

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and	its	many
features	varies	across	reading	devices	and	applications.	Use	your	device	or	app	settings	to	customize
the	presentation	to	your	liking.	Settings	that	you	can	customize	often	include	font,	font	size,	single	or
double	column,	landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or	app,	visit	the	device
manufacturer ’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the	presentation	of

these	elements,	view	the	eBook	in	single-column,	landscape	mode	and	adjust	the	font	size	to	the
smallest	setting.	In	addition	to	presenting	code	and	configurations	in	the	reflowable	text	format,	we
have	included	images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,
where	the	reflowable	format	may	compromise	the	presentation	of	the	code	listing,	you	will	see	a
“Click	here	to	view	code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to
the	previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

C	Programming

Third	Edition

Greg	Perry	and	Dean	Miller

800	East	96th	Street
Indianapolis,	Indiana	46240

C	Programming	Absolute	Beginner’s	Guide

Third	Edition

Copyright	©	2014	by	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without
written	permission	from	the	publisher.	No	patent	liability	is	assumed	with	respect	to	the	use	of	the
information	contained	herein.	Although	every	precaution	has	been	taken	in	the	preparation	of	this
book,	the	publisher	and	authors	assume	no	responsibility	for	errors	or	omissions.	Nor	is	any	liability
assumed	for	damages	resulting	from	the	use	of	the	information	contained	herein.

ISBN-13:	978-0-7897-5198-0
ISBN-10:	0-7897-5198-4

Library	of	Congress	Control	Number:	2013943628

Printed	in	the	United	States	of	America

First	Printing:	August	2013

Acquisitions	Editor
Mark	Taber

Managing	Editor
Sandra	Schroeder

Project	Editor
Mandie	Frank

Copy	Editor
Krista	Hansing	Editorial	Services,	Inc.

Indexer
Brad	Herriman

Proofreader
Anne	Goebel

Technical	Editor
Greg	Perry

Publishing	Coordinator
Vanessa	Evans

Interior	Designer
Anne	Jones

Cover	Designer
Matt	Coleman

Compositor
TnT	Design,	Inc.

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have	been
appropriately	capitalized.	Que	Publishing	cannot	attest	to	the	accuracy	of	this	information.	Use	of	a
term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of	any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but	no
warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The	authors	and	the
publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with	respect	to	any	loss
or	damages	arising	from	the	information	contained	in	this	book	or	from	the	use	of	the	programs
accompanying	it.

Bulk	Sales

Que	Publishing	offers	excellent	discounts	on	this	book	when	ordered	in	quantity	for	bulk	purchases
or	special	sales.	For	more	information,	please	contact

			U.S.	Corporate	and	Government	Sales
			1-800-382-3419
			corpsales@pearsontechgroup.com

For	sales	outside	the	United	States,	please	contact

			International	Sales
			international@pearsoned.com

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

Contents	at	a	Glance

Introduction

Part	I:	Jumping	Right	In

1	What	Is	C	Programming,	and	Why	Should	I	Care?

2	Writing	Your	First	C	Program

3	What	Does	This	Do?	Clarifying	Your	Code	with	Comments

4	Your	World	Premiere—Putting	Your	Program’s	Results	Up	on	the	Screen

5	Adding	Variables	to	Your	Programs

6	Adding	Words	to	Your	Programs

7	Making	Your	Programs	More	Powerful	with	#include	and	#define

8	Interacting	with	Users

Part	II:	Putting	C	to	Work	for	You	with	Operators	and	Expressions

9	Crunching	the	Numbers—Letting	C	Handle	Math	for	You

10	Powering	Up	Your	Variables	with	Assignments	and	Expressions

11	The	Fork	in	the	Road—Testing	Data	to	Pick	a	Path

12	Juggling	Several	Choices	with	Logical	Operators

13	A	Bigger	Bag	of	Tricks—Some	More	Operators	for	Your	Programs

Part	III:	Fleshing	Out	Your	Programs

14	Code	Repeat—Using	Loops	to	Save	Time	and	Effort

15	Looking	for	Another	Way	to	Create	Loops

16	Breaking	in	and	out	of	Looped	Code

17	Making	the	case	for	the	switch	Statement

18	Increasing	Your	Program’s	Output	(and	Input)

19	Getting	More	from	Your	Strings

20	Advanced	Math	(for	the	Computer,	Not	You!)

Part	IV:	Managing	Data	with	Your	C	Programs

21	Dealing	with	Arrays

22	Searching	Arrays

23	Alphabetizing	and	Arranging	Your	Data

24	Solving	the	Mystery	of	Pointers

25	Arrays	and	Pointers

26	Maximizing	Your	Computer ’s	Memory

27	Setting	Up	Your	Data	with	Structures

Part	V:	Files	and	Functions

28	Saving	Sequential	Files	to	Your	Computer

29	Saving	Random	Files	to	Your	Computer

30	Organizing	Your	Programs	with	Functions

31	Passing	Variables	to	Your	Functions

32	Returning	Data	from	Your	Functions

Appendixes

A	The	ASCII	Table

B	The	Draw	Poker	Program

Index

Table	of	Contents

Introduction
Who’s	This	Book	For?
What	Makes	This	Book	Different?
This	Book’s	Design	Elements
How	Can	I	Have	Fun	with	C?
What	Do	I	Do	Now?

Part	I:	Jumping	Right	In

1	What	Is	C	Programming,	and	Why	Should	I	Care?
What	Is	a	Program?
What	You	Need	to	Write	C	Programs
The	Programming	Process
Using	C

2	Writing	Your	First	C	Program
A	Down-and-Dirty	Chunk	of	Code
The	main()	Function

Kinds	of	Data
Characters	and	C
Numbers	in	C

Wrapping	Things	Up	with	Another	Example	Program

3	What	Does	This	Do?	Clarifying	Your	Code	with	Comments
Commenting	on	Your	Code
Specifying	Comments
Whitespace
A	Second	Style	for	Your	Comments

4	Your	World	Premiere—Putting	Your	Program’s	Results	Up	on	the	Screen
How	to	Use	printf()

The	Format	of	printf()

Printing	Strings
Escape	Sequences
Conversion	Characters
Putting	It	All	Together	with	a	Code	Example

5	Adding	Variables	to	Your	Programs
Kinds	of	Variables
Naming	Variables
Defining	Variables
Storing	Data	in	Variables

6	Adding	Words	to	Your	Programs
Understanding	the	String	Terminator
The	Length	of	Strings
Character	Arrays:	Lists	of	Characters
Initializing	Strings

7	Making	Your	Programs	More	Powerful	with	#include	and	#define

Including	Files
Placing	#include	Directives

Defining	Constants
Building	a	Header	File	and	Program

8	Interacting	with	Users
Looking	at	scanf()
Prompting	for	scanf()

Problems	with	scanf()

Part	II:	Putting	C	to	Work	for	You	with	Operators	and	Expressions

9	Crunching	the	Numbers—Letting	C	Handle	Math	for	You
Basic	Arithmetic
Order	of	Operators
Break	the	Rules	with	Parentheses
Assignments	Everywhere

10	Powering	Up	Your	Variables	with	Assignments	and	Expressions
Compound	Assignment
Watch	That	Order!
Typecasting:	Hollywood	Could	Take	Lessons	from	C

11	The	Fork	in	the	Road—Testing	Data	to	Pick	a	Path
Testing	Data
Using	if

Otherwise...:	Using	else

12	Juggling	Several	Choices	with	Logical	Operators
Getting	Logical
Avoiding	the	Negative
The	Order	of	Logical	Operators

13	A	Bigger	Bag	of	Tricks—Some	More	Operators	for	Your	Programs
Goodbye	if...else;	Hello,	Conditional

The	Small-Change	Operators:	++	and	--
Sizing	Up	the	Situation

Part	III:	Fleshing	Out	Your	Programs

14	Code	Repeat—Using	Loops	to	Save	Time	and	Effort
while	We	Repeat

Using	while
Using	do...while

15	Looking	for	Another	Way	to	Create	Loops
for	Repeat’s	Sake!

Working	with	for

16	Breaking	in	and	out	of	Looped	Code
Take	a	break

Let’s	continue	Working

17	Making	the	case	for	the	switch	Statement
Making	the	switch

break	and	switch

Efficiency	Considerations

18	Increasing	Your	Program’s	Output	(and	Input)
putchar()	and	getchar()
The	Newline	Consideration
A	Little	Faster:	getch()

19	Getting	More	from	Your	Strings
Character-Testing	Functions
Is	the	Case	Correct?
Case-Changing	Functions
String	Functions

20	Advanced	Math	(for	the	Computer,	Not	You!)
Practicing	Your	Math
Doing	More	Conversions
Getting	into	Trig	and	Other	Really	Hard	Stuff
Getting	Random

Part	IV:	Managing	Data	with	Your	C	Programs

21	Dealing	with	Arrays
Reviewing	Arrays
Putting	Values	in	Arrays

22	Searching	Arrays
Filling	Arrays
Finders,	Keepers

23	Alphabetizing	and	Arranging	Your	Data
Putting	Your	House	in	Order:	Sorting
Faster	Searches

24	Solving	the	Mystery	of	Pointers
Memory	Addresses
Defining	Pointer	Variables
Using	the	Dereferencing	*

25	Arrays	and	Pointers
Array	Names	Are	Pointers
Getting	Down	in	the	List
Characters	and	Pointers
Be	Careful	with	Lengths
Arrays	of	Pointers

26	Maximizing	Your	Computer’s	Memory
Thinking	of	the	Heap
But	Why	Do	I	Need	the	Heap?
How	Do	I	Allocate	the	Heap?
If	There’s	Not	Enough	Heap	Memory
Freeing	Heap	Memory
Multiple	Allocations

27	Setting	Up	Your	Data	with	Structures

Defining	a	Structure
Putting	Data	in	Structure	Variables

Part	V:	Files	and	Functions

28	Saving	Sequential	Files	to	Your	Computer
Disk	Files
Opening	a	File
Using	Sequential	Files

29	Saving	Random	Files	to	Your	Computer
Opening	Random	Files
Moving	Around	in	a	File

30	Organizing	Your	Programs	with	Functions
Form	Follows	C	Functions
Local	or	Global?

31	Passing	Variables	to	Your	Functions
Passing	Arguments
Methods	of	Passing	Arguments

Passing	by	Value
Passing	by	Address

32	Returning	Data	from	Your	Functions
Returning	Values
The	return	Data	Type
One	Last	Step:	Prototype
Wrapping	Things	Up

Appendixes

A	The	ASCII	Table

B	The	Draw	Poker	Program

Index

About	the	Authors

Greg	Perry	is	a	speaker	and	writer	in	both	the	programming	and	applications	sides	of	computing.	He
is	known	for	bringing	programming	topics	down	to	the	beginner ’s	level.	Perry	has	been	a
programmer	and	trainer	for	two	decades.	He	received	his	first	degree	in	computer	science	and	then
earned	a	Master ’s	degree	in	corporate	finance.	Besides	writing,	he	consults	and	lectures	across	the
country,	including	at	the	acclaimed	Software	Development	programming	conferences.	Perry	is	the
author	of	more	than	75	other	computer	books.	In	his	spare	time,	he	gives	lectures	on	traveling	in
Italy,	his	second	favorite	place	to	be.
Dean	Miller	is	a	writer	and	editor	with	more	than	20	years	of	experience	in	both	the	publishing	and
licensed	consumer	product	businesses.	Over	the	years,	he	has	created	or	helped	shape	a	number	of
bestselling	books	and	series,	including	Teach	Yourself	in	21	Days,	Teach	Yourself	in	24	Hours,	and	the
Unleashed	series,	all	from	Sams	Publishing.	He	has	written	books	on	C	programming	and
professional	wrestling,	and	is	still	looking	for	a	way	to	combine	the	two	into	one	strange	amalgam.

Dedication

To	my	wife	and	best	friend,	Fran	Hatton,	who’s	always	supported	my	dreams	and	was	an	incredible
rock	during	the	most	challenging	year	of	my	professional	career.

Acknowledgments

Greg:	My	thanks	go	to	all	my	friends	at	Pearson.	Most	writers	would	refer	to	them	as	editors;	to	me,
they	are	friends.	I	want	all	my	readers	to	understand	this:	The	people	at	Pearson	care	about	you	most
of	all.	The	things	they	do	result	from	their	concern	for	your	knowledge	and	enjoyment.
On	a	more	personal	note,	my	beautiful	bride,	Jayne;	my	mother,	Bettye	Perry;	and	my	friends,	who
wonder	how	I	find	the	time	to	write,	all	deserve	credit	for	supporting	my	need	to	write.
Dean:	Thanks	to	Mark	Taber	for	considering	me	for	this	project.	I	started	my	professional	life	in
computer	book	publishing,	and	it	is	so	gratifying	to	return	after	a	10-year	hiatus.	I’d	like	to	thank
Greg	Perry	for	creating	outstanding	first	and	second	editions	upon	which	this	version	of	the	book	is
based.	It	was	an	honor	working	with	him	as	his	editor	for	the	first	two	editions	and	a	greater	honor	to
coauthor	this	edition.	I	can	only	hope	I	did	it	justice.	I	appreciate	the	amazing	work	the	editorial	team
of	Mandie	Frank,	Krista	Hansing,	and	the	production	team	at	Pearson	put	into	this	book.
On	a	personal	level,	I	have	to	thank	my	three	children,	John,	Alice,	and	Maggie	and	my	wife	Fran	for
their	unending	patience	and	support.

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value	your
opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what	areas	you’d	like	to
see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to	pass	our	way.
We	welcome	your	comments.	You	can	email	or	write	to	let	us	know	what	you	did	or	didn’t	like	about
this	book—as	well	as	what	we	can	do	to	make	our	books	better.
Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this	book	and	may
not	be	able	to	reply	personally	to	every	message	we	receive.
When	you	write,	please	be	sure	to	include	this	book’s	title,	edition	number,	and	authors,	as	well	as
your	name	and	contact	information.	We	will	carefully	review	your	comments	and	share	them	with	the
authors	and	editors	who	worked	on	the	book.
Email:							feedback@quepublishing.com
Mail:									Que	Publishing
																		800	East	96th	Street
																		Indianapolis,	IN	46240	USA

mailto:feedback@quepublishing.com

Reader	Services

Visit	our	website	and	register	this	book	at	http://informit.com/register	for	convenient	access	to	any
updates,	downloads,	or	errata	that	might	be	available	for	this	book.

http://informit.com/register

Introduction

In	This	Introduction
•	Who’s	This	Book	For?
•	What	Makes	This	Book	Different?
•	This	Book’s	Design	Elements
•	How	Can	I	Have	Fun	with	C?
•	What	Do	I	Do	Now?

Are	you	tired	of	seeing	your	friends	get	C	programming	jobs	while	you’re	left	out	in	the	cold?
Would	you	like	to	learn	C	but	just	don’t	have	the	energy?	Is	your	old,	worn-out	computer	in	need	of	a
hot	programming	language	to	spice	up	its	circuits?	This	book	is	just	what	the	doctor	ordered!
C	Programming	Absolute	Beginner’s	Guide	breaks	the	commonality	of	computer	books	by	talking	to
you	at	your	level	without	talking	down	to	you.	This	book	is	like	your	best	friend	sitting	next	to	you
teaching	C.	C	Programming	Absolute	Beginner’s	Guide	attempts	to	express	without	impressing.	It	talks
to	you	in	plain	language,	not	in	“computerese.”	The	short	chapters,	line	drawings,	and	occasionally
humorous	straight	talk	guide	you	through	the	maze	of	C	programming	faster,	friendlier,	and	easier
than	any	other	book	available	today.

Who’s	This	Book	For?
This	is	a	beginner ’s	book.	If	you	have	never	programmed,	this	book	is	for	you.	No	knowledge	of	any
programming	concept	is	assumed.	If	you	can’t	even	spell	C,	you	can	learn	to	program	in	C	with	this
book.
The	phrase	absolute	beginner	has	different	meanings	at	different	times.	Maybe	you’ve	tried	to	learn	C
but	gave	up.	Many	books	and	classes	make	C	much	more	technical	than	it	is.	You	might	have
programmed	in	other	languages	but	are	a	beginner	in	C.	If	so,	read	on,	O	faithful	one,	because	in	32
quick	chapters,	you’ll	know	C.

What	Makes	This	Book	Different?
This	book	doesn’t	cloud	issues	with	internal	technical	stuff	that	beginners	in	C	don’t	need.	We’re	of
the	firm	belief	that	introductory	principles	have	to	be	taught	well	and	slowly.	After	you	tackle	the
basics,	the	“harder”	parts	never	seem	hard.	This	book	teaches	you	the	real	C	that	you	need	to	get
started.
C	can	be	an	extremely	cryptic	and	difficult	language.	Many	people	try	to	learn	C	more	than	once.	The
problem	is	simply	this:	Any	subject,	whether	it	be	brain	surgery,	mail	sorting,	or	C	programming,	is
easy	if	it’s	explained	properly.	Nobody	can	teach	you	anything	because	you	have	to	teach	yourself—
but	if	the	instructor,	book,	or	video	doing	the	teaching	doesn’t	make	the	subject	simple	and	fun,	you
won’t	want	to	learn	the	subject.
We	challenge	you	to	find	a	more	straightforward	approach	to	C	than	is	offered	in	the	C	Programming
Absolute	Beginner’s	Guide.	If	you	can,	call	one	of	us	because	we’d	like	to	read	it.	(You	thought	maybe
we’d	offer	you	your	money	back?)	Seriously,	we’ve	tried	to	provide	you	with	a	different	kind	of	help

from	that	which	you	find	in	most	other	places.
The	biggest	advantage	this	book	offers	is	that	we	really	like	to	write	C	programs—and	we	like	to
teach	C	even	more.	We	believe	that	you	will	learn	to	like	C,	too.

This	Book’s	Design	Elements
Like	many	computer	books,	this	book	contains	lots	of	helpful	hints,	tips,	warnings,	and	so	on.	You
will	run	across	many	notes	and	sidebars	that	bring	these	specific	items	to	your	attention.

	Tip

Many	of	this	book’s	tricks	and	tips	(and	there	are	lots	of	them)	are	highlighted	as	a	Tip.
When	a	really	neat	feature	or	code	trick	coincides	with	the	topic	you’re	reading	about,
a	Tip	pinpoints	what	you	can	do	to	take	advantage	of	the	added	bonus.

	Note

Throughout	the	C	language,	certain	subjects	provide	a	deeper	level	of	understanding
than	others.	A	Note	tells	you	about	something	you	might	not	have	thought	about,	such
as	a	new	use	for	the	topic	being	discussed.

	Warning

A	Warning	points	out	potential	problems	you	could	face	with	the	particular	topic	being
discussed.	It	indicates	a	warning	you	should	heed	or	provides	a	way	to	fix	a	problem
that	can	occur.

Each	chapter	ends	by	reviewing	the	key	points	you	should	remember	from	that	chapter.	One	of	the
key	features	that	ties	everything	together	is	the	section	titled	“The	Absolute	Minimum.”	This	chapter
summary	states	the	chapter ’s	primary	goal,	lists	a	code	example	that	highlights	the	concepts	taught,
and	provides	a	code	analysis	that	explains	that	code	example.	You’ll	find	these	chapter	summaries,
which	begin	in	Chapter	2,	“Writing	Your	First	C	Program,”	to	be	a	welcome	wrap-up	of	the	chapter ’s
main	points.
This	book	uses	the	following	typographic	conventions:

•	Code	lines,	variables,	and	any	text	you	see	onscreen	appears	in	monospace.
•	Placeholders	on	format	lines	appear	in	italic	monospace.
•	Parts	of	program	output	that	the	user	typed	appear	in	bold	monospace.
•	New	terms	appear	in	italic.

•	Optional	parameters	in	syntax	explanations	are	enclosed	in	flat	brackets	([]).	You	do	not	type
the	brackets	when	you	include	these	parameters.

How	Can	I	Have	Fun	with	C?
Appendix	B,	“The	Draw	Poker	Program,”	contains	a	complete,	working	Draw	Poker	program.	The
program	was	kept	as	short	as	possible	without	sacrificing	readable	code	and	game-playing
functionality.	The	game	also	had	to	be	kept	generic	to	work	on	all	C	compilers.	Therefore,	you	won’t
find	fancy	graphics,	but	when	you	learn	C,	you’ll	easily	be	able	to	access	your	compiler ’s	specific
graphics,	sound,	and	data-entry	routines	to	improve	the	program.
The	program	uses	as	much	of	this	book’s	contents	as	possible.	Almost	every	topic	taught	in	this	book
appears	in	the	Draw	Poker	game.	Too	many	books	offer	nothing	more	than	snippets	of	code.	The
Draw	Poker	game	gives	you	the	chance	to	see	the	“big	picture.”	As	you	progress	through	this	book,
you’ll	understand	more	and	more	of	the	game.

What	Do	I	Do	Now?
Turn	the	page	and	learn	the	C	language.

Part	I:	Jumping	Right	In

1.	What	Is	C	Programming,	and	Why	Should	I	Care?

In	This	Chapter
•	Understanding	the	basics	of	C	programming
•	Finding	and	installing	a	C	compiler
•	Learning	the	steps	of	the	programming	process

Although	some	people	consider	C	to	be	difficult	to	learn	and	use,	you’ll	soon	see	that	they	are	wrong.
C	is	touted	as	being	a	cryptic	programming	language,	and	it	can	be—but	a	well-written	C	program	is
just	as	easy	to	follow	as	a	program	written	in	any	other	programming	language.	The	demand	for
programmers	and	developers	today	is	high,	and	learning	C	is	an	effective	foundation	to	build	the
skills	needed	in	a	variety	of	fields,	including	app	development,	game	programming,	and	so	much
more.
If	you’ve	never	written	a	program	in	your	life,	this	chapter	is	an	excellent	beginning	because	it
teaches	you	introductory	programming	concepts,	explains	what	a	program	is,	and	provides	a	short
history	of	the	C	language.	Get	ready	to	be	excited!	C	is	a	programming	language	rich	in	its
capabilities.

What	Is	a	Program?
A	computer	isn’t	smart.	Believe	it	or	not,	on	your	worst	days,	you	are	still	light-years	ahead	of	your
computer	in	intelligence.	You	can	think,	and	you	can	tell	a	computer	what	to	do.	Here	is	where	the
computer	shines:	It	will	obey	your	instructions.	Your	computer	will	sit	for	days	processing	the	data
you	supply,	without	getting	bored	or	wanting	overtime	pay.
The	computer	can’t	decide	what	to	do	on	its	own.	Computers	can’t	think	for	themselves,	so
programmers	(people	who	tell	computers	what	to	do)	must	give	computers	extremely	detailed
instructions.	Without	instructions,	a	computer	is	useless;	with	incorrect	instructions,	a	computer	will
not	successfully	execute	your	desired	task.	A	computer	can	no	more	process	your	payroll	without
detailed	instructions	than	an	automobile	can	start	by	itself	and	drive	around	the	block	independently.
The	collection	of	detailed	expressions	that	you	supply	when	you	want	your	computer	to	perform	a
specific	task	is	known	as	a	program.

	Note

Word	processors,	apps,	spreadsheets,	and	computer	games	are	nothing	more	than
computer	programs.	Facebook	is	a	collection	of	programs.	Without	such	programs,	the
computer	would	just	sit	there,	not	knowing	what	to	do	next.	A	word-processing
program	contains	a	list	of	detailed	instructions,	written	in	a	computer	language	such	as
C,	that	tells	your	computer	exactly	how	to	be	a	word	processor.	When	you	program,
you	are	telling	the	computer	to	follow	the	instructions	in	the	program	you	have
supplied.

You	can	buy	or	download	thousands	of	programs	for	your	computer,	tablet,	or	phone,	but	when	a
business	needs	a	computer	to	perform	a	specific	task,	that	business	hires	programmers	and
developers	to	create	software	that	follows	the	specifications	the	business	needs.	You	can	make	your
computer	or	mobile	device	do	many	things,	but	you	might	not	be	able	to	find	a	program	that	does
exactly	what	you	want.	This	book	rescues	you	from	that	dilemma.	After	you	learn	C,	you	will	be	able
to	write	programs	that	contain	instructions	that	tell	the	computer	how	to	behave.

	Tip

A	computer	program	tells	your	computer	how	to	do	what	you	want.	Just	as	a	chef	needs
a	recipe	to	make	a	dish,	a	program	needs	instructions	to	produce	results.	A	recipe	is
nothing	more	than	a	set	of	detailed	instructions	that,	if	properly	written,	describes	that
proper	sequence	and	the	contents	of	the	steps	needed	to	prepare	a	certain	dish.	That’s
exactly	what	a	computer	program	is	to	your	computer.

Programs	produce	output	when	you	run	or	execute	them.	The	prepared	dish	is	a	recipe’s	output,	and
the	word	processor	or	app	is	the	output	produced	by	a	running	program.

	Warning

Just	as	when	a	chef	gets	an	ingredient	wrong	or	misses	a	step	in	a	recipe,	the	resulting
dish	can	be	inedible;	if	you	mistype	code	or	skip	a	step,	your	program	will	not	work.

What	You	Need	to	Write	C	Programs
Before	you	can	write	and	execute	a	C	program	on	your	computer,	you	need	a	C	compiler.	The	C
compiler	takes	the	C	program	you	write	and	builds	or	compiles	it	(technical	terms	for	making	the
program	computer-readable),	enabling	you	to	run	the	compiled	program	when	you’re	ready	to	look
at	the	results.	Luckily,	many	excellent	free	software	packages	are	available	in	which	you	can	edit	and
compile	your	C	programs.	A	simple	web	search	will	provide	a	list.	This	book	uses	Code::Blocks
(www.codeblocks.org).

	Tip

If	you	run	a	search	for	“C	Programming	Compilers,”	you’ll	see	a	number	of	freeware
options,	including	offerings	from	Borland	and	Microsoft.	So	why	does	this	book	use
Code::Blocks?	Because	it	offers	versions	for	Windows,	Macs,	and	Linux,	so	you	can
use	a	version	of	the	software	no	matter	what	operating	system	you	use.	However,	feel
free	to	pick	whichever	programming	environment	looks	best	to	you.

If	you	surf	to	the	Code::Blocks	page	and	read	the	very	first	sentence,	you	may	worry	a	bit	(or	a	lot):

http://www.codeblocks.org

The	open	source,	cross	platform,	free	C++	IDE.
Open	source	refers	to	software	code	that	users	can	alter	or	improve.	(You	will	not	be	doing	this
anytime	soon,	so	put	it	out	of	your	mind.)	Cross-platform	is	an	adjective	that	means	the	software	can
run	on	different	operating	systems—as	a	beginner,	however,	you	need	concern	yourself	with	only
your	own	platform.	I	think	free	is	a	term	we	can	all	get	behind,	and	IDE	is	short	for	integrated
development	environment,	which	just	means	you	can	write,	edit,	and	debug	your	programs	without
having	to	switch	software	to	do	so.	We	get	to	debugging	shortly.
Don’t	panic	about	the	C++	part.	You	can	write	either	C	or	C++	programs	in	Code::Blocks.	Finding	a	C
compiler	these	days	is	harder.	Most	of	the	time,	C	compilers	come	bundled	with	an	advanced	version
of	C,	known	as	C++.	Therefore,	when	you	look	for	a	C	compiler,	you	will	almost	always	find	a
combination	C	and	C++	compiler,	and	often	the	C++	functionality	is	highlighted.	The	good	news	is
that,	after	you	learn	C,	you	will	already	have	a	C++	compiler	and	you	won’t	have	to	learn	the	ins	and
outs	of	a	new	IDE.
Figure	1.1	shows	the	Code::Blocks	home	page.	To	download	the	C/C++	IDE,	click	the	Downloads
choice	under	the	Main	section	in	the	left	column.

FIGURE	1.1	The	home	page	for	Code::Blocks.	You	want	to	focus	on	the	Downloads	option.

After	you	select	Downloads,	you	are	taken	to	a	page	that	further	discusses	three	options:	Binaries,
Source,	and	SVN.	The	latter	two	options	are	advanced,	so	you	can	ignore	them.	Click	Binaries.

	Note

Two	things	to	consider	when	doing	this	installation.	First,	the	screen	shots	in	the	book
will	probably	be	a	little	different	than	what	you	see	on	the	Internet—Code::Blocks	is
constantly	improving	the	software,	so	the	numbers	(which	refer	to	the	software
version)	are	constantly	increasing.	The	version	of	Code::Blocks	used	in	the	book	was
10.05,	but	at	last	check,	they	are	up	to	12.11,	and	the	number	is	probably	even	larger	by
the	time	you	read	this.	Second,	if	you	are	a	Windows	user,	make	sure	you	select	the
larger	file	to	download	(which	has	mingw	in	its	title).	That	version	has	debugging	tools
that	will	come	in	handy	when	you	become	a	C-soned	programmer.	(Get	it?	No?	Just	me
then?)

The	next	page	presents	a	variety	of	options,	depending	on	your	operating	system.	If	you	select	the
Windows	option,	choose	the	second	option,	highlighted	in	Figure	1.2.	Having	the	full	compiler	and

debugger	will	come	in	handy.

FIGURE	1.2	Selecting	the	Windows	IDE	for	download.	You	can	choose	either	downloading	source.

After	you	choose	to	download	the	program,	go	get	yourself	a	snack—it’s	a	big	file,	so	it	takes	several
minutes	to	completely	download.	When	it	does,	click	the	file	and	accept	all	defaults.	(Only	seasoned
programmers	need	to	tweak	the	installation.)	Soon	enough,	Code::Blocks	will	be	running	on	your
computer.	After	you	exit	the	Tip	of	the	Day	and	set	Code::Blocks	as	the	associated	program	with	all
.c	and	.cpp	files,	you	can	also	close	the	scripting	window.	You	should	be	left	with	the	opening
screen	of	the	software,	pictured	in	Figure	1.3.

FIGURE	1.3	Welcome	to	your	programming	home!

	Note

The	C	program	you	write	is	called	source	code.	A	compiler	translates	C	source	code
into	machine	language.	Computers	are	made	up	of	nothing	more	than	thousands	of
electrical	switches	that	are	either	on	or	off.	Therefore,	computers	must	ultimately	be
given	instructions	in	binary.	The	prefix	bi-	means	“two,”	and	the	two	states	of
electricity	are	called	binary	states.	It’s	much	easier	to	use	a	C	compiler	to	convert	your
C	programs	into	1s	and	0s	that	represent	internal	on	and	off	switch	settings	than	for
you	to	do	it	yourself.

The	Programming	Process
Most	people	follow	these	basic	steps	when	writing	a	program:

1.	Decide	exactly	what	the	program	should	do.
2.	Use	an	editor	to	write	and	save	your	programming	language	instructions.	An	editor	is	a	lot	like
a	word	processor	(although	not	usually	as	fancy)	that	lets	you	create	and	edit	text.	All	the	popular
C	compilers	include	an	integrated	editor	along	with	the	programming	language	compiler.	All	C
program	filenames	end	in	the	.c	file	extension.

3.	Compile	the	program.
4.	Check	for	program	errors.	If	any	appear,	fix	them	and	go	back	to	step	3.
5.	Execute	the	program.

	Note

An	error	in	a	computer	program	is	called	a	bug.	Getting	rid	of	errors	is	called
debugging	a	program.

Take	some	time	to	explore	Code::Blocks	or	whatever	compiler	you	choose	to	install	on	your
computer.	A	robust	IDE	lets	you	perform	these	five	steps	easily,	all	from	within	the	same
environment.	You	can	compile	your	program,	view	any	errors,	fix	the	errors,	run	the	program,	and
look	at	the	results,	all	from	within	the	same	screen	and	using	a	uniform	set	of	menus.

	Warning

If	you	have	never	programmed,	this	all	might	seem	confusing.	Relax.	Most	of	today’s
C	compilers	come	with	a	handy	tutorial	you	can	use	to	learn	the	basics	of	the
compiler ’s	editor	and	compiling	commands.

Just	in	case	you	still	don’t	fully	understand	the	need	for	a	compiler,	your	source	code	is	like	the	raw

materials	that	your	computer	needs.	The	compiler	is	like	a	machine	that	converts	those	raw	materials
to	a	final	product,	a	compiled	program	that	the	computer	can	understand.

Using	C
C	is	more	efficient	than	most	programming	languages.	It	is	also	a	relatively	small	programming
language.	In	other	words,	you	don’t	have	to	learn	many	commands	in	C.	Throughout	this	book,	you
will	learn	about	C	commands	and	other	elements	of	the	C	language,	such	as	operators,	functions,	and
preprocessor	directives.
Because	of	the	many	possible	versions	of	C,	a	committee	known	as	the	American	National	Standards
Institute	(ANSI)	committee	developed	a	set	of	rules	(known	as	ANSI	C)	for	all	versions	of	C.	As	long
as	you	run	programs	using	an	ANSI	C	compiler,	you	can	be	sure	that	you	can	compile	your	C
programs	on	almost	any	computer	that	has	an	ANSI	C	compiler.

	Tip

In	1983,	ANSI	created	the	X3J11	committee	to	set	a	standard	version	of	C.	This	became
known	as	ANSI	C.	The	most	recent	version	of	ANSI	C,	C11,	was	formally	adopted	in
2011.

As	soon	as	you	compile	a	C	program,	you	can	run	the	compiled	program	on	any	computer	that	is
compatible	with	yours,	whether	or	not	the	computer	has	an	ANSI	C	compiler.	“Great!”	you	might	be
saying.	“But	when	do	I	get	to	write	my	first	C	program,	let	alone	compile	or	run	it?”	Fear	not
—Chapter	2,	“Writing	Your	First	C	Program,”	takes	you	on	your	maiden	C	programming	voyage.

The	Absolute	Minimum
This	chapter	introduced	you	to	the	C	programming	language	and	helped	you	select	a
compiler	to	edit,	debug,	and	run	your	program.	Here	are	a	few	key	points	to
remember:
•	Get	a	C	compiler	and	install	it	on	your	computer.
•	Get	ready	to	learn	the	C	programming	language.
•	Don’t	worry	that	C	is	too	complex.	This	book	breaks	down	C	concepts	into	easily
digestible	bits.	With	practice,	you	will	do	just	fine.

2.	Writing	Your	First	C	Program

In	This	Chapter
•	Typing	your	first	program
•	Using	the	main()	function
•	Identifying	kinds	of	data

You	get	to	see	your	first	C	program	in	this	chapter!	Please	don’t	try	to	understand	every	character	of
the	C	programs	discussed	here.	Relax	and	just	get	familiar	with	the	look	and	feel	of	C.	After	a	while,
you	will	begin	to	recognize	elements	common	to	all	C	programs.

A	Down-and-Dirty	Chunk	of	Code
This	section	shows	you	a	short	but	complete	C	program	and	discusses	another	program	that	appears
in	Appendix	B,	“The	Draw	Poker	Program.”	Both	programs	contain	common	and	different	elements.
The	first	program	is	extremely	simple:
Click	here	to	view	code	image

/*	Prints	a	message	on	the	screen	*/
#include	<stdio.h>
main()
{
						printf("Just	one	small	step	for	coders.	One	giant	leap	for");
						printf("	programmers!\n");
						return	0;
}

Open	your	programming	software	and	type	in	the	program	as	listed.	Simple,	right?	Probably	not	the
first	time	you	use	your	new	compiler.	When	you	open	Code::Blocks	for	the	first	time,	you	will	be
greeted	by	a	“Tip	of	the	Day.”	These	tips	will	come	in	handy	later,	but	right	now	you	can	just	get	rid
of	it	by	clicking	Close.
To	create	your	program,	Click	the	File	Menu	and	select	New.	Choose	Empty	File	from	the	options
that	appear	on	the	submenu.	Now	you’ve	got	a	nice	clean	file	to	start	writing	your	seven-line
program.
After	you	type	in	your	program,	you	will	need	to	compile	or	build	your	program.	To	do	this,	click
the	little	yellow	gear	icon	in	the	upper-left	corner.	If	you’ve	typed	the	program	in	exactly	and	had	no
errors,	you	can	then	run	the	program	by	clicking	the	green	right-facing	arrow	next	to	the	gear.	(The
next	icon	in	that	row,	with	a	gear	and	arrow,	will	do	both	the	compiling	and	running	of	the	program,
simplifying	your	life	by	reducing	the	number	of	arduous	clicks	you	must	perform	from	two	to	one.)
When	you	compile	(or	build)	the	program	and	run	it,	you	should	see	something	like	Figure	2.1.

FIGURE	2.1	The	output	of	your	first	program.

	Note

Producing	that	one-line	message	took	a	lot	of	work!	Actually,	of	the	eight	lines	in	the
program,	only	two—the	ones	that	start	with	printf—do	the	work	that	produces	the
output.	The	other	lines	provide	“housekeeping	chores”	common	to	most	C	programs.

To	see	a	much	longer	program,	glance	at	Appendix	B.	Although	the	Draw	Poker	game	there	spans
several	pages,	it	contains	elements	common	to	the	shorter	program	you	just	saw.
Look	through	both	the	programs	just	discussed	and	notice	any	similarities.	One	of	the	first	things	you
might	notice	is	the	use	of	braces	({}),	parentheses	(()),	and	backslashes	(\).	Be	careful	when	typing
C	programs	into	your	C	compiler.	C	gets	picky,	for	instance,	if	you	accidentally	type	a	square	bracket
([)	when	you	should	type	a	brace.

	Warning

In	addition	to	making	sure	you	don’t	type	the	wrong	character,	be	careful	when	typing
code	in	a	word	processor	and	then	copying	it	to	your	IDE.	I	typed	the	previous
program	in	Word	(for	this	book)	and	then	copied	it	to	Code::Blocks.	When	compiling
the	program,	I	received	a	number	of	errors	because	my	quotes	on	the	printf	line
were	smart	quotes	created	by	the	word	processor	(to	give	that	cool	slanted	look),	and
the	compiler	did	not	recognize	them.	After	I	deleted	the	quotes	on	the	line	and	retyped
them	in	my	programming	editor,	the	code	compiled	just	fine.	So	if	you	get	errors	in
programs,	make	sure	the	quotes	are	not	the	culprit.

C	isn’t	picky	about	everything.	For	instance,	most	of	the	spacing	you	see	in	C	programs	makes	the
programs	clearer	to	people,	not	to	C.	As	you	program,	add	blank	lines	and	indent	sections	of	code
that	go	together	to	help	the	appearance	of	the	program	and	to	make	it	easier	for	you	to	find	what	you
are	looking	for.

	Tip

Use	the	Tab	key	to	indent	instead	of	typing	a	bunch	of	spaces.	Most	C	editors	let	you
adjust	the	tab	spacing	(the	number	of	spaces	that	appear	when	you	press	Tab).	Some	C
program	lines	get	long,	so	a	tab	setting	of	three	provides	ample	indention	without
making	lines	too	long.

C	requires	that	you	use	lowercase	letters	for	all	commands	and	predefined	functions.	(You	learn	what
a	function	is	in	the	next	section.)	About	the	only	time	you	use	uppercase	letters	is	on	a	line	with
#define	and	inside	the	printed	messages	you	write.

The	main()	Function

The	most	important	part	of	a	C	program	is	its	main()	function.	Both	of	the	programs	discussed
earlier	have	main()	functions.	Although	at	this	point	the	distinction	is	not	critical,	main()	is	a	C
function,	not	a	C	command.	A	function	is	nothing	more	than	a	routine	that	performs	some	task.	Some
functions	come	with	C,	and	some	are	created	by	you.	C	programs	are	made	up	of	one	or	more
functions.	Each	program	must	always	include	a	main()	function.	A	function	is	distinguished	from	a
command	by	the	parentheses	that	follow	the	function	name.	These	are	functions:
Click	here	to	view	code	image

main()	calcIt()		printf()				strlen()

and	these	are	commands:
Click	here	to	view	code	image

return		while				int			if				float

When	you	read	other	C	programming	books,	manuals,	and	webpages,	the	author	might	decide	to	omit
the	parenthesis	from	the	end	of	function	names.	For	example,	you	might	read	about	the	printf
function	instead	of	printf().	You’ll	learn	to	recognize	function	names	soon	enough,	so	such
differences	won’t	matter	much	to	you.	Most	of	the	time,	authors	want	to	clarify	the	differences
between	functions	and	nonfunctions	as	much	as	possible,	so	you’ll	usually	see	the	parentheses.

	Warning

One	of	the	functions	just	listed,	calcIt(),	contains	an	uppercase	letter.	However,	the
preceding	section	said	you	should	stay	away	from	uppercase	letters.	If	a	name	has
multiple	parts,	as	in	doReportPrint(),	it’s	common	practice	to	use	uppercase
letters	to	begin	the	separate	words,	to	increase	readability.	(Spaces	aren’t	allowed	in
function	names.)	Stay	away	from	typing	words	in	all	uppercase,	but	an	uppercase	letter
for	clarity	once	in	a	while	is	okay.

The	required	main()	function	and	all	of	C’s	supplied	function	names	must	contain	lowercase	letters.
You	can	use	uppercase	for	the	functions	that	you	write,	but	most	C	programmers	stay	with	the
lowercase	function	name	convention.
Just	as	the	home	page	is	the	beginning	place	to	surf	a	website,	main()	is	always	the	first	place	the
computer	begins	when	running	your	program.	Even	if	main()	is	not	the	first	function	listed	in	your
program,	main()	still	determines	the	beginning	of	the	program’s	execution.	Therefore,	for
readability,	make	main()	the	first	function	in	every	program	you	write.	The	programs	in	the	next
several	chapters	have	only	one	function:	main().	As	you	improve	your	C	skills,	you’ll	learn	why
adding	functions	after	main()	improves	your	programming	power	even	more.	Chapter	30,
“Organizing	Your	Programs	with	Functions,”	covers	writing	your	own	functions.
After	the	word	main(),	you	always	see	an	opening	brace	({).	When	you	find	a	matching	closing
brace	(}),	main()	is	finished.	You	might	see	additional	pairs	of	braces	within	a	main()	function	as
well.	For	practice,	look	again	at	the	long	program	in	Appendix	B.	main()	is	the	first	function	with
code,	and	several	other	functions	follow,	each	with	braces	and	code.

	Note

The	statement	#include	<stdio.h>	is	needed	in	almost	every	C	program.	It	helps
with	printing	and	getting	data.	For	now,	always	put	this	statement	somewhere	before
main().	You	will	understand	why	the	#include	is	important	in	Chapter	7,	“Making
Your	Programs	More	Powerful	with	#include	and	#define.”

Kinds	of	Data
Your	C	programs	must	use	data	made	up	of	numbers,	characters,	and	words;	programs	process	that
data	into	meaningful	information.	Although	many	different	kinds	of	data	exist,	the	following	three
data	types	are	by	far	the	most	common	used	in	C	programming:

•	Characters
•	Integers
•	Floating	points	(also	called	real	numbers)

	Tip

You	might	be	yelling	“How	much	math	am	I	going	to	have	to	learn?!	I	didn’t	think	that
was	part	of	the	bargain!”	Well,	you	can	relax,	because	C	does	your	math	for	you;	you
don’t	have	to	be	able	to	add	2	and	2	to	write	C	programs.	You	do,	however,	have	to
understand	data	types	so	that	you	will	know	how	to	choose	the	correct	type	when	your
program	needs	it.

Characters	and	C
A	C	character	is	any	single	character	that	your	computer	can	represent.	Your	computer	knows	256
different	characters.	Each	of	them	is	found	in	something	called	the	ASCII	table,	located	in	Appendix
A,	“The	ASCII	Table.”	(ASCII	is	pronounced	askee.	If	you	don’t	know-ee,	you	can	just	ask-ee.)
Anything	your	computer	can	represent	can	be	a	character.	Any	or	all	of	the	following	can	be
considered	characters:
A								a										4										%									Q										!											+										=]

	Note

The	American	National	Standards	Institute	(ANSI),	which	developed	ANSI	C,	also
developed	the	code	for	the	ASCII	chart.

	Tip

Even	the	spacebar	produces	a	character.	Just	as	C	needs	to	keep	track	of	the	letters	of
the	alphabet,	the	digits,	and	all	the	other	characters,	it	has	to	keep	track	of	any	blank
spaces	your	program	needs.

As	you	can	see,	every	letter,	number,	and	space	is	a	character	to	C.	Sure,	a	4	looks	like	a	number,	and
it	sometimes	is,	but	it	is	also	a	character.	If	you	indicate	that	a	particular	4	is	a	character,	you	can’t	do
math	with	it.	If	you	indicate	that	another	4	is	to	be	a	number,	you	can	do	math	with	that	4.	The	same
holds	for	the	special	symbols.	The	plus	sign	(+)	is	a	character,	but	the	plus	sign	also	performs
addition.	(There	I	go,	bringing	math	back	into	the	conversation!)
All	of	C’s	character	data	is	enclosed	in	apostrophes	(').	Some	people	call	apostrophes	single
quotation	marks.	Apostrophes	differentiate	character	data	from	other	kinds	of	data,	such	as	numbers
and	math	symbols.	For	example,	in	a	C	program,	all	of	the	following	are	character	data:
'A'										'a'										'4'										'%'										'	'										'-'
None	of	the	following	can	be	character	data	because	they	have	no	apostrophes	around	them:

A													a											4											%											-

	Tip

None	of	the	following	are	valid	characters.	Only	single	characters,	not	multiple
characters,	can	go	inside	apostrophes.
‘C	is	fun’
‘C	is	hard’
‘I	should	be	sailing!’

The	first	program	in	this	chapter	contains	the	character	'\n'.	At	first,	you	might	not	think	that	\n	is
a	single	character,	but	it’s	one	of	the	few	two-character	combinations	that	C	interprets	as	a	single
character.	This	will	make	more	sense	later.
If	you	need	to	specify	more	than	one	character	(except	for	the	special	characters	that	you’ll	learn,	like
the	\n	just	described),	enclose	the	characters	in	quotation	marks	(").	A	group	of	multiple	characters
is	called	a	string.	The	following	is	a	C	string:
“C	is	fun	to	learn.”

	Note

That’s	really	all	you	need	to	know	about	characters	and	strings	for	now.	In	Chapters	4
through	6,	you’ll	learn	how	to	use	them	in	programs.	When	you	see	how	to	store
characters	in	variables,	you’ll	see	why	the	apostrophe	and	quotation	marks	are
important.

Numbers	in	C
Although	you	might	not	have	thought	about	it	before	now,	numbers	take	on	many	different	sizes	and
shapes.	Your	C	program	must	have	a	way	to	store	numbers,	no	matter	what	the	numbers	look	like.
You	must	store	numbers	in	numeric	variables.	Before	you	look	at	variables,	a	review	of	the	kinds	of
numbers	will	help.
Whole	numbers	are	called	integers.	Integers	have	no	decimal	points.	(Remember	this	rule:	Like	most
reality	shows,	integers	have	no	point	whatsoever.)	Any	number	without	a	decimal	point	is	an	integer.
All	of	the	following	are	integers:
10							54							0							–121							–68							752

	Warning

Never	begin	an	integer	with	a	leading	0	(unless	the	number	is	zero),	or	C	will	think
you	typed	the	number	in	hexadecimal	or	octal.	Hexadecimal	and	octal,	sometimes
called	base-16	and	base-8,	respectively,	are	weird	ways	of	representing	numbers.	053
is	an	octal	number,	and	0x45	is	a	hexadecimal	number.	If	you	don’t	know	what	all	that
means,	just	remember	for	now	that	C	puts	a	hex	on	you	if	you	mess	around	with
leading	zeroes	before	integers.

Numbers	with	decimal	points	are	called	floating-point	numbers.	All	of	the	following	are	floating-
point	numbers:
547.43									0.0														0.44384														9.1923													–168.470										.22

	Tip

As	you	can	see,	leading	zeroes	are	okay	in	front	of	floating-point	numbers.

The	choice	of	using	integers	or	floating-point	numbers	depends	on	the	data	your	programs	are
working	with.	Some	values	(such	as	ages	and	quantities)	need	only	integers;	other	values	(such	as
money	amounts	or	weights)	need	the	exact	amounts	floating-point	numbers	can	provide.	Internally,	C
stores	integers	differently	than	floating-point	values.	As	you	can	see	from	Figure	2.2,	a	floating-point
value	usually	takes	twice	as	much	memory	as	an	integer.	Therefore,	if	you	can	get	away	with	using
integers,	do	so—save	floating	points	for	values	that	need	the	decimal	point.

FIGURE	2.2	Storing	floating-point	values	often	takes	more	memory	than	integers.

	Note

Figure	2.2	shows	you	that	integers	generally	take	less	memory	than	floating-point
values,	no	matter	how	large	or	small	the	values	stored	there	are.	On	any	given	day,	a
large	post	office	box	might	get	much	less	mail	than	a	smaller	one.	The	contents	of	the
box	don’t	affect	what	the	box	is	capable	of	holding.	The	size	of	C’s	number	storage	is
affected	not	by	the	value	of	the	number,	but	by	the	type	of	the	number.

Different	C	compilers	use	different	amounts	of	storage	for	integers	and	floating-point	values.	As	you
will	learn	later,	there	are	ways	of	finding	out	exactly	how	much	memory	your	C	compiler	uses	for
each	type	of	data.

Wrapping	Things	Up	with	Another	Example	Program
This	chapter ’s	goal	was	to	familiarize	you	with	the	“look	and	feel”	of	a	C	program,	primarily	the
main()	function	that	includes	executable	C	statements.	As	you	saw,	C	is	a	free-form	language	that
isn’t	picky	about	spacing.	C	is,	however,	picky	about	lowercase	letters.	C	requires	lowercase	spellings
of	all	its	commands	and	functions,	such	as	printf().
At	this	point,	don’t	worry	about	the	specifics	of	the	code	you	see	in	this	chapter.	The	rest	of	the	book
explains	all	the	details.	But	it	is	still	a	great	idea	to	type	and	study	as	many	programs	as	possible—
practice	will	increase	your	coding	confidence!	So	here	is	a	second	program,	one	that	uses	the	data
types	you	just	covered:
Click	here	to	view	code	image

/*	A	Program	that	Uses	the	Characters,	Integers,	and	Floating-Point
Data	Types	*/
#include	<stdio.h>
main()
{
						printf("I	am	learning	the	%c	programming	language\n",	'C');
						printf("I	have	just	completed	Chapter	%d\n",	2);
						printf("I	am	%.1f	percent	ready	to	move	on	",	99.9);
						printf("to	the	next	chapter!\n");
						return	0;
}

This	short	program	does	nothing	more	than	print	three	messages	onscreen.	Each	message	includes
one	of	the	three	data	types	mentioned	in	this	chapter:	a	character	(C),	an	integer	(2),	and	a	floating-
point	number	(99.9).

	Note

On	the	first	printf	statement,	the	%c	tells	the	program	where	to	introduce	the
character	'C'.	It	is	%c	as	an	abbreviation	for	character,	not	because	the	character	is	a
C.	If	you	were	learning	the	N	programming	language,	you	would	still	use	%c	to	place
the	'N'	character.

The	main()	function	is	the	only	function	in	the	program	written	by	the	programmer.	The	left	and
right	braces	({	and	})	always	enclose	the	main()	code,	as	well	as	any	other	function’s	code	that	you
might	add	to	your	programs.	You’ll	see	another	function,	printf(),	that	is	a	built-in	C	function	that
produces	output.	Here	is	the	program’s	output:
Click	here	to	view	code	image

I	am	learning	the	C	programming	language
I	have	just	completed	Chapter	2
I	am	99.9	percent	ready	to	move	on	to	the	next	chapter!

	Tip

Try	playing	around	with	the	program,	changing	the	messages	or	data.	You	should	even
try	making	a	mistake	when	typing,	like	forgetting	a	semicolon	(;)	at	the	end	of	a	line,
just	to	see	what	happens	when	you	try	to	compile	the	program.	Learning	from	mistakes
can	make	you	a	better	programmer!

The	Absolute	Minimum
This	chapter	familiarized	you	with	the	“look	and	feel”	of	a	C	program,	primarily	the
main()	function.	The	key	points	from	this	chapter	include:
•	A	C	function	must	have	parentheses	following	its	name.	A	C	program	consists	of
one	or	more	functions.	The	main()	function	is	always	required.	C	executes
main()	before	any	other	function.
•	Put	lots	of	extra	spacing	in	your	C	programs,	to	make	them	more	readable.
•	Don’t	put	leading	zeroes	before	integers	unless	the	integer	is	zero.
•	If	you	use	a	character,	enclose	it	in	single	quotes.	Strings	go	inside	quotation	marks.
Integers	are	whole	numbers	without	decimal	points.	Floating-point	numbers	have
decimal	points.

3.	What	Does	This	Do?	Clarifying	Your	Code	with	Comments

In	This	Chapter
•	Commenting	on	your	code
•	Specifying	comments
•	Using	whitespace
•	Applying	a	second	style	for	your	comments

Your	computer	must	be	able	to	understand	your	programs.	Because	the	computer	is	a	dumb	machine,
you	must	be	careful	to	spell	C	commands	exactly	right	and	type	them	in	the	order	you	want	them
executed.	However,	people	also	read	your	programs.	You	will	change	your	programs	often,	and	if
you	write	programs	for	a	company,	the	company’s	needs	will	change	over	time.	You	must	ensure	that
your	programs	are	understandable	to	people	as	well	as	to	computers.	Therefore,	you	should
document	your	programs	by	explaining	what	they	do.

Commenting	on	Your	Code
Throughout	a	C	program,	you	should	add	comments.	Comments	are	messages	scattered	throughout
your	programs	that	explain	what’s	going	on.	If	you	write	a	program	to	calculate	payroll,	the
program’s	comments	explain	the	gross	pay	calculations,	state	tax	calculations,	federal	tax
calculations,	social	security	calculations,	deductions,	and	all	the	other	calculations	that	are	going	on.

	Note

If	you	write	the	program	and	only	you	will	use	it,	you	don’t	really	need	comments,
right?	Well,	not	exactly.	C	is	a	cryptic	programming	language.	Even	if	you	write	the
program,	you	aren’t	always	able	to	follow	it	later—you	might	forget	why	you	wrote	a
particular	chunk	of	code,	so	a	comment	will	help	to	decipher	matters.

	Tip

Add	comments	as	you	write	your	programs.	Get	in	the	habit	now,	because
programmers	rarely	go	back	and	add	comments	later.	When	they	must	make	a	change
later,	programmers	often	lament	about	their	program’s	lack	of	comments.
Another	advantage	is	gained	when	commenting	as	you	write	the	program	instead	of
waiting	until	after	you	finish.	While	writing	programs,	you	often	refer	back	to
statements	you	wrote	earlier	in	the	process.	Instead	of	reinterpreting	C	code	you’ve
already	written,	you	can	scan	through	your	comments,	finding	sections	of	code	that
you	need	faster.	If	you	didn’t	comment,	you	would	have	to	decipher	your	C	code	every
time	you	looked	through	a	piece	of	it.

Program	maintenance	is	the	process	of	changing	a	program	over	time	to	fix	hidden	bugs	and	to	adapt
the	program	to	a	changing	environment.	If	you	write	a	payroll	program	for	a	company,	that	company
could	eventually	change	the	way	it	does	payroll	(to	go	from	biweekly	to	weekly,	as	an	example),	and
you	(or	another	programmer)	will	have	to	modify	the	payroll	program	to	conform	to	the	company’s
new	payroll	procedures.	Commenting	speeds	program	maintenance.	With	comments,	you	or	another
programmer	can	quickly	scan	through	a	program	listing	to	find	the	areas	that	need	changing.
Comments	are	not	C	commands.	C	ignores	every	comment	in	your	program.	Comments	are	for
people,	and	the	programming	statements	residing	outside	the	comments	are	for	the	computer.
Consider	the	following	C	statement:

return	((s1	<	s2)	?	s1	:	s2);

You	don’t	know	C	yet,	but	even	if	you	did,	this	statement	takes	some	study	to	figure	out.	Isn’t	this
better?
Click	here	to	view	code	image

return	((s1	<	s2)	?	s1	:	s2);	/*	Gets	the	smaller	of	2	values	*/

The	next	section	explains	the	syntax	of	comments,	but	for	now,	you	can	see	that	the	message	between
the	/*	and	the	*/	is	a	comment.
The	closer	a	comment	is	to	spoken	language	and	the	further	a	comment	is	from	C	code,	the	better	the
comment	is.	Don’t	write	a	comment	just	for	the	sake	of	commenting.	The	following	statement’s
comment	is	useless:
Click	here	to	view	code	image

printf("Payroll");		/*	Prints	the	word	"Payroll"	*/

	Warning

You	don’t	know	C	yet,	and	you	still	don’t	need	the	preceding	line’s	comment!
Redundant	comments	are	a	waste	of	your	time,	and	they	don’t	add	anything	to
programs.	Add	comments	to	explain	what	is	going	on	to	people	(including	yourself)
who	might	need	to	read	your	program.

Specifying	Comments
C	comments	begin	with	/*	and	end	with	*/.	Comments	can	span	several	lines	in	a	program,	and	they
can	go	just	about	anywhere	in	a	program.	All	of	the	following	lines	contain	C	comments:
Click	here	to	view	code	image

/*	This	is	a	comment	that	happens	to	span	two	lines
before	coming	to	an	end	*/
/*	This	is	a	single-line	comment	*/

for	(i	=	0;	i	<	25;	i++)		/*	Counts	from	0	to	25	*/

	Note

Notice	that	comments	can	go	on	lines	by	themselves	or	before	or	after	programming
statements.	The	choice	of	placement	depends	on	the	length	of	the	comment	and	the
amount	of	code	the	comment	describes.

The	Draw	Poker	program	in	Appendix	B,	“The	Draw	Poker	Program,”	contains	all	kinds	of
comments.	By	reading	through	the	comments	in	that	program,	you	can	get	an	idea	of	what	the
program	does	without	ever	looking	at	the	C	code	itself.
Don’t	comment	every	line.	Usually	only	every	few	lines	need	comments.	Many	programmers	like	to
place	a	multiline	comment	before	a	section	of	code	and	then	insert	a	few	smaller	comments	on	lines
that	need	them.	Here	is	a	complete	program	with	different	kinds	of	comments:
Click	here	to	view	code	image

/*	The	first	code	listing	from	Chapter	3	of	The	Absolute	Beginner's
Guide	to	C
Teaching	new	programmer	to	create	kick-butt	code	since	1994!	*/
/*	A	Dean	Miller	joint	*/
/*	Filename	Chapter3ex1.c	*/
/*	Totals	how	much	money	will	be	spent	on	holiday	gifts.	*/
#include	<stdio.h>
main()
{
							float	gift1,	gift2,	gift3,	gift4,	gift5;	/*	Variables	to	hold
costs.	*/
							float	total;	/*	Variable	to	hold	total	amount	*/

/*Asks	for	each	gift	amount	*/

printf("How	much	do	you	want	to	spend	on	your	mom?	");
scanf("	%f",	&gift1);
printf("How	much	do	you	want	to	spend	on	your	dad?	");
scanf("	%f",	&gift2);
printf("How	much	do	you	want	to	spend	on	your	sister?	");
scanf("	%f",	&gift3);
printf("How	much	do	you	want	to	spend	on	your	brother?	");
scanf("	%f",	&gift4);
printf("How	much	do	you	want	to	spend	on	your	favorite	");
printf("C	Programming	author?	");
scanf("	%f",	&gift5);

total	=	gift1+gift2+gift3+gift4+gift5;	/*	Computes	total	amount
spent	on	gifts	*/
printf("\nThe	total	you	will	be	spending	on	gifts	is	$%.2f",	total);
return	0;	/*Ends	the	program	*/
}

Many	companies	require	that	their	programmers	embed	their	own	names	in	comments	at	the	top	of
programs	they	write.	If	changes	need	to	be	made	to	the	program	later,	the	original	programmer	can
be	found	to	help.	It’s	also	a	good	idea	to	include	the	filename	that	you	use	to	save	the	program	on	disk
at	the	beginning	of	a	program	so	that	you	can	find	a	program	on	disk	when	you	run	across	a	printed
listing.

	Note

This	book	might	comment	too	much	in	some	places,	especially	in	the	beginning
chapters.	You	are	so	unfamiliar	with	C	that	every	little	bit	of	explanation	helps.

	Tip

For	testing	purposes,	you	might	find	it	useful	to	comment	out	a	section	of	code	by
putting	/*	and	*/	around	it.	By	doing	this,	you	cause	C	to	ignore	that	section	of	code,
and	you	can	concentrate	on	the	piece	of	code	you’re	working	on.	Do	not,	however,
comment	out	a	section	of	code	that	already	contains	comments	because	you	cannot
embed	one	comment	within	another.	The	first	*/	that	C	runs	across	triggers	the	end	of
the	comment	you	started.	When	C	finds	the	next	*/	without	a	beginning	/*,	you	get	an
error.

Whitespace
Whitespace	is	the	collection	of	spaces	and	blank	lines	you	find	in	many	programs.	In	a	way,
whitespace	is	more	important	than	comments	in	making	your	programs	readable.	People	need
whitespace	when	looking	through	a	C	program	because	those	programs	are	more	readable	than
programs	that	run	together	too	much.	Consider	the	following	program:
Click	here	to	view	code	image

#include	<stdio.h>
main(){float	a,	b;printf("How	much	of	a	bonus	did	you	get?
");scanf("	%f",
&a);b	=	.85		*	a;printf("If	you	give	15	percent	to	charity,	you	will
still	have	%.2f.",	b);return	0;}

To	a	C	compiler,	this	is	a	perfectly	good	C	program.	You	might	get	a	headache	looking	at	it,	however.
Although	the	code	is	simple	and	it	doesn’t	take	a	lot	of	effort	to	figure	out	what	is	going	on,	the
following	program	is	much	easier	to	decipher,	even	though	it	has	no	comments:
Click	here	to	view	code	image

#include	<stdio.h>
main()
{
							float	a,	b;

							printf("How	much	of	a	bonus	did	you	get?	");
							scanf("	%f",	&a);

							b	=	.85		*	a;
							printf("If	you	give	15	percent	to	charity,	you	will	still	");
							printf("have	%.2f.",	b);
							return	0;
}

This	program	listing	is	identical	to	the	previous	program,	except	that	this	one	includes	whitespace
and	line	breaks.	The	physical	length	of	a	program	does	not	determine	readability;	the	amount	of
whitespace	does.	(Of	course,	a	few	comments	would	improve	this	program,	too,	but	the	purpose	of
this	exercise	is	to	show	you	the	difference	between	no	whitespace	and	good	whitespace.)

	Note

You	might	be	wondering	why	the	first	line	of	the	squeezed	program,	the	one	with	the
#include,	did	not	contain	code	after	the	closing	angle	brace.	After	all,	the	point	of
unreadable	code	would	seem	to	be	made	even	more	strong	if	the	#include	contained
trailing	code.	Code::Blocks	(and	several	other	compilers)	refuse	to	allow	code	after	a
#include	(or	any	other	statement	that	begins	with	a	pound	sign	[#]).

A	Second	Style	for	Your	Comments
Today’s	C	compilers	support	another	kind	of	comment	that	was	originally	developed	for	C++
programs.	With	its	C99	release,	the	American	National	Standards	Institute	(ANSI)	committee
approved	this	new	kind	of	comment,	so	you	should	be	safe	using	it	(unless	you	are	using	a	really,
really	old	computer	and	compiler!).	The	second	style	of	comment	begins	with	two	slashes	(//)	and
ends	only	at	the	end	of	the	line.
Here	is	an	example	of	the	new	style	of	comment:
Click	here	to	view	code	image

//	Another	Code	Example,	just	with	a	different	commenting	style
#include	<stdio.h>

main()
{
							printf("I	like	these	new	comments!");	//	A	simple	statement
}

Either	style	of	comment	works,	so	the	code	examples	throughout	this	book	take	advantage	of	both.
You	should	become	familiar	with	both	styles	because	each	has	its	uses	as	you	learn	to	write	more
complicated	programs.

The	Absolute	Minimum
You	must	add	comments	to	your	programs—not	for	computers,	but	for	people.	C
programs	can	be	cryptic,	and	comments	eliminate	lots	of	confusion.	Key	points	to
remember	from	this	chapter	include:
•	The	three	rules	of	programming	are	comment,	comment,	comment.	Clarify	your
code	with	abundant	comments.
•	For	multiline	comments,	begin	them	with	/*,	and	C	considers	everything	after	that	a
comment	until	it	encounters	a	closing	*/.
•	For	single-line	comments,	you	can	also	use	//.	C	ignores	the	rest	of	the	line	after
that	point.
•	Use	whitespace	and	line	breaks	to	make	your	programs	easy	to	read.

4.	Your	World	Premiere—Putting	Your	Program’s	Results	Up	on
the	Screen

In	This	Chapter
•	Using	printf()
•	Printing	strings
•	Coding	escape	sequences
•	Using	conversion	characters
•	Putting	it	all	together	with	a	code	example

If	neither	you	nor	anybody	else	could	see	your	program’s	output,	there	would	be	little	use	for	your
program.	Ultimately,	you	have	to	be	able	to	view	the	results	of	a	program.	C’s	primary	means	of
output	is	the	printf()	function.	No	actual	command	performs	output,	but	the	printf()	function
is	a	part	of	every	C	compiler	and	one	of	the	most	used	features	of	the	language.

How	to	Use	printf()

In	a	nutshell,	printf()	produces	output	on	your	screen.	As	the	sample	code	listings	in	Chapters	2,
“Writing	Your	First	C	Program,”	and	3,	“What	Does	This	Do?	Clarifying	Your	Code	with
Comments,”	demonstrated,	printf()	sends	characters,	numbers,	and	words	to	the	screen.	There	is
a	lot	to	printf(),	but	you	don’t	have	to	be	an	expert	in	all	the	printf()	options	(very	few	C
programmers	are)	to	use	it	for	all	your	programs’	screen	output.

The	Format	of	printf()

The	printf()	function	takes	many	forms,	but	when	you	get	used	to	its	format,	printf()	is	easy
to	use.	Here	is	the	general	format	of	printf():
Click	here	to	view	code	image

printf(controlString	[,	data]);

Throughout	this	book,	when	you	are	introduced	to	a	new	command	or	function,	you	will	see	its	basic
format.	The	format	is	the	general	look	of	the	statement.	If	something	in	a	format	appears	in	brackets,
such	as	,	data	in	the	printf	function	just	shown,	that	part	of	the	statement	is	optional.	You	almost
never	type	the	brackets	themselves.	If	brackets	are	required	in	the	command,	that	is	made	clear	in	the
text	following	the	format.	printf()	requires	a	controlString,	but	the	data	following	the
controlString	is	optional.

	Warning

printf()	doesn’t	actually	send	output	to	your	screen,	but	it	does	send	it	to	your
computer ’s	standard	output	device.	Most	operating	systems,	including	Windows,	route
the	standard	output	to	your	screen	unless	you	know	enough	to	route	the	output
elsewhere.	Most	of	the	time,	you	can	ignore	this	standard	output	device	stuff	because
you’ll	almost	always	want	output	to	go	to	the	screen.	Other	C	functions	you	will	learn
about	later	route	output	to	your	printer	and	disk	drives.

	Note

You	might	be	wondering	why	some	of	the	words	in	the	format	appear	in	italics.	It’s
because	they’re	placeholders.	A	placeholder	is	a	name,	symbol,	or	formula	that	you
supply.	Placeholders	are	italicized	in	the	format	of	functions	and	commands	to	let	you
know	that	you	should	substitute	something	at	that	place	in	the	command.

Here	is	an	example	of	a	printf():
Click	here	to	view	code	image

printf("My	favorite	number	is	%d",	7);		//	Prints	My	favorite	number
																																								//	is	7

Because	every	string	in	C	must	be	enclosed	in	quotation	marks	(as	mentioned	in	Chapter	2),	the
controlString	must	be	in	quotation	marks.	Anything	following	the	controlString	is
optional	and	is	determined	by	the	values	you	want	printed.

	Note

Every	C	command	and	function	needs	a	semicolon	(;)	after	it	to	let	C	know	that	the
line	is	finished.	Braces	and	the	first	lines	of	functions	don’t	need	semicolons	because
nothing	is	executing	on	those	lines.	All	statements	with	printf()	should	end	in	a
semicolon.	You	won’t	see	semicolons	after	main(),	however,	because	you	don’t
explicitly	tell	C	to	execute	main().	You	do,	however,	tell	C	to	execute	printf()	and
many	other	functions.	As	you	learn	more	about	C,	you’ll	learn	more	about	semicolon
placement.

Printing	Strings
String	messages	are	the	easiest	type	of	data	to	print	with	printf().	You	have	to	enclose	only	the
string	in	quotation	marks.	The	following	printf()	prints	a	message	on	the	screen:

Click	here	to	view	code	image

printf("You	are	on	your	way	to	C	mastery");

The	message	You	are	on	your	way	to	C	mastery	appears	onscreen	when	the	computer
executes	this	statement.

	Note

The	string	You	are	on	your	way	to	C	mastery	is	the	controlString	in
this	printf().	There	is	little	control	going	on	here—just	output.

The	following	two	printf()	statements	might	not	produce	the	output	you	expect:
printf("Write	code");
printf("Learn	C");

Here	is	what	the	two	printf()	statements	produce:
Write	codeLearn	C

	Tip

C	does	not	automatically	move	the	cursor	down	to	the	next	line	when	a	printf()
executes.	You	must	insert	an	escape	sequence	in	the	controlString	if	you	want	C	to
go	to	the	next	line	after	a	printf().

Escape	Sequences
C	contains	a	lot	of	escape	sequences,	and	you’ll	use	some	of	them	in	almost	every	program	you	write.
Table	4.1	contains	a	list	of	some	of	the	more	popular	escape	sequences.

TABLE	4.1	Escape	Sequences

	Note

The	term	escape	sequence	sounds	harder	than	it	really	is.	An	escape	sequence	is	stored
as	a	single	character	in	C	and	produces	the	effect	described	in	Table	4.1.	When	C	sends
'\a'	to	the	screen,	for	example,	the	computer ’s	bell	sounds	instead	of	the	characters	\
and	a	actually	being	printed.

You	will	see	a	lot	of	escape	sequences	in	printf()	functions.	Any	time	you	want	to	“move	down”
to	the	next	line	when	printing	lines	of	text,	you	must	type	\n	so	that	C	produces	a	newline,	which
moves	the	blinking	cursor	down	to	the	next	line	on	the	screen.	The	following	printf()	statements
print	their	messages	on	separate	lines	because	of	the	\n	at	the	end	of	the	first	one:

printf("Write	code\n");
printf("Learn	C");

	Tip

The	\n	could	have	been	placed	at	the	beginning	of	the	second	line,	and	the	same	output
would	have	occurred.	Because	escape	sequences	are	characters	to	C,	you	must	enclose
them	in	quotation	marks	so	that	C	knows	that	the	escape	sequences	are	part	of	the	string
being	printed.	The	following	also	produces	two	lines	of	output:

printf("Write	code\nLearn	C");

Double	quotation	marks	begin	and	end	a	string,	single	quotation	marks	begin	and	end	a	character,	and
a	backslash	signals	the	start	of	an	escape	sequence,	so	they	have	their	own	escape	sequences	if	you
need	to	print	them.	\a	rings	your	computer ’s	bell,	\b	moves	the	cursor	back	a	line,	and	\t	causes	the
output	to	appear	moved	over	a	few	spaces.	There	are	other	escape	sequences,	but	for	now,	these	are
the	ones	you	are	most	likely	to	use.
The	following	program	listing	demonstrates	the	use	of	all	the	escape	sequences	listed	in	Table	4.1.	As
always,	your	best	bet	is	to	try	this	program	and	then	tweak	it	to	something	you’d	like	to	try:
Click	here	to	view	code	image

//	Absolute	Beginner's	Guide	to	C,	3rd	Edition
//	Chapter	4	Example	1--Chapter4ex1.c

#include	<stdio.h>

main()
{

				/*	These	three	lines	show	you	how	to	use	the	most	popular	Escape
Sequences	*/
				printf("Column	A\tColumn	B\tColumn	C");
				printf("\nMy	Computer\'s	Beep	Sounds	Like	This:	\a!\n");

				printf("\"Letz\bs	fix	that	typo	and	then	show	the	backslash	");
				printf("character	\\\"	she	said\n");

				return	0;
}

After	you	enter,	compile,	and	run	this	code,	you	get	the	following	results:
Click	here	to	view	code	image

Column	A				Column	B				Column	C
My	Computer's	Beep	Sounds	Like	This:	!
"Let's	fix	that	typo	and	then	show	the	backslash	character	\"	she
said

	Note

You	should	understand	a	few	things	about	the	previous	listing.	First,	you	must	always
place	#include	<stdio.h>	at	the	beginning	of	all	programs	that	use	the
printf()	function—it	is	defined	in	stdio.h,	so	if	you	fail	to	remember	that	line	of
code,	you	will	get	a	compiler	error	because	your	program	will	not	understand	how	to
execute	printf().	Also,	different	C/C++	compilers	might	produce	a	different
number	of	tabbed	spaces	for	the	\t	escape	sequence.	Finally,	it	is	important	to	note	that
using	the	\b	escape	sequence	overwrites	anything	that	was	there.	That’s	why	the	'z'
does	not	appear	in	the	output,	but	the	's'	does.

Conversion	Characters
When	you	print	numbers	and	characters,	you	must	tell	C	exactly	how	to	print	them.	You	indicate	the
format	of	numbers	with	conversion	characters.	Table	4.2	lists	a	few	of	C’s	most-used	conversion
characters.

TABLE	4.2	Conversion	Characters

When	you	want	to	print	a	value	inside	a	string,	insert	the	appropriate	conversion	characters	in	the
controlString.	Then	to	the	right	of	the	controlString,	list	the	value	you	want	to	be	printed.
Figure	4.1	is	an	example	of	how	a	printf()	can	print	three	numbers—an	integer,	a	floating-point
value,	and	another	integer.

FIGURE	4.1	printf()	conversion	characters	determine	how	and	where	numbers	print.

Strings	and	characters	have	their	own	conversion	characters	as	well.	Although	you	don’t	need	%s	to
print	strings	by	themselves,	you	might	need	%s	when	printing	strings	combined	with	other	data.	The
next	printf()	prints	a	different	type	of	data	value	using	each	of	the	conversion	characters:
Click	here	to	view	code	image

printf("%s	%d	%f	%c\n",	"Sam",	14,	-8.76,	'X');

This	printf()	produces	this	output:

Sam	14	-8.760000	X

	Note

The	string	Sam	needs	quotation	marks,	as	do	all	strings,	and	the	character	X	needs
single	quotation	marks,	as	do	all	characters.

	Warning

C	is	strangely	specific	when	it	comes	to	floating-point	numbers.	Even	though	the
-8.76	has	only	two	decimal	places,	C	insists	on	printing	six	decimal	places.

You	can	control	how	C	prints	floating-point	values	by	placing	a	period	(.)	and	a	number	between	the
%	and	the	f	of	the	floating-point	conversion	character.	The	number	you	place	determines	the	number
of	decimal	places	your	floating-point	number	prints	to.	The	following	printf()	produces	four
different-looking	numbers,	even	though	the	same	floating-point	number	is	given:
Click	here	to	view	code	image

printf("%f		%.3f		%.2f		%.1f",	4.5678,	4.5678,	4.5678,	4.5678);

C	rounds	the	floating-point	numbers	to	the	number	of	decimal	places	specified	in	the	%.f	conversion
character	and	produces	this	output:

4.567800		4.568		4.57		4.6

	Tip

You	probably	don’t	see	the	value	of	the	conversion	characters	at	this	point	and	think
that	you	can	just	include	the	information	in	the	controlString.	However,	the
conversion	characters	will	mean	a	lot	more	when	you	learn	about	variables	in	the	next
chapter.

The	printf()	controlString	controls	exactly	how	your	output	will	appear.	The	only	reason
two	spaces	appear	between	the	numbers	is	that	the	controlString	has	two	spaces	between	each
%f.

Putting	It	All	Together	with	a	Code	Example
Consider	the	following	program	listing:
Click	here	to	view	code	image

/*	Absolute	Beginner's	Guide	to	C,	3rd	Edition
	Chapter	4	Example	2--Chapter4ex1.c	*/
#include	<stdio.h>

main()
{

				/*	Here	is	some	more	code	to	help	you	with	printf(),	Escape
Sequences,	and	Conversion	Characters	*/
				printf("Quantity\tCost\tTotal\n");
				printf("%d\t\t$%.2f\t$%.2f\n",	3,	9.99,	29.97);
				printf("Too	many	spaces					\b\b\b\b	can	be	fixed	with	the	");
				printf("\\%c	Escape	character\n",	'b');
				printf("\n\a\n\a\n\a\n\aSkip	a	few	lines,	and	beep	");
				printf("a	few	beeps.\n\n\n");
				printf("%s	%c.",	"You	are	kicking	butt	learning",	'C');
				printf("You	just	finished	chapter	%d.\nYou	have	finished	",	4);
				printf("%.1f%c	of	the	book.\n",	12.500,	'%');
				printf("\n\nOne	third	equals	%.2f	or	",	0.333333);
				printf("%.3f	or	%.4f	or	",	0.333333,	0.333333);
				printf("%.5f	or	%.6f\n\n\n",	0.333333,	0.3333333);

				return	0;
}

Enter	this	code	and	compile	and	run	the	program.	You	get	the	output	in	Figure	4.2.

FIGURE	4.2	Output	from	the	second	listing	of	Chapter	4.

Notice	that,	because	of	the	length	of	the	word	Quantity,	the	second	line	needed	two	tabs	to	fit	the
cost	of	the	item	under	the	Cost	heading.	You	might	not	need	this—you	will	just	need	to	test	your
code	to	better	understand	how	many	spaces	the	tab	escape	sequence	moves	your	cursor.	Sometimes
skipping	one	line	isn’t	enough,	but	luckily,	you	can	place	multiple	\n	characters	to	jump	down	as
many	lines	as	you	want.	Finally,	seeing	that	the	%	sign	is	a	big	part	of	conversion	characters,	you
cannot	put	one	in	your	controlString	and	expect	it	to	print.	So	if	you	need	to	print	a	percent	sign
on	the	screen,	use	the	%c	conversion	character	and	place	it	that	way.

The	Absolute	Minimum
The	programs	you	write	must	be	able	to	communicate	with	the	user	sitting	at	the
keyboard.	The	printf()	function	sends	data	to	the	screen.	Key	points	from	this
chapter	to	remember	include:
•	Every	printf()	requires	a	control	string	that	determines	how	your	data	will	look
when	printed.
•	Don’t	expect	C	to	know	how	to	format	your	data	automatically.	You	must	use
conversion	characters.
•	Use	escape	sequences	to	print	newlines,	tabs,	quotes,	and	backslashes,	and	to	beep	the
computer	as	well.
•	Unless	you	want	your	floating-point	numbers	to	print	to	six	places	after	the	decimal
point,	use	the	%f	conversion	character ’s	decimal	control.

5.	Adding	Variables	to	Your	Programs

In	This	Chapter
•	Identifying	kinds	of	variables
•	Naming	variables
•	Defining	variables
•	Storing	data	in	variables

No	doubt	you’ve	heard	that	computers	process	data.	Somehow	you’ve	got	to	have	a	way	to	store	that
data.	In	C,	as	in	most	programming	languages,	you	store	data	in	variables.	A	variable	is	nothing	more
than	a	box	in	your	computer ’s	memory	that	holds	a	number	or	a	character.	Chapter	2,	“Writing	Your
First	C	Program,”	explained	the	different	types	of	data:	characters,	strings,	integers,	and	floating
points.	This	chapter	explains	how	to	store	those	types	of	data	inside	your	programs.

Kinds	of	Variables
C	has	several	different	kinds	of	variables	because	there	are	several	different	kinds	of	data.	Not	just
any	variable	will	hold	just	any	piece	of	data.	Only	integer	variables	can	hold	integer	data,	only
floating-point	variables	can	hold	floating-point	data,	and	so	on.

	Note

Throughout	this	chapter,	think	of	variables	inside	your	computer	as	acting	like	post
office	boxes	in	a	post	office.	Post	office	boxes	vary	in	size	and	have	unique	numbers
that	label	each	one.	Your	C	program’s	variables	vary	in	size,	depending	on	the	kind	of
data	they	hold,	and	each	variable	has	a	unique	name	that	differentiates	it	from	other
variables.

The	data	you	learned	about	in	Chapter	2	is	called	literal	data	(or	sometimes	constant	data).	Specific
numbers	and	letters	don’t	change.	The	number	2	and	the	character	'x'	are	always	2	and	'x'.	A	lot
of	data	you	work	with—such	as	age,	salary,	and	weight—changes.	If	you	were	writing	a	payroll
program,	you	would	need	a	way	to	store	changing	pieces	of	data.	Variables	come	to	the	rescue.
Variables	are	little	more	than	boxes	in	memory	that	hold	values	that	can	change	over	time.
Many	types	of	variables	exist.	Table	5.1	lists	some	of	the	more	common	types.	Notice	that	many	of	the
variables	have	data	types	(character,	integer,	and	floating	point)	similar	to	that	of	literal	data.	After
all,	you	must	have	a	place	to	store	integers,	and	you	do	so	in	an	integer	variable.

TABLE	5.1	Some	of	the	Most	Common	Types	of	C	Variables

	Tip

In	some	older	C	compilers,	int	could	hold	only	values	between	32767	and	-32768.
If	you	wanted	to	use	a	larger	integer,	you	needed	to	use	the	long	int	type.	In	most
modern	compilers,	though,	an	int	type	can	hold	the	same	as	a	long	int	type.	If
you’d	like	to	be	sure	with	your	compiler,	you	can	use	the	sizeof	operator,	covered	in
Chapter	13,	“A	Bigger	Bag	of	Tricks—Some	More	Operators	for	Your	Programs.”

	Warning

You	might	notice	that	there	are	no	string	variables,	although	there	are	character	string
literals.	C	is	one	of	the	few	programming	languages	that	has	no	string	variables,	but	as
you’ll	see	in	Chapter	6,	“Adding	Words	to	Your	Programs,”	you	do	have	a	way	to	store
strings	in	variables.

The	Name	column	in	Table	5.1	lists	the	keywords	needed	when	you	create	variables	for	programs.	In
other	words,	if	you	want	an	integer,	you	need	to	use	the	int	keyword.	Before	completing	your	study
of	variables	and	jumping	into	using	them,	you	need	to	know	one	more	thing:	how	to	name	them.

Naming	Variables
All	variables	have	names,	and	because	you	are	responsible	for	naming	them,	you	must	learn	the
naming	rules.	All	variable	names	must	be	different;	you	can’t	have	two	variables	in	the	same	program
with	the	same	name.
A	variable	can	have	from	1	to	31	characters	in	its	name.	Some	compilers	do	allow	longer	names,	but
it’s	better	to	stick	with	this	limit,	both	for	portability	of	code	and	to	keep	typing	errors	to	a	minimum.
(After	all,	the	longer	the	name	you	use,	the	greater	the	chance	for	a	typo!)	Your	program’s	variables
must	begin	with	a	letter	of	the	alphabet,	but	after	that	letter,	variable	names	can	have	other	letters,
numbers,	or	an	underscore	in	any	combination.	All	of	the	following	are	valid	variable	names:
Click	here	to	view	code	image

myData		pay94										age_limit						amount												QtlyIncome

	Tip

C	lets	you	begin	a	variable	name	with	an	underscore,	but	you	shouldn’t	do	so.	Some	of
C’s	built-in	variables	begin	with	an	underscore,	so	there’s	a	chance	you’ll	overlap	one
of	those	if	you	name	your	variables	starting	with	underscores.	Take	the	safe	route	and
always	start	your	variable	names	with	letters—I	cannot	underscore	this	point	enough!
(See	what	I	did	there?)

The	following	examples	of	variable	names	are	not	valid:
Click	here	to	view	code	image

94Pay																my	Age										lastname,firstname

You	ought	to	be	able	to	figure	out	why	these	variable	names	are	not	valid:	The	first	one,	94Pay,
begins	with	a	number;	the	second	variable	name,	my	Age,	contains	a	space;	and	the	third	variable
name,	lastname,	firstname,	contains	a	special	character	(,).

	Warning

Don’t	name	a	variable	with	the	same	name	as	a	function	or	a	command.	If	you	give	a
variable	the	same	name	as	a	command,	your	program	won’t	run;	if	you	give	a	variable
the	same	name	as	a	function,	you	can’t	use	that	same	function	name	later	in	your
program	without	causing	an	error.

Defining	Variables
Before	you	use	a	variable,	you	have	to	define	it.	Variable	definition	(sometimes	called	variable
declaration)	is	nothing	more	than	letting	C	know	you’ll	need	some	variable	space	so	it	can	reserve
some	for	you.	To	define	a	variable,	you	only	need	to	state	its	type,	followed	by	a	variable	name.	Here
are	the	first	few	lines	of	a	program	that	defines	some	variables:
Click	here	to	view	code	image

main()
{
							//	My	variables	for	the	program
							char	answer;
							int	quantity;
							float	price;
/*	Rest	of	program	would	follow	*/

The	sample	code	just	presented	has	three	variables:	answer,	quantity,	and	price.	They	can	hold
three	different	types	of	data:	character	data,	integer	data,	and	floating-point	data.	If	the	program	didn’t
define	these	variables,	it	wouldn’t	be	able	to	store	data	in	the	variables.
You	can	define	more	than	one	variable	of	the	same	data	type	on	the	same	line.	For	example,	if	you
wanted	to	define	two	character	variables	instead	of	just	one,	you	could	do	so	like	this:

Click	here	to	view	code	image

main()
{
							//	My	variables	for	the	program
							char	first_initial;
							char	middle_initial;
/*	Rest	of	program	would	follow.	*/

or	like	this:
Click	here	to	view	code	image

main()
{
							//	My	variables	for	the	program
							char	first_initial,	middle_initial;
/*	Rest	of	program	would	follow.	*/

	Tip

Most	C	variables	are	defined	after	an	opening	brace,	such	as	the	opening	brace	that
follows	a	function	name.	These	variables	are	called	local	variables.	C	also	lets	you
create	global	variables	by	defining	the	variables	before	a	function	name,	such	as	before
main().	Local	variables	are	almost	always	preferable	to	global	variables.	Chapter	30,
“Organizing	Your	Programs	with	Functions,”	addresses	the	differences	between	local
and	global	variables,	but	for	now,	all	programs	stick	with	local	variables.

Storing	Data	in	Variables
The	assignment	operator	puts	values	in	variables.	It’s	a	lot	easier	to	use	than	it	sounds.	The
assignment	operator	is	simply	the	equals	sign	(=).	The	format	of	putting	data	in	variables	looks	like
this:

variable	=	data;

The	variable	is	the	name	of	the	variable	where	you	want	to	store	data.	You	must	have	defined	the
variable	previously,	as	the	preceding	section	explained.	The	data	can	be	a	number,	character,	or
mathematical	expression	that	results	in	a	number.	Here	are	examples	of	three	assignment	statements
that	assign	values	to	the	variables	defined	in	the	preceding	section:

answer	=	'B';
quantity	=	14;
price	=	7.95;

You	also	can	store	answers	to	expressions	in	variables:
Click	here	to	view	code	image

price	=	8.50	*	.65;		//	Gets	price	after	35%	discount

You	can	even	use	other	variables	in	the	expression:
Click	here	to	view	code	image

totalAmount	=	price	*	quantity;		/*	Uses	value	from	another	variable
*/

	Tip

The	equals	sign	tells	C	this:	Take	whatever	is	on	the	right	and	stick	it	into	the	variable
on	the	left.	The	equals	sign	kind	of	acts	like	a	left-pointing	arrow	that	says	“That-a-
way!”	Oh,	and	never	use	commas	in	numbers,	no	matter	how	big	the	numbers	are!

Let’s	use	all	this	variable	knowledge	you’ve	gained	in	a	program.	Open	your	editor,	type	the
following	program,	compile	it,	and	run	it:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	5	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter5ex1.c

/*	This	is	a	sample	program	that	lists	three	kids	and	their	school
supply	needs,	as	well	as	cost	to	buy	the	supplies	*/

#include	<stdio.h>

main()
{
				//	Set	up	the	variables,	as	well	as	define	a	few

				char	firstInitial,	middleInitial;
				int	number_of_pencils;
				int	number_of_notebooks;
				float	pencils	=	0.23;
				float	notebooks	=	2.89;
				float	lunchbox	=	4.99;

				//The	information	for	the	first	child
				firstInitial	=	'J';
				middleInitial	=	'R';

				number_of_pencils	=	7;
				number_of_notebooks	=	4;

				printf("%c%c	needs	%d	pencils,	%d	notebooks,	and	1	lunchbox\n",
											firstInitial,	middleInitial,number_of_pencils,
											number_of_notebooks);
				printf("The	total	cost	is	$%.2f\n\n",	number_of_pencils*pencils
				+	number_of_notebooks*notebooks	+	lunchbox);

				//The	information	for	the	second	child
				firstInitial	=	'A';
				middleInitial	=	'J';

				number_of_pencils	=	10;
				number_of_notebooks	=	3;

				printf("%c%c	needs	%d	pencils,	%d	notebooks,	and	1	lunchbox\n",

											firstInitial,	middleInitial,number_of_pencils,
											number_of_notebooks);
				printf("The	total	cost	is	$%.2f\n\n",	number_of_pencils*pencils
				+	number_of_notebooks*notebooks	+	lunchbox);

				//The	information	for	the	third	child
				firstInitial	=	'M';
				middleInitial	=	'T';

				number_of_pencils	=	9;
				number_of_notebooks	=	2;

				printf("%c%c	needs	%d	pencils,	%d	notebooks,	and	1	lunchbox\n",
											firstInitial,	middleInitial,number_of_pencils,
											number_of_notebooks);
				printf("The	total	cost	is	$%.2f\n",
							number_of_pencils*pencils	+	number_of_notebooks*notebooks	+
lunchbox);

				return	0;
				}

This	program	gives	examples	of	naming	and	defining	different	types	of	variables,	as	well	as
assigning	values	to	each.	It’s	important	to	note	that	you	can	reuse	a	variable	by	just	assigning	a	new
value	to	the	variable.	You	might	be	wondering,	why	keep	using	and	reusing	variables	if	you	are	just
going	to	change	the	value	within	the	code	itself?	Why	not	just	skip	the	variables	and	use	the	values	in
their	place?	The	value	of	variables	will	become	more	apparent	after	Chapter	8,	“Interacting	with
Users,”	and	you	can	get	information	from	the	user	for	these	variables.
The	Draw	Poker	program	in	Appendix	B,	“The	Draw	Poker	Program,”	must	keep	track	of	a	lot	of
things,	and	many	variables	are	used	there.	At	the	start	of	most	of	the	program’s	functions,	you’ll	see	a
place	where	variables	are	being	defined.

	Tip

You	can	define	variables	and	give	them	initial	values	at	the	same	time.	The	previous
program	assigns	values	to	the	float	variables	pencil,	notebook,	and	lunchbox
when	they	are	declared.

The	Absolute	Minimum
This	chapter	covered	the	different	types	of	variables	in	C.	Because	there	are	different
kinds	of	data,	C	has	different	variable	kinds	to	hold	that	data.	Key	points	from	this
chapter	include:
•	Learn	how	to	name	variables	because	almost	all	of	your	programs	will	use
variables.
•	Always	define	variables	before	you	use	them
•	Don’t	mix	data	types	and	variable	types—you	will	get	the	wrong	results	if	you	do.
•	If	needed,	you	can	define	more	than	one	variable	on	the	same	line.
•	Don’t	use	a	comma	in	a	number.	Enter	the	figure	100,000	as	100000,	not
100,000.
•	When	storing	values	in	variables,	use	the	equals	sign	(=),	also	called	the	assignment
operator.

6.	Adding	Words	to	Your	Programs

In	This	Chapter
•	Understanding	the	string	terminator
•	Determining	the	length	of	strings
•	Using	character	arrays:	listing	characters
•	Initializing	strings

Although	C	doesn’t	have	string	variables,	you	do	have	a	way	to	store	string	data.	This	chapter
explains	how.	You	already	know	that	you	must	enclose	string	data	in	quotation	marks.	Even	a	single
character	enclosed	in	quotation	marks	is	a	string.	You	also	know	how	to	print	strings	with
printf().
The	only	task	left	is	to	see	how	to	use	a	special	type	of	character	variable	to	hold	string	data	so	that
your	program	can	input,	process,	and	output	that	string	data.

Understanding	the	String	Terminator
C	does	the	strangest	thing	to	strings:	It	adds	a	zero	to	the	end	of	every	string.	The	zero	at	the	end	of
strings	has	several	names:

•	Null	zero
•	Binary	zero
•	String	terminator
•	ASCII	0
•	\0

	Warning

About	the	only	thing	you	don’t	call	the	string-terminating	zero	is	zero!	C	programmers
use	the	special	names	for	the	string-terminating	zero	so	that	you’ll	know	that	a	regular
numeric	zero	or	a	character	'0'	is	not	being	used	at	the	end	of	the	string;	only	the
special	null	zero	appears	at	the	end	of	a	string.

C	marks	the	end	of	all	strings	with	the	string-terminating	zero.	You	never	have	to	do	anything	special
when	entering	a	string	literal	such	as	"My	name	is	Julie."	C	automatically	adds	the	null	zero.
You’ll	never	see	the	null	zero,	but	it	is	there.	In	memory,	C	knows	when	it	gets	to	the	end	of	a	string
only	when	it	finds	the	null	zero.

	Note

Appendix	A,	“The	ASCII	Table,”	contains	an	ASCII	table	(first	mentioned	in	Chapter	2,
“Writing	Your	First	C	Program”).	The	very	first	entry	is	labeled	null,	and	the	ASCII
number	for	null	is	0.	Look	further	down	at	ASCII	48,	and	you’ll	see	a	0.	ASCII	48	is	the
character	'0',	whereas	the	first	ASCII	value	is	the	null	zero.	C	puts	the	null	zero	at	the
end	of	strings.	Even	the	string	"I	am	20"	ends	in	an	ASCII	0	directly	after	the
character	0	in	20.

The	string	terminator	is	sometimes	called	\0	(backslash	zero)	because	you	can	represent	the	null
zero	by	enclosing	\0	in	single	quotes.	Therefore,	'0'	is	the	character	zero,	and	'\0'	is	the	string
terminator.	(Remember	the	escape	sequences	covered	in	Chapter	4,	“Your	World	Premiere—Putting
Your	Program’s	Results	Up	on	the	Screen,”	that	were	also	single	characters	represented	by	two
characters—a	backslash	followed	by	a	letter	or	another	character.	Now	you	have	a	backslash	number
to	add	to	the	collection.)
Figure	6.1	shows	how	the	string	"Crazy"	is	stored	in	memory.	As	you	can	see,	it	takes	6	bytes	(a
byte	is	a	single	memory	location)	to	store	the	string,	even	though	the	string	has	only	five	letters.	The
null	zero	that	is	part	of	the	string	"Crazy"	takes	one	of	those	six	memory	locations.

FIGURE	6.1	A	string	always	ends	with	a	null	zero	in	memory.

The	Length	of	Strings
The	length	of	a	string	is	always	the	number	of	characters	up	to,	but	not	including,	the	null	zero.
Sometimes	you	will	need	to	find	the	length	of	a	string.	The	null	zero	is	never	counted	when
determining	the	length	of	a	string.	Even	though	the	null	zero	must	terminate	the	string	(so	that	C
knows	where	the	string	ends),	the	null	zero	is	not	part	of	the	string	length.
Given	the	definition	of	the	string	length,	the	following	strings	all	have	lengths	of	nine	characters:

Wednesday
August	10
I	am	here

When	counting	the	length	of	strings,	remember	that	you	must	account	for	every	space.	So	although
the	second	string	has	eight	letters	and	numbers,	as	well	as	a	space	in	the	middle,	and	the	third	string
has	seven	letters,	as	well	as	two	spaces	in	the	middle,	are	all	considered	nine-character	strings.	If	you
chose	to	put	three	spaces	between	August	and	10	in	the	middle	example,	it	would	become	an	11-
character	string.

	Warning

The	second	string’s	length	doesn’t	end	at	the	0	in	10	because	the	0	in	10	isn’t	a	null
zero;	it’s	a	character	zero.

	Tip

All	single	characters	of	data	have	a	length	of	1.	Therefore,	both	'X'	and	"X"	have
lengths	of	one,	but	the	"X"	consumes	two	characters	of	memory	because	of	its	null
zero.	Any	time	you	see	a	string	literal	enclosed	in	quotation	marks	(as	they	all	must
be),	picture	in	your	mind	that	terminating	null	zero	at	the	end	of	that	string	in	memory.

Character	Arrays:	Lists	of	Characters
Character	arrays	hold	strings	in	memory.	An	array	is	a	special	type	of	variable	that	you’ll	hear	much
more	about	in	upcoming	chapters.	All	the	data	types—int,	float,	char,	and	the	rest—have
corresponding	array	types.	An	array	is	nothing	more	than	a	list	of	variables	of	the	same	data	type.
Before	you	use	a	character	array	to	hold	a	string,	you	must	tell	C	that	you	need	a	character	array	in
the	same	place	you	would	tell	C	that	you	need	any	other	kind	of	variable.	Use	brackets	([and])	after
the	array	name,	along	with	a	number	indicating	the	maximum	number	of	characters	the	string	will
hold.
An	example	is	worth	a	thousand	words.	If	you	needed	a	place	to	hold	month	names,	you	could	define
a	character	array	called	month	like	this:
Click	here	to	view	code	image

char	month[10];		/*	Defines	a	character	array	*/

	Tip

Array	definitions	are	easy.	Take	away	the	10	and	the	brackets,	and	you	have	a	regular
character	variable.	Adding	the	brackets	with	the	10	tells	C	that	you	need	10	character
variables,	each	following	the	other	in	a	list	named	month.

The	reason	10	was	used	when	defining	the	array	is	that	the	longest	month	name,	September,	has
nine	characters.	The	tenth	character	is	for,	you	guessed	it,	the	null	zero.

	Tip

You	always	have	to	reserve	enough	character	array	space	to	hold	the	longest	string	you
will	need	to	hold,	plus	the	string	terminator.	You	can	define	more	array	characters	than
needed,	but	not	fewer	than	you	need.

If	you	want,	you	can	store	a	string	value	in	the	array	at	the	same	time	you	define	the	array:
Click	here	to	view	code	image

char	month[10]	=	"January";		/*	Defines	a	character	array	*/

Figure	6.2	shows	you	what	this	array	looks	like.	Because	nothing	was	put	in	the	last	two	places	of	the
array	(January	takes	only	seven	characters	plus	an	eighth	place	for	the	null	zero),	you	don’t	know
what’s	in	the	last	two	places.	(Some	compilers,	however,	fill	the	unused	elements	with	zeroes	to	kind
of	empty	the	rest	of	the	string.)

FIGURE	6.2	Defining	and	initializing	an	array	named	month	that	holds	string	data.

Each	individual	piece	of	an	array	is	called	an	element.	The	month	array	has	10	elements.	You	can
distinguish	between	them	with	subscripts.	Subscripts	are	numbers	that	you	specify	inside	brackets	that
refer	to	each	of	the	array	elements.
All	array	subscripts	begin	with	0.	As	Figure	6.2	shows,	the	first	element	in	the	month	array	is	called
month[0].	The	last	is	called	month[9]	because	there	are	10	elements	altogether,	and	when	you
begin	at	0,	the	last	is	9.
Each	element	in	a	character	array	is	a	character.	The	combination	of	characters—the	array	or	list	of
characters—holds	the	entire	string.	If	you	wanted	to,	you	could	change	the	contents	of	the	array	from
January	to	March	one	element	at	a	time,	like	this:
Click	here	to	view	code	image

Month[0]	=	'M';
Month[1]	=	'a';
Month[2]	=	'r';
Month[3]	=	'c';
Month[4]	=	'h';
Month[5]	=	'\0';	//You	must	add	this

It	is	vital	that	you	insert	the	null	zero	at	the	end	of	the	string.	If	you	don’t,	the	month	array	would	still
have	a	null	zero	three	places	later	at	Month[7];	when	you	attempted	to	print	the	string,	you	would

get	this:
Marchry

	Tip

Printing	strings	in	arrays	is	easy.	You	use	the	%s	conversion	character:
Click	here	to	view	code	image

printf("The	month	is	%s",	month);

If	you	define	an	array	and	initialize	the	array	at	the	same	time,	you	don’t	have	to	put	the	number	in
brackets.	Both	of	the	following	do	exactly	the	same	thing:

char	month[8]	=	"January";
char	month[]	=	"January";

In	the	second	example,	C	counts	the	number	of	characters	in	January	and	adds	one	for	the	null	zero.
You	can’t	store	a	string	larger	than	eight	characters	later,	however.	If	you	want	to	define	a	string’s
character	array	and	initialize	it	but	leave	extra	padding	for	a	longer	string	later,	you	would	do	this:
Click	here	to	view	code	image

char	month[25]	=	"January";		/*	Leaves	room	for	longer	strings	*/

Initializing	Strings
You	don’t	want	to	initialize	a	string	one	character	at	a	time,	as	done	in	the	preceding	section.
However,	unlike	with	regular	nonarray	variables,	you	can’t	assign	a	new	string	to	the	array	like	this:
Click	here	to	view	code	image

month	=	"April";		/*	NOT	allowed	*/

You	can	assign	a	string	to	a	month	with	the	equals	sign	only	at	the	time	you	define	the	string.	If	later
in	the	program	you	want	to	put	a	new	string	into	the	array,	you	must	either	assign	it	one	character	at	a
time	or	use	C’s	strcpy()	(string	copy)	function	that	comes	with	your	C	compiler.	The	following
statement	assigns	a	new	string	to	the	month:
Click	here	to	view	code	image

strcpy(month,	"April");		/*	Puts	new	string	in	month	array	*/

	Note

In	your	programs	that	use	strcpy(),	you	must	put	this	line	after	the	#include
<stdio.h>:

#include	<string.h>

	Tip

Don’t	worry:	strcpy()	automatically	adds	a	null	zero	to	the	end	of	the	string	it
creates.

Now	let’s	take	everything	we’ve	covered	in	this	chapter	and	put	it	to	use	in	a	full	program.	Again,	it’s
time	to	fire	up	your	editor,	enter	some	code,	and	compile	and	run	the	resulting	program:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	6	of
//	Absolute	Beginner's	Guide	to	C,	3rd	Edition
//	File	Chapter6ex1.c

//	This	program	pairs	three	kids	with	their	favorite	superhero

#include	<stdio.h>
#include	<string.h>

main()
{

char	Kid1[12];
//	Kid1	can	hold	an	11-character	name
//	Kid2	will	be	7	characters	(Maddie	plus	null	0)
char	Kid2[]	=	"Maddie";
//	Kid3	is	also	7	characters,	but	specifically	defined
char	Kid3[7]	=	"Andrew";
//	Hero1	will	be	7	characters	(adding	null	0!)
char	Hero1	=	"Batman";
//	Hero2	will	have	extra	room	just	in	case
char	Hero2[34]	=	"Spiderman";
char	Hero3[25];

				Kid1[0]	=	'K';		//Kid1	is	being	defined	character-by-character
				Kid1[1]	=	'a';		//Not	efficient,	but	it	does	work
				Kid1[2]	=	't';
				Kid1[3]	=	'i';
				Kid1[4]	=	'e';
				Kid1[5]	=	'\0';		//	Never	forget	the	null	0	so	C	knows	when	the
																					//	string	ends

				strcpy(Hero3,	"The	Incredible	Hulk");

				printf("%s\'s	favorite	hero	is	%s.\n",	Kid1,	Hero1);
				printf("%s\'s	favorite	hero	is	%s.\n",	Kid2,	Hero2);
				printf("%s\'s	favorite	hero	is	%s.\n",	Kid3,	Hero3);

				return	0;
}

As	with	the	program	that	ended	Chapter	5,	“Adding	Variables	to	Your	Program,”	you	might	be
saying,	why	go	through	all	the	trouble	of	having	these	variables	when	you	could	just	put	the	names
and	strings	right	in	the	printf()	statements?	Again,	the	value	of	these	variables	will	become	more

apparent	after	Chapter	8,	“Interacting	with	Users,”	when	you	learn	to	get	information	from	users.
You	were	already	using	#include	to	add	the	<stdio.h>	file	to	all	your	programs	that	use
printf()	(as	well	as	other	common	functions	that	you	will	soon	be	adding	to	your	programming
toolbox).	Now	you	have	a	second	header	file,	<string.h>,	to	#include	as	well.	The	next	chapter
covers	#include	in	more	detail.
To	remind	you	of	the	different	methods	of	declaring	and	initializing	string	variables,	the	kid	and
hero	variables	are	each	defined	differently.	For	a	fun	exercise,	comment	out	the	strcpy	line	to	see
what	your	program	prints	on	the	screen	when	Hero3	is	used	in	a	printf()	without	having	been
initialized.	My	output	was	a	bizarre	collection	of	characters—those	were	already	sitting	in	the	space
that	became	that	variable,	so	if	you	don’t	put	anything	in	it,	you’ll	get	whatever	is	there	now.

The	Absolute	Minimum
If	you	need	to	store	words,	you	need	to	use	character	arrays;	C	does	not	support	a
string	data	type.	Key	points	from	this	chapter	include:
•	Store	strings	in	character	arrays,	but	reserve	enough	array	elements	to	hold	the
longest	string	you’ll	ever	store	in	that	array.
•	Don’t	forget	that	strings	must	end	with	a	terminating	zero.
•	When	writing	to	your	array,	remember	that	the	subscripts	begin	at	0,	not	1.
•	There	are	three	ways	to	place	a	string	in	a	character	array:	You	can	initialize	it	at	the
time	you	define	the	array,	you	can	assign	one	element	at	a	time,	or	you	can	use	the
strcpy()	function.
•	If	you	use	the	strcpy()	function	in	your	programs,	remember	to	add	#include
<string.h>	to	the	beginning	of	your	program.

7.	Making	Your	Programs	More	Powerful	with	#include	and
#define

In	This	Chapter
•	Including	files
•	Placing	#include	directives
•	Defining	constants
•	Building	a	header	file	and	program

Two	types	of	lines	you	see	in	many	C	programs	are	not	C	commands	at	all.	They	are	preprocessor
directives.	A	preprocessor	directive	always	begins	with	a	pound	sign	(#).	Preprocessor	directives
don’t	cause	anything	to	happen	at	runtime	(when	you	run	your	program).	Instead,	they	work	during
the	compiling	of	your	program.
These	preprocessor	directives	are	used	most	often:

•	#include
•	#define

Every	sample	program	you	have	written	so	far	has	used	#include.	This	chapter	finally	takes	the
secret	out	of	that	mysterious	preprocessor	directive.

Including	Files
#include	has	two	formats,	which	are	almost	identical:

#include	<filename>

and
#include	"filename"

Figure	7.1	shows	what	#include	does.	It’s	nothing	more	than	a	file	merge	command.	Right	before
your	program	is	compiled,	the	#include	statement	is	replaced	with	the	contents	of	the	filename
specified	after	#include.	The	filename	can	be	stated	in	either	uppercase	or	lowercase	letters,	as
long	as	your	operating	system	allows	for	either	in	filenames.	For	example,	my	Windows	XP
implementation	of	Code::Blocks	does	not	distinguish	between	uppercase	and	lowercase	letters	in
filenames,	but	UNIX	does.	If	your	file	is	named	myFile.txt,	you	might	be	able	to	use	any	of	the
following	#include	directives:

#include	"MYFILE.TXT"
#include	"myfile.txt"
#include	"myFile.txt"

However,	UNIX	allows	only	this:
#include	"myFile.txt"

FIGURE	7.1	#include	inserts	a	disk	file	into	the	middle	of	another	file.

	Note

When	you’ve	used	a	word	processor,	you	might	have	used	an	#include	type	of
command	if	you	merged	a	file	stored	on	disk	into	the	middle	of	the	file	you	were
editing.

When	you	install	your	compiler,	the	installation	program	sets	up	a	separate	location	on	your	disk	(in
a	directory)	for	various	#include	files	that	come	with	your	compiler.	When	you	want	to	use	one	of
these	built-in	#include	files,	use	the	#include	format	with	the	angled	brackets,	<	and	>.

	Warning

How	do	you	know	when	to	use	a	built-in	#include	file?	Good	question!	All	built-in
functions,	such	as	printf(),	have	corresponding	#include	files.	When	this	book
describes	a	built-in	function,	it	also	tells	you	exactly	which	file	to	include.

You’ve	already	used	two	built-in	functions	in	your	programs:	printf()	and	strcpy().	(main()
is	not	a	built-in	C	function;	it	is	a	function	you	must	supply.)	As	a	reminder,	the	#include	file	for
printf()	is	stdio.h	(which	stands	for	standard	I/O),	and	the	#include	file	for	the	strcpy()
function	is	string.h.
Almost	every	complete	program	listing	in	this	book	contains	the	following	preprocessor	directive:

#include	<stdio.h>

That’s	because	almost	every	program	in	this	book	uses	printf().	Chapter	6,	“Adding	Words	to
Your	Program,”	told	you	that	whenever	you	use	the	strcpy()	function,	you	need	to	include
string.h.

	Tip

The	file	you	include	is	called	a	header	file.	That’s	why	most	included	files	end	in	the
extension	.h.

When	you	write	your	own	header	files,	use	the	second	form	of	the	preprocessor	directive,	the	one
that	has	quotation	marks.	When	you	use	quotation	marks,	C	first	searches	the	disk	directory	in	which
your	program	is	stored	and	then	searches	the	built-in	#include	directory.	Because	of	the	search
order,	you	can	write	your	own	header	files	and	give	them	the	same	name	as	those	built	into	C,	and
yours	will	be	used	instead	of	C’s.

	Warning

If	you	write	your	own	header	files,	don’t	put	them	with	C’s	built-in	#include	file
directory.	Leave	C’s	supplied	header	files	intact.	There	is	rarely	a	reason	to	override
C’s	headers,	but	you	might	want	to	add	some	headers	of	your	own.

You	might	write	your	own	header	files	when	you	have	program	statements	that	you	frequently	use	in
many	programs.	Instead	of	typing	them	in	every	program,	you	can	put	them	in	a	file	in	your	program
directory	and	use	the	#include	directive	with	the	file	where	you	want	to	use	the	statements.

Placing	#include	Directives

The	header	files	you	add	to	your	programs	with	#include	are	nothing	more	than	text	files	that
contain	C	code.	You	will	learn	much	more	about	the	contents	of	header	files	later;	for	now,
understand	that	a	header	file	does	two	things.	The	built-in	header	files	help	C	properly	execute	built-in
functions.	The	header	files	you	write	often	contain	code	that	you	want	to	place	in	more	than	one	file.

	Tip

It’s	best	to	put	your	#include	directives	before	main().

	Note

The	Draw	Poker	program	in	Appendix	B,	“The	Draw	Poker	Program,”	includes
several	header	files	because	it	uses	lots	of	built-in	functions.	Notice	the	placement	of
the	#include	statements;	they	come	before	main().

Defining	Constants
The	#define	preprocessor	directive	defines	constants.	A	C	constant	is	really	the	same	thing	as	a
literal.	You	learned	in	Chapter	2,	“Writing	Your	First	C	Program,”	that	a	literal	is	a	data	value	that
doesn’t	change,	like	the	number	4	or	the	string	"C	programming".	The	#define	preprocessor
directive	lets	you	give	names	to	literals.	When	you	give	a	name	to	a	literal,	the	named	literal	is	known
in	C	terminology	as	a	named	constant	or	a	defined	constant.

	Warning

In	Chapter	5,	“Adding	Variables	to	Your	Programs,”	you	learned	how	to	define
variables	by	specifying	their	data	types	and	giving	them	a	name	and	an	initial	value.
Constants	that	you	define	with	#define	are	not	variables,	even	though	they	sometimes
look	like	variables	when	they	are	used.

Here	is	the	format	of	the	#define	directive:
Click	here	to	view	code	image

#define	CONSTANT	constantDefinition

As	with	most	things	in	C,	using	defined	constants	is	easier	than	the	format	leads	you	to	believe.	Here
are	some	sample	#define	directives:

#define	AGELIMIT	21
#define	MYNAME	"Paula	Holt"
#define	PI	3.14159

In	a	nutshell,	here’s	what	#define	tells	C:	Every	place	in	the	program	that	the	CONSTANT	appears,
replace	it	with	the	constantDefinition.	The	first	#define	just	shown	instructs	C	to	find	every
occurrence	of	the	word	AGELIMIT	and	replace	it	with	a	21.	Therefore,	if	this	statement	appeared
somewhere	in	the	program	after	the	#define:

if	(employeeAge	<	AGELIMIT)

the	compiler	acts	as	if	you	typed	this:
if	(employeeAge	<	21)

even	though	you	didn’t.

	Tip

Use	uppercase	letters	for	the	defined	constant	name.	This	is	the	one	exception	in	C
when	uppercase	is	not	only	used,	but	recommended.	Because	defined	constants	are	not
variables,	the	uppercase	lets	you	glance	through	a	program	and	tell	at	a	glance	what	is
a	variable	and	what	is	a	constant.

Assuming	that	you	have	previously	defined	the	constant	PI,	the	uppercase	letters	help	keep	you	from
doing	something	like	this	in	the	middle	of	the	program:
Click	here	to	view	code	image

PI	=	544.34;		/*	Not	allowed	*/

As	long	as	you	keep	defined	constant	names	in	upper	case,	you	will	know	not	to	change	them	because
they	are	constants.
Defined	constants	are	good	for	naming	values	that	might	need	to	be	changed	between	program	runs.
For	example,	if	you	didn’t	use	a	defined	constant	for	AGELIMIT,	but	instead	used	an	actual	age	limit
value	such	as	21	throughout	a	program,	if	that	age	limit	changed,	finding	and	changing	every	single
21	would	be	difficult.	If	you	had	used	a	defined	constant	at	the	top	of	the	program	and	the	age	limit
changed,	you’d	only	need	to	change	the	#define	statement	to	something	like	this:

#define	AGELIMIT	18

The	#define	directive	is	not	a	C	command.	As	with	#include,	C	handles	your	#define
statements	before	your	program	is	compiled.	Therefore,	if	you	defined	PI	as	3.14159	and	you	used
PI	throughout	a	program	in	which	you	needed	the	value	of	the	mathematical	pi	(π),	the	C	compiler
would	think	you	typed	3.14159	throughout	the	program	when	you	really	typed	PI.	PI	is	easier	to
remember	(and	helps	eliminate	typing	mistakes)	and	is	clearer	to	the	purpose	of	the	constant.
As	long	as	you	define	a	constant	with	#define	before	main()	appears,	the	entire	program	will
know	about	the	constant.	Therefore,	if	you	defined	PI	to	be	the	value	3.14159	before	main(),	you
could	use	PI	throughout	main()	and	any	other	functions	you	write	that	follow	main(),	and	the
compiler	would	know	to	replace	PI	with	3.14159	each	time	before	compiling	your	program.

Building	a	Header	File	and	Program
The	best	way	to	ensure	that	you	understand	header	files	and	defined	constants	is	to	write	a	program
that	uses	both.	So	fire	up	your	editor	and	let’s	get	typing!
First,	you	create	your	first	header	file:
Click	here	to	view	code	image

//	Example	header	program	#1	from	Chapter	7	of	Absolute	Beginner's
//	Guide	to	C,	3rd	Edition
//	File	Chapter7ex1.h

//	If	you	have	certain	values	that	will	not	change	(or	only	change
//	rarely)

//	you	can	set	them	with	#DEFINE	statements	(so	you	can	change	them
//	as	needed)

//	If	you	plan	on	using	them	in	several	programs,	you	can	place	them
//	in	a	header	file

#define	KIDS	3
#define	FAMILY	"The	Peytons"
#define	MORTGAGE_RATE	5.15

When	you	type	a	header	file	and	then	save	it,	you	need	to	add	the	.h	to	the	end	of	the	file	to	make	it
clear	to	your	compiler	that	it	is	a	header	file,	not	a	program.	Most	editors	automatically	add	a	.c	to
the	end	of	your	programs	if	you	do	not	specify	a	specific	extension.
Now,	this	is	an	overly	simplistic	header	file	with	only	a	few	constants	set	with	the,	statement.	These
are	excellent	examples	of	constants	that	are	unlikely	to	change,	but	if	they	do	change,	it	would	be	so
much	better	to	make	the	change	in	one	place	instead	of	having	to	change	hundreds,	if	not	thousands,
of	lines	of	code.	If	you	create	programs	for	family	planning,	budgeting,	and	holiday	shopping,	and
you	decide	to	have	(or	accidentally	have)	a	fourth	child,	you	can	make	the	change	in	this	header	file,
and	then	when	you	recompile	all	programs	that	use	it,	the	change	to	4	(or	5,	if	you’re	lucky	enough
to	have	twins)	will	roll	through	all	your	code.	A	family	name	is	unlikely	to	change,	but	maybe	you
refinance	your	house	and	get	a	new	mortgage	rate	that	changes	budgeting	and	tax	planning.
A	header	file	will	not	help	you	until	you	include	it	in	a	program,	so	here	is	a	simple	piece	of	code	that
uses	your	newly	created	.h	file:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	7	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter7ex1.c

/*	This	is	a	sample	program	that	lists	three	kids	and	their	school
supply	needs,	as	well	as	cost	to	buy	the	supplies	*/

#include	<stdio.h>
#include	<string.h>
#include	"Chapter7ex1.h"

main()
{
				int	age;
				char	childname[14]	=	"Thomas";

				printf("\n%s	have	%d	kids.\n",	FAMILY,	KIDS);

				age	=	11;
				printf("The	oldest,	%s,	is	%d.\n",	childname,	age);

				strcpy(childname,	"Christopher");
				age	=	6;
				printf("The	middle	boy,	%s,	is	%d.\n",	childname,	age);

				age	=	3;
				strcpy(childname,	"Benjamin");
				printf("The	youngest,	%s,	is	%d.\n",	childname,	age);

				return	0;

}

Again,	there	isn’t	much	to	this	code.	All	it	does	is	state	that	a	family	has	three	children	and	then	names
each	child.	I	promise	that,	as	you	learn	new	commands,	statements,	functions,	and	operators	in
upcoming	chapters,	your	programs	will	get	meatier.	You	might	notice	that	one	of	the	#define
constants	created	in	the	header	file,	MORTGAGE_RATE,	is	not	used	in	this	sample	program.	You	do
not	have	to	use	every	created	constant	if	you	include	a	header	file	in	your	program.
The	program	uses	one	variable,	childname,	for	the	name	and	one	variable,	age,	for	the	age	of
three	different	children,	with	the	information	overwritten	in	each	case.	This	is	not	the	wisest	choice—
after	all,	there’s	a	good	chance	that	if	you	write	a	program	that	needs	the	names	of	your	kids,	you’ll
probably	be	using	each	name	more	than	once.	But	in	a	program	like	this,	it’s	a	good	reminder	that
you	can	overwrite	and	change	variable	names,	but	not	constants	created	with	a	#define	statement.

The	Absolute	Minimum
C’s	preprocessor	directives	make	C	see	code	that	you	didn’t	actually	type.	The	key
concepts	from	this	chapter	include:
•	Always	add	the	proper	header	files,	using	the	#include	directive	when	using	built-
in	functions.	Use	angled	brackets	(<	and	>)	around	the	included	filename	when
including	compiler-supplied	header	files,	and	be	sure	to	place	the	#include
statements	for	these	files	before	main().
•	Use	quotation	marks	(")	around	the	included	filename	when	including	your	own
header	files	that	you’ve	stored	in	your	source	code’s	directory.	You	can	insert	your
own	header	files	with	#include	wherever	you	want	the	code	inserted.
•	Use	uppercase	characters	in	all	defined	constant	names	so	that	you	can	distinguish
them	from	regular	variable	names.

8.	Interacting	with	Users

In	This	Chapter
•	Looking	at	scanf()
•	Prompting	for	scanf()
•	Solving	problems	with	scanf()

printf()	sends	data	to	the	screen.	The	scanf()	function	gets	data	from	the	keyboard.	You	must
have	a	way	to	get	data	from	your	user.	You	can’t	always	assign	data	values	using	assignment
statements.	For	example,	if	you	were	writing	a	movie	theater	program	for	use	throughout	the	country,
you	couldn’t	assign	the	cost	of	a	ticket	to	a	variable	using	the	equals	sign	in	your	program	because
every	theater ’s	ticket	price	could	differ.	Instead,	you	would	have	to	ask	the	user	of	the	program	in
each	theater	location	how	much	a	ticket	costs	before	computing	a	charge.
At	first	glance,	the	scanf()	function	might	seem	confusing,	but	it	is	so	important	to	learn,	to
increase	the	power	of	your	programs	through	user	interactivity.	To	a	beginner,	scanf()	makes	little
sense,	but	despite	its	strange	format,	it	is	the	easiest	function	to	use	for	input	at	this	point	in	the	book
because	of	its	close	ties	to	the	printf()	function.	Practice	with	scanf()	will	make	your	programs
perfect!

Looking	at	scanf()
scanf()	is	a	built-in	C	function	that	comes	with	all	C	compilers.	Its	header	file	is	the	same	as
printf()	(stdio.h),	so	you	don’t	have	to	worry	about	including	an	additional	header	file	for
scanf().	scanf()	fills	variables	with	values	typed	by	the	user.
scanf()	is	fairly	easy	if	you	know	printf().	scanf()	looks	a	lot	like	printf()	because
scanf()	uses	conversion	codes	such	as	%s	and	%d.	scanf()	is	the	mirror-image	function	of
printf().	Often	you	will	write	programs	that	ask	the	user	for	values	with	a	printf()	and	get
those	values	with	scanf().	Here	is	the	format	of	scanf():
Click	here	to	view	code	image

scanf(controlString	[,	data]);

When	your	program	gets	to	scanf(),	C	stops	and	waits	for	the	user	to	type	values.	The	variables
listed	inside	scanf()	(following	the	controlString)	will	accept	whatever	values	the	user	types.
scanf()	quits	when	the	user	presses	Enter	after	typing	values.
Even	though	scanf()	uses	the	same	conversion	characters	as	printf(),	never	specify	escape
sequences	such	as	\n,	\a,	or	\t.	Escape	sequences	confuse	scanf().	scanf()	quits	getting	values
from	the	user	when	the	user	presses	Enter,	so	you	don’t	ever	specify	the	\n.

Prompting	for	scanf()

Almost	every	scanf()	you	write	should	be	preceded	with	printf().	If	you	don’t	start	with	a
printf(),	the	program	stops	and	waits	for	input,	and	the	user	has	no	idea	what	to	do.	For	example,
if	you	need	to	get	an	amount	from	the	user,	you	would	put	a	printf()	function	like	this	before
scanf():
Click	here	to	view	code	image

printf("What	is	the	amount?	");		/*	Prompt	*/	/*	A	scanf()	would
follow	*/

A	printf()	before	a	scanf()	sends	a	prompt	to	the	user.	If	you	don’t	prompt	the	user	for	the
value	or	values	you	want,	the	user	has	no	way	of	knowing	what	values	should	be	typed.	Generally,	the
printf()	requests	the	data	from	the	user,	and	the	scanf()	gets	the	data	that	the	user	types.
Let’s	write	a	program	with	a	few	simple	scanf()	statements—after	all,	it	is	the	best	way	to	learn:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	8	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter8ex1.c

/*	This	is	a	sample	program	that	asks	users	for	some	basic	data	and
prints	it	on	screen	in	order	to	show	what	was	entered	*/

#include	<stdio.h>

main()
{
				//	Set	up	the	variables	that	scanf	will	fill

				char	firstInitial;
				char	lastInitial;
				int	age;
				int	favorite_number;

				printf("What	letter	does	your	first	name	begin	with?\n");
				scanf("	%c",	&firstInitial);

				printf("What	letter	does	your	last	name	begin	with?\n");
				scanf("	%c",	&lastInitial);

				printf("How	old	are	you?\n");
				scanf("	%d",	&age);

				printf("What	is	your	favorite	number	(integer	only)?\n");
				scanf("	%d",	&favorite_number);

				printf("\nYour	intitials	are	%c.%c.	and	you	are	%d	years	old",
firstInitial,	lastInitial,	age);
				printf("\nYour	favorite	number	is	%d.\n\n",	favorite_number);

				return	0;
				}

So	those	scanf()	statements	are	not	so	bad,	right?	Each	one	is	partnered	with	a	printf()
statement	to	let	the	user	know	what	to	type.	To	see	how	confusing	scanf()	would	be	without	a
preceding	printf()	statement,	comment	out	any	of	the	printf()	statements	before	a	scanf(),
and	recompile	and	run	the	program.	You	will	find	the	prompt	confusing,	and	you	wrote	the	program!
Think	of	how	the	user	will	feel.
The	first	two	scanf()	statements	obtain	character	values	(as	you	can	tell	from	the	%c	conversion
codes).	The	third	scanf()	gets	an	integer	value	from	the	keyboard	and	places	it	into	a	variable
named	age.
The	variables	firstInitial,	lastInitial,	and	age	will	hold	whatever	the	user	types	before
pressing	Enter.	If	the	user	types	more	than	a	single	character	in	the	first	two	examples,	it	can	confuse
the	program	and	create	problems	for	the	later	values.
Another	point	to	notice	about	the	scanf()	statements	is	the	spaces	right	before	each	%c	or	%d.	The
space	isn’t	always	required	here,	but	it	never	hurts,	and	it	sometimes	helps	the	input	work	better	when
you	get	numbers	and	characters	in	succession.	Adding	the	extra	space	is	a	good	habit	to	get	into	now
while	learning	scanf().
Enough	about	all	that.	Let’s	get	to	the	most	obvious	scanf()	problem:	the	ampersand	(&)	before	the
three	variables.	Guess	what?	scanf()	requires	that	you	put	the	ampersand	before	all	variables,	even
though	the	ampersand	is	not	part	of	the	variable	name!	Do	it,	and	scanf()	works;	leave	off	the
ampersand,	and	scanf()	won’t	accept	the	user ’s	values	into	the	variables.

	Tip

Make	your	leading	printf()	statement	as	descriptive	as	possible.	In	the	last	example,
if	you	ask	for	only	a	favorite	number,	a	user	might	enter	a	decimal	instead	of	just	a
whole	number.	Who	knows—maybe	someone’s	favorite	number	is	3.14159.

Problems	with	scanf()
As	mentioned	earlier	in	this	chapter,	scanf()	is	not	the	easiest	function	to	use.	One	of	the	first
problems	with	scanf()	is	that	although	the	user	must	type	exactly	what	scanf()	expects,	the	user
rarely	does	this.	If	the	scanf()	needs	a	floating-point	value,	but	the	user	types	a	character,	there	is
little	you	can	do.	The	floating-point	variable	you	supply	will	have	bad	data	because	a	character	is	not
a	floating-point	value.
For	now,	assume	that	the	user	does	type	what	is	needed.	Chapter	18,	“Increasing	Your	Program’s
Output	(and	Input),”	describes	some	ways	to	overcome	problems	brought	on	by	scanf()	(although
modern-day	C	programmers	often	resort	to	complete	data-entry	routines	they	write,	download,	or
purchase	elsewhere	that	overcome	C’s	difficult	data-entry	ability).
An	exception	to	the	ampersand	rule	does	exist.	If	you’re	getting	input	into	an	array	using	%s,	as
happens	when	you	ask	users	for	a	name	to	be	stored	in	a	character	array,	you	do	not	use	the
ampersand.

The	bottom-line	rule	is	this:	If	you’re	asking	the	user	to	type	integers,	floating	points,	characters,
doubles,	or	any	of	the	other	single-variable	combinations	(long	integers	and	so	on),	put	an
ampersand	before	the	variable	names	in	the	scanf().	If	you	are	asking	the	user	for	a	string	to	input
into	a	character	array,	don’t	put	the	ampersand	before	the	array	name.

	Warning

You	also	wouldn’t	put	the	ampersand	in	front	of	pointer	variables.	Actually,	an	array	is
nothing	more	than	a	pointer	variable,	and	that’s	why	the	ampersand	isn’t	needed	for
arrays.	We	get	to	pointers	later	in	this	book,	but	if	you’ve	seen	them	in	other	languages,
you	know	what	I’m	talking	about.	If	you	haven’t	seen	a	pointer	variable	and	you	don’t
know	what	this	is	all	about,	well,	I	promise	you’ll	get	there	soon!	Seriously,	you’ll
fully	understand	pointers	and	how	they	are	like	arrays	after	reading	Chapter	25,
“Arrays	and	Pointers.”

There’s	a	problem	with	using	scanf()	to	get	character	strings	into	character	arrays	that	you	need	to
know	about	now.	scanf()	stops	reading	string	input	at	the	first	space.	Therefore,	you	can	get	only	a
single	word	at	a	time	with	scanf().	If	you	must	ask	the	user	for	more	than	one	word,	such	as	the
user ’s	first	and	last	name,	use	two	scanf()	statements	(with	their	own	printf()	prompts)	and
store	the	two	names	in	two	character	arrays.
The	following	program	uses	scanf()	statements	to	ask	the	user	for	a	floating	point	(the	price	of	a
pizza),	a	string	(a	pizza	topping),	and	several	integers	(number	of	pizza	slices	and	the	month,	day,	and
year).	Notice	that	the	string	has	no	ampersand,	but	the	other	variables	do.	The	program	asks	for	only
a	one-word	pizza	topping	because	scanf()	isn’t	capable	of	getting	two	words	at	once.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	8	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter8ex2.c

/*	This	is	a	sample	program	that	asks	users	for	some	basic	data	and	prints	it	on	screen
in	order	to	show	what	was	entered	*/

#include	<stdio.h>

main()
{
				char	topping[24];
				int	slices;
				int	month,	day,	year;
				float	cost;

//	The	first	scanf	will	look	for	a	floating-point	variable,	the	cost
//	of	a	pizza
//	If	the	user	doesn't	enter	a	$	before	the	cost,	it	could	cause
//	problems

				printf("How	much	does	a	pizza	cost	in	your	area?");

				printf("enter	as	$XX.XX)\n");
				scanf("	$%f",	&cost);

//	The	pizza	topping	is	a	string,	so	your	scanf	doesn't	need	an	&

				printf("What	is	your	favorite	one-word	pizza	topping?\n");
				scanf("	%s",	topping);

				printf("How	many	slices	of	%s	pizza",	topping);
				printf("can	you	eat	in	one	sitting?\n");
				scanf("	%d",	&slices);

				printf("What	is	today's	date	(enter	it	in	XX/XX/XX	format).\n");
				scanf("	%d/%d/%d",	&month,	&day,	&year);

				printf("\n\nWhy	not	treat	yourself	to	dinner	on	%d/%d/%d",
											month,	day,	year);
				printf("\nand	have	%d	slices	of	%s	pizza!\n",	slices,	topping);
				printf("It	will	only	cost	you	$%.2f!\n\n\n",	cost);

				return	(0);
}

The	format	and	use	of	scanf()	statements	will	become	easier	with	practice.	If	the	user	wanted	to
enter	a	two-word	topping,	like	Italian	sausage,	your	program	would	need	two	scanf()	statements	to
capture	them	and	two	variables	to	save	the	names.	Later	in	the	book,	you	learn	some	tricks	to	ask	your
users	for	multiple	pieces	of	data	instead	of	just	one	within	a	particular	category.
Again,	use	your	printf()	statements	to	more	effectively	guide	users	to	enter	data	in	a	format	that
your	program	needs.	Try	entering	information	incorrectly	when	running	this	program,	such	as
leaving	off	the	dollar	sign	on	the	pizza	price	or	forgetting	the	slashes	in	the	date,	and	you	will	see	the
problems	you	can	create	for	your	program.

	Tip

You	can	let	the	user	type	characters	other	than	data	values.	For	example,	many	times
dates	are	entered	with	slashes	or	hyphens	separating	the	day,	month,	and	year,	like	this:
03/05/95.	You	have	to	trust	the	user	to	type	things	just	right.	In	the	previous	example,
if	the	user	doesn’t	type	in	the	dollar	sign	before	the	price	of	the	pizza,	the	program	will
not	function	properly.	The	following	scanf()	that	gets	a	date	expects	the	user	to	type
the	date	in	mm/dd/yy	format:

Click	here	to	view	code	image

scanf("	%d/%d/%d",	&month,	&day,	&year);

The	user	could	type	02/28/14	or	11/22/13,	but	not	June	5th,	2013,	because
the	scanf()	is	expecting	something	else.

The	Absolute	Minimum
This	chapter ’s	goal	was	to	teach	you	how	to	ask	for	and	get	answers	from	the	user.
Being	able	to	process	user	input	is	an	important	part	of	any	language.	scanf()
performs	data	entry—that	is,	scanf()	gets	the	user ’s	input	and	stores	that	input	in
variables.	Key	concepts	from	this	chapter	include:
•	Use	scanf()	to	get	data	from	the	user	by	way	of	the	keyboard,	and	remember	to
include	a	control	string	to	dictate	how	your	data	will	look	when	input.
•	Before	using	a	scanf(),	use	a	printf()	to	prompt	the	user	for	the	values	and
format	you	want.
•	Put	an	ampersand	(&)	before	nonarray	variables	in	a	scanf().
•	Always	add	a	leading	space	before	the	first	control	string	character	(as	an	example,
"	%d"	contains	a	space	before	the	%d)	to	ensure	accurate	character	input.

Part	II:	Putting	C	to	Work	for	You	with	Operators	and	Expressions

9.	Crunching	the	Numbers—Letting	C	Handle	Math	for	You

In	This	Chapter
•	Handling	basic	arithmetic
•	Understanding	order	of	operators
•	Breaking	the	rules	with	parentheses
•	Using	assignments	everywhere

Many	people	still	break	out	in	a	cold	sweat	when	they	are	told	that	they	will	have	to	do	some	math.
Luckily,	computers	don’t	mind	math,	and	as	long	as	you	enter	the	numbers	correctly,	your	C	program
will	always	do	your	math	right	with	the	use	of	operators.	The	term	operators	might	conjure	images
of	the	ladies	that	used	to	help	with	long-distance	phone	calls,	but	we	aren’t	discussing	those.	These	are
C	operators,	which	let	you	do	math.	You	don’t	have	to	be	a	math	wizard	to	write	programs	that	use
math	operators.
Not	only	should	you	learn	to	recognize	math	operators,	but	you	should	also	learn	how	C	orders	math
operators.	C	doesn’t	always	calculate	from	left	to	right.	This	chapter	explains	why.

Basic	Arithmetic
A	lot	of	C	operators	work	exactly	the	way	you	expect	them	to.	You	use	a	plus	sign	(+)	when	you	want
to	add,	and	you	use	a	minus	sign	(-)	when	you	want	to	subtract.	An	expression	includes	one	or	more
operators.	C	programmers	often	use	math	expressions	on	the	right	side	of	the	assignment	operator
when	filling	variables	with	values,	like	this:
Click	here	to	view	code	image

totalSales	=	localSales	+	internationalSales	-	salesReturns;

C	computes	the	answer	and	then	stores	that	answer	in	totalSales.

	Note

If	you	want	to	subtract	a	negative	value,	be	sure	to	put	a	space	between	the	minus	signs,
like	this:

Click	here	to	view	code	image

newValue	=	oldValue	-	-factor;

If	you	omit	the	space,	C	thinks	you’re	using	another	operator,	--,	called	the	decrement
operator,	described	in	Chapter	13,	“A	Bigger	Bag	of	Tricks—Some	More	Operators
for	Your	Programs.”

You	can	even	put	a	math	expression	inside	a	printf():
Click	here	to	view	code	image

printf("In	3	years,	I'll	be	%d	years	old.\n",	age	+	3);

If	you	want	to	multiply	and	divide,	you	can	do	so	by	using	the	*	and	/	symbols.	The	following
statement	assigns	a	value	to	a	variable	using	multiplication	and	division:
Click	here	to	view	code	image

newFactor	=	fact	*	1.2	/	0.5;

	Warning

If	you	put	integers	on	both	sides	of	the	division	symbol	(/),	C	computes	the	integer
division	result.	Study	the	following	program	to	get	familiar	with	integer	division	and
regular	division.	The	comments	explain	the	results	calculated	from	the	divisions,	but
you	can	always	double-check	by	compiling	the	program	and	running	it	yourself.

Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	9	of
//	Absolute	Beginner's	Guide	to	C,	3rd	Edition
//	File	Chapter9ex1.c

/*	This	is	a	sample	program	that	demonstrates	math	operators,	and
the	different	types	of	division.	*/

#include	<stdio.h>

main()
{
				//	Two	sets	of	equivalent	variables,	with	one	set
				//	floating-point	and	the	other	integer

				float	a	=	19.0;
				float	b	=	5.0;
				float	floatAnswer;

				int	x	=	19;
				int	y	=	5;
				int	intAnswer;

				//	Using	two	float	variables	creates	an	answer	of	3.8
				floatAnswer	=	a	/	b;
				printf("%.1f	divided	by	%.1f	equals	%.1f\n",	a,	b,	floatAnswer);

				floatAnswer	=	x	/y;	//Take	2	creates	an	answer	of	3.0
				printf("%d	divided	by	%d	equals	%.1f\n",	x,	y,	floatAnswer);

				//	This	will	also	be	3,	as	it	truncates	and	doesn't	round	up
				intAnswer	=	a	/	b;
				printf("%.1f	divided	by	%.1f	equals	%d\n",	a,	b,	intAnswer);

				intAnswer	=	x	%	y;	//	This	calculates	the	remainder	(4)
				printf("%d	modulus	(i.e.	remainder	of)	%d	equals	%d",	x,	y,
				intAnswer);

				return	0;
				}

The	last	math	statement	in	this	program	might	be	new	to	you.	If	you	need	the	remainder	after	integer
division,	use	C’s	modulus	operator	(%).	Given	the	values	just	listed,	the	following	statement	puts	a	4	in
intAnswer:
Click	here	to	view	code	image

ansMod	=	x	%	y;		/*	4	is	the	remainder	of	19	/	5	*/

You	now	know	the	three	ways	C	divides	values:	regular	division	if	a	float	is	on	either	or	both	sides	of
the	/,	integer	division	if	an	integer	is	on	both	sides	of	the	/,	and	modulus	if	the	%	operator	is	used
between	two	integers.

	Tip

You	can’t	use	%	between	anything	but	integer	data	types.

The	following	short	program	computes	the	net	sale	price	of	tires:
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	9	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter9ex2.c

/*	This	program	asks	the	user	for	a	number	of	tires	and	price	per
tire.	It	then	calculates	a	total	price,	adding	sales	tax.	*/

//	If	you	find	you	use	a	sales	tax	rate	that	may	change,	use	#define
//	to	set	it	in	one	place
#include	<stdio.h>
#define	SALESTAX	.07

main()
{
				//	Variables	for	the	number	of	tires	purchased,	price,
				//	a	before-tax	total,	and	a	total	cost
				//	with	tax

				int	numTires;
				float	tirePrice,	beforeTax,	netSales;

				/*	Get	the	number	of	tires	purchased	and	price	per	tire.	*/
				printf("How	many	tires	did	you	purchase?	");
				scanf("	%d",	&numTires);
				printf("What	was	the	cost	per	tire	(enter	in	$XX.XX	format)?	");
				scanf("	$%f",	&tirePrice);

				/*	Compute	the	price	*/

				beforeTax	=	tirePrice	*	numTires;
				netSales	=	beforeTax	+	(beforeTax	*	SALESTAX);

				printf("%You	spent	$%.2f	on	your	tires\n\n\n",	netSales);

				return	0;
				}

Here	is	a	sample	run	of	the	program:
Click	here	to	view	code	image

How	many	tires	did	you	purchase?	4
What	was	the	cost	per	tire	(enter	in	$XX.XX	format)?	$84.99
You	spent	$363.76	on	your	tires

Order	of	Operators
As	mentioned	earlier	in	this	chapter,	C	doesn’t	always	compute	math	operations	in	the	order	you
expect.	The	following	expression	explains	it	in	a	nutshell:
Click	here	to	view	code	image

ans	=	5	+	2	*	3;		/*	Puts	11	in	ans	*/

If	you	thought	that	C	would	store	21	in	ans,	you’re	reading	the	expression	from	left	to	right.
However,	C	always	computes	multiplication	before	addition.	It	sounds	crazy,	but	as	long	as	you	know
the	rules,	you’ll	be	okay.	C	is	following	the	order	of	operators	table.	C	first	multiplies	2	and	3	to	get	6,
and	then	adds	5	to	get	11.
Table	9.1	lists	the	complete	order	of	operators.	(The	table	includes	several	operators	you	have	yet	to
cover—don’t	worry,	you	will	learn	their	value	throughout	the	book.)	For	each	level,	if	your
expression	has	more	than	one	operator	from	the	same	level,	C	resolves	them	using	the	associativity
direction	listed.	So	if	you	do	multiplication	and	division,	C	performs	the	operation	that	appears	first
when	reading	left	to	right,	and	then	moves	on	to	the	next	operation.	When	it	has	completed	a	level,	it
moves	down	to	the	next	level.	As	you	can	see	in	the	table,	*,	/,	and	%	appear	before	+	and	-.
Therefore,	if	C	sees	an	expression	with	a	combination	of	these	operators,	it	evaluates	*,	/,	and	%
before	computing	+	and	-.

TABLE	9.1	Order	of	Operators

Here	is	a	difficult	expression.	All	the	variables	and	numbers	are	integers.	See	if	you	can	figure	out	the
answer	by	the	way	C	would	evaluate	the	expression:
Click	here	to	view	code	image

ans	=	5	+	2	*	4	/	2	%	3	+	10	-	3;		/*	What	is	the	answer?	*/

Figure	9.1	shows	how	to	solve	for	the	answer,	13.

FIGURE	9.1	Solving	the	expression	the	way	C	would.

	Tip

Don’t	do	too	much	at	one	time	when	evaluating	such	expressions	for	practice.	As	the
figure	shows,	you	should	compute	one	operator	at	a	time	and	then	bring	the	rest	of	the
expression	down	for	the	next	round.

If	an	expression	such	as	the	one	in	Figure	9.1	contains	more	than	one	operator	that	sits	on	the	same
level	in	the	order	of	operators	table,	you	must	use	the	third	column,	labeled	Associativity,	to
determine	how	the	operators	are	evaluated.	In	other	words,	because	*,	/,	and	%	all	reside	on	the	same
level,	they	were	evaluated	from	left	to	right,	as	dictated	by	the	order	of	operators	table’s	Associativity
column.
You	might	wonder	why	you	have	to	learn	this	stuff.	After	all,	doesn’t	C	do	your	math	for	you?	The
answer	is	“Yes,	but....”	C	does	your	math,	but	you	need	to	know	how	to	set	up	your	expressions
properly.	The	classic	reason	is	as	follows:	Suppose	you	want	to	compute	the	average	of	four
variables.	The	following	will	not	work:
Click	here	to	view	code	image

avg	=	i	+	j	+	k	+	l	/	4;		/*	Will	NOT	compute	average!	*/

The	reason	is	simple	when	you	understand	the	order	of	operators.	C	computes	the	division	first,	so	l
/	4	is	evaluated	first	and	then	i,	j,	and	k	are	added	to	that	divided	result.	If	you	want	to	override	the
order	of	operators,	as	you	would	do	in	this	case,	you	have	to	learn	to	use	ample	parentheses	around
expressions.

Break	the	Rules	with	Parentheses
If	you	need	to	override	the	order	of	operators,	you	can.	As	demonstrated	in	Table	9.1,	if	you	group	an
expression	inside	parentheses,	C	evaluates	that	expression	before	the	others.	Because	the	order	of
operators	table	shows	parentheses	before	any	of	the	other	math	operators,	parentheses	have	top
precedence,	as	the	following	statement	shows:
Click	here	to	view	code	image

ans	=	(5	+	2)	*	3;		/*	Puts	21	in	ans	*/

Even	though	multiplication	is	usually	performed	before	addition,	the	parentheses	force	C	to	evaluate
5	+	2	first	and	then	multiply	the	resulting	7	by	3.	Therefore,	if	you	want	to	average	four	values,
you	can	do	so	by	grouping	the	addition	of	the	values	in	parentheses:
Click	here	to	view	code	image

avg	=	(i	+	j	+	k	+	l)	/	4;		/*	Computes	average	*/

	Tip

Use	lots	of	parentheses.	They	clarify	your	expressions.	Even	if	the	regular	operator
order	will	suffice	for	your	expression,	parentheses	make	the	expression	easier	for	you
to	decipher	if	you	need	to	change	the	program	later.

Assignments	Everywhere
As	you	can	see	from	the	order	of	operators	table,	the	assignment	operator	has	precedence	and
associativity,	as	do	the	rest	of	the	operators.	Assignment	has	very	low	priority	in	the	table,	and	it
associates	from	right	to	left.
The	right-to-left	associativity	lets	you	perform	an	interesting	operation:	You	can	assign	a	value	to
more	than	one	variable	in	the	same	expression.	To	assign	the	value	of	9	to	10	different	variables,	you
could	do	this:
Click	here	to	view	code	image

a	=	9;	b	=	9;	c	=	9;	d	=	9;	e	=	9;	f	=	9;	g	=	9;	h	=	9;	i	=	9;	j	=	9;

but	this	is	easier:
Click	here	to	view	code	image

a	=	b	=	c	=	d	=	e	=	f	=	g	=	h	=	i	=	j	=	9;

Because	of	the	right-to-left	associativity,	C	first	assigns	the	9	to	j,	then	puts	the	9	in	i,	and	so	on.

	Note

C	doesn’t	initialize	variables	for	you.	If	you	wanted	to	put	0	in	a	bunch	of	variables,	a
multiple	assignment	would	do	it	for	you.

Every	C	expression	produces	a	value.	The	expression	j	=	9;	does	put	a	9	in	j,	but	it	also	results	in
a	completed	value	of	9,	which	is	available	to	store	somewhere	else,	if	needed.	The	fact	that	every
assignment	results	in	an	expression	lets	you	do	things	like	this	that	you	can’t	always	do	in	other
programming	languages:
Click	here	to	view	code	image

a	=	5	*	(b	=	2);		/*	Puts	a	2	in	b	and	a	10	in	a	*/

Here’s	one	last	program	example	that	uses	assignments,	operators,	and	parentheses	to	change	the
order	of	operators:
Click	here	to	view	code	image

//	Example	program	#3	from	Chapter	9	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter9ex3.c

/*	This	program	calculates	the	average	of	four	grades	and	also	does
some	other	basic	math.	*/

#include	<stdio.h>

main()
{

				int	grade1,	grade2,	grade3,	grade4;
				float	averageGrade,	gradeDelta,	percentDiff;

				/*	The	student	got	88s	on	the	first	and	third	test,
								so	a	multiple	assignment	statement	works.	*/
				grade1	=	grade3	=	88;

				grade2	=	79;

				//	The	user	needs	to	enter	the	fourth	grade
				printf("What	did	you	get	on	the	fourth	test");
				printf("	(An	integer	between	0	and	100)?");
				scanf("	%d",	&grade4);

				averageGrade	=	(grade1+grade2+grade3+grade4)/4;

				printf("Your	average	is	%.1f.\n",	averageGrade);

				gradeDelta	=	95	-	averageGrade;
				percentDiff	=	100	*	((95-averageGrade)	/	95);
				printf("Your	grade	is	%.1f	points	lower	than	the	",	gradeDelta);
				printf("top	grade	in	the	class	(95)\n");
				printf("You	are	%.1f	percent	behind	",	percentDiff);

				printf("that	grade!\n\n\n");

				return	0;
				}

This	program	helps	reinforce	the	use	of	the	assignment	operators,	as	well	as	the	operators	for
addition,	subtraction,	multiplication,	and	division.	You	also	use	parentheses	to	set	your	own	order	of
operations,	including	a	double	parentheses	when	calculating	the	percent	difference	between	the	user ’s
grade	and	the	top	grade	in	the	class.	Keep	practicing	these	C	programs,	and	you	will	have	the	top
grade	in	your	programming	class!

The	Absolute	Minimum
C	provides	several	math	operators	that	do	calculations	for	you.	You	just	need	to
understand	the	order	of	operators	to	ensure	that	you	input	your	numbers	correctly	for
your	desired	calculations.	Key	concepts	from	this	chapter	include:
•	Use	+,	-,	*,	and	/	for	addition,	subtraction,	multiplication,	and	division,
respectively.
•	Use	the	modulus	operator	(%)	if	you	want	the	remainder	of	an	integer	division.
•	Remember	the	order	of	operators,	and	use	parentheses	if	you	need	to	change	the
order.
•	Don’t	put	two	minus	signs	together	if	you	are	subtracting	a	negative	number,	or	C
will	think	you	are	using	a	different	operator.	Place	a	space	between	the	two	minus
signs.
•	Use	multiple	assignment	operators	if	you	have	several	variables	to	initialize.

10.	Powering	Up	Your	Variables	with	Assignments	and	Expressions

In	This	Chapter
•	Saving	time	with	compound	operators
•	Fitting	compound	operators	into	the	order	of	operators
•	Typecasting	your	variables

As	you	can	see	from	Table	9.1	in	the	last	chapter,	C	has	a	rich	assortment	of	operators.	Many
operators	help	C	keep	its	command	vocabulary	small.	C	doesn’t	have	many	commands,	but	it	has	a	lot
more	operators	than	in	most	other	programming	languages;	whereas	most	computer	programming
languages	have	relatively	few	operators	and	lots	of	commands,	C	retains	its	succinct	nature	by
providing	many	powerful	operators.
This	chapter	explores	a	few	more	operators	that	you	need	as	you	write	programs.	The	compound
assignment	operators	and	the	typecast	operator	provide	the	vehicles	for	several	advanced	operations.

Compound	Assignment
Many	times	in	your	programs,	you	will	have	to	change	the	value	of	a	variable.	Until	now,	all
variables	have	been	assigned	values	based	on	constant	literal	values	or	expressions.	However,	often
you	will	need	to	update	a	variable.
Suppose	your	program	had	to	count	the	number	of	times	a	profit	value	went	below	zero.	You	would
need	to	set	up	a	counter	variable.	A	counter	variable	is	a	variable	that	you	add	1	to	when	a	certain
event	takes	place.	Every	time	a	profit	value	goes	negative,	you	might	do	this:
Click	here	to	view	code	image

lossCount	=	lossCount	+	1;		/*	Adds	1	to	lossCount	variable	*/

	Warning

In	math,	nothing	can	be	equal	to	itself	plus	1.	With	computers,	though,	the	previous
assignment	statement	adds	1	to	lossCount	and	then	assigns	that	new	value	to
lossCount,	essentially	adding	1	to	the	value	of	lossCount.	Remember	that	an
equals	sign	means	to	take	whatever	is	on	the	right	of	the	equals	sign	and	store	that
computed	value	in	the	variable	on	the	left.

The	following	simple	program	prints	the	numbers	from	1	to	5	using	a	counter	assignment	statement
before	each	printf()	and	then	counts	back	down	to	1:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	10	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter10ex1.c

/*	This	program	increases	a	counter	from	1	to	5,	printing	updates

and	then	counts	it	back	down	to	1.	*/

#include	<stdio.h>

main()
{

				int	ctr	=	0;

				ctr	=	ctr	+	1;	//	increases	counter	to	1
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	+	1;	//	increases	counter	to	2
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	+	1;	//	increases	counter	to	3
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	+	1;	//	increases	counter	to	4
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	+	1;	//	increases	counter	to	5
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	-	1;	//	decreases	counter	to	4
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	-	1;	//	decreases	counter	to	3
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	-	1;	//	decreases	counter	to	2
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	=	ctr	-	1;	//	decreases	counter	to	1
				printf("Counter	is	at	%d.\n",	ctr);

				return	0;
				}

The	following	lines	show	the	program’s	output.	Notice	that	ctr	keeps	increasing	(in	computer	lingo,
it’s	called	incrementing)	by	1	with	each	assignment	statement	until	it	reaches	5,	and	then	decreases
(called	decrementing)	by	1	with	each	assignment	statement	until	it	reaches	1.	(Subtracting	from	a
counter	would	come	in	handy	if	you	needed	to	decrease	totals	from	inventories	as	products	are	sold.)

Counter	is	at	1.
Counter	is	at	2.
Counter	is	at	3.
Counter	is	at	4.
Counter	is	at	5.
Counter	is	at	4.
Counter	is	at	3.
Counter	is	at	2.
Counter	is	at	1.

Other	times,	you’ll	need	to	update	a	variable	by	adding	to	a	total	or	by	adjusting	it	in	some	way.	The
following	assignment	statement	increases	the	variable	sales	by	25	percent:
Click	here	to	view	code	image

sales	=	sales	*	1.25;		/*	Increases	sales	by	25	percent	*/

C	provides	several	compound	operators	that	let	you	update	a	variable	in	a	manner	similar	to	the
methods	just	described	(incrementing,	decrementing,	and	updating	by	more	than	1).	However,	instead
of	repeating	the	variable	on	both	sides	of	the	equals	sign,	you	have	to	list	the	variable	only	once.	As
with	much	of	C,	some	examples	will	help	clarify	what	is	done	with	the	compound	operators.

	Note

Chapter	15,	“Looking	for	Another	Way	to	Create	Loops,”	shows	you	how	the	for
statement	makes	updating	variables	easier.

If	you	want	to	add	1	to	a	variable,	you	can	use	the	compound	addition	operator,	+=.	These	two
statements	produce	the	same	result:
Click	here	to	view	code	image

lossCount	=	lossCount	+	1;		/*	Adds	1	to	lossCount	variable	*/

and
Click	here	to	view	code	image

lossCount	+=	1;		/*	Adds	1	to	lossCount	variable	*/

Instead	of	multiplying	sales	by	1.25	and	then	assigning	it	to	itself	like	this:
Click	here	to	view	code	image

sales	=	sales	*	1.25;		/*	Increases	sales	by	25	percent	*/

you	can	use	the	compound	multiplication	operator,	*=,	to	do	this:
Click	here	to	view	code	image

sales	*=	1.25;		/*	Increases	sales	by	25	percent	*/

	Tip

The	compound	operators	are	quicker	to	use	than	writing	out	the	entire	assignment
because	you	don’t	have	to	list	the	same	variable	name	on	both	sides	of	the	equals	sign.
Also,	the	compound	operators	reduce	typing	errors	because	you	don’t	have	to	type	the
same	variable	name	twice	in	the	same	statement.

Table	10.1	lists	all	the	compound	assignment	operators	and	gives	examples	of	each.	All	the	operators
you’ve	seen	so	far	in	this	book,	from	addition	through	modulus,	have	corresponding	compound
operators.

TABLE	10.1	Compound	Assignment	Operators

This	second	sample	program	produces	the	exact	same	result	as	the	first	program	in	the	chapter;	it	just
uses	compound	operators	to	increase	and	decrease	the	counter.	In	addition,	some	of	the	compound
operator	statements	are	located	right	in	the	printf()	statements	to	show	you	that	you	can	combine
the	two	lines	of	code	into	one.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	10	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter10ex2.c

/*	This	program	also	increases	a	counter	from	1	to	5,	printing	updates
and	then	counts	it	back	down	to	1.	However,	it	uses	compound
operators*/

#include	<stdio.h>

main()
{

				int	ctr	=	0;

				ctr	+=	1;	//	increases	counter	to	1
				printf("Counter	is	at	%d.\n",	ctr);
				ctr	+=	1;	//	increases	counter	to	2
				printf("Counter	is	at	%d.\n",	ctr);

				printf("Counter	is	at	%d.\n",	ctr	+=	1);
				ctr	+=	1;	//	increases	counter	to	4
				printf("Counter	is	at	%d.\n",	ctr);

				printf("Counter	is	at	%d.\n",	ctr	+=	1);
				ctr	-=	1;	//	decreases	counter	to	4
				printf("Counter	is	at	%d.\n",	ctr);
				printf("Counter	is	at	%d.\n",	ctr	-=	1);
				printf("Counter	is	at	%d.\n",	ctr	-=	1);
				printf("Counter	is	at	%d.\n",	ctr	-=	1);

				return	0;
				}

Watch	That	Order!
Look	at	the	order	of	operators	table	in	the	previous	chapter	(Table	9.1)	and	locate	the	compound
assignment	operators.	You’ll	see	that	they	have	very	low	precedence.	The	+=,	for	instance,	is	several
levels	lower	than	the	+.
Initially,	this	might	not	sound	like	a	big	deal.	(Actually,	maybe	none	of	this	sounds	like	a	big	deal.	If
so,	great!	C	should	be	easier	than	a	lot	of	people	would	have	you	think.)	The	order	of	operators	table
can	haunt	the	unwary	C	programmer.	Think	about	how	you	would	evaluate	the	second	of	these
expressions:
Click	here	to	view	code	image

total	=	5;
total	*=	2	+	3;		/*	Updates	the	total	variable	*/

At	first	glance,	you	might	think	that	the	value	of	total	is	13	because	you	learned	earlier	that

multiplication	is	done	before	addition.	You’re	right	that	multiplication	is	done	before	addition,	but
compound	multiplication	is	done	after	addition,	according	to	the	order	of	operators.	Therefore,	the	2
+	3	is	evaluated	to	get	5,	and	then	that	5	is	multiplied	by	the	old	value	of	total	(which	also
happens	to	be	5)	to	get	a	total	of	25,	as	Figure	10.1	points	out.

FIGURE	10.1	The	compound	operators	reside	on	a	low	level.

Typecasting:	Hollywood	Could	Take	Lessons	from	C
Two	kinds	of	typecasting	exist:	the	kind	that	directors	of	movies	often	do	(but	we	don’t	cover	that
here)	and	also	C’s	typecasting.	A	C	typecast	temporarily	changes	the	data	type	of	one	variable	to
another.	Here	is	the	format	of	a	typecast:

(dataType)value

The	dataType	can	be	any	C	data	type,	such	as	int	or	float.	The	value	is	any	variable,	literal,
or	expression.	Suppose	that	age	is	an	integer	variable	that	holds	6.	The	following	converts	age	to	a
float	value	of	6.0:

(float)age;

If	you	were	using	age	in	an	expression	with	other	floats,	you	should	typecast	age	to	float	to	maintain
consistency	in	the	expression.

	Tip

Because	of	some	rounding	problems	that	can	automatically	occur	if	you	mix	data
types,	you’ll	have	fewer	problems	if	you	explicitly	typecast	all	variables	and	literals	in
an	expression	to	the	same	data	type.

Never	use	a	typecast	with	a	variable	on	a	line	by	itself.	Typecast	where	a	variable	or	an	expression	has
to	be	converted	to	another	value	to	properly	compute	a	result.	The	preceding	typecast	of	age	might
be	represented	like	this:
Click	here	to	view	code	image

salaryBonus	=	salary	*	(float)age	/	150.0;

age	does	not	change	to	a	floating-point	variable—age	is	changed	only	temporarily	for	this	one
calculation.	Everywhere	in	the	program	that	age	is	not	explicitly	typecast,	it	is	still	an	int	variable.

	Warning

If	you	find	yourself	typecasting	the	same	variable	to	a	different	data	type	throughout	a
program,	you	might	have	made	the	variable	the	wrong	type	to	begin	with.

You	can	typecast	an	entire	expression.	The	following	statement	typecasts	the	result	of	an	expression
before	assigning	it	to	a	variable:
Click	here	to	view	code	image

value	=	(float)(number	-	10	*	yrsService);

The	parentheses	around	the	expression	keep	the	typecast	from	casting	only	the	variable	number.	C
does	perform	some	automatic	typecasting.	If	value	is	defined	as	a	float,	C	typecasts	the	preceding
expression	for	you	before	storing	the	result	in	value.	Nevertheless,	if	you	want	to	clarify	all
expressions	and	not	depend	on	automatic	typecasting,	go	ahead	and	typecast	your	expressions.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	teach	you	additional	operators	that	help	you	write	C
programs.	You	also	learned	to	use	typecasting	if	you	want	to	mix	variables	and
constants	of	different	data	types.	Key	concepts	from	this	chapter	include:
•	Use	compound	assignment	operators	when	updating	variable	values.
•	Use	compound	assignment	operators	to	eliminate	a	few	typing	errors	and	to
decrease	your	program-writing	time.
•	Put	a	data	type	in	parentheses	before	a	variable,	expression,	or	data	value	you	want
to	typecast.
•	Don’t	mix	data	types.	Instead,	typecast	data	so	that	it	is	all	the	same	type	before
evaluating	it.
•	Don’t	ignore	the	order	of	operators!	The	compound	operators	have	low	priority	in
the	table	and	are	done	after	almost	every	other	operator	finishes.

11.	The	Fork	in	the	Road—Testing	Data	to	Pick	a	Path

In	This	Chapter
•	Testing	data
•	Using	if
•	Using	else

C	provides	an	extremely	useful	statement	called	if.	if	lets	your	programs	make	decisions	and
execute	certain	statements	based	on	the	results	of	those	decisions.	By	testing	contents	of	variables,
your	programs	can	produce	different	output,	given	different	input.
This	chapter	also	describes	relational	operators.	Combined	with	if,	relational	operators	make	C	a
powerful	data-processing	language.	Computers	would	really	be	boring	if	they	couldn’t	test	data;	they
would	be	little	more	than	calculators	if	they	had	no	capability	to	decide	courses	of	action	based	on
data.

Testing	Data
The	C	if	statement	works	just	like	it	does	in	spoken	language:	If	something	is	true,	do	one	thing;
otherwise,	do	something	else.	Consider	these	statements:

If	I	make	enough	money,	we’ll	go	to	Italy.
If	the	shoes	don’t	fit,	take	them	back.
If	it’s	hot	outside,	water	the	lawn.

Table	11.1	lists	the	C	relational	operators,	which	permit	testing	of	data.	Notice	that	some	of	the
relational	operators	consist	of	two	symbols.

TABLE	11.1	C	Relational	Operators

	Note

Relational	operators	compare	two	values.	You	always	put	a	variable,	literal,	or
expression—or	a	combination	of	any	two	of	them—on	either	side	of	a	relational
operator.

Before	delving	into	if,	let’s	look	at	a	few	relational	operators	and	see	what	they	really	mean.	A
regular	operator	produces	a	mathematical	result.	A	relational	operator	produces	a	true	or	false	result.
When	you	compare	two	data	values,	the	data	values	either	produce	a	true	comparison	or	they	don’t.
For	example,	given	the	following	values:

int	i	=	5;
int	j	=	10;
int	k	=	15;
int	l	=	5;

the	following	statements	are	true:
i	==	l;
j	<	k;
k	>	i;
j	!=	l;

The	following	statements	are	not	true,	so	they	are	false:
i	>	j;
k	<	j;
k	==	l

	Tip

To	tell	the	difference	between	=	and	==,	remember	that	you	need	two	equals	signs	to
double-check	whether	something	is	equal.

	Warning

Only	like	values	should	go	on	either	side	of	the	relational	operator.	In	other	words,
don’t	compare	a	character	to	a	float.	If	you	have	to	compare	two	unlike	data	values,	use
a	typecast	to	keep	the	values	the	same	data	type.

Every	time	C	evaluates	a	relational	operator,	a	value	of	1	or	0	is	produced.	True	always	results	in	1,
and	false	always	results	in	0.	The	following	statements	assign	a	1	to	the	variable	a	and	a	0	to	the
variable	b:
Click	here	to	view	code	image

a	=	(4	<	10);		//	(4	<	10)	is	true,	so	a	1	is	put	in	a
b	=	(8	==	9);		//	(8	==	9)	is	false,	so	a	0	is	put	in	b

You	will	often	use	relational	operators	in	your	programs	because	you’ll	often	want	to	know	whether
sales	(stored	in	a	variable)	is	more	than	a	set	goal,	whether	payroll	calculations	are	in	line,	and
whether	a	product	is	in	inventory	or	needs	to	be	ordered,	for	example.	You	have	seen	only	the
beginning	of	relational	operators.	The	next	section	explains	how	to	use	them.

Using	if

The	if	statement	uses	relational	operators	to	perform	data	testing.	Here’s	the	format	of	the	if
statement:
Click	here	to	view	code	image

if	(condition)
{	block	of	one	or	more	C	statements;	}

The	parentheses	around	the	condition	are	required.	The	condition	is	a	relational	test	like	those
described	in	the	preceding	section.	The	block	of	one	or	more	C	statements	is	called	the	body	of	the	if
statement.	The	braces	around	the	block	of	one	or	more	C	statements	are	required	if	the	body	of	the	if
contains	more	than	a	single	statement.

	Tip

Even	though	braces	aren’t	required,	if	an	if	contains	just	one	statement,	always	use	the
braces.	If	you	later	add	statements	to	the	body	of	the	if,	the	braces	will	be	there.	If	the
braces	enclose	more	than	one	statement,	the	braces	enclose	what	is	known	as	a
compound	statement.

Here	is	a	program	with	two	if	statements:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	11	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter11ex1.c

/*	This	program	asks	the	user	for	their	birth	year	and	calculates
how	old	they	will	be	in	the	current	year.	(it	also	checks	to	make
sure	a	future	year	has	not	been	entered.)	It	then	tells	the	user	if
they	were	born	in	a	leap	year.	*/

#include	<stdio.h>
#define	CURRENTYEAR	2013

main()
{

				int	yearBorn,	age;

				printf("What	year	were	you	born?\n");
				scanf("	%d",	&yearBorn);

				//	This	if	statement	can	do	some	data	validation,	making	sure
				//	the	year	makes	sense
				//	The	statements	will	only	execute	if	the	year	is	after	the
				//	current	year

				if	(yearBorn	>	CURRENTYEAR)
				{
								printf("Really?	You	haven't	been	born	yet?\n");

								printf("Want	to	try	again	with	a	different	year?\n");
								printf("What	year	were	you	born?\n");
								scanf("	%d",	&yearBorn);
				}

				age	=	CURRENTYEAR	-	yearBorn;

				printf("\nSo	this	year	you	will	turn	%d	on	your	birthday!\n",
				age);

				//	The	second	if	statment	uses	the	modulus	operator	to	test	if
				//	the	year	of	birth	was	a	Leap	Year.	Again,	only	if	it	is	will
				//	the	code	execute

				if	((yearBorn	%	4)	==	0)
				{
								printf("\nYou	were	born	in	a	Leap	Year--cool!\n");
				}

				return	0;
}

Consider	a	few	notes	about	this	program.	If	you	use	the	current	year	in	your	program,	that’s	a	good
variable	to	set	with	a	#define	statement	before	main().	That	way,	you	can	simply	change	that	one
line	later	if	you	run	this	program	any	year	in	the	future.
The	first	if	statement	is	an	example	of	how	to	potentially	use	if	as	a	form	of	data	validation.	The
statement	tests	whether	the	user	has	entered	a	year	later	than	the	current	year	and,	if	so,	executes	the
section	of	code	that	follows	in	the	braces.	If	the	user	has	entered	a	proper	year,	the	program	skips
down	to	the	line	that	calculates	the	user ’s	age.	The	section	in	the	braces	reminds	the	reader	that	he	or
she	couldn’t	possibly	be	born	in	the	year	entered	and	gives	the	user	a	chance	to	enter	a	new	year.	The
program	then	proceeds	as	normal.
Here	you	might	have	noticed	a	limitation	to	this	plan.	If	the	user	enters	an	incorrect	year	a	second
time,	the	program	proceeds	and	even	tells	the	age	in	negative	years!	A	second	style	of	conditional
statements,	a	do...while	loop,	keeps	hounding	the	user	until	he	or	she	enters	correct	data.	This	is
covered	in	Chapter	14,	“Code	Repeat—Using	Loops	to	Save	Time	and	Effort.”

	Tip

You	can	change	the	relational	operator	to	not	accept	the	data	entry	if	the	user	types	in	a
year	greater	than	or	equal	to	the	current	year,	but	maybe	the	user	is	helping	a	recent
newborn!

After	calculating	what	the	user ’s	age	will	be	on	his	or	her	birthday	this	year,	a	second	if	statement
tests	the	year	of	the	user ’s	birth	to	see	whether	he	or	she	was	born	in	a	leap	year	by	using	the	modulus
operator.	Only	leap	years	are	divisible	by	4	without	a	remainder,	so	only	people	who	were	born	in
one	of	those	years	will	see	the	message	noting	the	one-in-four	odds	of	their	birth	year.	For	the	rest,
that	section	of	code	is	skipped	and	the	program	reaches	its	termination	point.

	Note

The	main()	function	in	the	Draw	Poker	program	in	Appendix	B,	“The	Draw	Poker
Program,”	asks	the	player	which	cards	to	keep	and	which	cards	to	replace.	An	if	is
used	to	determine	exactly	what	the	user	wants	to	do.

Otherwise...:	Using	else

In	the	preceding	section,	you	saw	how	to	write	a	course	of	action	that	executes	if	the	relational	test	is
true.	If	the	relational	test	is	false,	nothing	happens.	This	section	explains	the	else	statement	that	you
can	add	to	if.	Using	else,	you	can	specify	exactly	what	happens	when	the	relational	test	is	false.
Here	is	the	format	of	the	combined	if...else:
Click	here	to	view	code	image

if	(condition)
{block	of	one	or	more	C	statements;}
else
{	block	of	one	or	more	C	statements;	}

So	in	the	case	of	if...else,	one	of	the	two	segments	of	code	will	run,	depending	on	whether	the
condition	tested	is	true	(in	which	case,	the	if	code	will	run)	or	false	(in	which	case,	the	else	code
will	run).	This	is	perfect	if	you	have	two	possible	outcomes	and	need	to	run	different	code	for	each.
Here	is	an	example	of	if...else	that	moves	the	previous	program	to	an	if...else
construction.	In	this	version,	the	user	does	not	have	the	opportunity	to	re-enter	a	year,	but	it	does
congratulate	the	user	on	coming	back	from	the	future.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	11	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter11ex2.c

/*	This	program	asks	the	user	for	their	birth	year	and	calculates
how	old	they	will	be	in	the	current	year.	(it	also	checks	to	make
sure	a	future	year	has	not	been	entered.)	It	then	tells	the	user	if
they	were	born	in	a	leap	year.	*/

#include	<stdio.h>
#define	CURRENTYEAR	2013

main()
{

				int	yearBorn,	age;

				printf("What	year	were	you	born?\n");
				scanf("	%d",	&yearBorn);

				//	This	if	statement	can	do	some	data	validation,	making	sure
				//	the	year	makes	sense
				//	The	statements	will	only	execute	if	the	year	is	after	the

				//	current	year

				if	(yearBorn	>	CURRENTYEAR)
				{
								printf("Really?	You	haven't	been	born	yet?\n");
								printf("Congratulations	on	time	travel!\n");
				}
				else
				{

								age	=	CURRENTYEAR	-	yearBorn;

								printf("\nSo	this	year	you	will	turn	%d	on	your	birthday!\n",
															age);

								//	The	second	if	statment	uses	the	modulus	operator	to	test
								//	if	the	year	of
								//	birth	was	a	Leap	Year.	Again,	only	if	it	is	will	the	code
								//	execute

								if	((yearBorn	%	4)	==	0)
								{
												printf("\nYou	were	born	in	a	Leap	Year--cool!\n");
								}
				}
				return	0;
}

This	is	largely	the	same	program	as	before	(with	the	exception	that	the	user	does	not	have	the	option
of	entering	a	second	date	if	the	first	one	is	deemed	incorrect),	but	something	else	is	worth	noting.	The
second	if	statement	is	embedded	inside	the	code	that	executes	during	the	else	portion	of	the	first
if	statement.	This	is	known	as	a	nested	statement,	and	it	is	something	you	will	probably	be	doing	as
your	programs	get	more	complicated.	You	can	also	test	multiple	conditions,	but	the	switch
statement,	covered	in	Chapter	17,	“Making	the	case	for	the	switch	Statement,”	helps	you	master
that	statement.

	Tip

Put	semicolons	only	at	the	end	of	executable	statements	in	the	body	of	the	if	or	the
else.	Never	put	a	semicolon	after	the	if	or	the	else;	semicolons	go	only	at	the	end
of	complete	statements.

	Note

As	with	the	body	of	the	if,	the	body	of	the	else	doesn’t	require	braces	if	it	consists	of
a	single	statement—but	it’s	a	good	idea	to	use	braces	anyway.

This	last	program	demonstrates	another	way	to	use	if	and	else,	but	this	time	you	can	test	for	four
different	conditions:
Click	here	to	view	code	image

//	Example	program	#3	from	Chapter	11	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter11ex3.c

/*	This	program	asks	the	user	their	state	of	happiness	on	a	scale	of
1	to	10	and	then	gives	a	custom	2-line	message	based	on	their	range,
either	1-2,	3-4,	5-7,	or	8-10.	*/

#include	<stdio.h>

main()
{

				int	prefer;

				printf("On	a	scale	of	1	to	10,	how	happy	are	you?\n");
				scanf("	%d",	&prefer);

				//	Once	the	user's	level	of	happiness	is	entered,	a	series	of	if
				//	statements
				//	test	the	number	against	decreasing	numbers.	Only	one	of	the
				//	four	will	be
				//	executed.

				if	(prefer	>=	8)
				{
								printf("Great	for	you!\n");
								printf("Things	are	going	well	for	you!\n");
				}
				else	if	(prefer	>=	5)
				{
								printf("Better	than	average,	right?\n");
								printf("Maybe	things	will	get	even	better	soon!\n");
				}
				else	if	(prefer	>=	3)
				{
								printf("Sorry	you're	feeling	not	so	great.\n");
								printf("Hope	things	turn	around	soon...\n");
				}
				else
				{
								printf("Hang	in	there--things	have	to	improve,	right?\n");
								printf("Always	darkest	before	the	dawn.\n");
				}

				return	0;
}

Here	are	two	different	runs	of	this	program:
Click	here	to	view	code	image

On	a	scale	of	1	to	10,	how	happy	are	you?
5
Better	than	average,	right?
Maybe	things	will	get	better	soon!

On	a	scale	of	1	to	10,	how	happy	are	you?
9
Great	for	you!
Things	are	going	well	for	you!

The	goal	of	this	program	is	to	demonstrate	that	if...else	statements	do	not	have	to	be	limited	to
two	choices.	Frankly,	you	can	set	as	many	if...else	if...else	if...else	conditions	as
you’d	like.	For	example,	you	could	have	a	custom	message	for	every	number	between	1	and	10	in
this	program.	Each	test	eliminates	some	of	the	possibilities.	This	is	why	the	second	test	works	only
for	numbers	5	through	7,	even	though	the	test	is	for	whether	the	number	is	greater	or	equal	to	5;
numbers	8	and	higher	were	already	eliminated	with	the	first	if	test.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	ways	to	test	data	and	execute	one	set	of	code
or	another,	depending	on	the	result	of	that	test.	You	don’t	always	want	the	same	code	to
execute	every	time	someone	runs	your	program	because	the	data	is	not	always	the
same.	Key	concepts	from	this	chapter	include:
•	Use	relational	operators	to	compare	data.
•	Remember	that	a	true	relational	result	produces	a	1,	and	a	false	relational	result
produces	a	0.
•	Use	if	to	compare	data	and	else	to	specify	what	to	do	if	the	if	test	fails.
•	Put	braces	around	the	if	body	of	code	and	around	the	else	body	of	code.	All	the
code	in	the	braces	either	executes	or	does	not	execute,	depending	on	the	relational
comparison.
•	Don’t	put	a	semicolon	after	if	or	else.	Semicolons	go	only	at	the	end	of	each
statement,	inside	the	body	of	the	if	or	the	else.

12.	Juggling	Several	Choices	with	Logical	Operators

In	This	Chapter
•	Getting	logical
•	Avoiding	the	negative
•	The	order	of	logical	operators

Sometimes	the	relational	operators	described	in	Chapter	11,	“The	Fork	in	the	Road—Testing	Data	to
Pick	a	Path,”	simply	can’t	express	all	the	testing	conditions.	For	example,	if	you	wanted	to	test
whether	a	numeric	or	character	variable	is	within	a	certain	range,	you	would	have	to	use	two	if
statements,	like	this:
Click	here	to	view	code	image

if	(age	>=	21)	/*	See	if	21	<=	age	<=	65	*/
{	if	(age	<=	65)
				{
				printf("The	age	falls	between	21	and	65.\n");
				}
}

Although	there’s	nothing	wrong	with	using	nested	if	statements,	they’re	not	extremely
straightforward,	and	their	logic	is	slightly	more	complex	than	you	really	need.	By	using	the	logical
operators	you’ll	read	about	in	this	chapter,	you	can	combine	more	than	one	relational	test	in	a	single
if	statement	to	clarify	your	code.

	Note

Don’t	let	the	terms	logical	and	relational	make	you	think	these	two	groups	of	operators
are	difficult.	As	long	as	you	understand	how	the	individual	operators	work,	you	don’t
have	to	keep	track	of	what	they’re	called	as	a	group.

	Note

A	relational	operator	simply	tests	how	two	values	relate	(how	they	compare	to	each
other).	The	logical	operators	combine	relational	operators.

Getting	Logical
Three	logical	operators	exist	(see	Table	12.1).	Sometimes	logical	operators	are	known	as	compound
relational	operators	because	they	let	you	combine	more	than	one	relational	operator.	(See	the
previous	Note.)

TABLE	12.1	The	Logical	Operators

Logical	operators	appear	between	two	or	more	relational	tests.	For	example,	here	are	the	first	parts
of	three	if	statements	that	use	logical	operators:
Click	here	to	view	code	image

if	((age	>=	21)	&&	(age	<=	65))	{

and
Click	here	to	view	code	image

if	((hrsWorked	>	40)	||	(sales	>	25000.00))	{

and
if	(!(isCharterMember))	{

If	you	combine	two	relational	operators	with	a	logical	operator	or	you	use	the	!	(not)	operator	to
negate	a	relation,	the	entire	expression	following	the	if	statement	requires	parentheses.	This	is	not
allowed:
Click	here	to	view	code	image

if	!isCharterMember	{		/*	Not	allowed	*/

Of	course,	there	is	more	to	the	preceding	if	statements	than	what	is	shown,	but	to	keep	things	simple
at	this	point,	the	if	bodies	aren’t	shown.
Logical	operators	work	just	as	they	do	in	spoken	language.	For	example,	consider	the	spoken
statements	that	correspond	to	the	code	lines	just	seen:
Click	here	to	view	code	image

if	((age	>=	21)	&&	(age	<=	65))	{

This	could	be	worded	in	spoken	language	like	this:
“If	the	age	is	at	least	21	and	no	more	than	65,...”
And	the	code
Click	here	to	view	code	image

if	((hrsWorked	>	40)	||	(sales	>	25000.00))	{

could	be	worded	in	spoken	language	like	this:
“If	the	hours	worked	are	more	than	40	or	the	sales	are	more	than	$25000,...	“
Similarly,

if	(!(isCharterMember))	{

could	be	worded	in	spoken	language	like	this:

“If	you	aren’t	a	charter	member,	you	must...”
As	you	have	no	doubt	figured	out,	these	three	spoken	statements	describe	exactly	the	same	tests	done
by	the	three	if	statements.	You	often	place	an	and	between	two	conditions,	such	as	“If	you	take	out	the
trash	and	clean	your	room,	you	can	play.”

	Note

Reread	that	stern	statement	you	might	say	to	a	child.	The	and	condition	places	a	strict
requirement	that	both	jobs	must	be	done	before	the	result	can	take	place.	That’s	what	&&
does	also.	Both	sides	of	the	&&	must	be	true	for	the	body	of	the	if	to	execute.

Let’s	continue	with	this	same	line	of	reasoning	for	the	||	(or)	operator.	You	might	be	more	lenient
on	the	kid	by	saying	this:	“If	you	take	out	the	trash	or	clean	your	room,	you	can	play.”	The	or	is	not	as
restrictive.	One	side	or	the	other	side	of	the	||	must	be	true	(and	they	both	can	be	true	as	well).	If
either	side	is	true,	the	result	can	occur.	The	same	holds	for	the	||	operator.	One	or	the	other	side	of
the	||	must	be	true	(or	they	both	can	be	true)	for	the	body	of	the	if	to	execute.
The	!	(not)	operator	reverses	a	true	or	a	false	condition.	True	becomes	false,	and	false	becomes	true.
This	sounds	confusing,	and	it	is!	Limit	the	number	of	!	operators	you	use.	You	can	always	rewrite	a
logical	expression	to	avoid	using	!	by	reversing	the	logic.	For	example,	the	following	if:

if	(!(sales	<	3000))	{

is	exactly	the	same	as	this	if:
if	(sales	>=	3000)	{

As	you	can	see,	you	can	remove	the	!	and	turn	a	negative	statement	into	a	positive	test	by	removing
the	!	and	using	an	opposite	relational	operator.
The	following	program	uses	each	of	the	three	logical	operators	to	test	data.	Two	of	the	three
conditions	will	be	met,	and	their	if	sections	of	code	will	print;	the	third	is	not	true,	so	the	else
section	of	code	will	print.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	12	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter12ex1.c

/*	This	program	defines	a	series	of	variables	and	expressions	and
then	uses	both	relational	and	logical	operators	to	test	them	against
each	other.	*/

#include	<stdio.h>

main()
{
		//	set	up	some	common	integers	for	the	program
		int	planets	=	8;

		int	friends	=	6;
		int	potterBooks	=	7;
		int	starWars	=	6;
		int	months	=	12;
		int	beatles	=	4;
		int	avengers	=	6;
		int	baseball	=	9;
		int	basketball	=	5;
		int	football	=	11;

//	This	first	logical	statement	uses	the	AND	operator	to	test
//	whether	the	cast	of	Friends	and	the	Beatles	would	have
//	enough	people	to	make	a	baseball	team	AND	the	cast
//	of	Friends	and	the	Avengers	would	have	enough	people
//	to	field	a	football	team.	If	so,	the	statements	will	print.
	if	((friends	+	beatles	>=	baseball)	&&
						(friends	+	avengers	>=	football))
						{
												printf("The	cast	of	Friends	and	the	Beatles	");
												printf("could	make	a	baseball	team,\n");
												printf("AND	the	cast	of	Friends	plus	the	Avengers	");
												printf("could	make	a	football	team.\n");
						}
	else
	{
														printf("Either	the	Friends	cannot	make	a	");
														printf("baseball	team	with	the	Fab	Four,	\n");
														printf("OR	they	can't	make	a	Gridiron	Gang	with	the	");
														printf("Avengers	(or	both!)\n");
	}
//	This	second	logical	statement	uses	the	OR	operator	to	test
//	whether	the	number	of	Star	Wars	movies	is	less	than	months
//	in	the	year	OR	the	number	of	Harry	Potter	books	is	less	than
//	months	in	the	year.	If	either	statement	is	true,
//	the	statements	will	print.

		if	((starWars	<=	months)	||	(potterBooks	<=	months))
		{
				printf("\nYou	could	read	one	Harry	Potter	book	a	month,\n");
				printf("and	finish	them	all	in	less	than	a	year,\n");
				printf("OR	you	could	see	one	Star	Wars	movie	a	month,\n");
				printf("and	finish	them	all	in	less	than	a	year.\n");
		}
		else
		{
				printf("Neither	can	happen--too	many	books	or	movies,\n");
				printf("Not	enough	time!\n\n");
		}

//	This	final	logical	statemnt	uses	the	NOT	operator	to	test
//	whether	the	number	of	baseball	players	on	a	team	added
//	to	the	number	of	basketball	players	on	a	team	is	NOT
//	greater	than	the	number	of	football		players	on
//	a	team.	If	so,	the	statements	will	print.

		if	(!(baseball	+	basketball	>	football))
		{
				printf("\nThere	are	fewer	baseball	and	basketball	players\n");

				printf("combined	than	football	players.");
		}
		else
		{
				printf("\nThere	are	more	baseball	and	basketball	players\n");
				printf("combined	than	football	players.");
		}

		return	0;
}

Experiment	with	this	program—change	the	conditions,	variables,	and	operators	to	get	different
printing	combinations.	As	mentioned	before,	the	most	confusing	logical	operator	is	the	last	one	in	the
program,	the	not	(!)	operator.	Most	of	the	time,	you	can	write	a	statement	that	avoids	the	use	of	it.

Avoiding	the	Negative
Suppose	you	wanted	to	write	an	inventory	program	that	tests	whether	the	number	of	a	certain	item	has
fallen	to	zero.	The	first	part	of	the	if	might	look	like	this:

if	(count	==	0)	{

Because	the	if	is	true	only	if	count	has	a	value	of	0,	you	can	rewrite	the	statement	like	this:
Click	here	to	view	code	image

if	(!count)	{	/*	Executes	if's	body	only	if	count	is	0	*/

Again,	the	!	adds	a	little	confusion	to	code.	Even	though	you	might	save	some	typing	effort	with	a
fancy	!,	clearer	code	is	better	than	trickier	code,	and	if	(count	==	0)	{	is	probably	better	to
use,	despite	the	microsecond	your	program	might	save	by	using	!.
Using	the	&&	operator,	the	following	program	prints	one	message	if	the	user ’s	last	name	begins	with
the	letters	P	through	S,	and	it	prints	another	message	if	the	name	begins	with	something	else.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	12	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter12ex2.c

/*	This	program	asks	for	a	last	name,	and	if	the	user	has	a	last
name	that	starts	with	a	letter	between	P	and	Q,	they	will	be	sent	to
a	special	room	for	their	tickets.	*/

#include	<stdio.h>

main()
{
		//	set	up	an	array	for	the	last	name	and	then	get	it	from	the	user

		char	name[25];
		printf("What	is	your	last	name?	");
		printf("(Please	capitalize	the	first	letter!)\n");
		scanf("	%s",	name);
		//For	a	string	array,	you	don't	need	the	&

		if	((name[0]	>=	'P')	&&	(name[0]	<=	'S'))

		{
				printf("You	must	go	to	room	2432	");
				printf("for	your	tickets.\n");
		}
		else
		{
				printf("You	can	get	your	tickets	here.\n");
		}

		return	0;
}

One	point	about	this	program	is	worth	noting.	Chapter	8,	“Interacting	with	Users,”	suggested	that	you
use	your	printf()	statement	to	clarify	what	data	you	need	from	the	user	and	in	what	format.
Reminding	users	to	type	their	last	name	using	a	capital	letter	helps	avoid	possible	problems.	If	your
user ’s	last	name	is	Peyton,	but	she	types	it	as	peyton	with	a	lowercase	p,	the	program	would	not
send	the	user	to	Room	2432	because	the	logical	operator	checks	only	for	capitals.	Now,	if	you	wanted
to	check	for	either,	you	could	use	the	following,	more	complicated,	logical	statement:
Click	here	to	view	code	image

if	(((name[0]	>=	'P')	&&	(name[0]	<=	'S'))	||	(name[0]	>=	'p')	&&
(name[0]	>=	's')))

It’s	a	little	harder	to	read	and	follow,	but	such	is	the	price	of	data	vigilance!

	Note

How	would	the	program	be	different	if	the	&&	were	changed	to	a	||?	Would	the	first
or	the	second	message	appear?	The	answer	is	the	first	one.	Everybody	would	be	sent	to
Room	2432.	Any	letter	from	A	to	Z	is	either	more	than	P	or	less	than	S.	The	test	in	the
preceding	program	has	to	be	&&	because	Room	2432	is	available	only	to	people	whose
names	are	between	P	and	S.

As	mentioned	in	the	last	chapter,	if	statements	can	be	helpful	when	ensuring	that	the	user	has	entered
the	proper	information	your	program	is	looking	for.	The	following	section	of	code	asks	the	user	for
a	Y	or	N	answer.	The	code	includes	an	||	to	ensure	that	the	user	enters	a	correct	value.
Click	here	to	view	code	image

printf("Is	your	printer	on	(Y/N)	?\n");
scanf("	%c",	&ans);	//need	an	&	before	the	name	of	your	char	variable
if	((ans	==	'Y')	||	(ans	==	'N'))
{
				//	Gets	here	if	user	typed	a	correct	answer.
				if	(ans	==	'N')
				{
						printf("***	Turn	the	printer	on	now.	***\n");
}
}
else
{
						printf("You	did	not	enter	a	Y	or	N.\n");

}

	Tip

You	can	combine	more	than	two	relational	operators	with	logical	operators,	but	doing
too	much	in	a	single	statement	can	cause	confusion.	This	is	a	little	too	much:

Click	here	to	view	code	image

if	((a	<	6)	||	(c	>=	3)	&&	(r	!=	9)	||	(p	<=	1))	{

Try	to	keep	your	combined	relational	tests	simple	so	that	your	programs	remain	easy
to	read	and	maintain.

The	Order	of	Logical	Operators
Because	logical	operators	appear	in	the	order	of	operators	table,	they	have	priority	at	times,	just	as
the	other	operators	do.	Studying	the	order	of	operators	shows	you	that	the	&&	operator	has
precedence	over	the	||.	Therefore,	C	interprets	the	following	logic:
Click	here	to	view	code	image

if	(age	<	20	||	sales	<	1200	&&	hrsWorked	>	15)	{

like	this:
Click	here	to	view	code	image

if	((age	<	20)	||	((sales	<	1200)	&&	(hrsWorked	>	15)))	{

Use	ample	parentheses.	Parentheses	help	clarify	the	order	of	operators.	C	won’t	get	confused	if	you
don’t	use	parentheses	because	it	knows	the	order	of	operators	table	very	well.	However,	a	person
looking	at	your	program	has	to	figure	out	which	is	done	first,	and	parentheses	help	group	operations
together.
Suppose	that	a	teacher	wants	to	reward	her	students	who	perform	well	and	have	missed	very	few
classes.	Also,	the	reward	requires	that	the	students	either	joined	three	school	organizations	or	were	in
two	sports	activities.	Whew!	You	must	admit,	not	only	will	that	reward	be	deserved,	but	sorting	out	the
possibilities	will	be	difficult.
In	C	code,	the	following	if	statement	would	test	true	if	a	student	met	the	teacher ’s	preset	reward
criteria:
Click	here	to	view	code	image

if	(grade	>	93	&&	classMissed	<=	3	&&	numActs	>=	3	||	sports	>=		2)	{

That’s	a	lot	to	decipher.	Not	only	is	the	statement	hard	to	read,	but	there	is	a	subtle	error.	The	||	is
compared	last	(because	||	has	lower	precedence	than	&&),	but	that	||	should	take	place	before	the
second	&&.	(If	this	is	getting	confusing,	you’re	right!	Long-combined	relational	tests	often	are.)	Here,
in	spoken	language,	is	how	the	previous	if	operates	without	separating	its	pieces	with	proper
parentheses:
If	the	student’s	grade	is	more	than	93	and	the	student	missed	three	or	fewer	classes	and	the	school

activities	total	three	or	more,	OR	if	the	student	participated	in	two	or	more	sports...
Well,	the	problem	is	that	the	student	only	has	to	be	in	sports	activities	to	get	the	reward.	The	last	two
relations	(separated	with	the	||)	must	be	compared	before	the	third	&&.	The	spoken	description
should	read	like	this:
If	the	student’s	grade	is	more	than	93	and	the	student	missed	three	or	fewer	classes	and	EITHER	the
school	activities	total	three	or	more	OR	the	student	participated	in	two	or	more	sports...
The	following	if,	with	correct	parentheses,	not	only	makes	the	if	accurate,	but	also	makes	it	a	little
more	clear:
Click	here	to	view	code	image

if	((grade	>	93)	&&	(classMissed	<=	3)	&&	((numActs	>=	3)	||	(sports
>=	2))	{

If	you	like,	you	can	break	such	long	if	statements	into	two	or	more	lines,	like	this:
Click	here	to	view	code	image

if	((grade	>	93)	&&	(classMissed	<=	3)	&&
((numActs	>=	3)	||	(sports	>=	2))	{

Some	C	programmers	even	find	that	two	if	statements	are	clearer	than	four	relational	tests,	such	as
these	statements:
Click	here	to	view	code	image

if	((grade	>	93)	&&	(classMissed	<=	3)
				{	if	((numActs	>=	3)	||	(sports	>=	2))
							{	/*	Reward	the	student	*/	}

The	style	you	end	up	with	depends	mostly	on	what	you	like	best,	what	you	are	the	most	comfortable
with,	and	what	appears	to	be	the	most	maintainable.

The	Absolute	Minimum
This	chapter ’s	goal	was	to	teach	you	the	logical	operators.	Although	relational
operators	test	data,	the	logical	operators,	&&	and	||,	let	you	combine	more	than	one
relational	test	into	a	single	statement	and	execute	code	accordingly.	Key	concepts	from
this	chapter	include:
•	Use	logical	operators	to	connect	relational	operators.
•	Use	&&	when	both	sides	of	the	operator	have	to	be	true	for	the	entire	condition	to	be
true.
•	Use	||	when	either	one	side	or	the	other	side	(or	both)	have	to	be	true	for	the	entire
condition	to	be	true.
•	Don’t	overdo	the	use	of	!.	Most	negative	logic	can	be	reversed	(so	<	becomes	>=
and	>	becomes	<=)	to	get	rid	of	the	not	operator.
•	Don’t	combine	too	many	relational	operators	in	a	single	expression.

13.	A	Bigger	Bag	of	Tricks—Some	More	Operators	for	Your
Programs

In	This	Chapter
•	Saying	goodbye	to	if...else	and	hello	to	conditional
•	Using	the	small-change	operators:	++	and	--
•	Sizing	up	the	situation

Have	patience!	You’ve	learned	about	almost	all	the	C	operators.	With	the	exception	of	a	few	more
advanced	operators	that	you’ll	read	about	in	Chapter	24,	“Solving	the	Mystery	of	Pointers,”	this
chapter	rounds	out	the	order	of	operators	table	and	explains	conditional	operators,	increment
operators,	and	decrement	operators.
C	operators	sometimes	substitute	for	more	wordy	commands	that	you	would	use	in	other
programming	languages.	Not	only	can	an	assortment	of	operators	speed	your	program	development
time,	but	they	also	compile	more	efficiently	and	run	faster	than	commands.	The	C	operators	do	a	lot
to	make	C	the	efficient	language	that	it	is.

Goodbye	if...else;	Hello,	Conditional
The	conditional	operator	is	the	only	C	operator	that	requires	three	arguments.	Whereas	division,
multiplication,	and	most	of	the	others	require	two	values	to	work,	the	conditional	operator	requires
three.	Although	the	format	of	the	conditional	operator	looks	complex,	you	will	see	that	it	streamlines
some	logic	and	is	actually	straightforward	to	use.
The	conditional	operator	looks	like	this:	?:.	Here	is	its	format:
Click	here	to	view	code	image

relation	?	trueStatement	:	falseStatement;

The	relation	is	any	relational	test,	such	as	age	>=	21	or	sales	<=	25000.0.	You	also	can
combine	the	relational	operators	with	the	logical	operators	you	learned	about	in	Chapter	12,
“Juggling	Several	Choices	with	Logical	Operators.”	The	trueStatement	is	any	valid	C	statement,
and	the	falseStatement	is	also	any	valid	C	statement.	Here	is	an	example	of	a	conditional
operator:
Click	here	to	view	code	image

(total	<=	3850.0)	?	(total	*=	1.10):	(total	*=	1.05);

	Tip

The	parentheses	are	not	required,	but	they	do	help	group	the	three	parts	of	the
conditional	operator	so	that	you	can	see	them	easier.

If	the	test	in	the	first	set	of	parentheses	is	true,	the	trueStatement	executes.	If	the	test	in	the	first
set	of	parentheses	is	false,	the	falseStatement	executes.	The	conditional	operator	you	just	saw
does	exactly	the	same	thing	as	this	if...else	statement:

if	(total	<=	3850.0
							{	total	*=	1.10;	}
else
							{	total	*=	1.05;)

This	statement	tells	C	to	multiply	total	by	1.10	or	by	1.05,	depending	on	the	result	of	the	relational
test.
Just	about	any	if...else	statement	can	be	rewritten	as	a	conditional	statement.	The	conditional
requires	less	typing,	you	won’t	accidentally	leave	off	a	brace	somewhere,	and	the	conditional	runs
more	efficiently	than	an	if...else	because	it	compiles	into	more	compact	code.

	Tip

The	format	of	the	conditional	operator	is	obvious	when	you	think	of	it	like	this:	The
question	mark	asks	a	question.	Keeping	this	in	mind,	you	could	state	the	earlier
example	as	follows:	Is	the	total	<=	3850.0?	If	so,	do	the	first	thing;	otherwise,	do	the
second.

C	programmers	don’t	like	the	redundancy	you	saw	in	the	earlier	use	of	the	conditional	operator.	As
you	can	see,	the	total	variable	appears	twice.	Both	times,	it	is	being	assigned	a	value.	When	you
face	such	a	situation,	take	the	assignment	out	of	the	conditional	operator ’s	statements:
Click	here	to	view	code	image

total	*=	(total	<=	3850.0)	?	(1.10):	(1.05);

Don’t	replace	every	single	if...else	with	a	conditional	operator.	Many	times,	if...else	is
more	readable,	and	some	conditional	statements	are	just	too	complex	to	squeeze	easily	into	a
conditional	operator.	However,	when	a	simple	if...else	is	all	that’s	needed,	the	conditional
operator	provides	a	nice	alternative.
The	conditional	operator	offers	one	additional	advantage	over	if:	The	conditional	often	can	appear
in	places	where	if	can’t	go.	The	following	print(f)	prints	a	trailing	s	if	the	number	of	pears	is
more	than	1:
Click	here	to	view	code	image

printf("I	ate	%d	pear%s\n",	numPear,	(numPear>1)	?	("s.")	:	("."));

If	the	value	in	numPear	is	greater	than	1,	you’ll	see	something	like	this	printed:
I	ate	4	pears.

But	if	there	is	only	one	pear,	you’ll	see	this:
I	ate	1	pear.

	Note

Maybe	you’re	wondering	why	the	conditional	operator	is	?:,	but	the	question	mark
and	colon	never	appear	next	to	each	other.	Well,	that’s	just	the	way	it	is.	It	would	be	too
cumbersome	to	go	around	saying	that	the	conditional	operator	looks	like	a	question
mark	and	a	colon	with	some	stuff	in	between.

Here’s	a	short	program	that	uses	the	conditional	operator.	(Actually,	it	uses	it	eight	times!)	The
program	prompts	the	user	for	an	integer	and	then	tests	whether	the	number	is	divisible	by	all	single-
digit	numbers	between	2	and	9:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	13	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter13ex1.c

/*	This	program	asks	for	a	number	from	1	to	100	and	tells	then
whether	or	not	their	choice	is	equally	divisible	by	2	through	9.	*/

#include	<stdio.h>

main()
{
				//	Define	the	integer	to	hold	the	user's	guess	and	then	get	it
				//	from	the	user

int	numPick;
printf("Pick	an	integer	between	1	and	100	");
printf("(The	higher	the	better!)\n");
scanf("	%d",	&numPick);	//remember	for	an	int,	you	do	need	the	&

printf("%d	%s	divisible	by	2.",	numPick,	(numPick	%	2	==	0)	?	("is")
:	("is	not"));
printf("\n%d	%s	divisible	by	3.",	numPick,	(numPick	%	3	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	4.",	numPick,	(numPick	%	4	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	5.",	numPick,	(numPick	%	5	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	6.",	numPick,	(numPick	%	6	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	7.",	numPick,	(numPick	%	7	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	8.",	numPick,	(numPick	%	8	==	0)	?
("is")	:	("is	not"));
printf("\n%d	%s	divisible	by	9.",	numPick,	(numPick	%	9	==	0)	?
("is")	:	("is	not"));

return	0;
}

	Note

Although	the	printf()	statement	asks	for	the	number	to	be	between	1	and	100,	users
actually	can	enter	any	integer.	If	you	use	362880,	you’ll	find	that	it	is	divisible	by	all
eight	single-digit	integers.

The	Small-Change	Operators:	++	and	--

Although	the	conditional	operator	works	on	three	arguments,	the	increment	and	decrement	operators
work	on	only	one.	The	increment	operator	adds	1	to	a	variable,	and	the	decrement	operator	subtracts
1	from	a	variable.	That’s	it.	‘Nuff	said.	Almost....
Incrementing	and	decrementing	variables	are	things	you	would	need	to	do	if	you	were	counting	items
(such	as	the	number	of	customers	who	shopped	in	your	store	yesterday)	or	counting	down	(such	as
removing	items	from	an	inventory	as	people	buy	them).	In	Chapter	10,	“Powering	Up	Your	Variables
with	Assignments	and	Expressions,”	you	read	how	to	increment	and	decrement	variables	using
compound	operators.	Here,	you	learn	two	operators	that	can	more	easily	do	the	same.	The	increment
operator	is	++,	and	the	decrement	operator	is	--.	If	you	want	to	add	1	to	the	variable	count,	here’s
how	you	do	it:

count++;

You	also	can	do	this:
++count;

The	decrement	operator	does	the	same	thing,	except	that	the	1	is	subtracted	from	the	variable.	You	can
do	this:

count--;

You	also	can	do	this:
--count;

As	you	can	see,	the	operators	can	go	on	either	side	of	the	variable.	If	the	operator	is	on	the	left,	it’s
called	a	prefix	increment	or	prefix	decrement	operator.	If	the	operator	is	on	the	right,	it’s	known	as	a
postfix	increment	or	postfix	decrement	operator.

	Note

Never	apply	an	increment	or	decrement	operator	to	a	literal	constant	or	an	expression.
Only	variables	can	be	incremented	or	decremented.	You	will	never	see	this:

--14;		/*	Don't	do	this!	*/

Prefix	and	postfix	operators	produce	identical	results	when	used	by	themselves.	Only	when	you

combine	them	with	other	expressions	does	a	small	“gotcha”	appears.	Consider	the	following	code:
int	i	=	2,	j	=	5,	n;
n	=	++i	*	j;

The	question	is,	what	is	n	when	the	statements	finish	executing?	It’s	easy	to	see	what’s	in	j	because	j
doesn’t	change	and	still	holds	5.	The	++	ensures	that	i	is	always	incremented,	so	you	know	that	i
becomes	3.	The	trick	is	determining	exactly	when	i	increments.	If	i	increments	before	the
multiplication,	n	becomes	15,	but	if	i	increments	after	the	multiplication,	n	becomes	10.
The	answer	lies	in	the	prefix	and	postfix	placements.	If	the	++	or	--	is	a	prefix,	C	computes	it	before
anything	else	on	the	line.	If	the	++	or	--	is	a	postfix,	C	computes	it	after	everything	else	on	the	line
finishes.	Because	the	++	in	the	preceding	code	is	a	prefix,	i	increments	to	3	before	being	multiplied
by	j.	The	following	statement	increments	i	after	multiplying	i	by	j	and	storing	the	answer	in	n:
Click	here	to	view	code	image

n	=	i++	*	j;		/*	Puts	10	in	n	and	3	in	i	*/

Being	able	to	increment	a	variable	in	the	same	expression	as	you	use	the	variable	means	less	work	on
the	programmer’s	part.	The	preceding	statement	replaces	the	following	two	statements	that	you	would
have	to	write	in	other	programming	languages:

n	=	i	*	j;
i	=	i	+	1

	Note

The	++	and	--	operators	are	extremely	efficient.	If	you	care	about	such	things	(most
of	us	don’t),	++	and	--	compile	into	only	one	machine	language	statement,	whereas
adding	or	subtracting	1	using	+1	or	-1	doesn’t	always	compile	so	efficiently.

Let’s	revisit	the	count	up	and	count	down	program	from	Chapter	10,	this	time	using	the	prefix
increment	and	decrement	operators.	This	involves	even	fewer	lines	of	code	than	the	last	program;	we
can	even	cut	the	code	to	fewer	lines	when	you	learn	about	loops	in	the	next	chapter.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	13	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter13ex2.c

/*	This	program	increases	a	counter	from	1	to	5,	printing	updates
and	then	counts	it	back	down	to	1.	However,	it	uses	the	increment
and	decrement	operators	*/

#include	<stdio.h>

main()
{

				int	ctr	=	0;

				printf("Counter	is	at	%d.\n",	++ctr);
				printf("Counter	is	at	%d.\n",	++ctr);
				printf("Counter	is	at	%d.\n",	++ctr);
				printf("Counter	is	at	%d.\n",	++ctr);
				printf("Counter	is	at	%d.\n",	++ctr);

				printf("Counter	is	at	%d.\n",	--ctr);
				printf("Counter	is	at	%d.\n",	--ctr);
				printf("Counter	is	at	%d.\n",	--ctr);
				printf("Counter	is	at	%d.\n",	--ctr);

				return	0;
				}

	Note

To	understand	the	difference	between	prefix	and	postfix,	move	all	the	increment	and
decrement	operators	to	after	the	ctr	variables	(ctr++	and	ctr--).	Can	you	guess
what	will	happen?	Compile	it	and	see	if	you	are	right!

Sizing	Up	the	Situation
You	use	sizeof()	to	find	the	number	of	memory	locations	it	takes	to	store	values	of	any	data	type.
Although	most	C	compilers	now	use	4	bytes	to	store	integers,	not	all	do.	To	find	out	for	sure	exactly
how	much	memory	integers	and	floating	points	are	using,	you	can	use	sizeof().	The	following
statements	do	just	that:
Click	here	to	view	code	image

i	=	sizeof(int);	//	Puts	the	size	of	integers	into	i.
f	=	sizeof(float);	//	Puts	the	size	of	floats	into	f

sizeof()	works	on	variables	as	well	as	data	types.	If	you	need	to	know	how	much	memory
variables	and	arrays	take,	you	can	apply	the	sizeof()	operator	to	them.	The	following	section	of
code	shows	you	how:
Click	here	to	view	code	image

char	name[]	=	"Ruth	Claire";
int	i	=	7;
printf("The	size	of	i	is	%d.\n",	sizeof(i));
printf("The	size	of	name	is	%d.\n",	sizeof(name));

Here	is	one	possible	output	from	this	code:
The	size	of	i	is	4
The	size	of	name	is	12

Depending	on	your	computer	and	C	compiler,	your	output	might	differ	because	of	the	differences	in
integer	sizes.	Notice	that	the	character	array	size	is	12,	which	includes	the	null	zero.

	Tip

The	length	of	a	string	and	the	size	of	a	string	are	two	different	values.	The	length	is	the
number	of	bytes	up	to	but	not	including	the	null	zero,	and	it	is	found	via	strlen().
The	size	of	a	string	is	the	number	of	characters	it	takes	to	hold	the	string,	including	the
null	zero.

	Note

Although	sizeof()	might	seem	worthless	right	now,	you’ll	see	how	it	comes	in
handy	as	you	progress	in	C.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	round	out	your	knowledge	of	C	operators.
Understanding	these	operators	doesn’t	take	a	lot	of	work,	yet	the	operators	are
powerful	and	substitute	for	complete	statements	in	other	languages.	Key	concepts	from
this	chapter	include:
•	Use	the	conditional	operator	in	place	of	simple	if...else	statements	to	improve
efficiency.
•	The	conditional	operator	requires	three	arguments.	Extra	parentheses	help	clarify
these	three	arguments	by	separating	them	from	each	other.
•	Use	++	and	--	to	increment	and	decrement	variables	instead	of	adding	and
subtracting	1	using	assignment	or	the	+=	and	-=	operators.
•	Don’t	think	that	a	prefix	and	postfix	always	produce	the	same	values.	A	prefix	and
postfix	are	identical	only	when	a	single	variable	is	involved.	If	you	combine	++	or	-
-	with	other	variables	and	expressions,	the	placement	of	the	prefix	and	postfix	is
critical	to	get	the	result	you	want.

Part	III:	Fleshing	Out	Your	Programs

14.	Code	Repeat—Using	Loops	to	Save	Time	and	Effort

In	This	Chapter
•	Saving	time	by	looping	through	code
•	Using	while
•	Using	do...while

Now	that	you’ve	learned	the	operators,	you’re	ready	to	play	“loop	the	loop”	with	your	programs.	A
loop	is	simply	a	section	of	code	that	repeats	a	few	times.	You	don’t	want	a	loop	to	repeat	forever—
that’s	called	an	infinite	loop.	The	loops	you	write	(if	you	write	them	properly—and,	of	course,	you
will)	should	come	to	a	conclusion	when	they	finish	doing	the	job	you	set	them	up	to	do.
Why	would	you	want	a	program	to	loop?	The	answer	becomes	clear	when	you	think	about	the
advantage	of	using	a	computer	for	tasks	that	people	wouldn’t	want	to	do.	Computers	never	get	bored,
so	you	should	give	them	mundane	and	repetitive	tasks;	leave	the	tasks	that	require	thought	to	people.
You	wouldn’t	want	to	pay	someone	to	add	a	list	of	hundreds	of	payroll	figures,	and	few	people	would
want	to	do	it	anyway.	Computer	programs	can	do	that	kind	of	repetitive	work.	People	can	then	analyze
the	results	when	the	computer	loop	finishes	calculating	all	the	figures.
If	you	want	to	add	a	list	of	figures,	print	company	sales	totals	for	the	past	12	months,	or	add	up	the
number	of	students	who	enroll	in	a	computer	class,	you	need	to	use	a	loop.	This	chapter	explains	two
common	C	loops	that	use	the	while	command.

while	We	Repeat

The	while	statement	always	appears	at	the	beginning	or	end	of	a	loop.	The	easiest	type	of	loop	that
uses	while	is	called	the	while	loop.	(The	other	is	called	the	do...while	loop.	You’ll	see	it	a
little	later.)	Here	is	the	format	of	while:
Click	here	to	view	code	image

while	(condition)
{	block	of	one	or	more	C	statements;	}

The	condition	is	a	relational	test	that	is	exactly	like	the	relational	test	condition	you	learned
for	if.	The	block	of	one	or	more	C	statements	is	called	the	body	of	the	while.
The	body	of	the	while	repeats	as	long	as	the	condition	is	true.	This	is	the	difference	between	a
while	statement	and	an	if	statement:	The	body	of	the	if	executes	if	the	condition	is	true.	The
body	of	the	if	executes	only	once,	however,	whereas	the	body	of	the	while	can	execute	a	lot	of
times.
Figure	14.1	helps	explain	the	similarities	and	differences	between	if	and	while.	The	formats	of	the
two	commands	are	similar,	in	that	braces	are	required	if	the	body	of	the	while	has	more	than	one
statement.	Even	if	the	body	of	the	while	contains	only	a	single	statement,	you	should	enclose	the
body	in	braces	so	that	the	braces	will	still	be	there	if	you	later	add	statements	to	the	while.	Never	put
a	semicolon	after	the	while’s	parenthesis.	The	semicolon	follows	only	the	statements	inside	the

body	of	the	while.

	Warning

The	two	statements	in	Figure	14.1	are	similar,	but	they	don’t	do	the	same	thing.	while
and	if	are	two	separate	statements	that	do	two	separate	things.

You	must	somehow	change	a	variable	inside	the	while	loop’s	condition.	If	you	don’t,	the	while
will	loop	forever	because	it	will	test	the	same	condition	each	time	through	the	loop.	Therefore,
you	avoid	infinite	loops	by	making	sure	the	body	of	the	while	loop	changes	something	in	the
condition	so	that	eventually	the	condition	becomes	false	and	the	program	continues	with	the
statements	that	follow	the	while	loop.

FIGURE	14.1	The	if	body	executes	once;	the	while	body	can	repeat	more	than	once.

	Note

As	with	if,	the	while	might	never	execute!	If	the	condition	is	false	going	into
while	the	first	time,	the	body	of	the	while	doesn’t	execute.

Using	while

If	you	want	to	repeat	a	section	of	code	until	a	certain	condition	becomes	false,	while	is	the	way	to
go.	Let’s	revisit	the	counter	up	and	down	program	for	a	fourth	go-round	and	use	while	loops	this
time:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	14	of	Absolute	Beginner's	Guide

//	to	C,	3rd	Edition
//	File	Chapter14ex1.c

/*	This	program	increases	a	counter	from	1	to	5,	printing	updates
and	then	counts	it	back	down	to	1.	However,	it	uses	while	loops	and
the	increment	and	decrement	operators	*/

#include	<stdio.h>

main()
{

				int	ctr	=	0;

				while	(ctr	<	5)
				{
								printf("Counter	is	at	%d.\n",	++ctr);
				}

				while	(ctr	>	1)
				{
								printf("Counter	is	at	%d.\n",	--ctr);
				}

				return	0;
				}

You	might	be	getting	a	little	sick	of	our	“Counter	is	at...”	code	example,	but	using	different	statements,
formats,	and	functions	to	accomplish	the	same	task	is	an	excellent	method	to	show	how	new	skills	can
help	you	execute	a	task	differently	or	more	efficiently.
When	comparing	this	listing	to	the	previous	times	you	wrote	programs	to	accomplish	the	same	goal,
you	can	see	that	your	number	of	lines	decreases	significantly	when	using	a	loop.	Previously,	you
needed	to	type	five	printf()	statements	for	the	count	up	and	then	type	another	four	to	count	down.
However,	by	using	while	loops,	you	need	only	one	printf()	statement	in	the	count	up	loop	and
one	in	the	count	down	loop,	which	streamlines	the	program.
The	variable	ctr	is	initially	set	to	0.	The	first	time	while	executes,	i	is	less	than	5,	so	the	while
condition	is	true	and	the	body	of	the	while	executes.	In	the	body,	a	newline	is	sent	to	the	screen
and	ctr	is	incremented.	The	second	time	the	condition	is	tested,	ctr	has	a	value	of	1,	but	1	is
still	less	than	5,	so	the	body	executes	again.	The	body	continues	to	execute	until	ctr	is	incremented	to
5.	Because	5	is	not	less	than	5	(they	are	equal),	the	condition	becomes	false	and	the	loop	stops
repeating.	The	rest	of	the	program	is	then	free	to	execute,	leading	to	the	second	while	loop	that
counts	down	from	5	to	1,	when	it	eventually	makes	the	second	condition	false	and	ends	the	loop.

	Tip

If	ctr	were	not	incremented	in	the	while	loop,	the	printf()	would	execute	forever
or	until	you	pressed	Ctrl+Break	to	stop	it.

Using	do...while

while	also	can	be	used	in	conjunction	with	the	do	statement.	When	used	as	a	pair,	the	statements
normally	are	called	do...while	statements	or	the	do...while	loop.	The	do...while	behaves
almost	exactly	like	the	while	loop.	Here	is	the	format	of	do...while:
Click	here	to	view	code	image

do
{	block	of	one	or	more	C	statements;	}
while	(condition)

	Note

The	do	and	while	act	like	wrappers	around	the	body	of	the	loop.	Again,	braces	are
required	if	the	body	has	more	than	a	single	statement.

Use	a	do...while	in	place	of	a	while	only	when	the	body	of	the	loop	must	execute	at	least	one
time.	The	condition	is	located	at	the	bottom	of	the	do...while	loop,	so	C	can’t	test	the
condition	until	the	loop	finishes	the	first	time.
Here’s	a	quick	program	that	uses	a	do...while	loop.	It	asks	the	user	for	two	numbers	and	then
gives	the	resulting	value	if	the	two	inputs	are	multiplied.	It	then	asks	the	user	if	he	or	she	would	like	to
multiply	two	more	numbers.	As	long	as	the	user	keeps	typing	Y,	the	program	keeps	asking	for
numbers	to	multiply.	Only	answering	N	breaks	the	loop.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	14	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter14ex2.c

/*	This	program	will	multiply	two	numbers	and	display	the	result	for
as	long	as	the	user	wants.	Answering	'N'	will	break	the	loop.	*/

#include	<stdio.h>

main()
{

				float	num1,	num2,	result;
				char	choice;

				do	{

								printf("Enter	your	first	number	to	multiply:	");
								scanf("	%f",	&num1);

								printf("Enter	your	second	number	to	multiply:	");
								scanf("	%f",	&num2);

								result	=	num1	*	num2;
								printf("%.2f	times	%.2f	equals	%.2f\n\n",

													num1,	num2,	result);
								printf("Do	you	want	to	enter	another	pair	of	numbers	");
								printf("to	multiply	(Y/N):	");
								scanf("	%c",	&choice);
								//	If	the	user	enters	a	lowercase	n,	this	if	statement	will
								//	convert	it	to	an	N
								if	(choice	==	'n')
												{
																choice	=	'N';
												}

				}	while	(choice	!=	'N');

				return	0;

				}

Although	this	program	is	simple	and	straightforward,	it	demonstrates	an	effective	use	of	a
do...while	loop.	Again,	you	use	the	do...while	construct	instead	of	while	when	you	want	to
ensure	that	the	code	within	the	loop	executes	at	least	once.	So	after	getting	two	floating-point	numbers
from	the	user	and	displaying	the	result,	the	program	asks	the	user	if	he	or	she	wants	to	multiply	two
new	numbers.	If	the	user	enters	Y	(or	any	character	other	than	N),	the	loop	begins	again	from	the
beginning.
Without	the	if	statement	in	the	loop,	a	lowercase	n	would	not	terminate	the	loop,	but	it	seems
obvious	that	a	user	who	enters	n	is	looking	to	terminate	the	loop	and	just	forgot	to	use	the	Shift	key.
As	mentioned	earlier	in	the	book,	when	programming,	you	cannot	always	count	on	the	user	entering
what	you	want,	so	when	you	can,	you	should	anticipate	common	data-entry	errors	and	provide
workarounds.	Converting	a	lowercase	n	to	N	is	not	the	only	way	you	could	account	for	this
possibility.	You	could	also	use	a	logical	AND	operator	in	the	while	portion	of	the	loop,	as	follows:
Click	here	to	view	code	image

				}	while	(choice	!=	'N'&&	choice	!=	'n');

In	plain	language,	this	is	telling	the	program	to	keep	running	as	long	as	the	choice	is	not	an
uppercase	N	or	a	lowercase	n.

	Tip

Chapter	19,	“Getting	More	from	Your	Strings,”	explains	a	simpler	method	to	test	for
an	uppercase	Y	or	N	or	a	lowercase	y	or	n	with	a	built-in	function	named	toupper().

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	how	to	repeat	sections	of	code.	The	while
and	do...while	loops	both	repeat	statements	within	their	statement	bodies.	The
difference	between	the	two	statements	lies	in	the	placement	of	the	relational	test	that
controls	the	loops.	The	while	statement	tests	the	relation	at	the	top	of	the	loop,	and	the
do...while	statement	tests	the	relation	at	the	bottom	of	the	loop,	forcing	all	its
statements	to	execute	at	least	once.	Key	concepts	covered	in	this	chapter	include:
•	Use	while	or	do...while	when	you	need	to	repeat	a	section	of	code.
•	Make	sure	that	the	body	of	the	while	or	do...while	loop	changes	something	in
the	condition,	or	the	loop	will	repeat	forever.
•	Remember	that	loops	differ	from	if	because	the	body	of	an	if	executes	only	once
instead	of	many	times	if	the	condition	is	true.
•	Don’t	put	a	semicolon	after	the	while	condition’s	closing	parenthesis.	If	you
do,	an	infinite	loop	will	occur.

15.	Looking	for	Another	Way	to	Create	Loops

In	This	Chapter
•	Looking	for	another	way	to	repeat	code
•	Working	with	for

Another	type	of	C	loop	is	called	the	for	loop.	A	for	loop	offers	more	control	than	while	and	do-
while.	With	a	for	loop,	you	can	specify	exactly	how	many	times	you	want	to	loop;	with	while
loops,	you	must	continue	looping	as	long	as	a	condition	is	true.
C	programs	have	room	for	all	three	kinds	of	loops.	Sometimes	one	loop	fits	one	program’s
requirements	better	than	another.	For	example,	if	you	wrote	a	program	to	handle	customer	orders	as
customers	purchase	items	from	the	inventory,	you	would	need	to	use	a	while	loop.	The	program
would	process	orders	while	customers	came	through	the	door.	If	100	customers	happened	to	buy
things,	the	while	loop	would	run	100	times.	At	the	end	of	the	day,	you	might	want	to	add	the	100
customer	purchases	to	get	a	total	for	the	day.	You	could	then	use	a	for	loop	because	you	would	then
know	exactly	how	many	times	to	loop.

	Note

By	incrementing	counter	variables,	you	can	simulate	a	for	loop	with	a	while	loop.
You	also	can	simulate	a	while	with	a	for!	Therefore,	the	kind	of	loop	you	use
ultimately	depends	on	which	kind	you	feel	comfortable	with	at	the	time.

for	Repeat’s	Sake!
As	you	can	see	from	the	lame	title	of	this	section,	the	for	loop	is	important	for	controlling	repeating
sections	of	code.	The	format	of	for	is	a	little	strange:
Click	here	to	view	code	image

for	(startExpression;	testExpression;	countExpression)
{	block	of	one	or	more	C	statements;	}

Perhaps	a	short	example	with	actual	code	is	easier	to	understand:
Click	here	to	view	code	image

				for	(ctr	=	1;	ctr	<=	5;	ctr++)
				{
								printf("Counter	is	at	%d.\n",	ctr);
				}

If	you	are	looking	at	the	code	and	thinking	that	it’s	a	bit	familiar,	you	are	right.	This	code	would	be
the	beginning	of	a	fifth	version	of	the	count	up/count	down	program,	but	one	that	used	a	for	loop
instead.	Here’s	how	this	for	statement	works:	When	the	for	begins,	the	startExpression,

which	is	ctr	=	1;,	executes.	The	startExpression	is	executed	only	once	in	any	for	loop.	The
testExpression	is	then	tested.	In	this	example,	the	testExpression	is	ctr<=	5;.	If	it	is	true
—and	it	will	be	true	the	first	time	in	this	code—the	body	of	the	for	loop	executes.	When	the	body	of
the	loop	finishes,	the	countExpression	is	executed	(ctr	is	incremented).

	Tip

As	you	can	see,	indenting	the	body	of	a	for	loop	helps	separate	the	body	of	the	loop
from	the	rest	of	the	program,	making	the	loop	more	readable.	(The	same	is	true	for	the
other	kinds	of	loops,	such	as	do-while	loops.)

That’s	a	lot	to	absorb	in	one	full	swoop,	even	in	one	paragraph.	Let’s	make	it	easy.	Follow	the	line	in
Figure	15.1,	which	shows	the	order	in	which	for	executes.	While	following	the	line,	reread	the
preceding	paragraph.	It	should	then	make	more	sense	to	you.

FIGURE	15.1	Following	the	order	of	for.

	Note

The	for	loop’s	format	is	strange	because	of	the	embedded	semicolons	that	are
required.	It	is	true	that	semicolons	go	only	at	the	end	of	executable	statements,	but
statements	inside	for	loops	are	executable.	For	instance,	the	initial	expression,	ctr	=
1;,	is	completed	before	the	loop	begins,	as	Figure	15.1	shows.

Here	is	the	very	same	loop	written	as	a	while	statement:
Click	here	to	view	code	image

ctr	=	1;
while	(ctr	<=	5)
{
							printf("Counter	is	at	%d.\n",	ctr);
							ctr++;
}

Here	is	the	output	of	this	code:
Counter	is	at	1.
Counter	is	at	2.
Counter	is	at	3.
Counter	is	at	4.
Counter	is	at	5.

	Tip

If	you	follow	Figure	15.1’s	guiding	line	and	read	the	preceding	while	loop,	you’ll	see
that	the	for	and	while	do	the	same	thing.	The	ctr	=	1;	that	precedes	the	while	is
the	first	statement	executed	in	the	for.

A	do-while	loop	can’t	really	represent	the	for	loop	because	the	relational	test	is	performed	before
the	body	of	the	for	loop	and	after	it	in	the	do-while.	As	you	might	recall	from	the	end	of	Chapter
14,	“Code	Repeat—Using	Loops	to	Save	Time	and	Effort,”	the	do-while	test	always	resides	at	the
bottom	of	the	loop.

Working	with	for

The	for	loop	reads	a	lot	like	the	way	you	speak	in	everyday	life.	Consider	this	statement:
For	each	of	our	45	employees,	calculate	the	pay	and	print	a	check.
This	statement	leaves	no	room	for	ambiguity.	There	will	be	45	employees,	45	pay	calculations,	and
45	checks	printed.	To	make	this	loop	work	for	even	more	companies,	the	program	could	prompt	the
user	to	enter	how	many	employees	will	need	to	have	payroll	calculations	and	then	use	that	entry	for
the	loop	as	follows:
Click	here	to	view	code	image

printf("How	many	employees	in	the	organization?	");
scanf("	%d",	&employees);

//	Loop	to	calculate	payroll	for	each	employee
for	(i=1;	i	<=	employees;	i++;)
{
							//	Calculations	for	each	employee	follow...

for	loops	don’t	always	count	up	as	the	preceding	two	did.	This	for	loop	counts	down	before
printing	a	message:
Click	here	to	view	code	image

for	(cDown	=	10;	cDown	>0;	cDown--)
{
							printf("%d.\n",	cDown);
}
printf("Blast	off!\n");

Here	is	the	output	of	this	code:
10

9
8
7
6
5
4
3
2
1
Blast	off!

	Warning

If	the	last	expression	in	the	for	parentheses	decrements	in	some	way,	the	initial	value
must	be	greater	than	the	test	value	for	the	loop	to	execute.	In	the	previous	for
statement,	the	initial	value	of	10	is	greater	than	the	testExpression's	0
comparison.

You	also	do	not	have	to	increase	or	decrease	your	loop	counter	by	1.	The	following	for	loop	counts
up	by	threes,	beginning	with	1:
Click	here	to	view	code	image

for	(i	=	1;	i	<	18;	i	+=	3)
{
							printf("%d	",	i);	//	Prints	1,	4,	7,	10,	13,	16
}

The	following	code	produces	an	interesting	effect:
Click	here	to	view	code	image

for	(outer	=	1;	outer	<=	3;	outer++)
{
							for	(inner	=	1;	inner	<=	5;	inner++)
							{
														printf("%d	",	inner)
							}
							//	Print	a	newline	when	each	inner	loop	finishes
							printf("\n");
}

Here	is	the	code’s	output:
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

If	you	put	a	for	loop	in	the	body	of	another	loop,	you	are	nesting	the	loops.	In	effect,	the	inner	loop
executes	as	many	times	as	the	outer	loop	dictates.	You	might	need	a	nested	for	loop	if	you	wanted	to
print	three	lists	of	your	top	five	customers.	The	outer	loop	would	move	from	1	to	3,	while	the	inner
loop	would	print	the	top	five	customers.
Here’s	a	full	program	that	executes	a	for	loop	based	on	the	number	of	movies	a	user	has	claimed	to
see	in	the	current	year.	It	asks	for	the	name	of	the	movie	and	a	rating	on	a	scale	of	1	to	10.	It	then	tells

the	user	what	movie	was	ranked	as	a	favorite	and	what	movie	was	the	least	favorite:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	15	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter15ex1.c

/*	This	program	will	ask	users	how	many	movies	they've	seen	this
year,	and	then	loop	through	asking	the	name	of	each	movie	and	a
rating	from	1	to	10.	It	will	remember	their	favorite	movie	and	their
least	favorite	movie.	*/

#include	<stdio.h>
#include	<string.h>

main()
{

				int	ctr,	numMovies,	rating,	favRating,	leastRating;
				char	movieName[40],	favorite[40],	least[40];

				//initialize	the	favRating	to	0	so	any	movie	with	any	rating	of
				//	1	or	higher	will	replace	it	and	the	leastRating	to	10	so	any
				//	movie	rated	9	or	lower	will	replace	it

				favRating	=	0;
				leastRating	=	10;

				//	Find	out	how	many	movies	the	user	has	seen	and	can	rate
				//	The	loop	will	continue	until	they	enter	a	number	more	than	0

				do	{
								printf("How	many	movies	have	you	seen	this	year?	");
								scanf("	%d",	&numMovies);

								//	If	the	user	enters	0	or	a	negative	number,	the	program
								//	will	remind	them	to	enter	a	positive	number	and	prompt
								//	them	again

								if	(numMovies	<	1)
								{
												printf("No	movies!	How	can	you	rank	them?\nTry	again!\
n\n");
								}
				}	while	(numMovies	<	1);

				for	(ctr	=	1;	ctr	<=	numMovies;	ctr++)
								{
																//Get	the	name	of	the	movie	and	the	user's	rating

																printf("\nWhat	was	the	name	of	the	movie?	");
																printf("(1-word	titles	only!)	");
																scanf("	%s",	movieName);
																printf("On	a	scale	of	1	to	10,	what	would	");
																printf("you	rate	it?	");
																scanf("	%d",	&rating);

																//Check	whether	it's	their	best-rated	movie	so	far
																if	(rating	>	favRating)

																{
																				strcpy(favorite,	movieName);
																				favRating	=	rating;
																}

																//Check	whether	it's	their	worst-rated	movie	so	far
																if	(rating	<	leastRating)
																{
																				strcpy(least,	movieName);
																				leastRating	=	rating;
																}
								}

				printf("\nYour	Favorite	Movie	was	%s.\n",	favorite);
				printf("\nYour	Least-favorite	Movie	was	%s.\n",	least);

				return	0;

				}

Here	is	a	sample	output	from	the	program:
Click	here	to	view	code	image

How	many	movies	have	you	seen	this	year?	5

What	was	the	name	of	the	movie?	(1-word	titles	only!)	Veranda
On	a	scale	of	1	to	10,	what	would	you	rate	it?	7

What	was	the	name	of	the	movie?	(1-word	titles	only!)	Easiness
On	a	scale	of	1	to	10,	what	would	you	rate	it?	3

What	was	the	name	of	the	movie?	(1-word	titles	only!)	TheJuggler
On	a	scale	of	1	to	10,	what	would	you	rate	it?	5

What	was	the	name	of	the	movie?	(1-word	titles	only!)	Kickpuncher
On	a	scale	of	1	to	10,	what	would	you	rate	it?	8

What	was	the	name	of	the	movie?	(1-word	titles	only!)	Celery
On	a	scale	of	1	to	10,	what	would	you	rate	it?	8

Your	Favorite	Movie	was	Kickpuncher

Your	Least-favorite	Movie	was	Easiness

Now,	this	program	is	a	little	long,	but	you	should	be	able	to	follow	it	line	by	line,	and	the	comments
should	help	as	well.	It	also	combines	the	use	of	a	do-while	loop,	a	for	loop,	and	some	data	tests
using	if	statements.	The	first	if	statement	serves	as	a	data	tester.	You	are	asking	users	how	many
movies	they’ve	seen,	and	the	code	then	loops	through	that	number	of	movies	to	get	titles	and	ratings.
If	the	user	enters	0	(or	mistakenly	enters	a	negative	number),	there	will	be	no	loop,	so	you	give	the
user	a	chance	to	enter	a	correct	number	with	a	do-while	loop.
Assigning	0	to	favRating	and	10	to	leastRating	might	seem	confusing	at	first,	but	once	you
are	in	the	loop	getting	movie	names	and	ratings,	you	need	a	baseline	to	compare	each	movie’s	rating.
Initially,	you	want	the	lowest	possible	rating	for	favorite	so	that	any	movie	rated	will	become	the
favorite,	and	you	want	the	highest	possible	rating	for	least	favorite	so	that	any	movie	rated	will
become	the	least	favorite.	This	means	that	the	first	movie	(in	the	code	sample,	Veranda)	will	become

both	the	favorite	and	the	least	favorite	movie	of	the	user.	But	that	makes	sense—if	you	only	saw	one
movie,	it	would	be	both	the	best	and	the	worst,	until	you	had	something	to	compare.
When	you	enter	additional	movies,	the	two	if	statements	in	the	loop	see	whether	you	liked	the	next
movie	more	or	less	than	your	current	top	and	bottom	movies	and	make	the	appropriate	change.	In	the
code	sample,	the	second	movie,	Easiness,	had	a	rating	of	3.	This	rating	is	not	higher	than	Veranda’s	7,
so	Veranda	remains	the	highest	movie;	now	Easiness	is	the	least	favorite	movie.
You	will	be	able	to	account	for	a	few	issues	with	this	program	as	you	learn	more	about	C.	First	is	the
limitation	of	scanf()	when	dealing	with	strings—it	can	only	take	one	word	without	spaces.
Obviously,	most	movies	have	multiple	words	in	the	title.	When	you	learn	additional	input/output
methods	later	in	this	book,	you	can	adjust	for	this	problem.
When	you	learn	about	other	arrays,	including	pointer	arrays,	you	will	be	able	to	keep	all	the	movie
names	in	a	program	like	this.	You	will	also	learn	how	to	sort	data,	so	you	can	revisit	this	program
and	print	a	ranking	of	your	favorite	movies	instead	of	listing	just	a	favorite	and	a	least	favorite.	The
last	problem	also	would	be	fixed	with	this	listing	because	the	program	saves	only	one	movie	for	each
ranking;	if	the	user	enters	two	equal	values	(such	as	Kickpuncher	and	Celery,	in	the	sample
output),	only	one	can	be	listed	as	a	favorite.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	an	additional	way	to	form	a	loop	of
statements	in	C.	The	for	statement	gives	you	a	little	more	control	over	the	loop	than
either	while	or	do-while.	The	for	statement	controls	a	loop	with	a	variable	that	is
initialized	and	changed	according	to	the	expressions	in	the	for	statement.	Key
concepts	in	this	chapter	include:
•	Use	a	for	loop	when	you	want	to	increment	or	decrement	a	variable	through	a	loop.
•	Remember	that	the	for	loop’s	relational	test	is	performed	at	the	top	of	the	loop.
•	Use	a	nested	loop	if	you	want	to	loop	a	certain	number	of	times.
•	Don’t	forget	the	semicolons	inside	the	for	loop—for	requires	them.
•	Don’t	use	an	initial	value	that	is	less	than	the	test	value	if	you	want	to	count	down
with	for.

16.	Breaking	in	and	out	of	Looped	Code

In	This	Chapter
•	Taking	a	break
•	Continuing	to	work

This	chapter	doesn’t	teach	you	how	to	use	another	kind	of	loop.	Instead,	this	chapter	extends	the
information	you	learned	in	the	last	two	chapters.	You	have	ways	available	to	control	the	while	loop
in	addition	to	a	relational	test,	and	you	can	change	the	way	a	for	loop	operates	via	means	other	than
the	counter	variable.
The	break	and	continue	statements	let	you	control	loops	for	those	special	occasions	when	you
want	to	quit	a	loop	early	or	repeat	a	loop	sooner	than	it	would	normally	repeat.

Take	a	break

The	break	statement	rarely,	if	ever,	appears	on	a	line	by	itself.	Typically,	break	appears	in	the	body
of	an	if	statement.	The	reason	for	this	will	be	made	clear	shortly.	Here	is	the	format	of	break:

break;

	Note

break	is	easy,	isn’t	it?	Yep,	not	much	to	it.	However,	keep	in	mind	that	break	usually
resides	in	the	body	of	an	if.	In	a	way,	if	is	the	first	part	of	almost	every	break.

break	always	appears	inside	a	loop.	The	purpose	of	break	is	to	terminate	the	current	loop.	When	a
loop	ends,	the	code	following	the	body	of	the	loop	takes	over.	When	break	appears	inside	a	loop’s
body,	break	terminates	that	loop	immediately,	and	the	rest	of	the	program	continues.
Here	is	a	for	loop	that	normally	would	print	10	numbers.	Instead	of	printing	10,	however,	the
break	causes	the	loop	to	stop	after	printing	5	numbers.
Click	here	to	view	code	image

for	(i=0;	i	<	10;	i++)
{
							printf("%d	",	i)
							if	(i	==	4)
							{
														break;
							}
}
//	Rest	of	program	would	follow.

As	a	real-world	example,	suppose	a	teacher	wrote	a	program	to	average	the	25	students’	test	scores.
The	following	program	keeps	a	running	total	of	the	25	students.	However,	if	a	student	or	two	missed

the	test,	the	teacher	wouldn’t	want	to	average	the	entire	25	student	scores.	If	the	teacher	enters	a	-1.0
for	a	test	score,	the	-1.0	triggers	the	break	statement	and	the	loop	terminates	early.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	16	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter16ex1.c

/*	This	program	will	ask	users	to	input	test	grades	for	the	25	students	in	a	class	and
then	compute	an	average	test	grade.	If	fewer	than	25	students	took	the	test,	the	user	can
enter	-1	as	a	grade	and	break	the	loop,	and	only	those	entered	grades	will	be	used	to
compute	the	average.	*/

#include	<stdio.h>

main()
{

				int	numTest;
				float	stTest,	avg,	total	=	0.0;

				//	Asks	for	up	to	25	tests

				for	(numTest	=	0;	numTest	<	25;	numTest++)
								{
																//	Get	the	test	scores,	and	check	if	-1	was	entered

																printf("\nWhat	is	the	next	student's	test	score?	");
																scanf("	%f",	&stTest);
																if	(stTest	<	0.0)
																{
																		break;
																}
																total	+=	stTest;
								}

				avg	=	total	/	numTest;
				printf("\nThe	average	is	%.1f%%.\n",	avg);

				return	0;

				}

Before	discussing	the	program,	take	a	look	at	a	sample	run	of	it:
Click	here	to	view	code	image

What	is	the	next	student's	test	score?	89.9
What	is	the	next	student's	test	score?	92.5
What	is	the	next	student's	test	score?	51.0
What	is	the	next	student's	test	score?	86.4
What	is	the	next	student's	test	score?	78.6
What	is	the	next	student's	test	score?	-1

The	average	is	79.7%

The	teacher	had	a	lot	of	sick	students	that	day!	If	all	25	students	had	shown	up,	the	for	loop	would
have	ensured	that	exactly	25	test	scores	were	asked	for.	However,	because	only	five	students	took	the
test,	the	teacher	had	to	let	the	program	know,	via	a	negative	number	in	this	case,	that	she	was	done

entering	the	scores	and	that	she	now	wanted	an	average.

	Tip

To	print	the	percent	sign	at	the	end	of	the	final	average,	two	%	characters	have	to	be
used	in	the	printf()	control	string.	C	interprets	a	percent	sign	as	a	control	code
unless	you	put	two	of	them	together,	as	done	in	this	program.	Then	it	still	interprets	the
first	percent	sign	as	a	control	code	for	the	second.	In	other	words,	the	percent	sign	is	a
control	code	for	itself.

	Warning

break	simply	offers	an	early	termination	of	a	while,	do-while,	or	for	loop.
break	can’t	exit	from	if,	which	isn’t	a	loop	statement.	Figure	16.1	helps	show	the
action	of	break.

FIGURE	16.1	break	terminates	a	loop	earlier	than	usual.

Let’s	continue	Working
Whereas	break	causes	a	loop	to	break	early,	continue	forces	a	loop	to	continue	early.	(So	that’s
why	they’re	named	that	way!)	Depending	on	the	complexity	of	your	for,	while,	or	do-while
loop,	you	might	not	want	to	execute	the	entire	body	of	the	loop	every	iteration.	continue	says,	in
effect,	“C,	please	ignore	the	rest	of	this	loop’s	body	this	iteration	of	the	loop.	Go	back	up	to	the	top	of
the	loop	and	start	the	next	loop	cycle.”

	Tip

The	word	iteration	is	a	fancy	computer	name	for	the	cycle	of	a	loop.	Programmers
sometimes	think	they	will	keep	their	jobs	if	they	use	words	that	nobody	else
understands.

The	following	program	shows	off	continue	nicely.	The	program	contains	a	for	loop	that	counts
from	1	to	10.	If	the	loop	variable	contains	an	odd	number,	the	message	I'm	rather	odd...
prints,	and	the	continue	instructs	C	to	ignore	the	rest	of	the	loop	body	because	it	prints	Even	up!
for	the	even	numbers	that	are	left.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	16	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter16ex2.c

/*	This	program	loops	through	10	numbers	and	prints	a	message	that
				varies	whether	the	program	is	odd	or	even.	It	tests	for	odd	and
				if	the	number	is	odd,	it	prints	the	odd	message	and	then	starts
				the	next	iteration	of	the	loop	using	continue.	Otherwise,	it
				prints	the	even	message.	*/

#include	<stdio.h>

main()
{

				int	i;

				//	Loops	through	the	numbers	1	through	10

				for	(i	=	1;	i	<=	10;	i++)
								{
																if	((i%2)	==	1)	//	Odd	numbers	have	a	remainder	of	1
																{
																		printf("I'm	rather	odd...\n");
																		//	Will	jump	to	the	next	iteration	of	the	loop
																		continue;
																}
																printf("Even	up!\n");
								}

				return	0;

				}

Here	is	the	program’s	output:
I'm	rather	odd...
Even	up!
I'm	rather	odd...
Even	up!

I'm	rather	odd...
Even	up!
I'm	rather	odd...
Even	up!
I'm	rather	odd...
Even	up!

	Note

As	with	break,	continue	is	rarely	used	without	a	preceding	if	statement	of	some
kind.	If	you	always	wanted	to	continue,	you	wouldn’t	have	entered	the	last	part	of	the
loop’s	body.	You	want	to	use	continue	only	in	some	cycles	of	the	loop.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	teach	you	how	to	control	loops	better	with	the	break
and	continue	statements.	The	while,	do-while,	and	for	loops	all	can	be
terminated	early	with	break	or	continued	early	with	continue.	Key	concepts
covered	in	this	chapter	included	the	following:
•	Use	break	to	terminate	for,	while,	or	do-while	loops	early.
•	Use	continue	to	force	a	new	cycle	of	a	loop.
•	Don’t	use	break	or	continue	without	some	sort	of	relational	test	before	them.

17.	Making	the	case	for	the	switch	Statement

In	This	Chapter
•	Testing	multiple	cases	with	switch
•	Combining	break	with	switch

The	if	statement	is	great	for	simple	testing	of	data,	especially	if	your	data	tests	have	only	two	or
three	possibilities.	You	can	use	if	to	test	for	more	than	two	values,	but	if	you	do,	you	have	to	nest
several	if	statements	inside	one	another,	and	that	can	get	confusing	and	hard	to	maintain.
Consider	for	a	moment	how	you	execute	code	based	on	a	user ’s	response	to	a	menu.	A	menu	is	a	list
of	options	from	which	to	select,	such	as	this	one:

What	do	you	want	to	do?
1.	Add	New	Contact
2.	Edit	Existing	Contact
3.	Call	Contact
4.	Text	Contact
5.	Delete	Contact
6.	Quit	the	Program
What	is	your	choice?

	Note

When	you	create	menus	that	ask	for	user	input,	you	are	creating	a	user	interface.

It	would	take	five	if-else	statements,	nested	inside	one	another,	to	handle	all	these	conditions,	as
you	can	see	here:
Click	here	to	view	code	image

if	(userAns	==	1)
							{
														//	Perform	the	Add	Contact	Routine
							}
else	if	(userAns	==	2)
							{
													//Perform	the	Edit	Contact	Routine
							}
else	if	(userAns	==	3)
							{
													//Perform	the	Call	Contact	Routine
							}
else	if	(userAns	==	4)
							{
													//Perform	the	Text	Contact	Routine
							}
else	if	(userAns	==	5)
							{
													//Perform	the	Delete	Contact	Routine

							}
else
							{
													//Perform	the	Quit	Routine
							}

Nothing	is	wrong	with	nested	if	statements,	but	the	C	switch	statement	is	clearer	for	multiple
conditions.

Making	the	switch

The	switch	statement	has	one	of	the	longest	formats	of	any	statement	in	C	(or	just	about	any	other
language).	Here	is	the	format	of	switch:
Click	here	to	view	code	image

switch	(expression)
{
							case	(expression1):	{	one	or	more	C	statements;	}
							case	(expression2):	{	one	or	more	C	statements;	}
							case	(expression3):	{	one	or	more	C	statements;	}
//	This	would	keep	going	for	however	many	case	statements	to	test
							default:	{	one	or	more	C	statements;	}

	Tip

As	with	most	statements,	the	actual	use	of	switch	is	a	lot	less	intimidating	than	its
format	leads	you	to	believe.

The	menu	shown	earlier	is	perfect	for	a	series	of	function	calls.	The	problem	is	that	this	book	has	not
yet	discussed	function	calls,	except	for	a	handful	of	built-in	functions	such	as	printf()	and
scanf().	The	following	simple	program	uses	a	switch	statement	to	print	an	appropriate	message,
depending	on	the	choice	the	user	makes.

	Tip

Ordinarily,	a	function	call	would	replace	the	printf()	statements	you	see	after	each
case.	After	you	read	Chapter	31,	“Passing	Variables	to	Your	Functions,”	you’ll
understand	how	to	use	function	calls	to	perform	case	actions.

Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	17	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter17ex1.c

/*	This	program	presents	a	menu	of	choices,	gets	the	user's	choice,
and	then	uses	the	switch	statement	to	execute	a	line	or	two	of	code
based	on	that	choice.	(What	the	user	wants	to	do	is	not	truly

implemented—it	is	just	a	series	of	stubs	to	teach	the	value	of	the
switch	statement.	*/

#include	<stdio.h>
#include	<stdlib.h>

main()
{

				int	choice;

				printf("What	do	you	want	to	do?\n");
				printf("1.	Add	New	Contact\n");
				printf("2.	Edit	Existing	Contact\n");
				printf("3.	Call	Contact\n");
				printf("4.	Text	Contact\n");
				printf("5.	Exit\n");
				do
				{

								printf("Enter	your	choice:	");
								scanf("	%d",	&choice);
								switch	(choice)
								{
												case	(1):	printf("\nTo	add	you	will	need	the);
																						printf("contact's\n");
																						printf("First	name,	last	name,	and	number.\n");
																						break;
												case	(2):	printf("\nGet	ready	to	enter	the	name	of	");
																						printf("name	of	the\n");
																						printf("contact	you	wish	to	change.\n");
																						break;
												case	(3):	printf("\nWhich	contact	do	you	");
																						printf("wish	to	call?\n");
																						break;
												case	(4):	printf("\nWhich	contact	do	you	");
																						printf("wish	to	text?\n");
																						break;
												case	(5):	exit(1);	//Exits	the	program	early
												default:		printf("\n%d	is	not	a	valid	choice.\n",	choice);
																						printf("Try	again.\n");
																						break;
								}
				}	while	((choice	<	1)	||	(choice	>	5));

				return	0;

				}

The	case	statements	determine	courses	of	action	based	on	the	value	of	choice.	For	example,	if
choice	equals	3,	the	message	Which	contact	do	you	wish	to	call?	prints.	If	choice
equals	5,	the	program	quits	using	the	built-in	exit()	function.

	Warning

Anytime	you	need	to	terminate	a	program	before	its	natural	conclusion,	use	the
exit()	function.	The	value	you	place	in	the	exit()	parentheses	is	returned	to	your
operating	system.	Most	beginning	programmers	ignore	the	return	value	and	put	either
a	0	or	a	1	in	the	parentheses.	You	must	remember	to	add	<stdlib.h>	with	the
#include	directive	in	every	program	that	uses	exit().

The	do-while	loop	keeps	the	user	honest.	If	the	user	enters	something	other	than	a	number	from	1
to	5,	the	...is	not	a	valid	choice.	message	prints,	thanks	to	the	default	keyword.	C
ensures	that	if	none	of	the	other	cases	matches	the	variable	listed	after	switch,	the	default
statements	execute.
default	works	like	else,	in	a	way.	else	takes	care	of	an	action	if	an	if	test	is	false,	and
default	takes	care	of	an	action	if	none	of	the	other	case	conditions	successfully	matches	the
switch	variable.	Although	default	is	optional	(as	is	else),	it’s	good	programming	practice	to
use	a	default	to	handle	unexpected	switch	values.

	Tip

The	switch	variable	can	be	either	an	integer	or	a	character	variable.	Do	not	use	a
float	or	a	double	for	the	switch	test.

break	and	switch

The	switch	statement	shown	earlier	has	several	break	statements	scattered	throughout	the	code.
The	break	statements	ensure	that	only	one	case	executes.	Without	the	break	statements,	the
switch	would	“fall	through”	to	the	other	case	statements.	Here	is	what	would	happen	if	the	break
statements	were	removed	from	the	switch	and	the	user	answered	with	a	choice	of	2:
Click	here	to	view	code	image

Get	ready	to	enter	the	name	of	the
contact	you	wish	to	change.
Which	contact	do	you	wish	to	call?
Which	contact	do	you	wish	to	text?

The	break	keeps	switch	case	statements	from	running	together.

	Note

The	only	reason	the	default	condition’s	message	did	not	print	is	that	the	exit()
function	executed	inside	case	(5).

Efficiency	Considerations
case	statements	don’t	have	to	be	arranged	in	any	order.	Even	default	doesn’t	have	to	be	the	last
case	statement.	As	a	matter	of	fact,	the	break	after	the	default	statement	isn’t	needed	as	long	as
default	appears	at	the	end	of	switch.	However,	putting	break	after	default	helps	ensure	that
you	move	both	statements	if	you	ever	rearrange	the	case	statements.	If	you	were	to	put	default
higher	in	the	order	of	case	statements,	default	would	require	a	break	so	that	the	rest	of	the
case	statements	wouldn’t	execute.

	Tip

You	can	rearrange	the	case	statements	for	efficiency.	Put	the	most	common	case
possibilities	toward	the	top	of	the	switch	statement	so	that	C	doesn’t	have	to	search
down	into	the	case	statements	to	find	a	matching	case.

Let’s	add	a	second	program	to	demonstrate	the	switch	statement,	as	well	as	a	program	that	uses	two
levels	of	menus.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	17	of	Absolute	Beginner's	Guide	to
//	C,	3rd	Edition
//	File	Chapter17ex2.c

/*	This	program	presents	a	menu	of	choices	(three	different	decades),	gets	the	user's
choice,	and	then	presents	a	secondary	menu	(sports,	entertainment,	and	politics).
When	the	user	makes	her	second	choice,	it	prints	a	list	of	key	information	from	that
specific	decade	in	that	specific	category.	*/

#include	<stdio.h>
#include	<stdlib.h>	//Remember,	if	you	plan	to	use	exit(),	you	need
																				//	this	header	file

main()
{

				//	Despite	being	a	long	program,	you	only	need	two	variables:
				//	one	for	the	first	menu	and	one	for	the	second

				int	choice1;
				int	choice2;

				//	The	potential	decade	choices

				printf("What	do	you	want	to	see?\n");
				printf("1.	The	1980's\n");
				printf("2.	The	1990's\n");
				printf("3.	The	2000's\n");
				printf("4.	Quit\n");

				//	The	top-menu	choice	and	the	switch	statement	that	makes	the
				//	resulting
				//	information	appear	are	encased	in	a	do-while	loop	that
				//	ensures	one
				//	of	the	4	menu	choices	are	made
				do
				{

								printf("Enter	your	choice:	");
								scanf("	%d",	&choice1);
								switch	(choice1)
								{
												//	In	the	first	case,	the	user	picked	the	1980s.	Now	it
												//	time	to	see	what	specific	info	they	need.

												case	(1):
												{
																printf("\n\nWhat	would	you	like	to	see?\n");
																printf("1.	Baseball\n");
																printf("2.	The	Movies\n");
																printf("3.	US	Presidents\n");
																printf("4.	Quit\n");

																printf("Enter	your	choice:	");
																scanf("	%d",	&choice2);

																if	(choice2	==	1)
																{
																				printf("\n\nWorld	Series	Champions	");
																				printf("of	the	1980s:\n");
																				printf("1980:	Philadelphia	Phillies\n");
																				printf("1981:	Los	Angeles	Dodgers\n");
																				printf("1982:	St.	Louis	Cardinals\n");
																				printf("1983:	Baltimore	Orioles\n");
																				printf("1984:	Detroit	Tigers\n");
																				printf("1985:	Kansas	City	Royals\n");
																				printf("1986:	New	York	Mets\n");
																				printf("1987:	Minnesota	Twins\n");
																				printf("1988:	Los	Angeles	Dodgers\n");
																				printf("1989:	Oakland	A's\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	2)
																{
																				printf("\n\nOscar-Winning	Movies	in	the	1980s:\n");
																				printf("1980:	Ordinary	People\n");
																				printf("1981:	Chariots	of	Fire\n");
																				printf("1982:	Gandhi\n");
																				printf("1983:	Terms	of	Endearment\n");
																				printf("1984:	Amadeus\n1985:	Out	of	Africa\n");
																				printf("1986:	Platoon\n");

																				printf("1987:	The	Last	Emperor\n");
																				printf("1988:	Rain	Man\n");
																				printf("1989:	Driving	Miss	Daisy");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	3)
																{
																				printf("\n\nUS	Presidents	in	the	1980s:\n");
																				printf("1980:	Jimmy	Carter\n");
																				printf("1981-1988:	Ronald	Reagan\n");
																				printf("1989:	George	Bush\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	4)
																{
																				exit(1);
																}	else
																{
																				printf("Sorry,	that	is	not	a	valid	choice!\n");
																				break;
																}
												}

												//	This	case	is	for	the	1990s.
												//	Unlike	the	top	menu,	there	isn't	a	data-validation
												//	do-while	loop

												case	(2):
												{
																printf("\n\nWhat	would	you	like	to	see?\n");
																printf("1.	Baseball\n");
																printf("2.	The	Movies\n");
																printf("3.	US	Presidents\n");
																printf("4.	Quit\n");

																printf("Enter	your	choice:	");
																scanf("	%d",	&choice2);

																if	(choice2	==	1)
																{
																				printf("\n\nWorld	Series	Champions	of	");
																				printf("the	1990s:\n");
																				printf("1990:	Cincinnati	Reds\n");
																				printf("1991:	Minnesota	Twins\n");
																				printf("1992:	Toronto	Blue	Jays\n");
																				printf("1993:	Toronto	Blue	Jays\n");
																				printf("1994:	No	World	Series\n");
																				printf("1995:	Atlanta	Braves\n");
																				printf("1996:	New	York	Yankees\n");
																				printf("1997:	Florida	Marlins\n");
																				printf("1998:	New	York	Yankees\n");
																				printf("1999:	New	York	Yankees\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	2)
																{
																				printf("\n\nOscar-Winning	Movies	in	");
																				printf("the	1990s:\n");
																				printf("1990:	Dances	with	Wolves\n");
																				printf("1991:	The	Silence	of	the	Lambs\n");

																				printf("1992:	Unforgiven\n");
																				printf("1993:	Schindler's	List\n");
																				printf("1996:	The	English	Patient\n");
																				printf("1997:	Titanic\n");
																				printf("1998:	Shakespeare	in	Love\n");
																				printf("1999:	American	Beauty\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	3)
																{
																				printf("\n\nUS	Presidents	in	the	1990s:\n");
																				printf("1990-1992:	George	Bush\n");
																				printf("1993-1999:	Bill	Clinton\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	4)
																{
																				exit(1);
																}	else
																{
																				printf("Sorry,	that	is	not	a	valid	choice!\n");
																				break;
																}
												}

												//	The	section	for	when	the	user	selects	the	2000s
												case	(3):
												{
																printf("\n\nWhat	would	you	like	to	see?\n");
																printf("1.	Baseball\n");
																printf("2.	The	Movies\n");
																printf("3.	US	Presidents\n");
																printf("4.	Quit\n");

																printf("Enter	your	choice:	");
																scanf("	%d",	&choice2);

																if	(choice2	==	1)
																{
																				printf("\n\nWorld	Series	Champions	of	");
																				printf("the	2000s:\n");
																				printf("2000:	New	York	Yankees\n");
																				printf("2001:	Arizona	Diamondbacks\n");
																				printf("2002:	Anaheim	Angels\n");
																				printf("2003:	Florida	Marlins\n");
																				printf("2004:	Boston	Red	Sox\n");
																				printf("2005:	Chicago	White	Sox\n");
																				printf("2006:	St.	Louis	Cardinals\n");
																				printf("2007:	Boston	Red	Sox\n");
																				printf("2008:	Philadelphia	Phillies\n");
																				printf("2009:	New	York	Yankees\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	2)
																{
																				printf("\n\nOscar-Winning	Movies	in	");
																				printf("the	2000s:\n");
																				printf("2000:	Gladiator\n");
																				printf("2001:	A	Beautiful	Mind\n");
																				printf("2002:	Chicago\n2003:	The	");

																				printf("Lord	of	the	Rings:	The	");
																				printf("Return	of	the	King\n");
																				printf("2004:	Million	Dollar	Baby\n");
																				printf("2005:	Crash\n");
																				printf("2006:	The	Departed\n");
																				printf("2007:	No	Country	for	Old	Men\n");
																				printf("2008:	Slumdog	Millionaire\n");
																				printf("2009:	The	Hurt	Locker\n");

																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	3)
																{
																				printf("\n\nUS	Presidents	in	the	2000s:\n");
																				printf("2000:	Bill	Clinton\n");
																				printf("2001-2008:	George	Bush\n");
																				printf("2009:	Barrack	Obama\n");
																				printf("\n\n\n");
																				break;
																}	else	if	(choice2	==	4)
																{
																				exit(1);
																}	else
																{
																				printf("Sorry,	that	is	not	a	valid	choice!\n");
																				break;
																}
												}
												case	(4):
																exit	(1);

												default:		printf("\n%d	is	not	a	valid	choice.\n",
																													choice1);
																						printf("Try	again.\n");
																						break;
								}
				}	while	((choice1	<	1)	||	(choice1	>	4));

				return	0;

				}

Now,	this	might	look	intimidating	at	first	glance,	but	consider	a	few	things.	First	of	all,	you	are	more
than	halfway	through	this	book,	so	have	a	little	faith	in	your	C	knowledge.	Second,	long	does	not
mean	hard—just	break	down	the	code	section	by	section,	and	you’ll	find	nothing	too	intimidating	in
this	code.
This	program	has	two	levels	of	menus	to	it.	At	the	top	menu,	you	are	asking	the	user	to	select	a
specific	decade:	the	1980s,	the	1990s,	or	the	2000s.	After	the	user	picks	1,	2,	or	3	for	the	chosen
decade	(or	4	to	quit	the	program),	a	switch	statement	sends	the	program	to	the	next	level	of	menus.
The	user	then	gets	information	about	sports	(specifically	baseball),	the	movies,	or	U.S.	presidents.
Within	each	case	section	of	code,	if	and	else	statements	test	the	user ’s	entry	to	present	the
information	they	want	to	see.
You	might	be	thinking,	“Hey,	the	switch	statement	was	a	great	idea	for	the	top	menu—why	not	use	it
for	the	next	level	of	menu	choices	as	well?”	Well,	although	you	can	nest	if	statements	in	other	if
statements	and	nest	for	statements	within	other	for	statements,	nesting	switch	statements	is	not	a

good	idea,	particularly	when	the	default	choices	start	overlapping.	It	confuses	your	compiler,	and
the	program	will	not	run.
Another	note	is	that,	in	the	first	program,	you	did	not	enter	open	and	closing	braces	for	the	statements
after	each	case	(expression):	statement,	but	here	you	did.	The	braces	are	not	needed,	but	with
more	complex	blocks	of	code,	the	braces	can	help	keep	things	clear.

	Tip

You	can	replace	the	repeated	code	sections	in	the	second-level	menus	with	single	lines
of	code	when	you	learn	to	write	your	own	functions	later	in	the	book.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	explain	the	C	switch	statement.	switch	analyzes	the
value	of	an	integer	or	character	variable	and	executes	one	of	several	sections	of	code
called	cases.	You	can	write	equivalent	code	using	embedded	if	statements,	but
switch	is	clearer—especially	when	your	program	needs	to	analyze	a	user ’s	response
to	a	menu	and	execute	sections	of	code	accordingly.	Key	concepts	from	this	chapter
include:
•	Use	switch	to	code	menu	selections	and	other	types	of	applications	that	need	to
select	from	a	variety	of	values.
•	Use	an	integer	or	character	value	in	switch	because	float	and	double	values
can’t	be	matched	properly.
•	Put	a	break	statement	at	the	end	of	each	case	chunk	of	code	if	you	don’t	want	the
subsequent	case	statements	to	execute.
•	Don’t	use	nested	if	statements	when	a	switch	statement	will	work	instead.
switch	is	a	clearer	statement.

18.	Increasing	Your	Program’s	Output	(and	Input)

In	This	Chapter
•	Using	putchar()	and	getchar()
•	Dealing	with	the	newline	consideration
•	Getting	a	little	faster	with	getch()

You	can	produce	input	and	output	in	more	ways	than	with	the	scanf()	and	printf()	functions.
This	chapter	shows	you	some	of	C’s	built-in	I/O	functions	that	you	can	use	to	control	I/O.	You	can	use
these	simple	functions	to	build	powerful	data-entry	routines	of	your	own.
These	functions	offer	the	primitive	capability	to	input	and	output	one	character	at	a	time.	Of	course,
you	also	can	use	the	%c	format	specifier	with	scanf()	and	printf()	for	single	characters;
however,	the	character	I/O	functions	explained	here	are	a	little	easier	to	use,	and	they	provide	some
capabilities	that	scanf()	and	printf()	don’t	offer.

putchar()	and	getchar()
getchar()	gets	a	single	character	from	the	keyboard,	and	putchar()	sends	a	single	character	to
the	screen.	Figure	18.1	shows	you	what	happens	when	you	use	these	functions.	They	work	basically
the	way	you	think	they	do.	You	can	use	them	just	about	anytime	you	want	to	print	or	input	a	single
character	into	a	variable.

FIGURE	18.1	getchar()	and	putchar()	input	and	output	single	characters.

	Tip

Always	include	the	stdio.h	header	file	when	using	this	chapter ’s	I/O	functions,	just
as	you	do	for	printf()	and	scanf().

The	name	getchar()	sounds	like	“get	character,”	and	putchar()	sounds	like	“put	character.”
Looks	as	though	the	designers	of	C	knew	what	they	were	doing!
The	following	program	prints	C	is	fun,	one	character	at	a	time,	using	putchar()	to	print	each
element	of	the	character	array	in	sequence.	Notice	that	strlen()	is	used	to	ensure	that	the	for
doesn’t	output	past	the	end	of	the	string.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	18	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter18ex1.c

/*	This	program	is	nothing	more	than	a	simple	demonstration	of	the
putchar()	function.	*/

//	putchar()	is	defined	in	stdio.h,	but	string.h	is	needed	for	the
//	strlen()	function

#include	<stdio.h>
#include	<string.h>

main()
{
							int	i;
							char	msg[]	=	"C	is	fun";

							for	(i	=	0;	i	<	strlen(msg);	i++)
							{
														putchar(msg[i]);	//Outputs	a	single	character
							}
							putchar('\n');	//	One	line	break	after	the	loop	is	done.

							return(0);
}

The	getchar()	function	returns	the	character	input	from	the	keyboard.	Therefore,	you	usually
assign	the	character	to	a	variable	or	do	something	else	with	it.	You	can	put	getchar()	on	a	line	by
itself,	like	this:
Click	here	to	view	code	image

getchar();		/*	Does	nothing	with	the	character	you	get	*/

However,	most	C	compilers	warn	you	that	this	statement	is	rather	useless.	The	getchar()	function
would	get	a	character	from	the	keyboard,	but	then	nothing	would	be	done	with	the	character.
Here	is	a	program	that	gets	one	character	at	a	time	from	the	keyboard	and	stores	the	collected
characters	in	a	character	array.	A	series	of	putchar()	functions	then	prints	the	array	backward.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	18	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter18ex2.c

/*	This	program	is	nothing	more	than	a	simple	demonstration	of	the
getchar()	function.	*/

//	getchar()	is	defined	in	stdio.h,	but	string.h	is	needed	for	the

//	strlen()	function

#include	<stdio.h>
#include	<string.h>

main()
{
							int	i;
							char	msg[25];

							printf("Type	up	to	25	characters	and	then	press	Enter...\n");
							for	(i	=	0;	i	<	25;	i++)
							{
														msg[i]	=	getchar();	//Outputs	a	single	character
															if	(msg[i]	==	'\n')
														{
																		i--;
																		break;
												}
							}

							putchar('\n');	//	One	line	break	after	the	loop	is	done.

							for	(;	i	>=	0;	i--)
							{
											putchar(msg[i]);
							}

							putchar('\n');

							return(0);
}

	Note

Notice	that	the	second	for	loop	variable	i	has	no	initial	value.	Actually,	it	does.	i
contains	the	last	array	subscript	entered	in	the	previous	getchar()	for	loop.
Therefore,	the	second	for	loop	continues	with	the	value	of	i	left	by	the	first	for	loop.

The	getchar()	input	character	typically	is	defined	as	an	int,	as	done	here.	Integers	and	characters
are	about	the	only	C	data	types	you	can	use	interchangeably	without	worry	of	typecasts.	In	some
advanced	applications,	getchar()	can	return	a	value	that	won’t	work	in	a	char	data	type,	so
you’re	safe	if	you	use	int.
Aren’t	you	glad	you	learned	about	break?	The	program	keeps	getting	a	character	at	a	time	until	the
user	presses	Enter	(which	produces	a	newline	\n	escape	sequence).	break	stops	the	loop.

The	Newline	Consideration
Although	getchar()	gets	a	single	character,	control	isn’t	returned	to	your	program	until	the	user
presses	Enter.	The	getchar()	function	actually	instructs	C	to	accept	input	into	a	buffer,	which	is	a
memory	area	reserved	for	input.	The	buffer	isn’t	released	until	the	user	presses	Enter,	and	then	the
buffer ’s	contents	are	released	a	character	at	a	time.	This	means	two	things.	One,	the	user	can	press	the
Backspace	key	to	correct	bad	character	input,	as	long	as	he	or	she	hasn’t	pressed	Enter.	Two,	the	Enter
keypress	is	left	on	the	input	buffer	if	you	don’t	get	rid	of	it.
Getting	rid	of	the	Enter	keypress	is	a	problem	that	all	beginning	C	programmers	must	face.	Several
solutions	exist,	but	none	is	extremely	elegant.	Consider	the	following	segment	of	a	program:
Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getchar();
lastInit	=	getchar();

You	would	think	that	if	the	user	typed	GT,	the	G	would	go	in	the	variable	firstInit	and	the	T
would	go	in	lastInit,	but	that’s	not	what	happens.	The	first	getchar()	doesn’t	finish	until	the
user	presses	Enter	because	the	G	was	going	to	the	buffer.	Only	when	the	user	presses	Enter	does	the	G
leave	the	buffer	and	go	to	the	program—but	then	the	Enter	is	still	on	the	buffer!	Therefore,	the
second	getchar()	sends	that	Enter	(actually,	the	\n	that	represents	Enter)	to	lastInit.	The	T	is
still	left	for	a	subsequent	getchar()	(if	there	is	one).

	Tip

One	way	to	fix	this	problem	is	to	insert	an	extra	getchar()	that	captures	the	Enter
but	doesn’t	do	anything	with	it.

Here	is	a	workaround	for	the	initial-getting	problem:
Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getchar();
n1	=	getchar();
lastInit	=	getchar();
n1	=	getchar();

This	code	requires	that	the	user	press	Enter	between	each	initial.	You	don’t	have	to	do	anything	with
the	nl	variable	because	nl	exists	only	to	hold	the	in-between	newline.	You	don’t	even	have	to	save
the	newline	keypress	in	a	variable.	The	following	code	works	just	like	the	last:
Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getchar();
getchar();	//	Discards	the	newline
lastInit	=	getchar();
getchar();	//	Discards	the	newline

Some	C	compilers	issue	warning	messages	when	you	compile	programs	with	a	standalone
getchar()	on	lines	by	themselves.	As	long	as	you	use	these	getchar()s	for	discarding	Enter
keypresses,	you	can	ignore	the	compiler	warnings.
You	also	can	request	the	two	initials	by	requiring	the	Enter	keypress	after	the	user	enters	the	two
initials,	like	this:
Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getchar();
lastInit	=	getchar();
getchar();

If	the	user	types	GP	and	then	presses	Enter,	the	G	resides	in	the	firstInit	variable	and	the	P	resides
in	the	lastInit	variable.

A	Little	Faster:	getch()

A	character	input	function	named	getch()	helps	eliminate	the	leftover	Enter	keypress	that
getchar()	leaves.	getch()	is	unbuffered—that	is,	getch()	gets	whatever	keypress	the	user
types	immediately	and	doesn’t	wait	for	an	Enter	keypress.	The	drawback	to	getch()	is	that	the	user
can’t	press	the	Backspace	key	to	correct	bad	input.	For	example,	with	getchar(),	a	user	could	press
Backspace	if	he	or	she	typed	a	B	instead	of	a	D.	The	B	would	be	taken	off	the	buffer	by	the	Backspace,
and	the	D	would	be	left	for	getchar()	to	get	after	the	user	pressed	Enter.	Because	getch()	does
not	buffer	input,	there	is	no	chance	of	the	user	pressing	Backspace.	The	following	code	gets	two
characters	without	an	Enter	keypress	following	each	one:
Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getch();
lastInit	=	getch();

getch()	is	a	little	faster	than	getchar()	because	it	doesn’t	wait	for	an	Enter	keypress	before
grabbing	the	user ’s	keystrokes	and	continuing.	Therefore,	you	don’t	need	a	standalone	getch()	to
get	rid	of	the	\n	as	you	do	with	getchar().

	Warning

getch()	does	not	echo	the	input	characters	to	the	screen	as	getchar()	does.
Therefore,	you	must	follow	getch()	with	a	mirror-image	putch()	if	you	want	the
user	to	see	onscreen	the	character	he	or	she	typed.	To	echo	the	initials,	you	could	do
this:

Click	here	to	view	code	image

printf("What	are	your	two	initials?\n");
firstInit	=	getch();

putch(firstInit);

lastInit	=	putch();

putch(lastInit);

The	next	chapter	explains	more	built-in	functions,	including	two	that	quickly	input	and	output	strings
as	easily	as	this	chapter ’s	I/O	functions	work	with	characters.

The	Absolute	Minimum
This	chapter ’s	goal	was	to	explain	a	few	additional	input	and	output	functions.	The
functions	presented	here	are	character	I/O	functions.	Unlike	scanf()	and	printf(),
the	getchar(),	getch(),	putchar(),	and	putch()	functions	input	and	output
single	characters	at	a	time.	Key	concepts	from	this	chapter	include:
•	Use	getchar()	and	putchar()	to	input	and	output	single	characters.
•	Use	a	standalone	getchar()	to	get	rid	of	the	Enter	keypress	if	you	don’t	want	to
capture	it.	You	also	can	create	a	loop	to	call	getchar()	until	the	return	value	is
\n,	as	shown	in	the	sample	code.
•	Use	getch()	to	get	unbuffered	single	characters	as	soon	as	the	user	types	them.
•	Don’t	use	a	character	I/O	function	with	character	variables.	Use	an	int	variable
instead.
•	Don’t	forget	to	print	character	input	using	putch()	if	you	want	that	input	echoed
on	the	screen	as	the	user	types.

19.	Getting	More	from	Your	Strings

In	This	Chapter
•	Employing	character-testing	functions
•	Checking	whether	the	case	is	correct
•	Adding	case-changing	functions
•	Using	string	functions

This	chapter	shows	you	ways	to	take	work	off	your	shoulders	and	put	it	on	C’s.	C	includes	many
helpful	built-in	functions	in	addition	to	ones	such	as	strlen(),	getchar(),	and	printf()	that
you’ve	read	about	so	far.
Many	more	built-in	functions	exist	than	there	is	room	for	in	a	single	chapter.	This	chapter	explains
the	most	common	and	helpful	character	and	string	functions.	In	the	next	chapter,	you’ll	learn	about
some	numeric	functions.

Character-Testing	Functions
C	has	several	built-in	character-testing	functions.	Now	that	you	know	how	to	use	getchar()	and
getch()	to	get	single	characters,	the	character-testing	functions	can	help	you	determine	exactly
what	kind	of	input	characters	your	program	receives.	You	can	set	up	if	logic	to	execute	certain
courses	of	action	based	on	the	results	of	the	character	tests.

	Tip

You	must	include	the	ctype.h	header	file	at	the	top	of	any	program	that	uses	the
character	functions	described	in	this	chapter.

The	isalpha()	function	returns	true	(which	is	1	to	C)	if	the	value	in	its	parentheses	is	an
alphabetic	character	a	through	z	(or	the	uppercase	A	through	Z)	and	returns	false	(which	is	0	to	C)
if	the	value	in	parentheses	is	any	other	character.	Consider	this	if:
Click	here	to	view	code	image

if	(isalpha(inChar))
{
						printf("Your	input	was	a	letter.\n");
}

The	message	prints	only	if	inChar	contains	an	alphabetic	letter.
C	has	a	corresponding	function	named	isdigit()	that	returns	true	if	the	character	in	the
parentheses	is	a	number	from	0	through	9.	The	following	if	prints	A	number	if	inChar	contains
a	digit:

if	(isdigit(inChar))

{
						printf("A	number\n");
}

	Note

Do	you	see	why	these	are	called	character-testing	functions?	Both	isalpha()	and
isdigit()	test	character	content	and	return	the	relational	result	of	the	test.

Is	the	Case	Correct?
The	isupper()	and	islower()	functions	let	you	know	whether	a	variable	contains	an	upper-	or
lowercase	value.	Using	isupper()	keeps	you	from	having	to	write	long	if	statements	like	this:
Click	here	to	view	code	image

if	((inLetter	>=	'A')	&&	(inLetter	<=	'Z'))
{
						printf("Letter	is	uppercase\n");
}

Instead,	use	isupper()	in	place	of	the	logical	comparison:
Click	here	to	view	code	image

if	(isupper(inLetter))
{
printf("Letter	is	uppercase\n");
}

	Note

islower()	tests	for	lowercase	values	in	the	same	way	as	isupper()	tests	for
uppercase	values.

You	might	want	to	use	isupper()	to	ensure	that	your	user	enters	an	initial-uppercase	letter	when
entering	names.
Here’s	a	quick	little	program	that	gets	a	username	and	password	and	then	uses	the	functions	described
in	this	chapter	to	check	whether	the	password	has	an	uppercase	letter,	a	lowercase	letter,	and	a	number
in	it.	If	a	user	has	all	three,	the	program	congratulates	him	or	her	for	selecting	a	password	with
enough	variety	to	make	it	harder	to	crack.	If	the	password	entered	does	not	have	all	three	categories,
the	program	suggests	that	the	user	consider	a	stronger	password.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	19	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter19ex1.c

/*	This	program	asks	a	user	for	a	username	and	a	password.	It	tests

whether	their	password	has	an	uppercase	letter,	lowercase	letter,
and	a	digit.	If	it	does,	the	program	congratulates	their	selection.
If	not,	it	suggests	they	might	want	to	consider	a	password	with	more
variety	for	the	sake	of	security.	*/

//	stdio.h	is	needed	for	printf()	and	scanf()
//	string.h	is	needed	for	strlen()
//	ctype.h	is	needed	for	isdigit,	isupper,	and	islower

#include	<stdio.h>
#include	<string.h>
#include	<ctype.h>

main()
{
							int	i;
							int	hasUpper,	hasLower,	hasDigit;
							char	user[25],	password[25];

				//	Initialize	all	three	test	variables	to	0	i.e.	false

							hasUpper	=	hasLower	=	hasDigit	=	0;

							printf("What	is	your	username?	");
							scanf("	%s",	user);

							printf("Please	create	a	password:	");
							scanf("	%s",	password);

							//	This	loop	goes	through	each	character	of	the	password	and
							//	tests
							//	whether	it	is	a	digit,	upppercase	letter,	then	lowercase
							//	letter.

							for	(i	=	0;	i	<	strlen(password)	;	i++)
							{
										if	(isdigit(password[i]))
										{
														hasDigit	=	1;
														continue;
										}
										if	(isupper(password[i]))
										{
														hasUpper	=	1;
														continue;
										}
										if	(islower(password[i]))
										{
														hasLower	=	1;
										}
						}

							/*	The	if	portion	will	only	execute	if	all	three	variables
below	are	1,	and	the	variables	will	only	equal	1	if	the	appropriate
characters	were	each	found	*/
	if	((hasDigit)	&&	(hasUpper)	&&	(hasLower))
												{
												printf("\n\nExcellent	work,	%s,\n",	user);
												printf("Your	password	has	upper	and	lowercase	");
												printf("letters	and	a	number.");

	}	else
	{
												printf("\n\nYou	should	consider	a	new	password,	%s,\n",
														user);
												printf("One	that	uses	upper	and	lowercase	letters	");
												printf("and	a	number.");
								}

							return(0);

}

Anyone	creating	a	password	these	days	gets	a	lecture	about	the	need	for	a	variety	of	letters,	numbers,
and,	in	some	cases,	characters	in	their	password	to	make	it	difficult	for	hackers	to	crack	their	code.
This	program	uses	the	functions	listed	in	this	chapter	to	check	that	a	password	has	each	of	the	three
types	of	characters	in	an	entered	password	by	looping	through	the	password	character	by	character
and	testing	each	of	the	three	types.	If	a	specific	character	is	one	of	those	three	types,	a	variable	flag	is
set	to	1	(TRUE	in	C	parlance),	and	then	the	loop	moves	on.
In	the	case	of	the	first	two	tests,	after	the	variable	flag	(hasDigit	or	hasUpper)	is	set	to	1,	a
continue	statement	starts	the	next	version	of	the	loop—after	the	character	has	been	determined	to
be	a	digit,	there	is	no	need	to	run	the	next	two	tests	(after	all,	it	can’t	be	more	than	one	category,
right?),	so	for	efficiency’s	sake,	skipping	the	subsequent	tests	makes	sense.	The	last	if	code	section
does	not	need	a	continue	statement	because	it	is	already	at	the	end	of	the	loop.
After	all	the	characters	in	the	password	string	have	been	tested,	an	if	statement	checks	whether	all
three	conditions	were	met.	If	so,	it	prints	a	congratulatory	message.	If	not,	it	prints	a	different
message.

	Tip

Some	passwords	today	also	ask	for	at	least	one	non-letter,	non-number	character	(such
as	$,	!,	*,	&,	and	so	on).	You	could	further	refine	this	code	to	check	for	those	by
putting	an	else	at	the	end	of	the	final	islower	test.	After	all,	if	a	character	fails	the
first	three	tests,	then	it	fits	in	this	last	category.

Case-Changing	Functions
C	has	two	important	character-changing	functions	(also	called	character-mapping	functions)	that
return	their	arguments	changed	a	bit.	Unlike	isupper()	and	islower(),	which	only	test
character	values	and	return	a	true	or	false	result	of	the	test,	toupper()	and	tolower()	return
their	arguments	converted	to	a	different	case.	toupper()	returns	its	parentheses	argument	as
uppercase.	tolower()	returns	its	parentheses	argument	as	lowercase.
The	following	program	segment	prints	yes	or	no,	depending	on	the	user ’s	input.	Without	the
toupper()	function,	you	need	an	extra	test	to	execute	your	plan:
Click	here	to	view	code	image

if	((userInput	==	'Y')	||	(userInput	==	'y'))

							{	printf("yes\n");	}
else
							{	printf("no\n");	}

The	next	set	of	statements	uses	the	toupper()	function	to	streamline	the	if	statement’s	logical	test
for	lowercase	letters:
Click	here	to	view	code	image

if	(toupper(userInput)	==	'Y')	//	only	need	to	test	for	upper	case
							{	printf("yes\n");	}
else
							{	printf("no\n");	}

String	Functions
The	string.h	header	file	contains	descriptions	for	more	functions	than	just	strcpy()	and
strlen().	This	section	explains	the	strcat()	function	that	lets	you	merge	two	character	arrays,
as	long	as	the	arrays	hold	strings.	strcat()	stands	for	string	concatenation.
strcat()	takes	one	string	and	appends	it	to—that	is,	adds	it	onto	the	end	of—another	string.	This
code	fragment	shows	what	happens	with	strcat():
Click	here	to	view	code	image

char	first[25]	=	"Katniss";
char	last[25]	=	"	Everdeen";
strcat(first,	last);	//Adds	last	to	the	end	of	first
printf("I	am	$s\n",	first);

Here	is	the	output	of	this	code:
I	am	Katniss	Everdeen

strcat()	requires	two	string	arguments.	strcat()	tacks	the	second	string	onto	the	end	of	the
first	one.	The	space	appears	before	the	last	name	only	because	the	last	array	is	initialized	with	a
space	before	the	last	name	in	the	second	line.

	Warning

You	are	responsible	for	making	sure	that	the	first	array	is	large	enough	to	hold	both
strings.	If	you	attempt	to	concatenate	a	second	string	to	the	end	of	another	string,	and
the	second	string	is	not	defined	with	enough	characters	to	hold	the	two	strings,	strange
and	unpredictable	results	can	happen.

Because	the	second	argument	for	strcat()	is	not	changed,	you	can	use	a	string	literal	in	place	of	a
character	array	for	the	second	argument,	if	you	like.
The	puts()	and	gets()	functions	provide	an	easy	way	to	print	and	get	strings.	Their	descriptions
are	in	stdio.h,	so	you	don’t	have	to	add	another	header	file	for	puts()	and	gets().	puts()
sends	a	string	to	the	screen,	and	gets()	gets	a	string	from	the	keyboard.	The	following	program
demonstrates	gets()	and	puts().	As	you	look	through	it,	notice	that	neither	printf()	nor

scanf()	is	required	to	input	and	print	strings.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	19	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter19ex2.c

/*	This	program	asks	a	user	for	their	hometown	and	the	two-letter
abbreviation	of	their	home	state.	It	then	uses	string	concatenation
to	build	a	new	string	with	both	town	and	state	and	prints	it	using
puts.	*/

//	stdio.h	is	needed	for	puts()	and	gets()
//	string.h	is	needed	for	strcat()

#include	<stdio.h>

main()
{

							char	city[15];
							//	2	chars	for	the	state	abbrev.	and	one	for	the	null	zero
							char	st[3];
							char	fullLocation[18]	=	"";

							puts("What	town	do	you	live	in?	");
							gets(city);

							puts("What	state	do	you	live	in?	(2-letter	abbreviation)");
							gets(st);

							/*	Concatenates	the	strings	*/
							strcat(fullLocation,	city);
							strcat(fullLocation,	",	");	//Adds	a	comma	and	space	between
																																			//	the	city
							strcat(fullLocation,	st);	//and	the	state	abbreviation

							puts("\nYou	live	in	");
							puts(fullLocation);
							return(0);
}

	Tip

strcat()	has	to	be	used	three	times:	once	to	add	the	city,	once	for	the	comma,	and
once	to	tack	the	state	onto	the	end	of	the	city.

Here	is	the	output	from	a	sample	run	of	this	program:
Click	here	to	view	code	image

What	town	do	you	live	in?
Gas	City
What	state	do	you	live	in?	(2-letter	abbreviation)
IN

You	live	in
Gas	City,	IN

puts()	automatically	puts	a	newline	at	the	end	of	every	string	it	prints.	You	don’t	have	to	add	a	\n	at
the	end	of	an	output	string	unless	you	want	an	extra	blank	line	printed.

	Tip

gets()	converts	the	Enter	keypress	to	a	null	zero	to	ensure	that	the	data	obtained
from	the	keyboard	winds	up	being	a	null-terminated	string	instead	of	an	array	of	single
characters.

One	of	the	most	important	reasons	to	use	gets()	over	scanf()	is	that	you	can	ask	the	user	for
strings	that	contain	embedded	spaces,	such	as	a	full	name	(first	and	last	name).	scanf()	cannot
accept	strings	with	spaces;	scanf()	stops	getting	user	input	at	the	first	space.	Using	the	name	of	the
city	from	the	code	example,	Gas	City,	with	a	scanf()	statement	would	have	caused	data-entry
issues.	This	is	the	value	of	gets().	So	if	you	went	back	to	the	favorite	movie	program	in	Chapter
15,	“Looking	for	Another	Way	to	Create	Loops,”	and	replaced	the	scanf()	statement	with	gets(),
you	could	allow	the	user	to	type	in	titles	with	more	than	one	word.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	some	built-in	character	and	string	functions
that	help	you	test	and	change	strings.	The	string	functions	presented	in	this	chapter
work	on	both	string	literals	and	arrays.	The	character	functions	test	for	digits	and
letters,	and	convert	uppercase	and	lowercase	characters	to	their	opposites.	Key
concepts	from	this	chapter	include:
•	Use	C’s	built-in	character-testing	and	character-mapping	functions	so	your
programs	don’t	have	to	work	as	hard	to	determine	the	case	of	character	data.
•	Use	gets()	to	get	strings	and	puts()	to	print	strings.
•	Use	gets()	when	you	must	get	strings	that	might	contain	spaces.	Remember	that
scanf()	cannot	grab	strings	with	spaces.
•	Use	strcat()	to	merge	two	strings.
•	Don’t	concatenate	two	strings	with	strcat()	unless	you’re	positive	that	the	first
character	array	can	hold	the	strings	after	they’re	merged.
•	Don’t	put	a	newline	inside	the	puts()	string	unless	you	want	an	extra	line	printed.
puts()	automatically	adds	a	newline	to	the	end	of	strings.

20.	Advanced	Math	(for	the	Computer,	Not	You!)

In	This	Chapter
•	Practicing	your	math
•	Doing	more	conversions
•	Getting	into	trig	and	other	really	hard	stuff
•	Getting	random

This	chapter	extends	your	knowledge	of	built-in	functions	to	the	numeric	functions.	C	helps	you	do
math	that	the	C	operators	can’t	do	alone.	More	than	anything	else,	the	C	built-in	numeric	functions
supply	routines	that	you	don’t	have	to	write	yourself.
A	lot	of	C’s	built-in	math	functions	are	highly	technical—not	that	their	uses	are	difficult,	but	their
purposes	might	be.	Unless	you	need	trigonometric	and	advanced	math	functions,	you	might	not	find	a
use	for	many	of	the	functions	described	in	this	chapter.

	Tip

Some	people	program	in	C	for	years	and	never	need	many	of	these	functions.	You
should	read	this	chapter ’s	material	to	get	an	idea	of	what	C	can	accomplish	so	you’ll
know	what’s	available	if	you	ever	do	need	these	powerful	functions.

Practicing	Your	Math
All	the	functions	this	chapter	describes	require	the	use	of	the	math.h	header	file.	Be	sure	to	include
math.h	along	with	stdio.h	if	you	use	a	math	function.	The	first	few	math	functions	are	not	so
much	math	functions	as	they	are	numeric	functions.	These	functions	convert	numbers	to	and	from
other	numbers.
The	floor()	and	ceil()	functions	are	called	the	floor	and	ceiling	functions,	respectively.	They
“push	down”	and	“push	up”	nonintegers	to	their	next-lower	or	next-higher	integer	values.	For
example,	if	you	wanted	to	compute	how	many	dollar	bills	were	in	a	certain	amount	of	change	(that
includes	dollars	and	cents),	you	could	use	floor()	on	the	amount.	The	following	code	does	just
that:
Click	here	to	view	code	image

change	=	amtPaid	–	cost;	//These	are	all	floating-point	values
dollars	=	floor(change);
printf("The	change	includes	%f	dollar	bills.\n",	dollars);

	Warning

Although	ceil()	and	floor()	convert	their	arguments	to	integers,	each	function
returns	a	float	value.	That’s	why	the	dollars	variable	was	printed	using	the	%f
conversion	code.

The	ceil()	function	(which	is	the	opposite	of	floor())	finds	the	next-highest	integer.	Both
ceil()	and	floor()	work	with	negative	values,	too,	as	the	following	few	lines	show:
Click	here	to	view	code	image

lowVal1	=	floor(18.5);		//	Stores	18.0
lowVal2	=	floor(-18.5);		//	Stores	-19.0
hiVal1	=	ceil(18.5);	//	Stores	19.0
hiVal2	=	ceil(-18.5);	//	Stores	=18.0

	Note

The	negative	values	make	sense	when	you	think	about	the	direction	of	negative
numbers.	The	next	integer	down	from	–18.5	is	–19.	The	next	integer	up	from	–18.5	is	–
18.

See,	these	functions	aren’t	so	bad,	and	they	come	in	handy	when	you	need	them.

Doing	More	Conversions
Two	other	numeric	functions	convert	numbers	to	other	values.	The	fabs()	function	returns	the
floating-point	absolute	value.	When	you	first	hear	about	absolute	value,	it	sounds	like	something
you’ll	never	need.	The	absolute	value	of	a	number,	whether	it	is	negative	or	positive,	is	the	positive
version	of	the	number.	Both	of	these	printf()	functions	print	25:
Click	here	to	view	code	image

printf("Absolute	value	of	25.0	is	%.0f.\n",	fabs(25.0));
printf("Absolute	value	of	-25.0	is	%.0f.\n",	fabs(-25.0));

	Note

The	floating-point	answers	print	without	decimal	places	because	of	the	.0	inside	the
%f	conversion	codes.

Absolute	values	are	useful	for	computing	differences	in	ages,	weights,	and	distances.	For	example,
the	difference	between	two	people’s	ages	is	always	a	positive	number,	no	matter	how	you	subtract	one
from	the	other.

Two	additional	mathematical	functions	might	come	in	handy,	even	if	you	don’t	do	heavy	scientific
and	math	programming.	The	pow()	function	raises	a	value	to	a	power,	and	the	sqrt()	function
returns	the	square	root	of	a	value.

	Tip

You	can’t	compute	the	square	root	of	a	negative	number.	The	fabs()	function	can
help	ensure	that	you	don’t	try	to	do	so	by	converting	the	number	to	a	positive	value
before	you	compute	the	square	root.

Perhaps	a	picture	will	bring	back	fond	high	school	algebra	memories.	Figure	20.1	shows	the	familiar
math	symbols	used	for	pow()	and	sqrt().

FIGURE	20.1	Looking	at	the	math	symbols	for	pow()	and	sqrt().

The	following	code	prints	the	value	of	10	raised	to	the	third	power	and	the	square	root	of	64:
Click	here	to	view	code	image

printf("10	raised	to	the	third	power	is	%.0f.\n",	pow(10.0,	3.0));
printf("The	square	root	of	64	is	%.0f.\n",	sqrt(64));

Here	is	the	output	of	these	printf()	functions:
Click	here	to	view	code	image

10	raised	to	the	3rd	power	is	1000.
The	square	root	of	64	is	8.

Getting	into	Trig	and	Other	Really	Hard	Stuff
Only	a	handful	of	readers	will	need	the	trigonometric	and	logarithmic	functions.	If	you	know	you
won’t,	or	if	you	hope	you	won’t,	go	ahead	and	skip	to	the	next	section.	Those	of	you	who	need	them
now	won’t	require	much	explanation,	so	not	much	is	given.
Table	20.1	explains	the	primary	trigonometric	functions.	They	each	require	an	argument	expressed	in
radians.

TABLE	20.1	C	Trigonometric	Functions

Again,	it’s	unlikely	you	will	need	these	functions,	unless	you	want	to	relearn	trigonometry	(or	have	a
child	or	relative	taking	the	class	and	want	to	check	their	homework),	but	it’s	good	to	know	the
capabilities	of	your	programming	language.

	Tip

If	you	want	to	supply	an	argument	in	degrees	instead	of	radians,	you	can	convert	from
degrees	to	radians	with	this	formula:

Click	here	to	view	code	image

radians	=	degrees	*	(3.14159	/	180.0);

Table	20.2	shows	the	primary	log	functions.

TABLE	20.2	C	Logarithmic	Functions

The	following	program	uses	the	math	functions	described	in	this	chapter:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	20	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter20ex1.c

/*	This	program	demonstrates	the	math	functions	from	the	C	math.h
library,	so	that	you	can	get	your	homework	right	thanks	to	some
quick-and-easy	programming.	*/

#include	<stdio.h>
#include	<string.h>
#include	<math.h>

main()
{

				printf("It's	time	to	do	your	math	homework!\n");

				printf("Section	1:	Square	Roots\n");
				printf("The	square	root	of	49.0	is	%.1f\n",	sqrt(49.0));
				printf("The	square	root	of	149.0	is	%.1f\n",	sqrt	(149.0));
				printf("The	square	root	of	.149	is	%.2f\n",	sqrt	(.149));

				printf("\n\nSection	2:	Powers\n");
				printf("4	raised	to	the	3rd	power	is	%.1f\n",	pow(4.0,	3.0));
				printf("7	raised	to	the	5th	power	is	%.1f\n",	pow(7.0,	5.0));
				printf("34	raised	to	the	1/2	power	is	%.1f\n",	pow(34.0,	.5));

				printf("\n\nSection	3:	Trigonometry\n");
				printf("The	cosine	of	a	60-degree	angle	is	%.3f\n",
											cos((60*(3.14159/180.0))));
				printf("The	sine	of	a	90-degree	angle	is	%.3f\n",
											sin((90*(3.14159/180.0))));
				printf("The	tangent	of	a	75-degree	angle	is	%.3f\n",
											tan((75*(3.14159/180.0))));
				printf("The	arc	cosine	of	a	45-degree	angle	is	%.3f\n",
											acos((45*(3.14159/180.0))));
				printf("The	arc	sine	of	a	30-degree	angle	is	%.3f\n",
											asin((30*(3.14159/180.0))));
				printf("The	arc	tangent	of	a	15-degree	angle	is	%.3f\n",
											atan((15*(3.14159/180.0))));

				printf("\nSection	4:	Log	functions\n");
				printf("e	raised	to	2	is	%.3f\n",	exp(2));
				printf("The	natural	log	of	5	is	%.3f\n",	log(5));
				printf("The	base-10	log	of	5	is	%.3f\n",	log10(5));

				return(0);
}

Here	is	the	output.	Does	C	compute	these	values	faster	than	you	can	with	pencil	and	paper?
Click	here	to	view	code	image

It's	time	to	do	your	math	homework!
Section	1:	Square	Roots
The	square	root	of	49.0	is	7.0
The	square	root	of	149.0	is	12.2
The	square	root	of	.149	is	0.39

Section	2:	Powers
4	raised	to	the	3rd	power	is	64.0
7	raised	to	the	5th	power	is	16807.0
34	raised	to	the	1/2	power	is	5.8

Section	3:	Trigonometry
The	cosine	of	a	60-degree	angle	is	0.500
The	sine	of	a	90-degree	angle	is	1.000
The	tangent	of	a	75-degree	angle	is	3.732
The	arc	cosine	of	a	45-degree	angle	is	0.667
The	arc	sine	of	a	30-degree	angle	is	0.551
The	arc	tangent	of	a	15-degree	angle	is	0.256

Section	4:	Log	functions
e	raised	to	2	is	7.389
The	natural	log	of	5	is	1.609
The	base-10	log	of	5	is	0.699

Getting	Random
For	games	and	simulation	programs,	you	often	need	to	generate	random	values.	C’s	built-in	rand()
function	does	just	that.	It	returns	a	random	number	from	0	to	32767.	The	rand()	function	requires
the	stdlib.h	(standard	library)	header	file.	If	you	want	to	narrow	the	random	numbers,	you	can
use	%	(the	modulus	operator)	to	do	so.	The	following	expression	puts	a	random	number	from	1	to	6
in	the	variable	dice:
Click	here	to	view	code	image

dice	=	(rand()	%	5)	+	1;		/*	From	1	to	6	*/

	Note

Because	a	die	can	have	a	value	from	1	to	6,	the	modulus	operator	returns	the	integer
division	remainder	(0	through	5),	and	then	a	1	is	added	to	produce	a	die	value.

You	must	do	one	crazy	thing	if	you	want	a	truly	random	value.
To	seed	the	random	number	generator	means	to	give	it	an	initial	base	value	from	which	the	rand()
function	can	offset	with	a	random	number.	Use	srand()	to	seed	the	random	number	generator.	The
number	inside	the	srand()	parentheses	must	be	different	every	time	you	run	the	program,	unless
you	want	to	produce	the	same	set	of	random	values.
The	trick	to	giving	srand()	a	different	number	each	run	is	to	put	the	exact	time	of	day	inside	the
srand()	parentheses.	Your	computer	keeps	track	of	the	time	of	day,	down	to	hundredths	of	a
second.	So	first	declare	a	time	variable,	using	the	time_t	declaration,	and	then	send	its	address
(using	the	&	character	at	the	front	of	the	variable	name)	to	the	srand()	function.

	Note

You	might	always	want	a	different	set	of	random	numbers	produced	each	time	a
program	runs.	Games	need	such	randomness.	However,	many	simulations	and
scientific	studies	need	to	repeat	the	same	set	of	random	numbers.	rand()	will	always
do	that	if	you	don’t	seed	the	random	number	generator.

You	must	include	time.h	before	seeding	the	random	number	generator	with	the	time	of	day,	as	done
here.
The	bottom	line	is	this:	If	you	add	the	two	weird-looking	time	statements,	rand()	will	always	be
random	and	will	produce	different	results	every	time	you	run	a	program.

As	always,	the	best	way	to	understand	these	types	of	functions	is	to	see	an	example.	The	following
code	uses	the	rand()	function	to	roll	two	dice	and	present	the	result.	Then	the	user	gets	to	decide
whether	a	second	roll	of	the	dice	is	going	to	be	higher,	lower,	or	the	same	as	the	previous	roll:
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	20	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter19ex2.c

/*	This	program	rolls	two	dice	and	presents	the	total.	It	then	asks
the	user	to	guess	if	the	next	total	will	be	higher,	lower,	or	equal.
It	then	rolls	two	more	dice	and	tells	the	user	how	they	did.	*/

#include	<stdio.h>
#include	<string.h>
#include	<time.h>
#include	<ctype.h>

main()
{

							int	dice1,	dice2;
							int	total1,	total2;
							time_t	t;
							char	ans;

							//	Remember	that	this	is	needed	to	make	sure	each	random	number
							//	generated	is	different

							srand(time(&t));

							//	This	would	give	you	a	number	between	0	and	5,	so	the	+	1
							//	makes	it	1	to	6

							dice1	=	(rand()	%	5)	+	1;
							dice2	=	(rand()	%	5)	+	1;
							total1	=	dice1	+	dice2;
							printf("First	roll	of	the	dice	was	%d	and	%d,	",	dice1,	dice2);
							printf("for	a	total	of	%d.\n\n\n",	total1);

							do	{
										puts("Do	you	think	the	next	roll	will	be	");
										puts("(H)igher,	(L)ower,	or	(S)ame?\n");
										puts("Enter	H,	L,	or	S	to	reflect	your	guess.");

										scanf("	%c",	&ans);
										ans	=	toupper(ans);
										}	while	((ans	!=	'H')	&&	(ans	!=	'L')	&&	(ans	!=	'S'));

							//	Roll	the	dice	a	second	time	to	get	your	second	total

							dice1	=	(rand()	%	5)	+	1;
							dice2	=	(rand()	%	5)	+	1;
							total2	=	dice1	+	dice2;

							//	Display	the	second	total	for	the	user

							printf("\nThe	second	roll	was	%d	and	%d,	",	dice1,	dice2);
							printf("for	a	total	of	%d.\n\n",	total2);

							//	Now	compare	the	two	dice	totals	against	the	user's	guess
							//	and	tell	them	if	they	were	right	or	not.

							if	(ans	==	'L')
							{
												if	(total2	<	total1)
												{
																printf("Good	job!	You	were	right!\n");
																printf("%d	is	lower	than	%d\n",	total2,	total1);
												}
												else
												{
																printf("Sorry!	%d	is	not	lower	than	%d\n\n",	total2,
																							total1);
												}
								}
				else	if	(ans	==	'H')
								{
												if	(total2	>	total1)
												{
																printf("Good	job!	You	were	right!\n");
																printf("%d	is	higher	than	%d\n",	total2,	total1);
												}
												else
												{
																printf("Sorry!	%d	is	not	higher	than	%d\n\n",	total2,
																							total1);
												}
								}
				else	if	(ans	==	'S')
								{
												if	(total2	==	total1)
												{
																printf("Good	job!	You	were	right!\n");
																printf("%d	is	the	same	as	%d\n\n",	total2,	total1);
												}
												else
												{
																printf("Sorry!	%d	is	not	the	same	as	%d\n\n",
																							total2,	total1);
												}
								}

				return(0);
}

Not	bad—you’re	not	even	two-thirds	of	the	way	through	the	book,	and	you	can	call	yourself	a	game
programmer!	The	program	is	a	simple	guessing	game	for	users	to	predict	how	a	second	roll	will
total	when	compared	to	the	original	roll.	The	program	gives	the	users	one	chance	and	then	terminates
after	comparing	the	results	and	telling	the	user	how	successful	that	guess	was.	However,	a	simple	do-
while	loop	encompassing	the	entire	program	could	change	this	so	that	users	could	keep	playing	as
long	as	they	want	until	they	choose	to	quit.	Why	not	try	adding	that	loop?

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	explain	built-in	math	functions	that	can	make	numeric
data	processing	easier.	C	contains	a	rich	assortment	of	integer	functions,	numeric
conversion	functions,	time	and	date	functions,	and	random	number–generating
functions.
You	don’t	have	to	understand	every	function	in	this	chapter	at	this	time.	You	might
write	hundreds	of	C	programs	and	never	use	many	of	these	functions.	Nevertheless,
they	are	in	C	if	you	need	them.
•	Use	the	built-in	numeric	functions	when	you	can	so	that	you	don’t	have	to	write	code
to	perform	the	same	calculations.
•	Many	of	the	numeric	functions,	such	as	floor(),	ceil(),	and	fabs(),	convert
one	number	to	another.
•	Be	sure	to	seed	the	random	number	generator	with	the	time	of	day	if	you	want
random	numbers	with	rand()	to	be	different	every	time	you	run	a	program.
•	Don’t	feel	that	you	must	master	the	trig	and	log	functions	if	you	don’t	need	them
now.	Many	C	programmers	never	use	them.
•	Don’t	use	an	integer	variable	to	hold	the	return	value	from	this	chapter ’s	math
functions	(unless	you	typecast	the	function	return	values);	they	return	float	or	double
values	even	though	some,	like	ceil(),	produce	whole-number	results.

Part	IV:	Managing	Data	with	Your	C	Programs

21.	Dealing	with	Arrays

In	This	Chapter
•	Reviewing	arrays
•	Putting	values	in	arrays

The	really	nice	thing	about	this	chapter	is	that	it	covers	absolutely	nothing	new.	You’ve	already
worked	with	arrays	throughout	the	book	when	storing	strings	in	character	arrays.	This	chapter	simply
hones	that	concept	of	arrays	and	demonstrates	that	you	can	create	an	array	of	any	data	type,	not	just
the	char	data	type.
As	you	know,	an	array	of	characters	is	just	a	list	of	characters	that	has	a	name.	Similarly,	an	array	of
integers	is	just	a	list	of	integers	that	has	a	name,	and	an	array	of	floating-point	values	is	just	a	list	of
floating-point	values	that	has	a	name.	Instead	of	referring	to	each	of	the	array	elements	by	a	different
name,	you	refer	to	them	by	the	array	name	and	distinguish	them	with	a	subscript	enclosed	in	brackets.

Reviewing	Arrays
All	arrays	contain	values	called	elements.	An	array	can	contain	only	elements	that	are	of	the	same
type.	In	other	words,	you	can’t	have	an	array	that	has	a	floating-point	value,	a	character	value,	and	an
integer	value.
You	define	arrays	almost	the	same	way	you	define	regular	non-array	variables.	To	define	a	regular
variable,	you	only	have	to	specify	its	data	type	next	to	the	variable	name:
Click	here	to	view	code	image

int	i;				/*	Defines	a	non-array	variable	*/

To	define	an	array,	you	must	add	brackets	([])	after	the	name	and	specify	the	maximum	number	of
elements	you	will	ever	store	in	the	array:
Click	here	to	view	code	image

int	i[25];		/*	Defines	the	array	*/

If	you	want	to	initialize	a	character	array	with	an	initial	string,	you	know	that	you	can	do	this:
Click	here	to	view	code	image

char	name[6]	=	"Italy";		/*	Leave	room	for	the	null!	*/

	Warning

After	you	define	an	array	to	a	certain	size,	don’t	try	to	store	more	elements	than	were
allowed	in	the	original	size.	After	defining	name	as	just	done,	the	strcpy()	function
lets	you	store	a	string	longer	than	Italy	in	name,	but	the	result	would	be	disastrous
because	other	data	in	memory	could	be	overwritten	unintentionally.	If	another	variable
happened	to	be	defined	immediately	after	name,	that	other	variable’s	data	will	be
overwritten	if	you	try	to	store	a	too-long	string	in	name.

If	the	initial	array	needs	to	be	larger	than	the	initial	value	you	assign,	specify	a	larger	array	size	when
you	define	the	array,	like	this:
Click	here	to	view	code	image

char	name[80]	=	"Italy";		/*	Leaves	lots	of	extra	room	*/

Doing	this	makes	room	for	a	string	much	longer	than	Italy	if	you	want	to	store	a	longer	string	in
name.	For	example,	you	might	want	to	use	gets()	to	get	a	string	from	the	user	that	could	easily	be
longer	than	Italy.
Make	your	arrays	big	enough	to	hold	enough	values,	but	don’t	overdo	it.	Don’t	make	your	arrays
larger	than	you	think	you’ll	really	need.	Arrays	can	consume	a	large	amount	of	memory,	and	the
more	elements	you	reserve,	the	less	memory	you	have	for	your	program	and	other	variables.
You	can	initialize	an	array	one	element	at	a	time	when	you	define	an	array	by	enclosing	the	array’s
data	elements	in	braces	and	following	the	array	name	with	an	equals	sign.	For	example,	the	following
statement	both	defines	an	integer	array	and	initializes	it	with	five	values:
Click	here	to	view	code	image

int	vals[5]	=	{10,	40,	70,	90,	120};

As	a	review,	Figure	21.1	shows	what	vals	looks	like	in	memory	after	the	definition.	The	numbers	in
brackets	indicate	subscripts.	No	null	zero	is	at	the	end	of	the	array	because	null	zeroes	terminate	only
strings	stored	in	character	arrays.

FIGURE	21.1	After	defining	and	initializing	the	vals	array.

	Note

The	first	subscript	of	all	C	arrays	begins	at	0.

The	following	statement	defines	and	initializes	two	arrays,	a	floating-point	array	and	a	double
floating-point	array.	Because	C	is	free-form,	you	can	continue	the	initialization	list	over	more	than
one	line,	as	is	done	for	annualSal.
Click	here	to	view	code	image

float	money[10]	=	{6.23,	2.45,	8.01,	2.97,	6.41};
double	annualSal[6]	=	{43565.78,	75674.23,	90001.34,
																						10923.45,	39845.82};

You	also	can	define	and	initialize	a	character	array	with	individual	characters:
Click	here	to	view	code	image

char	grades[5]	=	{'A',	'B',	'C',	'D',	'F'};

Because	a	null	zero	is	not	in	the	last	character	element,	grades	consists	of	individual	characters,	but
not	a	string.	If	the	last	elements	were	initialized	with	'\0',	which	represents	the	null	zero,	you	could
have	treated	grades	as	a	string	and	printed	it	with	puts(),	or	printf()	and	the	%s	conversion
code.	The	following	name	definition	puts	a	string	in	name:
Click	here	to	view	code	image

char	italCity[7]	=	{'V',	'e',	'r',	'o',	'n',	'a',	'\0'};

You	have	to	admit	that	initializing	such	a	character	array	with	a	string	is	easier	to	do	like	this:
Click	here	to	view	code	image

char	italCity[7]	=	"Verona";			/*	Automatic	null	zero	*/

We	should	be	getting	back	to	numeric	arrays,	which	are	the	primary	focus	of	this	chapter.	Is	there	a
null	zero	at	the	end	of	the	following	array	named	nums?

int	nums[4]	=	{5,	1,	3,	0};

There	is	not	a	null	zero	at	the	end	of	nums!	Be	careful—nums	is	not	a	character	array,	and	a	string	is
not	being	stored	there.	The	zero	at	the	end	of	the	array	is	a	regular	numeric	zero.	The	bit	pattern
(that’s	fancy	computer	lingo	for	the	internal	representation	of	data)	is	exactly	like	that	of	a	null	zero.
But	you	would	never	treat	nums	as	if	there	were	a	string	in	nums	because	nums	is	defined	as	an
integer	numeric	array.

	Warning

Always	specify	the	number	of	subscripts	when	you	define	an	array.	This	rule	has	one
exception,	however:	If	you	assign	an	initial	value	or	set	of	values	to	the	array	at	the
time	you	define	the	array,	you	can	leave	the	brackets	empty:

Click	here	to	view	code	image

int	ages[5]	=	{5,	27,	65,	40,	92};			//	Correct

int	ages[];		//	Incorrect

int	ages[]	=	{5,	27,	65,	40,	92};			//	Correct

	Note

sizeof()	returns	the	number	of	bytes	you	reserved	for	the	array,	not	the	number	of
elements	in	which	you	have	stored	a	value.	For	example,	if	floating-point	values
consume	4	bytes	on	your	computer,	an	8-element	floating-point	array	will	take	a	total
of	32	bytes	of	memory,	and	32	is	the	value	returned	if	you	apply	sizeof()	to	the
array	after	you	define	the	array.

If	you	want	to	zero	out	every	element	of	an	array,	you	can	do	so	with	a	shortcut	that	C	provides:
Click	here	to	view	code	image

float	amount[100]	=	{0.0};		/*	Zeroes-out	all	of	the	array	*/

If	you	don’t	initialize	an	array,	C	won’t	either.	Until	you	put	values	into	an	array,	you	have	no	idea
exactly	what’s	in	the	array.	The	only	exception	to	this	rule	is	that	most	C	compilers	zero	out	all
elements	of	an	array	if	you	initialize	at	least	one	of	the	array’s	values	when	you	define	the	array.	The
previous	clue	works	because	one	value	was	stored	in	amount’s	first	element’s	position	and	C	filled
in	the	rest	with	zeroes.	(Even	if	the	first	elements	were	initialized	with	123.45,	C	would	have	filled
the	remaining	elements	with	zeroes.)

Putting	Values	in	Arrays
You	don’t	always	know	the	contents	of	an	array	at	the	time	you	define	it.	Often	array	values	come
from	a	disk	file,	calculations,	or	a	user ’s	input.	Character	arrays	are	easy	to	fill	with	strings	because
C	supplies	the	strcpy()	function.	You	can	fill	other	types	of	arrays	a	single	element	at	a	time.	No
shortcut	function,	such	as	strcpy(),	exists	to	put	a	lot	of	integers	or	floating-point	values	in	an
array.
The	following	code	defines	an	array	of	integers	and	asks	the	user	for	values	that	are	stored	in	that
array.	Unlike	regular	variables	that	all	have	different	names,	array	elements	are	easy	to	work	with
because	you	can	use	a	loop	to	count	the	subscripts,	as	done	here:
Click	here	to	view	code	image

int	ages[3];
for	(i	=	0;	i	<	3;	i++)
{
							printf("What	is	the	age	of	child	#%d?	",	i+1);
							scanf("	%d",	&ages[i]);	//	Gets	next	age	from	user
}

Now	let’s	use	a	simple	program	that	combines	both	methods	of	entering	data	in	an	array.	This
program	keeps	track	of	how	many	points	a	player	scored	in	each	of	10	basketball	games.	The	first	six
scores	are	entered	when	the	array	is	initialized,	and	then	the	user	is	asked	for	the	player ’s	scores	for
games	7–10.	After	all	the	data	is	entered,	the	program	loops	through	the	10	scores	to	compute
average	points	per	game:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	21	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter21ex1.c

/*	This	program	creates	an	array	of	10	game	scores	for	a	basketball
player.
				The	scores	from	the	first	six	games	are	in	the	program	and	the
				scores	From	the	last	four	are	inputted	by	the	user.	*/

#include	<stdio.h>

main()
{

				int	gameScores[10]	=	{12,	5,	21,	15,	32,	10};
				int	totalPoints	=	0;
				int	i;
				float	avg;

				//	Only	need	scores	for	last	4	games	so	the	loop	will	cover
				//	array	elements	6-9
				for	(i=6;	i	<	10;	i++)
				{
								//	Add	one	to	the	array	number	as	the	user	won't	think
								//	of	the	first	game	as	game	0,	but	game	1
								printf("What	did	the	player	score	in	game	%d?	",	i+1);
								scanf("	%d",	&gameScores[i]);
				}

				//	Now	that	you	have	all	10	scores,	loop	through	the	scores
				//	to	get	total	points	in	order	to	calculate	an	average.

				for	(i=0;	i<10;	i++)
				{
								totalPoints	+=	gameScores[i];
				}

				//	Use	a	floating-point	variable	for	the	average	as	it	is
				//	likely	to	be	between	two	integers

				avg	=	((float)totalPoints/10);

				printf("\n\nThe	Player's	scoring	average	is	%.1f.\n",	avg);

				return(0);
}

A	sample	run	through	the	program	follows:
Click	here	to	view	code	image

What	did	the	player	score	in	game	7?	21
What	did	the	player	score	in	game	8?	8
What	did	the	player	score	in	game	9?	11
What	did	the	player	score	in	game	10?	14

The	Player's	scoring	average	is	14.9

So	this	program	is	designed	to	show	you	two	different	ways	you	can	add	values	to	a	variable	array.
It’s	a	bit	impersonal,	so	if	you	wanted,	you	could	add	a	string	array	for	the	player ’s	name	at	the
beginning	of	the	program;	then	the	prompts	for	the	individual	game	scores	and	the	final	average
could	incorporate	that	name.	In	the	next	two	chapters,	you	learn	how	to	search	an	array,	as	well	as	sort
the	data	in	the	array,	in	case	you	want	to	list	the	player ’s	scoring	from	best	to	worst.

	Warning

Don’t	make	the	same	mistake	we	made.	The	first	time	we	ran	the	program,	we	got	a
scoring	average	of	42,000	per	game	(which	we	are	fairly	certain	would	be	a	record	for
an	individual	player).	Why	did	this	happen?	When	we	defined	the	variable
totalPoints,	we	did	not	set	it	to	0	initially,	and	as	we’ve	reminded	you	throughout
the	book	(but	did	not	apply	to	our	own	program),	you	cannot	assume	that,	just	because
you	define	a	variable,	it	is	initially	empty	or	0.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	teach	you	how	to	store	data	in	lists	called	arrays.	An
array	is	nothing	more	than	a	bunch	of	variables.	Each	variable	has	the	same	name	(the
array	name).	You	distinguish	among	the	variables	in	the	array	(the	array	elements)	with
a	numeric	subscript.	The	first	array	element	has	a	subscript	of	0,	and	the	rest	count	up
from	there.
Arrays	are	characterized	by	brackets	that	follow	the	array	names.	The	array	subscripts
go	inside	the	brackets	when	you	need	to	refer	to	an	individual	array	element.	Key
concepts	from	this	chapter	include:
•	Use	arrays	to	hold	lists	of	values	of	the	same	data	type.
•	Refer	to	the	individual	elements	of	an	array	with	a	subscript.
•	Write	for	loops	if	you	want	to	“step	through”	every	array	element,	whether	it	be	to
initialize,	print,	or	change	the	array	elements.
•	In	an	array,	don’t	use	more	elements	than	defined	subscripts.
•	Don’t	use	an	array	until	you	have	initialized	it	with	values.

22.	Searching	Arrays

In	This	Chapter
•	Filling	arrays
•	Searching	parallel	arrays	for	specific	values

You	bought	this	book	to	learn	C	as	painlessly	as	possible—and	that’s	what	has	been	happening.	(You
knew	that	something	was	happening,	right?)	Nevertheless,	you	won’t	become	an	ace	programmer	if
you	aren’t	exposed	a	bit	to	searching	and	sorting	values.	Complete	books	have	been	written	on
searching	and	sorting	techniques,	and	the	next	two	chapters	present	only	the	simplest	techniques.	Be
forewarned,	however,	that	before	you’re	done,	this	chapter	and	the	next	one	might	raise	more
questions	than	they	answer.
You’ll	find	that	this	and	the	next	chapter	are	a	little	different	from	a	lot	of	the	others.	Instead	of
teaching	you	new	C	features,	these	chapters	demonstrate	the	use	of	C	language	elements	you’ve	been
learning	throughout	this	book.	These	chapters	focus	on	arrays.	You	will	see	applications	of	the	array
concepts	you	learned	in	Chapter	21,	“Dealing	with	Arrays.”	After	these	chapters	strengthen	your
array	understanding,	Chapter	25,	“Arrays	and	Pointers,”	explains	a	C	alternative	to	arrays	that
sometimes	comes	in	handy.

Filling	Arrays
As	Chapter	21	mentioned,	your	programs	use	several	means	to	fill	arrays.	Some	arrays,	such	as	the
day	counts	in	each	of	the	12	months,	historical	temperature	readings,	and	last	year ’s	sales	records,	are
known	in	advance.	You	might	initialize	arrays	with	such	values	when	you	define	the	arrays	or	when
you	use	assignment	statements.
You	will	also	be	filling	arrays	with	values	that	your	program’s	users	enter.	A	customer	order-
fulfillment	program,	for	example,	gets	its	data	only	as	customers	place	orders.	Likewise,	a	scientific
lab	knows	test	values	only	after	the	scientists	gather	their	results.
Other	data	values	come	from	disk	files.	Customer	records,	inventory	values,	and	school	transcript
information	is	just	too	voluminous	for	users	to	enter	each	time	a	program	is	run.
In	reality,	your	programs	can	and	will	fill	arrays	using	a	combination	of	all	three	of	these	methods:

•	Assignment
•	User	data	entry
•	Disk	files

This	book	has	to	keep	the	programs	simple.	Until	you	learn	about	disk	files,	you’ll	see	arrays	filled
with	assignment	statements	and	possibly	simple	user	data	entry	(and	you’ll	be	the	user!).

	Note

At	this	point,	it’s	important	for	you	to	concentrate	on	what	you	do	with	arrays	after	the
arrays	get	filled	with	values.	One	of	the	most	important	things	to	do	is	find	values	that
you	put	in	the	arrays.

Finders,	Keepers
Think	about	the	following	scenario:	Your	program	contains	an	array	that	holds	customer	ID	numbers
and	an	array	that	holds	the	same	number	of	customer	balances.	Such	arrays	are	often	called	parallel
arrays	because	the	arrays	are	in	synch—that	is,	element	number	14	in	the	customer	ID	array	contains
the	customer	number	that	owes	a	balance	found	in	element	14	of	the	balance	array.
The	customer	balance	program	might	fill	the	two	arrays	from	disk	data	when	the	program	first	starts.
As	a	customer	places	a	new	order,	it’s	your	program’s	job	to	find	that	customer	balance	and	stop	the
order	if	the	customer	owes	more	than	$100	already	(the	deadbeat!).
In	a	nutshell,	here	is	the	program’s	job:

1.	Ask	for	a	customer	ID	number	(the	key).
2.	Search	the	array	for	a	customer	balance	that	matches	the	key	value.
3.	Inform	you	if	the	customer	already	owes	more	than	$100.

The	following	program	does	just	that.	Actually,	the	program	maintains	a	list	of	only	10	customers
because	you’re	not	yet	ready	to	tackle	disk	input	(but	you’re	almost	there!).	The	program	initializes
the	arrays	when	the	arrays	are	first	defined,	so	maintaining	only	10	array	element	pairs	(the	customer
ID	and	the	corresponding	balance	arrays)	keeps	the	array	definitions	simple.
Study	this	program	before	typing	it	in	and	running	it.	See	if	you	can	get	the	gist	of	the	program	from
the	code	and	comments.	Following	this	code	listing	is	an	explanation.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	22	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter22ex1.c

/*	This	program	takes	an	ID	number	from	the	user	and	then	checks	the
ID	against	a	list	of	customers	in	the	database.	If	the	customer
exists,	it	uses	that	array	element	to	check	their	current	balance,
and	warns	the	user	if	the	balance	is	more	than	100	*/

#include	<stdio.h>

main()
{

				int	ctr;	//	Loop	counter
				int	idSearch;	//	Customer	to	look	for	(the	key)
				int	found	=	0;	//	Will	be	1	(true)	if	customer	is	found

				//	Defines	the	10	elements	in	the	two	parallel	arrays

				int	custID[10]	=	{313,	453,	502,	101,	892,
																						475,	792,	912,	343,	633};
				float	custBal[10]	=	{0.00,	45.43,	71.23,	301.56,	9.08,
																									192.41,	389.00,	229.67,	18.31,	59.54};

				/*	Interact	with	the	user	looking	for	a	balance.	*/
				printf("\n\n***	Customer	Balance	Lookup	***\n");
				printf("What	customer	number	do	you	need	to	check?	");
				scanf("	%d",	&idSearch);

				/*	Search	to	see	that	the	customer	ID	exists	in	the	array	*/
				for	(ctr=0;	ctr<10;	ctr++)
				{
								if	(idSearch	==	custID[ctr])
								{
												found	=	1;
												break;
								}
				}

				if	(found)
				{
								if	(custBal[ctr]	>	100.00)
								{
												printf("\n**	That	customer's	balance	is	$%.2f.\n",
																			custBal[ctr]);
												printf("	No	additional	credit.\n");
								}
								else
								{
												printf("\n**	The	customer's	credit	is	good!\n");
								}
				}
				else
				{
								printf("**	You	must	have	typed	an	incorrect	customer	ID.");
								printf("\n			ID	%3d	was	not	found	in	list.\n",	idSearch);
				}

				return(0);
}

This	program’s	attempted	customer	search	has	three	possibilities:
•	The	customer ’s	balance	is	less	than	$100.
•	The	customer ’s	balance	is	too	high	(more	than	$100).
•	The	customer ’s	ID	is	not	even	in	the	list.

Here	are	three	runs	of	the	program	showing	each	of	the	three	possibilities:
Click	here	to	view	code	image

***	Customer	Balance	Lookup	***
What	customer	number	do	you	need	to	check?	313

**	The	customer's	credit	is	good!

***Customer	Balance	Lookup	***
What	customer	number	do	you	need	to	check?	891
**	You	must	have	typed	an	incorrect	customer	ID.

			ID	891	was	not	found	in	list.

Customer	Balance	Lookup
What	customer	number	do	you	need	to	check?	475

**	That	customer's	balance	is	$192.41.
No	additional	credit

The	first	part	of	the	program	defines	and	initializes	two	arrays	with	the	customer	ID	numbers	and
matching	balances.	As	you	know,	when	you	first	define	arrays,	you	can	use	the	assignment	operator,
=,	to	assign	the	array’s	data.
After	printing	a	title	and	asking	for	a	customer	ID	number,	the	program	uses	a	for	loop	to	step
through	the	parallel	arrays	looking	for	the	user ’s	entered	customer	ID.	If	it	discovers	the	ID,	a	found
variable	is	set	to	true	(1)	for	later	use.	Otherwise,	found	remains	false	(0).

	Tip

The	found	variable	is	often	called	a	flag	variable	because	it	flags	(signals)	to	the	rest
of	the	program	whether	the	customer	ID	was	or	was	not	found.

The	program’s	for	loop	might	end	without	finding	the	customer.	The	code	following	the	for	loop
would	have	no	way	of	knowing	whether	the	for’s	break	triggered	an	early	for	loop	exit	(meaning
that	the	customer	was	found)	or	whether	the	for	ended	normally.	Therefore,	the	found	variable	lets
the	code	following	the	for	loop	know	whether	the	for	found	the	customer.
When	the	for	loop	ends,	the	customer	is	found	(or	not	found).	If	found,	the	following	two	conditions
are	possible:

•	The	balance	is	already	too	high.
•	The	balance	is	okay	for	more	credit.

No	matter	which	condition	is	the	true	condition,	the	user	is	informed	of	the	result.	If	the	customer	was
not	found,	the	user	is	told	that	and	the	program	ends.
How	was	that	for	a	real-world	program?	Too	difficult,	you	say?	Look	it	over	once	or	twice	more.
You’ll	see	that	the	program	performs	the	same	steps	(albeit	in	seemingly	more	detail)	that	you	would
follow	if	you	were	scanning	a	list	of	customers	by	hand.

	Note

What’s	really	important	is	that	if	there	were	a	thousand,	or	even	10,000	customers,	and
the	arrays	were	initialized	from	a	disk	file,	the	same	search	code	would	work!	The
amount	of	data	doesn’t	affect	the	logic	of	this	program	(only	the	way	the	arrays	are
initialized	with	data).

Here’s	a	second	program	that	shows	the	value	of	linked	arrays.	Returning	to	the	basketball	player
from	the	last	chapter,	this	program	has	three	arrays:	one	for	scoring,	one	for	rebounding,	and	one	for
assists.	The	program	searches	through	the	scoring	totals,	finds	the	game	in	which	the	player	scored
the	most	points,	and	then	prints	the	player ’s	total	in	all	three	categories	in	that	particular	game:
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	22	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter22ex2.c

/*	This	program	fills	three	arrays	with	a	player's	total	points,
rebounds,	and	assists	It	loops	through	the	scoring	array	and	finds
the	game	with	the	most	points.	Once	it	knows	that	information,	it
prints	the	totals	from	all	three	categories	from	that	game	*/

#include	<stdio.h>

main()
{
				int	gameScores[10]	=	{12,	5,	21,	15,	32,	10,	6,	31,	11,	10};
				int	gameRebounds[10]	=	{5,	7,	1,	5,	10,	3,	0,	7,	6,	4};
				int	gameAssists[10]	=	{2,	9,	4,	3,	6,	1,	11,	6,	9,	10};
				int	bestGame	=	0;	//The	comparison	variable	for	best	scoring
																						//game
				int	gmMark	=	0;	//	This	will	mark	which	game	is	the	best	scoring
																				//	game
				int	i;

				for	(i=0;	i<10;	i++)
				{
								//	if	loop	will	compare	each	game	to	the	current	best	total
								//	if	the	current	score	is	higher,	it	becomes	the	new	best
								//	and	the	counter	variable	becomes	the	new	flag	gmMark

							if	(gameScores[i]	>	bestGame)
							{
											bestGame	=	gameScores[i];
											gmMark	=	i;
							}
				}

				//	Print	out	the	details	of	the	best	scoring	game
				//	Because	arrays	start	at	0,	add	1	to	the	game	number

				printf("\n\nThe	Player's	best	scoring	game	totals:\n");
				printf("The	best	game	was	game	#%d\n",	gmMark+1);
				printf("Scored	%d	points\n",	gameScores[gmMark]);
				printf("Grabbed	%d	rebounds\n",	gameRebounds[gmMark]);
				printf("Dished	%d	assists\n",	gameAssists[gmMark]);

				return(0);
}

	Tip

If	you	are	keeping	track	of	multiple	variables	tied	to	one	object	(such	as	one	player ’s
different	stats	from	a	single	game	in	this	code	example),	a	structure	can	help	tie	things
together	nicely.	You	learn	about	structures	in	Chapter	27,	“Setting	Up	Your	Data	with
Structures.”

Both	example	programs	in	this	chapter	use	a	sequential	search	because	the	arrays	(customer	ID	and
gameScores)	are	searched	from	beginning	to	end	until	a	match	is	found.	You’ll	learn	about	more
advanced	searches	as	your	programming	skills	improve.	In	the	next	chapter,	you’ll	see	how	sorting
an	array	helps	speed	some	array	searches.	You’ll	also	check	out	advanced	search	techniques	called
binary	searches	and	Fibonacci	searches.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	how	to	find	values	in	arrays.	You	saw	how	to
find	array	values	based	on	a	key.	The	key	is	a	value	that	the	user	enters.	You’ll	often
search	through	parallel	arrays,	as	done	here.	One	array	(the	key	array)	holds	the	values
for	which	you’ll	search.	If	the	search	is	successful,	other	arrays	supply	needed	data	and
you	can	report	the	results	to	the	user.	If	the	search	is	unsuccessful,	you	need	to	let	the
user	know	that	also.	Key	concepts	from	this	chapter	include:
•	Filling	arrays	is	only	the	first	step;	after	they’re	filled,	your	program	must	interact
with	the	data.
•	Until	you	learn	more	about	searches,	use	a	sequential	search	because	it	is	the	easiest
search	technique	to	master.
•	Don’t	forget	that	a	match	might	not	be	found.	Always	assume	that	your	search	value
might	not	be	in	the	list	of	values	and	include	the	code	needed	to	handle	an	unfound
value.

23.	Alphabetizing	and	Arranging	Your	Data

In	This	Chapter
•	Putting	your	house	in	order:	sorting
•	Conducting	faster	searches

Sorting	is	the	computer	term	given	to	ordering	lists	of	values.	Not	only	must	you	be	able	to	find	data
in	arrays,	but	you	often	need	to	arrange	array	data	in	a	certain	order.	Computers	are	perfect	for
sorting	and	alphabetizing	data,	and	arrays	provide	the	vehicles	for	holding	sorted	data.
Your	programs	don’t	always	hold	array	data	in	the	order	you	want	to	see	that	data.	For	example,
students	don’t	enroll	based	on	alphabetical	last	name,	even	though	most	colleges	print	lists	of	students
that	way.	Therefore,	after	collecting	student	data,	the	school’s	computer	programs	must	somehow
arrange	that	data	in	last	name	order	for	reports.
This	chapter	explains	the	easiest	of	computer	sorting	techniques,	called	the	bubble	sort.

Putting	Your	House	in	Order:	Sorting
If	you	want	to	alphabetize	a	list	of	letters	or	names,	or	put	a	list	of	sales	values	into	ascending	order
(ascending	means	from	low	to	high,	and	descending	means	from	high	to	low),	you	should	use	a
sorting	routine.	Of	course,	the	list	of	values	that	you	sort	will	be	stored	in	an	array	because	array
values	are	so	easily	rearranged	by	their	subscripts.
Think	about	how	you’d	put	a	deck	of	cards	in	order	if	you	threw	the	cards	up	in	the	air	and	let	them
fall.	You	would	pick	them	up,	one	by	one,	looking	at	how	the	current	card	fit	in	with	the	others	in
your	hand.	Often	you	would	rearrange	some	cards	that	you	already	held.	The	same	type	of	process	is
used	for	sorting	an	array;	often	you	have	to	rearrange	values	that	are	in	the	array.
Several	computer	methods	help	in	sorting	values.	This	chapter	teaches	you	about	the	bubble	sort.	The
bubble	sort	isn’t	extremely	efficient	compared	to	other	sorts,	but	it’s	the	easiest	to	understand.	The
name	bubble	sort	comes	from	the	nature	of	the	sort.	During	a	sort,	the	lower	values	“float”	up	the	list
each	time	a	pass	is	made	through	the	data.	Figure	23.1	shows	the	process	of	sorting	five	numbers
using	a	bubble	sort.

FIGURE	23.1	During	each	pass,	the	lower	values	“float”	to	the	top	of	the	array.

The	next	program	sorts	a	list	of	10	numbers.	The	numbers	are	randomly	generated	using	rand().
The	bubble	sort	routine	is	little	more	than	a	nested	for	loop.	The	inner	loop	walks	through	the	list,
swapping	any	pair	of	values	that	is	out	of	order	down	the	list.	The	outer	loop	causes	the	inner	loop	to
run	several	times	(one	time	for	each	item	in	the	list).

An	added	bonus	that	is	common	to	many	improved	bubble	sort	routines	is	the	testing	to	see	whether	a
swap	took	place	during	any	iteration	of	the	inner	loop.	If	no	swap	took	place,	the	outer	loop	finishes
early	(via	a	break	statement).	Therefore,	if	the	loop	is	sorted	to	begin	with,	or	if	only	a	few	passes
are	needed	to	sort	the	list,	the	outer	loop	doesn’t	have	to	finish	all	its	planned	repetitions.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	23	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter23ex1.c

/*	This	program	generates	10	random	numbers	and	then	sorts	them	*/

#include	<stdio.h>
#include	<stdlib.h>
#include	<time.h>

main()
{

				int	ctr,	inner,	outer,	didSwap,	temp;
				int	nums[10];
				time_t	t;

				//	If	you	don't	include	this	statement,	your	program	will	always
				//	generate	the	same	10	random	numbers

				srand(time(&t));

				//	The	first	step	is	to	fill	the	array	with	random	numbers
				//	(from	1	to	100)

				for	(ctr	=	0;	ctr	<	10;	ctr++)
				{
								nums[ctr]	=	(rand()	%	99)	+	1;
				}

				//	Now	list	the	array	as	it	currently	is	before	sorting
				puts("\nHere	is	the	list	before	the	sort:");
				for	(ctr	=	0;	ctr	<	10;	ctr++)
				{
								printf("%d\n",	nums[ctr]);
				}

				//	Sort	the	array

				for	(outer	=	0;	outer	<	9;	outer++)
				{
								didSwap	=	0;	//Becomes	1	(true)	if	list	is	not	yet	ordered
								for	(inner	=	outer;	inner	<	10;	inner++)
								{
												if	(nums[inner]	<	nums[outer])
												{
																temp	=	nums[inner];
																nums[inner]	=	nums[outer];
																nums[outer]	=	temp;
																didSwap	=	1;
												}

								}
								if	(didSwap	==	0)
								{
												break;
								}
				}

				//	Now	list	the	array	as	it	currently	is	after	sorting
				puts("\nHere	is	the	list	after	the	sort:");
				for	(ctr	=	0;	ctr	<	10;	ctr++)
				{
								printf("%d\n",	nums[ctr]);
				}

				return(0);
}

The	output	from	this	sorting	program	is	as	follows:
Click	here	to	view	code	image

Here	is	the	list	before	the	sort
64
17
1
34
9
5
58
5
6
70

Here	is	the	list	after	the	sort
1
5
5
6
9
17
34
58
64
70

	Note

Your	output	might	be	different	than	that	shown	in	the	preceding	example	because
rand()	produces	different	results	between	compilers.	The	important	thing	to	look	for
is	the	set	of	10	random	values	your	program	generates,	which	should	be	sorted	upon
completion	of	the	program.

Here	is	the	swapping	of	the	variables	inside	the	inner	loop:
																temp	=	nums[inner];

																nums[inner]	=	nums[outer];
																nums[outer]	=	temp;

In	other	words,	if	a	swap	needs	to	take	place	(the	first	of	the	two	values	being	compared	is	higher	than
the	second	of	the	two	values),	the	program	must	swap	nums[inner]	with	nums[outer].
You	might	wonder	why	an	extra	variable,	temp,	was	needed	to	swap	two	variables’	values.	A	natural
(and	incorrect)	tendency	when	swapping	two	variables	might	be	this:
Click	here	to	view	code	image

nums[inner]	=	nums[outer];		/*	Does	NOT	swap	the	*/
nums[outer]	=	nums[inner];		/*	two	values								*/

The	first	assignment	wipes	out	the	value	of	nums[inner]	so	that	the	second	assignment	has	nothing
to	assign.	Therefore,	a	third	variable	is	required	to	swap	any	two	variables.

	Tip

If	you	wanted	to	sort	the	list	in	descending	order,	you	would	only	have	to	change	the
less-than	sign	(<)	to	a	greater-than	sign	(>)	right	before	the	swapping	code.

If	you	wanted	to	alphabetize	a	list	of	characters,	you	could	do	so	by	testing	and	swapping	character
array	values,	just	as	you’ve	done	here.	In	Chapter	25,	“Arrays	and	Pointers,”	you	learn	how	to	store
lists	of	string	data	that	you	can	sort.

Faster	Searches
Sometimes	sorting	data	speeds	your	data	searching.	In	the	last	chapter,	you	saw	a	program	that
searched	a	customer	ID	array	for	a	matching	user ’s	value.
If	a	match	was	found,	a	corresponding	customer	balance	(in	another	array)	was	used	for	a	credit
check.	The	customer	ID	values	were	not	stored	in	any	order.
The	possibility	arose	that	the	user ’s	entered	customer	ID	might	not	have	been	found.	Perhaps	the	user
entered	the	customer	ID	incorrectly,	or	the	customer	ID	was	not	stored	in	the	array.	Every	element	in
the	entire	customer	ID	array	had	to	be	searched	before	the	programmer	could	realize	that	the
customer	ID	was	not	going	to	be	found.
However,	if	the	arrays	were	sorted	in	customer	ID	order	before	the	search	began,	the	program	would
not	always	have	to	look	at	each	array	element	before	deciding	that	a	match	couldn’t	be	made.	If	the
customer	ID	array	were	sorted	and	the	user ’s	customer	ID	were	passed	when	looking	through	a
search,	the	program	would	know	right	then	that	a	match	would	not	be	found.	Consider	the	following
list	of	unsorted	customer	IDs:

313
532
178
902
422
562

Suppose	the	program	had	to	look	for	the	customer	ID	413.	With	an	unsorted	array,	a	program	would

have	to	match	the	ID	413	to	each	element	in	the	array.
If	the	arrays	contained	hundreds	or	thousands	of	values	instead	of	only	six,	the	computer	would	take
longer	to	realize	unmatched	searches	because	each	search	would	require	that	each	element	be	looked
at.	However,	if	the	values	were	always	sorted,	a	program	would	not	always	have	to	scan	through	the
entire	list	before	realizing	that	a	match	would	not	be	found.	Here	is	the	same	list	of	values	sorted
numerically,	from	low	to	high	customer	IDs:

178
313
422
532
562
902

A	sorted	list	makes	the	search	faster.	Now	if	you	search	for	customer	ID	413,	your	program	can	stop
searching	after	looking	at	only	three	array	values.	422	is	the	third	element,	and	because	422	is
greater	than	413,	your	program	can	stop	searching.	It	can	stop	searching	because	422	comes	after
413.

	Note

In	extreme	cases,	searching	a	sorted	array	is	not	necessarily	faster	than	sorting	using
an	unsorted	array.	For	instance,	if	you	were	searching	within	the	previous	list	for
customer	ID	998,	your	program	would	have	to	search	all	six	values	before	realizing
that	998	was	not	in	the	list.

The	following	program	is	a	combination	of	the	customer	ID	searching	program	shown	in	the
previous	chapter	and	the	sorting	routine	shown	in	this	chapter.	The	customer	ID	values	are	sorted,	and
then	the	user	is	asked	for	a	customer	ID	to	find.	The	program	then	determines	whether	the	customer ’s
balance	is	less	than	$100.	However,	if	the	ID	is	not	in	the	list,	the	program	terminates	the	search	early.
Keep	in	mind	that	having	only	10	array	values	makes	this	program	seem	like	overkill,	but	if	there
were	tens	of	thousands	of	customers,	the	code	would	not	be	different.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	23	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter23ex2.c

/*	This	program	searches	a	sorted	list	of	customer	IDs	in	order	to
get	credit	totals	*/

#include	<stdio.h>

main()
{

				int	ctr;	//	Loop	counter
				int	idSearch;	//	Customer	to	look	for	(the	key)
				int	found	=	0;	//	1	(true)	if	customer	is	found

				/*	Defines	the	10	elements	in	each	of	the	parallel	arrays	*/
				int	custID[10]	=	{313,	453,	502,	101,	892,
																						475,	792,	912,	343,	633};
				float	custBal[10]	=	{		0.00,	45.43,	71.23,	301.56,	9.08,
																									192.41,	389.00,	229.67,	18.31,	59.54};
				int	tempID,	inner,	outer,	didSwap,	i;	//	For	sorting
				float	tempBal;

				//	First,	sort	the	arrays	by	customer	ID	*/
				for	(outer	=	0;	outer	<	9;	outer++)
				{
								didSwap	=	0;	//	Becomes	1	(true)	if	list	is	not	yet	ordered
								for	(inner	=	outer;	inner	<	10;	inner++)
								{
												if	(custID[inner]	<	custID[outer])
												{
																tempID	=	custID[inner];	//	Must	switch	both	arrays
																tempBal	=	custBal[inner];	//	or	they	are	no	longer
																																										//	linked
																custID[inner]	=	custID[outer];
																custBal[inner]	=	custBal[outer];
																custID[outer]	=	tempID;
																custBal[outer]	=	tempBal;
																didSwap	=	1;	//	True	because	a	swap	took	place
												}
								}
								if	(didSwap	==	0)
								{
												break;
								}
				}

				/*	Interact	with	the	user	looking	to	find	a	balance	*/
				printf("\n\n***	Customer	Balance	Lookup	***\n");
				printf("What	is	the	customer	number?	");
				scanf("	%d",	&idSearch);

				//	Now,	look	for	the	ID	in	the	array
				for	(ctr=0;	ctr<10;	ctr++)
				{
								if	(idSearch	==	custID[ctr])	//	Do	they	match?
								{
												found	=	1;	//Yes,	match	flag	is	set	to	TRUE
												break;	//No	need	to	keep	looping
								}
								if	(custID[ctr]	>	idSearch)	//	No	need	to	keep	searching
								{
												break;
								}
				}

				//	Once	the	loop	has	completed,	the	ID	was	either	found
				//	(found	=	1)	or	not

				if	(found)
				{
								if	(custBal[ctr]	>	100)
								{
												printf("\n**	That	customer's	balance	is	$%.2f.\n",
																			custBal[ctr]);

												printf("No	additional	credit.\n");

								}
								else	//	Balance	is	less	than	$100.00
								{
												printf("\n**The	customer's	credit	is	good!\n");
								}
				}
				else	//	The	ID	was	not	found
				{
								printf("**	You	have	entered	an	incorrect	customer	ID.");
								printf("\n	ID	%3d	was	not	found	in	the	list.\n",	idSearch);
				}
				return(0);
}

	Note

Other	than	the	Draw	Poker	game	in	Appendix	B,	“The	Draw	Poker	Program,”	the
preceding	program	is	this	book’s	hardest	to	understand.	Mastering	this	program	puts
you	at	a	level	above	that	of	absolute	beginner.	Congratulations,	and	hats	off	to	you
when	you	master	the	logic	presented	here.	See,	programming	in	C	isn’t	difficult	after
all!

Before	seeing	this	program,	you	mastered	both	array	searching	and	array	sorting.	This	program
simply	puts	the	two	procedures	together.	About	the	only	additional	job	this	program	does	is	keep	the
two	parallel	arrays	in	synch	during	the	search.	As	you	can	see	from	the	body	of	the	search	code,	when
customer	ID	elements	are	swapped	(within	the	custID	array),	the	corresponding	(via	the	subscript)
element	in	the	customer	balance	array	is	searched.
An	early	search	termination	could	take	place	because	of	the	following:
Click	here	to	view	code	image

if	(custID[ctr]	>	idSearch)		//	No	need	to	keep	searching
{
						break;
}

When	there	are	several	thousand	array	elements,	such	an	if	saves	a	lot	of	processing	time.
Keeping	arrays	sorted	is	not	always	easy	or	efficient.	For	instance,	you	don’t	want	your	program
sorting	a	large	array	every	time	you	add,	change,	or	delete	a	value	from	the	array.	After	storing
several	thousand	values	in	an	array,	sorting	the	array	after	adding	each	value	takes	too	much	time,
even	for	fast	computers.	Advanced	ways	of	manipulating	arrays	ensure	that	you	always	insert	items	in
sorted	order.	(However,	such	techniques	are	way	beyond	the	scope	of	this	book.)	You’re	doing	well
without	complicating	things	too	much	here.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	familiarize	you	with	the	bubble	sort	method	of	ordering
and	alphabetizing	values	in	arrays.	You	don’t	need	any	new	C	commands	to	sort	values.
Sorting	is	one	of	the	primary	array	advantages.	It	shows	that	arrays	are	a	better	storage
method	than	separately	named	variables.	The	array	subscripts	let	you	step	through	the
array	and	swap	values,	when	needed,	to	sort	the	array.
Key	concepts	from	this	chapter	include:
•	Use	an	ascending	sort	when	you	want	to	arrange	array	values	from	low	to	high.
•	Use	a	descending	sort	when	you	want	to	arrange	array	values	from	high	to	low.
•	The	nested	for	loop,	such	as	the	one	you	saw	in	this	chapter,	is	a	perfect	statement
to	produce	a	bubble	sort.
•	Don’t	swap	the	values	of	two	variables	unless	you	introduce	a	third	temporary
variable	to	hold	the	in-between	value.
•	Sorting	routines	doesn’t	have	to	be	hard;	start	with	the	one	listed	in	this	chapter,	and
adapt	it	to	your	own	needs.
•	Don’t	forget	to	keep	your	arrays	sorted.	You’ll	speed	up	searching	for	values.

24.	Solving	the	Mystery	of	Pointers

In	This	Chapter
•	Working	with	memory	addresses
•	Defining	pointer	variables
•	Using	the	dereferencing	*

Pointer	variables,	often	called	pointers,	let	you	do	much	more	with	C	than	you	can	with
programming	languages	that	don’t	support	pointers.	When	you	first	learn	about	pointers,	you’ll
probably	ask,	“What’s	the	point?”	(Even	after	you	master	them,	you	might	ask	the	same	thing!)
Pointers	provide	the	means	for	the	true	power	of	C	programming.	This	book	exposes	the	tip	of	the
pointer	iceberg.	The	concepts	you	learn	here	will	form	the	foundation	of	your	C	programming
future.

Memory	Addresses
Inside	your	computer	is	a	bunch	of	memory.	The	memory	holds	your	program	as	it	executes,	and	it
also	holds	your	program’s	variables.	Just	as	every	house	has	a	different	address,	every	memory
location	has	a	different	address.	Not	coincidentally,	the	memory	locations	have	their	own	addresses	as
well.	As	with	house	addresses,	the	memory	addresses	are	all	unique;	no	two	are	the	same.	Your
memory	acts	a	little	like	one	big	hardware	array,	with	each	address	being	a	different	subscript	and
each	memory	location	being	a	different	array	element.
When	you	define	variables,	C	finds	an	unused	place	in	memory	and	attaches	a	name	to	that	memory
location.	That’s	a	good	thing.	Instead	of	having	to	remember	that	an	order	number	is	stored	at
memory	address	34532,	you	only	have	to	remember	the	name	orderNum	(assuming	that	you	named
the	variable	orderNum	when	you	defined	the	variable).	The	name	orderNum	is	much	easier	to
remember	than	a	number.

Defining	Pointer	Variables
As	with	any	other	type	of	variable,	you	must	define	a	pointer	variable	before	you	can	use	it.	Before
going	further,	you	need	to	learn	two	new	operators.	Table	24.1	shows	them,	along	with	their
descriptions.

TABLE	24.1	The	Pointer	Operators

You’ve	seen	the	*	before.	How	does	C	know	the	difference	between	multiplication	and	dereferencing?
The	context	of	how	you	use	them	determines	how	C	interprets	them.	You’ve	also	seen	the	&	before
scanf()	variables.	The	&	in	scanf()	is	the	address-of	operator.	scanf()	requires	that	you	send
it	the	address	of	non-array	variables.
The	following	shows	how	you	would	define	an	integer	and	a	floating-point	variable:

int	num;
float	value;

To	define	an	integer	pointer	variable	and	a	floating-point	pointer	variable,	you	simply	insert	an	*:
Click	here	to	view	code	image

int	*	pNum;		/*	Defines	two	pointer	variables	*/
float	*	pValue;

	Note

There’s	nothing	special	about	the	names	of	pointer	variables.	Many	C	programmers
like	to	preface	pointer	variable	names	with	a	p,	as	done	here,	but	you	can	name	them
anything	you	like.	The	p	simply	reminds	you	they	are	pointer	variables,	not	regular
variables.

All	data	types	have	corresponding	pointer	data	types—there	are	character	pointers,	long	integer
pointers,	and	so	on.
Pointer	variables	hold	addresses	of	other	variables.	That’s	their	primary	purpose.	Use	the	address-of
operator,	&,	to	assign	the	address	of	one	variable	to	a	pointer.	Until	you	assign	an	address	of	a
variable	to	a	pointer,	the	pointer	is	uninitialized	and	you	can’t	use	it	for	anything.
The	following	code	defines	an	integer	variable	named	age	and	stores	19	in	age.	Then	a	pointer
named	pAge	is	defined	and	initialized	to	point	to	age.	The	address-of	operator	reads	just	like	it
sounds.	The	second	line	that	follows	tells	C	to	put	the	address	of	age	into	pAge.
Click	here	to	view	code	image

int	age	=	19;							/*	Stores	a	19	in	age	*/
int	*	pAge	=	&age;	/*	Links	up	the	pointer	*/

You	have	no	idea	exactly	what	address	C	will	store	age	at.	However,	whatever	address	C	uses,	pAge
will	hold	that	address.	When	a	pointer	variable	holds	the	address	of	another	variable,	it	essentially
points	to	that	variable.	Assuming	that	age	is	stored	at	the	address	18826	(only	C	knows	exactly	where
it	is	stored),	Figure	24.1	shows	what	the	resulting	memory	looks	like.

FIGURE	24.1	The	variable	pAge	points	to	age	if	pAge	holds	the	address	of	age.

	Warning

Just	because	you	define	two	variables	back	to	back	doesn’t	mean	that	C	stores	them
back	to	back	in	memory.	C	might	store	them	together,	but	it	also	might	not.

	Warning

Never	try	to	set	the	address	of	one	type	of	variable	to	a	pointer	variable	of	a	different
type.	C	lets	you	assign	the	address	of	one	type	of	variable	only	to	a	pointer	defined	with
the	same	data	type.

The	*	isn’t	part	of	a	pointer	variable’s	name.	You	use	the	*	dereferencing	operator	for	several	things,
but	in	the	pointer	definition,	the	*	exists	only	to	tell	C	that	the	variable	is	a	pointer,	not	a	regular
variable.	The	following	four	statements	do	exactly	the	same	thing	as	the	previous	two	statements.
Notice	that	you	don’t	use	*	to	store	the	address	of	a	variable	in	a	pointer	variable	unless	you	are	also
defining	the	pointer	at	the	same	time.
Click	here	to	view	code	image

int	age;	//	Defines	a	regular	integer
int	*	pAge;	//	Defines	a	pointer	to	an	integer
age	=	19;	//Stores	19	in	age
pAge	=	&age;	//	Links	up	the	pointer

Using	the	Dereferencing	*

As	soon	as	you	link	up	a	pointer	to	another	variable,	you	can	work	with	the	other	value	by
dereferencing	the	pointer.	Programmers	never	use	an	easy	word	when	a	hard	one	will	do	just	as	well
(and	confuse	more	people).	Dereferencing	just	means	that	you	use	the	pointer	to	get	to	the	other
variable.	When	you	dereference,	use	the	*	dereferencing	operator.
In	a	nutshell,	here	are	two	ways	to	change	the	value	of	age	(assuming	that	the	variables	are	defined	as
described	earlier):

age	=	25;

and
Click	here	to	view	code	image

pAge	=	25;		/	Stores	25	where	pAge	points	*/

This	assignment	tells	C	to	store	the	value	25	at	the	address	pointed	to	by	pAge.	Because	pAge	points
to	the	memory	location	holding	the	variable	age,	25	is	stored	in	age.
Notice	that	you	can	use	a	variable	name	to	store	a	value	or	dereference	a	pointer	that	points	to	the
variable.	You	also	can	use	a	variable’s	value	in	the	same	way.	Here	are	two	ways	to	print	the	contents
of	age:
Click	here	to	view	code	image

printf("The	age	is	%d.\n",	age);

and
Click	here	to	view	code	image

printf("The	age	is	%d.\n",	*pAge);

The	dereferencing	operator	is	used	when	a	function	works	with	a	pointer	variable	that	it	is	sent.	In
Chapter	32,	“Returning	Data	from	Your	Functions,”	you’ll	learn	how	to	pass	pointers	to	functions.
When	a	function	uses	a	pointer	variable	that	is	sent	from	another	function,	you	must	use	the
dereferencing	operator	before	the	variable	name	everywhere	it	appears.
The	true	power	of	pointers	comes	in	the	chapters	that	discuss	functions,	but	getting	you	used	to
pointers	still	makes	sense.	Here’s	a	simple	program	that	declares	integer,	float,	and	character
variables,	as	well	as	pointer	versions	of	all	three:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	24	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter24ex1.c

/*	This	program	demonstrates	pointers	by	declaring	and	initializing
both	regular	and	pointer	variables	for	int,	float,	and	char	types
and	then	displays	the	values	of	each.	*/

#include	<stdio.h>

main()
{

				int	kids;
				int	*	pKids;
				float	price;
				float	*	pPrice;
				char	code;
				char	*	pCode;

				price	=	17.50;
				pPrice	=	&price;

				printf("\nHow	many	kids	are	you	taking	to	the	water	park?	");
				scanf("	%d",	&kids);

				pKids	=	&kids;

				printf("\nDo	you	have	a	discount	ticket	for	the	park?");
				printf("\nEnter	E	for	Employee	Discount,	S	for	Sav-More	");
				printf("Discount,	or	N	for	No	Discount:	");
				scanf("	%c",	&code);

				pCode	=	&code;

				printf("\nFirst	let's	do	it	with	the	variables:\n");
				printf("You've	got	%d	kids...\n",	kids);
				switch	(code)	{
				case	('E')	:
								printf("The	employee	discount	saves	you	25%%	on	the	");
								printf("$%.2f	price",	price);
								printf("\nTotal	ticket	cost:	$%.2f",	(price*.75*kids));
								break;
				case	('S')	:
								printf("The	Sav-more	discount	saves	you	15%%	on	the	");
								printf("$%.2f	price",	price);
								printf("\nTotal	ticket	cost:	$%.2f",	(price*.85*kids));
								break;
				default	:	//	Either	entered	N	for	No	Discount	or
														//	an	invalid	letter
								printf("You	will	be	paying	full	price	of	");
								printf("$%.2f	for	your	tickets",	price);
}
																		//	Now	repeat	the	same	code,	but	use	dereferenced
																		//	pointers	and	get	the	same	results
				printf("\n\n\nNow	let's	do	it	with	the	pointers:\n");
				printf("You've	got	%d	kids...\n",	*pKids);
				switch	(*pCode)	{
				case	('E')	:
								printf("The	employee	discount	saves	you	25%%	on	the	");
								printf("$%.2f	price",	*pPrice);
								printf("\nTotal	ticket	cost:	$%.2f",
													(*pPrice	*	.75	*	*pKids));
				break;
				case	('S')	:
								printf("The	Sav-more	discount	saves	you	15%%	on	the	");
								printf("$%.2f	price",	*pPrice);
								printf("\nTotal	ticket	cost	$%.2f",
												(*pPrice	*	.85	*	*pKids));
				break;
								default	:	//	Either	entered	N	for	No	Discount	or
																		//	an	invalid	letter

								printf("You	will	be	paying	full	price	of	");
								printf("$%.2f	for	your	tickets",	*pPrice);

				}

				return(0);
}

Here’s	a	sample	run	of	the	program:
Click	here	to	view	code	image

How	many	kids	are	you	taking	to	the	water	park?	3

Do	you	have	a	discount	ticket	for	the	park?
Enter	E	for	Employee	Discount,	S	for	Sav-More	Discount,	and	N	for	No
Discount:	S

First	let's	do	it	with	the	variables:
You've	got	3	kids...
The	Sav-More	discount	saves	you	15%	on	the	$17.50	price
Total	ticket	cost:	$44.63

Now	let's	do	it	with	the	pointers:
You've	got	3	kids...
The	Sav-More	discount	saves	you	15%	on	the	$17.50	price
Total	ticket	cost:	$44.63

There’s	nothing	too	ground-breaking	or	complicated	in	this	program.	It’s	more	to	get	you	used	to
using	pointers,	including	declaring,	setting,	and	referencing	pointers	of	all	kinds.	Again,	when	you
use	functions	that	take	and	return	data,	you	will	find	yourself	in	need	of	pointers	constantly.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	introduce	you	to	pointer	variables.	A	pointer	variable	is
nothing	more	than	a	variable	that	holds	the	location	of	another	variable.	You	can	refer
to	the	pointed-to	variable	by	its	name	or	by	dereferencing	the	pointer.
Pointers	have	many	uses	in	C,	especially	in	advanced	C	programming.	As	you’ll	learn
in	the	next	chapter,	arrays	are	nothing	more	than	pointers	in	disguise.	Because	pointers
offer	more	flexibility	than	arrays,	many	C	programmers	stop	using	arrays	when	they
master	pointers.	Key	concepts	from	this	chapter	include:
•	Get	comfortable	with	memory	addresses	because	they	form	the	basis	of	pointer
usage.
•	Use	the	&	to	produce	the	address	of	a	variable.
•	Use	the	*	to	define	a	pointer	variable	and	to	dereference	a	pointer	variable.	*pAge
and	age	reference	the	same	memory	location,	as	long	as	you’ve	made	pAge	point
to	age.
•	Don’t	try	to	make	a	pointer	variable	of	one	data	type	point	to	a	variable	of	a
different	data	type.
•	Don’t	worry	about	the	exact	address	that	C	uses	for	variable	storage.	If	you	use	&,	C
takes	care	of	the	rest.
•	Don’t	forget	to	use	*	when	dereferencing	your	pointer,	or	you’ll	get	the	wrong
value.
•	Don’t	get	too	far	ahead.	You	will	fully	appreciate	pointers	only	after	programming
in	C	for	a	while.	At	this	point	(pun	not	intended!),	pointers	will	not	seem	to	help	at
all.	The	only	thing	you	might	feel	a	little	better	about	is	knowing	what	the	&	inside
scanf()	really	means.

25.	Arrays	and	Pointers

In	This	Chapter
•	Understanding	that	array	names	are	pointers
•	Getting	down	in	the	list
•	Working	with	characters	and	pointers
•	Being	careful	with	string	lengths
•	Creating	arrays	of	pointers

This	chapter	teaches	how	C’s	array	and	pointer	variables	share	a	lot	of	principles.	As	a	matter	of	fact,
an	array	is	a	special	kind	of	pointer.	Because	of	their	similarities,	you	can	use	pointer	notation	to	get
to	array	values,	and	you	can	use	array	notation	to	get	to	pointed-at	values.
Perhaps	the	most	important	reason	to	learn	how	arrays	and	pointers	overlap	is	for	character	string
handling.	By	combining	pointer	notation	(using	the	dereferencing	operation)	and	array	notation
(using	subscripts),	you	can	store	lists	of	character	strings	and	reference	them	as	easily	as	you
reference	array	values	of	other	data	types.
Also,	after	you	master	the	heap—a	special	place	in	memory	that	the	next	chapter	introduces	you	to—
you’ll	see	that	pointers	are	the	only	way	to	get	to	heap	memory,	where	you	put	data	values.

Array	Names	Are	Pointers
An	array	name	is	nothing	more	than	a	pointer	to	the	first	element	in	that	array.	The	array	name	is	not
exactly	a	pointer	variable,	though.	Array	names	are	known	as	pointer	constants.	The	following
statement	defines	an	integer	array	and	initializes	it:
Click	here	to	view	code	image

int	vals[5]	=	{10,	20,	30,	40,	50};

You	can	reference	the	array	by	subscript	notation.	That	much	you	know	already.	However,	C	does
more	than	just	attach	subscripts	to	the	values	in	memory.	C	sets	up	a	pointer	to	the	array	and	names
that	point	to	vals.	You	can	never	change	the	contents	of	vals;	it	is	like	a	fixed	pointer	variable
whose	address	C	locks	in.	Figure	25.1	shows	you	what	C	really	does	when	you	define	and	initialize
vals.

FIGURE	25.1	The	array	name	is	a	pointer	to	the	first	value	in	the	array.

Because	the	array	name	is	a	pointer	(that	can’t	be	changed),	you	can	print	the	first	value	in	the	array
like	this:
Click	here	to	view	code	image

printf("The	first	value	is	%d.\n",	vals[0]);

But	more	important	for	this	chapter,	you	can	print	the	first	array	value	like	this,	too:
Click	here	to	view	code	image

printf("The	first	value	is	%d.\n",	*vals);

As	you’ll	see	in	a	moment,	this	is	also	equivalent	and	accesses	vals[0]:
Click	here	to	view	code	image

printf("The	first	value	is	%d.\n",	*(vals+0));

	Warning

The	fact	that	an	array	is	a	fixed	constant	pointer	is	why	you	can’t	put	just	an	array	name
on	the	left	side	of	an	equals	sign.	You	can’t	change	a	constant.	(Remember,	though,	that
C	relaxes	this	rule	only	when	you	first	define	the	array	because	C	has	yet	to	fix	the
array	at	a	specific	address.)

Getting	Down	in	the	List
Because	an	array	name	is	nothing	more	than	a	pointer	to	the	first	value	in	the	array,	if	you	want	the
second	value,	you	only	have	to	add	1	to	the	array	name	and	dereference	that	location.	This	set	of
printf()	lines
Click	here	to	view	code	image

printf("The	first	array	value	is	%d.\n",	vals[0]);

printf("The	second	array	value	is	%d.\n",	vals[1]);
printf("The	third	array	value	is	%d.\n",	vals[2]);
printf("The	fourth	array	value	is	%d.\n",	vals[3]);
printf("The	fifth	array	value	is	%d.\n",	vals[4]);

does	exactly	the	same	as	this	set:
Click	here	to	view	code	image

printf("The	first	array	value	is	%d.\n",	*(vals	+	0));
printf("The	second	array	value	is	%d.\n",	*(vals	+1));
printf("The	third	array	value	is	%d.\n",	*(vals	+	2));
printf("The	fourth	array	value	is	%d.\n",	*(vals	+	3));
printf("The	fifth	array	value	is	%d.\n",	*(vals	+	4));

If	vals	is	a	pointer	constant	(and	it	is),	and	the	pointer	constant	holds	a	number	that	is	the	address	to
the	array’s	first	element,	adding	1	or	2	(or	whatever)	to	vals	before	dereferencing	vals	adds	1	or	2
to	the	address	vals	points	to.

	Tip

If	you’re	wondering	about	the	importance	of	all	this	mess,	hang	tight.	In	a	moment,
you’ll	see	how	C’s	pointer	notation	lets	you	make	C	act	almost	as	if	it	has	string
variables.

As	you	might	remember,	integers	usually	take	more	than	1	byte	of	memory	storage.	The	preceding
printf()	statements	appear	to	add	1	to	the	address	inside	vals	to	get	to	the	next	dereferenced
memory	location,	but	C	helps	you	out	here.	C	adds	one	int	size	when	you	add	1	to	an	int	pointer
(and	one	double	size	when	you	add	1	to	a	double	pointer,	and	so	on).	The	expression	*(vals	+
2)	tells	C	that	you	want	the	third	integer	in	the	list	that	vals	points	to.

Characters	and	Pointers
The	following	two	statements	set	up	almost	the	same	thing	in	memory.	The	only	difference	is	that,	in
the	second	statement,	pName	is	a	pointer	variable,	not	a	pointer	constant:
Click	here	to	view	code	image

char	name[]	=	"Andrew	B.	Mayfair";			/*	name	points	to	A	*/
char	*	pName	=	"Andrew	B.	Mayfair";		/*	pName	points	to	A	*/

Because	pName	is	a	pointer	variable,	you	can	put	it	on	the	left	side	of	an	equals	sign!	Therefore,	you
don’t	always	have	to	use	strcpy()	if	you	want	to	assign	a	character	pointer	a	new	string	value.	The
character	pointer	will	only	point	to	the	first	character	in	the	string.	However,	%s	and	all	the	string
functions	work	with	character	pointers	just	as	easily	as	with	character	arrays	(the	two	are	the	same
thing)	because	these	functions	know	to	stop	at	the	null	zero.
To	put	a	different	name	in	the	name	array,	you	have	to	use	strcpy()	or	assign	the	string	one
character	at	a	time—but	to	make	pName	point	to	a	different	name,	you	get	to	do	this:

pName	=	"Theodore	M.	Brooks";

	Tip

The	only	reason	string	assignment	works	is	that	C	puts	all	your	program’s	string
literals	into	memory	somewhere	and	then	replaces	them	in	your	program	with	their
addresses.	C	is	not	really	putting	Theodore	M.	Brooks	into	pName	because
pName	can	hold	only	addresses.	C	is	putting	the	address	of	Theodore	M.	Brooks
into	pName.

You	now	have	a	way	to	assign	strings	new	values	without	using	strcpy().	It	took	a	little	work	to	get
here,	but	aren’t	you	glad	you	made	it?	If	so,	settle	down—there’s	just	one	catch	(isn’t	there	always?).

Be	Careful	with	Lengths
It’s	okay	to	store	string	literals	in	character	arrays	as	just	described.	The	new	strings	that	you	assign
with	=	can	be	shorter	or	longer	than	the	previous	strings.	That’s	nice	because	you	might	recall	that
you	can’t	store	a	string	in	a	character	array	that	is	longer	than	the	array	you	reserved	initially.
You	must	be	extremely	careful,	however,	not	to	let	the	program	store	strings	longer	than	the	first
string	you	point	to	with	the	character	pointer.	This	is	a	little	complex,	but	keep	following	along—
because	this	chapter	stays	as	simple	and	short	as	possible.	Never	set	up	a	character	pointer	variable
like	this:
Click	here	to	view	code	image

main()
{
char	*	name	=	"Tom	Roberts";
/*	Rest	of	program	follows...	*/

and	then	later	let	the	user	enter	a	new	string	with	gets()	like	this:
Click	here	to	view	code	image

gets(name);	/*	Not	very	safe	*/

The	problem	with	this	statement	is	that	the	user	might	enter	a	string	longer	than	Tom	Roberts,	the
first	string	assigned	to	the	character	pointer.	Although	a	character	pointer	can	point	to	strings	of	any
length,	the	gets()	function,	along	with	scanf(),	strcpy(),	and	strcat(),	doesn’t	know	that
it’s	being	sent	a	character	pointer.	Because	these	functions	might	be	sent	a	character	array	that	can’t
change	location,	they	map	the	newly	created	string	directly	over	the	location	of	the	string	in	name.	If
a	string	longer	than	name	is	entered,	other	data	areas	could	be	overwritten.

	Warning

Yes,	this	is	a	little	tedious.	You	might	have	to	read	this	section	again	later	after	you	get
more	comfortable	with	pointers	and	arrays.

If	you	want	to	have	the	advantage	of	a	character	pointer—that	is,	if	you	want	to	be	able	to	assign
string	literals	to	the	pointer	and	still	have	the	safety	of	arrays	so	you	can	use	the	character	pointer	to
get	user	input—you	can	do	so	with	a	little	trick.
If	you	want	to	store	user	input	in	a	string	pointed	to	by	a	pointer,	first	reserve	enough	storage	for	that
input	string.	The	easiest	way	to	do	this	is	to	reserve	a	character	array	and	then	assign	a	character
pointer	to	the	beginning	element	of	that	array:
Click	here	to	view	code	image

char	input[81];	//	Holds	a	string	as	long	as	80	characters
char	*iptr	=	input;	//	Also	could	have	done	char	*iptr	=	&input[0]

Now	you	can	input	a	string	by	using	the	pointer	as	long	as	the	string	entered	by	the	user	is	not	longer
than	81	bytes	long:
Click	here	to	view	code	image

gets(iptr);		/*	Makes	sure	that	iptr	points	to	the	string	typed	by
the	user	*/

You	can	use	a	nice	string-input	function	to	ensure	that	entered	strings	don’t	get	longer	than	81
characters,	including	the	null	zero.	Use	fgets()	if	you	want	to	limit	the	number	of	characters
accepted	from	the	user.	fgets()	works	like	gets(),	except	that	you	specify	a	length	argument.
The	following	statement	shows	fgets()	in	action:
Click	here	to	view	code	image

fgets(iptr,	81,	stdin);		/*Gets	up	to	80	chars	and	adds	null	zero	*/

The	second	value	is	the	maximum	number	of	characters	you	want	to	save	from	the	user ’s	input.
Always	leave	one	for	the	string’s	null	zero.	The	pointer	iptr	can	point	to	a	string	as	long	as	81
characters.	If	the	user	enters	a	string	less	than	81	characters,	iptr	points	to	that	string	with	no
problem.	However,	if	the	user	goes	wild	and	enters	a	string	200	characters	long,	iptr	points	only	to
the	first	80,	followed	by	a	null	zero	at	the	81st	position	that	fgets()	added,	and	the	rest	of	the	user ’s
input	is	ignored.

	Tip

You	can	use	fgets()	to	read	strings	from	data	files.	The	third	value	of	fgets()	can
be	a	disk	file	pointer,	but	you’ll	learn	about	disk	pointers	later	in	the	book.	For	now,
use	stdin	as	the	third	value	you	send	to	fgets()	so	that	fgets()	goes	to	the
keyboard	for	input	and	not	somewhere	else.

You	also	can	assign	the	pointer	string	literals	using	the	assignment	like	this:
iptr	=	"Mary	Jayne	Norman";

Arrays	of	Pointers
If	you	want	to	use	a	bunch	of	pointers,	create	an	array	of	them.	An	array	of	pointers	is	just	as	easy	to
define	as	an	array	of	any	other	kind	of	data,	except	that	you	must	include	the	*	operator	after	the	data
type	name.	The	following	statements	reserve	an	array	of	25	integer	pointers	and	an	array	of	25
character	pointers:
Click	here	to	view	code	image

int	*	ipara[25];			/*	25	pointers	to	integers	*/
char	*	cpara[25];		/*	25	pointers	to	characters	*/

The	array	of	characters	is	most	interesting	because	you	can	store	a	list	of	strings	in	the	array.	More
accurately,	you	can	point	to	various	strings.	The	following	program	illustrates	two	things:	how	to
initialize	an	array	of	strings	at	definition	time	and	how	to	print	them	using	a	for	loop:

	Note

Actually,	the	program	does	a	bit	more	than	that.	It	also	gets	you	to	rate	the	nine	strings
(in	this	case,	movie	titles)	that	you’ve	seen	on	a	scale	of	1	to	10	and	then	reuses	our
friendly	bubble	sort	routine—but	instead	of	going	small	to	big,	the	sort	reorders	your
list	from	highest	rating	to	lowest.	There’s	nothing	wrong	with	going	back	and	mixing
in	previously	learned	concepts	when	trying	new	lessons—that’s	how	you	start	to	build
robust	and	interesting	programs!

Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	25	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter25ex1.c

/*	This	program	declares	and	initializes	an	array	of	character
pointers	and	then	asks	for	ratings	associated		*/

#include	<stdio.h>

main()
{

							int	i;
							int	ctr	=	0;
							char	ans;

//Declaring	our	array	of	9	characters	and	then	initializing	them
							char	*	movies[9]	=	{"Amour",	"Argo",
																																				"Beasts	of	the	Southern	Wild",
																																				"Django	Unchained",
																																				"Les	Miserables",
																																				"Life	of	Pi",	"Lincoln",
																																				"Silver	Linings	Playbook",
																																				"Zero	Dark	Thirty"};
	int	movieratings[9];	//	A	corresponding	array	of	9	integers

																						//	for	movie	ratings

							char	*	tempmovie	=	"This	will	be	used	to	sort	rated	movies";
							int	outer,	inner,	didSwap,	temprating;	//	for	the	sort	loop

							printf("\n\n***	Oscar	Season	2012	is	here!	***\n\n");
							printf("Time	to	rate	this	year's	best	picture	nominees:");

							for	(i=0;	i<	9;	i++)
							{
											printf("\nDid	you	see	%s?	(Y/N):	",	movies[i]);
											scanf("	%c",	&ans);
											if	((toupper(ans))	==	'Y')
											{
															printf("\nWhat	was	your	rating	on	a	scale	");
															printf("of	1-10:	");
															scanf("	%d",	&movieratings[i]);
															ctr++;	//	This	will	be	used	to	print	only	movies
																						//	you've	seen
															continue;
											}
											else
											{
															movieratings[i]	=	-1;
											}
							}

				//	Now	sort	the	movies	by	rating	(the	unseen	will	go
				//	to	the	bottom)

				for	(outer	=	0;	outer	<	8;	outer++)
				{
								didSwap	=	0;
								for	(inner	=	outer;	inner	<	9;	inner++)
								{
												if	(movieratings[inner]	>	movieratings[outer])
												{
																tempmovie	=	movies[inner];
																temprating	=	movieratings[inner];
																movies[inner]	=	movies[outer];
																movieratings[inner]	=	movieratings[outer];
																movies[outer]	=	tempmovie;
																movieratings[outer]	=	temprating;
																didSwap	=	1;
												}
								}
								if	(didSwap	==	0)
								{
												break;
								}
				}

				//	Now	to	print	the	movies	you	saw	in	order
				printf("\n\n**	Your	Movie	Ratings	for	the	2012	Oscar	");
				printf("Contenders	**\n");
				for	(i=0;	i	<	ctr;	i++)
				{
								printf("%s		rated	a	%d!\n",	movies[i],	movieratings[i]);
				}
				return(0);

}

Here	is	a	sample	output	from	this	program:
Click	here	to	view	code	image

***	Oscar	Season	2012	is	here!	***

Time	to	rate	this	year's	best	picture	nominees:
Did	you	see	Amour?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	6

Did	you	see	Argo?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	8

Did	you	see	Beasts	of	the	Southern	Wild?	(Y/N):	N

Did	you	see	Django	Unchained?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	7

Did	you	see	Les	Miserables?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	7

Did	you	see	Life	of	Pi?	(Y/N):	N

Did	you	see	Lincoln?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	6

Did	you	see	Silver	Linings	Playbook?	(Y/N):	Y
What	was	your	rating	on	a	scale	of	1-10:	9

Did	you	see	Zero	Dark	Thirty?	N

**	Your	Movie	Ratings	for	the	2012	Oscar	Contenders	**
Silver	Linings	Playbook	rated	a	9.
Argo	rated	a	8.
Les	Miserables	rated	a	7.
Django	Unchained	rated	a	7.
Lincoln	rated	a	6.
Amour	rated	a	6.

Figure	25.2	shows	how	the	program	sets	up	the	movies	array	in	memory.	Each	element	is	nothing
more	than	a	character	pointer	that	contains	the	address	of	a	different	person’s	name.	It’s	important	to
understand	that	movies	does	not	hold	strings—just	pointers	to	strings.

FIGURE	25.2	The	movies	array	contains	pointers	to	strings.

See,	even	though	there	is	no	such	thing	as	a	string	array	in	C	(because	there	are	no	string	variables),
storing	character	pointers	in	movies	makes	the	program	act	as	though	movies	is	a	string	array.
The	program	then	loops	through	the	nine	movies	in	the	array	and	asks	the	user	whether	he	or	she	saw
each	one.	If	the	answer	is	Y	(or	y	after	it	is	converted	with	the	toupper()	function),	the	program
goes	on	to	ask	for	an	integer	rating	of	1	to	10.	It	also	increments	a	counter	(ctr)	so	the	program	will
eventually	know	how	many	movies	were	seen.	If	the	answer	is	N	(or	any	character	other	than	Y	or	y),
the	rating	of	-1	is	assigned	to	that	movie,	so	it	will	fall	to	the	bottom	during	the	movie	sort.
After	the	movies	are	all	rated,	a	bubble	sort	is	used	to	rate	the	movies	best	to	worst.	Isn’t	it	nice	to
know	that	you	can	use	your	sort	routine	on	string	arrays?	The	sorted	array	is	now	ready	to	be	printed.
However,	the	for	loop	iterates	only	ctr	times,	meaning	that	it	will	not	print	the	names	of	movies
you	didn’t	see.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	get	you	thinking	about	the	similarities	between	arrays
and	pointers.	An	array	name	is	really	just	a	pointer	that	points	to	the	first	element	in	the
array.	Unlike	pointer	variables,	an	array	name	can’t	change.	This	is	the	primary	reason
an	array	name	can’t	appear	on	the	left	side	of	an	equals	sign.
Using	pointers	allows	more	flexibility	than	arrays.	You	can	directly	assign	a	string
literal	to	a	character	pointer	variable,	whereas	you	must	use	the	strcpy()	function	to
assign	strings	to	arrays.	You’ll	see	many	uses	for	pointer	variables	throughout	your	C
programming	career.	Key	concepts	from	this	chapter	include:
•	Use	character	pointers	if	you	want	to	assign	string	literals	directly.
•	Use	either	array	subscript	notation	or	pointer	dereferencing	to	access	array	and
pointer	values.
•	Don’t	use	a	built-in	function	to	fill	a	character	pointer ’s	location	unless	that
character	pointer	was	originally	set	up	to	point	to	a	long	string.

26.	Maximizing	Your	Computer’s	Memory

In	This	Chapter
•	Thinking	of	the	heap
•	Understanding	why	you	need	the	heap
•	Allocating	the	heap
•	Taking	action	if	there’s	not	enough	heap	memory
•	Freeing	heap	memory
•	Handling	multiple	allocations

Absolute	beginners	to	C	aren’t	the	only	ones	who	might	find	this	chapter ’s	concepts	confusing	at	first.
Even	advanced	C	programmers	get	mixed	up	when	dealing	with	the	heap.	The	heap	is	the	collection
of	unused	memory	in	your	computer.	The	memory	left	over—after	your	program,	your	program’s
variables,	and	your	operating	system’s	workspace—comprises	your	computer ’s	available	heap	space,
as	Figure	26.1	shows.

FIGURE	26.1	The	heap	is	unused	memory.

Many	times	you’ll	want	access	to	the	heap,	because	your	program	will	need	more	memory	than	you
initially	defined	in	variables	and	arrays.	This	chapter	gives	you	some	insight	into	why	and	how	you
want	to	use	heap	memory	instead	of	variables.
You	don’t	assign	variable	names	to	heap	memory.	The	only	way	to	access	data	stored	in	heap
memory	is	through	pointer	variables.	Aren’t	you	glad	you	learned	about	pointers	already?	Without
pointers,	you	couldn’t	learn	about	the	heap.

	Note

The	free	heap	memory	is	called	free	heap	or	unallocated	heap	memory.	The	part	of	the
heap	in	use	by	your	program	at	any	one	time	is	called	the	allocated	heap.	Your
program	might	use	varying	amounts	of	heap	space	as	the	program	executes.	So	far,	no
program	in	this	book	has	used	the	heap.

Thinking	of	the	Heap
Now	that	you’ve	learned	what	the	heap	is—the	unused	section	of	contiguous	memory—throw	out
what	you’ve	learned!	You’ll	more	quickly	grasp	how	to	use	the	heap	if	you	think	of	the	heap	as	just
one	big	heap	of	free	memory	stacked	up	in	a	pile.	The	next	paragraph	explains	why.
You’ll	be	allocating	(using)	and	deallocating	(freeing	back	up)	heap	memory	as	your	program	runs.
When	you	request	heap	memory,	you	don’t	know	exactly	from	where	on	the	heap	the	new	memory
will	come.	Therefore,	if	one	statement	in	your	program	grabs	heap	memory,	and	then	the	very	next
statement	also	grabs	another	section	of	heap	memory,	that	second	section	of	the	heap	might	not
physically	reside	right	after	the	first	section	you	allocated.
Just	as	when	scooping	dirt	from	a	big	heap,	one	shovel	does	not	pick	up	dirt	granules	that	were	right
below	the	last	shovel	of	dirt.	Also,	when	you	throw	the	shovel	of	dirt	back	onto	the	heap,	that	dirt
doesn’t	go	right	back	where	it	was.	Although	this	analogy	might	seem	to	stretch	the	concept	of
computer	memory,	you’ll	find	that	you’ll	understand	the	heap	much	better	if	you	think	of	the	heap	of
memory	like	you	think	of	the	heap	of	dirt:	You	have	no	idea	exactly	where	the	memory	you	allocate
and	deallocate	will	come	from	or	go	back	to.	You	know	only	that	the	memory	comes	and	goes	from
the	heap.
If	you	allocate	10	bytes	of	heap	memory	at	once,	those	10	bytes	will	be	contiguous.	The	important
thing	to	know	is	that	the	next	section	of	heap	memory	you	allocate	will	not	necessarily	follow	the
first,	so	you	shouldn’t	count	on	anything	like	that.
Your	operating	system	uses	heap	memory	along	with	your	program.	If	you	work	on	a	networked
computer	or	use	a	multitasking	operating	environment	such	as	Windows,	other	tasks	might	be
grabbing	heap	memory	along	with	your	program.	Therefore,	another	routine	might	have	come
between	two	of	your	heap-allocation	statements	and	allocated	or	deallocated	memory.
You	have	to	keep	track	of	the	memory	you	allocate.	You	do	this	with	pointer	variables.	For	instance,
if	you	want	to	allocate	20	integers	on	the	heap,	you	use	an	integer	pointer.	If	you	want	to	allocate	400
floating-point	values	on	the	heap,	you	use	a	floating-point	pointer.	The	pointer	always	points	to	the
first	heap	value	of	the	section	you	just	allocated.	Therefore,	a	single	pointer	points	to	the	start	of	the
section	of	heap	you	allocate.	If	you	want	to	access	the	memory	after	the	first	value	on	the	heap,	you
can	use	pointer	notation	or	array	notation	to	get	to	the	rest	of	the	heap	section	you	allocated.	(See,	the
last	chapter ’s	pointer/array	discussion	really	does	come	in	handy!)

But	Why	Do	I	Need	the	Heap?
Okay,	before	learning	exactly	how	you	allocate	and	deallocate	heap	memory,	you	probably	want
more	rationalization	about	why	you	even	need	to	worry	about	the	heap.	After	all,	the	variables,
pointers,	and	arrays	you’ve	learned	about	so	far	have	sufficed	nicely	for	program	data.
The	heap	memory	does	not	always	replace	the	variables	and	arrays	you’ve	been	learning	about.	The
problem	with	the	variables	you’ve	learned	about	so	far	is	that	you	must	know	in	advance	exactly	what
kind	and	how	many	variables	you	will	want.	Remember,	you	must	define	all	variables	before	you	use
them.	If	you	define	an	array	to	hold	100	customer	IDs,	but	the	user	has	101	customers	to	enter,	your
program	can’t	just	expand	the	array	at	runtime.	Some	programmers	(like	you)	have	to	change	the
array	definition	and	recompile	the	program	before	the	array	can	hold	more	values.
With	the	heap	memory,	however,	you	don’t	have	to	know	in	advance	how	much	memory	you	need.
Similar	to	an	accordion,	the	heap	memory	your	program	uses	can	grow	or	shrink	as	needed.	If	you

need	another	100	elements	to	hold	a	new	batch	of	customers,	your	program	can	allocate	that	new
batch	at	runtime	without	needing	another	compilation.

	Warning

This	book	doesn’t	try	to	fool	you	into	thinking	that	this	chapter	can	answer	all	your
questions.	Mastering	the	heap	takes	practice—and,	in	reality,	programs	that	really	need
the	heap	are	beyond	the	scope	of	this	book.	Nevertheless,	when	you	finish	this	chapter,
you’ll	have	a	more	solid	understanding	of	how	to	access	the	heap	than	you	would	get
from	most	books	because	of	the	approach	that’s	used.

Commercial	programs	such	as	spreadsheets	and	word	processors	must	rely	heavily	on	the	heap.	After
all,	the	programmer	who	designs	the	program	cannot	know	exactly	how	large	or	small	a	spreadsheet
or	word	processing	document	will	be.	Therefore,	as	you	type	data	into	a	spreadsheet	or	word
processor,	the	underlying	program	allocates	more	data.	The	program	likely	does	not	allocate	the	data
1	byte	at	a	time	as	you	type	because	memory	allocation	is	not	always	extremely	efficient	when	done	1
byte	at	a	time.	More	than	likely,	the	program	allocates	memory	in	chunks	of	code,	such	as	100-byte	or
500-byte	sections.
So	why	can’t	the	programmers	simply	allocate	huge	arrays	that	can	hold	a	huge	spreadsheet	or
document	instead	of	messing	with	the	heap?	For	one	thing,	memory	is	one	of	the	most	precious
resources	in	your	computer.	As	we	move	into	networked	and	windowed	environments,	memory
becomes	even	more	precious.	Your	programs	can’t	allocate	huge	arrays	for	those	rare	occasions
when	a	user	might	need	that	much	memory.	Your	program	would	solely	use	all	that	memory,	and
other	tasks	could	not	access	that	allocated	memory.

	Note

The	heap	enables	your	program	to	use	only	as	much	memory	as	it	needs.	When	your
user	needs	more	memory	(for	instance,	to	enter	more	data),	your	program	can	allocate
the	memory.	When	your	user	is	finished	using	that	much	memory	(such	as	clearing	a
document	to	start	a	new	one	in	a	word	processor),	you	can	deallocate	the	memory,
making	it	available	for	other	tasks	that	might	need	it.

How	Do	I	Allocate	the	Heap?
You	must	learn	only	two	new	functions	to	use	the	heap.	The	malloc()	(for	memory	allocate)
function	allocates	heap	memory,	and	the	free()	function	deallocates	heap	memory.

	Tip

Be	sure	to	include	the	stdlib.h	header	file	in	all	the	programs	you	write	that	use
malloc()	and	free().

We	might	as	well	get	to	the	rough	part.	malloc()	is	not	the	most	user-friendly	function	for
newcomers	to	understand.	Perhaps	looking	at	an	example	of	malloc()	is	the	best	place	to	start.
Suppose	you	were	writing	a	temperature-averaging	program	for	a	local	weather	forecaster.	The
more	temperature	readings	the	user	enters,	the	more	accurate	the	correct	prediction	will	be.	You
decide	that	you	will	allocate	10	integers	to	hold	the	first	10	temperature	readings.	If	the	user	wants	to
enter	more,	your	program	can	allocate	another	batch	of	10,	and	so	on.
You	first	need	a	pointer	to	the	10	heap	values.	The	values	are	integers,	so	you	need	an	integer	pointer.
You	need	to	define	the	integer	pointer	like	this:
Click	here	to	view	code	image

int	*	temps;		/*	Will	point	to	the	first	heap	value	*/

Here	is	how	you	can	allocate	10	integers	on	the	heap	using	malloc():
Click	here	to	view	code	image

temps	=	(int	*)	malloc(10	*	sizeof(int));		/*	Yikes!	*/

That’s	a	lot	of	code	just	to	get	10	integers.	The	line	is	actually	fairly	easy	to	understand	when	you	see
it	broken	into	pieces.	The	malloc()	function	requires	only	a	single	value:	the	number	of	bytes	you
want	allocated.	Therefore,	if	you	wanted	10	bytes,	you	could	do	this:

malloc(10);

The	problem	is	that	the	previous	description	required	not	10	bytes,	but	10	integers.	How	many	bytes
of	memory	do	10	integers	require?	10?	20?	The	answer,	of	course,	is	that	it	depends.	Only
sizeof()	knows	for	sure.
Therefore,	if	you	want	10	integers	allocated,	you	must	tell	malloc()	that	you	want	10	sets	of	bytes
allocated,	with	each	set	of	bytes	being	enough	for	an	integer.	Therefore,	the	previous	line	included	the
following	malloc()	function	call:

malloc(10	*	sizeof(int))

This	part	of	the	statement	told	malloc()	to	allocate,	or	set	aside,	10	contiguous	integer	locations	on
the	heap.	In	a	way,	the	computer	puts	a	fence	around	those	10	integer	locations	so	that	subsequent
malloc()	calls	do	not	intrude	on	this	allocated	memory.	Now	that	you’ve	mastered	that	last	half	of
the	malloc()	statement,	there’s	not	much	left	to	understand.	The	first	part	of	malloc()	is	fairly
easy.
malloc()	always	performs	the	following	two	steps	(assuming	that	enough	heap	memory	exists	to
satisfy	your	allocation	request):

1.	Allocates	the	number	of	bytes	you	request	and	makes	sure	no	other	program	can	overwrite	that

memory	until	your	program	frees	it
2.	Assigns	your	pointer	to	the	first	allocated	value

Figure	26.2	shows	the	result	of	the	previous	temperature	malloc()	function	call.	As	you	can	see
from	the	figure,	the	heap	of	memory	(shown	here	as	just	that,	a	heap)	now	contains	a	fenced-off	area
of	10	integers,	and	the	integer	pointer	variable	named	temps	points	to	the	first	integer.	Subsequent
malloc()	function	calls	will	go	to	other	parts	of	the	heap	and	will	not	tread	on	the	allocated	10
integers.

FIGURE	26.2	After	allocating	the	10	integers.

What	do	you	do	with	the	10	integers	you	just	allocated?	Treat	them	like	an	array!	You	can	store	data
by	referring	to	temps[0],	temps[1],	and	so	on.	You	know	from	the	last	chapter	that	you	access
contiguous	memory	using	array	notation,	even	if	that	memory	begins	with	a	pointer.	Also	remember
that	each	set	of	allocated	memory	will	be	contiguous,	so	the	10	integers	will	follow	each	other	just	as
if	you	allocated	temps	as	a	10-integer	array.
The	malloc()	allocation	still	has	one	slight	problem.	We	still	have	to	explain	the	left	portion	of	the
temperature	malloc().	What	is	the	(int	*)	for?
The	(int	*)	is	a	typecast.	You’ve	seen	other	kinds	of	typecasts	in	this	book.	To	convert	a	float
value	to	an	int,	you	place	(int)	before	the	floating-point	value,	like	this:

aVal	=	(int)salary;

The	*	inside	a	typecast	means	that	the	typecast	is	a	pointer	typecast.	malloc()	always	returns	a
character	pointer.	If	you	want	to	use	malloc()	to	allocate	integers,	floating	points,	or	any	kind	of
data	other	than	char,	you	have	to	typecast	the	malloc()	so	that	the	pointer	variable	that	receives
the	allocation	(such	as	temps)	receives	the	correct	pointer	data	type.	temps	is	an	integer	pointer;
you	should	not	assign	temps	to	malloc()’s	allocated	memory	unless	you	typecast	malloc()	into
an	integer	pointer.	Therefore,	the	left	side	of	the	previous	malloc()	simply	tells	malloc()	that	an
integer	pointer,	not	the	default	character	pointer,	will	point	to	the	first	of	the	allocated	values.

	Note

Besides	defining	an	array	at	the	top	of	main(),	what	have	you	gained	by	using
malloc()?	For	one	thing,	you	can	use	the	malloc()	function	anywhere	in	your
program,	not	just	where	you	define	variables	and	arrays.	Therefore,	when	your
program	is	ready	for	100	double	values,	you	can	allocate	those	100	double	values.
If	you	used	a	regular	array,	you	would	need	a	statement	like	this	toward	the	top	of
main():

Click	here	to	view	code	image

doublemyVals[100];		/*	A	regular	array	of	100	doubles	*/

Those	100	double	values	would	sit	around	for	the	life	of	the	program,	taking	up
memory	resources	from	the	rest	of	the	system,	even	if	the	program	only	needed	the
100	double	values	for	only	a	short	time.	With	malloc(),	you	need	to	define	only	the
pointer	that	points	to	the	top	of	the	allocated	memory	for	the	program’s	life,	not	the
entire	array.

If	There’s	Not	Enough	Heap	Memory
In	extreme	cases,	not	enough	heap	memory	might	exist	to	satisfy	malloc()’s	request.	The	user ’s
computer	might	not	have	a	lot	of	memory,	another	task	might	be	using	a	lot	of	memory,	or	your
program	might	have	previously	allocated	everything	already.	If	malloc()	fails,	its	pointer	variable
points	to	a	null	value,	0.	Therefore,	many	programmers	follow	a	malloc()	with	an	if,	like	this:
Click	here	to	view	code	image

temps	=	(int	*)	malloc(10	*	sizeof(int));
if	(temps	==	0)
{
							printf("Oops!	Not	Enough	Memory!\n");
							exit(1);	//	Terminate	the	program	early
}
//	Rest	of	program	would	follow...

If	malloc()	works,	temps	contains	a	valid	address	that	points	to	the	start	of	the	allocated	heap.	If
malloc()	fails,	the	invalid	address	of	0	is	pointed	to	(heap	memory	never	begins	at	address	zero)
and	the	error	prints	onscreen.

	Tip

Programmers	often	use	the	not	operator,	!,	instead	of	testing	a	value	against	0,	as	done
here.	Therefore,	the	previous	if	test	would	more	likely	be	coded	like	this:

Click	here	to	view	code	image

if	(!temps)					/*	Means,	if	not	true	*/

Freeing	Heap	Memory
When	you’re	done	with	the	heap	memory,	give	it	back	to	the	system.	Use	free()	to	do	that.	free()
is	a	lot	easier	than	malloc().	To	free	the	10	integers	allocated	with	the	previous	malloc(),	use
free()	in	the	following	manner:
Click	here	to	view	code	image

free(temps);			/*	Gives	the	memory	back	to	the	heap	*/

If	you	originally	allocated	10	values,	10	are	freed.	If	the	malloc()	that	allocated	memory	for	temps
had	allocated	1,000	values,	all	1,000	would	be	freed.	After	freeing	the	memory,	you	can’t	get	it	back.
Remember,	free()	tosses	the	allocated	memory	back	onto	the	heap	of	memory—and	after	it’s
tossed,	another	task	might	grab	the	memory	(remember	the	dirt	heap	analogy).	If	you	use	temps
after	the	previous	free(),	you	run	the	risk	of	overwriting	memory	and	possibly	locking	up	your
computer,	requiring	a	reboot.
If	you	fail	to	free	allocated	memory,	your	operating	system	reclaims	that	memory	when	your
program	ends.	However,	forgetting	to	call	free()	defeats	the	purpose	of	using	heap	memory	in	the
first	place.	The	goal	of	the	heap	is	to	give	your	program	the	opportunity	to	allocate	memory	at	the
point	the	memory	is	needed	and	deallocate	that	memory	when	you’re	finished	with	it.

Multiple	Allocations
An	array	of	pointers	often	helps	you	allocate	many	different	sets	of	heap	memory.	Going	back	to	the
weather	forecaster ’s	problem,	suppose	the	forecaster	wanted	to	enter	historical	temperature	readings
for	several	different	cities.	But	the	forecaster	has	a	different	number	of	readings	for	each	different
city.
An	array	of	pointers	is	useful	for	such	a	problem.	Here	is	how	you	could	allocate	an	array	of	50
pointers:
Click	here	to	view	code	image

int	*	temps[50];			/*	50	integer	pointers	*/

The	array	will	not	hold	50	integers	(because	of	the	dereferencing	operator	in	the	definition);	instead,
the	array	holds	50	pointers.	The	first	pointer	is	called	temps[0],	the	second	pointer	is	temps[1],
and	so	on.	Each	of	the	array	elements	(each	pointer)	can	point	to	a	different	set	of	allocated	heap
memory.	Therefore,	even	though	the	50	pointer	array	elements	must	be	defined	for	all	of	main(),
you	can	allocate	and	free	the	data	pointed	to	as	you	need	extra	memory.

Consider	the	following	section	of	code	that	the	forecaster	might	use:
Click	here	to	view	code	image

for	(ctr	=	0;	ctr	<	50;	ctr++)
{
							puts("How	many	readings	for	the	city?")
							scanf("	%d",	&num);

//	Allocate	that	many	heap	values
							temps[ctr]	=	(int	*)malloc(num	*	sizeof(int));

//	This	next	section	of	code	would	ask	for	each	temperature
//	reading	for	the	city
}

//	Next	section	of	code	would	probably	be	calculations	related
//	to	the	per-city	data	entry

//	Don't	forget	to	deallocate	the	heap	memory	when	done
for	(ctr	=	0;	ctr	<	50;	ctr++)
{
							free(temps[ctr]);
}

Of	course,	such	code	requires	massive	data	entry.	The	values	would	most	likely	come	from	a	saved
file	instead	of	from	the	user.	Nevertheless,	the	code	gives	you	insight	into	the	advanced	data	structures
available	by	using	the	heap.	Also,	real-world	programs	aren’t	usually	of	the	20-line	variety	you	often
see	in	this	book.	Real-world	programs,	although	not	necessarily	harder	than	those	here,	are	usually
many	pages	long.	Throughout	the	program,	some	sections	might	need	extra	memory,	whereas	other
sections	do	not.	The	heap	lets	you	use	memory	efficiently.
Figure	26.3	shows	you	what	the	heap	memory	might	look	like	while	allocating	the	temps	array
memory	(after	the	first	4	of	the	50	malloc()	calls).	As	you	can	see,	temps	belongs	to	the
program’s	data	area,	but	the	memory	each	temps	element	points	to	belongs	to	the	heap.	You	can	free
up	the	data	temps	points	to	when	you	no	longer	need	the	extra	workspace.

FIGURE	26.3	Each	temps	element	points	to	a	different	part	of	the	heap.

This	has	been	a	long	chapter	with	some	complicated	material,	but	you’re	almost	finished!	We	just
need	to	close	the	chapter	with	a	program	that	uses	both	malloc()	and	free(),	as	well	as	shows
you	how	a	small	computer	program	written	by	you	can	deal	with	massive	amounts	of	data.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	26	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter26ex1.c

/*	The	program	looks	for	a	number	of	random	integers,	allocates	an
array	and	fills	it	with	numbers	between	1	and	500	and	then	loops
through	all	the	numbers	and	figures	out	the	smallest,	the	biggest,
and	the	average.	It	then	frees	the	memory.	*/

#include	<stdio.h>
#include	<stdlib.h>
#include	<time.h>

main()
{

				int	i,	aSize;

				int	*	randomNums;

				time_t	t;

				double	total	=	0;
				int	biggest,	smallest;
				float	average;

				srand(time(&t));

				printf("How	many	random	numbers	do	you	want	in	your	array?	");
				scanf("	%d",	&aSize);

				//	Allocate	an	array	of	integers	equal	to	the	number	of
				//	elements	requested	by	the	user

				randomNums	=	(int	*)	malloc(aSize	*	sizeof(int));

				//	Test	to	ensure	that	the	array	allocated	properly

				if	(!randomNums)
				{
								printf("Random	array	allocation	failed!\n");
								exit(1);
				}
				//	Loops	through	the	array	and	assigns	a	random
				//	number	between	1	and	500	to	each	element

				for	(i	=	0;	i	<	aSize;	i++)
				{
								randomNums[i]	=	(rand()	%	500)	+	1;
				}

				//	Initialize	the	biggest	and	smallest	number
				//	for	comparison's	sake

				biggest	=	0;
				smallest	=	500;

				//	Loop	through	the	now-filled	array
				//	testing	for	the	random	numbers	that
				//	are	biggest,	smallest,	and	adding	all

				//	numbers	together	to	calculate	an	average

				for	(i	=	0;	i	<	aSize;	i++)
				{
								total	+=	randomNums[i];
								if	(randomNums[i]	>	biggest)
								{
												biggest	=	randomNums[i];
								}
								if	(randomNums[i]	<	smallest)
								{
												smallest	=	randomNums[i];
								}
				}

				average	=	((float)total)/((float)aSize);
				printf("The	biggest	random	number	is	%d.\n",	biggest);
				printf("The	smallest	random	number	is	%d.\n",	smallest);
				printf("The	average	of	the	random	numbers	is	%.2f.\n",	average);

				//	When	you	use	malloc,	remember	to	then	use	free

				free(randomNums);

				return(0);
}

This	program	has	a	minimum	of	user	interaction	and	looks	only	for	the	number	of	random	numbers
to	create.	It’s	an	excellent	way	to	test	how	much	memory	is	on	your	computer	by	vastly	increasing	the
size	of	your	random	number	array.	I	was	able	to	create	an	array	of	12	million	elements	without
triggering	the	malloc	failure	section.	In	fact,	when	writing	this	program	originally,	my	total
variable	failed	before	the	malloc	did.	total	was	originally	an	int,	and	when	I	set	the	array	to	10
million	values,	the	sum	total	of	the	random	numbers	was	bigger	than	the	allowed	maximum	for	an
int	variable.	My	average	calculation	was	thus	wrong.	(It	seemed	wrong—after	all,	how	could	the
average	of	numbers	between	1	and	500	be	–167!)	When	that	variable	was	increased	to	a	double,	I
was	able	to	build	even	bigger	arrays	of	random	numbers.
Another	interesting	fact	is	that,	with	a	small	number	of	elements,	your	largest,	smallest,	and	average
numbers	can	fluctuate,	but	the	more	elements	are	in	your	array,	the	more	likely	you	will	get	a	small
of	1,	a	big	of	500,	and	an	average	right	in	the	middle.

The	Absolute	Minimum
malloc()	allocates	heap	memory	for	your	programs.	You	access	that	heap	via	a
pointer	variable,	and	you	can	then	get	to	the	rest	of	the	allocated	memory	using	array
notation	based	on	the	pointer	assigned	by	the	malloc().	When	you	are	done	with
heap	memory,	deallocate	that	memory	with	the	free()	function.	free()	tosses	the
memory	back	to	the	heap	so	other	tasks	can	use	it.	Key	concepts	in	this	chapter	include:
•	Use	malloc()	and	free()	to	allocate	and	release	heap	memory.
•	Tell	malloc()	exactly	how	large	each	allocation	must	be	by	using	the	sizeof()
operator	inside	malloc()’s	parentheses.
•	Allocate	only	the	pointer	variables	at	the	top	of	your	function	along	with	the	other
variables.	Put	the	data	itself	on	the	heap	when	you	need	data	values	other	than	simple
loop	counters	and	totals.
•	If	you	must	track	several	chunks	of	heap	memory,	use	an	array	of	pointers.	Each
array	element	can	point	to	a	different	amount	of	heap	space.
•	Check	to	make	sure	malloc()	worked	properly.	malloc()	returns	a	0	if	the
allocation	fails.
•	Don’t	always	rely	on	regular	arrays	to	hold	a	program’s	data.	Sometimes	a	program
needs	data	for	just	a	short	time,	and	using	the	heap	makes	better	use	of	your	memory
resources.

27.	Setting	Up	Your	Data	with	Structures

In	This	Chapter
•	Defining	a	structure
•	Putting	data	in	structure	variables

Arrays	and	pointers	are	nice	for	lists	of	values,	but	those	values	must	all	be	of	the	same	data	type.
Sometimes	you	have	different	data	types	that	must	go	together	and	be	treated	as	a	whole.
A	perfect	example	is	a	customer	record.	For	each	customer,	you	have	to	track	a	name	(character
array),	balance	(double	floating-point),	address	(character	array),	city	(character	array),	state
(character	array),	and	zip	code	(character	array	or	long	integer).	Although	you	would	want	to	be	able
to	initialize	and	print	individual	items	within	the	customer	record,	you	would	also	want	to	access	the
customer	record	as	a	whole,	such	as	when	you	would	write	it	to	a	customer	disk	file	(as	explained	in
the	next	chapter).
The	C	structure	is	the	vehicle	by	which	you	group	data	such	as	would	appear	in	a	customer	record
and	get	to	all	the	individual	parts,	called	members.	If	you	have	many	occurrences	of	that	data	and
many	customers,	you	need	an	array	of	structures.

	Note

Other	programming	languages	have	equivalent	data	groupings	called	records.	The
designers	of	C	wanted	to	call	these	data	groupings	structures,	however,	so	that’s	what
they	are	in	C.

Many	times,	a	C	structure	holds	data	that	you	might	store	on	3×5	cards	in	a	cardfile.	Before	personal
computers,	companies	maintained	a	cardfile	box	with	cards	that	contained	a	customer ’s	name,
balance,	address,	city,	state,	and	zip	code,	like	the	customer	structure	just	described.	Later	in	this
chapter,	you’ll	see	how	C	structures	are	stored	in	memory,	and	you’ll	see	even	more	similarities	to
the	cardfile	cards.

Defining	a	Structure
The	first	thing	you	must	do	is	tell	C	exactly	what	your	structure	will	look	like.	When	you	define
variables	of	built-in	data	types	such	as	an	int,	you	don’t	have	to	tell	C	what	an	int	is—C	already
knows.	When	you	want	to	define	a	structure,	however,	you	must	first	tell	C	exactly	what	your
structure	looks	like.	Only	then	can	you	define	variables	for	that	structure.
Try	to	view	a	structure	as	just	a	group	of	individual	data	types.	The	entire	structure	has	a	name	and
can	be	considered	a	single	value	(such	as	a	customer)	taken	as	a	whole.	The	individual	members	of
the	structure	are	built-in	data	types,	such	as	int	and	char	arrays,	that	could	represent	an	age	and	a
name.	You	can	access	the	individual	members	if	you	want	to.
Not	only	is	a	structure	like	a	cardfile,	but	you	also	can	see	that	a	structure	is	a	lot	like	a	paper	form

with	blanks	to	fill	in.	A	blank	form,	such	as	one	you	might	fill	out	when	applying	for	a	credit	card,	is
useless	by	itself.	If	the	credit	card	company	prints	10,000	forms,	that	doesn’t	mean	it	has	10,000
customers.	Only	when	someone	fills	out	the	form	is	there	a	customer,	and	only	when	you	define	a
variable	for	the	structure	you	describe	does	C	give	memory	space	to	a	structure	variable.
To	define	an	int	variable,	you	only	have	to	do	this:

int	i;

You	don’t	first	have	to	tell	C	what	an	int	is.	To	define	a	structure	variable,	you	must	first	define	what
the	structure	looks	like	and	assign	a	data	type	name,	such	as	customer,	to	C.	After	defining	the
structure’s	format,	you	can	define	a	variable.
The	struct	statement	defines	the	look	(or	layout)	of	a	structure.	Here	is	the	format	of	struct:

struct	[structure	tag]{
					member	definition;
					member	definition;
					...
					member	definition;
};

Again,	the	struct	defines	only	the	layout,	or	the	look,	of	a	structure.	The	structure	tag	is	a
name	you	give	to	that	particular	structure’s	look,	but	the	structure	tag	has	nothing	to	do	with	a
structure	variable	name	you	might	create	later.	After	you	define	the	format	of	a	structure,	you	can
define	variables.
The	member	definitions	are	nothing	more	than	regular	built-in	data	type	definitions	such	as
int	age;	in	the	previous	example.	Instead	of	defining	variables,	though,	you	are	defining	members,
essentially	giving	a	name	to	that	particular	part	of	the	structure.

	Warning

You	can	define	a	variable	at	the	same	time	as	the	struct	declaration	statement,	but
most	C	programmers	don’t	do	so.	If	you	want	to	define	a	variable	for	the	structure	at
the	same	time	you	declare	the	structure	format	itself,	insert	one	or	more	variable
names	before	the	struct	statement’s	closing	semicolon.

Structures	are	a	lot	to	absorb.	The	following	example	will	aid	your	understanding.
Let’s	say	you’re	writing	a	program	to	track	a	simple	retail	computer	inventory.	You	need	to	track	a
computer	manufacturer	and	model,	amount	of	disk	space	(in	megabytes),	amount	of	memory	space
(in	megabytes),	quantity,	cost,	and	retail	price.
First,	you	must	use	struct	to	define	a	structure.	Here	is	a	good	candidate:
Click	here	to	view	code	image

struct	invStruct	{
					char	manuf[25];	//	Manufacturer	name
					char	model[15];	//	Model	code
					int	diskSpace;	//	Disk	size	in	Gigabytes
					int	memSpace;	//	Memory	Space	in	Gigabytes

					int	ports;	//	The	number	of	USB	ports	on	the	system
					int	quantity;	//	Number	in	inventory
					float	cost;	//	Cost	of	computer
					float	price;	//	Retail	price	of	computer
};

Figure	27.1	shows	you	what	this	structure	format	looks	like.

FIGURE	27.1	The	format	of	the	invStruct	structure.

The	previous	structure	definition	does	not	define	eight	variables!	The	previous	structure	definition
defines	a	single	structure	data	type.	Remember,	you	don’t	have	to	tell	C	what	an	integer	looks	like
before	defining	an	integer	variable;	you	must,	however,	tell	C	what	an	invStruct	looks	like	before
defining	variables	for	that	structure	data	type.	The	previous	struct	statement	tells	C	what	the	user ’s
invStruct	is	supposed	to	look	like.	After	C	learns	the	structure’s	format,	C	can	define	variables
that	take	on	the	format	of	that	structure	when	the	user	is	ready	to	define	variables.
If	you	create	a	structure	that	you	might	use	again	sometime,	consider	putting	it	in	its	own	header	file,
or	in	a	header	file	along	with	other	common	structures.	Use	#include	to	pull	that	header	file	into
any	source	code	that	needs	it.	If	you	ever	need	to	change	the	structure	definition,	you	have	to	look	in
only	one	place	to	change	it:	in	its	header	file.
Often	a	programmer	puts	structure	declarations,	such	as	the	previous	one	for	invStruct,	before
main()	and	then	defines	variables	for	that	structure	in	main()	and	in	any	other	functions	below
main().	To	create	variables	for	the	structure,	you	must	do	the	same	thing	you	do	when	you	create
variables	for	any	data	type:	Put	the	structure	name	before	a	variable	list.	Because	there	is	no	data	type
named	invStruct,	you	must	tell	C	that	invStruct	is	a	struct	name.	You	can	define	three
structure	variables	like	this:
Click	here	to	view	code	image

#include	"c:\cprogramming	files\inv.h"
main()
{

							struct	invStruct	item1,	item2,	item3;
							//	Rest	of	program	would	follow...

Now	you	can	put	data	into	three	variables.	These	variables	are	structure	variables	named	item1,
item2,	and	item3.	If	you	wanted	to	define	500	structure	variables,	you	would	use	an	array:
Click	here	to	view	code	image

#include	"c:\cprogramming	files\inv.h"
main()
{
							struct	invStruct	items[500];
							//	Rest	of	program	would	follow...

Remember,	the	structure	definition	must	go	in	the	INV.H	header	file	if	you	take	this	approach.
Otherwise,	you	must	place	the	structure	definition	directly	inside	the	program	before	the	structure
variables,	like	this:
Click	here	to	view	code	image

struct	invStruct	{
					char	manuf[25];	//	Manufacturer	name
					char	model[15];	//	Model	code
					int	diskSpace;	//	Disk	size	in	Gigabytes
					int	memSpace;	//	Memory	Space	in	Gigabytes
					int	ports;	//	The	number	of	USB	ports	on	the	system
					int	quantity;	//	Number	in	inventory
					float	cost;	//	Cost	of	computer
					float	price;	//	Retail	price	of	computer
};
main()
{
							struct	invStruct	items[500];
							//	Rest	of	program	would	follow...

As	long	as	the	struct	definition	appears	before	main(),	you	can	define	invStruct	structure
variables	throughout	the	rest	of	the	program	in	any	function	you	write.	(The	last	part	of	this	book
explains	how	to	write	programs	that	contain	more	functions	than	main().)
Perhaps	you	will	need	pointers	to	three	structures	instead	of	structure	variables.	Define	them	like	this:
Click	here	to	view	code	image

main()
{
							struct	invStruct	*item1,	*item2,*item3;
							//	Rest	of	program	would	follow

item1,	item2,	and	item3	now	can	point	to	three	structure	variables.	You	can	then	reserve	heap
memory	for	the	structures	instead	of	using	actual	variables.	(sizeof()	works	for	structure
variables	to	allow	for	heap	structure	data.)	The	following	three	statements	reserve	three	heap
structure	areas	and	make	item1,	item2,	and	item3	point	to	those	three	heap	values:
Click	here	to	view	code	image

item1	=	(struct	invStruct	*)malloc(sizeof(invStruct));
item2	=	(struct	invStruct	*)malloc(sizeof(invStruct));
item3	=	(struct	invStruct	*)malloc(sizeof(invStruct));

Putting	Data	in	Structure	Variables
A	new	operator,	the	dot	operator,	lets	you	put	data	in	a	structure	variable’s	individual	members.	Here
is	the	format	of	the	dot	operator:
Click	here	to	view	code	image

structureVariableName.memberName

To	the	left	of	the	dot	is	always	the	name	of	a	structure	variable,	such	as	item1	or	employee[16].
To	the	right	of	the	dot	operator	is	always	the	name	of	a	member	from	that	structure,	such	as
quantity,	cost,	or	name.	The	dot	operator	puts	data	only	in	named	structure	variables.	If	you
want	to	put	data	in	a	heap	structure	pointed	to	by	a	structure	pointer	variable,	you	must	use	the
structure	pointer	operator,	->.
The	following	program	defines	an	array	of	three	structure	variables	using	a	bookInfo	structure	tag
shown	that	is	defined	in	the	bookInfo.h	header	file	presented	first.	The	user	is	asked	to	fill	the
structure	variables,	and	then	the	program	prints	them.	In	the	next	couple	chapters,	you’ll	see	how	to
output	the	structure	variables	to	a	disk	file	for	long-term	storage.
The	first	file	is	the	header	file	containing	the	structure	definition:
Click	here	to	view	code	image

//	Example	program	#A	from	Chapter	27	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	bookinfo.h

//	This	header	file	defines	a	structure	for	information	about	a	book
struct	bookInfo	{
					char	title[40];
					char	author[25];
					float	price;
					int	pages;
};

And	now	the	.c	program	file:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	27	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter27ex1.c

/*	The	program	gets	the	bookInfo	structure	by	including	bookInfo.h
and	asks	the	user	to	fill	in	three	structures	and	then	prints	them.
*/

//First	include	the	file	with	the	structure	definition
#include	"bookinfo.h"
#include	<stdio.h>

main()
{
				int	ctr;
				struct	bookInfo	books[3];	//	Array	of	three	structure	variables

				//	Get	the	information	about	each	book	from	the	user

				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								printf("What	is	the	name	of	the	book	#%d?\n",	(ctr+1));
								gets(books[ctr].title);
								puts("Who	is	the	author?	");
								gets(books[ctr].author);
								puts("How	much	did	the	book	cost?	");
								scanf("	$%f",	&books[ctr].price);
								puts("How	many	pages	in	the	book?	");
								scanf("	%d",	&books[ctr].pages);
							getchar();	//Clears	last	newline	for	next	loop
				}

				//	Print	a	header	line	and	then	loop	through	and	print	the	info

				printf("\n\nHere	is	the	collection	of	books:	\n");
				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								printf("#%d:	%s	by	%s",	(ctr+1),	books[ctr].title,
													books[ctr].author);
								printf("\nIt	is	%d	pages	and	costs	$%.2f",	books[ctr].pages,
													books[ctr].price);
								printf("\n\n");
				}
				return(0);
}

If	you	stored	the	structures	on	the	heap,	you	couldn’t	use	the	dot	operator	because	the	dot	operator
requires	a	variable	name.	Use	->	to	store	data	in	heap	structures.	->	requires	a	pointer	on	the	left	and
a	member	name	on	the	right.	Here	is	an	equivalent	program	to	the	previous	one,	except	that	the	heap
and	->	are	used	instead	of	structure	variables	and	the	dot	operator.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	27	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter27ex2.c

/*	The	program	again	looks	to	fill	three	book	structures	with	info,
but	it	uses	a	pointer	array	this	time.	*/

//First	include	the	file	with	the	structure	definition
#include	"bookinfo.h"
#include	<stdio.h>
#include	<stdlib.h>

main()
{
				int	ctr;
				struct	bookInfo	*	books[3];	//	Array	of	three	structure	variables

				//	Get	the	information	about	each	book	from	the	user

				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								books[ctr]	=	(struct	bookInfo*)malloc(sizeof
																										(struct	bookInfo));
								printf("What	is	the	name	of	the	book	#%d?\n",	(ctr+1));

								gets(books[ctr]->title);
								puts("Who	is	the	author?	");
								gets(books[ctr]->author);
								puts("How	much	did	the	book	cost?	");
								scanf("	$%f",	&books[ctr]->price);
								puts("How	many	pages	in	the	book?	");
								scanf("	%d",	&books[ctr]->pages);
								getchar();	//Clears	newline	input	to	keep	things	clean	for
																			//	next	round
				}

				//	Print	a	header	line	and	then	loop	through	and	print	the	info

				printf("\n\nHere	is	the	collection	of	books:	\n");
				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								printf("#%d:	%s	by	%s",	(ctr+1),	books[ctr]->title,
													books[ctr]->author);
								printf("\nIt	is	%d	pages	and	costs	$%.2f",	books[ctr]->pages,
													books[ctr]->price);
								printf("\n\n");
				}
				return(0);
}

The	Absolute	Minimum
This	chapter ’s	goal	was	to	teach	you	about	structures.	A	structure	is	an	aggregate
variable	data	type.	Whereas	an	array	must	hold	values	that	are	all	the	same	data	type,	a
structure	can	hold	several	values	of	different	data	types.
Before	using	a	structure	variable,	you	must	tell	C	exactly	what	the	structure	looks	like
with	a	struct	statement.	The	struct	statement	lets	C	know	how	many	members	are
in	the	structure	and	the	data	types	of	each	member.	A	structure	variable	is	like	a	group
of	more	than	one	variable	of	different	data	types.	Key	concepts	in	this	chapter	include:
•	Define	structures	when	you	want	to	group	items	of	different	data	types.
•	Declare	a	structure	before	defining	a	structure	variable.
•	Use	the	dot	operator	to	access	individual	data	members	within	a	structure	variable.
•	Use	the	->	(the	structure	pointer	operator)	to	access	individual	data	members	within
a	structure	pointed	to	by	a	pointer	variable.
•	Don’t	use	member	names	as	variables.	Member	names	exist	only	so	you	can	work
with	an	individual	part	of	a	structure.
•	Don’t	forget	to	add	a	semicolon	to	the	end	of	all	structure	definitions.
•	Don’t	intermix	the	dot	operator	and	the	structure	pointer	operator.	Remember	that	a
structure	variable	must	appear	before	the	dot	operator,	and	a	structure	pointer
variable	must	appear	before	the	->	operator.

Part	V:	Files	and	Functions

28.	Saving	Sequential	Files	to	Your	Computer

In	This	Chapter
•	Storing	information	in	disk	files
•	Opening	a	file
•	Using	sequential	files

None	of	the	programs	you’ve	seen	so	far	has	been	able	to	store	data	for	very	long.	Think	about	this
for	a	moment:	If	you	defined	an	integer	variable,	put	a	14	in	it,	and	then	turned	off	the	computer
(believe	me	now	and	try	it	later),	that	variable	would	no	longer	have	14	in	it.	If	you	turned	your
computer	back	on	and	tried	to	find	the	value	in	the	variable,	you	couldn’t	find	it—no	way.
This	chapter	explains	how	to	save	data	to	your	disk.	When	the	data	is	on	your	disk,	it	will	be	there
until	you	change	or	erase	it.	Data	on	your	disk	is	just	like	music	on	a	tape.	You	can	turn	off	the	tape
deck,	and	the	tape	will	hold	the	music	until	you	change	it.	There’s	no	good	reason	why	a	user	should
enter	data,	such	as	historical	sales	records,	more	than	once.

	Note

Files	are	critical	to	computer	data	programs.	How	useful	would	a	word	processor	be
without	files?

Disk	Files
Disks	hold	data	in	files.	You	already	understand	the	concept	of	files	if	you’ve	saved	a	C	program	to	a
disk	file.	Files	can	hold	either	programs	or	data.	Your	programs	must	be	loaded	from	disk	into
memory	before	you	can	run	them.	You	also	must	load	data	from	the	disk	file	into	variables	before
you	can	work	with	the	data.	The	variables	also	hold	data	before	the	data	goes	to	a	disk	file.
Two	types	of	files	exist:	sequential-access	files	and	random-access	files.	Their	types	determine	how
you	can	access	them.	If	you	work	with	a	sequential-access	file,	you	have	to	read	or	write	the	file	in	the
order	of	the	data.	In	a	random-access	file,	you	can	jump	around,	reading	and	writing	any	place	in	the
file.

	Tip

A	sequential	file	is	like	a	video	tape,	and	a	random-access	file	is	like	a	DVD	or	Blu-
Ray.	You	have	to	watch	a	movie	in	sequence	on	a	tape	(or	fast-forward	through	it	in
order),	whereas	you	can	skip	to	different	chapters	on	a	DVD	or	a	Blu-Ray.

All	disk	files	have	names	that	conform	to	the	same	naming	rules	as	filenames	on	your	operating

system.	Before	you	can	use	a	disk	file,	whether	to	create,	read,	or	change	the	data	in	the	file,	you	must
open	the	file.
As	with	a	filing	cabinet,	you	can’t	use	a	disk	file	without	opening	the	file.	Instead	of	pulling	out	a
drawer,	your	computer	attaches	something	called	a	file	pointer	to	the	file	and	makes	sure	that	the	disk
is	properly	set	up	to	hold	the	file	you	specify.

Opening	a	File
To	open	a	file,	you	must	use	the	fopen()	function,	whose	description	is	included	along	with
printf()’s	in	stdio.h.	Before	seeing	fopen(),	you	have	to	understand	the	concept	of	a	file
pointer.

	Note

The	concept	of	a	file	pointer	is	easy	to	understand.	A	regular	pointer	holds	the	address
of	data	in	a	variable.	A	file	pointer	holds	the	disk	location	of	the	disk	file	you’re
working	with.

You	must	specify	a	special	statement	to	define	a	file	pointer.	As	with	any	variable,	you	can	name	file
pointers	anything	you	want.	Suppose	you	want	to	open	an	employee	file.	Before	the	fopen(),	you
must	define	a	file	pointer	variable.	If	you	called	the	file	pointer	fptr,	here	is	how	you	would	define	a
file	pointer:
Click	here	to	view	code	image

FILE	*	fptr;		/*	Defines	a	file	pointer	named	fptr	*/

	Warning

Most	C	programmers	define	their	file	pointers	before	main().	This	makes	the	file
pointer	global,	which	is	a	fancy	term	meaning	that	the	entire	program	can	use	the	file.
(Most	other	kinds	of	variables	are	local,	not	global.)	Because	part	of	the	file	pointer
statement	is	in	upper	case,	FILE	is	defined	someplace	with	#define.	FILE	is	defined
in	stdio.h,	which	is	the	primary	reason	you	should	include	the	stdio.h	header	file
when	your	program	uses	the	disk	for	data.

After	you	define	a	file	pointer,	you	can	connect	that	pointer	to	a	file	with	fopen().	After	you	specify
fopen(),	you	can	use	the	file	throughout	the	rest	of	the	program.	Here	is	the	way	to	open	a	file
named	C:\cprograms\cdata.txt.

	Tip

If	you	don’t	have	a	C:	drive,	change	the	C:	in	these	examples	to	a	different	drive	letter.
In	fact,	if	you	want	to	put	your	files	in	a	specific	folder	but	are	not	sure	of	the	path,
right-click	a	file	in	that	folder	and	select	Properties	from	the	menu.	You	should	see	the
directory	path	of	the	folder,	which	you	can	then	use	in	your	fopen()	statement.

Click	here	to	view	code	image

#include	<stdio.h>
FILE	*fptr;	//	Defines	a	file	pointer
main()
{
							fptr	=	fopen("c:\cprograms\cdata.txt",	"w");
							//	rest	of	program	would	follow
							fclose	(fptr);	//	Always	close	files	you've	opened

For	the	rest	of	the	program,	you’ll	access	the	cdata.txt	file	via	the	file	pointer,	not	via	the
filename.	Using	a	file	pointer	variable	is	easier	and	less	error	prone	than	typing	the	filename	and
complete	pathname	to	the	file	every	time	you	must	access	the	file.

	Warning

Close	your	filing	cabinet	drawers	when	you’re	done	with	your	files,	or	you’ll	hit	your
head!	Close	all	open	files	when	you’re	finished	with	them,	or	you	could	lose	some	data.
fclose()	is	the	opposite	of	fopen().	In	its	parentheses,	fclose()	requires	a	file
pointer	of	the	file	you	want	to	close.

If	the	file	pointer	equals	0,	you	know	that	an	error	happened.	C	returns	a	0	from	fopen()	if	an	error
occurs	when	you	open	a	file.	For	example,	if	you	attempt	to	open	a	file	on	a	disk	drive	that	doesn’t
exist,	fopen()	returns	an	error.
The	"w"	(the	second	argument	in	the	previous	code’s	fopen())	means	write.	The	second	argument
of	fopen()	must	be	one	of	the	string	mode	values	in	Table	28.1.

TABLE	28.1	The	Basic	fopen()	Mode	Strings

Using	Sequential	Files
You’ll	do	only	three	things	with	a	sequential	file:	create	it,	read	it,	and	add	to	it	(write	to	it).	To	write
to	a	file,	you	can	use	fprintf().	fprintf()	is	easy	because	it’s	just	a	printf()	with	a	file
pointer	at	the	beginning	of	its	parentheses.	The	following	program	creates	a	file	and	writes	some	data
to	it	using	fprintf():
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	28	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter28ex1.c

/*	The	program	takes	the	book	info	program	from	chapter	27	and
writes	the	info	to	a	file	named	bookinfo.txt.	*/

//First	include	the	file	with	the	structure	definition
#include	"bookinfo.h"
#include	<stdio.h>
#include	<stdlib.h>
FILE	*	fptr;

main()
{
				int	ctr;
				struct	bookInfo	books[3];	//	Array	of	three	structure	variables

				//	Get	the	information	about	each	book	from	the	user

				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								printf("What	is	the	name	of	the	book	#%d?\n",	(ctr+1));
								gets(books[ctr].title);
								puts("Who	is	the	author?	");
								gets(books[ctr].author);
								puts("How	much	did	the	book	cost?	");
								scanf("	$%f",	&books[ctr].price);
								puts("How	many	pages	in	the	book?	");
								scanf("	%d",	&books[ctr].pages);
								getchar();	//Clears	last	newline	for	next	loop
				}

				//	Remember	when	typing	your	filename	path	to	double	up	the
				//	backslashes	or	C	will	think	you	are	putting	in	a	conversion
				//	character

				fptr	=	fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","w");

				//	Test	to	ensure	that	the	file	opened

				if	(fptr	==	0)
				{
								printf("Error--file	could	not	be	opened.\n");
								exit	(1);
				}

				//	Print	a	header	line	and	then	loop	through	and	print	the	info
				//	to	your	file,	but	this	time	this	printout	will	be	in	your
				//	file	and	not	on	the	screen.

				fprintf(fptr,	"\n\nHere	is	the	collection	of	books:	\n");
				for	(ctr	=	0;	ctr	<	3;	ctr++)
				{
								fprintf(fptr,	"#%d:	%s	by	%s",	(ctr+1),	books[ctr].title,
														books[ctr].author);
								fprintf(fptr,	"\nIt	is	%d	pages	and	cost	$%.2f",
														books[ctr].pages,	books[ctr].price);
								fprintf(fptr,	"\n\n");
				}
				fclose(fptr);	//	Always	close	your	files
				return(0);
}

If	you	ran	this	program	and	looked	at	the	contents	of	the	file	named	bookinfo.txt	(just	find	the
file	and	double-click	it,	and	Notepad	should	open	it),	you	would	see	the	book	info	you	entered.	Here’s
what	mine	looked	like:
Click	here	to	view	code	image

Here	is	the	collection	of	books:
#1:	10	Count	Trivia	by	Dean	Miller
It	is	250	pages	and	costs	$14.99

#2:	Moving	from	C	to	C++	by	Greg	Perry
It	is	600	pages	and	costs	$39.99

#3:	The	Stand	by	Stephen	King
It	is	1200	pages	and	costs	$24.99

Miller,	Perry,	and	King—nice	to	see	the	three	great	authors	of	our	time	collected	into	one	file!	The
nice	thing	about	reusing	the	program	from	Chapter	27,	“Setting	Up	Your	Data	with	Structures,”	is	that
it	shows	how	easily	you	can	adapt	what	you’ve	already	learned	(and	programs	that	you’ve	already
written)	to	file	work.	All	this	took	was	declaring	the	file	pointer,	opening	the	file	(and	making	sure	it
opened	properly),	and	changing	the	printf()	statements	to	fprintf()	statements	for	any	output
you	wanted	to	go	to	the	file	instead	of	the	screen.

	Warning

Opening	a	file	in	"w"	mode	overwrites	an	existing	file	with	the	same	name.	So	if	you
run	the	previous	program	twice,	the	file	will	have	only	your	data	from	the	second	run.
If	you	want	to	build	on	to	the	file	and	keep	the	previous	data,	you	need	to	open	the	file
in	"a"	mode.

Now	that	you	can	write	data	to	a	file,	how	would	you	go	about	getting	that	information?	Use
fgets()	to	read	the	contents	of	the	file.	fgets()	is	nothing	more	than	a	gets()	that	you	can
direct	to	a	disk	file.	fgets()	reads	lines	from	a	file	into	character	arrays	(or	allocated	heap
memory	pointed	to	with	a	character	pointer).

	Tip

Think	of	the	f	at	the	beginning	of	fputs()	and	fgets()	as	standing	for	file.
puts()	and	gets()	go	to	the	screen	and	keyboard,	respectively;	fputs()	and
fgets()	write	and	read	their	data	from	files.

Unlike	gets(),	fgets()	requires	that	you	specify	a	maximum	length	for	the	array	you’re	reading
into.	You	might	read	past	the	end	of	the	file	(producing	an	error)	if	you’re	not	careful,	so	be	sure	to
check	for	the	location	of	the	end	of	the	file.
fgets()	reads	one	line	at	a	time.	If	you	specify	more	characters	to	read	in	the	fgets()	than
actually	reside	on	the	file’s	line	you’re	reading,	fgets()	stops	reading	the	line	of	data	as	long	as	the
file’s	lines	end	with	a	newline	character.	The	previous	program	that	created	the	bookinfo.txt	file
always	wrote	\n	at	the	end	of	each	line	so	that	subsequent	fgets()	functions	could	read	the	file	line
by	line.
The	following	program	loops	through	a	file	(in	this	case,	the	bookinfo.txt	created	in	the	last
example)	and	prints	the	info	on	the	screen.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	28	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter28ex2.c

/*	The	program	takes	the	book	info	file	from	the	first	example	of
chapter	28;	also	reads	each	line	from	the	file	and	outputs	it	to	the
screen.	*/

#include	<stdio.h>
#include	<stdlib.h>
FILE	*	fptr;

main()
{
				char	fileLine[100];	//	Will	hold	each	line	of	input
				fptr	=	fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","r");

				if	(fptr	!=	0)
				{
								while	(!feof(fptr))
								{
												fgets(fileLine,	100,	fptr);
												if	(!feof(fptr))
												{
																puts(fileLine);
												}
								}
				}
				else
				{
								printf("\nError	opening	file.\n");
				}

				fclose(fptr);	//	Always	close	your	files
				return(0);
}

feof()	returns	a	true	condition	if	you	just	read	the	last	line	from	the	file.	The	feof()	really	isn’t
needed	in	the	previous	program	because	we	know	exactly	what	the	bookinfo.txt	contains.	(We
just	created	the	file	in	an	earlier	program.)	We	know	how	many	lines	are	in	the	files,	but	you	should
generally	use	feof()	when	reading	from	disk	files.	You	often	don’t	know	exactly	how	much	data
the	file	contains	because	other	people	using	other	programs	might	have	added	data	to	the	file.

	Warning

In	the	fprintf()	function,	the	file	pointer	goes	at	the	beginning	of	the	function.	In
the	fgets()	function,	the	file	pointer	goes	at	the	end.	There’s	nothing	like
consistency!

You	also	can	use	an	fscanf()	to	read	individual	numeric	values	from	a	data	file	if	you	wrote	the
values	with	a	corresponding	fprintf().
You	can	add	to	a	file	by	opening	the	file	in	append	mode	and	outputting	data	to	it.	The	following
program	adds	the	line	More	books	to	come!	to	the	end	of	the	book	info.txt	data	file:
Click	here	to	view	code	image

//	Example	program	#3	from	Chapter	28	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter28ex3.c

/*	The	program	opens	the	existing	book	info	file	from	the	first
example	of	chapter	28,	and	adds	a	line	to	the	end.	*/

#include	<stdio.h>
#include	<stdlib.h>

FILE	*	fptr;

main()
{
				fptr	=	fopen("C:\\users\\DeanWork\\Documents\\BookInfo.txt","a");

				if	(fptr	==	0)
				{
								printf("Error	opening	the	file!	Sorry!\n");
								exit	(1);
				}

				//	Adds	the	line	at	the	end
				fprintf(fptr,	"\nMore	books	to	come!\n");

				fclose(fptr);	//	Always	close	your	files
				return(0);
}

Here	is	what	MYDATA.DAT	now	contains	(notice	the	extra	line):

Click	here	to	view	code	image

Here	is	the	collection	of	books:
#1:	10	Count	Trivia	by	Dean	Miller
It	is	250	pages	and	costs	$14.99

#2:	Moving	from	C	to	C++	by	Greg	Perry
It	is	600	pages	and	costs	$39.99

#3:	The	Stand	by	Stephen	King
It	is	1200	pages	and	costs	$24.99

More	books	to	come!

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	how	to	create,	read,	and	write	sequential	files.
Your	C	program	must	open	a	file	before	data	can	be	written	to	or	read	from	the	file.
When	your	program	is	done	with	a	file,	the	program	should	close	the	file.
When	reading	from	a	file,	you	must	check	for	the	end-of-file	condition	to	ensure	that
you	don’t	try	to	read	past	the	end	of	the	file.	The	feof()	function	is	a	built-in	C
function	that	you	use	to	check	for	the	end	of	the	file.	Key	concepts	from	this	chapter
include:
•	Store	long-term	data	in	data	files.
•	Open	a	file	with	fopen()	before	you	use	the	file.
•	Always	close	a	file	with	fclose()	when	you’re	done.
•	Don’t	read	from	a	file	without	checking	for	feof()	because	you	might	have
previously	read	the	last	line	in	the	file.
•	Don’t	use	the	filename	when	you	open	a	file.	Use	the	file	pointer	that	you	connected
to	the	file	with	fopen().
•	Don’t	forget	that	the	file	pointer	goes	at	the	beginning	of	fprintf()	and	that
fputs()	requires	a	file	pointer	at	the	end	of	its	argument	list.

29.	Saving	Random	Files	to	Your	Computer

In	This	Chapter
•	Opening	random	files
•	Moving	around	in	a	file

This	chapter	shows	you	how	to	skip	around	in	a	file,	reading	and	writing	data	as	you	go.	The
preceding	chapter	introduced	methods	you	can	use	to	write,	read,	or	append	data	to	a	file.	The
problem	is,	when	you	open	a	sequential	file	for	reading,	you	can	only	read	it.
Sometimes	you	might	want	to	read	a	customer	structure	from	disk	and	change	the	customer ’s	balance.
You	certainly	wouldn’t	want	to	have	to	create	a	new	file	just	so	you	could	write	that	one	change.
Instead,	you	would	want	to	read	the	customer	information	into	a	variable,	change	it,	and	then	write	it
back	to	disk	exactly	where	it	first	resided.	As	Figure	29.1	shows,	random	files	let	you	skip	around	in
the	file,	reading	and	writing	at	any	point	you	access.

FIGURE	29.1	Random	files	let	you	read	and	write	data	in	any	order.

The	physical	layout	of	a	file	doesn’t	define	the	type	of	file	(whether	random	or	sequential).	You	can
create	a	file	sequentially	and	then	read	and	change	it	randomly.	To	C,	a	file	is	just	a	stream	of	bytes,
and	the	way	you	access	it	isn’t	linked	to	any	format	of	the	file.

Opening	Random	Files
To	read	or	write	a	file	randomly,	you	must	open	the	file	randomly.	Table	29.1	lists	the	modes	that
access	random	files.	As	you	can	see,	the	cornerstone	of	random-access	files	is	the	use	of	the	plus	sign
combined	with	the	access	modes	you	learned	about	in	the	previous	chapter.

TABLE	29.1	The	Random-Access	fopen()	Modes

	Note

As	with	sequential	files,	the	access	mode	is	a	string	that	appears	as	the	last	argument	of
fopen().	You	close	open	random	files	with	fclose(),	just	as	you	do	with
sequential	files.

All	three	modes	let	you	read	and	write	to	the	file.	The	access	mode	you	choose	depends	on	what	you
want	to	do	first	to	the	file.	If	the	file	exists	and	you	want	to	access	the	file	randomly,	use	the	r+	mode.
If	you	want	to	create	the	file,	use	w+.	(If	the	file	already	exists,	C	overwrites	the	existing	version.)	If
you	want	to	add	to	the	end	of	a	file	but	optionally	“back	up”	and	read	and	write	existing	data,	use	a+.
Here	is	a	sample	fopen()	statement	that	opens	a	new	file	for	writing	and	reading:
Click	here	to	view	code	image

fptr	=	fopen("C:\\Users\DeanWork\\letters.txt",	"w+");

As	with	sequential	files,	the	fptr	variable	must	be	a	file	pointer	variable.	The	double	backslash	is
needed	if	you	specify	a	pathname.	Remember	that	fopen()	returns	a	zero	if	the	open	fails.

	Tip

You	can	store	the	filename	in	a	character	array	and	use	the	character	array	name	in
place	of	an	actual	string	literal	for	the	filename.

Moving	Around	in	a	File
Use	the	fseek()	function	to	move	around	in	a	file.	After	you	open	a	file,	C	initializes	the	file
pointer	to	point	to	the	next	place	in	the	file	you	can	read	or	write.	fseek()	moves	the	file	pointer	so
that	you	can	read	and	write	at	places	that	would	normally	not	be	pointed	at	using	sequential	access.
Here	is	the	format	of
Click	here	to	view	code	image

fseek():

fseek(filePtr,	longVal,	origin);

The	filePtr	is	the	file	pointer	used	in	the	fopen()	function	that	used	a	random-access	mode.	The
longVal	is	a	longint	variable	or	literal	that	can	be	either	positive	or	negative.	The	longVal	is
the	number	of	bytes	to	skip	forward	or	backward	in	the	file.	The	origin	is	always	one	of	the	values
shown	in	Table	29.2.	origin	tells	fseek()	where	to	start	seeking.

TABLE	29.2	origin	Values	That	Can	Appear	in	fseek()

The	origin	value	tells	C	the	position	from	where	you	want	to	access	the	random	file	next.	After	you
position	the	file	pointer	with	fseek(),	you	can	use	file	input	and	output	functions	to	write	and	read
to	and	from	the	file.	If	you	position	the	file	pointer	at	the	end	of	the	file	(using	SEEK_END)	and	then
write	data,	new	data	goes	to	the	end	of	the	file.	If	you	position	the	file	pointer	over	existing	data
(using	SEEK_SET	and	SEEK_CUR)	and	then	write	new	data,	the	new	data	replaces	the	existing	data.

	Warning

Use	fseek()	for	random-access	files	only.	Sequential	files	can	be	accessed	only	in
the	order	of	the	data.

Table	29.2’s	values	are	in	uppercase,	which	implies	that	they’re	defined	somewhere.	They’re	defined
in	stdio.h	using	#define	directives.
The	following	program	opens	a	file	for	random-access	mode,	writes	the	letters	A	through	Z	to	the
file,	and	then	rereads	those	letters	backward.	The	file	doesn’t	have	to	be	reopened	before	the	reading
begins	because	of	the	random-access	mode	"w+".
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	29	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter29ex1.c

/*	The	program	opens	a	file	named	letters.txt	and	prints	A	through	Z
into	the	file
It	then	loops	backward	through	the	file	printing	each	of	the	letters
				from	Z	to	A.	*/

#include	<stdio.h>
#include	<stdlib.h>
FILE	*	fptr;

main()
{
				char	letter;
				int	i;

				fptr	=	fopen("C:\\users\\deanwork\\documents\\letters.txt",
																	"w+");

				if	(fptr	==	0)
				{
								printf("There	was	an	error	while	opening	the	file.\n");
								exit(1);

				}

				for	(letter	=	'A';	letter	<=	'Z';	letter++)
				{
								fputc(letter,	fptr);
				}

				puts("Just	wrote	the	letters	A	through	Z");

				//	Now	read	the	file	backwards

				fseek(fptr,	-1,	SEEK_END);	//	Minus	1	byte	from	the	end
				printf("Here	is	the	file	backwards:\n");
				for	(i	=	26;	i	>	0;	i--)
				{
								letter	=	fgetc(fptr);
								//	Reads	a	letter,	then	backs	up	2
								fseek(fptr,	-2,	SEEK_CUR);
								printf("The	next	letter	is	%c.\n",	letter);
				}

				fclose(fptr);	//	Again,	always	close	your	files

				return(0);
}

	Tip

As	you	can	see,	fputc()	is	a	great	function	for	outputting	individual	characters	to	a
file.	fgetc()	reads	individual	characters	from	a	file.	fputc()	and	fgetc()	are	to
putc()	and	getc()	what	fputs()	and	fgets()	are	to	puts()	and	gets().

So	far,	you	might	not	see	a	purpose	for	random-access	files.	Random	access	offers	you	the	advantage
of	writing	data	to	a	file	and	then	rereading	the	same	data	without	closing	and	opening	the	file.	Also,
fseek()	lets	you	position	the	file	pointer	any	number	of	bytes	from	the	beginning,	middle,	or	end
of	the	file.
Assuming	that	the	file	of	letters	still	resides	on	the	disk	from	the	last	program,	this	next	program	asks
the	user	which	position	he	or	she	wants	to	change.	The	program	then	positions	the	file	pointer	with
fseek()	and	writes	an	*	at	that	point	before	using	fseek()	to	return	to	the	beginning	of	the	file
and	printing	it	again.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	29	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter29ex2.c

/*	The	program	opens	the	file	created	in	the	first	program	of	the
chapter	and	changes	one	of	the	letters	to	an	*.	It	then	prints	the	new
list	with	the	altered	list	of	letters.*/

#include	<stdio.h>
#include	<stdlib.h>

FILE	*	fptr;

main()
{
				char	letter;
				int	i;

				fptr	=	fopen("C:\\users\\deanwork\\documents\\letters.txt",	"r+");

				if	(fptr	==	0)
				{
								printf("There	was	an	error	while	opening	the	file.\n");
								exit(1);
				}

				printf("Which	#	letter	would	you	like	to	change	(1-26)?	");
				scanf("	%d",	&i);

				//	Seeks	that	position	from	the	beginning	of	the	file
				fseek(fptr,	(i-1),	SEEK_SET);	//	Subtract	1	from	the	position
																																		//	because	array	starts	at	0

				//	Write	an	*	over	the	letter	in	that	position
				fputc('*',	fptr);

				//	Now	jump	back	to	the	beginning	of	the	array	and	print	it	out

				fseek(fptr,	0,	SEEK_SET);
				printf("Here	is	the	file	now:\n");
				for	(i	=	0;	i	<	26;	i++)
				{
								letter	=	fgetc(fptr);
								printf("The	next	letter	is	%c.\n",	letter);
				}

				fclose(fptr);	//	Again,	always	close	your	files
				return(0);
}

The	program	prints	the	contents	of	the	file	after	the	*	is	written	at	the	position	indicated	by	the	user.
Here	is	a	sample	session:

The	next	letter	is	A.
The	next	letter	is	B.
The	next	letter	is	C.
The	next	letter	is	D.
The	next	letter	is	E.
The	next	letter	is	F.
The	next	letter	is	G.
The	next	letter	is	*.
The	next	letter	is	I.
The	next	letter	is	J.
The	next	letter	is	K.
The	next	letter	is	L.
The	next	letter	is	M.
The	next	letter	is	N.
The	next	letter	is	O.
The	next	letter	is	P.
The	next	letter	is	Q.
The	next	letter	is	R.

The	next	letter	is	S.
The	next	letter	is	T.
The	next	letter	is	U.
The	next	letter	is	V.
The	next	letter	is	W.
The	next	letter	is	X.
The	next	letter	is	Y.
The	next	letter	is	Z.

As	you	can	see,	the	eighth	position	of	the	alphabetical	file,	the	letter	H,	now	contains	an	asterisk.	The
rest	of	the	file	remains	unchanged.

	Note

If	you	ran	this	program	a	second	time	and	changed	a	different	letter	(say,	the	15th
position	of	the	alphabet,	the	O),	your	file	would	print	with	asterisks	instead	of	H	and	O
because	the	change	to	the	H	is	now	permanent	in	the	letters.txt	file.	You	could
run	the	program	26	times	and	replace	every	letter	if	you	wanted.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	explain	how	random-access	files	work.	When	you	open
a	file	in	random-access	mode,	you	can	read	and	write	to	that	file	in	any	order	you	need
to.	The	fseek()	function	is	the	built-in	function	that	skips	around	the	file	from
position	to	position.
Being	able	to	change	the	contents	of	a	file	is	important	when	you	want	to	update	file
data.	Often	you	will	want	to	change	a	person’s	address,	change	an	inventory	item’s
quantity,	and	so	on	without	rewriting	the	entire	file	as	you	would	have	to	if	you	used
sequential	file	processing.	Key	concepts	from	this	chapter	include:
•	Use	a	plus	sign	in	the	fopen()	mode	string	if	you	need	to	change	data	in	a	file.
•	Remember	that	fseek()	moves	a	file	pointer	all	around	a	random	file	so	that	you
can	read	or	write	from	the	beginning,	middle,	or	end.
•	Don’t	forget	to	close	a	file	when	you	are	done	with	it.
•	Don’t	attempt	to	work	with	a	file	if	the	fopen()	fails	(by	returning	a	zero).

30.	Organizing	Your	Programs	with	Functions

In	This	Chapter
•	Adding	functions	to	programs
•	Choosing	between	global	and	local	variables

Typical	computer	programs	are	not	the	20-	to	30-line	variety	that	you	see	in	textbooks.	In	the	“real
world,”	computer	programs	are	much	longer—but	long	programs	contain	lots	of	code	that	can	get	in
the	way	while	learning	new	concepts.	That’s	why,	until	this	point,	you’ve	seen	fairly	short	programs
that	contain	all	their	code	in	main().
If	you	were	to	put	an	entire	long	program	in	main(),	you	would	spend	a	lot	of	time	trying	to	find
anything	specific	if	you	later	needed	to	change	it.	This	chapter	is	the	first	of	three	chapters	that
explore	ways	to	partition	your	programs	into	sections	via	multiple	functions.	Categorizing	your	code
by	breaking	it	into	sections	makes	programs	easier	to	write	and	also	easier	to	maintain.
People	have	to	write,	change,	and	fix	code.	The	clearer	you	make	the	code	by	writing	lots	of
functions	that	do	individual	tasks,	the	faster	you	can	get	home	from	your	programming	job	and	relax!
As	you’ll	see,	separate	functions	let	you	focus	on	code	that	needs	changing.

Form	Follows	C	Functions
C	was	designed	to	force	you	to	think	in	a	modular	style	through	the	use	of	functions.	A	C	program
isn’t	just	one	long	program.	It’s	made	up	of	many	routines	named,	as	you	know,	functions.	One	of	the
program’s	functions	(the	one	always	required	and	usually	listed	first)	is	named	main().
If	your	program	does	a	lot,	break	it	into	several	functions.	Each	function	should	do	one	primary	task.
For	instance,	if	you	were	writing	a	C	program	to	assign	an	ID	number	to	a	new	employee,	get	the
person’s	contact	information,	and	then	add	him	or	her	to	the	payroll,	you	could	write	all	of	this	in	one
big	function—all	in	main()—as	the	following	program	outline	shows:
Click	here	to	view	code	image

main()
{
							//	Not	a	working	program,	just	an	outline...
...
							//	First	section	of	code	that	assigns	an	ID	number	to	an
							//	employee
...
							//	Next	section	of	code	has	the	user	input	basic	contact	info
...
							//	Final	section	of	code	adds	the	employee	to	the	payroll
							//	system
...
							return(0);
}

This	program	does	not	offer	a	good	format	for	the	tasks	you	want	accomplished	because	it’s	too
sequential.	All	the	code	appears	in	main(),	even	though	several	distinct	tasks	need	to	be	done.	This
program	might	not	require	many	lines	of	code,	but	it’s	much	better	to	get	in	the	habit	of	breaking

every	program	into	distinct	tasks.

	Note

Breaking	programs	into	smaller	functions	is	called	structured	programming.

Don’t	use	main()	to	do	everything.	In	fact,	you	should	use	main()	to	do	very	little	except	call	each
of	the	other	functions.	A	better	way	to	organize	this	program	would	be	to	write	separate	functions	for
each	task	the	program	is	to	do.	Of	course,	not	every	function	should	be	a	single	line,	but	make	sure
each	function	acts	as	a	building	block	and	performs	only	a	single	task.
Here	is	a	better	outline	for	the	program	just	described:
Click	here	to	view	code	image

main()
{
							assignID();	//	Sets	up	a	unique	ID	for	the	new	employee
							buildContact();	//	Enters	the	employee's	basic	contact	info
							payrollAdd();	//	Adds	the	new	employee	to	the	payroll	system
							return	0;
}
/*	Second	function,	one	that	sets	an	ID	for	the	new	employee
assignID()*/
{
							//	Block	of	C	code	to	set	up	a	unique	ID	for	the
							//	new	employee
							return;
}

/*	Next	function—the	contact	building	function	*/
buildContact()
{
							//	Block	of	code	to	input	the	employee's
							//	home	address,	phone	number,	birth	date,
							//	and	so	on
							return;
}

/*	Fourth	function	to	add	employee	to	the	payroll	*/
payrollAdd()
{
							//	Code	to	set	the	new	employee's	salary,
							//	benefits,	and	other	info	in	the
							//	payroll	system
							return;
}

	Note

Even	though	this	program	outline	is	longer	than	the	previous	one,	this	one	is	better
organized	and,	therefore,	easier	to	maintain.	The	only	thing	main()	does	is	control
the	other	functions	by	showing	an	overview	of	how	they’re	called.

Each	separate	function	does	its	thing	and	then	returns	to	main(),	where	main()	calls	the	next
function	until	there	are	no	more	functions.	main()	then	returns	to	your	operating	system.	main()
acts	almost	like	a	table	of	contents	for	the	program.	With	adequate	comments,	main()	lets	you	know
exactly	what	functions	contain	code	you	need	to	change.

	Tip

A	good	rule	of	thumb	is	that	a	function	should	not	take	more	lines	than	will	fit	on	a
single	screen.	If	the	function	is	longer	than	that,	you’re	probably	making	it	do	too
much.	In	high	school,	didn’t	you	hate	to	read	literature	books	with	l-o-n-g	chapters?
You’ll	also	dislike	working	on	programs	with	long	functions.

Any	function	can	call	any	other	function.	For	example,	if	you	wanted	buildContact()	to	print	the
complete	contact	info	after	it	was	entered,	you	might	have	buildContact()	call	another	function
named	printContact().	printContact()	would	then	return	to	buildContact()	when	it
finishes.	Here	is	the	outline	of	such	a	code:
Click	here	to	view	code	image

main()
{
							assignID();	//	Sets	up	a	unique	ID	for	the	new	employee
							buildContact();	//	Enters	the	employee's	basic	contact	info
							payrollAdd();	//	Adds	the	new	employee	to	the	payroll	system
							return	0;
}
/*	Second	function,	one	that	sets	an	ID	for	the	new	employee
assignID()*/
{
							//	Block	of	C	code	to	set	up	a	unique	ID	for	the
							//	new	employee
							return;
}

/*	Next	function—the	contact	building	function	*/
buildContact()
{
							//	Block	of	code	to	input	the	employee's
							//	home	address,	phone	number,	birth	date,
							//	and	so	on
							printContact();
							return;

}

/*	Fourth	function	to	add	employee	to	the	payroll	*/
payrollAdd()
{
							//	Code	to	set	the	new	employee's	salary,
							//	benefits,	and	other	info	in	the
							//	payroll	system
							return;
}

/*	Fifth	function	to	print	an	entire	contact	onscreen	*/
printContact()
{
							//	Code	to	print	the	contact
							return;	//	Returns	to	buildContact(),	not	to	main()
}

	Note

Look	at	all	the	functions	in	the	Draw	Poker	game	in	Appendix	B,	“The	Draw	Poker
Program.”	The	program	is	only	a	few	pages	long,	but	it	contains	several	functions.
Look	through	the	code	and	see	if	you	can	find	a	function	that	calls	another	function
located	elsewhere	in	the	program.

The	entire	electronics	industry	has	learned	something	from	the	programming	world.	Most	electronic
components	today,	such	as	televisions,	computers,	and	phones,	contain	a	lot	of	boards	that	can	be
removed,	updated,	and	replaced	without	affecting	the	rest	of	the	system.	In	a	similar	way,	you’ll	be
able	to	change	certain	workings	of	your	programs:	If	you	write	well-structured	programs	by	using
functions,	you	can	then	change	only	the	functions	that	need	changing	without	having	to	mess	with	a
lot	of	unrelated	code.

Local	or	Global?
The	program	outline	explained	in	the	preceding	section	needs	more	code	to	work.	Before	being	able
to	add	code,	you	need	to	take	a	closer	look	at	variable	definitions.	In	C,	all	variables	can	be	either
local	or	global.	All	the	variables	you	have	seen	so	far	have	been	local.	Most	of	the	time,	a	local
variable	is	safer	than	a	global	variable	because	a	local	variable	offers	itself	on	a	need-to-know	access.
That	is,	if	a	function	needs	a	variable,	it	can	have	access	to	another	function’s	local	variables	through
a	variable-passing	process	described	in	the	next	chapter.
If	a	function	doesn’t	need	to	access	another	function’s	local	variable,	it	can’t	have	access.	Any
function	can	read,	change,	and	zero	out	global	variables,	so	they	don’t	offer	as	much	safety.
The	following	rules	describe	the	difference	between	local	and	global	variables:

•	A	variable	is	global	only	if	you	define	the	variable	(such	as	inti;)	before	a	function	name.
•	A	variable	is	local	only	if	you	define	it	after	an	opening	brace.	A	function	always	begins	with
opening	braces.	Some	statements,	such	as	while,	also	have	opening	braces,	and	you	can	define
local	variables	within	those	braces	as	well.

	Tip

An	opening	and	closing	brace	enclose	what	is	known	as	a	block.

Given	these	rules,	it	should	be	obvious	that	l1	and	l2	are	local	variables	and	that	g1	and	g2	are
global	variables	in	the	following	program:
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	30	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter30ex1.c

/*	The	program	is	a	simple	demonstration	of	the	difference	between
global	variables	and	local	variables.	*/

#include	<stdio.h>
int	g1	=	10;

main()
{
				float	l1;
				l1	=	9.0;

				printf("%d	%.2f\n",	g1,	l1);	//	prints	the	1st	global	and	first
																																	//	local	variable
				prAgain();	//	calls	our	first	function
				return	0;
}

float	g2	=	19.0;

prAgain()
{
				int	l2	=	5;

				//	Can't	print	l1--it	is	local	to	main
				printf("%d	%.2f	%d\n",	l2,	g2,	g1);
				return;
}

	Tip

You	might	not	yet	completely	understand	the	return	0;	statement.	To	make	matters
worse,	return	by	itself	is	used	at	the	end	of	the	prAgain()	function.	You’ll	find	a
detailed	description	for	return	in	the	next	two	chapters.

The	variable	g2	is	global	because	it’s	defined	before	a	function	(prAgain()).
Local	variables	are	usable	only	within	their	own	block	of	code.	Therefore,	l1	could	never	be	printed

or	changed	in	prAgain()	because	l1	is	local	to	main().	Conversely,	l2	could	never	be	used	in
main()	because	l2	is	visible	only	to	prAgain().	The	variable	g1	is	visible	to	the	entire	program.
g2	is	visible	only	from	its	point	of	definition	down.

	Tip

All	global	variables	are	known	from	their	points	of	definition	down	in	the	source	file.
Don’t	define	a	global	variable	in	the	middle	of	a	program	(as	is	done	in	the	preceding
program)	because	its	definition	can	be	too	hard	to	find	during	debugging	sessions.	You
should	limit	(or	eliminate)	the	use	of	globals.	If	you	use	them	at	all,	define	all	of	them
before	main(),	where	they	are	easy	to	find	(such	as	if	you	need	to	change	them	or
look	at	their	defined	data	types).

The	program	outline	shown	earlier	has	a	problem.	If	you	use	only	local	variables	(and	you	should
always	try	to),	the	user	ID	created	in	assignID()	cannot	be	used	in	buildContact()	or
addPayroll().	Stay	tuned—the	next	chapter	shows	you	the	solution.

	Warning

If	you	compile	the	previous	program	and	receive	a	compiler	warning	about	a	call	to	a
function	without	a	prototype,	ignore	the	warning	for	now.	Chapter	32,	“Returning	Data
from	Your	Functions,”	answers	your	questions.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	teach	you	the	building-block	approach	to	writing	C
programs.	Long	programs	can	become	unwieldy	unless	you	break	them	into	several
separate	functions.	One	long	main()	function	is	analogous	to	a	long	book	without
chapter	divisions.	Break	your	long	programs	into	separate	functions,	and	have	each
function	perform	a	single,	separate	task	in	the	program.
When	you	divide	your	programs	into	several	functions,	you	have	to	consider	how
variables	are	used	throughout	the	code.	Local	variables	are	defined	inside	a	function
and	are	usable	only	in	that	function.	The	opposite	of	a	local	variable	is	a	global
variable,	whose	value	is	usable	in	all	functions	after	its	definition.	Global	variables	are
frowned	upon.	Local	variables	are	safer	because	you	can	limit	their	access	to	only
functions	that	need	to	use	them.	In	the	next	chapter,	you	learn	how	to	share	local
variables	between	functions.	Key	concepts	from	this	chapter	include:
•	Define	local	variables	after	a	block’s	opening	brace.	Define	global	variables	before
a	function	begins.
•	Local	variables	are	safer	than	global	variables,	so	use	local	variables	as	much	as
possible.
•	Break	your	programs	into	lots	of	functions	to	ease	maintenance	and	speed
development	time.
•	Don’t	define	global	variables	in	the	middle	of	a	program.	They’re	too	hard	to	locate
if	you	do.
•	Don’t	start	out	using	global	variables.	As	your	program	grows,	you	might
occasionally	see	the	need	for	a	global	variable—add	one	then.	(The	next	chapter
talks	more	about	using	local	variables	in	place	of	globals.)

31.	Passing	Variables	to	Your	Functions

In	This	Chapter
•	Passing	arguments	to	functions
•	Differentiating	between	passing	by	value	and	passing	by	address

The	preceding	chapter	left	some	questions	unanswered.	If	multiple	functions	are	good	(they	are),	and
if	local	variables	are	good	(they	are),	then	you	must	have	a	way	to	share	local	variables	between
functions	that	need	to	share	them	(there	is	a	way).	You	don’t	want	all	functions	to	have	access	to	all
variables	because	not	every	function	needs	access	to	every	variable.	If	full	variable	access	between
functions	is	needed,	you	might	as	well	use	global	variables.
To	share	data	from	function	to	function,	you	must	pass	variables	from	function	to	function.	When	one
function	passes	a	variable	to	another	function,	only	those	two	functions	have	access	to	the	variable
(assuming	that	the	variable	is	local).	This	chapter	explains	how	to	pass	variables	between	functions.

Passing	Arguments
When	you	pass	a	variable	from	one	function	to	another,	you	are	passing	an	argument	from	the	first
function	to	the	next.	You	can	pass	more	than	one	variable	at	a	time.	The	receiving	function	receives
the	parameters	from	the	function	that	sent	the	variables.

	Warning

The	words	variable,	argument,	and	parameter	are	sometimes	used	interchangeably
when	passing	and	receiving	values.	The	name	is	not	as	important	as	understanding	what
is	happening.	Figure	31.1	helps	explain	these	terms.

FIGURE	31.1	Getting	the	terms	correct.

Methods	of	Passing	Arguments
You	pass	arguments	from	a	function	to	another	function	in	two	ways:	by	value	and	by	address.	Both	of
these	methods	pass	arguments	to	a	receiving	function	from	a	calling	function.	There	is	also	a	way	to
return	a	value	from	a	function	back	to	the	calling	function	(see	the	next	chapter).
All	this	talk	of	passing	values	focuses	on	the	parentheses	that	follow	function	names.	That’s	right,
those	empty	parentheses	have	a	use	after	all!	The	variables	you	want	to	pass	go	inside	the	parentheses
of	the	function	call	and	also	in	the	receiving	function,	as	you’ll	see	in	the	next	section.

	Note

Yes,	this	passing	values	stuff	is	important!	It’s	easy,	though,	as	you’ll	see.

Passing	by	Value
Sometimes	passing	by	value	is	called	passing	by	copy.	You’ll	hear	these	terms	used	interchangeably
because	they	mean	the	same	thing.	Passing	by	value	means	that	the	value	of	the	variable	is	passed	to
the	receiving	function,	not	the	variable	itself.	Here	is	a	program	that	passes	a	value	from	main()	to
half():
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	31	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter31ex1.c

/*	The	program	demonstrates	passing	a	variable	to	a	function	by
value.	*/

#include	<stdio.h>

main()
{
				int	i;

				printf("Please	enter	an	integer...	");
				scanf("	%d",	&i);

				//	Now	call	the	half	function,	passing	the	value	of	i

				half(i);
				//	Shows	that	the	function	did	not	alter	i's	value
				printf("In	main(),	i	is	still	%d.\n",	i);

				return(0);	//	Ends	the	program
}

/**/

/*	Sometimes	putting	dividers	like	the	one	above	is	a	nice	break
				between	your	different	functions.	*/

half	(int	i)		//	Recieves	the	value	of	i

{
				i	=	i	/	2;
				printf("Your	value	halved	is	%d.\n",	i);
				return;	//	Returns	to	main
}

Here	is	a	sample	of	the	program’s	output:
Click	here	to	view	code	image

Please	enter	an	integer...	28
Your	value	halved	is	14.
In	main(),	i	is	still	28.

Study	this	first	line	of	the	half()	function:
Click	here	to	view	code	image

half(int	i)		/*	Receives	value	of	i	*/

Notice	that	you	must	put	the	data	type	(int)	inside	the	receiving	function’s	parameter	list.	As	Figure
31.2	shows,	the	contents	of	i	are	passed	to	half().	The	i	in	main()	is	never	changed	because	only
a	copy	of	its	value	is	passed.

FIGURE	31.2	The	value	of	i	is	passed,	not	the	variable	i.

If	you	passed	more	than	one	variable	separated	by	commas,	all	would	have	to	have	their	data	types
listed	as	well,	even	if	they	were	all	the	same	type.	Here	is	a	function	that	receives	three	variables:	a
floating	point,	a	character	array,	and	an	integer:
Click	here	to	view	code	image

aFun(float	x,	char	name[15],	int	age)		/*	Receives	three	arguments	*/

	Warning

Passing	by	value	protects	a	variable.	If	the	receiving	function	changes	a	passed-by-
value	variable,	the	calling	function’s	variable	is	left	unchanged.	Therefore,	passing	by
value	is	always	safe	because	the	receiving	function	can’t	change	the	passing	function’s
variables—it	can	only	use	them.

If	the	previous	program’s	receiving	function	called	its	parameter	i2,	the	program	would	still	work
the	way	it	does	now.	The	i2	would	be	local	to	half(),	whereas	the	i	in	main()	would	be	local	to
main().	The	i2	would	be	local	to	the	half()	function	and	distinct	from	main().
C	uses	the	passing	by	value	method	for	all	non-array	variables.	Therefore,	if	you	pass	any	variable
that	is	not	an	array	to	a	function,	only	a	copy	of	that	variable’s	value	is	passed.	The	variable	is	left
unchanged	in	the	calling	function,	no	matter	what	the	called	function	does	with	the	value.

Passing	by	Address
When	you	pass	an	array	to	another	function,	the	array	is	passed	by	address.	Instead	of	a	copy	of	the
array	being	passed,	the	memory	address	of	the	array	is	passed.	The	receiving	function	then	places	its
receiving	parameter	array	over	the	address	passed.	The	bottom	line	is	that	the	receiving	function
works	with	the	same	address	as	the	calling	function.	If	the	receiving	function	changes	one	of	the
variables	in	the	parameter	list,	the	calling	function’s	argument	changes	as	well.
The	following	program	passes	an	array	to	a	function.	The	function	puts	X	throughout	the	array,	and
then	main()	prints	the	array.	Notice	that	main()	prints	all	Xs	because	the	function	changed	the
argument.
Click	here	to	view	code	image

//	Example	program	#2	from	Chapter	31	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter31ex2.c

/*	The	program	demonstrates	passing	an	array	to	a	function.	*/

#include	<stdio.h>
#include	<string.h>

main()
{
				char	name[15]	=	"Michael	Hatton";
				change(name);
				printf("Back	in	main(),	the	name	is	now	%s.\n",	name);

				return(0);	//	Ends	the	program
}

/**/

/*	Sometimes	putting	dividers	like	the	one	above	is	a	nice	break
				between	your	different	functions.	*/

change(char	name[15])		//	Recieves	the	value	of	i

{
				//	Change	the	string	stored	at	the	address	pointed	to	by	name

				strcpy(name,	"XXXXXXXXXXXXXX");
				return;	//	Returns	to	main
}

This	program	produces	the	following	output:
Click	here	to	view	code	image

Back	in	main(),	the	name	is	now	XXXXXXXXXXXXXX.

If	you	want	to	override	the	passing	of	non-arrays	by	value,	you	can	force	C	to	pass	regular	non-array
variables	by	address.	However,	doing	so	looks	really	crazy!	Here	is	a	program,	similar	to	the	first
one	you	saw	in	this	chapter,	that	produces	a	different	output:
Click	here	to	view	code	image

//	Example	program	#3	from	Chapter	31	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter31ex3.c

/*	The	program	demonstrates	passing	a	variable	to	a	function	by
address.	*/

#include	<stdio.h>

main()
{
				int	i;

				printf("Please	enter	an	integer...	");
				scanf("	%d",	&i);

				//	Now	call	the	half	function,	passing	the	address	of	i

				half(&i);
				//	Shows	that	the	function	did	alter	i's	value
				printf("In	main(),	i	is	now	%d.\n",	i);

				return(0);	//	Ends	the	program
}

/**/

/*	Sometimes	putting	dividers	like	the	one	above	is	a	nice	break
				between	your	different	functions.	*/

half	(int	*i)		//	Receives	the	address	of	i
{
				*i	=	*i	/	2;
				printf("Your	value	halved	is	%d.\n",	*i);
				return;	//	Returns	to	main
}

Here	is	the	output	from	the	program:
Click	here	to	view	code	image

Please	enter	an	integer...	28
Your	value	halved	is	14.

In	main(),	i	is	now	14.

It	looks	strange,	but	if	you	want	to	pass	a	non-array	by	address,	precede	it	in	the	passing	function	with
an	&	(address-of)	symbol	and	then	put	a	*	(dereferencing)	symbol	in	front	of	the	variable	everywhere
it	appears	in	the	receiving	function.	If	you	think	you’re	now	passing	a	pointer	to	a	function,	you’re
exactly	right.

	Note

Now	scanf()	is	not	so	unfamiliar.	Remember	that	you	put	an	&	before	non-array
variables	but	not	before	array	variables	that	you	pass	to	scanf().	When	you	call
scanf(),	you	must	pass	it	the	address	of	variables	so	that	scanf()	can	change	the
variables.	Because	strings	are	arrays,	when	you	get	a	string	from	the	keyboard,	you
don’t	put	an	address-of	operator	before	the	array	name.

Here	is	a	program	that	passes	an	integer	i	by	value,	a	floating-point	x	by	address,	and	an	integer
array	by	address	(as	all	arrays	should	be	passed):
Click	here	to	view	code	image

//	Example	program	#4	from	Chapter	31	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter31ex4.c

/*	The	program	demonstrates	passing	multiple	variables	to	a
function.	*/

#include	<stdio.h>

//	The	following	statement	will	be	explained	in	Chapter	32
changeSome(int	i,	float	*newX,	int	iAry[5]);

main()
{
				int	i	=	10;
				int	ctr;
				float	x	=	20.5;

				int	iAry[]	=	{10,	20,	30,	40,	50};

				puts("Here	are	main()'s	variables	before	the	function:");
				printf("i	is	%d\n",	i);
				printf("x	is	%.1f\n",	x);
				for	(ctr	=	0;	ctr	<	5;	ctr++)
				{
								printf("iAry[%d]	is	%d\n",	ctr,	iAry[ctr]);
				}

				//	Now	call	the	changeSome	function,	passing	the	value	of	i
				//	and	the	address	of	x	(hence,	the	&)

				changeSome(i,	&x,	iAry);

				puts("\n\nHere	are	main()'s	variables	after	the	function:");
				printf("i	is	%d\n",	i);
				printf("x	is	%.1f\n",	x);
				for	(ctr	=	0;	ctr	<	5;	ctr++)
				{
								printf("iAry[%d]	is	%d\n",	ctr,	iAry[ctr]);
				}

				return(0);	//	Ends	the	program
}

/**/

changeSome	(int	i,	float	*newX,	int	iAry[5])
{
				//	All	variables	are	changes,	but	only	the	float	and	array
				//	remain	changed	when	the	program	returns	to	main()

				//	changed	when	the	program	returns	to	main()
				int	j;

				i	=	47;
				*newX	=	97.6;	//	Same	location	as	x	in	main

				for	(j	=	0;	j	<	5;	j++)
				{
								iAry[j]	=	100	+	100*j;
				}
				return;	//	Returns	to	main
}

Here	is	the	output	from	the	program:
Click	here	to	view	code	image

Here	are	main()'s	variables	before	the	function:
i	is	10
x	is	20.5
iAry[0]	is	10
iAry[1]	is	20
iAry[2]	is	30
iAry[3]	is	40
iAry[4]	is	50

Here	are	main()'s	variables	after	the	function:
i	is	10
x	is	97.6
iAry[0]	is	100
iAry[1]	is	200
iAry[2]	is	300
iAry[3]	is	400
iAry[4]	is	500

The	next	chapter	finishes	with	the	passing	of	values	between	functions	by	showing	you	how	to	return
a	value	from	one	function	to	another.	Also,	you	will	finally	understand	the	true	use	of	stdio.h.

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	show	you	how	to	share	local	variables	between
functions.	When	one	function	needs	access	to	a	local	variable	defined	in	another
function,	you	must	pass	that	variable.	The	parentheses	after	function	names	contain	the
variables	you’re	passing	and	receiving.
Normally,	you	pass	non-array	variables	by	value,	which	means	that	the	receiving
function	can	use	them	but	not	affect	their	values	in	the	calling	function.	Arrays	are
passed	by	address,	which	means	that	if	the	receiving	function	changes	them,	the	array
variables	are	also	changed	in	the	calling	function.	You	can	pass	non-array	variables	by
address	by	preceding	them	with	the	address-of	operator,	&,	and	receiving	them	with	the
dereference	operator,	*.	Key	concepts	from	this	chapter	include:

•	Pass	local	variables	from	one	function	to	another	if	you	want	the	functions	to	share
local	variables.
•	Pass	variables	by	value	if	you	want	their	values	protected	from	the	called	function.
•	Pass	variables	by	address	if	you	want	their	values	changed	by	the	called	function.
•	Place	an	&	before	non-array	variables	you	want	to	pass	by	address.	Leave	off	the	&	if
you	want	to	pass	arrays.
•	Don’t	pass	an	array	variable	by	value;	C	has	no	way	to	do	that.

32.	Returning	Data	from	Your	Functions

In	This	Chapter
•	Returning	values
•	Using	the	return	data	type

This	chapter	isn’t	the	end	of	your	C	learning—it’s	only	the	beginning.	Sounds	deep,	doesn’t	it?	This
chapter	completes	the	multiple-function	picture	by	showing	you	how	to	return	values	from	the	called
function	to	the	calling	function.	It	also	explains	function	prototypes.
The	bottom	line	is	this:	You	will	now	understand	why	most	programs	in	this	book	contain	this	line:
return	0;

You	also	will	understand	the	true	purpose	of	header	files.

Returning	Values
So	far,	you’ve	seen	how	to	send	variables	to	functions.	You’re	now	ready	to	learn	how	to	return	a
value.	When	a	function	is	to	return	a	value,	use	the	return	statement	to	return	the	value.	C
programmers	often	put	parentheses	after	the	return	statement,	with	the	return	value	inside	those
parentheses,	such	as	return	(answer);.

	Note

If	a	function	doesn’t	return	a	value,	a	return	statement	isn’t	needed	because	the
function	will	return	to	the	calling	function	automatically.	Nevertheless,	if	you	need	to
return	a	value,	a	return	statement	is	required.

Although	you	can	pass	several	arguments	to	functions,	you	can	return	only	one	value	to	the	calling
function.	Figure	32.1	explains	what	is	going	on.	This	rule	has	no	exceptions.

FIGURE	32.1	You	can	pass	more	than	one	value	but	return	only	one.

Although	a	single	return	value	might	seem	limiting,	it	really	isn’t.	Consider	the	built-in
sqrt()function.	You	might	remember	from	Chapter	20,	“Advanced	Math	(For	the	Computer,	Not
You!),”	that	sqrt()	returns	the	square	root	of	whatever	value	is	passed	to	it.	sqrt()	doesn’t	return
several	values—only	one.	As	a	matter	of	fact,	none	of	the	built-in	functions	returns	more	than	a	single
value,	and	neither	can	yours.

	Note

The	gets()	function	seems	as	if	it	returns	more	than	one	value	because	it	returns	a
character	string	array.	Remember,	though,	that	an	array	name	is	nothing	more	than	a
pointer	to	the	array’s	first	position.	Therefore,	gets()	actually	returns	a	character
pointer	that	points	to	the	beginning	of	the	string	the	user	entered.

The	following	program	contains	a	function	that	receives	three	floating-point	values:	test1,	test2,
and	test3.	The	function	named	gradeAve()	calculates	the	average	of	those	three	grades	and	then
returns	the	answer.
Click	here	to	view	code	image

//	Example	program	#1	from	Chapter	32	of	Absolute	Beginner's	Guide
//	to	C,	3rd	Edition
//	File	Chapter32ex1.c

/*	The	program	demonstrates	functions	returning	a	value	by	passing
three	floating-point	numbers	(grades)	and	calculating	the	average	of
the	three.	*/

#include	<stdio.h>
float	gradeAve(float	test1,	float	test2,	float	test3);

main()
{
				float	grade1,	grade2,	grade3;
				float	average;

				printf("What	was	the	grade	on	the	first	test?	");
				scanf("	%f",	&grade1);

				printf("What	was	the	grade	on	the	second	test?	");
				scanf("	%f",	&grade2);

				printf("What	was	the	grade	on	the	third	test?	");
				scanf("	%f",	&grade3);

				//Pass	the	three	grades	to	the	function	and	return	the	average

				average	=	gradeAve(grade1,	grade2,	grade3);
				printf("\nWith	those	three	test	scores,	the	average	is	%.2f",
											average);

				return	0;
}

/**/

float	gradeAve(float	test1,	float	test2,	float	test3)
//	Receives	the	values	of	three	grades
{
				float	localAverage;

				localAverage	=	(test1+test2+test3)/3;

				return	(localAverage);	//	Returns	the	average	to	main
}

Here	is	sample	output	from	this	program:
Click	here	to	view	code	image

What	was	the	grade	on	the	first	test?	95
What	was	the	grade	on	the	second	test?	88
What	was	the	grade	on	the	third	test?	91
With	those	three	test	scores,	the	average	is	91.33.

	Note

Notice	that	main()	assigned	the	gradeAve()	return	value	to	average.	main()
had	to	do	something	with	the	value	that	was	returned	from	gradeAve().

You	can	put	an	expression	after	return	as	well	as	variables.	This:
Click	here	to	view	code	image

sales	=	quantity	*	price;
return	(sales);

is	identical	to	this:
Click	here	to	view	code	image

return	(quantity	*	price);

The	return	Data	Type
At	the	beginning	of	the	gradeAve()	function,	you	see	float.	float	is	the	data	type	of	the
returned	value	localAverage.	You	must	put	the	return	data	type	before	any	function	name	that
returns	a	value.	If	the	function	returned	a	long	int,	long	int	would	have	to	precede	the	function
name.
If	you	don’t	specify	a	return	data	type,	C	assumes	int.	Therefore,	C	expects	that	every	function
without	a	return	data	type	specified	explicitly	will	return	int.	Both	of	these	functions’	first	lines	mean
exactly	the	same	thing	to	C:
Click	here	to	view	code	image

int	myFun(int	a,	float	x,	char	c)

and
Click	here	to	view	code	image

myFun(int	a,	float	x,	char	c)		/*	int	is	assumed	*/

	Tip

Guess	what?	Even	main()	is	assumed	to	return	an	int	value	unless	you	specify	an
overriding	return	data	type.	That	is	why	you’ve	seen	return	0;	at	the	end	of	most	of
these	programs!	Because	main()	has	no	specified	return	data	type,	int	is	assumed,
and	the	return	0;	ensures	that	an	int	is	returned	to	your	operating	system.

If	your	function	doesn’t	return	a	value,	or	if	your	function	isn’t	passed	a	value,	you	can	insert	the
keyword	void	for	either	the	return	data	type	or	the	parameter	list	or	both.	Therefore,	the	first	line	of
a	function	that	neither	gets	any	value	nor	returns	any	value	might	look	like	this:
Click	here	to	view	code	image

void	doSomething(void)		/*	Neither	is	passed	nor	returns	*/

	Warning

main()	can’t	be	of	type	void	if	you	use	strict	American	National	Standards	Institute
(ANSI)	C.	It	must	be	of	type	int.	(However,	most	compilers—even	those	that	promote
themselves	as	ANSI	C-compatible—enable	you	to	specify	void	as	main()’s	return
type.)

One	Last	Step:	Prototype
Making	a	function	work	properly	involves	one	last	step.	If	a	function	returns	any	value	other	than
int,	you	should	prototype	that	function.	Actually,	you	should	prototype	functions	that	return	integers
as	well	for	clarity.
The	word	prototype	means	a	model	of	something	else.	A	prototype	of	a	function	is	just	a	model	of	the
actual	function.	At	first,	a	C	prototype	seems	like	a	total	waste	of	time.
The	reason	functions	that	return	int	values	don’t	need	prototypes	is	that	int	is	the	default
prototyped	return	value	unless	you	specify	a	different	return	value.	Therefore,	these	two	prototypes
both	model	the	same	function:
Click	here	to	view	code	image

int	aFunc(int	x,	float	y);		/*	2	passed,	one	integer	returned	*/

and
Click	here	to	view	code	image

aFunc(int	x,	float	y);		/*	2	passed,	one	integer	returned	*/

Prototypes	aren’t	required	if	you	don’t	return	a	value	or	if	you	return	an	integer	value,	but	they	are
strongly	recommended.	When	you	prototype,	C	ensures	that	you	don’t	pass	a	float	value	to	a
function	that	expects	to	receive	a	char.	Without	the	prototype,	C	tries	to	convert	the	float	to	a
char,	and	a	bad	value	is	passed	as	a	result.
To	prototype	a	function,	place	an	exact	duplicate	of	the	function’s	first	line	somewhere	before
main().	The	prototype	for	gradeAve()	appears	right	before	main()	in	the	program	you	saw
earlier.	The	line	is	not	a	function	call	because	it	appears	before	main().	The	line	is	not	a	function’s
actual	first	line	because	of	the	semicolon	that	follows	all	prototypes.	The	line	is	a	function	prototype.
If	your	program	calls	20	functions,	you	should	have	20	prototypes.
Prototype	every	function	in	your	programs—every	function	called	by	your	code	and	even	the	built-in
functions	such	as	printf().	“Huh?”	might	be	a	good	question	at	this	point.	You	might	wonder	how
you	can	prototype	printf()	when	you	didn’t	write	it	to	begin	with.	The	file	stdio.h	contains	a
prototype	for	printf(),	scanf(),	getchar(),	and	many	other	input	and	output	functions.	The
prototype	for	strcpy()	appears	in	string.h.	You	should	find	out	the	name	of	the	header	file
when	you	learn	a	new	built-in	function	so	that	you	can	use	the	#include	directive	to	add	the	file	to
your	program	and	make	sure	that	each	function	is	prototyped.

	Tip

main()	needs	no	prototype	as	long	as	you	place	main()	as	the	first	function	in	the
program.	main()	is	known	as	a	self-prototyping	function	because	no	other	functions
call	main()	before	it	appears	in	the	code.

The	following	program	does	not	work	correctly	because	the	float	return	type	is	not	prototyped
correctly.	Remember,	C	assumes	that	an	int	is	returned	(even	if	you	return	a	different	data	type)

unless	you	override	the	return	type	in	the	prototype.
Click	here	to	view	code	image

#include	<stdio.h>
compNet(float	atomWeight,	float	factor);

main()
{
							float	atomWeight,	factor,	netWeight;
							printf("What	is	the	atomic	weight?	");
							scanf("	%f",	&atomWeight);
							printf("What	is	the	factor?	");
							scanf("	%f",	&factor);
							netWeight	=	compNet(atomWeight,	factor);
							printf("The	net	weight	is	%.4f\n",	netWeight);
							return	0;
}

/**/

compNet(float	atomWeight,	float	factor)
{
							float	netWeight;

							netWeight	=	(atomWeight	–	factor)	*	.8;
							return(netWeight);
}

This	shows	the	incorrect	output:
Click	here	to	view	code	image

What	is	the	atomic	weight?	.0125
What	is	the	factor?	.98
The	net	weight	is	0.0000

To	fix	the	problem,	you	have	to	change	the	prototype	to	this:
Click	here	to	view	code	image

float	compNet(float	atomWeight,	float	factor);

You	also	have	to	change	the	compNet()’s	definition	line	(its	first	line)	to	match	the	prototype:
Click	here	to	view	code	image

float	compNet(float	atomWeight,	float	factor)

Wrapping	Things	Up
Never	pass	or	return	a	global	variable	if	you	use	one.	Global	variables	don’t	have	to	be	passed.	Also,
the	parameter	lists	in	the	calling	function,	receiving	function,	and	prototype	should	match	in	both
numbers	and	data	types.	(The	names	of	the	values	don’t	have	to	match.)
You	now	know	everything	there	is	to	know	about	passing	parameters	and	returning	values.	Put	on
your	official	programmer’s	thinking	cap	and	start	your	C	compiler!

The	Absolute	Minimum
The	goal	of	this	chapter	was	to	round	out	your	knowledge	of	functions	by	explaining
prototypes	and	return	values.	When	your	program	contains	a	lot	of	functions,
prototype	those	functions	somewhere	before	main().	The	prototypes	tell	C	what	to
expect.	After	you	prototype,	you	can	pass	and	return	variables	of	any	data	type.	(You
can	return	ints	only	if	you	don’t	prototype.)

The	prototype	ensures	that	you	don’t	inadvertently	pass	the	wrong	data	types	to
functions.	For	example,	if	the	prototype	states	that	you’ll	pass	two	float	values	to	a
function,	but	you	accidentally	pass	two	int	variables,	C	complains.	C	doesn’t
complain	if	you	don’t	prototype,	and	you	might	get	wrong	results	because	of	it.
Now	that	you	know	how	to	return	values,	you	can	write	functions	that	mirror	those	that
are	built	in,	such	as	sqrt()	and	rand().	When	you	call	a	function,	that	function
returns	a	value	based	on	the	function’s	code.	A	function	can	return	a	maximum	of	one
value,	just	like	functions	that	are	built	in.	Key	concepts	from	this	chapter	include:
•	Place	the	return	data	type	before	a	function	name	that	returns	a	value.
•	The	return	value	appears	after	a	return	statement.
•	In	the	calling	function,	do	something	with	the	return	value.	Print	it	or	assign	it	to
something.	Calling	a	function	that	returns	a	value	is	useless	if	you	do	nothing	with
the	return	value.
•	Use	void	as	the	return	data	type	or	in	the	parameter	list	if	you	neither	return	nor
pass	values	to	a	function.
•	Don’t	return	more	than	one	value	from	a	function.
•	Don’t	return	a	non-integer	without	a	prototype.	Better	yet,	prototype	all	functions
except	main().

Appendixes

A.	The	ASCII	Table

B.	The	Draw	Poker	Program

Programming	is	not	all	work	and	no	play,	and	the	following	Draw	Poker	game	proves	it!	The	game
program	provides	a	long	example	that	you	can	study	as	you	master	C.	Although	the	game	is	simple
and	straightforward,	a	lot	happens	in	this	program.
As	with	all	well-written	programs,	this	one	is	commented	thoroughly.	In	fact,	if	you	have	read	each
chapter	of	this	book,	you	will	understand	the	programming	of	Draw	Poker.	One	of	the	reasons	the
program	is	kept	simple	is	to	keep	it	compiler-independent.	For	your	program,	you	might	want	to	find
out	how	your	C	compiler	produces	colors	onscreen	so	that	you	can	add	pizazz	to	the	game’s	display.
Also,	when	you	master	enough	of	C	to	understand	the	program’s	inner	workings,	you’ll	want	to
explore	graphics	capabilities	and	actually	draw	the	cards.

	Note

You	can	also	experiment	with	changes	to	the	program.	For	example,	most	draw	poker
programs	pay	out	on	a	pair	only	if	it	is	Jacks	or	better	(that	is,	only	a	pair	of	Jacks,
Queens,	Kings,	or	Aces).	How	would	you	have	to	alter	the	analyzeHand()	function
to	make	that	change?

Click	here	to	view	code	image

//	Example	poker	program	from	Appendix	B	of	Absolute	Beginner's
//	Guide	to	C,	3rd	Edition
//	File	AppendixBpoker.c

/*	This	program	plays	draw	poker.	Users	can	play	as	often	as	they
want,	betting	between	1	and	5.	They	are	dealt	5	cards	and	then	get
to	choose	which	cards	to	keep,	and	which	cards	to	replace.	The	new
hand	is	then	reviewed	and	the	user's	payout	is	set	based	on	the
value	of	the	hand.	The	user's	new	bankroll	is	displayed	as	they	are
given
				the	option	to	continue.	*/

//	Header	files

#include	<stdio.h>
#include	<time.h>
#include	<ctype.h>
#include	<stdlib.h>

//	Two	constants	defined	for	determining	whether	hands	are	flushes
//	or	straights

#define	FALSE	0
#define	TRUE	1

//	Function	prototyping

void	printGreeting();
int	getBet();

char	getSuit(int	suit);
char	getRank(int	rank);
void	getFirstHand(int	cardRank[],	int	cardSuit[]);
void	getFinalHand(int	cardRank[],	int	cardSuit[],	int	finalRank[],
													int	finalSuit[],	int	ranksinHand[],
													int	suitsinHand[]);
int	analyzeHand(int	ranksinHand[],	int	suitsinHand[]);

main()
{
				int	bet;
				int	bank	=	100;
				int	i;
				int	cardRank[5];	//	Will	be	one	of	13	values	(Ace-King)
				int	cardSuit[5];	//	Will	be	one	of	4	values	(for	Clubs,	Diamonds,
																					//	Hearts,	Spades)
				int	finalRank[5];
				int	finalSuit[5];
				int	ranksinHand[13];	//	Used	for	evaluating	the	final	hand
				int	suitsinHand[4];	//	Used	for	evaluating	the	final	hand
				int	winnings;
				time_t	t;
				char	suit,	rank,	stillPlay;

				//	This	function	is	called	outside	the	do...while	loop	because
				//	the	greeting
				//	only	needs	to	be	displayed	once,	while	everything	else	in	main
				//	will	run
				//	multiple	times,	depending	on	how	many	times	the	user	wants	to
				//	play.

				printGreeting();

				//	Loop	runs	each	time	the	user	plays	a	hand	of	draw	poker

				do	{
								bet	=	getBet();

								srand(time(&t));
								getFirstHand(cardRank,	cardSuit);
								printf("Your	five	cards:	\n");
								for	(i	=	0;	i	<	5;	i++)
								{
												suit	=	getSuit(cardSuit[i]);
												rank	=	getRank(cardRank[i]);
												printf("Card	#%d:	%c%c\n",	i+1,	rank,	suit);
								}

				//	These	two	arrays	are	used	to	figure	out	the	value	of
				//	the	player's	hand.	However,	they	must	be	zeroed	out
				//	in	case	the	user	plays	multiple	hands.

				for	(i=0;	i	<	4;	i++)
				{
								suitsinHand[i]	=	0;
				}

				for	(i=0;	i	<	13;	i++)

				{
								ranksinHand[i]	=	0;
				}

				getFinalHand(cardRank,	cardSuit,	finalRank,	finalSuit,
																											ranksinHand,	suitsinHand);

				printf("Your	five	final	cards:	\n");
				for	(i	=	0;	i	<	5;	i++)
				{
								suit	=	getSuit(finalSuit[i]);
								rank	=	getRank(finalRank[i]);
								printf("Card	#%d:	%c%c\n",	i+1,	rank,	suit);
				}

								winnings	=	analyzeHand(ranksinHand,suitsinHand);
								printf("You	won	%d!\n",	bet*winnings);
								bank	=	bank	-	bet	+	(bet*winnings);
								printf("\nYour	bank	is	now	%d.\n",	bank);
								printf("\nDo	you	want	to	play	again?	");
								scanf("	%c",	&stillPlay);
				}	while	(toupper(stillPlay)	==	'Y');

				return;
}
/**/

//	Print	a	quick	greeting	as	well	as	tell	the	users	the	value	of
//	different	winning	hands

void	printGreeting()
{
				printf("***\n");
				printf("\n\n\tWelcome	to	the	Absolute	Beginner's	Casino\n\n");
				printf("\tHome	of	Video	Draw	Poker\n\n");
				printf("***\n");

				printf("Here	are	the	rules:\n");
				printf("You	start	with	100	credits,	and	you	make	a	bet	from	");
				printf("1	to	5	credits.\n");
				printf("You	are	dealt	5	cards,	and	you	then	choose	which	");
				printf("cards	to	keep	");
				printf("or	discard.\n");
				printf("You	want	to	make	the	best	possible	hand.\n");
				printf("\nHere	is	the	table	for	winnings	(assuming	a	");
				printf("bet	of	1	credit):");
				printf("\nPair\t\t\t\t1	credit");
				printf("\nTwo	pairs\t\t\t2	credits");
				printf("\nThree	of	a	kind\t\t\t3	credits");
				printf("\nStraight\t\t\t4	credits");
				printf("\nFlush\t\t\t\t5	credits");
				printf("\nFull	House\t\t\t8	credits");
				printf("\nFour	of	a	Kind\t\t\t10	credits");
				printf("\nStraight	Flush\t\t\t20	credits");
				printf("\n\nHave	fun!!\n\n");
}

//	Function	to	deal	the	first	five	cards

void	getFirstHand(int	cardRank[],	int	cardSuit[])
{
				int	i,j;
				int	cardDup;

				for	(i=0;	i	<	5;	i++)
								{
												cardDup	=	0;
												do	{
																//	Card	rank	is	one	of	13	(2-10,	J,	Q,	K,	A)
																cardRank[i]	=	(rand()	%	13);
																//		Card	suit	is	one	of	4
																//		(club,	diamond,	heart,	spade)
																cardSuit[i]	=	(rand()	%	4);

																//	Loop	that	ensures	each	card	is	unique
																for	(j=0;	j	<	i;	j++)
																{
																				if	((cardRank[i]	==	cardRank[j])	&&
																				(cardSuit[i]	==	cardSuit[j]))
																				{
																								cardDup	=	1;
																				}
																}
												}	while	(cardDup	==	1);
								}

}

//	Function	that	changes	the	suit	integer	value	to	a	character
//	representing	the	suit

char	getSuit(int	suit)
{
				switch	(suit)
				{
								case	0:
												return('c');
								case	1:
												return('d');
								case	2:
												return('h');
								case	3:
												return('s');
				}
}

//	Function	that	changes	the	rank	integer	value	to	a	character
//	representing	the	rank

char	getRank(int	rank)
{
				switch	(rank)
				{
								case	0:
												return('A');
								case	1:
												return('2');
								case	2:

												return('3');
								case	3:
												return('4');
								case	4:
												return('5');
								case	5:
												return('6');
								case	6:
												return('7');
								case	7:
												return('8');
								case	8:
												return('9');
								case	9:
												return('T');
								case	10:
												return('J');
								case	11:
												return('Q');
								case	12:
												return('K');
				}
}

//	Function	to	get	the	user's	bet	between	1	and	5

int	getBet()
{
				int	bet;

				do	//Will	keep	running	until	the	user	enters	0-5
				{
								printf("How	much	do	you	want	to	bet?	(Enter	a	number	");
								printf("1	to	5,	or	0	to	quit	the	game):	");
								scanf("	%d",	&bet);

								if	(bet	>=	1	&&	bet	<=	5)
								{
												return(bet);
								}
								else	if	(bet	==	0)
								{
												exit(1);
								}
								else
								{
												printf("\n\nPlease	enter	a	bet	from	1-5	or	");
												printf("0	to	quit	the	game.\n");
								}

				}	while	((bet	<	0)	||	(bet	>	5));
}

//	Last	function	reviews	the	final	hand	and	determines	the	value	of
//	the	hand.

int	analyzeHand(int	ranksinHand[],	int	suitsinHand[])
{
				int	num_consec	=	0;
				int	i,	rank,	suit;

				int	straight	=	FALSE;
				int	flush	=	FALSE;
				int	four	=	FALSE;
				int	three	=	FALSE;
				int	pairs	=	0;

				for	(suit	=	0;	suit	<	4;	suit++)
								if	(suitsinHand[suit]	==	5)
												flush	=	TRUE;
				rank	=	0;
				while	(ranksinHand[rank]	==	0)
								rank++;
				for	(;	rank	<	13	&&	ranksinHand[rank];	rank++)
								num_consec++;
				if	(num_consec	==	5)	{
								straight	=	TRUE;
				}
				for	(rank	=	0;	rank	<	13;	rank++)	{
								if	(ranksinHand[rank]	==	4)
												four	=	TRUE;
								if	(ranksinHand[rank]	==	3)
												three	=	TRUE;
								if	(ranksinHand[rank]	==	2)
												pairs++;
				}

				if	(straight	&&	flush)	{
								printf("Straight	flush\n\n");
								return	(20);
				}
				else	if	(four)	{
								printf("Four	of	a	kind\n\n");
								return	(10);
				}
				else	if	(three	&&	pairs	==	1)	{
								printf("Full	house\n\n");
								return	(8);
				}
				else	if	(flush)	{
								printf("Flush\n\n");
								return	(5);
				}
				else	if	(straight)	{
								printf("Straight\n\n");
								return	(4);
				}
				else	if	(three)	{
								printf("Three	of	a	kind\n\n");
								return	(3);
				}
				else	if	(pairs	==	2)	{
								printf("Two	pairs\n\n");
								return	(2);
				}
				else	if	(pairs	==	1)	{
								printf("Pair\n\n");
								return	(1);
				}
				else	{

								printf("High	Card\n\n");
								return	(0);
				}
}

//	This	function	looks	through	each	of	the	five	cards	in	the	first	hand
//	and	asks	the	user	if	they	want	to	keep	the	card.	If	they	say	no,
//	they	get	a	replacement	card.

void	getFinalHand(int	cardRank[],	int	cardSuit[],	int	finalRank[],
													int	finalSuit[],	int	ranksinHand[],
													int	suitsinHand[])
{
				int	i,	j,	cardDup;
				char	suit,	rank,	ans;

				for	(i=0;	i	<	5;	i++)
				{
								suit	=	getSuit(cardSuit[i]);
								rank	=	getRank(cardRank[i]);
								printf("Do	you	want	to	keep	card	#%d:	%c%c?",	i+1,	rank,	suit);
								printf("\nPlease	answer	(Y/N):	");
								scanf("	%c",	&ans);
								if	(toupper(ans)	==	'Y')
								{
												finalRank[i]	=	cardRank[i];
												finalSuit[i]	=	cardSuit[i];
												ranksinHand[finalRank[i]]++;
												suitsinHand[finalSuit[i]]++;
												continue;
								}
								else	if	(toupper(ans)	==	'N')
								{
												cardDup	=	0;
												do	{
																cardDup	=	0;
																finalRank[i]	=	(rand()	%	13);
																finalSuit[i]	=	(rand()	%	4);

																//	First	check	your	new	card	against	the	5	original
																//	cards	to	avoid	duplication
																for	(j=0;	j	<	5;	j++)
																{
																					if	((finalRank[i]	==	cardRank[j])	&&
																					(finalSuit[i]	==	cardSuit[j]))
																				{
																								cardDup	=	1;
																				}
																}
																	//	Next,	check	the	new	card	against	any	newly	drawn
																	//		cards	to	avoid	duplication
																for	(j=0;	j	<	i;	j++)
																{
																					if	((finalRank[i]	==	finalRank[j])	&&
																					(finalSuit[i]	==	finalSuit[j]))
																				{
																								cardDup	=	1;
																				}
																}
												}	while	(cardDup	==	1);

												ranksinHand[finalRank[i]]++;
												suitsinHand[finalSuit[i]]++;
								}
				}

}

Index

Symbols
#define	directives,	60-62
#include	directives,	58-60
--	operators,	119-121
++	operators,	119-121

A
addition	operator,	compound,	86
addPayroll()	function,	292
addresses
memory,	222
passing	arguments	by,	297-302

allocating	heap	memory,	244-249
multiple	allocations,	250-255

American	National	Standards	Institute	(ANSI),	11,	18
ampersands,	scanf()	function,	variables,	68-69
ANSI	(American	National	Standards	Institute),	11,	18
apostrophes	(‘),	character	data,	18
arguments,	294
passing,	293-294

by	address,	297-302
by	value,	295-297

arithmetic
compound	assignment	operators,	84-87

addition,	86
multiplication,	86
order,	88
updating	variables,	85-86

operators,	74-77
assignment,	80-81
order	of,	77-79
parentheses	rules,	79

arrays,	52,	193,	231
character,	52-54

storing	string	literals,	234-236
defining,	194-196
elements,	53,	194-197
filling,	202

names,	232-233
nums,	196
parallel,	202
passing,	303
pointers,	236,	239-241
putting	values	in,	197-199
searching,	201-208
sorting,	210

ascending	order,	210,	214-215
data	searches,	215-220
descending	order,	210,	214-215

strings,	printing	in,	54
subscripts,	196
vals,	195

ascending	order,	sorting	arrays,	210,	214-215
ASCII	table,	313-317
assignment	operator,	storing	data	in	variables,	45
assignment	operators,	45,	80-81
compound,	84-87

addition,	86
multiplication,	86
order,	88
updating	variables,	85-86

B
backslashes	(/),	15
base-8	numbers,	20
base-16	numbers,	20
binary,	10
binary	searches,	arrays,	208
blocks,	braces,	290
body,	if	statements,	94
braces	({}),	15
blocks,	290

break	statement,	142-144,	153-154
bubble	sorting,	arrays
ascending	order,	210,	214-215
data	searches,	215-220
descending	order,	210,	214-215

bugs,	10
buildContact()	function,	288,	292

C
calcIt()	function,	17
case,	variables,	checking,	172-176
case	statements,	153-162
case-changing	functions,	176
C	compilers,	7
ceil()	function,	182
char	variables,	42
character	arrays,	52-54
storing	string	literals,	234-236

character	string	literals,	43
character-testing	functions,	172
characters,	18-19
ASCII	table,	313-317
conversion,	36-37
keywords,	extracting	from,	164-167
pointers,	234
sending	single	character	to	screen,	164-167
strings,	19

closing	files,	269
code
See	also	programming
blocks,	opening,	14
Blocks	C	compiler,	7-9
comments,	23-25

alternate	style,	28
multi-line,	25
single-line,	28
specifying,	25-27

debugging,	10
indention,	16
line	breaks,	27-28
loops

continue	statement,	145-146
do...while,	127-129
for,	132-139
nesting,	135
terminating	with	break	statement,	142-144
while,	124-129

output,	printf()	function,	31-39

source,	10
whitespace,	27-28
word	processors,	copying	from,	15

commands,	11
do...while,	repeating	code,	127-129
while,	124

repeating	code,	124-129
comments,	23-25
alternate	style,	28
multi-line,	25
single-line,	28
specifying,	25-27

compilers,	7,	10
Blocks	C	compiler,	7-9

compound	assignment	operators,	84-87
addition,	86
multiplication,	86
order,	88
updating	variables,	85-86

compound	relational	operators.	See	logical	operators
compound	statements,	94
computer	programs.	See	programs
concatenation,	strings,	176
conditional	operators,	116-118
constant	data,	42
constants
defined,	60-64

naming,	61
named,	60
variables,	232

continue	statement,	145-146
control	string	characters,	leading	spaces,	scanf()	statements,	68
control	strings,	printf()	function,	32
conversion	characters,	36-37
copy()	function,	passing	arguments	by,	295-297
counter	variables,	84
cross-platform	software,	7

D
data
literal,	42

saving,	267
sorting,	209
storing	in	variables,	45-48
structures,	257

defining,	258-262
putting	data	in,	262-265

testing
else	statement,	96-100
if	statement,	92-96

data	searches,	sorting	arrays,	215-220
data	types,	17-18
character,	18-19
floating-point	numbers,	20-21
int,	258
integers,	19-20
mixing,	89
return,	309
variables,	42

deallocating	heap	memory,	244-246
debugging,	10
declaring
structures,	259
variables,	44-45

decrement	operators,	74,	119-121
deficiencies,	heap	memory,	249
defined	constants,	60-64
naming,	61

defining
arrays,	194-196
constants,	#define	directive,	60-62
pointer	variables,	222-224
structures,	258-262
variables,	44-45,	60

same	line,	44
dereferencing	pointer	variables,	225,	228
descending	order,	sorting	arrays,	210,	214-215
disk	files,	268-270
dot	operator,	262
double	variables,	42
do...while	loops

repeating	code,	127-129
terminating,	142-144

Draw	Poker	program,	14
comments,	25
functions,	289
header	files,	60
main()	function,	96

E
editors,	10
elements,	arrays,	53,	194-197
else	statement,	testing	data,	96-100
Enter	keypress,	terminating,	getchar()	function,	167-168
equals	sign,	storing	data	in	variables,	45
escape	sequences,	34-36
printf()	function,	34

exit()	function,	153
expressions,	6,	74

F
fabs()	function,	183-184
fclose()	function,	269,	278
feof()	function,	274
fgetc()	function,	281
fgets()	function,	235-236,	272
Fibonacci	searches,	arrays,	208
file	pointers,	268
global,	269

files
closing,	269
disk,	268
header,	59

building,	62-64
Draw	Poker	program,	60
quotation	marks,	59

including,	#include	preprocessor	directives,	58-60
navigating,	279-284
opening,	268-270
pointer,	268
random-access,	268,	277-278

opening,	278-279

sequential,	268-275
filling	arrays,	202
flag	variables,	206
float	variables,	42
floating-point	absolute	values,	183
floating-point	numbers,	20-21
conversion	characters,	36-37

floor()	function,	182
fopen()	function,	268-270,	278-279
for	loops,	131-135,	138-139
nested,	210
relational	test,	134
semicolons,	133
terminating,	break	statement,	142-144

formats,	printf()	function,	32-33
found	variable,	206
fprintf()	function,	270
fputc()	function,	281
free()	function,	246,	252
freeing	heap	memory,	250
fscanf()	function,	274
fseek()	function,	279-284
functions,	286-289
addPayroll(),	292
buildContact(),	288,	292
calcIt(),	17
case-changing,	176
ceil(),	182
character-testing,	172
Draw	Poker	program,	289
exit(),	153
fabs(),	183-184
fclose(),	269,	278
feof(),	274
fgetc(),	281
fgets(),	235-236,	272
floor(),	182
fopen(),	268-270,	278-279
fprintf(),	270
fputc(),	281

free(),	246,	252
fscanf(),	274
fseek(),	279-284
getch(),	172
getchar(),	164-169,	172
gets(),	177,	194,	235,	307
gradeAve(),	307-308
half(),	295-296
isalpha(),	172
isdigit(),	172
islower(),	172-176
isupper(),	172-176
main(),	16-17,	21-22,	59-62,	96,	260,	285,	288,	295-296,	308-312
malloc(),	246-252
math,	181-184

generating	random	values,	187-188,	191
logarithmic,	184-186
trigonometric,	184-186

passing	arguments,	293-294
by	address,	297-302
by	value,	295-297

pow(),	183
prAgain(),	291
printContact(),	288
printf(),	16,	22,	32,	49,	56,	59,	65-66,	118,	126,	195,	233,	270,	310

code	output,	31-39
controlString,	32-33
conversion	characters,	36-37
escape	sequences,	34-36
format,	32-33
placeholders,	32
printing	strings,	33
prompting	users	before	scanf(),	66-68

prototypes,	305,	309-311
putc(),	281
putchar(),	164-167
puts(),	177,	195
rand(),	187-188,	191,	214
returning	values,	306-309
scanf(),	65,	300

ampersands,	68-69
header	file,	66
problems	with,	68-71
prompting	users	with	printf(),	66-68

sizeof(),	196,	247
sqrt(),	183,	306
srand(),	187
strcpy(),	54,	59,	176-179,	194,	197,	234
string,	176-179
strlen(),	176-179
tolower(),	176
toupper(),	129,	176,	240

G
getchar()	function,	164-169,	172
terminating	Enter	keypress,	167-168

getch()	function,	172
gets()	function,	177,	194,	235,	307
global	file	pointers,	269
global	variables,	45,	290-292,	312
gradeAve()	function,	307-308

H
half()	function,	295-296
header	files
building,	62-64
Draw	Poker	program,	60
quotation	marks,	59
scanf()	function,	66

heap	memory,	243-246
allocating,	244-249
deallocating,	244-246
deficiencies,	249
freeing,	250
multiple	allocations,	250-255
pointer	variables,	243-244

hexadecimal	numbers,	20

I-J
IDE	(integrated	development	environment),	7
if...else	statements,	96,	116-118,	150

if	statement,	91,	149
body,	94
testing	data,	92-96

increment	operators,	119-121
incrementing	counter	variables,	132
indention,	code,	16
infinite	loops,	123
initializing	strings,	54-56
int	data	type,	258
int	variables,	42
integers,	19-20
integrated	development	environment	(IDE),	7
invStruct	statement,	260-262
isalpha()	function,	172
isdigit()	function,	172
islower()	function,	172-176
isupper()	function,	172-176

K-L
keywords,	extracting	single	character	from,	getchar()	function,	164-167
leading	0,	integers,	20
leading	spaces,	control	string	characters,	scanf()	statements,	68
length,	strings,	51-52
line	breaks,	27-28
literal	data,	42
local	variables,	45,	290-292
logarithmic	functions,	184-186
logical	operators,	103-108
avoiding	negative,	109-111
combining	with	relational	operators,	104-108
order,	111-112

loops,	123,	131
continue	statement,	145-146
do...while,	127-129
for,	131-135,	138-139

nested,	210
relational	test,	134
semicolons,	133

infinite,	123
nesting,	135
terminating,	break	statement,	142-144

while,	124-129

M
machine	language,	10
main()	function,	16-17,	21-22,	59,	62,	96,	260,	285,	288,	295-296,	308-312
#include	directives,	60

maintenance,	programs,	24
malloc()	function,	246-252
math
compound	assignment	operators,	84-87

addition,	86
multiplication,	86
order,	88
updating	variables,	85-86

operators,	74-77
assignment,	80-81
order	of,	77-79
parentheses	rules,	79

math	functions,	181-184
generating	random	values,	187-191
logarithmic,	184-186
trigonometric,	184-186

members,	257
memory,	heap,	243-246
allocating,	244-249
deallocating,	244-246
deficiencies,	249
freeing,	250
multiple	allocations,	250-255
pointer	variables,	243-244

memory	addresses,	222
mixing	data	types,	89
mode	strings,	fopen()	function,	270
modulus	operator,	76
multi-line	comments,	25
multiple	allocations,	heap	memory,	250-255
multiplication	operator,	compound,	86

N
named	constants,	60
naming

defined	constants,	61
variables,	43-44

navigating	files,	279-284
nested	for	loops,	210
nesting	loops,	135
nonarray	variables,	passing,	303
nonintegers,	promoting/demoting,	182
null	zeros,	50
numbers
floating-point,	20-21
hexadecimal,	20
integers,	19-20
octal,	20

nums	array,	196

O
octal	numbers,	20
open	source	software,	7
opening
files,	268-270
random-access	files,	278-279

operators,	73-77
assignment,	80-81

variables,	45
compound	assignment,	84-87

addition,	86
multiplication,	86
order,	88
updating	variables,	85-86

conditional,	116-118
decrement,	74,	119-121
dot,	262
increment,	119-121
logical,	103-108

avoiding	negative,	109-111
combining	with	relational	operators,	104-108
order,	111-112

modulus,	76
order	of,	77-79
parentheses	rules,	79
postfix,	119

prefix,	119
relational,	91-92,	96,	103-104

combining	with	logical	operators,	104-108
sizeof(),	121-122

order
arrays,	210,	214-215
compound	assignment	operators,	88
logical	operators,	111-112
operators,	77-79

organizing	programs,	285-289
origin	values,	fseek()	function,	279
output,	7
code,	printf()	function,	31-39
programs,	14

P
parallel	arrays,	202
parameters,	294
parentheses	(()),	15
logical	operators,	111
rules,	operators,	79

passing
arguments,	293-294

by	address,	297-302
by	value,	295-297

arrays	and	nonarray	variables,	303
placeholders,	32
placing	#include	directives,	60
pointer	files,	268
pointers,	221,	231
array	names,	232-233
arrays	of,	236,	239-241
characters,	234
constants,	232
defining,	222-224
dereferencing,	225,	228
files,	268

global,	269
heap	memory,	243-244
memory	addresses,	222
structure,	262

postfix	operators,	119
pow()	function,	183
prAgain()	function,	291
prefix	operators,	119
preprocessor	directives,	57
#define,	60-62
#include,	58-60

placing,	60
printContact()	function,	288
printf()	function,	16,	22,	32,	49,	56,	59,	65-66,	118,	126,	195,	233,	270,	310
code	output,	31-39
controlString,	32-33
conversion	characters,	36-37
escape	sequences,	34-36
format,	32-33
placeholders,	32
printing	strings,	33
prompting	users	before	scanf(),	66-68

printing
strings,	33
strings	in	arrays,	54

programmers,	6
programming
See	also	code
process,	10
requirements,	7-10

programs,	6-7
building,	62-64
Draw	Poker,	14

comments,	25
functions,	289
header	files,	60

IDE	(integrated	development	environment),	7
maintenance,	24
organizing,	285-289
output,	7,	14
writing,	requirements,	7-10

prototypes	(functions),	305,	309-311
putc()	function,	281
putchar()	function,	164-167

puts()	function,	177,	195

Q-R
quotation	marks	(),	characters,	19
header	files,	59

rand()	function,	187-188,	191,	214
random-access	files,	268,	277-278
navigating,	279-284
opening,	278-279

random	values,	generating,	187-191
real	numbers,	20-21
conversion	characters,	36-37

records,	258
relational	operators,	91-92,	96,	103-104
combining	with	logical	operators,	104-108

relational	tests,	for	loops,	134
return	data	type,	309
returning	values,	functions,	306-309

S
saving	data,	267
scanf()	function,	65,	300
header	file,	66
problems	with,	68-71
prompting	users	with	printf(),	66-68
variables,	ampersands,	68-69

searching	arrays,	201-208
self-prototyping	functions,	310
semicolons
commands	and	functions,	33
for	loops,	133

sequential	files,	268-275
closing,	269
opening,	268-270

sequential	searches,	arrays,	208
single-line	comments,	28
sizeof()	function,	121-122,	196,	247
software,	cross-platform	and	open	source,	7
sorting	arrays,	209
ascending	order,	210,	214-215
data	searches,	215-216,	219-220

descending	order,	210,	214-215
source	code,	10
spacebar	character,	18
spaces,	control	string	characters,	scanf()	statements,	68
specifying	comments,	25-27
sqrt()	function,	183,	306
srand()	function,	187
statements
break,	142-144,	153-154
case,	153-162
compound,	94
continue,	145-146
do...while,	repeating	code,	127-129
for,	repeating	code,	132-139
if,	91,	149

body,	94
testing	data,	92-96

if...else,	96,	116-118,	150
invStruct,	260-262
struct,	258-259
switch,	150-154
while,	repeating	code,	124-129

storing	data	in	variables,	45-48
equals	sign,	45

strcpy()	function,	54,	59,	176-179,	194,	197,	234
string	functions,	176-179
string.h	header	file,	176
string	literals,	character	arrays,	234-236
string	terminator,	50
string	variables,	49
strings,	19,	171
character	arrays,	52-54
concatenation,	176
control,	printf()	function,	32
initializing,	54-56
length,	51-52
mode,	fopen(),	270
printing,	33
printing	in	arrays,	54
string	terminator,	50

terminating	zero,	50-51
strlen()	function,	176-179
struct	statement,	258-259
structures,	257-258
declaring,	259
defining,	258-262
putting	data	in	structure	variables,	262-265

subscripts,	53
arrays,	196

switch	statement,	150-154
syntax,	code	comments,	25-27

T
terminating	loops,	break	statement,	142-144
terminating	zero,	strings,	50-51
testing	data
else	statement,	96-100
if	statement,	92-96

tolower()	function,	176
toupper()	function,	129,	176,	240
trigonometric	functions,	184-186
typecasting,	88-89

U-V
updating	variables,	compound	assignment	operators,	85-86
uppercase	letters,	defined	constant	names,	61
vals	arrays,	195
values
arrays,	putting	in,	197-199
passing	arguments	by,	295-297
returning,	functions,	306-309

variables,	41-43,	294
char,	42
checking	case,	172-176
counter,	84
data	types,	42
decrementing,	119
defining,	44-45,	60
double,	42
flag,	206
float,	42

found,	206
global,	45,	290-292,	312
incrementing,	119
incrementing	counter,	132
int,	42
local,	45,	290-292
naming,	43-44
nonarray,	passing,	303
passing,	293-294

by	address,	297-302
by	value,	295-297

pointers,	221,	231
array	names,	232-233
arrays	of,	236,	239-241
characters,	234
constants,	232
defining,	222-224
dereferencing,	225,	228
heap	memory,	243-244
memory	addresses,	222

scanf()	function,	ampersands,	68-69
storing	data	in,	45-48
string,	49
structure,	putting	data	in,	262-265
typecasting,	89
updating,	compound	assignment	operators,	85-86

void	keyword,	309

W-Z
while	command,	124
while	loops
repeating	code,	124-129
terminating,	142-144

whitespace,	27-28
word	processors,	copying	code	from,	15
writing	programs,	requirements,	7-10
zeroes,	terminating,	strings,	50-51

	About This eBook
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Authors
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Who’s This Book For?
	What Makes This Book Different?
	This Book’s Design Elements
	How Can I Have Fun with C?
	What Do I Do Now?

	Part I: Jumping Right In
	1. What Is C Programming, and Why Should I Care?
	What Is a Program?
	What You Need to Write C Programs
	The Programming Process
	Using C

	2. Writing Your First C Program
	A Down-and-Dirty Chunk of Code
	The main() Function
	Kinds of Data
	Wrapping Things Up with Another Example Program

	3. What Does This Do? Clarifying Your Code with Comments
	Commenting on Your Code
	Specifying Comments
	Whitespace
	A Second Style for Your Comments

	4. Your World Premiere—Putting Your Program’s Results Up on the Screen
	How to Use printf()
	Printing Strings
	Escape Sequences
	Conversion Characters
	Putting It All Together with a Code Example

	5. Adding Variables to Your Programs
	Kinds of Variables
	Naming Variables
	Defining Variables
	Storing Data in Variables

	6. Adding Words to Your Programs
	Understanding the String Terminator
	The Length of Strings
	Character Arrays: Lists of Characters
	Initializing Strings

	7. Making Your Programs More Powerful with #include and #define
	Including Files
	Placing #include Directives
	Defining Constants
	Building a Header File and Program

	8. Interacting with Users
	Looking at scanf()
	Prompting for scanf()
	Problems with scanf()

	Part II: Putting C to Work for You with Operators and Expressions
	9. Crunching the Numbers—Letting C Handle Math for You
	Basic Arithmetic
	Order of Operators
	Break the Rules with Parentheses
	Assignments Everywhere

	10. Powering Up Your Variables with Assignments and Expressions
	Compound Assignment
	Watch That Order!
	Typecasting: Hollywood Could Take Lessons from C

	11. The Fork in the Road—Testing Data to Pick a Path
	Testing Data
	Using if
	Otherwise...: Using else

	12. Juggling Several Choices with Logical Operators
	Getting Logical
	Avoiding the Negative
	The Order of Logical Operators

	13. A Bigger Bag of Tricks—Some More Operators for Your Programs
	Goodbye if...else; Hello, Conditional
	The Small-Change Operators: ++ and --
	Sizing Up the Situation

	Part III: Fleshing Out Your Programs
	14. Code Repeat—Using Loops to Save Time and Effort
	while We Repeat
	Using while
	Using do...while

	15. Looking for Another Way to Create Loops
	for Repeat’s Sake!
	Working with for

	16. Breaking in and out of Looped Code
	Take a break
	Let’s continue Working

	17. Making the case for the switch Statement
	Making the switch
	break and switch
	Efficiency Considerations

	18. Increasing Your Program’s Output (and Input)
	putchar() and getchar()
	The Newline Consideration
	A Little Faster: getch()

	19. Getting More from Your Strings
	Character-Testing Functions
	Is the Case Correct?
	Case-Changing Functions
	String Functions

	20. Advanced Math (for the Computer, Not You!)
	Practicing Your Math
	Doing More Conversions
	Getting into Trig and Other Really Hard Stuff
	Getting Random

	Part IV: Managing Data with Your C Programs
	21. Dealing with Arrays
	Reviewing Arrays
	Putting Values in Arrays

	22. Searching Arrays
	Filling Arrays
	Finders, Keepers

	23. Alphabetizing and Arranging Your Data
	Putting Your House in Order: Sorting
	Faster Searches

	24. Solving the Mystery of Pointers
	Memory Addresses
	Defining Pointer Variables
	Using the Dereferencing *

	25. Arrays and Pointers
	Array Names Are Pointers
	Getting Down in the List
	Characters and Pointers
	Be Careful with Lengths
	Arrays of Pointers

	26. Maximizing Your Computer’s Memory
	Thinking of the Heap
	But Why Do I Need the Heap?
	How Do I Allocate the Heap?
	If There’s Not Enough Heap Memory
	Freeing Heap Memory
	Multiple Allocations

	27. Setting Up Your Data with Structures
	Defining a Structure
	Putting Data in Structure Variables

	Part V: Files and Functions
	28. Saving Sequential Files to Your Computer
	Disk Files
	Opening a File
	Using Sequential Files

	29. Saving Random Files to Your Computer
	Opening Random Files
	Moving Around in a File

	30. Organizing Your Programs with Functions
	Form Follows C Functions
	Local or Global?

	31. Passing Variables to Your Functions
	Passing Arguments
	Methods of Passing Arguments

	32. Returning Data from Your Functions
	Returning Values
	The return Data Type
	One Last Step: Prototype
	Wrapping Things Up

	Appendixes
	A. The ASCII Table
	B. The Draw Poker Program

	Index

