CO₂ Angiography

Properties, History, Body's response, Dosage, and Indications

> Kyung J. Cho, MD, FSIR University of Michigan

Disclosure

None

CO₂ Properties

- · Invisible gas
- High solubility
- Low viscosity
- Buoyancy
- Compressibility
- Non-allergenic
- Non-nephrotoxic

Percent changes in pulmonary arterial pressure following intracaval injections of ascending doses of CO₂ in swine

Percent changes in SaO_2 following intracaval injections of increasing doses of CO_2 in swine

Conclusions

- CO₂ in doses of 0.2-1.6 cc/kg causes no cardiopulmonary effects.
- Because diagnostic CO₂ DSA increases PA pressure, CO₂ should be used cautiously in patients with pulmonary hypertension.
- Blood pressure monitoring and capnography provide the earliest sign of "vapor lock" in the pulmonary artery from an inadvertent injection of large volume of CO₂ or air.

Injection factors for CO₂ angiography

Aortography
Celiac arteriography
Superior mesenteric
Renal arteriography
15 - 20 cc/sec
Renal arteriography
15 - 20 cc/sec
Iliac arteriography
Femoral arteriography
Inferior vena cavography
20 - 40 cc/sec

Indications

- Contrast allergy
- · High risk patients for CIN
- · Arteriography below diaphragm
- Venography (central veins, hepatic/portal vein, IVC)
- Parenchymal injection (liver & spleen)
- Intervention:
 - Arterial intervention
 - EVAR
 - Venous intervention
 - Hepatic-portal intervention

Conclusions

- CO₂ is the only safe contrast agent in contrast allergy and renal failure.
- Understanding properties of CO₂ and development of a facile catheterization technique with the use of CO₂ reflux and stacking are essential in obtaining a successful CO₂ angiogram.
- CO₂ is preferable in many diagnostic arteriography and endovascular interventions that often require large amounts of contrast.

Carbon Dioxide Vascular Imaging and Interventions

Daniel Simon, MD Vascular Access Center of West Orange West Orange, New Jersey

Carbon Dioxide Imaging

Angiography Venography

CO₂ Imaging - Advantages

Non nephrotoxic No effect on GFR Ideal for patients with renal Insuffciency Competitive alternative for MRA/CTA

Less Well Known Advantages	
 Low viscosity agent Non allergic Relative unlimited dose limit 	
Disadvantages	
Conspicuity	
 Patient discomfort 	
Unpredictable patient reactionsUnpredictable imaging quality	
Carbon Dioxide Imaging	
WHITE CONTRAST = CARBON DIOXIDE	

Carbon Dioxide Imaging with Interventions

Renal Transplant Assessment

·	,

Carbon Dioxide Imaging Lower Extremity

Carbon Dioxide Lower Extremity Angiography

Carbon Dioxide performs well in occlusive disease

_			
_			
-			
_			
_			
_			

	Peripheral Interventions

Pos	t Angio Athere	and	

•	

·	

Technique Matters

- Patient positioning
- Breath holding
- Motion
- Bowel gas
- Injection rate

_	
-	
	_

Manage Your Expectations • Approach as a LOW contrast study rather than a NO contrast study • Pain resolves. • When you see nothing its usually because there is nothing there.

CO2: Applications	
Hector Ferral, MD NorthShore University HealthSystem	
Interventional Radiology	
*NorthShore	
Disclosure	
 Consultant for Terumo 	
CO2: Applications	
ooz. i-ppinemiene	
 TIPS procedures 	
Aneurysm repairBorderline Kidney Function	
 Dialysis access interventions 	
 Allergy to Contrast 	

CO2:Basics

- Do not load your syringe directly from a source (CO2 tank)
- Always use a closed delivery system
 - CO2mmander system
- Keep record of injection volumes
- Analyze your runs carefully
 - Understand CO2 distribution after injection
 - Avoid "vapor-lock"

TIPS procedures

- We use CO2 for all our TIPS procedures
- CO2 portogram is critical for the portal vein localization stage of the procedure

CO2 Portogram in TIPS

CO2 Portogram in TIPS

TIPS procedures

- AP and oblique views
 - Excellent to localize the portal vein
- Wedge injection
 - Wedged catheter or balloon catheter
 - Gentle injection of 15-20 cc
 - Careful in patients with ascites
- Intraparenchymal injection

3

ANEURYSM REPAIR

Case Presentation

- 78 year old man with severe atherosclerotic disease, chronic renal failure with a stable serum creatinine at 2.5 mg/dL and a large iliac artery aneurysm
- Needs aneurysm repair but it is desirable to avoid iodinated contrast

Aneurysm repair

- Iliac aneurysm coiling with CO2
- AAA stent-graft using CO2 & IVUS
- Total contrast used: 30 cc
- Renal function unchanged

DIALYSIS A	CCESS II	NTERVE	ENTION

Case Presentation

- 68 year old woman with ESRD
- On hemodialysis via an AV fistula
- Allergic to iodinated contrast
 - Refractory to pre-medication
 - Ongoing problems with her AV fistula
 - Bleeding post-dialysis
 - Requires 3 month-surveys

CO₂ Fistulogram

CO₂ Fistulogram

Dialysis access intervention

- This patient's procedures are completed whenever necessary without the use of contrast medium
- No further allergic reactions

Final comments

- CO2: Applications in the angio-suite

 - SafeReliable

 - ReproducibleCheap (save on contrast and drugs)
- Excellent problem-solving tool

CO₂ ADVANTAGES Non-allergic Non-nephrotoxic (unlimited volumes) Rapidly absorbed (20 - 30X O2) Low viscosity (1/400 iodinated contrast) Easier to use with microcatheters Can inject in-between catheter and wire Detection of bleeding, AVF Portal vein visualization Central reflux Ability to identify vessel (ostium) central to catheter tip

CO₂ DISADVANTAGES

1. Requires unique delivery system

• Cost (1cc = .005)

- 2. Invisible concern for undetected contamination
- 3. Cerebral vessels should be avoided
- 4. Bowel gas can interfere with abdominal images
- 5. Potentially more labor intensive

PROCEDURES

- Renal insufficiency / allergy
- High volume contrast procedures
- Arterial and Venous Dx
- Detection of Acute hemorrhage / fistula
- IVC filters
- EVAR
- TIPS
- Portal vein intervention
- Interventional oncology

• Contamination • Excessive volumes • Compressive delivery • Pulmonary HTN

CONTAMINATION 1. CO₂ cylinder Rust, methane, H₂O, particulate matter, carbonic acid 2. Room air diffusivity malpositioned stopcock inadequate flushing

ADVANTAGES • Pre-assembeled • Compact • User friendly cannot be connected inappropriately • CO₂ cannot go directly to patient • One purge • No explosive delivery

DELIVERY SYSTEM

- Non-compressed for accurate volume and prevent explosive delivery
- Closed system to prevent contamination
- One way valves prevent reflux and necessity to remove delivery syringe
- Glued components helps prevent air contamination
- Hand injection purge catheter first to prevent explosive delivery

25

CARBON DIOXIDE DIGITAL SUBTRACTION ANGIOGRAPHY

- CO₂ angiography is safe when used appropriately
- The delivery system is simple
- CO₂ has unique properties as a contrast agent
- It is a useful tool in both diagnosis and intervention alone or as an adjunct with I contrast

26

