
Machine Instructions 

and Programs

1



Signed Integer Representations

 3 major representations:

Sign and magnitude

One’s complement

Two’s complement

 Assumptions for the next example:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

2



Sign and Magnitude Representation

 High order bit is sign: 0 = positive(or zero), 1 = negative

 Three low order bits is the magnitude: 0 (000) through 7 (111)

 Number range for n bits = +/- (2𝑛−1 - 1)

 Problems: two representations for 0  (0000 is +0,  1000 is –0)

 Some complexities in addition, subtraction

3



One’s Complement Representation

 - x = 1’s complement of x 

 1’s complement is invert 0 to 1 and 1 to 0 

 Two representations for 0(0000 is +0, 1111  is  -0) causes 

some problems 

 Some complexities in addition, subtraction 

 Subtraction (X-Y) implemented by addition & 1's complement 

(x – y = x + 1’s complement of y = x + ത𝑦 )

4



Two’s Complement Representation

 - x = 2’s complement of x 

 Like 1's complement except negative numbers shifted one 

position clockwise

 2’s complement is just 1’s complement + 1 

 Only one representation for 0  ( 0000 => 1111+1 => 10000 => 

0000 in 4 bits, ignore the carry out / MSB 1)

 Addition, subtraction very simple

 One more negative number than positive number 

5



Signed Integer Representations

Binary Sign and 

Magnitude

1’s Complement 2’s Complement

0111 +7 +7 +7

0110 +6 +6 +6

0101 +5 +5 +5

0100 +4 +4 +4

0011 +3 +3 +3

0010 +2 +2 +2

0001 +1 +1 +1

0000 +0 +0 +0

1000 -0 -7 -8

1001 -1 -6 -7

1010 -2 -5 -6

1011 -3 -4 -5

1100 -4 -3 -4

1101 -5 -2 -3

1110 -6 -1 -2

1111 -7 -0 -1

6



Addition and Subtraction – 2’s 

Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high 
order bit =carry-out 
then ignore carry

If carry-in differs from
carry-out then overflow

Simpler addition scheme makes 2’s complement the most common
choice for integer number systems within digital systems

7



2’s-complement Add and Subtract 

Operations

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

4+( )

2-( )

3+( )

2-( )

8-( )

5+( )

+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-( )

2-( )

4+( )

3-( )

4+( )

7+( )
+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-( )

2+( )
3+( )

5+( )

2+( )
4+( )

2-( )

7-( )

3-( )
7-( )

6+( )
3+( )

1+( )

7-( )
5-( )

7-( )

2+( )
3-( )

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

2's-complement add and subtract operations.

8



Overflow Condition

 Add two positive numbers to get a negative number or two 

negative numbers to get a positive number

 Sum of +5(0101) and +3(0011) is 1000 which is the 2’s 

complement result of -8

 Sum of -7(1001) and -2(1100) is 10111(0111) which is the 2’s 

complement result of +7 

 Two ways to detect overflow:  

 Overflow can occur only when adding two numbers that have the 

same sign. Add two positive numbers to get a negative number or,  

add two negative numbers to get a positive number

 When carry-in to the MSB (most significant bit) does not equal carry 

out from MSB 

9



Overflow Condition: Carry-in to 

MSB ≠ Carry-out from MSB 

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No 
overflow No overflow

10



Sign Extension

 Task:

 Given w-bit signed integer x

 Convert it to w+k bit integer with same value

 Rule:

 Make k copies of sign bit:

 X’ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

K copies of MSB • • •X 

X’ • • • • • •

• • •

w

wk
11



Sign Extension Example

short int x =  15213;

int ix = (int) x; 

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

12



Characters

 Computer must be able to handle non numeric text 

information consisting of characters

 Characters can be letters of alphabet, decimal digits, 

punctuations marks etc.

 They are represented by codes that are usually eight bits long

 One of the widely used codes are ASCII codes

13



Memory Location, Addresses and 

Operation
 Memory consists of many 

millions of storage cells, each of 

which stores one bit.

 Data is usually accessed in n-bit 

groups, called a “word”. 

 N is called word length.

 Typically n=32 or 64 bits etc. 

(Such systems called 32-bit 

systems, like:32-bit CPU or 64-

bit OS)

second word

first word

Memory words.

n bits

last word

I th word

.

.

.

.

.

.

14



Memory Location, Addresses and 

Operation

 32-bit word length example

Four characters

32 bits

… b0b1b30b31

Sign bit : b31 = 0 for positive numbers

b31 = 1 for negative numbers 

A signed integer

8 bits 8 bits 8 bits 8 bits

15



Memory Location, Addresses and 

Operation

 To retrieve information from memory, either for one word or one 

byte (8-bit), addresses for each location needed. 

 Each byte (8-bit group) in the memory are addressable. This is called 

byte addressable.

 A k-bit addressed memory chip has 2k memory locations, namely 0 –

2k-1, called memory space. 

 Example: 4 bit : addresses 0000 to 1111 = 0 to 15 = 0 to 24-1

 1KB = 210 = 1024 bytes.

 1MB = 1024KB = 210 * 210 = 220 bytes

 1GB = 1024MB = 210 * 220 = 230bytes

 1TB = 240 bytes, peta=250, exa=260, zetta=270, yotta=280

 24-bit memory: 224 = 24 *220=16*1MB = 16MB

 32-bit memory: 232 = 22*230 = 4*1GB = 4GB
16



Memory Location, Addresses and 

Operation

 It is impractical to assign distinct addresses to individual bit 

locations in the memory.

 The most practical assignment is to have successive addresses 

refer to successive byte locations in the byte-addressable memory.

 Byte locations have addresses 0, 1, 2, 3 and so on. 

 If word length is 32 bits (4 bytes), then  successive words are 

located at addresses 0, 4, 8 and so on.

 16-bit word: word addresses: 0, 2, 4, 6, 8, …. bytes

 32-bit word: word addresses: 0, 4, 8, 12, 16, …. bytes

 64-bit word: word addresses: 0, 8,16, 24, 32, …. bytes

17



Big-endian Assignment of Memory 

Addresses
 Big-endian: higher (bigger) byte addresses are used for the least 

significant bytes of the word. Bytes are numbered starting with most 

significant byte of a word. Word is given the same address as its most 

significant byte.

Word 

Address

Byte 

Address

0 0 1 2 3

4 4 5 6 7

.

.

.

2k-4 2k-4 2k-3 2k-2 2k-1

Big-endian assignment
18



Little-endian Assignment of Memory 

Addresses
 Little-endian: lower byte addresses are used for the less significant 

bytes of the word. Bytes are numbered from least significant byte of 

a word. Word is given the address of its least significant byte.

Word 

Address

Byte 

Address

0 3 2 1 0

4 7 6 5 4

.

.

.

2k-4 2k-1 2k-2 2k-3 2k-4

Little-endian assignment

19



Memory Location, Addresses and 

Operation

 Ordering of bytes: little endian and big endian schemes

 Word alignment

 Words are said to be aligned in memory if they begin at a byte address. That is a 
multiple of the number of bytes in a word.

 16-bit word: word addresses: 0, 2, 4, 6, 8, …, bytes

 32-bit word: word addresses: 0, 4, 8, 12, 16, …, bytes

 64-bit word: word addresses: 0, 8,16, 24, 32, …, bytes

 Access numbers, characters and character strings

20



Memory Operation

 LOAD (or read or fetch)

 Copy content from memory to a register. The memory content doesn’t 

change.

 CPU places the required address in MAR register, then places the read 

control signal to the memory chip, then waits, until it receives the desired 

data into the MDR register.

 Store (or write)

 Write content from register to memory. Overwrite the content in memory

 CPU places the address and data in MAR and MDR registers respectively, 

sends the write control signal to the memory chip. Upon completion, the 

memory chip sends back MFC (memory function complete) signal. 

21



“Must-perform” Operations

 Data transfers between the memory and the processor registers

 Arithmetic and logic operations on data

 Program sequencing and control

 I/O transfers

22



Register Transfer Notation

 Identify a location by a symbolic name standing for its 

hardware binary address (LOC, R0, DATAIN etc.)

 R0, R1, R2, .... => always indicates registers

 Any other symbol => indicates memory location. 

Example: X, Y, Z, A, B, M, LOC, LOCA, LOCB

 Contents of a location are denoted by placing square 

brackets around the name of the location (R1←[LOC], 

R3 ←[R1]+[R2])

 In Register Transfer Notation (RTN), the right hand side 

always denotes a value and the left hand side express 

the name of a location where the value is to be placed. 

23



Assembly Language Notation

 Represent machine instructions and programs.

 Move LOC, R1 = R1←[LOC]

 Add R1, R2, R3 = R3 ←[R1]+[R2]

 Instructions like  ADD  A,B to make like B ← A+B is not 

possible, because both operands can’t be memory 

locations, at least one must be register. Besides the 

content of B should not be overwritten.

24



CPU Organization

 Controls how its instructions use the operand(s)

 Single accumulator (AC) CPU organization 

 Result usually goes to the accumulator

 Accumulator has to be saved to memory quite often

 General register CPU organization

 Registers hold operands thus reduce memory traffic

 All registers functionally identical. 

 Stack

 no registers, but CPU-internal stack memory holds operands and result are 

always in the stack

25



Basic Instruction Types

 Three-address instructions (operation source_1,source_2,destination)

 Usually for RISC architecture

 Add R2, R3, R1 R1 ← R2 + R3

 Two-address instructions (operation source ,destination)
 Add R2, R1 R1 ← R1 + R2

 One-address instructions (operation operand)

 Usually for single accumulator CPU organization

 AC register is always an implicit operand

 Add  LOCA                         AC ← AC + LOCA(AR) 

 Zero-address instructions (operation)
 Usually for stack CPU organization

 No explicit operands, both operands are implicit

 Add TOS ← TOS + (TOS – 1)

 RISC instructions

 RISC can use 3 registers in a single instruction

 Only the LOAD and STORE instructions can access memory

26



Instruction Formats

Example:   evaluate X ← (A+B)  (C+D)

 Three-address format

1. ADD A, B, R1 ; R1 ← [A] + [B]

2. ADD C, D, R2 ; R2 ← [C] + [D]

3. MUL R1, R2, X ; X ← [R1]  [R2]

27



Instruction Formats

Example:   evaluate X←(A+B)  (C+D)

 Two-address instruction format

1. MOV A, R1 ; R1 ← [A]

2. ADD B, R1 ; R1 ← [R1] + [B]

3. MOV C, R2 ; R2 ← [C]

4. ADD D, R2 ; R2 ← [R2] + [D]

5. MUL R2, R1 ; R1 ← [R1]  [R2]

6. MOV R1, X ; X ← R1

28



Instruction Formats

Example:   evaluate X ← (A+B)  (C+D)

 One-address instruction format

1. LOAD A ; AC ← [A]

2. ADD B ; AC ← [AC] + [B]

3. STORE T ; T   ← [AC]

4. LOAD C ; AC ← [C]

5. ADD D ; AC ← [AC] + [D]

6. MUL T ; AC ← [AC]  [T]

7. STORE X ; M[X]   ← [AC]

29



Instruction Formats

Example:   evaluate X = (A+B)  (C+D)

 Zero-address instruction format

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ←(C+D)(A+B)

8. POP X ; M[X] ← TOS

30



Instruction Formats

Example:   evaluate X = (A+B)  (C+D)

 RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STORE X, R1 ; M[X] ← R1

31



Using Registers

 Registers are faster

 Shorter instructions

 The number of registers is smaller (e.G. 25 =32 registers 

need 5 bits to represent itself)

 Potential speedup

 Minimize the frequency with which data is moved back 

and forth between the memory and processor registers.

32



Instruction Execution and Straight-

line Sequencing

Address Contents

i Move A,R0

i+4 Add B,R0

i+8 Move R0,C

.

.

A

.

.

B

.

.

C

3-instruction 

program segment

Data for the 

program

A program for C  [A] + [B]

33



Instruction Execution and Straight-line 

Sequencing

 Assumptions:

 One memory operand per instruction

 32-bit word length

 Memory is byte addressable

 Each instruction fits in one word(full memory address can 

be directly specified in a single-word instruction)

 Two-phase procedure

 Instruction fetch

 Instruction execute

34



Instruction Execution and Straight-

line Sequencing

 The address of the first instruction i must be placed into the PC

 Processor control circuits use the information of PC to fetch and 

execute instruction one at a time in order of increasing order of 

address known as straight-line sequencing

 Execution is a two phase procedure known as instruction fetch 

and instruction execute

 The instruction fetched from the memory location whose address is 

in the PC. This instruction is placed in IR in the processor

 Instruction in IR is examined to determine the required operation 

to be performed. Then the operation performed by processor 

35



Branching

i Move NUM1,R0

i+4 Add NUM2,R0

i+8 Add NUM3,R0

.

i+4n-4 Add NUMn,R0

i+4n Move R0,SUM

.

SUM

NUM1

NUM2

.

.

NUMn

Assuming a program for adding 

an array of numbers without 

using any loop(straight line 

program)

36



Branching
Move N,R1

Clear R0

Loop Determine address of “next” number 

and add “next” number to R0

Decrement R1

Branch > 0 Loop

Move R0,SUM

.

SUM

N n

NUM1

NUM2

.

NUMn

Program 

loop

37



Generating Memory Addresses

 To specify the address of branch target we can not give 

the memory operand address directly in a single add 

instruction in the loop. We have to use a register to 

hold the address of NUM1; then increment by 4 on each 

pass through the loop.

38



Show the Execution of the Following 

Instructions

 0001 = Load R0 from memory

 0010 = Store R0 to memory

 0101 = Add to R0 from memory

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC

R0

IR

39



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC=300

R0

IR=1940

40



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC=301

R0=0003

IR=1940

As 0001=1 means load R0 

from memory

41



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC=301

R0=0003

IR=5941

42



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC=302

R0=0005

IR=5941

As 0101=5 means add R0 to 

memory

43



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0002

Memory

PC=302

R0=0005

IR=2941

44



Show the Execution of the Following 

Instructions

300 1940

301 5941

302 2941

940 0003

941 0005

Memory

PC=303

R0=0005

IR=2941

As 0010=2 means store R0 

to memory

45



Condition Codes / Status Flags

 The processor keeps track of information about the results of various 

operations

 This is accomplished by recording the required information in individual 

bits called condition code flags

 These flags grouped together in a special processor register called the 

condition code register or status register

 They are affected by the most recent ALU operations

 Flags are set to 1 or cleared to 0

46



Condition Codes / Status Flags

 Different instructions affect different flags

 N (negative) or S (sign) flag 

 Is set to 1 if the result of most recent arithmetic operation is negative otherwise 

clears to 0

 Is used by some instructions, such as: branch<0 LOOP

 Z (zero) flag

 Is set to 1 if the result of the most recent arithmetic operation is zero

 Used by some instructions, like: branch==0 LABEL

 C (carry) flag

 Is set if a carry out from most recent operation

 V (overflow flag) 

 Is set if overflow occurs in most recent operation. 

N Z V C

47



How Condition Codes or Status Flags 

Set/Reset

 Example:

 A:  1 1 1 1 0 0 0 0 (-16)

 B:  0 0 0 1 0 1 0 0 ( 20)

So, A – B = -36

A:       1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 1 0 1 1 1 0 0

C = 1

N = 1

V = 0

Z = 0

48



Circuit: How to Generate the Status 

Bits / Condition Codes 

 A and B are n bit numbers

A = <An-1An-2 ... A2A1A0> and B = <Bn-1Bn-2 ... B2B1B0 > 

 Sign Bits An-1 and Bn-1.

 Result = < Fn-1Fn-2 ... F2F1F0 > 

 Cn is the carry out from An-1+ Bn-1. 

 Zero Flag        : Z = (Fn-1 + Fn-2 + ... + F1 + F0)    

 Sign Flag         : N = Fn-1

 Carry Flag       : C = Cn;  

 Overflow Flag : V = Cn (XOR) Cn-1

49



Circuit: How to Generate the Status 

Bits / Condition Codes 

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

F

50



Addressing Modes

 The different ways in which the location of an operand is 

specified in an instruction are referred to as addressing modes.

 Instruction:  opcode  source_operand destination_operand

 MOV R1, A => source in register direct mode, destination in 

memory direct mode 

 MOV R1, (A) => source in register direct mode, destination in 

memory indirect mode 

 In an instruction, both the source and destination operands have 

their addressing modes(i.e., How their location (or, say, address) 

is specified)

51



Addressing Modes

Name Assembler Syntax Addressing 

Function

Immediate #value Operand=value

Register Ri EA=Ri

Absolute(Direct) LOC EA=LOC

Indirect (Ri)/(LOC) EA=[Ri]/[LOC]

Index X(Ri) EA=[Ri]+X

Base with Index (Ri,Rj) EA=[Ri]+[Rj]

Base with Index 

and Offset

X(Ri,Rj) EA=[Ri]+[Rj]+X

Relative X(PC) EA=[PC]+X

Auto Increment (Ri)+ EA=[Ri] and 

increment Ri

Auto Decrement -(Ri) Decrement Ri and 

EA=[Ri]
52



Immediate Mode

 Immediate mode

 Operand is part of instruction

 Operand = address field

 Example : MOVE #200,R0

200
OP CODE Operand

R0

Register

53



Register Mode

 Register mode

 Operand is the content of a processor register

 The name of the register is given in the instruction

 Example : MOVE R1,R2

OP CODE Address

2

2

Register

R1

R2

2

0

Register

R1

R2

Before After
54



Absolute Mode

 Absolute mode

 Address field contains address of operand

 Effective address = address field

 Also known as direct mode

 The operand is in a memory location 

 Example : ADD A

OP CODE Address Operand A

Memory

55



Indirect  Mode

 Indirect mode

 Indicate the memory location that holds the address of the memory 

location that holds the data

 Instruction does not give the operand or its address explicitly

 Provides the effective address of the operand

 Example : Add (A),R0

OP CODE Address A

2

Register

R0

Memory

B

2

A

B

56



Indirect Addressing to Compute the 

Array Sum

Contents

Move N,R1

Move #NUM1,R2

Clear R0

Add (R2),R0

Add #4,R2

Decrement R1

Branch>0 LOOP

Move R0,SUM

Address

Loop

Initialization

57



Index Mode

 Index mode

 The effective address of the operand is generated by adding a constant 

value to the contents of a register

 X (Ri) = X + [Ri]. 

 The constant X may be given either as an explicit number or as a symbolic 

name representing a numerical value

 X could be the starting address of an array and Ri could be incremented 

inside a loop to access the elements of the array sequentially 

 Example : Add 20(R1),R2

OP CODE Address A

2

Memory

1000

1020

1000

2

Register

R1

R2

58



Index Mode

N n

LIST Student Id

LIST + 4 Test 1

LIST + 8 Test 2

LIST + 12 Test 3

LIST + 16 Student Id

Test 1

Test 2

Test 3

.

.

.

Student 1

Student 2

59



Index Addressing in Accessing the Test 

Scores

Loop

Move #LIST,R0

Clear R1

Clear R2

Clear R3

Move N,R4

Add 4(R0),R1

Add 8(R0),R2

Add 12(R0),R3

Add #16,R0

Decrement R4

Branch>0 LOOP

Move R1,SUM1

Move R2,SUM2

Move R3,SUM3
60



Index Mode

 In general, the index mode facilitates access to an operand whose 

location is defined relative to a reference point within the data 

structure in which the operand appears.

 If X is shorter than a word, sign-extension is needed.

 Several variations: 

 Base with index register mode

 (RI, RJ): EA = [RI] + [RJ]

 Base with index and offset addressing mode

 X(RI, RJ): EA = X + [RI] + [RJ]

61



Relative Mode

 Relative mode

 The effective address is determined by the index mode using the 

program counter in place of general purpose register

 X(PC) – note that X is a signed number

 This mode can be used to access data operands

 Most common use is to specify the target address in branch instructions

 This location is computed by specifying it as an offset from the current 

value of PC.

 Branch target may be either before or after the branch instruction, the 

offset is given as a signed number.

 Example : -16(PC)

1016 1000PC PC

Before After
62



Auto Increment Mode

 Auto increment mode

 The effective address of the operand is the contents of a register 

specified in the instruction

 After accessing the operand the contents of this register are 

automatically incremented to point to the next item in the list

 The increment is 1 for byte-sized operands, 2 for 16-bit operands, 

and 4 for 32-bit operands.

 Example : (Ri)+

63



Auto Increment Addressing to 

Compute the Array Sum

Move N,R1

Move #NUM1,R2

Clear R0

Add (R2)+,R0

Decrement R1

Branch>0 LOOP

Move R0,SUM

Loop

Initialization

64



Auto Decrement Mode

 Auto decrement mode

 The contents of a register specified in the instruction are 

first automatically decremented and then used as the 

effective address of the operand

 Example : -(Ri)

65



Addressing Modes

66

 Implied addressing mode

 AC is implied in “ADD   B” in “one-address” instruction (ACAC+M[B]). 

 Similarly, TOS  and TOS-1 are implied in “ADD” in “zero-address” 

instruction

 Immediate addressing mode

 The use of a constant in “MOV   #5, R1”, i.e. R1 ← 5 

 Here, source is in immediate addressing mode, destination in register 

direct mode

 Register direct addressing mode

 Directly indicates which register holds the operand   

 MOV  R1, R2  both source and destination in register direct mode



Addressing Modes

 Register indirect addressing mode

 Indicate the register that holds address of the memory location (or, another 
register)

 MOV (R2), R1

 Here, source operand in register indirect mode

 Auto-increment/auto-decrement

 MOV  (R1)+, R2 and MOV -(R3), R4

 both source operands; access and update in 1 instruction

 Absolute/direct/memory direct (MD) mode

 memory location given explicitly

 MOV   LOCA, R1  (source operand in md mode)

 MOV R2, LOCB  (destination operand md mode)

67



Addressing Modes

 Memory indirect addressing mode

 Indicate the memory location that holds the address of the memory 

location that holds the data

 MOV  (LOCA), R2

 LOCA is a memory address, where the address of the operand can 

be found

 MOV A, R1:  source operand memory direct mode

 MOV (A), R1: source operand memory indirect mode 

 And destination in register direct mode for both the instructions.

68



Addressing Modes

 Relative addressing mode

 Branch X    or  JMP  X

 Effective address (EA) of operand = PC + X 

 Branch>0  label    EA = PC + label 

 Here the only operand is in the relative addressing mode

 X (or, label) is called the relative address

 Relative to PC register

 MOV  X(PC), R2

 Assembly language => used for branch instructions, PC is implicit, JMP 120 

means jump to address PC+120

69



 Indexed addressing mode

 EA = index register (XR) + relative address (RA)

 MOV  X(R1), R2  => source operand is in indexed mode. X could be positive or 

negative 

 MOV  20(R1), R2  here source operand is in indexed addressing mode and 

the effective address (EA) of source operand is 20+R1

 Base with index register mode

 Two different registers are used

 EA = base register (BR) + index register (XR)

 MOV   (BR, XR),  R1 and  MOV  (R2, R3),  R1

 In both of the above examples, the source operand is in(base with index 

register) addressing mode

Addressing Modes

70



Addressing Modes

 Base with index and offset address mode (BIO)

 Two different registers and an offset value are used 

 EA = base register (BR) + index register (XR)+  offset value 

 MOV X(BR, XR), R1source in BIO mode, destination register direct mode

 MOV X(Ri, Rj), (R2)source BIO mode, destination register indirect mode 

 MOV 40(R1,R2), LOCA  source in BIO, destination memory direct mode 

 MOV 50(R1,R2), (LOCA) source in BIO, destination memory Indirect mode 

 Sample question: identify the addressing modes of both source and 

destination operands of the following instructions:

 LOAD  #20, 20(R1)       ;      STORE  (R1,R2), (R3)     ;      ADD  (R1), LOCA     

 MUL  C                        ;      MUL 10(R1), (LOCB)      ;      DIV (LOCA), LOCA     

 ADD                            ;      SUB  (R2)+                   ;       BR  #72 

 SHL (R1), #8                ;      ROL (LOCA), R2   

71



Computing Dot Product of Two 

Vectors

 In calculations that involve vectors and matrices it is 

often necessary to compute the dot product of two 

vectors.

 Let A and B be two vectors of length n. Their dot 

product is defined by

𝐷𝑜𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 

𝑖=0

𝑛−1

𝐴(𝑖) × 𝐵(𝑖)

72



Computing Dot Product of Two 

Vectors

Move #AVEC,R1 R1 points to vector A

Move #BVEC,R2 R2 points to vector B

Move N,R3 R3 serves as a counter

Clear R0 R0 accumulates the dot 

product

LOOP Move (R1)+,R4 Compute the product of

Multiply (R2)+,R4 next components

Add R4,R0 Add to previous sum

Decrement R3 Decrement the counter

Branch>0 LOOP Loop again if not done

Move R0,DOTPROD Store dot product in 

memory
73



Types of Instructions

 Data transfer instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

74



Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD   ADR AC ← M[ADR]

Indirect address LD   @ADR AC ← M[M[ADR]]

Relative address LD   $ADR AC ← M[PC+ADR]

Immediate 

operand
LD   #NBR AC ← NBR

Index addressing LD   ADR(X) AC ← M[ADR+XR]

Register LD   R1 AC ← R1

Register indirect LD   (R1) AC ← M[R1]

Autoincrement LD   (R1)+ AC ← M[R1], R1 ← R1+1

75



Data Manipulation Instructions

 Arithmetic

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with 

borrow
SUBB

Negate NEG

76



Data Manipulation Instructions

 Logical and bit manipulation

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement 

carry
COMC

Enable interrupt EI

Disable interrupt DI

77



Data Manipulation Instructions

 Shift

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through 

carry
RORC

Rotate left through carry ROLC

78



Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare 

(Subtract)
CMP

Test (AND) TST

79



x x x x 0 x x x

Mask: all bi’s=0, 
except b3=1 

Will be zero if A3 is 0

Program Control Instructions

Compare 

(Subtract)
CMP

Test (AND) TST

Subtract A – B but don’t 
store the result

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

A =

80



Conditional Branch Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV
Branch if no 

overflow
V = 0

81



I/O

 The data on which the instructions operate are not 

necessarily already stored in memory.

 Data need to be transferred between processor and outside 

world (disk, keyboard, etc.)

 I/O operations are essential, the way they are performed can 

have a significant effect on the performance of the computer.

82



Program-controlled I/O Example

 Read in character input from a keyboard and produces character 
output on a display screen.

 Rate of data transfer from the keyboard to a computer is limited by the 
typing speed of the user.

 Rate of output transfers from the computer to the display is much higher

 Difference in speed between processor and I/O device creates the need 
for mechanisms to synchronize the transfer of data.

 Solution: on output, the processor sends the first character and then 
waits for a signal from the display that the character has been 
received. It then sends the second character. Input is sent from the 
keyboard in a similar way.

83



Program-controlled I/O Example

Processor DATAIN DATAOUT

Keyboard Display

SIN SOUT

Bus connection for processor, keyboard and display

Bus

- Registers

- Flags

- Device interface

84



Program-controlled I/O Example 

(I/O Space Separate from Memory Space)

 Machine instructions that can check the state of the status flags and 

transfer data:

READWAIT  Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT

85



Memory Mapped I/O

 I/O device registers are just like memory operands, I/O devices share 
the memory, some memory address values are used to refer to 
peripheral device buffer registers. 

 No special instructions are needed. Also device status registers used 
just as memory operands.

READWAIT  Testbit #3, INSTATUS
Branch=0   READWAIT
MoveByte DATAIN, R1

WRITEWAIT Testbit #3, OUTSTATUS

Branch=0  WRITEWAIT

MoveByte R1, DATAOUT
x x x x 0 x x x

0 0 0 0 1 0 0 0

Mask: all bi’s=0, 
except b3=1 

86



Program-controlled I/O Example

 Assumption 

 The initial state of SIN is 0 and the initial state of SOUT is 1.

 Drawback of this mechanism in terms of efficiency

 Two wait loops  processor execution time is wasted

 Alternate solution is

 Interrupt

87



Stack CPU Organization

 LIFO  (Last In First Out)

 Historically, Stack always grows upwards (from higher to lower memory 

addresses). No reason. Just a convention/established Practice

 SP(Stack Pointer Register) :Always points to the Top Of the Stack(TOS)

SP

Stack Bottom

Current
Top of Stack

TOS

0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5
0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

88



Stack Organization for CPU

 PUSH

SP ← SP – 1

M[SP] ← DR

EMPTY ← 0

If (SP == 0) then (FULL ← 1)

SP

Stack Bottom

0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

1  6  9  0

1  6  9  0

Current
Top of Stack

TOS

89



Stack Organization for CPU

 POP

DR ← M[SP]

SP ← SP + 1

FULL ← 0

If (SP == MAX) then (EMPTY ← 1)

SP

Stack Bottom

Current
Top of Stack

TOS
0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

1  6  9  01  6  9  0

90



0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack

 PUSH (summary)

SP ← SP – 1

M[SP] ← DR

 POP (summary)

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

91



Reverse Polish Notation

 Infix Notation:  

 Operand_1   Operator  Operand_2 

 A + B

 Prefix or Polish Notation: 

 Operator Operand_1 Operand_2

 A + B   Prefix  + A B   

 Postfix or Reverse Polish Notation (RPN): 

 Operand_1 Operand_2  Operator

 A + B  Postfix  A B +

A * B + C * D  A B * C D * +

 Example : (A + B)  [C  (D + E) + F]

2*4+3*3

RPN=> (2) (4)  (3) (3)  +

(8)          (3) (3)  +

(8)          (9)         +

17

92



Reverse Polish Notation

 Example

(A + B)  [C  (D + E) + F]

 RPN Is unambiguous. So, you can just discard all parentheses at the end

 (A + B) * [ {C * (D + E) }  + F ]

 [(AB+)  [ { (DE+) C * } F +]  * ] => AB+DE+C*F+*

 Postfix/RPN notation (of an expression) and stack operations (to evaluate 

the expression on stack-CPU) are identical. 

(A B +) (D E +) C  F +

93



Reverse Polish Notation

 Stack Operation to evaluate 3 * 4 + 5 * 6

(3) (4)  (5) (6)  +

PUSH      3

PUSH      4

MULT

PUSH      5

PUSH      6

MULT

ADD

94



Reverse Polish Notation

4

3 12

6

5

12

30

1242

95



Subroutines

 In a given program it is often necessary to perform a particular 

subtask many times on different data values. Such a subtask is called 

a subroutine

 When a program branches to a subroutine it is said that it is calling 

the subroutine. The instruction that performs this branch operation is 

named a call instruction.

 After a subroutine has been executed the calling program must 

resume execution continuing immediately after the instruction that 

called the subroutine

 The subroutine is said to return to the program that called it by 

executing a return instruction

 The way in which a computer makes it possible to call and return 

from subroutines is referred to subroutine linkage method

 Linkage register holds the address of PC

96



Subroutines

 The call instruction is just a special branch instruction

 Store the contents of the PC in the link register

 Branch to the target address specified by the instruction 

 The return instruction is another special branch instruction

 Branch to the address contained in the link register

Memory 

Location

Calling 

Program

Memory 

Location

Subroutine 

SUB

. .

200 Call SUB 1000 First 

instruction

204 Next 

instruction

.

. Return

97



Parameter Passing

 When calling a subroutine a program must provide to the 

subroutine the parameters, that is the  operands or their 

addresses, to be used in the computation. 

 Later the subroutine returns other parameters, in this case, the 

result of the computation. 

 This exchange of information between a calling program and a 

subroutine is referred to as parameter passing. 

98



Parameter Passing

Move N,R1

Move #NUM1,R2

Call LISTADD

Move R0,SUM

LISTADD Clear R0

LOOP Add (R2)+,R0

Decrement R1

Branch>0 LOOP

Return

Calling 

Program

Subroutine

99



Logical Shifts

 Logical shift – shifting left (LShiftL) and shifting right (LShiftR)

C R0 0

Before 0 0 1 1 1 0 … … …  0 1 1 

after 1 1 1 0 … … …  0 1 1 0 0

Logical shift left       LShiftL #2,R0

0 R0 C

Before 0 1 1 1 0 … … …  0 1 1 0

after 0 0 0 1 1 1 0 … … …  0 1

Logical shift right       LShiftR #2,R0

100



Arithmetic Shifts

R0 C

Before 1 0 0 1 1 … … …  0 1 0 0

after 1 1 1 0 0 1 1 … … …  0 1

Arithmetic shift right       AShiftR #2,R0

101



Rotate Left With or Without Carry

C R0

Before 0 0 1 1 1 0 … … … 0 1 1

After 1 1 1 0 … … … 0 1 1 0 1

Rotate left without carry       RotateL #2,R0

Rotate left with carry           RotateLC #2,R0

C R0

Before 0 0 1 1 1 0 … … … 0 1 1

After 1 1 1 0 … … … 0 1 1 0 0

102



Rotate Right With or Without Carry

R0 C

Before 0 1 1 1 0 … … … 0 1 1 0 

After 1 1 0 1 1 1 0 … … … 0 1 

Rotate right without carry       RotateR #2,R0

Rotate right with carry           RotateRC #2,R0

R0 C

Before 0 1 1 1 0 … … … 0 1 1 0

After 1 0 0 1 1 1 0 … … … 0 1 

103



Multiplication and Division

 Not very popular (especially division)

 Multiply  RI, RJ

 RJ ← [RI] Х [RJ]

 2n-bit product case: high-order half in R(j+1)

 Divide  RI, RJ

 RJ ← [RI] / [RJ]

 Quotient is in Rj, remainder may be placed in R(j+1)

104



Encoding of Machine Instructions
 Assembly language program needs to be converted (i.e., Encoded) into 

machine instructions. 

 (ADD = 0100 in ARM instruction set)

 In the previous section, an assumption was made that all instructions are one 
word in length.

 OPCODE: The type of operation (such as: ADD, MUL, MOV, XOR, etc.) that can 
be performed on the source and destination operands and the type of 
operands used may be specified using an encoded binary pattern

 Suppose 32-bit word length, 8-bit OP code that is we have 28=256 sets of 
instructions, 16 registers in total each of 4 bits and 8 possible addressing 
modes (3 bits as addressing Mode indicator)

Add  R1, R2

Move  24(R0), R5

LshiftR #2, R0

Move    #3A, R1

Branch>0  LOOP

 If LOOP is encoded in the remaining 10 bits (i.e., other info), then maximum 
possible  value of LOOP is 210-1 = 1023. So, branch target can’t be more than 
1023 bytes distant from the current instruction (Branch instruction or 
roughly the PC value) 

One-word instruction

OPCODE SOURCE DESTINATION OTHER INFO

8 Bits 7 Bits(4+3) 7 Bits(4+3) 10 Bits

105



Encoding of Machine Instructions

 Suppose we want to specify a memory operand using the absolute 
addressing mode

 MOV R2, LOC

 We know 17-bits (=32 – 8 – 7 bits) to represent LOC is insufficient. So we 
have to use two words

 Suppose we have an instruction in which two operands can be specified 
using the absolute addressing mode

 MOV  LOC1, LOC2

 The solution is to use two additional words. This approach results in 
instructions of variable length. Complex instructions can be implemented, 
closely resembling operations in high-level programming languages –
Complex Instruction Set Computer (CISC)

OP Code Source Destination Other Info

Memory Address / Immediate Operand

Two-word instruction

106



Encoding of Machine Instructions

 If we insist that all instructions must fit into a single 32-bit word, it is not 

possible to provide a 32-bit address or a 32-bit immediate operand within 

the instruction.

 It is still possible to define a highly functional instruction set, which makes 

extensive use of processor registers.

 ADD  R1, R2, R3 ,allowed in RISC(8+(4+3=7)*3 bits => still less than 32 bits)  

 ADD  LOC, R2 ,not allowed  

 In RISC, replace it with two instructions  LOAD LOC, R1; then  ADD R1,R2 (as, 

only RISC  LOAD and STORE instructions can access memory, not ADD 

instruction)

 ADD (R3),R2 ,not allowed

 Replace it by LOAD (R3),R1; ADD R1,R2

 In RISC, the only exceptions are the LOAD and STORE instructions involve 

memory operands. Such instructions require more than one word. Other 

instructions can fit within a single word (as, they involve registers only) 
107


