at

http://github.com/intel-cloud/cosbench/.

A mailing list has been established for COSBench at the following location:

http://cosbench.1094679.n5.nabble.com/.

1.1 Reference Hardware Configuration

The hardware configurations used for validation purposes in Intel labs are given below. This information

is provided for reference only, as the appropriate systems for various implementations are highly

dependent upon individual usage scenarios. Also note that network resources play a vital role in

COSBench implementations.

Hardware Configuration

Controller

Processor Two Intel® Xeon® processors X5570 @ 2.93 GHz

RAM 12 GB RAM

Storage 1x 120 GB+ disk drive

Network Intel® 82574 Gigabit Ethernet Controller

Driver

Processor Two Intel Xeon processors X5570 @ 2.93 GHz

RAM 12 GB RAM

Storage 1x 50 GB+ disk drive

Network Intel® 82599 10 Gigabit Ethernet Controller

1.2 System Requirements

NOTE: The current release of COSBench features Ubuntu* 12.04.1 LTS Desktop, but the COSBench

development team assumes that organizations will install using various OSs and contribute related

feedback to the community.

 Ubuntu 12.04.1 LTS Desktop

 Java* Runtime Environment 1.6 or later

 Curl 7.22.0 or later

 Csvtool if processing generated csv files is required.

 Free TCP port (ensure these ports are accessible non-locally):

http://github.com/intel-cloud/cosbench/
http://cosbench.1094679.n5.nabble.com/

COSBench User Guide | 13

o On COSBench controller machine: 19088

o On COSBench driver machines: 18088

NOTE: Throughout this document, command line is bolded and italicized; yellow text is used for

emphasis, to draw attention to specific information.

1.3 Supported Cloud Object Storage System Matrix

Generally, two parts will be involved to access each cloud object storage system, they are the

authentication mechanism and object access semantics. To meet the complexity from different systems,

COSBench treats them separately, and encapsulate into two APIs (AuthAPI and StorageAPI).

Developer can implement them in different bundles, or combine them into one, and users can combine

one Auth API implementation with multiple storage API implementations, or associate multiple Auth API

implementations with one storage API implementations. Please refer to the “COSBench Adaptor

Development Guide” for details.

Below table lists the status of different AuthAPI and StorageAPI combinations so far, it may be updated

time to time:

 Note:
* librados is contributed by Niklas Goerke - niklas974@github,

 * sproxyd is contributed by Christophe Vedel from Scality

1.4 What’s in the Rest of This Guide

This document describes how to install, configure, and use COSBench, a cloud storage benchmarking

tool.

 Section 2 covers the initial installation and testing of COSBench.

 Section 3 explains how to configure and run the tool.

 Section 4 instructs the user about how to define workloads.

 Section 5 explains the results provided by COSBench and how to interpret them.

 Section 6 answers frequently asked questions.

COSBench User Guide | 14

 Appendix A provides sample configurations for different storage systems.

COSBench User Guide | 15

2 Installing COSBench

2.1 Installing the Operating System

1. Download Ubuntu Desktop 12.04.1 LTS.

2. Follow the instructions in the Ubuntu installation guide.

3. Below are screenshots from major steps during installation, which include the creation of one

user named “cosbench”; all other settings may be left at their defaults or modified at the user’s

discretion.

http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/help/install-desktop-long-term-support

COSBench User Guide | 16

4. The final package list after installation can be found in the file “pkg.lst” on the github site.

2.1.1 Installing the Java Runtime Environment (JRE)

 OpenJDK is the default JRE; Oracle JRE should also work.

 If an Internet connection is available, the package can be installed through apt-get as follows:

cosbench@cosbox:~$ sudo apt-get update

cosbench@cosbox:~$ sudo apt-get install openjdk-7-jre

 If no Internet connection is available, the JRE can be installed using Debian* software packages;

two packages are essential: JRE-LIB and JRE-HEADLESS.

 Those packages can be installed as follows (this procedure uses “/tmp” as an example; a

different folder may be used at the user’s discretion):

cosbench@cosbox:/tmp$ sudo dpkg –i –force depends openjdk-7-jre-lib_7u7-
2.3.2a-0ubuntu0.12.04.1_all.deb

(Reading database …

cosbench@cosbox:/tmp$ sudo dpkg –i –force depends openjdk-7-jre-
headless_7u7-2.3.2a-0ubuntu0.12.04.1_amd64.deb

Selecting previously unselected package openjdk-7-jre-headless …

cosbench@cosbox:/tmp$ java –showversion

java version “1.7.0_07”

…

2.1.2 Installing Curl

 If an Internet connection is available, Curl can be installed as follows:

cosbench@cosbox:~$ sudo apt-get update

cosbench@cosbox:~$ sudo apt-get install curl

 If no Internet connection is available, install Curl using Debian software packages:

http://packages.ubuntu.com/precise/java/openjdk-7-jre-lib
http://packages.ubuntu.com/precise/java/openjdk-7-jre-headless
http://packages.ubuntu.com/precise/web/curl

COSBench User Guide | 17

cosbench@cosbox:/tmp$ sudo dpkg –i curl_7.22.0-3ubuntu4_amd64.deb

cosbench@cosbox:/tmp$ curl –V

curl 7.22.0 (x86_64-pc-linux-gnu) …

2.2 Installing COSBench

2.2.1 Preparation

In the current release, the COSBench controller and driver are combined; they do not each have a

separate package.

Obtain the installation package <version>.zip (e.g., 2.1.0.GA.zip) from https://github.com/intel-

cloud/cosbench/releases and place it at COSBench package under the home directory on the controller

node.

2.2.2 Installation

Follow the commands below to finish the installation, which unpacks the COSBench package into one

folder, create one symbolic link called “cos” to it, and make all bash scripts executable:

cosbench@cosbox:/tmp$ cd ~

cosbench@cosbox:~$ unzip 2.1.0.GA.zip

cosbench@cosbox:~$ rm cos

cosbench@cosbox:~$ ln –s 2.1.0.GA/ cos

cosbench@cosbox:~$ cd cos

cosbench@cosbox:~$ chmod +x *.sh

https://github.com/intel-cloud/cosbench
https://github.com/intel-cloud/cosbench

COSBench User Guide | 18

2.3 Directory Structure

2.3.1 Scripts

Script Description

start-all.sh

stop-all.sh

Start/stop both controller and driver on current
node

start-controller.sh

stop-controller.sh
Start/stop controller only on current node

start-driver.sh

stop-driver.sh
Start/stop driver only on current node

cosbench-start.sh

cosbench-stop.sh
Internal scripts called by above scripts

cli.sh Manipulate workload through command line

A few Windows* batch scripts are also included, for demonstration purposes only.

COSBench User Guide | 19

Script Description

start-all.bat Start both controller and driver on current node

start-controller.bat Start controller only on current node

start-driver.bat Start driver only on current node

Web.bat
Open controller web console through locally

installed browser

2.3.2 Sub-directories

Sub-directory Description

archive
Stores all generated results; see the Results section of

this document

conf
Configuration files, including COSBench configurations

and workload configurations

log Runtime log files; the important one is system.log

osgi Contains COSBench libraries and third-party libraries

main Contains the OSGi launcher

2.4 Verifying Install

The following steps launch the controller and driver on the current node and test to ensure that the

installation is correct.

2.4.1 Launching COSBench

HTTP proxy breaks the interaction between controller and driver. To avoid HTTP requests routing, you

need to bypass the proxy setting:

cosbench@cosbox:~$ unset http_proxy

Start up the COSBench driver and controller on the current node. By default, the COSBench driver listens

on port 18088, and the COSBench controller listens on port 19088.

cosbench@cosbox:~$ sh start-all.sh

COSBench User Guide | 20

2.4.2 Checking Controllers and Drivers

cosbench@cosbox:~$ netstat –an |grep LISTEN |grep 19088 # check controller.

tcp 0 0 :::19088 :::* LISTEN

Cosbench@cosbox:~$ netstat –an |grep LISTEN |grep 18088 # check driver

tcp 0 0 :::18088 :::* LISTEN

COSBench User Guide | 21

2.4.3 Testing the Install

Cosbench@cosbox:~$ sh cli.sh submit conf/workload-config.xml # run mock test.

Accepted with ID: w1

cosbench@cosbox:~$ sh cli.sh info

Drivers:

driver1 http://127.0.0.1:18088/driver

Total: 1 drivers

Active Workloads:

W1 Thu Jul 12 04:37:31 MST 2012 PROCESSING

Open http://127.0.0.1:19088/controller/index.html in a browser to monitor status. In the example

below, one “processing” workload is listed in the “active workloads” section.

COSBench is now successfully installed on the current node. Optionally, the workload may be cancelled

and COSBench may be stopped as follows:

cosbench@cosbox:~$ sh cli.sh cancel w1

W1 Thu Jul 12 23:34:14 MST 2012 CANCELLED

cosbench@cosbox:~$ sh stop-all.sh

Stopping cosbench controller ...

Successfully stopped cosbench controller.

==

Stopping cosbench driver ...

Successfully stopped cosbench driver.

http://127.0.0.1:19088/controller/index.html

COSBench User Guide | 22

2.5 Deploying COSBench

 Copy <version>.zip to the remaining COSBench nodes by means such as scp or shared folder.

 Repeat the procedures listed above for installing COSBench and verifying the installation on

each node.

COSBench User Guide | 23

3 Configuring and Running

3.1 General

The COSBench controller and driver depend on different system configuration files to start up, and those

configuration files are only for COSBench itself, as opposed to workload configuration.

The following table gives an overview of all the configurations COSBench expects.

Configuration Description File Path

controller
Configuration for a controller; read by the controller

during its initialization
conf/controller.conf

driver
Configuration for a driver; read by the driver during its

initialization
conf/driver.conf

workload Configuration for a workload being submitted

Submitted via

controller’s web

interface

3.2 Configuring the Controller

3.2.1 Conf/controller.conf

An INI format file is required for configuration of the COSBench controller, as in the following example:

[controller]

concurrency=1

drivers=3

log_level = INFO

log_file = log/system.log

archive_dir = archive

[driver1]

name=driver1

url=http://192.168.10.1:18088/driver

[driver2]

name=driver2

url=http://192.168.10.2:18088/driver

[driver3]

name=driver3

url=http://192.168.10.3:18088/driver

COSBench User Guide | 24

[controller]

Parameter Type Default Comment

drivers Integer 1
Number of drivers

controlled by this controller

concurrency Integer 1

Number of workloads that

can be executed

simultaneously

log_level String “INFO”
“TRACE”, “DEBUG”, “INFO”,

“WARN”, “ERROR”

log_file String “log/system.log” Where the log file is stored

archive_dir String “archive”
Where the archived

workload results are stored

The driver section for the nth driver should be named driver<n> in order to be recognized.

[driver<n>]

Parameter Type Default Comment

name String

Label used to identify the

driver node. Note that driver

name is not necessarily the

node’s hostname

url String
Address to access the driver

node

3.3 Configuring the Driver

3.3.1 Conf/driver.conf

This file is optional; the COSBench driver can start up without this configuration file, although the web

console can’t correctly label the driver node. Configuration is an INI format file, as in the following

example:

 [driver]

name=driver1

url=http://192.168.0.11:18088/driver

COSBench User Guide | 25

[driver]

Parameter Type Default Comment

name String

Label used to identify the driver node; note

that driver name is not necessarily the node’s

hostname

url String Address to access the driver node

3.4 Starting Drivers

 Edit conf/driver_template.conf on driver nodes, if desired

 Edit conf/driver-tomcat-server_template.xml, if want change tomcat information

 Launch drivers with script start-driver.sh

sh start-driver.sh n ip base-port

o First parameter means the number of drivers, second is drivers’ip, last one is base-port

for listen. You can choose any of them if want.

sh start-driver.sh

o By default, COSBench start one driver on 127.0.0.1 and listens on port 18088

COSBench User Guide | 26

sh start-driver.sh 3

o with one parameter n, start three drivers on 127.0.0.1 and listen on ports

18088,18188,18288

COSBench User Guide | 27

sh start-driver.sh 1 192.168.0.11

o with two parameter, start one driver on 192.168.0.11 and listens on port 18088

sh start-driver.sh 2 192.168.0.11 16088

o with three parameters n,ip,base-port, start two drivers on 192.168.0.11 and listen on

port 16088,16188

 Ensure that all drivers are accessible from the controller using an HTTP connection.

 By connecting with Curl, one valid HTML file is expected in the console:

curl http://<driver-host>:<port>/driver/index.html

 When http://<driver-host>:<port>/driver/index.html is opened in a web browser, the

following web page displays:

COSBench User Guide | 28

NOTE: If any errors or unexpected results occur, please check system configurations; common issues

include firewall filtering or http proxy routing.

3.5 Starting Controllers

 Edit conf/controller.conf on the COSBench controller machine.

 By default, the COSBench controller listens on port 19088.

 Launch Controller on the controller node.

sh start-controller.sh

 Ensure that the controller is started successfully.

o By connecting with Curl, one valid HTML file is expected in the console:

curl http://<controller-host>:19088/controller/index.html

o When http://<controller-host>:19088/controller/index.html is opened in a web browser,

the following web page displays (note that the <controller-host> IP address 192.168.250.36

COSBench User Guide | 29

shown in the screen capture below is replaced with the actual IP address of the controller

node):

3.6 Submitting Workloads

A few templates are provided for reference in the conf/ directory:

 workload-config.xml is a template with comments to describe how to configure for different

storage types. It will access mock storage to help with verification.

 swift-config-sample.xml is a template for the OpenStack Swift storage system.

 ampli-config-sample.xml is a template for the Amplidata AmpliStor v2.3 and v2.5 storage

systems. See Appendix A for version-specific configuration information.

 s3-config-sample.xml is a template for Amazon S3 compatible storage system.

3.6.1 Defining Workloads

For details of how to create a workload config file for user-defined workloads, please see the Workload

Configuration section of this document.

Basic workload configuration options are also available from the workload configuration page on the

controller web console; please refer to the Workload Configuration section of this document to

customize the XML file for maximum flexibility. (Note that the <controller-host> IP address

192.168.250.36 shown in the screen capture below should be replaced with the actual IP address of the

controller node.)

The workload configuration page supports to define multiple same stages, and also it allows to insert

delay between stages to help identify boundary.

COSBench User Guide | 30

To define bulk workloads, we can use 'advanced config for workloads' hyperlink on controller web

console. Advanced config UI helps to automatically generate a very large number of different

combinations of various input parameters such as object sizes, objects per container, number of

containers, workers, read-write-delete ratios.

Once you click on 'advanced config for workloads' hyperlink, you will go to advanced config screen. From

here, you can either generate workloads files or submit workloads directly.

In this section we will look into how to generate workload files. Whatever value you enter in 'Workload

Matrix Name', a directory with that name will be generated inside 'workloads' directory under

COSBench installation directory on machine where controller is installed.

For each workload you define from this screen, a file with name equal to the string you entered inside

'Workload Name' field will be created and will be placed under workload matrix directory created in

previous step. There are some constraints on the names which you can enter in 'Workload Matrix Name'

and 'Workload Name' fields. You should use alphabets or numbers, special characters allowed include _

- #. () / % &. Length of string entered should be between 3 to 50 characters. Authentication and Storage

configurations will be common to all workloads on advanced config UI page. Similarly attributes like

COSBench User Guide | 31

Runtime, Rampup, Delay and Number of drivers will be common to all workloads defined on this web

page. Following input parameters are necessary for defining each workload:

Parameter Type Default Comment

Object sizes String 4,128,512

Can be comma

separated or can

be a range

Object size unit String KB

Drop down box

consisting of

values like Byte,

KB, MB, GB

Objects per

container
String 1000

Comma

separated string

Containers String 1,1000
Comma

separated string

Workers String 1,2,4,8,16,32,64
Comma

separated string

Apart from these parameters, you can also add as many read-write-delete combinations as you want to

any workload with the help of 'Add RWD ratio' button. You can also add as many workloads as you want

with the help of 'Add Workload' button.

COSBench User Guide | 32

Once done with filling all these fields with appropriate values, you can then click on 'Generate Workload

File/s' button. This will generate all configuration files at already mentioned location. You can edit these

configuration files if you want and then submit them through workload submission UI screen. We also

have option to submit to workloads directly through this page. We will look into that method in next

sub-section.

3.6.2 Submitting Workloads

There are two ways to submit workloads to COSBench.

 Using the command-line interface:

sh cli.sh submit conf/config.xml

 Using the web console:

Open http://<controller-host>:19088/controller/index.html in a browser to monitor running

status. (Note that the <controller-host> IP address 192.168.250.36 shown in the screen

capture below should be replaced with the actual IP address of the controller node.)

COSBench User Guide | 33

3.6.3 Checking Workload Status

There are also two ways to check workload status.

 Using the command-line interface:

sh cli.sh info

 Using the web console:

Open http://<controller-host>:19088/controller/index.html in a browser to monitor running

status. (Note that the <controller-host> IP address 192.168.250.36 shown in the screen

capture below should be replaced with the actual IP address of the controller node.)

You can also submit workloads directly through advanced config UI page. However, this

page submits workloads generated which are defined through this page itself. You can use

‘Submit Workload/s’ button for the same. To learn how to define workloads through

advanced config UI, please refer to previous sub-section.

COSBench User Guide | 34

Clicking view details in the Active Workload section of that interface screen displays runtime

performance data, as shown below:

3.7 Stopping Drivers and Controllers
ps |grep java # you should see java here.

sh stop-driver.sh

ps |grep java # should be no java running.

ps |grep java

sh stop-controller.sh

ps |grep java

The “ps” command is used to help confirm whether the driver or controller process is stopped. If the

Java process doesn’t stop as expected, the user may forcibly stop it by killing the process.

COSBench User Guide | 35

3.8 Configuring Tomcat

COSBench controller and driver use Apache Tomcat as the web server, the following table gives an

overview of all the configurations related to Tomcat.

Configuration Description File Path

Tomcat for

controller
Configuration for the web server on controller

conf/ controller-

tomcat-server.xml

Tomcat for

driver
Configuration for the web server on driver

conf/ driver-tomcat-

server.xml

Tomcat web

authentication

Configuration for web authentication, by default,

there is a default username/password pair configured,

user can change the “password” in configuration file

to enforce username/password authentication when

accessing web console.

conf/cosbench-

users.xml

3.9 Workload management

COSBench can accept multiple workload submissions, it maintains one job queue for those workloads,

and executes them one by one.

On controller web console, workloads are organized into three sections:

 Active workloads: those are just submitted and not finished yet, including the one is in

processing and those are in queue.

 Historical workloads: those are the workloads which have finished.

 Archived workloads: those are the workloads which were done in previous cosbench restart.

COSBench can recognize workload results which were generated by previous instance, and can

load or unload them on demand.

COSBench supports to manage those workloads through below approaches:

 Reorder workloads in active list

 Load/unload archived workloads

 Re-submit historic or archived workloads

COSBench User Guide | 36

4 Configuring Workloads

4.1 Introduction
workload

auth

storage

workflow

workstage

auth

storage

work

auth

storage

operation

A workload is represented as an XML file with the following structure:

 Workload work stage work operation

 If necessary, one workload can define one or more work stages.

 Execution of multiple work stages is sequential, while execution of work in the same work stage

is parallel.

 For each piece of work, “workers” is used to tune the load.

 Authentication definition (auth) and storage definition (storage) can be defined at multiple

levels, and lower-level definitions overwrite upper-level ones. For example, operations use the

definitions for auth and storage at its work instead of those at workload level.

4.2 Selection Expression (also referred to as Selector)

4.2.1 Overview

 In workload configuration, the elements below support one “config” attribute (auth, storage,

work, operation); the attribute contains an optional parameter list with key-value pairs that use

the format “a=a_val;b=b_val”.

<work name="read" workers="100" config="containers=u(1,32);objects=u(1,100)" />

Attribute Parameter

COSBench User Guide | 37

 In the parameter list, commonly used keys include “containers”, “objects”, and “sizes”, which

are used to specify how to select container, object, and size. One expression is used to help

define selection.

 The number in an expression has a different meaning for object size versus object or container.

For object size, the number represents a quantity, while for object or container, the number

represents a numbering or label.

4.2.2 Selector

Expression Format Comments

constant c(number)

Only use specified number

For example, c(1) means the element

numbering will be fixed in one fixed number

uniform u(min, max)

Select from [min, max] evenly

For example, u(1,100) means the element

numbering is evenly selected from the 100

elements; the selection is random, and some

numbers may be selected more than once,

while some may never be selected

range r(min,max)

Select from [min,max] incrementally

For example, r(1,100) means the element

numbering incrementally increases from min

to max, and each number is selected only

once; this is generally used in special stages

(init, prepare, cleanup, dispose), if it’s used in

normal stage, please make sure you

understand how to use it correctly (see FAQ

6.1.17 for details).

sequential s(min,max)

Select from [min,max] incrementally

For example, s(1,100) means the element

numbering incrementally increases from min

to max, and each number is selected only

once. This is done thread-safe.

COSBench User Guide | 38

histogram h(min1|max1|weight1,…)

It provides a weighted histogram generator, to

configure it, specify a comma separated list of

buckets where each bucket is defined by a range

and an integer weight. For example:

 h(1|64|10,64|512|20,512|2048|30)KB

Which defines one profile where (1,64)KB is

weighted as 10, (64,512)KB is weighted as 20,

and (512,2048)KB is weighted as 30. The sum of

weights is not necessarily 100.

4.2.3 Allowable Combinations

There are additional constraints for selectors based on the element type and work type; the following

two tables list allowable combinations.

Selector versus Element:

Key

constant

(c(num))

uniform

(u(min,max))

range

(r(min,max))

sequential

(s(min,max))

histogram

(h(min|max|ratio))

containers

objects

sizes

Selector versus Work:

Key init prepare normal (read) normal (write)

normal

(delete) cleanup dispose

containers r(), s() r(), s() c(), u(), r(), s() c(), u(), r(), s() c(), u(), r(), s() r(), s() r(), s()

objects r(), s() c(), u(), r(), s() c(), u(), r() c(), u(), r(), s() r(), s()

sizes

c(), u(),

h() c(), u(), h()

4.3 Workload

4.3.1 General Format

<workload name=”demo” description=”demo benchmark with mock storage” />

COSBench User Guide | 39

4.3.2 Attributes

Parameter Type Default Comment

name String
One name for the

workload

description String
Some additional

information

4.4 Auth

4.4.1 General Format

<auth type="none|mock|swauth|keystone"

config="<key>=<value>;<key>=<value>" />

4.4.2 Attributes

Attribute Type Default Comment

type String none Authentication type

config String
Parameter list

[optional]

4.4.3 Authentication Mechanisms

 none (do nothing, default)

<auth type="none" config="" />

Parameter list:

Parameter Type Default Comment

logging Boolean false
Print information to

log

retry Int 0

Specifies number of

retry attempts if

authentication fails

Caching Boolean False

Caching

authentication

information or not

COSBench User Guide | 40

 mock (delay specified time)

<auth type="mock" config="" />

Parameter list:

Parameter Type Default Comment

token String “token” Token string

delay Long 20
Delay time in

milliseconds

retry Int 0

Specifies number of

retry attempts if

authentication fails

 swauth (for OpenStack Swift)

<auth type="swauth"
config="username=test:tester;password=testing;url=http://192.168.250.36:8080/aut
h/v1.0" />

Note that the IP address 192.168.250.36 should be replaced with the actual IP address

of the controller node.

Parameter list:

Parameter Type Default Comment

auth_url String “http:/192.168.250.36:8080/auth/v1.0”
URL for auth

node

username String

Username for

authentication.

Syntax h

account:user

password String
Password for

authentication

timeout Integer 30,000

Connection

timeout value in

milliseconds

retry Int 0

Specifies number

of retry attempts

if authentication

fails

COSBench User Guide | 41

 keystone (for OpenStack Swift)

<auth type="keystone"
config="username=tester;password=testing;tenant_name=test;url=http://192.168.2
50.36:5000/v2.0;service=swift;region=regionOne" />

Note that the IP address 192.168.250.36 should be replaced with the actual IP address

of the controller node.

Parameter list:

Parameter Type Default Comment

auth_url String “http://192.168.250.36:8080/auth/v2.0”
URL for auth

node

username String

Username for

authentication.

Syntax

account:user

password String
Password for

authentication

tenant_name String

Name of tenant

to which the

user belongs

service String “swift”
Service

requested

timeout Integer 30,000

Connection

timeout value in

milliseconds

retry Int 0

Specifies number

of retry attempts

if authentication

fails

region String “regionOne” Service region.

 httpauth (Http BASIC/DIGEST)

<auth type="httpauth"

config="username=test;password=testing;auth_url=http://192.168.250.36:8080/" />

Note that the IP address 192.168.250.36 should be replaced with the actual IP address

of the controller node.

COSBench User Guide | 42

Parameter list:

Parameter Type Default Comment

auth_url String “http://192.168.250.36:8080/”
URL for auth

node

username String
Username for

authentication.

password String
Password for

authentication

timeout Integer 30,000

Connection

timeout value in

milliseconds

retry Int 0

Specifies number

of retry attempts

if authentication

fails

4.5 Storage

4.5.1 General Format

<storage type="none|mock|swift|ampli|s3|sproxyd|…"

config="<key>=<value>;<key>=<value>" />

4.5.2 Attributes

Attribute Type Default Comment

type String “none” Storage type

config String
Parameter list

[optional]

4.5.3 Storage Systems

 none (do nothing, default)

<storage type="none" config="" />

COSBench User Guide | 43

Parameter list:

Parameter Type Default Comment

logging Boolean false
Print information to

log

 mock (delay specified time)

<storage type="mock" config="" />

Parameter list:

Parameter Type Default Comment

logging Boolean false
Print information to

log

size Integer 1024 Object size in bytes

delay Integer 10
Delay time in

milliseconds

errors Integer 0
Set error limit to

emulate failure

printing Boolean False
Print out data

content

 Swift (OpenStack Swift)

<storage type="swift" config="" />

Parameter list:

Parameter Type Default Comment

timeout Integer 30,000 Connection timeout value in milliseconds

token String AUTH_xxx

Authentication token, this parameter is only

necessary if user expects to bypass

authentication.

storage_url String
http://127.0.0.1:8080/aut

h/v1.0

The storage url, this parameter is only

necessary if user expects to bypass

authentication.

http://127.0.0.1:8080/auth/v1.0
http://127.0.0.1:8080/auth/v1.0

COSBench User Guide | 44

policy String

Storage Policies is a feature introduced in

Swift 2.0 that allows applications to select a

different set of characteristics for their

storage on a per container basis. See the

latest Swift docs for full information at

http://docs.openstack.org/developer/swift/ov

erview_architecture.html.

It’s only necessary if user expects to leverage

different storage policy instead of the default.

transfer_rate Integer 50000000

This is to help limit transfer rate to designated

number, if 0 is set, it means working at best-

effort mode.

 Ampli (Amplidata)

<storage
type="ampli"config="host=192.168.10.1;port=8080;nsroot=/namespace;policy=1419
5ca863764fd48c281cb95c9bd555" />

Parameter list:

Parameter Type Default Comment

timeout Integer 30,000

Connection timeout

value in

milliseconds

host String
Controller node IP

to connect

port Integer Port

nsroot String “/namespace” Namespace root

policy String

Policy ID the

namespace will

access

 S3 (Amazon S3)

<storage type="s3" config="accesskey=<accesskey>;secretkey=<scretkey>;
endpoint=<endpoint>; proxyhost=<proxyhost>;proxyport=<proxyport>" />

http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html

COSBench User Guide | 45

Parameter list:

Parameter Type Default Comment

timeout Integer 30,000

Connection timeout

value in

milliseconds

accesskey String
The base64-

encoded username

secretkey String
The base64-

encoded password

endpoint String
http://s3.amazona

ws.com

The endpoint url

(the url s3 storage

exposes for external

access).

proxyhost String

The http proxy host

name or ip address

if required.

proxyport integer
The http proxy port

if required.

max_connections Integer 50

The default max

connection pool

size.

path_style_access boolean false
Using S3 path style

access or not.

 Sproxyd (Scality)

<storage type="sproxyd" config="hosts=<host1,host2,…>;port=<port>;
base_path=<path>;pool_size=<maxTotal,maxPerRoute>" />

COSBench User Guide | 46

Parameter list:

Parameter Type Default Comment

hosts String 127.0.0.1

Comma separated

list of host

names/IP

addresses. Requests

are load balanced

across all the hosts

using a simple

round robin

algorithm

port integer 81
Port used by the

connector

base_path String /proxy/chord

Path to an sproxyd

profile (this profile

must have

by_path_enabled =

1)

pool_size

integer or comma

separated pair of

integers

60,10

The first value s the

size of the

connection pool.

The second value, if

provided, is the

maximum number

of connections for a

given HTTP route.

 Cdmi (SNIA CDMI)

<storage type="cdmi" config="type=<cdmi|non-cdmi;
custom_headers=<header:value_reference>" />

COSBench User Guide | 47

Parameter list:

Parameter Type Default Comment

type String “cdmi”

Options: “cdmi” or “non-cdmi”, it

indicates the content type to be

used, “cdmi” means the storage

access will follow cdmi content

type, “non-cdmi” means the

storage access will follow non-

cdmi content type.

Customer_headers String

This is an experimental parameter

to see if possible to support cdmi

derivatives, which may require

additional headers. The

parameter may be removed

without notification.

 Cdmi_swift (SNIA CDMI for swift)

<storage type="cdmi_swift" config="" />

 Parameter list:

Parameter Type Default Comment

timeout Integer 30,000

Connection timeout

value in

milliseconds

 librados (for Ceph)

<storage type="librados"
config="endpoint=<endpoint>;accesskey=<accesskey>;secretkey=<secretkey>" />

COSBench User Guide | 48

Parameter list:

Parameter Type Default Comment

endpoint String 127.0.0.1
The endpoint could be e.g. the

monitor node.

accesskey String The username like “admin”.

secretkey String
The secretkey is the key from the

admin keyring.

Note:

o Don’t use librados to create containers (pools), they will default to only have 64 pgs,

which renders them pretty useless, see

http://ceph.com/docs/master/rados/operations/pools/

4.6 Work Stage

4.6.1 General Format

<workstage name="<name>" >

</workstage>

4.6.2 Attributes

Attribute Type Default Comment

name String
One name for the

stage

4.7 Work

4.7.1 General Format

<work name="main" type="normal" workers="128" interval="5" division="none" runtime="60"

rampup="0" rampdown="0" totalOps="0" totalBytes="0" afr=”200000” config="" > . . . </work>

There is one normal and four special types of work (init, prepare, cleanup, and dispose). Section 4.7

focuses on normal work, while Section 4.8 covers the special types of work. The form given above is

for a full set—different work types will have different valid forms. General rules are given below:

http://ceph.com/docs/master/rados/operations/pools/

COSBench User Guide | 49

 workers is a key attribute, normally used to control load.
 runtime (including rampup and rampdown), totalOps and totalBytes are attributes that

control how to end the work, called ending options. Only one can be set in a work.

COSBench User Guide | 50

4.7.2 Attributes

Attribute Type Default Comment

name String
One name for the

work

type String “normal” Type of work

workers Integer

Number of workers

to conduct the work

in parallel

interval Integer 5

Interval between

performance

snapshots

division String “none”

[“none”|

“container”|

“object”], controls

how work is divided

between workers

runtime Integer 0

How many seconds

the work will

execute

rampup Integer 0

How many seconds

to ramp up

workload; this time

is excluded from

runtime

rampdown Integer 0

How many seconds

to ramp down the

workload; this time

is excluded from

runtime

totalOps Integer 0

How many

operations will

execute; it should

be a multiple of

workers

totalBytes Integer 0

How many bytes

will transfer, it

should be a multiple

of the product of

workers and size.

COSBench User Guide | 51

driver string

Which driver will

execute this work,

by default, all

drivers will

participate the

execution.

afr Integer
200000 – normal

0 – special work

Acceptable failure

rate, it’s in

millionth.

4.8 Special Work

4.8.1 General Format

<work type="init|prepare|cleanup|dispose|delay" workers="<number>"
config="<key>=<value>;<key>=<value>" />

Special work is different from normal work in the following ways:

 It internally adopts and calculates “totalOps”, so no ending option need be explicitly
included in the configuration.

 It has implicitly defined operations, so no operation is needed.

 “delay” is different from others, which causes the work just sleeps for specified seconds.

4.8.2 Supported Special Work

 init (creating specific containers in bulk)

<work type="init" workers="4" config="containers=r(1,100)" />

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), r(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

 prepare (inserting specific objects in bulk)

<work type="prepare" workers="4"
config="containers=r(1,10);objects=r(1,100);sizes=c(64)KB" />

COSBench User Guide | 52

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

sizes String

Size selection

expression with unit

(B/KB/MB/GB); for

example:

c(128)KB,

u(2,10)MB

chunked Boolean False

Upload data in

chunked mode (or

not)

content String
“random”(default)

”zero”

Fill object content

with random data

or all-zeros

createContainer Boolean False

Create related

container if it does

not exist

hashCheck Boolean False

Do work related to

object-integrity

checking

 cleanup (removing specific objects in bulk)

<work type="cleanup" workers="4" config="containers=r(1,10);objects=r(1,100)" />

COSBench User Guide | 53

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

deleteContainer Boolean False
Delete related

container if it exists

 dispose (removing specific containers in bulk)

<work type="dispose" workers="4" config="containers=r(1,100)" />

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

 delay (inserting a few seconds delay)

<workstage name=”delay” closuredelay=”60” >

<work type="delay" workers="1" />

</workstage>

COSBench User Guide | 54

Parameter list:

Parameter Type Default Comment

closuredelay Integer
How long to delay

in seconds.

4.9 Operation

4.9.1 General Format

<operation type="read|write|delete" ratio="<1-100>"

config="<key>=<value>;<key>=<value>" />

4.9.2 Attributes

Attribute Type Default Comment

type String Operation type

ratio Integer

division Integer
Division strategy for this

operation

config String Parameter list

4.9.3 Supported operations

 container/object naming convention:

 By default, containers are named using the format “mycontainers_<n>”, and objects are

named using the format “myobjects_<n>”, where <n> is a number defined by one

selection expression in the parameter list.

 Container/object naming can be modified through cprefix/csuffix or oprefix/osuffix.

 read

<operation type="read" ratio="70" config="containers=c(1);objects=u(1,100)" />

COSBench User Guide | 55

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

hashCheck Boolean False

Do work related to

object-integrity

checking

 write

<operation type="write" ratio="20"
config="containers=c(2);objects=u(1,1000);sizes=c(2)MB" />

COSBench User Guide | 56

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

sizes String

Size selection

expression with unit

(B/KB/MB/GB); for

example:

c(128)KB,

u(2,10)MB

chunked Boolean False

Upload data in

chunked mode (or

not)

content String
“random”(default)

“zero”

Fill object content

with random data

or all zeros

hashCheck Boolean False

Do work related to

object-integrity

checking

 filewrite

<operation type="filewrite" ratio="20"

config="containers=c(2);fileselection=s;files=/tmp/testfiles" />

COSBench User Guide | 57

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

fileselection String

Which selector should be

used only put selector

identifier (e.g. s for

sequential). *

files String

Path to the folder

containing the files to be

uploaded. Path must exist

chunked Boolean False
Upload data in chunked

mode (or not)

hashCheck Boolean False
Do work related to object-

integrity checking

*) Objects are not read by filename. Java reads the files in the folder in a random way. Use

Sequential selection to assure each object will be picked once, before the first object is picked a

second time. Limit the amount of objects put by using totalOps or runtime in your work

definition.

 delete

<operation type="delete" ratio="10" config="containers=c(2);objects=u(1,1000)" />

COSBench User Guide | 58

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

 list

<operation type="list" ratio="10" config="containers=c(2);objects=u(1,1000)" />

Parameter list:

Parameter Type Default Comment

containers String

Container selection

expression; for

example:

c(1), u(1,100)

cprefix String mycontainers_ Container prefix

csuffix String <null> Container suffix

objects String

Object selection

expression; for

example:

c(1), u(1,100)

oprefix String myobjects_ Object prefix

osuffix String <null> Object suffix

COSBench User Guide | 59

4.9.4 Examples

 pure read

e.g: 100% read, 16 users, 300 seconds

<work name="100r16c30s" workers="16" runtime="300">

<operation type="read" ratio="100" config="..." />

</work>

 pure write

e.g.: 100% write, 8 clients, 600 seconds

<work name="100w8c600s" workers="8" runtime="600">

<operation type="write" ratio="100" config="..." />

</work>

 mixed operations

e.g.: 80% read, 20% write, 32 clients, 300 seconds

<work name="80r20w32c300s" workers="32" runtime="300">

<operation type="read" ratio="80" config="..." />

 <operation type="write" ratio="20" config="..." />

</work>

4.10 Additional comments

4.10.1 Overview

A few parameters need additional emphasis to make user define exact workload, this section

will cover them.

4.10.2 Division strategy

Division strategies are used to divide a work into multiple non-overlapping partitions which have

smaller ranges of containers or objects, there strategies are supported: container (based),

object (based), or none.

Different stage type has different default division strategy, for init/dispose, the default is

“container”, for prepare/cleanup, the default is “object”, and for normal, the default is “none”.

COSBench User Guide | 60

We will use one example to explain the difference between different division strategies, here is

a work as following:

<work name="main" workers="4" runtime="300" division=”?”>

<operation type="read" ratio="100" config="containers=u(1,8);objects=u(1,1000)"
/>

</work>

If "division=container", it means the data range will be partitioned by container, the access

pattern looks like:

Worker Container Range Object Range

#1 1-2 1-1000

#2 3-4 1-1000

#3 5-6 1-1000

#4 7-8 1-1000

(Note: it's not supported if # of workers is larger than # of containers.)

If "division=object", it means the data range will be partitioned by object, the access pattern

looks like:

Worker Container Range Object Range

#1 1-8 1-250

#2 1-8 251-500

#3 1-8 501-750

#4 1-8 751-1000

(Note: it's not supported if the # of workers is larger than the # of objects.)

If "division=none", it is used to turn off division so that each worker does exactly what the work

has specified—there is no partitions of the work, so each worker may touch all containers or

objects.

COSBench User Guide | 61

5 Results
All results are stored in the “archive” directory.

5.1 Structure

 .meta

o The starting run id

 run-history.csv

o Record all historical workload runs, including time and major stages

 workload.csv

o Record overall performance data for all historical workload runs

 Sub-directories

o Prefixed with “w<runid>-” store data for each workload run

5.2 Per-Run Data

The following is a sample per-run data list:

COSBench User Guide | 62

5.2.1 Overall Performance Data (e.g., w1-demo.csv)

One line per stage:

5.2.2 Timeline Data (e.g., s3-main.csv)

One file per stage; can be imported into a spreadsheet program to draw a timeline chart, or processed

with csvtool:

5.2.3 Response-Time Histogram Data (e.g., w1-demo-rt-histogram.csv)

Distribution of response time is a valuable indicator to understand Quality of Service; histogram data is

generated for this purpose. The data is grouped from 0 to 500,000 ms with 10 ms stepping.

In a histogram diagram, the bar represents the number of samples in each grouping. The curve is the

Cumulative Distribution Function (CDF), which can reveal insights regarding topics such as the response

time at the 90th percentile.

COSBench User Guide | 63

5.2.4 Response Time breakdown (e.g., s3-main.csv)

Beside average response time, average processing time will also be reported in data file, it would help

understand performance bottleneck through time breakdown.

5.2.5 Workload-config.xml

 The workload configuration file used in this run

5.2.6 Workload.log

 The run time log, which is helpful for troubleshooting

90th Percentile

COSBench User Guide | 64

5.3 Metrics

5.3.1 Throughput (Operations/s or Op/s)

 The operations completed in one second

 The reported throughput is calculated by dividing total successful requests by total run time

5.3.2 Response Time (in ms)

 The duration between operation initiation and completion

 The reported Response Time is the average of response time for each successful request

 One additional processing time is already reported to help breakdown response time.

5.3.3 Bandwidth (MB/s)

 The total data in MB transferred per second

 The reported bandwidth is calculated by dividing total bytes transferred by total run time

 1 MB = 1000*1000 bytes

5.3.4 Success Ratio (%)

 The ratio of successful operations

 The reported success ratio is calculated by dividing the number of successful requests by the

total number of requests

5.3.5 Other Metrics

 Op-count: total number of operations

 Byte-count: total data transferred

COSBench User Guide | 65

6 FAQs

6.1 General

1. Is listening on port 19088/18088 configurable, and, if so, how?

Yes; conf/controller-tomcat-server.xml specifies the port to be used for the controller, and

driver-tomcat-server.xml specifies the port to be used for the driver.

2. What is the difference between “cancelled” and “terminated”?

“Cancelled” means the workload is cancelled by user at runtime, while “terminated” indicates

errors during runtime, which typically require user action for resolution.

3. Can I submit multiple workloads to be run sequentially?

Yes; COSBench can accept multiple workloads at one time and run them one by one.

4. Is it possible to cancel a queued workload?

No; cancellation is only for the running workload.

5. Can COSBench be installed on other Linux* distributions, such as Red Hat Enterprise Linux?

Yes; versions prior to v2.1 support Red Hat Enterprise Linux 6 by default, and versions beginning

with v2.1 have adopted Ubuntu 12.04.1 LTS as the default OS.

6. Is it possible to reuse the files from a previous test without removing or cleaning up the old

files?

Yes; the special stages such as init, prepare, cleanup, and dispose are all optional, and even

regarding the main stage, users can choose the stage sequence appropriate to their testing

requirements. To reuse data, the user needs to fill all data and perform all tests before the

cleanup and dispose stages (for example, in the sequence init, prepare, test1, test2, … cleanup,

dispose). A related sample workload configuration file is included in conf/reusedata.xml.

7. Is it possible to define multiple main or other stages?

Yes; to avoid name confusion, they should be named with different labels. For example, users

can define multiple init stages to create different container sets, or define multiple main stages

to perform different tests in one workload.

8. If errors occur on running workloads, where can users see more details?

There is one workload.log under that workload’s corresponding folder (archive\<workload

id>\workload.log); inspecting this file can help determine the cause of errors.

9. What steps should be taken to resolve a test being stuck at the init stage?

Verify that all COSBench machines are accessible through an HTTP connection using Curl (“curl

http://<controller-host>:19088/controller/index.html” or “curl http://<driver-

COSBench User Guide | 66

host>:18088/driver/index.html”). If a firewall has blocked the HTTP connection, the user must

open the appropriate ports on the firewall. For the controller node, the ports are 19088 and

19089; for driver nodes, the ports are 18088 and 18089.

10. Is there a tool to distribute COSBench on multiple nodes?

Although COSBench itself does not provide a tool for this type of package distribution, many

external solutions exist for this purpose, such as scp and shared folder (samba).

11. Why does COSBench show a workload test as “complete,” even though there are errors

reported in workload.log?

A test may reflect “complete” status although errors are recorded in the log for normal work, as

long as special work has completed successfully.

COSBench treats “init”, ”prepare”, ”cleanup,” and “dispose” operations as special work that

must be completed without error to result in “completed” status; errors in special work will

terminate the test.

On the other hand, normal work associated with performance measurement can tolerate

failures, which are tracked by the “success ratio.”

12. Are there any recommendations for the number of workers in the “init”, “prepare”,

“cleanup,” and “dispose” stages?

Work performed in the “init” and “dispose” stages creates and deletes containers. In our testing

with Keystone plus Swift, these tasks can be completed in approximately three minutes with a

recommended ratio of one worker for every 32 containers, with 100 objects in each container

and a 64 KB object size. Generally, the number of containers should be defined as a multiple of

the number of workers.

Work performed in the “prepare” and “cleanup” stages creates or deletes objects, and the time

required depends on the number of objects. Generally, the number of objects should be defined

as a multiple of the number of workers. Increasing the number of workers can accelerate the

process.

Work performed in the “main” identifies bottlenecks, and tuning the workers parameter

controls the load to the storage system. The number of workers should be gradually increased

until performance decreases.

13. How can “OutOfMemory” errors from the driver be prevented after running COSBench for a

long time?

Maximum heap size for the Java process can be specified in the “cosbench-start.sh” script to

prevent exhausting memory. For example, the parameter “-Xmx2g” would limit the maximum

heap size to 2 GB.

14. How can read and write be split to different containers?

Users can assign containers to be accessed at the operation level, to split reads and writes to

different containers; the different container range can be set using the “containers” parameter

in “config” as follows:

COSBench User Guide | 67

<operation type=”read” ratio=”80” config=”containers=u(1,2);objects=u(1,50)” />

<operation type=”write” ratio=”20” config=”containers=u(3,4);objects=u(51,100);sizes=c(64)KB” />

One sample workload configuration file is included in conf/splitrw.xml.

15. How can different containers be specified for different configurations, such as those with

different object sizes?

Users can assign different container sets for different configurations using the “cprefix”

parameter. For example, users can differentiate between configurations with different sizes by

specifying an object size such as “64K” using “cprefix” to avoid confusion and unexpected

overwriting as follows:

<operation type=”read” ratio=”80” config=”cprefix=100M_;containers=u(1,32);objects=u(1,50)” />

In this case, the container name will be prefixed with “100M_” in the target storage system.

Users can take advantage of this capability by browsing to the location http://<IP of Amplistor

controller node>:8080/namespace as shown below:

16. When a workload is terminated, where can users obtain the log files to help troubleshoot the

issue?

Log files are located in two separate places:

 In the “log” folder within the COSBench installation folder. The “system.log” file in this

location documents COSBench system activities, including the check for workload

configuration file. If a required parameter is missing or mistyped (for example, “sizes” in

the “prepare” stage), this file will contain an entry such as “driver report error: no such

key defined: sizes” as shown below:

 In the “workload” folder in the “archive” folder within the COSBench installation

folder. The “workload.log” file in this location documents workload runtime activities. If

COSBench User Guide | 68

failed operations occur while the workload is running, an error (typically HTTP-related)

will be logged in this file.

17. Can I use range selector in normal stage, how to do it?

Yes, range selector can be used in normal stage, but it’s discouraged, as it will involve some

subtle constraints. Firstly, range selector normally needs combine with “totalOps” to terminate

the execution when all elements are enumerated. Secondly, the count of container should be

relatively-prime to the count of objects, otherwise, the actual access range is only one of the

greatest command divisor of the two counts. E.g., for below configuration, it’s expected to

create 1600 unique objects, but actually, it only creates 800 (=32*50/2) unique objects.

<work name="main" workers="8" totalOps="1600">

<operation type="read" ratio="100" config="containers=r(1,32);objects=r(51,100);sizes=c(64)KB" />

</work>

18. Can I run multiple drivers on the same node, how to do it?

Yes, COSBench doesn’t constraint how many drivers can run on the same node, but as by default

driver will listen on port 18088, to avoid port confliction, user needs set different driver process

to different listening ports.

To change the listening port, user needs edit conf/driver-tomcat-server.xml, and change “port”

value below to distinguished number for different driver

<Connector port="18088" protocol="HTTP/1.1" />

19. If there’s any way from COSBench side to identify which object was created failed ?

Yes, it’s possible to print out the object name, but it requires to change the logging level for

COSBench Driver processes. General steps are as following:

i) On each driver node, creating one driver.conf file in conf/ folder with below lines if not

exists:

[driver]

Log_level = DEBUG

ii) Restarting all driver processes

6.2 Swift

1. How can long prepare times associated with large object sizes (e.g., 1 GB) be avoided?

A large number of large objects can saturate network bandwidth, resulting in low performance.

If network bandwidth is not saturated, the “workers” parameter can be increased, to better

utilize bandwidth.

2. Are there any special changes for operating with large object sizes (e.g., 1 GB)?

Yes; for testing with large object sizes, consider the following:

COSBench User Guide | 69

 Longer ramp-up time (specified using the parameter “rampup”) can help drive higher

performance, while longer run time (specified using the parameter “runtime”) can help

drive more consistent results. The optimal combination of settings for these parameters

depends on individual usage circumstances. To help determine appropriate settings, run

a test case with “runtime” set for a long run time (e.g., 30 minutes) without setting the

“rampup” parameter. Consult the resulting timeline curve to determine how many

seconds are needed to ramp up in this case; the “runtime” parameter can then be set to

10 times that “rampup” value.

 As the time for each operation to complete increases, it becomes more likely that

timeout errors will occur; this effect can be mitigated using the “timeout” parameter in

“config”, which uses milliseconds as units. For Swift, typical syntax is as follows:

<storage type="swift" config="timeout=100000" />

 Users should also verify proper setup of the system under test, outside the scope of

COSBench itself; for example, errors or performance deficits may occur because of

improper setup of back-end storage.

3. How can the termination of workloads in the authentication phase be overcome when large

numbers of workers (e.g., 1024) are configured with Keystone, so that testing can be

completed successfully?

The new parameter “retry” is introduced for the “auth” section in the workload configuration

file to help overcome failures in the authentication phase. Following is a sample configuration:

<auth type="keystone"
config="username=operator;password=intel2012;tenant_name=cosbench;auth_url=http://1
0.10.9.100:5000/v2.0;service=swift;retry=10"/>

4. How to test with tempauth?

Tempauth actually follows the same procedure as swauth, so just use swauth authentication

mechanism for tempauth.

5. Is storage policy supported, how to get it working?

Yes, the storage policy (http://docs.openstack.org/developer/swift/overview_architecture.html)

was supported starting from v0.4.0.0 release.

The supporting involves one new “policy” parameter as following:

<storage type="swift" config="policy=gold " />

Here “gold” could be replaced with any policy name user defines in “/etc/swift/swift.conf” as

following:

[storage-policy:0]

name = gold

default = yes

[storage-policy:1]

http://docs.openstack.org/developer/swift/overview_architecture.html

COSBench User Guide | 70

name = silver

In this case, the policy name may be “gold” or “silver”, which will be used in COSBench workload

configuration file.

For those who don’t care about storage policy, just remove “policy” parameter in swift workload

configuration file.

6.3 AmpliStor

1. Where does the system get the string for the policy in the .xml file?

Users can access the Amplidata controller node and manage the available policies by browsing

to the location http://<IP of Amplistor controller node>:8080/manage/policy as shown below:

2. How can object range affect performance?

Expanding the object range may improve write performance by reducing write conflicts. For

example, changing “u(1,100)” to “u(1,10000)” will expand the object range from 100 objects to

10,000 objects.

3. How can one simplify policy UID settings?

Only the “init” stage needs policy UID; other stages such as prepare, main, cleanup, and dispose

don’t need to have the policy UID set. If there is no “init” stage in the workload, no policy UID is

needed.

4. How to use “nsroot” parameter in different stages?

“nsroot” parameter is introduced to support amplistor v2.5 and plus, where accessing

namespaces needs a separate root path from objects. So this parameter is only necessary for

the work involving namespace accessing like that in init/dispose stages. For other stages such as

prepare, main, cleanup, there are two options, one is just removing “nsroot” parameter,

another one is to set “nsroot” to “/namespace” instead of “/manage/namespace”.

If “nsroot=/manage/namespace” is set in main stage, normally, some similar exceptions will pop

up as below:

2013-11-20 10:45:33,764 [ERROR] [Writer] - fail to perform write operation

COSBench User Guide | 71

com.intel.cosbench.api.storage.StorageException:
org.apache.http.client.ClientProtocolException

...

Caused by: org.apache.http.client.NonRepeatableRequestException: Cannot retry
request with a non-repeatable request entity. The cause lists the reason the
original request failed.

...

Caused by: java.net.SocketException: Broken pipe

...

6.4 S3

1. What’s the usage for parameter “proxyhost” and “proxyport”?

In some cases (e.g., in corporate network), users need go through one http proxy to reach

Amazon S3 service, “proxyhost” and “proxyport” is used to give chance to configure http proxy

settings.

2. Can I route requests to specified region in Amazon S3?

S3 adaptor supports one parameter named "endpoint", which is capable to support routing

requests to different regions. e.g., setting "endpoint=https://s3-us-west-1.amazonaws.com"

will create buckets in Oregon region. Detailed s3 regions can be found at:

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

6.5 Ceph

1. What approaches are supported to access Ceph Object Storage?

COSBench supports to access Ceph Object Storage through Rados Gateway, in this case the

exposed protocol for access could be S3 or Swift, depending on Rados Gateway configuration.

From user’s perspective, the Ceph cluster is a S3 or Swift compatible object storage, and the

workload configuration follows S3 or Swift’s configuration rules.

Also, COSBench could interact with Ceph Object Storage with Rados protocol through librados.

In this case, the storage adapter should be “librados”. One Caveat is the ceph librados package

should be installed on COSBench driver nodes.

6.6 CDMI

1. How to test swift through cdmi protocol?

The storage type “cdmi_swift” is for swift, one sample workload file conf/cdmi-swift-config-

sample.xml could help for reference.

https://s3-us-west-1.amazonaws.com/
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

COSBench User Guide | 72

2. Why using two different cdmi storage types?

COSBench includes two cdmi related adapters: cdmi and cdmi-swift, the major difference is on

authentication. CDMI standard adopts HTTP standard authentication mechanisms, while swift

uses token-based authentication. CDMI is a general protocol to help accommodate different

profiles in one standard, it’s open for extensions, and it’s expected to see more cdmi flavored

adapters.

COSBench User Guide | 73

Appendix A. Sample Configurations

Swift

The sample workload configuration describes the following test scenario:

 The test includes five stages: init, prepare, main, cleanup, and dispose.

 The test creates 32 containers, each containing 50 objects 64 KB in size.

 The operation requests are issued to three controller nodes.

 The requests include 80 percent GET(read) operations and 20 percent PUT(write) operations;

read operations randomly request an object from the 50 objects from #1 to #50, while write

operations randomly create objects with object numbering from #51 to #100.

 At completion, the test cleans up all objects and drops all containers.

To use keystone authentication, use the commented keystone authentication line as a sample (note that

the IP address 192.168.250.36 should be replaced with the actual IP address of the controller node).

<?xml version="1.0" encoding="UTF-8" ?>

<workload name="swift-sample" description="sample benchmark for swift">

 <storage type="swift" />

 <!-- MODIFY ME -->

 <auth type="swauth"
config="username=test:tester;password=testing;auth_url=http://192.168.10.1:8080/auth/v1.0"
/>

 <!-- Keystone Authentication

 <auth type="keystone"
config="username=tester;password=testing;tenant_name=test;auth_url=http://192.168.250.36:5
000/v2.0;service=swift" />

 -->

 <workflow>

 <workstage name="init">

 <work type="init" workers="1" config="containers=r(1,32)" />

 </workstage>

 <workstage name="prepare">

 <work type="prepare" workers="1"
config="containers=r(1,32);objects=r(1,50);sizes=c(64)KB" />

 </workstage>

 <workstage name="main">

 <work name="main" workers="8" rampup="100" runtime="300">

COSBench User Guide | 74

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 </workstage>

 <workstage name="cleanup">

 <work type="cleanup" workers="1" config="containers=r(1,32);objects=r(1,100)" />

 </workstage>

 <workstage name="dispose">

 <work type="dispose" workers="1" config="containers=r(1,32)" />

 </workstage>

 </workflow>

</workload>

AmpliStor

The workload configuration describes the following test scenario:

 The test includes five stages: init, prepare, main, cleanup, and dispose.

 The test creates 32 containers (namespaces), each containing 50 objects 64 KB in size.

 The operation requests are issued to three controller nodes, and each controller node hosts two

client daemons.

 The requests include 80 percent GET(read) operations and 20 percent PUT(write) operations;

read operations randomly request objects from the 50 objects numbered #1 to #50, while write

operations randomly create objects with object numbering from #51 to #100.

 At completion, the test cleans up all objects and drops all containers (namespaces).

For the AmpliStor v2.5 release, “nsroot=/manage/namespace” is necessary for all namespace-related

work (init/dispose), for release prior to v2.5, just remove below “nsroot=/manage/namespace” snippets.

<?xml version="1.0" encoding="UTF-8" ?>

<workload name="ampli-sample" description="sample benchmark for amplistor">

 <storage type="ampli"
config="host=192.168.10.1;port=8080;policy=14195ca863764fd48c281cb95c9bd555" />

 <workflow>

 <workstage name="init">

 <storage type="ampli"
config="host=192.168.10.1;port=8080;nsroot=/manage/namespace;policy=14195ca863764fd48c281c
b95c9bd555" />

 <work type="init" workers="1" config="containers=r(1,32)" />

COSBench User Guide | 75

 </workstage>

 <workstage name="prepare">

 <work type="prepare" workers="1"
config="containers=r(1,32);objects=r(1,50);sizes=c(64)KB" />

 </workstage>

 <workstage name="main">

 <work name="c1p0" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.1;port=8080" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 <work name="c1p1" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.1;port=8081" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 <work name="c2p0" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.2;port=8080" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 <work name="c2p1" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.2;port=8081" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 <work name="c3p0" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.3;port=8080" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 <work name="c3p1" workers="16" rampup="100" runtime="300">

 <storage type="ampli" config="host=192.168.10.3;port=8081" />

 <operation type="read" ratio="80" config="containers=u(1,32);objects=u(1,50)" />

 <operation type="write" ratio="20"
config="containers=u(1,32);objects=u(51,100);sizes=c(64)KB" />

 </work>

 </workstage>

COSBench User Guide | 76

 <workstage name="cleanup">

 <work type="cleanup" workers="1" config="containers=r(1,32);objects=r(1,100)" />

 </workstage>

 <workstage name="dispose">

 <storage type="ampli" config="host=192.168.10.1;port=8080;nsroot=/manage/namespace"
/>

 <work type="dispose" workers="1" config="containers=r(1,32)" />

 </workstage>

 </workflow>

</workload>

As mentioned at the beginning of this guide, COSBench also allows users to create adaptors for

additional storage systems. Please refer to the “COSBench Adaptor Development Guide” for details.

