

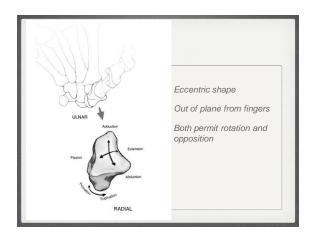
- Stock, stock options OsteoSpring, Illuminoss
- RJOS President 2013-14
- Assistant Dean of Medical Advising

Overview of Webinar

Current, clinically relevant information on CMC arthritis:

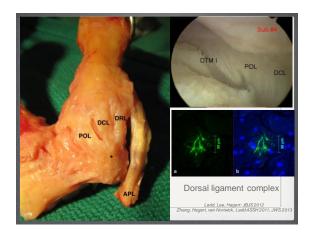
- Why is it such a problem? Ladd
- Trapeziectomy and various approaches Weiss
- Less invasive procedures Kakar
- Role of instability Wolf

Anatomy – its not simple


Shape

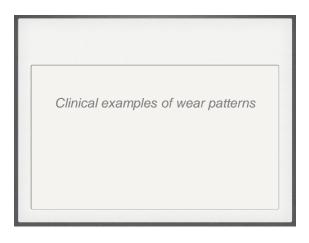
Load

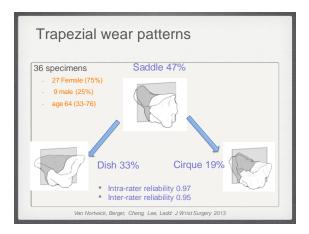
Movement



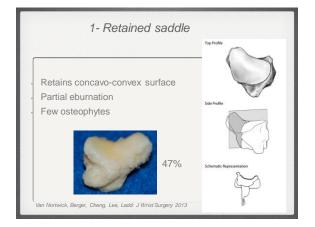
Ligament stability

Stability is part structure and part proprioception. Ligaments may only contribute part of stability.

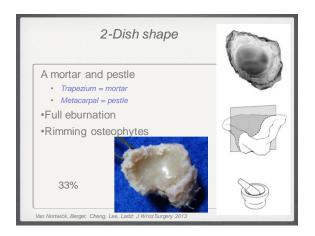


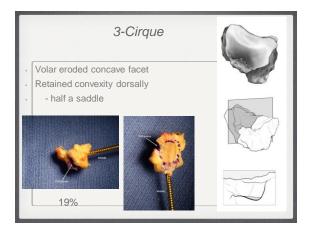


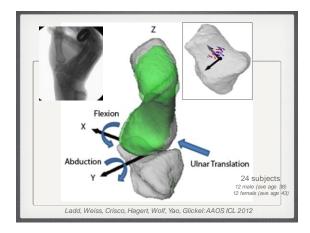
Load

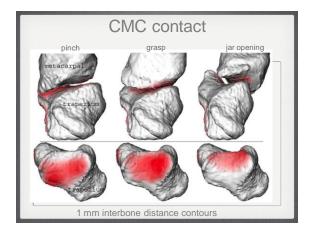

Articular and trabecular wear patterns infer biomechanical loading.

Abnormal loading may contribute to patterns of arthritis.

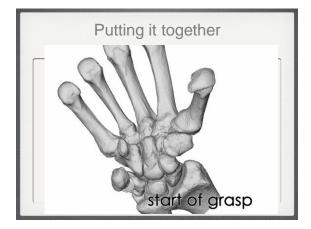


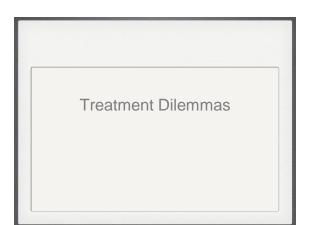


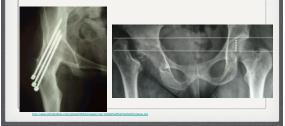


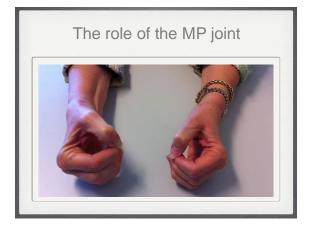


Movement

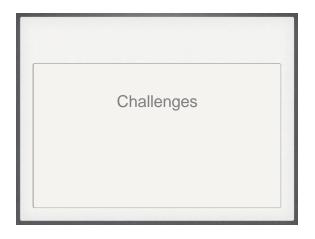

Understanding micro-motion in normal and arthritic populations suggest better ways to predict and treat arthritis.

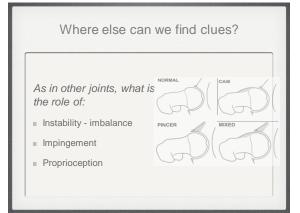




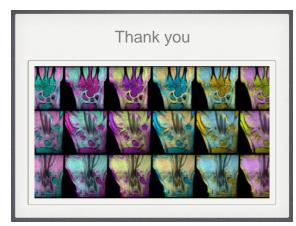

CMC end-stage disease

- Treatment stuck in the 1950s
- Lessons to be learned from the big joints!





Can we do better than this?



Summary - Ultimate goal

- Apply what we know about anatomy and disease
- Decipher the paradox of mobility and stability
- · Use this to predict, prevent, and treat thumb arthritis

Thumb CMC Arthroplasty

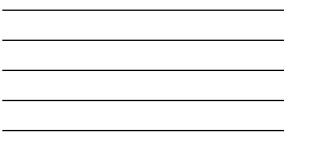
Suture Suspension Technique

Arnold-Peter C. Weiss, M.D. R. Scot Sellers Scholar of Hand Surgery Professor of Orthopaedics

Disclosure

None

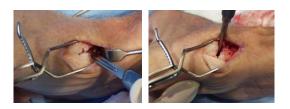
Why should I care?


Most studies show equal outcomes Gerwin, Kriegs-Au, Davis Third most common joint requiring surgery Most common reconstructive hand surgery

BUT... Surgical times can differ Eliminating K-wire Cost factors

Surgical Factors to Consider

Surgical Factors to Consider

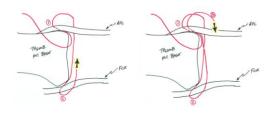

- Eliminating K-wire: Less discomfort post-op
- · Possibility of collapse: Longer term issue
- Cost: Lower is better
- Tendon: Do we really need it?

Study Question

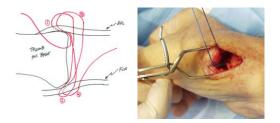
- Standard complete trapeziectomy
- Suspend by a "weave" of #2 Fiberwire between the APL and FCR at their distal most insertions
- No tendon graft
- Casted for 4 weeks
- Standard post-op hand therapy protocol

Suture Suspension Technique (n=65)

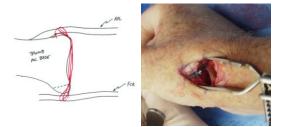
Complete trapeziectomy



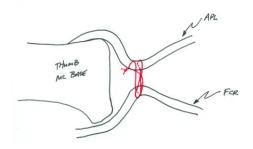
Suture Suspension Technique (n=65)


• #2 Fiberwire through distal APL insertion then through distal FCR then back through APL and once more through FCR

Suture Suspension Technique (n=65)



Suture Suspension Technique (n=65)



Suture Suspension Technique (n=65)

Tie the suture ends and test longitudinal stability

NO – don't tether the two tendons

Results

- Minimum of 2 year follow-up examination
- Age: 51.3 yrs
- Average OR time = 23 minutes
- No radiographic collapse in any patient
- Pinch & grip strength plateau at 4 months
- Pain: VAS score of 0.2 (0 10) at final F/U exam

Discussion

- Clinical results and outcomes equal to other reported techniques
- Shortened operative time; Inexpensive
- Intrinsic & immediate stability
- A viable alternative to time intensive techniques
- Data is preliminary but promising

Thank You

"Minimally" Invasive Options & Role of Tightrope in the Management of Basilar Thumb Arthritis

Sanj Kakar MD, MRCS Associate Professor of Orthopaedic Surgery Mayo Clinic, Rochester

Disclosures

• Basic Science Research Grants

ASSH

- Mayo Foundation
- Consulting
 - Arthrex
 - Skeletal Dynamics

No financial relationship with Tightrope

Anatomy of 1st CMC Jt • Biconcave saddle shaped joint

- <u>Little osseous</u> stability
- · Semi-constrained, relatively incongruent
- Motion:
 - **Flex-extension**
 - Abduction-adduction

Rotation

Forces to Consider

- Forces across TM joint
- Simple pinch
 - 12 kg force

patient

- Strong grasp
 120 kg force
 - Important consideration especially in a young

Cooney WP. JBJS 1977

Ideal surgical procedure for 1st CMC arthritis

- Pain relief
- CMC motion / position
 - MP joint (hyperextension)
- Pinch and grip strength
- Minimal complications
- Reproducible
- Long lasting

Treatment: Operative

- Trapezial resection alone
- Trapeziectomy & suspension
- Arthrodesis
- Implant arthroplasty
 - Altering normal anatomy & mechanical function

• What's the salvage when they fail ? e.g. young pt, manual labourer

- ↓ span of hand & dexterity with fine manipulation (fusion)
- Prolonged recovery

Are there minimally invasive treatment options?

Can we maintain the trapezium?

Denervation of CMC Joint

Proposed Advantages

- Pain relief
 - Without compromise of ROM & strength
- Minimal rehabilitation
- Doesn't burn bridges for future tx

Innervation of Thumb CMC Jt

SBRN

- dorso-radial collateral of thumb Lejar's branch dorso-ulnar collateral of thumb dorso-radial collateral of index Anastomoses between 3 & 4
- 3.
- LABCN
 - Cruveilhier's branch

Median nerve

Thenar branch Palmar cutaneous nerve

Branch of deep motor ulnar nerve

	Table 1 - Innervati	on Patterr	is of the T	rapezio-Met	acarpal Joint	
		Author	Cozzi	Loréa et al	Poupon et al	Miki et al
		Year	1991	2002	2004	2011
		Limbs	500	10	15	19
		Rightside	-	-	8	10
		Male		-		7
	Posterior Interos		-	0		-
	Sup. Rad. N. not otherwi		100%	10 (100%)	15 (100%)	11 (58%)
	Dorso-radial collateral o		70%	+	15 (100%)	-
	Dorso-ulnar collateral o	of the thumb	+	+	3 (20%)	-
	Dorso-radial collateral of th	e first finger	+	+	1 (7%)	-
		ejars branch	30%	-	14 (93%)	-
	Dorsal articular nerve of Wi					
		sseous space	-	**9 (90%)	***3 (20%)	-
	Lateral Antebra		-	+	-	-
	Cruveilt	hier's branch	-	10 (100%)	-	-
	Anterior Interos	seous Nerve	-	0	-	-
	PalmarCutan		* - (5%)	9 (90%)	11 (73%)	0
	Thenar Branch Me	edian branch	* - (5%)	9 (90%)	13 (87%)	9 (47%)
	Intra-canal branch of th	nenar branch	-	2 (20%)	5 (30%)	-
	Motor Branch of	Ulnar Nerve		0	-	9 (47%)
ot look at thi:	s nerve or branch	* estimation b	ov author			
ed at this ner	ve or branch, but did not note a			ulnar digital nerve	of the thumb in	
erofarticulati				e of the index fin		
ked at this ner	ve or branch, but did not find any	the bifurcatio	n between th	nese branches in 4	1	
lating branche	e	*** derived fr	om dorso-ra	dial collateral of t	he first finger	

...

T E C H N I Q U E	
First Carpometacarpal Joint Denervation:	
Anatomy and Surgical Techniaue	

• Two incisions (palmar & dorsal)

- Denervated
 - Superficial Radial Nerve

 - Lateral Antebrachial Nerve
 Palmar Cutaneous Branch of Median Nerve
 Thenar Branch of Median Nerve
- 43 pts (mean age: 60 yrs [range 30-77]) 3 heavy manual labour & 2 factory workers
- Improved rest pain (90%) > ADL (86%) > heavy work (82%)
 - ↑ Kapandji score & key pinch
 42/43 pts were satisfied

•
No charcot joint

Wagner Approach for First Carpometacarpal Joint Denervation Joint M. Arous-Prit MD+1 • Wagner approach • Denervated • Superficial Radial Nerve • Superficial Radial Nerve • Palmar Cutaneous Branch of Median Nerve • Thenar Branch of Median Nerve

16 pts (18 thumbs)

- * 14/16 pts ightarrow satisfied or very satisfied
- NO formal pain assessment/?degree of arthritis

• Complications: 2 pts \rightarrow painful HT scar

1 pt $\rightarrow\,$ hypoaesthesia over dorsum thumb

Thumb Metacarpal Osteotomy

Ligament Laxity Theory of Thumb Arthritis

- Volar beak ligament degenerates & detaches
- Abnormal shear stresses across anterior compartment of joint causes CMC arthritis <u>- Degeneration of palmar metacarpal cartilage</u>
 - Exacerbated by pinching (flexion & adduction of 1st metacarpal)

K

10

Extension osteotomy of 1st metacarpal
 Palmar contact unloaded & contact pressure moved dorsally
 Indications: Eaton stage 1 disease

Pelligrini VD Jr. et al J Hand Surg, Pelligrini VD Jr. et al J Hand Surg, 22

Long-Term Outcomes of First Metacarpal Extension Osteotomy in the Treatment of Carpal-Metacarpal Osteoarthritis Wedyl. Pater. MD. PdD. Rendl L. Lindedt MD. Pene C. Anada MD

8 pts (3 Eaton stage 1, <u>3 Eaton stage 2 & 2 Eaton stage 3</u>) • Average f/up 9 yrs

Results

- ↑ grip strength (108% of contralateral side)
- ↑ appositional pinch strength (129%)
- ↑ oppositional pinch strength (103%)
- * 6/8 pts \rightarrow excellent functional outcomes

• Eaton stage preserved 5/8 pts

Arthroscopic Treatment

Arthroscopy for CMC OA Technique - Berger, JHS, 1997

- Portals (locate with 18 g needle +/- fluoro)
 - 1R (radial to APL at CMC it)
 - 1U (ulnar to EPB at CMC jt)
- Dangers
 SBRN, radial artery
- Equipment
 - Thumb in txn (5-10lbs)
 - Insufflate jt (2mls 1U portal)
 - 1.9mm short barrel scope
 - 2mm shaver through 1R to debride synovitis (use 2.9mm burr once space ↑ within a 3.5mm sheath to prevent clogging during trapeziectomy)
 - Thumb Carpometacarpal Arthroscopy: A Topographic, Anatomic Study of the Thenar Portal

Eric F. Walsh, MD, Edward Akelman, MD, Braden C. Fleming, PhD,

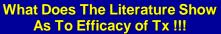
Replace 1R with thenar portal

- Arthroscope in 1U portal
- Thenar portal 90° to 1U portal
- Results (thenar portal)
 - Good working portal
 - ↓ sword fighting
 - Didn't violate the dAOL

 - Further away from sensory nerves than 1R
 23mm away from recurrent motor branch median nerve

Advantages of CMC Arthroscopy Menon 1996

- | invasion compared to open approach
- ↓ postop pain & stiffness
- Quicker rehabilitation
- Doesn't burn any bridges



Trapeziometacarpal Arthroscopy: A Classification and Treatment Algorithm Alejandro Badia, MD, FACS

Stage 1

 Synovitis & ligamentous laxity Synovectomy +/- thermal shrinkage

- Stage 2
 - Cartilage loss on 1/2 trapezium
 - Metacarpal extension osteotomy
 - Arthroscopic tx
- Stage 3
 - Diffuse cartilage loss
- Manager Arthroscopic hemitrapeziectomy

Arthroscopic Debridement and Synovectomy for Treating Basal Joint Arthritis John P. Furia, M.D.

23 pts (Eaton stage 1 & 2)

- Arthroscopic synovectomy & debridement & splint 1wk
- Control grp: 21 pts non op tx
- Evaluated 1 yr later

Results

- * 83% surgical pts \rightarrow good to exc results
- Surgical pts:
- ↓ pain, ↑ DASH & pinch strength Complications
- Wound infection (1)
 DSRN irritation (1R)

Prospective Outcomes of Stage III Thumb Carpometacarpal Arthritis Treated With Arthroscopie Hemitrapeziectomy and Thermal Capsular Modification Without Interposition da, MD, Peter N. R.

23 pts (Eaton stage 3)

- Hemitrapeziectomy (3-4mm) CMC jt pinned (3-4 wks)
 >4 year follow up

Results

- 19/23 pts pleased with results
- ↑ DASH & pinch & grip strength
- Proximal migration ~ 3mm
- Complications
- 1 Wound infection 1 DSRN irritation (1R) 1 DSRN irritation (1R)

Arthroscopic Hemitrapeziectomy With Tendon Interposition for Arthritis at the First Carpometacarpal Joint

14 pts (Eaton 2 & 3)

- Hemitrapeziectomy & interposition (PL, FCR)
 F/up: 11 months (3.3-17.3)

Results

- VAS ↓8.6→ 1.8 (p<0.005)
- 90% restoration grip & pinch strength
- 10/11 pts → "much better"
- Complications
 1 CRPS

 - ? 1Graft extrusion

919/02/4/1/24-8 doi: 10.1007/s11952-005-9133-2 tpus 2000 Sep 24 pic hemitrapeziectomy for first carpometacarpal arthritis: results at 7-year fo tion arthroplasty of the first carpometacarpal jo

Tightrope

Suspension Arthroplasty

- Suture button compared with k wire fixation for maintenance of post-trapeziectomy space Yate et al. 2010
 - Cadaveric study
 - Maintenance of suspension (lateral, cyclic, dynamic pinch)
- Suture button suspensionplasty after arthroscopic hemitrapeziectomy for thumb CMC arthritis coxet al. 2010
 - 16 pts (Eaton II-III)
 - ROM & splint at 2 weeks
 - At 1 yr \rightarrow "promising results"

Yao & Song 2012

Suture Button Suspension Arthroplasty for Thumb CMC Arthritis

- 21 pts (f/up >24 M)
 - Tightrope & 2.7mm drill (8 arthro hemi & 13 open trapeziectomies)
 - ROM & splint at 10 days post op
- Results
 - All pts \rightarrow full ROM
 - Quick DASH: 10 +/- 9
 - Grip & pinch strength: 86% & 89% contralateral side
 - Trapezial height ightarrow 74% of contralateral side
 - 1 CRPS & 1 frx 2nd metacarpal

Had experience with <u>mini</u> Tightrope in revision cases • 55F 6 months post op (tx elsewhere)

ECRL suspension, tightrope and graft jacket interposition • 18 months post op

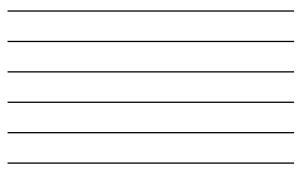
My Initial Thoughts Tightrope:

- Skeptical - Concerns of breakage

BUT gives immediate stability

If doing a trapeziectomy and suspensionplasty:

- Tightrope
- Imbricate FCR to APL



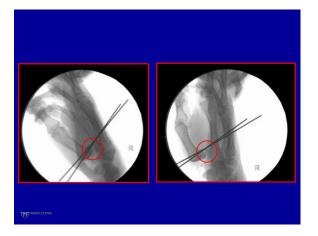
Work in plane between APL & EPB & isolate and protect radial artery

 Remove trapezium with care not to injure underlying FCR tendon!!!

Inspect ST joint & debride if arthritic

ST joint debrided

• Dorsal approach base of 2nd metacarpal



Ensure debridement of osteophytes at base of 1st & 2nd metacarpal bases to \downarrow impingement

 Free hand or with guide place k wire from base of 1st to 2nd metacarpal....ensure you are through 4 cortices!!!!!
 Extend 1st metacarpal base and palmar abduct when passing wire

- Pull endobutton down onto 1st metacarpal and tie down 2nd button. Repeat steps for 2nd tightrope if desired
- <u>Close periosteal flap</u> over 2nd metacarpal to ↓ symptomatic hardware

Post Op Protocol

- 2 weeks thumb spica post op splint
- If comfortable, start AROM at 2 weeks (protect with thumb spica splint for 2-4 weeks)

• Grip strengthening at 6 weeks

Apposition pinching at 12 weeks

Mayo Experience Kakar and Parry 2014

- 11 pts (1M,10F)
 60yrs (43-73)
- 2 mini tightropes & FCR to APL imbrication

• Follow up 18 months (range:13-26 months)

Transaction Descention Dissection (m) (m) (m) (m) (m) Dissection (m) (m) (m) (m) Dissection (m) (m) (m) (m) Dissection (m) (m) (m) Dissection (m) (m) Dissection (m) (m) Dissection (m) (m) Dissection (m) Dissection (m) Dis Dissection (m) <thdis< th=""></thdis<>					
Appositional Price Nugl 4 (1-7) 6.4 (4-18) 2.5 (1.4 to 3.5) 40.0001* Oppositional Price Nugl 3.6 (0.5 %) 6 (1.2 s) 2.6 (1.2 to 4) -0.0021* MCP Programmersional Price Nugl 1.6 (3.5 %) 6 (1.2 s) 2.6 (1.2 to 4) -0.0021* MCP Programmersional Price Nugl 1.6 (3.0 %) 6 (1.2 s) -2.6 (1.4 to 5.2) -0.0021* MCP Programmersional Price Nugl 1.6 (3.0 %) 5.0 (1.0 %) -0.0 (1.4 %) -0.0 (1.4 %) MCP Programmersional Price Nugl 3.6 (3.4 %) 1.0 (1.1 %) -0.7 (1.2 ± to 11) -0.0 (0.0 %)					P value
Oppositional Prech [kg] 1.6 (35-54) 6 (2-30) 2.6 (1.2 to 4) 40.0031* MCP Prepareterminion 1.4 (30-30) 5.1 (2-30) -8.1 (4.1 4a to 2.4) -0.1 MCP Treates 5.4 (40-70) 5.6 (10-60) -4.3 (2-30-11.3) -0.5 # Propereterminion 2.6 (4.4 (3-2.4)) -0.01 -0.01 -0.01	Grip Strength (kg)	12.6 (2-28)	24.4 (12-40)	11.7 (8.8 to 14.6)	<0.0001*
MCP Hyperestension 14 (0-30) 9.1 (0-20) -8 (-11.4 to 2.4) <0.1	Appositional Pinch (kg)	4 (1-7)	6.4 (4-10)	2.5 (1.4 to 3.5)	<0.0004*
MCP Flexion 54.5 (40-70) 50.6 (10-60) 4.3 (-20 to 11.3) <0.5 IP Hyperextension 10.4 (0-30) 11.4 (10-15) -0.7 (-12.4 to 11) <0.88	Oppositional Pinch (kg)	3.6 (0.5-9)	6 (2-10)	2.6 (1.2 to 4)	<0.0021*
IP Hyperextension 10.4 (0-30) 11.4 (10-15) -0.7 (-12.4 to 11) <0.88	MCP Hyperextension	14 (0-30)	9.1 (0-20)	- 8 (-18.4 to 2.4)	<0.1
	MCP Flexion	54.5 (40-70)	50.6 (30-60)	-4.3 (-20 to 11.3)	<0.5
NIC IP Flexion 64 (40.80) 65.7 (45.80) 3.5 (-4.7 to 11.8) <0.1	IP Hyperextension	10.4 (0-30)	11.4 (10-15)	-0.7 (-12.4 to 11)	<0.88
	LINIC IP Flexion	64 (40-80)	65.7 (45-80)	3.5 (-4.7 to 11.8)	-0.1

Mayo Experience Kakar and Parry 2013

- · Post operative outcome questionnaires:
 - DASH
 - 19 • MHQ 75
 - PRWE 21
- Radiographs:
 - Maintenance of trapezial space
- Complications:
 - 1 CRPS
- 3 DSRN irritation (resolved)

Minimally invasive procedures have a role in management of thumb CMC OA

- Young pts
- Manual labourers

Maintain the length of thumb (power)

Denervation procedures Minimal morbidity without burning bridges

Arthroscopy

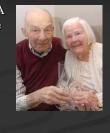
- Similar results to open tx
- No PRCT compared to open tx
- Eaton 1:

 - Debridement & synovectomy
 Metacarpal extension osteotomy
- Eaton 2-3:
 - Hemitrapeziectomy +/- interposition +/-tightrope

Thank You For Your Attention

VuMEDI: Why Do Men Get Thumb CMC Arthritis?

Jennifer Moriatis Wolf, MD Associate Professor Department of Orthopedic Surgery University of Connecticut


Disclosures

- Grant Funding AFSH, OREF, University of Connecticut
- Salary Deputy Editor of Journal of Hand Surgery, Elsevier Updates Editor

Overview •Epidemiology •Sex Differences

Epidemiology

- Incidence of thumb CMC OA increases with increasing age in both sexes
- Women >> Men
 - Radiographic
 - Clinical

Radiographic Differences

- Haara et al large Finnish population study
 - Incidence of Kellgren-Lawrence grade 3/4 OA of the TM joint JBJS-A, 2004
 - 14.5% in women
 - 10% in men
- Sodha et al large study of ED radiographs for fracture JBJS-A, 2005
 - Noted increasing rate of TM OA with age
 - In worst TM OA 66% prevalence in women compared to 23% of men

Symptomatic Differences

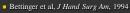
- Framingham study prevalence in TM joint
 - 5% in women
 - 2.5% in men Zhang et al, Am J Epidemiol, 2
- Physician-diagnosed TM OA in Sweden
 - Primarily captured public health system
 - Overall prevalence of 2.2% in women and
 - 0.69% in menMen diagnosed over a decade later than women
 - Wolf et al, Arthr Care Res, 2013

Why the Sex Difference?

- Not known
 - Anatomy
 - Biomechanics
 - Hormones
 - Occupation
 - Genetics

Anatomy

- Saddle-shaped joint
 - Stabilized by ligaments to provide mobility and stability
- Ligaments have been studied for strength
 - Best recent data indicates dorsoradial ligament (DRL) major stabilizer Ladd, Hager1BJS-A, 2012
 - As opposed to thinner AOL


Sex Difference in Bony/ Ligamentous Anatomy

- Study in 18 female and 13 male cadavers
 - Average age 71.4 years
- Used micro-calipers to measure
 - Metacarpal width
 - Trapezial width
 - Ligament thickness
- Men had greater width of metacarpal and 18.83 mm vs. 16.65 mm)
- Men had thicker DRL, sAOL
 Gerhardt, Baldini, Wolf, unpublished da

Biomechanical Differences

- Bettinger et al studied material properties of TM stabilizing ligaments in 10 male and 10 female cadavers
 - Ultimate load and stress of AOL significantly higher in men
 - Ultimate strain of DT-II MC ligament greater in women

- Role of laxity
 - Women have greater overall laxity than males
 Larsen et al, Arthr Rheum, 1987
 - Possible abnormal loading playing a greater role in women

Men and TM Subluxation

- Hunter et al Framingham study Osteoarth Cartilage, 2005
- 203 men and 431 women
 - Hand radiographs in 1967 and 1993
 - Evaluated for TM subluxation
- Noted that baseline TM subluxation correlated with development of later TM OA *in men* only

Occupation

- No studies evaluating occupation directly between sexes
- Framingham study evaluated grip strength and associated development of hand OA Chaisson et al, Arthr Rheum, 1999
- 453 eligible subjects over 30 years
- Highest maximal grip strength in men associated with increased risk of PIP, MCP, and thumb CMC OA
- Women's grip showed correlation with MCP OA only

Hormones

60%

40%

- Sex hormones attractive target
 - Estrogen
 - Progesterone
 - Testosterone
 - Relaxin
- Primary evidence in animal studies of OA
- Relaxin levels higher in post-menopausal women than age matched men Wolf et al, J Hand Surg Am, 2013
- Further studies ongoing

Genetics

component in hand OA in general
 Ishimori et al showed osteophyte distribution to be genetically linked
 Arthr Res Ther, 2010

Multiple studies have shown genetic

 Mutations in matrilin-3 (ECM protein gene) linked to more severe form of TM OA
 Eliasson et al, Scand J Rheumatol, 2006

Conclusions

- Men with TM OA
 - Present later than women

Possibly different mechanism

- ?more direct joint load vs. ligament attenuation
- Anatomic differences in men and women
- Interaction between anatomy, genetics, and environment may be different in men

