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Chapter 1

INTRODUCTION
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1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Time schedule and deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Futher reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Welcome to the practicum of EE2T11 Telecommunication. In this 2 EC practicum (6 labdays), you
will apply some of the theory and tools learned in the EE2S11 “Signals and Systems” course, namely
convolution, the Fourier transform and its properties, and filter design. A new tool that will be explored
is channel estimation, and we will use the DFT (or FFT) instead of the DTFT. We will also introduce the
effects of downsampling and upsampling.

This prepares for the EPO4 (EE2L21) project, and also for the EE2S31 Digital Signal Processing course,
where the theory behind the DFT and resampling will be discussed. (There is little connection to EE2T11
Telecommunication except that that course is also based on the same concepts of Signals and Systems.)

The practicum is entirely done with Matlab. We use audio signals (speakers, microphone) as test signals.
Your results are documented in a compact report which will be graded Pass/Fail. A Pass is required to
enter the EPO4 project and to obtain a valid grade for EE2T11.

The EPO4 project is about driving a toy car from A to B. It is necessary to locate the car. For this, the
car has an audio beacon which transmits coded pulse sequences that are received by 4 or 5 microphones
at the corners of a test area. By comparing the differences in time-of-arrival of the pulse sequences, the
location of the car can be computed.
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2 Introduction

1.1 SCOPE

The practicum is intended to familiarize you with the material learned at the Signals and Systems course.
You have seen the definitions of convolution and Fourier transform, but what does it mean when you
look at actual signals?

We also apply some topics from linear algebra (matrix inversion, QR) and apply a new tool (SVD) which
is related to the eigenvalue decomposition. We will look at

• Convolution, how to interprete a convolution; the related concept of correlation;

• The relation between time domain and frequency domain; basic filtering operations;

• Modeling an audio channel as an FIR filter; convolution of a signal with this filter;

• Channel estimation, i.e., estimation of the audio channel from a measured channel response to
a known signal. Design of various known signals to improve the performance of the channel
estimate.

• Equalization, i.e., inversion of an estimated channel. This can be used to obtain the original signal
from the received signal. This also shows the use of the SVD.

• Filter design: how to use Matlab to design digital filters.

• Sampling: resampling, aliasing and interpolation.

After this practicum, you are able to estimate the channel impulse response from an audio source to a
microphone, and estimate the Time-Difference-of-Arrival of a signal arriving at two microphones with
some delay. This is used in the EPO-4 project in Q4.

The size of the practicum is planned at 2 EC (56 hours), consisting of 6 lab sessions (24 hours) and 8
self-study sessions (32 hours), used for preparation of the lab sessions and for report writing.

Brightspace is the learning platform for the course. Before the start of the practicum you have to enroll
yourself into one "working team" of two students. Each working team falls into one of two possible
scheduling categories: "A-teams" and "B-teams".

The lab sessions take place at the Tellegenhall, although if you have a PC with Matlab, loudspeakers and
a microphone, you could do most of the exercises at home.

1.2 TIME SCHEDULE AND DEADLINES

The practicum has 6 scheduled lab mornings in Q3. Interleaved with these, there are prepara-
tion/homework mornings that you have to schedule yourself. Please remember: before the start of
the practicum you have to enroll yourself via Brightspace into one "working team" of two students.
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1.3 Facilities 3

• The “A-teams” have scheduled lab mornings on Monday 8:45–12:45.

• The “B-teams” have labdays on Tuesday 8:45–12:45.

• The interim report will be discussed during subsequent lab sessions in week 4 or week 5.

• At the end, an extra session is scheduled for discussion of the final report.

Visit the Brightspace page of the course for the detailed working schedule.

1.3 FACILITIES

The labs are carried out at the Tellegenhall facilities. During the assigned weeks, a team will have 1
morning scheduled access to the lab, and on the other morning is expected to work on the project at
home.

The following support is available:

• Student assistants; they are your primary help.

• Coordinators; they have limited availability and occasionally show up in the lab. Coordinators will
grade your reports.

Visit the Brightspace page of the course for contact information.

1.4 REPORTS

The practicum outcome is documented in a midterm report (week 2) and a final report (week 8).

The reports must be handed in before 1:00 PM on the deadline (refer to Brighspace for the detailed
schedule). The reports are to be uploaded into the respective working team submission folder.

Please let the filename of your report start with the group number, include the last names of your group,
and send a single pdf (not doc), which includes everything.

Reports are short, with to-the-point answers to the questions, a graph, a brief explanation of an experi-
ment/simulation. Use a simple cover page, skip introductions, don’t repeat the text of the manual, and
simply give answers to the requested tasks as you would do on a written exam. The items to report on are
indicated in the text (”report”). Provide an appendix with all Matlab code used to generate the graphs.

Items to report on are indicated in the text by “(report n)”. Use the same numbering (as section numbers)
in your report.

Although the report is supposed to be compact, this does not mean sloppy.

Answers to most assignments typically consist of a graph and a discussion on the graph, sometimes
preceded by a derivation. The discussion consists of two parts:
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4 Introduction

– Description of the graph: “Figure xx shows · · ·”. Also mention parameter values and simulation
conditions where needed, so someone else is able to redo the graph.

– Discussion on the result: does it make sense? (E.g., if you are asked to design a low pass filter meeting
some specs, are the specs met?)

The practicum is done in groups of 2. You are not allowed to copy work by other groups.

1.5 GRADING

The grading is based on two aspects:

• Technical: Do you show understanding of what you are doing?

– Is the result correct?

– If results are sub-optimal, unexpected or clearly wrong, do you remark this? I.e., properly
motivate your results.

• Presentation: Particular emphasis is placed on the presentation of the graphs:

– Do all graphs have labels on the axis, a title, and legends (on the used line types) where needed.

– Are the graphs readable and do they clearly show the “interesting” part (i.e. properly zoom in
where needed).

Also, the Matlab code in the appendix should show some professionality:

– Suitable comments so someone can quickly understand what is done

– Description at the beginning to define what the function is supposed to do, what is input and
what is output.

– Include author name and date (and perhaps revision history) at the beginning of each function.

The interim report will be corrected but not graded. This is meant to filter out the most common mistakes.

The final report is graded with Pass/Fail. You need a Pass to enter the EPO-4 project and to obtain a valid
grade for EE2T11.

In some cases the final report is graded with a conditional pass. In that case you need to update your
report (within a few days) to make it pass, in particular regarding some essential Matlab code which you
need for the EPO-4 project.

In case of a fail, you are barred from entering EPO-4 and we will set a new deadline somewhere in Q4 at
which you have a chance to hand in an improved report (so that you can still obtain a grade for EE2T11).
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1.6 Futher reading 5

1.6 FUTHER READING

The book by Chaparro has an introduction to Matlab in relation to Signals and Systems (see Chapter 0).

L. F. Chaparro, “Signals and Systems using MATLAB”, Academic Press, 2011.

If you would like a slower-pace Matlab tutorial on Signals and Systems, we recommend the following
book:

J.R. Buck, M.M. Daniel, and A.C. Singer, “Computer explorations in signals and systems
using Matlab”, Prentice Hall, 2002.

Hints

• When things get more difficult, split your Matlab code up into separate functions. Make separate
scripts to start a test (test.m), which will call a script for data generation (datagen.m), run some
functions on the data, and calls a script for showing plots (show.m).

• At some point you make measurements. Store the data so you can later on run different algorithms
on it (instead of repeating the measurements each time the algorithm is changed.)

• Debug every function separately using simple test inputs for which you know the outcome. Don’t
write code, put it all together and assume that it works right away.

• Make sure your Matlab plots are readable, with a sufficiently large font size. A useful command is

set(gcf,’PaperPosition’,[0 0 5 4]);

which you should give before saving the plot. This sets the printsize of the plot to 5× 4 inch,
smaller than the default size of 8 inch, and Matlab makes sure all fonts scale accordingly.
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Chapter 2

LABDAY 1: CONVOLUTION

Contents
2.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Room channel impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Audio signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

We will study time-domain signals and apply basic filters via convolution. You have seen the definition
of a convolution, but what does it really do? And how can you interprete the impulse response of a digital
filter?

Learning objectives Basic filtering in time-domain, insight in convolution, correlation as a convolution.

Preparation Read the chapter so you know what to expect.

What is needed

– PC with a built-in loudspeaker and microphone;

– Matlab audio test signals, typically obtained using load gong, load handel, load train.
See also the separate directory on Brightspace with some other test signals.

2.1 CONVOLUTION

In this exercise, we look at the effect of a convolution on a time-discrete signal x[n]. You have learned
that an LTI system (filter) is described by an impulse response h[n], and the output of the filter is written
as y = h∗ x, or often (mathematically not entirely correct) y[n] = h[n]∗ x[n], which is defined as

y[n] =
∞

∑
k=−∞

h[k]x[n− k] .
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8 Labday 1: Convolution

If the filter has finite impulse response (FIR) and is causal, then h[k] is nonzero only for k = 0, · · · ,Nh−1,
where Nh is the “length” of the filter, and this becomes

y[n] =
Nh−1

∑
k=0

h[k]x[n− k] .

The question is: what does this equation mean? One interpretation is that we can write

y[n] = h[0]x[n]+h[1]x[n−1]+ · · ·+h[Nh−1]x[n−Nh +1]

Thus, the response y[n] consists of scaled and delayed copies of x[n]. The delayed copies can be inter-
preted as echo’s of the original signal x[n].

In Matlab, the available samples of x[n] are stored in a vector x; obviously we can take only a finite length
sequence here. Standard Matlab indexing of a vector starts with n = 1, thus, a vector x is interpreted as

x = [x[1],x[2], · · · ,x[Nx]]

But suppose we need a different time range? The only option is to define, along with x, a time-index
vector n that in the above case is

n = [1,2, · · · ,Nx]

which in Matlab you would define as n=[1:N_x], but in other cases could be n = [0,1, · · · ,Nx− 1] or
something else. When asked to plot a time-series specified in this way using a “stick” figure, you would
use

stem(n,x)

If you have a large number of samples, it will be more clear to use simply plot(n,x).

In many cases, a discrete time-domain signal is obtained by sampling an analog time-domain signal, at
a rate determined by the sampling frequency Fs in hertz (or samples per second). The corresponding
sampling period is Ts = 1/Fs, in seconds. For example, if Fs = 40 kHz, then Ts = 25µs. You can plot the
time-series with the proper time-axis using plot(n*Ts,x).

• Consider a simple transformation of x[n] such as y[n] = x[n−2] or y[n] = x[−n] (a time-reversal of
the signal). Before you can plot this signal, you have to figure out the correct time index sequence
n. For these two cases, what is it?

Define a test signal x with time index vector n and try it in Matlab! (Plot the results.)

Matlab functions for convolution are

y = conv(x,h)

y = filter(b,a,x)

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



2.1 Convolution 9

The first form corresponds to an FIR filtering where the FIR filter coefficients h[n] are specified (stored in
a vector h, also finite length). For an FIR filter, these coefficients are equal to its impulse response. The
second form corresponds to Y (z) = X(z)B(z)

A(z) , and the filter coefficients of B(z) and A(z) are specified:

Y (z) = X(z)
b0 +b1z−1 + · · ·+bMz−M

a0 +a1z−1 + · · ·+aNz−N ⇔
N

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k]

If A(z) = 1, or a = 1, you obtain an FIR filter H(z) = B(z).

Due to the convolution, signals generally get longer. With conv, the standard option is that the tail part
is included, whereas with filter, the signal y has the same number of entries as x, hence the tail is
truncated.

Note that both functions do not accept a parameter that defines the time index. You will have to keep
track of that yourself.

• If x has Nx samples and h has Nh samples, how many samples will result in the convolution?

• If x has time-index vector nx = [a,a+ 1, · · · ,b] and h has time-index vector nh = [c,c+ 1, · · · ,d],
show that the proper time-index vector for y is ny = [a+ c, · · · ,b+d]. Is this consistent with your
answer on the first bullet?

Let’s continue with the following exercise.

• Generate and plot a simple signal x[n]:

x = [1 2 1 zeros(1,10)];

subplot(311)

stem(x)

• Generate and plot the impulse response of a simple (LTI, discrete time) system:

h = [zeros(1,6) -0.5];

subplot(312)

stem(h)

• Compute the output signal of the system, y = x∗h:

y = conv(x,h);

subplot(313)

stem(y)
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10 Labday 1: Convolution

How do you interprete the result?

• Repeat with

h = [1 zeros(1,5) -0.5];

and with

h = [1 0 0 0 0.5 0 0 0 -0.5];

Note how the convolution is built step by step. For each nonzero tap of the impulse response h[n], the
signal x[n] is delayed and scaled accordingly, and the result is added to the output y[n]. The nonzero taps
of the impulse response can be interpreted as echo’s, or multipath reflections. (Usually, the segments that
are being added overlap.)

• The convolution operator is linear, distributive, associative, and the order of the operands can be
reversed:

(h1 +h2)∗ x = h1 ∗ x+h2 ∗ x
(h1 ∗h2)∗ x = h1 ∗ (h2 ∗ x)

h∗ x = x∗h

Verify these properties using conv.

• Consider the first-order IIR system defined by

H(z) =
1

1−az−1 , |a|< 1 . (2.1)

The filter can be implemented in Matlab using y = filter(1,[1 -a],x) where x is the input
sequence and y is the output sequence (remember it is truncated by Matlab to have the same length
as x). For 0 < a < 1, this is a simple lowpass filter, and for −1 < a < 0 it is a highpass filter.

The impulse response truncated to length N is obtained as
h = filter(1,[1 -a],[1 zeros(1,N-1)]).

– (report 1) Plot the impulse response of this filter for a = 0.95 and a =−0.95. How does this
filter change an impulse? How does it change a more general input signal, such as a step,
x = ones(20,1)?
How can you see from the impulse response or the step response that the filter acts as a
lowpass (i.e., averages an input signal) or as a highpass (i.e., magifies differences in the input
samples)?

Make sure you provide labels on the horizontal and vertical axis of the plot (using xlabel and ylabel),
and provide a title (using title). If required, zoom in on the interesting part of the plot (you can do it
manually on the graph, or set this in a script using axis).
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2.2 Room channel impulse response 11

2.2 ROOM CHANNEL IMPULSE RESPONSE

We will be working with audio signals. Therefore, it is important to understand how to interprete the
impulse response of an audio channel.

Consider a room as follows:

RX : (3.1, 3.3)

(0,0) (4,0)

(4,4)(0,4)

T X : (1.2, 0.3)

Assume that the walls of the room are perfect reflectors (like mirrors, rather than a diffuse scatterer).
During propagation, the signal is damped as function of the propagated distance r. The speed of sound
varies as function of temperature, humidity, and air pressure, but let us assume it is c = 340 m/s. For the
attenuation α(r), assume that it is a factor

α(r) =
β

r

where β is the damping over a reference distance of 1 meter.

• (report 2) Using this model, and with the help of Matlab, can you make a plot of the channel
impulse response measured at the receiver? (Limit yourself to the first two reflections; choose
some suitable β; do not spend more than 30 min on this.)

Hint: to compute the effect of a single reflection, you can “mirror” the transmitting source into
the wall. This will help you in computing the distances. How many virtual sources do you have
after 1 reflection? And after 2? What are their locations? First compute vectors (x,y) of virtual
locations, then compute their distance to the receiver. If you look in detail, you will find that some
distances are repeated while some of the corresponding reflections are “not physical”. You can
skip the investigation of those details.
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12 Labday 1: Convolution

RX

TXTX’

Note that the above assumptions are very idealistic. In practice, sound waves are partially reflected off
many objects, as function of the wavelength and the size of the object. For a signal of 10 kHz, the
wavelength is about 3.4 cm, for 100 Hz, it is 3.4 meters. Objects smaller than the wavelength are usually
“transparent”. Thus, the actual propagation channel is also frequency dependent. Further, objects may
partially absorb a sound wave (as function of frequency), and may act as diffuse scatterers.

2.3 AUDIO SIGNALS

Now that we understand convolution and audio signal propagation (a bit), we repeat the convolution
exercise on an audio signal.

The following Matlab functions could be helpful.

[x, Fs, nbits] = wavread(’file.wav’);

Reads a WAV soundfile into a vector x; herein is Fs the sample rate and nbits the number
of bits per sample.

soundsc(x,Fs);

Plays a vector (signal) on the loudspeakers. Fs is the sample rate.

To see how these functions work, use the Matlab help function. To see which variables are defined, use
whos.

Some audio signals are available in the Matlab audio toolbox; try load gong, load handel, load train
(Note: these data files define a vector y, not x. Also the sample rate Fs is loaded).

Other test signals are provided on Brightspace (speech signals and audio clips): T4_ca.wav, T5_ha.wav,
T6_tb.wav, · · ·. These are sampled at 48 kHz, which makes the files quite large and the signals a bit
harder to handle.

More recent versions of Matlab are object-oriented. Here, audio is stored in an object p, along with
meta-data such as the sample rate:

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



2.4 Correlation 13

p = audioplayer(y,Fs); % make audioplayer object

play(p) % play on loudspeaker

% (matlab continues while playing)

get(p) % show the metadata

Tasks

• Read the sound file train.mat into a signal x. What is the sample rate Fs?

• Play the signal on the loudspeaker.

• Generate an impulse response that has a number of reflections:

h = [1 zeros(1,Fs/10) 0.9 zeros(1,Fs/30) 0.8];

• Do a convolution y = x∗h; listen to the result.

• "Reverberation" is the effect of a group of echos, closely together, and exponentially decaying due
to multiple reflections (e.g., multiple reflections in a tunnel).

Try to create a reverberation effect using a first-order IIR filter of the form (2.1):

a = -1/(1+20/Fs);

hh = filter(1,[1 a],[1 zeros(1,Fs/5)]);

h2 = [hh zeros(1,Fs/10) 0.7*hh];

plot(h2)

y = conv(x,h2);

Listen to the result. Does it sound like you are in a tunnel?

2.4 CORRELATION

For a given time-series x[n], consider the convolution of x[n] with its time-reversed series x[−n]:

r[n] := x[n]∗ x[−n] ⇔ r[n] =
∞

∑
k=−∞

x[k]x[n+ k]

The second expression shows that x[k] is pointwise multiplied with itself (after a delay of n samples), and
then summed. This is interpreted as a correlation of x with itself, or an autocorrelation, and the delay n
is known as the correlation lag. (If x[n] is complex, we would correlate with x∗[−n]. Also, what is shown
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14 Labday 1: Convolution

here is a deterministic correlation; for random signals the definition uses an expectation operator, as you
will see in EE2S31 Signal Processing. Actually the correct definition of the deterministic correlation has
a scaling by 1/N, where N is the number of terms in the summation, so that it converges to the stochastic
correlation for large N.)

• Create a simple signal x[n]:

x = [1 2 -1 zeros(1,10)];

Compute its autocorrelation:

r = conv(x, fliplr(x))

Herein, the function fliplr reverses the entries of a row vector (similarly, flipud does this for a
column vector).

Plot the result. What is the correct time-axis?

Correlation functions such as r[n] have many interesting properties and applications. An important one
is that r[n] can be interpreted as showing how well a signal x matches a delayed version of itself. The
best match is obtained for a lag n = 0, and r[0] is interpreted as the energy in the signal. Some properties
are:

(1) r[0] = ∑
k
|x(k)|2

(2) r[−n] = r[n]
(3) |r[n]| ≤ r[0]

The last property is proven from the general property of the inner product between two vectors x and y,
for which |xT y| ≤ ‖x‖‖y‖.

• Verify these properties from the plot that you made of r[n]. Be sure to use the correct time-axis.

Suppose we transmit the signal x[n] over an unknown FIR channel h[n] and measure the result at the
receiver, y[n] = x[n]∗h[n]. To esimate h[n] we determine z[n] = y[n]∗ x[−n], this is known as a matched
filter.

• Give a formula for z[n] in terms of r[n].

• Take h[n] = δ[n− 2], i.e. h= [0 0 1 zeros(1,10)], and compute the received signal z[n]. Plot
z[n] (make sure you use the right time-axis).

• Next, take h[n] = δ[n−2]+0.5δ[n−3] and plot z[n].
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What you should observe is the following. We know z[n] = h[n]∗ r[n], and if the autocorrelation function
r[n] has a sharp peak for n = 0, then z[n] ≈ h[n]. In particular, the delay in the channel is observed
from the location of the first peak in z[n]. The results are best for signals with “good” autocorrelation
properties, i.e., signals with a strong peak at r[0] and low side lobes. We will further investigate the
matched filter during Labday 3 and 4.
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LABDAY 2: FREQUENCY DOMAIN AND THE
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We look at the relations between time domain and frequency domain on actual signals by applying the
DFT (or FFT).

Learning objectives Applying the DFT, frequency-domain and time-frequency domain plots, filtering
in frequency domain.

Preparation Read the chapter so you know what to expect.

What is needed

– PC with a built-in loudspeaker and microphone;

– Matlab audio test signals, typically obtained using load gong, load handel, load train.

– Matlab audio test signal from Brightspace: touch.mat.
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18 Labday 2: Frequency domain and the Fourier Transform

3.1 DISCRETE-TIME FOURIER TRANSFORM

You have seen the Discrete-Time Fourier Transform (DTFT) in the Signals and Systems course. Recall
its definition,1

X(ω) =
∞

∑
n=−∞

x[n]e− jωn . (3.1)

Note that X(ω) is periodic with period 2π. Thus, it is sufficient to consider 0≤ ω≤ 2π, or equivalently,
−π ≤ ω ≤ π. You can interprete this definition as “correlating” an input sequence x[n] with a complex
exponential e jωn, and seeing how well they match for a frequency ω.

Since X(ω) is complex, if it is asked to plot “the spectrum” you would usually plot the amplitude spec-
trum, |X(ω)|, and sometimes the phase spectrum, 6 (X(ω)).

The DTFT has two problems that prevents its use in Matlab:

1. We cannot compute an infinite sum, and anyway we usually have only a finite sequence x, say
[x[0], · · ·x[N−1]. In this case, we would need to replace the infinite summation in (3.1) by a finite
summation over the provided N samples.

2. We cannot plot a function of a continuous parameter ω. We would have to take a number of
frequency-domain samples ωk. If we take N samples uniformly on the interval 0 ≤ ω ≤ 2π, we
obtain ωk = (2π/N)k, for k = 0, · · · ,N−1.

This leads to the definition of the Digital Fourier Transform (DFT),

X [k] := X(ωk) =
N−1

∑
0

x[n]e− j 2π

N kn , k = 0, · · · ,N−1 . (3.2)

In this definition, an equal number of frequency-domain samples is taken as we have samples in time-
domain. The inverse of this transformation (the IDFT) also exists and it is very similar to the DFT:

x[n] =
1
N

N−1

∑
0

X [k]e j 2π

N kn , n = 0, · · · ,N−1 . (3.3)

Compared to the DTFT (desired but not computable), taking the DFT has two effects:

1. The finite number of samples of x[n] taken into consideration make that the DFT is not the “true”
spectrum, it is an approximation.

2. The sampling in frequency domain causes aliasing in time domain. However, this effect is only
observable if you start with an infinite length sequence x[n], compute the DTFT at samples ωk (i.e.,
the true spectrum at these frequencies), and then apply the IDFT. The resulting sequence (call it
x̃[n]) is periodic as seen from (3.3), and x̃[n] = ∑r x[n− rN].

1We adopt here the notation where ω is used for frequencies of discrete-time signals, and Ω (or F = Ω/(2π) in Hz) is used
for frequencies of continuous-time signals.
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3.2 Plotting a transfer function 19

These effects will be explored in more depth in the EE2S31 Signal Processing class. For the moment,
suffice it to say that the DFT is exact if x[n] has finite length N or is periodic with period N, and otherwise
it is an approximation that gets better for larger N.

In Matlab, the DFT has an efficient implementation as the Fast Fourier Transform (FFT), and if y is a
vector with N entries, we write Y = fft(y), where Y also has N entries. Note that the result is complex;
to plot it, take the absolute value using abs(Y). The corresponding frequency axis is obtained as
Omega = [0: 2*pi/N : (N-1)*2*pi/N]. Note that the last entry in this vector is not 2π but slightly
less. Sometimes we use “normalized frequencies” f = ω/(2π), or f = [0: 1/N : (N-1)/N]. These
run from 0 to slightly less than 1. Frequency f = 1 corresponds to ω = 2π, which corresponds to ω = 0
due to periodicity. The highest frequency is f = 1/2 (if that is a sample point of the DFT).

If a signal was obtained from sampling with sampling frequency Fs, you can also plot in terms of the
original “analog” or “real” frequencies by scaling ω to F = ωFs/(2π) or F = f Fs. This maps the angular
frequency ω = 2π or normalized frequency f = 1 to the real frequency F = Fs.

The IDFT in Matlab is called ifft. Note that the result is not always real-valued, even if you would
expect that, due to round-off error. In that case, round off to real using real(ifft(Y)).

• Generate some simple signals x[n] and plot their amplitude response: take

x = [ones(1,N) zeros(1,50-N)];

for N = 1,2,4,8. Make sure you get the frequency axis right.

Recall from the Signals and Systems class that these functions are “Dirichlet functions”, similar to
sinc functions,

X(ω) = e− jωN/2 sin(ωN/2)
sin(ω/2)

.

For time-discrete signals, the spectrum is periodic in 2π (or Fs). Often, you would plot the range
ω ∈ (−π,π], or F ∈ (−1

2 Fs,
1
2 Fs]. The function fftshift(X) can be used to rearrange the samples.

Unfortunately, computing the corresponding frequency axis is a bit messy. If N/2 is integer then ω =−π

is a sample point of the DFT, and we use Omega = pi*[-1 : 2/N : 1-1/N]. If N/2 is not integer, then
we use Omega = pi*[-1+1/N : 2/N : 1-1/N]. Note that ω = 0 is always a sample point.

3.2 PLOTTING A TRANSFER FUNCTION

To plot the transfer function of a filter H(z), we have two options.

If the filter is FIR, then H(z) = h0 + h1z−1 + · · ·+ hN−1z−(N−1). Thus, we can define a vector h that
contains the impulse response, h = [h0,h1, · · · ,hN−1]. Next, apply the DFT to h: H = fft(h). De-
fine the corresponding frequency axis, Omega = [0: 2*pi/N : (N-1)*2*pi/N]. Plot the result using
plot(Omega,abs(H)).
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20 Labday 2: Frequency domain and the Fourier Transform

If the filter is rational, we could compute the impulse response (it is infinitely long), truncate it at some
length, and apply the DFT. Alternatively, suppose H(z) = B(z)

A(z) and we have vectors of coefficient a and
b. We can define the frequency axis at N values as Omega = [0: 2*pi/N : (N-1)*2*pi/N], define
the corresponding values of z as Z = exp(sqrt(-1)*Omega) and evaluate H(z) for these values using
polyval. But all this is done using the Matlab command

[H, Omega] = freqz(b,a,N)

If you need just the plot, you can also simply say freqz(b,a) and the function will make it for you
(although the amplitude spectrum is shown in dB scale).

• Consider the first-order filter (2.1),

H(z) =
1

1−az−1 , |a|< 1 .

Plot the amplitude and phase response of the filter, for a = 0.95 and a = −0.95. Make sure you
get the frequency axis right. For the phase response, use the Matlab command angle.

A filter is called linear phase if it is possible to write H(ω) = A(ω)e− j(αω+β), where A(ω) is real-valued.
A simple example is a delay, H(z) = z−1, for which α = 1 and β = 0. Linear-phase filters are often used
for selecting a certain frequency band, e.g. an ideal lowpass filter, and we want the phase to be linear at
least in the passband because the filter will then act as a delay for the passband and will not distort the
pulse shape of signals in the passband. The slope of the phase response shows the delay α.

Linear-phase filters must be FIR and satisfy a symmetry property:

h[n] = εh[N−n] , ε =±1

• Consider a linear-phase filter with impulse response

h = [1,2,3,2,1]

Plot the amplitude and phase response of the filter. Is this indeed linear-phase?

Note that the amplitude response becomes zero at some frequency, indicating that there is a
“zero” on the unit circle. The zeros of H(z) are found using roots(h). Plot the zeros using
zplane(roots(h)).

A filter is called an allpass filter if it satisfies |H(ω)| = 1. Thus, only its phase response is of interest.
A simple example is a delay, H(z) = z−1. These filters are used to correct the phase response of other
filters, and they play an important role in the practical realization of filters, especially highly selective
ones. (They play a similar role as unitary matrices do in linear algebra.)

All rational allpass filters are of the form

H(z) =
aN +aN−1z−1 + · · ·+ z−N

1+a1z−1 + · · ·+aNz−N
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3.3 A signal in time domain and frequency domain 21

• Consider a first-order allpass

H(z) =
a− z−1

1−az−1 .

Compute and plot the amplitude and phase response (take a = 0.95). Check the locations of the
poles and zeros using zplane(roots([a -1]),roots([1 -a])).

3.3 A SIGNAL IN TIME DOMAIN AND FREQUENCY DOMAIN

In Sec. 2.3, we constructed several time-domain audio signals x (e.g., load train). Let’s see how this
signal looks like in the frequency domain.

• (report 3) Plot the time domain signal. Also make sure the labels on the x-axis are correct, i.e.,
shown in seconds (define a time axis vector t of the same length as x taking into account the sample
rate Fs, use plot(t,x), also plot axis labels e.g. using xlabel(’time [s]’)).

Compute the frequency domain signal using the FFT. Also, plot the correct frequency axis in hertz.

Can you explain the ‘symmetry’ in the plot? Does it make sense to plot only the positive frequen-
cies, and how is this done?

Several Matlab commands exist to compute and plot the spectrum of a signal, e.g., pwelch and spectrum.psd.
But it is recommended not to use these until you develop an understanding of how this works. (The MSc
course EE4C03 Statistical Digital Signal Processing will provide the required theory.)

3.4 TIME-FREQUENCY PLOT

The ‘train’ signal is not stationary: its frequency contents changes over time. This is true for many
signals. Thus, it does not make sense to record seconds or hours of an audio signal, and then to take
the DFT of the complete sequence. Instead, you would usually split the signal into short segments (e.g.,
speech signals are usually split into 20 ms segments before audio coding), then do the DFT on each
segment, and plot the results into a “time-frequency plot”. This is a plot with on the x-axis time, on the
y-axis frequency. The amplitude (or intensity) is shown using color.

• Take the ‘train’ signal, and split it into non-overlapping segments of approximately 20 ms (how
many samples are in one segment)? Store the segments into a matrix X, one column per segment.
You could use the command X = reshape(x,Fbins,Tbins) for this.

Do the DFT on each column separately (in Matlab, you can directly say Y = fft(X) as the FFT
function is applied column-by-column).

Define a new time axis vector t with steps of 20 ms. Also define a frequency axis vector f, taking
the sample rate and number of samples per column into account.
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22 Labday 2: Frequency domain and the Fourier Transform

• (report 4) Plot the time-frequency plot using imagesc(t,f,abs(Y)). Also indicate the correct x-
labels and y-labels. Make sure the total signal duration matches with that of previous time-domain
plot, and that the frequency axis matches that of the previous frequency-domain plot.

For better time-resolution, people often take overlapping segments. With maximal overlap, the segments
are shifted only 1 sample from each other. But statistically, this makes little sense. More often, an overlap
of 50% is taken.

It will be useful to put your Matlab code in a function, so you can quickly reuse it for other signals in the
future.

3.5 ZERO PADDING

Sometimes, the number of samples in a time-domain signal x is not very large. Using the DFT, we obtain
the same number of samples in the frequency domain as in time domain, and in these cases the resolution
is not high. Or, h might be the impulse response of a short FIR filter, and our aim is to see the frequency
response of the filter in high resolution.

In these cases, you can use the standard trick of “zero padding”. Essentially, you extend x (or h) with a
lot of zeros. Then, apply the DFT to this augmented sequence. In Matlab, the same result is obtained by
saying fft(x,N) where N is larger than the number of samples in x.

The theory says that this will nicely interpolate the original samples of the DFT spectrum obtained from
the short (un-padded) sequence. This is because the DFT corresponds exactly to a sampled version of
the DTFT in case x[n] has a finite length of at most N, and zero padding does not change the length of
the nonzero part of x[n]. You will see the theory in detail later in the course EE2S31 Signal Processing,
but let’s see how this works in practice.

• Let us generate a simple filter that returns a signal and two weaker echos:

h = [1 0 1/2 0 1/4]

• (report 5) Do the DFT of h[n] and show the amplitude spectrum, but only show the available
samples, using plot(f,abs(H),’o’). Here, f is the frequency axis. Since you don’t have a
sample rate, you should use ‘normalized frequencies’, f = [0: 1/N : (N-1)/N], where N = 5.

• (report 6) Now extend h with 5 · 5 = 25 zeros to 6 times its original length, recompute the DFT,
recompute the frequency axis, and show the amplitude spectrum of the extended sequence in the
same plot (first apply hold on to keep the previous plot; use a different plot marker, e.g., ’+’
or ’x’). Do you obtain interpolation? (This means that every 6th sample should coincide with a
sample of the previous plot.)

If N is not very large then usually we would zero-pad to N = 256 or more, compute the DFT, and plot
the spectrum using a continuous line (rather than its individual samples as we did here).
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3.6 THE CONVOLUTION PROPERTY

We would like to demonstrate the convolution property:

y[n] = x[n]∗h[n] ⇔ Y (ω) = X(ω)H(ω)

which is true if you talk about the DTFT, but not exactly true if we use the DFT: in that case the property
is only valid for a circular convolution (also called a cyclic convolution), as we will study in detail in
the course EE2S31 Signal Processing. This is because the sequences in the DFT have a finite length.
Also, to show this property, the vectors representing Y (ω), X(ω) and H(ω) should be of equal length,
i.e., contain an equal number of samples N, or else you cannot pointwise multiply these vectors.

• Let x be the ‘train’ signal. Choose the filter impulse response h[n] as before, and do a convolution
y = x∗h.

For this, read the help of the Matlab c = conv(a, b, shape) function, in particular regarding
the shape options. Apparently there is no Matlab function for a circular convolution.

To see the convolution property, we should do zero padding on x and h to make them have the
length of the vector y that results from the standard conv function, i.e., if x has length N1 samples
and h has length N2 samples, we will have y having N1 +N2−1 samples.

We can do the zero padding on x and h after we computed y = conv(x,h), or we can do the zero
padding beforehand and obtain the desired y by choosing the right shape option of conv.

• (report 7) Compute the DFT of the extended x, y and h of equal lengths, and show the resulting
amplitude spectra. Does the convolution property hold? (We would expect that X(ω)H(ω) is
identical to Y (ω).)

3.7 ASSIGNMENT: TELEPHONE TOUCH-TONE DETECTION

If you have an ‘old’ fixed-line telephone, you may have heard dialing sounds when sending a telephone
number: this is the touch-tone signal. Officially these are called dual-tone multi-frequency (DTMF)
signals. Each digit is related to a pair of frequencies that are simultaneously being transmitted for a short
duration of time. Table 3.1 shows these frequencies in relation to the row and column of a digit in a
dialing pad.

• (report 8) From Brightspace, download a data file touch.mat.2 This file contains four dialing
signals: x1, x2, x1hard, x2hard. The sample rate is Fs = 8192 Hz. You can listen to the
signals by typing soundsc(x1,8192).

The assignment is to detect the phone numbers from this file.

2File obtained from the Matlab repository for the book “Computer explorations in signals and systems using Matlab”, J.R.
Buck e.a.
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Table 3.1. DTMF frequencies
Fcol [Hz]

1209 1336 1477

f ro
w

[H
z] 697 1 2 3

770 4 5 6
852 7 8 9
941 ∗ 0 #

Hints: this is a nonstationary signal. Use a time-frequency plot to plot the transmitted frequencies as
function of time. Use the correct frequency axis so that you know which frequencies are transmitted
at each time. Which resolution do you need in frequency domain to distinguish the frequencies? From
this, calculate how many samples you need at least in frequency domain. Show this calculation in your
report. What is the resulting resolution in time domain and is that acceptable? Show the time-frequency
plots (properly zoom in) and the detected phone numbers in your report. It is OK to do the detection “by
hand”.

3.8 HOMEWORK DAYS — MIDTERM REPORT

Two homework days are scheduled before the next lab day. Use one homework day to prepare the report
for the previous two labdays, and hand it in before the deadline of week 3. Use the second homework
day to prepare for the next labday: you have to read quite a lot of text:

• Channel estimation (Chapter 4);

• Deconvolution (Appendix A);

• Matrix inversion, the pseudo-inverse, the SVD, and the condition number (Appendix B).

The two appendices provide background information that is not immediately needed but will improve
your understanding of your results. To be able to understand the tutorials, you will have to be up-to-date
on linear algebra, in particular matrix inversion and projections.
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LABDAY 3: CHANNEL ESTIMATION

Contents
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Suppose we transmit a known signal x[n] over a communication channel, and measure the result y[n].
The channel acts as a filter, which we will assume to be linear and time-invariant. Therefore, the mea-
sured signal is a convolution of the transmitted signal by the channel impulse response h[n], such that
y[n] = h[n]∗ x[n]. Knowing the transmitted signal x[n], can we recover the impulse response of the com-
munication channel from y[n]? In this form, the channel estimation process is called deconvolution (or
equalization), and generally it requires an inversion.

Indeed, if we do this in the frequency domain, we have

H(ω) =
Y (ω)
X(ω)

,

and we can recover h[n] from an inverse DTFT. However, there are some complications to do this in the
frequency domain. Can we use the DFT instead of the DTFT (which leads to sampling in the frequency
domain)? Are there numerical problems with the above division (what if X(ω) = 0)? Will h[n] be causal?
What about stability?

Alternatively, we can do the deconvolution in the time domain. Also here, there can be numerical prob-
lems. We have to choose the known signal x[n] at the transmitter, and (with additive noise) the resulting
channel impulse response estimates will be different due to differences in noise enhancement.

We will need channel estimation in the EPO4 project, where each toy car will transmit audio beacon
signals, which are recorded by microphones at the corners of the field. From differences in the estimated
channels, we will locate the car. We also want to be insensitive to interfering signals: if several beacons
are transmitting audio signals at the same time, we only want to detect our own transmitting sequence.

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



26 Labday 3: channel estimation

In today’s task, we will implement a channel estimation algorithm in Matlab. We will also consider what
makes a good transmitting sequence. In Labday 4, we will then use the developed algorithm on signals
transmitted by the audio beacon.

Learning objectives Basics of channel estimation and deconvolution, application of linear algebra (sys-
tems of equations, inversion)

Preparation Read the chapter in detail so you know what to expect. We will consider 3 methods for
deconvolution. You will have to know the corresponding tutorials before you start the assignments.

Appendix A gives more background on deconvolution in time domain, and is best read before you
start on section 4.1. We will use the SVD, an important tool in linear algebra which unfortunately
is not covered in EE2M21 Linear Algebra; a brief tutorial is in Appendix B.

What is needed

– PC with a built-in loudspeaker and microphone;

– Matlab audio test signals

– From Brightspace: Matlab script ’toep.m’.

4.1 CHANNEL ESTIMATION USING MATRIX INVERSION

Estimation of a propagation channel is fundamental in many applications. In radar it allows to estimate
the distance of objects, in geophysics it represents the reflections at earth layers, in medical ultrasound it
allows to form an image of a patient. In the EPO4 project we will use channel estimates to determine the
distance of the toy car to each microphone at the corners of a field, this is further explored in Labday 4.

In subsequent sections, we will consider three methods for channel estimation: (1) via time-domain
equalization, which leads to a matrix inversion, (2) the related Matched Filter, which approximates this
matrix inversion (needed if the matrix is large), (3) frequency-domain equalization, which is in theory
equivalent to time-domain equalization, but may be computationally more efficient.

Suppose we transmit a known sequence of pulses, i.e. a signal x[n], commonly called a training sequence.
The training pulses will be deformed by the channel, and we receive y[n] = h[n] ∗ x[n]. Since we know
x[n], we can “invert” this signal using deconvolution, and recover h[n].

Since we can design the signal, we could use a simple impulse, x[n] = δ[n], so that y[n] = h[n]. However,
this method is very sensitive to noise or interference: there is no averaging at all. Also, in practice the
amount of energy that can be transmitted in a single pulse is limited, so if we have time, we should send
a periodic sequence of pulses (that will also allow for averaging). Therefore, our plan is to use a more
interesting x[n], and apply deconvolution to recover h[n].

Appendix A discusses deconvolution in time domain using a matrix inversion technique. We will apply
this theory to the problem of channel estimation. The matrix equation corresponding to the convolution
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y[n] = x[n]∗h[n] =
L−1

∑
k=0

h[k]x[n− k] is

y = Xh ⇔



y[0]
y[1]
y[2]

...

...

...
y[Ny−1]


=



x[0] 0
x[1] x[0]
x[2] x[1] x[0]

... x[2] x[1]

x[Nx−1]
... x[2]

x[Nx−1]
...

0 x[Nx−1]



 h[0]
...

h[L−1]

 (4.1)

where the “box” indicates the location of time-index 0, Nx is the length of the input sequence (subsequent
samples are supposed to be zero), and Ny is the length of the output sequence. Note that X has size
Nx +L−1×L so that Ny = Nx +L−1. X is always tall.

The channel estimate is obtained by taking a left inverse X† of X, such that X†X = I. We can usually
take X† = (XT X)−1XT where we assume that XT X is invertible.1 This results in

ĥ = X†y = (XT X)−1XT y . (4.2)

In the tasks we study how this works.

Tasks

• From Brightspace, download the file toep.m. It is a function to create an Ny×L Toeplitz matrix X
from a sequence x: X = toep(x,Ny,L).

• Make a Matlab script or function datagen.m to generate four input test sequences x1[n], · · · ,x4[n]
as described below, and convolve each of them with a channel impulse response h[n] to obtain
measurement data yi[n].

As test signals, we will try the following four possibilities:

1. A “minimum-phase” sequence, represented by

X1(z) = 1− 1
2

z−1 ⇔ x1 = [· · · ,0, 1 , −1
2
, 0, 0, · · ·]T ,

This sequence has a causal stable inverse.

2. A “maximum-phase” sequence,

X2(z) = 1−2z−1 ⇔ x2 = [· · · ,0, 1 , −2, 0, 0, · · ·]T ,

This sequence has a noncausal stable inverse.
1If this is not the case, then we have to use the SVD to define a more general pseudo-inverse. See Appendix B.
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3. A sinusoidal signal (N samples) followed by zeros,

x3[n] =
{

cos(ωn), n = 0, · · · ,N−1
0, elsewhere

Take e.g. ω = 0.2. This signal cannot be inverted.

4. A random binary sequence with entries randomly selected from {−1,1}: in Matlab
x_4 = sign(randn(N,1)).

For each signal, make a vector xi containing the impulse response coefficients starting at xi[0]. Add
zeros to the end of each signal to make them all of equal length Nx = N. For easier testing, you
can initially take a reasonably small value, e.g., N = 10.

As channel, we will for the moment take a short “random” sequence, e.g., h = [1, 2, 3, 2, 1],
which has length L = 5. Taking simple numbers will make it easier to recognize if the Matlab
functions give a reasonable result during debugging.

Generate the corresponding output signals (those that will be recorded by the microphone), i.e.,
yi[n] = h[n]∗xi[n], i = 1, · · · ,4. In Matlab, we can use the function conv for the convolution. The
length of each sequence is Ny. Verify that Ny = Nx +L−1.

The outputs of the script datagen.m are the sequences yi[n] along with the input sequences xi[n].

• Make a Matlab function ch1.m which implements time-domain channel estimation via inversion
using (4.2).

The input of this function is the measured signal y[n] and transmitted training signal x[n]; the output
is the estimated channel ĥ[n]. Use the function toep(x,Ny,L) to generate the required Toeplitz
matrix X of size Ny×L. The matrix inversion ĥ = X†y is efficiently implemented in Matlab either
as hhat = X\y or hhat = pinv(X)*y.

As channel length L, you could take L = Ny−Nx +1. However, in practice Ny is not well defined
(we record a response signal and just truncate it somewhere). Therefore, L is not well defined.
Extend your estimation algorithms to use an additional input parameter L̂, which should be the
length of the estimated channel. E.g., this parameter could be used to zero-pad or truncate y[n] to
the right length.

• Make a Matlab script test1.m wherein you apply the channel estimation algorithm ch1.m to each
of the four input signals.

Debug and test the channel estimation algorithm. How can you be sure you implemented the
algorithm correctly? Apply to cases where you know the answer (either very simple input signals
or very simple channels). The matrix inversion technique should give exact results in the noise-free
case.

• In practice, we don’t know L. Test for various “estimated” channel lengths. Is this a sensitive
parameter?
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• Exactly what happens in the case X(z) is non-minimum phase (as it is for signal x2[n])? Does the
inversion pose any problems?

If you compare to the theory of deconvolution in Appendix A, you will notice that there, we inserted an
optional reconstruction delay K to improve the estimation in case x is not minimum-phase (as is likely
the case for arbitrary sequences). The problem was that we did not know if the equalizer G(z) is causal.
Here, our assumption (on physical grounds) is that the channel H(z) is causal, hence we can model the
impulse response using only h[0], · · · ,h[L−1]. There is no need to introduce a parameter K for negative
time indices.

4.2 INVERTIBILITY AND CORRELATIONS

In the matrix inversion step, we compute the pseudo-inverse X† = (XT X)−1XT . In fact, pinv is imple-
mented in Matlab using the singular value decomposition (SVD). It is relevant to consider the invert-
ibility of XT X. Not all training sequences x lead to an invertible matrix XT X. Even if it is numerically
invertible, a poorly invertible matrix can lead to large noise enhancements.

In the EE2M21 Linear Algebra course, you may have learned that eigenvalues give information on the
invertibility of a matrix. The eigenvalues of XT X are the singular values of X, squared. In Matlab, you
can compute these using svd(X). Appendix B gives a short tutorial on the SVD in connection to matrix
inversion.

Consider r[n] = x[n] ∗ x[−n]. This is the autocorrelation sequence of the input signal. It is a symmetric
sequence, with a peak at r[0] (see section 2.4). XT X can be interpreted as an auto-correlation matrix,

XT X =


x[0] x[1] · · · x[Nx−1]

x[0] x[1] · · · x[Nx−1]
. . . . . .

x[0] x[1] · · · x[Nx−1]





x[0] 0
x[1] x[0]
x[2] x[1] x[0]

... x[2] x[1]

x[Nx−1]
... x[2]

x[Nx−1]
...

0 x[Nx−1]



=



r[0] r[1] · · · · · · r[L−1]

r[1] r[0] r[1]
...

... r[1] r[0]
. . .

...
...

. . . . . . r[1]
r[L−1] · · · · · · r[1] r[0]


=: R (4.3)

For invertibility of XT X, it is best if this matrix is diagonally dominant, r[0]� |r[i]|. This implies that
the signal has large energy (r[0] large) and low cross-correlations with shifted versions of itself.
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A good training signal would be an impulse, x[n] = δ[n]. In this case, R = I. However, the amount of
energy that can be transmitted is limited (r[0] does not grow with growing N).

A bad training signal is a sinusoid, x[n] = sin(ωn+φ). For such a signal, it can be shown that (for large
Nx)

r[k] =
1
2

cos(ωk) =
e jωk + e− jωk

4

Obviously, this signal correlates very well with shifts of itself. Inserting this in (4.3), it will be seen that
R has rank 2! For L > 2, this matrix is never invertible.

Tasks

• Compute the SVD of X for each of the training signals x1[n], · · · ,x4[n]. Take a large N, and L = 5.

Plot the singular values as follows: plot(svd(X),’+’) (use different plots or different col-
ors/markers for each signal).

• The number of ‘large’ singular values indicates the rank of X. What can you say about the rank
for each of the test signals? Which one is the best?

Small singular values do not carry information but will be inverted in the inversion of X and lead to noise
enhancement. Practically, we use a threshold ε on the inversion of matrices: singular values smaller than
ε are not inverted but replaced by zero. In Matlab: pinv(X,eps).

4.3 CHANNEL ESTIMATION USING A MATCHED FILTER

If L is very large, as we will have with audio channels, then (4.2) requires a large matrix inversion
(XT X)−1. Although it could be computed off-line, it might be prohibitively complex. In these cases, it
is often proposed to simply omit this factor (i.e., we approximate XT X≈ αI) and use

ĥ = XT y =


x[0] x[1] · · · x[Nx−1]

x[0] x[1] · · · x[Nx−1]
. . . . . .

x[0] x[1] · · · x[Nx−1]


 y[0]

...
y[Ny−1]

 (4.4)

This is called the “Matched Filter”, and it is used very often in telecommunication applications. It will
work if the columns of X are approximately orthogonal to each other, i.e., Nx is large, and the training
sequence x[n] is designed such that this property more or less holds. The scale of ĥ is not correct, we can
compute α as α≈ ‖x‖2 and scale by 1/α.

If we look at XT in more detail, we see that it is a Toeplitz matrix, so that multiplication with XT can be
viewed as a convolution (filter operation). The columns of XT are the reverse of the sequence x[n], thus
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the Matched Filter is a filter operation using the reversed sequence x[n], i.e., x[−n]. It can be implemented
efficiently in Matlab as2

Ny = length(y); Nx = length(x); L = Ny - Nx + 1;

x = x(:); y = y(:); % ensure column vectors

xr = flipud(x); % reverse the sequence x (assuming a col vector)

h = filter(xr,1,y); % matched filtering

h = h(Nx+1:end); % skip the first Nx samples, so length(h) = L

alpha = x’*x; % estimate scale

h = h/alpha; % scale down

Equation (4.4) further shows that the Matched Filter can be interpreted as correlating the received signal
y[n] with the transmitted signal x[n], for several lags (represented by the various row shifts in XT ). In
terms of convolutions, we have the received signal y[n] = h[n]∗ x[n] and can write the Matched Filter as

ĥ[n] := y[n]∗ x[−n] = h[n]∗ (x[n]∗ x[−n]) = h[n]∗ r[n]

Thus, the channel estimate can be written as ĥ[n] = h[n]∗ r[n] with r[n] := x[n]∗x[−n]. We don’t recover
the true channel, but the channel convolved with r[n]. This convolution will smear h[n] and limit the
accuracy of the estimate. The best results are obtained if r[n] approximates a delta spike.

As we have seen in the previous section, the sequence r[n] is the autocorrelation sequence of the input
signal. It always has a peak at r[0] (see section 2.4). For long sequences x[n], this peak is usually quite
pronounced, with relatively small sidelobes, so that the smearing of h[n] will be relatively minor. Even
if ĥ may not be a good approximation of the actual channel, it is expected that at least the peak of ĥ
corresponds to the peak of the true channel.

The matrix inversion method for deconvolution corrects for the convolution with r[n], using the inverse of
the autocorrelation matrix R = XT X. Apart from the computational advantages of not using the inverse,
another advantage of the Matched Filter is that there are no issues with noise enhancement if XT X is
poorly conditioned.

The requirement that XT X ≈ αI is satisfied by sequences that have low autocorrelations for all lags
except for lag 0. “Gold codes” are an example of this. Also long random sequences are expected to
satisfy this. Contrary, a sinusoid is an example of a signal that has strong autocorrelations for all lags.

Tasks

• Create a Matlab function ch2.m which implements channel estimation using the Matched Filter.
The inputs and outputs are the same as for ch1.m. Also create a similar test function test2.m.

• Debug and test the channel estimation algorithm. Use the true channel length L. Is the estimated
channel close to the true channel? (You probably have to take a large N to get reasonable results.)

2Here it is assumed that x is a column vector. If it is a row vector, reverse the sequence using fliplr. A simple way to create
a column vector out of any vector in Matlab is x = x(:).
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The Matched Filter should give the true channel convolved with the autocorrelation sequence of
the input signal, r[n] = x[n]∗x[−n], in Matlab: r = conv(x, flipud(x)) if x is a column vector
(for row vectors, use fliplr).

• (report 9) Make plots of the autocorrelation sequence for each of the 4 test signals. How do they
differ? Which signal is most suitable? Take a large N.

• In practice, we don’t know L. Test for various “estimated” channel lengths. Is this a sensitive
parameter?

• What happens if we have an interfering signal from a neighboring user? If we do a Matched Filter
using a training sequence x1[n] on a recorded sequence y[n] = h[n]∗x2[n], where x1[n] 6= x2[n], then
we obtain ĥ[n] = y[n]∗x1[−n] = h[n]∗(x2[n]∗x1[−n]). The cross-correlation r12[n] = x2[n]∗x1[−n]
should ideally be very small. E.g., for random sequences, this cross-correlation will converge to
zero as you take long sequences.

If we do matrix inversion, we can view application of (XT X)−1XT as a Matched Filter, followed by
a correction. Thus, also here, we would prefer interfering sequences to have a low crosscorrelation
with the desired sequence.

Consider two random signals of the form x4[n]. Test their cross-correlation properties. Is this
family of signals suitable to serve multiple users?

• (report 10) Discuss how the training sequence and its length Nx should be designed, and how L̂
should be chosen in the estimation algorithm. You will need this in the EPO4 project.

Hint: Only some general observations are expected. Training sequence design is a large research
topic; search e.g., for “Gold codes”.

4.4 DECONVOLUTION IN FREQUENCY DOMAIN

Deconvolution in time domain may become complicated if the channel length L is large. In that case, X
becomes too large to invert. An alternative to the Matched Filter is to do the deconvolution in frequency
domain.

From y[n] = h[n]∗x[n] we can derive Y (ω) =H(ω)X(ω) and hence we can estimate H(ω) =Y (ω)/X(ω).
However, this property is valid for the DTFT, whereas in practice we have to use the DFT (or in fact the
FFT). Let Y [k] be the DFT of y[n], and similarly for H[k] and X [k]. We would like to use the property
Y [k] = H[k]X [k], for 0≤ k≤ N−1. However, this introduces two complications. First of all, we need all
sequences to be of equal length N. In that case, the DFT sequences will also have N samples, and can be
pointwise multiplied. Secondly, the equivalence of convolution to multiplication for the DFT is in fact,
as we will see in the EE2S21 Signal Processing class,

Y [k] = H[k]X [k] ⇔ y[n] = h[n] ∗◦ x[n]
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where ∗◦ is a “circular convolution”,

h[n] ∗◦ x[n] =
N−1

∑
m=0

h[m]x[(n−m)N ] , n = 0, · · · ,N−1

where the notation (·)N denotes “modulo N”. This relation is a bit easier to see in matrix form:

y = Xch ⇔


y[0]
y[1]
y[2]

...
y[N−1]

=


x[0] x[N−1] · · · x[1]
x[1] x[0] · · · x[2]
x[2] x[1] · · · x[3]

...
...

...
...

x[N−1] x[N−2] · · · x[0]




h[0]
h[1]
h[2]

...
h[N−1]

 (4.5)

Here, Xc is called a circulant matrix: each column is a circular shift of the previous column. It is a square
N×N matrix, and replaces the Toeplitz matrix that we had earlier in (4.1). In comparison to before, the
upper triangular part is filled in, and the matrix is square rather than tall.

Fortunately, we can obtain this circulant structure from (4.1) if Ny is sufficiently large, particularly it
should hold that Ny ≥ Nx +L− 1. Starting from (4.1) we augment x[n] with zeros for n = Nx, · · · ,Ny−
1, and similarly the channel h[n] is padded with zeros such that it has length Ny rather than L. Then
all sequences have the same length Ny = N, and it is not hard to see that (4.5) is equivalent to (4.1).
Alternatively, we will see in the Signal Processing course that under these conditions the usual linear
convolution is equivalent to circular convolution.

Circulant matrices have an important property: it can be shown that they are diagonalized by the DFT
matrix F. The N×N matrix F is the operator that maps the sequence x[n] (0 ≤ n ≤ N− 1) into X [k],
similarly it maps y[n] into Y [k] and h[n] into H[k]. The diagonalizing property is

FXcF−1 = ΛΛΛx ⇔ Xc = F−1
ΛΛΛxF

This is in fact an eigenvalue decomposition of Xc, and the eigenvalues ΛΛΛx correspond to the Fourier
coefficients X [k]. It follows that

Fy = FXcF−1Fh = ΛΛΛxFh ⇔ Y [k] = X [k]H[k] , 0≤ k ≤ N−1

This shows the equivalence of circular convolution to pointwise multiplication in DFT domain. Hence,
we can compute

H[k] =
Y [k]
X [k]

, 0≤ k ≤ N−1

to obtain the estimate of the channel in DFT domain. Next, the inverse Fourier transform is applied to the
sequence H[k] to obtain the channel impulse reponse h. Together these steps implement a deconvolution
in frequency domain. A major advantage is its computational simplicity: we need 3 FFTs (complex-
ity order 3N logN) and a pointwise division (complexity order N), rather than a matrix inversion of X
(complexity order NyL2). We also do not need to store large matrices.

In Matlab, this method is done as follows (assuming column vectors):
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Ny = length(y); Nx = length(x); L = Ny - Nx + 1;

Y = fft(y);

X = fft([x; zeros(Ny - Nx + 1,1)]); % zero padding to length Ny

H = Y ./ X; % frequency domain deconvolution

h = ifft(H);

-- truncate h to length L

-- make the sequence real if necessary

Also the Matched Filter could be computed in frequency domain. In time domain, the Matched Filter
computes ĥ[n] = y[n] ∗ x[−n]. If as before we take care using zero padding that sequences have equal
length N and circular convolution is equal to linear convolution, then equivalent of the Matched Filter in
frequency domain is

Ĥ[k] = Y [k]X∗[k] .

Problems with frequency-domain equalization

Since a pointwise division is done in frequency domain, it is immediately clear that the performance
will be low for frequencies where X [k] is small. Thus, this will only work for training sequences that
resemble either an impulse or “white noise” random sequences, as these have a wide frequency content,
A sinusoid is the worst training sequence, since its frequency content is almost zero everywhere.

If you design a training sequence, it is a good idea to look at its frequency content, even if you will do
the equalization in time domain. Invertibility of the X [k] correspond exactly to the invertibility of Xc

(since the X [k] are the eigenvalues of Xc) and this is very similar to the invertibility of X, since (with zero
padding) Xc and X are nearly the same.

In practice, we should invert X [k] only for frequencies where it is sufficiently strong, and set the estimates
of the remaining H[k] equal to zero. (This corresponds to taking a pseudo-inverse of X.) Suppose we use
a threshold ε and set Ĥ[k] = 0 if |X [k]|< ε. Then the channel estimate Ĥ[k] which we obtain satisfies

Ĥ[k] = H[k]G[k] , where G[k] =
{

1, |X [k]> ε

0, elsewhere
(4.6)

In time domain, the estimate ĥ[n] = h[n] ∗ g[n] is the convolution of the true channel with this “selector
function”. This will limit the resolution that can be obtained.

Finally, another problem with frequency-domain equalization is that there is no guarantee that the com-
puted h corresponds to an FIR channel—in general, this will be a vector that has all Ny entries nonzero.
In that case also the correspondence between linear and circular convolution is lost.

Tasks

• Implement frequency-domain equalization as a Matlab function ch3.m. Include a threshold on the
inversion of X [k] that is a fraction of the peak amplitude in frequency domain.
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Test the function using the four test signals in datagen.m.

Hint: the function find allows you to find the indices of the entries of a vector larger or smaller
than a threshold. E.g., ii = find(abs(X) > eps).

• Suppose we have a training sequence x[n] whose frequency domain X [k] is bandlimited, e.g., only
contains frequencies smaller than Fc = 1kHz whereas the sample frequency is Fs = 20 kHz.

|X(F)|

ε

1 10 F [kHz]0

The effect of the threshold technique on ĥ[n] is given by (4.6). What is G[k] in this case? And g[n]?
Make plots using Matlab.

• (report 11) Suppose that we have a choice between 3 different training sequences, x1[n], x2[n] and
x3[n], that only differ because they have a different “carrier frequency”.

|X3(F)||X2(F)||X1(F)|

0 010 10 F [kHz] 5 6 10 F [kHz] 9 10 F [kHz]

Compute and plot the corresponding functions g1[n], g2[n], g3[n]. What is the effect of the “carrier
frequencies” on the resolution of the channel estimate? Which training sequence is preferred?

The above signals had bandwidths of 1 kHz. What changes if these become, e.g., 2 kHz? Can you
say something on the desired bandwidth of the sequences?

Hint: when defining the spectra, make sure you define “two-sided” spectra (i.e., including the neg-
ative frequencies, these end up at the high frequencies close to Fs). That way, the IFFT generates
real-valued signals.

• (report 12) Let’s try to verify the above results. Generate a “baseband” test signal x1[n]:

Fs = 20e3; % sample frequency

N = 50; % number of bits

p = ones(10,1); % pulse shape (square block)

% p = bartlett(21); % alternative pulse (triangle)

s = sign(randn(N,1)); % random sequence +- 1

ss = kron(s,[1; zeros(9,1)]); % interpolate s with zeros

x1 = conv(ss,p); % convolution of p with s
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Here, s[n] is a random sequence of N bits, +1 or −1 (a “BPSK signal”), and p[n] is a pulse shape,
in this case a square block. The Kronecker product kron makes a sequence where each s[n] is
replaced by a vector [s[n]0 · · ·0]T which creates some spacing between the bits. Convolution with
p[n] modulates the BPSK sequence with a square pulse.3

Next, define the sequence x2[n] obtained by modulating x1[n] with a cosine, x2[n] = x1[n]cos(ω2n).
Take ω2 = π/2.

Plot the sequences x1[n], x2[n] in time domain and frequency domain. The latter should look like
the plots above.

Now take a simple channel h[n], e.g., h = [1, 2, 3, 2, 1], and compute the measured signals
y1[n],y2[n]. Apply your function ch3.m to recover h[n]. Take a threshold such that small values
of X [k] are not inverted. Give plots of the two recovered channels, in time domain and frequency
domain. How do these correspond to the original channel?

What you will observe is that if the training sequence is bandlimited, the channel is not very accurately
recovered. If the selector function G[k] is a bandpass, then g[n] is a modulated sinc pulse and this becomes
visible in the channel estimate. There is a loss of resolution.

In the next labday, you will be asked to design an audio beacon signal and a channel estimator, which
will be used in the EPO4 project. The beacon signals look like modulated BPSK sequences. Use today’s
results to guide you.

3 Square pulses are not often used in telecom because they are not very compact in frequency domain. It is possible to use
other pulse shapes, e.g. a triangle pulse is already more concentrated in frequency. In telecom practice, “raised cosine” pulses
are often used.
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In the EPO4 project, toy cars will transmit beacon signals, which are coded audio pulse trains. The
signals are recorded by 4 microphones. Since we know the transmitted signal, we can estimate the 4
channels by deconvolution. By comparing the channel estimates, we can estimate differences in propa-
gation time, which will be used to locate the cars.

For today’s lab day, we will look in more detail into audio channel estimation. How does a typical
channel look like? Is it estimated well using the deconvolution algorithm? Which transmit sequence
should be used? If we compare two channel estimates, can we estimate a difference in propagation time,
and how does that translate into physical distance? The results will be needed in the EPO4 project.

Learning objectives

– Familiarizing yourself to use Matlab to transmit and record audio data.

– Testing your channel estimation algorithms on actual data. The transmitted signal is a Matlab
model of the programmable audio beacon.

Preparation

What is needed

– PC with 2 microphones and an external loudspeaker, cables and a special plug to insert the
microphones into the stereo input of the PC;

– From Brightspace: Matlab scripts ’findInDevID.m’, ’refsignal.m’, and ’send_refsignal.m’.

– Ruler or measurement tape (1 to 2 meter).

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



38 Labday 4: audio channel measurements

5.1 PLAYING WITH THE LOUDSPEAKER AND THE MICROPHONE

Let’s see how in Matlab you can record a signal on the microphone. The functions needed for this are

Fs = 8000; % sample rate of the microphone

recObj = audiorecorder(Fs,16,1); % create audio object, 16 bits resolution

disp(’Start speaking.’)

recordblocking(recObj, 2); % do a 2 second recording (blocking)

disp(’End of Recording.’);

% Play back the recording.

play(recObj);

% Store data in double-precision vector

y = getaudiodata(recObj);

% Plot the samples.

plot(y);

The function recordblocking does not return control to Matlab until it finishes its (2-second) recording.
The function getaudiodata(recObj) converts the audio object recObj into the signal y[n] (or vector
y) that you would use for our processing, filtering, etc.

Alternatively, you can use record(recObj) which returns control to Matlab immediately, and keeps
recording until you say stop(recObj):

recObj = audiorecorder(22050, 16, 1);

disp(’Start speaking.’)

record(recObj); % speak into microphone...

pause(2); % pause for 2 seconds (or do other things)

disp(’End of Recording.’);

stop(recObj); % stop recording

play(recObj); % listen to complete recording

During recording, you could do other things (e.g., computations).

What we would like to do now is to play a signal over the loudspeaker, and record it using the microphone.
You can choose a sample rate for the transmission, and the same or different sample rate for the recording.
That will lead to some interesting effects. The general set-up is as follows:

%------------------------- create sound -------------

Fs_TX = 22050; % transmitter sample rate
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x = zeros(1,Fs_TX); % 1 second of silence

for ii = 1:Fs_TX/10:Fs_TX,

x(ii) = 1; % insert some impulses

end

xObj = audioplayer(x,Fs_TX); % convert one second of sound to audio format

%------------------------- play sound and record the response

Fs_RX = 22050; % microphone sample rate

recObj = audiorecorder(Fs_RX,16,1); % 16 bits, 1 channel

play(xObj) % play and continue directly

recordblocking(recObj,1); % start recording 1 second

y = getaudiodata(recObj); % float representation of recording

The PCs in the lab setup have a front audio jack for the microphone; there is also one in the back.
Use the Windows control panel (sound panel) to select the right interface: “Soundmax Integrated HD
Audio”. Then check the level settings of the microphone such that it does not saturate and still measures
something. The “listen” option should be switched off to avoid unwanted feedback. Also switch off any
additional filtering.

On Brightspace, find the script findInDevID.m; with this Matlab function you can search for the ID of
the microphone input channel. You need this to make Matlab listen to the right input. Usage:

audiodevinfo % list available audio devices

ID = findInDevID(’Ingang achter (SoundMAX Integra’); % find specific ID

r = audiorecorder(Fs,nbits,nchans,ID); % open audio device "ID"

Tasks

• Test to see if you can transmit a signal over the audio channel and record the result. E.g., use
impulses and/or the train signal. Check the volume settings of your microphone and loudspeaker
until things work well.

Try various transmit and receive sampling rates (not all recording sampling rates are supported by
Matlab or the audio interface).

• Choose Fs_TX = 22050; Fs_RX = 22050;

Transmit a single impulse over the audio channel: this directly gives the impulse response of
the audio channel. Plot the time-domain impulse response, and the frequency domain amplitude
spectrum. Take care that your x-axis legends are correct; for the frequency plot, use kHz.

Do the same for Fs_TX = 22050; Fs_RX = 8000; Do you expect any aliasing?

Do the same for Fs_TX = 4000; Fs_RX = 22050; Do you expect any aliasing? What is the
highest frequency which you see in the spectrum (why?).
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With Fs_RX = 22050;, what is the highest transmit sample rate that is meaningful?

Note that aliasing is not expected as the sample card uses an anti-aliasing filter before sampling.
This is also the reason that not all sampling frequencies are permitted.

• (report 13) At the microphone, what sample rate is at least needed to have a resolution of 1 cm?

Test various distances between the microphone and the loudspeaker. Do you see (systematic)
changes? For a distance of 50 cm and for 1 meter, what propagation delays do you expect? Can
you see this back in your time-domain data? (Note that there is a processing delay before the
sample card responds and starts to sample, and probably this delay is not entirely constant.)

For a distance of 1 cm, there is hardly any propagation channel; do you get an ‘ideal’ impulse or is
there some distortion? These would be the loudspeaker and microphone responses. (At this short
distance, make sure there is no clipping.)

Save and store some good examples of the channel impulse responses that you measured (at 1 cm,
50 cm, 1 meter). Give plots of some typical channel impulse responses in your report; also write
down the propagation distances. The time-domain axis in these recordings could be very large;
make sure you properly zoom in on the “interesting” part of the plot.

• In the previous cases, you had a direct line of sight (LOS). But sometimes, there is no direct
line of sight (NLOS), due to some object blocking the direct path. Make a typical recording of a
NLOS channel impulse response—how does it compare to the previous LOS cases? Can you still
determine the propagation distance?

5.2 MANUAL: MODEL FOR THE AUDIO BEACON SIGNAL

In the EPO4 project in Q4, we will use an audio beacon to locate the car. The audio beacon, once switched
on, continuously transmits a sequence of pulses. It is controlled by a programmable microcontroller. It
is possible to change the number of pulses, duration of each pulse, the sequence itself, and the period
after which the sequence is repeated.

The pulse sequence is a modulated binary code sequence with “on-off keying” (OOK). If a bit in the
sequence is 0, nothing is transmitted; if the bit is 1, a modulation carrier frequency is transmitted during
a certain period.

Besides the actual bit sequence (code word), the parameters that determine the signal are

– Length of the code sequence (number of bits; parameter Ncodebits), at most 64 bits;

– Modulation carrier frequency (parameter Timer0), at most 30 kHz, although this is probably beyond
the specs of the loudspeaker and microphones;

– Duration of a single bit (parameter Timer1), this defines the rate at which the modulation carrier
signal is switched on or off by the bits in the code word;
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Figure 5.1. An example of the pulses generated by the audiobeacon.

Table 5.1. Timers frequency configuration table
Timer index 0 1 2 3 4 5 6 7 8 9

Carrier Freq (Timer0) [kHz] 5 10 15 20 25 30
Code Freq (Timer1) [kHz] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Repeat Freq (Timer3) [Hz] 1 2 3 4 5 6 7 8 9 10

– Repetition rate of the bit sequence (parameter Timer3). After the code sequence has been played
over the loudspeaker, it will be silent for a certain period, and then the sequence is transmitted again,
at a rate determined by Timer 3.

In the audio beacon, these parameters can be modified in the program code of the program that runs on
a microcontroller. In the Matlab model refsignal, the same parameters are used.

The maximal repetition rate is 10 Hz (corresponding to a period of 100 ms). If 64 bits are used at the
lowest rate of Timer 1 (1 kHz), then the duration of the sequence will be 64 ms. You will have to choose
settings such that the channel impulse response dies out during the remaining period of silence, before
the next pulse sequence starts. Possible values for the Timer parameters are listed in Table 5.1; instead
of the actual values, the Timer Index values are used.

The default setting of the audio beacon is a code sequence bit-stream of 32 bits with:

Code length = 32 bits NCODEBITS = 32
Carrier frequency = 20 kHz TIMER0_INDEX = 3
Code frequency = 5 kHz TIMER1_INDEX = 8
Repeat frequency = 2 Hz TIMER3_INDEX = 2
Code word = 92340f0f (hex)
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5.3 TEST USING THE MATLAB AUDIO BEACON

We will now use the audio beacon signal as the transmit signal and make a channel estimation function
for it. This function will be needed in the EPO4 project.

For convenience, we will use in this practicum a Matlab function that generates the same sequence as
the audio beacon. The advantage of using a Matlab function is that we can quickly change the set-
tings, and the receiver is more or less synchronized with the transmitter. The Matlab function is called
refsignal.m (provided on Brightspace), and it accepts the same parameters as the actual beacon.

Design considerations

It is important to choose settings that will will give an optimal channel estimate in the presence of noise
or interference. This will generally require long sequences. However, we have to wait until one or two
pulse sequences have been received before we can do a channel estimation, and this will form the basis
for the location estimate. Faster updates will result in better tracking. For this, it is important to have
short sequences!

Furthermore, we need to plan for a “guard interval” of silence between two sequences, long enough for
the channel response to return to zero. For a large room and a maximal distance of 5 to 6 meters between
the beacon and the microphone, what is that duration (in ms)? This determines the maximal repetition
rate that you can hope to achieve.

Another aspect to consider is the dynamic range. The microphone gain will have to be set such that it
will not clip even if the transmitter is very close to it, because we want to avoid nonlinear effects. But,
in another extreme, over a distance of 5 to 6 meters, the audio signal is already significantly attenuated
and may drown in the noise. However, we will have to be able to estimate the channel even over such
distances, also in the presence of a nasty interferer close to the microphone. For this, we need long
sequences, or to average over several repetitions of the sequence, so that the noise is averaged out and
you remain with the channel impulse response.

The highest “data rate” is obtained using the shortest pulses. In practice, this is limited by the capabilities
of the transmitter and the microphone. Use the data sheets of the audio beacon (section 5.2 to determine
what is the highest frequency that you could use. Consider that you want to sample the microphone at
Nyquist rate, i.e., at least twice the highest frequency of the transmitter.

Is there a reason to use very high frequencies? Probably this determines the resolution of your channel
estimate. What data rates do you need to achieve a resolution of 1 cm? Can the system achieve this rate?
Is there a trade-off here, i.e., a reason not to use higher frequencies than this?

Also consider the computational complexity of your algorithms. For a channel length of L samples and a
sequence length of Nx samples, approximately how many operations are needed to estimate the channel?
Is that reasonable (or how long will it take Matlab to do the computation)? You can use Matlab tic, toc
timers to do a benchmark. Choose which of the three channel estimation algorithms you plan to use.

Finally, we have to think of the practical situation where the microphone signal contains beacon signals
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of more than one user. Consider what happens if you do the deconvolution using a reference signal that
does not match the transmitted signal. E.g., in the Matched Filter, we correlate the received signal with
our own code sequence, and hopefully the correlation of someone else’s code with our own code is small.
Thus, the filter will filter out the other signals.

Tasks

• Study the signal returned by refsignal.m (provided on Brightspace), in time domain and in
frequency domain. What is the effect of changing the various parameters? What is the maximal
“carrier frequency” (determined by Timer0) that can be used?

In the time-domain deconvolution algorithms, the Toeplitz matrix X plays an important role. Study
the singular values of this matrix using plot(svd(X),’+’). What do you deduce on the invert-
ibility of X?

Also look at the frequency domain (spectrum) of the signal. We would prefer a wide frequency
content, so that we probe the channel at many frequencies.

• Use the function send_refsignal.m (provided on Brightspace) to transmit and record a simulated
“audio beacon” signal, which is generated using refsignal.m.

Make and store recordings at various distances, e.g., 1 cm, 50 cm, 1 meter. Take care that at 1 cm,
the microphone does not clip.

• (report 14) Apply your channel estimation algorithms of Labday 3 to recover the audio channel
impulse response.

Illustrate your report with plots of the transmit sequence and its spectrum, the receive sequence,
the recovered impulse response, and compare to the impulse response as obtained by directly
transmitting an impulse.

Hint 1: Your receive vector is probably very long, and it is not quite possible to construct and invert
the corresponding X-matrix. In that case, try some work-arounds: (1) truncate sequences to the interval
where they are nonzero, (2) resort to the Matched Filter approximation, implemented as a filter, and/or
(3) try frequency-domain channel estimation. You can also try to transmit at a low carrier frequency
(Timer0), and use a relatively low recorder sample rate Fs.

Hint 2: For the deconvolution, you need to know the transmitted signal, and for this you can use two
approaches: (1) use the modeled refsignal.m, or (2) use the recording at 1 cm as a clean copy of the
transmitted signal. Theoretically, the modeled signal should be fine, but in practice, the recorded signal
is more reliable: the model may be imprecise, and it does not contain the filter effects of the loudspeaker
and microphone. The problem with the modeled signal becomes more important once you use the real
audio beacon in the EPO4 project.

• (report 15) Design the ‘optimal’ parameters of the audio beacon and corresponding microphone
settings, for a maximal distance of 5 to 6 meters and a resolution of 1 cm. Document your choices.
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As listed before, there are several aspects to the design: sufficient resolution (sample rates), good
deconvolution properties, and also good discrimination of your own signal to that of another audio
beacon that transmits at the same time.

5.4 TDOA ESTIMATION

In the EPO4 project, we will try to locate a car using an audio beacon. We will use time-difference of
arrival (TDOA) measurements made at made at microphones positioned at known locations. The audio
beacon transmits signals which are received by up to 5 microphones. Depending on the distance to each
microphone, the signal arrives a little bit earlier or later, and we can convert that into physical distances.
For each pair of microphones, we will compute this TDOA, or the physical difference in propagation
distance. If we have a large enough number of microphones (4 should work. . .), then we can calculate
the (x,y) location of the transmitter using a Least Squares algorithm. We will do this in the EPO4 project.

Before we can do localization, we have to work on this question: Given the impulse responses measured
by two microphones, how is the Time Difference of Arrival (TDOA) estimated? That is the topic of
today’s assignment.

The audio beacon transmits a continous stream of pulses, using a certain repetition period TR (specified
via the Timer3 parameter, e.g., 100 ms). If we are not synchronized to the beacon, there is no guarantee
that an entire pulse sequence is captured in a period TR: you might have the tail of one sequence, and the
head of the next. It is probably easier to capture samples for at least 2TR seconds, i.e., 2 intervals.

The received signal yi[n] is the convolution of the data sequence, the audio channel for the ith microphone,
and the filtering effects of the transducers. In the previous section, you have applied knowledge of the
data sequence to estimate the audio channel impulse response using deconvolution. Given at least 2TR

seconds of data, we first apply the deconvolution filter to the entire available data, for each signal yi[n] in
the same way. That will give channel estimates hi[n].

The next step is to synchronize to the start of the first impulse in the first channel. The assumption is
that there is line of sight, so that the first strong pulse is the line-of-sight pulse. Before that pulse, the
response is mostly zero over a long interval. We can make a guess on how long that interval will usually
be (it also depends on the repetition period and the typical duration of the impulse response); let’s say
this interval is known to be larger than TI . We can search for an interval of duration TI with energy below
a certain threshold, and then continue to search for the highest peak that comes immediately after that.
Let’s say this happens at time index nmax.

Next, we go to the second channel and search for the highest peak in a window before/after nmax. We can
determine a suitable length TS of this window by computing the maximal delay that you expect; e.g., for
a maximal distance of 5 m, that delay is about 15 ms.

After we have found the matching peak in the second trace, we can compute the difference between both
peaks (in samples), and convert this into a time difference and then a physical distance (knowing the
speed of sound).
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Figure 5.2.
TDOA estimation: for the impulse response h1[n] of the first microphone, find the first peak
after the silent interval, then go to the second microphone h2[n] and look for a matching
peak in the search window.
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Robust TDOA estimation is an active research topic, so there are many possible alternatives for the above
algorithm.

Tasks

• (report 16) At the end of section 5.3, you determined suitable values for the beacon parameters
and the microphone settings (such as sample rate).

Based on this, determine to how many samples a maximal propagation delay corresponding to 5
m will correspond. That will set your search interval.

What is a typical channel impulse response length (in milliseconds, and samples)? The duration of
a code sequence is determined by the number of symbols and Timer1. What is the total duration
of the received signal? Choose the sequence repetition period (Timer3) to be larger than that.

• Implement a TDOA estimation algorithm along the lines discussed above, or invent your own
algorithm. Describe the algorithm in the report.

Test the algorithm using synthetic measurement data where you know the true time offsets, e.g.,
a measured impulse response and a delayed copy of the same response. Try various offsets to see
that your peak detection is robust for all possible offsets (positive and negative), for up to 5 m.

Hint: Matlab commands that may be helpful: find, max. A more advanced command is findpeaks.

• Make an experimental set-up with two microphones, placed in a line with the loudspeaker of the
PC so that you can easily figure out the true propagation delay. For this, you will need a specially
prepared cable that allows to plug in two microphones into the stereo input of the PC.

Make 2-channel recordings of various seconds using the Matlab audio beacon reference model as a
transmitter. Annotate the data (sampling rate, distance between microphones, setting of the audio
beacon, etc.). Store the data for later use.

Hint: Stereo recordings can be made in Matlab using audiorecorder(Fs,Nbits,Nchan,ID),
where you use Nchan=2.

(report 17) Apply your channel estimation and peak detection algorithms and see if you can
estimate the distance between the microphones correctly.

Make graphs to show a typical data segment, and the locations of the estimated peaks.

How accurate can the TDOA be estimated? Is the estimate robust or are there outliers?

What is the impact of “non-line-of-sight” (NLOS), where the direct path of the loudspeaker to one
of the microphones is blocked?

So far, you probably segmented the data “by hand”. For actual use in a tracking loop (as in EPO4), this
needs to be automated; also note that the recording will not be synchronized to the transmitter. There is
no best way to do this. You’ll have to invent some technique for the EPO4 project.
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We will design basic lowpass filters using (1) the inverse DFT technique which leads to FIR filters, and
(2) the analog design technique followed by a transformation to the digital domain. We will use that to
make a detector for the telephone touchtone signal.

Learning objectives Basic filter design using Matlab functions.

Preparation Read the chapter so you know what to expect. Refresh your knowledge on filter design
from the Signals and Systems course.

What is needed

– PC with a built-in loudspeaker;

– Matlab audio test signals, typically obtained using load gong, load handel, load train.

– Matlab audio test signal from Brightspace (Labday 2): touch.mat.

Our objective in this chapter is to design a digital lowpass filter specified as follows:

Sample frequency Fs = 8192 Hz
Cut-off frequency (-3dB) Fc = 1 kHz
Stopband frequency F1 = 1.5 kHz
Stopband damping 40 dB
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Table 6.1. Characteristics of windows
Type Width of main lobe Peak sidelobe (dB)
Rectangular 4π/M -13
Bartlett 8π/M -25
Hamming 8π/M -41
Blackman 12π/M -57

6.1 DIGITAL FIR FILTER DESIGN USING THE WINDOW METHOD

In this section we design a digital linear-phase FIR filter. A linear phase filter has the form

H(ω) = A(ω)e− j(ωα−β), −π≤ ω≤ π

where A(ω) is real. This design is typically used for ideal lowpass or bandpass filters, where the filter
appears like a delay of α samples in the passband. Hence, signals in the passband signals are not de-
formed, and this is important e.g., in the case of pulse shapes of communication signals. The linear-phase
condition in frequency domain translates to a symmetry condition (h[N−n] = h[n] or h[N−n] =−h[n])
on the impulse response, and if we also require causality it follows that only FIR filters can have linear
phase.

Recall from the Signals and Systems class the design procedure: (1) specify the design in the frequency
domain, in the form of a desired transfer function Hd(ω), (2) do an inverse DFT to obtain the impulse
response, (3) truncate the impulse response to a finite length N. The last step results in an approxi-
mation and usually the design process is repeated a few times before a filter is obtained that meets the
specifications.

Window design

The truncation modifies the ideal design and typically leads to “ringing”, i.e., the Gibb’s phenomenon,
which gives a ripple in the passband and limits the damping in the stopband. A time-domain window
w[n] is applied to reduce this effect; this converts into a convolution W (ω) in the frequency domain.

W (ω) should be like an impulse: a narrow peak (called the main lobe) and low sidelobes. The rectangular
window is a sinc-function in frequency domain, it has a relatively narrow peak but its side lobes are high
and go only very slowly to zero (as 1/ω). Better windows are e.g. Bartlett and Hamming. They have
a main lobe that is twice as wide, but sidelobes that are much smaller. A Kaiser window has even
better performance as it is designed using optimization techniques. (It also has an additional parameter
β.) Windows are characterized by the width of their main lobe, and the maximal sidelobe level, see
table 6.1, where M = N + 1 is the number of coefficients. While this gives a very good indication,
unfortunately, it does not exactly translate to what you obtain if you convolve the window with an ideal
freqency response.

In Matlab, windows are obtained using
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w = bartlett(N);

w = hamming(N);

w = kaiser(N,beta);

The function window gives a more complete collection. Matlab also has a “window design & analysis
tool”, wintool, that allows you to see the time domain and frequency domain response of a window, and
which also reports the width of the main lobe and the sidelobe attenutation.

The first step in filter design is the selection of a suitable window, as it determines the filter order.

• Which window do you apply to reach 40 dB damping on the sidelobes? What is the width of this
window (in terms of the filter order N)?

• Determine the required filter order N to reach the specifications.

• Determine and plot the time domain and frequency domain response of this window. Does it
satisfy the requirements?

Hint: If N is not very large, applying the DFT directly will result is a rough-looking spectrum. Use
zero padding on w[n] to obtain a smooth spectrum (e.g. extend to 500 samples).

Ideal transfer function design

The next step is to define the desired (ideal) filter in frequency domain and to translate that into the time
domain. A complication is that the design in frequency domain should use a continuous ω, and thus we
need to use the inverse Fourier transform. However, a continuous function cannot be implemented in
Matlab, and the IFT does not exist in Matlab. We could either do this part of the design “by hand”, or
define a sufficiently fine sampled version in frequency domain and use the IFFT.

For the requested lowpass filter, the desired transfer function is

Hd(ω) =

{
e− jωN/2 , |ω|< ωc

0 , elsewhere
(6.1)

where the cut-off frequency ωc follows from the design specifications. The filter amplitude is nonzero
only for |ω|< ωc. For the filter phase we took a delay of half the filter length. That will ensure later on
that we can truncate the time-domain filter in the interval [0,N]. Without the phase, we would need to
truncate between [−N/2,N/2].

• Translate the design specifications from frequencies in hertz into angular frequencies ω.

Doing the inverse Fourier transformation by hand, the impulse response of the rectangular function
Hd(ω) is obtained as

hd [n] =
1

2π

∫
ωc

−ωc

e− jωN/2dω =
sin(ωc(n−N/2))

π(n−N/2)
(6.2)
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which is recognized as a sinc-function. Note how the phase shift by e− jωN/2 in the frequency domain
translated into a delay of N/2 samples.

• Make plots of hd [n] and Hd(ω). Then truncate hd [n] to the interval n ∈ [0,N] and make plots of the
resulting h[n] and the corresponding H(ω).

• Generate a suitable window, e.g.

w = hamming(N);

and apply apply the window to compute the filter coefficients

h = h_d .* w;

Plot h[n] and H(ω). Does the filter meet the specifications?

• Load a test signal, e.g. load gong, load handel, load train (recall that these functions define
a vector y, not x, so you will need to do a reassignment x=y).

• Apply the filter and listen to the result:

y = filter(h,1,x);

soundsc(x);

soundsc(y);

Also plot Y (ω) to see what happened in the frequency domain.

Automated functions

The preceding filter design steps are rather tedious, and the calculation “by hand” is often not feasible.
To start with, we should replace this by the IFFT of a sufficiently fine sampled frequency response. This
is a critical step, because there are regions where we don’t need a fine resolution, whereas around the
transition band we want to be more accurate. Since filter design is such a common event, several Matlab
functions are available to make the process easier and more suitable for non-specialists.

The function fir1(N,F) designs an Nth order FIR filter and returns the impulse response (N + 1 filter
coefficients). The frequency specifications are in F. If F is a scalar, it represents the cut-off frequency
fc for a lowpass filter (where the damping at fc is designed at -6 dB). A high-pass filter is obtained
using fir1(N,F,’high’). For a bandpass filter, use F=[F1,F2] and fir1(N,F,’bandpass’), where
the passband will be f1 < f < f2.

Take note that in this function, frequencies specified in F are normalized frequencies such that f = 1
corresponds to ω = π or half the sample frequency Fs/2; unfortunately this is not the convention we
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usually use (the difference is a factor 2), but appears everywhere like this in the Matlab filter design
toolbox.

Without further specification, fir1 uses Hamming windows. Other windows can be used with fir1(N,Wn,win).
E.g., a Kaiser window can be specified using fir1(N,Wn,kaiser(N+1,beta)). The function kaiserord
allows you to find the parameters N,β of the Kaiser window, see the Matlab help for this function.

The entire filter design can now be summarized into these commands:

Fs = 8192; % sample frequency

F0 = 1000; % passband frequency

F1 = 1500; % stopband frequency

alpha0 = 10^(-3/20); % max passband ripple (linear units)

alpha1 = 10^(-40/20); % max stopband ripple (linear units)

[N,Wn,beta,filtype] = kaiserord( [F0 F1], [1 0], [alpha0 alpha1], Fs );

h = fir1(N, Wn, filtype, kaiser(N+1,beta), ’noscale’);

In the kaiserord function, the vector [1,0] specifies that at frequency F0, the filter should be ‘high’ and
at F1, the filter should be ‘low’, i.e., a lowpass response.

• (report 18) Carry out the above steps, plot the filter response (amplitude in dB), and verify whether
the resulting design indeed meets the specifications. What is the filter order?

Hints: Also plot horizontal/vertical reference lines at the specified dampings/frequencies).

In Matlab, use log10 for 10-base logarithm, not log which gives ln.

Make sure the vertical axis is limited between (say) -60 dB and +5 dB; if there is a zero on the unit
circle, Matlab by itself plots very negative numbers which are meaningless.

If the impulse response is short, use zero padding to increase the resolution in frequency domain.

The above design process leads to a filter that approximately meets the specifications. If necessary, the
filter order N needs to be incremented. A problem is that in this design process, the passband ripple
and stopband ripple cannot be designed independently (the strongest requirement is satisfied). This may
lead to filters that are longer than necessary. In addition, there is no exact control on the passband and
stopband frequencies that result in the end.

6.2 OPTIMAL EQUIRIPPLE FIR FILTER DESIGN USING PARKS-MCCLELLAN

A more general approach to FIR filter design is known as Parks-McClellan, which uses optimization
techniques to find the best approximation. The desired frequency response is specified by a vector of
frequencies (band edges) f = [ f0, f1, · · ·] and their corresponding amplitudes in a vector a = [a0,a1, · · ·].
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The ideal response is obtained by the line connecting the points ( fk,ak) to ( fk+1,ak+1) for all k; this is a
piecewise linear function.

The corresponding Matlab function is firpm(N,F,A), where N is the filter order, F is the vector f, and
A is the vector a. Also in this function, frequencies specified in F are normalized frequencies such that
f = 1 corresponds to ω = π or half the sample frequency Fs/2. For example:

h = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);

is a design for a lowpass filter of order N = 30, where the passband runs from f = 0 to f = 0.1 and the
stopband runs from f = 0.2 to f = 0.5.

Note that in this design, the filter order N is specified, which limits the control we have over the ripples.
The function does allow to specify the relative errors for each interval in a vector w, which helps a bit, but
this is not the same as directly specifying the ripples. To this end, function firpmord allows to design N
and w, which is then input for firpm.

Our example lowpass filter design can now be summarized into these commands:

Fs = 8192; % sample frequency

F0 = 1000; % passband frequency

F1 = 1500; % stopband frequency

alpha0 = 10^(-3/20); % max passband ripple (linear units)

alpha1 = 10^(-40/20); % max stopband ripple (linear units)

[N,F,A,W] = firpmord( [F0 F1], [1 0], [alpha0 alpha1], Fs );

h = firpm(N,F,A,W);

• (report 19) Carry out the above steps, plot the filter response (in dB), and verify whether the
resulting design indeed meets the specifications. What is the filter order?

Compare to the previous design (using fir1). Which one is better?

Also here, the value of N is often underestimated, and you will need to increment N until the specifica-
tions are met.

6.3 DIGITAL IIR FILTER DESIGN VIA ANALOG FILTER DESIGN

The FIR design process often leads to filters that have a high order. Lower orders may be obtained if we
also allow for poles. Thus, we need to design IIR filters.

IIR filter design is often done in the ‘analog time domain’, because that topic existed long before digital
filter design. Simple filters are Butterworth filters, these are maximally flat around ω = 0 and ω =
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π. This is generalized by Chebyshev filters, which allow for ripples either in the passband or (after
transformation) in the stop band. More general filters are elliptic (or Cauer) filters, which have ripples in
both the passband and the stopband.

To transform filters designs from the analog domain to the digital domain, we nearly always use the
bilinear transform.

Butterworth filter

We will first design an IIR Butterworth filter in the analog time domain, and then use the bilinear trans-
formation to transform it into a digital filter.

The prototype Butterworth filter has the form

|Ha(Ω)|2 = 1
1+(Ω/Ωc)2N

where Ωc is the 3dB cut-off frequency in the analog domain. The only other design parameter is the filter
order N. At the stopband frequency Ω1 we have

|Ha(Ω1)|2 =
1

1+(Ω1/Ωc)2N

and N is determined by setting this equal to the desired damping in the stopband.

To start the design, we need to know the “analog” frequency Ωc. Since we will apply a bilinear trans-
formation in the end that will transform Ωc into ωc = 2tan−1(Ωc), we will first have to “prewarp” the
“digital” frequency ωc into Ωc, using

Ωc = tan(ωc/2)

Be aware of not confusing this transformation with the transformation of the design requirements given
in the beginning of the chapter, which are also specified as “analog” frequencies Fc and Fs, and are
transformed into “digital” frequencies as ωc = 2π ·Fc/Fs. You cannot directly set Ωc = 2πFc because
the bilinear transform will not map that to the right ωc in the end.

• (report 20) Our design requirements given at the beginning of the chapter specify Fs = 8192 Hz
and Fc = 1 kHz. First compute ωc = 2π ·Fc/Fs and then compute Ωc = tan(ωc/2).

Determine N for the design requirements given at the beginning of the chapter.

The computation of N can also be done in Matlab using a function buttord, which we call as follows:

Fs = 8192; % sample frequency

F0 = 1000; % passband frequency

F1 = 1500; % stopband frequency

R0 = 3; % max passband damping (dB)
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R1 = 40; % min stopband damping (dB)

[N, omega_c] = buttord( F0/Fs*2, F1/Fs*2, R0, R1);

The input to buttord is a passband frequency f0 = 2F0/Fs (in normalized units, where f = 1 corresponds
to ω = π, hence not our usual normalization), f1 = 2F1/Fs is the stopband frequency, and R0,R1 are the
corresponding dampings at these frequencies, this time specified in dB. The prewarping is done within
this function.

• Also compute N using buttord. Is it the same as you obtained by hand?

Knowing N, the the filter is completely specified. Next, we have to factorize |Ha(Ω)|2 to obtain the poles
of the analog filter Ha(s) (there are no zeros). In theory,

|Ha(Ω)|2 = Ha(s)Ha(−s)
∣∣∣
s= jΩ

⇒ Ha(s)Ha(−s) =
1

1+(−s/Ωc)2N

and we see that to obtain the poles we need to determine the roots of

1+(−s/Ωc)
2N = 0

The poles of Ha(s) are the roots that lie in the right-hand plane, and for Butterworth they are seen to lie
on a circle with radius Ωc.

The bilinear transformation to obtain a digital filter H(z) is a substitution in Ha(s) of s to

s =
1− z−1

1+ z−1

so that H(z) = Ha(s) with the above substitution. This transforms all the poles (following the same
substitution) and also zeros are introduced. The “prewarping” function Ω = tan(ω/2) also follows from
this relation, upon setting s = jΩ and z = e jω.

In Matlab, the computation of the poles and the bilinear transformation are combined in a function
butter:

[b,a] = butter(N, F_c/F_s*2);

This provides the coefficients of the numerator and denominator polynomial, H(z) = B(z)/A(z).

The roots of a polynomial with coefficients specified in a vector b (or a) are obtained using roots(b),
but plotting these roots along with the unit circle is more easily done using

zplane(b,a);

• (report 21) Compute the filter coefficients b,a and plot the poles and zeros using zplane.
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• Determine the first 100 coefficients of the filter impulse response (apply the filter to an impulse):

h = filter(b,a, [1, zeros(1,99)]);

plot(h);

• (report 22) Plot the frequency response using H = fft(h). Also plot the phase response using
unwrap(angle(H)). Does the filter meet the requirements? Did the −3 dB frequency end up in
the right place?

Remark: the frequency response can also be determined by evaluating b(z)/a(z) for z = e jω, and
several values for ω. This is implemented by the function freqz:

[H,omega] = freqz(b,a); % evaluate the transfer function (omega is vector)

F = omega/(2*pi) * Fs;

plot(F, abs(H));

To directly obtain a plot using a frequency axis in Hz, you can also specify:

[H,F] = freqz(b,a,[],Fs);

• Apply the filter and listen to the result:

y = filter(b,a,x);

soundsc(y);

• What are the differences between this filter and the various FIR filters that we obtained? E.g., filter
order, linear phase yes/no.

Can you hear any differences?

6.4 ELLIPTIC FILTER DESIGN

More accurate than a Butterworth filter is an elliptic filter, which has both poles and zeros. The design
cannot be done by hand, but in Matlab the process is quite similar to that of a Butterworth filter:

Fs = 8192; % sample frequency

F0 = 1000; % passband frequency

F1 = 1500; % stopband frequency

R0 = 3; % max passband damping (dB)

R1 = 40; % min stopband damping (dB)

[N, Wp] = ellipord(F0/Fs*2, F1/Fs*2, R0, R1)

[b,a] = ellip(N,R0,R1,Wp)
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Figure 6.1. Filter banks for the detection of a touchtone signal.

• (report 23) For our design specifications, compute the filter coefficients b and a, plot the loca-
tion of the poles and zeros using zplane, and plot the impulse response and frequency response
(amplitude and phase).

What are differences compared to the Butterworth design?

The elliptic filter design leads to filters that have a much lower order than the Butterworth filters, and is
often used in practice. You should always verify whether the resulting filter is stable! For difficult design
requirements, it sometimes happens that ellipord returns a filter order N that is too small, after which
the subsequent ellip has been seen to return an unstable filter. If this happens, you should increment N.

6.5 ASSIGNMENT: TOUCHTONE DETECTOR

In Section 3.7, we have looked at the touch-tone telephone dialing signal. Suppose we want to make a
Matlab decoder for that signal. The system uses 7 distinct frequencies, 697, 770, 852, 941, 1209, 1336,
1477 Hz. Recall that our sampling rate was Fs = 8192 Hz.

For a decoder, we could design bandpass filters for every frequency band, 7 in total. We then apply each
of these filters, and for each or the outputs detect if a frequency signal was present or not, as a function
of time. See Fig. 6.1.

• What are the design parameters of each bandpass filter? Compute the center frequencies ωi (or
normalized frequencies fi), and the required relative bandwidth Bi = ( fi,max− fi,min)/ fi, where
fi,max is the maximal frequency that the filter should pass, and fi,min the minimal frequency.

Instead of designing 7 filters, it may be easier to design a single lowpass filter, and transform that into the
required passband filters. Anyway, they all look very similar, only the center frequencies are different.
However, we will look at an alternative that is even simpler.
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Figure 6.2. Demodulation solution for the detection of a touchtone signal.

The output of the ith filter is a sinusoid cos(ωin) at the corresponding frequency ωi (ignoring a possible
phase offset), switched on and off by a switching pattern si[n] ∈ {0,1}. In the end we are only interested
in the switching pattern, which can be considered a “baseband signal” (that concept will appear in the
Telecom B course). The data model of the ith tone is thus

xi[n] = si[n]cos(ωin)

The detection of si[n] from xi[n] may be done in several ways, but the best is to remove the modulation
by the frequency; this is called demodulation. Inverting a “cos” function directly is not recommended
as it frequently becomes zero, but if we write cos(ωin) = (e jωin + e− jωin)/2 we may demodulate xi[n]
simply by multiplying it with e− jωin:

x′i[n] := xi[n]e− jωin = si[n]
1+ e−2 jωin

2
.

This signal consists of the baseband signal si[n] at DC, and a similar term at twice the original frequency
(but negative). The latter term is easily removed using a lowpass filter H(ω). If we apply the same
demodulation to x[n] = ∑i xi[n] which is the original touch-tone signal containing all tones, then we see
that after lowpass filtering, still only si[n] results.

(Note that x′i[n] is complex. In our case this does not really matter, but in general it can be avoided by
also modulating xi[n] with e− jωin and adding the results.)

The complete design is shown in Fig. 6.2.

• (report 24) The assignment is to implement and test this design.

What is the specification for the lowpass filter H(ω)? Should you use a linear-phase filter or phase
doesn’t matter? What is the resulting filter design? Filter-order? Time-domain impulse response?
Verify that the time-domain response is sufficiently compact (why is that necessary?).

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



58 Labday 5: Filter design

Test the demodulation and filtering to one of the “hard” signals in the provided .mat files. Show
your results (time-domain signals in 7 separate plots). A simple energy detection should then lead
to the desired si[n] switching patterns. (We will not discuss the detectors here and you do not have
to implement them.)
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LABDAY 6: SAMPLING
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Digital signal processing starts with sampling. An analog signal is discretized in time and as a conse-
quence the spectrum becomes periodic, which leads to aliasing if we are not careful. Today we look at
some of the details.

Because analog signals are poorly reproduced and require additional hardware, we will instead work
with signals that are already sampled, but at a very high rate (48 kHz). The same issues with aliasing
occur if we want to convert such a signal to a lower rate, e.g., 8 kHz. We will look at such resampling
operations.

Image processing is a special case of signal processing, and we can also apply the resampling theory
here, to scale an image to a different size.

Learning objectives Understanding how sampling modifies signal spectra; the effects of downsampling
(aliasing) and upsampling (interpolation)

Preparation Read the chapter so you know what to expect.

What is needed

– PC with a built-in loudspeaker;

– Matlab audio test signals and test images
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7.1 SAMPLING, ALIASING AND DOWNSAMPLING

In the theory of sampling, we start with a continuous-time signal (also called an analog signal), xa(t), and
sample it uniformly at a rate Fs (in hertz). The corresponding sample period is Ts = 1/Fs (in seconds).
The discrete-time signal (also called digital signal) is x[n] = xa(nTs). Generally a digital signal is also
quantized in amplitude, but we do not discuss that here.

Sampling reduces information and gives rise to aliasing: different continuous-time signals result in the
same discrete-time signal. Consider e.g., a complex sinusoid,

xa(t) = e jΩt = e j2πFt

After sampling, this becomes

x[n] = e jΩTsn = e j2πFTsn = e j2π f n = e j(ωn

where f = FTs and ω = ΩTs = 2πFTs. Because of periodicity, the fundamental interval of values for f
is [0,1] and for ω it is [0,2π]; signals with frequencies outside this interval are mapped to a signal with
a frequency within this interval. See figure 7.1. Usually, we take fundamental intervals f ∈ [−1/2,1/2]
and ω ∈ [−π,π].

More in general, if an analog signal with a spectrum Xa(Ω) is sampled, then the spectrum of the digital
signal x[n] is

X(ω)|ω=ΩTs =
1
Ts

∑
k

Xa(Ω− kΩs) , Ωs = 2π/Ts

As all digital signals, it is periodic in ω with period 2π, this is obtained by summing up periodic shifts of
Xa(Ω), shifted by Ωs = 2π/Ts (or in terms of hertz by Fs = 1/Ts). The summation leads to aliasing.

This leads to the Nyquist condition: a signal should be sampled at at least twice its highest frequency to
be represented uniquely in the fundamental interval, without aliasing. The Shannon theorem is saying
that such signals can be converted back to an analog signal without loss of information.

Aliasinging due to downsampling

To study aliasing in Matlab, we could play with the microphone and the A/D converter attached to
the microphone input of the PC. But the ADC has a built-in anti-aliasing filter that will mask the effects.
However, we can also observe aliasing if we downsample a digital signal. Downsampling means reducing
the sample rate by throwing away a fraction of the samples.

• In Matlab, generate a high-frequency signal:

Fs = 48000; % sample rate

Fi = 7000; % high frequency

N = Fs/2;
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Figure 7.1.
Aliasing. The red signal has frequency ω = 1.1 · 2π, the blue signal frequency 0.1 · 2π. If
we sample only at integer times, samples of the red signal cannot be distinguished from
samples of the blue signal.

n = [0:N-1]; % half a second of data

x = sin(2*pi*Fi/Fs*n);

soundsc(x,Fs);

Next, generate a new signal which consists of every second sample of x[n]:

Fs1 = Fs/2; % = 24 kHz

x1 = x(1:2:end); % downsample by 2

soundsc(x1,Fs1);

This signal is downsampled by a factor of 2, but sounds the same. Next, we downsample the
original signal by a factor of 4:

Fs2 = Fs/4; % = 12 kHz

x2 = x(1:4:end);

soundsc(x2,Fs2);

This time the signal sounds differently. Can you explain why?

• Make plots in time domain:

clf;

plot(n(1:100),x(1:100));
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hold on;

plot(n(1:100),x(1:100),’.’);

n2 = n(1:4:end);

plot(n2(1:25),x2(1:25),’ro’);

• Make also plots in frequency domain. Take care that you use the correct frequency axis.

If we downsample by a factor of M, then the new sample frequency is F ′s = Fs/M. If the highest fre-
quency in the signal is larger than half this frequency, then the normalized frequency fi = Fi/F ′s will be
outside the interval [−1/2,1/2], or ωi ∈ [−π,π]. The frequency will be equivalent to a new frequency
ω′i within the interval, and it is obtained by adding/subtracting multiples of 2π to ωi, or f ′i is obtained by
adding/subtracting multiples of 1 to fi. The corresponding ‘analog’ frequency F ′i = f ′i F ′s .

In the above case, we started with a sinusoid at Fi = 7 kHz. The new sample frequency was F ′s = 12 kHz,
and fi = 7/12 = 0.58, outside the interval [−1/2,1/2]. The value within the interval is f ′i = 0.58−1 =
−0.41, and the analog frequency is F ′i =−5 kHz. The component of the signal at −7 kHz is mapped to
5 kHz. Thus, the downsampled signal sounds like it is 5 kHz. This is the effect of aliasing.

• Let’s generate a chirp signal (which has a continuously changing frequency),

Fs = 48000;

Fmin = 0; Fmax = 12000;

N = 2*Fs;

n = [0:N-1];

f = linspace(Fmin,Fmax,N)/Fs;

x = sin(2*pi*f.*n);

soundsc(x,Fs);

Now, downsample this signal by a factor of 4,

Fs2 = Fs/4;

x2 = x(1:4:end);

soundsc(x2,Fs2);

• (report 25) Make a time-frequency plot of the original signal, and of the downsampled signal. Can
you explain what you see?
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Figure 7.2. Filtering followed by downsampling.

Anti-aliasing filter

In processing audio signals, it frequently occurs that we need to adjust the sample frequency. E.g., studio-
quality audio is sampled at 48 kHz, whereas if we want to transmit this over a fixed-line telephone line,
it has to be limited to a bandwidth of 4 kHz, i.e., the maximal sample rate is 8 kHz. The signal will have
to be downsampled by a factor M = 6.

Obviously there will be information loss. However, it is also important to avoid aliasing: higher frequen-
cies should never be mapped to lower frequencies, because then the downsampled signal will sound very
bad. For this, we need to apply a lowpass filter prior to downsampling. The lowpass filter should be such
that the highest frequency in the signal after lowpass filtering is less than half the new sample rate. Such
a lowpass filter is called an anti-aliasing filter.

Figure 7.2 shows the process of lowpass filtering followed by downsampling of a factor M. Figure 7.3
shows the effect of this process on a signal x[n]. The spectrum after downsampling becomes periodic with
period determined by the new sampling frequency, which is a factor M lower than the original sampling
frequency. Without lowpass filtering, this leads to aliasing. With ideal filters, the lowpass filter should
have a cut-off frequency ωc = π/M. With non-ideal filters, we need to allow for a transition band.

• Design a linear-phase lowpass filter H(z) with cut-off frequency π/M. E.g., use h = fir1(N,1/M)
with N sufficiently large. This will have a damping of 6 dB at the cut-off frequency, which is
perhaps ok for a quick design.

Alternatively, you could make a design with the following specifications:

Sample frequency Fs = 48000 Hz
Cut-off frequency (-3dB) Fc = 3.5 kHz
Stopband frequency F1 = 4 kHz
Stopband damping 40 dB

• Load the audio signal x[n] from Brightspace T4_ca.wav (castagnettes). Its sample rate is 48 kHz.
Play the signal on the loudspeaker.

• Construct a signal x1[n] which is downsampling x[n] by a factor 6 by simply taking every 6th
sample. The new sample frequency is F ′s = 8 kHz.

Play this signal on the loudspeaker. Does it sound right?

• Apply the lowpass filter H(z) to the original signal x[n]. Next, downsample by a factor 6, call the
result x2[n].
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Figure 7.3.
The effect of filtering followed by downsampling on the spectrum of a signal. The pink
box denotes the fundamental interval [0,π].
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Play this signal on the loudspeaker. Does it sound right? (Save this signal for later use.)

• If you like, you can repeat with another signal, T7_gs.wav (german speech), where the effect of
aliasing is also very noticeable, especially in the /ts/ sounds.

7.2 SIGNAL RECONSTRUCTION, UPSAMPLING AND INTERPOLATION

Shannon’s sampling theorem says that it is possible to perfectly reconstruct an analog signal xa(t) from
its samples x[n] = xa(nTs), provided the Nyquist condition holds. This ideal D/A converter consists
in theory of a device that replaces samples (numbers in a computer) x[n] by continuous-time impulses
x[n]δ(n−nTs), followed by an ideal analog lowpass filter Hr(Ω). The effect on the spectrum is

Xa(Ω) = X(ΩTs)Hr(Ω) .

X(ω) is the spectrum of the digital signal. It is periodic with period 2π. The spectrum of the impulse
train is X(ΩTs), it is the same periodic spectrum, now with analog frequency Ω = ω/Ts. The lowpass
filter Hr(Ω) removes all the periodic duplicates in the spectrum. It should cut off at Ωs/2 so that only the
interval Ω ∈ [−Ωs/2,Ωs/2] remains. This corresponds to ω ∈ [π,π].

In time-domain, the filter operation is a convolution

xa(t) = ∑x[n]hr(t−nTs) (7.1)

where hr(t) is the impulse response of Hr(Ω),

Hr(Ω) =

{
Ts |Ω| ≤Ωs/2
0 |Ω|> Ωs/2

⇔ hr(t) =
sin(πt/Ts)

πt/Ts
=: sinc(t/Ts)

Thus, (7.1) becomes

xa(t) = ∑x[n]sinc(
t−nTs

Ts
) (7.2)

which is a sum of sinc-functions, each properly delayed and scaled.

Interpolation

Let’s see how this equation works. For lack of a D/A converter, we will model xa(t) by a densely sampled
digital signal.

• Generate 20 samples of some digital signal x[n]. For example,

x = randn(20,1);

or
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omega_i = 0.4;

n = [0:19]’;

x = sin(omega_i*n);

• Let’s take Ts = 1 second and generate the sinc function hr(t) with a resolution of 10 samples/second
on the interval t ∈ [−5,5]:

t = -5 : 0.1 : 5;

hr = sin(pi*t)./(pi*t);

There is a problem for t = 0, the corresponding value should be hr(0) = 1. It is easier to use the
Matlab function sinc(t).

Make a plot of this signal, plot(t,hr).

• (report 26) To implement (7.2), we replace x[n] by an “impulse train”, still in the digital domain
but with a resolution of 10 samples/second. This is done by inserting 9 zeros in between every two
samples of x[n]:

xx = kron(x, [1; zeros(9,1)]);

The Kronecker product replaces every sample x[n] by a vector x[n][1,0, · · · ,0]T ; it was assumed
that x is a column vector.

Next, filter this signal by hr(t):

xa = conv(xx,hr);

Compute the correct time axis for this signal. It should start at t =−5 and have increments of 0.1.

Make a plot of this signal. Also plot the original samples of x[n]. Do you see that xa(t) interpolates
x[n]? What property of the sinc-function makes this happen?

Your figure could look like the blue curve in Fig. 7.4, where the red curves are x[n]hr(t−nTs).

• (report 27) Other interpolating functions (sampled to 10 samples like hr(t)) are:

h0 = ones(10,1); % zero order hold, time axis is t0 = -0.5:0.1:0.4

h1 = bartlett(21); % linear interpolation, time axis t1 = -1:0.1:1

Show the impulse responses of these filters. Make plots of the effect of these filters on x[n] in time
domain and frequency domain; compare to the effect of hr(t).
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Figure 7.4. Reconstruction of a sampled signal using a sum of sinc functions.

x[n] y[n]↑ L HI(ω)

xE [n] = x[n/L]

Figure 7.5. Upsampling by an integer factor L.

Upsampling

In the previous exercise, we have effectively upsampled the original signal x[n] by a factor of 10. We did
this by inserting 9 zeros between each sample, followed by ideal lowpass filtering.

We can of course do this for any integer factor L. In this case, we insert L−1 zeros between every two
samples of x[n]:

xE [n] =
{

x[k], n = kL
0, elders

The data rate of the “expanded” signal increases by a factor L. There is no loss of information. The effect
on the spectrum is

XE(z) = X(zL) , XE(ω) = X(ωL) .

This results in a compression of the spectrum by a factor L. However, if we express the spectrum in
terms of Ω or F (hertz), then nothing has changed. The only thing that changes is the relation between ω

and Ω, namely 2π maps to the new (higher) sample frequency F ′s = LFs.

In the interval [−π,π], upsampling results in L−1 additional copies of X(ω). We can remove the extra
copies by lowpass filtering, i.e., a filter

HI(ω) =

{
L, |ω|< π/L
0, π/L < |ω|< π

⇔ hI[n] = sinc(
n
L
) .
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Figure 7.6.
Effect of upsampling by a factor L = 6 followed by lowpass filtering on the spectrum of an
audio signal.

The filter is called an “image reject” or interpolating filter. The effect of the filter in time domain is that
the zeros that were inserted are replaced by nicely interpolated values, just as in the previous exercise.
This is the same as first creating an analog signal (ideal D/A conversion), followed by sampling at the
new sample rate.

Upsampling followed by lowpass filtering can be used to increase the sample rate of an audio signal, e.g.,
from 8 kHz to 48 kHz, as in figure 7.2. No information is being added, so the result is likely to sound the
same.

• Implement upsampling by a factor L = 6. You can use

xx = kron(x, [1; zeros(L-1,1)]);

(assuming x is a column vector), and you need interpolation using a lowpass filter with stopband
frequency π/L. E.g., use fir1(N,1/L) with N sufficiently large.

• Apply to the 8 kHz signal you created out of the T4_ca.wav signal in Section 7.1. Listen to both
the upsampled signal xE [n] and the interpolated (filtered) signal y[n]; use soundsc with sample
rate 48e3.

The latter signal should sound like the 8 kHz signal, even if it is now played at 48 kHz.
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7.3 ASSIGNMENT: IMAGE SCALING

An image can be regarded as a 2-D sampled signal, where samples are now called pixels. Many opera-
tions such as filtering and spectrum analysis (DFT) can equally well be applied to images. In many cases
operations can be applied independently to rows and columns: we regard the image as a matrix X, and
apply matrix operations A and B to obtain X′ = AXB. In the case of linear space-invariant filters, A and
B are Toeplitz matrices that implement convolutions.

What is different is that causality does not play a role in image processing: all pixels are available, and
we might easily “go back in space”, whereas this is more difficult in time. On the other hand, edge effects
are important: if we have an image of a certain size, then applying a filter (convolution) to the image, the
convolution will take the pixels outside the specified region as zero (whereas in reality they are not zero
but simply not specified), and the convolution will make the image bigger. Thus, if we apply a 2-D FIR
filter with impulse response running from −L to L in each direction, then the image will be larger by L
pixels on all sides, but due to missing values, the borders are not reliable and the resulting image should
actually be truncated by 2L pixels on each side. Keeping track of “valid pixels” is an important chore in
image processing.

Our aim in this assignment is to scale (resample) an image. As before, if we extend the image, we need
to apply interpolation, whereas if we shrink the image, we need to do anti-aliasing. Aliasing in images
is noticeable in diagonal lines, which will appear jagged (stair-case effect) if you simply drop pixels, or
in patterned (high-frequency) regions, which might show moiré effects when downsampled. This is why
TV newsreaders do not wear pin-striped suits.

Matlab has a function for image scaling, imresize, which uses bilinear (first-order) or bicubic (second-
order) interpolation, because these are FIR filters of limited orders. This will limit the edge effects at the
expense of some aliasing. We will try to see if a higher-order lowpass filter will give better results.

Matlab has a list of demo images, see help imdemos. Let’s work with cameraman.tif, which is a
256×256 often-used black-white test image:

X = imread(’cameraman.tif’);

imagesc(X);

X = double(X); % convert image from uint8 to double

The function imagesc shows the matrix X as an image (using scaling to keep the numbers in range).
For a matrix containing integers, 0 corresponds to black and 255 to white in the default colormap; for a
matrix containing doubles, 0 corresponds to black and 1 corresponds to white. The colormap can be set
using colormap(’gray’). The typecasting to ‘double’ is an annoyance that is needed for compatibility
of multiplications.

The assignent is to take this image, and to scale it by a factor 3/2 and by a factor 2/3.

In the first case, you would first upsample by a factor L = 3, then apply an interpolating filter, followed
by downsampling by a factor M = 2. The downsampling requires first an anti-aliasing filter. Since both
filters are lowpass filters, they can be combined and we need only a single lowpass filter. The strongest
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can be combined

HD(ω)

rate L
MTs

↓M y[n]HI(ω)
xE [n]

rate L/Tsrate 1/Ts

↑ Lx[n]

Figure 7.7. Sample rate conversion by a rational fraction L/M.

condition holds: the cut-off frequency is ωc = min(π/M,π/L), which in this case is ωc = π/3.

In the second case, we would first upsample by a factor L = 2, followed by lowpass filtering, then
downsampling by a factor M = 3. The lowpass filter has the same cut-off frequency as before, ωc = π/3.

Upsampling by a factor L on an image X can be conveniently implemented in Matlab by

E = zeros(L,L); E(1,1) = 1;

XE = kron(X, E);

The Kronecker product replaces every entry xi, j of X by a matrix xi, jE. The matrix E has one nonzero
entry; formally that should be the entry in the center, but here the corner entry is taken as this works
better with a causal lowpass filter (anyway, we have to keep track of the validity of the edges).

• Design a lowpass filter with ωc = π/3. We prefer this to be a linear-phase FIR filter (why?), with
a filter order N which is a multiple of L. The filter order should be small to limit the edge effects,
although too small will not result in a good lowpass filter. E.g., use fir1(N,1/3) with N = 6, 9
or 12.

Compare to a triangle-shape filter (bartlett(7)) that provides a simple linear interpolation be-
tween the nonzero samples.

• (report 28) Scale the image by a factor L/M = 3/2, following the scheme of Fig. 7.7, where the
filter needs to be applied to all rows and then all columns of the image.

Plot the result. Compare to the result of Matlab imresize(M,3/2,’bilinear’). Do you see
differences?

• (report 29) Scale the image by a factor L/M = 2/3, following the scheme of Fig. 7.7.

Plot the result. Compare to the result of Matlab imresize(X,2/3,’bilinear’). Do you see
differences?

The cameraman picture is not of high quality, and artifacts in the original image are likely to dominate
any differences between your method and the standard Matlab function. Other suitable B/W test images
included in Matlab are e.g., moon.tif, AT3_1m4_01.tif.
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Matlab implements image scaling with an arbitrary scaling factor by reconstructing the analog “signal”
xa(t) (in fact 2-D), using an appropriate interpolation function such as a linear, cubic or sinc function,
but only evaluating this at the samples needed in the new image.

The end! Hope you enjoyed the prakticum; please give feedback. See you at EPO4.

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



72 Labday 6: Sampling

(2018) Practicum EE2T11 Telecommunication: Signals and Systems



Appendix A

DECONVOLUTION IN TIME DOMAIN

Channel estimation starts with understanding the inversion of a transfer function. Suppose we have a
filter X(z), and wish to have a filter G(z) that “undoes” this filter. In the z-domain, that is easy enough:
the inverse filter is G(z) = 1/X(z). It is known as an equalizer, and applying G(z) to undo a convolution
by X(z) is called deconvolution.

Suppose that X(z) is a rational filter,

X(z) =
B(z)
A(z)

Then the zeros of X(z) become the poles of G(z). Obviously, we require G(z) to be a stable causal
filter. Thus, the zeros of X(z) should lie within the unit circle. A transfer function which satisfies this
requirement is called minimum phase. In this case, the corresponding impulse response g[n] is causal and

X(z)G(z) = 1 ⇔ x[n]∗g[n] = δ[n]

If X(z) is not minimum phase, a stable causal inverse does not exist. However, very often it is sufficient
if x[n] ∗ g[n] = δ[n−K] for some integer K > 0: a possible delay is OK. This allows to approximate
functions that do not have a stable causal inverse.

Only if X(z) is an allpole function will G(z) be an FIR filter. Thus, in general G(z) will not be FIR.
However, it is possible to approximate stable causal transfer functions by a FIR filter, by just using a
large number of taps of its impulse response.

• Consider X(z) = 1− 1
2 z−1. What is the impulse response x[n]? What is the location of the zero of

X(z)? Is this a minimum-phase transfer function?

What is the inverse G(z)? Is it stable? What is g[n]?

• Idem for X(z) = 1−2z−1.

Inversion of a transfer function via matrix inversion

Assume that X(z) has a stable causal inverse G(z). If we know the time domain sequence (impulse
response) x[n], how can we compute g[n]? We write the convolution x[n]∗g[n] = δ[n] in matrix form, for
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n≥ 0:

x[n]∗g[n] = δ[n] ⇔
∞

∑
k=0

x[n− k]g[k] = δ[n]

⇔



x[0] 0
x[1] x[0]
x[2] x[1] x[0]
x[3] x[2] x[1] x[0]
x[4] x[3] x[2] x[1] x[0]

...
...

. . .





g[0]
g[1]
g[2]
g[3]
g[4]

...


=



1
0
0
0
0
...


. (A.1)

(The square box indicates the location of the (0,0) entry of the matrix.) The matrix has a Toeplitz form:
it is constant along diagonals. Such matrices often occur when you write down the equations for linear
time-invariant systems.

These are infinite-size matrices, and not suitable for computations. If we approximate G(z) by a finite
length FIR filter, of length L, then we obtain the equations

x[n]∗g[n] = δ[n] ⇔
L−1

∑
k=0

x[n− k]g[k] = δ[n]

⇔



x[0] 0

x[1]
. . .

...
. . . x[0]

x[L−1]
. . . x[1] x[0]

x[L]
. . . x[2] x[1]

...
. . .

...
...




g[0]
g[1]

...
g[L−1]

=


1
0
0
0
...

 (A.2)

Now the matrix has an infinite number of rows, but only L columns. Let us truncate the matrix to be
square L×L: 

x[0] 0

x[1]
. . .

...
. . . x[0]

x[L−1] · · · x[1] x[0]




g[0]
g[1]

...
g[L−1]

=


1
0
...
0

 ⇔ Xg = e1

Since it is square, we can invert the matrix (e.g., using back substitution), assuming x[0] 6= 0. Note that
only L samples of x[n] are used. If a stable causal equalizer of length L exists, (and x[0] 6= 0) we will find
it in this way, but we will not know from these equations if such an equalizer exists or not. In general,
we find only an approximation.
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Example 1: Let X(z) = 1− 1
2 z−1: a minimum-phase function. We expect G(z) = 1+ 1

2 z−1+
1
4 z−2 + 1

8 z−3 + · · ·. In matrices:

X =


1 0
−0.5 1

−0.5 1
0 −0.5 1

 ⇒ X−1 =


1 0

0.5 1
0.25 0.5 1
0.125 0.25 0.5 1


The equalizer g (truncated to L samples) corresponds to the first column of X−1.

Example 2: Let X(z) = 1− 2z−1: a non-minimum phase function. A causal expansion of
1/X(z) gives G(z) = 1+ 2z−1 + 4z−2 + 8z−3 + · · ·: this is an unstable transfer function. In
matrices:

X =


1 0
−2 1

−2 1
0 −2 1

 ⇒ X−1 =


1 0
2 1
4 2 1
8 4 2 1


For larger matrices, we will quickly run into numerical problems.

If X(z) is not minimum phase (as in the above example), then G(z) is not stable, and we do not have
that g[n]→ 0 for large n. Truncation to length L will not be accurate. The problem stems from the fact
that in (A.1), we forced g[n] to be causal. A better solution is to start computing the sequence at g[−K],
for some K > 0. This allows to model the unstable part of g[n] as a stable but anti-causal part, which is
approximated by K FIR coefficients. The equations to solve are


x[0] 0

x[1]
. . .

...
. . . x[0]

x[L−1] · · · x[1] x[0]





g[−K]
...

g[0]
...

g[−K +L−1]

=


0
0
1
0


where the matrix is L×L, and the vector on the right hand side has L entries and the ‘1’ entry appears on
the Kth position.

Example 3: If X(z) = z−1, then we would like to obtain G(z) = z, but this is anti-causal.
Choosing K = 1 and L = 4, we obtain the matrix equation

0 0
1 0

1 0
0 1 0




g[−1]
g[0]
g[1]
g[2]

=


0
1
0
0

 ⇒


g[−1]
g[0]
g[1]
g[2]

=


1
0
0
0


Note that the matrix X is not invertible, but that there still is a valid solution to the system of
equations.
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As seen in the above example, it is in general not a good idea to reduce the system of equations to a
square L×L matrix. A better solution is to truncate the infinite matrix in (A.2) to a “tall” N×L matrix:

x[0] 0
x[1] x[0]

... x[1]
. . .

x[Nx−1]
. . . . . . x[0]

0 x[Nx−1]
. . . x[1]

...
. . .

...
...

0 · · · 0 x[Nx−1]





g[−K]
...

g[0]
...

g[−K +L−1]

=



0
0
1
0
...
0


⇔ Xg = eK (A.3)

In the above, we assumed that x has finite length Nx. In that case, we can take N = Nx +L−1; if we take
a larger N, we just introduce rows that are zero.

To obtain the equalizer coefficients g, we need to solve Xg = eK . Since X is a tall matrix, we cannot use
the usual inverse. However, if its columns are linearly independent (it has full column rank), there exists
a left inverse X† such that X†X = I, namely

X† = (XT X)−1XT

Here, XT X is square L×L, and invertible if the columns of X are linearly independent. Note that XT X
may be invertible even if x[0] = 0.

Using this technique, we can obtain good FIR approximations for the inverse of most filters X(z), spec-
ified via Nx samples of their impulse response x[n]. Design choices are L and K. Generally, L should be
large enough so that the truncation of g[n] to L coefficients is accurate. Looking at the equation g=X†eK ,
we see that the role of K is to select the Kth column of X†.

Example 4: Again consider X(z) = 1−2z−1. We aim for an anticausal but “stable” solution:

G(z) =
1

1−2z−1 =
−1

2 z

1− 1
2 z

=−1
2

z(1+
1
2

z+
1
4

z2 + · · ·)

In matrices (N = 5,L = 4),

X=


1 0
−2 1

−2 1
−2 1

0 −2

 ⇒ X† =


0.2493 −0.3754 −0.1877 −0.0938 −0.0469
0.1232 0.0616 −0.4692 −0.2346 −0.1173
0.0587 0.0293 0.0147 −0.4927 −0.2463
0.0235 0.0117 0.0059 0.0029 −0.4985


For these small sizes, it is not easy to see a structure in X†. For larger N and L, it is seen that
the lower triangular part vanishes, and the upper triangular part exhibits the expected geo-
metric sequence [· · · ,−1

8 ,−
1
4 ,−

1
2 , 0 ]T . The result to which we converge is also obtained if
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we drop the top row of X:

X =


−2 1 0

−2 1
−2 1

0 −2

 ⇒ X−1 =


−1

2 −1
4 −1

8 − 1
16

−1
2 −1

4 −1
8

−1
2 −1

4
−1

2


Conclusions: (1) in theory, we should invert an infinite-size matrix X, (2) in practice, we truncate X to a
finite size; we need to take X “tall”, with N and L sufficiently large, to obtain good results; (3) there are
various options for the equalizers, corresponding to the various columns of X†. (Their choice is beyond
the scope of this tutorial.)
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Appendix B
THE SVD, MATRIX INVERSION AND THE
CONDITION NUMBER

The SVD

The singular value decomposition should have been presented in the Linear Algebra course (but probably
was not). Here is a brief summary. For a given matrix X of size m×n, where we assume m > n, the SVD
is defined by

X = UΣΣΣVT , U = [u1 · · · um] , ΣΣΣ =


σ1

σ2
. . .

σn

0 · · · · · · 0

 , V = [v1 · · · vn]

where U : m×m and V : n×n are orthogonal matrices, and ΣΣΣ is a diagonal matrix of size m×n containing
the singular values in descending order. Note that ΣΣΣ has a block of m−n “zero” rows at the bottom.

The Matlab command to compute this decomposition is

[U,S,V] = svd(X)

Since ΣΣΣ has m− n rows with zeros, and often m can be very large, it is inefficient to keep so many
columns of U that are anyway not used (they are multiplied by the zeros). Thus, we can also define the
“economy-size” SVD, where

X = UΣΣΣVT , U = [u1 · · · un] , ΣΣΣ =


σ1

σ2
. . .

σn

 , V = [v1 · · · vn]

where U : m× n is a tall matrix of the same size as X, and V and ΣΣΣ are n× n. Note that UT U = I but
UUT 6= I because it is an m×m matrix of rank n.

The Matlab command to compute this decomposition is
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[U,S,V] = svd(X,0)

where the 0 option asks for the “economy size” SVD. From now on, we will assume this decomposition.

The singular values give important information on the dominant directions in the column span and row
span of X. This is seen by writing out the matrix equations, which gives

X = UΣΣΣVT = u1σ1vT
1 +u2σ2vT

2 + · · ·+unσnvT
n . (B.1)

Each term of the form ukσkvT
k is a rank-1 matrix. If σ1 is large, then the corresponding component u1vT

1
is dominantly present in X, and u1 is the dominant direction in the column span of X. In fact, u1σ1vT

1 is
the best rank-1 approximation of X (in the Least Squares sense).

If σn is zero, then one dimension is missing in the matrix: it is rank deficient by order 1. In general, if
X is of rank d, then only d singular values σ1, · · · ,σd are nonzero. This is also seen from (B.1) because
it will then consist of the sum of d rank-1 components. The best rank-d approximation of a matrix X is
obtained by setting σd+1 = · · ·= σn = 0.

If X is full column rank, then the left inverse of X is X† = (XT X)−1XT . Inserting X = UΣΣΣVT , we obtain
that this can also be written as

X = VΣΣΣ
−1UT (B.2)

which is a slightly more general expression. Essentially, we are inverting the singular values here. We
can easily verify that X†X = I and

XX† = UUT

If we define P = UUT then we see that P is an orthogonal projection, because PP = P and PT = P. It is
a projection onto the column span of X.

Connection to the eigenvalue decomposition

If we take the SVD of X and “square” it to XT X, we obtain

XT X = VΣΣΣ
2VT

Matrix XT X is a symmetric matrix; the decomposition is recognized as the eigenvalue decomposition of
the symmetric matrix XT X, where the eigenvalues are given by the entries of ΣΣΣ

2, and the eigenvectors
by the columns of V.

Similarly, XXT has eigenvalue decomposition

XXT = UΣΣΣ
2UT

The point of the SVD is that it gives similar information as we obtain from an eigenvalue decomposition,
but (1) it is applicable to any matrix (e.g., non-square matrices), and (2) it always exists, whereas the
eigenvalue decomposition only exists for “regular” matrices. Also, there are numerically very robust
algorithms to compute the decomposition.
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Rank reduction using the SVD

Equation (B.2) shows that, when we invert a matrix X, the smallest singular values of X become the
largest singular values of X†. Sometimes, if a matrix is almost rank deficient (σn is very small), that
small component will dominate the inverse, which can give rise to numerical problems, as we will see
later. In that case, we propose to first approximate X to a lower rank d, by setting all singular values
below a certain threshold ε equal to zero:

X̂ = u1σ1vT
1 +u2σ2vT

2 + · · ·+udσdvT
d

which we can write as

X̂ = ÛΣ̂V̂T , Û = [u1 · · · ud ] , Σ̂ =


σ1

σ2
. . .

σd

 , V̂ = [v1 · · · vd ] .

This is called the Truncated SVD.

The corresponding approximate inverse is

X̂† = V̂Σ̂−1ÛT .

This is called the Moore-Penrose pseudo-inverse of X̂. It satisfies the projection properties:

X̂X̂† = ÛÛT = Pc , X̂†X̂ = V̂V̂T = Pr

where Pc is a projection onto the dominant column span of X, and Pr a projection onto the dominant row
span. The largest singular value of the pseudo-inverse is σ

−1
d .

This pseudo-inverse is commonly used if we are not sure if a matrix is full rank. Typically, we compare
the singular values of X to a threshold (ε) and replace them by 0 if they are below the threshold, leading
to X̂. Next, we compute X̂† by inverting the non-zero singular values.

Matrix norms

The norm of a vector x is
‖x‖=

√
∑

i
|xi|2 =

√
xT x .

This is the vector 2-norm. For a matrix X, we can define several norms. The “Frobenius norm” is based
on the sum-square of all entries:

‖X‖F =
√

∑
i, j
|xi j|2 .
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However, we will sometimes also need to use other norms. The “induced 2 norm” or matrix 2-norm
‖X‖2, but usually written simply as ‖X‖, measures how much a matrix can increase the 2-norm of a
vector v:

‖X‖= max
v

‖Xv‖
‖v‖

(B.3)

Without loss of generality, we may normalize the vectors v such that ‖v‖ = 1. We can also insert the
SVD. We then obtain

‖X‖2 = max
‖v‖=1

‖Xv‖2 = max
‖v‖=1

vT (XT X)v = max
‖v‖=1

vT (VΣΣΣ
2VT )v .

From this we can deduce that the vector v that maximizes the norm is given by v = v1, the dominant
right singular vector. The matrix 2-norm of X is then seen to be equal to σ1.

Similarly, the matrix 2-norm of X† is given by σ−1
n .

An important property that follows from the definition of the norm (B.3) is

‖Xv‖ ≤ ‖X‖‖v‖ ∀v

where the maximum is only achieved for v = αv1.

The condition number

The condition number of X is defined by

c(X) :=
σ1

σn

Thus, we always have c(X) ≥ 1. If it is large, then X is hard to invert (and X† is sensitive to small
changes). The smallest condition number for a matrix is c = 1, which is achieved for an orthogonal
matrix.

Interpretation of the condition number

When we compute the inverse of a matrix, its condition number is very important. Indeed, the condition
number gives the relative sensitivity of the solution of a linear systems of equations. Let us suppose that
we wish to solve a system of equations Ax = b, where we take A : n×n square. We have

Ax = b ⇒ x = A−1b

Now, if we perturb the data vector b by a noise vector e, we obtain

b′ = b+ e ⇒ x′ = x+A−1e
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Define σ1 = ‖A‖ , σ−1
n = ‖A−1 ‖, and use ‖Ax‖ ≤ ‖A‖‖x‖. Then

‖A−1e‖ ≤ σ−1
n ‖e‖

‖b‖ ≤ σ1‖x‖
‖x′−x‖
‖x‖

≤ σ−1
n
‖e‖
‖x‖

≤ σ
−1
n σ1

‖e‖
‖b‖

This measures the relative change in the solution vector x, and shows that any error in b is potentially
magnified by a factor equal to the condition number.

If a matrix has a poor condition number, the usual strategy is not to invert it directly, but to do a rank
reduction to rank d, and compute the pseudo-inverse as shown before.

(2018) Practicum EE2T11 Telecommunication: Signals and Systems


	Introduction
	Scope
	Time schedule and deadlines
	Facilities
	Reports
	Grading
	Futher reading

	Labday 1: Convolution
	Convolution
	Room channel impulse response
	Audio signals
	Correlation

	Labday 2: Frequency domain and the Fourier Transform
	Discrete-Time Fourier Transform
	Plotting a transfer function
	A signal in time domain and frequency domain
	Time-frequency plot
	Zero padding
	The convolution property
	Assignment: telephone touch-tone detection
	Homework days — Midterm report

	Labday 3: channel estimation
	Channel estimation using matrix inversion
	Invertibility and correlations
	Channel estimation using a Matched Filter
	Deconvolution in frequency domain

	Labday 4: audio channel measurements
	Playing with the loudspeaker and the microphone
	Manual: Model for the audio beacon signal
	Test using the Matlab audio beacon
	TDOA estimation

	Labday 5: Filter design
	Digital FIR filter design using the window method
	Optimal equiripple FIR filter design using Parks-McClellan
	Digital IIR filter design via analog filter design
	Elliptic filter design
	Assignment: touchtone detector

	Labday 6: Sampling
	Sampling, aliasing and downsampling
	Signal reconstruction, upsampling and interpolation
	Assignment: image scaling

	Deconvolution in time domain
	The SVD, matrix inversion and the condition number

