Design of pipeline installation

D-GEO PIPELINE

User Manual

D-GEO PIPELINE

Design of pipeline installation

User Manual

Version: 16.1 Revision: 00

9 February 2016

D-GEO PIPELINE, User Manual

Published and printed by:

Deltares Boussinesqweg 1 2629 HV Delft P.O. 177 2600 MH Delft The Netherlands

telephone: +31 88 335 82 73 fax: +31 88 335 85 82 e-mail: info@deltares.nl www: https://www.deltares.nl

For sales contact:

telephone: +31 88 335 81 88 fax: +31 88 335 81 11 e-mail: sales@deltaressystems.nl www: http://www.deltaressystems.nl

For support contact:

telephone:	+31 88 335 81 00
fax:	+31 88 335 81 11
e-mail:	support@deltaressystems.nl
www:	http://www.deltaressystems.nl

Copyright © 2016 Deltares

All rights reserved. No part of this document may be reproduced in any form by print, photo print, photo copy, microfilm or any other means, without written permission from the publisher: Deltares.

Contents

1	Gene	neral Information 1				
	1.1	Preface				
	1.2	Installa	tion of pipelines			
		1.2.1	Horizontal Directional Drilling technique			
		1.2.2	Micro Tunneling			
		1.2.3	Installation in trench			
	1.3	Feature	es in standard module (HDD)			
		1.3.1	Soil profile			
		1.3.2	Pipeline materials 5			
		1.3.3	Factors			
		134	Results 5			
	14	Feature	es in additional modules			
		1 4 1	Micro Tunneling module			
		1 4 2	Trenching module 7			
	15	History				
	1.0	Minimu	m System Requirements 11			
	1.0	Dofiniti	and Symbols 11			
	1.7	Cotting				
	1.0	Cetting	Purport 16			
	1.9	Getting	Support			
	1.10	Dellare	S			
	1.11	Deltare				
	1.12	On-line				
2	Getti	ng Star	ied 21			
-	21	Starting	D-GEO PIPELINE 21			
	22	Main w	indow 21			
		221	The menu bar 22			
		222	The icon bar 22			
		223	View Input 23			
		2.2.0				
		225	Title papel 26			
		2.2.0	Status bar 26			
	23	Eilos	27			
	2.0	Tipe an	d Tricke 27			
	2.4	2 / 1	Keyboard charteute 27			
		2.4.1	Experting figures and reports			
		2.4.2	Conving part of a table			
		2.4.3				
3	Gene	ral	29			
	3.1	File me	nu			
		3.1.1	General options			
		3.1.2	Option "Export Besults as csv" 30			
	32	Tools m				
	0.2	321	Program Options - View 33			
		322	Program Options - General 33			
		323	Program Options - Locations 34			
		3.2.0	Program Options - Locations			
		0.2.4	Program Options - Language			
	20	0.2.0 Holo m	1 royram Options - Woudles			
	3.3					
		3.3.1				
		3.3.2				
		3.3.3				

		3.3.4 3.3.5	Support	36 37
4	Input	ł		39
÷.	4 1	Project	menu	39
		4 1 1	Model	39
		412	Project Properties	40
		413		42
	12	Soil me		12
	7.2	1 2 1	Materials – Standard	12
		4.2.1	Materials - Stalloand Konnoian	43
		4.2.2	Materials – Settlement Icotacha	45
		4.2.0	Materials – Settlement isolache	45
	12	4.2.4 Goomo		40
	4.5			40
		4.3.1		47
		4.3.2		47 50
		4.3.3		50
		4.3.4	Export	50
		4.3.3	Export as Plavia/DOS	51 51
		4.3.0		51 51
		4.3.7	LIIIIIS	51
		4.3.8	Points	52
		4.3.9		53
		4.3.10	PL-Lines	53
		4.3.11		54
		4.3.12		54
		4.3.13	PL-lines per Layer	56
		4.3.14		58
	4.4	GeoOb		58
		4.4.1		59
		4.4.2		59
	4.5	Loads	menu	60
		4.5.1	Iraffic Loads	60
	4.6	Pipe m	enu	61
		4.6.1		61
			4.6.1.1 Pipeline Configuration for HDD	61
			4.6.1.2 Pipeline Configuration for Micro tunneling	63
			4.6.1.3 Pipeline Configuration for Construction in trench	64
		4.6.2	Product Pipe Material Data	65
			4.6.2.1 Product Pipe Material Data for HDD	66
			4.6.2.2 Product Pipe Material Data for Micro tunneling	69
		4.6.3	Engineering Data	71
			4.6.3.1 Engineering Data for HDD	71
			4.6.3.2 Engineering Data for Micro tunneling	73
			4.6.3.3 Engineering Data for Construction in trench	74
		4.6.4	Drilling Fluid Data	75
	4.7	Default	s menu	76
		4.7.1	Factors	76
			4.7.1.1 Factors for HDD	76
			4.7.1.2 Factors for Micro tunneling	82
			4.7.1.3 Factors for Construction in trench	83
		4.7.2	Special Stress Analysis	84

5 Calculations

87

	5.1	Start Calculation				
	5.2	Special Stress Analysis (only for HDD)	8			
	5.3	Warning and Error messages	8			
		5.3.1 Warning messages	8			
		5.3.2 Error messages	9			
6	View	Results 9	1			
	6.1	Report selection	1			
	6.2	Report	1			
		6.2.1 Report – Drilling Fluid Pressure	2			
		6.2.1.1 Report – Drilling Fluid Data 9	3			
		6.2.1.2 Report – Equilibrium between Drilling Fluid Pressure and				
		Pore Pressure	4			
		6.2.2 Report – Settlements of soil layers below the pipeline 9	5			
		6.2.3 Report – Subsidence	5			
		6.2.4 Report – Soil Mechanical Data	6			
		6.2.4.1 Soil Mechanical Parameters for HDD 9	6			
		6.2.4.2 Soil Mechanical Parameters for Micro tunneling 9	8			
		6.2.4.3 Soil Mechanical Parameters for Construction in trench 9	9			
		6.2.5 Report – Data for Stress Analysis)0			
		6.2.6 Report – Stress Analysis)2			
		6.2.6.1 Stress Analysis HDD)2			
		6.2.7 Report – Operation Parameters (Trenching))6			
		6.2.8 Report – Face Support Pressures and Thrust Forces (Micro tunneling) 10	18			
	6.3	Drilling Fluid Pressures Plots)9			
	6.4	Operation Parameter Plots	0			
		6.4.1 Operation Parameter Plots for Micro Tunneling	0			
		6.4.2 Operation Parameter Plots for Construction in trench	2			
	6.5	Stresses in Geometry	3			
	6.6	Subsidence Profiles	4			
7	Grap	hical Geometry Input 11	5			
÷.	7.1	Geometrical objects	5			
		7.1.1 Geometry elements	5			
		7.1.2 Construction elements	6			
	7.2	Assumptions and restrictions	6			
	7.3	View Input Window	6			
		7.3.1 General	7			
		7.3.2 Buttons	8			
		7.3.3 Legend	20			
	7.4	Geometry modeling	22			
		7.4.1 Create a new geometry	22			
		7.4.2 Set limits	23			
		7.4.3 Draw layout	23			
		7.4.4 Generate layers	24			
		7.4.5 Add piezometric level lines	25			
	7.5	Graphical manipulation	25			
		7.5.1 Selection of elements	25			
		7.5.2 Deletion of elements	26			
		7.5.3 Using the right-hand mouse button	27			
		7.5.4 Dragging elements	29			
~						
8	luto	Tal 1: Calculation and assessment of the drilling fluid pressure	1			
	8.1	Introduction to the case	<i>i</i> 1			

	8.2	Project	. 132
		8.2.1 Start	. 132
		8.2.2 Project Properties	. 133
		8.2.3 Model	. 134
	8.3	Geometry	. 135
		8.3.1 Soil layer properties	. 136
		8.3.2 Phreatic Line	. 137
		8.3.3 Layers	. 137
		8.3.4 PL-Lines per Layers	. 13/
	0.4	8.3.5 Check Geometry	. 138
	8.4 0.5		138
	0.0		140
	0.0 8 7	Product Pine Material Data	1/1
	8.8		142
	8.9	Factors	143
	8 10	Besults	144
	8.11	Conclusion	. 145
			-
9	Tuto	rial 2: Stress analysis of steel pipes and polyethylene pipes	147
	9.1	Introduction to the case	. 147
	9.2	Project Properties	. 149
	9.3	Product Pipe Material Data	. 149
	9.4		. 150
	9.5	Pactors	. 151
	9.6	Calculation and Results (Tutonal-2a)	152
		9.6.1 Results of the pine stross analysis of the stool pine	154
	97	Special Pipe Stress Analysis (Tutorial-2b)	156
	9.8	Polyethylene Product Pine (Tutorial-2c)	157
	9.9	Conclusion	. 159
10	Tuto	rial 3: Influence of soil behavior on drilling fluid pressures and soil load o	n
	the p	ipe	161
	10.1		. 161
	10.2	Geometry of the folgludinal cross section	103
	10.3	Soli layer properties	164
	10.4		166
	10.0	Calculated reduced soil load for nine stress analysis	167
	10.0	Calculated drilling fluid pressures	168
	10.8	Drilling fluid pressure and groundwater pressure	. 169
	10.9	Conclusion	. 170
			-
11	Tuto	rial 4: Exporting soil mechanical data for an extended stress analysis	171
	11.1	Introduction to the case	. 171
	11.2	Settlement model	. 172
	11.3	Geometry of the longitudinal cross section	. 173
	11.4	Soli layer properties	. 1/4
	11.5	Calculated soil mechanical perspectors in expert file	. 1/5
	11.0		. 1/0 179
	11.7		. 170
12	Tuto	rial 5: Drilling with a horizontal bending radius	179
	12.1	Introduction to the case	. 179

	12.2 12.3 12.4	Pipeline Configuration	. 180 . 182 . 183
13	Tuto	rial 6: Installation of bundled pipelines	185
	13.1	Introduction to the case	. 185
	13.2	Product Pipe Material Data	. 187
	13.3	Drilling Eluid Data	187
	13.4	Engineering Data	188
	13.5	Factors	189
	13.6	Results	190
14	Tuto	rial 7: Eaco support proceuro for mioro tuppoling	101
14	1/ 1	Introduction to the case	101
	1/ 2	Model selection	102
	1/1 2		10/
	14.5		105
		14.3.1 Soli layer properties	105
			105
		14.3.3 Layers	. 195
		14.3.4 PL-Lines per Layers	. 196
			. 197
	14.4		. 197
	14.5	Pipe Material Data	. 198
	14.6	Soil behavior	. 198
	14.7	Calculation Verticals	. 199
	14.8	Engineering Data	. 200
	14.9	Results: Operation Parameter Plots	. 201
	- .		
15	luto	rial 8: Uplift and thrust forces for micro tunneling	203
15	1010 15.1	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 . 203
15	15.1 15.2	Introduction to the case Comparison of the case Geometry of the longitudinal cross section Comparison of the longitudinal cross section	203 . 203 . 204
15	15.1 15.2 15.3	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties	203 . 203 . 204 . 205
15	15.1 15.2 15.3 15.4	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior	203 . 203 . 204 . 205 . 206
15	15.1 15.2 15.3 15.4 15.5	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration	203 . 203 . 204 . 205 . 206 . 207
15	15.1 15.2 15.3 15.4 15.5 15.6	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208
15	1010 15.1 15.2 15.3 15.4 15.5 15.6 15.7	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data	203 204 205 206 207 208 208 209
15	100 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Besults	203 203 204 205 206 207 208 209 210
15	15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force	203 203 204 205 206 207 208 209 210 210
15	15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210
15	15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety	203 204 205 206 207 208 209 210 210 210 210
15	1000 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213
15	Iuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety It and soil mechanical parameters for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 213
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 213 214
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety rial 9: Settlement and soil mechanical parameters for micro tunneling Introduction to the case Settlement Geometry of the longitudinal cross section	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety Its afety Its afet	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215 217
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 214 215 217 217
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety Its afety Its afet	203 203 204 205 206 207 208 209 210 210 210 213 214 215 217 217 218
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety rial 9: Settlement and soil mechanical parameters for micro tunneling Introduction to the case Settlement Geometry of the longitudinal cross section Soil layer properties Settlement Geometry of the longitudinal cross section Calculated soil mechanical parameters in export file Conclusion	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215 217 217 218 221
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 214 215 217 217 218 221
15	Tuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Tuto	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 204 205 206 207 208 209 210 210 210 213 214 215 217 217 217 218 221 223
15	Iuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Tuto 17.1	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case Geometry of the longitudinal cross section Soil layer properties Soil behavior Pipeline Configuration Calculation Verticals Engineering Data Results 15.8.1 Thrust Force 15.8.2 Uplift safety rial 9: Settlement and soil mechanical parameters for micro tunneling Introduction to the case Settlement Geometry of the longitudinal cross section Soil layer properties Finishing the geometry of the longitudinal cross section Calculated soil mechanical parameters in export file Conclusion	203 203 204 205 206 207 208 209 210 210 210 213 214 215 217 217 217 217 217 217 218 221 223 223
15 16 17	Iuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Tuto 17.1	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215 217 217 217 218 221 223 223 223
15 16	Iuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Tuto 17.1	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215 217 217 217 217 217 217 218 221 223 223 223 224
15 16	Iuto 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Tuto 16.1 16.2 16.3 16.4 16.5 16.6 16.7 Tuto 17.1 17.2	rial 8: Uplift and thrust forces for micro tunneling Introduction to the case . Geometry of the longitudinal cross section Soil layer properties . Soil behavior . Pipeline Configuration . Calculation Verticals . Engineering Data . Results . 15.8.1 Thrust Force . 15.8.2 Uplift safety rial 9: Settlement and soil mechanical parameters for micro tunneling Introduction to the case . Settlement . Geometry of the longitudinal cross section . Soil layer properties . Finishing the geometry of the longitudinal cross section . Calculated soil mechanical parameters in export file . Conclusion	203 203 204 205 206 207 208 209 210 210 210 213 213 214 215 217 217 217 217 217 217 217 217

	17.4	Engineering Data	. 228
	17.5		. 229
18	Tutor	ial 11: Installation of pipeline in a trench	231
	18.1	Introduction to the case	. 231
	18.2	Model	. 232
	18.3	Geometry of the longitudinal cross section	. 233
	18.4	Soil layer properties	. 233
	18.5	Finishing the geometry of the longitudinal cross section	. 234
		18.5.1 Prireauc Line	. 234 224
		18.5.3 PL-Lines per Laver	234
	18.6	Adding a waterway	236
	18.7	Calculation Verticals	. 237
	18.8	Boundaries Selection	. 238
	18.9	Trench configuration and pipe material	. 238
	18.10	Engineering Data	. 240
	18.11	Results: Soil Mechanical Parameters	. 240
10	Tutor	ial 12: Trenching: unlift and heave	243
10	19.1	Introduction to the case	243
	19.2	Materials	. 244
	19.3	Phreatic level	. 245
	19.4	Calculation Verticals	. 246
	19.5	Factors	. 248
	19.6	Results	. 248
		19.6.1 Uplift safety for trenching in Peat layer (Tutorial-12a)	. 248
		19.6.2 Uplift safety for trenching in Soft Organic Clay layer (Tutorial-12b)	. 249
		19.6.3 Hydraulic Heave Safety	. 250
	19.7	Lowering the hydraulic head (Tutorial-12c)	. 251
20	Desig	an of a pipeline	255
	20.1	Design of a pipeline crossing using the HDD technique	. 255
		20.1.1 Location of entry and exit points	. 255
		20.1.2 Inclination at the entry and exit points	. 255
		20.1.3 The limitations of the object to be crossed	. 255
		20.1.4 Determination of allowable curve radius	. 256
		20.1.5 Determination of combined bending radius	. 258
	20.2	Design of a pipeline crossing using the micro tunneling technique	. 258
	20.3		. 258
21	Calcu	ulation of soil mechanical data	259
	21.1	Neutral vertical stress	. 259
	21.2	Passive vertical stress	. 260
	21.3	Reduced neutral vertical stress	. 261
		21.3.1 Reduced neutral vertical stress in compressible soil layers	. 261
		21.3.2 Reduced neutral vertical stress in non-compressible soil layers	. 262
	21.4	Initial vertical stress	. 263
	21.5	Neutral horizontal stress	. 264
		21.5.1 Pipelines installed using the HDD technique	. 264
	01.0	21.5.2 Pipelines installed in a trench or using micro tunneling	. 264
	21.6	vertical modulus of subgrade reaction	. 265
		01.0.1 Displices installed using a dvilling to shrink a	005
		21.6.1 Pipelines installed using a drilling technique	. 265
	21 7	21.6.1 Pipelines installed using a drilling technique 21.6.2 Pipelines installed in a trench Horizontal modulus of subgrade reaction	. 265 . 266

		21.7.1	Pipelines installed using a drilling technique	. 267
		21.7.2	Pipelines installed in a trench	. 267
	21.8	Ultimate	e vertical bearing capacity	. 267
	21.9	Ultimate	e horizontal bearing capacity	. 268
		21.9.1	Pipelines installed using the HDD technique	. 268
		21.9.2	Pipelines installed in a trench or using micro tunneling	. 268
	21.10	Vertical	displacement	. 270
		21.10.1	Isotache model	. 270
		21.10.2	Koppeian model	. 272
	21.11	Maxima	a axial friction	. 273
		21.11.1	Pipelines installed using the HDD technique	. 273
		21.11.2	Pipelines installed in a trench or using micro tunneling	. 273
	21 12	Displac	ement at maximal friction	275
		21 12 1	Pinelines installed using the HDD technique	275
		21 12 2	Pipelines installed in a trench or using micro tunneling	275
	21 13	Global	determination of the soil type	276
	21.10	Traffic l	and	276
	21.14	· name i	Jau	. 270
22	Drilli	ng fluid	pressures calculation	279
	22.1	Minimu	m required drilling fluid pressure	. 279
		22.1.1	Static pressure of the drilling fluid column p_1	. 279
		22.1.2	Excess pressure to maintain flow of drilling fluid p_2	. 280
		22.1.3	Minimum drilling fluid pressure for Stage 1 (pilot pipe in the pilot hole)	. 281
		22.1.4	Minimum drilling fluid pressure for Stage 2 (drill pipe in the pre-ream	
			hole)	. 282
		22.1.5	Minimum drilling fluid pressure for Stage 3 (product pipe in the borehole	282
	22.2	Maximu	im allowable drilling fluid pressure	. 282
		22.2.1	Maximum allowable drilling fluid pressure in undrained layers	. 283
		22.2.2	Maximum allowable drilling fluid pressure in drained layers	284
	22.3	Fouival	ent diameter for a bundled pipeline	285
	22.4	Equilibr	ium between drilling fluid pressure and pore pressure	285
		Ldamoi		. 200
23	Stren	igth pipe	eline calculation	287
	23.1	Buoyan	cy control	. 287
	23.2	Pulling	force in a flexible pipeline	. 288
		23.2.1	Roller-lane	. 288
		23.2.2	Straight part of the borehole	. 288
		23.2.3	Curved part of the borehole	. 288
		23.2.4	Friction due to soil reaction in the curved part	. 289
		23.2.5	Friction due to curved forces	. 289
	23.3	Maximu	Im representative pulling force	. 290
	23.4	Pulling	force for a bundled pipeline	. 290
	23.5	Strengt	h calculation	. 291
		23.5.1	Strength calculation for Load Combination 1A: start of the pullback	
			operation	. 291
		23.5.2	Strength calculation for Load Combination 1B: end of the pullback op-	
			eration	. 292
		23.5.3	Strength calculation for Load Combination 2: application of internal	
			pressure	. 293
		23,5,4	Strength calculation for Load Combination 3: pipeline in operation	
			without internal pressure	. 294
		23.5.5	Strength calculation for Load Combination 4: pipeline in operation	
			with internal pressure .	295
	23.6	Check	of calculated stresses	297
	-0.0	0.1001(1		/

	23.6.1	Check of	calculated stresses according to the Dutch standar	d NEN 29	97
		23.6.1.1	Check of calculated stresses acc. to the Dutch NEN: Steel pipe	standard 	97
		23.6.1.2	Check of calculated stresses acc. to the Dutch	standard	
			NEN: Polyethylene pipe	29	99
23.	7 Deflecti	ion of the p	»ipe	29	99
23.	8 Implosi	on of the p	olyethylene pipe	30)0
	23.8.1	Check on	implosion during the pull-back operation	30)0
	23.8.2	Check on	implosion when the pipe is in operation	30)0
24 Mi	cro tunnel	ina		30	13
24	1 Suppor	t pressure	s and thrust forces	30	13
27.	24 1 1	Target su			13
	24.1.1	Minimal s			13
	24 1 3	Maximal)7
	24.1.4	Thrust for)7
24	2 Uplift S	afety)8
24.	3 Subside	ence)8
25 Tro	nching			21	1
25 He	1 Unlift S	afoty		31	11
25	2 Burstin	a of the tre	nch bottom (beaving)		12
20.		y or the tre			~
26 Eff	ective Str	ess and P	ore Pressure	31	5
26.	1 Hydrau	lic head fro	m piezometric level lines	31	5
26.	2 Phreati	cline		31	6
26.	3 Stress I	oy soil wei	ght	31	6
26.	4 Distribu	ition of stre	ess by loading	31	6
	26.4.1	Stress inc	rement caused by a line load	31	6
	26.4.2	Stress inc	rement caused by a strip load	31	7
26.	5 Effectiv	e stress ar	nd pore pressure	31	7
27 Be	nchmarks	;		31	9
Biblic	aranhy			20	1
	grapity			52	

List of Figures

$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.7 \\ 1.8 \\ 1.9 \\ 1.10 \\ 1.11 \\ 1.12 \\ 1.13 \\ 1.14$	HDD / Pilot drilling (DCA-guidelines)HDD / Pre-reaming (DCA-guidelines)HDD / Pull back operation (DCA-guidelines)Reamer and cutting wheelJacking frame and micro tunneling machine in the start shaftPipeline installation in a trenchFace support pressuresModelisation of the effect of archingPipeline installation in trenchCompaction of the fill after pipeline installationCo-ordinate system'Products' menu of Deltares Systems website (www.deltaressystems.com)Support Window, Problem Description tabSend Support E-Mail window	· · · · · ·	2 2 3 4 4 6 7 8 9 11 17 18 18
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Main WindowD-GEO PIPELINE menu barD-GEO PIPELINE icon barView Input window, Geometry tabView Input window, Input tabView Input window, Top View tabSelection of different parts of a table using the arrow cursor	· · · · · · · · · · · · · · · · · · ·	21 22 23 24 24 28
 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	New File window	 . .<	29 30 33 34 35 35 36 37
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18	Model windowProject Properties window, Identification tabProject Properties window, View Input tabMaterials window, Parameters tabMaterials window, Parameters tab (Settlement acc. to Koppejan)Materials window, Parameters tab (Settlement acc. to Isotache)Materials window, Database tabNew Wizard window (Basic Layout)New Wizard window (Top Layer Shape)New Wizard window (Top Layer Specification)New Wizard window (Material Types)New Wizard window (Summary)Geometry Limits windowPoints windowConfirm window for deleting used pointsOptions for Import of PL-line windowPhreatic Line windowPhreatic Line window		39 40 41 43 44 45 46 47 48 49 50 51 52 52 52 53 53 53
4.19 4.20	Layers window, Boundaries tab	· ·	55 56

4.21	PL-line per Layer window	57
4.22	PL-lines and vertical pressure distribution	58
4.23	Information window to confirm a valid geometry	58
4.24	Boundaries Selection window for (a) HDD/Micro-tunneling and (b) for Trenching	59
4.25	Calculation Verticals window	60
4.26	Traffic Loads window	61
4.27	Pipeline Configuration window (for HDD)	62
4.28	Schematization of the pipeline (HDD)	63
4.29	Pipeline Configuration window (for Micro tunneling)	64
4 30	Pipeline Configuration window (Construction in trench)	65
4 31	Product Pipe Material Data window (Steel)	66
4.32	Steel pipes library window	67
4.33	Product Pipe Material Data window (Polyethylene)	68
4.34	PE pipes library window	69
4 35	Product Pine Material Data window Pine material sub-window	69
4.00	Product Pipe Material Data window, (Steel or Concrete pipe, Micro Tunneling	00
4.00	model)	70
1 27	Braduet Pine Material Data window (Synthetic pine, Miera typpoling model)	70
4.07	Engineering Date window (UDD)	70
4.00	Engineering Data window (FDD)	70
4.39	Definition of the bedding angle ρ and the load angle α	73
4.40		73
4.41		74
4.42	Drilling Fluid Data window	75
4.43	Factors window (HDD) for polyethylene pipe, acc. to the Dutch standard NEN.	77
4.44	Factors window (HDD) for steel pipe, acc. to the Dutch standard NEN	79
4.45	CEN	81
4.46	Factors window (HDD) for steel pipe, according to the European standard CEN	82
4.47	Factors window (Micro tunneling)	82
4.48	Factors window (Construction in trench)	83
4.49	Special Stress Analysis window (HDD)	84
5.1	Warning window (before calculation) about allowable radius	88
5.2	Error Messages window	89
6.1	Report Selection window	91
6.2	Report window, Drilling Fluid Data section	93
6.3	Report window, Equilibrium between Drilling Fluid Pressure and Pore Pres-	
	sure section	94
6.4	Report window. Settlements of soil lavers below the pipeline section	95
6.5	Report window. Subsidence section	96
6.6	Report window – Soil Mechanical Parameters section (for HDD)	97
67	Report window – Soil Mechanical Parameters section (for Micro tunneling)	98
6.8	Report window – Soil Mechanical Parameters section (for Construction in trench)	99
6.9	Report window Buovancy Control section	100
6 10	Report window, Calculation pulling force section	101
6 1 1	Locations of the characteristic points T1 to T6	102
6 12	Beport window. Stress analysis for load combination 14	102
6 12	Report window, Stress analysis for load combination 1R	102
6 1/	Report window, Stress analysis for load combination 2	103
6 15	Report window – Stress analysis for load combination 2	10/
6 16	Report window Stress analysis for load combination 4	104
6 17	Report window, Oness analysis for four combination 4	104
6 1 9	Report window, Check on calculated stresses section (Steel pipe)	100
0.10	$report window, one of calculated sitesses section (\Gamma \perp pipe)$	100

6.19	Report window, Check on deflection section	. 106
6.20	Report window, Check for implosion section	. 106
6.21	Report window, Uplift Check section	. 107
6.22	Report window, Hydraulic Heave Check section	. 107
6.23	Report window, Operation Parameters section for Micro tunneling	. 108
6.24	Drilling Fluid Pressures Plots window	. 109
6.25	Operation Parameter Plots window, Face support pressures tab	. 110
6.26	Operation Parameter Plots window, Thrust pressures tab	. 111
6.27	Operation Parameter Plots window, Safety uplift tab	. 112
6.28	Operation Parameter Plots window, Safety uplift tab	. 112
6.29	Operation Parameter Plots window, Safety hydraulic heave tab	. 113
6.30	Stresses in Geometry window	. 113
6.31	Subsidence Profiles window	. 114
7.1	View Input window, Geometry tab	. 117
7.2	<i>View Input</i> window, <i>Geometry</i> tab (legend displayed as <i>Layer Numbers</i>)	. 120
7.3	Legend, Context menu	. 120
7.4	View Input window, Geometry tab (legend displayed as Material Numbers) .	. 121
7.5	View Input window, Geometry tab (legend displayed as Material Names)	. 121
7.6	Legend, Context menu (for legend displayed as <i>Materials</i>)	. 121
7.7	Color window	. 122
7.8	View Input window, Geometry tab	. 122
7.9	Right Limit window	. 123
7.10	Representation of a polyline	. 123
7.11	Examples of configurations of (poly)lines	. 124
7.12	Example of invalid point not connected to the left limit	. 125
7.13	Selection accuracy as area around cursor	. 125
7.14	Selection accuracy as area around cursor	. 126
7.15	Example of deletion of a point	. 126
7.16	Example of deletion of a geometry point	. 126
7.17	Example of deletion of a line	. 127
7.18	Pop-up menu for right-hand mouse menu (Select mode)	. 127
7.19	Layer window (Property editor of a layer)	. 128
7.20	Point window (Property editor of a point)	. 128
7.21	Boundary window (Property editor of a polyline)	. 128
7.22	Boundary window (Property editor of a line)	. 129
7.23	PL-line window (Property editor of a PL-line)	. 129
7.24	Example of dragging of a point	. 129
0 1	Disaling configuration for Tutorial 1	101
0.1		100
0.2		102
0.3	Project Properties window	100
0.4	Project Properties window, Identification tab	100
0.0		105
0.0		105
8.7		100
0.0	Meteriale window, Geometry tab	100
0.9	Naterials WIII00W	100
0.10		107
0.11		. IJ/
ŏ.12 o.40		100
0.13		100
ŏ.14		139
0.15		. 139

8.16 8.17 8.18 8.19 8.20 8.21	Boundaries Selection window	140 141 142 143 144 145
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 9.13 9.14 9.15 9.16	Pipeline configuration for Tutorial 2 Product Pipe Material Data window Engineering Data window Bedding and load angles on the pipeline (according to Figure D.2 of NEN 3650-1 Factors window Report window, Calculation pulling force (filling percentage = 22%) Schematic overview of the characteristic points Report window, Calculation pulling force (filling percentage = 0%) Report window, Results Stress Analysis (Tutorial-2a) Report window, Soil Mechanical Parameters (Tutorial-2a) Special Stress Analysis window Report window, Check on calculated stresses (Tutorial-2a) Special Stress Analysis window Report window, Check on calculated stresses (Tutorial-2a) Special Stress Analysis window Report window, Check on calculated stresses (Tutorial-2b) Product Pipe Material Data window (Tutorial-2c) Report window, Check on calculated stresses (Tutorial-2c) Report window, Check for Implosion (Tutorial-2c)	147 150 151 152 153 153 154 154 155 156 157 157 158 159 159
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13	Pipeline configuration for Tutorial 3 Arching around the borehole View Input window, Geometry tab Materials window Phreatic Line window Layers window, Materials tab View Input window, Geometry tab View Input window, Geometry tab View Input window, Geometry tab PL-lines per Layer window Boundaries Selection window O The effect of arching with increasing depth (Meijers and De Kock, 1995) Report window, Calculation Pulling Force 2 Drilling Fluid Pressures window 3 Report window, Equilibrium between drilling fluid pressure and pore pressure	161 162 163 164 165 165 166 167 167 168 169 170
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	Pipeline configuration for Tutorial 4	171 173 173 174 175 176 176 177 177
12.1 12.2 12.3 12.4 12.5 12.6	Pipeline configuration of Tutorial 5 Pipeline Configuration window View Input window, Top View tab View Input window, Input tab Report window, Calculation Pulling Force Report window, General Data	180 181 181 182 182 183

13.2 Drilling Fluid Data window
13.3 <i>Engineering Data</i> window
13.4 <i>Factors</i> window
13.5 <i>Report</i> window, <i>Calculation Pulling Force</i>
14.1 Pipeline configuration for Tutorial 7
14.2 <i>Model</i> window
14.3 Project Properties window, View input tab
14.4 <i>Left Limit</i> window
14.5 View Input window, Geometry tab
14.6 <i>Materials</i> window
14.7 <i>Phreatic Line</i> window
14.8 Layers window, Materials tab
14.9 <i>PL-lines per Layers</i> window
14.10 <i>Check Geometry</i> window
14.11 Pipeline Configuration window
14.12 <i>View Input</i> window, <i>Input</i> tab
14.13 Product Pipe Material Data window
14.14 Boundaries Selection window
14.15 Calculation Verticals window
14.16 Engineering Data window
14.17 Schematization of stress condition for micro-tunneling
14.18 Operation Parameter Plots window, Face support pressure tab
15.1 Soil layers and pipeline configuration for Tutorial 8
15.2 Co-ordinates of the lower boundary of the Peat layer (before enlarging the right
limit)
15.3 <i>Hight Limit</i> window
15.3 Right Limit Window 205 15.4 Materials window 205
15.3 Right Limit window 205 15.4 Materials window 205 15.5 Layers window, Materials tab 206
15.3 Right Limit Window 205 15.4 Materials window 205 15.5 Layers window, Materials tab 206 15.6 View Input window, Geometry tab 206
15.3 Right Limit Window 205 15.4 Materials window 205 15.5 Layers window, Materials tab 206 15.6 View Input window, Geometry tab 206 15.7 Boundaries Selection window 207
15.3 Right Limit Window 205 15.4 Materials window 205 15.5 Layers window, Materials tab 206 15.6 View Input window, Geometry tab 206 15.7 Boundaries Selection window 207 15.8 Pipeline Configuration window 208
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window209
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window209
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Thrust Force tab210
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Safety uplift tab211
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Safety uplift tab21115.13Report window, Uplift Factors section211
15.3 <i>Right Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21115.13 <i>Report</i> window, <i>Uplift Factors</i> section21116.1Soil layers and pipeline configuration for Tutorial 9213
15.3 <i>Right Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21115.13 <i>Report</i> window, <i>Uplift Factors</i> section21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window215
15.3 <i>Right Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window21516.3 <i>Points</i> window216
15.3 <i>Hight Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21115.13 <i>Report</i> window, <i>Uplift Factors</i> section21316.1Soil layers and pipeline configuration for Tutorial 921316.3 <i>Points</i> window21616.4 <i>View Input</i> window, <i>Geometry</i> tab216
15.3Right Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Thrust Force tab21015.12Operation Parameter Plots window, Safety uplift tab21115.13Report window, Uplift Factors section21116.1Soil layers and pipeline configuration for Tutorial 921316.2Model window21516.3Points window21616.4View Input window, Geometry tab21616.5Materials window217
15.3 <i>Hight Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window21516.3 <i>Points</i> window21616.4 <i>View Input</i> window, <i>Geometry</i> tab21616.5 <i>Materials</i> window21716.6 <i>Layers</i> window, <i>Materials</i> tab218
15.3 <i>Hight Limit Window</i> 20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window21616.4 <i>View Input</i> window, <i>Geometry</i> tab21616.5 <i>Materials</i> window21716.6 <i>Layers</i> window, <i>Materials</i> tab21816.7 <i>Program Options</i> window, <i>Locations</i> tab218
15.3 <i>Hight Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window21616.4 <i>View Input</i> window, <i>Geometry</i> tab21616.5 <i>Materials</i> window21716.6 <i>Layers</i> window, <i>Materials</i> tab21816.7 <i>Program Options</i> window, <i>Locations</i> tab21816.8 <i>Report</i> window, <i>Settlements of soil layers below the pipeline</i> 219
15.3 <i>Hight Limit</i> Window20515.4 <i>Materials</i> window20515.5 <i>Layers</i> window, <i>Materials</i> tab20615.6 <i>View Input</i> window, <i>Geometry</i> tab20615.7 <i>Boundaries Selection</i> window20715.8 <i>Pipeline Configuration</i> window20815.9 <i>Calculation Verticals</i> window20915.10 <i>Engineering Data</i> window20915.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab21015.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab21115.13 <i>Report</i> window, <i>Uplift Factors</i> section21116.1Soil layers and pipeline configuration for Tutorial 921316.2 <i>Model</i> window21616.4 <i>View Input</i> window, <i>Geometry</i> tab21616.5 <i>Materials</i> window21716.6 <i>Layers</i> window, <i>Materials</i> tab21816.7 <i>Program Options</i> window, <i>Locations</i> tab21816.8 <i>Report</i> window, <i>Soil Mechanical Parameters</i> 220
15.3Hight Limit Window20515.4Materials window, Materials tab20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Thrust Force tab21015.12Operation Parameter Plots window, Safety uplift tab21115.13Report window, Uplift Factors section21116.1Soil layers and pipeline configuration for Tutorial 921316.2Model window21616.4View Input window, Geometry tab21616.5Materials window21716.6Layers window, Materials tab21816.7Program Options window, Locations tab21816.8Report window, Seitlements of soil layers below the pipeline21916.9Report window, Soil Mechanical Parameters22016.10Content of the CSV export file for Tutorial 9220
15.3Hight Limit Window20515.4Materials window, Materials tab20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Thrust Force tab21015.12Operation Parameter Plots window, Safety uplift tab21115.13Report window, Uplift Factors section21316.1Soil layers and pipeline configuration for Tutorial 921316.2Model window21616.4View Input window, Geometry tab21616.5Materials window21716.6Layers window, Materials tab21816.7Program Options window, Locations tab21816.8Report window, Settlements of soil layers below the pipeline21916.9Report window, Soil Mechanical Parameters22017.1Bore hole section223
15.3 <i>Hight Limit</i> Window 205 15.4 <i>Materials</i> window, <i>Materials</i> tab 206 15.5 <i>Layers</i> window, <i>Materials</i> tab 206 15.6 <i>View Input</i> window, <i>Geometry</i> tab 206 15.7 <i>Boundaries Selection</i> window 207 15.8 <i>Pipeline Configuration</i> window 208 15.9 <i>Calculation Verticals</i> window 209 15.10 <i>Engineering Data</i> window 209 15.11 <i>Operation Parameter Plots</i> window, <i>Thrust Force</i> tab 210 15.12 <i>Operation Parameter Plots</i> window, <i>Safety uplift</i> tab 211 15.13 <i>Report</i> window, <i>Uplift Factors</i> section 211 16.1 Soil layers and pipeline configuration for Tutorial 9 213 16.2 <i>Model</i> window 216 16.4 <i>View Input</i> window, <i>Geometry</i> tab 216 16.5 <i>Materials</i> window 217 16.6 <i>Layers</i> window, <i>Materials</i> tab 218 16.7 <i>Program Options</i> window, <i>Locations</i> tab 218 16.8 <i>Report</i> window, <i>Soil Mechanical Parameters</i> 220 16.9 <i>Report</i> window, <i>Soil Mechanical </i>
15.3Hight Limit Window20515.4Materials window20515.5Layers window, Materials tab20615.6View Input window, Geometry tab20615.7Boundaries Selection window20715.8Pipeline Configuration window20815.9Calculation Verticals window20915.10Engineering Data window20915.11Operation Parameter Plots window, Thrust Force tab21015.12Operation Parameter Plots window, Safety uplift tab21115.13Report window, Uplift Factors section21116.1Soil layers and pipeline configuration for Tutorial 921316.2Model window21616.4View Input window, Geometry tab21616.5Materials window21716.6Layers window, Materials tab21816.7Program Options window, Locations tab21816.8Report window, Soil Mechanical Parameters22016.10Content of the CSV export file for Tutorial 922117.1Bore hole section22317.2Pipeline configuration of Tutorial 1022517.3Pipeline Configuration window226

47 5	Many long to develop the set to be	007
17.5		. 227
17.6	Product Pipe Material Data window	. 228
17.7	Engineering Data window	. 228
17.8	Subsidence Profiles window for vertical 1	229
17.0		. 220
10 1	Coometry of Tutorial 11	001
10.1		. 231
18.2		. 232
18.3	View Input window, Geometry tab	. 233
18.4	Materials window	. 234
18.5	Phreatic Line window	. 234
18.6	Lavere window Materials tab	235
10.0	View Input window, Operate teb	. 200
18.7		. 235
18.8	PL-lines per Layer window	. 236
18.9	<i>View Input</i> window, <i>Geometry</i> tab (steps for drawing a waterway)	. 236
18.10) Points window	. 237
18 11	Calculation Verticals window	237
18.10	Boundaries Selection window	238
10.12		. 200
18.13		. 238
18.14	View Input window, Input tab	. 239
18.15	5 View Input window, Top View tab	. 239
18.16	S Engineering Data window	. 240
18 17	7 Report window Soil Mechanical Parameters section	241
10.17		
10.1	Pipeline configuration for Tutorial 12	2/3
10.1		. 240
19.2		. 245
19.3	Layers window, Materials tab	. 245
19.4	<i>PL-Line 1</i> window	. 246
19.5	PL-lines per Layer window	. 246
19.6	Calculation Verticals window	247
10.7	View Input window Input tab (Tutorial-12a)	247
10.0		. 247
19.8		. 248
19.9	Operation Parameter Plots window, Safety uplift tab (Iutorial-12a)	. 248
19.10) Report window, Uplift Factors section (Tutorial-12a)	. 249
19.11	Layers window, Materials tab (Tutorial-12b)	. 249
19 12	Prepart window Unlift Factors section (Tutorial-12b)	250
10.15	3 Operation Parameter Plots window. Safety by draulic beave tab (Tutorial-12b)	251
10.10	A Depart window, Underwije beging of the trench better castier (Tutorial 10h)	051
19.14	<i>Heport</i> window, <i>Hydraulic neave of the trench bollom</i> section (Tutohai-T2b) .	. 251
19.15	5 View Input window, Geometry tab (Tutorial 12c)	. 252
19.16	<i>Points</i> window (Tutorial 12c)	. 252
19.17	7 Operation Parameter Plots windows, Safety hydraulic heave tab (Tutorial 12c)	. 253
19.18	B Report windows, Hydraulic heave of the trench bottom section (Tutorial 12c)	. 253
		00
20.1	Launch and recention shafts of the micro tunneling machine	258
20.1		. 200
21.1	Schomatic diagram for calculation of the neutral vortical stress	250
21.1	Schematic diagram for the definition of neveranters <i>II II</i> and and <i>I</i>	. 209
21.2	Schematic diagram for the definition of parameters H_1 , H_2 , γ_{unsat} and γ_{sat}	
	(Figure C.5 of NEN 3650-1)	. 260
21.3	The mobilization of the angle of internal friction in the development of the arch-	
	ing mechanism	. 261
214	Definitions of $H_{-}h$ and h_{+}	262
01 5	Schematic diagram of H and h	000
21.0		. 203
21.6	Pipe soil interaction modeled by springs	. 265
21.7	Values K_q and K_c according to Brinch Hansen (Figure C.14 of the NEN 3650-	1)269
21.8	Creep Isotache pattern	. 270
21.9	Influence of the $t_{shift} = t_r$ parameter on the creep tail	. 271

21.10 21.11 21.12	O Koppejan settlement	272 273
	models, according to NEN 3650-1	277
22.1	Schematization of h1 and h2	284
23.1	Schematization of the buoyancy control	287
24.1 24.2 24.3	Upper and lower bound for the stability ratio N (Davis <i>et al.</i> , 1980)	304 305 306
25.1 25.2	Definition of parameters H_{d} , $d_{1;d}$ and $d_{2;d}$ (Figure 18 of NEN 6740:2006) Factor f for the contribution of the layers above the bottom of the excavation (Figure 19 of NEN 6740:2006)	313 313
26.1 26.2 26.3	Pore pressure as a result of piezometric level lines	315 316 317

List of Tables

2.5 Keyboard shortcuts for D-GEO PIPELINE
4.10 Unsaturated and saturated weight of the predefined materials
 8.1 Properties of the silty sand layer (Tutorial 1)
9.1 Pipe properties (Tutorial 2)
10.1 Layer properties (Tutorial 3)
11.1Settlement parameters (acc. Koppejan) of the soil layers (Tutorial 4)
13.1 Pipes properties (Tutorial 6)
14.1Properties of the silty sand layer (Tutorial 7)19214.2Properties of steel material (Tutorial 7)192
15.1 Properties of the layers (Tutorial 8)
16.1Settlement parameters (acc. Koppejan) of the soil layers (Tutorial 9)21416.2Coordinates of the top of the soil mass215
18.1 Layer properties (Tutorial 11)
19.1 Layer properties (Tutorial 12)
20.2Values of constant C (according to table E.1 of NEN 3650-1)
21.7 Values of parameter μ according to NEN 3650-126421.19 Friction displacement27621.20 Classification of the soil type276
 23.12 Moment and deflection coefficients for indirectly and directly transmitted stress as a function of the bedding angle β, according to Table D.2 of NEN 3650-1

1 General Information

D-GEO PIPELINE (formerly known as MDrill) has been developed especially for geotechnical engineers and mechanical engineers. D-GEO PIPELINE's graphical interactive interface requires just a short training period for novice users. This means that skills can focus directly on the input of geotechnical and engineering data and on the drilling fluid pressure calculations and strength pipeline calculations.

1.1 Preface

D-GEO PIPELINE is a graphical interactive Windows tool for designing pipelines installed by using one of the three following techniques:

- ♦ the horizontal directional drilling (HDD) technique
- ♦ the micro-tunneling technique
- the construction in trench technique

In case of HDD technique, D-GEO PIPELINE can be used to calculate the maximum allowable pressure of the drilling fluid and to assess whether this maximum pressure remains higher than the minimum required drilling pressure. The design is completed by means of a pipe stress analysis.

In case of micro-tunneling, D-GEO PIPELINE can be used to calculate the minimal face support pressure to prevent the possibility of collapse in of the soil in front of the micro tunneling shield and also the maximum face support pressure which should not be exceeded to prevent uplift of the soil above the micro tunneling machine or a blow out of drilling fluid towards the surface.

In case of installation in a trench, D-GEO PIPELINE can be used to check the uplift safety as the soil cover above the pipeline may be insufficient to withstand the buoyant force of an empty pipeline.

Easy and efficient

D-GEO PIPELINE has proved to be a powerful tool in the everyday engineering practice of designing pipelines constructed by means of horizontal directional drilling, micro tunneling or trenching. D-GEO PIPELINE's graphical user interface allows both frequent and infrequent D-GEO PIPELINE users to evaluate the feasibility of pipeline configurations.

Complete functionality

D-GEO PIPELINE provides the complete functionality for the design of pipelines installation.

Product integration

D-GEO PIPELINE is an integrated component of the Deltares Systems. This means that relevant data with MGeoBase (central project database), D-GEO STABILITY formerly known as MStab (stability analysis), MSeep (seepage) and D-SETTLEMENT, formerly known as MSettle (settlements) can be exchanged. MGeobase is used to create and maintain a central project database containing data on the measurements, geometry and soil properties of several cross-sections.

D-GEO PIPELINE also interacts with Scia Pipeline program for advanced structural analysis of pipeline behavior by exporting the D-GEO PIPELINE results in a csv file.

1.2 Installation of pipelines

Pipelines are an important part of the linear infrastructure. They are the lifelines of our modern society. Successful operation of a pipeline system on long term is strongly related to the quality of the engineering works carried out before the installation of the pipeline.

The installation of pipelines is carried out in trenches from times immemorial. After excavation of the trench the pipeline is installed on the bottom of the trench and is subsequently covered by the excavated soil. Since the seventies, last century, other techniques for pipeline installation are introduced. These so called trench less techniques such as horizontal directional drilling and micro tunneling are applied on a large scale since the eighties. They provide a logical alternative when pipelines need to cross roads, railways, dikes, wetlands, rivers and other structures that have to remain intact. These techniques minimize the impact of installation activities in densely populated and economical sensitive areas.

The program D-GEO PIPELINE provides tools for the design of pipeline installation in a trench and trench less, by using the micro tunneling technique or the horizontal directional drilling technique. The tools allow the user to minimize the risks during and after installation.

1.2.1 Horizontal Directional Drilling technique

HDD techniqueD-GEO PIPELINE enables the fast design of a pipeline configuration, installed using the horizontal directional drilling technique. With the horizontal directional drilling technique, three installation stages are considered:

- ♦ Pilot drilling
- ♦ Reaming the initial pilot borehole
- ♦ Pulling back the pipeline

Figure 1.1: HDD / Pilot drilling (DCA-guidelines)

Figure 1.2: HDD / Pre-reaming (DCA-guidelines)

Figure 1.3: HDD / Pull back operation (DCA-guidelines)

During the final stage, a drilling is carried out, using a relatively small drill bit, under the object that has to be crossed – for example, a road, railway, waterway or a nature reserve. This initial borehole is called a pilot hole. The diameter of the pilot hole is then enlarged using a reamer. Depending on the required final borehole diameter, the borehole can be enlarged in several stages using reamers of increasing diameters. After reaming, the diameter of the borehole should be 1.3 to 1.5 times larger than the diameter of the pipeline. After preparing the pipeline near the exit point of the borehole, the pipeline is finally pulled into the borehole.

Figure 1.4: Reamer and cutting wheel

During all drilling stages, drilling fluid is pumped under pressure into the borehole. The main function of drilling fluid is to transport cuttings from the drilling head through the borehole and to the ground surface. A specific minimum pressure is required for the transport function of the drilling fluid. However, the fluid pressure in the borehole should not exceed a specific maximum value. The maximum value is related to the strength of the soil around the borehole. If the maximum fluid pressure is exceeded, a 'blow-out' may occur. Besides the pressure of the drilling fluid, other factors play a role in the design process. Both the strength of the pipeline during the pull back operation and the strength of the pipeline in operation need to be sufficient to withstand the forces acting on the pipeline.

1.2.2 Micro Tunneling

Micro tunneling is the technique which uses a micro tunneling boring machine (MTBM) to remove the soil. Micro tunneling usually starts horizontal at a certain level below the surface. Start and reception shafts are created for the micro tunneling machine. In the start shaft a

jacking frame and micro tunneling machine in front of pipe sections are installed. The jacks push the pipe elements section by section ahead towards the reception shaft. As the length of the advancing micro tunnel increases, the friction forces along the micro tunneling machine and the pipe segments will increase. Lubrication fluid may be applied to reduce the friction. Very often at the front of the Micro tunneling machine drilling fluid is used for soil removal and front stabilization.

Figure 1.5: Jacking frame and micro tunneling machine in the start shaft

1.2.3 Installation in trench

The majority of the underground pipelines are installed in a trench. After excavation of the trench the pipeline is installed on the bottom of the trench (Figure 1.6) and is subsequently covered by the excavated soil. The interaction between the pipe and the condition of the soil material, which is placed back in the trench plays an important role in the engineering of the pipe.

Figure 1.6: Pipeline installation in a trench

1.3 Features in standard module (HDD)

In the Netherlands, HDD technique has been used on a large scale since the 1980s. Since the 1970s, Deltares (formerly known as GeoDelft) has been involved in the development and execution of trench less technologies. Years of research have resulted in one of the first design codes for HDD, as well as in a computer program. Since the release of the first version in 1995, D-GEO PIPELINE provides users with the minimum and maximum drilling fluid pressure during the different phases of construction. D-GEO PIPELINE can also analyze the stresses in the pipeline during and after the installation for different pipeline materials.

This section contains an overview of D-GEO PIPELINE's options available for Horizontal Directional Drilling (standard module).

1.3.1 Soil profile

- Multiple layers. The two-dimensional soil structure can be composed of several soil layers with an arbitrary shape and orientation. Each layer is connected to a particular soil type.
- ◊ Verticals. By placing verticals in the geometry, the coordinates for which output results will be displayed can be defined.
- ♦ Soil properties. The well-established constitutive models are based on common soil parameters for strength and deformation of behavior of specific soil types.

1.3.2 Pipeline materials

D-GEO PIPELINE is capable of dealing with pipelines made of different materials: steel and polyethylene. For both pipe materials, a database containing the material data is available. The database enables a quick re-calculation for alternative material types and dimensions.

1.3.3 Factors

D-GEO PIPELINE applies partial safety factors to the soil parameters (weight, cohesion, friction angle and Young's modulus) and to the loads according either to the NEN series or to the European Standard CEN.

1.3.4 Results

Following the analysis, D-GEO PIPELINE can display results in long table and graphical form.

The tabular report contains:

- \diamond an echo of the input
- ♦ soil mechanical calculation results per vertical
- ♦ drilling fluid pressures calculation results per vertical
- ♦ pulling force in the pipeline per characteristic point
- strength pipeline calculation results
- ♦ settlement results per vertical

A graphical output of the drilling fluid pressures for all drilling stages and vertical stresses per vertical can also be viewed.

1.4 Features in additional modules

D-GEO PIPELINE comes as a standard module (section 1.3), which can be extended further with other modules to fit three other applications related to pipeline installation:

- ♦ Micro Tunneling module (section 1.4.1)
- ♦ Trenching module (section 1.4.2)

1.4.1 Micro Tunneling module

Face support pressures

The micro tunneling machine changes the stress conditions in the soil. The deviations from the original stress conditions are largely determined by the size of the overcut and the applied shield. Small deviations from the original conditions are acceptable as the stability of the soil adjacent to the micro tunneling machine is maintained. A relative low face support pressure may lead to collapse of the soil in front of the shield, which in turn may lead to subsidence of the surface or to settlement of soil layers below a construction or pipeline. A relatively high face support pressure can lead to a blow out of drilling fluid or may lead to heave of the surface.

Figure 1.7: Face support pressures

While drilling the shield pressures have to be kept between certain limits. To prevent the possibility of collapse in of the soil in front of the micro tunneling shield, causing subsidence, the soil at the front is kept stable by maintaining a minimal face pressure. Depending on the soil type the minimal face support pressure can be calculated using Jancsecz and Steiner theory (Jancesz and Steiner, 1994), or Broms and Bennermark theory (Broms and Bennermark, 1967). A maximum support pressure should not be exceeded to prevent uplift of the soil above the micro tunneling machine or a blow out of drilling fluid towards the surface. The support pressure, the target pressure during drilling should be in between the two limits. At the target pressure, the face support pressure is in equilibrium with the current horizontal soil pressure.

Thrust force

The micro tunneling machine is at the front of the advancing pipe sections. As the length of the advancing micro tunnel increases, the friction forces along the micro tunneling machine and the pipe segments increases. Lubrication fluid may be applied to reduce the friction. D-GEO PIPELINE compares the predicted thrust force with the maximum allowable thrust force of the pipeline.

Surface subsidence

During the micro tunneling drilling process the volume of removed soil is generally larger than the volume of the tunnel (overcut). The volume difference will lead to soil movement towards the borehole, which in turn will lead to surface subsidence. The magnitude of the subsidence (trough) is also calculated.

Arching effect

D-GEO PIPELINE applies a reduced neutral soil load to incorporate the effect of arching. The amount of reduction depends on the depth of the pipeline, diameter and the soil properties. For micro tunneling the effect of arching on the soil load is calculated. Due to the relative small overcut around the borehole arching is not completely developed.

Figure 1.8: Modelisation of the effect of arching

Pipeline stress analysis

For pipe stress analysis very often special programs need to be used. These programs need an advanced set of soil mechanical parameters, provided by D-GEO PIPELINE. This will generate a complete spring model around the pipeline for further analysis.

1.4.2 Trenching module

Installation in a trench is the most common way of pipeline installation. In case of pipeline installation in a trench the interaction between the pipe and the soil material, which is placed back in the trench plays an important role in the development of the soil load. Besides the condition of the soil material with which the trench is back-filled, the following parameters determine the soil load for a pipeline in a trench:

- ♦ Dimensions of the trench
- ♦ Soil type in which the trench is excavated
- ♦ Soil type with which the trench is back-filled

- Unit weight of the soil material with which the trench is back-filled
- ♦ The stiffness of the pipeline

Figure 1.9: Pipeline installation in trench

Features

- ♦ Graphical user interface for input of soil data.
- ♦ Advanced input of the ground water pressure distribution.
- ♦ Upheaval and Uplift check.
- ♦ Graphical output of the calculated uplift safety factor.
- ♦ Graphical output of the calculated upheaval safety.
- ♦ 3 dimensional pipeline configuration.
- ♦ Calculation of settlement of the soil layers below the pipeline.
- ♦ Output of soil mechanical parameters for an extensive pipeline stress analysis.

Initial soil load

For advanced pipe stress analyses very often special programs need to be used. These programs need an advanced set of soil mechanical parameters, provided by D-GEO PIPELINE. The programs will generate a complete spring model around the pipeline for further analyses. The soil mechanical parameters include the initial soil load. In the period directly after the installation of the pipeline in the trench, the compaction of the fill plays an important role in the soil pipe interaction. The compaction of the fill leads to differential settlement of the fill above the pipe and adjacent to the pipe.

Figure 1.10: Compaction of the fill after pipeline installation

Uplift safety

Pipeline installation in wet soft soil environments may lead to buoyant behavior of the pipeline. In case of superficial installation the soil cover above the pipeline may be insufficient to withstand the buoyant force of an empty pipeline.

1.5 History

D-GEO PIPELINE is formerly known as MDrill until version 5.1. This program is a dedicated tool for designing pipelines constructed using the horizontal directional drilling technique (HDD), the micro tunnelingor the construction in trench. Deltares has been developing D-GEO PIPELINE since 1992.

The first successful pipeline installation using the HDD technique Horizontal Directional Drilling was carried out under a river in the US. From 1979 onwards, the HDD technique gradually broke through internationally. The first application in The Netherlands was in 1983/1984 for the construction of a gas pipeline under the Buiten IJ in Amsterdam. Unlike conventional construction methods, the HDD technique can be used to construct pipelines without digging trenches and pits – for example, using sag pipes, pipe jacking or micro tunneling. And it also significantly shortens the construction time.

After the first application of the HDD technique, the NV Nederlandse Gasunie (Dutch Gas Corporation) took the initiative to form a research team to investigate the new construction technique. GeoDelft was a member of that research team, which investigated the construction of two pilot projects in the Netherlands.

The two pilot horizontal directional drillings were carried out in 1985. While the pipeline was being installed, measurements were taken to gain a greater understanding of the behavior of the soil around the borehole. The results of the research were used to define preliminary guidelines that must be taken into account when designing and constructing pipelines using the HDD method.

Since the first pilot projects, a large number of HDD's have been carried out, and the HDD technique has become a quick and reliable method for constructing cables and pipelines under

waterways and other objects.

Continuation of the research has led to a greater store of knowledge about soil behavior, the stresses in the pipes, and the fluid pressures in the borehole. The D-GEO PIPELINE computer program was developed on the basis of this knowledge.

MDrill version 1.0 was first released in 1995. Some new features, such as the option for performing a strength calculation, were added in 1998.

MDrill version 4.0 includes an adapted calculation of maximum allowable drilling fluid pressures and an adjusted strength calculation according to the NEN 3650 series.

MDrill version 5.1 includes an adapted calculation of maximum allowable drilling fluid pressures and an adjusted strength calculation according to the new NEN 3650 series. Horizontal curves can be taken into account. The settlement calculation using the Koppejan or the Isotache models is also added. Bundled pipeline are now supported. A library with standard pipes for steel and polyethylene is available. The mud pressure charts have been improved. Exporting soil parameters in versatile format (*.csv) is possible.

D-GEO PIPELINE version 6.1 (2010) includes two new techniques for pipeline installation: the *Micro tunneling* module (section 1.2.2) and the *Construction in trench* module (section 1.2.3). New tutorials (7 to 12) have been added to explain the use of both techniques. Small bugs have been solved: pulling forces for bundled pipes, (horizontal) projected length needed for vertical testing and mud pressure plots, default values for maximum deflection of Steel and PE have been exchanged, factor on modulus of subgrade reaction correctly used, in case of bundles the load angle and bedding angle are given by user (not automatically set to 30 degrees any more), the maximum test pressure is increased. Moreover some minor changes in the report have been made.

D-GEO PIPELINE version 6.2 (2012) includes an adaptation for dead end pipe ("Dead end" pipe has no production phase). Moreover some minor issues have been solved.

D-GEO PIPELINE version 6.3 (2013) includes the following changes: the changes in the Dutch norm NEN 3650:2012 series (NEN, 2012a,b,c) and NEN 3651:2012 (NEN, 2012d) are incorporated, it is possible to add traffic loads, safety factors from the European Standard CEN are added, the report is available in French, the temperature stresses are calculated, the known issue about thrusting forces is solved and the wrong usage of boundaries (for micro-tunneling) is solved.

D-GEO PIPELINE version 14.1 (2014) For micro tunneling, the calculation of the minimum and maximum face support pressures is updated so that the target value is between the minimum and maximum values. The "Check on calculated stresses for load combination 1 (HDD)" is now correctly performed. The linear settlement coefficient α_g is now a user-defined value in the *Pipe Engineering* window (section 4.6.3.1). For HDD - Strength calculation, the load factor on installation $f_{install}$ is used for the calculation of the axial bending stress σ_b (Equation 23.23).

D-GEO PIPELINE version 15.1 (2015) The default value of the allowable deflection of pipe for steel is changed to 15% (instead of 5%), as prescribed by the NEN. For bundle, the piggability is checked using the diameter of the considered pipe, not the equivalent diameter. A toggle button *Same scale X and Y axis* is implemented in the *Input* and *Top View* windows (Figure 2.1), to switch between same scale for X and Y-axis and not same scale for X and Y-axis. A *Reset* button in the *Defaults* window (Figure 4.43) is added to get the default factors prescribed by the selected norm (NEN or CEN); when a factor differs from the norm, it is displayed in red.

D-GEO PIPELINE version 16.1 (2016) With this version, license(s) can be borrowed for a certain period allowing working without connection to the licence server (see section 3.2.5 for more information).

1.6 Minimum System Requirements

The following minimum system requirements are needed in order to run and install the D-GEO PIPELINE software, either from CD or by downloading from the Deltares website via MS Internet Explorer:

- ♦ Operating systems:
 - □ Windows 2003,
 - Windows Vista,
 - □ Windows 7 32 bits
 - □ Windows 7 64 bits
 - D Windows 8
- ♦ Hardware specifications:
 - I GHz Intel Pentium processor or equivalent
 - 512 MB of RAM
 - 400 MB free hard disk space
 - \square SVGA video card, 1024 \times 768 pixels, High colors (16 bits)
 - CD-ROM drive
 - Microsoft Internet Explorer version 6.0 or newer (download from www.microsoft.com)

1.7 Definitions and Symbols

Co-ordinate system

The horizontal axis is defined as the X axis. The vertical axis is defined to be the Z-direction. Upward is positive and downward negative. Perpendicular to the cross section is the Y direction. The L co-ordinate is the projection of the horizontal co-ordinate X along the pipeline trajectory.

Figure 1.11: Co-ordinate system

Geometric data

A	Cross-section of the pipe: $A = \pi (r_0^2 - r_i^2)$	mm ²
D_{o}	Outer diameter of the pipe	mm
D_{eq}	Equivalent diameter of the bundled pipeline	mm
D_{q}	Average diameter of the pipe: $D_{q} = D_{o} - d_{n}$	mm
D_{i}	Inner diameter of the pipe: $D_{i} = D_{o} - 2 d_{n}$	mm
d	Minimum wall thickness of the pipe: $d=d_{\sf n}\left(1-\delta_{\sf t}/100 ight)$	mm
$d_{\sf n}$	Nominal wall thickness of the pipe	mm
$d_{n;eq}$	Equivalent nominal wall thickness of a bundled pipeline	mm
Ib	Moment of inertia of the pipe: $I_{\sf b}=\pi ~ \left(D_{\sf o}^4-D_{\sf i}^4\right)/64$	mm ⁴

$I_{\rm w} \\ l_{\rm overcut}$ $r_{\rm 0} \\ r_{\rm g} \\ r_{\rm i} \\ W_{\rm b} \\ W_{\rm w} \\ \delta_{\rm t}$	Moment of inertia of the wall: $I_{\rm w} = d_{\rm n}^3/12$ Difference between the hole radius and the outer radius of the prod- uct pipe (micro tunneling) Outer radius of the pipe Average radius of the pipe Inner radius of the pipe Resisting moment of the pipe: $W_{\rm b} = 2~I_{\rm b}/D_{\rm o}$ Resisting moment of the wall: $W_{\rm w} = d_{\rm n}^2/6$ Negative wall thickness tolerance	mm ⁴ /mm mm mm mm ³ mm ³ /mm %
	Vouna's modulus of the nine	NI/mm ²
⊡b D	Young's modulus of the pipe	N/mm^2
n _{eb} D	Vield strength of the polyothylene pipe	N/mm^2
Reb;short	Viold strength of the polyethylene pipe at long term	N/mm^2
Tteb;long	I init weight of the pipe material	kN/m ³
/b	One weight of the pipe material	NIN/111
_		
Process (data	
p_{d}		N/mm ²
p_{t}	lest pressure	N/mm ²
Δt	remperature variation	ĸ
Pipeline of	configuration	
X_{left}	X-coordinate of the left point	m
Y_{left}	Y-coordinate of the left point	m
Z_{left}	(Vertical) Z-coordinate of the left point	m
X_{right}	X-coordinate of the right point	m
Y _{right}	Y-coordinate of the right point	m
∠ _{right}	(vertical) 2-coordinate of the right point	[]] rodiono
φ left	Pight angle of the pipe	radiana
$arphi$ right $Z_{ m i}$	I owest level of the nine	m
Z_{lowest}	Vertical bending radius of the nine at the left side	m
	Vertical bending radius of the pipe at the right side	m
R_{rol}	Bending radius of the rollers	m
- 901		
Soil prop	ortios	
	Adhesion	kN/m ²
a a	Direct compression index acc. to Isotache model	-
b	Secular compression index acc. to Isotache model	_
c	Coefficient of secular compression rate acc. to Isotache model	_
c	Cohesion	kN/m ²
c _u	Undrained cohesion	kN/m ²

 c_u Undrained cohesion C_p Primary compression coefficient below P_c C_p 'Primary compression coefficient above P_c C_s Secondary compression coefficient below P_c C_s 'Secondary compression coefficient above P_c EYoung's modulusGShear modulus: $G = E/(2 \ (1 + \nu))$ OCROver-consolidation ratio

_

_

_

kN/m²

kN/m²

P_{c}	Preconsolidation pressure	kN/m ²
POP	Pre-overburden pressure	kN/m ²
δ	Friction angle between the soil and the pipeline	Radians
φ	Friction angle	Radians
$\gamma_{ m unsat}$	Unsaturated (dry) unit weight	kN/m ³
$\gamma_{\sf sat}$	Saturated (wet) unit weight	kN/m ³
γ_{w}	Unit weight of water	kN/m ³
ν	Poisson's ratio	-
Soil mec	hanical data	
$a_{ m lub}$ fluid	Adhesion of the lubrification fluid	N/mm ²
B	Width of the foundation element (= D_0)	m
B_1	Half width of the covered ground column	m
\dot{C}	Compression index (soil dependent constant)	_
$d_{\sf c}$	Depth factor for the effect of the cohesion	_
d_{q}	Depth factor for the effect of the soil cover	-
F_{r}	Permanent friction due to arching effect	N/mm ²
F_{max}	Maximal adhesion	N/mm ²
h	Soil cover above the borehole	m
$h_{\sf p}$	Soil cover above the borehole in the incompressible layer	m
Ĥ	Soil cover above the top of the pipe if the pipe is situated in a com-	m
	pressible layer or thickness of the compressible layer if the pipe is	
	situated in an incompressible layer	_
k_{h}	Horizontal modulus of subgrade reaction	kN/m ³
$k_{v;df}$	Modulus of subgrade reaction of the drilling fluid	kN/m ³
$k_{\sf v;lub~fluid}$	Modulus of subgrade reaction of the lubrification fluid (micro tunnel-	kN/m ³
	ing)	_
$k_{v,pipe}$	Vertical modulus of subgrade reaction of the pipe	kN/m ³
$k_{v,top}$	Vertical modulus of subgrade reaction of the soil upward	kN/m ³
$k_{ m v,bottom}$	Vertical modulus of subgrade reaction of the soil downward	kN/m ³
K_{a}	Active earth pressure ratio	-
K_0	Neutral earth pressure ratio: $K_0 = 1 - \sin \varphi$	-
K _c	Load coefficient according to Brinch Hansen	-
K_{q}	Load coefficient according to Brinch Hansen	-
L	Length of foundation element	m
N _c	Bearing capacity factor for the effect of the cohesion	-
Nq	Bearing capacity factor for the effect of the effective weight of the	-
I_{γ}	bearing capacity factor for the effect of the effective weight of the	-
<i>m</i> ,		N/mm^2
p_{max}	Illitimate vertical bearing especity	N/mm^2
¹ we		N/mm^2
q_{he}	Noutral berizontal strong of the soil	N/mm^2
$q_{h,n}$	Neutral nonzontal stress of the soil	N/mm^2
$q_{h,r}$		N/11111 N//ma.ma ²
<i>Y</i> k ∝	Initial vertical stress of the soll	IN/mm ⁻
$q_{\sf n}$	iveutral vertical stress of the soll	IN/mm ⁻
$q_{\sf n,r}$	Reduced neutral vertical stress of the soil	N/mm ⁻
$q_{n,r,v}$	Reduced neutral vertical stress increased with a possible traf-	IN/mm ⁻
	including safety factors: $q_{n,r,v} = f_{Qn1} \times f_{Qn2} \times (q_{n,r,v} + f_{Qn2})$	
~	$(q_{n;r} + J_{qv} \times q_{v})$	N/m^2
<i>Y</i> p ∝	Passive vertical stress of the soli	N/m^{2}
$q_{\sf p;max}$	waximum passive vertical stress	IN/mm ⁻

<i>a</i>	Traffic load	N/mm ²
9v Se	Shape factor due to cohesion	_
Sa	Shape factor due to soil cover	_
s_{γ}	Shape factor due to effective weight of the soil under the foundation element	_
W	Maximal axial friction along the pipeline	kN/m
$z_{\sf max}$	Maximal displacement	m
δ_{d}	Relative displacement of the soil column	m
$\delta_{lubfluid}$	Delta lubrification fluid	Radians
$arphi_{b}$	Average friction angle over the height of the borehole	Radians
μ	Percentage of compaction depending on the type of fill and type of compaction	-
σ_0 '	Effective isotrope stress: $\sigma'_{0} = (\sigma'_{v} + \sigma'_{h})/2$	N/mm ²
σ_{c}	Vertical effective stress at the compressibility border	N/mm ²
$\sigma_{\rm h}$ '	Effective horizontal stress at the pipe center: $\sigma'_{\rm h} = K \times sigma'_{\rm h}$	N/mm ²
$\sigma_{\rm v}$ '	Effective vertical stress at the pipe center	N/mm ²

Effective vertical stress at the pipe center σ_{v} '

Stress analysis data

f_1	Factor of friction between pipe and pipe-rollers	_
f_2	Friction between pipe and drilling fluid	N/mm ²
f_3	Factor of friction between pipe and soil	-
$F_{\sf rr}$	Direct re-rounding factor	-
F_{rr} '	Indirect re-rounding factor	-
g_{t}	Curved force	N/mm
K_{b}	Moment coefficient for directly transmitted stress at the bottom of the pipeling depending on the bodding angle β	-
V,	the pipeline, depending on the bedding angle p	
Λ_{b}	the pipeline, depending on the bedding angle β	_
K_{t}	Moment coefficient for directly transmitted stress at the top of the	_
-	pipeline, depending on the bedding angle β	
K_{t} '	Moment coefficient for indirectly transmitted stress at the top of the	_
7	pipeline, depending on the bedding angle β	
κ_{y}	Direct deflection factor depending on the bedding angle β	-
κ_y	Indirect deflection factor depending on the bedding angle p	_
L _b	Length of the curved part of the pipeline	mm
L _{rol}	Length of the pipeline on the roller-lane	mm
L_{total}	Length of the pipeline from the entry to the exit point	
L2 T	Tetel sulling forces in the singline	
$\frac{1}{T}$	Total pulling force in the pipeline	
$\frac{I_1}{T}$	Pulling force due to inclion of the pipeline of the folier-lane	IN NI
$\frac{1}{2}$	Pulling force due to inclion between pipe and drining huid	IN NI
1 _{3a} T	Pulling force in the curved part of the borehole due to soil reaction	IN NI
I 3b D	Putting force in the curved part of the borehole due to curved forces	IN 0/
I W	Sail reaction	$\frac{1}{2}$
$q_{\rm r}$	Soli reaction Weight of the ningling filled with water	N/IIIII N/mm
Å	Effective weight of the pipeline	N/IIIII N/mm
Qeff	Meight of the filling (water)	N/IIIII N/mm
<i>Q</i> filling		N/IIIII N/mm
Quplift	Weight of the pipeline	N/mm
⊗pipe R	Ronding radius	mm
10	Maximum displacement	mm
y O		Radiane
u		naulans
α	Alpha pipe material (for polyethylene)	_
--------------------	---	-------------------
β	Bedding angle	Radians
δ_{y}	Calculated deflection of the pipe	%
δ_0	Allowable deflection of the pipe	%
δ_1	Allowable deflection of the pipe (piggability)	%
$\gamma_{ m fill}$	Unit weight of the filling fluid	N/mm ³
λ	Characteristic stiffness pipeline-soil	${\sf mm}^{-1}$
σ_{b}	Axial bending stress	N/mm ²
$\sigma_{\sf pt}$	Internal stress around the pipeline caused by test pressure $p_{ m t}$	N/mm ²
σ_{px}	Axial internal stress	N/mm ²
$\sigma_{\sf py}$	Internal stress around the pipeline caused by design pressure $p_{\sf d}$	N/mm ²
σ_{qn}	Tangential stress (directly transmitted) as a result of the bending	N/mm ²
σ_{qr}	Tangential stress (indirectly transmitted) as a result of the bending	N/mm ²
$\sigma_{\rm t}$	Axial stress due to pull-back	N/mm ²

Drilling fluid data

dp/dz	Flow resistance per unit length of borehole	kN/m ³
f_{loss}	Circulation loss factor	_
h	Height between drilling head and exit point of the drilling fluid	m
L	Distance in the borehole between the drilling head and the exit point of the drilling fluid	m
$p_{max;d}$	Maximum drilling fluid pressure for drained conditions	kN/m ²
$p_{max;und}$	Maximum drilling fluid pressure for undrained conditions	kN/m ²
p_1	Static pressure of the drilling fluid column	kN/m ²
p_2	Excess pressure necessary to maintain the annular flow of drilling	kN/m ²
	fluid with cuttings in the borehole	
Q	Calculated flow rate	m ³ /s
Q_{ann}	Annular back-flow rate	m ³ /s
Q_{reg}	Requested flow rate necessary to initiate flow of drilling fluid	m ³ /s
R_{b}	Radius of the borehole	m
$R_{p;max}$	Maximum allowable radius of the plastic zone	m
u^{\dagger}	Pore pressure	kN/m ²
$\varepsilon_{g;max}$	Maximum deformation of the borehole	_
$\gamma_{\rm df}$	Unit weight of the drilling fluid	kN/m ³
μ_{df}	Plastic viscosity of the drilling fluid	kN.s/m²
$\tau_{\rm df}$	Yield point of the drilling fluid	kN/m ²

Partial safety factors

$f_{\sf burst}$	Safety factor on hydraulic heave	_
$f_{\sf silo}$	Overburden factor on silo effect	_
$f_{\sf u}$	Safety factor on water pressure u	_
$f_{\sf uplift}$	Safety factor on uplift	_
$f_{\sigma h}$	Safety factor on the horizontal effective stress	_
N	Stability ratio for the calculation of the minimal support pressure	_
S	Factor of importance	_
δ_0	Maximum allowable deflection of the pipe	%
δ_1	Maximum allowable deflection of the pipe for piggability	%
$\gamma_{imp;long}$	Safety factor on implosion at long term	_
$\gamma_{\rm imp;short}$	Safety factor on implosion at short term	_
$\gamma_{\sf m}$	Partial material factor (only for steel).	_
$\gamma_{\rm m;test}$	Partial material factor test pressure (only for steel)	_

Contingency factors

f_{c}	Contingency factor on the cohesion (c or c_{u})	-
f_{cover}	Contingency factor on soil cover	-
fe	Contingency factor on the Young's modulus E	-
f _k	Overall factor on bending moment: $f_{k} = f_{M} \times f_{\text{install}} \times f_{R}$	-
f _{kv}	Contingency factor on the bedding constant k_v	-
Ĵм	Contingency factor on the bending moment M	-
fpress;bor	e Contingency factor on the pressure borehole	-
fpull	Contingency factor on the pulling force T	-
fQn2	Contingency factor on the soil load q_n	-
Ĵ _R	Contingency factor on bending radius R	-
fthrust	Contingency factor on thrsut force	-
f_{φ}	Contingency factor on the tangent of the friction angle φ	-
f_{γ}	Contingency factor on the total unit weight γ	-

Load factors

$f_{\sf install}$	Load factor on installation	_
$f_{\sf pd}$	Load factor on design pressure p_{d}	_
$f_{pd;comb}$	Load factor on design pressure $p_{\sf d}$ in combination	_
$f_{\sf pt}$	Load factor on test pressure p_{t}	_
Ĵ _{Qn1}	Load factor on soil load $q_{\sf n}$	_
f_{temp}	Load factor on stress due to the temperature variation Δt	_
f_{qv}	Load factor on traffic load q_v	_

Abbreviations

HDD	Horizontal Directional Drilling
MTBM	Micro Tunneling Boring Machine
PE	Polyethylene
LC	Load Combination

1.8 Getting Help

From the *Help* menu, choose the *Manual* option to open the User Manual of D-GEO PIPELINE in PDF format. Here help on a specific topic can be found by entering a specific word in the *Find* field of the PDF reader.

1.9 Getting Support

Deltares Systems tools are supported by Deltares. A group of 70 people in software development ensures continuous research and development. Support is provided by the developers and if necessary by the appropriate Deltares experts. These experts can provide consultancy backup as well.

If problems are encountered, the first step should be to consult the online Support at: www.deltares.com in menu 'Software'. Different information about the program can be found on the left-hand side of the window (Figure 1.12):

- ◇ In 'Support Frequentely asked questions' are listed the most frequently asked technical questions and their answers.
- ♦ In 'Support Known issues' are listed the issues of the program.
- ◇ In 'Release notes D-Geo Pipeline' are listed the differences between an old and a new version.

Figure 1.12: 'Products' menu of Deltares Systems website (www.deltaressystems.com)

If the solution cannot be found there, then the problem description can be e-mailed (preferred) or faxed to the Deltares Systems support team. When sending a problem description, please add a full description of the working environment. To do this conveniently:

- ♦ Open the program.
- ♦ If possible, open a project that can illustrate the question.
- ♦ Choose the Support option in the Help menu. The System Info tab contains all relevant information about the system and the DSeries software. The Problem Description tab enables a description of the problem encountered to be added.

Figure 1.13: Support window, Problem Description tab

♦ After clicking on the Send button, the Send Support E-Mail window opens, allowing sending current file as an attachment. Marked or not the Attach current file to mail check-box and click OK to send it.

Send Support E-Mail	×
This problem report will be sent to "support@deltaressystems.nl". You can also send the current file as an attachment. Check the checkbox below to do this. Sending of the problem report with E-mail is only possible if the mail program on your system is configured as "default Simple MAPI client" (consult your system administrator). This will only work if your E-mail program can reach external (Internet) E-mail addresses.	1
Attach current file to mail	
OK Cancel Help	

Figure 1.14: Send Support E-Mail window

The problem report can either be saved to a file or sent to a printer or PC fax. The document can be emailed to geo.support@deltaressystems.nl or alternatively faxed to +31(0)88 335 8111.

1.10 Deltares

Since January 1st 2008, GeoDelft together with parts of Rijkswaterstaat /DWW, RIKZ and RIZA, WL |Delft Hydraulics and a part of TNO Built Environment and Geosciences are forming the Deltares Institute, a new and independent institute for applied research and specialist advice. Founded in 1934, GeoDelft was one of the world's most renowned institutes for geotechnical and environmental research. As a Dutch national Grand Technological Institute (GTI), Deltares role is to obtain, generate and disseminate geotechnical know-how. The institute is an international leader in research and consultancy into the behavior of soft soils (sand clay and peat) and management of the geo-ecological consequences which arise from these activities. Again and again subsoil related uncertainties and risks appear to be the key factors

in civil engineering risk management. Having the processes to manage these uncertainties makes Deltares the obvious partner in risk management for all parties involved in the civil and environmental construction sector. Deltares teams are continually working on new mechanisms, applications and concepts to facilitate the risk management process, the most recent of which is the launch of the concept "GeoQ" into the geotechnical sector.

For more information on Deltares, visit the Deltares website: www.deltares.com.

1.11 Deltares Systems

Deltares Systems (formerly known as Delft GeoSystems) converts Deltares's knowledge into practical geo-engineering services and software. Deltares Systems has developed a suite of software for geotechnical engineering. Besides software, Deltares Systems is involved in providing services such as hosting on-line monitoring platforms, hosting on-line delivery of site investigation, laboratory test results, etc. As part of this process Deltares Systems is progressively connecting these services to their software. This allows for more standardized use of information, and the interpretation and comparison of results. Most software is used as design software, following design standards. This however, does not guarantee a design that can be executed successfully in practice, so automated back-analyses using monitoring information are an important aspect in improving geotechnical engineering results. For more information about Deltares Systems' geotechnical software, including download options, visit www.deltaressystems.com.

1.12 On-line software (Citrix)

Besides purchased software, Deltares Systems tools are available as an on-line service. The input can be created over the internet. Heavy duty calculation servers at Deltares guarantee quick analysis, while results are presented on-line. Users can view and print results as well as locally store project files. Once connected, clients are charged by the hour. For more information, please contact the Deltares Sales team: sales@deltaressystems.com.

2 Getting Started

This *Getting Started* chapter aims to familiarize the user with the structure and user interface of D-GEO PIPELINE. The Tutorial section which follows uses a selection of case studies to introduce the program's functions.

2.1 Starting D-GEO PIPELINE

To start D-GEO PIPELINE, click *Start* on the Windows menu bar and then find it under *Programs*, or double-click a D-GEO PIPELINE input file that was generated during a previous session.

For an D-GEO PIPELINE installation based on floating licenses, the *Modules* window may appear at start-up (section 3.2.5). Check that the correct modules are selected and click *OK*.

When D-GEO PIPELINE is started from the Windows menu bar, the last project that was worked on will open automatically, unless the program has been configured otherwise under *Tools: Program Options* (section 3.2).

2.2 Main window

When D-GEO PIPELINE is started, the main window is displayed (Figure 2.1). This window contains a menu bar (section 2.2.1), an icon bar (section 2.2.2), a *View Input* window (section 2.2.3) displaying the pre-selected or most recently accessed project, an info bar (section 2.2.4), a title panel (section 2.2.5) and a status bar (section 2.2.6).

Figure 2.1: Main Window

The first time D-GEO PIPELINE is started after installation, the *View Input* window will be closed. When a new file is created, the default model is *Horizontal directional drilling* and the project name is *Project1*.

2.2.1 The menu bar

To access the D-GEO PIPELINE menus, click one of the items on the menu bar.

File Project Soil Geometry GeoObjects Loads Pipe Defaults Calculation Results Tools Window Help

Figure 2.2: D-GEO PIPELINE menu bar

The menus contain the following functions:

File	Standard Windows options for opening, saving and sending files as well
	as several D-GEO PIPELINE options for exporting and printing the active
	window and reports (section 3.1).
Project	Definition of the model types, options for Project Properties and View
	Input File (section 4.1).
Soil	Definition of soil type properties (section 4.2).
Geometry	Definition of layers, soil types and piezometric lines (section 4.3).
GeoObjects	Definition of the border between compressible top layers and underly-
	ing non-compressible soil layers, the border between impermeable and
	permeable soil layers and definition of the verticals (X-coordinates) for
	which results will be shown (section 4.4).
Loads	Definition of the traffic loads if present (section 4.5).
Pipe	Definition of the pipeline configuration and input of pipeline parameters
	(section 4.6).
Defaults	Input of factors (section 4.7).
Calculation	A wide range of calculation options. Determine the settlements and
	stresses along the verticals (chapter 5).
Results	Graphical or tabular output of the results (chapter 6).
Tools	Options for editing D-GEO PIPELINE program default settings (sec-
	tion 3.2).
Window	Default Windows options for arranging the D-GEO PIPELINE windows
	and choosing the active window.
Help	Online Help (section 1.8).

2.2.2 The icon bar

The buttons on the icon bar can be used to quickly access frequently used functions (see below).

Figure 2.3: D-GEO PIPELINE icon bar

Click on the following buttons to activate the corresponding functions:

	Start a new D-GEO PIPELINE project.
õ	Open the input file of an existing project.
	Save the input file of the current project.
	Print the contents of the active window.

	Display a print preview of the current contents of the View Input window.
	Open the <i>Project Properties</i> window. Here the project title and other identification data can be entered, and the <i>View Layout</i> and <i>Graph Settings</i> for the project can be determined.
	Start the calculation.
0	Display the contents of online Help.
۲	Display the first page of the Deltares Systems website: www.deltaressystems.com

2.2.3 View Input

The *View Input* window displays the geometry and additional D-GEO PIPELINE input for the current project. The window has three tabs:

♦ Geometry

In this view (Figure 2.4), the positions and soil types of different layers can be defined, inspected and modified. For more information about these general options for geometrical modeling, see chapter 7. See also the description of the *Geometry* menu (section 4.3).

Figure 2.4: View Input window, Geometry tab

◊ Input

In this view (Figure 2.5), the additional D-GEO PIPELINE-specific input can be defined, inspected and modified. See below in this section for more information about the various options.

Figure 2.5: View Input window, Input tab

◊ Top View

In this view (Figure 2.6), the top view of the pipeline longitudinal cross section is shown.

Figure 2.6: View Input window, Top View tab

The panel on the left of the view includes buttons for entering data and manipulating the graphical view. Click the following buttons to activate the corresponding functions:

	Select and Edit mode
De l	In this mode, the left-hand mouse button can be used to select a previously-defined
10	verticals or loads in the View Input mode. Item can then be deleted or modified
	by dragging or resizing, or by clicking the right-hand mouse button and choosing
	options from the menu displayed. Pressing the <i>Escape</i> key return the user to this
	Select and Edit mode
	Pan button
db	<i>Fair</i> button to change the visible part of the drawing by clicking and dragging
S.	Click this button to change the visible part of the drawing by clicking and dragging
\sim	Add point(s) to boundary / PL-line
2	Click this button to add points to all types of lines (lines, polylines, boundary lines,
	PL-lines). By adding a point to a line, the existing line is split into two new lines. This
	provides more freedom when modifying the geometry.
	Add single lines(s)
≫-	Click this button to add single lines. When this button is selected, the first left-hand
	mouse click will add the info bar of the new line and a "rubber band" is displayed
	when the mouse is moved. The second left-hand mouse click defines the end point
	(and thus the final position) of the line. It is now possible to either go on clicking start
	and end points to define lines, or stop adding lines by selecting one of the other tool
	buttons, or by clicking the right-hand mouse button, or by pressing the Escape key
	Add polyling(c)
	Click this button to add poly lines. When this button is selected, the first left hand
0-0	Click this build to add poly-lines. When this build is selected, the first left-hand
	mouse click adds the starting point of the new line and a rubber band is displayed
	when the mouse is moved. A second left-hand mouse click defines the end point
	(and thus the final position) of the first line in the poly-line and activates the "rubber
	band" for the second line in the poly-line. Every subsequent left-hand mouse click
	again defines a new end point of the next line in the poly-line. It is possible to end
	a poly-line by selecting one of the other tool buttons, or by clicking the right-hand
	mouse button, or by pressing the <i>Escape</i> key.
	Add PL-line(s)
- Q	Click this button to add a piezometric level line (PL-line). Each PL-line must start
	at the left limit and end at the right limit. Furthermore, each consecutive point must
	have a strictly increasing X co-ordinate. Therefore, a PL-line must be defined from
	left to right, starting at the left limit and ending at the right limit. To enforce this, the
	program will always relocate the first point clicked (left-hand mouse button) to the left
	limit by moving it horizontally to this limit. If trying to define a point to the left of the
	previous point the rubber band icon indicates that this is not possible. Subsequently
	clicking on the left side of the previous point, the new point will be added at the end
	of the rubber band icon instead of the position clicked
	Zoom in
æ	Click this button to onlarge the drawing, then click the part of the drawing which is to
10	be at the center of the new image. Depend if necessary
	Ze au trie center of the new image. Repeat if necessary.
0	
<i>></i>	Click this button, then click on the drawing to reduce the drawing size. Repeat if
	necessary.
	Zoom rectangle
JE I	Click this button then click and drag a rectangle over the area to be enlarged. The
	selected area will be enlarged to fit the window. Repeat if necessary.
	Measure the distance between two points
- 1	Click this button, then click the first point on the View Input window and place the
	cross on the second point. The distance between the two points can be read at the
	bottom of the <i>View Input</i> window. To turn this option off, click the escape key
	,,,

each
each
each
each
netry
solid
ayers
gned
ietry,
-
lable

2.2.4 Info bar

This bar situated at the bottom of the *View Input* window displays the co-ordinates of the current position of the cursor and the distance between two points when the icon *Measure the distance between two points* is selected from the *Edit* panel.

2.2.5 Title panel

This panel situated at the bottom of the main window displays the project titles, as entered on the *Identification* tab in the *Project Properties* window (section 4.1.2).

2.2.6 Status bar

This bar situated at the bottom of the main window displays a description of the selected icon of the icon bar (section 2.2.2) or of the *View Input* window (section 2.2.3).

2.3 Files

*.dri	Input file (ASCII):
	Contains the D-GEO PIPELINE specific input. After interactive generation, this file
	can be used in subsequent D-GEO PIPELINE analyses.
*.drd	Dump file (ASCII):
	Contains calculation results used for graphical output.
*.drs	Setting file (ASCII):
	Working file with settings data. This file does not contain any information that is
	relevant for the calculation, but only settings that apply to the representation of
	the data, such as the grid size.
*.drd	Dump file (ASCII):
	Contains calculation results used for graphical and report output.
*.geo	Input file (ASCII):
	Contains the geometry data that can be shared with other D-Series programs.
*.set	Working file (ASCII):
	Contains program settings data.
*.err	If there are any errors in the input, they are described in this file.
*.gef	Measurements data in self describing Geotechnical Exchange Format.

2.4 Tips and Tricks

2.4.1 Keyboard shortcuts

Keyboard shortcuts given in Table 2.5 are another way to reach the features of D-GEO PIPELINE directly without selecting it from the bar menu. These shortcuts are also indicated in the corresponding sub-menus.

Keyboard shortcut	Opened window
Ctrl + N	New
Ctrl + O	Open
Ctrl + S	Save
F12	Save As
Shift + Ctrl + C	Copy Active Window to Clipboard
Ctrl + P	Print Report
Ctrl + M	Model
Ctrl + T	Materials
F9	Start Calculation
Ctrl + R	Report
Ctrl + U	Drilling Fluid Pressures Plots

2.4.2 Exporting figures and reports

All figures in D-GEO PIPELINE such as top view and graphical output can be exported in WMF (Windows Meta Files) format. In the *File* menu, select the option *Export Active Window* to save the figures in a file. This file can be later imported in a Word document for example or added as annex in a report. The option *Copy Active Window to Clipboard* from the *File* menu can also be used to copy directly the figure in a Word document.

The report can be entirely exported as PDF (Portable Document Format) or RTF (Rich Text Format) file. To look at a PDF file Adobe Reader can be used. A RTF file can be opened and edited with word processors like MS Word. Before exporting the report, a selection of the relevant parts can be done with the option *Report Selection* (section 6.1).

2.4.3 Copying part of a table

It is possible to select and then copy part of a table in another document (an Excel sheet for example). If the cursor is placed on the left-hand side of a cell of the table, the cursor changes in an arrow which points from bottom left to top right. Select a specific area by using the mouse (see a in Figure 2.7). Then, using the copy button (or ctrl+C) this area can be copied.

Figure 2.7: Selection of different parts of a table using the arrow cursor

To select a row, click on the cell before the row number (see b) in Figure 2.7). To select a column, click on the top cell of the column (see c) in Figure 2.7). To select the complete table, click on the top left cell (see d) in Figure 2.7).

In some tables the buttons *Cut*, *Copy*, and *Paste* 🐱 🖻 🖺 are also present at the left hand.

3 General

This chapter contains a detailed description of the available menu options for inputting data for a project, and for calculating and viewing the results. The examples in the Tutorial section provide a convenient starting point for familiarization with the program.

3.1 File menu

3.1.1 General options

Besides the familiar Windows options for opening and saving files, the *File* menu contains a number of options specific to D-GEO PIPELINE:

♦ New

Select this option to display the *New File* window (Figure 3.1). Three choices are available to create a new geometry:

- Select New geometry to display the View Input window, showing only the geometry limits (with their defaults values) of the geometry;
- Select New geometry wizard to create a new geometry faster and easier using the wizard option (involving a step-by-step process for creating a geometry, see section 4.3.2);
- Select Import geometry to use an existing geometry.

New File		
Geometry		
C New geometry		
New geometry wizard		
O Import geometry		
OK Cancel Help		

Figure 3.1: New File window

♦ Copy Active Window to Clipboard

Use this option to copy the contents of the active window to the Windows clipboard so that they can be pasted into another application. The contents will be pasted in either text format or Windows Meta File format.

♦ Export Active Window

Use this option to export the contents of the active window as a Windows Meta File (*.wmf), a Drawing Exchange File (*.dxf) or a text file (*.txt).

♦ Export Report

This option allows the report to be exported in a different format, such as PDF or RTF.

◇ Export Results as xml

This option allows the inputs and results to be exported in an XML format.

♦ Export Results as csv

This option allows the inputs and results to be exported with the SCIA pipeline wizard in a csv format (Excel). For detailed information, refer to section 3.1.2.

◊ Page Setup

This option allows definition of the way D-GEO PIPELINE plots and reports are to be printed. The printer, paper size, orientation and margins can be defined as well as whether and where axes are required for plots. Click *Autofit* to get D-GEO PIPELINE to choose the best fit for the page.

◊ Print Preview Active Window

This option will display a print preview of the current contents of the *View Input* or *Results* windows.

♦ Print Active Window

This option prints the current contents of the *View Input* or *Results* windows.

◇ Print Preview Report

This option will display a print preview of the calculation report.

♦ Print Report

This option prints the calculation report.

3.1.2 Option "Export Results as csv"

For advanced structural analyses, for example the SCIA Pipeline program (Sci) can be used or an other program. Such a program has advanced options for structural modeling and allows for accurate analyses of stress distribution (Figure 3.2). In order to do so, such a program for an advanced pipe stress analysis needs accurate soil mechanical parameters, which are supplied by D-GEO PIPELINE in a CSV (comma-separated values) format file by means of the option *Export Results as csv* from the *File* menu bar of D-GEO PIPELINE.

Figure 3.2: 3D configuration in SCIA Pipeline

The CSV file contains the following data's (calculated without safety factors).

General

Company	[-]	Name of the company who performed the calculation with D-GEO PIPELINE.
Software	[-]	Version number of D-GEO PIPELINE used.

Date	[yyyy/mm/dd]	Date of the calculation with D-GEO PIPELINE.
Time	[hh:mm:ss]	Time of the calculation with D-GEO PIPELINE.

Pipeline data's

P1(x)	[m]	X co-ordinate of the begin point of the pipeline.
P1(y)	[m]	Y co-ordinate of the begin point of the pipeline.
P1(z)	[m]	Z co-ordinate of the begin point of the pipeline.
P2(x)	[m]	X co-ordinate of the end point of the pipeline.
P2(y)	[m]	Y co-ordinate of the end point of the pipeline.
P2(z)	[m]	Z co-ordinate of the end point of the pipeline.
Length Pipe	[m]	Length along the pipeline between the begin point P1
		and the end point P2.
Pipe nr	[-]	
Diameter Tube	[mm]	Diameter of the pipe.
Thickness Tube	[mm]	Wall thickness of the pipe.
Material Tube	[-]	

Note: Pipeline data's are not calculated (only user inputted), but are needed in order to prepare the SCIA Pipeline file.

Calculation verticals

Section nr	[-]	Number of the calculation vertical.
Х	[m]	X co-ordinate of the calculation vertical.
У	[m]	Y co-ordinate of the calculation vertical.
Z	[m]	Z co-ordinate of the calculation vertical.

Horizontal soil mechanical data

From	[m]	Position along the pipeline.
Curved	[boolean]	Presence or not of curved part along the pipeline.
Delta	[m]	Horizontal position of the pipeline measured perpen-
		dicular from line P1-P2.
f	[m]	Horizontal settlement of the soil.
Qa	[kN/m ²]	Horizontal active soil pressure.
Qn	[kN/m ²]	Horizontal neutral soil pressure.
Qc	[kN/m ²]	Horizontal consolidation pressure.
Qp	[kN/m ²]	Horizontal passive soil pressure.
C1	[kN/m ³]	Horizontal modulus of subgrade reaction of the soil.
C2	[kN/m ³]	Horizontal modulus of subgrade reaction of the soil.
Gap	[mm]	Gap
UCF(XX)	[-]	Uncertainty on parameter XX.

Note: Horizontal soil mechanical data are given at both left and right sides of the pipe section.

Vertical soil mechanical data

From	[m]	Position along the pipeline.
Curved	[boolean]	Presence or not of curved part along the pipeline.

Delta	[m]	Vertical position of the pipeline measured perpendicular from line P1-P2.
f	[m]	Vertical settlement of the soil.
Qa	[kN/m ²]	Vertical active soil pressure.
Qn	[kN/m ²]	Vertical neutral soil pressure.
Qc	[kN/m ²]	Vertical consolidation pressure.
Qp	[kN/m ²]	Vertical passive soil pressure.
C1	[kN/m ³]	Vertical modulus of subgrade reaction of the soil.
C2	[kN/m ³]	Vertical modulus of subgrade reaction of the soil.
Gap	[mm]	Gap
UCF(XX)	[-]	Uncertainty on parameter XX.

Note: Vertical soil mechanical data are given at both top and bottom sides of the pipe section.

Water

Water height	[mm]	
C1	[kN/m ³]	Unit weight of water.
QP	[kN/m ²]	Water pressure.
UCF(XX)	[-]	Uncertainty on parameter XX.

Axial soil data for friction

From	[m]	Position along the pipeline.
Coef_Mu_x	[-]	Friction coefficient in axial direction.
Сх	[kN/m ³]	Stiffness of the friction spring.
Coef_Mu_rx	[-]	Friction coefficient in axial direction.
Crx	[kN/m ³]	Stiffness of the friction spring.
Factor	[-]	Factor on friction.
UCF(XX)	[-]	Uncertainty on parameter XX.

3.2 Tools menu

On the menu bar, click *Tools* and then choose *Options* to open the *Program Options* window. In this window, the user can optionally define their own preferences for some of the program's default values through the following tabs:

- ♦ (section 3.2.1) View tab
- ♦ (section 3.2.2) General tab
- ♦ (section 3.2.3) Locations tab
- ♦ (section 3.2.4) Language tab
- ♦ (section 3.2.5) Modules tab

3.2.1 Program Options - View

Program Options	×
View General Locations Language Modules	
I Toolbar I Status bar	
□ Title panel	
OK Cancel Heir	>

Figure 3.3: Program Options window, View tab

Toolbar	Mark the relevant check-box to display the tool bar and/or status bar	
Status bar	(section 2.2.6) each time D-GEO PIPELINE is started.	
Title panel	Mark this check-box to display the project titles, as entered on the <i>Iden-</i> <i>tification</i> tab of the <i>Project Properties</i> window (section 4.1.2), in the title panel (section 2.2.5) at the bottom of the <i>View Input</i> window.	

3.2.2 Program Options - General

rogram Options				
View General Locations Language Modules				
Startup with	Save on Calculation			
C No project	Always Save			
 Last used project 	C Always Save As			
C New project				
Use Enter key to				
Press the default button (Win	dows-style)			
C Set focus to the next control (DOS-style)			
OK Cancel Help				

Figure 3.4: Program Options window, General tab

Startup with	Click one of these toggle buttons to determine how a project should be initiated each time D-GEO PIPELINE is started.
	<i>No project</i> : Use the buttons in the toolbar or the options in the <i>File</i> menu to open an existing project or to start a new one.
	<i>Last used project</i> : The last project to be worked on is opened automatically.
	<i>New project</i> : A new project is created comprising a sheet pile wall with a "dummy" soil layer on both sides.
	Note that the <i>Startup with</i> option is ignored when D-GEO PIPELINE is started by double-clicking on an input file.
Save on Calculation	The toggle buttons determine how input data is saved prior to calcu- lation. It can either be saved automatically, using the same file name each time, or a file name can be specified every time the data is saved.
Use Enter key to	Use the toggle buttons to determine the way the Enter key is used in D-GEO PIPELINE: either as an equivalent of pressing the default button (Windows style) or to shift the focus to the next item in a window (for users accustomed to the DOS version(s) of the program).

3.2.3 Program Options - Locations

Program Options	×
View General Locations Language Modules	
Save last used current directory as working directory	
Working directory	
D:\	
☑ Use MGeobase database	
MGeobase database	
):\Support\MGeoBase\	
Settlement program	
C:\Program Files (x86)\Deltares\DSettlement\DSett	
OK Cancel Help	

Figure 3.5: Program Options window, Locations tab

Working directory	D-GEO PIPELINE will start up with a working directory for selection and saving of files. Either choose to use the last used directory, or specify a fixed path.
Use MGeobase database	Enable this check-box to specify the location of the MGeoBase database with material data, geometric data etc. Use of this option also requires once-off local installation of Interbase client software, assuming that the database is residing on a server on which server software has already been installed.
Settlement program	The calculation of the settlement of the soil layers below the pipeline is performed externally by D-SETTLEMENT (formerly known as MSet- tle), the settlement calculation program of the Deltares Systems tools. Therefore, the directory where the program is installed must be speci- fied by clicking the <i>Browse</i> button.

3.2.4 Program Options - Language

nogram Options		×
View General Lo	cations Language Modules	
Interface language	English	
Output language	English Dutch English German French	
	OK Cancel Hel	•

Figure 3.6: Program Options window, Language tab

Interface language	Currently, the only available interface language is English.	
Output language	The output languages English, German, Dutch and French are sup- ported. The selected output language will be used in all exported reports and output plots.	

3.2.5 Program Options - Modules

For a D-GEO PIPELINE installation based on floating licenses, the *Modules* tab can be used to claim a license for the particular modules that are to be used. If the *Show at start of program* check-box is marked then this window will always be shown at start-up.

For a D-GEO PIPELINE installation based on a license dongle, the *Modules* tab will just show the modules that may be used.

Program Options	x
View General Locations Language Modules License LFM Image: D-Geo Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Trenching module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Trenching module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Trenching module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module Image: Pipeline Standard module	
No modules borrowed Return borrow Borrowing	
OK Cancel Help	

Figure 3.7: Program Options window, Modules tab

Users	Click this button to see which modules are (at this moment) in used and who (within the company) is using them.
Borrowing	Click this button to borrow the selected modules for a certain period. The modules will be taken from the server pool and will be available on this computer even if no connection to the license server is available. Set the date and time for the expiration of the borrowing and press <i>OK</i> .
Return borrow	Click this button to end the borrow immediately.

3.3 Help menu

The Help menu allows access to different options.

3.3.1 Error Messages

If errors are found in the input, no calculation can be performed and D-GEO PIPELINE opens the *Error Messages* window displaying more details about the error(s). Those errors must be corrected before performing a new calculation. To view those error messages, select the *Error Messages* option from the *Help* menu. They are also written in the *.err file. They will be overwritten the next time a calculation is started.

D Error M	lessages	
Program	: D-Geo Pipeline	
Version	: 6.3	
License	: Unknown	
Company	:	
Run iden	tification :	
Date	: 9-7-2013	
Time	: 17:15:04	
ERROR (S)	IN CALCULATION VERTICALS	
No calcu	lation verticals present	
End of D	-Geo Pipeline file	

Figure 3.8: Error Messages window

3.3.2 Manual

Select the *Manual* option from the *Help* menu to open the User Manual of D-GEO PIPELINE in PDF format. Here help on a specific topic can be found by entering a specific word in the *Find* field of the PDF reader.

3.3.3 Deltares Systems Website

Select *Deltares Systems Website* option from the *Help* menu to visit the Deltares Systems website (www.deltaressystems.com) for the latest news.

3.3.4 Support

Use the *Support* option from the *Help* menu to open the *Support* window in which program errors can be registered. Refer to section 1.9 for a detailed description of this window.

3.3.5 About D-GEO PIPELINE

Use the *About* option from the *Help* menu to display the *About* D-GEO PIPELINE window which provides software information (for example the version of the software).

Figure 3.9: About D-GEO PIPELINE window

4 Input

Before the design calculations can be started, data for the project needs to be input. The examples presented in the Tutorial section (chapter 8) can be a convenient starting point.

4.1 Project menu

On the menu bar (section 2.2.1), click *Project* to display the following menu options:

- ♦ (section 4.1.1) *Model* to select the required analysis model.
- (section 4.1.2) Properties to enter a project identification and change the default settings for viewing data.
- ♦ (section 4.1.3) *View Input File* to inspect the D-GEO PIPELINE ASCII input file.

4.1.1 Model

On the menu bar, click Project and then choose Model to open the Model window.

Model	×
Model	
 Horizontal directional drilling 	
Ends at surface	
Dutch Standard NEN	
O Micro tunneling	
C Construction in trench	
Settlement	
I▼ Use settlement	
Koppejan	
C Isotachen	
OK Cancel Help	

Figure 4.1: Model window

Model	Select the technique for pipeline installation:
	 Micro tunneling, see section 1.4.1;
	 Construction in trench, see section 1.4.2;
	If Horizontal directional drilling is selected, the safety factors according
	to either the Dutch Standard NEN or to the European Standard CEN
	can be applied. For more information, refer to section 4.7.1.1.
Ends at surface	Enable this check-box if the pipeline ends at surface. In this case,
	D-GEO PIPELINE will automatically calculate the vertical co-ordinate Z
	of the exit point of the pipeline (see section 4.6.1).

Settlement	Enable the check-box <i>Use settlement</i> to calculate the vertical displace- ment of the soil below the pipeline due to installation. D-GEO PIPELINE will use the D-SETTLEMENT computer program. The required settlement model (<i>Koppejan</i> or <i>Isotache</i>) must be selected. For background infor- mation, see section 21.10.2 and section 21.10.1 respectively for Koppe- jan and Isotache models.
	Note: The check-box <i>Use settlement</i> is available only when the pro- gram D-SETTLEMENT (formerly known as MSettle) is installed, and when the location of the executable (DSettlement.exe) is specified in the <i>Lo- cations</i> tab of the <i>Program Options</i> window (section 3.2.3). Note: The pipeline settlement can also be entered manually (if avail- able) in the <i>Calculation Verticals</i> window (refer to section 4.4.2).

4.1.2 Project Properties

On the menu bar, click *Project* and then choose *Properties* to open the input window. The *Project Properties* window has two tabs, which allow the settings for the current project to be changed:

- ♦ Identification, to specify project identification data.
- ♦ *View Input*, to define the appearance of items in the *View Input* window.

Project Properties - Identification

Use the Identification tab to specify the project identification data:

Project Prop	perties	×
Identification	n View Input	
Identification Title 1 Title 2 Title 3 Date Drawn by Project ID Annex ID	View Input Project D-Geo Pipeline HDD 9-7-2013 Image: Constraint of the pipeline 012-23456 12	
Save as	default OK Cancel Help	

Figure 4.2: Project Properties window, Identification tab

Titles	Use <i>Title 1</i> to give the project a unique, easily recognizable name. <i>Title 2</i> and <i>Title 3</i> can be added to indicate specific characteristics of the
	calculation. The three titles will be included on printed output.
Date	The date entered here will be used on printouts and graphic plots for
	this project. Either mark the Use current date check-box to automati-
	cally use the current date on each printout, or enter a specific date.

Drawn by	Enter the name of the user performing the calculation or generating the printout.
Project ID	Enter a project identification number.
Annex ID	Specify the annex number of the printout.

Enable the check-box *Save as default* to use these settings every time D-GEO PIPELINE is started or a new project is created.

Project Properties – View Input

Use the View Input tab to define the appearance of the View Input window (section 2.2.3).

Project Properties	×
Identification View Input Display ✓ ✓ Info Bar ✓ Legend Same Scale for x and y Agis ✓ Laygr Colors ✓ Bulers ✓ Drigin Large Cursor ✓ ✓ Calculation ¥erticals ✓ Points	Labels Points Cglculation Verticals Layer S Layer Numbers Aaterial Numbers Material Numbers Material Numbers Material Names Grid Show Grid Show Grid Grid distance [m] 1.000
🥅 Save as default	OK Cancel Help

Figure 4.3: Project Properties window, View Input tab

Display	
Info Bar	Enable this check-box to display the information bar at the bot-
	tom of the Outline View window.
Legend	Enable this check-box to display the legend.
Same scale for x and y	Enable this check-box to display the x and y axis with the same
axis	scale.
Layer colors	Enable this check-box to display the layers in different colors.
Rulers	Enable this check-box to display the rulers.
Origin	Enable this check-box to draw a circle at the origin.
Large Cursor	Enable this check-box to use the large cursor instead of the small
	one.
Calculation Verticals	Enable this check-box to display the verticals.
Points	Enable this check-box to display the points.

Labels	
Points	Enable this check-box to display the point labels.
Calculation Verticals	Enable this check-box to display the vertical labels.
Layers	Enable this check-box to display the layer labels.

Layers labels as

This choice is available only if the Layers check-box of the Labels sub-window is marked. There are three ways to display the legend of the layers:

Layer Numbers	The legend displays one box for each layer. Each layer (and therefore each box) is displayed in a different standard color. Next to each box, the layer number and the material name are displayed, corresponding to the color and number of the layer in the adjacent <i>Geometry</i> window.
Material Numbers	The legend displays one box for each material. Each material (and therefore each box) is displayed in a different color which can be changed by the user (see section 7.3.3). Next to each box, the material number and name are displayed, corresponding to the color and number of the material in the adjacent <i>Geometry</i> window.
Material Names	The legend displays one box for each material. Each material (and therefore each box) is displayed in a different color which can be changed by the user (see section 7.3.3). Next to each box, only the material name is displayed, corresponding to the color and name of the material in the adjacent <i>Geometry</i> window.

Grid	
Show grid	Enable this check-box to display the grid points.
Snap to Grid	Enable this check-box to ensure that objects align to the grid automatically when they are moved or positioned in a graph.
Grid distance	Enter the distance between two grid points.

Enable the Save as default check-box to use the current settings every time D-GEO PIPELINE is started.

4.1.3 **View Input File**

On the menu bar, click Project and then choose View Input File to display an overview of the input data.

The data will be displayed in the D-GEO PIPELINE main window. Click on the Print Active *Window* licon to print the file.

4.2 Soil menu

The Soil menu is used to enter the soil properties for the analysis. In the Soil menu, choose Materials to open the Materials input window in which the soil type properties can be defined. The Properties can either be imported directly from an MGeoBase database (Database tab), or be inputted manually (Parameters tab):

- ♦ Manual input of standard parameters (section 4.2.1);
- ♦ Manual input of settlement parameters acc. to Koppejan (section 4.2.2);
- ♦ Manual input of settlement parameters acc. to Isotache (section 4.2.3);
- ♦ Import from database (section 4.2.4).

4.2.1 Materials – Standard

If the *Use settlement* check-box in the *Model* window (section 4.1.1) is unmarked, the following window is displayed.

Material <u>n</u> ame	Total Unit Weight		
Soft Clay Medium Clau	Above phreatic level	[kN/m³]	18.00
Stiff Clay Peat	Below phreatic level	[kN/m³]	20.00
Dense Sand	Cohesion	[kN/m²]	0.00
Gravel	Phi	[deg.]	30.00
Muck	Cu top	[kN/m²]	0.00
Undetermined	Cu bottom	[kN/m²]	0.00
	Emod top	[kN/m²]	1000.00
	Emod bottom	[kN/m²]	1500.00
	Adhesion	[kN/m²]	0.00
Add Insert 🔺	Friction angle (Delta)	[deg.]	0.00
Delete Rename 👻	Poisson ratio (Nu)	[·]	0.35

Figure 4.4: Materials window, Parameters tab

Total Unit Weight Above phreatic level	The unit weight of the unsaturated soil above the user-defined phreatic line.
Total Unit Weight Below phreatic level	The unit weight of the saturated soil below the user-defined phreatic line.
Cohesion	Cohesion of the soil.
Phi	Angle of internal friction of the soil.
Cu top	The apparent undrained cohesion c_{u} at the top of the layer.
Cu bottom	The apparent undrained cohesion c_{u} at the bottom of the layer.
Emod top	Young's modulus of the soil at the top of the layer.
Emod bottom	Young's modulus of the soil at the bottom of the layer.
Adhesion	Adhesion of the soil. The adhesion is only available if the <i>Construction in trench</i> or <i>Micro Tunneling</i> model have been selected in the <i>Model</i> window (section 4.1.1).
Friction angle (Delta)	Friction angle between soil and pipeline. The delta friction angle is only available if the <i>Construction in trench</i> or <i>Micro Tunneling</i> model have been selected in the <i>Model</i> window (section 4.1.1).
Poisson ratio (Nu)	Poisson ratio of the soil.

The Young's modulus E and the Poisson ratio ν are used to calculate G, the shear modulus:

$$G = \frac{E}{2(1+\nu)} \tag{4.1}$$

4.2.2 Materials – Settlement Koppejan

If the *Use settlement* check-box in the *Model* window (section 4.1.1) is marked and the *Koppejan* model is selected, D-GEO PIPELINE will calculate the settlements according to the Koppejan model. Therefore, the Koppejan parameters need to be put in as shown in Figure 4.5. For background information, refer to section 21.10.2.

Soft Clay	Above phreatic level	[kN/m³]	14.00
tiff Clay Peat	Below phreatic level	[kN/m³]	14.00
Loose Sand Dense Sand	Cohesion	[kN/m²]	2.00
Gravel	Phi	[deg.]	18.00
_oam Muck	Cu top	[kN/m²]	10.00
Jndetermined	Cu bottom	[kN/m²]	15.00
	Emod top	[kN/m²]	500.00
	Emod bottom	[kN/m²]	1000.00
	Adhesion	[kN/m²]	0.00
	Friction angle (Delta)	[deg.]	0.00
	Poisson ratio (Nu)	[-]	0.45
	Settlement Koppejan		
	Overconsolidation Ratio (OCR)	[·]	1.30
	Primary compression coefficient		
	Below preconsolidation pressure	e (Cp) [·]	4.00E+01
	Above preconsolidation pressure	e (Cp') [·]	1.00E+01
	Secondary compression coeffici	ient	
	Below preconsolidation pressure	e (Cs) [-]	1.60E+02
Add Insert Delete Rename	Above preconsolidation pressure	e (Cs') [·]	3.50E+02

Figure 4.5: Materials window, Parameters tab (Settlement acc. to Koppejan)

Over-consolidation Ratio (OCR)	The Over-Consolidation Ratio (<i>OCR</i>) is defined as the ratio of pre-consolidation pressure and initial in situ vertical effective stress.
Primary compression coefficient below	The primary compression coefficient $C_{\rm p}$ is used
preconsolidation pressure (Cp)	to calculate the primary settlement.
Primary compression coefficient above	The primary compression coefficient $C_{\sf p}$ ' is used
preconsolidation pressure (Cp')	to calculate the primary settlement.
Secondary compression coefficient below preconsolidation pressure (Cs)	The secondary compression coefficient $C_{\rm s}$ is used to calculate the secondary (time dependent) settlement.
Secondary compression coefficient above preconsolidation pressure (Cs')	The secondary compression coefficient C_s ' is used to calculate the secondary (time dependent) settlement.

4.2.3 Materials – Settlement Isotache

If the *Use settlement* check-box in the *Model* window [section 4.1.1] is unmarked and the *Isotache* model is selected, D-GEO PIPELINE will calculate the settlements according to the Isotache model. Therefore, the Isotache parameters need to be put in as shown in Figure 4.6. For background information, see section 21.10.1.

terials			
Material <u>n</u> ame	Total Unit Weight		
Soft Clay Modium Clay	Above phreatic level	[kN/m³]	14.00
Stiff Clay Peat	Below phreatic level	[kN/m³]	14.00
Loose Sand Dense Sand Sand	Cohesion	[kN/m²]	2.00
Gravel	Phi	[deg.]	18.00
Muck	Cu top	[kN/m²]	10.00
Undetermined	Cu bottom	[kN/m²]	15.00
	Emod top	[kN/m²]	500.00
	Emod bottom	[kN/m²]	1000.00
	Adhesion	[kN/m²]	0.00
	Friction angle (Delta)	[deg.]	0.00
	Poisson ratio (Nu)	[·]	0.45
	Settlement Isotachen		
	Direct compression index (a)	[·]	1.000E-02
	Secular compression index (b)	[·]	1.000E-01
	Coefficient of secular compress	sion rate (c) [·]	5.000E-03
Add Insert	O Pre-overburden pressure (P	POP) [kN/m²]	10.00
Delete Rename -	 Overconsolidation ratio (00 	CR) [·]	1.30
	10	K Can	icel Hel

Figure 4.6: Materials window, Parameters tab (Settlement acc. to Isotache)

Direct compression index (a)	The direct compression index a relates natural strain during re- compression or swell to the change of vertical effective stress.
Secular compression index (b)	The secular compression index b relates natural strain during virgin loading to the change of vertical effective stress.
Coefficient of secular compression rate (c)	The coefficient of secular compression rate c relates natural strain to the change of time. A zero value indicates non-creeping soil.
Pre-overburden pressure (POP)	The Pre-Overburden Pressure (POP) is defined as the pre- consolidation pressure minus the initial in situ vertical effective stress.
Overconsolidation ratio (OCR)	The Over-Consolidation Ratio (OCR) is defined as the ratio of pre-consolidation pressure and initial in situ vertical effective stress.

4.2.4 Materials – Database

The *Database* tab in the *Materials* window is only available if a location of an MGeobase database was specified in the *Locations* tab of the *Program Options* window (section 3.2.3).

Select the *Database* tab in the *Materials* window to see the available soil types. Select a soil type, and use the *Import* button does not the soil type with associated properties.

Figure 4.7: Materials window, Database tab

4.3 Geometry menu

On the menu bar, click *Geometry* to display the menu options. These options are explained in the following sections.

- ♦ New (section 4.3.1). Start creating a new geometry manually.
- ♦ *New Wizard* (section 4.3.2). Create a new geometry using a wizard.
- ♦ Import (section 4.3.3). Import a geometry file in the D-series exchange format.
- ♦ Import geometry from database (section 4.3.4). Import geometry from a database.
- Export (section 4.3.5). Save a geometry file for exchange with other Deltares Systems programs.
- ♦ Export as Plaxis/Dos (section 4.3.6). Save a geometry file in a different format.
- ♦ *Limits* (section 4.3.7). Set the range of the horizontal coordinates.
- ♦ *Points* (section 4.3.8). Add or manipulate points.
- ♦ Import PL-line (section 4.3.9). Import a PL-line file in the D-Series exchange format.
- ♦ *PL-lines* (section 4.3.10). Add or manipulate piezometric level lines.
- ♦ *Phreatic line* (section 4.3.11). Define phreatic level lines.
- ♦ Layers (section 4.3.12). Define or modify layer boundaries and corresponding soil types.
- PL-lines per layer (section 4.3.13). Select the piezometric level line at the bottom and top of each layer.
- ♦ *Check geometry* (section 4.3.14). Check the validity of the geometry.

4.3.1 New

Select this option to display the *View Input (Geometry)* window, showing only the geometry limits (with their default values) of the geometry. It is possible to now start modeling the geometry (for more information on this subject, see chapter 7). However, it is possible to create a new geometry faster and easier using the *Geometry Wizard* (section 4.3.2). This wizard involves a step-by-step process for creating geometry.

4.3.2 New Wizard

The *New Wizard* is usually the fastest and easiest way to start creating new geometry. The wizard uses predefined shapes and soil types.

To use the geometry wizard, click the *Geometry* menu and choose *New Wizard*. This wizard provides the following step-by-step guidance:

- ♦ Basic layout
- ♦ Shape selection
- ♦ Shape definition
- ♦ Material types
- ♦ Summary

New Wizard – Basic Layout

Define measurements basic layout	
	Ground Level
Layer N	
Layer	
Layer 2	
Layer 1	
Limit Left	Limit Right
Limit left	[m] 0.00
Limit right	[m] 75.00
Number of layers (max. 10)	[.] 5
Ground level	[m] 0.00
Phreatic level	[m] -1.00

Figure 4.8: New Wizard window (Basic Layout)

In the *Basic Layout* window (Figure 4.8), the basic framework within which the project is defined can be entered. The graphic at the top of the window explains the required input. When satisfied with the input, just click the *Next* button to display the next input screen.

New Wizard – Shape Selection

New Wizard				
Select top layer shape by clicking on the desired picture				
< Previous Next > Cancel Help				

Figure 4.9: New Wizard window (Top Layer Shape)

In the *Top Layer Shape* window (Figure 4.9), one of nine default top-layer shapes can be selected. A red frame indicates the selected shape. Click the *Previous* button to return to the *Basic Layout* screen, or the *Next* button to display the next input screen with shape-specific input data.

New Wizard – Shape definition

Figure 4.10: New Wizard window (Top Layer Specification)

The *Top Layer Specification* window (Figure 4.10) enables to specify the sizes of the selected top layer shape.

New	Wizard	 Material 	Types
-----	--------	------------------------------	-------

٢	ew Wizard			×
	-Set materia	al types		Set all layers to material type
	Layer Nr.	Material Type	•	Soft Clay
	1	Dense Sand	_	
	2	Soft Clay	•	Apply
	3	Loose Sand	•	
	4	Peat	•	Show properties of material type
	5	Dense Sand	•	Soft Clay
				Properties
		< F	Previous	Next > Cancel Help

Figure 4.11: New Wizard window (Material Types)

In the *Material Types* window (Figure 4.11), the materials used for the layers in the project can be specified. The number of layers was defined in the first screen (Basic Layout). The materials that can be chosen from are predefined (see Table 4.10).

Material type	Unsaturated weight [kN/m ³]	Saturated weight [kN/m ³]
Soft Clay	14	14
Medium Clay	17	17
Stiff Clay	19	19
Loose Sand	17	19
Dense Sand	19	21
Loose Aggregate	17	19
Dense Aggregate	19	21
Peat	12	12

Table 4.10: Unsaturated and saturated weight of the predefined materials

The materials for each layer can be selected individually (using the selection boxes at the left-hand side of the screen) or one material for each layer at once can be selected (using the selection box at the top right of the screen). The parameters of each material can also be reviewed.

New Wizard – Summary

Figure 4.12: New Wizard window (Summary)

The *Summary* window (Figure 4.12) displays an overview of the data entered in the previous wizard screens. If necessary, click *Previous* to go back to any screen and change the data as required. Clicking *Finish* will confirm the input and display the geometry in the *View Input Geometry* window. In this window, the geometry can be edited or completed graphically as described in chapter 7. Of course, the *Geometry* menu options can also be used for this purpose (section 4.3).

4.3.3 Import

This option displays a standard file dialog in which an existing geometry can be selected stored in a geometry file, or in an existing input file for D-GEO STABILITY (formerly known as MStab), D-SETTLEMENT (formerly known as MSettle), MSeep and D-SHEET PILING (formerly known as MSheet). For a full description of these programs and how to obtain them, visit www.deltaressystems.com.

When selecting the geometry, it is imported into the current project, replacing the current geometry. The imported geometry is displayed in the *View Input (Geometry)* window. It is also possible to use this option to analyze the settled geometry at different stages, as all other input is retained.

4.3.4 Import geometry from database

To be able to import a geometry from a database, this option has to be provided with the purchased version of D-GEO PIPELINE.

To import a geometry from a database do the following:

- ♦ Click Import from Database in the Geometry menu.
- ♦ The Select Geometry dialog will appear.
Again, the imported geometry will replace the current one and will be displayed in the *View Input (Geometry)* window.

Note: This option is only available when the correct database directory has been specified using the *Locations* tab in the *Program Options* menu (see section 3.2.3). For more information on MGeoBase, visit www.deltaressystems.com.

4.3.5 Export

This option displays a standard *Save As* dialog that enables the user to choose a directory, a file name and a format in which to save the current geometry to a file. The file will be saved in the standard geometry format for the Deltares Systems programs (*.geo). Files in this format can be used in a multitude of Deltares Systems programs, such as D-GEO STABILITY (formerly known as MStab), D-SETTLEMENT (formerly known as MSettle), MSeep and D-SHEET PILING (formerly known as MSheet). For a full description of these programs and how to obtain them, visit www.deltaressystems.com.

4.3.6 Export as Plaxis/DOS

This option displays the *Save As Plaxis/DOS* dialog that enables the user to choose a directory and a file name in which to save the current geometry. The file will be saved using the old DOS-style geometry format for the Deltares Systems programs. Files in this format can be used by the finite element program Plaxis and in old DOS-based versions of Deltares Systems programs such as D-GEO STABILITY (DOS) and MZet (DOS).

Saving files of this type will only succeed, however, if the stringent demands imposed by the old DOS style are satisfied:

- \diamond number of layers \leq 20
- \diamond number of PL-lines \leq 20
- \diamond number of lines per boundary < 50
- \diamond total number of points \leq 500

To be able to differentiate between an old DOS-style file and a normal geometry file, the file dialog that prompts for a new file name for the old DOS-style geometry file suggests a default file name, prefixing the current name with a 'D'.

4.3.7 Limits

Use this option to edit the geometry limits.

G	eometry Limits	x
	Geometry Limits	
	Boundary limit at left [m] 0.000	
	Boundary limit at right [m] 75.000	
	OK Cancel Help	

Figure 4.13: Geometry Limits window

A limit is a vertical boundary defining the 'end' at either the left or right side of the geometry. It is defined by an X-coordinate only.

Note: This is the only type of element that cannot be deleted. Moreover, the values entered here are ignored if they resulted in an invalid geometry.

4.3.8 Points

Use this option to add or edit points that can be used as part of layer boundaries or PL-lines. A point is a basic geometry element defined by its coordinates. Since the geometry is restricted to two dimensions, it is allowed to define an L and Z co-ordinates only.

D Poi	nts		i i i i i i i i i i i i i i i i i i i	×
		L Co-ordinate [m]	Z Co-ordinate [m]	
1.7	▶ 1	-10.000	-17.000	L
2+×	2	420.000	-17.000	
	3	-10.000	0.040	L
\sim	4	0.000	0.040	
00	5	55.170	1.230	L
D.	6	75.680	1.670	L
	7	94.480	1.050	
1 R	8	94.480	-1.880	
1-2	9	119.880	-1.720	
	10	137.550	-1.770 —	1
	11	163.010	-1.670	
	12	188.560	-1.700	
	13	198.320	-2.550	
	14	202.027	-2.734	
	15	209.620	-3.110	
	16	223.600	-3.960	
	17	233.630	-4.170	
	18	250.553	-3.228	
	19	251.590	-3.170	
	20	259.140	-1.830	
	21	259.140	0.250	
	22	268.290	2.160	
	23	273.710	2.140 🚽	1
1	1 104	201 500	1 000	3
		OK	Cancel Help	

Figure 4.14: Points window

L Co-ordinate	Projection of the horizontal co-ordinate along the pipeline trajec-
	tory.
Z Co-ordinate	Vertical co-ordinate.

Note: When a point is to be deleted, the system will check whether the point is used as part of a PL-line or layer boundary. If so, a message will be displayed.

Confirm	×
?	At least one of the selected points is used in a boundary/Pl-Line/line. Deleting such point(s) might result in deletion of the boundaries/Pl-Lines/line using such point(s). Continue this operation?
	<u>Y</u> es <u>N</u> o

Figure 4.15: Confirm window for deleting used points

When Yes is clicked, all layer boundaries and/or PL-lines using the point will also be deleted.

Every change made using this window (Figure 4.14) will only be displayed in the underlying *View Input (Geometry)* window after closing this window using the *OK* button. When this button is clicked, a validity check is performed on the geometry. Any errors encountered during this check are displayed in a separate window. These errors must be corrected before

closing this window by clicking the *OK* button. Of course, it is always possible to close the window using the *Cancel* button, but this will discard all changes.

4.3.9 Import PL-line

This option displays a standard file dialog in which an existing PL-line, created with the program WATEX and stored in a PL-line file (*.mpl), can be selected.

WATEX (Deltares, 2004) is a reliable prediction tool to assess the pore pressure behavior. It consists of transient analytical solutions, put together by the conditions of continuity of head and discharge. The user specifies a number of locations, where the pore pressure response is required.

When a PL-line file is selected, the *Options for Import of PI-line* window (Figure 4.16) is displayed. When clicking the OK button, then the PL-line is added to the current PL-lines in the project.

Options for Import of Pl-Line	×
Geometry left limit Geometry right limit	[m] -10.000 [m] 420.000
PI-Line left limit	[m] -10.000
Shift PI-Line	[m] 0.000
Pl-Line number	2
OK	Cancel Help

Figure 4.16: Options for Import of PL-line window

4.3.10 PL-Lines

Use this option to add or edit Piezometric Level lines (PL-lines) to be used in the geometry. A PL-line represents the hydraulic head Hydraulic head of the water in the pores of the soil. A PL-line can be defined for the top and bottom of each soil layer (see section 4.3.13). The bottom soil layer is assumed to be infinitely thick. Here, therefore, only one PL-line is necessary for the top of that layer. Pore pressures in this layer are hydrostatic with increasing depth.

PI-Lines	Points				×
1	n" " " " " " " " " " " " " " " " " " "	▶ 1 2 3 4 5 *	Point number 90 95 91 94 92	L-Coor. -1300.000 -466.105 -460.000 0.000 100.000	Z-Coor. 1.340 1.340 0.300 -0.080 -0.080
CAdd Insert		OK	Car	ncel	Help

Figure 4.17: PL-Lines window

In the lower part of the window, the buttons *Add*, *Insert* and *Delete* PL-lines can be used. The selection box on the left can be used to navigate between PL-lines that have already been defined. Use the table to add/edit the points identifying the PL-lines. It is only possible to select points that are not attached to layer boundaries (section 4.3.12).

★ Note: It is only possible to manipulate the *Point number* column – that is, the coordinate columns are purely for informative purposes. To edit the coordinates of the points, choose the *Points* option from the *Geometry* menu (see section 4.3.8).

Every change made using this window will only be displayed in the underlying *View Input* (*Geometry*) window after closing this window using the *OK* button. When clicking this button, a validity check is performed on the geometry. Any errors encountered during this check are displayed in a separate window. These errors must be corrected before closing this window using the *OK* button. Of course, it is always possible to close the window using the *Cancel* button, but this will discard all your changes.

4.3.11 Phreatic Line

Use this option to select the PL-line that acts as a phreatic line. The phreatic line (or groundwater level) is used to mark the border between dry and wet soil.

Figure 4.18: Phreatic Line window

Select the appropriate line number from the drop-down list and click the OK button.

Note: At least one PL-line has to be defined to be able to pick a phreatic line from the drop-down list.

4.3.12 Layers

This option enables to add or edit layers to be used in the geometry. A layer is defined by its boundaries and its material. Use the *Boundaries* tab to define the boundaries for all layers by choosing the points that identify each boundary.

0 1 2 3 4 5 6	Point number 1 33 2 14 3 15 4 16 5 17	L-Coor. -10.000 202.027 209.620 223.600 233.630	Z-Coor. -2.000 -2.734 -3.110 -3.960 -4.170
7 8	7 34	250.553 420.000	-3.228 -3.500
Add Insert			

Figure 4.19: Layers window, Boundaries tab

On the left-hand side of the window, it is possible to add, insert, delete or select a boundary. In the table on the right, it is possible to modify or add the points that identify the selected boundary.

Note: It is only possible to select points that are not attached to PL-lines (section 4.3.10).

Note: It is only possible to manipulate the *Point number* column, because the coordinate columns are purely for informative purposes. To manipulate the coordinates of the points, choose the *Points* option in the *Geometry* menu (see section 4.3.8).

Note: When inserting or adding a boundary, all points of the previous boundary (if this exists) are automatically copied. By default, the material of a new layer is set equal to the material of the existing layer just beneath it.

The Materials tab enables to assign materials to the layers.

★

Available materials		Lay	vers Number	Material name	Load
▶ Peat			8	Sand, moderate	
Sand, compact			7	Sand, moderate	
Sand Sand moderate			5	Peat Clau moderate	
Clau moderate			1	Ciay, moderate	
Clay, moderate			3	Clau compact	
cidy, compact	>		2	Peat	
			1	Sand, compact	<u> </u>

Figure 4.20: Layers window, Materials tab

On the left of the screen, a list containing all defined materials (see the *Materials* option in the *Soil* menu in section 4.2.1) is displayed. On the right, a list of all defined layers together with their assigned materials (if available) is displayed.

To assign a material to a layer, first select that layer on the right of the window. Then select the required material on the left of the window. Finally, click the *Assign* button .

In case of settlement calculation using the Koppejan or the Isotache model (section 4.1.1), the loading is defined by marking the *Load* check-box of one or several layers. D-GEO PIPELINE assumes that those layers are non-uniform loads.

Every change made using this window will only be displayed in the underlying *View Input* (*Geometry*) window after closing this window by clicking the *OK* button. When clicking this button, a validity check is performed on the geometry. If errors are encountered, a dialog window asks if auto-correction should be tried. Remaining errors are reported and can be corrected manually. The error correction is confirmed by clicking the *OK* button and discarded by clicking the *Cancel* button.

4.3.13 PL-lines per Layer

Use this option to define the top and bottom PL-lines for the defined layers. The PL-lines represent the pore pressure in a soil layer. For each soil layer (except the deepest layer), two PL-line numbers can be entered – one that corresponds to the top of the soil layer, and one that corresponds to the bottom. Therefore, different PL-lines can be defined for the top and bottom of each soil layer. To do this, select the appropriate *PL-line at top / PL-line at bottom* field and enter the appropriate number.

\times	Layer Number	PL-line at top	PL-line at bottom
2	8	1	99
	7	99	99
<u>م</u>	6	99	99
- 1	5	99	93
	3	99	
	2	2	2
1	1	2	2

Figure 4.21: PL-line per Layer window

Note: For the deepest soil layer, no second PL-line number is required. For this layer a hydrostatic increase of the pore pressure is automatically assumed from the pore pressure at the top of the layer downwards.

The following values can be used as PL-line numbers (N):

0 < N < 99	The number corresponds to one of the PL-lines defined during the geometry input. Capillary water pressures are not used – that is, if a negative water pressure is calculated for a point above the phreatic line, the water pressure in that point is defined as 0.
N = 0	Each point within the layer has a water pressure equal to 0 (define 0 for PL- line at top of layer).
N = 99	It is possible to have a number of overlying soil layers with a non-hydrostatic pore pressure (for example, a number of layers consisting of cohesive soil). In this case, a large number of PL-lines would have to be calculated, one or two for each layer. To avoid this, D-series software is able to interpolate across layer boundaries. For layers with a non-hydrostatic pore pressure, 99 can be entered as the PL-line number. For this layer, the interpolation will take place between the PL-line belonging to the first soil layer above with a real PL-line number, and the PL-line belonging to the first soil layer below with a real PL- line number. The first and the last soil layer must therefore always have a real PL-line number. Note: A real PL-line number is not equal to 99.

Water pressures above the phreatic line are set to zero. An example using two different PLlines is given in Figure 4.22 showing how the pore pressure varies in the vertical.

Figure 4.22: PL-lines and vertical pressure distribution

When clicking the *OK* button, the program performs a validity check on the geometry. Any errors encountered during this check are reported. A dialog window enables to disregard or correct the errors. The error correction is confirmed by clicking the *OK* button and discarded by clicking the *Cancel* button.

4.3.14 Check Geometry

When this option is selected, the program checks the validity of the geometry (section 7.2) with respect to the requirements. If the geometry complies with all the requirements, a message will confirm this.

Figure 4.23: Information window to confirm a valid geometry

If any errors are encountered during this check, they are displayed in a separate window.

4.4 GeoObjects menu

4.4.1 Boundaries Selection

Click *GeoObjects* on the menu bar and select *Boundaries Selection* to define the boundaries between compressible top layers and under laying non-compressible layers and the boundary between drained (i.e. cohesive) top layers and under laying non-cohesive (i.e. undrained) layers (Figure 4.24). This is done by choosing the layer number of the underlying layer.

Boundaries Selection	×	Boundaries Selection	×
Boundaries	Top of laws	Boundaries	
Drained and undrained layers	1	Boundary impermeable / permeable layers 1	
Compressible and uncompressible layers	1	Compressible and uncompressible layers 1	
OK Cancel	Help	OK Cancel Help	
		b)	

Figure 4.24: Boundaries Selection window for (a) HDD/Micro-tunneling and (b) for Trenching

The boundary between compressible and non-compressible layers is drawn as a blue bold line and the boundary between drained and undrained layers (i.e. impermeable and permeable layers) is drawn as a black bold line in the *Input* tab of the *View Input* window (see section 2.2.3).

4.4.2 Calculation Verticals

Click *GeoObjects* on the menu bar and select *Calculation Verticals* to define the L-coordinate for each vertical. D-GEO PIPELINE will perform calculations along each of these verticals. At least one vertical is necessary to perform any calculation.

The verticals must be placed within the left and right project limits.For an accurate impression of the change in drilling fluid pressure along the pipeline, it is advised to use at least 10-15 verticals.

It is possible to generate a number of verticals using the *Auto generation of L co-ordinates* option and clicking the *Generate* button ______. D-GEO PIPELINE will generate verticals between the *First* and *Last* co-ordinates with a fixed width, entered in the *Interval* field.

Calcul	ati	on Ve	rticals					×
	_	_	F F		_	⊢Automatic ger	neration	of L-co-ordinates
3.0			L-coordinate	Additional Settlement	_	E	[1	10.00
			1 -1	[]		<u>Fusic</u>	find	10.00
∃ _r e	h	-	[m]	[mm]		Last	ſml	420.00
1.7	₽	-	30.00	0.0		Laste	find	120.00
**		2	40.15	0.0		Interval	[m]	5.00
	⊢	3	50.23	0.0		-	• •	
	⊢	4	50.44 70.59	0.0				Generate
	H	0	70.03	0.0				
	\vdash	7	90.74	0.0				
		8	101.03	0.0				
		9	111 18	0.0				
		10	121.32	0.0				
		11	131.47	0.0				
		12	141.62	0.0				
		13	151.76	0.0				
		14	161.91	0.0				
		15	172.06	0.0				
		16	182.21	0.0				
		17	192.35	0.0				
		18	202.50	0.0				
		19	212.65	0.0				
		20	222.79	0.0				
		21	232.94	0.0				
		22	243.09	0.0				
		23	253.24	0.0				
		24	263.38	0.0				
		25	273.53	0.0				
	⊢	25	283.68	0.0				
	⊢	27	293.82	0.0				
	⊢	20	303.37	0.0				
	⊢	23	314.12	0.0				
	⊢	30	324.20	0.0	-			
					Г			
						UK	Uan	cei Help

Figure 4.25: Calculation Verticals window

L-coordinate	Defines the locations in geometry in the L direction where the calcula- tions are performed. L represents distance along the pipe line projec- tion in the horizontal plane incremented with the entry coordinate. The L-coordinate value must increase with each vertical.
Additional	Enter an additional settlement for the selected vertical. This settlement
Settlement	will be added to the calculated settlement (according to Koppejan or
	Isotache) in the table of the <i>Deformation</i> section of the <i>Report</i> window
	(section 6.2.2).
First L	L co-ordinate of the starting point of generated verticals.
Last L	L co-ordinate of the ending point of generated verticals.
Interval	Interval between generated verticals.
Generate	Click this button to generate automatically verticals from <i>First</i> to <i>Last L</i> with the mentioned (starve)
	with the mentioned <i>interval</i> .

4.5 Loads menu

4.5.1 Traffic Loads

On the menu bar, click *Loads* and then choose *Traffic Loads* to open the corresponding input window in which the positions of traffic loads can be defined. Traffic loads will have an influence on the calculated soil load stress, only for the calculation verticals situated

Load <u>n</u> ame Traffic Load 1	
Hand Load 2	⊻ co-ordinate at start [m] 5.00
	X <u>c</u> o-ordinate at end [m] 25.00
Add Insert	Coad type © Graph1 © Graph2

Figure 4.26: Traffic Loads window

X co-ordinate at start	Enter the X co-ordinate of the starting point of the selected traffic load.
X co-ordinate at end	Enter the X co-ordinate of the ending point of the selected traffic load.
Load type	 According to article C.5.1 of NEN 3650-1 (NEN, 2012a), two load models are considered, depending on the type of road: ◇ For dual carriageways and regional roads, Graph I (i.e. 'Load Model 3' of European standard EN NEN-1991-2) is assumed; ◇ For other roads, Graph II (i.e. 'Fatigue Load Model 2, Lorry 4' of European standard EN NEN-1991-2) is assumed. This load model covers the 'set of frequent lorries' which can occur on European roads, such as described in EN NEN-1991-2, with exception of the special transports).
	For more information, refer to section 21.14.

4.6 Pipe menu

4.6.1 Pipeline Configuration

On the menu bar, click *Pipe* and then choose *Pipeline Configuration* to open the corresponding input window in which the geometric characteristics of the pipeline can be defined. The *Pipeline Configuration* window displayed depends on the selected model.

4.6.1.1 Pipeline Configuration for HDD

If the *Horizontal directional drilling* option in the *Model* window (section 4.1.1) is selected, the *Pipeline Configuration* window shown in Figure 4.27 is displayed.

peline Configuration										
X,Y-coordinates			Horia	ontal l	pendings					
Left point X-coordinate	[m]	0.000			V1 fml	∀1 fml	¥2 [m]	V2 [m]	Radius [m]	Direction
Left point Y-coordinate	[m]	0.000			74.670	0.000	162.040	7 690	500.000	Bight
Left point Z-coordinate	[m]	0.040	1		271.550	27.130	358.920	34.820	500.000	Left
Right point X-coordinate	[m]	406.610	3*	*						
Right point Y-coordinate	[m]	32.800	X	2						
Right point Z-coordinate	[m]	0.160	9	1						
Angles (entry/exit)			(C	1						
Angle left	[deg]	15.00								
Angle right	[deg]	12.00								
Bending radius										
Bending radius left	[m]	500.000								
Bending radius right	[m]	500.000								
Bending radius pipe on rollers	[m]	300.000								
Pipe between radii			í 📗							
Lowest level of pipe	[m]	-26.000								
Angle of pipe	[deg]	0.00								
Pulling direction product pipe										

Figure 4.27: Pipeline Configuration window (for HDD)

Left point	X-coordinate of the left point which corresponds whether the entry or
X-coordinate	the exit point of the pipeline (called X_{left} in Figure 4.28).
Left point	Y-coordinate of the left point which corresponds whether the entry or
Y-coordinate	the exit point of the pipeline (called Y_{left} in Figure 4.28).
Left point	Z-coordinate (i.e. vertical level) of the left point which corresponds
Z-coordinate	whether the entry or the exit point of the pipeline (called Z_{left} in Fig-
	ure 4.28). This coordinate corresponds with the surface level for
	$X = X_{\text{left}}$ and is automatically calculated by the program.
Right point	X-coordinate of the right point which corresponds whether the entry or
X-coordinate	the exit point of the pipeline (called X_{right} in Figure 4.28).
Right point	Y-coordinate of the right point which corresponds whether the entry or
Y-coordinate	the exit point of the pipeline (called Y_{right} in Figure 4.28).
Right point	Z-coordinate of the right point which corresponds whether the entry or
Z-coordinate	the exit point of the pipeline (called Z_{right} in Figure 4.28). This coordi-
	nate corresponds with the surface level for $X = X_{right}$ and is automati-
	cally calculated by the program.
Angle left	Left angle of the pipe (called φ_{left} in Figure 4.28).
Angle right	Right angle of the pipe (called φ_{right} in Figure 4.28).
Bending radius left	Bending radius of the pipe at the left side (called R_{left} in Figure 4.28).
Bending radius	Bending radius of the pipe at the right side (called $R_{\rm right}$ in Figure 4.28).
Ponding radius	Only available for HDD model. Pending radius on the pipe raller, de
pino on rolloro	panding on the diameter of the product pine (called P in Fig
pipe on rollers	ure 4.28).
Lowest level of	Lowest level of the pipe (called Z_{lowest} in Figure 4.28).
Angle of pipe	Herizontal angle of the lowest straight part of the configuration
Pulling direction	The pulling force at characteristics points can be calculated for a pulling
runng unection	direction From left to right (i.e. the left point is the entry point) and From
product pipe	right to left (i.e. the right point is the entry point)
	Y co-ordinate of the beginning point of the horizontal handing (coo Fig
	A co-ordinate of the beginning point of the horizonital bending (see Fig-

Y1	Y co-ordinate of the beginning point of the horizontal bending (see Fig- ure 4.28).
Х2	X co-ordinate of the ending point of the horizontal bending (see Figure 4.28).
Y2	Y co-ordinate of the ending point of the horizontal bending (see Figure 4.28).
Radius	Radius of the horizontal bending (called R_{bending} in Figure 4.28).
Direction	From the drop-down menu, select the direction of the horizontal bend- ing (<i>Left</i> or <i>Right</i>). For example, the horizontal bending of Figure 4.28 has a left direction.

Figure 4.28: Schematization of the pipeline (HDD)

Needless to say, the coordinates must be defined properly. For example, the X-coordinate of the right point must have a higher value than the coordinate of the left point.

The pipeline configuration is given at the center of the pipe. It is assumed that during all drilling stages (pilot, drill and pullback) the defined center of the pipeline is the same. From each pipe, the diameter of the pipe as well as the diameter of the hole must be known.

4.6.1.2 Pipeline Configuration for Micro tunneling

If the *Micro tunneling* option in the *Model* window (section 4.1.1) is selected, the *Pipeline Configuration* window shown in Figure 4.29 is displayed.

enne conngulación										
K,Y-coordinates			Horia	ontal t	pendings					
_eft point X-coordinate	[m]	0.000			×1 [m]	¥1.[m]	×2 [m]	Y2 [m]	Badius [m]	Direction
_eft point Y-coordinate	[m]	0.000			74.670	0.000	162.040	7 690	500.000	Bight
_eft point Z-coordinate	[m]	0.040	1		271.550	27.130	358.920	34.820	500.000	Left
Right point X-coordinate	[m]	406.610	3*	*						
Right point Y-coordinate	[m]	32.800	X	2						
Right point Z-coordinate	[m]	0.160	9	1						
Angles (entry/exit)			<u> </u>	5						
Angle left	[deg]	15.00								
Angle right	[deg]	12.00								
Bending radius			511							
Bending radius left	[m]	500.000								
Bending radius right	[m]	500.000								
Bending radius pipe on rollers	[m]	300.000								
Pipe between radii			511							
owest level of pipe	[m]	-26.000								
Angle of pipe	[deg]	0.00								
Thrusting direction product pip	e • F	rom right to left								

Figure 4.29: Pipeline Configuration window (for Micro tunneling)

Thrusting direction	The thrusting force can be calculated for a pulling direction From left
product pipe	to right (i.e. the left point is the entry point) and From right to left
	(i.e. the right point is the entry point).
Refer to the table abo	ve for the definition of the other parameters

Note: To model a horizontal micro-tunneling, enter an Angle left and an Angle right of 0.

4.6.1.3 Pipeline Configuration for Construction in trench

If the *Construction in trench* option in the *Model* window (section 4.1.1) is selected, the *Pipeline Configuration* window shown in Figure 4.30 is displayed. Different pipe materials can be defined along the pipeline.

}e		Begin X [m]	Begin Y [m]	Begin Z [m]	Material	E mod	Outer diameter [mm]	Wall thickness [mm]	Unit weight pipe material [kN/m²]	Width trench bottom [mm]	Slope	Offset
₽° •×	.∕ *	10.000	0.000	0.000	steel steel	2.058E+05 2.058E+05	810.00 810.00	50.00 50.00	78.50 78.50	850.00 850.00	2.00	0.30
×	246											
ò												
۵												
		100.000		000	2000							

Figure 4.30: Pipeline Configuration window (Construction in trench)

Begin X	X co-ordinate of the begin point of the trench section.
Begin Y	Y co-ordinate of the begin point of the trench section.
Begin Z	Z co-ordinate of the begin point of the trench section.
Material quality	Description of the material quality. The data in this field is
	used in the report.
Outer diameter	Outer diameter of the pipe in mm.
Wall thickness	Wall thickness of the pipe in mm.
Unit weight pipe material	Unit weight of the pipe material.
Width trench bottom	Width of the trench bottom.
Slope 1:x	Slope of the trench.
Offset	Distance between the bottom of the trench and the bottom of
	the pipeline.
	x

End trench X	X co-ordinate of the end point of the last trench section.
End trench Y	Y co-ordinate of the end point of the last trench section.
End trench Z	Z co-ordinate of the end point of the last trench section.

4.6.2 Product Pipe Material Data

4.6.2.1 Product Pipe Material Data for HDD

If the *Horizontal directional drilling* option in the *Model* window (section 4.1.1) is selected, click *Pipe* on the menu bar and then choose *Product Pipe Material Data* to open the *Product Pipe Material Data* window in which the characteristics of the pipe material can be entered. This data will be used for the strength calculation. Depending on the choice between steel and polyethylene, different values for the parameters need to be specified.

Steel pipe

Different types of steel pipes can be selected from the database (see Figure 4.31). Userdefined values can also be defined for a steel pipeline.

em name PE100 E385	Pipe material © Steel © Polyethene	Database
	Material quality (S)	FE 385
	Yield strength [N/mm ²]	385.00
	Partial material factor [-]	1.10
	Partial material factor test pressure [-]	1.00
	Young's modulus [N/mm ²]	205800.00
	Outer djameter product pipe (Do) [mm]	21.30
	Wall thickness [mm]	3.73
	Unit weight pipe material [kN/m³]	78.50
	Design pressure [Bar]	10.00
Add Insert 🔺	Test pressure [Bar]	12.00
Delete Rename 👻	Temperature Variation [Deg C]	5.00

Figure 4.31: Product Pipe Material Data window (Steel)

Pipe material	Choice between steel or polyethylene.
Database	Click this button to import the name, the outer diameter, the wall thickness and the yield strength of a pipe material from the D-GEO PIPELINE library (see Figure 4.31).
Material quality	Description of the steel quality. The data in this field is used in the report.
Negative wall thickness tolerance	Tolerance on the wall thickness of the pipe (δ_t) in %. This value is used to determine the minimum wall thickness in the strength calculation.
Yield strength	Yield strength of the pipe (R_{eb}) in N/mm ² .
Partial material factor	Partial material factor of the pipe ($\gamma_{\rm m}$). The default value is 1.1.
Partial material factor test pressure	Partial material factor of the pipe used for the calculation of the stresses caused by test pressure ($\gamma_{\rm m;test}$). The default value is 1.

Modulus of elasticity of the pipe (E_b) in N/mm ² . For steel, the default value is 205800 N/mm ² . It is used to determine the stresses in the pipeline in a strength calculation.
Outer diameter of the product pipe (D_0) in mm.
Wall thickness of the pipe (d_n) in mm.
Unit weight of the pipe material (γ_b), used to determine the pulling force in the pipeline. For steel, the default value is 78.5 kN/m ³ .
Design pressure (p_d) in Bar, used to determine the stresses caused by internal pressure in LC 2 (section 23.5.3) and in LC 4 (section 23.5.5).
Test pressure (p_t) in Bar, used to determine the stresses caused by test pressure in LC 2 (section 23.5.3) and in LC 4 (section 23.5.5).
Temperature variation (Δt) in °C, used to determine the stresses caused by temperature variation in LC 4 (section 23.5.5).

When clicking the *Database* button Database, the *Steel pipes library* window appears (Figure 4.32) in which the material quality (i.e. nominal pipe size), the outer diameter, the wall thickness and the yield strength of different steel pipes can be imported.

Nominal pipesize [inch]	Outer diameter [mm]	Wall thickness [mm]	Yield strength _ [N/mm²]
1⁄2''	21.3	2.77	210
12"	21.3	2.77	240
1/2"	21.3	2.77	290
1⁄2''	21.3	2.77	320
1/2"	21.3	2.77	360
12"	21.3	2.77	385
1⁄2''	21.3	2.77	415
1⁄2''	21.3	2.77	445
12"	21.3	3.73	210
12"	21.3	3.73	240
1⁄2''	21.3	3.73	290
12"	21.3	3.73	320
12"	21.3	3.73	360
1/2"	21.3	3.73	385
12"	21.3	3.73	415
12"	21.3	3.73	445
1⁄2''	21.3	7.47	210
1/2"	21.3	7.47	240
12"	21.3	7.47	290
1⁄2''	21.3	7.47	320
1⁄2''	21.3	7.47	360
12"	21.3	7.47	385
12"	21.3	7.47	415
1⁄2''	21.3	7.47	445
∛4''	26.7	2.87	210
34"	26.7	2.87	240
34"	26.7	2.87	290
∛4''	26.7	2.87	320
∛4''	26.7	2.87	360
34''	26.7	2.87	385

Figure 4.32: Steel pipes library window

Polyethylene pipe

Different types of polyethylene pipes can be selected from the database (see Figure 4.34). User-defined values can also be defined for a PE pipeline.

Product Pipe Material Data	-		X
ltem name PE100 FE385	Pipe material C Steel Polyethene		Database
	Material quality (P)		PE100
	Young's modulus (short)	[N/mm ²]	1200.00
	Young's modulus (long)	[N/mm²]	300.00
	Allowable strength (short)	[N/mm²]	10.00
	Allowable strength (long)	[N/mm²]	8.00
	Tensile factor	[-]	0.65
	Outer djameter product pipe (Do) [mm]	355.00
	Wall thickness	[mm]	32.30
	Unit weight pipe material	[kN/m³]	9.54
	Design pressure	[Bar]	10.00
Add Insert 🔺	Test pressure	[Bar]	12.00
Delete Rename 👻	Temperature Variation	(Deg C)	4.00
	OK	Car	ncel Help

Figure 4.33: Product Pipe Material Data window (Polyethylene)

Pipe material	Choice between steel or polyethylene.
	Click this button to import the name, the outer diameter, the
Database	wall thickness and the yield strength of a pipe material from
	the D-GEO PIPELINE library (see Figure 4.34).
Material quality	Description of the polyethylene quality. The data in this field
	is used in the report.
Young's modulus (short)	Modulus of elasticity of the pipe (E_b) at short term in N/mm ² .
Young's modulus (long)	Modulus of elasticity of the pipe (E_b) at long term in N/mm ² .
Allowable strength (short)	Yield strength of the pipe at sort term ($R_{eb;short}$) in N/mm ² .
Allowable strength (long)	Yield strength of the pipe at long term $(R_{\rm eb;long})$ N/mm ² .
Tensile factor	The tensile factor a (also called alpha pipe material) is the
	relation between the allowable tensile strength and the allow-
	able bending strength. The default value is 0.65.
Outer diameter product	Outer diameter of the product pipe (D_{o}) in mm.
pipe (Do)	
Wall thickness	Wall thickness of the pipe (d_n) in mm, used to determine the
	stresses in a strength calculation.
Unit weight pipe material	Unit weight of the pipe material (γ_b) , used to determine the
	pulling force in the pipeline. For PE, the default value is
	9.54 kN/m ³ .
Design pressure	Design pressure (p_d) in Bar, used to determine the stresses
	caused by internal pressure in LC 2 (section 23.5.3) and in
	LC 4 (section 23.5.5).
Test pressure	Test pressure (p_t) in Bar, used to determine the stresses
	caused by test pressure in LC 2 (section 23.5.3) and in LC 4
	(section 23.5.5).
Iemperature variation	Imperature variation (Δt) in °C, used to determine the
	stresses caused by temperature variation in LC 4 (sec-
	tion 23.5.5).

When clicking the *Database* button ______, the *PE pipes library* window appears (Figure 4.34) in which the material quality, the Young's modules (short and long), the allowable strengths (short and long), the outer diameter and the wall thickness of different PE pipes can be imported.

	Material quality	Name	Young's modulus (short) [N/mm²]	Young's modulus (long) [N/mm²]	Allowable strength (short) [N/mm ²]	Allowable strength (long) [N/mm²]	Outer diameter [mm]	Wall thickness [mm]
•	PE 40	SDR 6	300	125	4	2.5	20	3.4
Г	PE 40	SDR 9	300	125	4	2.5	16	1.8
Г	PE 40	SDR 9	300	125	4	2.5	20	2.2
Г	PE 40	SDR 9	300	125	4	2.5	25	2.7
Г	PE 40	SDR 9	300	125	4	2.5	32	3.5
Г	PE 40	SDR 9	300	125	4	2.5	40	4.3
Г	PE 40	SDR 9	300	125	4	2.5	50	5.4
Г	PE 40	SDR 9	300	125	4	2.5	63	6.8
Г	PE 80	SDR 11	825	300	8	6.3	20	2
	PE 80	SDR 11	825	300	8	6.3	25	2.3
	PE 80	SDR 11	825	300	8	6.3	32	3
	PE 80	SDR 11	825	300	8	6.3	40	3.7
Г	PE 80	SDR 11	825	300	8	6.3	50	4.6
Г	PE 80	SDR 11	825	300	8	6.3	63	5.8
Г	PE 80	SDR 11	825	300	8	6.3	75	6.9
Г	PE 80	SDR 11	825	300	8	6.3	90	8.2
Г	PE 80	SDR 11	825	300	8	6.3	110	10
Г	PE 80	SDR 11	825	300	8	6.3	125	11.4
Г	PE 80	SDR 11	825	300	8	6.3	160	14.5
Г	PE 80	SDR 11	825	300	8	6.3	200	18.2
Г	PE 80	SDR 11	825	300	8	6.3	225	20.5
	PE 80	SDR 11	825	300	8	6.3	250	22.7
	PE 80	SDR 11	825	300	8	6.3	315	28.7
	PE 80	SDR 11	825	300	8	6.3	355	32.3
	PE 80	SDR 13,6	825	300	8	6.3	25	2.4
	PE 80	SDR 13,6	825	300	8	6.3	32	2.4
	PE 80	SDR 13,6	825	300	8	6.3	40	3
E	PE 80	SDR 13,6	825	300	8	6.3	50	3.7
	PE 80	SDR 13,6	825	300	8	6.3	63	4.7
	PE 80	SDR 13,6	825	300	8	6.3	75	5.6

Figure 4.34: PE pipes library window

4.6.2.2 Product Pipe Material Data for Micro tunneling

If the *Micro tunneling* option in the *Model* window (section 4.1.1) is selected, click *Pipe* on the menu bar and then choose *Product Pipe Material Data* to open the *Product Pipe Material Data* window in which the characteristics of the pipe material can be entered. Depending on the choice between steel, synthetic and concrete (Figure 4.35), different parameters need to be specified.

Figure 4.35: Product Pipe Material Data window, Pipe material sub-window

Steel or Concrete pipe

Pipe material		
Steel Sunthetic		
C Concrete		
<u>M</u> aterial quality	[·]	Steel
Outer djameter product pipe (Do)	[mm]	800.00
Overcut on radius	[mm]	10
Wall thickness	[mm]	19.00
Young's mo <u>d</u> ulus [N/mm²]	205800.00
Unit weight nine material	kN/m³]	78.50

Figure 4.36: Product Pipe Material Data window (Steel or Concrete pipe, Micro Tunneling model)

Material quality	Description of the material quality. The data in this field is used in the report.
<i>Outer diameter product pipe (Do)</i>	Outer diameter of the product pipe ($D_{\rm o}$) in mm.
Overcut on radius	Difference between the hole radius and the outer radius of the product pipe ($l_{overcut}$) in mm.
Wall thickness	Wall thickness of the pipe (d_n) in mm.
Young's modulus	Modulus of elasticity of the pipe (E_{b}) in N/mm ² .
Unit weight pipe material	Unit weight of the pipe material (γ_b) in kN/m ³ . Default values are 78.5 and 26 kN/m ³ respectively for <i>Steel</i> and <i>Concrete</i> pipe.

Synthetic pipe

Pro	oduct Pipe Material Data	×
	Pipe material C Steel	
	 Synthetic 	
	C Concrete	
	Material quality [-]	PE80
	Outer diameter product pipe (Do) [mm]	315.00
	Overcut on radius [mm]	10
	Wall thickness [mm]	28.70
	Young's modulus (short) [N/mm ²]	1000.00
	Young's modulus (long) [N/mm ²]	200.00
	Unit weight pipe material [kN/m³]	9.54
	OK Ca	incel Help

Figure 4.37: Product Pipe Material Data window (Synthetic pipe, Micro tunneling model)

Material quality	Description of the material quality. The data in this field is used in the report.
<i>Outer diameter product pipe (Do)</i>	Outer diameter of the product pipe (D_{o}) in mm.

Overcut on radius	Difference between the hole radius and the outer radius of the product pipe $(l_{overcut})$ in mm.
Wall thickness	Wall thickness of the pipe (d_n) in mm.
Young's modulus (short)	Modulus of elasticity of the pipe (E_{b}) at short term in N/mm ² .
Young's modulus (long)	Modulus of elasticity of the pipe (E_b) at long term in N/mm ² .
Unit weight pipe material	Unit weight of the synthetic material ($\gamma_{\rm b}$) in kN/m ³ . The default value is 9.54 kN/m ³ .

4.6.3 Engineering Data

In the *Pipe* menu, choose the *Engineering Data* option to open the *Engineering Data* window. The window displayed depends on the selected model.

4.6.3.1 Engineering Data for HDD

If the *Horizontal directional drilling* option in the *Model* window (section 4.1.1) is selected, the *Engineering Data* window shown in Figure 4.38 is displayed in which data on the strength calculation of the pipe can be defined (see chapter 23 for background information).

Engineering Data		X
Miscellaneous O Standard • Advanced		
Pipe filled with water on rollers		
Pipe always filled (implosion)		
Part of pipe filled with fluid during pull back	[%]	0
Unit weight fluid	[kN/m ^s]	10.00
Bedding angle	[deg]	120 💌
Load angle	[deg]	180 💌
Relative displacement	[mm]	10.00
Compression index	[-]	6.00
Linear settlement coeff. (alpha_g) for steel	[mm/mmK]	0.0000117
Linear settlement coeff. (alpha_g) for PE	[mm/mmK]	0.0001800
Modulus of subgrade reaction of drilling fluid (K	.v)[kN/m°]	500.00
Phi drilling fluid	[deg]	15.00
Cohesion drilling fluid	[kN/m ²]	5.00
Friction		
Factor of friction pipe-roller (f 1)	[-]	0.10
Friction pipe-mud (f 2)	[N/mm ²]	0.000050
Factor of friction pipe-soil (f 3)	E	0.20
ОК	Cancel	Help

Figure 4.38: Engineering Data window (HDD)

Standard/Advanced	Select <i>Advanced</i> to display and modify some of the Miscel- laneous parameters (<i>Relative displacement</i> , <i>Compression in- dex</i> , <i>Modulus of subgrade reaction of drilling fluid</i> , <i>Phi drilling</i> <i>fluid</i> , <i>Cohesion drilling fluid</i>). If <i>Standard</i> is selected, then D-GEO PIPELINE will use the default values for the five mentioned parameters).
Pipe filled with water on rollers	Mark this check-box if the pipe is filled with water on rollers.
Pipe always filled (implosion)	Mark this check-box if the pipe is filled with water in all stages. If the pipe is completely filled, the filling fluid gives an internal fluid pressure called filling resistance p_{fill} , see Equation 23.68 in section 23.8.1.
Part of pipe filled with fluid during pull backPart of the cross-section of the pipe filled with fluid (P_w) Uplift forces resulting from buoyancy of the product pipe ca reduced by filling a part of the cross-section with water. This reduce the pulling force.	
Unit weight fluid	Unit weight of the fluid filling (γ_{fill}).
Bedding angle	The bedding angle β (see Figure 4.39). The default value is 120°.
Load angle	The load angle $lpha$ (see Figure 4.39). The default value is 180°.
Relative displacement	Relative displacement between soil columns, necessary for full development of friction (δ_d). The default value is 10 mm.
Compression index	Average compression index of the layers in which the pipe is installed (C). The default value for a very compressible soil sequence is 6.
Linear settlement coeff. (alpha_g) for steel	Linear settlement coefficient α_g for steel (average over the temperature variation Δt). The default value for steel is 0.0000117 (mm/mm)K ⁻¹ .
Linear settlement coeff. (alpha_g) for PE	Linear settlement coefficient α_g for PE (average over the temperature variation Δt). The default value for PE is 0.00018 (mm/mm)K ⁻¹ .
Modulus of subgrade reaction of drilling fluid (Kv)	The modulus of subgrade reaction (also called bedding constant) of the drilling fluid after stiffening ($k_{v;df}$). The default value is 500 kN/m ³ .
Phi drilling fluid	Angle of internal friction of the stiffened drilling fluid (φ_{df}). The default value is 15°.
Cohesion drilling fluid	Cohesion of the stiffened drilling fluid (c_{df}). The default value is 5 kN/m ² .
Factor of friction pipe-roller (f1)	Factor of friction between the product pipe and the rollers on the pipe-roller (f_1). During the pullback operation this part of the pulling force will decrease. The default value is 0.1.
Friction pipe-drilling fluid (f2)	Friction between the drilling fluid and the pipeline (f_2). The default value is 0.00005 N/mm ² .
Factor of friction pipe-soil (f3)	Factor of friction between the product pipe and the soil (f_3). The friction between pipe and soil is influenced by buoyancy of the pipeline in the drilling fluid. The default value is 0.2.

Figure 4.39: Definition of the bedding angle β and the load angle α

4.6.3.2 Engineering Data for Micro tunneling

If the *Micro tunneling* option in the *Model* window (section 4.1.1) is selected, the *Engineering Data* window shown in Figure 4.40 is displayed. See chapter 24 for background information.

Allowable thrust force	[kN]	1500.00
Volume loss as percentage of overcut area	[%]	100
Relative displacement	[mm]	10.00
Compression index	[-]	6.00
Modulus of subgrade reaction of lubrication fluid	[kN/m ³]	500.00
Phi lubrication fluid	[deg]	15.00
Adhesion lubrication fluid	[kN/m2]	5.00
Factor phi for reduced soil load	[-]	0.50
Delta lubrication fluid	[deg]	7.50
Friction		
Friction with injection of lubricant	[kPa]	7.50
Friction without injection of lubricant	[kPa]	10.00

Figure 4.40: Engineering Data window (Micro tunneling)

Standard/Advanced	Select <i>Advanced</i> to display and modify some of the Miscella- neous parameters (Relative displacement, Compression index, Modulus of subgrade reaction of the stiffened drilling fluid, Phi drilling fluid, Cohesion drilling fluid). If <i>Standard</i> is selected, then D-GEO PIPELINE will use the default values for the five mentioned parameters).
Allowable thrust force	The maximum allowable thrust force is usually specified by the manufacturer of the pipe.
Volume loss as per- centage of overcut area	The volume loss determines the subsidence at the surface (i.e. the excess soil removed by the Micro Tunneling Boring Machine).

Relative displacement	Relative displacement between soil columns, necessary for full development of friction (δ_d). The default value is 10 mm.
Compression index	Average compression index of the layers in which the pipe is installed (C). The default value for a very compressible soil sequence is 6.
Modulus of subgrade reaction of lubrification fluid	The modulus of subgrade reaction (also called bedding constant) of the lubrification fluid ($k_{v;lub fluid}$). The default value is 500 kN/m ³ .
Phi lubrication fluid	Angle of internal friction of the lubrification fluid ($\varphi_{\text{lub fluid}}$). The default value is 15°.
Adhesion lubrification fluid	Adhesion of the lubrification fluid ($a_{lub fluid}$). The default value is 5 kN/m ² .
Factor phi for reduced soil load	Safety factor applied on the reduced soil stress. The default value is 0.5.
Delta lubrification fluid	Delta angle of the lubrification fluid. The default value is 7.5° .
Friction with injection of lubricant	The friction between the soil and the pipe in case of injection of lubricant (M) used for the calculation of the thrust forces F_m (see Equation 24.8 in section 24.1.4).
Friction without injection of lubricant	The friction between the soil and the pipe in case of no injection of lubricant (M) used for the calculation of the thrust forces F_m (see Equation 24.8 in section 24.1.4).

4.6.3.3 Engineering Data for Construction in trench

If the *Construction in trench* option in the *Model* window (section 4.1.1) is selected, the *Engineering Data* window shown in Figure 4.41 is displayed. In this window, information about the filling can be entered and will be used to determine the value of the percentage of compaction μ used in the calculation of the initial (or actual) vertical stress, see section 21.4 for background information.

gineering Data	>
Type of fill	
Sand	
🔘 Stiff Clay	
C Soft Soils	
Compaction of fill	
O Well compacted	
Poorly compacted	

Figure 4.41: Engineering Data window (Construction in trench)

Type of fill	Select the type of fill used for the filling of the trench: <i>Sand</i> , <i>Stiff Clay</i> or <i>Soft Soils</i> .
Compaction of fill	Select the type of compaction of the filling soil: <i>Well compacted</i> or <i>Poorly compacted</i> .

4.6.4 Drilling Fluid Data

In the *Pipe* menu, choose the *Drilling Fluid Data* option to open the *Drilling Fluid Data* window in which the drill pipe and borehole dimensions, the characteristics of drilling fluid flow, and the properties of the drilling fluid can be defined. For background information, see chapter 22.

Drilling Fluid Data		X
Drill pipe and bore hole dimensions		
Outer diameter pilot h <u>o</u> le	[m]	0.250
Outer diameter pilot pipe	[m]	0.114
Outer diameter pre-ream hole	[m]	0.600
Outer diameter <u>d</u> rillpipe	[m]	0.114
Outer diameter <u>b</u> orehole	[m]	0.900
Outer djameter product pipe (Do)	[m]	0.512
Characteristics of drilling fluid flow		
Annular back flow rate pilotboring	[Liter/minute]	200.0
Annular back flow rate pre-reaming	[Liter/minute]	400.0
Annular back flow rate ream and pull-back	[Liter/minute]	300.0
Circulation loss factor pilotboring	[·]	0.30
Circulation loss factor pre-reaming [-]		0.20
Circulation loss factor ream and pull-back	[·]	0.20
Properties of drilling fluid		
<u>U</u> nit weight (γ)	[kN/m³]	11.1
<u>Y</u> ieldpoint (τ)	[kN/m²]	0.014
<u>P</u> lastic viscosity (µ)	[kN.s/m²]	0.000040
OK	Cancel	Help

Figure 4.42: Drilling Fluid Data window

Outer diameter pilot hole	Outer diameter of the hole during the pilot hole drilling [m].
Outer diameter pilot pipe	Outer diameter of the pipe during the pilot hole drilling [m].
Outer diameter pre-ream hole	Outer diameter of the hole during the pre-reaming of the prod- uct pipeline [m].
Outer diameter drill pipe	Outer diameter of the pipe during the pre-reaming of the prod- uct pipeline [m].
Outer diameter borehole	Outer diameter of the hole during the pullback of the product pipeline [m].
<i>Outer diameter product pipe (Do)</i>	Outer diameter of the (bundled) pipe during the pullback of the product pipeline. This value is automatically calculated by the program using the pipe diameters of the different pipes as inputted in the <i>Product Pipe Material Data</i> window (see section 4.6.2.1). The following formula is used: $D_{eq} = \sqrt{\sum_{i=1}^{n} D_{o;i}^2}$
Annular back flow rate pilot boring	Annular back flow rate $(Q_{\rm ann})$ during the pilot hole drilling, in liter/minute.
Annular back flow rate pre- reaming	Annular back flow rate $(Q_{\rm ann})$ during the pre-reaming stage, in liter/minute.
Annular back flow rate ream and pullback	Annular back flow rate (Q_{ann}) during the pullback stage, in liter/minute.
Circulation loss factor pilot boring	Circulation loss factor ($f_{\rm loss}$) during the pilot-hole drilling. The default value is 0.3.

Circulation loss factor pre-	Circulation loss factor (f_{loss}) during the pre-reaming stage.
reaming	The default value is 0.2.
Circulation loss	Circulation loss factor (f_{loss}) during the pullback stage . The
factor ream and pull-back	default value is 0.2.
Unit weight (γ)	Unit weight of the drilling fluid ($\gamma_{\rm df}$). The default value is 11.1 kN/m ³ .
Yield point ($ au$)	Yield point of the drilling fluid ($\tau_{\rm df}$). The default value is 0.014 kN/m ² .
Plastic viscosity (μ)	Plastic viscosity of the drilling fluid (μ_{df}). The default value is 0.00004 kN.s/m ² .

The annular back-flow depends mainly on the size of the borehole and the pump system on the type of drilling rig used. The circulation loss factor depends on the soil layers through which the drilling is performed. The circulation loss factor indicates the loss of the drilling fluid in the soil surrounding the borehole.

The properties of the drilling fluid ($\gamma_{\rm df}$, $\tau_{\rm df}$ and $\mu_{\rm df}$) can be obtained from the drilling fluid manufacturer.

4.7 Defaults menu

4.7.1 Factors

In the *Defaults* menu, choose the *Factor* option to open the *Factor* input window. The content of the window depends on the model:

- ♦ Refer to section 4.7.1.1 for HDD
- ♦ Refer to section 4.7.1.2 for Micro tunneling
- ♦ Refer to section 4.7.1.3 for Construction in trench

4.7.1.1 Factors for HDD

If the *Horizontal directional drilling* option in the *Model* window (section 4.1.1) is selected, the factors for loads and strength parameters according to either the Dutch standard NEN 3650 or the European standard CEN can be specified in the *Factors* window. Depending on the choice of the type of material (steel or polyethylene), different factors need to be specified.

Factors for HDD – Dutch standard NEN – Polyethylene pipe

If the Dutch standard NEN was selected in the the *Model* window (section 4.1.1) and if a polyethylene material was selected in the *Product Pipe Material Data* window (section 4.6.2.1), the window in Figure 4.43 is displayed.

Factors				×
Safety factors on implosion (PE)		Miscellaneous		
Implosion at long term	[·] 3.0	Factor of importance (S)	[-]	1.00
Implosion at short term	[.] 1.5	Allowable deflection of pipe (Steel)	[%]	15.00
Contingency factors		Piggability (Steel)	[%]	5.00
Total unit weight (NEN)	[-] 1.10	Allowable deflection of pipe (PE)	[%]	8.00
Cu/cohesion (NEN)	[.] 1.40	Piggability (PE)	[%]	5.00
Angle of internal friction (Phi) (NEN)	[·] 1.10	Unit weight water	[kN/m³]	10.00
E-modulus (NEN)	[-] 1.25	Safety factor cover (drained layer)	[·]	0.50
Pulling force (NEN)	[.] 1.40	Safety factor cover (undrained layer)	[·]	0.50
Modulus of subgrade reaction (NEN)	[·] 1.60			
Soil load Qn (NEN)	[-] 1.10			
Pressure borehole (NEN)	[-] 1.10			
Bending moment (Steel)	[·] 1.15			
Bending moment (PE)	[·] 1.40			
<u>R</u> eset		ОК	Cancel	Help

Figure 4.43: Factors window (HDD) for polyethylene pipe, acc. to the Dutch standard NEN

termis 3, as prescribed in paragraph 8.5.5.1 of NEN 3650-3 (NEN, 2012c).Implosion at shortSafety factor on implosion at short term ($\gamma_{imp;short}$). The default value is 1.5, as prescribed in paragraph 8.5.5.1 of NEN 3650-3 (NEN, 2012c).Total unit weightContingency factor on the total unit weight above and below the phreatic level (f_{γ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Cu/cohesionContingency factor on the cohesion for drained and undrained con- ditions (f_c). The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Angle of internal friction (Phi)Contingency factor on the angle of internal friction (f_{φ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).E-modulusContingency factor on the Young's modulus (f_E). The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f), to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE: According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{on1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press-bore}$), used to check the equilibrium between drilling fl	Implosion at long	Safety factor on implosion at long term ($\gamma_{imp;long}$). The default value
Implosion at short termSafety factor on implosion at short term ($\gamma_{imp:short}$). The default value is 1.5, as prescribed in paragraph 8.5.5.1 of NEN 3650-3 (NEN, 2012c).Total unit weightContingency factor on the total unit weight above and below the phreatic level (f_{γ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Cu/cohesionContingency factor on the cohesion for drained and undrained con- ditions (f_c). The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Angle of internal friction (Phi)Contingency factor on the angle of internal friction (f_{φ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).E-modulusContingency factor on the Young's modulus (f_E). The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f), to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE:According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling force for bundled pipelines should be in- creased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{On1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press.tore}$),	term	is 3, as prescribed in paragraph 8.5.5.1 of NEN 3650-3 (NEN, 2012c).
Total unit weightContingency factor on the total unit weight above and below the phreatic level (f_{γ}) . The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Cu/cohesionContingency factor on the cohesion for drained and undrained con- ditions (f_c) . The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Angle of internal friction (Phi)Contingency factor on the angle of internal friction (f_{φ}) . The de- fault value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).E-modulusContingency factor on the Young's modulus (f_E) . The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE:According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling force for bundled pipelines should be in- creased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{On1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press,bore}$), used to check the equilibrium between drilling fluid pressure and pore pres- sure, see section 22.4. The default value is 1.1.	Implosion at short term	Safety factor on implosion at short term ($\gamma_{imp;short}$). The default value is 1.5, as prescribed in paragraph 8.5.5.1 of NEN 3650-3 (NEN, 2012c).
Cu/cohesionContingency factor on the cohesion for drained and undrained conditions (f_c) . The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Angle of internal friction (Phi)Contingency factor on the angle of internal friction (f_{φ}) . The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).E-modulusContingency factor on the Young's modulus (f_E) . The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction components and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE: According to the NEN 3650-1 (article E.1.2.3), the contingency factor on the pulling force for bundled pipelines should be increased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{0n1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press,bore}$), used to check the equilibrium between drilling fluid pressure and pore pressure sure, see section 22.4. The default value is 1.1.	Total unit weight	Contingency factor on the total unit weight above and below the phreatic level (f_{γ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Angle of internal friction (Phi)Contingency factor on the angle of internal friction (f_{φ}) . The de- fault value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).E-modulusContingency factor on the Young's modulus (f_E) . The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE:According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling force for bundled pipelines should be in- creased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{on1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press;bore}$), used to check the equilibrium between drilling fluid pressure and pore pres- sure, see section 22.4. The default value is 1.1.	Cu/cohesion	Contingency factor on the cohesion for drained and undrained con- ditions (f_c). The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
E-modulusContingency factor on the Young's modulus (f_E) . The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).Pulling forceContingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE:According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling force for bundled pipelines should be in- creased to 1.8 because due to the pull back of the bundled pipelines 	Angle of internal friction (Phi)	Contingency factor on the angle of internal friction (f_{φ}) . The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Pulling forceContingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction compo- nents and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a).NOTE: According to the NEN 3650-1 (article E.1.2.3), the contin- gency factor on the pulling force for bundled pipelines should be in- creased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.Modulus of subgrade reactionContingency factor on the modulus of subgrade reaction (f_{kv}) . The default value is 1.6.Soil load QnContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press;bore}$), used to check the equilibrium between drilling fluid pressure and pore pres- sure, see section 22.4. The default value is 1.1.	E-modulus	Contingency factor on the Young's modulus (f_E). The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Modulus of subgrade reactionContingency factor on the modulus of subgrade reactionContingency factor on the modulus of subgrade reaction (f_{kv}) . The default value is 1.6.Soil load QnContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn1}) , used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole $(f_{press;bore})$, used to check the equilibrium between drilling fluid pressure and pore pres- sure, see section 22.4. The default value is 1.1.	Pulling force	Contingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction components and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a). NOTE : According to the NEN 3650-1 (article E.1.2.3), the contingency factor on the pulling force for bundled pipelines should be increased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.
Soil load QnContingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).Pressure boreholeContingency factor on the pressure borehole ($f_{press;bore}$), used to 	Modulus of subgrade reaction	Contingency factor on the modulus of subgrade reaction (f_{kv}). The default value is 1.6.
<i>Pressure borehole</i> Contingency factor on the pressure borehole ($f_{\text{press;bore}}$), used to check the equilibrium between drilling fluid pressure and pore pressure, see section 22.4. The default value is 1.1.	Soil load Qn	Contingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).
	Pressure borehole	Contingency factor on the pressure borehole ($f_{\text{press;bore}}$), used to check the equilibrium between drilling fluid pressure and pore pressure, see section 22.4. The default value is 1.1.

Bending moment (Steel)	Contingency factor on the bending moment ($f_{\rm M}$) for steel. In para- graph E.1.3 of NEN 3650-1 (NEN, 2012a), an overall factor on bend- ing moment ($f_{\rm k}$) of 1.4 is prescribed. As this overall factor includes different contingency factors (i.e. $f_{\rm k} = f_{\rm M} \times f_{\rm install} \times f_{\rm R}$) and as $f_{\rm install} = 1.1$ and $f_{\rm R} = 1.1$, a default factor of 1.15 should be inputted for $f_{\rm M}$ to get $f_{\rm k} = 1.4$ as prescribed by NEN.
Bending moment	Contingency factor on the bending moment $(f_{\rm M})$ for PE. In para-
(PE)	graph E.1.3 of NEN 3650-1 (NEN, 2012a), an overall factor on bend- ing moment (f) of 1.4 is prescribed. As this overall factor includes
	different contingency factors (i.e. $f_{\rm k} = f_{\rm M} \times f_{\rm install} \times f_{\rm R}$) and
	as $f_{\text{install}} = 1$ and $f_{\text{B}} = 1$, a default factor of 1.4 should be inputted
	for $f_{\rm M}$ to get $f_{\rm k}$ = 1.4 as prescribed by NEN.
Factor of	Factor of importance (S) . The default value is 1 (for HDD), as pre-
importance (S)	scribed in paragraph 6.5 of NEN 3651 (NEN, 2012d).
Allowable deflection	Maximum allowable deflection of the pipe (δ_0). The default value
of pipe (Steel)	11 1 5 of NEN 3651 (NEN 2012d)
Piggability (Steel)	Maximum allowable deflection of the pipe for piggability (δ_1). If this
	value is exceeded, the pig (i.e. tool or vehicle that moves through
	the interior of the pipeline for purposes of inspecting, dimensioning,
	or cleaning) can be damaged or stuck. The default value is 5% of
	the pipe diameter.
Allowable deflection	Maximum allowable deflection of the pipe (δ_0). The default value is
of pipe (PE)	of NEN 3651 (NEN, 2012d).
Piggability (PE)	Maximum allowable deflection of the pipe for piggability (δ_1). If this
	value is exceeded, the pig (i.e. tool or vehicle that moves through
	the interior of the pipeline for purposes of inspecting, dimensioning,
	the nine diameter
Unit weight water	Unit weight of water (γ_{w}). The default value is 10 kN/m ³ .
Safety factor cover	The ratio between the maximum allowable radius of the plastic zone
(drained layer)	$R_{ m p;max}$ and the soil cover H (vertical distance between the ground
	level and the pipe center) for the calculation of the maximum allow-
	able drilling fluid pressure in drained layer (i.e. sand), see Equa-
	tion 22.28 in section 22.2.2. The default value is 0.5, as prescribed in paragraph E 0.0 of NEN 2650 1 (NEN 2010a); P
Safety factor cover	In paragraph E.2.2.2 of NEN 3650-1 (NEN, 2012a). $n_{p,max} = 0.5 \Pi$.
(undrained laver)	R_{primer} and the soil cover H (vertical distance between the ground
(aa.aoaajoi)	level and the pipe center) for the calculation of the maximum allow-
	able drilling fluid pressure in undrained layer (i.e. clay and peat),
	see Equation 22.22 in section 22.2.1. The default value is 0.5,
	as prescribed in paragraph E.2.2.2 of NEN 3650-1 (NEN, 2012a): $R_{\text{p,max}} = 0.5 H$.
	Click this button to reset all values to the default values prescribed
<u>R</u> eset	in the Dutch Standard NEN.
	NOTE: If the input values in the Factors window differ from the de-
	fault values prescribed by NEN, the value appears in red color.

Factors for HDD – Dutch standard NEN – Steel pipe

If the Dutch standard NEN was selected in the the *Model* window (section 4.1.1) and if a steel material was selected in the *Product Pipe Material Data* window (section 4.6.2.1), the window in Figure 4.44 is displayed. Load factors are used for the strength calculation of the pipeline (see section 23.5).

Factors				×
Contingency factors		Load factors		
Total unit weight (NEN)	[-] [1.10	Design pressure	[-]	1.25
Cu/cohesion (NEN)	[·] 1.40	Design pressure (combination)	[·]	1.15
Angle of internal friction (Phi) (NEN)	[·] 1.10	Test pressure	[·]	1.10
E-modulus (NEN)	[·] 1.25	Installation	[·]	1.10
Pulling force (NEN)	[.] 1.40	Soil load Qn	[·]	1.50
Modulus of subgrade reaction (NEN)	[·] 1.60	Temperature	[·]	1.10
Soil load Qn (NEN)	[-] 1.10	Traffic load	[-]	1.35
Pressure borehole (NEN)	[·] 1.10			
Bending radius (NEN)	[·] 1.10	Factor of importance (S)	[-]	1.00
Bending moment (Steel)	[·] 1.15	Allowable deflection of pine (Steel)	[2]	15.00
Bending moment (PE)	[.] 1.40	Piggability (Steel)	[%]	5.00
		Allowable deflection of pipe (PE)	[%]	8.00
		Piggability (PE)	[%]	5.00
		Unit weight water	[kN/m³]	10.00
		Safety factor cover (drained layer)	[-]	0.50
		Safety factor cover (undrained layer)	[·]	0.50
<u>R</u> eset		OK	Cancel	Help

Figure 4.44: Factors window (HDD) for steel pipe, acc. to the Dutch standard NEN

Total unit weight	Contingency factor on the total unit weight above and below the phreatic level (f_{γ}). The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Cu/cohesion	Contingency factor on the cohesion for drained and undrained con- ditions (f_c). The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Angle of internal	Contingency factor on the angle of internal friction (f_{ω}) . The de-
friction (Phi)	fault value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
E-modulus	Contingency factor on the Young's modulus (f_E). The default value is 1.25, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Pulling force	Contingency factor on pulling forces (f) , to take into account the stochastic distribution in the value of the different friction components and the uncertainty on the model. The default value is 1.4, as prescribed in paragraph E.1.2.1 of NEN 3650-1 (NEN, 2012a). NOTE : According to the NEN 3650-1 (article E.1.2.3), the contingency factor on the pulling force for bundled pipelines should be increased to 1.8 because due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present.
Modulus of subgrade reaction	Contingency factor on the modulus of subgrade reaction (f_{kv}). The default value is 1.6.
Soil load Qn	Contingency factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn1}), used for the strength calculation of the pipeline (see section 23.5). The default value is 1.1, as prescribed in Table B.3 of NEN 3650-1 (NEN, 2012a).
Pressure borehole	Contingency factor on the pressure borehole ($f_{\text{press;bore}}$), used to check the equilibrium between drilling fluid pressure and pore pressure, see section 22.4. The default value is 1.1.

Bending radius	Contingency factor on the bending radius (f_R) used for the determination of the axial stress in the strength calculation, see section 23.5. The default value is 1.1
Develie e verene et	$\frac{100123.5}{100123.5}$ The default value is 1.1.
Benaing moment (Steel)	Contingency factor on the bending moment (f_M) for steel. In para- graph E.1.3 of NEN 3650-1 (NEN, 2012a), an overall factor on bend- ing moment (f_k) of 1.4 is prescribed. As this overall factor includes different contingency factors (i.e. $f_k = f_M \times f_{install} \times f_R$) and as $f_{install} = 1.1$ and $f_R = 1.1$, a default factor of 1.15 should be inputted for f_M to get $f_k = 1.4$ as prescribed by NEN.
Bending moment (PE)	Contingency factor on the bending moment $(f_{\rm M})$ for PE. In para- graph E.1.3 of NEN 3650-1 (NEN, 2012a), an overall factor on bend- ing moment $(f_{\rm k})$ of 1.4 is prescribed. As this overall factor includes different contingency factors (i.e. $f_{\rm k} = f_{\rm M} \times f_{\rm install} \times f_{\rm R}$) and as $f_{\rm install} = 1$ and $f_{\rm R} = 1$, a default factor of 1.4 should be inputted for $f_{\rm M}$ to get $f_{\rm k} = 1.4$ as prescribed by NEN.
Design pressure	Load factor on the design pressure (f_{pd}). The default value is 1.25 as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Design pressure	Load factor on the design pressure when used in combination
(combination)	$(f_{pd;comb})$. The default value is 1.15 as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Test pressure	Load factor on the test pressure (f_{pt}). The default value is 1.1 as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Installation	Load factor on the installation (f_{install}). The default value is 1.1 as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Soil load Qn	Load factor on the reduced neutral soil stress $Q_{n,r}$ (f_{Qn2}). The de-
	tault value is 1.5.
Temperature	Load factor on the stress due to temperature variation (J_{temp}). The default value is 1.1 as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Traffic load factor	The load factor on the traffic load f_{qv} , see section 21.14. The default value is 1.35, as prescribed in Table 2 of NEN 3650-2 (NEN, 2012b).
Factor of importance (S)	Factor of importance (S). The default value is 1 (for HDD), as prescribed in paragraph 6.5 of NEN 3651 (NEN, 2012d).
Allowable deflection of pipe (Steel)	Maximum allowable deflection of the pipe (δ_0). The default value is 15% of the pipe diameter for steel, as prescribed in paragraph 11.1.5 of NEN 3651 (NEN, 2012d).
Piggability (Steel)	Maximum allowable deflection of the pipe for piggability (δ_1). If this value is exceeded, the pig (i.e. tool or vehicle that moves through the interior of the pipeline for purposes of inspecting, dimensioning, or cleaning) can be damaged or stuck. The default value is 5% of the pipe diameter.
Allowable deflection of pipe (PE)	Maximum allowable deflection of the pipe (δ_0). The default value is 8% of the pipe diameter for PE, as prescribed in paragraph 11.4.1.1 of NEN 3651 (NEN, 2012d).
Piggability (PE)	Maximum allowable deflection of the pipe for piggability (δ_1). If this value is exceeded, the pig (i.e. tool or vehicle that moves through the interior of the pipeline for purposes of inspecting, dimensioning, or cleaning) can be damaged or stuck. The default value is 5% of the pipe diameter.
Unit weight water	Unit weight of water (γ_w). The default value is 10 kN/m ³ .

Safety factor cover (drained layer)	The ratio between the maximum allowable radius of the plastic zone $R_{p;max}$ and the soil cover H (vertical distance between the ground level and the pipe center) for the calculation of the maximum allowable drilling fluid pressure in drained layer (i.e. sand), see Equation 22.28 in section 22.2.2. The default value is 0.5, as prescribed in paragraph E.2.2.2 of NEN 3650-1 (NEN, 2012a): $R_{p,max} = 0.5 H$.
Safety factor cover (undrained layer)	The ratio between the maximum allowable radius of the plastic zone $R_{p;max}$ and the soil cover H (vertical distance between the ground level and the pipe center) for the calculation of the maximum allowable drilling fluid pressure in undrained layer (i.e. clay and peat), see Equation 22.22 in section 22.2.1. The default value is 0.5, as prescribed in paragraph E.2.2.2 of NEN 3650-1 (NEN, 2012a): $R_{p,max} = 0.5 H$.
<u>R</u> eset	Click this button to reset all values to the default values prescribed in the Dutch Standard NEN. NOTE: If the input values in the <i>Factors</i> window differ from the de- fault values prescribed by NEN, the value appears in red color.

Factors for HDD – European standard CEN – Polyethylene pipe

If the European standard CEN was selected in the the *Model* window (section 4.1.1) and if a polyethylene material was selected in the *Product Pipe Material Data* window (section 4.6.2.1), the window in Figure 4.45 is displayed.

Factors				×
Safety factors on implosion (PE)		Miscellaneous		
Implosion at long term	[-] 3.0	Factor of importance (S)	[·]	1.00
Implosion at short term	[·] 1.5	Allowable deflection of pipe (Steel)	[%]	15.00
Contingency factors		Piggability (Steel)	[%]	5.00
Total unit weight (CEN)	[.] 1.10	Allowable deflection of pipe (PE)	[%]	8.00
Cu/cohesion (CEN)	[.] 1.40	Piggability (PE)	[%]	5.00
Angle of internal friction (Phi) (CEN)	[-] 1.10	Unit weight water	[kN/m ³]	10.00
E-modulus (CEN)	[-] 1.25	Safety factor cover (drained layer)	[·]	0.50
Pulling force (CEN)	[-] 1.40	Safety factor cover (undrained layer)	[·]	0.50
Modulus of subgrade reaction (CEN)	[-] 1.30			
Soil load Qn (CEN)	[-] 1.10			
Pressure borehole (CEN)	[-] 1.10			
<u>R</u> eset		ОК	Cancel	Help

Figure 4.45: Factors window (HDD) for polyethylene pipe, acc. to the European standard CEN

For the definition of the parameters refer to the window for the Dutch standard NEN (see Figure 4.43), only the default values are different.

Click the Best button to reset all values to the default values prescribed in the European standard CEN. If the input values in the *Factors* window differ from the default values prescribed by CEN, the value appears in red color.

Factors for HDD – European standard CEN – Steel pipe

If the European standard CEN was selected in the the *Model* window (section 4.1.1) and if a steel material was selected in the *Product Pipe Material Data* window (section 4.6.2.1), the window in Figure 4.46 is displayed.

Factors				×
Contingency factors		Miscellaneous		
Total unit weight (CEN)	[.] 1.10	Factor of importance (S)	[·]	1.00
Cu/cohesion (CEN)	[-] 1.40	Allowable deflection of pipe (Steel)	[%]	15.00
Angle of internal friction (Phi) (CEN)	[·] 1.10	Piggability (Steel)	[%]	5.00
E-modulus (CEN)	[·] 1.25	Allowable deflection of pipe (PE)	[%]	8.00
Pulling force (CEN)	[-] 1.40	Piggability (PE)	[%]	5.00
Modulus of subgrade reaction (CEN)	[-] 1.30	Unit weight water	[kN/m³]	10.00
Soil load Qn (CEN)	[·] 1.10	Safety factor cover (drained layer)	[·]	0.50
Pressure borehole (CEN)	[-] 1.10	Safety factor cover (undrained layer)	[·]	0.50
Bending radius (CEN)	[.] 1.10			
<u>R</u> eset		ОК	Cancel	Help

Figure 4.46: Factors window (HDD) for steel pipe, according to the European standard CEN

For the definition of the parameters refer to the window for the Dutch standard NEN (see Figure 4.44), only the default values are different.

Click the Beset button to reset all values to the default values prescribed in the European standard CEN. If the input values in the *Factors* window differ from the default values prescribed by CEN, the value appears in red color.

4.7.1.2 Factors for Micro tunneling

If the *Micro tunneling* option in the *Model* window (section 4.1.1) is selected, the *Factors* window of Figure 4.47 is displayed in which the safety factors for soil parameters can be specified.

Factors		×
(Partial) safety factors		
Cu -cohesion	[·] 1.	40
Angle of internal friction	[·] 1.	10
Horizontal effective stress	[·] 1.	50
Safety factor water pressure	[-] 1.	05
Safety factor uplift	[•] 1.	00
Miscellaneous		
Contingency factor soil cover	[-] 1.	10
Overburden factor silo effect	[•] 2.	00
Stability ratio N	[•] 3.	00
Unit weight water [kN/m	n ³] [1(0.00
<u>R</u> eset OK Cancel		Help

Figure 4.47: Factors window (Micro tunneling)

Cu/cohesion	The safety factor on the cohesion for drained and undrained con- ditions (f_c). The default value is 1.4, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Angle of internal friction (Phi)	The safety factor on the angle of internal friction (f_{φ}) . The default value is 1.1, as prescribed in Table B.2 of NEN 3650-1 (NEN, 2012a).
Horizontal effective stress	The safety factor on the horizontal effective stress ($f_{\sigma h}$). The default value is 1.5.
Safety factor water pressure	The safety factor on the water pressure u ($f_{\rm u}$). The default value is 1.05.
Safety factor uplift	The safety factor on uplift (f_{uplift}). The default value is 1.
Contingency factor soil cover	The contingency factor on soil cover (f_{cover}). The default value is 1.1.
Overburden factor silo effect	The overburden factor on silo effect (f_{silo}). The default value is 2.
Stability ratio N	The stability ratio (N) . The default value is 3. This ratio is used for the calculation of the minimal support pressure in undrained conditions, see Equation 24.2 in section 24.1.2.
Unit weight water	The unit weight of water ($\gamma_{ m w}$). The default value is 10 kN/m ³ .
<u>R</u> eset	Click this button to reset all values to the default values. NOTE: If the input values in the <i>Factors</i> window differ from the default values, the value appears in red color.

4.7.1.3 Factors for Construction in trench

If the *Construction in trench* option in the *Model* window (section 4.1.1) is selected, the *Factors* window of Figure 4.48 is displayed in which the safety factor for uplift and the unit weight of water can be specified.

F	actors		×
	(Partial) safety factors		
	Safety factor uplift	[-]	1.10
	Safety factor hydraulic heave	[-]	1.20
	Miscellaneous		
	Unit weight water [kN	/m °]	10.00
	Reset OK Cancel		Help

Figure 4.48: Factors window (Construction in trench)

Safety factor uplift	The safety factor on uplift (f_{uplift}). The default value is 1.
Safety factor hydraulic	The safety factor on hydraulic heave (f_{burst}). The default value is
heave	1.
Unit weight water	Unit weight of water ($\gamma_{ m w}$). The default value is 10 kN/m ³ .
	Click this button to reset all values to the default values.
<u>R</u> eset	NOTE: If the input values in the <i>Factors</i> window differ from the
	default values, the value appears in red color.

4.7.2 Special Stress Analysis

If the *Horizontal directional drilling* option in the *Model* window (section 4.1.1) is selected, the *Special Stress Analysis* window of Figure 4.49 is displayed when selecting *Special Stress Analysis* from the *Defaults* menu. In this window, it is possible to choose between three types of stress analysis: a standard, a per vertical or a special analysis, as explained below.

s	Special Stress Analysis				
	Stress analysis options				
	C Standard				
	C Per vertical				
	 Use stress calculation data 				
	Stress calculation data				
	Soil load (neutral or reduced neutral) Qn raised by a traffic load, if any	[kN/m²]	18.00		
	Modulus of subgrade reaction	[kN/m³]	17000		
	Radius	[m]	400.00		
	OK.	Cancel	Help		

Figure 4.49: Special Stress Analysis window (HDD)

 Stress analysis options A Standard stress analysis are available: A Standard stress analysis, performed from the Start option of the Calculation menu (see section 5.1), which uses the maximum reduced neutral soil stress and the maximum modulus of subgrade reaction of the soil calculated by D-GEO PIPELINE be
 tween all the verticals and the minimum bending radius preserving the pipeline configuration. A stress analysis <i>Per vertical</i>, performed from the <i>Start</i> option of the <i>Calculation</i> menu (see section 5.1), which uses the reduced neutral soil stress and the modulus of subgrade reaction of the soil calculated by D-GEO PIPELINE per vertical and the bending radius of the pipeline trajectory cut by the vertical. NOTE: If the vertical cut a straight part of the pipeline trajectory, D-GEO PIPELINE assumes a very large bending radius of 100000 m. A "Special Stress Analysis", performed from the <i>Special Stress Analysis</i> option of the <i>Calculation</i> menu (see section 5.2) usin <i>Stress calculation data</i> (i.e user-defined values for the reduce neutral soil stress, for the modulus of subgrade reaction of the
soil and for the bending radius).

If the option Use stress calculation data is selected, the following values must be inputted:

Soil load (neutral or reduced neutral) Qn raised by a traffic load if any	Enter the user-defined reduced neutral soil stress (in kN/m ²), used for a <i>Special Stress Analysis</i> (section 5.2).
Modulus of subgrade reaction	Enter the user-defined modulus of subgrade reaction of the soil (in kN/m ³), used for a <i>Special Stress Analysis</i> (section 5.2).

Radius	Radius of the pipeline in the ground, which is used for the cal-
	culation of the pulling force. During a standard calculation,
	D-GEO PIPELINE assumes the maximum present radius. With
	the Special Stress Analysis (section 5.2), an other radius can
	be chosen by the user.
5 Calculations

5.1 Start Calculation

On the menu bar, click Start in the Calculation menu to perform the following calculations:

♦ Calculation of soil mechanical data

The passive, neutral and reduced vertical stresses of the soil, the vertical coefficient of subgrade reaction, and the ultimate bearing capacity for each vertical are calculated and written to a report file (see section 6.2.4). For background information, see chapter 21].

♦ Calculation of drilling fluid pressures (only for HDD)

In directional drilling first a bore hole is made by a pilot drilling. This bore hole has a relatively small diameter. During the second drilling stage the initial bore hole is enlarged by pre-reaming. When the requested diameter is reached the product pipe is pulled into the bore hole. During all drilling stages a minimum required drilling fluid pressure is necessary. The bore fluid pressure induces a return flow of drilling fluid from the drilling head to the entry or exit point. The return flow transports loosened soil material. The necessary fluid pressure depends on:

- The difference in elevation between the bore hole and the exit point of the return flow;
- The minimum required pressure necessary to cause a return flow (soil material included) over a certain distance.

When the entry and exit points are not on the same level, the minimum required drilling fluid pressure depends on the direction of the drilling (from left to right or from right to left). D-GEO PIPELINE calculates the minimum required drilling fluid pressure for both cases.

The maximum allowable pressure depends on the strength of the soil around the borehole. When the required drilling pressure is higher than the maximum allowable pressure, there is a risk a blow out may occur. In that case, the pipeline configuration must be changed. For instance, by choosing a lower pipe level or by moving the entry or exit point.

The calculations of the minimum and maximum drilling fluid pressures for the three stages (pilot, pre-ream and pull-back) are performed in the user defined verticals. The results of the calculations are written to a report file (see section 6.2.1). For background information, see chapter 22.

♦ Pipe stress analysis (only for HDD)

In the pipe stress analysis, the pulling forces during the pull-back operation, the maximum acting stresses in the pipe material and the deflection of the pipeline are calculated. The calculated stresses are compared to the allowable short and long term stresses for a PE pipeline, while for a steel pipeline a total stress is calculated and compared with the allowable stress. With this option, the strength calculation is performed with the calculated reduced neutral soil load and bedding constant after the soil mechanical data has been calculated. The results of the calculations are written to a report file (see section 6.2.5 and section 6.2.6). For background information, see chapter 23.

♦ Settlements

The settlements of soil layers below the pipeline are calculated. For Micro Tunneling model, the subsidence are also calculated. The results of the calculations are written to a report file (see section 6.2.2 and section 6.2.3). For background information, see section 21.10 and section 24.3.

♦ Operation parameters

- the uplift check and the hydraulic heave check for Trenching; for background information, see chapter 25.
- the uplift check, the face support pressures and the thrust forces for Micro tunneling; for background information, see section 24.1 and section 24.2.

The results of the calculations are written to a report file (see section 6.2.7 and section 6.2.8).

5.2 Special Stress Analysis (only for HDD)

On the menu bar, click *Special Stress Analysis* in the *Calculation* menu to perform a pipe stress calculation with the user-defined values for the reduced neutral soil stress, the modulus of subgrade reaction and the bending radius, specified in the *Special Stress Analysis* window (section 4.7.2) instead of the calculated values. D-GEO PIPELINE will not apply safety factors on those three specified values, assuming they are already included. A special stress analysis must always be started separately.

5.3 Warning and Error messages

5.3.1 Warning messages

Before calculation, warning messages might be displayed in the *Warning* window after starting the calculation. The calculation will be paused. If clicking *Yes* the calculations will continue, whereas if clicking *No* the calculations will be aborted. Figure 5.1 gives an example of warning messages displayed when an undrained layer has an undrained cohesion c_u of 0 and when determining the allowable curve radius in accordance with section 20.1.4.

Warning	×
	One or more layers above the border between the drained and undrained layers have a Cu-value of 0
	Pipe PE100 SDR11t has a radius of 600 [m] while the allowable minimum radius is : 1892 [m] Pipe PE100 SDR11t has a radius of 700 [m] while the allowable minimum radius is : 1880 [m] Pipe PE100 SDR11t has a radius of 1000 [m] while the allowable minimum radius is : 1885 [m] Pipe PE100 SDR11t has a radius of 500 [m] while the allowable minimum radius is : 1947 [m]
	Continue the calculations ?

Figure 5.1: Warning window (before calculation) about allowable radius

5.3.2 Error messages

If errors are found in the input, no calculation can be performed and D-GEO PIPELINE opens the *Error Messages* window displaying more details about the error(s). Those errors must be corrected before performing a new calculation. To view those error messages, select the *Error Messages* option from the *Help* menu (section 3.3.1). They are also writing in the *.err file. They will be overwritten the next time a calculation is started.

D Error Me	essages	_ 🗆 ×
Program	: D-Geo Pipeline	
Version	: 6.3	
License	: Unknown	
Company	:	
Run ident	tification :	
	Vitens	
	Centale as	
Date	: 16-7-2013	
Time	: 11:38:54	
End of D- The pipe	-Geo Pipeline file diameter is less than two times the wall thickness for pip	e nr: l

Figure 5.2: Error Messages window

6 View Results

6.1 Report selection

On the menu bar, click *Results* and then choose *Report Selection* to open the corresponding input window in which the content of the final report can be selected.

D Report Selection	×
Image: Second Content Image: Content <td< th=""><th></th></td<>	
 3.2 Equilibrium between Drilling Fluid Pressure and Pore Pressure 3.3 Drilling Fluid Pressure Plots 3.3.1 Drilling Fluid Pressures during Pilot (Picture) 3.3.2 Drilling Fluid Pressures during Prereaming (Picture) 3.3.3 Drilling Fluid Pressures during Reaming and Pullback Operation (Picture) 	-
Page numbers in Table of Contents (slows down report generation)	
Select All Deselect All	
OK Cancel	Help

Figure 6.1: Report Selection window

6.2 Report

On the menu bar, click *Results* and then choose *Report* to open the *Report* window displaying the selected results (section 6.1) of the calculation. This window displays the contents of the ASCII file with extension '.drd'.

Click the *Print active window* button a on the icon bar to print the report.

Use the *Export Report* option in the *File* menu to export the report in RTF, PDF, TXT or HTML format.

The report has its own toolbar:

, , , , , , , , , , , , , , , , , , ,	Those four buttons enable the user to zoom in, to zoom out, to zoom the full page or to zoom the page width.
	Those four buttons enable the user to browse through the report by respectively moving to first page, moving to previous page, moving to next page or moving to last page.
Page 18 of 19	Another way of quickly browsing through the report is by en- tering a page number in the input field on the toolbar and pressing the <i>Enter</i> key.

The output file consists of:

- ♦ First page
 - Date and time of report
 - File name
 - Project identification (as inputted in section 4.1.2)
- ♦ Table of Contents
- ♦ Input Data chapter gives an echo of the input
- ♦ Drilling Fluid Pressures chapter gives the results (plots and tables) of the drilling fluid pressures calculation for the three stages of the HDD technique (section 6.2.1)
- ♦ Deformations chapter gives:
 - □ the settlements of soil layers below the pipeline (section 6.2.2)
 - □ the subsidence for *Micro Tunneling* model (section 6.2.3)
- ♦ Soil mechanical parameters chapter which gives the soil mechanical data (section 6.2.4)
- ♦ Data for Stress analysis chapter includes buoyancy control and pulling forces calculation of the HDD technique (section 6.2.5)
- Stress analysis chapter gives the stress results for the 5 load combinations (1A, 1B, 2, 3 and 4) of the HDD technique (section 6.2.6)
- ♦ Operation Parameters chapter gives:
 - □ the uplift check and the hydraulic heave check for *Trenching* (section 6.2.7)
 - the uplift check, the face support pressures and the thrust forces for *Micro Tunnel-ing* (section 6.2.8)

The following sections describe the output in more detail. The calculation process can be aborted, after which a message is appended to the output file and the file is closed. All results until the moment the calculation was stopped remain in the file.

6.2.1 Report – Drilling Fluid Pressure

6.2.1.1 Report – Drilling Fluid Data

In the *Drilling Fluid Data* section, the results of the drilling fluid pressures calculation for the three stages (pilot hole drilling, pre-reaming of the borehole and pullback of the product pipe) are displayed.

)rilling Elu	id Data				
7 ming Flu					
Vertical nr.		Drilling fluid pre	essures pilot		
		[kN/n	1 ²]		
	Max, deformation	Max, soil cover	Min, left	Min, right	
1	121	209	35	157	
2	364	631	162	247	
3	494 532	829	240	292	
	524	874	204	235	
6	441	748	275	210	
7	259	472	207	103	
	200		201		
Vertical nr.		Drilling fluid press	sures preream		
		[kN/m	1²]		
	Max, deformation	Max, soil cover	Min, left	Min, right	
1	121	165	32	35	
2	364	631	147	162	
3	494	829	219	237	
4	532	887	245	249	
5	524	874	248	238	
6	441	748	210	189	
7	259	472	103	94	
(antian) an		Duilling fluid pages	unes sull bests		
venical nr.		Drilling liuid press			
	Max deformation	Max soil cover	Min left	Min right	
1	121	165	35	32	
2	364	631	164	147	
3	494	829	237	219	
4	532	887	249	245	
5	524	874	238	248	
6	441	748	189	212	
7	259	472	94	104	

Figure 6.2: Report window, Drilling Fluid Data section

Manthaalaa	r 1	Nexual and Cillian and a lot the second trad
Vertical nr.	[-]	Number of the calculation vertical.
Max, deformation Max, soil cover	[kN/m ²]	Maximum drilling fluid pressure: refer to Equation 22.28 in section 22.2.2 for drained layers and to Equation 22.22 in
		section 22.2.1 for undrained layers.
		For drained layers, the determination of the maximum al-
		lowable radius of the plastic zone ($R_{p;max}$), can be related:
		either to the deformation of the bore hole:
		$R_{ m p;max} = \sqrt{rac{R_{ m b}^2}{Q}} imes 2arepsilon_{ m g;max};$
		\diamond or to the soil cover: $R_{p;max} = 0.5 H$
		(Refer to section 22.2 for the definition of the parameters.)
Min,left	[kN/m ²]	Minimum drilling fluid pressure assuming that the drilling of the pilot is from left to right (see section 22.1 for back- ground information).

Min,right	[kN/m ²]	Minimum drilling fluid pressure assuming that the drilling of the pilot is from right to left (see section 22.1 for back- ground information).

6.2.1.2 Report – Equilibrium between Drilling Fluid Pressure and Pore Pressure

In the Equilibrium between Drilling Fluid Pressure and Pore Pressure section, the static drilling fluid p_1 is calculated and compared with the calculated pore pressure u, for each vertical. The ratio p_1/u yields the safety factor, which should be higher than the (user-defined) requested safety factor.

ventical nr.	Durillin or Arcial	Static column	n pressure	Desult				
	[kN/m²]	vvater [kN/m³]	Salety [-]	Result				
1	152	127	1.20	sufficient				
2	255	216	1.18	sufficient				
3	299	254	1.18	sufficient				
4	301	256	1.18	sufficient				
5	298	253	1.18	sufficient]			
6	250	sufficient						
7	145	120	1.20	sufficient				
8	23	14	1.61	sufficient				
The static drilling fluid pressure is calculated and can be compared with the calculated groundwater pressure. The quotient of the drilling fluid pressure and the groundwater pressure yields the safey factor, which should be higher them the number of the drilling fluid pressure and the groundwater pressure yields the safey factor.								

Figure 6.3: Report window, Equilibrium between Drilling Fluid Pressure and Pore Pressure section

Vertical nr.	[-]	Number of the calculation vertical.
Drilling fluid	[kN/m ²]	Static column pressure of the drilling fluid (p_1), see Equation 22.2 in section 22.4.
Water	[kN/m ²]	Calculated pore pressure u , see Equation 26.4 in section 26.5.
Safety	[-]	Calculated safety factor: ratio between the static drilling fluid pressure and the pore pressure.
Result		If the calculated safety factor is higher than the required safety factor, then the drilling fluid pressure is <i>Sufficient</i> , otherwise it is <i>Not sufficient</i> . NOTE: The required safety factor is defined in the <i>Factors</i> window under the field <i>Contingency factor – Pressure bore-hole</i> , see section 4.7.1.1.

6.2.2 Report – Settlements of soil layers below the pipeline

This section is available only if the *Use settlement* option in the *Model* window (section 4.1.1) has been selected before performing a calculation.

Deformations										
1 Settlement	s of soil laver	a below the Pinelin	9							
4.1 Settlements of soil layers below the Pipeline										
[-]	[mm]	[mm]	[mm]							
1	1524	5	1529							
2	1483	10	1493							
3	1339	20	1359							
4	702	50	752							
5	397	50	447							
6	659	20	679							
7	1473	10	1483							
8	1522	5	1527							

Figure 6.4: Report window, Settlements of soil layers below the pipeline section

The following is an explanation of the column headings:

Vertical nr.	[-]	Number of the calculation vertical.
Settlement	[mm]	Settlement calculated with the selected model, Koppejan or Iso- tache (section 4.1.1). For background information, see sec- tion 21.10.
Additional settlement	[mm]	Additional settlement as inputted in the <i>Calculation Verticals</i> win- dow (section 4.4.2).
dv	[mm]	Total settlement (sum of the <i>Settlement</i> and the <i>Additional set-</i> <i>tlement</i> columns).

6.2.3 Report – Subsidence

This section is available only if the *Micro tunneling* option in the *Model* window (section 4.1.1) has been selected. Due to the overcut surface subsidence occurs. Subsidence is calculated for each vertical at different horizontal distances of the *z*-axis (i.e. 0 until 3 W, where W is the vertical distance between the surface level and the pipe center). For background information, refer to Equation 24.14 in section 24.3. Results are given in tables and in graphs.

5	5 Deformations											
5.1	5.1 Subsidence											
	Due to the overcut surface, subsidence occures. The subsidence is calculated using a volume loss percentage on the overcut area. For the calculations 15.0 percent is used.											
5.1	Outer diameter product pipe 1000 [mm] Overcut on radius 200 [mm] Volume loss 113097.3 [mm²]											
	Vertical nr			S	uhsidence	in [mm] a	t a horizon	tal distanc	e of z ave			
		0	0.1 W	0.2 W	0.4 W	0.7 W	1.0 W	1.3 W	1.6 W	2.0 W	2.5 W	3.0 W
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	1	22	21	21	20	16	12	8	5	2	0	0
	2	7	7	7	6	3	1	0	0	0	0	0
	3	4	4	4	3	1	0	0	0	0	0	0
	4	4	4	3	3	1	0	0	0	0	0	0
	5	2	2	2	1	0		0		0	0	0
	6	3	3	2	2	1		0			0	0
	/	10	10	b 0	4	2	1	1		<u> </u>		0
	8	10	10	9	ð	5	2		U	U	U	U

Figure 6.5: Report window, Subsidence section

6.2.4 Report – Soil Mechanical Data

Depending on the selected model in the *Model* window section 4.1.1, the soil mechanical parameters are different.

6.2.4.1 Soil Mechanical Parameters for HDD

Soil Mechanical Parameters							
1 Soil Mechanical Parameters (Pipe: 1)							
The list with	data and issu	ies is shown	hereafter:				
Pv;p Passive soil load Pv;n Neutral soil load Ph;n Neutral soil load						kN/m² kN/m² kN/m²	
Pv,r;n kv,top1 kv top2		V	/ertical modul Vertic	us of subgrad	Reduced ne de reaction (bi of subgrade re	eutral soil load linear) upward action upward	kN/m² kN/m³ kN/m³
dv kv Pv:e			Vertical	modulus of s	Vertical ubgrade react Vertical he	displacement ion downward	mm kN/mª kN/m²
kh Ph;e tmax				Horizontal m Mavi	odulus of sub Horizontal be mal friction ni	grade reaction aring capacity	kN/m³ kN/m² kN/m²
dmax				Displ	acement at m	aximal friction	mm
Vertical nr.	Pv;p [kN/m²]	Pv;n [kN/m²]	Ph;n [kN/m²]	Pv,r;n [kN/m²]	kv,top [kN/m³]		
1	24	19	12	19	253		
2	74	24	16	24	188		
3	682	114	35	53	38/1		
4 E	913	156	39	59 50	9140		
с с	2006	246		5∠ 107	10516		
7	1010	340 155	102	107	10310		
8	204	83	55	83	233		
Vertical nr	dv	ky	Pvie	kh	Phie	tmax	dmay
venticar m.	[mm]	[kN/mª]	[kN/m²]	[kN/m ³]	[kN/m²]	[kN/m²]	[mm]
1	5	190	442	133	99	0.35	8
2	10	2365	196	1655	115	0.35	8
3	20	12208	3332	8546	794	0.35	8
4	40	13024	4449	9117	1020	0.35	8
5	80	9074	21154	6352	2006	0.35	8
6	60	7949	16672	5564	1610	0.35	8
7	50	309	1233	216	284	0.35	8
8	35	166	831	116	211	0.35	8
Maximum si Maximum re Maximum ve	oil load educed soil loa ertical modulu:	ad s of subgrade	reaction (with	nout safety fa	: Pv;r : Pv,r ictor): kv, i), max = 442 k ;n, max = 155 max = 13024 k	(N/m² kN/m² (N/m³

Figure 6.6: Report window – Soil Mechanical Parameters section (for HDD)

Vertical nr.	[-]	Number of the calculation vertical.				
Pv;p	[kN/m ²]	Passive soil load (see Equation 21.2 in section 21.2).				
Pv;n	[kN/m ²]	Neutral vertical soil load (see Equation 21.1 in section 21.1).				
Ph;n	[kN/m ²]	Neutral horizontal soil load (see Equation 21.12 in section 21.5.1).				
Pv,r;n	[kN/m ²]	Reduced neutral soil load (see Equation 21.4 and Equation 21.8 in section 21.3).				
kv;top	[kN/m ³]	Vertical modulus of subgrade reaction at the top of the pipe (see Equation 21.14 in section 21.6.1).				
dv	[mm]	Vertical displacement (see section 21.10).				
kv	[kN/m ³]	Vertical modulus of subgrade reaction at the bottom of the pipe				
		(see Equation 21.14 in section 21.6.1).				
Pv;e	[kN/m ²]	Vertical bearing capacity (see Equation 21.26 in section 21.8).				
kh	[kN/m ³]	Horizontal modulus of subgrade reaction (see Equation 21.24 in section 21.7.1).				

Ph;e	[kN/m ²]	Horizontal bearing capacity (see Equation 21.28 in section 21.9.1).					
tmax	[kN/m²]	Maximal axial friction along the pipeline (see section 21.11.1).					
dmax	[mm]	Displacement necessary to develop the maximal axial friction					
		along the pipeline (see section 21.12.1).					

6.2.4.2 Soil Mechanical Parameters for Micro tunneling

Soil Mechanical Data									
1 Soil Mechanical Parameters									
The list with	data and iss	sues is showr	hereafter:						
Note: safety	factors not :	applied							
Pv;p					Pa	ssive soil lo	ad kN/m²		
Pv;n					Ne	eutral soil lo	ad kN/m²		
Ph;n					Neutral horiz	ontal soil lo	ad kN/m²		
Pv,r;n					Reduced ne	eutral soil lo	ad kN/m ²		
kv,top1		Ver	tical modulu:	s of subgrade	e reaction (bi	linear) upwa	ard kN/mª		
kv,top2			Vertica	al modulus of	subgrade re	action upwa	ard KN/mª		
av			Vertical	e e du luce e fi eu	vertical	i displaceme	ent mm wel lallare?		
KV Dv: e			venicarr	nouulus of sc	Nertical be	aring canac	aru kiv/m≊ situ kiv/m≊		
FV,E Vh			F	-lorizontal mo	dulus of subr	anny capat vrade reacti	uny kiv/iir on k/N/m³		
Ph'e				ionzontai mo	Horizontal be	aring canac	tv kN/m²		
tmax	may Maximal ficture capacity NVm								
dmax				Displ	acement at m	aximal fricti	on mm		
Vertical nr.	Pv;p	P∨;n	Ph;n	Pv,r;n	kv,top				
	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m³]				
1	24	19	14	19	253				
2	74	24	18	24	188				
3	582	114	57	51	3871				
4	2006	440	100	76	9140				
6	2000	9442	149	149	10516				
7	284	155	140	140	184				
8	204	83	62	83	233				
							-		
Vertical nr.	d∨	kv	Pv;e	kh	Ph;e	tmax	dmax	mat	
	[mm]	[kN/m³]	[kN/m²]	[kN/m³]	[kN/m²]	[kN/m²]	[mm]	[-]	
1	5	190	442	133	184	12.55	12	Peat	
2	10	2365	196	1655	93	12.40	12	Peat	
3	20	12208	3332	8546	1507	16.39	5	Clay	
4	40	13024	4449	9117	2177	18.32	5	Clay	
5	00	9074 7040	21104	6302	6600	22.12	2	Sand	
7	50	7343	10072	216	533	20.75	12	Deat	
8	35	166	831	116	419	19.30	12	Peat	
Maximum soil load Maximum reduced soil load Maximum vertical modulus of subgrade reaction (without safety factor) Maximum vertical modulus of subgrade reaction (with safety factor)					: Pv;n, : Pv,r;n : kv, ma : kv, ma	max = 442 , max = 155 ax = 13024 ax = 20468	, 5 kN/m² kN/m³ kN/m³		

Figure 6.7: Report window – Soil Mechanical Parameters section (for Micro tunneling)

Vertical nr.	[-]	Number of the calculation vertical.			
Pv;p	[kN/m ²]	Passive soil load (see Equation 21.2 in section 21.2).			
Pv;n	[kN/m ²]	Neutral vertical soil load (see Equation 21.1 in section 21.1).			
Ph;n	[kN/m ²]	Neutral horizontal soil load (see Equation 21.13 in section 21.5.2).			
Pv,r;n	[kN/m ²]	Reduced neutral soil load (see section 21.3).			
kv;top	[kN/m ³]	Vertical modulus of subgrade reaction upward (see Equa- tion 21.14 in section 21.6.1).			
dv	[mm]	Vertical displacement (see section 21.10).			

kv	[kN/m ³]	Vertical modulus of subgrade reaction downward (see Equa- tion 21.14 in section 21.6.1).				
Pv;e	[kN/m ²]	Vertical bearing capacity (see Equation 21.26 in section 21.8).				
kh	[kN/m ³]	Horizontal modulus of subgrade reaction (see Equation 21.24 in section 21.7.1).				
Ph;e	[kN/m ²]	Horizontal bearing capacity (see Equation 21.29 in section 21.9.2).				
tmax	[kN/m ²]	Maximal axial friction along the pipeline (see Equation 21.52 in section 21.11.2).				
dmax	[mm]	Displacement at maximal friction (see section 21.12.2).				
mat	[-]	The corresponding type of material (see section 21.13).				

6.2.4.3 Soil Mechanical Parameters for Construction in trench

	3 Soil Mech	anical D	ata							
:	3.1 Soil Mecha	inical Para	meters							
	The list with data and issues is shown hereafter: Note: safety factors not applied Pv,p Passive soil load Pv,n Neutral soil load Pv,n Neutral soil load Pv,n Neutral soil load Pv,a Actual soil load kv,top1 Vertical modulus of subgrade reaction (bilinear) upward kv,top2 Vertical modulus of subgrade reaction upward kv1 Vertical modulus of subgrade reaction downward, first branch kv2 Vertical modulus of subgrade reaction downward, first branch kv2 Vertical modulus of subgrade reaction downward, first branch kv4 Vertical modulus of subgrade reaction downward, first branch kv4 Vertical modulus of subgrade reaction downward, first branch kv2 Vertical modulus of subgrade reaction downward, first branch kv4 Horizontal modulus of subgrade reaction dwnward, first branch kv6 Horizontal modulus of subgrade reaction dwnward, first branch kh Horizontal modulus of subgrade reaction dwnward, first branch kh Horizontal modulus of subgrade reaction dwnward, first branch kh Horizontal modulus of subgrade reaction dwnward, first branch kh Horizontal modul									
	Vertical nr.	Pv;p [kN/m²]	Pv;n [kN/m²]	Ph;n [kN/m²]	Pv;a	kv,top1	kv,to	pp2		
	1	1	1	0	I IN WITT	1	1	6		
	2	9	5	4		6 3	17	85		
	3	99	31	13	9	9 15878	11 2.31E	+05		
	4	95	95 23 12 95 129743 1.72E+05							
	5	23	13	13	1	6 7	6	170		
	6	10	8	6		8 1	2	57		
	Vertical nr	dv	kv1	W2	Pv:e	kh	Ph'e	tmay	dmay	mat
	rondournit.	[mm]	[kN/m³]	[kN/m³]	[kN/m²]	[kN/m³]	[kN/m²]	[kN/m²]	[mm]	[-]
	1	5	1621	324	64	2970	36	24	12	Peat
	2	10	7876	1575	261	3699	59	7	15	Peat
	3	20	39240	7848	1622	15130	448	13	2	Sand
	4	80	31186	6237	733	10301	234	10	5	Clay
	5	50	813	163	52	1217	23	14	15	Peat
	6	35	3692	591	363	4095	53	26	12	Peat

Figure 6.8: Report window – Soil Mechanical Parameters section (for Construction in trench)

Vertical nr.	[-]	Number of the calculation vertical.					
Pv;p	[kN/m ²]	Passive soil load (see Equation 21.2 in section 21.2).					
Pv;n	[kN/m ²]	Neutral vertical soil load (see Equation 21.1 in section 21.1).					
Ph;n	[kN/m ²]	Neutral horizontal soil load (see Equation 21.13 in section 21.5.2).					
Pv;a	[kN/m ²]	Initial soil load, also called actual soil load (see Equation 21.9 in section 21.4).					

kv;top1	[kN/m ³]	Vertical modulus of subgrade reaction upward (see sec- tion 21.6.2).					
kv;top2	[kN/m ³]	Vertical modulus of subgrade reaction upward (see sec- tion 21.6.2).					
dv	[mm]	Vertical displacement (see section 21.10).					
kv1	[kN/m ³]	Vertical modulus of subgrade reaction downward of the first and second branch (see section 21.6.2).					
kv2	[kN/m ³]	Vertical modulus of subgrade reaction downward of the first and second branch (see section 21.6.2).					
Pv;e	[kN/m²]	Vertical bearing capacity (see Equation 21.26 in section 21.8).					
kh	[kN/m ³]	Horizontal modulus of subgrade reaction (see Equation 21.25 in section 21.7.2).					
Ph;e	[kN/m ²]	Horizontal bearing capacity (see Equation 21.29 in sec- tion 21.9.2).					
tmax	[kN/m ²]	Maximal axial friction along the pipeline (see Equation 21.52 in section 21.11.2).					
dmax	[mm]	Displacement at maximal friction (see section 21.12.2).					
mat	[-]	The corresponding type of material (see section 21.13).					

6.2.5 Report – Data for Stress Analysis

Buoyancy Control

The magnitude of the pulling force is caused in part by friction between the soil around the borehole and the product pipe. In turn, the magnitude of the friction is dependent on the degree of buoyancy of the pipeline in the drilling fluid. Uplift forces resulting from buoyancy can be neutralized by filling the pipeline with water. The optimum volume of water placed in the pipeline provides the most advantageous distribution of buoyant forces. If the resulting force is a positive value, the pipeline will move upwards. If the resulting force is a negative value the pipeline will move downwards.

5.2 Buoyancy Control				
The friction between soil and pipe is partially ca resulting from buoyancy can be neutralized by provides the most advantageous distribution of	aused by buoyan filling the pipeling f buoyant forces.	icy of the pip e. The optim	eline in th al volume	ne drilling fluid. Uplift forces e of water placed in the pipe
Buoyancy of the pipeline when filled with wate	er for 15%			
Uplift forces Weight of pipeline (including filling)	:	2297 1288	[kg/m] [kg/m]	
Result	:	1009	[kg/m]	(Pipeline moves upwards)

Figure 6.9: Report window, Buoyancy Control section

Uplift forces	Weight of the drilling fluid in kg/m (see Equation 23.1 in section 23.1).
Weight of pipeline (including filling)	Weight of the pipeline filled with water in kg/m (see Equation 23.4 in section 23.1).
Resulting	Effective weight of the pipeline in kg/m (see Equation 23.5 in section 23.1).

The following is an explanation of the content:

See section 23.1 for background information on buoyancy control.

Calculation pulling forces

This part of the report displays the calculated pulling forces (without applying a contingency factor), for characteristic locations along the drilling line. In a case without horizontal bending, six characteristic points are calculated. Their location is given in Figure 6.11. In case of horizontal bending, the beginning and ending points of each horizontal bending will be defined as characteristic points.

3 Calculation Pulling Force						
During the pullback operation	n the pipe experiences friction	which is based on:				
- friction between pipe and p - friction between pipe and d - friction between pipe and s	ipe-roller (f1 = 0.20) rilling fluid (f2 = 0.000350 [N/m oil (f3 = 0.30)	ım²])				
Due to the friction a pulling fo The pulling direction of the p	prce is induced in the pipeline. roduct pipe is from left to right					
This calculation takes into an pipeline. During the pull back	count that the length of the pi operation the bore hole is su	pe on the rollers decreases v oposed to be stable.	while pulling back the			
Characteristic points	Length pipe in bore hole (m)	Expected pulling force (kN)				
T1	0	4610				
T2	43	4701				
Т3	338	6579				
T4	1441	14235				
T5	1716	16676				
T6	T6 1790 16832					
The calculated pulling force is the mean value. It is recommended to use a contingency factor of at least 1.4 for the stress analysis. In the subsequent pipe stress analysis a factor of 0.00 is used and a load factor of 1.20 (steel only). The maximum representative pulling force is 0 kN, calculation factor excluded. At this pulling force level the stresses in the pipeline are equal to the yield strength.						

Figure 6.10: Report window, Calculation pulling force section

Characteristic points	Points at different locations along the drilling line (see Figure 6.11). T1 and T6 are the entry and exit points, respectively.
Length pipe in borehole	Length of the pipe between the entry point and the characteristic point.
Expected pulling force	Calculated pulling forces without using a contingency factor (see Equation 23.6 in section 23.2).

Figure 6.11: Locations of the characteristic points T1 to T6

6.2.6 Report – Stress Analysis

6.2.6.1 Stress Analysis HDD

Load Combination 1A: Start pull-back operation

This part of the report displays the calculated axial and tangential stresses at the start of the pull-back operation. See section 23.5.1 for background information.

6.2	6.2.1 Load Combination 1A: Start Pullback Operation			
	Axial stress:			
	Sigma_b = Mb/Wb = (E·lb)/(0.77·Rrol·Wb)	=	304	[N/mm²]
	Sigma_t = T1/A	=	50	[N/mm²]
	Maximum axial stress Sigma_a,max	=	354	[N/mm²]
	In this load combination the tangential stress is negligible.			

Figure 6.12: Report window, Stress analysis for load combination 1A

Sigma_b	Axial bending stress in N/mm ² , see Equation 23.23.
Sigma_t	Axial stress due to friction of the pipeline on the roller-lane, in N/mm ² , see Equation 23.25.
Sigma_a,max	Maximum axial stress in N/mm ² , see Equation 23.26.

Load Combination 1B: End pull-back operation

This part of the report displays the calculated axial and tangential stresses at the end of the pullback operation. See section 23.5.2 for background information.

6.2	6.2.2 Load Combination 1B: End Pullback Operation			
	Axial stress:			
	Sigma_b = Mb/Wb = (E·lb)/(0.77·Rmin·Wb)	=	347	N/mm²
	Sigma_t = Tmax/A	=	183	N/mm²
	Maximum axial stress Sigma_a,max	=	530	N/mm²
	Tangential stress:			
	Load qr on pipeline due to reaction of soil in bends (according to NEN 3650-	1 annex 5 D	3.3):	
	qr = kv·Y = (0.322·Lambda*2·E·I)/(0.77.Do.R)			
	Lambda = $(k_V \cdot Do/(4 \cdot E \cdot I))^0.25$	=	1.8E-4	mm-1
	qr.	=	0.0977	N/mm²
	Sigma_qr = k'·qr (rg/Ww)·Do	=	39	N/mm²
	Maximum tangential stress Sigma_t,max	=	39	N/mm ²

Figure 6.13: Report window, Stress analysis for load combination 1B

Sigma_b	Axial bending stress in N/mm ² , see Equation 23.27.
Sigma_t	Axial stress due to pull-back in N/mm ² , see Equation 23.28.
Sigma_a,max	Maximum axial stress in N/mm ² , see Equation 23.29.
Lambda	Characteristic stiffness between the pipeline and the soil in mm^{-1} , see
	Equation 23.13.
qr	Soil reaction in N/mm ² , see Equation 23.11.
Sigma_qr	Stress due to soil reaction in N/mm ² , see Equation 23.31.
Sigma_t,max	Maximum tangential stress in N/mm ² , see Equation 23.32.

Load Combination 2: Application internal pressure

This part of the report displays the calculated stresses when the internal pressure is applied. See section 23.5.3 for background information.

6.2.3 Load Combination 2: Application Internal Pressure			
Due to internal pressure :			
Sigma_py = pd (Do - t)/(2·t)	=	15	N/mm²
Sigma_px = 0.5 Sigma_py	=	8	N/mm²
Sigma_ptest = sf.pt (Do - t)/(2·t)	=	23	N/mm²

Figure 6.14: Report window	, Stress analysis	for load combination 2
----------------------------	-------------------	------------------------

Sigma_py	Internal stress due to design pressure in N/mm ² , see Equation 23.33 for thin pipe and Equation 23.35 for thick pipe.
Sigma_px	Internal axial stress due to design pressure in N/mm ² , see Equa- tion 23.37.
Sigma_ptest	Internal stress due to test pressure in N/mm ² , see Equation 23.34 for thin pipe and Equation 23.36 for thick pipe.

Load Combination 3: In operation (situation without pressure)

This part of the report displays the calculated axial and tangential stresses when the pipe is in operation without internal pressure. See section 23.5.4 for background information.

6.2.4 Load Combination 3: In Operation (Situation without Pressure)			
Axial stress:			
Sigma_b = Mb/Wb = (E·lb)/(0.77·Rmin·Wb)	=	347	N/mm²
Maximum axial stress Sigma_a,max	=	347	N/mm²
Tangential stress:			
Sigma_qr = k'·qr·(rg/Ww)·Do	=	39	N/mm²
Sigma_qn = k·qn·(rg/Ww):Do	=	182	N/mm²
Maximum tangential stress Sigma_t,max	=	220	N/mm²

Figure 6.15: Report window – Stress analysis for load combination 3

Sigma_b	Axial bending stress in N/mm ² , see Equation 23.38.
Sigma_a,max	Maximum axial stress in N/mm ² , see Equation 23.39.
Sigma_qr	Stress due to soil reaction in N/mm ² , see Equation 23.40.
Sigma_qn	Stress due to reduced vertical load in N/mm ² , see Equation 23.41.
Sigma_t,max	Maximum tangential stress in N/mm ² , see Equation 23.42.

Load Combination 4: In operation (with internal pressure)

This part of the report displays the calculated axial and tangential stresses when the pipe is in operation with internal pressure. See section 23.5.5 for background information.

6.2.3 Load Combination 4: In Operation (with Internal Pressure)			
Axial stress:			
Sigma_b = Mb/VVb = (E·lb)/(0.77·Rrol·VVb)	=	347	N/mm²
Due to internal pressure :			
Sigma_py = pd (Do - t)/(2 t)	=	18	N/mm²
Sigma_px = 0.5 Sigma_py	=	9	N/mm²
Sigma_ptest = sf.pt (Do - t)/(2·t)	=	23	N/mm²
Sigma_Temp = Dt * gamma_t * alpha g * E	=	15	N/mm²
Maximum axial stress Sigma_a,max	=	371	N/mm²
Tangential stress:			
Sigma_qr = k'·qr·(rg/Ww)·Do	=	39	N/mm²
Sigma_qn = k·qn·(rg/Ww)·Do	=	182	N/mm²
Rerounding factor Frr Rerounding factor F'rr	= =	0.947 0.974	
Sigma_t,max = Sigma_py + ((F'rr·Sigma_qr) + (Frr·Sigma_qn))			
Maximum tangential stress Sigma_t,max	=	228	N/mm²

Figure 6.16: Report window, Stress analysis for load combination 4

Sigma_b	Axial bending stress in N/mm ² , see Equation 23.43.
Sigma_py	Ring stress due to internal design pressure in N/mm ² , see Equa- tion 23.44.

Axial stress due to internal design pressure in N/mm ² , see Equation 23.47.
Ring stress due to internal test pressure in N/mm ² , see Equation 23.45 for steel and Equation 23.46 for PE.
Axial stress due to temperature variation in N/mm ² , see Equa- tion 23.48.
Maximum axial stress in N/mm ² , see Equation 23.49.
Stress due to soil reaction in N/mm ² , see Equation 23.50.
Stress due to reduced vertical load in N/mm ² , see Equation 23.51.
Direct re-rounding factor in N/mm ² , see Equation 23.53.
Indirect re-rounding factor in N/mm ² , see Equation 23.54.
Maximum tangential stress in N/mm ² , see Equation 23.52.

Check on calculated stresses (Steel)

This part of the report displays a table in which the calculated combined stresses of the different load combinations are compared to the maximum allowable stress (see section 23.6.1.1 for background information).

6.3 Check on Ca	3 Check on Calculated StressesPipe: 1						
According to NEN conditions (note: I	N 3650-2 art.5 D.3.* Re = 200 [N/mm²]) :	1 the calculated stre	esses for the load o	combinations, mus	t meet the following]	
Load combinati - Sigma_vmax =	ons 1, 3 and 4 << 0.85(Re+Re_20)	deg)/Gamma_m					
Load combinati - Sigma_ptest = - Sigma_py =< f - Sigma_pm =< In load combina	on 2 << Re/Gamma_test Re/Gamma_m 1.1·Re/Gamma_m tion 1A/1B/3/4 stre:	sses are NOT allov	vable.				
	Max allowable	Load	Load	Load	Load	Load	
	stress [N/mm²]	combination1A	combination1B	combination2	combination3	combination4	
Sigma_ptest	173.91	-	-	23	-	-	
Sigma_py	153.85	-	-	15	-	-	
Sigma pm	169.23	-	-	13	-	-	
Sigma vmax	261.54	354	550	-	495	486	
Stresses in pipe	eline [N/mm²]						

Figure 6.17: Report window, Check on calculated stresses section (steel pipe)

Check on calculated stresses (PE)

This part of the report displays a table in which the calculated combined stresses of the different load combinations are compared to the maximum allowable stress (see section 23.6.1.2 for background information).

J GHECK UN GA	iculated Stress	esPipe: 1				
Load combination 1 - Sigma_AxMax < ShortStrength * DamageFactor - Sigma_TanMax < ShortStrength * DamageFactor						
Load combination 2 - Sigma_ptest < ShortStrength * DamageFactor - Sigma_py < LongStrength * DamageFactor						
Load combinati - Sigma_AxMax - Sigma_TanMa	on 3 < < LongStrength * [ax < LongStrength *	DamageFactor DamageFactor				
Load combinati	on 4	S				
- Sigma_AxMa) - Sigma_TanMa	ax < LongStrength * ax < LongStrength *	DamageFactor DamageFactor				
- Sigma_AxMa) - Sigma_TanMa In load combina	ax < LongStrength * t ax < LongStrength * tion 1B stresses ar	Damage⊢actor DamageFactor e NOT allowable.				
- Sigma_AXMa) - Sigma_TanMa In load combina	 CongStrength * t ax < LongStrength * ition 1B stresses ar Max allowable stress [N/mm²] 	DamageFactor DamageFactor e NOT allowable.	Load combination1B	Load combination2	Load combination3	Load combination4
- Sigma_AXMa) - Sigma_TanMa In load combina	 Karal CongStrength * LongStrength * tion 1B stresses ar Max allowable stress [N/mm²] 6.40 (short) 	EnageFactor DamageFactor e NOT allowable.	Load combination1B	Load combination2 4.5	Load combination3	Load combination4
- Sigma_AxMa - Sigma_TanMa In load combina	 CongStrength * L ax < LongStrength * tition 1B stresses ar Max allowable stress [N/mm²] 6.40 (short) 5.04 (long) 	e NOT allowable.	Load combination1B	Load combination2 4.5 2.5	Load combination3	Load combination4 -
- sigma_AxMa - Sigma_TanMa In load combina Sigma_ptest Sigma_py Sigma_axial	 CongStrength *1 ax < LongStrength * tition 1B stresses ar Max allowable stress [N/mm²] 6.40 (short) 6.40 (short) 	e NOT allowable.	Load combination1B - 221.0	Load combination2 4.5 2.5	Load combination3	Load combination4
- Sigma_AxMa - Sigma_TanMa In load combina Sigma_ptest Sigma_py Sigma_axial	<pre>< LongStrength * ax < LongStrength * tion 1B stresses ar Max allowable stress [N/mm?] 6.40 (short) 5.04 (long) 6.40 (short) 5.04 (long)</pre>	e NOT allowable.	Load combination1B	Load combination2 4.5 2.5 -	Load combination3	Load combination4 - - 1.3
- sigma_AxMa - Sigma_TanMa In load combina Sigma_ptest Sigma_py Sigma_axial Sigma_axial Sigma_axial	<pre>< LongStrength * ax < LongStrength * tion 1B stresses ar Max allowable stress [N/mm²] 6.40 (short) 5.04 (long) 6.40 (short) 5.04 (long) 6.40 (short)</pre>	e NOT allowable.	Load combination1B - - - - - - - - - - - - - - - - - - -	Load combination2 4.5 2.5 - -	Load combination3	Load combination4 - - 1.3 -

Figure 6.18: Report window, Check on calculated stresses section (PE pipe)

Check on deflection

This part of the report displays the calculated deflection of the pipeline and compares it to the maximum allowable deflection (see section 23.7 for background information).

Figure 6.19: Report window, Check on deflection section

Check for implosion (only for PE pipe)

This calculation is performed only for a polyethylene pipe. The maximum allowable external pressure is calculated (see section 23.8 for background information) in the short and long term for the pullback operation (Stage 2) and the pipeline in operation (Stage 3a), respectively.

6.3.	4 Check for ImplosionPipe: 1
	During the pullback operation the drilling fluid gives an external pressure. The highest minimum required drilling fluid pressure during the pullback operation is 594 kN/m ² , this is less than the maximum allowable external pressure of 1022 kN/m ² .
	If the pipe is completely filled during the pullback operation the fluid gives an internal pressure of 520 kN/m ² . This taken in account the total allowable pressure becomes 1542 kN/m ² . This is more than the maximum external pressure.
	In operation the water pressure at the lowest point of the drilling gives an external pressure. The maximum water pressure equals 352 kN/m², this is more than the maximum allowable external pressure of 186 kN/m².
	If the pipe stays completely filled during operation, the fluid gives an internal pressure of 520 kN/m ² . This taken in account the total allowable pressure becomes 706 kN/m ² . This is more than the maximum external pressure.

Figure 6.20: Report window, Check for implosion section

6.2.7 Report – Operation Parameters (Trenching)

Uplift Check

Due to buoyancy of an empty pipeline below the groundwater table, the uplift should be checked. Results are given per vertical in a table (Figure 6.21) and in graphs.

4.1 Uplift Chec	k		
Due to buoyand calculation the s	cy of the pipeline below the gro safety factor for uplift is calcula	oundwater table, the uplift shou ated based on an empty pipe.	Ild be checked. In the subsequent
4.1.1 Uplift Facto	rs		
Vertical nr.	Safety factor calculated	Safety factor required	
	[-]	[-]	
1	999.00	1.00	
2	999.00	1.00	
3	999.00	1.00	
4	7.73	1.00	
5	4.28	1.00	
6	2.38	1.00	
7	6.79	1.00	
8	8.29	1.00	
9	50.03	1.00	
10	999.00	1.00	
11	999.00	1.00]

Figure 6.21: Report window, Uplift Check section

Vertical nr.	[-]	Number of the calculation vertical.
Safety factor calculated	[-]	The calculated safety factor for uplift, see Equation 25.5 in section 25.1.
Safety factor required	[-]	The required safety factor for uplift as specified by the user in the <i>Factors</i> window (section 4.7.1.3).

Hydraulic Heave Check

In case of trenching in soil layers which cover an aquifer with high pore pressures, bursting of the bottom of the trench can be an installation risk which needs to be checked. Results are given per vertical in a table (Figure 6.22) and in graphs.

he trench bottor	roundwater pressures in a wate n should be evaluated. Subsec	er bearing soillayer below the t quently, the safety factors for he	rench the safety factor for heav eave are based on groundwate
pressures at the	top of layer:1 (Silty Sand) are	e calculated	
1 Hydraulic be	ave of the trench bottom		
. Thyuraulic ne	ave of the trench bottom		
Vertical nr.	Safety factor calculated	Safety factor required	
	[-]	í El Ó	
1	0.73	1.00	
2	0.73	1.00	
3	0.60	1.00	
4	0.55	1.00	
5	0.51	1.00	
6	0.51	1.00	
7	0.53	1.00	
8	0.55	1.00	
9	0.58	1.00	
10	0.73	1.00	

Figure 6.22: Report window, Hydraulic Heave Check section

Vertical nr.	[-]	Number of the calculation vertical.
Safety factor	[-]	The calculated safety factor for hydraulic heave, see Equa-
calculated		tion 25.7 in section 25.2.

Safety factor	[-]	The required safety factor for hydraulic heave as defined by the
required		user in the Factors window (section 4.7.1.3).

6.2.8 Report – Face Support Pressures and Thrust Forces (Micro tunneling)

Results are given per vertical in a table (Figure 6.23) and in graphs.

4.1 F	4.1 Face Support Pressure and Thrust Forces						
4.1.1 F	4.1.1 Results table						
The for pre pre dril	The maximum allowable face support pressure and the minimum required face support pressure are calculated for the current soil conditions. The maximum allowable face support pressure should not be exceeded in order to prevent a frac-out. The minimum required face support pressure should not fall below the critical value in order to prevent surface subsidence. The neutral pressure is the pressure which yields minimal soil deformations during drilling.						
	Vertical nr.	Face	Support Pre	essure	Thrust	Forces	
		Pmax	Pmin	Pneutral	Lubricated	Normal	
		[kN/m²]	[kN/m²]	[kN/m²]	[kN]	[kN]	
	1	191	68	135	435	530	
	2	191	68	135	1001	1284	
	3	191	68	135	1566	2038	
	4	191	68	135	2132	2792	
	5	191	68	135	2697	3546	
	6	191	68	135	3263	4300	
	7	191	68	135	3828	5054	
	8	191	68	135	4394	5808	
	9	191	68	135	4959	6562	
	10	191	68	135	5525	7316	
	11	191	68	135	6090	8069	
	12	191	68	135	6656	8823	
	13	191	68	135	7221	9577	
	14	191	68	135	7787	10331	J

Figure 6.23: Report window, Operation Parameters section for Micro tunneling

Vertical nr.	[-]	Number of the calculation vertical.
Pmax	[kN/m ²]	 <i>Pmax</i> is the maximum allowable face support pressure which should not be exceeded in order to prevent the following possible failure mechanisms: Soil failure due to pushing a soil wedge in upward direction A blow out to the surface due to hydraulic fracturing Horizontal hydraulic fracturing at the transition of soil layers. Refer to Equation 24.7 in section 24.1.3.
Pmin	[kN/m ²]	<i>Pmin</i> is the minimum face support pressure required for stable conditions of the soil adjacent to the micro tunneling machine. Refer to Equation 24.2 for undrained layers and to Equation 24.4 for drained layers, in section 24.1.2.
Pneutral	[kN/m ²]	<i>Pneutral</i> is the target pressure, i.e. the total neutral horizontal soil pressure. Refer to Equation 24.1 in section 24.1.1.
Thrust Forces	[kN]	The thrust force is the force required to install a micro tunnel or pipeline in between the launch pit and the reception pit. Thrust forces are calculated in both cases: injection of lubricant (<i>Lubricated</i>) or not (<i>Normal</i>). Refer to Equation 24.8 in section 24.1.4.

6.3 Drilling Fluid Pressures Plots

Only available if the *Horizontal directional drilling* model in the *Model* window (section 4.1) is selected. In the *Results* menu, choose the *Drilling Fluid Pressures Plots* option to display the following plots for the three boring stages (pilot, pre-ream and pullback):

 Maximum allowable drilling fluid pressure (plastic zone related to deformation bore hole)

Refer to Equation 22.28 in section 22.2.2 for drained layers and to Equation 22.22 in section 22.2.1 for undrained layers. For drained layers, the determination of the maximum allowable radius of the plastic zone $R_{p;max}$ is related to the deformation of the bore hole:

$$R_{\rm p;max} = \sqrt{\frac{R_{\rm b}^2}{Q}} \times 2\varepsilon_{\rm g;max}$$

- Maximum allowable drilling fluid pressure (plastic zone related to soil cover) Refer to Equation 22.28 in section 22.2.2 for drained layers and to Equation 22.22 in section 22.2.1 for undrained layers. For drained layers, the determination of the maximum allowable radius of the plastic zone is related to the soil cover: $R_{\text{p:max}} = 0.5 H$
- --- Minimum drilling fluid pressure assuming that the pilot is drilled from the left side to the right side
 - Refer to section 22.1 for background information.
 - --- Minimum drilling fluid pressure assuming that the pilot is drilled from the right side to the left side

Refer to section 22.1 for background information.

To select the stage, click on one of the three tabs of the *Drilling Fluid Pressures Plots* window (Figure 6.24): *Pilot, Prereaming* or *Reaming and pullback operation.*

Figure 6.24: Drilling Fluid Pressures Plots window

Use the Pan 🕙 and Zoom 💌 🔎 💴 buttons to select the part to be viewed in detail.

6.4 Operation Parameter Plots

In the *Results* menu, choose the *Operation Parameter Plots* option. The content of the *Operation Parameter Plots* window depends on the selected model:

- ♦ Refer to section 6.4.1 for Micro tunneling;
- ♦ Refer to section 6.4.2 for Construction in trench.

6.4.1 Operation Parameter Plots for Micro Tunneling

For *Micro tunneling* model, the *Operation Parameter Plots* window displays three different plots by clicking on one of the three tabs:

- ♦ the face support pressures at the micro tunneling machine (Figure 6.25);
- ♦ the thrust pressures along the micro tunnel or pipe segments (Figure 6.26);
- ♦ the uplift safety factor along the micro tunneling (Figure 6.27).

Use the Pan 🕙 and Zoom 💌 🔎 🖾 buttons to select the part to be viewed in detail.

For background information, refer to chapter 24.

Figure 6.25: Operation Parameter Plots window, Face support pressures tab

Maximum face support pressure	 The maximum allowable face support pressure which should not be exceeded in order to prevent the following possible failure mechanisms: Soil failure due to pushing a soil wedge in upward direction A blow out to the surface due to hydraulic fracturing Horizontal hydraulic fracturing at the transition of soil layers.
	For background information, refer to section 24.1.3.
Neutral pressure	The neutral pressure is the pressure with the lowest soil defor- mation, i.e. the total neutral horizontal soil pressure. For back- ground information, refer to section 24.1.1.

Minimum face support pressure

The minimum face support pressure is the pressure required for stable conditions of the soil adjacent to the micro tunneling machine. For background information, refer to section 24.1.2.

Figure 6.26: Operation Parameter Plots window, Thrust pressures tab

Thrust force lubricated	The thrust force lubricated is the force required to install a micro tunnel in between the launch pit and the reception pit in case of injection of lubricant. For background information, refer to sec- tion 24.1.4.
Thrust force not lubricated	The thrust force lubricated is the force required to install a micro tunnel in between the launch pit and the reception pit in case of no injection of lubricant. For background information, refer to section 24.1.4.
Maximum allowable thrust force	The maximum allowable thrust force is usually given by the man- ufacturer of the pipe and specified in the <i>Engineering Data</i> win- dow (section 4.6.3).

Figure 6.27: Operation Parameter Plots window, Safety uplift tab

6.4.2 Operation Parameter Plots for Construction in trench

For *Construction in trench* model, the *Operation Parameter Plots* window displays two different plots by clicking on one of the two tabs:

- ♦ the safety factor for uplift along the bottom of the trench (Figure 6.28);
- ♦ the safety factor for hydraulic heave along the bottom of the trench (Figure 6.30);

Figure 6.28: Operation Parameter Plots window, Safety uplift tab

Figure 6.29: Operation Parameter Plots window, Safety hydraulic heave tab

6.5 Stresses in Geometry

In the *Results* menu, choose the *Stresses in Geometry* option to display the vertical stress per vertical drawn in the geometry. The blue part represents the water pressure and the dark green part represents the additional effective stress. Use the *Pan* and *Zoom* P P P P buttons to select the part to be viewed in detail.

Figure 6.30: Stresses in Geometry window

6.6 Subsidence Profiles

Only available if the *Micro tunneling* model in the *Model* window (section 4.1) is selected. In the *Results* menu, choose the *Subsidence Profiles* option to display the calculation results for the subsidence trough as apparent at surface. Subsidence is related to the volume loss due to the tunnel excavation, e.g. the excess soil removed by the Micro Tunneling Boring Machine (MTBM). The subsidence mechanism is described in detail in section 24.3.

Figure 6.31: Subsidence Profiles window

Vertical	Type the vertical number that must be displayed or click the arrow-up and arrow-down keys stored to scroll through the available verticals.
Fix axis	Enable this check-box to fix the range of the vertical axis of the graph of subsidence whatever the selected time step.

Use the Pan 🕙 and Zoom 🔎 🔎 🖾 buttons to select the part to be viewed in detail.

7 Graphical Geometry Input

This chapter explains how to define the soil layers in a two-dimensional cross section by drawing, using the shared D-Series options for geometry modeling.

- ♦ section 7.1 introduces the basic geometrical elements that can be used.
- section 7.2 lists the restrictions and assumptions that the program imposes during geometry creation.
- ♦ section 7.3 gives an overview of the functionality of the *View Input* window.
- section 7.4 describes the creation and section 7.5 describes the manipulation of general graphical geometry using the *View Input* window.

Besides graphical input, the geometry can also be imported or tabular forms can be used (see section 4.3.2). See the MGeoBase manual for a description of special features to create cross-section geometry semi-automatically from CPT and/or boring records.

7.1 Geometrical objects

Geometry can be built step-by-step through the repetitive use of sketching, geometry creation and geometry manipulation. Each step can be started by using line-shaped construction elements (section 7.1.2) to add line drawings. After converting these drawings to valid geometry parts, the specific geometry elements created can be manipulated (section 7.1.1).

7.1.1 Geometry elements

Geometry can be composed from the following geometry elements:

Points	A point is a basic geometry element defined by its co-ordinates. As stated earlier, the geometry is restricted to two dimensions, allowing to define X and Z co-ordinates only.
Boundary lines	A boundary line is a straight line piece between two points and is part of a boundary.
Boundaries	A boundary is a collection of connected boundary lines that forms the continuous boundary between layers.
PL-lines	A piezometric level line is a collection of connected straight line pieces defining a continuous piezometric level.
Phreatic line	This is a PL-line that acts as phreatic line. The phreatic line (or ground- water level) is used to mark the border between saturated and unsatu- rated soil.
Layers	A layer is the actual soil layer. Its geometrical shape is defined by its boundaries, and its soil type is defined by its material.
Materials	A material defines the actual soil material (or soil type). It contains the parameters belonging to the soil type, such as its unsaturated weight and its saturated weight. A material can be connected to a layer in order to define the soil type of the layer.
Limits	A limit is a vertical boundary defining the 'end' at either the left or right side of the geometry. It is defined by an X co-ordinate only. Note that this is the only type of element that cannot be deleted.

Adding, moving and deleting the above-mentioned elements are subject to the conditions for a valid geometry (see section 7.2). For example, while dragging selected geometry elements, the program can perform constant checks on the geometry validity (section 7.4.4). Invalid parts will be shown as construction elements (thick blue lines).

7.1.2 Construction elements

Besides the D-Series geometry elements (section 7.1.1), special construction elements can also be used for sketching the geometry graphically. These elements are not a direct part of the geometry and the restrictions on editing (adding, moving, and deleting); these elements are therefore far less rigid. The only restriction that remains is that these elements cannot be moved and/or defined beyond the limits of the geometry.

Lines	A line Construction consists of a starting point and end point, both de-			
	fined by a left-hand mouse click in the graphic input screen.			
Poly-lines	A poly-line Construction consists of a series of connected lines, all de-			
	fined by a left-hand mouse click in the graphic input screen.			

Construction elements will be displayed as solid blue lines. Valid constructions elements are converted to geometry elements as soon as the geometry is (re-) generated. For more information on adding lines and poly-lines, see section 7.4.

7.2 Assumptions and restrictions

During geometrical modeling, the program uses the following assumptions.

- ♦ Boundary number 0 is reserved for the base.
- ♦ A soil layer number is equal to the boundary number at the top of the layer.
- ♦ The boundary with the highest number defines the soil top surface.
- ♦ A material (soil type) must be defined for each layer except for layer 0 (base). Different layers can use the same material.
- ♦ All the boundaries must start and end at the same horizontal co-ordinates.
- ♦ Boundaries should not intersect, but they may coincide over a certain length.
- ♦ All horizontal co-ordinates on a boundary must be ascending that is, the equation $X[i+1] \ge X[i]$ must be valid for each following pair of X co-ordinates (vertical parts are allowed).
- ♦ PL-lines may intersect and may coincide with each other over a certain length.
- ♦ PL lines and layer boundaries may intersect.
- ♦ All PL-lines must start and end at the same horizontal co-ordinate.
- \diamond All X co-ordinates on a PL-line must be strictly ascending that is, the equation X[i+1] > X[i] must be valid for each following pair of X co-ordinates (no vertical parts allowed).

One way for inputting geometry data is through the *Geometry* menu, as explained in the *Reference* section (section 4.3). This section describes an other way to create and manipulate geometry graphically using the tool buttons of the *View Input* window.

7.3 View Input Window

7.3.1 General

To use the *View Input* option, click the *Geometry* tab to activate it in the regular *View Input* window or use the menu to select it.

Figure 7.1: View Input window, Geometry tab

When the *Geometry* tab in the *View Input* window is selected, it displays a graphical representation of only the geometrical data. On the left of the window, the *Edit* and *Tools* buttons are displayed (section 7.3.2). On the right, the legend belonging to the geometry is displayed (section 7.3.3). At the bottom of the window, the title panel and the info bar are displayed. The title panel displays the project titles defined using the *Properties* option in the *Project* menu. The info bar provides information (from left to right) about the current cursor position, the current mode and the object currently selected. The legend, title panel and info bar are optional and can be controlled using the *Properties* option in the *Project* menu.

It is possible to use three different modes when working in the *Geometry* tab of the *View Input* window:

Select	The <i>Select</i> mode is the default mode and enables the user to select existing elements in the window.
Add	The <i>Add</i> mode allows the addition of elements using one of the <i>Add</i> buttons. By selecting one of these buttons, one switches to the <i>Add</i> mode. As long as this mode is active, the user can add the type of element which is selected.
Zoom	The <i>Zoom</i> mode allows the user to view the input geometry in different sizes. By selecting one of the <i>Zoom</i> buttons or the <i>Pan</i> button, one activates the <i>Zoom</i> mode. While in this mode, the user can repeat the zoom or pan actions without re-selecting the buttons.

It is possible to change modes in the following ways. When in *Add* or *Zoom* mode, it is possible to return to the *Select* mode by clicking the right-hand mouse button, or by pressing the *Escape* key, or by clicking the *Select mode* button. To activate the *Add* mode, select one of the *Add* buttons. To activate the *Zoom* mode, select one of the *Zoom* buttons or the *Pan* button.

Note: The current mode is displayed on the info bar at the bottom of the View Input window.

7.3.2 Buttons

Edit panel:

Þ	Select and Edit mode In this mode, the left-hand mouse button can be used to graphically select a pre- viously defined grid, load, geotextile or forbidden line. Items can then be deleted or modified by dragging or resizing, or by clicking the right-hand mouse button and choosing an option from the menu displayed. Pressing the <i>Escape</i> key will return the user to this <i>Select</i> and <i>Edit</i> mode.
	<i>Pan</i> Click this button to change the visible part of the drawing by clicking and dragging the mouse.
>	Add point(s) to boundary / PL-line Click this button to add points to all types of lines (lines, poly-lines, boundary lines, PL-lines). By adding a point to a line, the existing line is split into two new lines. This provides more freedom when modifying the geometry.
~	Add single lines(s) Click this button to add single lines. When this button is selected, the first left-hand mouse click will add the info bar of the new line and a "rubber band" is displayed when the mouse is moved. The second left-hand mouse click defines the end point (and thus the final position) of the line. It is now possible to either go on clicking start and end points to define lines, or stop adding lines by selecting one of the other tool buttons, or by clicking the right-hand mouse button, or by pressing the <i>Escape</i> key.
9 2 -0	Add polyline(s) Click this button to add poly-lines. When this button is selected, the first left-hand mouse click adds the starting point of the new line and a "rubber band" is displayed when the mouse is moved. A second left-hand mouse click defines the end point (and thus the final position) of the first line in the poly-line and activates the "rubber band" for the second line in the poly-line. Every subsequent left-hand mouse click again defines a new end point of the next line in the poly-line. It is possible to end a poly-line by selecting one of the other tool buttons, or by clicking the right-hand mouse button, or by pressing the <i>Escape</i> key. This also stops adding poly-lines al- together. A different way to end a poly-line is to double-click the left-hand mouse button. Then the poly-line is extended automatically with an 'end line'. This end line runs horizon- tally from the position of the double-click to the limit of the geometry in the direction the last line of the poly-line was added. Therefore, if the last line added was defined left to right the 'and line' will stop at the right limit. Note that but finishing adding a stop adding poly-line stop adding a stop adding a stop adding the right limit.
	poly-line this way, it is possible to start adding the next poly-line straight away.

	Add PL-line(s)
-	Click this button to add a piezometric level line (PL-line). Each PL-line must start
	at the left limit and end at the right limit. Furthermore, each consecutive point must
	have a strictly increasing X co-ordinate. Therefore, a PL-line must be defined from
	rearram will always releasts the first point slicked (left hand mays butten) to the left
	limit by moving it horizontally to this limit. If trying to define a point to the left of the
	previous point, the rubber band icon indicates that this is not possible. Subsequently
	clicking on the left side of the previous point, the new point will be added at the end of the rubber band icon instead of the position clicked.
	As with poly-lines, it is also possible to end a PL-line by double-clicking the left-hand
	mouse button. In this case, the automatically added 'end line' will always end at the
	right limit.
	To stop adding PL-lines, select one of the other tool buttons, or click the right-hand mouse button, or press the <i>Escape</i> key.
_	Zoom in
€	Click this button to enlarge the drawing, then click the part of the drawing which is to be at the center of the new image. Repeat if necessary.
_	Zoom out
<i>,</i> 9	Click this button, then click on the drawing to reduce the drawing size. Repeat if necessary.
	Zoom rectangle
P	Click this button then click and drag a rectangle over the area to be enlarged. The selected area will be enlarged to fit the window. Repeat if necessary.
	Measure the distance between two points
1	Click this button, then click the first point on the View Input window and place the
	cross on the second point. The distance between the two points can be read at the
	Add calculation vertical
	Click this button to graphically define the position of a vertical.

Tools panel:

	Undo zoom
%	Click this button to undo the zoom. If necessary, click several times to retrace each consecutive zoom-in step that was made.
	Zoom limits
	Click this button to display the complete drawing.
	Same scale for X and Y axis
.	Click this button to use the same scale for the horizontal and vertical directions.
	Automatic regeneration of geometry on/off
	When selected, the program will automatically try to generate a new valid geometry whenever geometry modifications require this. During generation, (poly)lines (solid blue) are converted to boundaries (solid black), with interjacent layers. New layers receive a default material type. Existing layers keep the materials that were assigned to them. Invalid geometry parts are converted to construction elements. Automatic regeneration may slow down progress during input of complex geometry, because validity will be checked continuously.
	Undo
5	Click this button to undo the last change(s) made to the geometry.

C ^a	Redo Click this button to redo the previous Undo action.
×	<i>Delete</i> Click this button to delete a selected element. Note that this button is only available when an element is selected. See section 7.5.2 for more information on how using this button.

7.3.3 Legend

At the right side of the *View Input* window (Figure 7.2) the legend belonging to the geometry is shown. This legend is present only if the *Legend* check-box in the *View Input* tab of the *Project Properties* window is activated (see section 4.1.2).

Figure 7.2: View Input window, Geometry tab (legend displayed as Layer Numbers)

In the *Geometry* tab of the *View Input* window, it is possible to change the type of legend. When a soil type box in the legend is right clicked, the menu from Figure 7.3 is displayed.

 Layer Numbers
Material Numbers
Material Names

Figure 7.3: Legend, Context menu

With this menu, there are three ways to display the legend of the layers:

- As Layer Numbers: the legend displays one box for each layer. Each layer (and therefore each box) is displayed in a different standard color. Next to each box, the layer number and the material name are displayed, corresponding to the color and number of the layer in the adjacent *Geometry* window (see Figure 7.2).
- ♦ As Material Numbers: the legend displays one box for each material. Each material (and therefore each box) is displayed in a different color which can be changed by the user (see below). Next to each box, the material number and name are displayed, corresponding to the color and number of the material in the adjacent *Geometry* window (see Figure 7.4).

♦ As Material Names: the legend displays one box for each material. Each material (and therefore each box) is displayed in a different color which can be changed by the user (see below). Next to each box, only the material name is displayed, corresponding to the color and name of the material in the adjacent Geometry window (see Figure 7.5).

Figure 7.4: View Input window, Geometry tab (legend displayed as Material Numbers)

Figure 7.5: View Input window, Geometry tab (legend displayed as Material Names)

Unlike the standard colors used to display layers with their layer colors, it is possible to define different colors used when displaying materials. To change the color assigned to a material, right click the material box. The menu from Figure 7.6 is displayed.

Properties Material Colors
Layer Numbers Material Numbers
✓ Material Names

Figure 7.6: Legend, Context menu (for legend displayed as Materials)

When selecting *Material Colors* the *Color* window appears (Figure 7.7), in which the user can pick a color or even define customized colors himself (by clicking the *Define Custom Colors* button).

Color			? ×
Basic colors:			
Custom colors:			
		Hue: 117 Sat: 240	Red: 12 Green: 255
Define Custom Colors >>	Color Solid	Lum: 126	Blue: 239
OK Cancel	Add to Custom Colors		

Figure 7.7: Color window

7.4 Geometry modeling

7.4.1 Create a new geometry

There are two ways to create a new geometry without the wizard:

- ♦ Open the *Geometry* menu and choose *New*.
- ◊ Open the *File* menu and choose *New*. In the *New File* window displayed, select *New Geometry* and click *OK* (see section 4.3.2).

In both cases, the *Geometry* tab of the *View Input* window is displayed (Figure 7.8) with the default limits of the geometry (from 0 to 100 m).

Figure 7.8: View Input window, Geometry tab
7.4.2 Set limits

The first thing to do when creating new geometry is to set the model limits. This is possible by selecting and then dragging the limits to their proper place one by one. It is also possible to select a limit and edit its value by clicking the right-hand mouse button after selecting the limit and then choosing the *Properties* option in the pop-up menu. The property window belonging to the selected limit is displayed (Figure 7.9), enabling to define the new X co-ordinate for this limit.

Right Limit		×
Limit at right side:	[m]	75.000
ОК		Cancel

Figure 7.9: Right Limit window

7.4.3 Draw layout

It is possible to use the Add single line(s), Add polyline(s) and Add point(s) to boundary / PLline buttons to draw the layout of the geometry. See section 7.3.2 for more information's on how using those buttons.

Add single line(s) 🔄 and Add polyline(s) 📰

Each (poly)line is displayed as a solid blue line, and each point as a small black rectangle (Figure 7.10).

Figure 7.10: Representation of a polyline

The position of the different points of a (poly)line can be modified by dragging the points as explained in section 7.5.4 or by editing the (poly)line. This is done by clicking the right-hand mouse button after selecting the (poly)line and then choosing the *Properties* option in the pop-up menu.

The underlying grid helps the user to add and edit (poly)lines. Use the *Properties* option in the *Project* menu to adjust the grid distance and force the use of the grid by activating *Snap to grid*. When this option is activated, each point is automatically positioned at the nearest grid point.

The specified line pieces must form a continuous line along the full horizontal width of the model. This does not mean that each line piece has to be connected exactly to its predecessor and/or its successor. Intersecting line pieces are also allowed, as shown in the examples of Figure 7.11.

Figure 7.11: Examples of configurations of (poly)lines

- ♦ Configuration (1) is allowed. The different lines are connected and run from boundary to boundary
- ♦ Configuration (2) is also allowed. The different are connected. They are defined as being connected because they intersect. The line construction runs from boundary to boundary.
- ♦ Configuration (3) is illegal, as there is no connection with the left boundary.

Add point(s) to boundary / PL-line 꾇

Use this button to add extra points to lines (lines, polylines, boundary lines, PL-lines). By adding a point to a line, the existing line is split into two new lines. This provides more freedom when modifying the geometry.

Note: When the *Add point(s) to boundary/PL-line* button is clicked, each left-hand mouse click adds a new point to the nearest line until one of the other tool buttons is selected, or click the right-hand mouse button, or press the *Escape* key.

7.4.4 Generate layers

Use the Automatic regeneration of geometry on/off button in to start or stop the automatic conversion of construction elements to actual boundaries and layers. Valid (poly)lines are converted to boundaries, which are displayed as black lines. Invalid lines remain blue.

Layers are generated between valid boundaries, and default soil types are assigned.

It is possible to modify the soil type assigned to a layer by first selecting the layer and then clicking the right-hand mouse button and choosing the *Layer Properties* option in the popup menu to display the *Layer* window (see Figure 7.19 in section 7.5.3). Once a material has been assigned to a layer, this material will continue to be associated to that layer in subsequent conversions of construction elements as long as the layer is not affected by those conversions.

The most common cause of invalid (poly)lines is that they are not part of a continuous polyline running from limit to limit. Sometimes, lines appear to start/end at a limit without actually being on a limit. Figure 7.12 gives an example: on the left geometry (1), the end of the line seems to coincide with the boundary. However, zooming in on the point (geometry (2) on the right) reveals that it is not connected to the boundary. Therefore the geometry is considered invalid.

Figure 7.12: Example of invalid point not connected to the left limit

It is possible to correct this by dragging the point to the limit while the specific area is zoomed in or by selecting the point, clicking the right-hand mouse button, choosing the *Properties* option in the pop-up menu (section 7.5.3) and making the X co-ordinate of the point equal to the X co-ordinate of the limit.

7.4.5 Add piezometric level lines

It is possible to use the Add PL-line(s) to add PL-lines button. When adding a PL-line, D-GEO PIPELINE imposes the limitation that the subsequent points of the PL-line have an increasing X co-ordinate. Furthermore the first point of a PL-line is to be set on the left boundary and the last point on the right boundary.

It is possible to change the position of the different points of a PL-line by dragging the points as explained in section 7.5.4 or by editing the PL-line. This is done by selecting the PL-line, clicking the right-hand mouse button and choosing the *Properties* option in the pop-up menu (section 7.5.3).

7.5 Graphical manipulation

7.5.1 Selection of elements

After selecting a geometry element it is possible to manipulate it. In order to be able select a geometry element, the select mode should be active. Then it is possible to select an element by clicking the left-hand mouse button. To select a layer, click on the layer number, material number or material name, depending on the option chosen in the *Properties* dialog in the *Project* menu. When successfully selected, the element will be displayed highlighted (for example, a point will be displayed as a large red box instead of a small black box).

The following remarks are relevant to selection accuracy and ambiguity.

Ambiguous selection

A selection of geometrical elements can be ambiguous. Figure 7.13 gives an example: a user may want to select a point, a boundary line, a boundary or a PL-line. As several elements are in close proximity to each other, D-GEO PIPELINE does not automatically select an element.

Figure 7.13: Selection accuracy as area around cursor

In this case D-GEO PIPELINE requires the user to assign the element that is to be selected by displaying a pop-up menu (Figure 7.14) with the available types of elements within the range of the selection click. It is possible to select the element from this menu.

Figure 7.14: Selection accuracy as area around cursor

Clear selection

It is possible to clear a selection by clicking in an area without geometry elements in the direct area.

7.5.2 Deletion of elements

Click the *Delete* button \times to delete a selected element. This button is only available when an element is selected.

When a point is selected and deleted, it and all lines connected to it are deleted as shown in Figure 7.15.

Figure 7.15: Example of deletion of a point

When a geometry point (a point used in a boundary or PL-line) is selected and deleted, the program deletes the point and its connected boundary lines as shown in Figure 7.16. It then inserts a new boundary that reconnects the remaining boundary lines to a new boundary.

Figure 7.16: Example of deletion of a geometry point

Deletion of a geometry element (boundary, boundary line, geometry point, PL-line) can result in automatic regeneration of a new valid geometry, if the *Automatic regeneration* option is switched on.

When a line is selected and then deleted, the line and its connecting points are deleted as shown in Figure 7.17. In addition the layer just beneath that boundary is deleted. All other line parts that are not part of other boundaries will be converted to construction lines.

Figure 7.17: Example of deletion of a line

7.5.3 Using the right-hand mouse button

When using the mouse to make geometrical manipulations, the right mouse button enables full functionality in a pop-up menu, while the left button implies the default choice. The options available in the pop-up menu depend on the selected geometrical element and the active mode.

When the *Select* mode is active and the right-hand mouse button is clicked, the pop-up menu of Figure 7.18 is displayed.

Properties Delete	Del
	-
Undo	Ctrl+Z
Redo	Ctrl+Y
View Preferences	
Statistics	
Layer Properties	
Delete All Loose Lines	
Delete All Loose Points	

Figure 7.18: Pop-up menu for right-hand mouse menu (Select mode)

Properties	When this option is clicked, the property editor for the selected object is displayed. This procedure is performed by first selecting an object by clicking on it with the left-hand mouse button. Then clicking the right- hand mouse button anywhere in the graphic window will display the pop-up menu. It is possible to use the property editor to quickly adapt the values (properties) of the selected object. Each type of element requires its own properties and therefore its own property editor as shown from Figure 7.20 to Figure 7.23 below.
Delete	This option deletes the element that has been selected (see the comments for the <i>Delete</i> button in section 7.5.2).
Undo	This option will undo the last change(s) made to the geometry.
Redo	This option will redo the previous <i>Undo</i> action.
View Preferences	This option opens the <i>Properties</i> dialog in the <i>Project</i> menu as displayed in.
Statistics	It is possible to use this option to view a window displaying all the vital statistics of the input data. Note that in the window construction lines are called free lines.
Layer Properties	This option is a special feature that edits the material properties of layers. It is possible to click anywhere in a layer and directly choose this option to edit its properties (Figure 7.19). Clicking outside the geometry layers will display the menu with the <i>Layer Properties</i> option disabled, as there is no layer for which properties can be displayed.

Delete All LooseThis option will delete all loose lines. Loose lines are actually construc-
tion lines that are not part of the boundaries or PL-lines (therefore, all
lines displayed as solid blue lines). With this option, it is possible to
quickly erase all the "leftover bits" of loose lines that may remain after
converting lines to a geometry.Delete All Loose
PointsThis option will delete all loose points.

Material type :	Soft Clay	-
nformation on curre	nt material type	
Unit weight, dry	[kN/m³]	14.00

Figure 7.19: Layer window (Property editor of a layer)

Point 24		×
X co-ordinate:	[m]	56.000
Z co-ordinate	[m]	·11.000
Y co-ordinate	[m]	0.000
	OK	Cancel

Figure 7.20: Point window (Property editor of a point)

D Bou	undary (3		×	۲
e ⊒_e		Point Number	X Co-ordinate [m]	Z Co-ordinate [m]	
12	1	12	0.000	-4.000	
_ 3 +×	2	15	38.906	-4.657	
	3	20	46.965	-7.000	
\sim	4	21	75.000	-7.000	
00	*				
- Ch					
,	,				
	L	OK	Cancel	Help	
					'

Figure 7.21: Boundary window (Property editor of a polyline)

Boundary Line 1	×
Point 5	
X co-ordinate	[m] 6.362
Z co-ordinate	[m] -1.053
Point 6	
X co-ordinate	[m] 41.400
Z co-ordinate	[m] -0.716
Length	[m] 35.040
Slope	[%] 1.0
	K Cancel

Figure 7.22: Boundary window (Property editor of a line)

D PL-	Line 3			2	<
De Be		Point Number	X Co-ordinate [m]	Z Co-ordinate [m]	
	▶ 1	42	0.000	-1.826	
	*	43	75.000	-1.991	
\mathbb{R}					
Pa I					
C					
	[
		OK	Cancel	Help	

Figure 7.23: PL-line window (Property editor of a PL-line)

Note: In the *Boundary* and *PL-line* properties windows, only the point's number can be modified, not the X and Z co-ordinates.

7.5.4 Dragging elements

One way to modify elements is to drag them to other locations. To drag an element, first select it. Once the element has been selected, it is possible to drag it by pressing and holding down the left-hand mouse button while relocating the mouse cursor. Dragging of geometry elements can result in automatic regeneration of geometry, if this option is switched on (section 7.4.4) as shown in the example of Figure 7.24: when the selected point is moved upwards, a new geometry will be created. D-GEO PIPELINE creates new layers according to this new geometry.

Figure 7.24: Example of dragging of a point

|

8 Tutorial 1: Calculation and assessment of the drilling fluid pressure

This first exercise considers installation of a steel pipeline by using the horizontal directional drilling technique. The exercise focuses on the calculation of the minimal required drilling fluid pressure which is necessary to perform a horizontal directional drilling and the maximum allowable drilling fluid pressure, which depends on the strength and deformability of the soil through which the drilling is carried out.

The objectives of this tutorial are:

- ♦ To learn how to start up a calculation in D-GEO PIPELINE;
- ♦ To calculate the minimum required drilling fluid pressure;
- ♦ To calculate the maximum allowable drilling fluid pressure;
- ♦ Assessment of the calculated drilling fluid pressures.

The following module is needed:

♦ D-GEO PIPELINE Standard module (HDD)

This tutorial is presented in the file Tutorial-1.dri.

8.1 Introduction to the case

The horizontal directional drilling technique is used to install a steel pipeline in a silty sand layer. The pipeline configuration is shown in Figure 8.1. The soil properties are provided in Table 8.1.

Figure 8.1: Pipeline configuration for Tutorial 1

Dry unit weight	[kN/m ³]	18
Wet unit weight	[kN/m ³]	20
Cohesion	[kN/m ²]	0
Angle of internal friction	[°]	30
Undrained strength top	[kN/m ²]	0
Undrained strength bottom	[kN/m ²]	0
E modulus top	[kN/m ²]	10000
E modulus bottom	[kN/m ²]	15000
Poisson's ratio	[-]	0.35

The pipeline material used in this tutorial is a steel 240 and its properties are given in Table 8.2.

Material quality		Steel 240
Negative wall thickness tolerance	[%]	0
Yield strength	[N/mm ²]	240
Partial material factor	[-]	1.1
Partial material factor test pressure	[-]	1
Young's modulus	[N/mm ²]	205800
Outer diameter	[mm]	323.9
Wall thickness	[mm]	7
Unit weight pipe material	[kN/m ³]	78.50
Design pressure	[Bar]	8
Test pressure	[Bar]	9
Temperature variation	[°C]	5

 Table 8.2: Properties of steel material (Tutorial 1)

8.2 Project

8.2.1 Start

To create a new project, follow the steps described below:

- 1. Start D-GEO PIPELINE from the Windows task-bar (Start/Programs/Deltares Systems/ D-GEO PIPELINE).
- 2. Click *File* and choose *New* on the menu bar to start a new project.
- 3. In the New File window, select the option New geometry to start (Figure 8.2).

New File	I		
Geometry New geometry New geometry wizard			
C Import geometry			
OK Cancel Help			

Figure 8.2: New File window

This will result in the empty geometry window shown in Figure 8.3.

File Project Sol Geometry GeoChiptots Loads Pipe Defaults Calculation Results Tools Window Help Image: Control
••••••••••••••••••••••••••••••••••••
D first liquit Control
Edit A 10 10 10 10 10 10 10 10 10 10 10 10 10

Figure 8.3: View Input window

- 4. Save the project by clicking *Save As* in the *File* menu and by entering <Tutorial-1> as project name.
- 5. Click Save to close this window.

8.2.2 **Project Properties**

To give the project a meaningful description, follow the steps described below:

6. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window (Figure 8.4).

Project Pro	perties 🗙
Identificatio	n View Input
Title 1	Tutorial 1 for D-Geo Pipeline
Title 2	Calculation of the drilling fluid pressure
Title 3	
Date	22-7-2013 Use current date
Drawn by	
Project ID	
Annex ID	
🗖 Save as	default OK Cancel Help

Figure 8.4: Project Properties window, Identification tab

7. Fill in <Tutorial 1 for D-GEO PIPELINE > and <Calculation of the drilling fluid pressure> for *Title 1* and *Title 2* respectively in the *Identification* tab.

In the other tab of the *Project Properties* window, some defaults values are modified in order to make the graphical geometry more understandable.

8. Select the *View Input* tab (Figure 8.5) to change the settings of the *View Input* window.

Project Properties		×
Identification View Input		
Display ✓ Info Bar ✓ Legend ✓ Same Scale for x and y Agis ✓ Layer Colors ✓ Bulers ✓ Origin ✓ Large Qursor ✓ Calculation Verticals ✓ Points	Labels ✓ Points ✓ Cglculation Verticals ✓ Layers Layer labels as ✓ Layer Numbers ✓ Material Numbers ✓ Material Names Grid ✓ Snow Grid ✓ Snap to Grid Grid distance [m] 1.000	
Save as default	OK Cancel He	elp 🛛

Figure 8.5: Project Properties window, View input tab

- 9. Mark the Points check-box of the Labels sub-window in order to display the point's number.
- 10. Mark the *Snap to grid* check-box in order to ensure that objects align to the grid automatically when they are moved or positioned.
- 11. Before closing the *Project Properties* window, mark the *Save as default* check-box to use the settings previously inputted every time D-GEO PIPELINE is started, which means for the other tutorials.
- 12. Click *OK* to confirm.

8.2.3 Model

The horizontal directional drilling technique is used in this first tutorial.

- 13. Select *Model* from the *Project* menu bar to open the *Model* window (Figure 8.6).
- 14. Check that the Horizontal directional drilling model is selected (default model).
- 15. Click OK to confirm.

Model
Model
 Horizontal directional drilling
Ends at surface
Dutch Standard NEN
Micro tunneling
C Construction in trench
Settlement
Use settlement
🖲 Koppejan
C Isotachen
OK Cancel Help

Figure 8.6: Model window

8.3 Geometry

Firstly, the geometry of Figure 8.1 needs to be put in D-GEO PIPELINE. In order to do this, the following actions should bee performed:

16. First enlarge the dimensions of the geometry window by selecting the left boundary by clicking the left mouse button, then click the right button and select *Properties*. This will result in the coordinate window for the left boundary as shown in Figure 8.7. Enter coordinate X of <-100 m>.

Left Limit		×	(
Limit at left side:	[m]	-100.000	
OK		Cancel	

Figure 8.7: Left Limit window

- 17. Repeat the previous described actions for the right boundary and shift the boundary to coordinate X of <200 m>. The width in between the left and the right boundary is now 300 m.
- 18. Choose the drawing option *Zoom limits* if from the *Tools* section so that the drawn geometry appears in the center of the screen.
- 19. Choose the drawing option from the edit-window *Add single line* \ge to draw the surface line of the longitudinal cross section of the horizontal directional drilling and position the straight surface line at Z = 5 m. Use the right mouse button to finish the line.
- 20. Choose the drawing option *Add single line* to draw the lower boundary of the longitudinal cross section of the horizontal directional drilling and position the straight lower boundary line at Z = -40 m.
- 21. Choose the drawing option from the *Tools* section *Automatic regeneration of geometry* so that the geometry as shown in Figure 8.8 appears. If the *Automatic regeneration* option already is selected, click on the *Edit* icon to regenerate the geometry.
- 22. Choose the drawing option from the edit-window Add pl-line(s) and position the level of the groundwater at coordinate Z = 0 m. The blue dashed line represents the groundwater line (PL line).

View Input									
Geometry Inc	ut Top View								
Edit 🙁	_10	<u> -100</u>			50	100	150	. 200 . m	
		1						þ	
		5						6	
ools 🙁	.10								
	16								
					t				
	.35								
	.40	3						4	
	.45 -10	0.000						200.000	
5.00	Z: 11.00	Edit	Current	object: None					

Figure 8.8: View Input window, Geometry tab

8.3.1 Soil layer properties

The properties of the soil layers should be specified in the menu materials which can be entered by clicking soil. In this tutorial only one soil layer is considered.

- 23. Click *Soil* and select *Materials* on the menu bar to open the *Materials* window (Figure 8.9) and enter the soil data.
- 24. Add a new material by choosing *Add* button below the materials list on the left side of the window with the new <Silty Sand>.
- 25. Enter the soil data as given in Table 8.1.
- 26. Finish the input of soil data by clicking OK.

Materials			×
Material <u>n</u> ame Soft Clay Medium Clay Stiff Clay Peat	Total Unit Weight Above phreatic level Below phreatic level	[kN/m³] [kN/m³]	18.00 20.00
Loose Sand Dense Sand Sand Gravel	Cohesion	[kN/m²]	0.00
Loam Muck Undetermined	Cu top	(deg.) [kN/m²]	0.00
Silty Sand	Cu bottom Emod top	[kN/m²] [kN/m²]	0.00
	Emod bottom Adhesion	[kN/m²] [kN/m²]	0.00
Add Insert	Friction angle (Delta) Poisson ratio (Nu)	[deg.]	0.00
		DK Can	cel Help

Figure 8.9: Materials window

The defined soil properties and the groundwater level have to be assigned to the drawn geometry of the longitudinal cross section. The assignments can be carried out by clicking geometry and choosing the subsequent described options on the menu bar.

8.3.2 Phreatic Line

- 27. On the *Geometry* menu, select *Phreatic Line* to open *Phreatic Line* window (Figure 8.10) in which the phreatic line for calculation of the groundwater pressures can be selected.
- 28. Choose PL-line nr. <1> (only one phreatic line is available) and click OK.

Phreatic Line	×
Select the PILine (by number) which acts as phreatic line:	•
OK Cancel	Help

Figure 8.10: Phreatic Line window

8.3.3 Layers

- 29. Click *Geometry* and select *Layers* on the menu bar to assign the soil properties to the soil layers in the longitudinal cross section. To assign a material to a layer, select the *Material* tab.
- 30. Assign the properties of the defined layer *Silty Sand* to layer number one in the longitudinal cross section. The available soil layers with defined properties are shown in left column of the materials window. The layers in the longitudinal cross section are shown in the right column of the materials window. The defined properties are assigned to layer nr 1 by clicking the arrow in between the columns. This will result in the *Material* tab shown in Figure 8.11.

Name		Number	Material name	Load
Soft Clay Medium Clay Stiff Clay Peat Loose Sand Dense Sand Sand Gravel Loam Muck	<u>`</u>	1	Soft Clay	
Undetermined ▶ Silty Sand				

Figure 8.11: Layers window, Materials tab

31. Click *OK* to quit the window and return to the geometry window to watch the change of layer name in the legend.

8.3.4 PL-Lines per Layers

32. Click *Geometry* and select *PL–lines per Layers* on the menu bar to open the *PL–lines per Layer* window (Figure 8.12) in which the defined PL–lines to the soil layers in the longitudinal cross section can be defined. This window contains the information for the

calculation of the groundwater pressure distribution. In this tutorial only one PL–line is defined. The groundwater pressure at the top of the silty sand layer and the bottom of this layer should be calculated based on the hydraulic head of PL–line 1.

33. Click OK to close the window.

D PL-lin	es per Laye	r	×	(
$\overline{\mathbf{x}}$	Layer Number	PL-line at top	PL-line at bottom	
	1	1	1	
ß				
· · ·				
0	K _ (Cancel	Help	

Figure 8.12: PL-lines per Layers window

8.3.5 Check Geometry

- 34. The geometry can be tested by clicking *Geometry* and selecting *Check Geometry* on the D-GEO PIPELINE menu bar. If the geometry is entered properly, the message shown in Figure 8.13 appears.
- 35. Click *OK* to close the window.

Figure 8.13: Check Geometry window

8.4 Pipeline Configuration

- 36. Click *Pipe* and select *Pipeline Configuration* on the menu bar to open the *Pipeline configuration* window in which the pipeline configuration can be put in.
- 37. Enter the values given in Figure 8.1 of the introduction.
- 38. Select a *Pulling direction product pipe* < From left to right> as indicated in Figure 8.14.

					11 P					
X,Y-coordinates		00.000		rizonta	al bendings					
Left point X-coordinate	[m]	-90.000		42	×1 [m]	Y1 [m]	×2 [m]	Y2 [m]	Radius (m)	Direction
Left point Y-coordinate	[m]	0.000		*						
Left point Z-coordinate	[m]	5.000								
Right point X-coordinate	[m]	190.000	1							
Right point Y-coordinate	[m]	0.000	8	6						
Right point Z-coordinate	[m]	5.000		2						
Angles (entry/exit)				6						
Angle left	[deg]	15.00								
Angle right	[deg]	15.00								
Bending radius			511							
Bending radius left	[m]	400.000								
Bending radius right	[m]	400.000								
Bending radius pipe on rollers	[m]	400.000								
Pipe between radii			- 11							
Lowest level of pipe	[m]	-15.000								
Angle of pipe	[deg]	0.00								
Pulling direction product pipe										
Erom left to right	O F	rom right to left								

Figure 8.14: Pipeline Configuration window

- 39. Confirm by clicking *OK*.
- 40. Watch the entered pipeline configuration on the *Input* tab of the *View Input* window (Figure 8.15).

Figure 8.15: View Input window, Input tab

8.5 Soil behavior

When the borehole is created, the drilling fluid will exert pressure on the borehole wall and the soil next to the borehole. When the pressure rises above a certain value, plastic deformation of the soil will occur, initially adjacent to the borehole. When the pressure is increased further beyond this value, the zone with plastic deformation will increase. If the zone with plastic deformation reaches the surface a blow-out will occur. Besides the growth of the plastic zone due to high drilling fluid pressures, formation of cracks in the borehole wall in granular soils will take place before the plastic zone reaches its maximum expansion. The formation of cracks around the borehole in granular soils is dependent on the strain of the bore hole wall which occurs when the drilling fluid pressure is increasing and the borehole is expanding.

Crack formation and growth of the plastic zone are dependent upon soil characteristics. Soil layers with a very high strength and/or a very high stiffness are suitable for drilling with high

drilling fluid pressures.

Strength of soil layers is dependent on the drained or undrained behavior of soil layers during application the drilling fluid pressure on the bore hole wall. Depending on the permeability of the soil layer, the soil will behave drained or undrained. The coarser granular soils are usually well permeable so that the excess water pressure due to the drilling fluid pressures will dissipate easily. The strength of the soil which exhibits this drained behavior can be calculated using the drained (effective) strength parameters effective cohesion (c) and angle of internal friction (φ). In case of undrained behavior, which usually occurs in very fine grained cohesive soils, the strength of the soil should be calculated using the undrained cohesion (c_u).

- 41. Click *GeoObjects* and select *Boundaries Selection* on the menu bar to select the input window specification of the soil behavior. This will result in the *Boundaries Selection* window shown in Figure 8.16.
- 42. Choose the boundary between the undrained and drained layer on top of layer nr 1. This choice results in drained behavior of layer nr 1. The other in the boundaries window mentioned boundary in between compressible and incompressible layers can be chosen on top of layer nr 1 (see tutorial 3 for explanation about this compressibility boundary).

Boundaries Selection		×
Boundaries		
Drained and undrained layers Compressible and uncompressible layers	Top of layer 1 1	
OK Cancel	Help	

Figure 8.16: Boundaries Selection window

8.6 Calculation Verticals

The locations in the longitudinal cross section at which a calculation should be carried out must be specified by the user. The user is able to perform calculations at uniform distances along the longitudinal cross section but is also able to perform more calculations at short distances at areas of interest.

- 43. Click *GeoObjects* and select *Calculation Verticals* on the menu bar to select the *Calculation Verticals* window for specification of the calculation locations along the longitudinal cross section.
- 44. Choose the *Automatic generation of L co-ordinates* option on the right side of the window and choose the following values: <-80 m> for *First*, <180 m> for *Last* and <20 m> for *Interval*.
- 45. Click on the *Generate* button and watch the result of automatic vertical generation on the left side of the *Calculation Verticals* window. This will result in the window shown in Figure 8.17.
- 46. Click *OK* to confirm the selected verticals and switch to the input window to watch the location of the verticals in the longitudinal cross section.

L-coordinate Additional Settlement [m] [mm] 2 -60.00 3 -40.00 4 -20.00 5 0.00 6 20.00 7 40.00 9 80.00 10 100.00 12 140.00 13 160.00 14 180.00 10 100.00 11 120.00 12 140.00 14 180.00	icioi		ciculo -			A		-61	
Image: constraint of the second of the s			L-coordinate	Additional Settlement	1	-Automatic ge	eneration	of L-co-d	ordinates
Image: model of the second						<u>First L</u>	[m]	-80.00	
1 -80.00 00 2 -60.00 0.0 3 -40.00 0.0 4 -20.00 0.0 5 0.00 0.0 66 -20.00 0.0 7 -40.00 0.0 9 -80.00 0.0 11 120.00 0.0 12 140.00 0.0 13 160.00 0.0 14 180.00 0.0			[m]	[mm]					
2 -60.00 0.0 3 -40.00 0.0 4 -20.00 0.0 5 0.00 0.0 7 40.00 0.0 9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 13 160.00 0.0 14 180.00 0.0	1	1	-80.00	0.0		<u>L</u> ast L	[m]	180.0	J
3 -40.00 0.0 4 -20.00 0.0 5 0.00 0.0 6 20.00 0.0 7 40.00 0.0 9 80.00 0.0 10 100.00 0.0 12 140.00 0.0 14 180.00 0.0	2	2	-60.00	0.0		Internal	[m]	20.00	
4 -20.00 0.0 5 0.00 0.0 6 20.00 0.0 7 40.00 0.0 8 60.00 0.0 9 80.00 0.0 10 100.00 0.0 12 140.00 0.0 13 160.00 0.0 *	3	3	-40.00	0.0		inter <u>v</u> ai	[m]	20.00	
5 0.00 0.0 6 20.00 0.0 7 40.00 0.0 8 60.00 0.0 9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 13 160.00 0.0 14 180.00 0.0	4	4	-20.00	0.0				(
6 20.00 0.0 7 40.00 0.0 8 60.00 0.0 9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 13 160.00 0.0 14 180.00 0.0	5	5	0.00	0.0				<u></u>	enerate
7 40.00 0.0 8 60.00 0.0 9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 13 160.00 0.0 14 180.00 0.0 *	- 6	3	20.00	0.0					
8 60.00 0.0 9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 12 140.00 0.0 14 180.00 0.0	- 7	7	40.00	0.0					
9 80.00 0.0 10 100.00 0.0 11 120.00 0.0 12 140.00 0.0 14 180.00 0.0	8	3	60.00	0.0					
10 1000 00 11 1200 00 12 14000 00 13 1600 00 14 1800 00 *		1	80.00	0.0					
11 12000 00 12 14000 00 14 180.00 00 *		10	100.00	0.0					
12 140.00 0.0 13 160.00 0.0 14 180.00 0.0 *		11	120.00	0.0					
13 160.00 0.0 14 180.00 0.0 *	_	12	140.00	0.0					
*		13	190.00	0.0					
	<u>ч</u>	14	180.00	0.0					
						1		1	

Figure 8.17: Calculation Verticals window

8.7 Product Pipe Material Data

The dimensions and the properties of the product pipe which should be installed in the reamed borehole should be specified. Especially the outer diameter is important for the calculation of the drilling fluid pressures during the pull back operation.

- 47. Click *Pipe* and select *Product Pipe Material Data* on the menu bar to open the *Product Pipe Material Data* window for specification of the dimensions and properties of the product pipe.
- 48. Click on the button Add on the left side of the window to declare a pipeline with the name <Pipe 1>.
- 49. Enter the values given in Table 8.2 for *Pipe 1* in the fields on the right side of the window as shown in Figure 8.18.
- 50. Click *OK* to confirm.

tem name Pipe 1	Pipe material © Steel © Polyethene	Database
	Material quality (S)	Steel 240
	Negative wall thickness tolerance [%]	0
	Yield strength [N/mm ²]	240.00
	Partial material factor [-]	1.10
	Partial material factor test pressure [-]	1.00
	Young's modulus [N/mm ²]	205800.00
	Outer djameter product pipe (Do) [mm]	323.90
	Wall thickness [mm]	7.00
	Unit weight pipe material [kN/m³]	78.50
	Design pressure [Bar]	8.00
Add Insert 🔺	Test pressure [Bar]	9.00
Delete Rename 👻	Temperature Variation [Deg C]	5.00

Figure 8.18: Product Pipe Material Data window

8.8 Drilling Fluid Data

Various types of drilling fluids exist; the drilling fluid has properties to transport the cuttings from the borehole to the surface. The flow behavior, which depends on the drilling fluid properties, is an important characteristic for the development of drilling fluid pressure during the different drilling stages.

Generally, the flow behavior of drilling fluid can be described with the Bingham model. The Bingham model is used in D-GEO PIPELINE and describes the fluid by means of a viscosity term and a threshold term from which flow is initialized. The threshold is called the yield point. D-GEO PIPELINE calculates the required minimum fluid pressure at the calculation verticals. During all stages of the drilling process, a pipe is present in the borehole, drill pipe or product pipe. The return flow of drilling fluid with cuttings occurs in the annulus between the borehole well and the pipe.

wall and the pipe. The required fluid pressure to initiate flow depends on the width of the annulus (radius borehole minus radius drill pipe), the properties of the drilling fluid and the required annular fluid flow rate.

The properties of the drilling fluid and the operation parameter values should be specified in D-GEO PIPELINE.

- 51. Click *Pipe* on the menu bar and select *Drilling Fluid Data* to open the *Drilling Fluid Data* window for specification of properties of the drilling fluid and the operation parameter values.
- 52. Enter the values given in Figure 8.19.
- 53. Click OK to confirm the input.

Prilling Fluid Data		
Drill pipe and bore hole dimensions		
Outer diameter pilot h <u>o</u> le	[m]	0.250
Outer diameter pilot pjpe	[m]	0.114
Outer diameter pre-ream hole	[m]	0.450
Outer diameter <u>d</u> rillpipe	[m]	0.114
Outer diameter <u>b</u> orehole	[m]	0.450
Outer djameter product pipe (Do)	[m]	0.324
Characteristics of drilling fluid flow		
Annular back flow rate pilotboring	[Liter/minute]	300.0
Annular back flow rate pre-reaming	[Liter/minute]	600.0
Annular back flow rate ream and pull-back	[Liter/minute]	400.0
Circulation loss factor pilotboring	[·]	0.30
Circulation loss factor pre-reaming	[·]	0.20
Circulation loss factor ream and pull-back	[·]	0.20
Properties of drilling fluid		
<u>Unit weight (γ)</u>	[kN/m ³]	11.1
\underline{Y} ieldpoint (τ)	[kN/m²]	0.014
Plastic viscosity (µ)	[kN.s/m²]	0.000040
ОК	Cancel	Help

Figure 8.19: Drilling Fluid Data window

8.9 Factors

D-GEO PIPELINE performs the calculations of the maximum allowable drilling fluid pressures according the Dutch regulations described in the NEN 3650 and 3651. The safety philosophy described in the NEN 3650-1 Annex B and D (NEN, 2012a) is applied on the calculations.

- 54. Click *Defaults* on the menu bar and select *Factors* to open the *Factors* window in which the default values of the contingency and safety factors are shown and can be modified. Since the window shown in Figure 8.20 shows all factors according to the Dutch regulations adapting the values is not necessary.
- 55. Click OK to confirm.

ontingency factors			Load factors		
otal unit weight (NEN)	[·]	1.10	Design pressure	[-]	1.25
Cu/cohesion (NEN)	[·]	1.40	Design pressure (combination)	[•]	1.15
ingle of internal friction (Phi) (NEN)	[·]	1.10	Test pressure	[·]	1.10
-modulus (NEN)	[·]	1.25	Installation	[·]	1.10
Pulling force (NEN)	[·]	1.40	Soil load Qn	[·]	1.50
fodulus of subgrade reaction (NEN)	[·]	1.60	Temperature	[·]	1.10
ioil Ioad Qn (NEN)	[·]	1.10	Traffic load	[·]	1.35
Pressure borehole (NEN)	[-]	1.10			
ending radius (NEN)	[•]	1.10	Factor of importance (S)	[-]	1.00
lending moment (Steel)	[-]	1.15	Allowable deflection of nine (Steel)	[%]	15.00
ending moment (PE)	[·]	1.40	Piggability (Steel)	[%]	5.00
			Allowable deflection of pipe (PE)	[%]	8.00
			Piggability (PE)	[%]	5.00
			Unit weight water	[kN/m³]	10.00
			Safety factor cover (drained laver)	[-]	0.50
			Safety factor cover (undrained layer)	[·]	0.50

Figure 8.20: Factors window

8.10 Results

The calculation of the drilling fluid pressures during the three stages of installation of the steel pipe using the horizontal directional drilling technique can be started from the D-GEO PIPELINE menu.

- 56. Click *Calculation* and select *Start* on the menu bar to start the calculation or press the function key F9. D-GEO PIPELINE automatically saves the file during the calculation.
- 57. Click *Results* and select *Drilling fluid pressure plots* on the menu bar to watch the results of the drilling fluid pressure calculations for the pilot drilling. The window shown in Figure 8.21 will appear. The graph shows the maximum allowable pressures (upper limit related to soil cover and lower limit related to deformation of the borehole) and the minimal required drilling fluid pressure for transportation of the cuttings.

Figure 8.21: Drilling Fluid Pressures window

- 58. Click on the tabs *Prereaming* and *Reaming and pullback* to watch the results of the other drilling stages.
- 59. Close the window to return to the main window.

Notice that the minimal required drilling fluid pressure is lower than the maximal allowable drilling fluid pressure in the pilot drilling stage. The risk on a blow out is therefore very small. Of course, due to the decreasing soil cover, the last meters of the pilot drilling the minimal required drilling fluid pressure is higher than the allowable drilling fluid pressure, but in this situation the distance where the minimal required drilling fluid is higher than the maximum allowable pressure is very small.

8.11 Conclusion

Various input windows are used to enter the details of a project that is to be modeled and analyzed. Once these details have been put in, they can be used to calculate a range of results, including drilling fluid pressures during the three stages of the HDD technique. One way to view these results is to display them graphically on the screen.

9 Tutorial 2: Stress analysis of steel pipes and polyethylene pipes

This second exercise considers installation of a steel pipeline and installation of a polyethylene pipeline by using the technique horizontal directional drilling. The exercise focuses on the stress analysis for the different installation stages, which is required to assess whether installation of the pipeline according the design is executable or not.

The objectives of this tutorial are:

- ♦ To calculate the pulling force on the pipeline during the pull back operation.
- ♦ To calculate the stresses in the pipeline during the different installation stages.
- ♦ Assessment of the calculated stresses in the pipeline.
- ♦ To perform a Special Stress Analysis.
- ♦ To perform a calculation for a polyethylene pipe.

The following module is needed:

♦ D-GEO PIPELINE Standard module (HDD)

This tutorial is presented in the files Tutorial-2a.dri, Tutorial-2b.dri and Tutorial-2c.dri.

9.1 Introduction to the case

The pipeline configuration and the soil type is the same as those modeled in the first tutorial (Figure 9.1).

Figure 9.1: Pipeline configuration for Tutorial 2

Different calculations will be performed using two pipe materials:

- ♦ A steel pipe with the properties given in Table 9.1 (Tutorial 2a),
- ♦ The same pipe as Tutorial 2a, but performing a Special Stress Analysis (Tutorial 2b).
- ♦ A polyethylene pipe with the properties given in Table 9.1 (Tutorial 2c).

		Tutorials 2a / 2b	Tutorial 2c
Pipe material		Steel	Polyethylene
Material quality		Steel 355	PE 100
Negative wall thickness tolerance	[%]	0	n.a.
Young's modulus	[N/mm ²]	205800	1200
Young's modulus (long term)	[N/mm ²]	n.a.	300
Allowable/Yield strength	[N/mm ²]	355	10
Allowable strength (long term)	[N/mm ²]	n.a.	8
Partial material factor	[-]	1.1	n.a.
Partial material factor test pressure	[-]	1	n.a.
Tensile factor	[-]	n.a.	0.65
Outer Diameter	[mm]	323.9	400
Wall thickness	[mm]	8	36.4
Unit weight pipe material	[kN/m ³]	78.5	9.54
Design pressure	[Bar]	8	4
Test pressure	[Bar]	9	5
Temperature variation	[°C]	5	5

	-		(T · · · · a)
lable 9.1:	Pipe pro	perties	(Iutorial 2)

In the first tutorial, the assessment whether the proposed drilling line and borehole dimensions according the design is executable or not was performed. The second tutorial considers the assessment of stresses in pipeline during the different installation stages and after installation.

In D-GEO PIPELINE it is assumed that the pipeline remains fixed at the specified location and that settlement of the soil layers below the pipeline does not influence the pipeline. Therefore a relative simple pipe stress analysis can be performed.

The first installation stage at which the stresses in the pipeline are considered is the start of the pull back operation. The pipeline with the connected pullback equipment is situated on the rollers. Often the pipeline is not filled with water on the rollers in order to reduce the required pulling force to pull the pipeline over the rollers. Of course when the pipeline enters the borehole filling of a part of the pipeline (percentage of the cross section area) is sometimes useful.

In this stage a pulling force is exerted on the pipe, which results in axial stress in the pipeline. Near the exit point, the rollers are often configured with a certain bending radius (the so-called overbend), so that additional axial stresses occur due to bending. The tangential stresses for the pipeline on the rollers are negligible.

The second stage at which the stresses in the pipeline are considered is the maximum pulling force situation during the pull back operation. At the end of the pull back operation the pulling force usually reaches the maximum pulling force. The pulling force is calculated according the Dutch regulations described in NEN 3650 and is mainly based on the normal forces of the pipeline perpendicular to the borehole wall. The normal forces are caused by the buoyant weight of the pipeline and soil reaction forces due to the bending moment in the pipeline in the bends of the drilling line. In the second stage both the axial stresses due to pulling and bending are calculated and the tangential stresses due to soil reaction forces are calculated.

The third stage at which the stresses in the pipeline are considered is the long term stage after installation. When the pipeline is installed, a situation without internal pressure and a situation with internal pressure are considered. In this final stage the drilling fluid in the borehole is

assumed to be consolidated, so that the contribution of soil pressure on the pipeline is taken into account for the calculation of the tangential stress.

The stresses in the pipeline are calculated for the different installation stages. According NEN 3650 an additional calculation is made for application of internal pressure on the pipeline. Therefore in the stress analysis according the NEN 3650, four Load Combinations (LC) are considered:

- ♦ LC 1A: start of the pullback operation
- ♦ LC 1B: end of the pullback operation
- ♦ LC 2: application of internal pressure on the pipeline
- ♦ LC 3: pipeline after installation, without internal pressure
- ♦ LC 4: pipeline after installation, with internal pressure

The calculated stresses are assessed according NEN 3650 for the steel pipelines and according NEN 3652 for the polyethylene pipelines.

9.2 **Project Properties**

This tutorial is based on continuation of the file used in Tutorial 1 (chapter 8).

- 1. Click *File* and select *Open* on the menu bar to select the *Open* window for the choice of the D-GEO PIPELINE file created at the end of tutorial 1.
- 2. Select *Tutorial-1* and click the *Open* button to open de file.
- 3. Click *File* and select *Save as* on the menu bar to select the save file window and rename the file into <Tutorial–2a>.
- 4. Click the *Save* button to save the file for Tutorial 2a.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 2 for D-GEO PIPELINE > and <Stress analysis of steel and polyethylene pipes> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

9.3 Product Pipe Material Data

The dimensions and the properties of the product pipe which should be installed in the reamed borehole should be specified for a pipe stress analysis.

- 8. Click *Pipe* on the menu bar and select *Product Pipe Material Data* to open the *Product Pipe Material Data* window for specification of the dimensions and properties of the product pipe.
- 9. For *Pipe 1*, enter the values given in Figure 9.2.
- 10. Click OK to confirm the specified product pipe material data.

tem name Pipe 1	Pipe material © Steel © Polyethene	Database
	Material quality (S)	Steel 355
	Negative wall thickness tolerance [%]	0
	Yield strength [N/mm ²]	355.00
	Partial material factor [-]	1.10
	Partial material factor test pressure [-]	1.00
	Young's modulus [N/mm ²]	205800.00
	Outer djameter product pipe (Do) [mm]	323.90
	Wall thickness [mm]	8.00
	Unit weight pipe material [kN/m³]	78.50
	Design pressure [Bar]	8.00
Add Insert 🔺	Test pressure [Bar]	9.00
Delete Rename 👻	Temperature Variation [Deg C]	5.00

Figure 9.2: Product Pipe Material Data window

9.4 Engineering Data

The first step of the pipe stress analysis is the calculation of the pulling force. The magnitude of the pulling force plays an important role in the stress distribution in the pipe during the pill back operation. The pulling force is calculated according the specifications described in NEN 3650.

During the pull back operation the moving pipeline contacts the wall of the borehole and pushes with a certain forces perpendicular to the wall of borehole. These perpendicular forces (normal forces) determine the magnitude of the shear force in axial direction during the pull back operation.

In order to reduce the normal forces on the borehole wall the pipeline is sometimes ballasted during the pull back operation. In the part of the HDD without significant bends, the distribution of the normal forces on the bore hole wall is determined by the effective weight of the pipeline. The effective weight is defined as follows:

$$g_{\rm eff} = g - g_{\rm uplift} \tag{9.1}$$

with:

$$g_{\rm uplift} = \pi \times r_{\rm e}^2 \times \gamma_{\rm df} \tag{9.2}$$

where:

is the outer radius of the pipeline, in m;
is the upward force of the pipeline, in kN/m;
is the weight of the ballasted pipeline, in kN/m;
is the unit weight of the drilling fluid, in kN/m^3 .

Using the above described equation it can be calculated that filling the product pipe for 22 % results in a nearly weightless pipe in the bore hole. Of course it is wise not to fill the product pipe on the rollers so that the pulling force during the first part of the pull back operation can be reduced.

- 11. Click *Pipe* and select *Engineering Data* on the menu bar to open the *Engineering Data* window.
- 12. Do not mark the *Pipe filled with water on rollers* check-box and enter the values given in Figure 9.3.
- 13. Click on the OK button to confirm the input of the specified values.

Figure 9.3: Engineering Data window

The bedding (β) and the load angle (α) are shown in Figure 9.4. The values are used in the pipe stress analysis to determine the moment coefficients.

Figure 9.4: Bedding and load angles on the pipeline (according to Figure D.2 of NEN 3650-1)

9.5 Factors

D-GEO PIPELINE performs the calculations for the pipe stress analysis according the Dutch regulations described in the NEN 3650 and 3651. The safety philosophy described in Annex B and D of the NEN 3650-1 (NEN, 2012a) is applied on the calculations.

Deltares

- Click *Defaults* on the menu bar and select *Factors* to open the *Factors* window for watching the default values or for alternating these values. Since the window shown in Figure 9.5 shows all factors according the Dutch regulations adapting the values is not necessary.
- 15. Click *OK* to confirm.

Factors				×
Contingency factors		Load factors		
Total unit weight (NEN)	[·] 1.10	Design pressure	[-]	1.25
Cu/cohesion (NEN)	[-] 1.40	Design pressure (combination)	[·]	1.15
Angle of internal friction (Phi) (NEN)	[-] 1.10	Test pressure	[-]	1.10
E-modulus (NEN)	[-] 1.25	Installation	[·]	1.10
Pulling force (NEN)	[-] 1.40	Soil Ioad Qn	[·]	1.50
Modulus of subgrade reaction (NEN)	[-] 1.60	Temperature	[·]	1.10
Soil load Qn (NEN)	[-] 1.10	Traffic load	[·]	1.35
Pressure borehole (NEN)	[-] 1.10			
Bending radius (NEN)	[-] 1.10	Factor of importance (S)	[-]	1.00
Bending moment (Steel)	[-] 1.15	Allowable deflection of pipe (Steel)	[%]	15.00
Bending moment (PE)	[·] 1.40	Piggability (Steel)	[%]	5.00
		Allowable deflection of pipe (PE)	[%]	8.00
		Piggability (PE)	[*]	5.00
		Lipit weight water	[/*]	10.00
		Safety factor cover (drained layer)	[100011]	0.50
		Salety factor cover (urained layer)	[-]	0.50
		Sarety ractor cover (undrained layer)	Ŀ	0.50
			1	
<u>R</u> eset		OK	Cancel	Help

Figure 9.5: Factors window

9.6 Calculation and Results (Tutorial-2a)

The results of the pulling force calculation are shown in the D-GEO PIPELINE report which is created automatically after finishing the calculations.

16. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.

9.6.1 Results of the pulling force calculation

17. Click *Results* and select *Report* on the menu bar to look at the results of the pulling force calculation. The results can be found in paragraph 5.3 (Figure 9.6).

5.3 Calculation Pulling Force									
During the pullback operation the pipe experiences friction which is based on:									
- friction between pipe and pipe-roller (f1 = 0.10) - friction between pipe and drilling fluid (f2 = 0.000050 [N/mm²]) - friction between pipe and soil (f3 = 0.20)									
Due to the friction a pulling The pulling direction of the	force is induced in the pipelin product pipe is from left to rig	e. Iht							
This calculation takes into pipeline. During the pull ba	account that the length of the p ack operation the bore hole is s	pipe on the rollers decrease supposed to be stable.	es while pulling back the						
Characteristic points	Length pipe in	Expected							
	bore hole (m)	pulling force (kN)							
T1	0	18							
T2	25	18							
T3	129	35							
T4	155	35							
T5	259	53							
T6	284	54							
To 200 30 T6 284 54 The calculated pulling force is the mean value. It is recommended to use a contingency factor of at least 1.4 for the stress analysis. In the subsequent pipe stress analysis a factor of 1.40 is used and a load factor of 1.10 (steel only). The maximum representative pulling force is 3434 kN, calculation factor excluded. At this pulling force level the stresses in the pipeline are equal to the yield strength.									

Figure 9.6: Report window, Calculation pulling force (filling percentage = 22%)

18. In Figure 9.7 the characteristic locations along the drilling line at which the pulling force is calculated are shown. Notice that the maximum pulling force is 54 kN.

Figure 9.7: Schematic overview of the characteristic points

- 19. Switch back and click *Pipe* and select *Engineering Data* on the menu and alter the *Part of pipe filled with fluid during pull back* to <0%>.
- 20. Start the calculations again by clicking *Calculation* and select *Start* on the menu bar or by pressing the function key F9.
- 21. Click *Results* and select *Report* on the menu bar to watch the results of the pulling force calculation. Notice that the pulling force has increased to 64 kN (Figure 9.8).

During the pullback operation the pipe experiences friction which is based on:								
- friction between pipe and pipe-roller (f1 = 0.10) - friction between pipe and drilling fluid (f2 = 0.000050 [N/mm²]) - friction between pipe and soil (f3 = 0.20)								
Due to the friction a pulling	g force is induced in the pipelin	e.						
ne pulling alrection of the	e product pipe is from left to rig	Int						
This calculation takes into	account that the length of the p	pipe on the rollers decrease	es while pulling back th					
pipeline. During the pull ba	ack operation the bore hole is s	supposed to be stable.	· · · · · · · · · · · · · · · · · · ·					
	-							
Characteristic points	Length pipe in	Expected						
		and the set for an and the literation of the lit						
	bore hole (m)	pulling force (kin)	_					
T1	bore hole (m)	pulling force (KN) 18	_					
T1 T2	bore hole (m) 0 25	18 19	-					
T1 T2 T3	bore hole (m) 0 25 129	pulling force (KN) 18 19 39	-					
T1 T2 T3 T4	bore hole (m) 0 25 129 155	2011 pulling force (KN) 18 19 39 41	-					
T1 T2 T3 T4 T5	bore hole (m) 0 25 129 155 259	pulling force (kN) 18 19 39 41 62	-					

Figure 9.8: Report window, Calculation pulling force (filling percentage = 0%)

9.6.2 Results of the pipe stress analysis of the steel pipe

The pipe stress analysis is described in the report. For each load combination the axial and tangential stresses in the product pipe are calculated. The stresses are used to calculate the maximum combined stress in the pipeline.

22. Click *Results* and select *Report* on the menu bar to watch the results of the calculated axial and tangential stresses for each load combination/installation stage in paragraph 6.2 (see Figure 9.9).

6.2 Results Stress Analysis of Pipe: Pipe 1								
In the calculation 5 load combinations are considered:								
 Load combination 1A: start pull-back operation Load combination 1B: end of pull-back operation Load combination 2: application internal pressure Load combination 3: pipeline in operation, no inner pressure Load combination 4: pipeline in operation, pressure applied 								
The nominal wall thickness is 8.0 mm. The calculation hereafter will prove that the pipeline wall thickness is sufficient. The calculations are in accordance with NEN 3650 and NEN 3651.								
6.2.1 Load Combination 1A: Start Pullback Operation								
Axial stress:								
Sigma_b = Mb/Wb = $f_k.E \cdot Ib/(Rrol \cdot Wb)$	=	96	[N/mm²]					
Sigma_t = f_pull * T1/A	=	3	[N/mm²]					
Maximum axial stress Sigma_a,max	=	99	[N/mm²]					
In this load combination the tangential stress is negligible.								

Figure 9.9: Report window, Results Stress Analysis (Tutorial-2a)

23. Continue looking at the report and scroll down to paragraph 6.3. In the table in paragraph 6.3, the stress assessment is carried out: the calculated stresses are compared with the yield strength of steel according to the specifications described in NEN 3650. Below the stress assessment table, the results of the deflection calculation are given (see

Figure 9.10).

i0-2 art.5 D.3. 355 [N/mm²]) ma m	1 the calculated str) :	esses for the load	combinations, mus	st meet the followin	g
ma m					
ma m					
/Gamma test					
amma m					
Re/Gamma m					
35(Re+Re_20	deg)/Gamma_m owable.				
ax allowable	Load	Load	Load	Load	Load
ess	combination1A	combination1B	combination2	combination3	combination4
/mm²]					
2.73	99	112	-	-	-
5.00	-	-	20	-	-
2.73	-	-	20	-	-
5.00	-	-	17	-	-
					105
	/Gamma_test amma_m Re/Gamma_m 3 and 4 35(Re+Re_20 ditions are all ax allowable ess ax allowable ess 2.73 5.00 2.73 5.00	/Gamma_test amma_m Re/Gamma_m 3 and 4 35(Re+Re_20deg)/Gamma_m ditions are allowable. ax allowable ess combination1A 2.73 99 5.00 - 2.73 5.00 -	/Gamma_test amma_m Re//Gamma_m 33 and 4 55(Re+Re_20deg)/Gamma_m ditions are allowable. ax allowable ess combination1A combination1B //mm²1 2.73 99 112 5.00 2.73	/Gamma_test amma_m Re/Gamma_m 3 and 4 55(Re+Re_20deg)/Gamma_m ditions are allowable. ax allowable ess <u>Load combination1B combination2</u> (mm²] <u>Load combination1B combination2</u> 2,73 <u>99 112 -</u> 5.00 - <u>200</u> 2,73 <u>- 200</u>	/Gamma_test amma_m Re/Gamma_m 3 and 4 55(Re+Re_20deg)/Gamma_m ditions are allowable. ax allowable ess <u>combination1A</u> <u>Load combination2</u> <u>Load combination3</u> /mm ^a 1 <u>Load combination3</u> <u>Load combination3</u> 2.73 <u>99 112</u> 5.00 - <u>20 -</u> 5.00 - <u>20 -</u>

Figure 9.10: Report window, Check on calculated stresses (Tutorial-2a)

- 24. Notice that the calculated stresses for all load combinations are allowable. The deflection is lower than the allowable value.
- 25. Look at the calculated soil load and the calculated modulus of subgrade reaction on paragraph 4.1.

Soil Mechanical Parameters							
1 Soil Mecha	1 Soil Mechanical Parameters (Pipe: Pipe 1)						
The list with	data and issu	es is shown h	ereafter:				
Note: safety	factors not ap	plied					1.512 . 0
PV;p PV:p	Passive soli load kivm Neutral soil load kivm²					kN/m²	
Phin	Neutral horizontal soil load kN/m ²					kN/m ²	
Pv,r;n		Reduced neutral soil load kN/m ²					kN/m²
kv,top1			Vertical modulus of subgrade reaction (bilinear) upward kN/m ³				
kv top2		Vertical modulus of subgrade reaction upward kN/m ³					kN/m³
dv			Vertier	l mandulum of a	Vertica	il displacement	: mm Lhtter3
kv Pv:e			venuca	i modulus of s	Vertical h	earing canacity	kN/m²
kh				Horizontal m	nodulus of sub	ograde reaction	kN/m ³
Ph;e					Horizontal b	earing capacity	kN/m²
tma×				Max	kimal friction p	iipe-drilling fluid	kN/m²
dmax				Disp	placement at r	naximal friction	mm
Vertical nr.	Pv;p	Pv;n	Ph;n	Pv,r;n	kv,top		
1	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m³]		
2	596	40	34	40	14558		
3	754	163	13	16	15265		
4	866	197	11	15	15805		
5	941	221	11	15	16183		
6	984	235	11	15	16400		
(996	239	11	15	16460		
9	984	235	11	15	16400		
10	941	221	11	15	16183		
11	866	197	11	15	15805		
12	754	163	12	16	15265		
13	596	119	13	18	14558		
17	101	40		40	10122		
Vertical nr.	dv	kv	Pv;e	kh	Ph;e	tma×	dmax
1	[mm]	[kN/m³]	[kN/m²]	[kN/m³]	[kN/m²]	[kN/m²]	[mm]
2	U N	14028	3194	10405	207	0.05	8
3	n 1	15572	4391	10901	754	0.05	8
4	0	16113	5303	11279	866	0.05	8
5	0	16492	5939	11544	941	0.05	8
6	0	16709	6305	11696	984	0.05	8
/	U n	16769	6405	11738	996 QQR	0.05	9 p
9	0 N	16709	6305	11696	984	0.05	8
10	0	16492	5939	11544	941	0.05	8
11	0	16113	5303	11279	866	0.05	8
12	0	15572	4391	10901	754	0.05	8
13	0	14865	3194	10405	596	0.05	8
14	U	14028	1298	9819	207	0.00	8
Maximum soi Maximum rec Maximum ver	l load luced soil load tical modulus tical modulus	of subgrade re	eaction (witho	ut safety facto	: Pv;n : Pv;r; r) : kv;n	, max = 239 kN n, max = 46 kN nax = 16769 kN	/m² /m² /m³

Figure 9.11: Report window, Soil Mechanical Parameters (Tutorial-2a)

9.7 Special Pipe Stress Analysis (Tutorial-2b)

The option special stress analysis can be used for a pipe stress analysis in case of additional loads at certain location along the longitudinal cross section. Additional loads can for example be induced by traffic or by constructions.

Assume that vertical 1 is located below a highway which will result in an additional load on the pipeline. The load induced by soil stress is already calculated by D-GEO PIPELINE and is assessed in the report (see section 9.6.2). The additional load at the depth of the pipeline can be determined using load distribution theories.

- 26. Click *File* and select *Save As* on the menu bar to select the *Save As* window and rename the file into <Tutorial-2b>.
- 27. Click the Save button to save the file for Tutorial-2b.
- Click *Defaults* and select *Special Stress* on the menu bar to open the *Special Stress Analysis* window and enter the data for the special pipe stress analysis. In this window (Figure 9.12), the soil load enhanced with the traffic load should be specified. The reduced

soil load equals <18 kN/m²> and the modulus of subgrade reaction is independent of the load and remains <17000 kN/m³>. The radius is the same as defined in the pipeline configuration <400 m>.

Special Stress Analysis		×
Stress analysis options		
C Standard		
C Per vertical		
Use stress calculation data		
Stress calculation data		
Soil load (neutral or reduced neutral) Qn raised by a traffic load, if any	[kN/m²]	18.00
Modulus of subgrade reaction	[kN/m³]	17000
Radius	[m]	400.00
ОК	Cancel	Help

Figure 9.12: Special Stress Analysis window

- 29. Click *OK* to confirm.
- 30. Click *Calculation* and select *Special Stress Analysis* on the menu bar to start the calculation.
- 31. Click *Results* and select *Report* on the menu bar to look at the results on paragraph 4.3 (see Figure 9.13). Notice the difference with Figure 9.10 for Tutorial-2a.

	inculated Stress	ses of Pipe: Pip	en				
Vegerding to NEI	Check on Calculated Suesses of Fipe. Fipe 1						
conditions (note:	N 3650-2 art.5 D.3 Re = 355 [N/mm²]	.1 the calculated str) :	esses for the load	combinations, mus	st meet the followir	ıg	
Load combinati Sigma_v =< Re	on 1 /Gamma_m						
Load combination - Sigma_ptest = - Sigma_py =< - Sigma_pm =<	on 2 < Re/Gamma_test Re/Gamma_m 1.1 Re/Gamma_m	1					
Load combinati - Sigma_vmax = All stresses in a	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all	deg)/Gamma_m owable.					
Load combinati - Sigma_vmax = All stresses in a	ons 3 and 4 <> 0.85(Re+Re_20 Il conditions are all	deg)/Gamma_m lowable.	1	1	land		
Load combinati - Sigma_vmax = All stresses in a	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all Max allowable stress [N/mm ²]	deg)/Gamma_m lowable. Load combination1A	Load combination1B	Load combination2	Load combination3	Load combination4	
Load combinati - Sigma_vmax = All stresses in a	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all Max allowable stress [N/mm ²] 322.73	deg)/Gamma_m owable. Load combination1A 99	Load combination1B 110	Load combination2	Load combination3	Load combination4	
Load combinati - Sigma_vmax = All stresses in a Sigma_v Sigma_v	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all Max allowable stress [IV/mm ²] 322.73 355.00	deg)/Gamma_m owable. Load combination1A 99	Load combination1B 110	Load combination2	Load combination3	Load combination4	
Load combinatii - Sigma_vmax = All stresses in a Sigma_v Sigma_ptest Sigma_py	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all Max allowable stress [N/mm ²] 322.73 355.00 322.73	deg)/Gamma_m owable. Load combination1A 99 -	Load combination1B 110 -	Load combination2	Load combination3	Load combination4	
Load combinati - Sigma_vmax = All stresses in a Sigma_v Sigma_ptest Sigma_pm	ons 3 and 4 < 0.85(Re+Re_20 Il conditions are all Max allowable stress [N/mm ²] 322.73 355.00 322.73	deg)/Gamma_m owable. Load combination1A 99 - -	Load combination1B 110 - -	Load combination2 20 20 17	Load combination3	Load combination4	

Figure 9.13: Report window, Check on calculated stresses (Tutorial-2b)

9.8 Polyethylene Product Pipe (Tutorial-2c)

Besides a pipe stress analysis on steel pipes a pipe stress analysis on PE-pipes can be carried out using D-GEO PIPELINE.

32. Click *File* and select *Save As* on the menu bar to select the *Save As* window and rename the file into <Tutorial-2c>.

- 33. Click the Save button to save the file for Tutorial-2c.
- 34. Click *Pipe* and select *Product Pipe Material Data* on the menu bar to open the *Product Pipe Material Data* window for specification of the dimensions and properties of the product pipe.
- 35. Select *Polyethylene* as *Pipe material* for Pipe 1.
- 36. Enter the values given in Table 9.1.
- 37. Click OK to confirm.

Product Pipe Material Data		×
Item name Pipe 1	Pipe material O Steel O Polyethene	Database
	Material quality (P) Young's modulus (short) [N/mm ²] Young's modulus (long) [N/mm ²] Allowable strength (short) [N/mm ²] Allowable strength (long) [N/mm ²] Tensile factor [-]	PE100 1200.00 300.00 10.00 8.00 0.65
	Outer djameter product pipe (Do) [mm] Wall thickness [mm] Unit weight pipe material [kN/m³]	400.00 36.40 9.54
Add Insert Delete Rename	Design pressure [Bar] Test pressure [Bar] Temperature Variation [Deg C	4.00 5.00 5.00
	OK Ca	ancel Help

Figure 9.14: Product Pipe Material Data window (Tutorial-2c)

- 38. To start the calculations, click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 39. Click *Results* and select *Report* on the menu bar to look at the results of the calculated axial and tangential stresses for each load combination/installation stage in paragraph 6.2.
- 40. Continue looking at the report and scroll down to paragraph 6.3. In the table (Figure 9.15), the stress assessment is carried out: the calculated stresses are compared with allowable stresses according to the specifications described in the NEN 3650 series.
| - Sigma_AxMax <
- Sigma_TanMax <
Load combination 2
- Sigma_ptest < Sh
- Sigma_py < Long | ShortStrength * [
ShortStrength *
2
portStrength * Da | DamageFactor
DamageFactor | | | | |
|--|---|---|-----------------------|----------------------|----------------------|----------------------|
| Load combination 2
- Sigma_ptest < Sh
- Sigma_py < Long | 2
hortStrength * Da | | | | | |
| | Strength * Dama | amageFactor
ageFactor | | | | |
| Load combination 3
- Sigma_AxMax < L
- Sigma_TanMax < | 3
_ongStrength * E
: LongStrength * | DamageFactor
DamageFactor | | | | |
| Load combination 4
- Sigma_AxMax < L
- Sigma_TanMax <
All stresses in all co | 4
_ongStrength * E
: LongStrength *
onditions are allo | DamageFactor
DamageFactor
owable. | | | | |
| N
s | vlax allowable
stress | Load
combination1A | Load
combination1B | Load
combination2 | Load
combination3 | Load
combination4 |
| [| N/mm²] | | | | | |
| Sigma_ptest 1 | 10.00 (short) | - | - | 2.5 | - | |
| | | 1 | | 2.0 | - | 1 |
| Sigma_py 8 | 3.UU (long) | - | | | | |
| Sigma_py 8
Sigma_axial 1 | 3.00 (long)
10.00 (short) | 0.9 | 3.3 | - | - | |
| Sigma_py 8
Sigma_axial 1
Sigma_axial 8 | 3.00 (long)
10.00 (short)
3.00 (long) | 0.9 | 3.3 | - | 0.1 | 1 |
| Sigma_py 8
Sigma_axial 1
Sigma_axial 8
Sigma_tang 1 | 3.00 (long)
10.00 (short)
3.00 (long)
10.00 (short) | 0.9 | 3.3
-
0.1 | - | 0.1 | 1 |

Figure 9.15: Report window, Check on calculated stresses (Tutorial-2c)

41. Below the assessment table in paragraph 6.3, a check on short term and long term implosion is described (see paragraph 6.4 in Figure 9.16). Notice that the short term implosion check is based on the drilling fluid pressure during the pull back operation. The long term implosion check is based on the water pressure at the level of the pipeline.

6.3.4 Check for ImplosionPipe: Pipe 1
During the pullback operation the drilling fluid gives an external pressure. The highest minimum required drilling fluid pressure during the pullback operation is 249 kWm², this is less than the maximum allowable external pressure of 1911 kWm².
In operation the water pressure at the lowest point of the drilling gives an external pressure. The maximum water pressure equals 150 kN/m², this is less than the maximum allowable external pressure of 239 kN/m².

Figure 9.16: Report window, Check for Implosion (Tutorial-2c)

9.9 Conclusion

This second tutorial analyzes the strength calculations during different stages of the HDD technique for steel and polyethylene pipes. In both cases, the report shows that all stresses for the different stages are allowable.

10 Tutorial 3: Influence of soil behavior on drilling fluid pressures and soil load on the pipe

This third exercise considers installation of a polyethylene pipeline by using the technique horizontal directional drilling. The exercise focuses on the soil behavior and elucidates the effect of drained and undrained soil layers on the calculation of the drilling fluid pressures and elucidates the effect of compressible and incompressible layers on the calculation of the soil load on the pipeline.

The objectives of this tutorial are:

- ♦ To calculate the drilling fluid pressures for a layered soil sequence;
- ♦ To calculate the soil load for a layered soil sequence;
- ♦ Schematization of a layered soil sequence with artesian groundwater.

The following module is needed:

♦ D-GEO PIPELINE Standard module (HDD)

This tutorial is presented in the file Tutorial-3.dri.

10.1 Introduction to the case

This tutorial is based on continuation of the file used in Tutorial-2c (chapter 9). The steel pipe is the same but the layered soil sequence is different as shown in Figure 10.1. The properties of the two layers are given in Table 10.1.

Figure 10.1: Pipeline configuration for Tutorial 3

		Coarse sand	Soft organic clay
Dry unit weight	[kN/m ³]	18	13
Wet unit weight	[kN/m ³]	20	13
Cohesion	[kN/m ²]	0	2
Angle of internal friction	[°]	35	18
Undrained strength top	[kN/m ²]	0	10
Undrained strength bottom	[kN/m ²]	0	30
E modulus top	[kN/m ²]	15000	500
E modulus bottom	[kN/m ²]	25000	1000
Poisson's ratio	[-]	0.35	0.45

Table 10.1: Layer properties (Tutorial 3) Image: Comparison of the second s

During drilling a borehole is protected from collapsing by filling it with drilling fluid. However, arching in the surrounding soil contributes to the stability of the borehole. As a result, arching also reduces the total amount of soil load acting on the installed pipe.

For an ideal granular stratum, Terzaghi's derivation has up until now been considered to be appropriate for the situation where arching occurs and is accordingly incorporated in Dutch pipeline standard NEN 3650 series. However, for cohesive soil layers consolidation may occur over a period of time and this will result in a reduction of the arching effect, thereby increasing the vertical load on the installed pipe. The latter process is added to the Dutch pipeline standard.

For the development of arching a certain depth diameter ratio is required (Figure 10.2). At shallow depths near the exit and entry point, the soil cover is not sufficient for turning off the soil load above the borehole to the soil layers next to the borehole.

Figure 10.2: Arching around the borehole

During the pilot drilling the highest drilling fluid pressures occur. The risk on a blow out to the surface or the formation of cracks around the borehole often exists. This risk is related to the strength of the soil layers around the borehole. The strength of soil layers is dependent on the drained or undrained behavior of soil layers during application the drilling fluid pressure on the bore hole wall. Depending on the permeability of the soil layer, the soil will behave drained or undrained. The coarser granular soils are usually well permeable so that the excess water pressure due to the drilling fluid pressures will dissipate easily. The strength of the soil which exhibits this drained behavior can be calculated using the drained (effective) strength

parameters. In case of undrained behavior, which usually occurs in very fine grained cohesive soils, the strength of the soil should be calculated using the undrained strength parameters.

- 1. Click *File* and select *Open* on the menu bar to open the *Open* window.
- 2. Select *Tutorial-2c* and click the *Open* button to open the file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-3>.
- 4. Click the Save button to save the file for Tutorial 3.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 3 for D-GEO PIPELINE > and <Influence of soil behavior> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

10.2 Geometry of the longitudinal cross section

This tutorial considers a layered soil sequence. The typical Dutch soil sequence of a soft organic clay layer on top of a coarse sand layer will be considered. The organic clay layer is compressible and exhibits a low permeability, while the sand layer is assumed incompressible and exhibits a high permeability. The new soil layers should be specified in the geometry window.

- 8. In the *View Input* window, switch to the *Geometry* tab to edit the existing soil layer sequence
- 9. Click the *Add single line* \ge icon from the *Edit* sub-window to draw an additional top line of a soil and position the straight line at Z = -5 m.
- 10. Click the Automatic regeneration of geometry on/off 😫 icon to regenerate the geometry.
- 11. Click the *Add pl-line(s)* icon from the *Edit* sub-window and position the level of the artesian groundwater at coordinate Z = 8 m. The blue dashed line, which appears in the longitudinal cross section, represents the second groundwater line (PL line). The second groundwater line is used to specify the water pressure distribution in the sand aquifer.

Figure 10.3: View Input window, Geometry tab

10.3 Soil layer properties

The properties of the soil layers in the layered soil sequence should now be specified.

12. Click Soil and select Materials on the menu bar to enter the soil data.

- 13. Add a new material by choosing the *Add* button <u>Add</u> below the materials list on the left side of the window. Enter the soil material <Coarse Sand>.
- 14. Enter the soil data as given in Table 10.1.
- 15. Add a new material by choosing the *Add* button <u>Add</u> below the materials list on the left side of the window. Enter the soil material <Soft Organic Clay>.
- 16. Enter the soil data given in Table 10.1.
- 17. Finish the input of soil data by clicking OK.

Material <u>n</u> ame	Total Unit Weight		
Soft Clay Medium Clau	Above phreatic level	[kN/m³]	13.00
Stiff Clay Peat	Below phreatic level	[kN/m³]	13.00
Dense Sand Sand	Cohesion	[kN/m²]	2.00
Gravel	Phi	[deg.]	18.00
Loam Muck	Cu top	[kN/m²]	10.00
Undetermined Silty Sand	Cu bottom	[kN/m²]	30.00
Coarse Sand Soft Organic Clay	Emod top	[kN/m²]	500.00
	Emod bottom	[kN/m²]	1000.00
	Adhesion	[kN/m²]	0.00
Add Insert	Friction angle (Delta)	[deg.]	0.00
Delete Rename 👻	Poisson ratio (Nu)	[·]	0.45

Figure 10.4: Materials window

10.4 Finishing the geometry of the longitudinal cross section

The defined soil properties and the groundwater levels have to be assigned to the drawn geometry of the longitudinal cross section. The assignments can be carried out in the *Geometry* menu.

- Click *Geometry* and select *Phreatic Line* on the menu bar to open the *Phreatic Line* window (Figure 10.5) and select PL-line <1> as phreatic line for calculation of the groundwater pressures.
- 19. Click OK.

Phreatic Line	×
Select the PILine (by number) which acts as phreatic line:	•
OK Cancel	Help

Figure 10.5: Phreatic Line window

20. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window. Select the *Materials* tab (Figure 10.6) to assign the soil properties to the soil layers in the longitudinal cross section.

Name		Number	Material name	Load
Soft Clay		▶ 2	Soft Urganic Clay	
Seff Clau			Coarse Sand	
Peat				
Loose Sand				
Dense Sand				
Sand				
Gravel	74			
Loam				
Muck				
Undetermined				
Silty Sand				
Coarse Sand				
Soft Urganic Llay				

Figure 10.6: Layers window, Materials tab

- 21. Assign the properties of the defined layer *Coarse Sand* to layer *Number 1* in the longitudinal cross section. The available soil layers with defined properties are shown in left column of the materials window. The layers in the longitudinal cross section are shown in the right column of the materials window. The defined properties are assigned to layer *Number 1* by clicking the *Assign* icon in between the left and the right columns.
- 22. Assign the properties of the defined layer *Soft Organic Clay* to layer number 2 in the longitudinal cross section. The defined properties of *Soft Organic Clay* are assigned to layer *Number 2* by clicking the *Assign* icon → in between the left and the right column.
- 23. Click on the *OK* button to quit the window and return to the *Geometry* tab of the *View Input* window to look at the change of layers name in the legend (Figure 10.7).

Figure 10.7: View Input window, Geometry tab

- 24. Click *Geometry* and select *PI-lines per Layers* on the menu bar to open the *PL-lines per Layers* window to assign the defined PL–lines to the soil layers in the longitudinal cross section. Those information's are used for the calculation of the groundwater pressure distribution.
- 25. The groundwater pressure at the top of the *Soft Organic Clay* layer should be calculated based on the hydraulic head of PL–line 1, the phreatic line (Figure 10.1). Since the *Coarse*

Sand layer is an aquifer with an enhanced artesian groundwater pressure, the groundwater pressure at the bottom of the clay layer should be calculated based on the hydraulic head of PL–line 2. Of course the water pressure at the top and at the bottom of the coarse sand layer should be calculated based on the hydraulic head of PL–line 2. This will result in the *Pl-lines per layer* window shown in Figure 10.8.

PL-lines per Layer 🔀			
$\overline{\times}$	Layer Number	PL-line at top	PL-line at bottom
Ъ	▶ <u>2</u> 1	1 2	2
C B			
[OK	Cancel	Help

Figure 10.8: PL-lines per Layer window

- 26. Click OK to confirm.
- 27. The geometry can be tested by clicking *Geometry* on the menu bar and selecting *Check Geometry*. If the geometry is entered properly, the message *Geometry has been tested and is OK* appears.
- 28. Click OK to close this window.

10.5 Soil behavior

Strength of soil layers is dependent on the drained or undrained behavior of soil layers during application the drilling fluid pressure. Depending on the permeability of the soil layer, the soil will behave drained or undrained. The *Coarse Sand* layer is well permeable so that the excess water pressure due to the drilling fluid pressures will dissipate easily. The strength of this soil layer can be calculated using the drained (effective) strength parameters effective cohesion (*c*) and angle of internal friction (φ). In case of undrained behavior in the impermeable *Soft Organic Clay* layer, the strength of the soil can be calculated using the undrained strength parameter undrained cohesion (*c*_u).

The soil load on the pipeline after finishing the installation is dependent on the soil pipeline interaction, which is in turn largely dependent on the soil behavior. In D-GEO PIPELINE it is assumed that the pipeline remains fixed at the specified location and that there's no settlement of the soil layers below the pipeline. This assumption allows D-GEO PIPELINE to perform a relative simple pipe stress analysis based on a reduced soil load due to arching. As described in section 10.2, arching develops completely in incompressible soil layers, while in compressible layers the reduced soil load on the pipeline is higher due to compression of the soil next to the pipeline.

- 29. Click *GeoObjects* and select *Boundaries Selection* on the menu bar to open the *Boundaries Selection* window for specification of the soil behavior.
- 30. Choose the boundary between the undrained and drained layer on top of layer number <1> (Figure 10.9). This choice results in drained behavior of layer number 1.
- 31. Choose the boundary between the compressible and incompressible layer on top of layer number <1>. This choice results in full development of arching in layer number 1 while in layer number 2 arching is not fully developed.

32. Click *OK* to close this window.

Figure 10.9: Boundaries Selection window

10.6 Calculated reduced soil load for pipe stress analysis

The layered soil sequence results in a different reduced neutral soil load at different depths. Due to the compressible top layer, the reduced neutral soil load increases considerable with increasing depth (Figure 10.10). In the sand layer, the reduced neutral soil load reduces due to the full development of arching.

Figure 10.10: The effect of arching with increasing depth (Meijers and De Kock, 1995)

- 33. To start the calculations, click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 34. Click *Results* and select *Report* on the menu bar to look at the results of the pipe stress analysis.

5.3 Calculation Pulling Force During the pullback operation the pipe experiences friction which is based on: - friction between pipe and pipe-roller (f1 = 0.10) - friction between pipe and drilling fluid (f2 = 0.000050 [N/mm²]) - friction between pipe and soil ($\tilde{f3} = 0.20$) Due to the friction a pulling force is induced in the pipeline. The pulling direction of the product pipe is from left to right This calculation takes into account that the length of the pipe on the rollers decreases while pulling back the pipeline. During the pull back operation the bore hole is supposed to be stable Characteristic points Length pipe in Expected bore hole (m) pulling force (kN) Τ1 0 11 Τ2 25 17 T3 129 44 Τ4 155 49 Τ5 259 78 Τ6 284 83 The calculated pulling force is the mean value. It is recommended to use a contingency factor of at least 1.4 for the stress analysis. In the subsequent pipe stress analysis a factor of 0.00 is used and a load factor of 1.10 (steel only). The maximum representative pulling force is 393 kN, calculation factor excluded. At this pulling force level the stresses in the pipeline are equal to the maximum allowable stress.

Figure 10.11: Report window, Calculation Pulling Force

10.7 Calculated drilling fluid pressures

The existence of soft organic soil layer with low strength and high deformability characteristics influences the results of the maximal allowable drilling fluid pressures.

35. Click *Results* and select *Drilling Fluid Pressure Plots* on the menu bar to open the *Drilling Fluid Pressure* window (Figure 10.12) and to look at the results of the drilling fluid pressure calculations for the pilot drilling.

The graph shows the maximum allowable pressures (upper limit related to soil cover and lower limit related to deformation of the borehole) and the minimal required drilling fluid pressure for transportation of the cuttings. Notice that for the pilot stage the minimal allowable drilling fluid pressure is higher than the maximal allowable drilling fluid pressure at the last part of the upward bend of the drilling. This means that the risk of a blow out is present, so that measures are required.

Figure 10.12: Drilling Fluid Pressures window

- 36. Click on the tabs *Prereaming* and *Reaming and pullback operation* to look at the results of the other drilling stages.
- 37. Close the window to return to the main menu.

10.8 Drilling fluid pressure and groundwater pressure

During the stages of horizontal directional drilling the borehole is filled with drilling fluid. The drilling fluid has a certain unit weight, which is largely dependent on the initial unit weight of the drilling fluid and the amount of cut soil material in the drilling fluid. If the borehole is located in soil layers with an artesian water pressure (aquifers), the risk of leakage of groundwater through the borehole to the surface exists. The leakage of groundwater will result in flow of water through the borehole, which in turn will lead to borehole instability (when the drilling fluid is flown out of the borehole located in coarser granular layers). This risk is automatically assessed when a D-GEO PIPELINE calculation is performed.

38. Click *Results* and select *Report* on the menu bar to watch the results of leakage assessment in paragraph 3.2 (equilibrium between drilling fluid pressure and pore pressure). Notice that the artesian water pressure is higher than the drilling fluid pressure so that measures against leakage are required (Figure 10.13).

3.2 Equilibrium bet	ween Drilling Fluid	Pressure and Pore	Pressure
---------------------	---------------------	-------------------	----------

ondournit.	Drilling fluid	Water	Safety	Result	
	[kN/m²]	[kN/m²]	[-]		
1	30	0	-	sufficient	
2	89	78	1.14	sufficient	
3	138	155	0.89	not sufficient	
4	176	189	0.93	not sufficient	
5	203	213	0.95	not sufficient	
6	218	226	0.96	not sufficient	
7	222	230	0.97	not sufficient	
8	222	230	0.97	not sufficient	
9	218	226	0.96	not sufficient	
10	203	213	0.95	not sufficient	
11	176	189	0.93	not sufficient	
12	138	155	0.89	not sufficient	
13	89	78	1.14	sufficient	
14	30	0	-	sufficient	

Figure 10.13: Report window, Equilibrium between drilling fluid pressure and pore pressure

10.9 Conclusion

In this tutorial, a layered soil sequence has been modeled and the drilling fluid pressures have been calculated. Using the table called *Equilibrium between drilling fluid pressure and pore pressure* in the D-GEO PIPELINE report, it can be concluded if the drilling fluid pressures are or are not sufficient.

11 Tutorial 4: Exporting soil mechanical data for an extended stress analysis

This exercise considers the installation of a polyethylene pipeline by using the horizontal directional drilling technique. The exercise focuses on the calculation of soil mechanical parameters for an extended pipe stress analysis. A settlement calculation forms also part of the exercise.

The objectives of this tutorial are:

- ♦ To calculate the soil mechanical parameters for an extended pipe stress analysis;
- ♦ To perform a settlement calculation;
- ♦ To export the soil mechanical parameters.

The following module is needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ License for D-SETTLEMENT (formerly known as MSettle)

This tutorial is presented in the file Tutorial-4.dri.

11.1 Introduction to the case

In D-GEO PIPELINE it is assumed that the pipeline remains fixed at the specified location and that there's no settlement of the soil layers below the pipeline. No temperature effects are taken into account in D-GEO PIPELINE. Therefore a relative simple pipe stress analysis can be performed.

In case compressible soil layers are present below the pipeline and an additional load is carried out on theses compressible soil layers, settlement can be expected. If settlement of the layers below the pipeline occurs in most cases, an extended pipe stress analysis is required. The extended pipe stress analysis can not be performed using D-GEO PIPELINE, but should be carried out using other software. For instance SCIA pipeline can be used for such an analysis.

Figure 11.1: Pipeline configuration for Tutorial 4

Vertical displacement of soil below and around the pipeline that occurs after installation is an important factor in assessing the stresses in the pipeline. Settlement may be entered manually if the vertical settlements results are available. For more accurate results, D-GEO PIPELINE can use the D-SETTLEMENT computer program (formerly known as MSettle) without additional input. Settlement deals with soil compaction due to imposed loading. In D-GEO PIPELINE the loading consists of an extra layer as created in the geometry. The calculation of the settlement is performed externally by D-SETTLEMENT, the settlement calculation program of the Deltares Systems tools. Details on the calculation of settlement are beyond the scope of this manual, a thorough description can be found in the user manual of D-SETTLEMENT (Deltares).

	Coarse sand	Soft organic clay
Over-consolidation ratio	1.3	1.3
Primary compression coefficient below Pc	10 ⁹	40
Primary compression coefficient above Pc	10 ⁹	10
Secondary compression coefficient below Pc	10 ⁹	160
Secondary compression coefficient above Pc	10 ⁹	35

 Table 11.1: Settlement parameters (acc. Koppejan) of the soil layers (Tutorial 4)

This tutorial is based on continuation of the file used in Tutorial 3 (chapter 10).

- 1. Click File and select Open on the menu bar to open the Open window.
- 2. Select the file *Tutorial-3* and click the *Open* button.
- 3. Click*File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-4>.
- 4. Click the Save button to save the file for Tutorial 4.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 4 for D-GEO PIPELINE > and <Exporting soil mechanical data> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

11.2 Settlement model

Settlement calculations can be performed using the in the Netherlands often used Koppejan model or the more recent developed Isotache model which is based on Terzaghi's settlement model.

- 8. Click Project and select Model on the menu bar to open the Model window (Figure 11.2).
- 9. Select the Horizontal directional drilling method and mark the Use settlement check-box.
- 10. Select the Koppejan model.
- 11. Click *OK* to confirm the choice.

Model
Model
 Horizontal directional drilling
Ends at surface
Dutch Standard NEN
Micro tunneling
C Construction in trench
Settlement I✓ Use settlement I Koppejan I Isotachen
OK Cancel Help

Figure 11.2: Model window

11.3 Geometry of the longitudinal cross section

This tutorial considers a layered soil sequence described in Tutorial 3 (chapter 10). In the longitudinal cross section, a load (soil mass) has to be defined.

- 12. Switch to the *Geometry* tab in the *View Input* window to edit the existing soil layer sequence.
- 13. Select the *Add polyline* icon if from the *Edit* sub-window to draw an additional layer (soil mass) on top of the existing soil layers with coordinates given in Table 11.2.

X coordinate [m]	Z coordinate [m]
-75	5
-60	10
30	10
45	5

Table 11.2: Coordinates of the top of the soil mass

- 14. Quit editing by clicking the right mouse button.
- 15. To check or modify the added points, select a point by clicking the left mouse button. The point will become a red square.
- 16. Click the right-hand mouse button and select *Properties*. In the window displayed (Figure 11.3), the co-ordinates can be checked and modified if needed.

Point 12		×
X co-ordinate:	[m]	-60.000
Z co-ordinate	[m]	10.000
Y co-ordinate	[m]	0.000
	OK	Cancel

Figure 11.3: Point window

17. Select the Automatic regeneration of geometry on/off icon is from the Tools sub-window so that the geometry as shown in Figure 11.4 appears. If the Automatic regeneration of geometry icon already is selected, click on the Edit icon to regenerate the geometry. Notice that the soil mass is located on the left side above the section where the pipeline is located in the Soft Organic Clay layer.

Figure 11.4: View Input window, Geometry tab

11.4 Soil layer properties

The settlement properties of the soil layers in the layered soil sequence should now be specified. The properties of the soil mass should be entered too.

- 18. Click Soil and select Materials on the menu bar to open the Materials window.
- 19. Select the soil name *Silty Sand* in the left column of the *Materials* window and enter the properties given in Figure 11.5.
- 20. Select the soil name *Coarse Sand* and enter the *Settlement Koppejan* data given in Table 11.1.
- 21. Select the soil name *Soft Organic Clay* and enter the *Settlement Koppejan* data given in Table 11.1.
- 22. Finish the input of soil data by clicking OK.

Material <u>n</u> ame	Total Unit Weight		
Soft Clay	Above phreatic level	[kN/m³]	18.00
Medium Clay Stiff Clay Peat	Below phreatic level	[kN/m³]	20.00
Loose Sand Dense Sand	Cohesion	[kN/m²]	0.00
Sand Gravel	Phi	ídea l	30.00
Loam	Cuton	[UN/m21	0.00
Undetermined	Cultop	[KNVIII-]	0.00
Silty Sand Coarse Sand		[KIN/m°]	10.00
Soft Organic Clay	Emod top	[kN/m²]	10000.00
	Emod bottom	[kN/m²]	15000.00
	Adhesion	[kN/m²]	0.00
	Friction angle (Delta)	[deg.]	0.00
	Poisson ratio (Nu)	[·]	0.35
	Settlement Koppejan		
	Overconsolidation Ratio (OCR)	[·]	1.30
	Primary compression coefficien	t	
	Below preconsolidation pressur	re (Cp) [·]	1.00E+09
	Above preconsolidation pressu	re (Cp') [·]	1.00E+09
	Secondary compression coeffic	cient	
	Below preconsolidation pressur	re (Cs) [·]	1.00E+09
Add Insert Delete Rename	Above preconsolidation pressu	re (Cs') [-]	1.00E+09

Figure 11.5: Materials window

11.5 Finishing the geometry of the longitudinal cross section

The defined soil properties have to be assigned to the drawn geometry of the longitudinal cross section (groundwater levels are assigned already). The assignments can be carried out by clicking geometry and choosing the subsequent described options on the menu bar.

- 23. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window to assign the soil properties to the soil layers in the longitudinal cross section.
- 24. Click on the tab *Materials*.
- 25. Assign the soil properties given in Figure 11.6.
- 26. Click OK to confirm the assignments.

ayers				
Boundaries Materials				
Name		Number	Material name	Load
Soft Clay Medium Clay Stiff Clay Peat Loose Sand Dense Sand Sand Gravel Loam Muck Undetermined ∑illy Sand Coarse Sand Soft Organic Clay	>		Sity Sand Soft Organic Clay Coarse Sand	
			Cancel	Help

Figure 11.6: Layers window, Materials tab

11.6 Calculated soil mechanical parameters in export file

The calculation of the settlement of the soil layers below the pipeline is performed externally by D-SETTLEMENT (formerly known as MSettle), the settlement calculation program of the Deltares Systems tools. Therefore, the directory where the program is installed must be given:

- 27. Click *Tools* on the menu bar and select *Program Options* to open the *Program Options* window. Then select the *Locations* tab (Figure 11.7).
- 28. If needed, change the directory where the *Settlement program* is installed by clicking the *Browse* button.
- 29. Click *OK* to confirm.

Figure 11.7: Program Options window, Locations tab

The other soil mechanical parameters are calculated automatically in D-GEO PIPELINE.

- 30. To start the calculations click *Calculation* and select *Start* on the menu bar to or press the function key F9. Ignore the message of Cu values of 0 above the drained undrained boundary.
- 31. Click *Results* and select *Report* on the menu bar to look at the results of the settlement calculation in paragraph 3.1 (Figure 11.8) and the calculation of the soil mechanical parameters in paragraph 4.1.

4	4 Deformations								
4.1	l Settlements	of soil layers	below the Pipeline						
	Vertical nr.	Settlement	Additional settlement	d∨					
	[-]	[mm]	[mm]	[mm]					
	1	58	0	58					
	2	735	0	735					
	3	0	0	0					
	4	0	0	0					
	5	0	0	0					
	6	0	0	0					
	7	0	0	0					
	8	0	0	0					
	9	0	0	0					
	10	0	0	0					
	11	0	0	0					
	12	0	0	0					
	13	0	0	0					
	14	0	0	0					

Figure 11.8: Report window, Settlements along pipeline

- 32. Click *File* and select *Export Results as csv...* on the menu bar to create an export file with the soil mechanical parameters.
- 33. Click on the *Save* button. The export file is saved on the same directory as Tutorial 4 and can be opened using the Excel program for example (see Figure 11.9).

	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	5	T	U	
1																						
2																						
3																						
4																						
5	1	2	3	4	5	5 6	5 7	8	9	9 10	11	10	2 13	14	15	16	17	18	19	20	21	
б	Header	Header	Header	Header	Bundle	Pipe	Pipe	Pipe	Pipe	Section	Section	Section	Section	Section	Section	Si						
7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Axial	Axial	Axial	Axial	Horizontal	Horizontal	н
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
9	Company	Software	Date	Time	P1(x)	P1(y)	P1(z)	P2(x)	P2(y)	P2(z)	Length Pip	Pipe nr	Diameter 7	Thickness	Material Ti	Section nr	х	у	z	From	Curved	D
10	[-]	[-]	[yyyy/mm/c	: [hh:mm:ss]	[m]	-	[mm]	[mm]	-	-	[m]	[m]	[m]	[m]	[boolean]	[n						
11		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	1	-80	0	2.32	10.35	ToDoBool	
12		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	2	-60	0	-2.99	31.04	ToDoBool	
13		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	3	-40	0	-7.46	51.54	ToDoBool	
14		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	4	-20	0	-10.87	71.83	ToDoBool	
15		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	5	C	0	-13.26	91.98	ToDoBool	
16		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	6	20	0	-14.63	112.03	ToDoBool	
17		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	7	40	0	-15	132.03	ToDoBool	
18		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	8	60	0	-15	152.03	ToDoBool	
19		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	9	80	0	-14.63	172.04	ToDoBool	
20		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	10	100	0	-13.26	192.09	ToDoBool	
21		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	11	120	0	-10.87	212.23	ToDoBool	
22		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	12	140		-7.46	232.52	LoDoBool	
23		D-Geo Pipe	22-7-2013	23:06:10	-80) (2.32	180	(2.32	284.06		400	36.4	Polyethene	13	160	0	-2.99	253.02	ToDoBool	
24		D-Geo Pipe	22-7-2013	23:06:10	I -80) (2.32	180	1 (2.32	284.06		II 400	36.4	Polyethene	14	180	1 C	2.32	273.71	ToDoBool	

Figure 11.9: Content of the export file for Tutorial 4

The export file contains:

- ♦ Horizontal soil data
- ♦ Vertical soil data
- ♦ Soil data for friction
- ♦ Data of pipeline

For more information, refer to section 3.1.2.

11.7 Conclusion

A pipe stress and settlement analysis has been performed for a polyethylene pipe in a layered soil. The inputs and results of this calculation have been exported in a csv file in order to perform an extended stress analysis using an other program such as SCIA pipeline.

12 Tutorial 5: Drilling with a horizontal bending radius

This fifth exercise considers installation of a polyethylene pipeline by using the technique horizontal directional drilling. The exercise focuses on a horizontal bending radius in the design of the drilling line.

The objectives of this tutorial are:

- ♦ To schematize a horizontal bending;
- ♦ To calculate pulling forces in the horizontal bending;
- \diamond To perform a pipe stress analysis for the design with a horizontal bending radius.

The following module is needed:

♦ D-GEO PIPELINE Standard module (HDD)

This tutorial is presented in the file Tutorial-5.dri.

12.1 Introduction to the case

A horizontal bending radius in the design drilling line is observed more frequent. Often the horizontal bend is part of one of the vertical bending radii. In case the horizontal bending radius coincides with part of a vertical bending radius, a combined 3-dimensional bending radius is formed. For the design of the horizontal directional drilling line, the pull back force and the strength calculation it is necessary to determine the value of the 3 dimensional bending radius.

The value of the three dimensional bending radius can be calculated as follows:

$$R_{\rm combi} = \sqrt{\frac{R_{\rm h}^2 \times R_{\rm v}^2}{R_{\rm h}^2 + R_{\rm v}^2}} \tag{12.1}$$

where:

 $\begin{array}{ll} R_{\rm combi} & \mbox{is the combined bending radius, in m;} \\ R_{\rm h} & \mbox{is the horizontal bending radius, in m;} \\ R_{\rm v} & \mbox{is the vertical bending radius, in m.} \end{array}$

The combined bending radius is used to calculate the pulling force during the pull back operation and is used in the pipe stress analysis in D-GEO PIPELINE.

Figure 12.1: Pipeline configuration of Tutorial 5

This tutorial is based on continuation of the file used in Tutorial 3 (chapter 10).

- 1. Click File and select Open on the menu bar to open the Open window.
- 2. Select *Tutorial-3* and click the *Open* button to open the file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-5>.
- 4. Click the Save button to save the file for Tutorial 5.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 5 for D-GEO PIPELINE > and <Drilling with a horizontal bending radius > for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

12.2 Pipeline Configuration

The horizontal bend must be specified in the pipeline configuration window.

8. Click *Pipe* and select *Pipeline Configuration* on the menu bar to open the *Pipeline Configuration* window.

peline Configuration										
X,Y-coordinates			Horia	ontal I	bendings					
Left point X-coordinate	[m]	-90.000	3		×1 [m]	Y1 [m]	×2 [m]	Y2 [m]	Badius [m]	Direction
Left point Y-coordinate	[m]	0.000			.20.000	4.000	120.000	4.000	1500.000	fiel
Left point Z-coordinate	[m]	5.000		*	20.000		120.000		1000.000	Lon
Right point X-coordinate	[m]	190.000	2	.						
Right point Y-coordinate	[m]	0.000		2						
Right point Z-coordinate	[m]	5.000	6							
Angles (entry/exit)										
Angle left	[deg]	15.00								
Angle right	[deg]	15.00								
Bending radius			í II							
Bending radius left	[m]	400.000								
Bending radius right	[m]	400.000								
Bending radius pipe on rollers	[m]	400.000								
Pipe between radii			í II							
Lowest level of pipe	[m]	-15.000								
Angle of pipe	[deg]	0.00								
Pulling direction product pipe										
Erom left to right	0.6	From right to left								

Figure 12.2: Pipeline Configuration window

- 9. Enter the values given in Figure 12.1.
- 10. Click OK to confirm.
- 11. Look at the entered horizontal bending on the *Top View* tab of the *View Input* window (Figure 12.3).
- 12. Look at the longitudinal cross section on the *Input* tab of the *View Input* window and notice the elongation of the longitudinal cross section. Therefore it is recommended to check, in case of projects with changing 3D pipeline configurations, if the soil layer sequence in the longitudinal cross section is still reliable (according to the soil investigation data).

Figure 12.3: View Input window, Top View tab

Note: The horizontal bending is indicated with a black bold line in the longitudinal cross section (Figure 12.4).

Figure 12.4: View Input window, Input tab

12.3 Calculation of the pulling force and pipe stress analysis

The results of the pulling force calculation are shown in the D-GEO PIPELINE report which is created automatically after finishing the calculations.

- 13. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 14. Click *Results* and select *Report* n the menu bar to look at the results of the pulling force calculations. The results can be found on paragraph 5.3 (Figure 12.5).

Note the increase in pulling force due the horizontal bending radius compare to the case without bending (see results of Tutorial 3 in Figure 10.11).

5.3 Calculation Pulling Force									
During the pullback operation	During the pullback operation the pipe experiences friction which is based on:								
 friction between pipe and pi friction between pipe and dr friction between pipe and so 	- friction between pipe and pipe-roller (f1 = 0.10) - friction between pipe and drilling fluid (f2 = 0.000050 [N/mm²]) - friction between pipe and soil (f3 = 0.20)								
Due to the friction a pulling fo The pulling direction of the pr	rce is induced in the pipeline. oduct pipe is from left to right								
This calculation takes into acc pipeline. During the pull back	This calculation takes into account that the length of the pipe on the rollers decreases while pulling back the pipeline. During the pull back operation the bore hole is supposed to be stable.								
Characteristic points	Length pipe in	Expected]						
	bore hole (m)	pulling force (kN)							
T1	0	11]						
T2	25	17]						
Т3	129	44]						
T4	155	50							
T5	260	79]						
T6	284	85]						
The calculated pulling force is the mean value. It is recommended to use a contingency factor of at least 1.4 for the stress analysis. In the subsequent pipe stress analysis a factor of 0.00 is used and a load factor of 1.10 (steel only). The maximum representative pulling force is 392 kN, calculation factor excluded. At this pulling force level the stresses in the pipeline are equal to the maximum allowable stress									
ca cooco in ano pipolinio di e equ									

Figure 12.5: Report window, Calculation Pulling Force

In paragraph 5.1 (Figure 12.6), the data for the pipe stress analysis is given. The value of the

minimal bending radius is equal to $R_{\rm min}$ = 386 m.

5.1 General Data	
Pipeline diameter	: Do = 400.00 mm
Wall thickness	: t = 36.4 mm
Unit weight pipeline material	: gamma_s = 9.54 kN/m³
Unit weight drilling fluid pullback operation	gamma_b = 11.10 kN/m³
Minimum bending radius	R = 386 m
Friction coefficient pipe/rollers	f1 = 0.10
Friction between pipe and drilling fluid	f2 = 0.000050 N/mm²
Friction coefficient pipe / soil	f3 = 0.20
Maximal modulus of subgrade reaction	kv, max = 62287 kN/m³

Figure 12.6: Report window, General Data

The minimum bending radius is used to calculate the stresses in the pipeline. In the assessment table in paragraph 6.3 of the report, the influence of a smaller bending radius is visible: higher axial and tangential stresses in both the installation stages and the operational stage after installation.

12.4 Conclusion

This tutorial models a horizontal bending in the pipeline configuration. The calculated pulling forces increase compare to the case without horizontal bending presented in Tutorial 3.

13 Tutorial 6: Installation of bundled pipelines

This sixth tutorial considers installation of a bundle consisting of five polyethylene pipelines by using the technique horizontal directional drilling. The exercise focuses on the background of the automatic bundle calculation in D-GEO PIPELINE.

The objectives of the exercise are:

- ♦ To calculate the drilling fluid pressures for the pull back operation;
- ♦ To calculate the pulling force on the bundled pipelines during the pull back operation;
- ♦ To perform an automatic pipe stress analysis for the pipelines in the bundle.

The following module is needed:

♦ D-GEO PIPELINE Standard module (HDD)

This tutorial is presented in the file Tutorial-6.dri.

13.1 Introduction to the case

The calculations required for the installation of bundled pipelines using the horizontal directional drilling technique are rather similar to those for the installation of a single pipeline. Differences exist in the calculations:

- ♦ For the minimal required drilling fluid pressure during the pull back operation
- ♦ For the pulling force during the pull back operation
- ♦ For the pipe stress analysis (differences in assumptions)

Ad 1) Of course the available space for the back flow of the drilling fluid is different in case of a bundled pipeline. For calculation of the minimal required drilling fluid pressure, D-GEO PIPELINE assumes flow of the drilling fluid

- through the space in between the bundle and the borehole wall
- ♦ and through the space in the bundle, in between the pipelines.

Ad 2) Important parameters for the calculation of the pulling force during the pullback operation are the total effective weight of the (filled) pipelines in the bundle and the total stiffness of the bundle which determines the soil reaction force in curved sections of the drilling line. In D-GEO PIPELINE the pulling force is calculated for an equivalent pipeline with the weight and stiffness parameters of the bundled pipelines.

$$EI_{eq} = \sum_{n}^{i=1} E_{i}I_{i}$$
(13.1)

$$G_{\rm tot} = \sum_{n}^{i=1} \left(\frac{\pi}{4} D_{\rm o;i}^2 - \frac{\pi}{4} \left(D_{\rm 0;i} - 2d_{\rm n;i} \right)^2 \right) \times \gamma_{\rm i}$$
(13.2)

where:

- *n* is the total number of pipelines in the bundle;
- $D_{o;i}$ is the outer diameter of pipeline *i*, in m;
- $d_{n;i}$ is the wall thickness of pipeline *i*, in m;
- γ_i is the unit weight of pipeline *i*, in kN/m³;
- E_i is the Young's modulus of pipeline *i*, in kN/m²;

 I_i is the moment of inertia of pipeline *i*, in m⁴;

 I_{eq} is the moment of inertia of the bundle, in m⁴.

The calculated pulling force is acting on all the pipelines in the bundle. The magnitude of the pulling force of a pipeline in the bundle is derived by dividing the total pulling force over the cross section area of the wall of the pipelines with equal stiffness.

In case the stiffness of the pipeline materials is significantly different (for example a combined bundle of steel and PE pipelines), a different approach is applied. In addition to the previous described dividing procedure, the total pulling force is assigned to the stiffer pipeline (steel pipeline).

Ad 3) The pipe stress analysis for a pipeline in the bundle is quite similar to the pipe stress analysis for a single pipeline in the bore hole. The only difference in the pipe stress analysis is the contact between the pipeline and the surrounding soil (single pipeline) and the contact between the pipeline and the adjacent pipelines (bundle). Therefore the load angle and the bedding angle should be adapted in case of a bundled pipeline. In this tutorial angle values of 30 degrees are assumed and entered manually.

		Pipe 1	Pipe 2
Material quality		PE80	PE80
Young's modulus (short term)	[N/mm ²]	1000	1000
Young's modulus (long term)	[N/mm ²]	200	200
Allowable strength (short term)	[N/mm ²]	10	10
Allowable strength (long term)	[N/mm ²]	8	8
Tensile factor	[-]	0.65	0.65
Outer Diameter	[mm]	400	160
Wall thickness	[mm]	36.4	12.3
Unit weight pipe material	[kN/m ³]	9.54	9.54
Design pressure	[Bar]	4	4
Test pressure	[Bar]	5	5
Temperature variation	[°C]	5	5

Table 13.1: Pipes properties (Tutorial 6)

This tutorial is based on continuation of the file used in Tutorial 5 (chapter 12).

- 1. Click *File* and select *Open* on the menu bar to open the *Open* window.
- 2. Select Tutorial-5 and click the Open button to open the file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-6>.
- 4. Click the Save button to save the file for Tutorial 6.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 6 for D-GEO PIPELINE > and <Installation of bundled pipelines> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

13.2 Product Pipe Material Data

The dimensions and the properties of the product pipes in the bundle should be specified.

- 8. Click *Pipe* and select *Product Pipe Material Data* on the menu bar to open the *Product Pipe Material Data* window for specification of the dimensions and properties of the product pipes in the bundle.
- Change the following values for *Pipe 1* in the fields on the right side of the window (Figure 13.1).

roduct Pipe Material Data		1
Item name Fipe 1 Pipe 2 Pipe 3	Pipe material C Steel C Polyethene	Database
Pipe 4 Pipe 5	Material quality (P)	PE80
	Young's modulus (short) [N/mm ²]	1000.00
	Young's modulus (long) [N/mm ²]	200.00
	Allowable strength (short) [N/mm ²]	10.00
	Allowable strength (long) [N/mm ²]	8.00
	Tensile factor [-	0.65
	Outer djameter product pipe (Do) [mm]	160.00
	Wall thickness [mm]	12.30
	Unit weight pipe material [kN/m ³	9.54
	Pressures	
	Design pressure [bar] 4.00
Add Insert	Test pressure [bar] 5.00
Delete Rename V	Temperature variation [deg C	5.00
	ОК	Cancel Help

Figure 13.1: Product Pipe Material Data window

- 10. Click on the *Add* button <u>Add</u> on the left side of the window to declare a pipeline with the name <Pipe 2>.
- 11. Enter the values for Pipe 2 (Table 13.1), in the fields on the right side of the window.
- 12. Click on the *Add* button on the left side of the window three times to add three more pipes. Notice that the material properties of Pipe 2 are automatically copied to these pipes.
- 13. Use the *Rename* button on the left side of the window to rename the new pipes into <Pipe 3>, <Pipe 4> and <Pipe 5>.
- 14. Click on OK to confirm the specified product pipe material data.

The bundle now consists of five pipes:

- ♦ Pipe nr. 1: 400 mm SDR 11 PE 80
- ♦ Pipe nr. 2: 160 mm SDR 13 PE 80
- ♦ Pipe nr. 3: 160 mm SDR 13 PE 80
- ♦ Pipe nr. 4: 160 mm SDR 13 PE 80
- ♦ Pipe nr. 5: 160 mm SDR 13 PE 80

13.3 Drilling Fluid Data

The properties of the drilling fluid and the operation parameter values should be specified for the bundle.

- 15. Click *Pipe* and select *Drilling Fluid Data* on the menu bar to open the *Drilling Fluid Data* window for specification of properties of the drilling fluid.
- 16. Enter the values of Figure 13.2 for installation of the bundle. The bedding and the load angle are 30 degrees since contacts in between the pipelines are expected. These values are used in the pipe stress analysis to determine the moment coefficients. The values for the special pipe stress analysis do not have to be entered.
- 17. Click on the *OK* button to confirm the input of the specified value.

Note: The equivalent diameter of the bundle is calculated automatically. The equivalent diameter amounts to $D_{eq} = \sqrt{0.4^2 + 4 \times 0.16^2} = 0.512$ m.

Drilling Fluid Data		×
Drill pipe and bore hole dimensions		
Outer diameter pilot h <u>o</u> le	[m]	0.250
Outer diameter pilot pjpe	[m]	0.114
Outer diameter pre-ream hole	[m]	0.600
Outer diameter <u>d</u> rillpipe	[m]	0.114
Outer diameter <u>b</u> orehole	[m]	0.900
Outer djameter product pipe (Do)	[m]	0.512
Characteristics of drilling fluid flow		
Annular back flow rate pilotboring	[Liter/minute]	200.0
Annular back flow rate pre-reaming	[Liter/minute]	400.0
Annular back flow rate ream and pull-back	[Liter/minute]	300.0
Circulation loss factor pilotboring	[·]	0.30
Circulation loss factor pre-reaming	[·]	0.20
Circulation loss factor ream and pull-back	[-]	0.20
Properties of drilling fluid		
<u>U</u> nit weight (γ)	[kN/m³]	11.1
<u>Y</u> ieldpoint (τ)	[kN/m²]	0.014
Plastic viscosity (µ)	[kN.s/m²]	0.000040
OK.	Cancel	Help

Figure 13.2: Drilling Fluid Data window

13.4 Engineering Data

Since the engineering properties for a bundle are different from single pipeline installation properties, values of the engineering properties have to be changed.

- 18. Click *Data* and select *Engineering data* on the menu bar to select the *Engineering Data* window. This will result in the window shown in Figure 13.3.
- 19. Do not fill the pipe on the rollers and enter the values of Figure 13.3 in the standard input window.
- 20. Click on the OK button to confirm the input of the specified values.

Engineering Data		×
Miscellaneous © Standard © Advanced		
Pipe filled with water on roller:	3	
Pipe always filled (Implosion)		
Part of pipe filled with fluid during	pull back [%]	0
Unit weight fluid	[kN/m ³]	10.00
Bedding angle	[deg]	30 💌
Load angle	[deg]	30 💌
Friction		
Factor of friction pipe-roller (f 1)	[·]	0.10
Friction pipe-mud (f 2)	[N/mm ²]	0.000050
Factor of friction pipe-soil (f 3)	[·]	0.20
	OK Cancel	Help

Figure 13.3: Engineering Data window

13.5 Factors

D-GEO PIPELINE performs the calculations of the drilling fluid pressures according the Dutch regulations described in the NEN 3650 series (NEN, 2012a,b,c) and in NEN 3651 (NEN, 2012d). The safety philosophy described in the NEN 3650-1 Annex B and D is applied on the calculations.

- 21. Click *Defaults* and select *Factors* on the menu bar to select the contingency and safety factors window for watching the default values or adapting this values.
- 22. Due to the pull back of the bundled pipelines the risk on higher pulling forces than calculated is present. According to the NEN 3650-1 (article E.1.2.3), the contingency factor on the pulling force should be 1.8. Change this value into <1.8> as shown in Figure 13.4.
- 23. Click *OK* to confirm.

Factors				×
Safety factors on implosion (PE)		Miscellaneous		
Implosion at long term	[-] 3.0	Factor of importance (S)	[·]	1.00
Implosion at short term	[-] 1.5	Allowable deflection of pipe (Steel)	[%]	15.00
Contingency factors		Piggability (Steel)	[%]	5.00
Total unit weight (NEN)	[-] 1.10	Allowable deflection of pipe (PE)	[%]	8.00
Cu/cohesion (NEN)	[-] 1.40	Piggability (PE)	[%]	5.00
Angle of internal friction (Phi) (NEN)	[-] 1.10	Unit weight water	[kN/m ³]	10.00
E-modulus (NEN)	[-] 1.25	Safety factor cover (drained layer)	[·]	0.50
Pulling force (NEN)	[-] 1.40	Safety factor cover (undrained layer)	[•]	0.50
Modulus of subgrade reaction (NEN)	[-] 1.60			
Soil load Qn (NEN)	[-] 1.10			
Pressure borehole (NEN)	[-] 1.10			
Bending moment (Steel)	[·] 1.15			
Bending moment (PE)	[-] 1.40			
<u>R</u> eset		ОК	Cancel	Help

Figure 13.4: Factors window

13.6 Results

The results of the pulling force calculation are shown in the report which is created automatically after finishing the calculations.

- 24. To start the calculations click *Calculation* and select *Start* on the menu bar to tart the calculation or press the function key F9.
- 25. Click *Results* and select *Report* on the menu bar to view the results of the pulling force calculations. The results can be found in paragraph 5.3 (Figure 13.5).

5 Galculation Fulling Ford	ce in the second se		
During the pullback operation	the pipe experiences friction wh	nich is based on:	
 friction between pipe and pip friction between pipe and dr friction between pipe and so 	be-roller (f1 = 0.10) illing fluid (f2 = 0.000050 [N/mm il (f3 = 0.20)	2])	
Due to the friction a pulling fo The pulling direction of the pre This calculation takes into acc	rce is induced in the pipeline. oduct pipe is from left to right	on the rollers decreases wh	ile pulling back the
pipeline. During the pull back	operation the pore note is supply	used to be stable.	
Characteristic points	Length pipe in	Expected	1
Characteristic points	Length pipe in bore hole (m)	Expected pulling force (kN)	
Characteristic points T1	Length pipe in bore hole (m) 0	Expected pulling force (kN) 17	
Characteristic points T1 T2	Length pipe in bore hole (m) 0 25	Expected pulling force (kN) 17 27	
Characteristic points T1 T2 T3	Length pipe in bore hole (m) 0 25 129	Expected pulling force (kN) 17 27 71	
Characteristic points T1 T2 T3 T4	Length pipe in bore hole (m) 0 25 129 155	Expected pulling force (kN) 17 27 71 81	
Characteristic points T1 T2 T3 T4 T5 T5 T	Length pipe in bore hole (m) 0 25 129 155 260	Expected pulling force (kN) 17 27 71 81 81	

Figure 13.5: Report window, Calculation Pulling Force

Notice that the total pulling force is divided over the pipelines in the bundle for pipe stress analysis purposes. The pipe stress analysis per pipeline is described in the paragraphs 6 to 10.

14 Tutorial 7: Face support pressure for micro tunneling

This seventh tutorial considers installation of a gas pipeline crossing underneath a railway by using micro-tunneling. The gas pipeline consists of steel pipe sections. The exercise focuses on the basic calculation set up for micro-tunneling in D-GEO PIPELINE.

The objectives of the exercise are:

- ♦ To make a schematization of the pipeline installation by micro tunneling;
- ♦ To evaluate the minimal required and maximal allowable shield pressure at the face of the tunneling machine.

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Micro Tunneling module

The result of this tutorial is presented in the file Tutorial-7.dri.

14.1 Introduction to the case

Micro-tunneling in general uses a remote controlled micro tunnel boring machine (MTBM). The micro tunnel usually starts horizontal at a certain level below the surface. Drive and reception shafts are created for the MTBM. In the drive shaft a jacking frame and MTBM are installed. The jacks will push the pipe section elements section by section ahead towards the reception shaft. The MTBM is at the front of the advancing micro tunnel. As the length of the advancing micro tunnel increases so do the friction forces along the pipe segments. Lubrication fluid may be applied for lubrication.

Figure 14.1: Pipeline configuration for Tutorial 7

Very often at the face of the MTBM drilling fluid is used for, soil removal and front stabilization. Careful planning and monitoring of the face support pressures is required: When the pressure is excessive this may cause a blow out; if the pressure is too low collapse of the soil in at the drilling front may cause excessive subsidence. The pipeline configuration is shown in Figure 14.1.

Deltares

The soil properties of the silty sand layer are provided in Table 14.1.

Dry unit weight	[kN/m ³]	18
Wet unit weight	[kN/m ³]	20
Cohesion	[kN/m ²]	0
Angle of internal friction	[°]	30
Undrained strength top	[kN/m ²]	0
Undrained strength bottom	[kN/m ²]	0
E modulus top	[kN/m ²]	10000
E modulus bottom	[kN/m ²]	15000
Adhesion	[kN/m ²]	0
Friction angle (Delta)	[°]	20
Poisson's ratio	[-]	0.35

Table 14.1: Properties of the silty sand layer (Tutorial 7)

The pipeline material used in this tutorial is a steel 240 with the properties given in Table 14.2.

Table 14.2: Properties of steel material (Tutorial 7)	

Pipe material		Steel 240
Outer diameter	[mm]	1200
Overcut	[mm]	15
Wall thickness	[mm]	22.4
Young's modulus	[N/mm ²]	205800
Unit weight pipe material	[kN/m ³]	78.50

This tutorial starts with the selection of the pipeline installation model.

14.2 Model selection

The micro tunneling model must be selected to carry out the current tutorial.

noitemsep

- 1. Click *File* and choose *New* on the menu bar to start a new project.
- 2. In the *New File* window select the option *New geometry* to start. This will result in an empty geometry.
- 3. Save the project by clicking *Save As* in the *File* menu and by entering <Tutorial-7> as project name.
- 4. Click Save to close this window.
- 5. On the menu bar, click *Project* and then choose *Model* to open the *Model* window (Figure 14.2).
- 6. Select Micro tunneling and click OK.

Model X
Model
 Horizontal directional drilling
🔽 Ends at surface
Dutch Standard NEN
Micro tunneling
Construction in trench
Settlement
Use settlement
🖲 Koppejan
C Isotachen
OK Cancel Help

Figure 14.2: Model window

- 7. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 8. Fill in <Tutorial 7 for D-GEO PIPELINE > and <Gas pipeline installation by micro tunneling> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 9. In the other tab of the *Project Properties* window, modify (if not already done) some defaults values according to Figure 14.3 in order to make the graphical geometry more understandable.
- 10. Click OK.

Project Properties	×
Project Properties Identification View Input Display ✓ Info Bar ✓ Legend Same Scale for x and y Agis ✓ Layer Colors ✓ Bulers	Labels Points Calculation Verticals Layer labels as Layer Numbers Material Numbers
I ☐	C Material Numbers C Material Names Grid I✓ Show Grid I✓ Snap to Grid Grid distance [m] 1.000
Save as default	OK Cancel Help

Figure 14.3: Project Properties window, View input tab

14.3 Geometry

Firstly, the geometry of Figure 14.1 needs to be given in D-GEO PIPELINE. In order to do this, the following actions should be performed:

11. First enlarge the dimensions of the geometry window by selecting the left boundary by clicking the left mouse button, then click the right button and select *Properties*. This will result in the coordinate window for the left boundary as shown in Figure 14.4. Enter coordinate X of <100 m>.

Left Limit			×
Limit at left side:	[m]	-100.000	
	OK	Cancel	

Figure 14.4: Left Limit window

- 12. Repeat the previous described actions for the right boundary and shift the boundary to coordinate X of <200 m>. The width in between the left and the right boundary is now 300 m.
- 13. Select the drawing button *Zoom limits* if from the *Tools* panel so that the drawn geometry appears in the center of the screen.
- 14. Unselect the drawing button Automatic regeneration of geometry on/off if from the Tools panel.
- 15. Select the drawing button from the *Edit* panel *Add single line* to draw the surface line of the longitudinal cross section of the horizontal directional drilling and position the straight surface line at Z = 5 m. Use the right mouse button to finish the line.
- 16. Select again the drawing button *Add single line* to draw the lower boundary of the longitudinal cross section of the horizontal directional drilling and position the straight lower boundary line at Z = -40 m. Use the right mouse button to finish the line.
- 17. Select the drawing button *Automatic regeneration of geometry on/off* from the *Tools* panel so that the geometry as shown in Figure 14.5 appears.
- 18. Select the drawing button Add pl-line(s) from the Edit panel and position the level of the groundwater at coordinate Z = 0 m. Use the right mouse button to finish the line. The blue dashed line represents the groundwater line (PL line).

Figure 14.5: View Input window, Geometry tab
14.3.1 Soil layer properties

The properties of the soil layers should be specified in the menu materials, which can be entered by clicking soil. In this tutorial only one soil layer is considered.

- 19. Click *Soil* and select *Materials* on the menu bar to open the *Materials* window (Figure 14.6) and enter the soil data.
- 20. Add a new material by choosing *Add* button below the materials list on the left side of the window with the new <Silty Sand>.
- 21. Enter the soil data as given in Table 14.1.
- 22. Finish the input of soil data by clicking OK.

aterials			×
Material <u>n</u> ame Soft Clay	Total Unit Weight Above phreatic level	[kN/m³]	18.00
Medium Clay Stiff Clay Peat	Below phreatic level	[kN/m³]	20.00
Loose Sand Dense Sand	Cohesion	[kN/m²]	0.00
Gravel	Phi	[deg.]	30.00
Muck	Cu top	[kN/m²]	0.00
Silty Sand	Cu bottom	[kN/m²]	0.00
	Emod top	[kN/m²]	10000.00
	Emod bottom	[kN/m²]	15000.00
	Adhesion	[kN/m²]	0.00
Add Insert 🔺	Friction angle (Delta)	[deg.]	20.00
Delete Rename 👻	Poisson ratio (Nu)	[·]	0.35
		DK Can	cel Help

Figure 14.6: Materials window

The defined soil properties and the groundwater level have to be assigned to the drawn geometry of the longitudinal cross section. The assignments can be carried out by clicking geometry and choosing the subsequent described options on the menu bar.

14.3.2 Phreatic Line

- 23. On the *Geometry* menu, select *Phreatic Line* to open *Phreatic Line* window (Figure 14.7) in which the phreatic line for calculation of the groundwater pressures can be selected.
- 24. Choose PL–line nr. <1> (only one phreatic line is available) and click *OK*.

Phreatic Line		×
Select the PILine (by number) which acts as phreatic line:	1	•
OK Cance		Help

Figure 14.7: Phreatic Line window

14.3.3 Layers

25. Click *Geometry* and select *Layers* on the menu bar to assign the soil properties to the soil layers in the longitudinal cross section. To assign a material to a layer, select the *Material* tab.

26. Assign the properties of the defined layer *Silty Sand* to layer nr 1 in the longitudinal cross section. The available soil layers with defined properties are shown in left column of the materials window. The layers in the longitudinal cross section are shown in the right column of the materials window. The defined properties are assigned to layer nr 1 by clicking the arrow in between the columns. This will result in the *Material* tab shown in Figure 14.8.

Layers Boundaries Materials			×
Available materials Name Soft Clay Medium Clay Stiff Clay Peat Loose S and Derse S and Gravel Looam Muck Undetermined Sity Sand	Layers Number 1	Material name Silty Sand	Load
	OK	Cancel	Help

Figure 14.8: Layers window, Materials tab

27. Click *OK* to quit the window and return to the geometry window to watch the change of layer name in the legend.

14.3.4 PL-Lines per Layers

- 28. Click Geometry and select PL-lines per Layers on the menu bar to open the PL-lines per Layer window (Figure 14.9) in which the defined PL-lines to the soil layers in the longitudinal cross section can be defined. This window contains the information for the calculation of the groundwater pressure distribution. In this tutorial only one PL-line is defined. The groundwater pressure at the top of the silty sand layer and the bottom of this layer should be calculated based on the hydraulic head of PL-line 1.
- 29. Click *OK* to close the window.

D PL-lin	es per Laye	r	×
	Layer Number	PL-line at top	PL-line at bottom
B P	1	1	1
Ĝ			
)K	Cancel	Help

Figure 14.9: PL-lines per Layers window

14.3.5 Check Geometry

- 30. The geometry can be tested by clicking *Geometry* and selecting *Check Geometry* on the menu bar. If the geometry is entered properly, the message shown in Figure 14.10 appears.
- 31. Click *OK* to close the window.

Figure 14.10: Check Geometry window

14.4 Pipeline Configuration

The pipe is installed in the silty sand layer starting and ending at respectively the start and reception shaft at a level 11 m below surface. As the pipe trajectory is horizontal, the smallest angle of entry allowed by D-GEO PIPELINE is defined, i.e. 0.1 degree. A small bending radius restricts the curved part of the pipe near the entry and exit of the pipe, thus the rest of the pipe will be exact along the lowest level of the pipe.

- 32. Click *Pipe* from the menu and select *Pipeline Configuration* to open the *Pipeline Configuration* window.
- 33. Enter the values as presented in Figure 14.11.

ipeline Configuration										
X,Y-coordinates			Horiz	onta	al bendings					
Left point X-coordinate	[m]	-90.000	2.		×1 [m]	Y1 [m]	X2 [m]	¥2 [m]	Badius [m]	Direction
Left point Y-coordinate	[m]	0.000		*	set ful	1.1 full	ser fuil	i a finj	Tradicis [m]	Direction
Left point Z-coordinate	[m]	-6.000	1							
Right point X-coordinate	[m]	190.000	3"							
Right point Y-coordinate	[m]	0.000								
Right point Z-coordinate	[m]	-6.000	6							
-åndes (entru/evit)			C							
Angle left	[deg]	0.10								
Angle right	[deg]	0.10								
Bending radius										
Bending radius left	[m]	1.000								
Bending radius right	[m]	1.000								
Bending radius pipe on rollers	[m]	0.010								
Pipe between radii										
Lowest level of pipe	[m]	-6.000								
Angle of pipe	[deg]	0.00								
Thrusting direction product pip	e									
 Erom left to right 	0	From right to left								
								OK	Cancel	Help

Figure 14.11: Pipeline Configuration window

- 34. Click OK to confirm.
- 35. Now examine the micro tunnel trajectory in the *Input* tab (Figure 14.12) and *Top View* tab of the *View Input* window.

Figure 14.12: View Input window, Input tab

14.5 Pipe Material Data

The pipe material of the pipe which will be installed by micro tunneling is chosen. The characteristics of the pipe must be specified as well.

- 36. Click *Pipe* from the menu and select *Product Pipe Material Data* to open the *Product Pipe Material Data* window.
- 37. Enter the values as presented in Figure 14.13.

Product Pipe Material Data	×
Pipe material © Steel	
C Synthetic	
C Concrete	
Material quality [-]	Steel 240
Outer djameter product pipe (Do) [mm]	1200.00
Overcut on radius [mm]	15
Wall thickness [mm]	22.40
Young's modulus [N/mm ²]	205800.00
Unit weight pipe material [kN/m³]	78.50
OK Ca	ncel Help

Figure 14.13: Product Pipe Material Data window

The effect of the overcut on the radius of the pipe is explained in tutorial 9 (chapter 16).

14.6 Soil behavior

The strength of soil layers is dependent on the drained or undrained behavior of soil layers during application the drilling fluid pressure at the front of the MTBM. Depending on the permeability of the soil layer, the soil will behave drained or undrained. A Sand layer is a well permeable so called drained frictional material. The strength of this soil layer can be calculated using the drained (effective) strength parameters effective cohesion (*c*) and angle of internal friction (φ). In case of undrained behavior in other soil types, the strength of the soil can be calculated using the undrained strength parameter undrained cohesion (c_{u}).

- 38. Click *GeoObjects* and select *Boundaries Selection* on the menu bar to open the *Boundaries Selection* window for specification of the soil behavior.
- 39. Choose the boundary between the undrained and drained layer on top of layer nr <1> (Figure 14.14). This choice results in drained behavior of layer nr 1.
- 40. Choose the boundary between the compressible and incompressible layer on top of layer nr <1>. This choice results is used for the calculation of the soil mechanical parameters. Compressible layers yield higher soil loads on the pipeline due to incomplete arching.
- 41. Click *OK* to close this window.

Boundaries Selection	×
Boundaries Drained and undrained layers Compressible and uncompressible layers	Top of layer 1 1
OK Cancel	Help

Figure 14.14: Boundaries Selection window

14.7 Calculation Verticals

The locations in the longitudinal cross section at which a calculation should be carried out must be specified by the user. The user is able to perform calculations at uniform distances along the longitudinal cross section but is also able to perform more calculations at short distances at locations of interest.

- 42. Click *GeoObjects* and select *Calculation Verticals* on the menu bar to select the *Calculation Verticals* window for specification of the calculation locations along the longitudinal cross section.
- 43. Choose the *Automatic generation of L co-ordinates* option on the right side of the window and choose the following values: <-80 m> for *First*, <180 m> for *Last* and <20 m> for *Interval*.
- 44. Click on the *Generate* button and watch the result of automatic vertical generation on the left side of the *Calculation Verticals* window. This will result in the window shown in Figure 14.15.
- 45. Click *OK* to confirm the selected verticals and switch to the input window to watch the location of the verticals in the longitudinal cross section.

Figure 14.15: Calculation Verticals window

14.8 Engineering Data

46. Select Engineering Data from the Pipe menu bar to open the Engineering Data window.

47. Enter the values as given in Figure 14.16.

Er	ngineering Data		×
	Miscellaneous		
	 Standard Advanced 		
	Allowable thrust force	[kN]	15000.00
	Volume loss as percentage of overcut area	[%]	100
	Relative displacement	[mm]	10.00
	Compression index	[-]	6.00
	Modulus of subgrade reaction of lubrication fluid	[kN/m³]	500.00
	Phi lubrication fluid	[deg]	15.00
	Adhesion lubrication fluid	[kN/m2]	5.00
	Factor phi for reduced soil load	[-]	0.50
	Delta lubrication fluid	[deg]	7.50
	Friction		
	Friction with injection of lubricant	[kPa]	7.50
	Friction without injection of lubricant	[kPa]	10.00
	ОК	Cancel	Help

Figure 14.16: Engineering Data window

The maximum allowable thrust force is usually specified by the manufacturer of the pipe. The volume loss determines the subsidence at the surface.

14.9 Results: Operation Parameter Plots

The micro-tunneling machine changes the stress conditions in the soil. The deviations from the original stress conditions (Figure 14.17) are largely determined by the size of the overcut and the applied shield. Small deviations from the original conditions are acceptable as the stability of soil adjacent to the micro-tunneling machine is maintained. A relative low face support pressure may lead to collapse of the soil in front of the shield, which in turn may lead to subsidence of the surface or to settlement of soil layers below a construction or pipeline. A relatively high face support pressure can lead to a blow out of drilling fluid or may lead to heave of the surface.

Figure 14.17: Schematization of stress condition for micro-tunneling

While drilling the shield pressures have to be kept between certain limits. To prevent the possibility of collapse in of the soil in front of the micro tunneling shield, causing subsidence, the soil at the front is kept stable by maintaining a minimal face pressure. Depending on the soil type the minimal support pressure can be calculated using Jancsecz and Steiner theory (drained behavior of the soil) (Jancesz and Steiner, 1994), or Broms and Bennermark theory (undrained behavior of the soil) (Broms and Bennermark, 1967). In this tutorial the soil layer which consists of silty sand exhibits drained soil behavior.

A maximum support pressure should not be exceeded to prevent uplift of the soil above the micro-tunneling machine or a blow out of drilling fluid towards the surface. The support pressure, at which the soil deformations are minimal during drilling should be in between the two limits. At the neutral pressure, the face support pressure is in equilibrium with the current horizontal soil pressure.

- 48. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 49. Click *Results* and select *Operation Parameter Plots* from the menu bar to open the *Operation Parameter Plots* window.

Figure 14.18: Operation Parameter Plots window, Face support pressure tab

From the graph (Figure 14.18) it can be observed that for this simple tutorial situation the target face support pressure during the pipeline installation should be between the determined limits of the maximum allowable face support pressure and the minimum required face support pressure. At the neutral pressure the face support pressure is in equilibrium with the current horizontal soil pressure.

15 Tutorial 8: Uplift and thrust forces for micro tunneling

This tutorial concentrates on the installation of a pipeline by using the micro-tunneling technique and is a continuation of the previous tutorial. It considers installation of a gas pipeline consisting of welded steel pipes. The pipeline crosses underneath a railway by using microtunneling.

The objectives of the exercise are:

- \diamond To evaluate the thrust force;
- ♦ To perform a check on the uplift safety.

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Micro Tunneling module

This tutorial is presented in the file Tutorial-8.dri.

15.1 Introduction to the case

This tutorial considers a peat layer on top of the existing silty sand layer. The risk on uplift of the empty pipeline in the peat layer is evaluated. The possibility of an alternative, longer, micro tunneling trajectory is evaluated in this tutorial. A longer pipe string yields increased friction forces which could possibly exceed the maximum allowable thrust force of the pipeline or the jacking frame.

Figure 15.1: Soil layers and pipeline configuration for Tutorial 8

The soil properties are provided in Table 15.1.

		Silty Sand	Peat
Dry unit weight	[kN/m ³]	18	10.2
Wet unit weight	[kN/m ³]	20	10.2
Cohesion	[kN/m ²]	0	2
Angle of internal friction	[°]	30	15
Undrained strength top	[kN/m ²]	0	10
Undrained strength bottom	[kN/m ²]	0	20
E modulus top	[kN/m ²]	10000	1000
E modulus bottom	[kN/m ²]	15000	1500
Adhesion	[kN/m ²]	0	2
Friction angle (Delta)	[°]	20	5
Poisson's ratio	[-]	0.35	0.45

TADIE 13.1. Properties of the layers (Tutorial of	Table	15.1:	Properties	of the	lavers	(Tutorial 8)
--	-------	-------	------------	--------	--------	--------------

This tutorial is based on continuation of the file used in Tutorial 7 (chapter 14).

- 1. Click File and select Open on the menu bar to open the Open window.
- 2. Select *Tutorial-7* and click the *Open* button to open the file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-8>.
- 4. Click the *Save* button to save the file for Tutorial 8.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 8 for D-GEO PIPELINE > and <Micro tunneling: uplift and thrust forces> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

15.2 Geometry of the longitudinal cross section

This tutorial considers a layered soil sequence. The typical Dutch soil sequence of a peat layer on top of a silty sand layer will be considered. The peat layer is compressible and exhibits a low permeability, while the sand layer is assumed incompressible and exhibits a high permeability. The new soil layers should be specified in the geometry window.

- 8. In the *View Input* window, switch to the *Geometry* tab to edit the existing soil layer sequence.
- 9. Click the Add polyline(s) button from the Edit panel to draw an additional line which represents the lower boundary of the peat layer on top of the silty sand layer. The coordinates of the cursor are given in the lower left side of the geometry window. Make the polyline by clicking on the subsequent co-ordinates (Figure 15.2). Click the right mouse button to escape from the polyline drawing.

	L Co-ordinate [m]	Z Co-ordinate [m]
1	-100.000	4.500
2	-40.000	4.500
3	-20.000	-10.000
4	100.000	-10.000
5	123.000	2.000
6	200.000	2.000

Figure 15.2: Co-ordinates of the lower boundary of the Peat layer (before enlarging the right limit)

- 10. After finishing the polyline, mis-clicks can be corrected using the *Edit* button: select points of the polyline by clicking on it with the left mouse button. Once the point is selected (indicated with a red color), use the right mouse button to select the option *Properties...* and to correct the co-ordinates of the lower boundary of the peat layer.
- 11. Change the position of the phreatic groundwater: select both points of the PL line (i.e. blue dashed line) by clicking on it with the left mouse button, then select the option *Properties...* and change the co-ordinate into Z = 5 m.
- 12. Enlarge the dimensions of the geometry window by selecting the right boundary by clicking the right mouse button, then click the right button and select *Properties*.... This will result in the coordinate window for the right boundary as shown in Figure 15.3. Enter coordinate X of <400 m>.

Right Limit	×
Limit at right side: [m] 400.000
OK	Cancel

Figure 15.3: Right Limit window

13. Click the *Zoom limits* button from the *Tools* panel so that the drawn geometry appears in the center of the screen.

15.3 Soil layer properties

The properties of the soil layers in the layered soil sequence should now be specified.

- 14. Click *Soil* and select *Materials* on the menu bar to enter the soil data.
- 15. Select the existing soil material Peat.
- 16. Enter the soil data as given in Table 15.1.
- 17. Click OK.

Material <u>n</u> ame	Total Unit Weight	
Soft Clay	Above phreatic level	[kN/m3] 10.20
Medium Ciay Stiff Clay Peat	Below phreatic level	[kN/m³] 10.20
Loose Sand Dense Sand Sand	Cohesion	[kN/m²] 2.00
Gravel	Phi	[deg.] 15.00
Loam Muck	Cu top	[kN/m²] 10.00
Undetermined Silty Sand	Cu bottom	[kN/m²] 20.00
	Emod top	[kN/m²] 1000.00
	Emod bottom	[kN/m²] [1500.00
	Adhesion	[kN/m²] 2.00
Add Insert	Friction angle (Delta)	[deg.] 5.00
Delete Rename 👻	Poisson ratio (Nu)	[-] 0.45

Figure 15.4: Materials window

The defined soil properties have to be assigned to the drawn geometry of the longitudinal cross section. The assignments can be carried out in the *Geometry* menu.

18. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window.

Material <u>n</u> ame	Total Unit Weight		
Soft Clay Medium Clau	Above phreatic level	[kN/m³]	10.20
Stiff Clay	Below phreatic level	[kN/m³]	10.20
Loose Sand			
Dense Sand Sand	Cohesion	[kN/m²]	2.00
Gravel	Phi	[deg.]	15.00
Muck	Cu top	[kN/m²]	10.00
Silty Sand	Cu bottom	[kN/m²]	20.00
	Emod top	[kN/m²]	1000.00
	Emod bottom	[kN/m²]	1500.00
	Adhesion	[kN/m²]	2.00
Add Insert	Friction angle (Delta)	[deg.]	5.00
Delete Rename 👻	Poisson ratio (Nu)	[·]	0.45
		OK Can	cel Help

Figure 15.5: Layers window, Materials tab

- 19. Select the *Materials* tab.
- 20. Assign the properties of the defined layer *Peat* to layer number 2 in the longitudinal cross section by clicking the *Assign* icon in between the left and the right column.
- 21. Click on the *OK* button to quit the window and return to the *Geometry* tab of the *View Input* window to look at the change of layers name in the legend (Figure 15.6).

Figure 15.6: View Input window, Geometry tab

- 22. The geometry can be tested by clicking *Geometry* on the menu bar and selecting *Check Geometry*. If the geometry is entered properly, the message *Geometry has been tested and is OK* appears.
- 23. Click *OK* to close this window.

15.4 Soil behavior

Strength of soil layers is dependent on the drained or undrained behavior of soil layers during application the drilling fluid pressure. Depending on the permeability of the soil layer, the soil will behave drained or undrained. The *Silty Sand* layer is well permeable so that the behavior

of the silty sand layer is drained. The strength of this soil layer can be calculated using the drained (effective) strength parameters effective cohesion (*c*) and angle of internal friction (φ). In case of undrained behavior in the impermeable *Peat* layer, the strength of the soil can be calculated using the undrained strength parameter undrained cohesion (c_u).

The soil load on the pipeline after finishing the installation is dependent on the soil pipeline interaction, which is in turn largely dependent on the soil behavior. As described in section 10.2 arching develops completely in incompressible soil layers, while in compressible layers the reduced soil load on the pipeline is higher due to compression of the soil next to the pipeline.

- 24. Click *GeoObjects* and select *Boundaries Selection* on the menu bar to open the *Boundaries Selection* window for specification of the soil behavior.
- 25. Choose the boundary between the *Drained and undrained layers* on top of layer number <1> (Figure 15.7). This choice results in drained behavior of layer number 1.
- 26. Choose the boundary between the *Compressible and uncompressible layers* on top of layer number <1>. This choice results in full development of arching in layer number 1 while in layer number 2 arching is not fully developed.
- 27. Click OK to close this window.

Boundaries Selection	×
Boundaries Drained and undrained layers Compressible and uncompressible layers	Top of layer 1 1
OK Cancel	Help

Figure 15.7: Boundaries Selection window

15.5 Pipeline Configuration

The tunneling length will be increased by changing the entry and exit locations.

- 28. Click *Pipe* and select *Pipeline Configuration* from the menu bar to open the *Pipeline Con-figuration* window.
- 29. Change the X-coordinates of the left and right points to respectively <-90> and <390> as shown in Figure 15.8.
- 30. Click OK.

Pipeline Configuration										
X,Y-coordinates			Horiz	ontal t	pendings					
Left point X-coordinate	[m]	-90.000	=		V1 [m]	∀1 [m]	¥2 [m]	∀2 [m]	Radius [m]	Direction
Left point Y-coordinate	[m]	0.000		*	AT [III]	i i [iii]	AE [III]	1 2 [11]	madius [m]	Direction
Left point Z-coordinate	[m]	-6.000		14						
Right point X-coordinate	[m]	390.000	3 ¹⁰							
Right point Y-coordinate	[m]	0.000	18							
Right point Z-coordinate	[m]	5.000	6							
Cángles (entru/evit)			C C							
Angle left	[deg]	0.10								
Angle right	[deg]	0.10								
Bending radius										
Bending radius left	[m]	1.000								
Bending radius right	[m]	1.000								
Bending radius pipe on rollers	[m]	0.010								
Pipe between radii										
Lowest level of pipe	[m]	-6.000								
Angle of pipe	[deg]	0.00								
Thrusting direction product pip © Erom left to right	e C I	From right to left								
								OK	Cance	Help

Figure 15.8: Pipeline Configuration window

15.6 Calculation Verticals

The locations in the longitudinal cross section at which a calculation should be carried out must be specified by the user. The user is able to perform calculations at uniform distances along the longitudinal cross section but is also able to perform more calculations at short distances at areas of interest.

- 31. Click *GeoObjects* and select *Calculation Verticals* on the menu bar to select the *Calculation Verticals* window for specification of the calculation locations along the longitudinal cross section. This will result in the window shown in Figure 15.9.
- 32. Choose the *Automatic generation of L co-ordinates* option on the right side of the window and choose the following values: <-80 m> for *First*, <380 m> for *Last* and <20 m> for *Interval*.
- 33. Click on the *Generate* button and watch the result of automatic vertical generation on the left side of the *Calculation Verticals* window.
- 34. Click *OK* to confirm the selected verticals and switch to the input window to watch the location of the verticals in the longitudinal cross section.

	L-coordinate	Additional Settlement	Automatic ge	eneration [m]	or L-co-ordinates
	[m]	[mm]	<u>F</u> ilst L	[m]	00.00
1	-80.00	0.0	Last L	[m]	380.00
2	-60.00	0.0	Internal	[m]	20.00
3	-40.00	0.0	inter <u>v</u> ar	find	120.00
4	-20.00	0.0			
5	0.00	0.0			<u>u</u> enerate
6	20.00	0.0			- Vi
7	40.00	0.0			
8	60.00	0.0			
9	80.00	<u> </u>			
10	100.00	<u>U.U</u>			
12	1/10.00	0.0			
12	140.00	0.0			
14	100.00	0.0			
15	200.00	0.0			
16	200.00	0.0			
17	240.00	0.0			
18	260.00	0.0			
19	280.00	0.0			
20	300.00	0.0			
21	320.00	0.0			
22	340.00	0.0			
23	360.00	0.0			
24	380.00	0.0			
*					

Figure 15.9: Calculation Verticals window

15.7 Engineering Data

- 35. Select Engineering Data from the Pipe menu bar to open the Engineering Data window.
- 36. Enter the values as given in Figure 15.10.
- 37. Click OK.

Engineering Data	×
Miscellaneous	
Standard Advanced	
Allowable thrust force [H	<n] 10000.00<="" td=""></n]>
Volume loss as percentage of overcut area	[%] 100
Relative displacement [n	nm] 10.00
Compression index	[-] 6.00
Modulus of subgrade reaction of lubrication fluid [kN/r	n ³] 500.00
Phi lubrication fluid [de	eg] 15.00
Adhesion lubrication fluid [kN/n	n2] 5.00
Factor phi for reduced soil load	[-] 0.50
Delta lubrication fluid [d	eg] 7.50
Friction	
Friction with injection of lubricant [k	:Pa] 7.50
Friction without injection of lubricant [k	:Pa] 10.00
OK Canc	el Help

Figure 15.10: Engineering Data window

15.8 Results

The schematization of the longitudinal cross section along the pipeline which will be installed by using micro tunneling is changed. A calculation can now be performed.

38. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.

15.8.1 Thrust Force

39. Open the *Operation Parameter Plots* window from the *Results* menu and select the *Thrust forces* tab (Figure 15.11).

This graph shows the calculated thrust force versus the length of pipe jacked into the subsurface. It is easily recognized that the lubricated as well as the dry thrust force exceed the maximum allowable thrust force as indicated by the manufacturer of the pipe sections.

It should be mentioned that the capacity of the jacks is limited as well. In general the maximum capacity is about 600 ton (6000 kN) so that for larger lengths intermediate jacks are required.

Figure 15.11: Operation Parameter Plots window, Thrust Force tab

15.8.2 Uplift safety

Since the pipeline is installed in a soft soil layer with a relative low wet density. The uplift behavior of the empty pipeline should be evaluated. D-GEO PIPELINE calculates the uplift safety factor $f_{\rm uplift}$ using the following formula:

$$f_{\text{uplift}} = \frac{\sigma_{\text{v}}' + g_{\text{pipe}}}{g_{\text{uplift}}} \tag{15.1}$$

where:

$\sigma'_{\sf v}$	is the vertical effective stress;
g_{pipe}	is the buoyancy of the pipe depending on the diameter of the pipeline and the water
	level. Partial submerging is taken into account by D-GEO PIPELINE;
$g_{\rm uplift}$	is the uplift force.

40. Select the *Safety uplift* tab. As can be seen in Figure 15.12, the uplift safety is more than the required safety factor of 1.

Figure 15.12: Operation Parameter Plots window, Safety uplift tab

The uplift safety appears to be insufficient in the peat layer. The uplift safety factor equals 0.8. The safety factors are shown in the report in paragraph 4.2.1. The reported table is shown subsequently.

k		
icy of the pipeline below the gro safety factor for uplift is calcul	oundwater table, the uplift shou ated based on an empty pipe.	IId be checked. In the subsequent
Cofety factor colouiated	Cofety factor required	l
	[-]	
11.09	1.00	
11.09	1.00	
11.09	1.00	
0.80	1.00	
0.80	1.00	
0.80	1.00	
0.80	1.00	
0.80	1.00	
0.80	1.00	
0.80	1.00	
6.86	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
8.49	1.00	
0.49	1.00	
0.49	1.00	
0.43	1.00	
	k ccy of the pipeline below the gro safety factor for uplift is calcul brs Safety factor calculated [-] 11.09 11.09 0.80 0.849	Safety factor for uplift is calculated based on an empty pipe. Safety factor for uplift is calculated based on an empty pipe. Safety factor calculated Safety factor required [-] [-] 11.09 1.00 11.09 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.849 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49 1.00 8.49

Figure 15.13: Report window, Uplift Factors section

16 Tutorial 9: Settlement and soil mechanical parameters for micro tunneling

This tutorial provides some detail on settlement and calculation of soil mechanical parameters in D-GEO PIPELINE. For a pipe stress analysis the knowledge of the soil-pipeline interaction is required. The soil pipeline interaction is described by the soil mechanical parameters. The vertical displacement (very often settlement) of the layers below and around the pipeline is one of the soil mechanical parameters.

The objectives of the exercise are:

- ♦ To calculate the soil mechanical parameters
- ♦ To calculate the settlements due to construction of an embankment

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Micro Tunneling module
- ♦ License for D-SETTLEMENT (formerly known as MSettle)

This tutorial is presented in the file Tutorial-9.dri.

16.1 Introduction to the case

The same project as Tutorial 8 (chapter 15) is considered with an additional load carry on the compressible soil layers (Figure 16.1). Settlement can be therefore expected.

Figure 16.1: Soil layers and pipeline configuration for Tutorial 9

For advanced pipe stress analyses special programs need to be used. These programs need an advanced set of soil mechanical parameters, provided by D-GEO PIPELINE. The programs will generate a complete spring model around the pipeline for further analyses. The soil mechanical parameters provided by D-GEO PIPELINE are:

- ♦ neutral vertical soil load
- ♦ passive vertical soil load

- ♦ reduced vertical soil load
- ♦ vertical modulus of sub grade reaction
- ♦ horizontal modulus of sub grade reaction
- ♦ ultimate vertical bearing capacity
- ♦ ultimate horizontal bearing capacity
- ♦ neutral horizontal soil load
- ♦ vertical displacement
- maximal axial friction
- ♦ friction displacement

Vertical displacement of soil below and around the pipeline that occurs after installation is an important factor in assessing the stresses in the pipeline. Settlement may be entered manually if the vertical settlements results are available. For more accurate results, D-GEO PIPELINE can use the D-SETTLEMENT computer program (formerly known as MSettle) without additional input. Settlement deals with soil compaction due to imposed loading. In D-GEO PIPELINE the loading consists of an extra layer as created in the geometry. The calculation of the settlement is performed externally by D-SETTLEMENT, the settlement calculation program of the Deltares Systems tools. Details on the calculation of settlement are beyond the scope of this manual, a thorough description can be found in the user manual of D-SETTLEMENT (Deltares).

Table 16.1: Settlement parameters (acc. Koppejan) of the soil layers (Tutorial 9)	

	Coarse Sand	Silty Sand	Peat
Over-consolidation ratio (OCR)	1	1.3	1.3
Primary compression coeff. below Pc (C_p)	10 ⁹	10 ⁹	40
Primary compression coeff. above Pc (C_p ')	10 ⁹	10 ⁹	10
Secondary compression coeff. below $Pc(C_s)$	10 ⁹	10 ⁹	160
Secondary compression coeff. above $Pc(C_s)$	10 ⁹	10 ⁹	35

This tutorial is based on the geometry made in Tutorial 8.

- 1. Click File and select Open on the menu bar to open the Open window.
- 2. Select *Tutorial-8* and click the *Open* button to open de file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-9>.
- 4. Click the Save button to save the file for Tutorial 9.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 9 for D-GEO PIPELINE > and <Micro tunneling: settlement and soil mech. param.> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

16.2 Settlement

For calculation of settlement a license for D-SETTLEMENT is required. If this license and software is available the model option *Settlement* will be available in D-GEO PIPELINE. For this purpose an embankment that will act as a load is introduced.

Settlement calculations can be performed using the in the Netherlands often used Koppejan model or the more recent developed Isotache model which is based on Terzaghi's settlement model.

8. Click *Project* and select *Model* on the menu bar to open the *Model* window.

- 9. Mark the Use settlement check-box and select the Koppejan model (Figure 16.2).
- 10. Click *OK* to confirm the choice.

Model X
Model
 Horizontal directional drilling
🔽 Ends at surface
Dutch Standard NEN
Micro tunneling
C Construction in trench
Settlement
Use settlement
Koppejan
C Isotachen
OK Cancel Help

Figure 16.2: Model window

16.3 Geometry of the longitudinal cross section

This tutorial considers a layered soil sequence described in Tutorial 8 (chapter 15). In the longitudinal cross section, a load (soil mass) has to be defined.

- 11. Switch to the *Geometry* tab in the *View Input* window to edit the existing soil layer sequence.
- 12. Select the *Add polyline* icon *in the Edit sub-window to draw an additional layer (soil mass) on top of the existing soil layers with coordinates given in Table 16.2.*

X co-ordinate [m]	Z co-ordinate [m]
-75	5
-60	10
30	10
45	5

Table 16.2: Coordinates of the top of the soil mass

- 13. Quit editing by clicking the right mouse button.
- 14. To check or modify the added points, select a point by clicking the left mouse button. The point will become a red square.
- 15. Click the right-hand mouse button and select *Properties...* In the window displayed (Figure 16.3), the co-ordinates can be checked and modified if needed.

D Poi	nts		×
3** 3_*		L Co-ordinate [m]	Z Co-ordinate [m]
1.7	▶ 1	-100.000	5.000
- **	2	400.000	5.000
	3	-75.000	5.000
\sim	4	-60.000	10.000
100	5	30.000	10.000
B	6	45.000	5.000
	7	-100.000	4.500
	8	-40.000	4.500
1-0	9	-20.000	-10.000
	10	100.000	-10.000
	11	123.000	2.000
	12	400.000	2.000
	13	-100.000	-40.000
	14	400.000	-40.000
	15	-100.000	5.000
	16	400.000	5.000
,	,	ОК	Cancel Help

Figure 16.3: Points window

- 16. Click the *Zoom limits* button in the *Tools* panel so that the drawn geometry appears in the center of the screen.
- 17. Select the Automatic regeneration of geometry on/off icon is from the Tools sub-window so that the geometry as shown in Figure 16.4. If the Automatic regeneration of geometry icon already is selected, click on the *Edit* icon is to regenerate the geometry. Notice that the soil mass is located on the left above the section where the pipeline is located in the peat layer.

Figure 16.4: View Input window, Geometry tab

16.4 Soil layer properties

The settlement properties of the soil layers in the layered soil sequence should now be specified. The properties of the soil mass should be entered too.

- 18. Click Soil and select Materials on the menu bar to open the Materials window.
- 19. Select the soil name *Undetermined* in the left column of the *Materials* window and rename it with <Coarse Sand>. Enter the properties given in Figure 16.5.

Material <u>n</u> ame	Total Unit Weight			
Soft Clay Madium Clay	Above phreatic level	[kN/m³]	17.00	
Stiff Clay Peat	Below phreatic level	[kN/m³]	20.00	1
Loose Sand Dense Sand Sand	Cohesion	[kN/m²]	0.00	
Gravel	Phi	[deg.]	30.00	
Loam Muck	Cu top	[kN/m²]	0.00	Ī
Coarse Sand Silty Sand	Cu bottom	[kN/m²]	0.00	1
	Emod top	[kN/m²]	15000.00	1
	Emod bottom	[kN/m²]	15000.00	1
	Adhesion	[kN/m²]	0.00	1
	Friction angle (Delta)	[deg.]	20.00	-
	Poisson ratio (Nu)	[-]	0.33	
	-Settlement Koppejan			
	Overconsolidation Ratio (OCR)	[·]	1.00	
	Primary compression coefficient			
	Below preconsolidation pressure	(Cp) [·]	1.00E+09	
	Above preconsolidation pressure	(Cp') [·]	1.00E+09	1
	Secondary compression coefficie	ent		
	Below preconsolidation pressure	(Cs) [·]	1.00E+09	Ī
Add Insert Delete Rename	Above preconsolidation pressure	(Cs') [·]	1.00E+09]

Figure 16.5: Materials window

- 20. Select the soil name *Silty Sand* and enter the *Settlement Koppejan* data given in Table 16.1.
- 21. Select the soil name Peat and enter the Settlement Koppejan data given in Table 16.1.
- 22. Finish the input of soil data by clicking OK.

16.5 Finishing the geometry of the longitudinal cross section

The defined soil properties have to be assigned to the drawn geometry of the longitudinal cross section (groundwater levels are assigned already). The assignments can be carried out by clicking geometry and choosing the subsequent described options on the menu bar.

- 23. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window to assign the soil properties to the soil layers in the longitudinal cross section.
- 24. Click on the tab Materials.
- 25. Assign the soil properties given in Figure 16.6.
- 26. Click OK to confirm the assignments.

Laye	ers				2	×
В	oundaries Materials					
	Available materials		Layers			
	Name		Number	Material name	Load	
	Soft Clay Medium Clay		/ 3	Coarse Sand		
	Stiff Clay		1	Silty Sand		
	Peat					
	Loose Sand					
	Sand					
	Gravel	13				
	Loam					
	Coarse Sand					
	Silty Sand					
	1		1			
			OK	Canaal		1
]

Figure 16.6: Layers window, Materials tab

16.6 Calculated soil mechanical parameters in export file

The calculation of the settlement of the soil layers below the pipeline is performed externally by D-SETTLEMENT (formerly known as MSettle), the settlement calculation program of the Deltares Systems tools. Therefore, the directory where the program is installed must be given:

- 27. Click *Tools* on the menu bar and select *Program Options* to open the *Program Options* window. Then select the *Locations* tab (Figure 16.7).
- 28. If needed, change the directory where the *Settlement program* is installed by clicking the *Browse* button.
- 29. Click *OK* to confirm.

Figure 16.7: Program Options window, Locations tab

The other soil mechanical parameters are calculated automatically in D-GEO PIPELINE.

- 30. To start the calculations click *Calculation* and select *Start* on the menu bar to or press the function key F9. Ignore the message of Cu values of 0 above the drained undrained boundary.
- 31. Click *Results* and select *Report* on the menu bar to look at the results of the settlement calculation in paragraph 5.1 (Figure 16.8) and the calculation of the Soil Mechanical Parameters in paragraph 3.1 (Figure 16.9).

5	5 Deformations												
5.1	5.1 Settlements of Soil Layers below the Pipeline												
	Vertical nr.	Settlement	Additional settlement	dv									
	[-]	[mm]	[mm]	[mm]									
	1	0	0	0									
	2	0	0	0									
	3	0	0	0									
	4	1910	0	1910									
	5	1891	0	1891									
	6	1864	0	1864									
	7	1192	0	1192									
	8	30	0	30									
	9	3	0	3									
	10	1	0	1									
	11	0	0	0									
	12	0	0	0									
	13	0	0	0									
	14	0	0	0									
	15	0	0	0									
	16	0	0	0									
	17	0	0	0									
	18	0	0	0									
	19	0	0	0									
	20	0	0	0									
	21	0	0	0									
	22	0	0	0									
	23	0	0	0									
	24	0	0	0									

Figure 16.8: Report window, Settlements of soil layers below the pipeline

3.1 Soil Mech	anical Para	meters												
The list with data and issues is shown hereafter:														
Note: safety	factors not ap	plied												
Pv;p	v;p Passive soil load													
Pv;n	Neutral soil load													
Ph;n			Neutral horizontal soil load											
Pv,r;n					Reduced r	neutral soil load	kN/m²							
kv,top1			Vertical modu	ulus of subgra	de reaction (b	ilinear) upward	kN/m³							
kv,top2			Ver	tical modulus	of subgrade r	eaction upward	kN/m³							
dv					Vertica	al displacement	mm							
kv			Vertica	al modulus of s	subgrade read	ction downward	kN/m³							
Pv;e					Vertical b	earing capacity	kN/m²							
kh				Horizontal n	nodulus of sub	grade reaction	kN/m³							
Ph;e					Horizontal b	earing capacity	kN/m²							
tmax					Maximal fric	tion along pipe	kN/m²							
dmax				Disp	placement at r	naximal friction	mm							
Vertical nr.	Pv;p	Pv;n	Ph;n	Pv,r;n	kv,top									
	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m²]	[kN/m³]									
1	358	100	50	50	3982									
2	807	185	93	70	3982									
3	807	185	93	70	3982									
4	189	87	65	76	457									
5	189	87	65	76	457									
6	189	87	65	76	457									
7	87	30	23	27	457									
8	8	2	2	2	457									
9	8	2	2	2	457									
10	8	2	2	2	457									
11	215	61	30	38	3735									
12	270	76	38	44	3884									
13	270	76	38	44	3884									
14	270	76	38	44	3884									
15	270	76	38	44	3884									
16	270	76	38	44	3884									
17	270	76	38	44	3884									
18	270	76	38	44	3884									
19	270	76	6 38 44 3884											
20	270	76	6 38 44 3884											
21	270	76	38	44	3884									
22	270	76	38	44	3884									
23	270	76	38	44	3884									
24	270	76	38	44	3884									

Figure 16.9: Report window, Soil Mechanical Parameters

- 32. Click *File* and select *Export Results as csv...* on the menu bar to create an export file with the soil mechanical parameters.
- 33. Click on the *Save* button. The export file is saved on the same directory as Tutorial 9 and can be opened using the Excel program for example (see Figure 16.10).

	A	B	C	D	E	F	G	н	1	J	ĸ	L	M	N	0	P	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
1													-						_									
2																												
3																												
4																												
5	1	2	3	4	5	6		1 8	5	10	11	1	2 13	14	11	16	17	18	3 1	9 2	0 21	22	23	24	25	26	27	28
6	Header	Header	Header	Header	Bundle	8undle	Bundle	Bundle	Sundle	Bundle	Bundle	Pipe	Pipe	Pipe	Pipe	Section	Section	Section	Section	Section	Section	Section	Section	Section	Section	Section	Section	Section
7																Axial	Axial	Actial	Axial	Horizonta	I Horizontal	Horizontal						
8																								Left	Left	Left	Left	Left
9	Company	Software	Date	Time	P100	P1(y)	P1(2)	P200	P2(y)	P2(z)	Length Pip	Pipe nr	Diameter	T Thickness	1 Material 1	Section nr	x	У	z	From	Curved	Delta	f	Qa	Qn	Q<	Qp	C1
10	[-]	H	[yyy/mm/dd]	[hh:mm:ss]	[m]	[m]	(m)	[m]	[m]	[m]	[m]	-	[0:05]	[mm]	-		[m]	[m]	[m]	[m]	[boolean]	[m]	Ð	[kN/m2]	[kN/m2]	[kNim2]	[kN/m2]	[kN/m3]
11		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380) () -6	12125.07		1 1200	22.4	Steel	1	-80)	6 1	D ToDoBool	0	0	0	10.04	0	1170.08	3007.83
12		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380) () -6	12125.07		1 1200	22.4	Steel	2	-60) C	6 Э	D ToDoBool	0	0	0	12.98	0	2344.86	3007.83
13		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380) ()	12125.07		1 1200	22.4	Steel	3	-40		ь (6 5	O ToDoBool	0	0	0	12.98	0	2344.86	3007.83
14		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380) (-4	12125.07		1 1200	22.4	Steel	4	-20) - I	6 7	O ToDoBool	0	0	0	11.32	0	277.99	1378.2
15		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380) ((12125.07		1 1200	22.4	Steel	5	0		- 0	6 9	O ToDoBool	0	0	0	11.32	0	277.99	1378.2
16		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380		-6	12125.07		1 1200	22.4	l Steel	6	20		- 0	6 11	O ToDolicol	0	0	0	11.32	0	277.99	1378.2
17		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380		(12125.07		1 1200	22.4	Steel	7	40		- 0	б 1Э	D ToDoBool	0	0	0	5.78	0	108.03	1378.2
18		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380) () -6	12125.07		1 1200	22.4	Steel	8	60)	6 15	D ToDoBool	0	0	0	3.17	0	27.05	1378.2
19		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380) ()	12125.07		1 1200	22.4	Steel .	9	80		ь (6 17	O ToDoBool	0	0	0	3.17	0	27.05	1378.2
20		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		-4	12125.07		1 1200	22.4	Steel	10	100) C	6 19	O ToDoBool	0	0	0	3.17	0	27.05	1378.2
21		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		-4	12125.07		1 1200	22.4	l Steel	11	120		- 0	6 21	O ToDoBool	0	0	0	8.48	0	726.55	2914.04
22		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380		(12125.07		1 1200	22.4	l Steel	12	140		- 0	6 29	O ToDolicol	0	0	0	9.11	0	897.32	2952.28
23		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-6	5 380		-6	12125.07		1 1200	22.4	Steel	13	160		- 0	6 29	D ToDoBool	0	0	0	9.11	0	897.32	2952.28
24		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380) -6	12125.07		1 1200	22.4	Steel	14	180) C	6 27	D ToDoBool	0	0	0	9.11	0	897.32	2952.28
25		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		- (12125.07		1 1200	22.4	Steel	15	200		- C	6 29	O ToDoBool	0	0	0	9.11	0	897.32	2952.28
26		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		-4	12125.07		1 1200	22.4	Steel	16	220		- C	6 31	O ToDoBool	0	0	0	9.11	0	897.32	2952.28
27		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		- 4	12125.07		1 1200	22.4	Steel	17	240		- 0	6 33	O ToDoBool	0	0	0	9.11	0	897.32	2952.28
28		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		(12125.07		1 1200	22.4	l Steel	18	260	0	- 0	6 35	O ToDolicol	0	0	0	9.11	0	897.32	2952.28
29		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380			12125.07		1 1200	22.4	Steel	19	280	0	- 0	6 37	0 ToDoBool	0	0	0	9.11	0	897.32	2952.28
30		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380	0 0		12125.07		1 1200	22.4	Steel	20	300	0)	6 39	D ToDoBool	0	0	0	9.11	0	897.32	2952.28
31		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380	0	(12125.07		1 1200	22.4	Steel	21	320	0) - J	6 41	0 ToDoBool	0	0	0	9.11	0	897.32	2952.28
32		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		-4	12125.07		1 1200	22.4	Steel	22	340	((- C	6 43	O ToDoBool	0	0	0	9.11	0	897.32	2952.28
33		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		-4	12125.07		1 1200	22.4	Steel	23	360) C	6 45	O ToDoBool	0	0	0	9.11	0	897.32	2952.28
34		D-Geo Pipeline 6.3	26-7-2013	13:42:20	-80	0	-4	5 380		(12125.07		1 1200	22.4	l Steel	24	380		- 0	6 47	O ToDolicol	0	0	0	9.11	0	897.32	2952.28

Figure 16.10: Content of the CSV export file for Tutorial 9

The export file contains the following data's:

- ♦ General data about the D-GEO PIPELINE project
- ♦ Pipeline data
- Horizontal soil mechanical data at the left and right of the pipe
- ♦ Vertical soil mechanical data at the top and bottom of the pipe

- ♦ Water data
- ♦ Axial soil data for friction

For more information, refer to section 3.1.2.

16.7 Conclusion

A pipe stress and settlement analysis has been performed for a polyethylene pipe in a layered soil. The inputs and results of this calculation have been exported in a csv file in order to perform an extended stress analysis using an other program.

17 Tutorial 10: Subsidence after micro tunneling

This tutorial provides some detail on subsidence calculations in D-GEO PIPELINE. Subsidence is related to surface level changes due to excavation of the subsurface by the micro tunneling machine.

The objectives of the exercise are:

- ♦ To enter a non linear bore path;
- ♦ To evaluate the subsidence along the pipeline.

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Micro Tunneling module

This tutorial is presented in the file Tutorial-10.dri.

17.1 Introduction to the case

17.1.1 Volume loss along the tunnel excavation

Subsidence is related to the volume loss along the tunnel excavation, e.g. the excess soil removed by the Micro Tunneling Boring Machine (MTBM). The subsidence mechanism is described in detail in section 24.3.

To reduce the friction between pipe and wall of the drilling hole, and allow the optional use of friction reducing fluids, the drilling diameter (R) is usually somewhat larger then the pipe diameter (r).

Figure 17.1: Bore hole section

The space created between pipe and wall is called overcut: the distance R - r. See section 4.6.2.2 for entering the overcut. The overcut is generally filled by lubrication fluid depending on the type of lubrication fluid the amount of filling may reduce during or after installation:

- ♦ Part of the soil above subsides during operation
- Compaction/consolidation of the lubrication fluid after installation

The volume loss as percentage of the overcut area is defined as.

$$V_{\rm s} = \upsilon \,\pi \left(R^2 - r^2\right) \tag{17.1}$$

Note: If one wants to model subsidence due to drilling with a low face support pressure or to model the influence of densification of granular soils this value may be set above 100%.

The volume loss causing subsidence is in D-GEO PIPELINE based on the expected overcut of the soil.

$$V_{\rm s} = \frac{\upsilon \,\pi}{4} \left(\left(D_{\rm o} + 2 \, l_{\rm overcut} \right)^2 - D_{\rm o}^2 \right) \tag{17.2}$$

where:

v is the percentage volume loss, in %;

 $V_{\rm S}$ is the differential volume, in m³/m;

 D_{o} is the pipe diameter, in m;

 l_{overcut} is the overcut on radius, in m.

The volume created by the over cut is initially filled with lubrication fluid. Within a time period the lubrication fluid will consolidate and the overburden will subside into space created by consolidation. The subsidence w at the surface is calculated as follows:

$$w = \frac{V_{\mathsf{s}}}{\sqrt{2\pi i^2}} \exp\left(-\frac{r^2}{2i^2}\right), \qquad z < z_0 \tag{17.3}$$

where:

- *i* is the distance in between the center of the tunnel or pipeline and the inflection point of the trough, in m;
- z_0 is the depth of the center of the pipeline or tunnel, in m;
- z is the depth at which the settlement is calculated, in m;
- $V_{\rm S}$ is the differential volume, in m³/m.

For detail on the shape factor i, see section 24.3.

17.1.2 Modification of the drilling line

A vertical and a horizontal bending radius in the design drilling line for micro tunneling is a possibility. In this tutorial the drilling line is modified in order to avoid drilling through the peat layer.

Figure 17.2: Pipeline configuration of Tutorial 10

Often the horizontal bend is part of one of the vertical bending radii. In case the horizontal bending radius coincides with part of a vertical bending radius, a combined 3-dimensional bending radius is formed. For the design of the horizontal directional drilling line, the pull back force and the strength calculation it is necessary to determine the value of the 3 dimensional bending radius.

The value of the three dimensional bending radius can be calculated as follows:

$$R_{\rm combi} = \sqrt{\frac{R_{\rm h}^2 \times R_{\rm v}^2}{R_{\rm h}^2 + R_{\rm v}^2}} \tag{17.4}$$

where:

 R_{combi} is the combined bending radius, in m; R_{h} is the horizontal bending radius, in m; R_{v} is the vertical bending radius, in m.

As has to be mentioned that the current version of D-GEO PIPELINE does not take the soil reaction forces into account in the curve. Therefore the effect on the friction caused by soil reaction effects in curves is not considered in D-GEO PIPELINE.

This tutorial is based on continuation of the file used in Tutorial 9 (chapter 16).

- 1. Click *File* and select *Open* on the menu bar to open the *Open* window.
- 2. Select <Tutorial-9> and click the *Open* button to open de file.
- 3. Click *File* and select *Save As* on the menu bar to open the *Save As* window and rename the file into <Tutorial-10>.
- 4. Click the Save button to save the file for Tutorial 10.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.

- 6. Fill in <Tutorial 10 for D-GEO PIPELINE > and <Subsidence after micro tunneling> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.
- 8. In the *Model* window from the *Project* menu, unselect the option *Use settlement*.
- 9. Click OK.

17.2 Pipeline Configuration

The horizontal and vertical curves must be specified in the pipeline configuration window.

- 10. Click *Pipe* and select *Pipeline Configuration* on the menu bar to open the *Pipeline Configuration* window.
- 11. Enter the values given in Figure 17.3.
- 12. Click *OK* to confirm.

Pipeline Configuration										2
X,Y-coordinates			Horiz	ontal	bendings					
Left point X-coordinate	[m]	-90.000	3		×1 [m]	Y1 [m]	¥2 [m]	Y2 [m]	Badius [m]	Direction
Left point Y-coordinate	[m]	0.000			.10.000	2 000	200.000	3,000	5000.000	Left T
Left point Z-coordinate	[m]	-6.000		*	10.000	2.000	200.000	0.000	0000.000	-
Right point X-coordinate	[m]	390.000	3							
Right point Y-coordinate	[m]	0.000	8							
Right point Z-coordinate	[m]	-6.000	Ŀ							
Angles (entry/exit)			6							
Angle left	[deg]	5.00								
Angle right	[deg]	5.00								
Bending radius										
Bending radius left	[m]	1200.000								
Bending radius right	[m]	1200.000								
Bending radius pipe on rollers	[m]	0.010								
Pipe between radii										
Lowest level of pipe	[m]	-15.000								
Angle of pipe	[deg]	0.00								
								OK	Cancel	Help

Figure 17.3: Pipeline Configuration window

- 13. Look at the entered horizontal bending on the *Top View* tab of the *View Input* window (Figure 17.4).
- 14. Look at the longitudinal cross section on the *Input* tab of the *View Input* window and notice the elongation of the longitudinal cross section. Therefore it is recommended to check, in case of projects with changing 3D pipeline configurations, if the soil layer sequence in the longitudinal cross section is still reliable (according to the soil investigation data).

Figure 17.4: View Input window, Top View tab

Figure 17.5: View Input window, Input tab

17.3 Material data

After the input of the drilling line, the pipe material is chosen.

- 15. Click *Pipe* from the menu and select *Product Pipe Material Data* to open the *Product Pipe Material Data* window.
- 16. Enter the values as presented in Figure 17.6.

Pipe material		
Steel		
C Synthetic		
C Concrete		
<u>M</u> aterial quality	[·]	Steel 240
Outer djameter product pipe (Do)	[mm]	1200.00
Overcut on radius	[mm]	20
Wall thickness	[mm]	22.40
Young's mo <u>d</u> ulus [N	[/mm ²]	205800.00
Unit weight pipe material [k	:N/m³]	78.50
		1

Figure 17.6: Product Pipe Material Data window

The overcut on the radius amounts to 20 mm, which equals 40 mm on the diameter of the pipeline.

17.4 Engineering Data

The percentage of volume loss is specified in the *Engineering Data* window. In this tutorial a value of 110 % is chosen, so that the effect of drilling with a relative low face pressure (lower than the neutral face pressure) is incorporated.

17. Select *Engineering Data* from the *Pipe* menu bar to open the *Engineering Data* window.18. Enter the values as given in Figure 17.7.

Er	ngineering Data		×
	Miscellaneous		
	C Standard		
	Allowable thrust force	[kN]	10000.00
	Volume loss as percentage of overcut area	[%]	110
	Relative displacement	[mm]	10.00
	Compression index	[·]	6.00
	Modulus of subgrade reaction of lubrication fluid	[kN/m³]	500.00
	Phi lubrication fluid	[deg]	15.00
	Adhesion lubrication fluid	[kN/m2]	5.00
	Factor phi for reduced soil load	[·]	0.50
	Delta lubrication fluid	[deg]	7.50
	Friction		
	Friction with injection of lubricant	[kPa]	7.50
	Friction without injection of lubricant	[kPa]	10.00
	ОК	Cancel	Help

Figure 17.7: Engineering Data window

17.5 Results: Subsidence

To view the calculation results for the subsidence trough as apparent at surface:

- 19. To start the calculations click *Calculation* and select *Start*on the menu bar or press the function key F9.
- 20. Click *Results* and select *Subsidence Profiles* from the menu bar to open the *Subsidence Profiles* window (Figure 17.8).
- 21. Check the box labeled "Fix axis", click on the vertical number edit box. Now move through the verticals by using the up/down arrows on the key board.

Figure 17.8: Subsidence Profiles window for vertical 1
18 Tutorial 11: Installation of pipeline in a trench

This tutorial considers installation of a concrete sewer by means of trenching. A trench is made by excavation, the pipe is installed, and the trench is often filled with the soil derived from the excavation itself. The risks involved during installation include slope failure and bursting of the trench bottom. After installation uplift of the pipe and pipe deformation due to settlement are problems that may occur.

The objectives of the exercise are:

- ♦ To schematize the soil layers with groundwater with different hydraulic heads;
- ♦ To calculate the soil mechanical parameters for a pipeline in a trench.

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Trenching module

This tutorial is presented in the file Tutorial-11.dri.

18.1 Introduction to the case

In this tutorial a simple trench is modeled. The trench passes a small waterway. The geometry of tutorial 7 forms the base of this tutorial.

Figure 18.1: Geometry of Tutorial 11

This tutorial is based on continuation of the file used in Tutorial 7 (chapter 14).

- 1. Click *File* and select *Open* on the menu bar to open the *Open* window.
- 2. Select Tutorial-7 and click the Open button to open de file.
- 3. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-11>.

		Silty Sand	Soft Organic Clay
Dry unit weight	[kN/m ³]	18	13
Wet unit weight	[kN/m ³]	20	13
Cohesion	[kN/m ²]	0	2
Angle of internal friction	[°]	10	18
Undrained strength top	[kN/m ²]	0	10
Undrained strength bottom	[kN/m ²]	0	30
E modulus top	[kN/m ²]	10000	500
E modulus bottom	[kN/m ²]	15000	1000
Adhesion	[kN/m ²]	0	2
Friction angle	[0]	20	9
Poisson's ratio	[-]	0.35	0.45

 Table 18.1: Layer properties (Tutorial 11)

- 4. Click the *Save* button to save the file for Tutorial 11.
- 5. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 6. Fill in <Tutorial 11 for D-GEO PIPELINE > and <Installation of pipeline in a trench> for *Title 1* and *Title 2* respectively in the *Identification* tab.
- 7. Click OK.

18.2 Model

Since this tutorial considers an installation of the pipeline in a trench the model trench should be selected.

- 8. On the menu bar, click *Project* and then choose *Model* to open the *Model* window.
- 9. Select Construction in trench, and click OK.

Model X
Model
 Horizontal directional drilling
🔽 Ends at surface
Dutch Standard NEN 🔽
C Micro tunneling
Construction in trench
Settlement
Use settlement
💿 Koppejan
C Isotachen
OK Cancel Help

Figure 18.2: Model window

18.3 Geometry of the longitudinal cross section

This tutorial considers a layered soil sequence. The typical Dutch soil sequence of a soft organic clay layer on top of a coarse sand layer will be considered. The organic clay layer is compressible and exhibits a low permeability, while the sand layer is assumed incompressible and exhibits a high permeability. The new soil layers should be specified in the geometry window.

- 10. In the *View Input* window, switch to the *Geometry* tab to edit the existing soil layer sequence.
- 11. Click the *Add single line* icon from the *Edit* sub-window to draw an additional top line of a soil and position the straight line at Z = -5 m.
- 12. Click the Automatic regeneration of geometry on/off icon from the Tools sub-window so that the geometry as shown in Figure 18.3 appears. If the Automatic regeneration of geometry icon is already selected, click on the Edit icon icon icon regenerate the geometry.
- 13. Click the *Add pl-line(s)* icon from the *Edit* sub-window and position the level of the artesian groundwater at coordinate Z = 8 m. The blue dashed line, which appears in the longitudinal cross section, represents the second groundwater line (PL line 2). This second groundwater line will be used in section 18.5.3 to specify the water pressure distribution in the sand aquifer.

Figure 18.3: View Input window, Geometry tab

18.4 Soil layer properties

The properties of the soil layers in the layered soil sequence should now be specified.

- 14. Click *Soil* and select *Materials* on the menu bar to enter the soil data.
- 15. Add a new material by choosing the *Add* button <u>Add</u> below the materials list on the left side of the window. Enter the soil material name <Soft Organic Clay>.
- 16. Enter the soil data given in Table 18.1.
- 17. Finish the input of soil data by clicking OK.

faterial <u>n</u> ame	Total Unit Weight		
Soft Clay	Above phreatic level	[kN/m³]	13.00
Stiff Clay Peat	Below phreatic level	[kN/m³]	13.00
Loose Sand Dense Sand Sand	Cohesion	[kN/m²]	2.00
Gravel	Phi	[deg.]	18.00
Loam Muck	Cu top	[kN/m²]	10.00
Undetermined Silty Sand	Cu bottom	[kN/m²]	30.00
Soft Organic Clay	Emod top	[kN/m²]	500.00
	Emod bottom	[kN/m²]	1000.00
	Adhesion	[kN/m²]	2.00
Add Insert	Friction angle (Delta)	[deg.]	9.00
Delete Rename 👻	Poisson ratio (Nu)	[·]	0.45

Figure 18.4: Materials window

18.5 Finishing the geometry of the longitudinal cross section

The defined soil properties and the groundwater levels have to be assigned to the drawn geometry of the longitudinal cross section. The assignments can be carried out in the *Geometry* menu.

18.5.1 Phreatic Line

- Click *Geometry* and select *Phreatic Line* on the menu bar to open the *Phreatic Line* window (Figure 18.5) and select PL-line <1> as phreatic line for calculation of the groundwater pressures.
- 19. Click OK.

Phreatic Line		×
Select the PILine number) which a phreatic line:	(by ^{cts as} 1	•
ОК	Cancel	Help

Figure 18.5: Phreatic Line window

18.5.2 Layers

- 20. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window. Select the *Materials* tab to assign the soil properties to the soil layers in the longitudinal cross section.
- Assign the properties of the defined layer *Soft Organic Clay* to layer number 2 in the longitudinal cross section. The defined properties of *Soft Organic Clay* are assigned to layer *Number 2* by clicking the *Assign* icon → in between the left and the right column (Figure 18.6).

Silty Sand	

Figure 18.6: Layers window, Materials tab

22. Click on the *OK* button to quit the window and return to the *Geometry* tab of the *View Input* window to look at the change of layers name in the legend (Figure 18.7).

Figure 18.7: View Input window, Geometry tab

18.5.3 PL-Lines per Layer

- 23. Click *Geometry* and select *PI-lines per Layers* on the menu bar to open the *PL-lines per Layer* window to assign the defined PL–lines to the soil layers in the longitudinal cross section. Those information's are used for the calculation of the groundwater pressure distribution.
- 24. The groundwater pressure at the top of the *Soft Organic Clay* layer should be calculated based on the hydraulic head of PL–line 1, the phreatic line (Figure 18.5). Since the *Coarse Sand* layer is an aquifer with an enhanced artesian groundwater pressure, the groundwater pressure at the bottom of the clay layer should be calculated based on the hydraulic head of PL–line 2. Of course the water pressure at the top and at the bottom of the coarse sand layer should be calculated based on the hydraulic head is pressure at the coarse sand layer should be calculated based on the hydraulic head of PL–line 2. This will result in the

Pl-lines per layer window shown in Figure 18.8.

D PL-	line	s per Laye	r	×
X		Layer Number	PL-line at top	PL-line at bottom
Pb I	0	2	1	2
	Ok		Cancel	Help

Figure 18.8: PL-lines per Layer window

- 25. Click OK to confirm.
- 26. The geometry can be tested by clicking *Geometry* on the menu bar and selecting *Check Geometry*. If the geometry is entered properly, the message *Geometry has been tested and is OK* appears.
- 27. Click *OK* to close this window.

18.6 Adding a waterway

A small waterway will now be drawn in the geometry.

- 28. Select the *Geometry* tab and select the *Add poly line(s)* button \mathbb{H} .
- 29. Draw a profile line as in Figure 18.9a. Remove points that are not required by clicking the right mouse button and selecting the option *Delete All Loose Lines*.
- 30. Select the top line (between points 3 and 6 as shown in Figure 18.9b.
- 31. Click the *Delete* button [⋈]. This should result in Figure 18.9c.

Figure 18.9: View Input window, Geometry tab (steps for drawing a waterway)

Now give the exact location of the waterway:

- 32. Check and enter the exact coordinates of the points by opening the *Points* window from the *Geometry* menu.
- 33. Enter correct values for points 2, 3, 4 and 5 as shown in Figure 18.10.

D Poi	nts		×
		L Co-ordinate [m]	Z Co-ordinate [m]
	▶ 1	-100.000	5.000
_ ?* ×	2	5.000	5.000
	3	15.000	2.000
\square	4	35.000	2.000
00	5	45.000	5.000
L Ch	6	200.000	5.000
	7	-100.000	-5.000
16	8	200.000	-5.000
	9	-100.000	-40.000
	10	200.000	-40.000
	11	-100.000	0.000
	12	200.000	0.000
	13	-100.000	8.000
	14 v	200.000	8.000
	*		
,	,		Cancel Help

Figure 18.10: Points window

18.7 Calculation Verticals

In the subsequent table the verticals for the location of the calculations are given.

- 34. Open the Calculation Verticals window.
- 35. Enter <-70> and <130> for the *First* and *Last L* values and an *Interval* of <20>.
- 36. Click the Generate button.

Calcul	ation ¥er	ticals					X
		L-coordinate	Additional Settlement	- Automatic ge	eneration	of L-co-ordinates	
_ ⊐* ⊂				<u>F</u> irst L	[m]	-70.00	
∃_r⊂	N .	[m]	[mm]	Last	[m]	130.00	
		-70.00	0.0	Egene	tool.		
_ ≥ ₩	3	-30.00	0.0	Inter <u>v</u> al	[m]	20.00	
	4	-10.00	0.0				
	5	10.00	0.0			<u>G</u> enerate	
	6	30.00	0.0				
	7	50.00	0.0				
	8	/0.00	0.0				
	10	110.00	0.0				
	11	130.00	0.0				
	*	100.00	0.0				
							,
				ОК	Can	cel Help	

Figure 18.11: Calculation Verticals window

18.8 Boundaries Selection

To indicate the boundary compressible/uncompressible layers and impermeable/permeable layers, the top of a specific layer is used. In this case it is evident that this is the top of the coarse sand layer.

- 37. From the main menu click *GeoObjects* and select *Boundaries Selection*.
- 38. Select *Top of layer* <1> as both boundaries.
- 39. Click OK.

Boundaries Selection		×
Boundaries		
Boundary impermeable / permeable layers Compressible and uncompressible layers	Top of layer 1 1	
OK Cancel	Help	

Figure 18.12: Boundaries Selection window

18.9 Trench configuration and pipe material

As the trench passes a small waterway, for practical reasons it has to subduct. An initial distance of about 1.5 meter is chosen between trench and bottom waterway.

- 40. Click *Pipe* and select *Pipeline Configuration* from the menu bar to open the *Pipeline Configuration* window.
- 41. Enter the values as presented in Figure 18.13.
- 42. Click OK to accept the entries.

}⊷		Begin X	Begin Y	Begin Z	Material	E mod	Outer	Wall thickness	Unit weight	Width trench	Slope	Offset
- 3.e		[m]	[m]	[m]		[N/mm 2]	[mm]	[mm]	[kN/m ³]	[mm]	[1:x]	[m]
4-	▶	-80.000	0.000	2.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
+×		-50.000	10.000	2.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
-		-20.000	20.000	0.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
		0.000	20.000	-1.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
× 1		20.000	10.000	-1.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
A		80.000	5.000	0.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30
		100.000	5.000	2.000	concrete	30000.00	1240.00	12.00	30.00	2000.00	2.00	0.30

Figure 18.13: Pipeline Configuration window

43. Now examine the trench trajectory in the *Input* (Figure 18.14) and *Top View* (Figure 18.15) tabs of the *View Input* window.

Figure 18.14: View Input window, Input tab

Figure 18.15: View Input window, Top View tab

18.10 Engineering Data

Next the engineering data is added. The trench is excavated in organic clay, and filled with the excavated material, the fill is poorly compacted.

- 44. Click *Pipe* from the menu bar and select *Engineering Data* to open the *Engineering Data* window.
- 45. Select <Soft Soils> as Type of fill and <Poorly compacted> as Compaction of fill.
- 46. Click *OK* to confirm.

ingineering Data		×
Type of fill C Sand C Stiff Clay		
 Soft Soils 		
Compaction of fill		h I
C Well compacted		
Poorly compacted		
	OK Cancel Help	

Figure 18.16: Engineering Data window

18.11 Results: Soil Mechanical Parameters

- 47. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 48. Open the *Report* window from the *Results* menu to view the results of the *Soil Mechanical Parameters*. The results can be found in paragraph 3.1 (Figure 18.17).

Since the fill of the trench is assigned the property "poorly compacted" a relatively high initial soil load on the pipe is expected.

The list with data and issues is shown hereafter: Note: safety factors not applied Pyp Passive soil load kVm² Pyn Neutral soil load kVm² Pyn Neutral soil load kVm² Pyn Neutral horizontal soil load kVm² Pyn Neutral horizontal soil load kVm² Pyn Vertical modulus of subgrade reaction (bilinear) upward kVm² kv.top1 Vertical modulus of subgrade reaction downward, first branch kVm² kv Vertical modulus of subgrade reaction downward, second branch kVm² kv Vertical modulus of subgrade reaction downward, second branch kVm² kv Vertical modulus of subgrade reaction downward, second branch kVm² rax Horizontal modulus of subgrade reaction kWm² kVm² rax Horizontal modulus of subgrade reaction kWm² kVm² rax Displacement at maximal friction and mm² ra 100 52	3.1 Soil Mecha	anical Paran	neters							
Note: safety factors not applied Pv,p Passive soil load kV/m² Pv,n Neutral soil load kV/m² Pr,a Neutral soil load kV/m² Pv,a Actual soil load kV/m² Pv,a Actual soil load kV/m² kv,top1 Vertical modulus of subgrade reaction (bilinear) upward kV/m² kv,top2 Vertical modulus of subgrade reaction downward, first branch kV/m² kv1 Vertical modulus of subgrade reaction downward, first branch kV/m² kv1 Vertical modulus of subgrade reaction downward, first branch kV/m² kv2 Vertical modulus of subgrade reaction downward, first branch kV/m² rmax Horizontal modulus of subgrade reaction kV/m² kV/m² rmax Maximal friction along pipe kV/m² rmax Maximal friction along pipe kV/m² rmax Displacement at maximal friction mm Vertical mr. kV/m² kV/m² kV/m² 1 50 33 23 41 33 94 2 50	The list with	data and iss	ues is shown	hereafter:						
Pr,n Neutral horizontal soil load kN/m² Ph,n Neutral horizontal soil load kN/m² Pr,a Actual soil load kN/m² Pr,a Actual soil load kN/m² kr,tpp1 Vertical modulus of subgrade reaction (bilinear) upward kN/m³ kr,tp2 Vertical modulus of subgrade reaction dwmward, first branch kN/m³ kv1 Vertical modulus of subgrade reaction dwmward, first branch kN/m³ kv2 Vertical modulus of subgrade reaction dwmward, first branch kN/m³ kv2 Vertical modulus of subgrade reaction dwmward, first branch kN/m³ Pr,e Vertical modulus of subgrade reaction dwmward, first branch kN/m³ max Maximal friction allong pipe kN/m³ max Displacement at maximal friction mm 1 50 33 23 41 33 94 2 50 33 20 14 26 24 64 7 141 64 44 117 248 63 94 10 50	Note: safety P∨;p	factors not a	pplied				Passive :	soil load	kN/m²	
Ph,n Neutral horizontal soli load kN/m² Py,a Actual soli load kN/m² kv,top1 Vertical modulus of subgrade reaction (bilinear) upward kN/m² kv,top2 Vertical modulus of subgrade reaction downward, sicotion upward kN/m² kv1 Vertical modulus of subgrade reaction downward, sicoton branch kN/m² kv1 Vertical modulus of subgrade reaction downward, sicoton branch kN/m² kv2 Vertical modulus of subgrade reaction downward, sicoton branch kN/m² kv1 Vertical modulus of subgrade reaction downward, sicoton branch kN/m² kh Horizontal bearing capacity kN/m² kh Horizontal bearing capacity kN/m² max Maximal friction along piece kN/m² max Displacement at maximal friction mm 1 50 33 23 41 33 94 2 50 33 23 41 33 94 1 60 33 23 41 33 94 1 10 50	Pv;n						Neutral	soil load	kN/m²	
Pryder Pryder Pryder Wrth Wrth kv,tpp1 Vertical modulus of subgrade reaction (blinear) upward dv kV/m³ kV/m³ dv Vertical modulus of subgrade reaction downward, first branch k/1 kV/m³ kV/m³ kv1 Vertical modulus of subgrade reaction downward, second branch k/2 kV/m³ kV/m³ Pv,e Vertical bearing capacity kh kV/m³ kV/m³ Pv,e Horizontal bearing capacity kN/m³ kN/m³ kN/m³ max Maximal friction along pipe kN/m³ kN/m³ kN/m³ max Displacement at maximal friction mm mm mm Vertical nr. Pv,p Pv,n Prya Pv/a kV/m² 1 60 33 23 41 33 94 3 87 48 33 71 97 215 4 133 63 44 110 214 407 1 60 33 23 41 33 94 3 1 26 24 64 64 1 10 50 <	Ph;n					Neutral I	norizontal s	soil load	kN/m² L≬l/m²	
Nypping Normal Sector Sector Network and Sector Sector Sector Network Sector Sector Network Network Sector Network Network Network Sector Network Networ	FV,a kv ton1			Vertical modu	ulus of subc	rade reaction	Actuals (hilinear)	unward	kN/m³	
dv Vertical displacement kr1 mm Vertical modulus of subgrade reaction downward, second branch Vertical bearing capacity kh mm klV/m ³ Py,e Vertical modulus of subgrade reaction downward, second branch Py,e Vertical modulus of subgrade reaction thore and the subgrade reaction with the subgrade reaction physical bearing capacity kh KlVm ³ Ph,e Horizontal modulus of subgrade reaction trax Maximal friction along pipe klV/m ³ KlVm ³ max Maximal friction along pipe dmax Maximal friction along pipe klV/m ³ KlVm ³ Vertical nr. Py,p Py,n Ph,n Py,a kv,top1 kv,top2 1 50 33 23 41 33 94 2 50 33 23 41 33 94 3 87 48 33 71 97 215 4 133 62 43 108 205 392 9 102 53 77 82 274 20 78 1 n.a 1566 251 331 3632 121 7	kv.top2			Vert	tical modulu	is of subgrad	e reaction	upward	kN/m ³	
kv1 Vertical modulus of subgrade reaction downward, first branch Vertical modulus of subgrade reaction downward, second branch Pv,e kWm ³ kh Horizontal modulus of subgrade reaction Netrical bearing capacity Kh KWm ³ Ph,e Horizontal modulus of subgrade reaction Horizontal modulus of subgrade reaction Horizon modulus of subgrade reaction Horizo	dv					Ver	tical displa	cement	mm	
k/2 Vertical modulus of subgrade reaction downward, second branch kN/m ³ Pv,e Vertical bearing capacity kN/m ³ Kh Horizontal modulus of subgrade reaction kN/m ³ Ph,e Horizontal modulus of subgrade reaction kN/m ³ tmax Maximal friction along pipe kN/m ³ dmax Displacement at maximal friction mm Vertical nr. Pv,p Pv,n Pv,n Pv,a 1 50 33 23 41 33 94 2 50 33 23 41 33 94 3 87 48 33 71 97 215 4 133 63 44 110 214 4007 5 77 39 27 62 105 211 6 33 23 41 33 94 10 50 33 23 41 33 94 11 50 33 23	kv1		Vertic	al modulus of	subgrade r	eaction dowr	ward, first	branch	kN/m³	
Pryce Vertical beaning capacity kN/m ² kh Horizontal beaning capacity kN/m ² Ph,e Horizontal bearing capacity kN/m ² tmax Maximal friction along pipe kN/m ² tmax Maximal friction along pipe kN/m ² Vertical nr. Pryp Pryn Ph/n Pryn kN/m ² Vertical nr. Pryn RM 1 50 33 23 41 33 94 94 91 21 7 8 2 105 211 6 33 20 14 26 24 64 451 8 130 62 43 108 205 392 94 11 50	kv2		Vertical m	nodulus of sub	ograde reac	tion downwa	rd, second	branch	kN/m ³	
Kit Horizontal floating capacity Kit/m² Ph,e Horizontal bearing capacity klV/m² tmax Maximal friction along pipe klV/m² dmax Displacement at maximal friction mm 1 50 33 23 41 33 94 2 50 33 23 41 33 94 3 87 48 33 71 97 215 4 133 63 44 110 214 407 5 77 39 27 62 105 211 6 33 20 14 26 24 64 7 141 64 44 117 248 451 8 130 62 37 84 132 274 10 50 33 23 41 33 94 11 50 33 23 21 7 8 Clay <td>Pv;e</td> <td></td> <td></td> <td></td> <td>Llevienete</td> <td>Vertica transferition</td> <td>al bearing o</td> <td>apacity</td> <td>kN/m²</td> <td></td>	Pv;e				Llevienete	Vertica transferition	al bearing o	apacity	kN/m²	
International finitional conting outputs in the second graphent of the second graph	Kri Phre				HUNZUNIA	Horizont:	subgrade i al hearing r	eaction anacity	kN/m²	
dmax Displacement at maximal friction mm Vertical nr. Pv.p. Pv.n Ph.n Pv.a kv.top1 kv.top2 1 50 33 23 41 33 94 2 50 33 23 41 33 94 3 87 48 33 94 94 94 3 87 48 33 94 94 94 4 133 63 44 110 214 407 5 77 39 27 62 105 211 6 33 20 14 26 24 64 7 141 64 44 117 248 451 8 130 62 43 108 205 392 9 102 63 37 84 132 274 10 50 33 23 41 33 94	tmax					Maximal	friction alc	na pipe	kN/m ²	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	dmax				Di	splacement	at maxima	friction	mm	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vertical nr.	Pv;p	Pv;n	Ph;n	Pv;a	kv,top1	kv,to	p2		
1 00 00 10 10 00 11 00 01 3 87 48 33 71 97 215 4 133 63 44 110 214 407 5 77 39 27 62 105 211 6 33 20 14 26 24 64 7 141 64 44 117 248 451 8 130 62 43 108 205 392 9 102 63 37 84 132 274 10 50 33 23 41 33 94 11 50 33 23 41 33 94 11 50 33 23 41 33 94 2 n.a. 1566 251 331 3632 121 7 8 Clay <	1	[KIW/II-] 50	[KIWITI*] 33	23	[KIWITI*] 	[KIW////-]	13	94		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	50	33	23	4	1 3	3	94		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	87	48	33	7	1 9	17	215		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	133	63	44	11	21	4	407		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	77	39	27	6	2 10	15	211		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	33	20	14	11	2 <u>2</u> 7 2/	9	451		
9 102 53 37 84 132 274 10 50 33 23 41 33 94 11 50 33 23 41 33 94 11 50 33 23 41 33 94 Vertical nr. dv kv1 kv2 Pv;e kh Ph;e tmax dmax mat 1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1566 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6	8	130	62	43	10	3 20	15	392		
10 50 33 23 41 33 94 11 50 33 23 41 33 94 11 50 33 23 41 33 94 Vertical nr. dv kv1 kv2 Pv;e kh Ph;e tmax dmax mat 1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1566 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4403 207 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3	9	102	53	37	8	4 13	12	274		
11 50 33 23 41 33 94 Vertical nr. dv kv1 kv2 Pv;e kh Ph;e tmax dmax mat 1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1566 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1860 266 463 4088 198 8 Clay 8 n.a. 1843	10	50	33	23	4	1 3	3	94		
Vertical nr. dv [mm] kv1 [klV/m] kv2 [klV/m] Pv;e [klV/m] kh [klV/m] Ph;e [klV/m] tmax [klV/m] dmax [mm] mat [-] 1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1566 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1860 266 463 4088 198 8 Clay 8 n.a. 1843 295 494 4498 209 9	11	50	33	23	4	1 3	13	94		
[mm] [kN/m?] [mm] [-] 1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1666 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 398 63 141 1518 50 3 8 Clay 7 n.a. 1860 266 463 4088 198 8 Clay 8 n.a. 1843 295 494	Vertical nr.	dv	kv1	kv2	Pv;e	kh	Ph;e	tmax	dmax	mat
1 n.a. 1566 251 331 3632 121 7 8 Clay 2 n.a. 1566 251 331 3632 121 7 8 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1660 266 463 4088 198 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1830 309 476 4623 197 9 8 Clay 9 </td <td></td> <td>[mm]</td> <td>[kN/m³]</td> <td>[kN/m³]</td> <td>[kN/m²]</td> <td>[kN/m³]</td> <td>[kN/m²]</td> <td>[kN/m²]</td> <td>[mm]</td> <td>[-]</td>		[mm]	[kN/m³]	[kN/m³]	[kN/m ²]	[kN/m³]	[kN/m ²]	[kN/m²]	[mm]	[-]
2 11.2. 1300 201 331 3002 121 1 1 0 Clay 3 n.a. 1904 305 447 4390 176 9 8 Clay 4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1860 266 463 4098 198 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay <td>2</td> <td>n.a.</td> <td>1566</td> <td>251</td> <td>331</td> <td>3632</td> <td>121</td> <td>7</td> <td>8</td> <td>Clay</td>	2	n.a.	1566	251	331	3632	121	7	8	Clay
4 n.a. 1800 288 487 4403 207 9 8 Clay 5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1860 266 463 4098 198 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1860 309 476 4623 197 9 8 Clay	2	na.	1904	305	447	4390	176	9	8	Clay
5 n.a. 798 128 279 2673 112 5 8 Clay 6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1660 266 463 4098 198 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay 10 n.a. 1960 264 201 279 9 8 Clay	4	n.a.	1800	288	487	4403	207	9	8	Clay
6 n.a. 396 63 141 1518 50 3 8 Clay 7 n.a. 1660 266 463 4088 198 8 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay 10 n.a. 1960 2051 2014 2020 9 7 0 Clay	5	n.a.	798	128	279	2673	112	5	8	Clay
7 n.a. 1660 266 463 4088 198 8 8 Clay 8 n.a. 1843 295 494 4498 209 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay 10 n.a. 1568 251 201 27 2 Clay	6	n.a.	396	63	141	1518	50	3	8	Clay
8 n.a. 1943 295 494 4498 209 9 8 Clay 9 n.a. 1930 309 476 4623 197 9 8 Clay 10 n.a. 1568 351 321 7 9 8 Clay	7	n.a.	1660	266	463	4088	198	8	8	Clay
3 n.a. 1930 309 470 4623 187 9 8 Clay	8	n.a.	1843	295	494	4498	209	9	8	Clay
	10	n.a.	1930	251	331	3622	121	9	8	Clay
11 n.a. 1566 251 331 3632 121 7 8 Clay	11	na.	1566	251	331	3632	121	7	8	Clay

Figure 18.17: Report window, Soil Mechanical Parameters section

The initial soil load Pv;a may be reduced by changing the fill property to "well compacted" (see Equation 21.9 in section 21.4). Note that in reality this requires an extra compaction treatment after installation of the pipe. In the software this can be adjusted in the *Engineering Data* window under the *Pipe* menu.

19 Tutorial 12: Trenching: uplift and heave

This tutorial is the continuation of tutorial 11 (chapter 18) and considers installation of a concrete sewer by means of trenching.

The objectives of the exercise are:

- ♦ To evaluate the risk on heave of the bottom of the trench during installation;
- ♦ To evaluate possible uplift of the empty pipe after installation.

The following modules are needed:

- ♦ D-GEO PIPELINE Standard module (HDD)
- ♦ Trenching module

This tutorial is presented in the files Tutorial-12a.dri, Tutorial-12b.dri and Tutorial-12c.dri.

19.1 Introduction to the case

During the excavation of a trench the groundwater conditions may play an important role. In case a trench is excavated below the phreatic groundwater table or in case the hydraulic head of an aquifer is relatively high, heave of the bottom of the trench is a serious risk. An other risk, which may occur after excavation of the trench below the phreatic groundwater table, is the uplift due to fill with a low density soil.

In this tutorial, the top layer consists of peat instead of organic clay. The peat exhibits a low density. Besides a low density top layer, this tutorial considers a situation with a phreatic groundwater table at the surface level.

Figure 19.1: Pipeline configuration for Tutorial 12

		Silty Sand	Peat	Soft Organic Clay
Dry unit weight	[kN/m ³]	18	10.2	13
Wet unit weight	[kN/m ³]	20	10.2	13
Cohesion	[kN/m ²]	0	2	2
Angle of internal friction	[°]	10	15	18
Undrained strength top	[kN/m ²]	0	10	10
Undrained strength bottom	[kN/m ²]	0	20	30
E modulus top	[kN/m ²]	10000	1000	500
E modulus bottom	[kN/m ²]	15000	1500	1000
Adhesion	[kN/m ²]	0	2	2
Friction angle	[°]	20	5	9
Poisson's ratio	[-]	0.35	0.45	0.45

Tabla	10 1.	Lovor	proportion	(Tutorial	121
avie	19.1.	Layer	properties	l'iutoriai	12)

This tutorial is based on continuation of the file used in Tutorial 11 (chapter 18).

- 1. Click *File* and select *Open* on the menu bar, and select Tutorial-11.
- 2. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-12a>.
- 3. Click the *Save* button to save the file for Tutorial 12a.
- 4. On the menu bar, click *Project* and then choose *Properties* to open the *Project Properties* window.
- 5. Fill in <Tutorial 12 for D-GEO PIPELINE > and <Trenching: uplift and heave> for *Title 1* and *Title 2* respectively in the *Identification* tab.

19.2 Materials

The soil investigation showed presence of peat layers instead of organic clay. First, peat is added to the material list.

- 6. Click Soil and select Materials on the menu bar to open the Materials window.
- 7. Select the existing *Peat* material in the left side of the window and enter the values as given in Table 19.1.
- 8. Click OK.

Material <u>n</u> ame	Total Unit Weight		
Soft Clay Modium Clay	Above phreatic level	[kN/m3] 10.20	
Stiff Clay Peat	Below phreatic level	[kN/m³] 10.20	
Loose Sand Dense Sand Sand	Cohesion	[kN/m²] 2.00	
Gravel	Phi	[deg.] 15.00	
Muck	Cu top	[kN/m²] 10.00	
Undetermined Silty Sand	Cu bottom	[kN/m²] 20.00	
Soft Organic Clay	Emod top	[kN/m²] 1000.00	
	Emod bottom	[kN/m²] 1500.00	
	Adhesion	[kN/m²] 2.00	
Add Insert	Friction angle (Delta)	[deg.] 5.00	
Delete Rename 👻	Poisson ratio (Nu)	[-] 0.45	

Figure 19.2: Materials window

Assign this material type to the top layer:

- 9. Click *Geometry* and select *Layers* on the menu bar.
- 10. To assign a material to a layer, select the *Material* tab. Select $\langle \text{Peat} \rangle$ as well as layer number $\langle 2 \rangle$ and via the arrow button \rightarrow assign the soil to the layer (Figure 19.3).
- 11. Accept the input and return to the main window by clicking OK.

Layers				×
Boundaries Materials				
Available materials		Layers		
Name		Number	Material name	Load
Soft Clay Medium Clay Stiff Clay Peat		2	Peat Silty Sand	
Loose Sand Dense Sand Sand	D			
Gravel Loam Muck	15			
Undetermined Silty Sand				
Joint organic clay				
		,		
		OK	Cancel	Help

Figure 19.3: Layers window, Materials tab

19.3 Phreatic level

The phreatic line (groundwater table) is located at the surface level in this tutorial.

- 12. In the *Geometry* tab of the *View Input* window, select the *Edit* button and click on the PL line 1 in order to select the phreatic line by choosing *Select PL Line 1*.
- 13. Once the PL line 1 has been selected, drag it to the surface level by pressing and holding down the left-hand mouse button while relocating the mouse cursor.

14. Check and possibly correct the level of the line as shown in Figure 19.4.

D PL-	Line	1			×
∃e ⊒e			Point Number	X Co-ordinate [m]	Z Co-ordinate [m]
3**	▶ 1 2 *		11 12	-100.000 200.000	5.000 5.000
K K					
ß					
			OK .	Cancel	Help

Figure 19.4: PL-Line 1 window

Now the PL-line levels are defined at the correct levels, they have to be assigned to the correct layers.

- 15. Open the *PL-lines per Layer* window from the *Geometry* menu.
- 16. Enter the PL-line numbers as given in Figure 19.5.

D PL-	line	es per Laye	r)	×
X		Layer Number	PL-line at top	PL-line at bottom	
4	▶	2	1	2	
ß					
	0	K	Cancel	Help	

Figure 19.5: PL-lines per Layer window

19.4 Calculation Verticals

In the subsequent table the verticals for the location of the calculations are given.

- 17. Open the Calculation Verticals window.
- 18. Enter <-80> and <180> for the *First* and *Last L* values and an *Interval* of <20>.
- 19. Click the Generate button.

Calcula Te Te Se	■ 1 2 3 4	ticals L-coordinate [m] -80.00 -60.00 -40.00 -20.00	Additional Settlement [mm] 0.0 0.0 0.0	Automatic generation of L-co-ordinates First L [m] -80.00 Last L [m] 180.00 Interval [m] 20.00
	5 6 7 8 9 10 11 12 13 14 *	120.00 0.00 20.00 40.00 60.00 80.00 120.00 140.00 140.00 180.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Generate
				OK Cancel Help

Figure 19.6: Calculation Verticals window

20. Click *OK* and select the *Input* tab of the *View Input* window to view the new inputs (Figure 19.7).

Figure 19.7: View Input window, Input tab (Tutorial-12a)

19.5 Factors

The required safety factors must be specified to evaluate the risk on bursting or heave of the bottom of the trench.

- 21. Open the Factors window from the Defaults menu.
- 22. Enter <1.1> and <1.2> for the Safety factor uplift respectively Safety factor heave values.
- 23. Click OK.

Factors		×
(Partial) safety factors		
Safety factor uplift	[-]	1.10
Safety factor hydraulic heave	[-]	1.20
Miscellaneous		
Unit weight water [kN/i	m °]	10.00
Reset OK Cancel		Help

Figure 19.8: Factors window

19.6 Results

Now the calculations can be performed.

24. To start the calculations click *Calculation* and select *Start* on the menu bar or press the function key F9.

19.6.1 Uplift safety for trenching in Peat layer (Tutorial-12a)

To examine the risk of uplift the graph with the uplift safety factor can be opened

25. Open the Operation Parameters Plots window from the Results menu.

Figure 19.9: Operation Parameter Plots window, Safety uplift tab (Tutorial-12a)

For a detailed examination, refer to paragraph 4.1.1 of the *Report* window (Figure 19.10). As can be seen, the uplift safety of the trenched pipe is not OK as the calculated uplift factor (0.12) is lower than the required uplift factor (1.1).

4 Op	eration	Parameters		
4.1 Uj	plift Checl	ĸ		
Due	e to buoyanc culation the s	ey of the pipeline below the grous safety factor for uplift is calcula	undwater table, the uplift should ted based on an empty pipe.	be checked. In the subsequent
4.1.1 U	Jplift Factor	rs		
V	'ertical nr.	Safety factor calculated	Safety factor required	
	4	- 0.42		
	2	0.12	1.10	
	2	0.12	1.10	
		0.12	1.10	
	5	0.12	1.10	
	6	0.12	1 10	
	7	0.12	1.10	
	8	0.12	1.10	
	9	0.12	1.10	
	10	0.12	1.10	
	11	0.12	1.10	

Figure 19.10: Report window, Uplift Factors section (Tutorial-12a)

19.6.2 Uplift safety for trenching in Soft Organic Clay layer (Tutorial-12b)

The trench fill should be modified. The low density of the peat causes uplift problems. The effect of filling the trench with organic clay can easily be checked by changing the soil sequence.

- 26. Click *File* and select *Save as* on the menu bar to open the *Save As* window and rename the file into <Tutorial-12b>.
- 27. Click the Save button to save the current project as Tutorial 12b.
- 28. Click *Geometry* and select *Layers* on the menu bar to open the *Layers* window. Select the *Materials* tab (Figure 19.11) to assign the soil properties to the soil layers in the longitudinal cross section.

Layers Boundaries Materials				×
Available materials Name Soft Clay Medium Clay Stiff Clay Peat Loose Sand Dense Sand Sand Gravel Loam Muck Undetermined Silty Sand Soft Organic Clay	R	Layers	Material name Soft Organic Clay Silty Sand	
		OK	Cancel	Help

Figure 19.11: Layers window, Materials tab (Tutorial-12b)

- 29. Assign the properties of the defined layer *Soft Organic Clay* to layer *Number 2* in the longitudinal cross section. The defined properties of *Soft Organic Clay* are assigned to layer *Number 2* by clicking the *Assign* icon ≥ in between the left and the right column.
- 30. Click on the *OK* button to quit the window and return to the *Geometry* tab of the *View Input* window to look at the change of layers name in the legend.
- 31. To start the calculations again click *Calculation* and select *Start* on the menu bar or press the function key F9.
- 32. Open the Operation Parameters Plots window from the Results menu.
- 33. Open the *Report* window from the *Results* menu.
- 34. Go to paragraph 4.1.1 of the report (Figure 19.12). As can be seen, the uplift safety of the trenched pipe is still not OK as the calculated uplift factor (0.12) is lower than the required uplift factor (1.1).

4 (Operation	Parameters		
4.1	Uplift Checl	<		
4.1	Due to buoyanc calculation the s .1 Uplift Factor	y of the pipeline below the grou afety factor for uplift is calcula 's	undwater table, the uplift should ted based on an empty pipe.	l be checked. In the subsequent
	Vertical nr.	Safety factor calculated	Safety factor required	
	1	0.12	1 10	
	2	0.12	1.10	
	3	0.12	1.10	
	4	0.12	1.10	
	5	0.12	1.10	
	6	0.12	1.10	
	7	0.12	1.10	
	8	0.12	1.10	
	9	0.12	1.10	
	10	0.12	1.10	
	11	0.12	1.10]

Figure 19.12: Report window, Uplift Factors section (Tutorial-12b)

19.6.3 Hydraulic Heave Safety

To examine the risk of heave of the trench bottom the graph with the heave safety factor can be opened.

35. Select the Safety hydraulic heave tab of the Operation Parameters Plots window (Figure 19.13).

Figure 19.13: Operation Parameter Plots window, Safety hydraulic heave tab (Tutorial-12b)

2 Hydraulic H	eave Check		
In case of high the trench botton pressures at the	groundwater pressures in a wa n should be evaluated. Subse top of layer:1 (Silty Sand) a	ter bearing soillayer below the quently, the safety factors for h re calculated	trench the safety factor for heave neave are based on groundwater
Vertical nr.	Safety factor calculated	Safety factor required]
	[-]	[-]	
1	1.03	1.20	
2	1.03	1.20	_
3	1.01	1.20	
4	0.96	1.20	
5	0.90	1.20	
6	0.89	1.20	
7	0.91	1.20]
8	0.93	1.20]
9	0.94	1.20	1
10	1.01	1.20	1

Figure 19.14: Report window, Hydraulic heave of the trench bottom section (Tutorial-12b)

Note: In the report (Figure 19.14) the hydraulic heave safety of the trenched pipe is not OK for all verticals, the calculated safety factors are lower than the required safety factor specified at the default factors. Especially below the waterway the risk on bursting or heave of the bottom of the trench is relatively high.

19.7 Lowering the hydraulic head (Tutorial-12c)

The problem of heave of the bottom of the trench can be solved by drainage of the subsequent silty sand layer. By dewatering the silty sand layer, the hydraulic head can be lowered to the required level. Lowering the level of the hydraulic head in the silty sand layers can be done as follows:

36. Click File and select Save as on the menu bar to open the Save As window and rename

the file into <Tutorial-12c>.

- 37. Click the *Save* button to save the current project as Tutorial 12c.
- 38. Return to the *Geometry* tab of the *View Input* window and select the button *Add point(s)* to boundary / *PL-line* .
- 39. Click the four additional points on PL-line 2 as shown in Figure 19.15 (points 15 to 18).
- 40. Click the *Geometry* option from the menu bar and select the option *Points*. In the *Points* window, enter the co-ordinates of points 15 to 18 (i.e. PL-line number 2 for the hydraulic head in the sand layer) as given in Figure 19.16.

Figure 19.15: View Input window, Geometry tab (Tutorial 12c)

нс с	L Co∘ordinate [m]	Z Co-ordinate [m]
1 ▶ 1	-100.000	5.000
2	5.000	5.000
3	15.000	2.000
2 4	35.000	2.000
5	45.000	5.000
6	200.000	5.000
7	-100.000	-5.000
3 8	200.000	-5.000
9	-100.000	-40.000
10	200.000	-40.000
11	-100.000	5.000
12	200.000	5.000
13	-100.000	6.000
14	200.000	6.UUL
15	-50.000	6.000
16	0.000	4.000
1/	50.000	4.000
18	100.000	6.000

Figure 19.16: Points window (Tutorial 12c)

Now the results can be checked:

41. Start the calculations by clicking *Start* on the *Calculation* menu bar or by pressing the function key F9.

42. Open the *Operation Parameter Plots* window from the *Results* menu and select the *Safety hydraulic heave* tab.

From the plots (Figure 19.17), it is clear that the drainage yields a higher calculated safety factor for hydraulic heave safety.

Figure 19.17: Operation Parameter Plots windows, Safety hydraulic heave tab (Tutorial 12c)

43. Open the *Report* window to look at the calculated values (Figure 19.18): the minimum calculated safety factor for *Hydraulic Heave* is 1.46 which is more than the required factor of 1.20.

Hydraulic H	eave Check		
In case of high the trench botton pressures at the	groundwater pressures in a wa m should be evaluated. Subse top of layer:1 (Silty Sand) a	ter bearing soillayer below the quently, the safety factors for h re calculated	trench the safety factor for heave a teave are based on groundwater
Vertical nr.	Safety factor calculated	Safety factor required]
	[-]	[-]	
1	1.22	1.20	
2	1.22	1.20	
3	1.24	1.20	
4	1.27	1.20	
5	1.31	1.20	
6	1.29	1.20	
7	1.31	1.20	
8	1.28	1.20	
9	1.20	1.20	
10	1.20	1.20	
10			

Figure 19.18: Report windows, Hydraulic heave of the trench bottom section (Tutorial 12c)

20 Design of a pipeline

D-GEO PIPELINE can be used for designing a pipeline using four different techniques:

- ♦ the HDD technique (section 20.1)
- ♦ the micro-tunneling technique (section 20.2)
- \diamond the trench technique (section 20.3)

20.1 Design of a pipeline crossing using the HDD technique

The horizontal directional drilling technique is used to install pipelines. A pipe is installed from one point in a geometry with soil materials to another by means of horizontal directional drilling. D-GEO PIPELINE can be used for the design of pipelines or the assessment of preliminary designs of pipelines constructed by means of horizontal directional drilling. Calculations are based on the pipeline configuration, the drill pipe and borehole dimensions and the drilling fluid data. D-GEO PIPELINE calculates the maximum allowable drilling fluid pressure and the minimum drilling fluid pressure at user-specified calculation verticals.

The configuration of a proposed pipeline that has to cross an object is determined by:

- ♦ the location of the entry and exit points (section 20.1.1)
- ♦ the entry and exit angles (section 20.1.2)
- the limitations of the object to be crossed, specified by the owner of the objects concerned (section 20.1.3)
- the minimum value of curve radius (section 20.1.4)
- the value of the combined bending radius (section 20.1.5)

20.1.1 Location of entry and exit points

The entry point is the location where the drilling rig is positioned during the pilot drilling. The exit point is located at the other side of the object that has to be crossed. When the locations of the entry and exit points are determined, it must be taken into account that a minimum distance is required to the object in order to cross the object at a sufficient depth.

20.1.2 Inclination at the entry and exit points

The magnitude of the entry and exit angle is usually between 6° and 15°. The angle can be larger for small drilling rigs. The greater the bending stiffness of the pipeline is, the smaller the entry and exit angles are. Before starting to drill the curved parts of the drilling line, the first 30 to 40 m (3 to 4 drill pipes) must be drilled in a straight line. The magnitude of the exit angle influences the pull-back operation of the pipe through the borehole. The larger the exit angle, the higher the pipeline has to be lifted in order to pull it into the borehole. A small exit angle increases the risk that a blow-out will occur.

20.1.3 The limitations of the object to be crossed

The owner or manager of the object to be crossed may have certain requirements with regard to the crossing depth of the pipeline. Such requirements can be related to the presence of sheet piles or foundation piles. Another reason for special requirements can involve the building plans of structures on piles. Such points are boundary conditions for preparing the pipeline configuration.

20.1.4 Determination of allowable curve radius

The borehole containing a pipeline is usually characterized by an upward and a downward curve. Sometimes a horizontal or combined radius forms part of the drilling line. The smallest possible radius of such a curve depends on the bending stiffness and the yield stress of the pipeline or the drill pipes. For pipes with a relatively small bending stiffness, such as PE pipes, the stiffness of the drill pipes is often the determining factor for the minimum radius of curved sections in the drilling line.

Allowable curve radius for steel pipes

The design radius should be checked for strength:

$$R \ge \frac{\gamma \times E_{\rm b}}{R_{\rm eb}} \times \frac{D_{\rm o}}{2} \tag{20.1}$$

where:

 $E_{\rm b}$ is the modulus of elasticity of the pipe material, in kN/m²;

 D_{o} is the outer diameter of the pipe, in m;

 γ is the partial safety factor for the bending moment;

 $R_{\rm eb}$ is the minimum specified yield strength, in kN/m².

(For a pipeline with the following properties: $E_{\rm b}$ = 210000 N/mm²; $R_{\rm eb}$ = 240 N/mm²; γ = 1.1, about half the strength of the steel is available for bending stresses, while the remaining half is used for stresses due to pulling force, internal pressure, etc...)

The design radius R for steel pipes should also be checked for soil reaction pressure due to bending, according to article E.1.4 of NEN 3650-1:

$R \ge 1000 \times D_{\rm o}$	for small pipe diameter $(D_{ m o} \leq$ 0.4 m $)$	(20.2)
$R \ge C \times \sqrt{D_{o} \times d_{n}}$	for large pipe diameter $(D_{ m o}>$ 0.4 m $)$	(20.3)

where C is a constant (without dimension) depending on the soil type as shown in Table 20.2.

Table 20.2: Values of constant C	(according to table E.1 of NEN 3650-1)
----------------------------------	--

Soil type	C [-]
Dense packed sand	8500
Moderate packed sand	9400
Loose packed sand	10200
Stiff Clay	10500
Medium stiff clay	11500
Soft clay and Peat	12500

In D-GEO PIPELINE, the soil type is a function of the cohesion and the friction angle of the soil, as shown in Table 20.3.

Soil type	φ [°]	<i>c</i> [kN/m ²]	Constant C [-]
Dense sand	arphi > 32.5	$c \leq 0.5$	8500
Medium dense sand	arphi > 32.5	c > 0.5	9400
Medium dense sand	$30 < arphi \leq 32.5$		9400
Loose sand	$25 < arphi \leq 30$	$c \leq 1$	10200
Stiff sandy clay	$25 < arphi \leq 30$	<i>c</i> > 1	10500
Stiff sandy clay	$22.5 < \varphi \leq 25$	<i>c</i> > 5	10200
Clayey sand	$22.5 < \varphi \leq 25$	$c \leq 5$	10500
Stiff clay	$20 < arphi \leq 22.5$	<i>c</i> > 10	10500
Medium stiff clay	$20 < arphi \leq 22.5$	$c \leq 10$	11500
Stiff clay	$17 < \varphi \leq 20$	c > 10	10500
Medium stiff clay	$17 < \varphi \leq 20$	$5 < c \le 10$	11500
Soft clay	$17 < \varphi \leq 20$	$c \leq 5$	12500
Peat /organic clay	$\varphi \leq 17$		12500

In the case of a layered sub-soil, the highest *C*-value of a layer with a significant thickness is normative. In the case of a sub-soil with an alternation of layers with relative small thicknesses, a weighted interpolation can be performed to determine the *C*-value:

$$C_{d} = \sum_{i=1}^{n} \left[C_{i} \times \frac{d_{i}}{d_{\text{total}}} \right] \quad \text{with} \quad d_{\text{total}} = \sum_{i=1}^{n} d_{i}$$
(20.4)

where:

n is the total number of layers in the curve;

 C_{i} is the C-value of layer i;

 d_i is the thickness of layer *i*, in m;

 d_{total} is the total thickness of all layers in the curve, in m.

Allowable curve radius for polyethylene pipes

According to article 8.6.4 of NEN 3650-3 (NEN, 2012c), the minimal curve-radius for PE pipes is equal to the bending factor as given in Table 20.5 times the diameter.

Diameter in mm	Bending factor
63 ightarrow 160	50
200 ightarrow 250	75
315 ightarrow 355	100
400 ightarrow 630	100
710 ightarrow 800	125

20.1.5 Determination of combined bending radius

In case the horizontal bending radius coincides with part of a vertical bending radius, a combined 3-dimensional bending radius is formed. For the design of the horizontal directional drilling line, the pull back force and the strength calculation it is necessary to determine the value of the 3-dimensional bending radius. This value can be determined as follows:

$$R_{\rm combi} = \sqrt{\frac{R_{\rm h}^2 \times R_{\rm v}^2}{R_{\rm h}^2 + R_{\rm v}^2}} \tag{20.5}$$

where:

 $\begin{array}{ll} R_{\rm combi} & {\rm is the \ combined \ bending \ radius, \ in \ m;} \\ R_{\rm h} & {\rm is \ the \ horizontal \ bending \ radius, \ in \ m;} \\ R_{\rm v} & {\rm is \ the \ vertical \ bending \ radius, \ in \ m.} \end{array}$

20.2 Design of a pipeline crossing using the micro tunneling technique

The micro tunneling technique is often used for installation of pipelines and small tunnels in densely populated areas. Micro tunneling usually starts horizontal at a certain level below the surface in a so-called launch shaft. The pipe segments included in the micro tunneling machine are placed behind the tunneling machine and pushed in the direction of the reception shaft by means of a jacking frame (Figure 20.1).

The so-called thrust force which has to be provided by the jacking frame is an important parameter in the design of tunnels and pipelines installed by means of micro tunneling. Of course the jacking frame must be able to produce this force.

Figure 20.1: Launch and reception shafts of the micro tunneling machine

20.3 Design of a pipeline using a trench

Very often, under normal circumstances, pipelines are installed in an excavated trench. In the not very densely populated areas such as agricultural areas and not developed areas, the slopes of the trenches can often be excavated under.

The main risk associated with trenching is instability of the slopes of the trench. This risk is can not be considered in D-GEO PIPELINE. Use of other computer programs such as D-GEO STABILITY is recommended to evaluate this risk.

21 Calculation of soil mechanical data

This section includes background information on the calculation of:

- ♦ neutral vertical stress (section 21.1)
- ♦ passive vertical stress (section 21.2)
- reduced vertical stress (section 21.3)
- ♦ actual vertical stress (section 21.4)
- neutral horizontal stress (section 21.5)
- vertical modulus of subgrade reaction (section 21.6)
- horizontal modulus of subgrade reaction (section 21.7)
- ultimate vertical bearing capacity (section 21.8)
- ultimate horizontal bearing capacity (section 21.9)
- vertical displacement (section 21.10)
- maximal axial friction and friction displacement (section 21.11)
- Isplacement at maximal friction (section 21.12)
- Isolation of the soil type (section 21.13)
- ♦ traffic load (section 21.14)

If the definition of some parameters in the equations of this chapter is missing, refer to section 1.7.

21.1 Neutral vertical stress

Figure 21.1: Schematic diagram for calculation of the neutral vertical stress

According to article C.4.2.2 of NEN 3650-1 (NEN, 2012a), the neutral vertical stress q_n is defined as (Figure 21.1):

$$q_{\rm n} = \sigma'_{\rm v} (H) + (0.5 - \pi/8) \times \gamma' \times D_{\rm o}$$
(21.1)

where:

 $\sigma'_{\rm v}(H)$ is the vertical effective stress at depth H, in kN/m²:

 $\sigma'_{v}(H) = \gamma_{unsat} \times H_{1} + (\gamma_{sat} - \gamma_{w}) \times H_{2}$ (see Figure 21.2 for the definition of H_{1} and H_{2}).

- H is the soil cover above the top of the pipe, in m (see Figure 21.2).
- γ' is the effective unit weight of the soil, in kN/m³: $\gamma' = \gamma_{\text{unsat}}$ above the phreatic line and $\gamma' = \gamma_{\text{sat}} \gamma_{\text{w}}$ below the phreatic line.

Figure 21.2: Schematic diagram for the definition of parameters H_1 , H_2 , γ_{unsat} and γ_{sat} (Figure C.5 of NEN 3650-1)

21.2 Passive vertical stress

According to article C.4.2.4.2 of NEN 3650-1, the passive vertical stress $q_{\rm p}$ is defined as:

$$q_{\mathsf{p}} = q_{\mathsf{n}} \times \left(1 + 0.3 \, \frac{H}{D_{\mathsf{o}}}\right) \le p'_{\mathsf{max}} \tag{21.2}$$

with:

$$p'_{\max} = (p'_{\mathsf{f}} + c \times \cot \varphi) \times \left[\left(\frac{0.5 \times D_{\mathsf{o}}}{0.5 \times D_{\mathsf{o}} + H} \right)^2 + q \right]^{\frac{-\sin \varphi}{1 + \sin \varphi}} - c \times \cot \varphi \quad (21.3)$$

where:

$$\begin{array}{ll} p_{\text{max}}' & \text{is the maximum passive vertical stress, in kN/m}^2; \\ p_{\text{f}}' & \text{is } \sigma_0' \left(1 + \sin \varphi\right) + c \times \cos \varphi, \text{ in kN/m}^2; \\ q & \text{is } \left(\sigma_0' \times \sin \varphi + c \times \cos \varphi\right) / G, \text{ in kN/m}^2; \\ \sigma_0' & \text{is the effective isotrope stress, in kN/m}^2: \sigma_0' = \left(\sigma_{\text{v}}' + \sigma_{\text{h}}\right) / 2; \\ \sigma_{\text{v,h}}' & \text{is the vertical respectively horizontal effective stress;} \\ c, \varphi, G & \text{are the soil parameters at the pipe center.} \end{array}$$

21.3 Reduced neutral vertical stress

In case a drilling technique is used for the installation of the pipeline, the vertical soil load is reduced due to arching. A pipeline installed using the horizontal directional drilling technique is loaded by a strongly reduced soil loads due to arching. For micro tunneling the effect of arching on the soil load is calculated by D-GEO PIPELINE as well. Due to the relative small borehole arching is not completely developed. The relatively small available strain yields incomplete mobilization of the shear strength. The soil load in case of micro tunneling should therefore be calculated using half the value of the angle of internal friction.

Figure 21.3: The mobilization of the angle of internal friction in the development of the arching mechanism

21.3.1 Reduced neutral vertical stress in compressible soil layers

According to article C.4.8.3 of NEN 3650-1 (NEN, 2012a), in compressible soil layers (i.e. clay and peat), the reduced neutral vertical stress $q_{n,r}$ is defined as:

$$q_{n,r} = \begin{cases} h \times \gamma' - F_r/2B_1 & \text{if } z > 8B_1 \\ q_n & \text{if } z \le 8B_1 \end{cases}$$
(21.4)

with:

$$F_{\mathsf{r}} = \frac{0.9 F_{\mathsf{max}}}{1 + \frac{B_1 \times (3H - 2h) \times \alpha}{2C \times H\left(\delta_{\mathsf{r}} + \frac{F_{\mathsf{max}}}{2R \times H\left(\delta_{\mathsf{m}} + \frac{F_{\mathsf{max}}}{2R \times H\left($$

$$F_{\text{max}} = 2B_1 \times (h \times \gamma' - q_{\text{n,r1}})$$
(21.6)

$$q_{\mathsf{n},\mathsf{r}1} = \frac{B_1 \times \left(\gamma' - \frac{c}{B_1}\right)}{K \times \tan\varphi} \times \left[1 - \exp\left(\frac{-K \times \tan\varphi \times h}{B_1}\right)\right]$$
(21.7)

where:

B_1	is the half width of the covered ground column, in m:
	$B_1 = 0.5 D_0 + D_0 \times \tan(45^\circ - \varphi_b/2) \ge R;$
$arphi_{b}$	is the average friction angle over the height of the borehole, in degree;
h	is the soil cover above the borehole, in m (see Figure 21.4);
c, φ, γ'	are the average soil parameters between the surface and the pipe center;
F_{r}	is the permanent friction due to arching effect, in kN/m ² :

Deltares

F_{max}	is the maximal adhesion, in kN/m ² ;
$q_{\sf n,r1}$	is the reduced neutral vertical stress on the pipe, in kN/m ² ;
H	is the thickness of the compressible layers, in m (see Figure 21.4);
α	is a dimensionless factor: $lpha=\ln(h/h_{ m ref})$ with $h_{ m ref}$ = 1 m;

Figure 21.4: Definitions of H, h and h_h

21.3.2 Reduced neutral vertical stress in non-compressible soil layers

According to articles C.4.8.3 and C.4.8.4 of NEN 3650-1 (NEN, 2012a), in incompressible soil layers (i.e. sand) situated below compressible soil layers, the reduced neutral vertical stress $q_{n,r}$ is defined as (if $h > 8B_1$):

$$q_{\rm n,r} = \frac{B_{\rm 1} \times \gamma'}{K \times \tan \varphi} \left[1 - \exp\left(\frac{-K \cdot \tan \varphi \cdot h_{\rm p}}{B_{\rm 1}}\right) \right] + \sigma_{\rm c} \, \exp\left(\frac{-K \times \tan \varphi \times h_{\rm p}}{B_{\rm 1}}\right)$$
(21.8)

where:

- γ' is the average effective unit weight of the soil between the compressibility border and the pipe center, in kN/m³;
- $h_{\rm p}$ is the soil cover above the borehole in the incompressible layers (see Figure 21.5), in m;
- φ is the average friction angle between the compressibility border and the pipe center, in degrees;
- $\sigma_{\rm c}$ is the vertical effective stress at the compressibility border, in kN/m² (see Figure 21.5).

Figure 21.5: Schematic diagram of H and h_p

If $h_{p} < 8B_{1}$, Equation 21.8 is not applicable for the determination of $q_{n,r}$. In such case, the following applies:

- 1) $0 < h_p < 2B_1$: $q_{n,r}$ is constant and equal to $q_{n,r}$ -border, see section 21.3.1; 2) $2B_1 \le h_p \le 4B_1$: interpolation between $q_{n,r}$ -border and $q_{n,r}$ -incompressible for $h_{p} = 4B_{1};$
- 3) $h_{p} \ge 4B_{1}$: $q_{n,r}$ -incompressible as a function of h_{p} .

If $q_{\rm n,r}$ -incompressible ($h_{\rm p}=4B_{\rm 1}$) is larger than $q_{\rm n,r}$ -border, then 1) is prescribed and 2) is applicable for $0 < h_p < 4B_1$.

21.4 **Initial vertical stress**

According to article C.4.2.3 of NEN 3650-1 (NEN, 2012a), the initial vertical stress q_k (also called actual vertical stress) for construction in trench is defined as:

$$q_{\mathsf{k}} = q_{\mathsf{n}} + k_{\mathsf{v},\mathsf{tot}} \times \mu \times D_{\mathsf{o}} \le q_{\mathsf{p}} \tag{21.9}$$

with:

$$\frac{1}{k_{\rm v,tot}} = \frac{1}{k_{\rm v,top}} + \frac{1}{k_{\rm v,pipe}} + \frac{1}{k_{\rm v,bottom}}$$
(21.10)

$$k_{\rm v,pipe} = \frac{EI_{\rm w}}{k_{\rm y} \times D_{\rm o} \times D_{\rm g}^3}$$
(21.11)

where:

$$q_n$$
 is the neutral vertical stress of the soil, in kN/m², see Equation 21.1;
 q_p is the passive vertical stress of the soil, in kN/m², see Equation 21.2;
 $k_{v,tot}$ is the vertical modulus of subgrade reaction upward, in kN/m³, see Equa-
tion 21.15:

Deltares

 $k_{v,bottom}$ is the minimum vertical modulus of subgrade reaction downward, in kN/m³, calculated according to section 21.6.2;

 $k_{v,pipe}$ is the vertical modulus of subgrade reaction of the pipe, in kN/m³; μ is the percentage of compaction depending on the type of fill and type of compaction as shown in Table 21.7.

Compaction	Type of fill		
	Soft soil	Stiff clay	Sand
Poorly	0.20	0.15	0.075
Well	0.10	0.075	0.02

Table 21.7: Values of parameter μ according to NEN 3650-1

21.5 Neutral horizontal stress

21.5.1 Pipelines installed using the HDD technique

According to article C.4.8.6 of NEN 3650-1, the neutral reduced horizontal soil load $q_{h,r}$ for a pipeline installed using the horizontal drilling technique can be calculated using the following equation:

$$q_{\mathsf{h},\mathsf{r}} = q_{\mathsf{n},\mathsf{r}} \times (1 - \sin\varphi_{\mathsf{df}}) \tag{21.12}$$

where:

 $q_{n,r}$ is the reduced neutral vertical stress of the soil, in kN/m², as calculated in section 21.3;

 φ_{df} is the angle of internal friction of the drilling fluid, as defined in the *Engineering Data* window (section 4.6.3.1). The default value is 15°.

21.5.2 Pipelines installed in a trench or using micro tunneling

The neutral horizontal soil load $q_{h,n}$ for a pipeline installed in a trench or using the micro tunneling technique can be calculated using the following equation:

$$q_{\mathsf{h},\mathsf{n}} = q_{\mathsf{n}} \times (1 - \sin \varphi_{\mathsf{b}}) \tag{21.13}$$

where:

- q_n is the neutral vertical stress of the soil, in kN/m², as calculated in Equation 21.1 in section 21.1;
- $\varphi_{\rm b}$ is the average angle of internal friction of the soil over the height of the borehole.

In micro tunneling the space in between the pipeline or tunnel is usually relatively small, moreover the space in between the bore hole wall and the pipeline or tunnel is often filled with grout after installation.

21.6 Vertical modulus of subgrade reaction

Due to the soil-pipe interaction, induced by either the pipe or the soil, soil deformations and pipe displacement will occur. The deformations lead to increase or decrease of the soil load on the pipe. This soil reaction behavior is modeled by using a spring model. By locating springs around the pipe, the displacement and related stress changes can be calculated (Figure 21.6). The increase or decrease of the soil reaction stress is usually calculated by linear or bi-linear springs. The stiffness of the spring is expressed as a modulus of subgrade reaction.

Figure 21.6: Pipe soil interaction modeled by springs

Since the soil-pipe interaction is influenced by the installation method, different calculation methods to determine the moduli of subgrade reaction exist:

- ♦ For installation using a drilling technique (HDD or micro tunneling), refer to section 21.6.1;
- ♦ For Installation in a trench, refer to section 21.6.2;

21.6.1 Pipelines installed using a drilling technique

According to article C.4.3.3 c) of NEN 3650-1, the stiffness of the spring below ($k_{v,bottom}$) and above the pipe ($k_{v,top}$) is:

$$k_{\rm v} = \frac{f_{\rm E} \times E}{m \times (1 - \nu^2) \times \sqrt{A}} \tag{21.14}$$

with:

$$\begin{split} m &= \frac{52.31 + \ell/b}{51.90 + 3.596 \times \ell/b} \\ \ell &= \pi/\lambda \\ \lambda &= \sqrt[4]{k_{\rm v} \times f_{\rm kv} \times \frac{D_{\rm o}}{4 \; E_{\rm b} \times I_{\rm b}}} \end{split}$$

where:

 E, ν are the average parameters of the soil along a distance of 5 D_{o} above the top of the pipeline for $k_{v,top}$ and below the bottom of the pipeline for $k_{v,bottom}$;

A is $\ell \times b$ = support area, in m²;

- *b* is the minimum support width, in m: $b = D_0$;
- ℓ is the minimum support length, in m;
- λ is the characteristic stiffness pipeline-soil, in m⁻¹;

- I_{b} is the moment of inertia of the pipeline, in m⁴: $I_{b} = \frac{\pi}{64} \left[D_{o}^{4} (D_{o} 2d_{n})^{4} \right]$
- m is the shape coefficient, depending on ℓ/b .

21.6.2 Pipelines installed in a trench

Vertical modulus of subgrade reaction upward

According to article C.4.3.2 of NEN 3650-1, the vertical modulus of subgrade reaction upward are:

$$v_{\text{top}} = \frac{q_{\text{p}} - q_{\text{n}}}{z_{\text{max}}}$$
(21.15)

$$k_{\rm v,top,max} = \frac{q_{\rm p}}{z_{\rm max}} \tag{21.16}$$

with:

$$z_{\max} = \frac{0.25 \times D_{o}}{E^{1.5} \times \sqrt{\frac{H}{D_{o}}}}$$
 for clay and peat (21.17)
$$z_{\max} = \frac{0.20 \times D_{o}}{E^{0.5} \times \sqrt{\frac{H}{D_{o}}}}$$
 for sand (21.18)

where:

- q_p is the passive vertical soil load, see Equation 21.2;
- q_n is the neutral vertical soil load, see Equation 21.1;
- z_{max} is the maximum displacement, in m;
- E is the average Young's modulus of the soil along a distance of 5 D_{o} above the top of the pipeline, in MPa;
- H is the soil cover above the top of the pipe, in m.

Vertical modulus of subgrade reaction downward

The vertical modulus of subgrade reaction downward is characterized by a bi-linear spring. $k_{v,1}$ is the modulus of subgrade reaction in between 0 and 2/3 of the vertical bearing capacity, while $k_{v,2}$ is the modulus of subgrade reaction in between 2/3 of the vertical bearing capacity and the vertical bearing capacity.

For clay and peat, the modules of subgrade reaction downward are:

$$k_{\rm v,1} = 0.25 \times c_{\rm u} \times \frac{P_{\rm we}}{D_{\rm o}} \tag{21.19}$$

$$k_{\rm v,2} = 0.04 \times c_{\rm u} \times \frac{P_{\rm we}}{D_{\rm o}} \tag{21.20}$$

For sand, the modules of subgrade reaction downward are:

$$k_{\rm v,1} = 0.5 \times E \times \frac{P_{\rm we}}{D_{\rm o}} \tag{21.21}$$

$$k_{\rm v,2} = 0.1 \times E \times \frac{P_{\rm we}}{D_{\rm o}} \tag{21.22}$$
where c_u and E (in kN/m² respectively MN/m²) are the average parameters of the soil along a distance of 5 D_o below the bottom of the pipeline and P_{we} is the vertical bearing capacity determined according to section 21.8.

If $c_{\rm u}$ is nil, a fictive undrained cohesion is used by the program:

$$c_{\text{u,fictive}} = \frac{1}{2} \left(1 + K_0 \right) \times \, \sigma'_{\text{h}} \times \sin \varphi + c \times \cos \varphi \tag{21.23}$$

21.7 Horizontal modulus of subgrade reaction

21.7.1 Pipelines installed using a drilling technique

The horizontal modulus of subgrade reaction is:

$$k_{\rm h} = 0.7 \, k_{\rm v,bottom} \tag{21.24}$$

where $k_{v,bottom}$ is the vertical modulus of subgrade reaction at the bottom of the pipe as determined in Equation 21.14.

21.7.2 Pipelines installed in a trench

According to article C.4.3.4.1 of NEN 3650-1, the horizontal modulus of subgrade reaction upward is:

$$k_{\rm h} = \frac{q_{\rm he}}{y_{\rm max}} \times \frac{(1 - 0.3 \times B)}{A} \tag{21.25}$$

where:

 q_{he} is the ultimate horizontal bearing capacity, see Equation 21.29;

 y_{max} is the maximal displacement, in m: $y_{\text{max}} = D_{\text{o}} \times \left[0.05 + 0.03 \times \left(\frac{Z}{D_{\text{o}}} + 0.5 \right) \right]$

A is a constant (A = 0.145);

B is a constant (B = 0.855).

21.8 Ultimate vertical bearing capacity

According to article C.4.4.2 of NEN 3650-1 (NEN, 2012a), the ultimate vertical bearing capacity is:

$$P_{\rm we} = 0.95 \left[0.5 \ \gamma' \ B \ N_{\gamma} \ S_{\gamma} \ d_{\gamma} + S_{\rm q} \ N_{\rm q} \ d_{\rm q} \left(q_{\rm n} + c \times \cot \varphi \right) - c \times \cot \varphi \right]$$
(21.26)

where:

 c,φ,γ' are the average soil parameters along the sliding plane; В is the width of the foundation element, in m (for pipeline: $B = D_{o}$); Zis the depth until the pipe, in m: $Z = H + D_o/2$; Η is the soil cover above the pipe, in m; L is the length of the foundation element, in m: L = 10 B; N_{γ} is the bearing capacity factor for the effect of the effective weight of the soil under the foundation surface: $N_{\gamma} = 1.5 \times (N_{q} - 1) \times \tan \varphi$ is the shape factor for the effect of effective weight of the soil under the foundation s_{γ} surface: $s_{\gamma} = 1 - 0.4B/L$;

$$d_{\gamma}$$
 is the depth factor for the effect of the effective weight ($d_{\gamma} = 1$);

N_{q}	is the bearing capacity factor for the effect of the soil cover:
7	$N_{q} = \exp^{\pi \times \tan \varphi} \times \tan^2 \left(\frac{\pi}{4} + \frac{\varphi}{2} \right);$
s_{q}	is the shape factor for the effect of soil cover: $s_{a} = 1 + \sin \times B/L$;
d_{q}	is the depth factor for the effect of the soil cover:
·	$d_{q} = 1 + 2 \tan \varphi \left(1 - \sin \varphi \right)^2 \arctan \left(Z/B \right).$

If φ = 0, the ultimate vertical bearing capacity is:

$$P_{\rm we} = 0.95 \left[\sigma_{\rm v}' + c \ (\pi + 2) \times (1 + s_{\rm c} + d_{\rm c}) \right] \tag{21.27}$$

where:

- s_{c} is the shape factor for the effect of cohesion: $s_{c} = 0.2B/L = 0.02$;
- d_{c} is the depth factor for the effect of cohesion: $d_{c} = 0.4 \arctan{(Z/B)}$.

21.9 Ultimate horizontal bearing capacity

21.9.1 Pipelines installed using the HDD technique

The horizontal bearing capacity q_{he} is of equal magnitude as the maximum vertical passive soil load p'_{max} (see Equation 21.3) and is therefore defined as:

$$q_{\mathsf{he}} = p'_{\mathsf{max}} = (p'_{\mathsf{f}} + c \times \cot\varphi) \times \left[\left(\frac{0.5 \, D_{\mathsf{o}}}{0.5 \, D_{\mathsf{o}} + H} \right)^2 + q \right]^{\frac{-\sin\varphi}{1+\sin\varphi}} - c \times \cot\varphi$$
(21.28)

Refer to section 21.2 for the definition of the parameters.

Similar to the determination of the maximum vertical passive soil load, for shallow depth of the pipeline ($H < 5D_{o}$) the soil load should be calculated according the formula for the horizontal bearing capacity for trench or micro tunneling.

21.9.2 Pipelines installed in a trench or using micro tunneling

According to article C.4.4.3a, the horizontal bearing capacity q_{he} of a pipeline in a trench or using the micro tunneling technique is calculated as follows:

$$q_{\rm he} = K_{\rm q} \times \sigma_{\rm v}' + 0.7 \times \alpha \times K_{\rm c} \times c \tag{21.29}$$

where:

- K_q is the load coefficient according to Brinch Hansen, see Figure 21.7 and Equation 21.30;
- K_{c} is the load coefficient according to Brinch Hansen, see Figure 21.7 and Equation 21.31;
- σ'_{v} is the effective vertical stress at the pipe center, in kN/m²;
- α is a coefficient: α = 0.6 for trench and α = 1 for micro tunneling.

Figure 21.7: Values K_q and K_c according to Brinch Hansen (Figure C.14 of the NEN 3650-1)

The angle of internal friction φ and the cohesion c for the calculation of the load coefficients K_q and K_c is determined for the soil layers 2.5 D_o above and 2.5 D_o below the axis of the pipeline. The minimum value is used. According to Brinch Hansen (Brinch Hansen, 1970), the load coefficients are:

$$K_{q} = \frac{K_{q}^{0} + K_{q}^{\infty} \times \alpha_{q} \times \frac{D}{B}}{1 + \alpha_{q} \times \frac{D}{B}}$$
(21.30)

$$K_{\rm c} = \frac{K_{\rm c}^0 + K_{\rm c}^\infty \times \alpha_{\rm c} \times \frac{D}{B}}{1 + \alpha_{\rm c} \times \frac{D}{B}}$$
(21.31)

where:

$$\begin{split} K_{\mathsf{q}}^{0} &= \exp\left[\left(\frac{\pi}{2} + \varphi\right) \times \tan\varphi\right] \times \cos\varphi \times \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \\ &- \exp\left[\left(-\frac{\pi}{2} + \varphi\right) \times \tan\varphi\right] \times \cos\varphi \times \tan\left(\frac{\pi}{4} - \frac{\varphi}{2}\right) \\ K_{\mathsf{c}}^{0} &= \left\{\exp\left[\left(\frac{\pi}{2} + \varphi\right) \times \tan\varphi\right] \times \cos\varphi \times \tan\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) - 1\right\} \times \cot\varphi \\ K_{\mathsf{q}}^{\infty} &= K_{\mathsf{c}}^{\infty} \times K_{0} \times \tan\varphi \\ K_{\mathsf{c}}^{\infty} &= N_{\mathsf{c}} \times d_{\mathsf{c}}^{\infty} \\ d_{\mathsf{c}}^{\infty} &= 1.58 + 4.09 \times \tan^{4}\varphi \\ N_{\mathsf{c}} &= \left[\exp\left(\pi \times \tan\varphi\right) \times \tan^{2}\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) - 1\right] \times \cot\varphi \\ K_{\mathsf{0}} &= 1 - \sin\varphi \\ \alpha_{\mathsf{q}} &= \frac{K_{\mathsf{q}}^{0}}{K_{\mathsf{q}}^{\infty} - K_{\mathsf{q}}^{0}} \times \frac{K_{\mathsf{0}} \times \sin\varphi}{\sin\left(\frac{\pi}{4} + \frac{\varphi}{2}\right)} \\ \alpha_{\mathsf{c}} &= \frac{K_{\mathsf{c}}^{0}}{K_{\mathsf{c}}^{\infty} - K_{\mathsf{c}}^{0}} \times 2\sin\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) \end{split}$$

Deltares

21.10 Vertical displacement

The vertical displacement of the soil layers below the pipeline due to an increased load on these layers can be calculated using the Isotache method or the Koppejan method. In addition to the calculated vertical displacement by D-GEO PIPELINE, a given value for vertical displacement can be entered manually (see section 4.4.2).

21.10.1 Isotache model

Creep Isotaches are lines of equal rate (speed, velocity) of secular (visco-plastic) strain ε_s^H in a plot of (natural) strain versus (natural) logarithm of vertical effective stress. These are displayed in the Figure 21.8.

Figure 21.8: Creep Isotache pattern

The Isotaches are all parallel with slope b-a. The Isotache a parameter determines the direct (elastic) strain component ε_{d}^{H} . The b and c parameters determine the secular (visco-plastic) creep component ε_{s}^{H} .

$$b - a = \frac{d\varepsilon_{\rm s}^{\rm H}}{d\ln\sigma'} \tag{21.32}$$

$$c = -\frac{d\varepsilon_{\rm s}^{\rm H}}{d\ln\left(\dot{\varepsilon}_{\rm s}^{\rm H}\right)} \tag{21.33}$$

$$a = \frac{d\varepsilon_{\rm d}^{\rm H}}{d\ln\sigma'} \tag{21.34}$$

$$\varepsilon^{\mathsf{H}} = \varepsilon^{\mathsf{H}}_{\mathsf{s}} + \varepsilon^{\mathsf{H}}_{\mathsf{d}} \tag{21.35}$$

The reference Isotache starts at pre-consolidation stress $\sigma_{ref} = \sigma_p$ and is characterized by a reference creep strain rate $\dot{\varepsilon}_{s.ref}^{H}$.

The secular creep rate is given by:

$$\dot{\varepsilon}_{s}^{\mathsf{H}} = \dot{\varepsilon}_{s,\text{ref}}^{\mathsf{H}} \exp\left(\frac{(b-a)\ln\left(\frac{\sigma'}{\sigma_{\mathsf{p}}}\right) - \varepsilon_{s}^{\mathsf{H}}}{c}\right)$$
(21.36)

Deltares

It can be shown that the secular creep rate is related to a so-called intrinsic time τ , which is related to the common time t by a time shift t_{shift} .

$$\dot{\varepsilon}_{s}^{\mathsf{H}} = \frac{c}{\tau}$$
 with $\tau = t - t_{\mathsf{shift}}$ (21.37)

This time shift in fact represents the creep history of the soil.

The total rate of strain is the sum of the elastic and secular rates:

$$\dot{\varepsilon}^{\mathsf{H}} = \dot{\varepsilon}^{\mathsf{H}}_{\mathsf{s}} + \dot{\varepsilon}^{\mathsf{H}}_{\mathsf{d}} \tag{21.38}$$

Time integration of Equation 21.38 finally yields Equation 21.39.

$$\varepsilon^{H} = a \ln\left(\frac{\sigma'}{\sigma_{0}}\right) + c \ln\left[1 + \int_{0}^{t} \left(\frac{\sigma'}{\sigma_{p}}\right)^{\frac{b-a}{c}} \frac{d\tau}{\tau_{0}}\right]$$
(21.39)

The reference time τ_0 is set by default to 1 day.

$$\tau_0 = 1 \text{ day} \tag{21.40}$$

During a constant stress period after virgin loading, Equation 21.39 simplifies to:

$$\varepsilon^{\mathsf{H}} = a \ln \frac{\sigma_{\mathsf{p}}}{\sigma_{\mathsf{0}}} + b \ln \frac{\sigma'}{\sigma_{\mathsf{p}}} + c \ln \frac{\tau}{\tau_{\mathsf{0}}}$$
(21.41)

This equation applies to the creep tail when σ ' has become constant, and this is the familiar relation for one-dimensional creep, with strain depending on logarithm of time.

Here, however, apart from using natural strain, the time to use is the intrinsic time τ . This removes the age-old difficulty of defining the origin of time to use in the compression law, e.g. years A.D. (Buisman: dykes of Marken island), time after loading, time after last loading stage, etc.

Figure 21.9 illustrates the effect of the t_{shift} parameter (denoted by t_r) on the creep tail.

Figure 21.9: Influence of the $t_{shift} = t_r$ parameter on the creep tail

While ϵ^H – log t plots can be either steepening or flattening, the ϵ^H – log τ plot is linear. Steepening occurs for relatively small load increments, and is due to changing the origin of time to the start of the new increment. Flattening occurs for relatively large load increments. The linear relationship with intrinsic time therefore allows a more accurately identification and interpretation of the creep tail.

21.10.2 Koppejan model

Figure 21.10: Koppejan settlement

Four different situations can be distinguished for Koppejan:

If the vertical effective stress is smaller than the pre-consolidation pressure, the primary settlement can be calculated from:

$$\frac{\Delta h_{\text{prim}}}{h_0} = \frac{1}{C_p} \ln\left(\frac{\sigma'}{\sigma_0}\right), \sigma_0 < \sigma' < \sigma_p \tag{21.42}$$

If the vertical effective stress is larger than the pre-consolidation pressure, the primary settlement can be calculated from:

$$\frac{\Delta h_{\text{prim}}}{h_0} = \frac{1}{C_p} \ln\left(\frac{\sigma_p}{\sigma_0}\right) + \frac{1}{C'_p} \ln\left(\frac{\sigma'}{\sigma_0}\right), \sigma_0 < \sigma_p < \sigma'$$
(21.43)

♦ If vertical effective stress is smaller than the pre-consolidation pressure, the secondary settlement for one loading can be calculated from:

$$\frac{\Delta h_{\text{sec}}}{h_0} = \frac{1}{C_{\text{s}}} \log\left(\frac{t}{t_0}\right) \ln\left(\frac{\sigma'}{\sigma_0}\right), \sigma_0 < \sigma' < \sigma_p \tag{21.44}$$

If the vertical stress is larger than the pre-consolidation pressure, the secondary settlement for one loading can be calculated using Equation 21.45:

$$\frac{\Delta h_{\text{sec}}}{h_0} = \frac{1}{C_{\text{s}}} \log\left(\frac{t}{t_0}\right) \ln\left(\frac{\sigma_{\text{p}}}{\sigma_0}\right) + \frac{1}{C_{\text{s}}'} \log\left(\frac{t}{t_0}\right) \ln\left(\frac{\sigma'}{\sigma_{\text{p}}}\right), \sigma_0 < \sigma_{\text{p}} < \sigma'$$
(21.45)

where:

 C_{p} is the primary compression coefficient below pre-consolidation pressure;

272 of 324

 C_{p} , C_{s} is the primary compression coefficient above pre-consolidation pressure: is the secondary compression coefficient below pre-consolidation pressure; C_{s} is the secondary compression coefficient above pre-consolidation pressure; $\Delta h_{\rm prim}$ is the primary settlement contribution of a layer, in m; is the initial layer thickness, in m; h_0 is the initial vertical effective stress, in kN/m²; σ_0 is the pre-consolidation pressure, in kN/m²; σ_{p} $\Delta h_{\rm sec}$ is the secondary settlement contribution of a layer, in m; tis the time, in days; is the reference time, in days. t_0

21.11 Maximal axial friction

The friction between the pipe wall and the surrounding soil depends on the relative displacement between the pipe wall and the soil. When the relative displacement between the soil and the pipe reaches a maximal value, the friction does not increase anymore. The friction depends on:

- ♦ The stresses around the pipe
- ♦ The adhesion between the soil and the pipe wall
- ♦ The roughness of the pipe wall
- ♦ The angle of friction of the soil

21.11.1 Pipelines installed using the HDD technique

The maximal axial friction along the pipeline can be put in the *Engineering Data* window (section 4.6.3) as parameter f_2 (friction between pipe – drilling fluid). The conditions directly after the installation are considered as critical.

21.11.2 Pipelines installed in a trench or using micro tunneling

Figure 21.11: Schematization of the forces acting on the pipe

The following forces are acting on the pipe (Figure 21.11):

a) Uplift force:

$$q_{\rm uplift} = \frac{\pi}{4} \times D_{\rm o}^2 \times \gamma_{\rm df} \tag{21.46}$$

b) Weight of the pipeline:

$$q_{\mathsf{pipe}} = \frac{\pi}{4} \times \left(D_{\mathsf{o}}^2 - D_{\mathsf{i}}^2 \right) \times \gamma_{\mathsf{b}}$$
(21.47)

c) Weight of the filling (water):

$$q_{\text{filling}} = \frac{\pi}{4} \times D_{\text{i}}^2 \times \gamma_{\text{w}} \times P_{\text{w}}$$
(21.48)

d) Stress at the top of the pipe:

$$q_{\mathsf{top}} = \begin{cases} \max\left[q_{\mathsf{n}}; \min\left(-q_{\mathsf{eff}}; q_{\mathsf{p}}\right)\right] & \text{for trenching} \\ \max\left[q_{\mathsf{n},\mathsf{r}}; \min\left(-q_{\mathsf{eff}}; q_{\mathsf{p}}\right)\right] & \text{for micro tunneling} \end{cases}$$
(21.49)

e) Stress at the bottom of the pipe:

$$q_{\text{bottom}} = \begin{cases} \max(q_{\text{n}} + q_{\text{eff}}; P_{\text{we}}) & \text{for trenching} \\ \max(q_{\text{n,r}} + q_{\text{eff}}; P_{\text{we}}) & \text{for micro tunneling} \end{cases}$$
(21.50)

The effective weight of the pipeline is defined as:

$$q_{\rm eff} = q_{\rm pipe} + q_{\rm filling} - q_{\rm uplift} \tag{21.51}$$

where:

q_{n}	is the neutral vertical stress, see Equation 21.1 in section 21.1;
q_{p}	is the passive vertical stress, see Equation 21.2 in section 21.2;
$q_{\sf n,r}$	is the reduced neutral vertical stress, see section 21.3;
P_{we}	is the vertical bearing capacity, see Equation 21.26 in section 21.8.

The maximal axial friction along the pipeline is defined as follows:

$$W = W_{\rm top} + W_{\rm bottom} + 2W_{\rm hor} \tag{21.52}$$

with:

$$\begin{split} W_{\rm t} &= \begin{cases} \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm t} \times \tan \delta_{\rm t} + 0.6 \times a_{\rm t}) & \text{for trenching} \\ \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm t} \times \tan \delta_{\rm lub \ fluid} + a_{\rm lub \ fluid}) & \text{for micro tunneling} \end{cases} \\ W_{\rm b} &= \begin{cases} \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm b} \times \tan \delta_{\rm b} + 0.6 \times a_{\rm b}) & \text{for trenching} \\ \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm b} \times \tan \delta_{\rm lub \ fluid} + a_{\rm lub \ fluid}) & \text{for micro tunneling} \end{cases} \\ W_{\rm hor} &= \begin{cases} \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm b} \times \tan \delta_{\rm b} + 0.6 \times a_{\rm b}) & \text{for trenching} \\ \frac{\pi}{4} \ D_{\rm o} \ (q_{\rm b} \times \tan \delta_{\rm lub \ fluid} + a_{\rm lub \ fluid}) & \text{for micro tunneling} \end{cases} \\ W_{\rm hor} &= \begin{cases} \frac{\pi}{4} \ D_{\rm o} \ (K_{\rm 0} \times \sigma'_{\rm v} \times \tan \delta_{\rm m} + 0.6 \times a_{\rm m}) & \text{for trenching} \\ \frac{\pi}{4} \ D_{\rm o} \ (K_{\rm a} \times \sigma'_{\rm v} \times \tan \delta_{\rm lub \ fluid} + a_{\rm lub \ fluid}) & \text{for micro tunneling} \end{cases} \end{split}$$

where:

W is the maximal friction, in kN/m;

 a_t, a_b, a_m are the adhesion's of the soil at the top, respectively bottom and middle of the pipe, in kN/m²;

 $\delta_{\rm t}, \delta_{\rm b}, \delta_{\rm m}$ are the delta friction angles of the soil at the top, respectively bottom and middle of the pipe, in radians. For sand, δ can be approximated by 2/3 φ , while in clay and peat the value of the friction angle can be neglected ($\delta = 0$). is the adhesion of the lubrification fluid, in kN/m², as defined in the Engineer a_{lub} fluid ing Data window (section 4.6.3.2);

 $\delta_{\mathsf{lub fluid}}$ is the delta lubrification fluid, in radians, as defined in the Engineering Data window (section 4.6.3.2);

 K_0 is the neutral earth pressure ratio: $K_0 = 1 - \sin \varphi$;

is the active earth pressure ratio: $K_{a} = \left(\frac{\cos\varphi}{1+\sin\varphi}\right)^{2}$; Ka

is the friction angle of the soil at the middle of the pipe, in radians; φ

 σ_{v} is the effective vertical stress at the middle of the pipe, in kN/m^2 .

21.12 **Displacement at maximal friction**

21.12.1 Pipelines installed using the HDD technique

The displacement necessary to develop the maximal axial friction along the pipeline is estimated between 6 and 9 mm. D-GEO PIPELINE uses an average value of 7.5 mm.

21.12.2 Pipelines installed in a trench or using micro tunneling

The displacement necessary to develop the maximal axial friction along the pipeline is determined using Table 21.19.

Soil type	φ	С	Friction displacement
	[°]	[kN/m ²]	[mm]
Dense sand	arphi > 32.5	$c \le 0.5$	1-3
Medium dense sand	$30 < arphi \leq 32.5$	$c \le 0.5$	3-5
Stiff clay	arphi > 30	<i>c</i> > 0.5	2-4
Loose sand	$25 < arphi \leq 30$	c < 1	5-8
Stiff sandy clay	$25 \leq arphi \leq 30$	c ≥ 1	4-6
Clayey sand	$22.5 < \varphi < 25$	<i>c</i> < 5	5-8
Stiff sandy clay	$arphi \geq$ 22.5	$c \ge 5$	2-4
Stiff clay	$\varphi > 17$	<i>c</i> ≥ 10	2-4
Medium stiff clay	$20 < \varphi \leq 22.5$		4-6
Medium stiff clay	$17 \le \varphi \le 20$	$c \ge 5$	4-6
Soft clay	$17 \le \varphi \le 20$	<i>c</i> < 5	6-10
Peat /organic clay	$\varphi < 17$		10-15

Table 21.19: Friction displacement

21.13 Global determination of the soil type

The global soil type in which the pipeline is installed is used for the determination of safety factors which are required for a pipe stress analysis. The classification of global soil types given in Table 21.20 is applied in D-GEO PIPELINE.

Global soil type	φ	C
	[°]	[kN/m ²]
Sand	arphi > 32.5	$c \leq 0.5$
Sand	$30 < arphi \leq$ 32.5	$c \leq 0.5$
Clay	arphi > 30	c > 0.5
Sand	$25 < arphi \leq$ 30	c < 1
Clay	$25 \leq arphi \leq$ 30	c ≥ 1
Sand	22.5 < arphi < 25	<i>c</i> < 5
Clay	$arphi \geq$ 22.5	$c \ge 5$
Clay	arphi > 17	$c \ge 10$
Clay	$20 < arphi \leq$ 22.5	
Clay	$17 \leq arphi \leq 20$	$c \ge 5$
Clay	$17 \leq arphi \leq 20$	<i>c</i> < 5
Peat	arphi < 17	

Table 21.20: Classification of the soil type

21.14 Traffic load

According to C.5.1 of NEN 3650-1 (NEN, 2012a) two load models are considered, depending on the type of road:

- ◇ For dual carriageways and regional roads, 'Load Model 3' (i.e. Graph I) according to EN NEN-1991-2 (this concerns special transports) is assumed;
- ◇ For other roads, the 'Fatigue Load Model 2, Lorry 4' (i.e. Graph II) is assumed according to EN NEN-1991-2 (this load model covers the 'set of frequent lorries' wich can occur on European roads, such as described in EN NEN-1991-2, with exception of the special transports).

Figure 21.12: Traffic load as a function of the depth and the pipe diameter, for both load models, according to NEN 3650-1

For both load models (Graph I and Graph II), the spreading of the traffic load q_v along the depth is given in Figure 21.12 for four pipe diameters: 200, 600, 1000 and 1600 mm. Intermediary diameters are linearly interpolated. D-GEO PIPELINE uses the following formulas to calculate q_v as a function of the depth Z, derived from Figure 21.12:

♦ For Graph I:

- $\hfill\square$ For \oslash 200 mm: $q_{\rm v}=53.988\times Z^{-1.058}$
- $\hfill\square$ For \oslash 600 mm: $\dot{q_{\rm v}}=51.403\times Z^{-1.016}$
- For \oslash 1000 mm: $q_{\rm v} = 46.522 \times Z^{-0.94}$
- **•** For \oslash 1600 mm: $q_{\rm v} = 39.448 \times Z^{-0.804}$
- ♦ For Graph II:
 - \square For \oslash 200 mm: $q_{\rm v}=31.716 \times Z^{-1.457}$
 - $\hfill\square$ For \oslash 600 mm: $\dot{q_{\rm v}}=29.501\times Z^{-1.4}$
 - \square For \oslash 1000 mm: $q_{\rm v}=26.776 \times Z^{-1.324}$
 - $\hfill\square$ For \oslash 1600 mm: $\bar{q}_{\rm v}=21.963\times Z^{-1.172}$

22 Drilling fluid pressures calculation

This section includes background information on the calculation of the following drilling fluid pressures:

- ♦ Minimum required drilling fluid pressure (section 22.1)
- ♦ Maximum allowable drilling fluid pressure (section 22.2)

22.1 Minimum required drilling fluid pressure

Drilling fluid consists of a mixture of water and bentonite or may have another composition (polymers) . This mixture has some special properties. The flow behavior of the fluid is an important characteristic for the development of drilling fluid pressure during the different drilling stages. Various types of drilling fluids exist. Generally, the flow behavior of drilling fluid can be described with the Bingham model. The Bingham model describes the fluid by means of a viscosity term and a threshold term from which flow is initialized. The threshold is called the yield point.

D-GEO PIPELINE calculates the required minimum fluid pressure at predefined locations. In these calculations, the flow properties of the drilling fluid (density, viscosity and yield point) play an important role.

During all stages of the drilling process, a pipe is present in the borehole, drill pipe or product pipe. The return flow of drilling fluid with cuttings occurs in the annulus between the borehole wall and the pipe. The required fluid pressure to initiate flow depends on the width of the annulus (radius borehole minus radius drill pipe), the properties of the drilling fluid and the required annular fluid flow rate.

To obtain the minimum required pressure $p_{\rm mud;min},$ the following pressure values must be calculated and added up:

$$p_{\mathsf{mud};\mathsf{min}} = p_1 + p_2 \tag{22.1}$$

where:

- p_1 is the static pressure of the drilling fluid column, in kN/m².
- p_2 is the excess pressure necessary to maintain the annular flow of drilling fluid with cuttings in the borehole, in kN/m².

22.1.1 Static pressure of the drilling fluid column p_1

As the drilling head is at a lower level than the exit point of the drilling fluid, a pressure difference has to be overcome which is equal to the difference in height times the unit weight of the drilling fluid:

$$p_1 = \gamma_{\rm df} \times (Z_{\rm exit} - Z) \tag{22.2}$$

where:

 γ_{df} is the unit weight of the drilling fluid, in kN/m³;

)

- Z_{exit} is the vertical co-ordinate of the exit point of the drilling fluid, in m, depending on the direction of the drilling:
 - ♦ If the drilling is from left to right, then the exit point of the drilling fluid is the left point: $Z_{\text{exit}} = Z_{\text{left}}$;
 - ♦ If the drilling is from right to left, then the exit point of the drilling fluid is the right point: $Z_{\text{exit}} = Z_{\text{right}}$ Refer to section 4.6.1.1 for the definitions of Z_{left} and Z_{right} .
- Zis the vertical co-ordinate at pipe center, in m.

22.1.2 Excess pressure to maintain flow of drilling fluid p_2

To initiate the flow of drilling fluid, a specific shear resistance in the fluid must be overcome. The drilling fluid flows through an annulus. The required excess fluid pressure depends on the width of the annulus (difference between borehole and drill pipe or product pipe radius), the flow properties of the drilling fluid, and the required flow rate.

The required excess pressure necessary to maintain the annular flow of drilling fluid with cuttings in the borehole p_2 is obtained by multiplying the pressure per unit length with the length of the borehole in which the drilling fluid is flowing:

$$p_2 = \frac{dp}{dz} \times L \tag{22.3}$$

where:

dp/dz is the flow resistance per unit length of borehole, in kN/m³;

is the distance in the borehole between the boring front and the exit point of the L drilling fluid, in m.

Flow resistance dp/dz

The minimum required pressure dp/dz is the optimal value for which the calculated flow rate Q is equal to the requested flow rate Q_{req} (necessary to initiate flow of drilling fluid).

Calculated flow rate Q

The calculated flow rate Q is the contribution of five components:

$$Q = Q_{1,1} + Q_{1,2} + Q_2 + Q_{3,1} + Q_{3,2}$$
(22.4)

with:

$$Q_{1,1} = -2\pi \left[-\frac{\tau_{\rm df} R_0^3}{3\mu_{\rm df}} - \frac{dp}{dz} \frac{R_1^2}{4\mu_{\rm df}} \left(\left(\frac{R_0^4}{4R_1^2} \right) - \lambda^2 \left(R_0^2 \ln \left(\frac{R_0}{R_1} \right) - \frac{1}{2} R_0^2 \right) + \frac{1}{2} C_2 R_0^2 \right) \right]$$
(22.5)

$$Q_{1,2} = 2\pi \left[-\frac{\tau_{\rm df} r_0^3}{3\mu_{\rm df}} - \frac{dp}{dz} \frac{R_1^2}{4\mu_{\rm df}} \left(\left(\frac{r_0^4}{4R_1^2} \right) - \lambda^2 \left(r_0^2 \ln \left(\frac{r_0}{R_1} \right) - \frac{1}{2} r_0^2 \right) + \frac{1}{2} C_2 r_0^2 \right) \right]$$
(22.6)

$$Q_{2} = \pi \left(r_{1}^{2} - r_{0}^{2} \right) \left[-\frac{\tau_{\rm df}}{\mu_{\rm df}} r_{0} - \frac{dp}{dz} \frac{R_{1}^{2}}{4\mu_{\rm df}} \left(\left(\frac{r_{0}}{R_{1}} \right)^{2} - 2\lambda^{2} \ln \left(\frac{r_{0}}{R_{1}} \right) + C_{2} \right) \right]$$
(22.7)

$$Q_{3,1} = -2\pi \left[\frac{\tau_{\rm df}}{3\mu_{\rm df}} r_1^3 - \frac{dp}{dz} \frac{R_1^2}{4\mu_{\rm df}} \left(\left(\frac{r_1^4}{4R_1^2} \right) - \lambda^2 \left(r_1^2 \ln \left(\frac{r_1}{R_1} \right) - \frac{1}{2} r_1^2 \right) + \frac{1}{2} C_4 r_1^2 \right) \right]$$
(22.8)

$$Q_{3,2} = 2\pi \left[\frac{\tau_{\rm df}}{3\mu_{\rm df}} R_1^3 - \frac{dp}{dz} \frac{R_1^4}{8\mu_{\rm df}} \left(\frac{1}{2} + \lambda^2 + C_4 \right) \right]$$
(22.9)

where:

(22.11)

- τ_{df} is the yield point of the drilling fluid, as defined in the *Drilling Fluid Data* window (section 4.6.4), in kN/m²;
- μ_{df} is the plastic viscosity of the drilling fluid, as defined in the *Drilling Fluid Data* window (section 4.6.4), in kN.s/m².

The constants are:

$$\lambda^{2} = \frac{2\tau_{\mathsf{df}} \times r_{\mathsf{0}}}{R_{\mathsf{1}}^{2} \times \frac{dp}{dz}} + \left(\frac{r_{\mathsf{0}}}{R_{\mathsf{1}}}\right)^{2}$$
(22.10)
$$C_{\mathsf{2}} = \frac{4\tau_{\mathsf{df}}}{R_{\mathsf{1}}^{2} \times \frac{dp}{dz}} \times \left[r_{\mathsf{0}} \times \ln\left(\frac{R_{\mathsf{0}}}{R_{\mathsf{1}}}\right) - R_{\mathsf{0}}\right] - \left(\frac{R_{\mathsf{0}}}{R_{\mathsf{1}}}\right)^{2} + 2\left(\frac{r_{\mathsf{0}}}{R_{\mathsf{1}}}\right)^{2} \times \ln\left(\frac{R_{\mathsf{0}}}{R_{\mathsf{1}}}\right)$$

$$C_4 = \frac{4\tau_{\rm df}}{R_1 \times \frac{dp}{dz}} - 1 \tag{22.12}$$

$$r_1 = \frac{2\tau_{\rm df}}{\frac{dp}{dz}} + r_0 \tag{22.13}$$

 r_0 is the solution to the following equation:

$$\frac{\tau_{\rm df}^2}{\frac{dp}{dz}} + \tau_{\rm df} r_0 \left[1 + \ln\left(\left(\frac{2\tau_{\rm df}}{\frac{dp}{dz}} + r_0 \right) \frac{R_0}{r_0 R_1} \right) \right] - \tau_{\rm df} \left(R_0 + R_1 \right) + \frac{1}{4} \frac{dp}{dz} \left(R_1^2 - R_0^2 \right) + \frac{1}{2} \frac{dp}{dz} r_0^2 \ln\left[\left(\frac{2\tau_{\rm df}}{\frac{dp}{dz}} + r_0 \right) \frac{R_0}{r_0 R_1} \right] = 0$$
(22.14)

Requested flow rate Q_{req}

The requested flow rate Q_{req} is equal to:

$$Q_{\rm req} = Q_{\rm ann} \times (1 - f_{\rm loss}) \tag{22.15}$$

where:

 f_{loss} is the circulation loss factor;

 Q_{ann} is the annular back flow rate, in kN/m³.

22.1.3 Minimum drilling fluid pressure for Stage 1 (pilot pipe in the pilot hole)

For the first drilling stage of the horizontal directional drilling process, the minimum drilling fluid pressure is calculated for the drilling direction from the left and the right, using the following formulas:

$$p_{\text{min,left}}^{\text{pilot}} = p_1 + L_{\text{left}} \times \left(\frac{dp}{dz}\right)_{\text{pilot}}$$
(22.16)

$$p_{\min, \text{right}}^{\text{pilot}} = p_1 + (L - L_{\text{left}}) \times \left(\frac{dp}{dz}\right)_{\text{pilot}}$$
(22.17)

where:

- L_{left} is the distance in the borehole between the drilling head and the left exit point of the drilling fluid, in m;
- L is the total length of the borehole, in m.

22.1.4 Minimum drilling fluid pressure for Stage 2 (drill pipe in the pre-ream hole)

$$p_{\text{min,left}}^{\text{pre-ream}} = \min\left[P_{\text{min,right}}^{\text{pilot}}; p_1 + L_{\text{left}} \times \left(\frac{dp}{dz}\right)_{\text{pre-ream}}\right]$$
(22.18)

$$p_{\min, \text{right}}^{\text{pre-ream}} = \min\left[P_{\min, \text{left}}^{\text{pilot}}; p_1 + (L - L_{\text{left}}) \times \left(\frac{dp}{dz}\right)_{\text{pre-ream}}\right]$$
(22.19)

22.1.5 Minimum drilling fluid pressure for Stage 3 (product pipe in the borehole)

$$p_{\min,\text{left}}^{\text{pull}} = \min\left[P_{\min,\text{right}}^{\text{pre-ream}}; p_1 + L_{\text{left}} \times \left(\frac{dp}{dz}\right)_{\text{pull}}\right]$$
(22.20)

$$p_{\min, \text{right}}^{\text{pull}} = \min\left[P_{\min, \text{left}}^{\text{pre-ream}}; p_1 + (L - L_{\text{left}}) \times \left(\frac{dp}{dz}\right)_{\text{pull}}\right]$$
(22.21)

22.2 Maximum allowable drilling fluid pressure

In the borehole, an excess drilling fluid pressure is maintained to enable sufficient outflow of drilling fluid and cuttings. At high pressures, the borehole will fail through uncontrolled expansion. The cavity expansion theory describes the definition of the maximum allowable drilling fluid pressure at which the wall of the borehole becomes unstable. Such limit pressure is the highest pressure that can be sustained by a cavity in the soil. Logically, this forms an upper boundary for the drilling fluid pressure in the borehole.

When the borehole is created, the drilling fluid will exert pressure on the soil. When the pressure rises above a certain value, plastic deformation of the soil will occur, initially adjacent to the borehole. When the pressure is increased further beyond this value, the zone with plastic deformation will increase. If the zone with plastic deformation reaches the surface a blow-out will occur.

In granular materials (drained soil layers), the drilling fluid pressure may lead to development of cracks around the borehole when the pressure exceeds a certain maximal value which is related to the strain of the borehole wall.

In order to prevent blow-outs or damage to structures close to the borehole, care should be taken that the plastic zone remains within a safe radius around the hole. Therefore the pressure that creates a plastic zone that does not extend beyond the established safe radius must be determined.

To determine the maximum allowable drilling fluid pressure, different formulas are used, depending on the soil material sequence above the pipeline.

22.2.1 Maximum allowable drilling fluid pressure in undrained layers

In undrained layers, the maximum allowable drilling fluid pressure $p_{\text{max;und}}$ is:

$$p_{\text{max;und}} = \sigma_0' + C_{\text{u;f}} \left[1 - \ln \left(\frac{C_{\text{u;f}}}{G_{\text{f}}} + \left(\frac{R_0}{R_{\text{p;max}}} \right)^2 \right) \right] + u \le 0.9 \ p_{\text{lim;und}}$$
(22.22)

with:

$$p_{\text{lim;und}} = \sigma_0' + C_{u;f} \left[1 - \ln \left(\frac{C_{u;f}}{G_f} \right) \right] + u$$
(22.23)

$$\sigma_0' = \frac{3}{4} \frac{\sigma_v'}{f_\gamma} \tag{22.24}$$

where:

 $p_{\text{lim;und}}$ is the limit drilling fluid pressure, in kN/m²;

- $C_{u,f}$ is the average factorized undrained cohesion, in kN/m²: $C_{u;f} = C_u/f_c$;
- f_{c} is the partial safety factor on the cohesion. The default value is set to 1.4;
- $c_{\rm u}$ is the average undrained cohesion, in kN/m²;
- σ_0 ' is the initial effective stress, in kN/m²;
- σ_v is the vertical effective stress at the pipe center, in kN/m²;
- f_{γ} Partial safety factor on the unit weight.

 $G_{\rm f}$ is the average factorized shear modulus, in kN/m²: $G_{\rm f} = \frac{E}{f_{\rm F} \times 2(1+\nu)}$;

 f_{E} is the partial safety factor on Young modulus;

- $R_{\rm b}$ is the radius of the hole, in m;
- $R_{p,max}$ is the maximum allowable radius of the plastic zone, in m: $R_{p;max} = 0.5 H$. The default ratio between $R_{p;max}$ and the soil cover H (default 0.5) can be defined by the user in the *Factors* window (section 4.7.1.1) under the field *Safety factor cover* (Undrained layer);
- H is the vertical distance between the ground level and the pipe center, in m;
- u is the pore pressure at pipe center, in kN/m², see Equation 26.4.

Note: Parameters $C_{u;f}$ and G_f are determined using the distance depth average between the ground level and the pipe centre. For example, the weight average undrained cohesion in the configuration in Figure 22.1 is:

$$c_{\rm u} = \frac{C_{\rm u,2} \times \left(\frac{1}{h_1} - \frac{1}{h_1 + h_2}\right) + C_{\rm u,1} \times \left(\frac{1}{0.5D_{\rm o}} - \frac{1}{h_1}\right)}{\frac{1}{0.5D_{\rm o}} - \frac{1}{h_1 + h_2}}$$
(22.25)

Figure 22.1: Schematization of h1 and h2

In case no data about the undrained strength of the soil is available, an estimated c_u value can be obtained using the subsequent formula:

$$c_{\mathsf{u}} = c \times \cos\varphi + p \times \sin\varphi \tag{22.26}$$

with:

$$p = \frac{\sigma_{\mathsf{v}}' + \sigma_{\mathsf{h}}'}{2} \tag{22.27}$$

22.2.2 Maximum allowable drilling fluid pressure in drained layers

According to article E.2.2 of NEN 3650-1 (NEN, 2012a), the maximum allowable drilling fluid pressure in non-compressible drained layers $p_{\max;d}$ is:

$$p_{\max;d} = \left(p_{\rm f}' + c_{\rm f} \times \cot \varphi_{\rm f}\right) \left[\left(\frac{R_{\rm b}}{R_{\rm p;max}}\right)^2 + Q \right]^{\frac{-\sin \varphi_{\rm f}}{1 + \sin \varphi_{\rm f}}} - c_{\rm f} \times \cot \varphi_{\rm f} + u \le 0.9 \ p_{\rm lim;d} \quad (22.28)$$

with:

$$p_{\text{lim;d}} = (p'_{\text{f}} + c_{\text{f}} \times \cot \varphi_{\text{f}}) \times Q^{\frac{-\sin \varphi_{\text{f}}}{1 + \sin \varphi_{\text{f}}}} - c_{\text{f}} \times \cot \varphi_{\text{f}} + u$$

$$p'_{\text{f}} = \sigma'_{\text{0}} \times (1 + \sin \varphi_{\text{f}}) + c_{\text{f}} \times \cos \varphi_{\text{f}}$$
(22.29)
(22.30)

where:

$p_{lim;d}$	is the limit drilling fluid pressure, in kN/m ² ;
p'_{f}	is the effective drilling fluid pressure at which the first plastic deformation appears,
-	in kN/m ² ;
σ_0 '	is the initial effective stress of the soil, in kN/m ² : $\sigma_0'=rac{3}{4}\sigma_{ m v}'/f_{\gamma};$
$arphi_{f}$	is the factorized friction angle, in °: $\varphi_{f} = \arctan{(\tan{\varphi}/f_{\varphi})};$
c_{f}	is the average factorized cohesion, in kN/m ² : $c_{\rm f} = c/f_{\rm c}$;
R_{b}	is the radius of the borehole, in m;
Q	is $(\sigma'_0 \times \sin \varphi_{\rm f} + c_{\rm f} \times \cos \varphi_{\rm f})/G;$
G_{f}	is the average factorized shear modulus between the border of compressible/non-
	compressible layers and the pipe center, in kN/m ² : $G_{f} = \frac{E}{f_{E} \times 2(1+\nu)}$;

- $R_{\rm p;max}~$ is the maximum allowable radius of the plastic zone, in m. The plastic zone can be related:
 - ♦ either to the soil cover: $R_{p;max} = 0.5 H$

 \diamond or to the deformation of the bore hole: $R_{p;max} = \sqrt{\frac{R_b^2}{Q}} \times 2 \varepsilon_{g;max}$

The calculation of the maximum drilling fluid pressure is performed using values determined by both methods for the calculation of the maximum allowable radius of the plastic deformation zone $R_{\rm p;max}$, after which the minimum value for the maximum allowable drilling fluid pressure is taken.

- u is the pore pressure at pipe center, in kN/m²;
- *H* is the distance between the border of compressible/non-compressible layers and the pipe center, in m;

 $\varepsilon_{g;max}$ is the maximum deformation of the borehole. For sand, $\varepsilon_{g;max} = 0.05$. For the definition of the other symbols, refer to section 23.5.2.

Parameters c, φ and G are determined using two methods:

- Linear weighted average between the ground level and the pipe center;
- ♦ Distance depth average between the ground level and the pipe center.

22.3 Equivalent diameter for a bundled pipeline

In case of a bundled pipeline, the following equivalent diameter is used for the calculation of the drilling fluid pressures during the pull back operation:

$$D_{\rm eq} = \sqrt{\sum_{i=1}^{n} D_{\rm o;i}^2}$$
(22.31)

Note: This equivalent diameter is calculated by D-GEO PIPELINE in the *Drilling Fluid Data* window of the *Pipe* menu.

22.4 Equilibrium between drilling fluid pressure and pore pressure

The ratio between the static pressure of the drilling fluid column p_1 and the pore pressure u yields the safety factor, which should be higher than the (user-defined) requested safety factor, which writes:

$$f = \frac{p_1}{u} \ge f_{\text{press;bore}}$$
(22.32)

where:

 $\begin{array}{ll} p_1 & \text{is the static pressure of the drilling fluid column (i.e. pressure due to the difference of level between the drilling head and the exit point of the drilling fluid), in kN/m², see Equation 22.2 in section 22.1.1: \\ p_1 = \gamma_{\rm df} \times (Z_{\rm exit} - Z); \\ u & \text{is the calculated pore pressure (see Equation 26.4 in section 26.5);} \\ f_{\rm press:bore} & \text{is the required safety factor, as defined in the$ *Factors* $window under the field } \end{array}$

Contingency factor – Pressure borehole, see section 4.7.1.1.

23 Strength pipeline calculation

23.1 Buoyancy control

The friction between soil and pipe is partially caused by buoyancy of the pipeline in the drilling fluid. Uplift forces resulting from buoyancy can be neutralized by filling the pipeline. The optimal volume of water (P_w) placed in the pipe provides the most advantageous distribution of buoyant forces, as illustrated in Figure 23.1.

Figure 23.1: Schematization of the buoyancy control

The forces acting on the pipeline are:

a) Uplift force:

$$Q_{\text{uplift}} = \frac{\pi}{4} \times D_{\text{o}}^2 \times \gamma_{\text{df}}$$
(23.1)

b) Weight of the pipeline:

$$Q_{\mathsf{pipe}} = \frac{\pi}{4} \times \left(D_{\mathsf{o}}^2 - D_{\mathsf{i}}^2 \right) \times \gamma_{\mathsf{b}}$$
(23.2)

c) Weight of the filling (water):

$$Q_{\text{filling}} = \frac{\pi}{4} \times D_{\text{i}}^2 \times \gamma_{\text{w}} \times P_{\text{w}}$$
(23.3)

The weight of the pipeline filled with water is therefore:

$$Q = Q_{\mathsf{pipe}} + Q_{\mathsf{filling}} \tag{23.4}$$

and the effective weight of the pipeline is defined as:

$$Q_{\text{eff}} = |Q - Q_{\text{uplift}}| \tag{23.5}$$

23.2 Pulling force in a flexible pipeline

According to article E.1.2.1 of NEN 3650-1 (NEN, 2012a), the total pulling force is the contribution of five components:

$$T = T_1 + T_2 + T_{3a} + T_{3b} + T_{3c}$$
(23.6)

23.2.1 Roller-lane

According to article E.1.2.2 of NEN 3650-1 (NEN, 2012a), the design pulling force due to friction of the pipeline on the roller-lane T_1 is:

$$T_1 = f_{\text{install}} \times L_{\text{rol}} \times Q \times f_1 \tag{23.7}$$

where:

- f_{install} is the total factor for stochastic variation and model uncertainty, called *Load factor installation* in the *Factors* window (section 4.7.1.1). The default value is set to 1.1;
- $L_{\rm rol}$ is the length of the pipeline on the roller-lane, in mm;
- Q is the weight of the pipeline filled with water, in N/mm, see Equation 23.4;
- f_1 is the factor of friction of the roller-lane, defined in the *Engineering Data* window, see section 4.6.3.1. The default value is set to 0.1.

23.2.2 Straight part of the borehole

According to article E.1.2.3 of NEN 3650-1 (NEN, 2012a), the pulling force in the straight part of the borehole due to friction between pipe and drilling fluid is:

$$T_2 = f_{\text{install}} \times L_2 \times (\pi \ D_0 \times f_2 + Q_{\text{eff}} \times f_3)$$
(23.8)

where:

- f_{install} is the total factor for stochastic variation and model uncertainty, called *Load factor installation* in the *Factors* window (section 4.7.1.1). The default value is set to 1.1;
- L_2 is the length of the pipeline in the straight part of the borehole, in mm;
- f_2 is the friction between the pipeline and the drilling fluid, in N/mm², defined in the *Engineering Data* window, see section 4.6.3.1. The default value is set to 0.00005 N/mm²;
- Q_{eff} is the effective weight of the pipeline, in N/mm, see Equation 23.5;
- f_3 is the factor of friction between the pipeline and the borehole wall, defined in the *Engineering Data* window, see section 4.6.3.1. The default value is set to 0.2.

23.2.3 Curved part of the borehole

According to article E.1.2.4.1 of NEN 3650-1 (NEN, 2012a), the pulling force in the curved part of the borehole due to friction between pipe and drilling fluid T_{3a} is:

$$T_{3a} = f_{\text{install}} \times L_{b} \times (\pi \ D_{o} \times f_{2} + Q_{\text{eff}} \times f_{3})$$
(23.9)

where:

 $L_{\rm b}$ is the length of the pipeline in the curved part of the borehole, in mm. For the definition of the other symbols, refer to section 23.5.2.

23.2.4 Friction due to soil reaction in the curved part

According to article E.1.2.4.2 of NEN 3650-1 (NEN, 2012a), the pulling force in the curved part of the borehole due to soil reaction T_{3b} is:

$$T_{3b} = f_{\text{install}} \times 4 \times \frac{q_{\text{r}}}{2} \times D_{\text{o}} \times \frac{\pi}{\lambda} \times f_{3}$$
(23.10)

with:

$$q_{\rm r} = k_{\rm v} \times y \tag{23.11}$$

$$y = \frac{0.3224 \times \lambda^2 \times E_{\rm b} \times I_{\rm b}}{D_{\rm o} \times R}$$
(23.12)

$$\lambda = \sqrt[4]{f_{\rm kv} \times k_{\rm v} \times \frac{D_{\rm o}}{4E_{\rm b}I_{\rm b}}}$$
(23.13)

where:

- q_r is the maximum soil reaction, in N/mm²;
- k_v is the vertical modulus of subgrade reaction, in N/mm³;
- *y* is the maximum displacement, in mm;
- λ is the characteristic stiffness pipeline-soil, in mm⁻¹;
- f_{kv} is the contingency factor on the modulus of subgrade reaction. The default value is 1.6;
- $E_{\rm b}$ is the Young's modulus of the pipe, in N/mm²;
- I_{b} is the moment of inertia of the pipe, in mm⁴;
- R is the bending radius, in mm;
- f_3 is the factor of friction between the pipeline and the borehole wall, defined in the *Engineering Data* window, see section 4.6.3.1. The default value is set to 0.2.

23.2.5 Friction due to curved forces

According to article E.1.2.4.3 of NEN 3650-1 (NEN, 2012a), the pulling force in the curved part of the borehole due to curved forces T_{3c} is:

$$T_{3c} = f_{\text{install}} \times L_{b} \times g_{t} \times f_{3}$$
(23.14)

where:

- $L_{\rm b}$ is the length of the curve, in mm: $L_{\rm b} = 2 \times R \times 2\pi \times \alpha/360$;
- α is the half angle of the curved part, in degrees;
- g_{t} is the curved force, in N/mm: $g_{t} = (2 T \sin \alpha) / L_{b}$;
- T is the total pulling force in the pipeline, in N, see Equation 23.6.

23.3 Maximum representative pulling force

The maximum representative pulling force $T_{\max;rep}$ in a single pipeline is:

♦ For steel pipe:

$$P_{\text{max;rep}} = A \times \left[\frac{1}{2} \left(-\sigma_{\text{qr}} + \sqrt{\sigma_{\text{qr}}^2 - 4 \left(-2.25 \ R_{\text{eb}}^2 + \sigma_{\text{qr}}^2 \right)} \right) - \sigma_{\text{b}} \right]$$
(23.15)

♦ For polyethylene pipe:

$$P_{\text{max;rep}} = A \times (R_{\text{eb;short}} - \alpha \times \sigma_{\text{b}})$$
(23.16)

where:

A	is the cross-section of the pipe, in mm ² : $A = \pi \times (r_0^2 - r_i^2)$;
$R_{\sf eb}$	is the allowable strength for steel, in N/mm ² , as defined in the Product Pipe
	Material Data window (see section 4.6.2.1);
$R_{eb;short}$	is the allowable strength at short term for PE, in N/mm ² , as defined in the <i>Product</i>
	Pipe Material Data window (see section 4.6.2.1);
α	is the tensile factor, as defined in the Product Pipe Material Data window (see
	section 4.6.2.1);
δ_{t}	is the negative wall thickness tolerance, in %, as defined in the Product Pipe
	Material Data window (see section 4.6.2.1);
σ_{qr}	is the maximum tangential stress in LC 1B, in N/mm ² , see Equation 23.31;

 $\sigma_{\rm b}$ is the axial stress in LC 1B, in N/mm², see Equation 23.27.

23.4 Pulling force for a bundled pipeline

Important parameters for the pullback operation are the total weight of the (filled/ not filled) pipelines with respect to drilling fluid, which determines the soil reaction force on the bore hole wall in straight sections of the drilling line and the total stiffness of the bundled pipeline, which determines the soil reaction force in curved sections of the drilling line. The pulling force is calculated for an equivalent pipeline with the parameters of the bundle.

$$EI_{\mathsf{eq}} = \sum_{i=1}^{n} EI_{\mathsf{i}} \tag{23.17}$$

$$G_{\text{tot}} = \sum_{i=1}^{n} \left(\frac{1}{4} \pi D_{0;i}^2 - \frac{1}{4} \pi \left(D_{0;i} - 2d_{\mathsf{n};\mathsf{i}} \right)^2 \right) \times \gamma_{\mathsf{i}}$$
(23.18)

$$D_{\rm eq} = f \times \sum_{i=1}^{n} D_{\rm o;i} \tag{23.19}$$

The equivalent diameter can be used to determine the equivalent wall thickness of the pipeline:

$$\frac{G_{\text{tot}}}{\gamma_{\text{eq}}} = \frac{1}{4}\pi \left(D_{\text{eq}}^2 - \left(D_{\text{eq}} - 2d_{\text{n;eq}} \right)^2 \right)$$
(23.20)

Deltares

$$d_{n;eq} = \frac{D_{eq} - \sqrt{D_{eq}^2 - \sum_{i=1}^n D_{0;i}^2 - (D_{o;i} - 2d_{n;i})^2}}{2}$$
(23.21)

where:

is the number of pipelines in bundle; n $D_{o:i}$ is the outer diameter of pipeline number i, in m; is the equivalent diameter of the pipeline, in m; D_{eq} $d_{n:i}$ is the wall thickness of pipeline number i, in m; is the equivalent wall thickness of the pipeline, in m; d_{n:ea} is the unit weight of the material of pipeline number i, in kN/m³; γ_{i} is the equivalent unit weight of the pipeline material, in kN/m^3 ; γ_{eq} is a factor: $f = 1/n^{0.3}$. f

The calculated pulling force is acting on all the pipelines in the bundle. The magnitude of the pulling force of a single pipeline can be determined as follows:

$$T_{i} = \frac{\left(\frac{\pi}{4} D_{o;i}^{2} - \frac{\pi}{4} (D_{o;i} - 2 d_{n;i})^{2}\right)}{\sum_{i=1}^{n} \left(\frac{\pi}{4} D_{o;i}^{2} - \frac{\pi}{4} (D_{o;i} - 2 d_{n;i})^{2}\right)} \times T_{\text{total}}$$
(23.22)

In case the stiffness of the pipeline materials is significantly different (for example a combined bundle of steel and PE pipelines), a different approach is applied. In addition to the previous align, the total pulling force is divided over the stiff steel pipelines. The PE pipelines are then considered as single pulled in pipelines.

23.5 Strength calculation

In order to consider the strength of the pipeline, calculations for five load combinations are carried out according to NEN 3650:

- ♦ Load combination 1A: start of the pullback operation (section 23.5.1)
- ♦ Load combination 1B: end of the pullback operation (section 23.5.2)
- Load combination 2: application of internal pressure (section 23.5.3)
- ♦ Load combination 3: pipeline in operation, without internal pressure (section 23.5.4)
- ♦ Load combination 4 : pipeline in operation, with internal pressure (section 23.5.5)

23.5.1 Strength calculation for Load Combination 1A: start of the pullback operation

Axial stress:

At start of the pull back operation, the axial bending stress σ_{b} is:

$$\sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}} = \frac{f_{\rm k} \times E_{\rm b} \times I_{\rm b}}{R_{\rm rol} \times W_{\rm b}}$$
(23.23)

Note: f_k is the overall safety factor on moment, as prescribed in article E.1.3 of NEN 3650-1.

In D-GEO PIPELINE, this overall factor is indeed the contribution of three safety factors:

$$f_{\rm k} = \frac{f_{\rm M} \times f_{\rm install}}{f_{\rm R}} \tag{23.24}$$

where:

 $f_{\rm M}$ is the contingency factor on moment: 1.27 for steel pipe and 1.4 for PE pipe; $f_{\rm R}$ is the contingency factor on bending radius: 1.1 for steel pipe and 1 for PE pipe; $f_{\rm install}$ is the load factor on installation: 1.1 for steel pipe and 1 for PE pipe.

The axial stress due to pull-back is:

$$\sigma_{\rm t} = f_{\rm pull} \times \frac{T_{\rm 1}}{A} \tag{23.25}$$

where:

 T_1 is the design pulling force due to friction of the pipeline on the roller-lane, see Equation 23.7.

For the definition of the other symbols, refer to section 23.5.2.

The maximum axial stress is:

$$\sigma_{a:max} = \max\left(\left|\sigma_{t} + \alpha \times \sigma_{b}\right|; \left|\sigma_{t} - \alpha \times \sigma_{b}\right|\right)$$
(23.26)

Tangential stress:

At start of the pull back operation, the pipeline is situated on the rollers, the tangential stress is negligible.

23.5.2 Strength calculation for Load Combination 1B: end of the pullback operation

Axial stresses:

At the end of the pull back operation, the axial bending stress:

$$\sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}} = \frac{f_{\rm k} \times E_{\rm b} \times I_{\rm b}}{R_{\rm min} \times W_{\rm b}} \tag{23.27}$$

The axial stress due to pull-back is:

$$\sigma_{\rm t} = f_{\rm pull} \times \frac{T_{\rm max}}{A} \tag{23.28}$$

The maximum axial stress is:

$$\sigma_{a;max} = \max\left(\left|\sigma_{t} + \alpha \times \sigma_{b}\right|; \left|\sigma_{t} - \alpha \times \sigma_{b}\right|\right)$$
(23.29)

where:

- $R_{\rm min}$ is the minimum bending radius of the pipeline configuration (i.e. minimum between $R_{\rm left}$, $R_{\rm right}$ and the horizontal bending radius), in m. In case of a combined 3-dimensional bending radius, see Equation 20.5.
- T_{max} is the maximum pulling force, in kN (see section 23.2).

Note: f_k is the overall safety factor on moment, as prescribed in article E.1.3 of NEN 3650-1. In D-GEO PIPELINE, this overall factor is indeed the contribution of three safety factors:

$$f_{\rm k} = \frac{f_{\rm M} \times f_{\rm install}}{f_{\rm R}} \tag{23.30}$$

Tangential stresses:

The tangential stress (indirectly transmitted) as a result of the bending is:

 $\sigma_{\rm qr} = \max\left(\sigma_{\rm qr:b}; \sigma_{\rm qr:t}\right) \tag{23.31}$

with:

$$\sigma_{qr;b} = K'_{b} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the bottom of the pipe)$$

$$\sigma_{qr;t} = K'_{t} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the top of the pipe)$$

where:

- q_r is the soil reaction, in kN/m², see Equation 23.11 with R = the minimum bending radius;
- $K_{\rm b}$ ' is the moment coefficient for indirectly transmitted stress at the bottom of the pipeline, depending on the bedding angle β as shown in Table 23.12;
- K_{t} is the moment coefficient for indirectly transmitted stress at the top of the pipeline, depending on the bedding angle β as shown in Table 23.12;
- $W_{\rm w}$ is the wall resisting moment in m³/m: $W_{\rm w} = d_{\rm n}^2/6$.

For the definition of the other symbols, refer to section 23.5.2.

The maximum tangential stress is:

 $\sigma_{
m t;max}=\sigma_{
m qr}$

23.5.3 Strength calculation for Load Combination 2: application of internal pressure

According to article 8.5.2.1 of NEN 3651 (NEN, 2012d), the ring stresses around the pipeline σ_{py} and σ_{pt} caused by design (p_d) respectively test (p_t) internal pressure are:

♦ For piles with a thin wall $(D_q/d < 20)$:

$$\sigma_{\rm py} = f_{\rm pd} \times p_{\rm d} \times \frac{D_{\rm g}}{2 \times d} \tag{23.33}$$

$$\sigma_{\mathsf{pt}} = f_{\mathsf{pt}} \times p_t \times \frac{D_{\mathsf{g}}}{2 \times d} \tag{23.34}$$

293 of 324

(23.32)

Load angle	Direct coefficients			Direct coefficients Indirect coefficients		
β	Kt	Kb	$k_{\mathbf{y}}$	$K'_{\mathbf{t}}$	$K'_{\mathbf{b}}$	$k'_{\mathbf{v}}$
0°	0.150	0.294	0.116	0.080	0.239	0.074
30°	0.148	0.235	0.113	0.078	0.179	0.071
60°	0.143	0.189	0.105	0.073	0.134	0.064
70°	0.141	0.178	0.102	0.071	0.122	0.061
90°	0.137	0.157	0.096	0.067	0.102	0.055
120°	0.131	0.138	0.089	0.061	0.083	0.048
150°	0.126	0.128	0.085	0.056	0.073	0.043
180°	0.125	0.125	0.083	0.055	0.070	0.042

Table 23.12: Moment and deflection coefficients for indirectly and directly transmitted stress as a function of the bedding angle β , according to Table D.2 of NEN 3650-1

♦ For piles with a thick wall ($D_g/d \ge 20$):

$$\sigma_{\rm py} = f_{\rm pd} \times p_{\rm d} \times \frac{r_{\rm 0}^2 + r_{\rm i}^2}{r_{\rm 0}^2 - r_{\rm i}^2} \tag{23.35}$$

$$\sigma_{\rm pt} = f_{\rm pt} \times p_{\rm t} \times \frac{r_0^2 + r_{\rm i}^2}{r_0^2 - r_{\rm i}^2}$$
(23.36)

The axial internal stress $\sigma_{\rm px}$ is:

$$\sigma_{\rm px} = \nu \times \sigma_{\rm pt} = 0.5 \times \sigma_{\rm pt} \tag{23.37}$$

23.5.4 Strength calculation for Load Combination 3: pipeline in operation, without internal pressure

Axial stresses:

When the pipeline is in operation, the axial bending stress $\sigma_{\rm b}$ is:

$$\sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}} = \frac{f_{\rm k} \times E_{\rm b} \times I_{\rm b}}{R_{\rm min} \times W_{\rm b}}$$
(23.38)

The maximum axial stress is:

 $\sigma_{a;max} = \alpha \times \sigma_{b} \tag{23.39}$

Tangential stresses:

The tangential stress (indirectly transmitted) as a result of the bending is:

$$\sigma_{qr} = \max\left(\sigma_{qr;b}; \sigma_{qr;t}\right) \tag{23.40}$$

with:

$$\sigma_{qr;b} = K'_{b} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the bottom of the pipe)$$

$$\sigma_{qr;t} = K'_{t} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the top of the pipe)$$

The tangential stress (directly transmitted) as a result of the bending is:

$$\sigma_{qn} = \max\left(\sigma_{qn;b}; \sigma_{qn;t}\right) \tag{23.41}$$

with:

$$\begin{aligned} \sigma_{qn;b} &= K_{b} \times q_{n,r,v} \times \frac{r_{g}}{W_{w}} \times D_{o} \\ \sigma_{qn;t} &= K_{t} \times q_{n,r,v} \times \frac{r_{g}}{W_{w}} \times D_{o} \\ q_{n,r,v} &= f_{Qn1} \times f_{Qn2} \times (q_{n,r} + q_{v}) \end{aligned}$$
(at the top of the pipe)

The maximum tangential stress is:

$$\sigma_{t;max} = \alpha \times \max\left(\left|\sigma_{qr;b} + \sigma_{qn;b}\right|; \left|\sigma_{qr;t} + \sigma_{qn;t}\right|\right)$$
(23.42)

where:

- f_{Qn1} is the load factor on soil stress q_n , as defined in the *Factors* window (see section 4.7.1.1). The default value is set to 1.5 for steel and 1 for polyethylene;
- f_{Qn2} is the contingency factor on soil stress q_n , as defined in the *Factors* window (see section 4.7.1.1). The default value is set to 1.1;
- $K_{\rm b}$ is the moment coefficient for directly transmitted stress at the bottom of the pipeline, depending on the bedding angle β as shown in Table 23.12;
- $K_{\rm t}$ is the moment coefficient for directly transmitted stress at the top of the pipeline, depending on the bedding angle β as shown in Table 23.12;
- $q_{n,r,v}$ is the (maximum) reduced vertical stress $q_{n,r}$ increased with a possible traffic load q_v , including safety factors, in kN/m²;
- $q_{n,r}$ is the neutral reduced soil stress, in kN/m², see section 21.3;
- q_v is the traffic load, in kN/m², see section 21.14;

For the definition of the other symbols, refer to section 23.5.2.

23.5.5 Strength calculation for Load Combination 4: pipeline in operation, with internal pressure

Axial stresses:

The axial bending stress σ_{b} is:

$$\sigma_{\rm b} = \frac{M_{\rm b}}{W_{\rm b}} = \frac{f_{\rm k} \times E_{\rm b} \times I_{\rm b}}{R_{\rm min} \times W_{\rm b}}$$
(23.43)

The ring stresses around the pipeline caused by design internal pressure and σ_{py} and test internal pressure σ_{pt} are

$$\sigma_{\rm py} = f_{\rm pd;comb} \times p_{\rm d} \times \frac{D_{\rm o} - d}{2 \times d} \tag{23.44}$$

$$\sigma_{\mathsf{pt}} = f_{\mathsf{pt}} \times p_t \times \frac{D_{\mathsf{o}} - d}{2 \times d} \qquad \qquad \text{for steel} \qquad (23.45)$$

$$\sigma_{\mathsf{pt}} = f_{\mathsf{pt}} \times p_t \times \frac{r_0^2 + r_i^2}{r_0^2 - r_i^2} \qquad \qquad \text{for polyethylene} \qquad (23.46)$$

The axial internal stress σ_{px} is:

$$\sigma_{\mathsf{px}} = \nu \times \sigma_{\mathsf{py}} = 0.5 \ \sigma_{\mathsf{py}} \tag{23.47}$$

The axial internal stress due to temperature variation $\sigma_{\rm temp}$ is, according to article D.2.2 of NEN 3650-1:

$$\sigma_{\text{temp}} = \Delta t \times \alpha_{g} \times E_{b} \tag{23.48}$$

where:

- Δt is the temperature variation in °c, as defined in the Product Pipe Material Data window, see section 4.6.2.1;
- is the linear settlement coefficient, in $(mm/mm)K^{-1}$, as defined in the *Engineering* α_{g} Data window, see section 4.6.3.1;
- E_{b} is the Young's modulus of the pipe (at long term for polyethylene), in kN/m².

The maximum axial stress is:

$$\sigma_{a;max} = \alpha \times \sigma_{b} + \sigma_{px} \tag{23.49}$$

Tangential stresses:

The tangential stress (indirectly transmitted) as a result of the bending is:

$$\sigma_{qr} = \max\left(\sigma_{qr;b}; \sigma_{qr;t}\right) \tag{23.50}$$

with:

$$\sigma_{qr;b} = K'_{b} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the bottom of the pipe)$$

$$\sigma_{qr;t} = K'_{t} \times q_{r} \times \frac{r_{g}}{W_{w}} \times D_{o} \qquad (at the top of the pipe)$$

The tangential stress (directly transmitted) as a result of the bending is:

$$\sigma_{qn} = \max\left(\sigma_{qn;b}; \sigma_{qn;t}\right) \tag{23.51}$$

with:

$$\begin{aligned} \sigma_{\mathsf{qn};\mathsf{b}} &= K_{\mathsf{b}} \times q_{\mathsf{n},\mathsf{r},\mathsf{v}} \times \frac{r_{\mathsf{g}}}{W_{\mathsf{w}}} \times D_{\mathsf{o}} \qquad \text{(at the bottom of the pipe)} \\ \sigma_{\mathsf{qn};\mathsf{t}} &= K_{\mathsf{t}} \times q_{\mathsf{n},\mathsf{r},\mathsf{v}} \times \frac{r_{\mathsf{g}}}{W_{\mathsf{w}}} \times D_{\mathsf{o}} \qquad \text{(at the top of the pipe)} \\ q_{\mathsf{n},\mathsf{r},\mathsf{v}} &= f_{\mathsf{Qn1}} \times f_{\mathsf{Qn2}} \times (q_{\mathsf{n},\mathsf{r}} + q_{\mathsf{v}}) \end{aligned}$$

Refer to section 23.5.4 for the definition of the symbols.

The maximum tangential stress is:

/

$$\sigma_{t;max} = \sigma_{py} + \alpha \times (F'_{rr} \times \sigma_{qr} + F_{rr} \times \sigma_{qn})$$
(23.52)

with:

$$F_{\rm rr} = \frac{1}{1 + \frac{2p_{\rm d} \times r_{\rm g}^3 \times k_{\rm y}}{E_{\rm b} \times I_{\rm w}}}$$
(23.53)
$$F_{\rm rr}' = \frac{1}{1}$$
(23.54)

$$T'_{\rm rr} = \frac{1}{1 + \frac{2p_{\rm d} \times r_{\rm g}^3 \times k'_{\rm y}}{E_{\rm b} \times I_{\rm w}}}$$
(23.54)

where:

- $F_{\rm rr}$ is the direct re-rounding factor;
- $F_{\rm rr}$, is the indirect re-rounding factor;
- $I_{\rm w}$ is the moment of inertia of the wall, in m³: $I_{\rm w} = d_{\rm n}^3/12$;
- $k_{\rm y}$ is the direct deflection factor depending on the bedding angle β as shown in Table 23.12;
- $k_{\rm y}{'}$ is the indirect deflection factor depending on the bedding angle β as shown in Table 23.12;

For the definition of the other symbols, refer to section 23.5.2.

23.6 Check of calculated stresses

23.6.1 Check of calculated stresses according to the Dutch standard NEN

23.6.1.1 Check of calculated stresses acc. to the Dutch standard NEN: Steel pipe

According to article D.3.1 of NEN 3650-2 (NEN, 2012b), the calculated stresses (for the load combinations) must meet the following conditions:

♦ For Load Combinations 1A and 1B:

$$\sigma_{\rm V} \le R_{\rm eb}/\gamma_{\rm m} \tag{23.55}$$

♦ For Load Combination 2:

$$\sigma_{\rm py} \le R_{\rm eb} / \gamma_{\rm m} \tag{23.56}$$

$$\sigma_{\rm v} \le R_{\rm e} / \gamma_{\rm m} \tag{23.57}$$

$$\sigma_{\rm pt} \le R_{\rm eb} / \gamma_{\rm m;test} \tag{23.57}$$

$$\sigma_{\rm pm} \le 1.1 \ R_{\rm eb}/\gamma_{\rm m} \tag{23.58}$$

♦ For Load Combinations 3 and 4:

$$\sigma_{\rm V;max} \le 0.85 \ \left(R_{\rm eb} + R_{\rm e;20^\circ} \right) / \gamma_{\rm m} \tag{23.59}$$

with:

$$\sigma_{\rm V} = \sqrt{\sigma_{\rm x}^2 + \sigma_{\rm y}^2 - \sigma_{\rm x} \times \sigma_{\rm y}} \tag{23.60}$$

$$\sigma_{\mathbf{V};i} = \sqrt{\sigma_{\mathbf{x};i}^2 + \sigma_{\mathbf{y};i}^2 - \sigma_{\mathbf{x};i} \times \sigma_{\mathbf{y};i}}$$
(23.61)

$$\sigma_{\rm pm} = \sqrt{\sigma_{\rm px}^2 + \sigma_{\rm py}^2 - \sigma_{\rm px} \times \sigma_{\rm py}}$$
(23.62)

where:

 $\sigma_{\text{V;max}} \quad \text{is the maximum acting stress, in kN/m}^2: \sigma_{\text{V;max}} = \max\left(\sigma_{\text{V;1}}; \sigma_{\text{V;2}}; \sigma_{\text{V;3}}; \sigma_{\text{V;4}}\right);$

- $\sigma_{V;i}$ is the calculated acting stress, in kN/m²:
 - -i=1 ($\sigma_{V;1}$) corresponds to the primary membrane stress
 - -i=2 ($\sigma_{V;2}$) corresponds to the total primary stress
 - -i=3 ($\sigma_{\rm V;3}$) corresponds to the total membrane stress
 - -i=4 ($\sigma_{V,4}$) corresponds to the resultant of primary and secondary stresses.

For the determination of $\sigma_{V;i}$, four combinations of ($\sigma_{x;i}$; $\sigma_{y;i}$) are tested (top and bottom of the pipe combined with inside or outside), and the maximum value is used for the check. Those four combinations are given in Table 23.17 to Table 23.20;

- σ_{py} is the tangential stress due to design pressure, in kN/m²;
- σ_{ptest} is the tangential stress due to test pressure, in kN/m²;
- $\sigma_{x,i}$ is the axial stress, in kN/m²;
- $\sigma_{\rm v;i}$ is the tangential stress, in kN/m²;
- $\gamma_{\rm m}$ is the partial material factor, as defined in the *Product Pipe Material Data* window (see section 4.6.2.1;
- $\gamma_{m;test}$ is the partial material factor for test pressure, as defined in the *Product Pipe Material Data* window (see section 4.6.2.1;
- R_{eb} is the yield strength, in kN/m², as defined in the *Product Pipe Material Data* window (see section 4.6.2.1);
- $R_{e:20}$ is the yield strength at a temperature of 20°c, in kN/m².

Table 2	23.17:	Set for	calculation	of the	maximum	stresses	for	load	combination	1A
---------	--------	---------	-------------	--------	---------	----------	-----	------	-------------	----

	Top outside	Top inside	Bottom inside	Bottom outside
σ_{x}	$\sigma_{\rm t} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} + \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} + \alpha \times \sigma_{\rm b}$
σ_{y}	0	0	0	0

	Top outside	Top inside	Bottom inside	Bottom outside
σ_{x}	$\sigma_{\rm t} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} + \alpha \times \sigma_{\rm b}$	$\sigma_{\rm t} + \alpha \times \sigma_{\rm b}$
σ_{y}	$-\sigma_{qr;t}$	$\sigma_{qr;t}$	$\sigma_{qr;b}$	$-\sigma_{qr;b}$

Table 23.19: Set for calculation of the maximum stresses for load combination 3

	Top outside	Top inside	Bottom inside	Bottom outside
$\sigma_{x;2}$	0	0	0	0
$\sigma_{y;2}$	$-\sigma_{qr;t}$	$\sigma_{qr;t}$	$\sigma_{qr;b}$	$-\sigma_{qr;b}$
$\sigma_{x;3}$	$-\alpha imes \sigma_{b}$	$-\alpha imes \sigma_{b}$	$\alpha imes \sigma_{b}$	$\alpha imes \sigma_{b}$
$\sigma_{y;3}$	0	0	0	0
$\sigma_{x;4}$	$-\alpha imes \sigma_{b}$	$-\alpha \times \sigma_{b}$	$\alpha \times \sigma_{b}$	$\alpha imes \sigma_{b}$
$\sigma_{y;4}$	$-\sigma_{qr;t} - \sigma_{qn;t}$	$\sigma_{\rm qr;t} + \sigma_{\rm qn;t}$	$\sigma_{\rm qr;b} + \sigma_{\rm qn;b}$	$-\sigma_{\rm qr;b}-\sigma_{\rm qn;b}$

	Top outside	Top inside	Bottom inside	Bottom outside
$\sigma_{\rm x;1}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$
$\sigma_{ m y;1}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$
$\sigma_{\rm x;2}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$	$\sigma_{\sf px}$
$\sigma_{y;2}$	$\sigma_{\rm py} - F_{\rm rr} imes \sigma_{{ m qn};{ m t}}$	$\sigma_{\rm py} + F_{\rm rr} imes \sigma_{{\rm qn};{\rm t}}$	$\sigma_{\rm py} + F_{\rm rr} \times \sigma_{\rm qn;b}$	$\sigma_{\rm py} - F_{\rm rr} imes \sigma_{\rm qn;b}$
$\sigma_{{\sf x};{\sf 3}}$	$\sigma_{\rm px} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm px} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm px} + \alpha \times \sigma_{\rm b}$	$\sigma_{\rm px} + \alpha \times \sigma_{\rm b}$
$\sigma_{y;3}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$	$\sigma_{\sf py}$
$\sigma_{\rm x;4}$	$\sigma_{px} - \alpha imes \sigma_{b}$	$\sigma_{\rm px} - \alpha \times \sigma_{\rm b}$	$\sigma_{\rm px} + \alpha \times \sigma_{\rm b}$	$\sigma_{\rm px} + \alpha \times \sigma_{\rm b}$
$\sigma_{y;4}$	$\sigma_{\rm py} - lpha (F_{\rm rr} imes \sigma_{{\rm qn};{\rm t}})$	$\sigma_{py} + \alpha (F_{rr} \times \sigma_{qn;t})$	$\sigma_{\rm py} \! + \! \alpha (F_{\rm rr} \! imes \! \sigma_{{\rm qn;b}}$	$\sigma_{\mathrm{py}} \! - \! \alpha (F_{\mathrm{rr}} \! imes \! \sigma_{\mathrm{qn;b}}$
	$+F'_{ m rr} imes\sigma_{ m qr;t}$)	$+F'_{ m rr} imes\sigma_{ m qr;t}$)	$+F'_{ m rr} imes \sigma_{ m qr;b}$)	$+F'_{ m rr} imes\sigma_{ m qr;b}$)

Table 23.20: Set fo	r calculation of the	maximum stresses for	or load combination 4
---------------------	----------------------	----------------------	-----------------------

Note: α is the tensile factor (only used for polyethylene), as defined in the *Product Pipe Material Data* window (see section 4.6.2.1).

Note: For load combination 4, the acting stresses $\sigma_{V;1}$ to $\sigma_{V;4}$ are calculated with a load factor "in combination" ($f_{pd;comb}$) for the design pressure.

23.6.1.2 Check of calculated stresses acc. to the Dutch standard NEN: Polyethylene pipe

The calculated stresses must meet the following conditions:

$\sigma \leq S imes R_{ extsf{eb}; extsf{short}}$	for LC 1 and 2 (test pressure)	(23.63)
$\sigma \leq S imes R_{eb;long}$	for LC 2 (internal pressure), 3 and 4	(23.64)

where:

 σ is the calculated stress, in kN/m²;

 $R_{\rm eb;short}$ is the allowable strength at short term, in kN/m²;

 $R_{\rm eb;long}$ is the allowable strength at long term, in kN/m²;

S is the factor of importance, as defined in the *Factors* window (see section 4.7.1.1).

23.7 Deflection of the pipe

According to article D.4.2 (case 5 - HDD) of NEN 3650-1 (NEN, 2012a), the deflection of the pipeline is:

$$\delta_{\mathbf{y}} = \frac{D_{\mathbf{o}} \times r_{\mathbf{g}}^3}{E_{\mathbf{b}} \times I_{\mathbf{w}}} \times \left(k_{\mathbf{y}} \times q_{\mathbf{n},\mathbf{r},\mathbf{v}} + 0.083 \times q_{\mathbf{h},\mathbf{r}} + k_{\mathbf{y}}' \times q_{\mathbf{r}}\right)$$
(23.65)

where:

- $q_{n,r,v}$ is the corrected neutral reduced vertical stress $q_{n;r}$ (see section 21.3) increased with a possible traffic load q_v (see section 21.14), including safety factors, in kN/m²: $q_{n,r,v} = f_{Qn1} \times f_{Qn2} \times (q_{n;r} + q_v)$;
- $q_{h,r}$ is the neutral reduced horizontal stress in kN/m², see Equation 21.12;
- q_r is the soil reaction in kN/m², see Equation 23.11 with R = the minimum bending radius.
- k_y is the direct deflection coefficient depending on the bedding angle β , see Table 23.12;
- k_{y} ' is the indirect deflection coefficient depending on the bedding angle β , see Table 23.12;

★

- f_{Qn1} is the load factor on soil stress q_n , as defined in the *Factors* window (see section 4.7.1.1). The default value is set to 1.5 for steel and 1 for polyethylene;
- f_{Qn2} is the contingency factor on soil stress q_n , as defined in the *Factors* window (see section 4.7.1.1). The default value is set to 1.1;
- $E_{\rm b}$ is the Young's modulus of the pipe. For PE, the modulus at long term is used.

23.8 Implosion of the polyethylene pipe

According to article 8.5.5.1 of NEN 3650-3 for polyethylene, the maximum allowable external pressure p_0 is:

$$p_{0} = \frac{1}{\gamma_{\rm imp} \ (1 - \nu^{2})} \times \frac{24 \times E_{\rm b} \times I_{\rm w}}{D_{\rm g}^{3}}$$
(23.66)

where:

- $E_{\rm b}$ is the Young's modulus of the polyethylene pipe, in kN/m²;
- ν is the Poisson ratio of polyethylene: $\nu = 0.4$;
- γ_{imp} is the safety factor on implosion, as defined in the *Factors* window (see section 4.7.1.1).

For the definition of the other symbols, refer to section 23.5.2.

The check on implosion is performed during the pull-back operation (section 23.8.1) and at serviceability limit state when the pipe is in operation (section 23.8.2).

23.8.1 Check on implosion during the pull-back operation

During the pull-back operation, the drilling fluid pressure gives an external pressure on the pipe. The highest minimum required drilling fluid pressure should not exceed the maximum allowable external pressure. This writes:

$$\max\left(p_{\mathsf{mud};\mathsf{min}}\right) \le p_0 \tag{23.67}$$

where $\gamma = 1.5$ and E is the module at short term, for the calculation of p_0 .

If the pipe is completely filled, the filling fluid gives an internal fluid pressure called filling resistance $p_{\rm fill}$ of:

$$p_{\text{fill}} = (\min\left(Z_{\text{left}}; Z_{\text{right}}\right) - Z_{\text{bottom}}) \times \gamma_{\text{fill}}$$
(23.68)

The maximum allowable external pressure becomes therefore $p_0 + p_{\rm fill}$ and the check on implosion becomes:

$$\max\left(p_{\mathsf{mud};\mathsf{min}}\right) \le p_{\mathsf{0}} + p_{\mathsf{fill}} \tag{23.69}$$

23.8.2 Check on implosion when the pipe is in operation

In operation, the water pressure at the lowest point of the drilling gives an external pressure on the pipe. This maximum pore pressure should not exceed the maximum allowable external pressure. This writes:

$$u_{\max} \le p_0 \tag{23.70}$$

where γ = 3 and *E* is the module at long term, for the calculation of p_0 .

If the pipe is completely filled, the maximum allowable external pressure becomes $p_{\rm 0}+p_{\rm fill}$ and the check on implosion becomes:

 $u_{\max} \le p_{0} + p_{\text{fill}}$

(23.71)
24 Micro tunneling

24.1 Support pressures and thrust forces

Drilling through the soil changes the stress conditions in the soil. The deviations from the original stress conditions are largely determined by the size of the overcut and the face support pressure of the applied shield. Small deviations form the original stress conditions are acceptable as the stability of soil adjacent to the micro tunneling machine is maintained. A relative low support pressure may lead to settlement in front of the tunneling machine which in turn may lead to settlement of the surface or to settlement of soil layers below a construction or pipeline. A relative high support pressure can lead to a blow out of drilling fluid or may lead to heave of the surface.

24.1.1 Target support pressure

In order to minimize the effect on the stress conditions, the drilling should be performed using a target support pressure $\sigma_{T;ac}$ which is close to the neutral horizontal pressure:

$$\sigma_{\mathsf{T};\mathsf{ac}} = \sigma'_{\mathsf{h},\mathsf{n}} + u \tag{24.1}$$

where:

$$u$$
 is the pore pressure, in kN/m² at the shield center, see Equation 26.4.

 $\sigma'_{h,n}$ is the horizontal effective pressure at the shield center, in kN/m²:

 $\begin{array}{l} \sigma_{\rm h,n}' = \sigma_{\rm v}' \times (1 - \sin \varphi_{\rm b}); \\ \sigma_{\rm v}' & \mbox{is the vertical effective stress at the shield center, in kN/m^2, see Equation 26.5;} \\ \varphi_{\rm b} & \mbox{is the average angle of internal friction of the soil over the height of the shield.} \end{array}$

24.1.2 Minimal support pressure

Under normal circumstances, a relative low support pressure is usually sufficient for stable conditions of the soil adjacent to the micro tunneling machine. The minimal required support pressure is often a little higher than the water pressure. The relative low required minimal support pressure is determined by the type of soil in front of the tunneling machine.

Minimal support pressure in undrained conditions

In case of micro tunneling in an undrained soil type, according to Broms & Bennermark 1967 (Broms and Bennermark, 1967), the minimal support pressure $\sigma_{min;und}$ is determined by the undrained strength of the soil:

$$\sigma_{\min;und} = f_{cover} \times \sigma'_{v} + f_{u} \times u - N \times \frac{s_{u}}{f_{c}} \ge f_{u} \times u$$
(24.2)

- $s_{\rm u}$ is the average undrained shear strength between the surface and the top of the shield of the micro tunneling machine , in kN/m²;
- f_c is the safety factor on cohesion as defined in the *Factors* window, see section 4.7.1.2 (default is 1.4).
- f_{cover} is the contingency factor on soil cover as defined in the *Factors* window, see section 4.7.1.2 (default is 1.1);
- $f_{\rm u}$ is the safety factor on water pressure as defined in the *Factors* window, see section 4.7.1.2 (default is 1.05);
- *N* is the face stability ratio as defined in the *Factors* window, see section 4.7.1.2;

 $\sigma'_{\rm v}$ is the vertical effective stress at the shield center, in kN/m², see Equation 26.5;

u is the pore pressure, see Equation 26.4.

The required stability index N depends upon the depth/diameter ratio of the tunneling machine. In Figure 24.1 the upper and lower boundaries according to (Davis *et al.*, 1980) are described.

Figure 24.1: Upper and lower bound for the stability ratio N (Davis et al., 1980)

Minimal support pressure in drained conditions

In granular soils which behave drained during drilling, the minimal support pressure based on 3 dimensional effects can be calculated using the method which is developed by (Jancesz and Steiner, 1994). The minimal effective stress required for stability of the soil next to the shield is defined as follows:

$$\sigma'_{\rm h} = f_{\sigma \rm h} \times K_{\rm A3} \times \sigma'_{\rm v} \tag{24.3}$$

The total minimal support pressure is drained layers $\sigma_{\min,d}$ can be calculated as follows:

$$\sigma_{\min;d} = f_{\sigma h} \times K_{A3} \times \sigma'_{v} + f_{u} \times u \tag{24.4}$$

- $f_{\rm u}$ is the safety factor on water pressure as defined in the *Factors* window, see section 4.7.1.2 (default is 1.05);
- $f_{\sigma h}$ is the safety factor on horizontal effective stress as defined in the *Factors* window, see section 4.7.1.2 (default is 1.5);
- K_{A3} is a 3 dimensional coefficient of active earth pressure, see Equation 24.5;
- u is the pore pressure, in kN/m², see Equation 26.4;
- $\sigma_{\rm h}^\prime$ is the effective horizontal soil pressure at the shield center, in kN/m²;
- $\sigma'_{\rm v}$ is the effective vertical stress at the shield center, in kN/m², see Equation 26.5. In case of arching effect over the depth C_1 (i.e. $C_1/D_{\rm o} > f_{\rm silo}$), the vertical effective stress $\sigma'_{\rm v}$ is reduced to $\sigma'_{\rm v:1}$ as explained below (see Equation 24.6).

The 3 dimensional coefficient of active earth pressure is calculated as follows:

$$K_{A3} = \frac{\sin\beta \times \cos\beta - \cos^2\beta \times \tan\varphi - \frac{2}{3}K \times \alpha \times \cos\beta \times \tan\varphi}{\cos\beta \times \sin\beta + \tan\varphi \times \sin^2\beta}$$
(24.5)

with:

$$\alpha = \frac{1 + 3\frac{C_1}{D_0}}{1 + 2\frac{C_1}{D_0}}$$

where:

- C_1 is the distance between the drained/undrained border and the top of the shield of the micro tunneling machine, in m;
- β is the angle of the slip surface of the active wedge, in degree;
- φ is the angle of internal friction, in degree.

In the subsequent figure the values for different angles of internal friction for a series of depth/diameter ratios are shown.

Figure 24.2: Values for K_{A3}

The method described by Jancsecz and Steiner Jancesz and Steiner (1994) has the opportunity to take the effect of vertical stress reduction due to arching in account. In Figure 24.3, the arching over the depth C can reduce the vertical stress on the active wedge which determines the minimal support pressure. It should be noticed that the arching can only occur if a relative small soil deformation (settlement of the soil column above the active soil wedge) is allowed.

Figure 24.3: Active soil wedge with soil column (Broere, 1994)

For a layered soil the following equation can be used to calculate the effect of two dimensional arching according to Terzaghi (Terzaghi, 1943) on the active wedge:

$$\sigma'_{\mathsf{v};1} = \frac{\frac{A}{O} \times \gamma' - c_{\mathsf{d}}}{K_{\mathsf{0}} \times \tan \varphi_{\mathsf{d}}} \left[1 - \exp\left(-\frac{O}{A} \times C_{\mathsf{2}} \times K_{\mathsf{0}} \times \tan \varphi_{\mathsf{d}}\right) \right] + \frac{D_{\mathsf{o}}}{2} \times \gamma'_{\mathsf{b}} \quad (24.6)$$

with:

$$\frac{O}{A} = \frac{2 \left[1 + \tan\left(\frac{\pi}{2} - \beta\right)\right]}{D_{\mathsf{o}} \times \tan\left(\frac{\pi}{2} - \beta\right)}$$

- A is the area of the soil column, in m^2 ;
- c_d is the cohesion of the slip surface of the active wedge (i.e. average between the drained/undrained border and the top of the shield of the micro tunneling machine), in kN/m²;
- C_2 is the distance between the ground level and the top of the shield of the micro tunneling machine, in m;
- K_0 is the coefficient of neutral earth pressure: $K_0 = 1 \sin \varphi_d$;
- *O* is the circumference of the soil column, in m;
- φ_{d} is the average angle of internal friction between the drained/undrained border and the top of the shield of the micro tunneling machine, in degrees;
- γ' is the average effective unit weight between the ground level and the top of the shield of the micro tunneling machine, in kN/m³;
- γ_b' is the average effective unit weight between the top and the center of the shield of the micro tunneling machine, in kN/m³.

24.1.3 Maximal support pressure

In case of a high support pressure, several possible failure mechanism may occur:

- ♦ Soil failure due to pushing a soil wedge in upward direction
- ♦ A blow out to the surface due to hydraulic fracturing
- ♦ Horizontal hydraulic fracturing at the transition of soil layers

The maximal allowable support pressure σ_{\max} for micro tunneling can be determined as follows:

$$\sigma_{\max} = \frac{\sigma'_{v}}{f_{\text{cover}}} + u \times f_{u}$$
(24.7)

where:

 $\sigma'_{\rm v}$ is the effective vertical stress (see Equation 26.5);

- u is the pore pressure, in kN/m², see Equation 26.4;
- f_{cover} is the contingency factor on soil cover as defined in the *Factors* window, see section 4.7.1.2 (default is 1.1).
- $f_{\rm u}$ is the safety factor on water pressure as defined in the *Factors* window, see section 4.7.1.2 (default is 1.05);

Obvious the total allowable support pressure is equal to the sum of the allowable effective support pressure and the water pressure at the drilling line.

24.1.4 Thrust force

The thrust force which is required to install a pipeline or micro tunnel in between the launch pit and the reception pit. The magnitude of the thrust force is determined by the pressure on the shield (head of the tunneling machine) and friction along the circumference of the tunnel or pipeline. The thrust force due to pressure on the shield is relative small compared to the force due to friction and can therefore be neglected. The thrust force $F_{\rm m}$ due to friction can be calculated as follows:

$$F_{\rm m} = \pi \times D_{\rm o} \times L \times M \tag{24.8}$$

where:

- D_{o} is the diameter of the pipeline or the tunnel, in m;
- L is the length, in m;
- M is the friction between the soil and the pipe per surface area, in kN/m². The friction M is defined in the *Engineering Data* window (section 4.6.3.3) where two cases are considered: friction with or without injection of lubricant.

The friction per surface area is partly determined by the soil type, through which the micro tunneling is carried out, but is mainly determined by the overcut and the usage of lubricants, which reduce the friction in between the tunnel or pipeline and the surrounding soil. Since the bending radii of the curves in a micro tunneling drilling line are generally smooth the soil reaction forces in the curves are not considered in D-GEO PIPELINE.

24.2 Uplift Safety

Due to buoyancy of the pipeline below the groundwater table, the uplift should be checked:

$$f_{\mathsf{uplift}} < f_{\mathsf{uplift;all}}$$
 (24.9)

where $f_{uplift;all}$ is the allowable safety factor on uplift, as defined in the *Factors* window, see section 4.7.1.2.

The forces acting on the pipeline are:

♦ the uplift force:

$$g_{\text{uplift}} = \frac{\pi}{4} \times D_{\text{o}}^2 \times \gamma_{\text{w}}$$
(24.10)

♦ the weight of the pipeline:

$$g_{\mathsf{pipe}} = \frac{\pi}{4} \times \left[D_{\mathsf{o}}^2 - \left(D_{\mathsf{o}} - 2d_{\mathsf{n}} \right)^2 \right] \times \gamma_{\mathsf{b}}$$
(24.11)

The effective weight of the pipeline is defined as:

$$g_{\rm eff} = g_{\rm pipe} - g_{\rm uplift} \tag{24.12}$$

and the uplift safety factor f_{uplift} is:

$$f_{\text{uplift}} = \frac{g_{\text{eff}}}{\sum_{i=1}^{n} \gamma'_i \times d_i}$$
(24.13)

where:

 γ'_{i} is the buoyant unit weight of soil layer *i*, in kN/m³;

n is the number of soil layers;

 d_i is the thickness of soil layer *i* above the pipeline, in m.

24.3 Subsidence

The drilling process micro tunneling leads to a larger amount of removed soil material than the volume of the installed tunnel or pipeline (Overcut). Of course injection of lubricants may lead to a reduction of the differential volume of removed soil and installed elements. The differential volume will lead to soil movement towards the bore hole, which in turn will lead to subsidence. The magnitude of the subsidence w (trough shaped) can be calculated as follows:

$$w = \frac{V_{\rm s}}{\sqrt{2\pi i^2}} \exp\left(-\frac{r^2}{2i^2}\right) \quad z < z_0 \tag{24.14}$$

with:

$$V_{\rm s} = \frac{V_{\rm loss}}{100} \times \left[\left(\frac{D_{\rm o} + 2 l_{\rm overcut}}{2}^2 \right) - \left(\frac{D_{\rm o}}{2}^2 \right) \right]$$

where:

i is the shape factor, see below;

 l_{overcut} is the overcut in radius, in m;

- r is the horizontal distance in between the center of the tunnel or pipeline and the inflection point of the trough, in m;
- z_0 is the depth of the center of the pipeline or tunnel, in m;
- z is the depth at which the settlement is calculated, in m;
- V_{loss} is the volume loss as percentage of overcut area, in %, as defined in the *Engineering Data* window, see section 4.6.3.2;
- $V_{\rm s}$ is the differential volume, in m³/m.

The shape factor i depends upon the soil behavior above the tunnel or pipeline and is there dependent upon the soil properties of the upper soil layers. The factor i can empirically be determined based on differences in soil sequences. The empirical method is described by O Reilly (O' Reilly and New, 1982):

$i = 0.43 D_{\rm bas} + 0.28 D_{\rm top} + 1.1$	for incompressible granular soil on compressible soil
$i=0.43D_{\rm bas}+1.1$	for compressible soil
$i = 0.23 D_{\rm bas} + 0.43 D_{\rm top} - 0.1$	for compressible soil on incompressible granular soil
$i=0.28D_{\rm bas}-0.1$	for incompressible granular soil

where:

 $D_{\rm bas}$ $\;$ is the thickness of the Basal layer above the tunnel or pipeline, in m;

 D_{top} is the thickness of the upper layer above the tunnel or pipeline, in m.

25 Trenching

Installation of the pipeline in a trench is the oldest and a relatively easy method. One of the main installation risk associated with trenching is instability of the slopes of the trench. This risk can not be considered in D-GEO PIPELINE. Use of other computer programs such as D-GEO STABILITY (formerly known as MStab) is recommended.

In case of installed pipelines with a relatively thin soil cover in a wet environment, uplift can be an installation risk (section 25.1). In case of trenching in soil layers which cover an aquifer with high pore pressures, bursting of the bottom of the trench (heaving) can be an installation risk (section 25.2).

25.1 Uplift Safety

Due to buoyancy of the pipeline below the groundwater table, the uplift should be checked:

$$f_{\text{uplift}} < f_{\text{uplift;all}}$$
 (25.1)

where $f_{\text{uplift;all}}$ is the allowable safety factor on uplift, as defined in the *Factors* window, see section 4.7.1.3.

The forces acting on an empty pipe are:

♦ the uplift force:

$$g_{\rm uplift} = \frac{\pi}{4} \times D_{\rm o}^2 \times \gamma_{\rm w} \tag{25.2}$$

♦ the weight of the pipeline:

$$g_{\mathsf{pipe}} = \frac{\pi}{4} \times \left[D_{\mathsf{o}}^2 - \left(D_{\mathsf{o}} - 2d_{\mathsf{n}} \right)^2 \right] \times \gamma_{\mathsf{b}}$$
(25.3)

The effective weight of the pipeline is defined as:

$$g_{\rm eff} = g_{\rm pipe} - g_{\rm uplift} \tag{25.4}$$

and the uplift safety factor f_{uplift} is:

$$f_{\text{uplift}} = \frac{g_{\text{eff}}}{\sum_{i=1}^{n} \gamma_i' \times d_i}$$
(25.5)

where:

- γ'_i is the buoyant unit weight of soil layer *i*, in kN/m³;
- *n* is the number of soil layers;
- d_i is the thickness of soil layer *i* above the pipeline, in m.

25.2 Bursting of the trench bottom (heaving)

The check of the bursting of the trench bottom is performed according to paragraph 14.3.1 of the Dutch standard NEN 6740:2006 (NEN, 2006). The calculated safety factor f_{burst} should not exceed the allowable safety factor on hydraulic heave $f_{\text{burst;all}}$, as defined in the *Factors* window, see section 4.7.1.3.

$$f_{\text{burst;all}} > f_{\text{burst}}$$
 (25.6)

The safety factor on bursting f_{burst} is:

$$f_{\text{burst}} = \frac{W_{\text{tot}}}{p_{\text{z;d}}}$$
(25.7)

where:

 $p_{z;d}$ is the upward water pressure, in kN/m², see Equation 25.11. W_{tot} is the total weight above the aquifer, in kN/m², see Equation 25.8;

Total weight above the aquifer

$$W_{\text{tot}} = W_{\text{tot};1} + W_{\text{tot};2} \tag{25.8}$$

$$W_{\text{tot};1} = f \times \gamma_{1;d} \times d_{1;d}$$
(25.9)

$$W_{\text{tot};2} = \sum_{j=1}^{n} \gamma_{j;d} \times d_{j;d}$$
(25.10)

with:

$$f = \frac{2}{\pi} \left[\left(1 + \frac{b}{a} \right) \times \arctan\left(\frac{d_{2;d}}{a+b} \right) - \frac{b}{a} \times \arctan\frac{d_{2;d}}{b} \right]$$

where:

a	is the width (horizontally) of the slope of the trench, in m;
b	is the depth of the slope of the trench, in m;
$d_{1;d}$	is the sum of the thickness of the layers above the excavation level, in m;
$d_{2;d}$	is the sum of the thickness of the layers below the pipe (excavation level) and
	above the aquifer, in m.
f	is the factor for the contribution of the layers above the excavation level according
	to Figure 25.2;
$W_{\rm tot;1}$	is the weight of the soil layers above the trench bottom, in kN/m ² ;
$W_{\rm tot;2}$	is the weight of the overburden soil layers below the trench bottom, in kN/m ² ;
$\gamma_{1:d}$	is the average unit weight of the layers above the excavation level, in kN/m ³ ;

Upward water pressure

$$p_{\mathsf{z};\mathsf{d}} = H_\mathsf{d} \times \gamma_\mathsf{w} \tag{25.11}$$

- H_{d} is the hydraulic head with respect to the upper boundary of the aquifer, calculated according to section 26.1;
- $\gamma_{\rm w}$ is the unit weight of water, in kN/m³.

Figure 25.1: Definition of parameters H_d , $d_{1;d}$ and $d_{2;d}$ (Figure 18 of NEN 6740:2006)

Figure 25.2: Factor *f* for the contribution of the layers above the bottom of the excavation (Figure 19 of NEN 6740:2006)

26 Effective Stress and Pore Pressure

26.1 Hydraulic head from piezometric level lines

A piezometric level line (PL-line) represents the initial and transient hydraulic water heads in the soil, excluding the excess component. Several PL-lines can be defined in the *PL-Lines* window (section 4.3.10). A PL-line for the top and bottom of each soil layer can be defined in the *Pl-lines per Layer* window (section 4.3.13).

Figure 26.1: Pore pressure as a result of piezometric level lines

D-GEO PIPELINE calculates the hydraulic pore pressure along a vertical in the following way:

The pore pressure inside a layer is calculated by linear interpolation between the pore pressures at the top and bottom. The pore pressure at the top or bottom is equal to the vertical distance between this point and the position of the PL-line that belongs to this layer, multiplied by the unit weight of water.

If PL-line number 99 is specified for the top and/or bottom of any soil layer, at that boundary D-GEO PIPELINE will use the PL-line of the nearest soil layer above or below, which has a thickness larger than zero and a PL-line number not equal to 99. If the interpolation point is located above the phreatic line, the pore pressure is assumed to be zero or a capillary pressure, depending on the sign of the PL-line number. The following options are available, therefore, for PL-line numbers:

♦ Positive integer:

Capillary pore pressures are not used – that is, if negative pore pressures are calculated for points above the phreatic line they become zero;

♦ Zero:

All points within the layer obtain a pore pressure of 0 kN/m;

♦ 99:

The pore pressure depends on the first layer above and/or below the point with a PL-line

number unequal to 99.

26.2 Phreatic line

The phreatic line (or groundwater level) marks the border between dry and wet soil. The phreatic line is treated as if it was a PL-line, and can also be used as such. The PL-line acting as the phreatic line is determined while the geometry is being defined. If no phreatic line is entered, then all the soil is assumed to be dry.

26.3 Stress by soil weight

The total stress at depth z due to soil weight is:

$$\sigma_{\text{soil}}\left(z\right) = \begin{cases} \gamma_{\text{unsat}} \times z & \text{if } z > z_{\text{water}} \\ \gamma_{\text{unsat}} \times z_{\text{water}} + \gamma_{\text{sat}} \times (z_{\text{water}} - z) & \text{if } z \le z_{\text{water}} \end{cases}$$
(26.1)

where:

$\gamma_{ m unsat}$	is the unit weight of soil above phreatic level, in kN/m ³ ;
γ_{sat}	is the unit weight of soil below phreatic level, in kN/m ³ ;
z	is the vertical co-ordinate, in m;
$z_{\sf water}$	is the vertical co-ordinate of the phreatic level, in m.

26.4 Distribution of stress by loading

D-GEO PIPELINE uses Boussinesq's formula (Boussinesq, 1885) to determine the additional vertical stress due to the surcharge loads.

26.4.1 Stress increment caused by a line load

Figure 26.2: Stress distribution under a load column

The vertical stress increment $\Delta \sigma_z$ due to a line load Q is:

$$\Delta \sigma_z = \frac{2}{\pi} \frac{Q}{z} \cos^4 \phi \tag{26.2}$$

where:

z is the depth, in m;

- Q is the line load, in kN;
- ϕ is the angle with the vertical, in radians.

26.4.2 Stress increment caused by a strip load

The stress increments in a point (x, y) due to a strip load can be found by integration of the line load along the width 2 dx of the strip load in Equation 26.2:

$$\Delta \sigma_{\text{load}} = \frac{q}{\pi} \left[(\phi_1 - \phi_2) + \sin \phi_1 \cos \phi_1 - \sin \phi_2 \cos \phi_2 \right]$$
(26.3)

Figure 26.3: Stress distribution under a load column

26.5 Effective stress and pore pressure

The pore pressure u at vertical position z is defined as:

$$u(z) = \sigma_{\text{water}}(z) - \max[h(z) - z; 0] \times \gamma_{\text{w}}$$
(26.4)

The effective stress σ ' at vertical position z is defined as:

$$\sigma'(z) = \sigma_{\text{soil}}(z) + \Delta \sigma_{\text{load}}(z) - u(z)$$
(26.5)

with:

$$\sigma_{\text{water}}(z) = \max\left(z_{\text{water}} - z_{\text{surface}}; 0\right) \times \gamma_{\text{w}}$$

z	is the vertical co-ordinate, in m;
$z_{\sf water}$	is the vertical position of the phreatic level , in m;
$z_{surface}$	is the vertical position of the ground level, in m;
h	is the user-defined hydraulic head in the PI-lines per Layer window (sec-
	tion 4.3.13), see section 26.1;
$\sigma_{\rm soil}$	is the stress due to soil weight, in kN/m ² , see Equation 26.1;
σ_{water}	is the stress due to a water level above the soil surface, in kN/m ² ;
$\Delta \sigma_{load}$	is the incremental stress due to loads, in kN/m ² , see Equation 26.3.

27 Benchmarks

Deltares Systems commitment to quality control and quality assurance has leaded them to develop a formal and extensive procedure to verify the correct working of all of their geotechnical engineering tools. An extensive range of benchmark checks have been developed to check the correct functioning of each tool. During product development these checks are run on a regular basis to verify the improved product. These benchmark checks are provided in the following sections, to allow the user to overview the checking procedure and verify for themselves the correct functioning of D-GEO PIPELINE. The benchmarks are subdivided into five separate groups as described below.

- Group 1 Benchmarks from literature (exact solution) Simple benchmarks for which an exact analytical result is available from literature.
- ♦ Group 2 Benchmarks from literature (approximate solution) More complex benchmarks described in literature for which an approximate solution is known.
- Group 3 Benchmarks from spread sheets Benchmarks which test program features specific to D-GEO PIPELINE.
- Group 4 Benchmarks generated by D-GEO PIPELINE Benchmarks for which the reference results are generated using D-GEO PIPELINE.
- Group 5 Benchmarks compared with other programs Benchmarks for which the results of D-GEO PIPELINE are compared with the results of other programs.

The number of benchmarks in group 1 may grow in the future. The benchmarks in this chapter are well documented in literature. There are no exact solutions available for these problems, however in the literature estimated results are available. When verifying the program, the results should be close to the results found in the literature. The number of benchmarks in group 2 will grow as new versions of the program are released. These benchmarks are designed so that (new) features specific to the program can be verified. The benchmarks are kept as simple as possible so that only one specific feature is verified from one benchmark to the next. As much as software developers would wish they could, it is impossible to prove the correctness of any non-trivial program. Re-calculating all the benchmarks, and making sure the results are as they should be, proves to some degree that the program works as it should. Nevertheless, there will always be combinations of input values that will cause the program to crash or to produce wrong results. Hopefully by using the verification procedure the number of ways this can occur will be limited. The benchmarks are all described in details in the *Verification Report* available in the installation directory of the program.

Bibliography

- "SCIA Pipeline." (integrated in the program Scia Engineer) http://www.sciaonline.com/en/pipeline-calculation.html.
- Boussinesq, J., 1885. *Application des Potentiels á l'Etude de l'Equilibre et du Mouvement des Solides Elastiques*. Gauthier-Villars, Paris.
- Brinch Hansen, J., 1970. "A revised and extended formula for bearing capacity." *Lyngby* Bulletin No. 28. Danish Geotechnical Institute.
- Broere, W., 1994. *Tunnel face stability and new cpt applications*. DUP Science. Delft.
- Broms, B. B. and H. Bennermark, 1967. "Stability of clay at vertical openings." *American Society of Civil Engineers, Journal of Soil Mechanics and Foundation Division* pages 71-95.
- Davis, E. H., M. J. Gunn, R. J. Mair and H. N. Seneviratne, 1980. "The stability of shallow tunnels and underground openings in cohesive material." *Geotechnique 30* pages 397-416.
- Deltares. D-Settlement User Manual. Deltares Systems.
- Deltares, 2004. WATEX Manual. Delft GeoSystems.
- Jancesz, S. and W. Steiner, 1994. "Face support for a large mix shield in heterogeneous ground conditions." *Proc conf. Tunnelling* London.
- Meijers, P. and R. A. J. de Kock, 1995. "A calculation method for earth pressure on directional drilled pipelines." *Pipeline technology conference* Ostend.
- NEN, 2006. NEN 6740:2006. Geotechniek TGB 1990 Basiseisen en belastingen (Geotechnics - TGB 1990 - Basic requirements and loads), in Dutch.
- NEN, 2012a. NEN 3650-1:2012. Eisen voor buisleidingsystemen Deel 1: Algemene eisen (Requirements for pipeline systems Part 1: General requirements), in Dutch.
- NEN, 2012b. NEN 3650-2:2012. Eisen voor buisleidingsystemen Deel 2: Aanvullende eisen voor leidingen van staal (Requirements for pipeline systems - Part 2: Additional specifications for steel pipelines), in Dutch.
- NEN, 2012c. NEN 3650-3:2012. Eisen voor buisleidingsystemen Deel 3: Aanvullende eisen voor leidingen van kunststof (Requirements for pipeline systems Part 3: Additional specifications for plastic pipelines), in Dutch.
- NEN, 2012d. NEN 3651:2012. Aanvullende eisen voor buisleidingen in of nabij belangrijke waterstaatswerken (Additional requirements for pipelines in or nearby important public works), in Dutch.
- O' Reilly, M. P. and B. M. New, 1982. "Settlements above tunnels in U.K. Ű their magnitude and prediction." *Tunneling Š82* pages 173 181.
- Terzaghi, K., 1943. Theoretical soil mechanics. John Wiley & Sons, Inc. New York.

Deltares systems

PO Box 177 2600 MH Delft Rotterdamseweg 185 2629 HD Delft The Netherlands +31 (0)88 335 81 88 sales@deltaressystems.nl www.deltaressystems.nl