

1

Comprehensive Transaction Platform
Trade and Quotation

Application Programming Interface

Version：4.2

Publish Date: Nov. 6, 2009

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

2

I． List of File Change history

version date of change memo
V4.2 2009-11-6 Create the English Version

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

I

Index

CHAPTER 1. INTRODUCTION ... 1

1.1. BACKGROUND .. 1
1.2. INTRODUCTION OF API FILES .. 1

CHAPTER 2. ARCHETECTURE ... 3

2.1. COMMUNICATION MODE ... 3
2.2. DATA STREAM ... 4

CHAPTER 3. PROGAMMING INTERFACE TYPE.. 6

3.1. DIALOG MODE PROGRAMMING INTERFACE ... 6
3.2. PRIVATE MODE PROGRAMMING INTERFACE ... 8
3.3. BOADCAST MODE PROGRAMMING INTERFACE ... 8

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

1

Chapter 1. Introduction

Comprehensive Transaction Platform (CTP) ,a future trade and

broker information management system, contains trade server, risk

management server,settlement information management subsystem.

The API is used to communicate with the CTP trade server. From

the API, investor can receive quotation data from SHFE, DCE and CZCE,

send trading directive to the three exchanges, receive corresponding

response and trade status return.

1.1. Background

In 2006, after shanghai future information technology coporation

completed the New Generation Exchange System (NGES) development

for SHFE, we brought in the success experience to our CTP

development.

In April 2007, we obtained the first order of CTP from the future

broker system field in China. With our great efforts in recent three years,

investors trading via CTP have expanded all over the world and the

broker quantity has increased to thirty in China.

1.2. Introduction of API files

The API of CTP trade server is based on C++ library and carrys out

the communication between trade client and CTP trade server. Trade

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

2

clients includes CTP standard trade client (such as Q7, pobo, weisoft etc.

developed by third part) free used by all investor of CTP, and trade tools

only used personally (developed by investors or their partners). By using

the API, trade client could insert or cancel common order and condition

order, contract status fire order, query order or trade record and get the

current account and position status. This library contains:

File Name File Description

ThostFtdcTraderApi.h Trading interface c++ head file

ThostFtdcMdApi.h Quotation interface c++ head file

ThostFtdcUserApiStruct.h Defines all data type

ThostFtdcUserApiDataType.h Defines all data structure

thosttraderapi.dll The dynamic link library of trading

interface. thosttraderapi.lib

thostmduserapi.dll The dynamic link library of quotation

interface. thostmduserapi.lib

error.dtd The api error code and information in

xml format. error.xml

Note: Users of compilers MS VC 6.0，MS VC.NET 2003,etc, need

toturn on the multi-thread option in compile setting.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

3

Chapter 2. Archetecture

The communication protocol between CTP API and CTP trade

server is futures TradingData Exchange protocol (FTD), an information

exchange protocol based on TCP.

2.1. Communication Mode

In FTD protocol, communication mode includes the following three

modes:

l Dialog mode, client submits a request to CTP, and CTP will

return corresponding results.

l Private mode, CTP sends private messages to specific client those

messages are all private notify message such as order status or

trade confirmation.

l Broadcast mode, CTP publishs common information to all clients

registerd to ctp.

Each communication mode is not confined to one network

connection. That means, with one network connection, the client can use

all the three communication modes, or several different client connection

can use the same communication mode. For example, the client can use

broadcast mode to receive instrument status change message, and at the

same time receive its own private message such as order confirmation

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

4

message.

The following diagram explains communication process of these

three modes:

client Server

request(dialog mode)

response(dialog mode)

Connect request

Connect response

Identification confirm request

Identification confirm response

Return private msg(private mode)

Return common msg(broadcast mode)

Disconnect request

Disconnect response

2.2. Data Stream

CTP support dialog, private and broadcast communication mode.

With dialog communication mode, dialog data stream and query data

stream could be transmitted.

Dialog and query data stream are both bi-direction data stream, the

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

5

client application submit request and CTP server return response. CTP

server doesn’t maintain the status of dialog and query data stream. when

problems occurs, for example reconnect happens, the dialog and query

data stream will be reset after the communication rebuilding and data on

fly will lost .

With private communication mode, private data stream is

transmitted. Private data stream is a unidirectional data stream, using it,

the CTP server send private message to the corresponding client

application. Private message includes risk notice, order status, order

confirmation, trade confirmation. The private data stream is reliable,

when the client application lost connection with CTP server, at any time

in the same trading day, the client application can reconnect the CTP

server with specified sequence number of its own private data flow and

without any risk of lost those private trading data.

With the broadcast communication mode, public data stream is

transmitted. It is a unidirectional and reliable data stream just like the

private data stream, the only difference between them is the broad cast

communication data will broadcast to all connecting client application. Its

main useage is pulic instrument status or any public important message.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

6

Chapter 3. Progamming Interface Types

CTP trade API provides the two interfaces, CThostFtdcTraderApi

and CThostFtdcTraderSpi. The CTP quotation API provides

CThostFtdcMdApi and CThostFtdcMdSpi. The four interfaces implement

FTD protocol; the client could submit requests by invoking functions of

the CThostFtdcXXXApi and receive the CTP response with reloaded

callback functions of their own object inherited from

CThostFtdcXXXSpi.

3.1. Dialog mode programming interface

Communication functions of the interface with dialog mode is

usually defined as the following:

request： int CThostFtdcTraderApi::ReqXXX(

 CThostFtdcXXXField *pReqXXX,

 int nRequestID)

int CThostFtdcMDApi::ReqXXX(

 CThostFtdcXXXField *pReqXXX,

 int nRequestID)

response： void CThostFtdcTraderSpi::OnRspXXX(

 CThostFtdcXXXField *pRspXXX,

 CThostFtdcRspInfoField *pRspInfo,

 int nRequestID,

 bool bIsLast)

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

7

void CThostFtdcMDSpi::OnRspXXX(

 CThostFtdcXXXField *pRspXXX,

 CThostFtdcRspInfoField *pRspInfo,

 int nRequestID,

 bool bIsLast)

The first parameter of request functions is request content and

should not be empty. The second parameter is the request Id, which

should be maintained by client trade application, and within one session

the ID is strongly recommended be unique, when the client receive the

response from the CTP server, the client could relate request and response

with same request ID.

When the client receive any response from CTP server, the reloaded

callback function of CThostFtdcXXXSpi will be invoked, if the response

has more than one records, the reloaded callback function would be

invoked repeatly until the whole message is received.

The first parameter of response functions is the data of the reponse,

which usually includes the original request data. If something wrong

happened or CTP can not find any record for the request, the parameter

will be NULL. The second parameter is a flag used by CTP to show

whether this response is one successful response. When the callback

function is invoked more than one time, except the first time of the

callback being invoked, this second parameter may be NULL in the

following callback action. The third parameter is request ID which is

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

8

same as the corresponding request. The last parameter is the end marker

of the response, the value “true” manifest the current response is the last

one related with the same request.

3.2. Private mode programming interface

The following example shows the usual way of defining the private

interface:

void CThostFtdcTraderSpi::OnRtnXXX(CThostFtdcXXXField *pXXX)

void CThostFtdcTraderSpi::OnErrRtnXXX(CThostFtdcXXXField *pXXX,

 CThostFtdcRspInfoField *pRspInfo)

There is no function of the quotation API interface to communicate

with CTP server in private mode.

When CTP server issue return data with private data stream, the

reloaded callback function of the object inherited from

CThostFtdcTradeSpi will be invoked.

The first parameter of all callback functions is the return content

from CTP server, the second parameter of the OnErrRtn

CThostFtdcTradeSpi functions is detail error information when

something is wrong.

3.3. Boadcast mode programming interface

The client application can use the following two fuctions to

communication with CTP server with broadcast mode:

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

9

void CThostFtdcTraderSpi::OnRtnInstrumentStatus (

CThostFtdcInstrumentStatusField *pInstrumentStatus)

void CThostFtdcTraderSpi::OnRtnDepthMarketData (

CThostFtdcDepthMarketDataField *pDepthMarketData)

The callback function “OnRtnInstrumentStatus” is used to notify

client application the status change of instruments.

The callback function “OnRtnDepthMarketData” is used by CTP to

public the updated market quotation data from exchanges.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

10

Chapter 4. Operation mode

4.1. Working thread

The CTP client process need two kind of thread, one is the

application main thread and the othe is trade API working thread, if the

client want to receive quotation data, another quotation API working

thread is needed. API working thread links trade client and CTP server.

The trade and quotation API interface is thread-safe, the client

application can use two or more working thread at the same time without

need to concern about the thread conflict, the client application should

process the callback message as quickly as possible to avoid any

unporocessed callback message blocking this working thread. To avoid

any blocked communication, the client application should use buffer layer

to store all the messages received from CTP. The client application can

also use such buffer to keep its own data model independence from CTP

API data model.

4.2. Files in location

CTP API’s dynamic link library will create some local files to store

runtime data, those files has such extending file name as “.con”, The

trade client application can use the first parameter of these two

functions(“CreateFtdcTraderApi() or CreateFtdcMdApi()”) to specify

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

11

these files’ local path.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

12

4.3. Business terminology and interface function contrast

Type Business Request interface Response interface Stream
login login CThostFtdcTraderApi:: ReqUserLogin CThostFtdcTraderSpi::OnRspUserLogin dialog

logout CThostFtdcTraderApi::ReqUserLogout CThostFtdcTraderSpi::OnRspUserLogout dialog
Password modification CThostFtdcTraderApi::ReqUserPasswordUpdate CThostFtdcTraderSpi::OnRspUserPasswordUpdate dialog

trade Order insertion CThostFtdcTraderApi::ReqOrderInsert CThostFtdcTraderSpi::OnRspOrderInsert dialog
Order modification CThostFtdcTraderApi::ReqOrderAction CThostFtdcTraderSpi::OnRspOrderAction dialog

Private
return

Trade return N/A CThostFtdcTraderSpi::OnRtnTrade private
Order return N/A CThostFtdcTraderSpi::OnRtnOrder private
Order insertion error
return

N/A CThostFtdcTraderSpi::OnErrRtnOrderInsert private

Order monification error
return

N/A CThostFtdcTraderSpi::OnErrRtnOrderAction private

query Order query CThostFtdcTraderApi::ReqQryOrder CThostFtdcTraderSpi::OnRspQryOrder query
Trade query CThostFtdcTraderApi::ReqQryTrade CThostFtdcTraderSpi::OnRspQryTrade query
Investor query CThostFtdcTraderApi::ReqQryInvestor CThostFtdcTraderSpi::OnRspQryInvestor query
Investor position query CThostFtdcTraderApi::ReqQryInvestor Position CThostFtdcTraderSpi::OnRspQryInvestor Position query
Instrument query CThostFtdcTraderApi::ReqQryInstrument CThostFtdcTraderSpi::OnRspQryInstrument query

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

13

Chapter 5. CTP API specification

5.1. General rules

The client trade application follows two steps to connect and

communicate with the CTP server: initialization and fuction call.

To use trade API, client trade application should program the

following steps:

1. Create a “CThostFtdcTraderApi” instance.

2. Create an event handle instance inherited from

“CThostFtdcTraderSpi” interface, and registering this instance

with the “RegisterSpi” function of the “CThostFtdcTraderApi”.

3. Subscribe private stream with the “SubscribePrivateTopic”

function of the “CThostFtdcTraderApi”.

4. Subscribe public stream with the “SubscribePublicTopic” function

of the “CThostFtdcTraderApi”.

5. Register the trade front addresses of the CTP server with the

“RegisterFront” function of the “CThostFtdcTraderApi”. The

client could call the function several times, in order to establish

more reliable communication; this kind of function usage is

strongly recommended.

6. Start connection with CTP server using the “Init” function of the

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

14

“CThostFtdcTraderApi”.

7. After the CTP server confirmed the connection, the callback

function “OnFrontConnected” of the “CThostFtdcTraderSpi”

interface will be invoked. In the function implementation, the

client application can submit the “login” request using the

“ReqUserLogin” function of the “CThostFtdcTraderApi”.

8. After the CTP server confirmed the login, the callback function

“OnRspUserLogin” of the “CThostFtdcTraderSpi” interface will

be invoked.

9. Now, the communication between the client and CTP server is

estabilished successfully, and the client trade application can use

other CTP API to communicate with CTP server.

If client trade application want to use quotation API , the client

application can use those steps which illustrated previous

segments,except subscribing private and public stream.

There are several programming rules:

1. The parameters of all request functions should not be NULL.

2. In case the type of functions’ return value is “int”, value “0”

means function return normally, other values represent error

returns; their detail information can be foundin the “error.xml”

file.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

15

5.2. CThostFtdcTraderSpi

CTP use CThostFtdcTraderSpi as its event interface. Client trade

application can inherit the function of CThostFtdcTraderSpi to receive

the notification from CTP server.

5.2.1. OnFrontConnected

This function is invoked after client finished the connection with

CTP server, then by inherit this function, the client could use

“ReqUserLogin” to send login request.

definition：
void OnFrontConnected()；

5.2.2. OnFrontDisconnected

When the connection ended or disconnected, this function is called.

If the message is left unprocessed, then the API instance will

automatically reconnect with CTP server using one of the front addresses

from the registed front address list.

definition：
void OnFrontDisconnected (int nReason)；

parameters：
nReason：the reason of disconnecion
 0x1001 network reading failed
 0x1002 network writing failed
 0x2001 heartbeat receiing timeout
 0x2002 heartbeat sending timeout
 0x2003 received a error message

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

16

5.2.3. OnHeartBeatWarning

This function is used to indicate the long used connection is still

available.

definition：
void OnHeartBeatWarning(int nTimeLapse)；

parameters：
nTimeLapse：Length of time elapsed since the last received message.

5.2.4. OnRspUserLogin

CTP server use the callback function “OnRspUserLogin” to notify

the client whether the login function “OnRspUserLogin” was accepted by

the server.

definition：
void OnRspUserLogin(
 CThostFtdcRspUserLoginField *pRspUserLogin,
 CThostFtdcRspInfoField *pRspInfo,
 int nRequestID,
 bool bIsLast)；

parameters：

pRspUserLogin：The pointer of the structure for user’s login response. The

following is definition of the structure:
struct CThostFtdcRspUserLoginField
{
 ///trading day
 TThostFtdcDateType TradingDay;
 ///time of login
 TThostFtdcTimeType LoginTime;
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

17

 ///trade system name
 TThostFtdcSystemNameType SystemName;
};

pRspInfo：Pointer of the structure for system response. The following is

definition of the structure:
 struct CThostFtdcRspInfoField

{
 ///error id
 TThostFtdcErrorIDType ErrorID;
 ///error information
 TThostFtdcErrorMsgType ErrorMsg;

};

5.2.5. OnRspUserLogout

CTP server use this callback function to notify the client application

whether the function “OnRspUserLogout” was succeeded.

definition：
void OnRspUserLogout(

CThostFtdcUserLogoutField *pUserLogout,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pRspUserLogout：Pointerof the structure for user’s logout response. The

following is definition of the structure:
struct CThostFtdcUserLogoutField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;
};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

18

5.2.6. OnRspUserPasswordUpdate

CTP server use this callback function to notify the client application

whether the function “ReqUserPasswordUpdate” was succeeded.

definition：
void OnRspUserPasswordUpdate(

CThostFtdcUserPasswordUpdateField
*pUserPasswordUpdate,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pUserPasswordUpdate：Pointer of the structure for the response of user’s

password modification. The following is definition of the structure:
 struct CThostFtdcUserPasswordUpdateField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;
 ///old password
 TThostFtdcPasswordType OldPassword;
 ///new password
 TThostFtdcPasswordType NewPassword;
};

5.2.7. OnRspTradingAccountPasswordUpdate

CTP server use this callback function to notify the client application

whether the function “ReqTradingAccountPasswordUpdate” has been

succeeded.

definition：
void OnRspTradingAccountPasswordUpdate(

CThostFtdcTradingAccountPasswordUpdateField *pTradingAccountPasswordUpdate,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

19

CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pTradingAccountPasswordUpdate：Pointer of the structure for the response of

trading account password modification. The following is definition of the structure,
struct CThostFtdcTradingAccountPasswordUpdateField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///account id
 TThostFtdcAccountIDType AccountID;
 ///old password
 TThostFtdcPasswordType OldPassword;
 ///new password
 TThostFtdcPasswordType NewPassword;
};

5.2.8. OnRspError

CTP server uses this callback function to notify something is wrong

in the client application’s request.

definition：
void OnRspError(

CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

parameters：

pRspInfo：Pointer of the structure for the response information. The following is

definition of the structure,
 struct CThostFtdcRspInfoField

{
 ///error id
 TThostFtdcErrorIDType ErrorID;
 ///error information
 TThostFtdcErrorMsgType ErrorMsg;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

20

5.2.9. OnRspOrderInsert

CTP server use this callback function to response to the client ’s

“ReqOrderInsert” request.

definition：
void OnRspOrderInsert(

CThostFtdcInputOrderField *pInputOrder,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pInputOrder：Pointer of the structure for the response of order inserting. The

following is definition of the structure,
 struct CThostFtdcInputOrderField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 /// price type of condition order
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///order direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 ///valid date
 TThostFtdcTimeConditionType TimeCondition;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

21

 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume type
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
};

5.2.10. OnRspOrderAction

CTP server use this callback function to response to the client

application ’s“ReqOrderAction” request.

definition：
void OnRspOrderAction(

CThostFtdcOrderActionField *pOrderAction,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pOrderAction：Pointer of the structure for the response of order action. The

following is definition of the structure,
 struct CThostFtdcOrderActionField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

22

 ///order action reference
 TThostFtdcOrderActionRefType OrderActionRef;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///action flag
 TThostFtdcActionFlagType ActionFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume change
 TThostFtdcVolumeType VolumeChange;
 ///action date
 TThostFtdcDateType ActionDate;
 ///action time
 TThostFtdcTimeType ActionTime;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///install ID
 TThostFtdcInstallIDType InstallID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///action local ID
 TThostFtdcOrderLocalIDType ActionLocalID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///order action status
 TThostFtdcOrderActionStatusType OrderActionStatus;
 ///user id
 TThostFtdcUserIDType UserID;
 ///status message
 TThostFtdcErrorMsgType StatusMsg;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

23

};

5.2.11. OnRspQueryMaxOrderVolume

CTP server use this callback function to response to the client

application’s “ReqQueryMaxOrderVolume” request.

definition：
void OnRspQueryMaxOrderVolume(

CThostFtdcQueryMaxOrderVolumeField *pQueryMaxOrderVolume,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pQueryMaxOrderVolume： Pointer of the structure for the response of

ReqQueryMaxOrderVolume. The following is definition of the structure,
struct CThostFtdcQueryMaxOrderVolumeField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///direction
 TThostFtdcDirectionType Direction;
 ///offset flag
 TThostFtdcOffsetFlagType OffsetFlag;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///max volume
 TThostFtdcVolumeType MaxVolume;
};

5.2.12. OnRspSettlementInfoConfirm

CTP server uses this callback function toresponse to the client

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

24

application’s “ReqSettlementInfoConfirm” request.

definition：
void OnRspSettlementInfoConfirm(

CThostFtdcSettlementInfoConfirmField *pSettlementInfoConfirm,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,

 bool bIsLast)；

parameters：

pSettlementInfoConfirm: Pointer of the structure for the response of

ReqSettlementInfoConfirm. The following is definition of the structure,
struct CThostFtdcSettlementInfoConfirmField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///confirm date
 TThostFtdcDateType ConfirmDate;
 ///confirm time
 TThostFtdcTimeType ConfirmTime;

};

5.2.13. OnRspQryOrder

CTP server uses this callback function toresponse to the client

application’s “ReqQryOrder” request.

definition：
void OnRspQryOrder(

CThostFtdcOrderField *pOrder,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pOrder：Pointer of the structure for the response of ReqQryOrder. The following

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

25

is definition of the structure,
 struct CThostFtdcOrderField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 ///valid date type
 TThostFtdcTimeConditionType TimeCondition;
 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

26

 TThostFtdcRequestIDType RequestID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///install ID
 TThostFtdcInstallIDType InstallID;
 ///order submit status
 TThostFtdcOrderSubmitStatusType OrderSubmitStatus;
 ///order notify sequence
 TThostFtdcSequenceNoType NotifySequence;
 ///trading day
 TThostFtdcDateType TradingDay;
 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///order source
 TThostFtdcOrderSourceType OrderSource;
 ///order status
 TThostFtdcOrderStatusType OrderStatus;
 ///order type
 TThostFtdcOrderTypeType OrderType;
 ///volume traded
 TThostFtdcVolumeType VolumeTraded;
 /// total volume
 TThostFtdcVolumeType VolumeTotal;
 ///insert date
 TThostFtdcDateType InsertDate;
 ///insert time
 TThostFtdcTimeType InsertTime;
 ///active time
 TThostFtdcTimeType ActiveTime;
 ///suspend time
 TThostFtdcTimeType SuspendTime;
 ///update time

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

27

 TThostFtdcTimeType UpdateTime;
 ///cancel time
 TThostFtdcTimeType CancelTime;
 ///active trader ID
 TThostFtdcTraderIDType ActiveTraderID;
 ///clear participant ID
 TThostFtdcParticipantIDType ClearingPartID;
 ///sequence No.
 TThostFtdcSequenceNoType SequenceNo;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///user product information
 TThostFtdcProductInfoType UserProductInfo;
 ///status message
 TThostFtdcErrorMsgType StatusMsg;
};

5.2.14. OnRspQryTrade

CTP server uses this callback function to response to the client

application’s “ReqQryTrade”request.

definition：
void OnRspQryTrade(

CThostFtdcTradeField *pTrade,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pTrade：Pointer of the structure for the response of ReqQryTrade. The following

is definition of the structure,
 struct CThostFtdcTradeField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

28

 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///trade ID
 TThostFtdcTradeIDType TradeID;
 ///direction
 TThostFtdcDirectionType Direction;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///trading role
 TThostFtdcTradingRoleType TradingRole;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///offset flag
 TThostFtdcOffsetFlagType OffsetFlag;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///price
 TThostFtdcPriceType Price;
 ///volume
 TThostFtdcVolumeType Volume;
 ///trade date
 TThostFtdcDateType TradeDate;
 ///trade time
 TThostFtdcTimeType TradeTime;
 ///trade type
 TThostFtdcTradeTypeType TradeType;
 ///price source
 TThostFtdcPriceSourceType PriceSource;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///clear participant ID
 TThostFtdcParticipantIDType ClearingPartID;
 ///business unit

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

29

 TThostFtdcBusinessUnitType BusinessUnit;
 ///sequence No.
 TThostFtdcSequenceNoType SequenceNo;
 ///trading day
 TThostFtdcDateType TradingDay;
 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
};

5.2.15. OnRspQryInvestor

CTP server uses this callback function to response to the client

application’s “ReqQryInvestor”request.

definition：
void OnRspQry Investor (

CThostFtdcInvestorField *pInvestor,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pInvestor：Pointer of the structure for the response of ReqQryInvestor. The

following is definition of the structure,

struct CThostFtdcInvestorField

{

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor group ID

 TThostFtdcInvestorIDType InvestorGroupID;

 ///investor name

 TThostFtdcPartyNameType InvestorName;

 ///Identified Card Type

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

30

 TThostFtdcIdCardTypeType IdentifiedCardType;

 ///Identified Card No.

 TThostFtdcIdentifiedCardNoType IdentifiedCardNo;

 ///is active

 TThostFtdcBoolType IsActive;

};

5.2.16. OnRspQryInvestorPosition

CTP server uses this callback function to response to the client

application’s “ReqQryInvestorPosition”request.

definition：
void OnRspQry InvestorPosition(

CThostFtdcInvestorPositionField *pInvestorPosition,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pInvestorPosition ： Pointer of the structure for the response of

ReqQryInvestorPosition. The following is definition of the structure,
struct CThostFtdcInvestorPositionField
{
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///position direction
 TThostFtdcPosiDirectionType PosiDirection;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///position date
 TThostFtdcPositionDateType PositionDate;
 ///position of last trading day
 TThostFtdcVolumeType YdPosition;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

31

 ///position
 TThostFtdcVolumeType Position;
 ///long frozen
 TThostFtdcVolumeType LongFrozen;
 ///short frozen
 TThostFtdcVolumeType ShortFrozen;
 ///long frozen amount
 TThostFtdcMoneyType LongFrozenAmount;
 ///short frozen amount
 TThostFtdcMoneyType ShortFrozenAmount;
 ///open volume
 TThostFtdcVolumeType OpenVolume;
 ///close volume
 TThostFtdcVolumeType CloseVolume;
 ///open amount
 TThostFtdcMoneyType OpenAmount;
 ///close amount
 TThostFtdcMoneyType CloseAmount;
 ///position cost
 TThostFtdcMoneyType PositionCost;
 ///previous margin
 TThostFtdcMoneyType PreMargin;
 ///used margin
 TThostFtdcMoneyType UseMargin;
 ///frozen margin
 TThostFtdcMoneyType FrozenMargin;
 ///frozen cash
 TThostFtdcMoneyType FrozenCash;
 ///frozen commission
 TThostFtdcMoneyType FrozenCommission;
 ///cash in
 TThostFtdcMoneyType CashIn;
 ///commission
 TThostFtdcMoneyType Commission;
 ///close profit
 TThostFtdcMoneyType CloseProfit;
 ///position profit
 TThostFtdcMoneyType PositionProfit;
 ///previous settlement price
 TThostFtdcPriceType PreSettlementPrice;
 ///settlement price
 TThostFtdcPriceType SettlementPrice;
 ///trading day
 TThostFtdcDateType TradingDay;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

32

 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
};

5.2.17. OnRspQryTradingAccount

CTP server uses this callback function to response to the client

application ’s “ReqQryTradingAccount”request.

definition：
void OnRspQryTradingAccount(

CThostFtdcTradingAccountField *pTradingAccount,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pTradingAccount ： Pointer of the structure for the response of

ReqQryTradingAccount. The following is definition of the structure,

struct CThostFtdcTradingAccountField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///account id

 TThostFtdcAccountIDType AccountID;

 ///previous mortgage

 TThostFtdcMoneyType PreMortgage;

 ///previous credit

 TThostFtdcMoneyType PreCredit;

 ///previous deposit

 TThostFtdcMoneyType PreDeposit;

 ///previous balance

 TThostFtdcMoneyType PreBalance;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

33

 ///premargin

 TThostFtdcMoneyType PreMargin;

 ///interest base

 TThostFtdcMoneyType InterestBase;

 ///interest

 TThostFtdcMoneyType Interest;

 ///deposit

 TThostFtdcMoneyType Deposit;

 ///withdraw

 TThostFtdcMoneyType Withdraw;

 ///frozen margin

 TThostFtdcMoneyType FrozenMargin;

 ///frozen cash

 TThostFtdcMoneyType FrozenCash;

 ///frozen commission

 TThostFtdcMoneyType FrozenCommission;

 ///current margin

 TThostFtdcMoneyType CurrMargin;

 ///cash in

 TThostFtdcMoneyType CashIn;

 ///commission

 TThostFtdcMoneyType Commission;

 ///close profit

 TThostFtdcMoneyType CloseProfit;

 ///position profit

 TThostFtdcMoneyType PositionProfit;

 ///balance

 TThostFtdcMoneyType Balance;

 ///available

 TThostFtdcMoneyType Available;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

34

 ///withdraw quota

 TThostFtdcMoneyType WithdrawQuota;

 ///reserve

 TThostFtdcMoneyType Reserve;

 ///trading day

 TThostFtdcDateType TradingDay;

 ///settlement ID

 TThostFtdcSettlementIDType SettlementID;

 ///credit

 TThostFtdcMoneyType Credit;

 ///Mortgage

 TThostFtdcMoneyType Mortgage;

 ///excahnge margin

 TThostFtdcMoneyType ExchangeMargin;

};

5.2.18. OnRspQryTradingCode

CTP server uses this callback function toresponse to the client

application’s “ReqQryTradingCode”request.

definition：
void OnRspQryTradingCode(

CThostFtdcTradingCodeField *pTradingCode,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pTradingCode：Pointer of the structure for the response of ReqQryTradingCode.

The following is definition of the structure,

struct CThostFtdcTradingCodeField

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

35

{

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

 ///trading code

 TThostFtdcClientIDType ClientID;

 ///is active

 TThostFtdcBoolType IsActive;

};

5.2.19. OnRspQryExchange

CTP server uses this callback function to reponse to the client

application’s “ReqQryExchange”request.

definition：
void OnRspQryExchange(

CThostFtdcExchangeField *pExchange,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pExchange：Pointer of the structure for the response of ReqQryExchange. The

following is definition of the structure,

struct CThostFtdcExchangeField

{

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

36

 ///exchange name

 TThostFtdcExchangeNameType ExchangeName;

 ///exchange property

 TThostFtdcExchangePropertyType ExchangeProperty;

};

5.2.20. OnRspQryInstrument

CTP server uses this callback function toreponse tto he client

application’s “ReqQryInstrument”request.

definition：
void OnRspQryInstrument(

CThostFtdcInstrumentField *pInstrument,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pInstrument：Pointer of the structure for the response of ReqQryInstrument. The

following is definition of the structure,

struct CThostFtdcInstrumentField

{

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

 ///instrument name

 TThostFtdcInstrumentNameType InstrumentName;

 ///exchange instrument ID

 TThostFtdcExchangeInstIDType ExchangeInstID;

 ///product ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

37

 TThostFtdcInstrumentIDType ProductID;

 ///product class

 TThostFtdcProductClassType ProductClass;

 ///delivery year

 TThostFtdcYearType DeliveryYear;

 ///delivery month

 TThostFtdcMonthType DeliveryMonth;

 ///max volume for market order

 TThostFtdcVolumeType MaxMarketOrderVolume;

 ///min volume for market order

 TThostFtdcVolumeType MinMarketOrderVolume;

 ///max volume for limit order

 TThostFtdcVolumeType MaxLimitOrderVolume;

 ///min volume for limit order

 TThostFtdcVolumeType MinLimitOrderVolume;

 ///volume multiple of instrument

 TThostFtdcVolumeMultipleType VolumeMultiple;

 ///price tick

 TThostFtdcPriceType PriceTick;

 ///create date

 TThostFtdcDateType CreateDate;

 ///open date

 TThostFtdcDateType OpenDate;

 ///expire date

 TThostFtdcDateType ExpireDate;

 ///start delivery date

 TThostFtdcDateType StartDelivDate;

 ///end delivery date

 TThostFtdcDateType EndDelivDate;

 ///instrument life phase

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

38

 TThostFtdcInstLifePhaseType InstLifePhase;

 ///is trading

 TThostFtdcBoolType IsTrading;

 ///position type

 TThostFtdcPositionTypeType PositionType;

 ///position date type

 TThostFtdcPositionDateTypeType PositionDateType;

 ///long margin ratio

 TThostFtdcRatioType LongMarginRatio;

 ///short margin ratio

 TThostFtdcRatioType ShortMarginRatio;

};

5.2.21. OnRspQryDepthMarketData

CTP server uses this callback function to reponse the client

application’s “ReqQryDepthMarketData” request.

definition：
void OnRspQryDepthMarketData(

CThostFtdcDepthMarketDataField *pDepthMarketData,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pDepthMarketData ： Pointer of the structure for the response of

ReqQryDepthMarketData. The following is definition of the structure,

struct CThostFtdcDepthMarketDataField

{

 ///trading day

 TThostFtdcDateType TradingDay;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

39

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

 ///exchange instrument ID

 TThostFtdcExchangeInstIDType ExchangeInstID;

 ///last price

 TThostFtdcPriceType LastPrice;

 ///previous settlement price

 TThostFtdcPriceType PreSettlementPrice;

 ///previous close price

 TThostFtdcPriceType PreClosePrice;

 ///previous open volume

 TThostFtdcLargeVolumeType PreOpenInterest;

 ///open price

 TThostFtdcPriceType OpenPrice;

 ///highest price

 TThostFtdcPriceType HighestPrice;

 ///lowest price

 TThostFtdcPriceType LowestPrice;

 ///trade volume

 TThostFtdcVolumeType Volume;

 ///turnover

 TThostFtdcMoneyType Turnover;

 ///open interest

 TThostFtdcLargeVolumeType OpenInterest;

 ///close Price

 TThostFtdcPriceType ClosePrice;

 ///settlement price

 TThostFtdcPriceType SettlementPrice;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

40

 ///upper limit price

 TThostFtdcPriceType UpperLimitPrice;

 ///lower limit price

 TThostFtdcPriceType LowerLimitPrice;

 ///pre-delta

 TThostFtdcRatioType PreDelta;

 ///current delta

 TThostFtdcRatioType CurrDelta;

 ///update time

 TThostFtdcTimeType UpdateTime;

 ///Update Millisecond

 TThostFtdcMillisecType UpdateMillisec;

 ///the first bid price

 TThostFtdcPriceType BidPrice1;

 ///the first bid volume

 TThostFtdcVolumeType BidVolume1;

 ///the first ask price

 TThostFtdcPriceType AskPrice1;

 ///the first ask volume

 TThostFtdcVolumeType AskVolume1;

 ///the second bid price

 TThostFtdcPriceType BidPrice2;

 ///the second bid volume

 TThostFtdcVolumeType BidVolume2;

 ///the second ask price

 TThostFtdcPriceType AskPrice2;

 ///the second ask volume

 TThostFtdcVolumeType AskVolume2;

 ///the third bid price

 TThostFtdcPriceType BidPrice3;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

41

 ///the third bid volume

 TThostFtdcVolumeType BidVolume3;

 ///the third ask price

 TThostFtdcPriceType AskPrice3;

 ///the third ask volume

 TThostFtdcVolumeType AskVolume3;

 ///the forth bid price

 TThostFtdcPriceType BidPrice4;

 ///the forth bid volume

 TThostFtdcVolumeType BidVolume4;

 ///the forth ask price

 TThostFtdcPriceType AskPrice4;

 ///the forth ask volume

 TThostFtdcVolumeType AskVolume4;

 ///the fifth bid price

 TThostFtdcPriceType BidPrice5;

 ///the fifth bid volume

 TThostFtdcVolumeType BidVolume5;

 ///the fifth ask price

 TThostFtdcPriceType AskPrice5;

 ///the fifth ask volume

 TThostFtdcVolumeType AskVolume5;

};

5.2.22. OnRspQrySettlementInfo

CTP server uses this callback function to response to the client

application’s “ReqQrySettlementInfo” request.

definition：

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

42

void OnRspQrySettlementInfo(
CThostFtdcSettlementInfoField *pSettlementInfo,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pSettlementInfo ： Pointer of the structure for the response of

ReqQrySettlementInfo. The following is definition of the structure,

struct CThostFtdcSettlementInfoField

{

 ///trading day

 TThostFtdcDateType TradingDay;

 ///settlement ID

 TThostFtdcSettlementIDType SettlementID;

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///sequence No.

 TThostFtdcSequenceNoType SequenceNo;

 ///content

 TThostFtdcContentType Content;

};

5.2.23. OnRspQryInvestorPositionDetail

CTP server uses this callback function toresponse to the client

application’s “ReqQryInvestorPositionDetail” request.

definition：
void OnRspQryInvestorPositionDetail(

CThostFtdcInvestorPositionDetailField *pInvestorPositionDetail,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

43

CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

parameters：

pInvestorPositionDetail ： Pointer of the structure for the response of

ReqQryInvestorPositionDetail. The following is definition of the structure,

struct CThostFtdcInvestorPositionDetailField

{

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///hedge flag

 TThostFtdcHedgeFlagType HedgeFlag;

 ///direction

 TThostFtdcDirectionType Direction;

 ///open date

 TThostFtdcDateType OpenDate;

 ///trade ID

 TThostFtdcTradeIDType TradeID;

 ///volume

 TThostFtdcVolumeType Volume;

 ///open price

 TThostFtdcPriceType OpenPrice;

 ///trading day

 TThostFtdcDateType TradingDay;

 ///settlement ID

 TThostFtdcSettlementIDType SettlementID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

44

 ///trade type

 TThostFtdcTradeTypeType TradeType;

 ///combination instrument ID

 TThostFtdcInstrumentIDType CombInstrumentID;

};

5.2.24. OnRspQryNotice

CTP server uses this callback function to reponse to the client

application’s “ReqQryNotice” request.

definition：
void OnRspQryNotice(

CThostFtdcNoticeField *pNotice,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pNotice：Pointer of the structure for the response of ReqQryNotice. The

following is definition of the structure,

struct CThostFtdcNoticeField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///content

 TThostFtdcContentType Content;

 ///Sequence Label of broker notice

 TThostFtdcSequenceLabelType SequenceLabel;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

45

5.2.25. OnRspQryInstrument

CTP server uses this callback function to reponse to the client

application’s “ReqQryInstrument” request.

definition：
void OnRspQryInstrument(

CThostFtdcInstrumentField *pInstrument,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)；

parameters：

pRspInstrument：Pointer of the structure for the response of ReqQryInstrument.

The following is definition of the structure,
 struct CThostFtdcInstrumentField

{
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///instrument name
 TThostFtdcInstrumentNameType InstrumentName;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///product ID
 TThostFtdcInstrumentIDType ProductID;
 ///product class
 TThostFtdcProductClassType ProductClass;
 ///delivery year
 TThostFtdcYearType DeliveryYear;
 ///delivery month
 TThostFtdcMonthType DeliveryMonth;
 ///max volume for market order
 TThostFtdcVolumeType MaxMarketOrderVolume;
 ///min volume for market order
 TThostFtdcVolumeType MinMarketOrderVolume;
 ///max volume for limit order
 TThostFtdcVolumeType MaxLimitOrderVolume;
 ///min volume for limit order
 TThostFtdcVolumeType MinLimitOrderVolume;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

46

 ///volume multiple of instrument
 TThostFtdcVolumeMultipleType VolumeMultiple;
 ///price tick
 TThostFtdcPriceType PriceTick;
 ///create date
 TThostFtdcDateType CreateDate;
 ///open date
 TThostFtdcDateType OpenDate;
 ///expire date
 TThostFtdcDateType ExpireDate;
 ///start delivery date
 TThostFtdcDateType StartDelivDate;
 ///end delivery date
 TThostFtdcDateType EndDelivDate;
 ///instrument life phase
 TThostFtdcInstLifePhaseType InstLifePhase;
 ///is trading
 TThostFtdcBoolType IsTrading;
 ///position type
 TThostFtdcPositionTypeType PositionType;
 ///position date type
 TThostFtdcPositionDateTypeType PositionDateType;
};

5.2.26. OnRtnTrade

CTP server uses this callback function tonotify the client application

when trade has been finished.

definition：
void OnRtnTrade(CThostFtdcTradeField *pTrade)；

parameters：

pTrade：Pointer of the structure for the trade information. The following is

definition of the structure,
 struct CThostFtdcTradeField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

47

 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///trade ID
 TThostFtdcTradeIDType TradeID;
 ///direction
 TThostFtdcDirectionType Direction;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///trading role
 TThostFtdcTradingRoleType TradingRole;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///offset flag
 TThostFtdcOffsetFlagType OffsetFlag;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///price
 TThostFtdcPriceType Price;
 ///volume
 TThostFtdcVolumeType Volume;
 ///trade date
 TThostFtdcDateType TradeDate;
 ///trade time
 TThostFtdcTimeType TradeTime;
 ///trade type
 TThostFtdcTradeTypeType TradeType;
 ///price source
 TThostFtdcPriceSourceType PriceSource;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///clear participant ID
 TThostFtdcParticipantIDType ClearingPartID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

48

 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///sequence No.
 TThostFtdcSequenceNoType SequenceNo;
 ///trading day
 TThostFtdcDateType TradingDay;
 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
};

5.2.27. OnRtnOrder

CTP server uses this callback function to notify the client application

about change of order status

definition：
void OnRtnOrder(CThostFtdcOrderField *pOrder);

parameters：

pOrder：Pointer of the structure for the order information. The following is

definition of the structure,
 struct CThostFtdcOrderField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

49

 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 /// valid date
 TThostFtdcTimeConditionType TimeCondition;
 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///install ID
 TThostFtdcInstallIDType InstallID;
 ///order submit status
 TThostFtdcOrderSubmitStatusType OrderSubmitStatus;
 ///notify sequence
 TThostFtdcSequenceNoType NotifySequence;
 ///trading day
 TThostFtdcDateType TradingDay;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

50

 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///order source
 TThostFtdcOrderSourceType OrderSource;
 ///order status
 TThostFtdcOrderStatusType OrderStatus;
 ///order type
 TThostFtdcOrderTypeType OrderType;
 ///volume traded
 TThostFtdcVolumeType VolumeTraded;
 ///volume total
 TThostFtdcVolumeType VolumeTotal;
 ///insert date
 TThostFtdcDateType InsertDate;
 ///insert time
 TThostFtdcTimeType InsertTime;
 ///active time
 TThostFtdcTimeType ActiveTime;
 ///suspend time
 TThostFtdcTimeType SuspendTime;
 ///update time
 TThostFtdcTimeType UpdateTime;
 ///cancel time
 TThostFtdcTimeType CancelTime;
 ///active trader ID
 TThostFtdcTraderIDType ActiveTraderID;
 ///clear participant ID
 TThostFtdcParticipantIDType ClearingPartID;
 ///sequence No.
 TThostFtdcSequenceNoType SequenceNo;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///user product information
 TThostFtdcProductInfoType UserProductInfo;
 ///status message
 TThostFtdcErrorMsgType StatusMsg;
};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

51

5.2.28. OnErrRtnOrderInsert

.

This callback function is used to notify the client application about

the failure of the validation of ctp server or exchange.

definition：
void OnErrRtnOrderInsert(

 CThostFtdcInputOrderField *pInputOrder,
 CThostFtdcRspInfoField *pRspInfo)；

parameters：

pInputOrder：Pointer of the structure for the order insertion information

including the response from server. The following is definition of the structure,
 struct CThostFtdcInputOrderField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 ///valid date
 TThostFtdcTimeConditionType TimeCondition;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

52

 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
};

5.2.29. OnErrRtnOrderAction

This callback function is used to notify the client application about

the failure of the validation of ctp server or exchange.

definition：
void OnErrRtnOrderAction (

 CThostFtdcOrderActionField *pOrderAction,
 CThostFtdcRspInfoField *pRspInfo);

parameters：

pOrderAction：Pointer of the structure for the order action information

including the response from server. The following is definition of the structure,
struct CThostFtdcOrderActionField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

53

 TThostFtdcInvestorIDType InvestorID;
 ///order action reference
 TThostFtdcOrderActionRefType OrderActionRef;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///action flag
 TThostFtdcActionFlagType ActionFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume change
 TThostFtdcVolumeType VolumeChange;
 ///action date
 TThostFtdcDateType ActionDate;
 ///action time
 TThostFtdcTimeType ActionTime;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///install ID
 TThostFtdcInstallIDType InstallID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///action local ID
 TThostFtdcOrderLocalIDType ActionLocalID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///order action status
 TThostFtdcOrderActionStatusType OrderActionStatus;
 ///user id
 TThostFtdcUserIDType UserID;
 ///status message

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

54

 TThostFtdcErrorMsgType StatusMsg;
};

5.2.30. OnRspQrySettlementInfoConfirm

CTP server uses this callback function to notify the client application

the sucess of “ReqQrySettlementInfoConfirm”

definition：
void OnRspQrySettlementInfoConfirm(

CThostFtdcSettlementInfoConfirmField *pSettlementInfoConfirm,
CThostFtdcRspInfoField *pRspInfo,

 int nRequestID,
 bool bIsLast);

parameters：
pSettlementInfoConfirm ： Pointer of the structure for the response of
ReqQrySettlementInfoConfirm. The following is definition of the structure,

struct CThostFtdcSettlementInfoConfirmField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///confirm date
 TThostFtdcDateType ConfirmDate;
 ///confirm time
 TThostFtdcTimeType ConfirmTime;
};;

5.2.31. RspQryParkedOrder

CTP server uses this callback function to response to parked order

query..

definition：
void OnRspQryParkedOrder(CThostFtdcParkedOrderField *pParkedOrder,

CThostFtdcRspInfoField *pRspInfo,
int nRequestID,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

55

bool bIsLast);

parameters：
pParkedOrder：Pointer of the structure for the response of ReqQryParkedOrder. The following is
definition of the structure,

struct CThostFtdcParkedOrderField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 ///valid date
 TThostFtdcTimeConditionType TimeCondition;
 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

56

 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///user force close flag
 TThostFtdcBoolType UserForceClose;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///parked order system ID
 TThostFtdcParkedOrderIDType ParkedOrderID;
 ///user type
 TThostFtdcUserTypeType UserType;
 ///parked order status
 TThostFtdcParkedOrderStatusType Status;
};

5.2.32. RspQryParkedOrderAction

CTP server use this callback function to response to the query of

“RspQryParkedOrderAction”.

definition：
void OnRspQryParkedOrderAction(

CThostFtdcParkedOrderActionField *pParkedOrderAction,
CThostFtdcRspInfoField *pRspInfo,
 int nRequestID, bool bIsLast);

parameters：

pParkedOrderAction ： Pointer of the structure for the response of

ReqQryParkedOrderAction. The following is definition of the structure,
struct CThostFtdcParkedOrderActionField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///order action reference
 TThostFtdcOrderActionRefType OrderActionRef;
 ///order reference
 TThostFtdcOrderRefType OrderRef;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

57

 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///action flag
 TThostFtdcActionFlagType ActionFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume change
 TThostFtdcVolumeType VolumeChange;
 ///user id
 TThostFtdcUserIDType UserID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///parked order action ID
 TThostFtdcParkedOrderActionIDType ParkedOrderActionID;
 ///user type
 TThostFtdcUserTypeType UserType;
 ///parked order action status
 TThostFtdcParkedOrderStatusType Status;
};

5.2.33. RspQryInvestorPositionCombineDetail

CTP server uses this callback function to response to the query of

investor combination instrument ‘s position..

definition：
void OnRspQryInvestorPositionCombineDetail(

CThostFtdcInvestorPositionCombineDetailField *pInvestorPositionCombineDetail,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID, bool bIsLast);

parameters：

pInvestorPositionCombineDetail：Pointer of the structure for the response of

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

58

ReqQryInvestorPositionCombineDetail. The following is definition of the structure,
struct CThostFtdcInvestorPositionCombineDetailField
{
 ///trading day
 TThostFtdcDateType TradingDay;
 ///open date
 TThostFtdcDateType OpenDate;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///settlement ID
 TThostFtdcSettlementIDType SettlementID;
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///combination trade ID
 TThostFtdcTradeIDType ComTradeID;
 ///trade ID
 TThostFtdcTradeIDType TradeID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///direction
 TThostFtdcDirectionType Direction;
 ///total amount
 TThostFtdcVolumeType TotalAmt;
 ///margin
 TThostFtdcMoneyType Margin;
 ///excahnge margin
 TThostFtdcMoneyType ExchMargin;
 ///margin rate by money
 TThostFtdcRatioType MarginRateByMoney;
 ///margin rate by volume
 TThostFtdcRatioType MarginRateByVolume;
 ///combination instrument ID
 TThostFtdcInstrumentIDType CombInstrumentID;
};

5.2.34. RspParkedOrderInsert

CTP server use this callback function to notify the client application

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

59

about the sucess of “ReqParkedOrderInsert”.

definition：
void OnRspParkedOrderInsert(CThostFtdcParkedOrderField *pParkedOrder,

CThostFtdcRspInfoField *pRspInfo,
int nRequestID, bool bIsLast);

parameters：

pParkedOrder ： Pointer of the structure for the response of

ReqParkedOrderInsert. The following is definition of the structure,
struct CThostFtdcParkedOrderField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combinationorder’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 /// Valid date TThostFtdcTimeConditionType TimeCondition;
 ///GTD DATE
 TThostFtdcDateType GTDDate;
 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

60

 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///user force close flag
 TThostFtdcBoolType UserForceClose;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///parked order system ID
 TThostFtdcParkedOrderIDType ParkedOrderID;
 ///user type
 TThostFtdcUserTypeType UserType;
 ///parked order status
 TThostFtdcParkedOrderStatusType Status;
};

5.2.35. RspParkedOrderAction

CTP server uses this callback function to notify the client application

the success of “ReqParkedOrderAction”.

definition：
void OnRspParkedOrderAction(

CThostFtdcParkedOrderActionField *pParkedOrderAction,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID, bool bIsLast);

parameters：

pParkedOrderAction ： Pointer of the structure for the response of

ReqParkedOrderAction. The following is definition of the structure,
struct CThostFtdcParkedOrderActionField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

61

 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///order action reference
 TThostFtdcOrderActionRefType OrderActionRef;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///action flag
 TThostFtdcActionFlagType ActionFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume change
 TThostFtdcVolumeType VolumeChange;
 ///user id
 TThostFtdcUserIDType UserID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///parked order action ID
 TThostFtdcParkedOrderActionIDType ParkedOrderActionID;
 ///user type
 TThostFtdcUserTypeType UserType;
 ///parked order action status
 TThostFtdcParkedOrderStatusType Status;
};

5.2.36. RspRemoveParkedOrder

CTP server use this callback function to notify the client application

whether the success of “ReqRemoveParkedOrder”.

definition：
void OnRspRemoveParkedOrder(

CThostFtdcRemoveParkedOrderField *pRemoveParkedOrder,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

62

CThostFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast);

parameters：

pRemoveParkedOrder ： Pointer of the structure for the response of

ReqRemoveParkedOrder. The following is definition of the structure,
struct CThostFtdcRemoveParkedOrderField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///parked order system ID
 TThostFtdcParkedOrderIDType ParkedOrderID;
};

5.2.37. RspRemoveParkedOrderAction

CTP server use this callback function to notify the client application

about the success of “ReqRemoveParkedOrderAction”.

definition：
void OnRspRemoveParkedOrderAction(

CThostFtdcRemoveParkedOrderActionField *pRemoveParkedOrderAction,
CThostFtdcRspInfoField *pRspInfo,
int nRequestID, bool bIsLast);

parameters：

pRemoveParkedOrderAction：Pointer of the structure for the response of

ReqRemoveParkedOrderAction. The following is definition of the structure,
struct CThostFtdcRemoveParkedOrderActionField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///parked order action trade ID
 TThostFtdcParkedOrderActionIDType ParkedOrderActionID;
};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

63

5.3. CThostFtdcTraderApi

CThostFtdcTraderApi interface’s functions incluede order insertion,

order action, order and trade query, and other information query such as

client information, investor account, and investor position, instrument

information, instrument status, exchange publication, etc..

5.3.1. CreateFtdcTraderApi

The CTP client application uses this function to create a

CThostFtdcTradeApi instance. Please note that do not use “new” to create

any instance. .

definition：
static CThostFtdcTradeApi *CreateFtdcTradeApi(const char *pszFlowPath = "");

parameters：

pszFlowPath：Pointer of a constant string, point to one special file directory

which used to store notified information sent from CTP server, if not specified, the

cuurent file directory is the default one.

return value：

A pointer of an instance of CThostFtdcTradeAp.

5.3.2. Release

The CTP client application uses this function to delete a

CThostFtdcTradeApi instance, but please do not use “delete”to delete any

instance.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

64

definition：
void Release()；

5.3.3. Init

The CTP client application uses this function to create the

connection with CTP server, after this user can login in.

definition：
void Init()；

5.3.4. Join

The CTP client application uses this function to waiting the close of

a CThostFtdcTradeApi instance.

definition：
void Join()；

5.3.5. GetTradingDay

The CTP client application uses this function to get the current

traing?(what is this?) day, the return value will be valid only when the

connection between client and CTP server is created successfully.

definition：
const char *GetTradingDay()；

return value：

a pointer of a constant string identifies the current trading date.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

65

5.3.6. RegisterSpi

The CTP client application uses this function to register an instance

inherited from the CThostFtdcTraderSpi interface.

definition：
void RegisterSpi(CThostFtdcTraderSpi *pSpi) ;

parameters：
pSpi：the pointer of the CThostFtdcTraderSpi instance.

5.3.7. RegisterFront

The CTP client application uses this function to register the front

address of the CTP server, the function could be invocated more than one

times to register more front addresses, and the API would selected one

until the connection is created successfully.

definition：
void RegisterFront(char *pszFrontAddress);

parameters：

pszFrontAddress：Pointer of the structure for the front address of the CTP

server. The address format just like : “protocol://ipaddress:port”, for example,

“tcp://127.0.0.1:17001”, “tcp” means the communication protocol，“127.0.0.1”

identifies the front address.”17001” identifies the server port.

5.3.8. SubscribePrivateTopic

The CTP client application uses this function to subscribe the private

topic from CTP server. The function must be called before the invocation

of “init” function; otherwise the client application wouldn’t receive its

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

66

private stream.

definition：
void SubscribePrivateTopic(TE_RESUME_TYPE nResumeType);

parameters：

nResumeType： the re-transmit mode of the private stream.

 TERT_RESTART: re-transmit from the begin of the current trading day.

 TERT_RESUME: resume transmitting from the last received data.

 TERT_QUICK: transmitting the new private stream data from the login time.

5.3.9. SubscribePublicTopic

The CTP client application uses this function to subscribe the public

topic from CTP server. The function must be called before the invocation

of “init” function; otherwise the client application wouldn’t receive its

public stream.

definition：
void SubscribePublicTopic(TE_RESUME_TYPE nResumeType);

parameters：

nResumeType： the re-transmit mode of the public stream.

 TERT_RESTART: re-transmit from the begin of the current trading day.

 TERT_RESUME: resume transmitting from the last received data.

 TERT_QUICK: transmitting the new public stream data from the login time.

5.3.10. ReqUserLogin

The CTP client application uses this function to send the login in

request to the CTP server.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

67

definition：
int ReqUserLogin(

CThostFtdcReqUserLoginField *pReqUserLoginField,
int nRequestID)；

parameters：

pReqUserLoginField：The pointer of the structure for user’s login request. The

following is definition of the structure,
 struct CThostFtdcReqUserLoginField

{
 ///trading day
 TThostFtdcDateType TradingDay;
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;
 ///password
 TThostFtdcPasswordType Password;
 ///user product information
 TThostFtdcProductInfoType UserProductInfo;
 ///interface product information
 TThostFtdcProductInfoType InterfaceProductInfo;
 ///protocol information
 TThostFtdcProtocolInfoType ProtocolInfo;
};

return value：

0，success.

-1，net connection failure.

-2，over the max quantity of unhandled requests.

-3，over the max requests per second.

5.3.11. ReqUserLogout

The CTP client application uses this function to send the login out

request to the CTP server.

definition：

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

68

int ReqUserLogout(
CThostFtdcUserLogoutField *pUserLogout,
int nRequestID)；

parameters：

pReqUserLogout：Pointer of the structure for user’s logout request. The

following is definition of the structure,
struct CThostFtdcUserLogoutField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;
};

return value：

0，success.

-1，net connection failure.

-2，over the max quantity of unhandled requests.

-3，over the max requests per second.

5.3.12. ReqUserPasswordUpdate

The CTP client application uses this function to send the user

password update request to the CTP server.

definition：
int ReqUserPasswordUpdate(

CThostFtdcUserPasswordUpdateField
*pUserPasswordUpdate,
int nRequestID)；

parameters：

pUserPasswordUpdate：Pointer of the structure for user password updation

request. The following is definition of the structure,
 struct CThostFtdcUserPasswordUpdateField

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

69

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///user id
 TThostFtdcUserIDType UserID;
 ///old password
 TThostFtdcPasswordType OldPassword;
 ///new password
 TThostFtdcPasswordType NewPassword;
};

5.3.13. ReqTradingAccountPasswordUpdate

The CTP client application uses this function to send the account

password update request to the CTP server.

definition：
int ReqTradingAccountPasswordUpdate(

CThostFtdcTradingAccountPasswordUpdateField
*pTradingAccountPasswordUpdate,
int nRequestID) ;

parameters：

pUserPasswordUpdate：Pointer of the structure for account password updation

request. The following is definition of the structure,
struct CThostFtdcTradingAccountPasswordUpdateField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///account id
 TThostFtdcAccountIDType AccountID;
 ///old password
 TThostFtdcPasswordType OldPassword;
 ///new password
 TThostFtdcPasswordType NewPassword;
};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

70

5.3.14. ReqOrderInsert

The CTP client application uses this function to send the order

insertion request to the CTP server.

definition：
int ReqOrderInsert(

CThostFtdcInputOrderField *pInputOrder,
int nRequestID)；

parameters：

pInputOrder：Pointer of the structure for order insertion request. The following

is definition of the structure,
struct CThostFtdcInputOrderField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///user id
 TThostFtdcUserIDType UserID;
 ///order price type
 TThostFtdcOrderPriceTypeType OrderPriceType;
 ///direction
 TThostFtdcDirectionType Direction;
 ///combination order’s offset flag
 TThostFtdcCombOffsetFlagType CombOffsetFlag;
 ///combination or hedge flag
 TThostFtdcCombHedgeFlagType CombHedgeFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume
 TThostFtdcVolumeType VolumeTotalOriginal;
 ///valid date
 TThostFtdcTimeConditionType TimeCondition;
 ///GTD DATE
 TThostFtdcDateType GTDDate;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

71

 ///volume condition
 TThostFtdcVolumeConditionType VolumeCondition;
 ///min volume
 TThostFtdcVolumeType MinVolume;
 ///trigger condition
 TThostFtdcContingentConditionType ContingentCondition;
 ///stop price
 TThostFtdcPriceType StopPrice;
 ///force close reason
 TThostFtdcForceCloseReasonType ForceCloseReason;
 /// auto suspend flag
 TThostFtdcBoolType IsAutoSuspend;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///request ID
 TThostFtdcRequestIDType RequestID;
};

OrderRef：order reference，which should increase monotonically. In the

response of eachOnRspUserLogin, the client application could get the MaxOrderRef.

Other worth mention, the CTP server compares the orderref as string, so staffing all

placet of TThostFtdcOrderRefType is needed.

5.3.15. ReqOrderAction

The CTP client application uses this function to send the order

cancellation request to the CTP server.

definition：
int ReqOrderAction(

CThostFtdcOrderActionField *pOrderAction,
int nRequestID)；

parameters：

pOrderAction：Pointer of the structure for order delettion request. The

following is definition of the structure,
 struct CThostFtdcOrderActionField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

72

 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///order action reference
 TThostFtdcOrderActionRefType OrderActionRef;
 ///order reference
 TThostFtdcOrderRefType OrderRef;
 ///request ID
 TThostFtdcRequestIDType RequestID;
 ///front ID
 TThostFtdcFrontIDType FrontID;
 ///session ID
 TThostFtdcSessionIDType SessionID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
 ///action flag
 TThostFtdcActionFlagType ActionFlag;
 ///price
 TThostFtdcPriceType LimitPrice;
 ///volume change
 TThostFtdcVolumeType VolumeChange;
 ///action date
 TThostFtdcDateType ActionDate;
 ///action time
 TThostFtdcTimeType ActionTime;
 ///trader ID
 TThostFtdcTraderIDType TraderID;
 ///install ID
 TThostFtdcInstallIDType InstallID;
 ///order local ID
 TThostFtdcOrderLocalIDType OrderLocalID;
 ///action local ID
 TThostFtdcOrderLocalIDType ActionLocalID;
 ///participant ID
 TThostFtdcParticipantIDType ParticipantID;
 ///trading code
 TThostFtdcClientIDType ClientID;
 ///business unit
 TThostFtdcBusinessUnitType BusinessUnit;
 ///order action status
 TThostFtdcOrderActionStatusType OrderActionStatus;
 ///user id
 TThostFtdcUserIDType UserID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

73

 ///status message
 TThostFtdcErrorMsgType StatusMsg;
};

5.3.16. ReqQueryMaxOrderVolume

The CTP client application uses this function to send the request of

query the max order volume to the CTP server.

definition：
int ReqQueryMaxOrderVolume(

CThostFtdcQueryMaxOrderVolumeField *pQueryMaxOrderVolume,
int nRequestID)；

parameters：

pQueryMaxOrderVolume：Pointer of the structure for the request of query the

max order volume. The following is definition of the structure,
struct CThostFtdcQueryMaxOrderVolumeField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///direction
 TThostFtdcDirectionType Direction;
 ///offset flag
 TThostFtdcOffsetFlagType OffsetFlag;
 ///hedge flag
 TThostFtdcHedgeFlagType HedgeFlag;
 ///max volume
 TThostFtdcVolumeType MaxVolume;
};

5.3.17. ReqSettlementInfoConfirm

The CTP client application uses this function to confirm the

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

74

settlement information fromthe CTP server.

definition：
int ReqSettlementInfoConfirm(

CThostFtdcSettlementInfoConfirmField *pSettlementInfoConfirm,
int nRequestID)；

parameters：

pSettlementInfoConfirm：Pointer of the structure for settlement information

confirmation request. The following is definition of the structure,
struct CThostFtdcSettlementInfoConfirmField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///confirm date
 TThostFtdcDateType ConfirmDate;
 ///confirm time
 TThostFtdcTimeType ConfirmTime;
};

5.3.18. ReqQryOrder

The CTP client application uses this function to send the order query

request to the CTP server.

definition：
int ReqQryOrder(

CThostFtdcQryOrderField *pQryOrder,
int nRequestID)；

parameters：

pQryOrder：Pointer of the structure for order query request. The following is

definition of the structure,
 struct CThostFtdcQryOrderField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

75

 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///order system ID
 TThostFtdcOrderSysIDType OrderSysID;
};

5.3.19. ReqQryTrade

The CTP client application uses this function to send the trade query

request to the CTP server.

definition：
int ReqQryTrade(

CThostFtdcQryTradeField *pQryTrade,
int nRequestID)；

parameters：

pQryTrade：Pointer of the structure for trade query request. The following is

definition of the structure,
 struct CThostFtdcQryTradeField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///trade ID
 TThostFtdcTradeIDType TradeID;
};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

76

5.3.20. ReqQry Investor

The CTP client application uses this function to send the investor

query request to the CTP server.

definition：
int ReqQry Investor (

CThostFtdcQryInvestorField *pQryInvestor,
int nRequestID)；

parameters：

pQry Investor：Pointer of the structure for investor query request. The following

is definition of the structure,
 struct CThostFtdcQryInvestorField

{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
};

5.3.21. ReqQryInvestorPosition

The CTP client application uses this function to send the investor

position query request to the CTP server.

definition：
int ReqQryInvestorPosition(

CThostFtdcQryInvestorPositionField *pQryInvestorPosition,
int nRequestID)；

parameters：

pQryInvestorPosition：Pointer of the structure for investor position query

request. The following is definition of the structure,
 struct CThostFtdcQryInvestorPositionField

{
 ///broker id

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

77

 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
};

5.3.22. ReqQryTradingAccount

The CTP client application uses this function to send the trading

account query request to the CTP server.

definition：
int ReqQryTradingAccount(

CThostFtdcQryTradingAccountField *pQryTradingAccount,
 int nRequestID)；

parameters：

pQryTradingAccount：Pointer of the structure for trading account query

request. The following is definition of the structure,
struct CThostFtdcQryTradingAccountField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
};

5.3.23. ReqQryTradingCode

The CTP client application uses this function to send the trading

code query request to the CTP server.

definition：
int ReqQryTradingCode(

CThostFtdcQryTradingCodeField *pQryTradingCode,
 int nRequestID)；

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

78

parameters：

pQryTradingCode：Pointer of the structure for trading code query request. The

following is definition of the structure,
struct CThostFtdcQryTradingCodeField
{
 ///broker id
 TThostFtdcBrokerIDType BrokerID;
 ///investor ID
 TThostFtdcInvestorIDType InvestorID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///trading code
 TThostFtdcClientIDType ClientID;
};

5.3.24. ReqQryExchange

The CTP client application uses this function to send the exchange

query request to the CTP server.

definition：
int ReqQryExchange(

CThostFtdcQryExchangeField *pQryExchange,
int nRequestID)；

parameters：

pQryExchange：Pointer of the structure for exchange query request. The

following is definition of the structure,

struct CThostFtdcQryExchangeField

{

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

79

5.3.25. ReqQryInstrument

The CTP client application uses this function to send the instrument

query request to the CTP server.

definition：
int ReqQryInstrument(

CThostFtdcQryInstrumentField *pQryInstrument,
int nRequestID)；

parameters：

pQryInstrument：Pointer of the structure for instrument query request. The

following is definition of the structure,
struct CThostFtdcQryInstrumentField
{
 ///instrument ID
 TThostFtdcInstrumentIDType InstrumentID;
 ///exchange ID
 TThostFtdcExchangeIDType ExchangeID;
 ///exchange instrument ID
 TThostFtdcExchangeInstIDType ExchangeInstID;
 ///product ID
 TThostFtdcInstrumentIDType ProductID;
};

5.3.26. ReqQryDepthMarketData

The CTP client application uses this function to send the market

quotation query request to the CTP server.

definition：
int ReqQryDepthMarketData(

CThostFtdcQryDepthMarketDataField *pQryDepthMarketData,
int nRequestID)；

parameters：

pQryDepthMarketData：Pointer of the structure for market quotation query

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

80

request. The following is definition of the structure,

struct CThostFtdcQryDepthMarketDataField

{

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

};

5.3.27. ReqQrySettlementInfo

The CTP client application uses this function to send the settlement

information query request to the CTP server.

definition：
int ReqQrySettlementInfo(

CThostFtdcQrySettlementInfoField *pQrySettlementInfo,
int nRequestID)；

parameters：

pQrySettlementInfo：Pointer of the structure for settlement information query

request. The following is definition of the structure,

struct CThostFtdcQrySettlementInfoField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///trading day

 TThostFtdcDateType TradingDay;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

81

5.3.28. ReqQryInvestorPositionDetail

The CTP client application uses this function to send the investor

position detail query request to the CTP server.

definition：
int ReqQryInvestorPositionDetail(

CThostFtdcQryInvestorPositionDetailField *pQryInvestorPositionDetail,
int nRequestID)；

parameters：

pQryInvestorPositionDetail：Pointer of the structure for investor position detail

query request. The following is definition of the structure,

struct CThostFtdcQryInvestorPositionDetailField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

};

5.3.29. ReqQryNotice

The CTP client application uses this function to send the notice

query request to the CTP server.

definition：
int ReqQryNotice(

CThostFtdcQryNoticeField *pQryNotice,
int nRequestID)；

parameters：

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

82

pQryNotice：Pointer of the structure fornotice query request. The following is

definition of the structure,

struct CThostFtdcQryNoticeField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

};

5.3.30. ReqQrySettlementInfoConfirm

The CTP client application uses this function to send the settlement

information confirmation query request to the CTP server.

definition：
int ReqQrySettlementInfoConfirm(

CThostFtdcQrySettlementInfoConfirmField
*pQrySettlementInfoConfirm,
int nRequestID)；

parameters：

pQrySettlementInfoConfirm ： Pointer of the structure for settlement

information confirmation query request. The following is definition of the structure,

struct CThostFtdcQrySettlementInfoConfirmField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

83

5.3.31. ReqQryParkedOrder

The CTP client application uses this function to send the parked

order query request to the CTP server.

definition：
int ReqQryParkedOrder(CThostFtdcQryParkedOrderField *pQryParkedOrder,

int nRequestID)；

parameters：

pQryParkedOrder：Pointer of the structure for parked order query request. The

following is definition of the structure,

struct CThostFtdcQryParkedOrderField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

};

5.3.32. ReqQryParkedOrderAction

The CTP client application uses this function to send the parked

order action query request to the CTP server.

definition：
int ReqQryParkedOrderAction(

CThostFtdcQryParkedOrderActionField *pQryParkedOrderAction,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

84

int nRequestID)；

parameters：

pQryParkedOrderAction：Pointer of the structure for parked order action

query request. The following is definition of the structure,

struct CThostFtdcQryParkedOrderActionField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

};

5.3.33. ReqQryInvestorPositionCombineDetail

The CTP client application uses this function to send the investor

combination position detail query request to the CTP server.

definition：
int ReqQryInvestorPositionCombineDetail(

CThostFtdcQryInvestorPositionCombineDetailField *pQryInvestorPositionCombineDetail,
int nRequestID);；

parameters：

pQryInvestorPositionCombineDetail：Pointer of the structure for investor

combination position detail query request. The following is definition of the structure,

struct CThostFtdcQryInvestorPositionCombineDetailField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

85

 TThostFtdcInvestorIDType InvestorID;

 ///combination instrument ID

 TThostFtdcInstrumentIDType CombInstrumentID;

};

5.3.34. ReqParkedOrderInsert

The CTP client application uses this function to send the parked

order insertion request to the CTP server.

definition：
int ReqParkedOrderInsert (CThostFtdcParkedOrderField *pParkedOrder,

int nRequestID)；

parameters：

pParkedOrder：Pointer of the structure for parked order insertion request.

The following is definition of the structure,

struct CThostFtdcParkedOrderField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///order reference

 TThostFtdcOrderRefType OrderRef;

 ///user id

 TThostFtdcUserIDType UserID;

 ///order price type

 TThostFtdcOrderPriceTypeType OrderPriceType;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

86

 ///direction

 TThostFtdcDirectionType Direction;

 ///combination offset flag

 TThostFtdcCombOffsetFlagType CombOffsetFlag;

 ///combination hedge flag

 TThostFtdcCombHedgeFlagType CombHedgeFlag;

 ///price

 TThostFtdcPriceType LimitPrice;

 ///volume

 TThostFtdcVolumeType VolumeTotalOriginal;

 ///valid date

 TThostFtdcTimeConditionType TimeCondition;

 ///GTD DATE

 TThostFtdcDateType GTDDate;

 ///volume condition

 TThostFtdcVolumeConditionType VolumeCondition;

 ///min volume

 TThostFtdcVolumeType MinVolume;

 ///trigger condition

 TThostFtdcContingentConditionType ContingentCondition;

 ///stop price

 TThostFtdcPriceType StopPrice;

 ///force close reason

 TThostFtdcForceCloseReasonType ForceCloseReason;

 ///is auto suspend

 TThostFtdcBoolType IsAutoSuspend;

 ///business unit

 TThostFtdcBusinessUnitType BusinessUnit;

 ///request ID

 TThostFtdcRequestIDType RequestID;

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

87

 ///user force close flag

 TThostFtdcBoolType UserForceClose;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

 ///parked order system ID

 TThostFtdcParkedOrderIDType ParkedOrderID;

 ///user type

 TThostFtdcUserTypeType UserType;

 ///parked order status

 TThostFtdcParkedOrderStatusType Status;

};

5.3.35. ReqParkedOrderAction

The CTP client application uses this function to send the parked

order action request to the CTP server.

definition：
int ReqParkedOrderAction(CThostFtdcParkedOrderActionField *pParkedOrderAction,

 int nRequestID)；

parameters：

pParkedOrderAction：Pointer of the structure for parked order action request.

The following is definition of the structure,

struct CThostFtdcParkedOrderActionField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///order action reference

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

88

 TThostFtdcOrderActionRefType OrderActionRef;

 ///order reference

 TThostFtdcOrderRefType OrderRef;

 ///request ID

 TThostFtdcRequestIDType RequestID;

 ///front ID

 TThostFtdcFrontIDType FrontID;

 ///session ID

 TThostFtdcSessionIDType SessionID;

 ///exchange ID

 TThostFtdcExchangeIDType ExchangeID;

 ///order system ID

 TThostFtdcOrderSysIDType OrderSysID;

 ///action flag

 TThostFtdcActionFlagType ActionFlag;

 ///price

 TThostFtdcPriceType LimitPrice;

 ///volume change

 TThostFtdcVolumeType VolumeChange;

 ///user id

 TThostFtdcUserIDType UserID;

 ///instrument ID

 TThostFtdcInstrumentIDType InstrumentID;

 ///parked order action ID

 TThostFtdcParkedOrderActionIDType ParkedOrderActionID;

 ///user type

 TThostFtdcUserTypeType UserType;

 ///parked order action status

 TThostFtdcParkedOrderStatusType Status;

};

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

89

5.3.36. ReqRemoveParkedOrder

The CTP client application uses this function to send the parked

ordercancel request to the CTP server.

definition：
int ReqRemoveParkedOrder(CThostFtdcRemoveParkedOrderField *pRemoveParkedOrder,

int nRequestID)；

parameters：

pRemoveParkedOrder：Pointer of the structure for parked order removing

request. The following is definition of the structure,

struct CThostFtdcRemoveParkedOrderField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///parked order system ID

 TThostFtdcParkedOrderIDType ParkedOrderID;

};

5.3.37. ReqRemoveParkedOrderAction

The CTP client application uses this function to send the parked

order actioncancel request to the CTP server.

definition：
Int ReqRemoveParkedOrderAction(

CThostFtdcRemoveParkedOrderActionField *pRemoveParkedOrderAction,
int nRequestID);；

parameters：

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

90

pRemoveParkedOrderAction：Pointer of the structure for parked order

removing request. The following is definition of the structure,

struct CThostFtdcRemoveParkedOrderActionField

{

 ///broker id

 TThostFtdcBrokerIDType BrokerID;

 ///investor ID

 TThostFtdcInvestorIDType InvestorID;

 ///parked order action trade ID

 TThostFtdcParkedOrderActionIDType ParkedOrderActionID;

};

Chapter 6. example

7.1 trade API example

// tradeapitest.cpp :

// A simple example demonstrate how to use CThostFtdcTraderApi

and CThostFtdcTraderSpi interface application.

// This example will demonstrates the procedure of an order

insertion.

#include <stdio.h>

#include <windows.h>

#include "FtdcTraderApi.h"

// Flag of the order insertion finished or not.

// Create a manual reset event with no signal

HANDLE g_hEvent = CreateEvent(NULL, true, false, NULL);

// participant ID

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

91

TThostFtdcBrokerIDType g_chBrokerID;

// user id

TThostFtdcUserIDType g_chUserID;

class CSimpleHandler : public CThostFtdcTraderSpi

{

public:

 // constructor，which need a valid pointer to a

CThostFtdcMduserApi instance

 CSimpleHandler(CThostFtdcTraderApi *pUserApi) :

m_pUserApi(pUserApi) {}

 ~CSimpleHandler() {}

 // After making a succeed connection with the CTP server, the

client should send the login request to the CTP server.

 virtual void OnFrontConnected()

 {

 CThostFtdcReqUserLoginField reqUserLogin;

 // get BrokerID

 printf("BrokerID:");

 scanf("%s", &g_chBrokerID);

 strcpy(reqUserLogin. BrokerID, g_chBrokerID);

 // get user id

 printf("userid:");

 scanf("%s", &g_chUserID);

 strcpy(reqUserLogin.UserID, g_chUserID);

 // get password

 printf("password:");

 scanf("%s", &reqUserLogin.Password);

 // send the login request

 m_pUserApi->ReqUserLogin(&reqUserLogin, 0);

 }

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

92

 //When the connection between client and the CTP server

disconnected,the follwing function will be called.

 virtual void OnFrontDisconnected(int nReason)

 {

 // Inthis case, API willreconnect，the client application

can ignore this.

 printf("OnFrontDisconnected.\n");

 }

 // After receiving the login request from the client，the CTP

server will send the following response to notify the client whether

the login success or not.

 virtual void OnRspUserLogin(CThostFtdcRspUserLoginField

*pRspUserLogin, CThostFtdcRspInfoField *pRspInfo, int nRequestID,

bool bIsLast)

 {

 printf("OnRspUserLogin:\n");

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n",

pRspInfo->ErrorID, pRspInfo->ErrorMsg);

 printf("RequestID=[%d], Chain=[%d]\n", nRequestID,

bIsLast);

 if (pRspInfo->ErrorID != 0) {

 // in case any login failure, the client should handle

this error.

 printf("Failed to login, errorcode=%d errormsg=%s

requestid=%d chain=%d", pRspInfo->ErrorID, pRspInfo->ErrorMsg,

nRequestID, bIsLast);

 exit(-1);

 }

 // login success, then send order insertion request.

 CThostFtdcInputOrderField ord;

 memset(&ord, 0, sizeof(ord));

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

93

 //broker id

 strcpy(ord.BrokerID, g_chBrokerID);

 //investor ID

 strcpy(ord.InvestorID, "12345");

 // instrument ID

 strcpy(ord.InstrumentID, "cn0601");

 ///order reference

 strcpy(ord.OrderRef, "000000000001");

 // user id

 strcpy(ord.UserID, g_chUserID);

 // order price type

 ord.OrderPriceType = THOST_FTDC_OPT_LimitPrice;

 // direction

 ord.Direction = THOST_FTDC_D_Buy;

 // combination order’s offset flag

 strcpy(ord.CombOffsetFlag, "0");

 // combination or hedge flag

 strcpy(ord.CombHedgeFlag, "1");

 // price

 ord.LimitPrice = 50000;

 // volume

 ord.VolumeTotalOriginal = 10;

 // valid date

 ord.TimeCondition = THOST_FTDC_TC_GFD;

 // GTD DATE

 strcpy(ord.GTDDate, "");

 // volume condition

 ord.VolumeCondition = THOST_FTDC_VC_AV;

 // min volume

 ord.MinVolume = 0;

 // trigger condition

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

94

 ord.ContingentCondition = THOST_FTDC_CC_Immediately;

 // stop price

 ord.StopPrice = 0;

 // force close reason

 ord.ForceCloseReason = THOST_FTDC_FCC_NotForceClose;

 // auto suspend flag

 ord.IsAutoSuspend = 0;

 m_pUserApi->ReqOrderInsert(&ord, 1);

 }

 // order insertion response

 virtual void OnRspOrderInsert(CThostFtdcInputOrderField

*pInputOrder, CThostFtdcRspInfoField *pRspInfo, int nRequestID, bool

bIsLast)

 {

 // output the order insertion result

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n",

pRspInfo->ErrorID, pRspInfo->ErrorMsg);

 // inform the main thread order insertion is over

 SetEvent(g_hEvent);

 };

 ///order insertion return

 virtual void OnRtnOrder(CThostFtdcOrderField *pOrder)

 {

 printf("OnRtnOrder:\n");

 printf("OrderSysID=[%s]\n", pOrder->OrderSysID);

 }

 // the error notification caused by client request

 virtual void OnRspError(CThostFtdcRspInfoField *pRspInfo,

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

95

int nRequestID, bool bIsLast) {

 printf("OnRspError:\n");

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n",

pRspInfo->ErrorID, pRspInfo->ErrorMsg);

 printf("RequestID=[%d], Chain=[%d]\n", nRequestID,

bIsLast);

 // the client should handle the error

 {error handle code}

 }

private:

 // a pointer of CThostFtdcMduserApi instance

 CThostFtdcTraderApi *m_pUserApi;

};

int main()

{

 // create a CThostFtdcTraderApi instance

 CThostFtdcTraderApi *pUserApi =

CThostFtdcTraderApi::CreateFtdcTraderApi();

 // create an event handler instance

 CSimpleHandler sh(pUserApi);

 // register an event handler instance

 pUserApi->RegisterSpi(&sh);

 // subscribe private topic

 pUserApi->SubscribePrivateTopic(TERT_RESUME);

 // subscribe public topic

 pUserApi->SubscribePublicTopic(TERT_RESUME);

 // register the CTP front address and port

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

96

 pUserApi->RegisterFront("tcp://172.16.0.31:26205");

 // make the connection between client and CTP server

 pUserApi->Init();

 // waiting for the order insertion.

 WaitForSingleObject(g_hEvent, INFINITE);

 // release the API instance

 pUserApi->Release();

 return 0;

}

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

97

7.2 quotation API example

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

98

// tradeapitest.cpp :

#include <stdio.h>

#include <windows.h>

#include "ThostFtdcMdApi.h"

// the flag whether the quotation data received or not.

// Create a manual reset event with no signal

HANDLE g_hEvent = CreateEvent(NULL, true, false, NULL);

// participant ID

TThostFtdcBrokerIDType g_chBrokerID;

// user id

TThostFtdcUserIDType g_chUserID;

class CSimpleHandler : public CThostFtdcMdSpi

{

public:

 // constructor,which need a valid pointer of a CThostFtdcMdApi instance

 CSimpleHandler(CThostFtdcMdApi *pUserApi) : m_pUserApi(pUserApi) {}

 ~CSimpleHandler() {}

 // when the connection between client and CTP server is created

successfully, the client would send the login request to the CTP server.

 virtual void OnFrontConnected()

 {

 CThostFtdcReqUserLoginField reqUserLogin;

 // get BrokerID

 printf("BrokerID:");

 scanf("%s", &g_chBrokerID);

 strcpy(reqUserLogin. BrokerID, g_chBrokerID);
 // get userid

 printf("userid:");

 scanf("%s", &g_chUserID);

 strcpy(reqUserLogin.UserID, g_chUserID);

 // get password

 printf("password:");

 scanf("%s", &reqUserLogin.Password);

 // send the login request

 m_pUserApi->ReqUserLogin(&reqUserLogin, 0);

 }

 // when client and CTP server disconnected,the follwing function will be

called.

 virtual void OnFrontDisconnected(int nReason)

 {

 // inhtis case, API will reconnect，the client application canignore

this.

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

99

 printf("OnFrontDisconnected.\n");

 }

 // after receiving the login request from the client，the CTP server will

send the following response to notify the client whether the login success or not.

 virtual void OnRspUserLogin(CThostFtdcRspUserLoginField *pRspUserLogin,

CThostFtdcRspInfoField *pRspInfo, int nRequestID, bool bIsLast)

 {

 printf("OnRspUserLogin:\n");

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID,

pRspInfo->ErrorMsg);

 printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

 if (pRspInfo->ErrorID != 0) {

 // login failure, the client should handle this error.

 printf("Failed to login, errorcode=%d errormsg=%s requestid=%d

chain=%d", pRspInfo->ErrorID, pRspInfo->ErrorMsg, nRequestID, bIsLast);

 exit(-1);

 }

 // login success, then subscribe the quotation information

 char * Instrumnet[]={“IF0809”,”IF0812”};

 pUserApi->SubscribeMarketData (Instrumnet,2);

 //or unsubscribe the quotation

 pUserApi->UnSubscribeMarketData (Instrumnet,2);

 }

 // quotation return

 virtual void OnRtnDepthMarketData(CThostFtdcDepthMarketDataField

*pDepthMarketData)

 {

//output the order insert result

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID,

pRspInfo->ErrorMsg);

 // set the flag when the quotation data received.

 SetEvent(g_hEvent);

 };

 // the error notification caused by client request

 virtual void OnRspError(CThostFtdcRspInfoField *pRspInfo, int nRequestID,

bool bIsLast) {

 printf("OnRspError:\n");

 printf("ErrorCode=[%d], ErrorMsg=[%s]\n", pRspInfo->ErrorID,

pRspInfo->ErrorMsg);

 printf("RequestID=[%d], Chain=[%d]\n", nRequestID, bIsLast);

 // the client should handle the error

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

100

 {error handle code}

 }

private:

 // a pointer to CThostFtdcMdApi instance

 CThostFtdcMdApi *m_pUserApi;

};

int main()

{

 // create a CThostFtdcMdApi instance

 CThostFtdcMdApi *pUserApi = CThostFtdcMdApi::CreateFtdcMdApi();

 // create an event handler instance

 CSimpleHandler sh(pUserApi);

 // register an event handler instance

 pUserApi->RegisterSpi(&sh);

 // register the CTP front address and port

 pUserApi->RegisterFront("tcp://172.16.0.31:26213");

 // start the connection between client and CTP server

 pUserApi->Init();

 // waiting for the quotation data

 WaitForSingleObject(g_hEvent, INFINITE);

 // release API instance

 pUserApi->Release();

 return 0;

}

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

101

PDF created with pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

