
How to Write a Design Document

Overview

• Be sure to read through this entire page. It's all relevent.

• Each design document is worth 33.33% of the project. While it will likely take

less than 33.33% of the time you spend on the project, you should take it very

seriously.

• We will grade your designs harshly. The design is essentially the most

important part of the project. Having a good project design can literally cut

your total coding time by a factor of 10.

• Design documents should be around 2,000 to 4,000 words long. If it's longer

than 5,000 words, we won't read it. So keep them short and to the point.

• Design documents will be submitted to the project server

(klwin00.ucmerced.edu) in PDF format. We encourage you to use your

favorite word processor to make your design document, but you must convert it

to PDF when you're done.

What goes into a design document?

A design document is a complete high-level solution to the problem presented. It

should be detailed enough that somebody who already understands the problem could

go out and code the project without having to make any significant decisions. Further,

if this somebody happens to be an experienced coder, they should be able to use the

design document to code the solution in a few hours (not necessarily including

debugging).

So, what actually goes in?

• A high-level description of your solution, including design decisions and data

structures

• Declarations for all new classes, procedures, and global/class variables

• Descriptions of all new procedures (unless you can tell exactly what it does

from the name), including the purpose of the procedure, and an explanation of

how it works and/or pseudocode

For example, this is the pseudocode one would write for the

existing Condition::Wait:

void Condition::Wait()

 waiter = new Semaphore, initially 0

 append waiter to waitQueue

 conditionLock->Release()

 waiter->P()

 conditionLock->Acquire()

Your pseudocode has to be precise. For instance, in describing your solution for

the Communicator class, it is not enough to say

 if anybody's waiting, then signal cv

You need to say how you determine if anybody's waiting, e.g. by saying

 if (waitingReceivers>0 or waitingSenders>0) then signal
cv

Also, another important thing to remember is that a design document needs to include

the correctness invariants and testing strategy. The testing strategy includes a clear

plan of the testing methodology and may include a description of test cases that will

be used to test correctness invariants. Focus on the testing strategy. If you want, you

may itemize things that will need testing.

What doesn't go into a design document?

Keep in mind that your TA understands the project very well. Do not restate the

problem in your design document. Your TA is far more interested in your solution

than in knowing that you understood the problem.

Your design document should contain very little actual code, if any at all. Include

psuedocode for all complex procedures, but do not include Java code.

The purpose of pseudocode is to avoid all the annoying aspects of programming

languages that make code both harder to write and harder to read. The purpose of

pseudocode is not to be imprecise about how you solve a problem. Comments are

welcome, but ASSERT and DEBUG statements, for example, do not belong in

pseudocode.

Remember that we have to read your design documents. If you don't think we want to

see it, don't put it in!

Be sure to make sure your .pdf file works before you turn it in (try viewing it

with gs, gsview, Preview, acroread, etc.).

