

FID-A: The FID Appliance

Version 1.1
User Manual

Jamie Near

06 February 2018

Acknowledgements:

I would like to thank the following people for their

contributions to developing the FID-A toolkit:

Robin Simpson

Peter Jezzard

Philip Cowen

Gabriel Devenyi

Philip Ehses

Martyn Klassen

Richard Edden

Ashley Harris

Kimberly Chan

Mark Mikkelsen

Chathura Kumaragamage

Jay Hennessy

Elvisha Dhamala

Franck Lamberton

Esin Ozturk

Table of Contents:

1. Introduction ... 7
1.1. Simulation Toolbox ... 8
1.2. RF Pulse Toolbox .. 10
1.3. Input-Output Toolbox .. 11
1.4. Processing Toolbox .. 11
1.5. Example Run Scripts ... 12
1.6. Data structure formatting 13
1.7. Example Data .. 16

2. Simulation Tools .. 17
2.1. sim_Hamiltonian.m ... 17
2.2. sim_evolve.m .. 17
2.3. sim_excite.m .. 17
2.4. sim_excite_arbPh.m .. 18
2.5. sim_gradSpoil.m ... 18
2.6. sim_laser.m ... 19
2.7. sim_lcmrawbasis.m ... 19
2.8. sim_make2DSimPlot.m ... 20
2.9. sim_megapress.m ... 21
2.10. sim_megapress_shaped.m 21
2.11. sim_megapress_shapedEdit.m 22
2.12. sim_megapress_shapedRefoc.m 23
2.13. sim_megaspecial_shaped.m 24
2.14. sim_onepulse.m .. 25
2.15. sim_onepulse_arbPh.m .. 26
2.16. sim_onepulse_shaped.m 26
2.17. sim_press.m ... 27
2.18. sim_press_shaped.m .. 27
2.19. sim_readout.m ... 28
2.20. sim_rotate.m .. 29
2.21. sim_rotate_arbPh.m .. 29
2.22. sim_shapedRF.m .. 29
2.23. sim_spinecho.m .. 30
2.24. sim_spinecho_shaped.m 31
2.25. sim_spinecho_xN.m ... 31
2.26. sim_spoil.m ... 32
2.27. sim_steam.m ... 32
2.28. sim_steam_gradSim.m ... 32

3. RF Pulse Tools .. 33
3.1. rf_blochSim.m ... 33
3.2. rf_dualBand.m ... 33
3.3. rf_freqshift.m .. 34
3.4. rf_gauss.m .. 34
3.5. rf_hs.m ... 35
3.6. rf_refocusedComponent.m 35

3.7. rf_resample.m ... 36
3.8. rf_sinc.m ... 36

4. Input-Output Tools .. 36
4.1. io_loadRFwaveform.m ... 36
4.2. io_loadjmrui.m .. 37
4.3. io_loadlcmdetail.m .. 37
4.4. io_loadspec_GE.m .. 37
4.5. io_loadspec_IMA.m ... 38
4.6. io_loadspec_bruk.m .. 38
4.7. io_loadspec_data.m .. 39
4.8. io_loadspec_irBruk.m .. 39
4.9. io_loadspec_sdat.m .. 40
4.10. io_loadspec_twix.m .. 40
4.11. io_loadspec_varian.m .. 41
4.12. io_readRF.m ... 41
4.13. io_readRFBruk.m ... 41
4.14. io_readRFtxt.m .. 42
4.15. io_readjmrui.m .. 42
4.16. io_readlcmcoord.m ... 42
4.17. io_readlcmcoord_getBackground.m 43
4.18. io_readlcmraw.m ... 43
4.19. io_readlcmraw_basis.m 43
4.20. io_readlcmraw_dotraw.m 44
4.21. io_readlcmtab.m ... 44
4.22. io_readpta.m .. 44
4.23. io_writeRF.m .. 45
4.24. io_writejmrui.m ... 45
4.25. io_writelcm.m ... 45
4.26. io_writelcmraw.m .. 46
4.27. io_writepta.m ... 46

5. Processing Tools .. 46
5.1. addphase.m .. 46
5.2. addphase1.m ... 47
5.3. op_ISIScombine.m .. 47
5.4. op_addNoise.m ... 48
5.5. op_addScans.m ... 48
5.6. op_addphase.m ... 48
5.7. op_addphaseSubspec.m .. 49
5.8. op_addrcvrs.m ... 49
5.9. op_alignAllScans.m .. 50
5.10. op_alignAllScans_fd.m 50
5.11. op_alignAverages.m .. 51
5.12. op_alignAverages_fd.m 51
5.13. op_alignISIS.m .. 52
5.14. op_alignMPSubspecs.m .. 52
5.15. op_alignMPSubspecs_fd.m 52
5.16. op_alignScans.m ... 53
5.17. op_alignScans_fd.m .. 53
5.18. op_alignrcvrs.m ... 54
5.19. op_ampScale.m ... 54
5.20. op_arsos.m .. 55
5.21. op_autophase.m .. 55

5.22. op_averaging.m .. 55
5.23. op_combineRcvrs.m ... 56
5.24. op_combinesubspecs.m .. 56
5.25. op_complexConj.m .. 56
5.26. op_concatAverages.m ... 57
5.27. op_concatSubspecs.m ... 57
5.28. op_creFit.m ... 57
5.29. op_dccorr.m ... 58
5.30. op_downsamp.m ... 58
5.31. op_ecc.m .. 58
5.32. op_fddccorr.m ... 59
5.33. op_filter.m ... 59
5.34. op_freqAlignAverages.m 59
5.35. op_freqAlignAverages_fd.m 60
5.36. op_freqrange.m .. 60
5.37. op_freqshift.m .. 61
5.38. op_freqshiftSubspec.m 61
5.39. op_gaussianPeak.m ... 61
5.40. op_getLW.m .. 62
5.41. op_getPeakHeight.m .. 62
5.42. op_getSNR.m ... 62
5.43. op_getcoilcombos.m .. 63
5.44. op_getcoilcombos_specReg.m 63
5.45. op_integrate.m .. 64
5.46. op_leftshift.m .. 64
5.47. op_lorentz.m .. 65
5.48. op_lorentz_linbas.m ... 65
5.49. op_lorentzianPeak.m ... 66
5.50. op_makeFreqDrift.m .. 66
5.51. op_makePhaseDrift.m ... 66
5.52. op_median.m ... 67
5.53. op_movef0.m ... 67
5.54. op_peakFit.m .. 67
5.55. op_phaseAlignAverages.m 68
5.56. op_phaseAlignAverages_fd.m 68
5.57. op_plotfid.m .. 69
5.58. op_plotspec.m ... 69
5.59. op_ppmref.m ... 69
5.60. op_relyTest.m ... 70
5.61. op_removeWater.m .. 70
5.62. op_rmNworstaverages.m 71
5.63. op_rmbadaverages.m .. 71
5.64. op_rmworstaverage.m ... 72
5.65. op_subtractScans.m .. 72
5.66. op_takeaverages.m ... 72
5.67. op_takesubspec.m .. 73
5.68. op_timerange.m .. 73
5.69. op_unfilter.m ... 73
5.70. op_zeropad.m .. 73
5.71. op_zerotrim.m ... 74

6. Example Run Scripts 74
6.1. run_getLWandSNR.m ... 75

6.2. run_make2DSimPlot.m ... 75
6.3. run_megapressproc.m ... 76
6.4. run_megapressproc_GEauto.m 77
6.5. run_megapressproc_auto.m 78
6.6. run_pressproc.m ... 78
6.7. run_pressproc_brukAuto.m 79
6.8. run pressproc_GEauto.m 80
6.9. run_pressproc_auto.m .. 80
6.10. run_simExampleBasisSet.m 81
6.11. run_simMegaExTEShaped.m 82
6.12. run_simMegaPressShaped.m 83
6.13. run_simMegaPressShapedEdit.m 84
6.14. run_simMegaPressShapedRefoc.m 85
6.15. run_simMegaSpecialShaped.m 86
6.16. run_simPressShaped.m .. 87
6.17. run_simSpinEchoShaped.m 88
6.18. run_specialproc.m ... 88
6.19. run_specialproc_auto.m 89
6.20. run_specialproc_fmrs.m 89
6.21. run_specialproc_fmrs_slidingWindow.m 90

7. Graphical User Interfaces (GUIs) 91
7.1. DiffTool .. 91
7.2. SpecTool .. 92
7.3. subSpecTool ... 93

8. Processing the Example Data 94
8.1. Processing GE PRESS data 95
8.2. Processing GE MEGA-PRESS data 97
8.3. Processing Siemens MEGA-PRESS data 99
8.4. Processing Siemens SPECIAL data 102
8.5. Processing Bruker PRESS data 104

1. Introduction
The FID Appliance (FID-A) is an open-source software package for

simulation of MRS experiments, design and analysis of

radiofrequency (RF) pulses, and processing of MRS data. The

software is freely available for download (www.github.com/CIC-

methods/FID-A).

The FID-A software package consists of four separate toolboxes:

• The Simulation Toolbox for simulation of in vivo MRS

experiments,

• The RF-pulse Toolbox, for designing and simulating

radiofrequency pulse waveforms,

• The Input-output Toolbox, for reading and writing data

between MATLAB and other useful data formats,

• and The Processing toolbox, for processing of in vivo MRS

data.

In addition to the toolboxes listed above, FID-A also comes with

a library of Example Run Scripts, which provide examples of

useful “pipelines” for NMR simulation and data processing. The

example run scripts each make use of combinations of the various

functions within the FID-A toolboxes. A library of Example

Data, consisting of actual in vivo and in vitro MRS data in a

few different vendor formats, is also provided with the FID-A

toolkit, and can be used to test the functionality of some of

the Example Run Scripts. Finally, although the FID-A toolbox is

primarily MATLAB command-line based, a few graphical user

interfaces are also provided to assist with processing tasks in

which visual feedback is required, such as manual phasing of

spectra, and visual alignment of spectra or sub-spectra prior to

subtraction.

The FID-A toolboxes are each described briefly below:

1.1. Simulation Toolbox

The FID-A NMR simulation toolbox is based on an implementation

of the density matrix formalism, where the evolution of the spin

system in a given NMR experiment is described by successive

evolutions of the density matrix by time-independent Hamiltonian

operators.

The simulation toolbox contains built-in functions for

simulating the basic components of an MRS pulse sequence,

including excitation (sim_excite.m), delays (sim_evolve.m),

rotation using ideal (sim_rotate.m) and shaped (sim_shapedRF.m)

radiofrequency pulses, and signal readout (sim_readout.m).

Using these basic pulse sequence elements, common in vivo MRS

pulse sequences are also implemented, including the FID

(sim_onepulse.m), PRESS (sim_press.m), STEAM (sim_steam.m) and

spin-echo (sim_spinecho.m) sequences.

Simulation is performed on a given spin-system by specifying the

pulse timings and the chemical shifts and coupling constants of

the spin-system of interest. A full set of common metabolite

spin-system definitions is provided based on values previously

published by Govindaraju et al (NMR Biomed 2000, 13:129-153),

Near et al (Magn Reson Med 2013, 70(5):1183-1191 (GABA)) and

Choi et al (Magn Reson Med 2014, 72(2):316-323 (Citrate)). Spin

system definitions can be found in {FID-

A_path}/simulationTools/metabolites/, where {FID-A_path} is the

path to the root folder of the FID-A software package. Each

metabolite’s spin system definition is contained within a

structure with two fields: “shifts” and “J”. Shifts is a

vector of length N, which contains the chemical shift value (in

ppm) for each of the N spins in the spin system. J is an N x N

matrix specifying the coupling constant (in Hz) between each

spin and every other spin in the system. For spin systems with

more than 6 or 7 spins, the spin system is sometimes broken down

in to multiple independent (uncoupled) sub-groupings with fewer

spins. This is because the computation time increases more than

linearly with increasing number of spins, and so it is much more

computationally efficient to simulate, say two groups of spins

with 6 protons each rather than simulating one group of 12

protons. Finally, some spin systems have been reduced in size

due to redundancy. For example, scyllo inositol consists of

nine magnetically equivalent protons, and is therefore most

easily simulated as a single proton. However, the user must

then remember to scale the intensity of Scyllo Inositol

Simulations by a factor of 9. Such an amplitude scaling can

easily be done using one of the tools from the FID-A processing

toolbox. The example below shows how one can easily generate

and display a scyllo inositol spectrum using just four lines of

code:

load Scyllo; %Load the spin system

scyllo = sim_onepulse(2048,2000,3,6,sysScyllo); %Simulate

scyllo_scaled = op_ampScale(scyllo,9); %Do amplitude scaling

op_plotspec({scyllo,scyllo_scaled}); %Plot

This example highlights one of the nice features of the FID-A

software package; namely that the operations in the processing

toolbox can be applied to both simulated data as well as real

experimental data.

In FID-A simulations, excitation and refocusing RF pulses can be

modeled as ideal (instantaneous) rotations, or fully shaped RF

waveforms, depending on the user requirements. In the case of

shaped RF pulses, phase cycling can be performed to remove

unwanted coherences. Furthermore, in the case of a shaped slice

selective pulse, a single simulation corresponds to one point in

space, which must be specified relative to the centre of the

slice selective pulse. In order to simulate the result of a

full in vivo MRS experiment involving shaped localization

pulses, it is necessary to run the simulation over many points

in space (with phase cycling), and then combine the results.

Function names in the simulation toolbox begin with the prefix

“sim_”.

1.2. RF Pulse Toolbox

The FID-A RF toolbox enables the creation of basic RF pulse

waveforms, and Bloch simulation to determine the resulting

excitation/refocusing/inversion profiles, as well as frequency

shifting and resampling of rf waveforms. RF pulses are stored

in MATLAB structure format, with fields corresponding to the RF

waveform, the type of rf pulse (excitation, inversion,

refocusing), the time-bandwidth product of the rf pulse, and the

time-B1 product. The time-bandwidth product and time-b1 product

of the rf pulse are calculated automatically when the rf pulse

is initialized using the io_loadRFwaveform.m function. These

values can then be used to calculate the required B1 amplitude

to achieve a certain flip angle in bloch simulations (see

rf_blochSim.m) or to calculate the required gradient strength

for slice selection (see run_simMegaPressShaped.m). Function

names in the RF-pulse toolbox begin with the prefix ”rf_”.

1.3. Input-Output Toolbox

The FID-A Input-Output toolbox contains “load” functions to

accept MRS data in MRI vendor data formats (Siemens, Agilent,

Philips, Bruker, GE), and store them in MATLAB. It also

contains “load” functions to accept MRS data from other data

processing or analysis software packages (LCModel, jMRUI), and

“write” functions to export MRS data back into those formats.

Finally, the Input-Output toolbox also contains “load” functions

to accept radiofrequency pulse waveforms in MRI vendor data

formats (Siemens, Agilent), and “write” functions to export

newly designed RF pulses back into vendor formats for use on the

scanner. All of the functions in the Input-Output toolbox begin

with the prefix “io_”.

1.4. Processing Toolbox

Once data has been loaded into MATLAB using the FID-A Input-

Output toolbox, the data can then be operated on using any of

the over 50 different processing operations, including (but not

limited to) filtering (op_filter.m), zeropadding (op_zeropad.m),

time domain truncation (op_leftshift.m and op_zerotrim.m),

frequency domain truncation (op_freqrange.m), eddy current

correction (op_ecc.m), removal motion corrupted averages

(op_rmbadaverages.m), retrospective frequency and phase drift

correction (op_alignAverages.m and op_alignAverages_fd.m, Near

et al, Magn Reson Med 2014, DOI: 10.1002/mrm.25094), combination

of multi-element RF coil data (op_addrcvrs.m and

op_combineRcvrs.m), and zero- and first-order phase corrections

(op_addphase.m).

These functions can be nested within one another. For example,

to load a spectrum, combine the receivers, combine the averages

and then filter the result, can be done using the following

single line of code:

out=

op_filter(op_averaging(op_addrcvrs(op_loadspec_twix(‘filename.dat’),1,’w’),5)

;

where the argument “5” represents a 5 Hz exponential filter,

the argument “‘w’” specifies that a weighted coil

recombination should be performed, and the argument “1”

specifies that the phases and amplitudes of the rf coil

channels should be determined using the first point in the

time domain.

Function names in the processing toolbox begin with the prefix

“op_”, which stands for operator.

1.5. Example Run Scripts

The {FID-A_dir}/exampleRunScripts directory contains a few

examples of full MRS data processing pipelines. These include:

run_specialproc.m, run_pressproc.m, and run_megapressproc.m.

These “pipeline” operations begin with raw MRS data in Siemens

.dat format and then process the data in a logical step-by-step

fashion to generate fully processed data that is ready to be

analyzed using one of the leading MRS analysis software packages

(LCModel, jMRUI or Tarquin). Processing steps performed in

these pipelines include combination of receive channels

(op_addrcvrs.m), removal of motion corrupted averages

(op_rmbadaverages.m), spectral registration of averages

(op_alignAverages.m), and combination of averages

(op_averaging.m). Sample MRS data for testing these data

processing pipelines are provided with the FID-A toolkit and can

be found in the {FID-A_dir}/exampleData directory (see Section

1.7 below).

In addition to processing pipelines, the {FID-

A_dir}/exampleRunScripts directory contains some examples of how

to run complicated simulations involving pulse sequences with

shaped rf pulses (run_simMegaPressShaped.m,

run_simMegaPressShapedEdit.m, run_simMegaPressShapedRefoc.m,

run_simMegaSpecialShaped.m, run_simSpinEchoShaped.m). Finally,

the {FID-A_dir}/exampleRunScripts directory contains an example

script showing how to generate all of the .RAW files necessary

to create a basic LCModel basis set (run_simExampleBasisSet.m).

1.6. Data structure formatting

The FID-A software package is implemented in MATLAB (Natick MA,

USA). Within FID-A, simulated or experimental MRS datasets are

stored in uniquely formatted data structures that encapsulate

all of the data, (in both the time-domain and frequency-domain)

as well as the relevant header information in the fields of the

structure. By encapsulating data and header information in this

way, processing operations have access to all relevant

information and thus require as few input arguments as possible.

FID-A is unique among MRS processing software tools in that it

enables the user to easily and efficiently manage MRS datasets

with higher dimensionality (datasets with multiple averages,

multiple coils, and multiple subspectra). When multiple

averages, coil channels, or subspectra of data are present, they

are stored in separate dimensions of a data arrays, and indexed

within the header. The FID-A processing operations are designed

to automatically recognize the dimensionality of the data based

on the header information and perform their operations

accordingly. The fields of the MRS data structure are listed

and briefly described below:

fids - time domain MRS data.

specs - frequency domain MRS data.

t - vector of time values for plotting in the time domain [s]

ppm - vector of frequency values for plotting in the frequency domain

[ppm]

sz - size of the fids and specs arrays

date - date that the data was acquired or simulated

averages - number of averages in the dataset (possibly altered by

processing)

rawAverages - number of averages in the original dataset (not altered by

processing).

subspecs - number of subspectra (ISIS, edit on/off, etc) in the dataset

(possibly altered by processing).

rawSubspecs - number of subspectra (ISIS, edit on/off, etc) in the original

dataset (not altered by processing).

Bo - magnetic field strength [Tesla]

txfrq - Centre frequnecy [MHz];

linewidth - linewidth of data (only used for simulated data) [Hz]

n - number of spectral points

dwelltime - dwell time of the data in the time domain [s] (dwelltime =

1/spectralwidth)

sim - type of simulation (ideal vs. shaped pulses), only used for

simulated data.

te - echo time of acquisition [ms], only used for simulated data

seq - type of sequence used (only used for simulated data).

dims - structure specifying which data dimensions are stored along

which dimensions of the fids/specs arrays. Fields include:

t - time/frequency dimension (usually this is 1, the first

dimension of the fids/specs array).

coils - for multiple receiver array, this is the dimension of

the arrayed receiver data (can be 2, 3 or 4).

averages - for multiple averages, this is the dimension of the

averages (can be 2, 3 or 4).

subSpecs - in the case of subtraction data (ISIS, MEGA-PRESS), this

is the dimension of the subSpectra (can be 2, 3 or 4).

flags - structure specifying what processing operations have already

been done on the data. fields include:

writtentostruct - Has the dataset been written to a structure (1 or

0)

gotparams - Have the parameters been retrieved from the

dataset (1 or 0)

filtered - Has the dataset been filtered (1 or 0)

zeropadded - Has the dataset been zeropadded (1 or 0)

freqcorrected - Has the dataset been frequency corrected (1 or 0)

phasecorrected - Has the dataset been phase corrected (1 or 0)

averaged - Have the averages been combined (1 or 0)

addedrcvrs - Have the rcvr channels been combined (1 or 0).

Subtracted - Have the subspecs been subtracted (1 or 0)

Writtentotext - Has the data been written to text file (1 or 0)

Downsampled - has the data been resampled to a different

spectral resolution (1 or 0)

avgNormalized - Has the data been amplitude scaled following

combination of the averages (1 or 0)

isISIS - Does the dataset contain ISIS subspectra (1 or 0)

RF pulses are also stored in uniquely formatted data structures.

Each RF pulse structure stores the rf waveform as well as

information about the rf pulse type (excitation, refocusing or

inversion), the time-bandwidth product, and the time-B1 product.

The fields of the RF pulse structure are listed and briefly

described below:

waveform – an n x 3 array, where n is the number of points in the rf

pulse, the first column (:,1) contains the rf pulse phase, the

second column (:,2) contains the absolute rf amplitude, and the

third column (:,3) contains the duration of each time step

(normally this is a vector of ones, but not necessarily).

type - The type of RF pulse. Options are ‘exc’ for an excitation

pulse, ‘inv’ for an inversion pulse, and ‘ref’ for a refocusing

pulse.

tw1 - The product of the duration of the rf pulse [s] and the w1max

of the rf pulse [Hz].

tbw - The product of the duration of the rf pulse [s] and the

bandwidth of the rf pulse [Hz]

1.7. Example Data

The FID-A toolkit comes with examples of raw MRS data from a few

different scanner vendors (Bruker, GE and Siemens), and a few

different pulse sequences (PRESS, MEGA-PRESS and SPECIAL).

These datasets can be processed using some of scripts provided

in the {FID-A_dir}/exampleRunScripts directory. These are

relatively large files that could not be stored normally in the

GitHub repository due to GitHub’s native file size limitations.

Therefore, in order to download these data, you must first

download and install the “Large File Storage” (LFS) extension to

GitHub, which can be found here: (https://git-lfs.github.com).

Without this extension, a clone or download of the FID-A

repository will result in a {FID-A_dir}/exampleData directory

that is empty. However, after you’ve downloaded and installed

the LFS extension, then re-cloning or downloading the FID-A

repository should result in a {FID-A_dir}/exampleData folder

that correctly contains the required example data. For more

information on how to use the exampleRunScripts to test this

example data, please see Chapter 8.

Below is a brief summary of all of the functions in the FID-A

Software package. The same information can be obtained by

typing ‘help functionName” at the MATLAB command line:

2. Simulation Tools

2.1. sim_Hamiltonian.m

USAGE:
[H,d] = sim_Hamiltonian(sys,Bfield);

DESCRIPTION:
Creates the nxn Hamiltonian matrix for a spin system which can then be used
in other functions to simulate NMR experiments.

INPUTS:
sys = spin system definition structure.
Bfield = magnetic field strength (Tesla).

OUTPUTS:
H = n x n Hamiltonian matrix for spin system.
d = Equilibrium density matrix.

2.2. sim_evolve.m

USAGE:
d_out = sim_evolve(d_in,H,t)

DESCRIPTION:
This function simulates free evolution of the spin system under the effects
of chemical shift and scalar coupling.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
t = duration of evolution (s)

OUTPUTS:
d_out = output density matrix following free evolution.

2.3. sim_excite.m

USAGE:
d_out = sim_excite(H,axis,angle)

DESCRIPTION:
This function simulates the effect of an ideal (instantaneous) excitation
pulse on the density matrix. Used in simulation tools.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
axis = Axis of rotation ('x' or 'y');
angle = Flip angle of excitation (degrees). Optional. Default=90.

If angle is a scalar, then the same flip angle is applied to all
spins in the spin system. If angle is a vector, then the
elements of the vector specify the flip angles to apply to each
spin in the system. In this case, the length of the vector must
be the same as the number of spins in the spin system.

OUTPUTS:
d_out = output density matrix following excitation pulse.

2.4. sim_excite_arbPh.m

USAGE:
d_out = sim_excite_arbPh(H,phase,angle)

DESCRIPTION:
This function simulates the effect of an ideal (instantaneous) excitation
pulse on the density matrix. Used in simulation tools. The phase of the
excitation pulse can be arbitrarily chosen. To achieve an arbitrary phase,
this code executes a rotation about z by an angle of -phi (the rf pulse
phase), then executes a rotation about x by an angle of "angle" the flip
angle of the excitation pulse), and then executes a rotation back about z by
an angle of phi.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
phase = Phase of rotation in degrees (ie. 0='x', 90='y', etc);
angle = Flip angle of excitation (degrees). Optional. Default=90.

If angle is a scalar, then the same flip angle is applied to all
spins in the spin system. If angle is a vector, then the
elements of the vector specify the flip angles to apply to each
spin in the system. In this case, the length of the vector must
be the same as the number of spins in the spin system.

OUTPUTS:
d_out = output density matrix following excitation pulse.

2.5. sim_gradSpoil.m

USAGE:
d_out = sim_gradSpoil(d_in,H,gradVect,posVect,dur)

DESCRIPTION:

This function simulates the effect of a rectangular spoiler gradient with a
given amplitude, direction and duration.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
gradVect = Vector of spoiler gradient amplitudes [Gx Gy Gz] in G/cm.
posVect = Position vector of spins of interest [x y z] in cm.
dur = Duration of the gradient pulse in ms.

OUTPUTS:
d_out = output density matrix following spoiler gradient.

2.6. sim_laser.m

USAGE:
out = sim_laser(n,sw,Bfield,linewidth,sys,TE)

DESCRIPTION:
This function simulates an ideal LASER experiment with total echo time "TE",
and six equally spaced echoes. The function calls the function
'sim_Hamiltonian.m' which produces the free evolution Hamiltonian and
rotation Hamiltonians for the specified spin system.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
TE = Echo time in [s]

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using LASER
 sequence.

2.7. sim_lcmrawbasis.m

USAGE:
[RF,out]=sim_lcmrawbasis(n,sw,Bfield,linewidth,metab,tau1,tau2,addref,makeraW
 ,seq)

DESCRIPTION:
Generate an LCModel .RAW file to be used as an individual metabolite basis
spectrum in an LCModel basis set. The relevant characteristics of the
acquisition can be specified (pulse sequence, number of points, spectral
width, etc)

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
tau1 = first echo time in [s] (if seq='st' or 'l', tau1 = TE)

tau2 = second echo time in [s]. (Used in Press, but not used in SE or
 LASER. If seq='st', tau2=TM).
addref = add reference at 0ppm (for use in LCModel makebasis) ['y' or 'n']
makeraw = make output file for lcmodel ['y' or 'n']
seq = pulse sequence ['se' for Spin Echo, 'p' for Press, 'st' for
 Steam, or 'l' for LASER]
metab = one of the following choices
 'H2O' = Water
 'Ala' = Alanine
 'Asp' = Aspartate
 'PCh' = PhosphoCholine
 'Cr' = Creatine
 'PCr' = PhosphoCreatine
 'GABA' = Gamma-aminobutyric acid (kaiser)
 'GABA3' = Gamma-aminobutyric acid (de Graaf)
 'Gln' = Glutamine
 'Glu' = Glutamate
 'GSH' = Glutathione
 'Gly' = Glycine
 'Ins' = Myo-inositol
 'Lac' = Lactate
 'NAA' = N-acetyl aspartate
 'Scyllo' = Scyllo-inositol
 'Tau' = Taurine
 'Asc' = Ascorbate (Vitamin C)
 'bHB' = beta-Hydroxybutyrate
 'bHG' = beta-Hydroxyglutarate
 'Glc' = Glucose
 'NAAG' = N-acetyl aspartyl glutamate
 'GPC' = Glycero-phosphocholine
 'PE' = Phosphoryl ethanolamine
 'Ser' = Serine

OUTPUTS:
RF = not used.
out = Simulated basis spectrum in FID-A structure format.

2.8. sim_make2DSimPlot.m

USAGE:
sim_make2DSimPlot(in,ppmmin,ppmmax)

DESCRIPTION:
This function takes the output of a spatially resolved simulation, and plots
the array of spectra on a single figure. The input should be a cell array
where each element of the cell array is a simulated spectrum from one spatial
position in the spatially resolved simulation. Each element of the array is
also in FID-A data structure format. By including the optional input
argument ppmmin and ppmmax, only a the corresponding range of each spectrum
will be plotted.

INPUTS:
in = input cell array of simulated spectra from a spatially resolved
 simulation
ppmmin = lower limit of ppm range to plot [ppm]
ppmmax = upper limit of ppm range to plot [ppm]

OUTPUTS:
none

2.9. sim_megapress.m

USAGE:
out=sim_megapress(n,sw,Bfield,linewidth,sys,taus,refoc1Flip,refoc2Flip,editFl
 ip)

DESCRIPTION:
Simulate the MEGA-PRESS sequence with instantaneous localization and editing
pulses. Provides the ability to specify the flip angle of each refocusing
pulse and editing pulse on each spin in the spin system.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
taus = pulse sequence timing vector:
 taus(1) = time in [ms] from 90 to 1st 180
 taus(2) = time in [ms] from 1st 180 to 1st edit pulse
 taus(3) = time in [ms] from 1st edit pulse to 2nd 180
 taus(4) = time in [ms] from 2nd 180 to 2nd edit pulse
 taus(5) = time in [ms] from 2nd edit pulse to ADC
refoc1Flip= array of refoc1 flip angles for each spin in system
refoc2Flip= array of refoc2 flip angles for each spin in system
editFlip = array of editing flip angles for each spin in system

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using MEGA-PRESS
 sequence.

2.10. sim_megapress_shaped.m

USAGE:
sim_megapress_shaped(n,sw,Bfield,linewidth,taus,sys,editPulse,editTp,editPh1,
 editPh2,refPulse,refTp,Gx,Gy,dx,dy,refPh1,refPh2)

DESCRIPTION:
This function simulates the MEGA-PRESS sequence with shaped localization
pulses and shaped editing pulses. Enables choice of the timings of all of
the rf pulses as well as the choice of the phase of both the editing pulse
and the refocusing pulses. This allows phase cycling of the editing and
refocusing pulses by repeating simulations with different editing pulse
phases, which is necessary to remove phase artefacts from the editing pulses.
For the editing pulses, an eight step phase cycling scheme is typically
sufficient, where by the first editing pulse is cycled by 0 and 90 degrees,
and the second editing pulse is cycled by 0,90,180, and 270 degrees, and all
phase cycles should be added together to remove unwanted coherences. For the
refocusing pulses, a four step phase cycling scheme is typically sufficient,

where both refocusing pulses are phase cycled by 0 and 90 degrees, and the
phase are combined in the following way:

signal = ([0 90] - [0 0]) + ([90 0] - [90 90]);

where, in [X Y], X is the phase of the first refocusing pulse and Y is the
phase of the second refocusing pulse

Note that this code only simulates one subspectrum at a time (edit-on or
edit-off). The difference spectrum can be obtained by simulating one of
each, and then subtracting.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
taus(1) = time in [ms] from 90 to 1st 180
taus(2) = time in [ms] from 1st 180 to 1st edit pulse
taus(3) = time in [ms] from 1st edit pulse to 2nd 180
taus(4) = time in [ms] from 2nd 180 to 2nd edit pulse
taus(5) = time in [ms] from 2nd edit pulse to ADC

FOR MEGA-PRESS on SIEMENS SYSTEM:
taus=[4.545,12.7025,21.7975,12.7025,17.2526];

sys = Metabolite spin system definition structure;
editPulse = RF pulse definition structure for editing pulses (obtain using

'io_loadRFwaveform.m')
editTp = duration of editing pulse in [ms];
editPh1 = the phase of the first editing pulse in [degrees];
editPh2 = the phase of the second editing pulse in [degrees];
refPulse = RF pulse definition structure for refoc pulses (obtain using

'io_loadRFwaveform.m')
refTp = duration of refocusing pulse in [ms]
Gx = gradient strength for first selective refocusing pulse [G/cm]
Gy = gradient strength for second selective refocusing pulse [G/cm]
dx = position offset in x-direction (corresponding to first
 refocusing pulse) [cm]
dy = position offset in y-direction (corresponding to second
 refocusing pulse) [cm]
refPh1 = the phase of the first refocusing pulse in [degrees];
refPh2 = the phase of the second refocusing pulse in [degrees];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using MEGA-PRESS
 sequence.

2.11. sim_megapress_shapedEdit.m

USAGE:
sim_megapress_shapedEdit(n,sw,Bfield,linewidth,taus,sys,editPulse,editTp,edit
 Ph1,editPh2,centreFreq)

DESCRIPTION:
This function simulates the MEGA-PRESS sequence with instantaneous
localization pulses and shaped editing pulses. Enables choice of the timings
of all of the rf pulses as well as the choice of the phase of the editing
pulse. This allows phase cycling of the editing pulses by repeating

simulations with different editing pulse phases, which is necessary to remove
phase artefacts from the editing pulses. For the editing pulses, an eight
step phase cycling scheme is typically sufficient, where by the first editing
pulse is cycled by 0 and 90 degrees, and the second editing pulse is cycled
by 0,90,180, and 270 degrees, and all phase cycles should be added together
to remove unwanted coherences.

Note that this code only simulates one subspectrum at a time (edit-on or
edit-off). The difference spectrum can be obtained by simulating one of
each, and then subtracting.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
taus(1) = time in [ms] from 90 to 1st 180
taus(2) = time in [ms] from 1st 180 to 1st edit pulse
taus(3) = time in [ms] from 1st edit pulse to 2nd 180
taus(4) = time in [ms] from 2nd 180 to 2nd edit pulse
taus(5) = time in [ms] from 2nd edit pulse to ADC
 FOR MEGA-PRESS on SIEMENS SYSTEM:
 taus=[4.545,12.7025,21.7975,12.7025,17.2526];
sys = Metabolite spin system definition structure;
editPulse = RF pulse definition structure for editing pulses (obtain using

'io_loadRFwaveform.m')
editTp = duration of editing pulse in [ms];
editPh1 = the phase of the first editing pulse in [degrees];
editPh2 = the phase of the second editing pulse in [degrees];
centreFreq = the centre frequency of the experiment in [ppm];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using MEGA-PRESS
 sequence.

2.12. sim_megapress_shapedRefoc.m

USAGE:
sim_megapress_shapedRefoc(n,sw,Bfield,linewidth,taus,sys,editFlip,refPulse,re
 fTp,Gx,Gy,dx,dy,refPh1,refPh2)

DESCRIPTION:
This function simulates the MEGA-PRESS sequence with shaped localization
pulses and instantaneous editing pulses. Enables choice of the timings of
all of the rf pulses as well as the choice of the phase of both the editing
pulse and the refocusing pulses. This allows phase cycling of the editing
and refocusing pulses by repeating simulations with different editing pulse
phases, which is necessary to remove phase artefacts from the editing pulses.
For the editing pulses, an eight step phase cycling scheme is typically
sufficient, where by the first editing pulse is cycled by 0 and 90 degrees,
and the second editing pulse is cycled by 0,90,180, and 270 degrees, and all
phase cycles should be added together to remove unwanted coherences. For the
refocusing pulses, a four step phase cycling scheme is typically sufficient,
where both refocusing pulses are phase cycled by 0 and 90 degrees, and the
phase are combined in the following way:

signal = ([0 90] - [0 0]) + ([90 0] - [90 90]);

where, in [X Y], X is the phase of the first refocusing pulse and Y is the
phase of the second refocusing pulse

Note that this code only simulates one subspectrum at a time (edit-on or
edit-off). The difference spectrum can be obtained by simulating one of
each, and then subtracting.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
taus(1) = time in [ms] from 90 to 1st 180
taus(2) = time in [ms] from 1st 180 to 1st edit pulse
taus(3) = time in [ms] from 1st edit pulse to 2nd 180
taus(4) = time in [ms] from 2nd 180 to 2nd edit pulse
taus(5) = time in [ms] from 2nd edit pulse to ADC
 FOR MEGA-PRESS on SIEMENS SYSTEM:
 taus=[4.545,12.7025,21.7975,12.7025,17.2526];
sys = Metabolite spin system definition structure;
editFlip = vector of editing flip angles in [degrees] at chemical shifts
 corresponding to 'shifts'.
refPulse = RF pulse definition structure for refoc pulses (obtain using

'io_loadRFwaveform.m')
refTp = duration of refocusing pulse in [ms]
Gx = gradient strength for first selective refocusing pulse [G/cm]
Gy = gradient strength for second selective refocusing pulse [G/cm]
dx = position offset in x-direction (corresponding to first
 refocusing pulse) [cm]
dy = position offset in y-direction (corresponding to second
 refocusing pulse) [cm]
refPh1 = the phase of the first refocusing pulse in [degrees];
refPh2 = the phase of the second refocusing pulse in [degrees];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using MEGA-PRESS
 sequence.

2.13. sim_megaspecial_shaped.m

USAGE:
sim_megaspecial_shaped(n,sw,Bfield,linewidth,taus,sys,editPulse,editTp,editPh
 1,editPh2,refPulse,refTp,Gx,dx,refPh)

DESCRIPTION:
This function simulates the MEGA-SPECIAL sequence with a shaped localization
pulse and shaped editing pulses. Enables choice of the timings of all of the
rf pulses as well as the choice of the phase of both the editing pulses and
the refocusing pulse. This allows phase cycling of the editing and
refocusing pulses by repeating simulations with different editing pulse
phases, which is necessary to remove phase artefacts from the editing pulses.
For the editing pulses, an eight step phase cycling scheme is typically
sufficient, where by the first editing pulse is cycled by 0 and 90 degrees,

and the second editing pulse is cycled by 0,90,180, and 270 degrees, and all
phase cycles should be added together to remove unwanted coherences. For the
refocusing pulse, a two step phase cycling scheme is typically sufficient,
where the refocusing pulses is phase cycled by 0 and 90 degrees, and the two
phase cycles are subtracted from each other.

Note that this code only simulates one subspectrum at a time (edit-on or
edit-off). The difference spectrum can be obtained by simulating one of
each, and then subtracting.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
taus(1) = time in [ms] from 90 to 1st edit pulse
taus(2) = time in [ms] from 1st edit pulse to the 180
taus(3) = time in [ms] from the 180 pulse to 2nd edit pulse
taus(4) = time in [ms] from 2nd edit pulse to ADC
sys = Metabolite spin system definition structure;
editPulse = Editing pulse shape structure
editTp = duration of editing pulse in [ms];
editPh1 = the phase of the first editing pulse in [degrees];
editPh2 = the phase of the second editing pulse in [degrees];
refPulse = RF pulse definition structure for refoc pulse (obtain using

'io_loadRFwaveform.m')
refTp = duration of refocusing pulse in [ms]
Gx = gradient strength for selective refocusing pulse [G/cm]
dx = position offset in x-direction (corresponding to refocusing
 pulse) [cm]
refPh = the phase of the refocusing pulse in [degrees];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using MEGA-SPECIAL
 sequence.

2.14. sim_onepulse.m

USAGE:
out=sim_onepulse(n,sw,Bfield,linewidth,sys)

DESCRIPTION:
This function simulates a pulse-acquire experiment with an ideal
(instantaneous) excitation pulse and an assumed lorentzian lineshape. The
function calls the function 'sim_Hamiltonian' which produces the free
evolution Hamiltonian for the specified number of spins, J and shifts.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure

OUTPUTS:

out = simulated spectrum, in FID-A structure format, using pulse-
 acquire sequence.

2.15. sim_onepulse_arbPh.m

USAGE:
out=sim_onepulse_arbPh(n,sw,Bfield,linewidth,sys,ph)

DESCRIPTION:
This function simulates a pulse-acquire experiment with an ideal
(instantaneous) excitation pulse and an assumed lorentzian lineshape. The
function calls the function 'sim_Hamiltonian' which produces the free
evolution Hamiltonian for the specified number of spins, J and shifts. This
function enables an excitation pulse with an arbitrary phase.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
ph = excitation pulse phase (in degrees)

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using
 pulse-acquire sequence.

2.16. sim_onepulse_shaped.m

USAGE:
out = sim_onepulse_shaped(n,sw,Bfield,linewidth,sys,RF,tp,phCyc,dfdx,G)

DESCRIPTION:
This function simulates the effect of a frequency selective or slice
selective excitation, followed immediately by the acquisition window. This is
mainly an exercise to see if I can get slice selective excitation working.

Note that when simulating a frequency selective pulse, it is okay to specify
only 8 arguments (no gradient needs to be specified). If the 9th argument,
G, is specified and is non-zero, then a slice selective pulse is assumed.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
RF = RF pulse definition structure (obtain using

'io_loadRFwaveform.m')
tp = RF pulse duration in [ms]
phCyc = Phase of excitation rf pulse in [degrees].
dfdx = if simulating a frequency selective pulse, this argument should
 be the frequency offset [Hz]. If simulating a slice selective
 pulse, this argument should be the position offset [cm].

G = gradient strength for slice-selective pulse [G/cm];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using pulse-
 acquire sequence.

2.17. sim_press.m

USAGE:
out = sim_press(n,sw,Bfield,linewidth,sys,tau1,tau2)

DESCRIPTION:
This function simulates an ideal PRESS experiment with first echo time "tau1"
and a second echo time of "tau2". The function calls the function
'sim_Hamiltonian.m' which produces the free evolution Hamiltonian and
rotation Hamiltonians for the specified spin system.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
tau1 = Echo time in [s] of first press Spin Echo
tau2 = Echo time in [s] of second press Spin Echo

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using PRESS
 sequence.

2.18. sim_press_shaped.m

USAGE:
out = sim_press_shaped(n,sw,Bfield,linewidth,sys,tau1,tau2,RF,tp,dx,dy,Gx,
 Gy,phCyc1,phCyc2,flipAngle)

DESCRIPTION:
This function simulates the PRESS experiment. The excitation is simulated as
an instantaneous rotation, and the refocusing pulse is simulated as a shaped
rotation.

This code enables the choice of the phase of the refocusing pulses. This
enables phase cycling of the refocusing pulses by repeating simulations with
different editing pulse phases, which is necessary to remove phase artefacts
from the editing pulses. A four step phase cycling scheme is typically
sufficient, where both refocusing pulses are phase cycled by 0 and 90
degrees, and the phase are combined in the following way:

signal = ([0 90] - [0 0]) + ([90 0] - [90 90]);

where, in [X Y], X is the phase of the first refocusing pulse and Y is the
phase of the second refocusing pulse

Finally, this code simulates the spectrum at a given point in space (x,y),
given the values of the slice selection gradients (Gx, and Gy). The pulse
waveform is assumed to be the same for both refocusing pulses. In order to

fully simulate the MEGA-PRESS experiment, you have to run this simulation
many times at various points in space (x,y), and then add
together the resulting spectra.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
tau1 = echo time 1 in [ms].
tau2 = echo time 2 in [ms].
RF = RF pulse definition structure for refoc pulses (obtain using

'io_loadRFwaveform.m')
tp = RF pulse duration in [ms]
dx = position offset in x-direction (corresponding to first refocusing
 pulse) [cm]
dy = position offset in y-direction (corresponding to second
 refocusing pulse) [cm]
Gx = gradient strength for first selective refocusing pulse [G/cm]
Gy = gradient strength for second selective refocusing pulse [G/cm]
phCycl = initial phase of the first refocusing pulse in [degrees];
phCycl2 = initial phase of the second refocusing pulse in [degrees];
flipAngle = flip angle of refocusing pulses [degrees] (Optional. Default =

180 deg)

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using PRESS
 sequence.

2.19. sim_readout.m

USAGE:
[out,d_out] = sim_readout(d_in,H,n,sw,linewidth,rcvPhase,shape)

DESCRIPTION:
This function simulates an ADC readout of the transverse magnetization during
the free evolution of the spin system under the effects of chemical shift and
scalar coupling.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
n = number of readout points
sw = spectral width [Hz]
linewidth = full width at half maximum of spectral peaks [Hz]
rcvPhase = receiver phase [degrees]. Optional. Default = 0 (corresponds to
 x'-axis readout);
shape = line broadening function. Optional,
 'L' = lorentzian (default)
 'G' = gaussian
 'LG' = Lorentz-Gauss (50% mixture)

OUTPUTS:
out = simulated spectrum resulting from readout.
d_out = output density matrix following readout.

2.20. sim_rotate.m

USAGE:
d_out = sim_rotate(d_in,H,angle,axis)

DESCRIPTION:
This function simulates the effect of an ideal (instantaneous) rotation on
the density matrix. Used in simulation tools.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
angle = RF pulse flip angle (degrees). If this value is a scalar,
 then the same flip angle will be applied to all spins in
 the system. To apply a different flip angle to the
 different spins in the system, the angle variable can be a
 vector of flip angles with length equal to the H.nspins.
axis = Axis of rotation ('x', 'y' or 'z'); (A z-rotation technically
 doesn't correspond to an rf pulse rotation, but it is included
 here anyway).

OUTPUTS:
d_out = output density matrix following rf rotation.

2.21. sim_rotate_arbPh.m

USAGE:
d_out = sim_rotate_arbPh(d_in,H,angle,ph)

DESCRIPTION:
This function simulates the effect of an ideal (instantaneous) rotation on
the density matrix. Used in simulation tools. The phase of the rf pulse can
be arbitrarily chosen. To achieve an arbitrary phase, this code executes a
rotation about z by an angle of -phi (the rf pulse phase), then executes a
rotation about x by an angle of "angle" (the flip angle of the pulse), and
then executes a rotation back about z by an angle of phi.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
angle = RF pulse flip angle (degrees). If this value is a scalar,
 then the same flip angle will be applied to all spins in
 the system. To apply a different flip angle to the
 different spins in the system, the angle variable can be a
 vector of flip angles with length equal to the H.nspins.
ph = Phase of rotation (in degrees; ie. 0='x', 90='y');

OUTPUTS:
d_out = output density matrix following rf rotation.

2.22. sim_shapedRF.m

USAGE:
d_out = sim_shapedRF(d_in,H,RFstruct,flipAngle,phase,dfdx,grad)

DESCRIPTION:
This function simulates the effect of a shaped rf pulse on the density
matrix. The temporal shape of the refocusing pulses is modelled as a series
of N instantaneous rotations about the effective RF field, where N is the
number of time points in the RF waveform. The instantaneous effective RF
field can be an arbitrary vector, and can be represented in polar coordinates
as B(Beff,alpha,zeta), where Beff is the magnitude field, alpha is the polar
angle (the angle between the transverse plane and the effective B field), and
zeta is the azimuthal angle, which is given by the phase of the RF).
Rotation about the effective B-field is achieved by a composite rotation:
Rotate about Y by -alpha, rotate about Z by -zeta, then rotate about X by
2*pi*gamma*Beff*dt, then rotate back about Z by zeta and back about Y by
alpha.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
RF = Radiofrequency pulse. This can be the filename of a Siemens .pta

file, or an RF pulse definition structure (obtained using
io_loadRFwaveform.m)

Tp = Pulse duration in [ms];
flipAngle = RF pulse flip angle [degrees].
phase = Phase of RF pulse [degrees]. Optional. Default = 0 (x'-axis.
 90 degress corresponds to +y' axis)
dfdx = if simulating a frequency selective pulse, this argument
 should be the frequency offset [Hz] (Optional. Default = 0 Hz).
 If simulating a slice selective pulse, this argument should
 be the position offset [cm].
grad = Gradient strength [G/cm]. Optional (for slice selective pulses
 only).

OUTPUTS:
d_out = output density matrix following shaped RF pulse.

2.23. sim_spinecho.m

USAGE:
out = sim_spinecho(n,sw,Bfield,linewidth,sys,tau)

DESCRIPTION:
This function simulates a spin-echo experiment with instantaneous RF pulses.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
tau = echo time in [s]

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using spin-echo
 sequence.

2.24. sim_spinecho_shaped.m

USAGE:
sim_spinecho_shaped(n,sw,Bfield,linewidth,sys,TE,RF,Tp,grad,pos,ph)

DESCRIPTION:
This function simulates a localized spin-echo sequence with a shaped
refocusing pulse. It enables choice of the echo-time as well as the choice
of the phase refocusing pulse. This allows phase cycling of the refocusing
pulses by repeating simulations with different pulse phases, which is
necessary to remove unwanted coherences from outside the volume of interest.
For the refocusing pulse, a two step phase cycling scheme is typically
sufficient, where the refocusing pulse is phase cycled by 0 and 90 degrees
the phase are combined by subtraction.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = Metabolite spin system definition structure;
TE = Echo time in [ms]
RF = RF pulse definition structure for refoc pulse (obtain using

'io_loadRFwaveform.m');
Tp = duration of refocusing pulse in [ms]
grad = gradient strength for the selective refocusing pulse [G/cm]
pos = position offset in the direction corresponding to the refocusing
 pulse [cm]
ph = the phase of the refocusing pulse in [degrees];

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using spin-echo
 sequence.

2.25. sim_spinecho_xN.m

USAGE:
out = sim_spinecho(n,sw,Bfield,linewidth,sys,tau,Nechoes)

DESCRIPTION:
This function simulates a multi-echo spin-echo experiment with 'Nechoes’
instantaneous RF pulses.

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
tau = echo time in [s]
Nechoes = number of spin echoes (optional. Default = 10);

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using multi-echo
 spin-echo sequence.

2.26. sim_spoil.m

USAGE:
d_out = sim_spoil(d_in,H,angle)

DESCRIPTION:
This function simulates the effect of a rotation about the z-axis.

INPUTS:
d_in = input density matrix structure.
H = Hamiltonian operator structure.
angle = Spoil angle (degrees).

OUTPUTS:
d_out = output density matrix following z-rotation.

2.27. sim_steam.m

USAGE:
out = sim_steam(n,sw,Bfield,linewidth,sys,te,tm)

DESCRIPTION:
Simulate the STEAM sequence using ideal (instantaneous) RF pulses. To remove
unwanted coherences, a 4 step phase cycle is automatically performed, with
the first and third rf pulses being cycled by 0, 90 180, and 270 degrees.
THIS CODE IS NOT TESTED. RESULTS MAY NOT BE ACCURATE!!

INPUTS:
n = number of points in fid/spectrum
sw = desired spectral width in [Hz]
Bfield = main magnetic field strength in [T]
linewidth = linewidth in [Hz]
sys = spin system definition structure
te = echo time in [s]
tm = mixing time in [s]

OUTPUTS:
out = simulated spectrum, in FID-A structure format, using steam
 sequence.

2.28. sim_steam_gradSim.m

USAGE:
Script can be run by pressing "run".

DESCRIPTION:

This function runs the sim_steam_spoil function multiple times with different
spoiler gradient intensities. The result is a spoiled STEAM sequence.

INPUTS:
Initialize the following variables and then click "run":
spinsys = Spin system.
TE = Echo time [s].
TM = Mixing time [s].
N = Number of 'phase cycles'

OUTPUTS:
steam = simulated spectrum, in FID-A structure format, using STEAM
 sequence.
press = simulated spectrum, in FID-A structure format, using PRESS
 sequence (for comparison).

3. RF Pulse Tools

3.1. rf_blochSim.m

USAGE:
[mv,sc]=rf_blochSim(RF,tp,fspan,f0,peakB1,ph,M0);

DESCRIPTION:
Perform a bloch simulation of an RF pulse. This code simply runs Martyn
Klassen's excellent bloch equation simulator. For more information, see help
file for bes.m. (~FID-A/rfPulseTools/mklassenTools/bes.m).

INPUTS:
RF = RF pulse definition structure
tp = pulse duration in [ms]
fspan = Frequency span in [kHz] (optional. Default=10kHz)
f0 = Centre of frequency span [kHz] (optional. Default=0)
peakB1 = Peak B1 amplitude in [kHz] (optional. Default=RF.tw1/tp)
ph = Starting phase of the rf pulse [degrees] (optional. Default=0)
M0 = Starting magnetization [units of M0] (optional. Default=[0,0,1])

OUTPUTS:
mv = Simulated magnetization vector in three columns (x,y,z) as a
 function of frequency.
sc = Frequency scale (in kHz) corresponding to the simulated mv
 vectors.

3.2. rf_dualBand.m

USAGE:
[rf,AMPINT]=rf_dualBand(tp,df,n,bw,ph,shft)

DESCRIPTION:

Creates an n-point dual banded gaussian inversion RF pulse with duration
tp(ms). The first band will be at f=0Hz and the second band will be at df
Hz. Bw is the bandwidth of the two selection bands in Hz.

INPUTS:
tp = pulse duration in ms.
df = frequency of 2nd gaussian band [Hz].
n = number of points in rf waveform.
bw = bandwidth of both selection bands [Hz].
ph = phase of the second gaussian.
shft = frequency shift applied to both bands.

OUTPUTS:
rf = Output rf waveform for a dual banded rf pulse, in FID-A rf
 pulse structure format.
AMPINT = Calculated amplitude integral (for use in Siemens .pta files).

3.3. rf_freqshift.m

USAGE:
RF_shift=rf_freqshift(RF,Tp,F);

DESCRIPTION:
Apply a frequency shift to an RF pulse.

INPUTS:
RF = RF pulse definition structure.
Tp = duration of the rf pulse in [ms].
F = amount that you would like to frequency shift the rf pulse in
 [Hz].

OUTPUTS:
RF_shift = Output rf pulse following frequency shift.

3.4. rf_gauss.m

USAGE:
[rf,AMPINT]=rf_gauss(tp,df,n,bw);

DESCRIPTION:
Create an n point gaussian rf waveform. Waveform can be converted in to
siemens pta file using rf_writepta.m or into varian/agilent rf file using
io_writeRF.m.

INPUTS:
tp = duration of rf pulse in ms.
df = frequency of gaussian pulse in Hz. 0 frequency will
 correspond to the reference frequency of the rf transmitter.
n = number of points in the rf waveform.
bw = FWHM of the gaussian inversion profile in the frequency
 domain (Hz).

OUTPUTS:

rf = Output rf waveform for gaussian rf pulse, in FID-A rf
 pulse structure format.
AMPINT = Calculated amplitude integral (for use in Siemens .pta files).

3.5. rf_hs.m

USAGE:
[RF,FM,mv,sc]=rf_hs(outfile,N,n,tbw,Tp,trunc,thk)

DESCRIPTION:
This function creates any desired HS pulse. N is the number of steps, n is
the order of the HS pulse, tbw is the time bandwidth product of the pulse, Tp
is the duration of the pulse and thk is the desired thickness of the pulse.

INPUTS:
outfile = name of output rf file.
N = Number of points in RF waveform.
n = order of the HS pulse.
tbw = Time bandwidth product.
Tp = Duration of the RF pulse (ms).
trunc = Truncation of the amplitude modulation function.
thk = thickness of the slice selective pulse (optional).

OUTPUTS:
rf = Output rf waveform for a HS pulse, in FID-A rf pulse
 structure format.
FM = Frequency modulation waveform (in Hz).
mv = Simulated magnetization vector in three columns (x,y,z)
 as a function of frequency.
sc = Frequency scale (in kHz) corresponding to the simulated
 mv vectors.

3.6. rf_refocusedComponent.m

USAGE:
 [I,ph]=rf_refocusedComponent(RF,tp ,flipAngle,fspan);

DESCRIPTION:
Calculates the refocused component and refocused phase of an rf pulse. This
is done according to the description in Section 5.7.3 of "In vivo NMR
Spectroscopy - Principles and Techniques" by Robin A de Graaf. Specifically,
the RF pulse is simulated twice: once with the starting magnetization along
Mx, and once with the starting magnetization along My. From these, fxx, fxy,
fyy and fyx are calculated and fed into the equations for refocused component
magnitude (I) and phase (ph). For a plane rotation pulse, the refocused
component should be 1 across the slice profile, and the phase should be
uniform (or linearly varying) across the slice profile.

INPUTS:
RF = RF pulse definition structure
tp = pulse duration in [ms] (optional. Default = 5ms).
flipAngle = flip angle of pulse [degrees] (optional. Default = 180 deg).
fspan = frequency span in [kHz] (optional. Default = 10kHz).

OUTPUTS:
I = Refocused component magnitude.
ph = Refocused component phase.

3.7. rf_resample.m

USAGE:
RF_out=rf_resample(RF_in,N);

DESCRIPTION:
Resample the input RF pulse into a new waveform with N discrete points.

INPUTS:
RF_in = Input RF pulse definition structure
N = Number of points in new RF waveform

OUTPUTS:
RF_out = Output rf waveform following resampling.

3.8. rf_sinc.m

USAGE:
[rf,AMPINT]=rf_sinc(lobes,n,type);

DESCRIPTION:
Create an n point sinc rf waveform. Waveform can be converted in to siemens
pta file using rf_writepta.m or into varian/agilent rf file using
io_writeRF.m.

INPUTS:
lobes = Number of lobes in the sinc pulse.
n = number of points in the rf waveform.
type = Type of pulse:
 Refocusing = 'ref'
 Inversion = 'inv'
 Excitation = 'exc'

OUTPUTS:
rf = Output rf waveform for sinc shaped rf pulse, in FID-A rf
 pulse structure format.
AMPINT = Calculated amplitude integral (for use in Siemens .pta files).

4. Input-Output Tools

4.1. io_loadRFwaveform.m

USAGE:
[RF_struct]=io_loadRFwaveform(filename,type,f0);

DESCRIPTION:

Initialize an RF pulse structure to contain an RF Pulse waveform as well as
its accompanying header information. This function finds the time-bandwidth
product (tbw) and the time-w1 product (tw1) of the pulse, and stores this
information in the header fields of the output RF structure.

INPUTS:
filename = filename of RF pulse waveform text file. Can be in Siemens
 format (.pta), Varian/Agilent format (.RF), Bruker format
 (.inv, .ref or .exc) or a plain text file (.txt, with two columns
 (amplitude and phase). Filename can also be the name of a
 three column matlab vector specifing the phase, amplitude and
 time vectors of an RF pulse waveform.

type = Excitation ('exc'), Refocusing ('ref') or Inversion ('inv')
f0 = centre frequency of the rf pulse [Hz]. Optional. Default=0.

OUTPUTS:
RF_struct = RF pulse waveform in FID-A rf pulse structure format.

4.2. io_loadjmrui.m

USAGE:
out=io_loadjmrui(filename);

DESCRIPTION:
Load a jMRUI text file into matlab structure format.

INPUTS:
filename = filename of the jMRUI txt file.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.3. io_loadlcmdetail.m

USAGE:
[metabs,corrMatrix]=io_loadlcmdetail(filename);

DESCRIPTION:
This function loads in the "detailed output" of LCModel and returns the
matrix of metabolite correlation coefficients.

INPUTS:
filename = Filename of the lcmodel detailed output file.

OUTPUTS:
metabs = A listing of the metabolites included in the correlation
 coefficients table.
corrMatrix = A matrix of correlation coefficients between metabolites,
 with indices specified by the 'metabs' variable.

4.4. io_loadspec_GE.m

USAGE:
[out,out_w]=io_loadspec_GE(filename,sw,Larmor,subspecs,te,tr);

DESCRIPTION:
Reads in GE P file (.dat file) using code adapted from GERead.m, provided as
part of the Gannet software package by Richard Edden (gabamrs.blogspot.com).

op_loadspec_GE outputs the data in structure format, with fields
corresponding to timescale, fids, frequency scale, spectra, and header fields
containing information about the acquisition. The resulting matlab structure
can be operated on by the other functions in this MRS toolbox. NOTE: Since
the Gannet code is geared towards edited GABA MRS data, this code may not be
general enough to handle all types of MRS data. Suggestions are most
welcome.

INPUTS:
filename = filename of GE P file to be loaded.
sw = spectral width (Hz)
Larmor = Larmor frequency (Hz/ppm, ie. 127 for 3T)
subspecs = number of subspectra in the data (from spectral editing, ISIS,
 etc.)
te = Echo time (ms). Optional. Default is [].
tr = Repetition time (ms). Optional. Default is [].

OUTPUTS:
out = Input water suppressed dataset in FID-A structure format.
out_w = Input water reference dataset in FID-A structure format.

4.5. io_loadspec_IMA.m

USAGE:
out=io_loadspec_IMA(filename,Bo,spectralwidth,te,tr);

DESCRIPTION:
Loads a siemens .IMA file into matlab structure format.

INPUTS:
filename = Filename of Siemens .IMA file to load.
Bo = Field strength (Tesla).
spectralwidth = spectral width of the input spectrum (Hz).
te = Echo time (ms). Optional. Defulat is [].
tr = Repetition time (ms). Optional. Default is [].

OUTPUTS:
out = Input dataset in FID-A structure format.

4.6. io_loadspec_bruk.m

USAGE:
[out,ref]=io_loadspec_bruk(filename);

DESCRIPTION:

Reads in Bruker MRS data (fid.raw, fid.ref).

op_loadspec_bruk outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header
fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.

INPUTS:
inDir = Path to the scan number directory that contains the 'pdata' folder.

OUTPUTS:
out = Input dataset in FID-A structure format.
ref = The Reference scan data (navigator echoes) in FID-A structure
 format, if applicable.

4.7. io_loadspec_data.m

USAGE:
[out,out_w]=io_loadspec_data(filename,sw,Larmor,subspecs,te,tr);

DESCRIPTION:
Reads in philips MRS data (.data and .list files) using code adapted from
PhilipsRead_data.m, provided as part of the Gannet software package by
Richard Edden (gabamrs.blogspot.com).

op_loadspec_data outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header
fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.
NOTE: Since the Gannet code is geared towards edited GABA MRS data, this
code may not be general enough to handle all types of MRS data. Suggestions
are most welcome.

INPUTS:
filename = filename of Philips .data file to be loaded.
sw = spectral width (Hz)
Larmor = Larmor frequency (Hz/ppm, ie. 127 for 3T)
subspecs = number of subspectra in the data (from spectral editing, ISIS,
 etc.)
te = echo time (ms). Optional, default is [].
tr = repetition time (ms). Optional, default is [].

OUTPUTS:
out = Input water suppressed dataset in FID-A structure format.
out_w = Input water reference dataset in FID-A structure format.

4.8. io_loadspec_irBruk.m

USAGE:
out=io_loadspec_irBruk(inDir);

DESCRIPTION:
Reads in Bruker MRS data (1i and 1r files). Generally with this data, the
averages and coil channels have already been combined.

op_loadspec_irBruk outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header
fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.

INPUTS:
inDir = Path to the scan directory that contains the 'pdata' folder.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.9. io_loadspec_sdat.m

USAGE:
out=io_loadspec_sdat(filename,subspecs);

DESCRIPTION:
Reads in Philpis MRS data (.spar and .sdat files) using code adapted from
PhilipsRead.m, provided as part of the Gannet software package by Richard
Edden (gabamrs.blogspot.com).

op_loadspec_sdat outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header
fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.
NOTE: Since the Gannet code is geared towards edited GABA MRS data, this
code may not be general enough to handle all types of MRS data. Suggestions
are most welcome.
ALSO: This code is not currently smart enough to parse out all of the
relevant information from the header file, such as the number of subspectra.
So for now, these details must be passed to the function as input arguments.
Help implementing these improvements are most welcome!!

INPUTS:
filename = filename of Philips sdat file to be loaded.
subspecs = number of subspectra in the data (from spectral editing, ISIS,
 etc.)

OUTPUTS:
out = Input dataset in FID-A structure format.

4.10. io_loadspec_twix.m

USAGE:
out=io_loadspec_twix(filename);

DESCRIPTION:
Reads in siemens twix raw data (.dat file) using the mapVBVD.m and
twix_map_obj.m functions from Philipp Ehses (philipp.ehses@tuebingen.mpg.de).

op_loadspec_twix outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header

fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.

INPUTS:
filename = filename of Siemens twix data to load.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.11. io_loadspec_varian.m

USAGE:
out=io_loadspec_varian(filename);

DESCRIPTION:
Reads in varian .fid data using the readfid.m and readprocpar.m functions
from Martyn Klassen (mklassen@robarts.ca).

io_loadspec_varian outputs the data in structure format, with fields
corresponding to time scale, fids, frequency scale, spectra, and header
fields containing information about the acquisition. The resulting matlab
structure can be operated on by the other functions in this MRS toolbox.

INPUTS:
filename = filename of Varian .fid data to load.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.12. io_readRF.m

USAGE:
[rf]=io_readRF(filename)

DESCRIPTION:
Read a Varian/Agilent .RF file into matlab. The resulting RF matrix will
have 3 columns specifying magnitude, phase, and duration. This function
simply calls Martyn Klassen's readrfvnmr.m function.

INPUTS:
filename = filename of the .RF file to read in.

OUTPUTS:
rf = Input rf pulse waveform saved as a matlab array with 3 columns
 (magnitude, phase, duration).

4.13. io_readRFBruk.m

USAGE:
rf=io_readRFBruk(filename);

DESCRIPTION:

Read a Bruker RF pulse file into matlab. The resulting RF matrix will have 2
columns specifying magnitude and phase.

INPUTS:
filename = filename of the .pta file to read in.

OUTPUTS:
rf = Input rf pulse waveform saved as a matlab array with 2
 columns (magnitude and phase).

4.14. io_readRFtxt.m

USAGE:
[rf,info]=io_readRFtxt(filename)

DESCRIPTION:
Read an RF pulse in basic .txt format into matlab. The text file should
contain two columns of data, with the first column specifying the magnitude
(arbitrary units) and the second column specifying the phase (in degrees) of
the RF waveform. If a third column exists, it will be the timestep waveform.
The resulting RF matrix will have 3 columns specifying phase, magnitude and
timestep.

INPUTS:
filename = filename of the .txt file to read in.

OUTPUTS:
rf = Input rf pulse waveform saved as a matlab array with 3
 columns (phase, magnitude, duration).
info = Empty. Not required.

4.15. io_readjmrui.m

USAGE:
out=io_readjmrui(filename);

DESCRIPTION:
Reads jMRUI .txt format into the FID-A data structure format in MATLAB.

INPUTS:
filename = filename of jMRUI .txt file.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.16. io_readlcmcoord.m

USAGE:
out = io_readlcmcoord(filename,metab)

DESCRIPTION:
Reads a LCModel .coord file and extracts the desired part.

INPUTS:
filename = filename of the LCModel .coord file.
part = Which metabolite fit to extract from the .coord file -
 The abbreviated metabolite name should be given (ie.
 'Cr','PCr','Glu','GABA',etc.)

OUTPUTS:
out = Desired metabolite component in simplified FID-A structure
 format.

4.17. io_readlcmcoord_getBackground.m

USAGE:
out = io_readlcmcoord_getBackground(filename,part)

DESCRIPTION:
Reads a LCModel .coord file and extracts the desired part.

INPUTS:
filename = filename of the LCModel .coord file.
part = Which part of the .coord file to extract - 'bg' extracts the
 LCModel baseline signal, 'sp' extracts the spectrum, and
 'fit' extracts the fit.

OUTPUTS:
out = Desired background component in simplified FID-A structure
 format.

4.18. io_readlcmraw.m

USAGE:
out=io_readlcmraw(filename,type);

DESCRIPTION:
Reads LCModel raw data format into the FID-A data structure format in MATLAB.

INPUTS:
filename = filename of LCModel raw file.
type = type of LCModel raw file:
 'rda' - .raw file generated from Siemens RDA file
 'dat' - .raw file generated by FID-A using io_writelcm.
 'sim' - .raw file generated from FID-A simulated data.
 'raw' - not sure about this one.

OUTPUTS:
out = Input dataset in FID-A structure format.

4.19. io_readlcmraw_basis.m

USAGE:

out=io_readlcmraw_basis(filename);

DESCRIPTION:
Reads entire LCModel .basis file into multiple FID-A data structures in
MATLAB.

INPUTS:
filename = filename of LCModel .basis file.
OUTPUTS:
out = Input basis set saved as a structure in which each field is
 an individual metabolite basis spectrum in FID-A structure
 format.

4.20. io_readlcmraw_dotraw.m

USAGE:
out=io_readlcmraw_dotraw(filename);

DESCRIPTION:
Reads LCModel .RAW model spectrum file into the FID-A data structure format
in MATLAB.

INPUTS:
filename = filename of LCModel raw file.

OUTPUTS:
out = Input metabolite basis spectrum in FID-A structure format.

4.21. io_readlcmtab.m

USAGE:
out = io_readlcmtab(filename)

DESCRIPTION:
Reads a LCModel .table output file and stores the metabolite concentrations
into a matlab structure array.

INPUTS:
filename = filename of the LCModel .table file.

OUTPUTS:
out = A structure containing the LCmodel concentration estimates
 and CRLB values for each metabolite.

4.22. io_readpta.m

USAGE:
[rf,info]=io_readpta(filename)

DESCRIPTION:
Read a Siemens .pta file into matlab. The resulting RF matrix will have 2
columns specifying magnitude and phase.

INPUTS:
filename = filename of the .pta file to read in.

OUTPUTS:
rf = Input rf pulse waveform saved as a matlab array with 2
 columns (magnitude and phase).
info = Not used.

4.23. io_writeRF.m

USAGE:
RF=io_writeRF(rf,outfile);

DESCRIPTION:
Write a matlab RF pulse structure (containing 3 x N waveform array field with
rf.waveform(1,:)= phase, rf.waveform(2,:)=amplitude, and
rf.waveform(3,:)=timestep), to a varian/agilent format .RF file.

INPUTS:
rf = matlab RF pulse.
outfile = name of the output .RF file to be written.

OUTPUTS:
RF = Same as input. Not used. The primary output of this
 function is a text file in Varian/Agilent .RF format.

4.24. io_writejmrui.m

USAGE:
RF=io_writejmrui(in,outfile);

DESCRIPTION:
Takes MRS data in matlab structure format and writes it to a text file that
can be read by jMRUI.

INPUTS:
in = input data in matlab structure format.
outfile = Desired filename of output text file.

OUTPUTS:
RF = Same as input. Not used. The primary output of this
 function is a text file in jMRUI txt format.

4.25. io_writelcm.m

USAGE:
RF=io_writelcm(in,outfile,te);

DESCRIPTION:
Takes MRS data in matlab structure format and writes it to a text file that
can be read by LCModel.

INPUTS:
in = input data in matlab structure format.
outfile = Desired filename of output text file.
te = Echo time of acquisition (in ms).

OUTPUTS:
RF = Same as input. Not used. The primary output of this function
 is a text file in LCModel raw format.

4.26. io_writelcmraw.m

USAGE:
RF=io_writelcmraw(data_struct,outfile,metab);

DESCRIPTION:
Take a simulated metabolite basis spectrum in matlab structure format, and
output it into LCModel RAW format to be used in an LCModel basis spectrum.

INPUTS:
data_struct = simulated metabolite basis spectrum in matlab structure
 format.
outfile = name of the output .RAW file.
metab = Abbreviated name of the metabolite (ie. 'Cr', 'Glu',
 etc.)

OUTPUTS:
RF = Same as input. Not used. The primary output of this
 function is a text file in LCModel raw format.

4.27. io_writepta.m

USAGE:
RF=io_writepta(rf,outfile);

DESCRIPTION:
Write a matlab RF pulse structure (containing N x 3 waveform array field
with rf.waveform(:,1)= phase, rf.waveform(:,2)=amplitude, and
rf.waveform(:,3)=timestep), to a siemens format .pta file.

INPUTS:
rf = matlab RF pulse.
outfile = name of the output .pta file to be written.

OUTPUTS:
RF = Same as input. Not used. The primary output of this
 function is a text file in Siemens .pta format.

5. Processing Tools
5.1. addphase.m

USAGE:
PhasedSpecs=addphase(specs,AddedPhase);

DESCRIPTION:
Add equal amount of complex phase to each point of a vector. This function
operates on a vector (fid or spectrum), not on a FID-A data structure. For a
phase shifting function that operates on a FID-A data structure, see
'op_addphase.m'.

INPUTS:
specs = Input vector.
AddedPhase = Amount of phase (degrees) to add.

OUTPUTS:
PhasedSpecs = Output vector (0th order phased version of the input).

5.2. addphase1.m

USAGE:
PhasedSpecs=addphase1(specs,ppm,timeShift,ppm0,B0);

DESCRIPTION:
Add first order phase to a spectrum (added phase is linearly dependent on
frequency). This function operates on a vector (fid or spectrum), not on a
FID-A data structure. For a phase shifting function that operates on a FID-A
data structure, see 'op_addphase.m'.

INPUTS:
specs = input vector
ppm = frequency scale (ppm) corresponding to the specs vector
timeShift = This defines the amount of 1st order phase shift by
 specifying the equivalent horizontal shift (in seconds) in the
 time domain.
ppm0 = The frequency "origin" (ppm) of the 1st order phase shift.
 (this frequency will undergo 0 phase shift).
B0 = The main magnetic field strength (needed since ppm depends on
 B0)

OUTPUTS:
PhasedSpecs = Output vector (1st order phased version of the input).

5.3. op_ISIScombine.m

USAGE:
out=op_ISIScombine(in,addInd);

DESCRIPTION:
Combine dimensions corresponding to ISIS on/off acquisitions to produce fully
localized MRS volumes. Mostly used for MEGA-SPECIAL data to combine the ISIS
subspectra but not the Edit-on/edit-off subspectra.

INPUTS:
in = input data in matlab structure format.

addInd = (optional) If add==1, then row indices [1 2] and [3 4]
 will be added. Otherwise, row indices [1 2] and [3 4] will
 be subtracted.

OUTPUTS:
out = Output following combination of ISIS subspectra.

5.4. op_addNoise.m

USAGE:
[out,noise]=op_addNoise(in,sdnoise,noise);

DESCRIPTION:
Add noise to a spectrum (useful for generating simulated data). Normally
distributed random noise is added to both the real and imaginary parts of the
data. Real and imaginary noise parts are uncorrelated.

INPUTS:
in = Input data in matlab structure format.
sdnoise = Standard deviation of the random noise to be added in the time
 domain.
noise = (optional) Specific noise kernel to be added (if specified,
 sdnoise variable is ignored).

OUTPUTS:
out = Output dataset with noise added.
noise = The noise vector that was added.

5.5. op_addScans.m

USAGE:
out=op_addScans(in1,in2,subtract);

DESCRIPTION:
Add or subtract two scans together.

INPUTS:
in1 = First spectrum to add (in matlab structure format)
in2 = Second spectrum to add (also in matlab structure format).
subtract = (optional). Add or subtract? (0 = add, 1=subtract).
 Default=0;

OUTPUTS:
out = Result of adding inputs in1 and in2.

5.6. op_addphase.m

USAGE:
out=op_addphase(in,ph0,ph1,ppm0,suppressPlot);

DESCRIPTION:

add zero and first order phase to a spectrum.

INPUTS:
in = input spectrum in matlab structure format
ph0 = zero order phase to add (degrees)
ph1 = 1st order phase to add (in seconds);
ppm0 = (optional) frequency reference point. Default = 4.65;
suppressPlot = (optional) Boolian to suppress plots. Default = 0;

OUTPUTS:
out = Phase adjusted output spectrum.

5.7. op_addphaseSubspec.m

USAGE:
out=op_addphaseSubspec(in,ph);

DESCRIPTION:
Add zero order phase to one of the subspectra in a dataset. For example, the
edit-on spectrum of a mega-press acquisition.

INPUTS:
in = Input spectrum in matlab structure format.
ph = Phase (in degrees) to add to the second subspectrum.

OUTPUTS:
out = Output dataset with phase adjusted subspectrum.

5.8. op_addrcvrs.m

USAGE:
[out,fids_presum,specs_presum,ph,sig]=op_addrcvrs(in,point,mode,coilcombos);

DESCRIPTION:
Perform weighted coil recombination for MRS data acquired with a receiver
coil array.

INPUTS:
in = input spectrum in matlab structure format.
point = point of fid to use for phase estimation (optional. Default =
 1);
mode = Method for estimating the coil weights and phases (optional.
 Default = 'w').
 -'w' performs amplitude weighting of channels based on the
 maximum signal of each coil channel.
 -'h' performs amplitude weighting of channels based on the
 maximum signal of each coil channel divided by the square of
 the noise in each coil channel (as described by Hall et al.
 Neuroimage 2014).
coilcombos = The predetermined coil weights and phases and amplitudes as
 generated by the op_getcoilcombos.m function. If this
 argument is provided, the 'point', and 'mode', argument
 will be ignored. (optional. Default = []).

OUTPUTS:
out = Output dataset with coil channels combined.
fids_presum = Input data with coil channels in phase (time domain).
specs_presum = Input data with coil channels in phase (frequency domain).
ph = Vector of applied coil phases (in degrees).
sig = Vector of coil weights.

5.9. op_alignAllScans.m

USAGE:
[out,ph,frq]=op_alignAllScans(in,tmax,ref,mode);

DESCRIPTION:
Use spectral registration to align many separate scans;

INPUTS:
in = cell array of inputs (spectra all to be registered)
tmax = Maximum time (s) in time domain to use for registration.
ref = Align to what? (optional)
 'f' - Align to the first input? (default)
 'a' - Align to average of inputs.
mode = (optional)'f' - Frequency align only
 'p' - Phase align only
 'fp or pf' - Frequency and phase align (default)

OUTPUTS:
out = Cell array of multiple datasets after alignment.
ph = Vector of phase shifts (in degrees) used for alignment.
frq = Vector of frequency shifts (in Hz) used for alignment.

5.10. op_alignAllScans_fd.m

USAGE:
[out,ph,frq]=op_alignAllScans_fd(in,fmin,fmax,tmax,ref,mode);

DESCRIPTION:
Use spectral registration to align many separate scans. In this version only
a limited frequncy range is used for fitting;

INPUTS:
in = cell array of inputs (spectra all to be registered)
fmin = Minimum frequency for spectral alignment (ppm).
fmax = Maximum frequency for spectral alignment (ppm).
tmax = Maximum time (s) in time domain to use for registration.
ref = Align to what? (optional)
 'f' - Align to the first input? (default)
 'a' - Align to average of inputs.
mode = (optional)'f' - Frequency align only
 'p' - Phase align only
 'fp or pf' - Frequency and phase align (default)

OUTPUTS:
out = Cell array of multiple datasets after alignment.
ph = Vector of phase shifts (in degrees) used for alignment.

frq = Vector of frequency shifts (in Hz) used for alignment.

5.11. op_alignAverages.m

USAGE:
[out,fs,phs]=op_alignAverages(in,tmax,avg,initPars);

DESCRIPTION:
Perform spectral registration in the time domain to correct frequency and
phase drifts. As described in Near et al. Frequency and phase drift
correction of magnetic resonance spectroscopy data by spectral registration
in the time domain. Magn Reson Med. 2014 Jan 16.
doi: 10.1002/mrm.25094. [Epub ahead of print]

June 15th 2017: Made the tmax and avg arguments optional. If tmax is
not specified, the value is determined automatically by finding the time
at which the SNR of the FID drops permanently below 5. This idea
was suggested by Mark Mikkelsen. Thanks Mark!!

INPUTS:
in = Input data structure.
tmax = Maximum time (s) in time domain to use for alignment.
 (Optional. Default is the time at which SNR drops below 3)
avg = Align averages to the average of the averages? (y or n)
 (Optional. Default = 'n')
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of averages.
fs = Vector of frequency shifts (in Hz) used for alignment.
phs = Vector of phase shifts (in degrees) used for alignment.

5.12. op_alignAverages_fd.m

USAGE:
[out,fs,phs]=op_alignAverages_fd(in,minppm,maxppm,tmax,avg,initPars);

DESCRIPTION:
Perform time-domain spectral registration using a limited range of
frequencies to correct frequency and phase drifts. As described in Near et
al. Frequency and phase drift correction of magnetic resonance spectroscopy
data by spectral registration in the time domain. Magn Reson Med. 2014 Jan
16. doi: 10.1002/mrm.25094. [Epub ahead of print]

INPUTS:
in = Input data structure.
minppm = Minimum of frequency range (ppm).
maxppm = Maximum of frequency range (ppm).
tmax = Maximum time (s) in time domain to use for alignment.
avg = Align averages to the average of the averages? (y or n)
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of averages.
fs = Vector of frequency shifts (in Hz) used for alignment.
phs = Vector of phase shifts (in degrees) used for alignment.

5.13. op_alignISIS.m

USAGE:
[out,fs,phs]=op_alignISIS(in,tmax,initPars);

DESCRIPTION:
Apply spectral registration to align ISIS subspectra prior to subtraction.
This is intended to be used prior to averaging, so that the alignment can be
performed independently for each average.

INPUTS:
in = Input data structure.
tmax = Maximum time (s) in time domain to use for alignment.
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of ISIS subspectra.
fs = Vector of frequency shifts (in Hz) used for alignment.
phs = Vector of phase shifts (in degrees) used for alignment.

5.14. op_alignMPSubspecs.m

USAGE:
[out,fs,phs]=op_alignMPSubspecs(in,initPars);

DESCRIPTION:
Apply spectral registration to align MEGA-PRESS subspectra prior to
subtraction. This function is designed to minimize subtraction artefacts
from choline, and residual water. This is intended to be used after
averaging.

INPUTS:
in = Input data structure.
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of MEGA-PRESS subspectra.
fs = Vector of frequency shifts (in Hz) used for alignment.
phs = Vector of phase shifts (in degrees) used for alignment.

5.15. op_alignMPSubspecs_fd.m

USAGE:
[out,fs,phs]=op_alignMPSubspecs_fd(in,minppm,maxppm,initPars);

DESCRIPTION:
Apply spectral registration to align MEGA-PRESS subspectra prior to
subtraction. This function is designed to minimize subtraction artefacts
from choline, and residual water. This is intended to be used after
averaging.

INPUTS:
in = Input data structure.
minppm = Minimum of frequency range (ppm).
maxppm = Maximum of frequency range (ppm).
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of MEGA-PRESS subspectra.
fs = Vector of frequency shifts (in Hz) used for alignment.
phs = Vector of phase shifts (in degrees) used for alignment.

5.16. op_alignScans.m

USAGE:
[out,ph,frq]=op_alignScans(in,in1,tmax,mode);

DESCRIPTION:
Use spectral registration to align two separate scans (align in to in1);

INPUTS:
in = input (spectrum to be registered)
in1 = base (spectrum that the input is to be registered to).
tmax = Maximum time (s) in time domain to use for registration.
mode = (optional)'f' - Frequency align only
 'p' - Phase align only
 'fp or pf' - Frequency and phase align (default)

OUTPUTS:
out = Output following alignment of input (in) to the base spectrum.
ph = Phase shift (in degrees) used for alignment.
frq = Frequency shift (in Hz) used for alignment.

5.17. op_alignScans_fd.m

USAGE:
[out,ph,frq]=op_alignScans_fd(in,in1,fmin,fmax,tmax,mode);

DESCRIPTION:
Use spectral registration on a limited frequency range to align two separate
MRS datasets (align in to in1);

INPUTS:
in = input (spectrum to be registered to the base)
in1 = base (spectrum that the input is to be registered to).
fmin = Minimum frequency for spectral alignment (ppm).
fmax = Maximum frequency for spectral alignment (ppm).
tmax = Maximum time (s) in time domain to use for registration.

mode = (optional)'f' - Frequency align only
 'p' - Phase align only
 'fp or pf' - Frequency and phase align (default)

OUTPUTS:
out = Output following alignment of input (in1) to base.
ph = Phase shift (in degrees) used for alignment.
frq = Frequency shift (in Hz) used for alignment.

5.18. op_alignrcvrs.m

USAGE:
[out,ph,sig]=op_alignrcvrs(in,point,mode,coilcombos);

DESCRIPTION:
phase align the receiver channels without combining them.

INPUTS:
in = input spectrum in matlab structure format.
point = Index of point in time domain to use for phase reference.
 (optional. Default = 1);
mode = Method for estimating the coil weights and phases (optional.
 Default = 'w').
 -'w' performs amplitude weighting of channels based on the
 maximum signal of each coil channel.
 -'h' performs amplitude weighting of channels based on the
 maximum signal of each coil channel divided by the square of
 the noise in each coil channel (as described by Hall et al.
 Neuroimage 2014).
coilcombos = (optional) The predetermined coil phases and amplitudes as
 generated by the op_getcoilcombos.m function. If this
 argument is provided, the 'point', and 'mode', arguments
 will be ignored.

OUTPUTS:
out = Output following alignment of rf channels.
ph = Vector of coil phases (in degrees) used for alignment.
sig = Vector of coil weights.

5.19. op_ampScale.m

USAGE:
out=op_ampScale(in,A);

DESCRIPTION:
Scale the amplitude of a spectrum by factor A.

INPUTS:
in = input data in matlab structure format
A = Amplitude scaling factor.

OUTPUTS:
out = Output following amplitude scaling.

5.20. op_arsos.m

USAGE:
out=op_arsos(in,domain);

DESCRIPTION:
Perform all rank statistic order filter (see Slotboom J et al, Meas Sci
Technol. 20 (2009)). This effectively rank-orders the data along the
averages dimension. This can be done in either the time domain (default) or
the frequency domain.

INPUTS:
in = input data in matlab structure format.
domain = time domain ('t', (default)) or frequency domain ('f').

OUTPUTS:
out = Output following arsos filtering.

5.21. op_autophase.m

USAGE:
[out,phaseShift]=op_autophase(in,ppmmin,ppmmax,ph,dimNum);

DESCRIPTION:
Search for the peak located between ppmmin and ppmmax, and then phase the
spectrum so that that peak reaches the desired phase.

INPUTS:
in = input data in matlab structure format.
ppmmin = minimum of ppm search range.
ppmmax = maximum of ppm search range.
ph = desired phase value in degrees [optional. Default=0].
dimNum = which subSpec dimension to use for phasing? [Only for use in
 data with multiple subSpectra].

OUTPUTS:
out = Output following automatic phasing.
phaseShift = The phase shift (in degrees) that was applied.

5.22. op_averaging.m

USAGE:
out=op_averaging(in);

DESCRIPTION:
Combine the averages in a scan by adding the averages together and then
dividing by the number of averages.

INPUTS:
in = input data in matlab structure format.

OUTPUTS:

out = Output following averaging.

5.23. op_combineRcvrs.m

USAGE:
[out,outw,out_presum,outw_presum,weights]=op_combineRcvrs(in,inw);

DESCRIPTION:
Perform weighted coil recombination on both water suppressed and water
unsuppressed MRS data acquired with a receiver coil array.

INPUTS:
in = Water suppressed input spectrum in matlab structure format.
inw = Water unsuppressed input spectrum in matlab structure format.

OUTPUTS:
out = Water suppressed output following combination of RF channels.
outw = Water unsuppressed output following combination of RF
 channels.
out_presum = Water suppressed output with RF channels aligned but not
 combined.
outw_presum = Water unsuppressed output with RF channels aligned but not
 combined.
weights = Structure containing the coil weights and phases that were
 applied.

5.24. op_combinesubspecs.m

USAGE:
out=op_combinesubspecs(in,mode);

DESCRIPTION:
Combine the subspectra in an acquisition either by addition or
subtraction.

INPUTS:
in = input data in matlab structure format.
mode = -"diff" adds the subspectra together (this is counter intuitive,
 but the reason is that many "difference editing" sequences use
 phase cycling of the readout ADC to achieve "subtraction by
 addition".
 -"summ" performs a subtraction of the subspectra.

OUTPUTS:
out = Output following combination of subspectra.

5.25. op_complexConj.m

USAGE:
out=op_complexConj(in)

DESCRIPTION:

take the complex conjugate of the data;

INPUTS:
in = Input data in matlab structure format.

OUTPUTS:
out = Output following conjugation.

5.26. op_concatAverages.m

USAGE:
out=op_concatAverages(in1,in2);

DESCRIPTION:
Concatenate two scans along the averages dimension. Two scans with 50
averages each will now look like a single scan with 100 averages.

INPUTS:
in1 = first input in matlab structure format.
in2 = second input in matlab structure format.

OUTPUTS:
out = Output following concatenation of inputs along the averages
 dimension.

5.27. op_concatSubspecs.m

USAGE:
out=op_concatSubspecs(in1,in2);

DESCRIPTION:
Concatenate two scans along the subspecs dimension. Two scans with 50
averages each will now look like a single scan with 100 averages.

INPUTS:
in1 = first input in matlab structure format.
in2 = second input in matlab structure format.

OUTPUTS:
out = Output following concatenation along the subspecs dimension.

5.28. op_creFit.m

USAGE:
parsFit=op_creFit(in,ph0,ph1);

DESCRIPTION:
Perform a Lorentzian lineshape fit to the creatine resonance in a brain
proton MRS dataset.

INPUTS:
in = input data in matlab structure format.

ph0 = zero order phase to add to the input data.
ph1 = 1st order phase to add to the input data.

OUTPUTS:
parsFit = Fit parameters for the Creatine peak fit.
 parsFit(1) = Amplitude (in arbitrary units);
 parsFit(2) = Linewidth (in Hz);
 parsFit(3) = Frequency (in ppm);
 parsFit(4) = Baseline slope;
 parsFit(5) = Baseline DC Offset;

5.29. op_dccorr.m

USAGE:
out=op_dccorr(in,mode,var1);

DESCRIPTION:
Do a DC Correction on the data. This method is a frequency domain operation.

INPUTS:
in = input data in matlab structure format.
mode = Point('p') or Value('v'). In point mode, the DC offset is calculated
 automatically at a specific point in the spectrum. In value mode,
 the user has to provide the value of the desired DC offset.
var1 = If mode is 'p', then 'var' is the index of the spectral point that
 you wish to use to calculate the DC offset. If mode is 'v', then
 'var' is the value of the dc offset correction that you wish to
 employ.

OUTPUTS:
out = Output following DC correction.

5.30. op_downsamp.m

USAGE:
out=op_downsamp(in,dsFactor);

DESCRIPTION: Change the time domain sampling rate of a spectrum by a
factor of 'dsFactor'. Nearest neighbour interpolation is performed by
default.

INPUTS:
in = input data in matlab structure format.
dsFactor = factor by which to divide the sampling rate of the fid.

OUTPUTS:

5.31. op_ecc.m

USAGE:
[out,outw]=op_ecc(in,inw);

DESCRIPTION:
Perform an eddy current correction by estimating any non-linearity in the
phase of the water unsuppressed data in the time domain and applying the
appropriate correction to both the water suppressed and water unsuppressed
data.

INPUTS:
in = water suppressed input data in matlab structure format.
inw = water unsuppressed input data in matlab structure format.

OUTPUTS:
out = Water suppressed output following eddy current correction
outw = Water unsuppressed output following eddy current correction

5.32. op_fddccorr.m

USAGE:
out=op_fddccorr(in,npts);

DESCRIPTION:
Correct and DC offset in the frequency domain. This is equivalent to a
vertical shift in the frequency domain. The required vertical shift is
calculated by taking the average of the first and last "NPTS" points in the
frequency domain. This requires that those points are in the noise floor.

INPUTS:
in = input data in matlab structure format.
npts = number of points at both edges of the freqeuncy domain that will
 be used for estimation of the DC offset of the spectrum.

OUTPUTS:
out = Output following time-domain DC offset correction.

5.33. op_filter.m

USAGE:
[out,lor]=op_filter(in,lb);

DESCRIPTION:
Perform line broadening by multiplying the time domain signal by an
exponential decay function.

INPUTS:
in = input data in matlab structure format.
lb = line broadening factor in Hz.

OUTPUTS:
out = Output following alignment of averages.
lor = Exponential (time domain) filter envelope that was applied.

5.34. op_freqAlignAverages.m

USAGE:
[out,fs]=op_freqAlignAverages(in,tmax,avg,initPars);

DESCRIPTION:
Perform spectral registration in the time domain using only frequency
adjustment (no phase adjustment).

INPUTS:
in = Input data structure.
tmax = Maximum time (s) in time domain to use for alignment.
avg = Align averages to the average of the averages? (y or n)
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of averages.
fs = Vector of frequencies (in Hz) used for alignment.

5.35. op_freqAlignAverages_fd.m

USAGE:
[out,fs]=op_freqAlignAverages_fd(in,minppm,maxppm,tmax,avg,initPars);

DESCRIPTION:
Perform time-domain spectral registration using a limited range of
frequencies and using only frequency adjustment (no phase adjustment).

INPUTS:
in = Input data structure.
minppm = Minimum of frequency range (ppm).
maxppm = Maximum of frequency range (ppm).
tmax = Maximum time (s) in time domain to use for alignment.
avg = Align averages to the average of the averages? (y or n)
initPars = (Optional) Initial fit parameters [freq(Hz), phase(degrees)].
 Default=[0,0];

OUTPUTS:
out = Output following alignment of averages.
fs = Vector of frequencies (in Hz) used for alignment.

5.36. op_freqrange.m

USAGE:
out=op_freqrange(in,ppmmin,ppmmax);

DESCRIPTION:
Output only a specified frequency range of the input spectrum.

INPUTS:
in = input data in matlab structure format.
ppmmin = minimum extent of frequency range in ppm.
ppmmax = maximum extent of frequency range in ppm.

OUTPUTS:

out = Output following frequency range selection.

5.37. op_freqshift.m

USAGE:
out=op_freqshift(in,f);

DESCRIPTION:
Apply a frequency shift to the input spectrum by 'f' Hz.

INPUTS:
in = input data in matlab structure format.
f = frequency shift to apply (in Hz).

OUTPUTS:
out = Output following frequency shift.

5.38. op_freqshiftSubspec.m

USAGE:
out=op_freqshiftSubspec(in,f);

DESCRIPTION:
Apply a frequency shift to only one of the sub-spectra in a dataset. This is
used to minimize subtraction artefacts from MEGA_PRESS data, for instance.

INPUTS:
in = input data in matlab structure format.
f = frequency shift to apply to subspectrum (in Hz).

OUTPUTS:
out = Output following frequency shifting of subspectrum.

5.39. op_gaussianPeak.m

USAGE:
out=op_gaussianPeak(n,sw,Bo,lw,ppm0,amp);

DESCRIPTION:
Generate a noiseless spectrum containing a single gaussian peak with desired
parameters (frequency, amplitude, linewidth, etc.).

INPUTS:
n = Number of points in spectrum.
sw = spectral width of spectrum (Hz).
Bo = Magnetic field strength (Tesla).
lw = Linewidth of gaussian peak (Hz).
ppm0 = Frequency of gaussian peak (ppm).
amp = Amplitude of gaussian peak.

OUTPUTS:
out = Gaussian lineshape peak in FID-A structure format

5.40. op_getLW.m

USAGE:
[FWHM]=op_getLW(in,Refppmmin,Refppmmax,zpfactor);

DESCRIPTION:
Estimates the linewidth of a reference peak in the spectrum. By default, the
reference peak is water, between 4.4 and 5.0 ppm. Two methods are used to
estimate the linewidth: 1. FWHM is measured by simply taking the full width
at half max of the reference peak. 2. The FWHM is measured by fitting the
reference peak to a lorentzian lineshape and determine the FWHM of the best
fit. The output FWHM is given by the average of these two measures.

INPUTS:
in = input spectrum in structure format.
Refppmmin = Min of frequency range (ppm) in which to search for reference
 peak. (Optional. Default = 4.4 ppm);
Refppmmax = Max of frequency range to (ppm) in which search for reference
 peak (Optional. Default = 5/3 ppm per Tesla B0);
zpfactor = zero-padding factor (used for method 1.) (Optional. Default =
 8);

OUTPUTS:
FWHM = Estimated linewidth of the input spectrum (in Hz).

5.41. op_getPeakHeight.m

USAGE:
[h]=op_getPeakHeight(in,NAAppmmin,NAAppmmax);

DESCRIPTION:
Find the height of a peak in a spectrum.

INPUTS:
in = input data in matlab structure format
NAAppmmin = min of frequency range in which to search for peak.
 (Optional. Default = 1.8 ppm (for NAA));
NAAppmmax = max of frequency range in which to search for peak.
 (Optional. Default = 2.2 ppm (for NAA));

OUTPUTS:
h = Peak amplitude of the desired peak.

5.42. op_getSNR.m

USAGE:
[SNR]=op_getSNR(in,NAAppmmin,NAAppmmax,noiseppmmin,noiseppmmax);

DESCRIPTION:
Find the SNR of the NAA peak in a spectrum.

INPUTS:
in = input data in matlab structure format
NAAppmmin = min of frequency range in which to search for NAA peak.
 (Optional. Default = 1.8 ppm);
NAAppmmax = max of frequency range in which to search for NAA peak.
 (Optional. Default = 2.2 ppm);
noiseppmmin = min of frequency range in which to measure noise.
 (Optional. Default = -2 ppm);
noiseppmmax = max of frequency range in which to measure noise.
 (Optional. Default = 0 ppm);

OUTPUTS:
SNR = Estimated SNR of the input spectrum.

5.43. op_getcoilcombos.m

USAGE:
coilcombos=op_getcoilcombos(file_or_struct,point,mode);

DESCRIPTION:
This function finds the relative coil phases and amplitudes. Coil phases are
found by determining the phase and amplitude of the “pointth” point in the
time domain.

INPUTS:
file_or_struct = this function will accept either a string filename or
 the name of a structure. If the input is a string,
 the program will read in the data corresponding to
 that filename. If the input is a structure, it will
 operate on that structure.
point = The index of the datapoint in the fid that is used
 for determination of signal intensity and phase.
 (Optional. Default = 1).
mode = Method for estimating the coil weights and phases
 (optional. Default = 'w').
 -'w' performs amplitude weighting of channels based on
 the maximum signal of each coil channel.
 -'h' performs amplitude weighting of channels based on
 the maximum signal of each coil channel divided by the
 square of the noise in each coil channel (as described by
 Hall et al. Neuroimage 2014).

OUTPUTS:
coilcombos = Structure containing the calculated coil weights and
 phases.

5.44. op_getcoilcombos_specReg.m

USAGE:
coilcombos=op_getcoilcombos_specReg(file_or_struct,tmin,tmax,point);

DESCRIPTION:
This funciton finds the relative coil phases and amplitudes. Coil phases

are found by fitting in the time domain. (In the original op_getcoilcombos,
the phases were determined simply by observation of the pointth point in the
time domain). The "Base" receiver channel is Determined as the one with the
highest signal (all other coil channels will be registered to that channel.

INPUTS:
file_or_struct = this function will accept either a string filename or
 the name of a structure. If the input is a string, the
 program will read in the data corresponding to that
 filename. If the input is a structure, it will operate on
 that structure.
tmin = The earliest timepoint in the fid to be used for
 spectral registration. (Optional. Default=0 sec);
tmax = The latest timepoint in the fid to be used for
 spectral registration. (Optional. Default=0.2 sec);
point = The index of the datapoint in the fid that is used
 for determination of Signal intensity. (Optional. Default
 = 1);

OUTPUTS:
coilcombos = Structure containing the calculated coil weights and
 phases.

5.45. op_integrate.m

USAGE:
[int]=op_integrate(in,ppmmin,ppmmax,mode);

DESCRIPTION:
Basic peak integration over a specified frequency range. By default, this
function integrates under the real part of the curve, but it can also be made
to integrate the imaginary part or the magnitude part by changing the "mode"
parameter.

INPUTS:
in = input data in matlab structure format
ppmmin = min of frequncy range (in ppm) in which to calculate integral.
ppmmax = max of frequncy range (in ppm) in which to calculate integral.
mode = mode (optional):
 -'re' (integral performed on real part (default)).
 -'im' (integral performed on imaginary part).
 -'mag' (integral performed on magnitude part).

OUTPUTS:
int = Estimated area under the curve for the desired frequency range.

5.46. op_leftshift.m

USAGE:
out=op_leftshift(in,ls);

DESCRIPTION:
Remove leading data points from the fid to get rid of 1st order phase errors.

INPUTS:
in = input data in matlab strucure format.
ls = number of points to remove from the beginning of the fid.

OUTPUTS:
out = Output following left shifting.

5.47. op_lorentz.m

USAGE:
y=op_lorentz(pars,ppm);

DESCRIPTION:
Generate a parametrized lorentzian peak.
This function is fed into fitting tools to enable fitting of peaks using
lorentzian lineshapes.

INPUTS:
pars = The parameters of the Lorentizan function. This is a five
 element vector consisting of the following fields:
 [Amplitude,
 FWHM, (In Hz)
 Centre Freq, (In ppm)
 baseline offset, (in Amplitude units)
 Phase shift]; (in degrees)
ppm = frequency axis vector (in ppm);

OUTPUTS:
y = Output vector specifying a lorentzian lineshape.

5.48. op_lorentz_linbas.m

USAGE:
y=op_lorentz_linbas(pars,ppm);

DESCRIPTION:
Generate a parametrized lorentzian peak with a linearly sloping baseline.
This function is fed into fitting tools to enable fitting of peaks using
lorentzian lineshapes.

INPUTS:
pars = The parameters of the Lorentizan function. This is a six
 element vector consisting of the following fields:
 [Amplitude,
 FWHM, (In Hz)
 Centre Freq, (In ppm)
 baseline slope, (in Amplitude units per ppm)
 baseline offset, (in Amplitude units)
 Phase shift]; (in degrees)
ppm = frequency axis vector (in ppm);

OUTPUTS:
y = Output vector specifying a lorentzian lineshape.

5.49. op_lorentzianPeak.m

USAGE:
out=op_lorentzianPeak(n,sw,Bo,lw,ppm0,amp);

DESCRIPTION:
Generate a noiseless spectrum containing a single lorentzian peak with
desired parameters (frequency, amplitude, linewidth, etc.).

INPUTS:
n = Number of points in spectrum.
sw = spectral width of spectrum (Hz).
Bo = Magnetic field strength (Tesla).
lw = Linewidth of gaussian peak (Hz).
ppm0 = Frequency of gaussian peak (ppm).
amp = Amplitude of gaussian peak.

OUTPUTS:
out = Lorentzian lineshape peak in FID-A structure format.

5.50. op_makeFreqDrift.m

USAGE:
[out,fDrift]=op_makeFreqDrift(in,totalDrift,noise);

DESCRIPTION:
Add frequency drift to a dataset containing multiple averages. This is
generally used to generate simulated datasets with phase drift.

INPUTS:
in = input data in matlab structure format.
totalDrift = total amount of frequency drift (in Hz) to add over the whole
 scan. If totalDrift is a scalar, then a constant slope of drift
 will be added. If totalDrift is a vector or matrix with
 dimensions equal to the dimensions of the input data, then this
 vector specifies the drift applied to each average.
noise = the standard deviation of noise to add to the frequency drift
 function.

OUTPUTS:
out = Output dataset with frequency drift added.
fDrift = Vector of frequency drift values that were added (in Hz).

5.51. op_makePhaseDrift.m

USAGE:
[out,phDrift]=op_makePhaseDrift(in,totalDrift,noise);

DESCRIPTION:
Add phase drift to a dataset containing multiple averages. This is generally
used to generate simulated datasets with phase drift.

INPUTS:
in = input data in matlab structure format.
totalDrift = total amount of phase drift (in degrees) to add over the whole
 scan. If totalDrift is a scalar, then a constant slope of drift
 will be added. If totalDrift is a vector or matrix with
 dimensions equal to the dimensions of the input data, then this
 vector specifies the drift applied to each average.
noise = the standard deviation of noise to add to the phase drift
 function.

OUTPUTS:
out = Output dataset with phase drift added.
phDrift = Vector of phase drift values that were added (in degrees).

5.52. op_median.m

USAGE:
out=op_median(in);

DESCRIPTION:
Combine the averages in a scan by calculating the median of all averages.

INPUTS:
in = input data in matlab structure format.

OUTPUTS:
out = Output dataset following median calculation.

5.53. op_movef0.m

USAGE:
out=op_movef0(in,f);

DESCRIPTION:
Change the centre frequency of the input spectrum by 'f' Hz.

INPUTS:
in = input data in matlab structure format.
f = frequency shift to apply (in Hz).

OUTPUTS:
out = Output dataset following f0 shift.

5.54. op_peakFit.m

USAGE:
[fit,parsFit,residual]=op_peakFit(in,ppmmin,ppmmax,parsGuess);

DESCRIPTION:
Perform a Voigt lineshape fit to a prominent singlet resonance within the
provided ppm window of a proton MRS dataset.

INPUTS:
in = input data in matlab stucture format.
ppmmin = lower frequency limit for fitting.
ppmmax = upper frequency limit for fitting.
parsGuess = Initial parameter guesses:
 (Amplutide [arb units]
 linewidth [Hz]
 frequency [ppm]
 phase [degrees])

OUTPUTS:
fit = Voigt lineshape fit in simplified FID-A structure format.
parsFit = Fit parameters (same format as parsGuess).
residual = The fit residual in simplified FID-A structure format.

5.55. op_phaseAlignAverages.m

USAGE:
[out,phs]=op_phaseAlignAverages(in,Npts,avg,weighting)

DESCRIPTION:
Perform time-domain spectral registration using only phase adjustment (no
frequency adjustment). This is rarely used.

INPUTS:
in = Input data structure.
Npts = Number of points in time domain to use for alignment.
avg = Align averages to the average of the averages ('y'), or the
 first average in the series ('n');
weighting = (Optional) Apply less weight to the later points of the fid?

OUTPUTS:
out = Output following alignment of averages.
phs = Vector of phases (in Degrees) used for alignment.

5.56. op_phaseAlignAverages_fd.m

USAGE:
[out,phs]=op_phaseAlignAverages_fd(in,minppm,maxppm,Npts,avg,weighting)

DESCRIPTION:
Perform time-domain spectral registration using a limited range of
frequencies and using only phase adjustment (no frequency adjustment).
This is rarely used.

INPUTS:
in = Input data structure.
minppm = Minimum of frequency range (ppm).
maxppm = Maximum of frequnecy range (ppm).
Npts = Number of points in time domain to use for alignment.
avg = Align averages to the average of the averages ('y'), or the
 first average in the series ('n');
weighting = (Optional) Apply less weight to the later points of the fid?

OUTPUTS:
out = Output following alignment of averages.
phs = Vector of phases (in degrees) used for alignment.

5.57. op_plotfid.m

USAGE:
out=op_plotfid(in,tmax,xlab,ylab,tit);

DESCRIPTION:
Plot the spectrum in the time domain.

INPUTS:
in = input data in matlab structure format. This argument can be a
 MATLAB structure (formatted according to the FID-A structure
 format), or it can be a cell array, where the elements of each cell
 are FID-A structures. In the latter case, each spectrum in the
 structure will be plotted, with the option of a vertical offset.
tmax = upper limit of time scale to plot in seconds (optional. Default =
 max(in.t)).
xlab = Label for the x-axis (optional. Default = 'Time (sec)');
ylab = label for the y-axis (optional. Default = 'FID Amplitude (arb
 units)');
tit = label for the title of the plot (optional. Default = '');

OUTPUTS:
out = Figure handle.

5.58. op_plotspec.m

USAGE:
out=op_plotspec(in,ppmmin,ppmmax,xlab,ylab,tit);

DESCRIPTION:
Plot the MR spectrum in the frequency domain.

INPUTS:
in = input data in matlab structure format. This argument can be a
 MATLAB structure (formatted according to the FID-A structure
 format), or it can be a cell array, where the elements of each cell
 are FID-A structures. In the latter case, each spectrum in the
 structure will be plotted, with the option of a vertical offset.
ppmmin = lower limit of ppm scale to plot (optional. Default = 0.2 ppm).
ppmmax = upper limit of ppm scale to plot (optional. Default = 5.2 ppm).
xlab = Label for the x-axis (optional. Default = 'Frequency (ppm)');
ylab = label for the y-axis (optional. Default = '');
tit = label for the title of the plot (optional. Default = '');

OUTPUTS:
out = Figure handle.

5.59. op_ppmref.m

USAGE:
[out,frqshift]=op_ppmref(in,ppmmin,ppmmax,ppmrefval,dimNum);

DESCRIPTION:
Search for the peak located between ppmmin and ppmmax, and then give that
peak a new ppm reference value.

INPUTS:
in = input data in matlab structure format.
ppmmin = minimum of ppm search range.
ppmmax = maximum of ppm search range.
ppmrefval = new reference ppm value.
dimNum = which subspectrum to used for referencing (optional).

OUTPUTS:
out = Output dataset following frequency shift.
frqshift = Frequency shift applied (in Hz).

5.60. op_relyTest.m

USAGE:
out = op_relyTest(in);

DESCRIPTION:
Perform reliability testing on a dataset with multiple averages, as described
in Slotboom J et al, Meas Sci Technol 20 (2009). This involves calculating
the skewness (3rd standard moment) and kurtosis (4th standard moment) of any
dataset along the "averages" dimension. The output structure contains
skewness and kurtosis vectors (as a function of t), as well as the mean of
the absolute values skewness and kurtosis for all timepoints where the
average FID SNR is greater than 2.

INPUTS:
in = input data in matlab structure format.

OUTPUTS:
out = Structure containing skewness and kurtosis indices for reliability
 testing.

5.61. op_removeWater.m

USAGE:
out=op_removeWater(out,wlim,Kinit,M,plot_bool);

DESCRIPTION:
This function removes the water signal from MRS data using HSVD method
described by H. BARKHUIJSEN et al. 1987.

INPUTS:
in = MRS data structure used by FID-a toolkit. Data should be
 pre-processed, for example by out = run_pressproc(filename)
wlim = This is the frequency limits of the water peak to be fitted in
 ppm. (default = [4.4 5]

Kinit = The number of frequency components in the data model This
 parameter might have to be played with. (default is 20).
M = M is the integer number of columns in the henkel matrix. Note: L
 is the number of rows and L+M=N where N is the number of data
 points. For best results 0.5<=L/M<=2. (default M= .75*length.
plot_bool = if 1, water fit is plotted (default =1)

OUTPUTS:
out = New spectrum without the water peak in the as a FID-A structure
K = The number of frequency components used to fit the data.

5.62. op_rmNworstaverages.m

USAGE:
[out,metric,badAverages]=op_rmNworstaverages(in,n);

DESCRIPTION:
Removes motion corrupted averages from a dataset containing multiple
averages. The N most badly motion corrupted averages are discarded.

INPUTS:
in = input data in matlab structure format
n = number of bad averages to remove

OUTPUTS:
out = Output dataset following removal of motion corrupted averages.
metric = Vector of unlikeness metrics corresponding to all input
 averages.
badAverages = Indices of the averages that were removed.

5.63. op_rmbadaverages.m

USAGE:
[out,metric,badAverages]=op_rmbadaverages(in,nsd,domain);

DESCRIPTION:
Removes motion corrupted averages from a dataset containing multiple
averages. Bad averages are identified by calculating a 'likeness' metric for
each average. This is done by subtracting each average from the average of
the averages, and then calculating the root mean squared of this difference
spectrum. Averages whose likeness metrics are greater than 'nsd' above the
mean are discarded.

INPUTS:
in = input data in matlab structure format
nsd = number of standard deviations to use a rejection threshold
domain = domain in which to perform calculations ('t' or 'f')

OUTPUTS:
out = Output dataset following removal of motion corrupted averages.
metric = Vector of unlikeness metrics corresponding to all input
 averages.
badAverages = Indices of the averages that were removed.

5.64. op_rmworstaverage.m

USAGE:
[out,metric,badAverages]=op_rmworstaverage(in);

DESCRIPTION:
Removes motion corrupted averages from a dataset containing multiple
averages. The most badly motion corrupted average is discarded.

INPUTS:
in = input data in matlab structure format

OUTPUTS:
out = Output dataset following removal of the most motion corrupted
 average.
metric = Vector of unlikeness metrics corresponding to all input
 averages.
badAverages = Indices of the averages that were removed.

5.65. op_subtractScans.m

USAGE:
out=op_subtractScans(in1,in2);

DESCRIPTION:
Subtract input 2 from input 1;

INPUTS:
in1 = 1st input data in matlab structure format.
in2 = 2nd input data in matlab structure format.

OUTPUTS:
out = Output dataset following subtraction of in2 from in1.

5.66. op_takeaverages.m

USAGE:
out=op_takeaverages(in,index);

DESCRIPTION:
Extract the averages with indices corresponding to the 'index' input array.

INPUTS:
in = input data in matlab structure format.
index = vector indicating the indices of the averages you would like to
 extract.

OUTPUTS:
out = Output dataset consisting of averages extracted from the input.

5.67. op_takesubspec.m

USAGE:
out=op_takesubspec(in,index);

DESCRIPTION:
Extract the subspectra with indices corresponding to the 'index' input array.

INPUTS:
in = input data in matlab structure format.
index = vector indicating the indices of the subspectra you would like to
 extract.

OUTPUTS:
out = Output dataset consisting of subspectra indices extracted from the
 input.

5.68. op_timerange.m

USAGE:
out=op_timerange(in,tmin,tmax);

DESCRIPTION:
Output only a specified frequency range of the input spectrum.

INPUTS:
in = input data in matlab structure format.
tmin = minimum extent of frequency range in ppm.
tmax = maximum extent of frequency range in ppm.

OUTPUTS:
out = Output dataset following truncation in the time domain.

5.69. op_unfilter.m

USAGE:
out=op_unfilter(in,lb);

DESCRIPTION:
Multiply the fid by an inverted exponential decay function to undo the
effects of filtering.

INPUTS:
in = input data in matlab structure format.
lb = line narrowing factor (Hz).

OUTPUTS:
out = Output dataset following application of inverted exponential filter.

5.70. op_zeropad.m

USAGE:
out=op_zeropad(in,zpFactor);

DESCRIPTION:
Apply zeropadding (a.k.a. zero-filling) to MRS data.

INPUTS:
in = input data in matlab structure format.
zpFactor = the factor by which the number of points in the fid will be
 increased. ie. if zpFactor =2, then the number of zeros added
 to the end of the fid will be equal to the number of points in
 the original spectrum.

OUTPUTS:
out = Output dataset following zeropadding.

5.71. op_zerotrim.m

USAGE:
out=op_zerotrim(in,numPointsToTrim);

DESCRIPTION:
Remove zeros (or even non-zero data points) from the end of the fid.

INPUTS:
in = input data in matlab structure format.
numPointsToTrim = The number of points to trim from the end of the fid.

OUTPUTS:
out = Output dataset following truncation in time domain.

6. Example Run Scripts
The FID—A software package contains a library of example run
scripts which are located in the {FID-A_DIR}/exampleRunScripts
directory. These are intended to provide the user with examples
of useful “pipelines” for NMR simulation and data processing.
In the case of NMR simulation pipelines, the provided example
run scripts involve spatially resolved simulations for
experiments with shaped localization pulses, or examples of how
to generate a simple LCModel basis set. In the case of MRS data
processing, the provided example run scripts demonstrate all of
the necessary steps for a full processing pipeline, from
importing the raw data into matlab, combining RF coil channels,
removing motion corrupted averages, spectral registration to
remove frequency and phase drift, signal averaging and phase
correction, and exporting the final processed data into a format
that is readable by one of the leading analysis software
packages. Some of these example processing scripts may be
useable in their existing form for routine data processing of

MRS data. Others may need to be modified to suit the user’s
specific needs. All of the example run scripts make use of the
various functions in within the FID-A toolboxes.

6.1. run_getLWandSNR.m

USAGE:
[FWHM,SNR] = run_getLWandSNR(in);

DESCRIPTION:
Calculate the linewidth and SNR of a spectrum. This function calculates the
Linewidth by measuring the FWHM of the unsuppressed water peak. SNR is
calculated by measuring the height of the NAA peak and comparing this to the
standard deviation of the noise in a signal-free region of the spectrum. SNR
is measured four separate times using four different noise regions and the
average of those four measurements is reported.

INPUTS:
in = input data in matlab structure format

OUTPUTS:
FWHM = Linewidth (full width at half maximum, in [Hz]) of the water peak.
SNR = Signal to noise ratio of the NAA peak.

6.2. run_make2DSimPlot.m

USAGE:
[]=run_make2DSimPlot(in,ppmmin,ppmmax,plotDiff)

DESCRIPTION:
This function takes the output of a spatially resolved simulation, and plots
the array of spectra on a single figure. The input should be a cell array
where the grid of elements of the cell array are simulated spectra from a
corresponding grid of spatial positions in the spatially resolved simulation.
Each element of the cell array is also in FID-A data struture format. By
including the optional input arguement ppmmin and ppmmax, only a the
corresponding range of each spectrum will be plotted.

INPUTS:
in = input cell array of simulated spectra from a spatially resolved
 simulation
ppmmin = lower limit of ppm range to plot [ppm]
ppmmax = upper limit of ppm range to plot [ppm]

Figure 1: The output of run_make2DSimPlot, which shows simulated, spatially

resolved MEGA-PRESS difference spectra of the GABA spin system. This
simulation was generated using run_simMegaPressShaped, and it incorporates
the shaped editing and refocusing pulses. Only the 3ppm GABA resonance is

shown.

6.3. run_megapressproc.m

USAGE:
[out1_diff,out1_sum,out1,outw,coilcombos]=run_megapressproc(filestring,coilco
mbos,avgAlignDomain,alignSS);

DESCRIPTION:
Processing script for Siemens MEGA-PRESS MRS data in .dat format (twix raw
data). Includes combination of reciever channels, removal of bad averages,
freqeuncy drift correction, manual alignment of edit-on and edit-off spectra,
and leftshifting.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed .dat
 file should be contained in [filestring '_w/'];
coilcombos = (Optional). A structure obtained by running the

 op_getcoilcombos function. This allows the user to
 specify the coil phases and amplitudes as an input,
 rather calculating these from the input data by
 default.
avgAlignDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a
 limited frequency range ('f'). Default is 'f'.
alignSS = (Optional)
 0 - Do not align the edit-on and edit-off subspectra
 (default).
 2 - Perform manual alignment of edit-on and edit-off
 subspectra.

OUTPUTS:
out1_diff = Fully processed difference spectrum.
out1_sum = Fully processed sum spectrum.
out1 = Fully processed edit-on and edit-off subspectra.
outw = Fully processed water unsuppressed spectrum.
coilcombos = Estimated coil weights and phases.

6.4. run_megapressproc_GEauto.m

USAGE:
[diffSpec,sumSpec,subSpec1,subSpec2,outw]=run_megapressproc_GEauto(filestring
,coilcombos,avgAlignDomain,alignSS);

DESCRIPTION:
Fully automated processing script for GE MEGA-PRESS MRS data in P-file format
(GE raw data). Includes combination of reciever channels, removal of bad
averages, freqeuncy drift correction, manual alignment of edit-on and edit-
off spectra, and leftshifting. This pipeline requires no user interaction.
This function automatically generates an html report to describe the results
of each processing step.

INPUTS:
filestring = String variable for the name of the P file.
coilcombos = (Optional). A structure obtained by running the
 op_getcoilcombos function. This allows the user to
 specify the coil phases and amplitudes as an input,
 rather calculating these from the input data by default.
avgAlignDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a
 limited frequency range ('f'). Default is 'f'.
alignSS = (Optional)
 0 - Do not align the edit-on and edit-off subspectra
 (default).
 2 - Perform manual alignment of edit-on and edit-off
 subspectra.

OUTPUTS:
diffSpec = Fully processed difference spectrum.
sumSpec = Fully processed sum spectrum.
subSpec1 = Fully processed MEGA-PRESS subspectrum #1.
subSpec2 = Fully processed MEGA-PRESS subspectrum #2.
outw = Fully processed water unsuppressed spectrum.

6.5. run_megapressproc_auto.m

USAGE:
[diffSpec,sumSpec,subSpec1,subSpec2]=run_megapressproc_auto(filestring,coilco
mbos,avgAlignDomain,alignSS);

DESCRIPTION:
Fully automated processing script for Siemens MEGA-PRESS MRS data in .dat
format (twix raw data). Includes combination of reciever channels, removal
of bad averages, freqeuncy drift correction, manual alignment of edit-on and
edit-off spectra, and leftshifting. This pipeline requires no user
interaction. This function automatically generates an html report to describe
the results of each processing step.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed .dat
 file should be contained in [filestring '_w/'];
coilcombos = (Optional). A structure obtained by running the
 op_getcoilcombos function. This allows the user to
 specify the coil phases and amplitudes as an input,
 rather calculating these from the input data by
 default.
avgAlignDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a
 limited frequency range ('f'). Default is 'f'.
alignSS = (Optional)
 0 - Do not align the edit-on and edit-off subspectra
 (default).
 2 - Perform manual alignment of edit-on and edit-off
 subspectra.

OUTPUTS:
diffSpec = Fully processed difference spectrum.
sumSpec = Fully processed sum spectrum.
subSpec1 = Fully processed MEGA-PRESS subspectrum #1.
subSpec2 = Fully processed MEGA-PRESS subspectrum #2.

6.6. run_pressproc.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_pressproc(filestring,aaDomain,tmaxin,
iterin);

DESCRIPTION:
Processing script for Siemens PRESS MRS data in .dat format (twix raw data).
Includes combination of reciever channels, removal of bad averages, freqeuncy
drift correction, and leftshifting.

INPUTS:
filestring = String variable for the name of the directory containing the
 water suppressed .dat file. Water unsuppressed .dat file
 should be contained in [filestring '_w/'];

aaDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a limited
 frequency range ('f'). Default is 'f'.
tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.
iterin = (Optional). Maximum number of allowed iterations for the
 spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-processing (No
 bad-averages removal, no frequency drift correction).
out_w_noproc = Water unsuppressed output spectrum without pre-
 processing.

6.7. run_pressproc_brukAuto.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_pressproc_brukAuto(filestring,
filestringw,aaDomain,tmaxin,iterin);

DESCRIPTION:
Fully automated processing script for Bruker PRESS MRS data in fid.raw
format (raw data). Processing steps include removal of bad averages,
frequency drift correction, leftshifting and auto-phasing. This pipeline
requires no user interaction. This function automatically generates an
html report to describe the results of each processing step.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed fid.raw file.
filestringw = String variable for the name of the directory containing
 the water unsuppressed fid.raw file.
aaDomain = (Optional) Perform the spectral registration (drift

correction) using the full spectrum ('t'), or only a limited
frequency range ('f'). Default is 'f'.

tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.
iterin = (Optional). Maximum number of allowed iterations for the

spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-
 processing (No bad-averages removal, no frequency drift
 correction).
out_w_noproc = Water unsuppressed output spectrum without pre-
 processing.

6.8. run pressproc_GEauto.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_pressproc_GEauto(filestring,aaDomain,
tmaxin,iterin);

DESCRIPTION:
Fully automated processing script for GE PRESS MRS data in p-file format (GE
raw data). Includes combination of reciever channels, removal of bad
averages, freqeuncy drift correction, and leftshifting. This pipeline
requires no user interaction. This function automatically generates an html
report to describe the results of each processing step.

INPUTS:
filestring = String variable for the name of the p-file the water
 suppressed data;
aaDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a limited
 frequency range ('f'). Default is 'f'.
tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.
iterin = (Optional). Maximum number of allowed iterations for the
 spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-processing (No
 bad-averages removal, no frequency drift correction).
out_w_noproc = Water unsuppressed output spectrum without pre-processing.

6.9. run_pressproc_auto.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_pressproc_auto(filestring,aaDomain,tm
axin,iterin);

DESCRIPTION:
Fully automated processing script for Siemens PRESS MRS data in .dat format
(twix raw data). Includes combination of reciever channels, removal of bad
averages, freqeuncy drift correction, and leftshifting. This pipeline
requires no user interaction. This function automatically generates an html
report to describe the results of each processing step.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed .dat file
 should be contained in [filestring '_w/'];
aaDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a limited
 frequency range ('f'). Default is 'f'.
tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.

iterin = (Optional). Maximum number of allowed iterations for the
 spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-processing (No
 bad-averages removal, no frequency drift correction).
out_w_noproc = Water unsuppressed output spectrum without pre-processing.

6.10. run_simExampleBasisSet.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
Script to generate simulated basis spectra for all metabolites of interest in
the human brain. The script will generate an LCModel format .RAW file for
each metabolite basis spectrum, which can then be passed into LCModel's
"makebasis" function to generate a complete LCModel basis set.

INPUTS:
To run this script, edit the following parameters as desired and then click
run:
lb = linewidth (Hz)
np = Spectral points
sw = Spectral width (Hz)
Bo = Magnetic Field Strength (Tesla)
te1 = First PRESS echo time, or SPECIAL echo time (s)
te2 = Second PRESS echo time (if applicable) (s).
seq = Pulse sequence ('se'= SPECIAL, 'p'=press, 'st'=steam);
ref = Add reference peak at 0ppm (used in LCModel, y or n);

OUTPUTS:
H2O = Simulated water spectrum
Ala = Simulated alanine spectrum
Asp = Simulated aspartate spectrum
PCh = Simulated phosphocholine spectrum
Cr = Simulated creatine spectrum
PCr = Simulated phosphochreatine spectrum
GABA = Simulated GABA spectrum
Gln = Simulated glutamine spectrum
Glu = Simulated glutamate spectrum
GSH = Simulated glutathione spectrum
Gly = Simulated glycine spectrum
Ins = Simulated myo-inositol spectrum
Lac = Simulated Lactate spectrum
NAA = Simulated NAA spectrum
Scyllo = Simulated scyllo-inositol spectrum
Tau = Simulated taurine spectrum
Asc = Simulated ascorbate spectrum
bHB = Simulated beta-hydroxybutyrate spectrum
bHG = Simulated 2-hydroxyglutyrate spectrum
Glc = Simulated glucose spectrum
NAAG = Simulated N-acetylaspartylglutamate spectrum

GPC = Simulated glycerophosphocholine spectrum
PE = Simulated phosphoethanolamine spectrum
Ser = Simulated serine spectrum

************INPUT PARAMETERS**********************************

6.11. run_simMegaExTEShaped.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates an ExTE-MEGA-PRESS experiment with fully shaped editing
and refocusing pulses. Phase cycling of both the editing and refocusing
pulses is performed. Simulations are run at various locations in space to
account for the within-voxel spatial variation of the GABA signal. Summation
across phase cycles and spatial positions is performed. As a result of the
phase cycling and spatially resolved simulations, this code takes a long time
to run. Therefore, the MATLAB parallel computing toolbox (parfor loop) was
used to accelerate the siumulations. Accelration is currently performed in
the direction of the slice selective pulse along the x-direction, but this
can be changed. Up to a factor of 12 acceleration can be achieved using this
approach. To enable the use of the MATLAB parallel computing toolbox,
initialize the multiple worked nodes using "matlabpool size X" where "X" is
the number of available processing nodes. If the parallel processing toolbox
is not available, then replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
refocWaveform = name of refocusing pulse waveform.
editWaveform = name of editing pulse waveform.
editOnFreq = freqeucny of edit on pulse[ppm]
editOffFreq = frequency of edit off pulse[ppm]
refTp = duration of refocusing pulses[ms]
editTp = duration of editing pulses[ms]
Bfield = Magnetic field strength in [T]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
thkX = slice thickness of x refocusing pulse [cm]
thkY = slice thickness of y refocusing pulse [cm]
x = vector of X positions to simulate [cm]
y = vector of y positions to simulate [cm]
taus = vector of pulse sequence timings [ms]
spinSys = spin system to simulate
editPhCyc1 = vector of phase cycling steps for 1st editing pulse
 [degrees]
editPhCyc2 = vector of phase cycling steps for 2nd editing pulse
 [degrees]
refPhCyc1 = vector of phase cycling steps for 1st refocusing pulse
 [degrees]
refPhCyc2 = vector of phase cycling steps for 2nd refocusing pulse
 [degrees]

OUTPUTS:
outON_posxy = Simulated ExTE-MEGA-PRESS edit-ON spectrum, spatially
 resolved.
outOFF_posxy = Simulated ExTE-MEGA-PRESS edit-OFF spectrum, spatially
 resolved.
outDIFF_posxy = Simulated ExTE-MEGA-PRESS difference spectrum, spatially
 resolved.
outON = Simulated ExTE-MEGA-PRESS edit-ON spectrum, summed over
 all positions.
outOFF = Simulated ExTE-MEGA-PRESS edit-OFF spectrum, summed over
 all positions.
outDIFF = Simulated ExTE-MEGA-PRESS difference spectrum, summed
 over all positions.

6.12. run_simMegaPressShaped.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a MEGA-PRESS experiment with fully shaped editing and
refocusing pulses. Phase cycling of both the editing and refocusing pulses
is performed. Simulations are run at various locations in space to account
for the within-voxel spatial variation of the GABA signal. Summation across
phase cycles and spatial positions is performed. As a result of the phase
cycling and spatially resolved simulations, this code takes a long time to
run. Therefore, the MATLAB parallel computing toolbox (parfor loop) was used
to accelerate the siumulations. Accelration is currently performed in the
direction of the slice selective pulse along the x-direction, but this can be
changed. Up to a factor of 12 acceleration can be achieved using this
approach. To enable the use of the MATLAB parallel computing toolbox,
initialize the multiple worked nodes using "matlabpool size X" where "X" is
the number of available processing nodes. If the parallel processing toolbox
is not available, then replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
refocWaveform = name of refocusing pulse waveform.
editWaveform = name of editing pulse waveform.
editOnFreq = freqeucny of edit on pulse[ppm]
editOffFreq = frequency of edit off pulse[ppm]
refTp = duration of refocusing pulses[ms]
editTp = duration of editing pulses[ms]
Bfield = Magnetic field strength in [T]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
thkX = slice thickness of x refocusing pulse [cm]
thkY = slice thickness of y refocusing pulse [cm]
x = vector of X positions to simulate [cm]
y = vector of y positions to simulate [cm]
taus = vector of pulse sequence timings [ms]

spinSys = spin system to simulate
editPhCyc1 = vector of phase cycling steps for 1st editing pulse
 [degrees]
editPhCyc2 = vector of phase cycling steps for 2nd editing pulse
 [degrees]
refPhCyc1 = vector of phase cycling steps for 1st refocusing pulse
 [degrees]
refPhCyc2 = vector of phase cycling steps for 2nd refocusing pulse
 [degrees]

OUTPUTS:
outON_posxy = Simulated MEGA-PRESS edit-ON spectrum, spatially
 resolved.
outOFF_posxy = Simulated MEGA-PRESS edit-OFF spectrum, spatially
 resolved.
outDIFF_posxy = Simulated MEGA-PRESS difference spectrum, spatially
 resolved.
outON = Simulated MEGA-PRESS edit-ON spectrum, summed over
 all positions.
outOFF = Simulated MEGA-PRESS edit-OFF spectrum, summed over
 all positions.
outDIFF = Simulated MEGA-PRESS difference spectrum, summed over
 all positions.

6.13. run_simMegaPressShapedEdit.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a MEGA-PRESS experiment with fully shaped editing
pulses. Phase cycling of editing pulses is performed, and summation across
phase cycles is performed.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
editWaveform = name of editing pulse waveform.
editOnFreq = freqeucny of edit on pulse[ppm]
editOffFreq = frequency of edit off pulse[ppm]
editTp = duration of editing pulses[ms]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
taus = vector of pulse sequence timings [ms]
spinSys = spin system to simulate
editPhCyc1 = vector of phase cycling steps for 1st editing pulse
 [degrees]
editPhCyc2 = vector of phase cycling steps for 2nd editing pulse
 [degrees]

OUTPUTS:
outON = Simulated MEGA-PRESS edit-ON spectrum.
outOFF = Simulated ExTE-MEGA-PRESS edit-OFF spectrum.

outDIFF = Simulated ExTE-MEGA-PRESS difference spectrum.

6.14. run_simMegaPressShapedRefoc.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a MEGA-PRESS experiment with fully shaped refocusing
pulses. Phase cycling of the refocusing pulses is performed and simulations
are run at various locations in space to account for the within-voxel spatial
variation of the GABA signal. Summation across spatial positions is
performed. As a result of the phase cycling and spatially resolved
simulations, this code takes a long time to run. Therefore, the MATLAB
parallel computing toolbox (parfor loop) is used to accelerate the
siumulations. Acceleration is currently performed in the direction of the
slice selective pulse along the x-direction, but this can be changed. Up to
a factor of 12 acceleration can be achieved using this approach. To enable
the use of the MATLAB parallel computing toolbox, initialize the multiple
worked nodes using "matlabpool size X" where "X" is the number of available
processing nodes. If the parallel processing toolbox is not available, then
replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
refocWaveform = name of refocusing pulse waveform.
refTp = duration of refocusing pulses[ms]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
thkX = slice thickness of x refocusing pulse [cm]
thkY = slice thickness of y refocusing pulse [cm]
x = vector of X positions to simulate [cm]
y = vector of y positions to simulate [cm]
taus = vector of pulse sequence timings [ms]
spinSys = spin system to simulate
editFlipON = vector of edit-ON pulse flip angles for each spin in
 spin system.
editFlipOFF = vector of edit-OFF pulse flip angles for each spin in
 spin system.
refPhCyc1 = vector of phase cycling steps for 1st refocusing
 pulse [degrees]
refPhCyc2 = vector of phase cycling steps for 2nd refocusing
 pulse [degrees]

OUTPUTS:
outON_posxy = Simulated MEGA-PRESS edit-ON spectrum, spatially
 resolved.
outOFF_posxy = Simulated MEGA-PRESS edit-OFF spectrum, spatially
 resolved.
outDIFF_posxy = Simulated MEGA-PRESS difference spectrum, spatially
 resolved.
outON = Simulated MEGA-PRESS edit-ON spectrum, summed over

 all positions.
outOFF = Simulated MEGA-PRESS edit-OFF spectrum, summed over
 all positions.
outDIFF = Simulated MEGA-PRESS difference spectrum, summed over
 all positions.

6.15. run_simMegaSpecialShaped.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a MEGA-SPECIAL experiment with fully shaped editing and
refocusing pulses. Phase cycling of both the editing and refocusing pulses
is performed. Furthermore, simulations are run at various locations in space
to account for the within-voxel spatial variation of the GABA signal.
Summation across phase cycles and spatial positions is performed. As a
result of the phase cycling and spatially resolved simulations, this code
takes a long time to run. Therefore, the MATLAB parallel computing toolbox
(parfor loop) was used to accelerate the siumulations. Accelration is
performed in the direction of the slice selective pulse (along the x-
direction). Up to a factor of 12 acceleration can be achieved using this
approach. To enable the use of the MATLAB parallel computing toolbox,
initialize the multiple worked nodes using "matlabpool size X" where "X" is
the number of available processing nodes. If the parallel processing toolbox
is not available, then replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
refocWaveform = name of refocusing pulse waveform.
editWaveform = name of editing pulse waveform.
editOnFreq = freqeucny of edit on pulse[ppm]
editOffFreq = frequency of edit off pulse[ppm]
refTp = duration of refocusing pulses[ms]
editTp = duration of editing pulses[ms]
Bfield = Magnetic field strength in [T]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
thkX = slice thickness of x refocusing pulse [cm]
x = vector of X positions to simulate [cm]
taus = vector of pulse sequence timings [ms]
spinSys = spin system to simulate
editPhCyc1 = vector of phase cycling steps for 1st editing pulse
 [degrees]
editPhCyc2 = vector of phase cycling steps for 2nd editing pulse
 [degrees]
refPhCyc = vector of phase cycling steps for 1st refocusing pulse
 [degrees]

OUTPUTS:
outON_posx = Simulated MEGA-SPECIAL edit-ON spectrum, spatially
 resolved.

outOFF_posx = Simulated MEGA-SPECIAL edit-OFF spectrum, spatially
 resolved.
outDIFF_posx = Simulated MEGA-SPECIAL difference spectrum, spatially
 resolved.
outON = Simulated MEGA-SPECIAL edit-ON spectrum, summed over
 all positions.
outOFF = Simulated MEGA-SPECIAL edit-OFF spectrum, summed over
 all positions.
outDIFF = Simulated MEGA-SPECIAL difference spectrum, summed over
 all positions.

6.16. run_simPressShaped.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a PRESS experiment with fully shaped refocusing pulses.
Phase cycling of refocusing pulses is performed. Furthermore, simulations
are run at various locations in space to account for the within-voxel spatial
variation of the metabolite signal. Summation across phase cycles and
spatial positions is performed. As a result of the phase cycling and
spatially resolved simulations, this code takes a long time to run.
Therefore, the MATLAB parallel computing toolbox (parfor loop) was used to
accelerate the siumulations. Acceleration is currently performed in the
direction of the slice selective pulse along the x-direction, but this can be
changed. Up to a factor of 12 acceleration can be achieved using this
approach. To enable the use of the MATLAB parallel computing toolbox,
initialize the multiple worked nodes using "matlabpool size X" where "X" is
the number of available processing nodes. If the parallel processing toolbox
is not available, then replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
refocWaveform = name of refocusing pulse waveform.
refTp = duration of refocusing pulses[ms]
Bfield = Magnetic field strength in [T]
Npts = number of spectral points
sw = spectral width [Hz]
Bfield = magnetic field strength [Tesla]
lw = linewidth of the output spectrum [Hz]
thkX = slice thickness of x refocusing pulse [cm]
thkY = slice thickness of y refocusing pulse [cm]
x = vector of X positions to simulate [cm]
y = vector of y positions to simulate [cm]
taus = vector of pulse sequence timings [ms]
spinSys = spin system to simulate
refPhCyc1 = vector of phase cycling steps for 1st refocusing pulse
 [degrees]
refPhCyc2 = vector of phase cycling steps for 2nd refocusing pulse
 [degrees]

OUTPUTS:
out_posxy = Simulation results, spatially resolved.

out = Simulation results, summed over all space.

6.17. run_simSpinEchoShaped.m

USAGE:
This script is run simply by editing the input parameters and then clicking
"Run".

DESCRIPTION:
This script simulates a localized spin-echo experiment with a fully shaped
refocusing pulse. Phase cycling of the refocusing pulse is performed.
Furthermore, simulations are run at various locations in space (1-D) to
account for the within-voxel spatial variation of the metabolite signal due
to J-evolution. Summation across phase cycles and spatial positions is
performed. As a result of the phase cycling and spatially resolved
simulations, this code takes a long time to run. Therefore, the MATLAB
parallel computing toolbox (parfor loop) was used to accelerate the
siumulations. Accelration is performed in the direction of the slice
selective refocusing pulse. Up to a factor of 12 acceleration can be achieved
using this approach. To enable the use of the MATLAB parallel computing
toolbox, initialize the multiple worked nodes using "matlabpool size X" where
"X" is the number of available processing nodes. If the parallel processing
toolbox is not available, then replace the "parfor" loop with a "for" loop.

INPUTS:
To run this script, edit the parameters below as desired and then click
"run":
RFWaveform = name of refocusing pulse waveform.
Tp = duration of refocusing pulses[ms]
Bfield = Magnetic field strength in [T]
Npts = number of spectral points
sw = spectral width [Hz]
lw = linewidth of the output spectrum [Hz]
thk = slice thickness of refocusing pulse [cm]
pos = vector of positions to simulate [cm]
TE = Echo-Time [ms]
spinSys = spin system to simulate
PhCyc = vector of phase cycling steps for refocusing pulse
 [degrees]

OUTPUTS:
out_pos = Simulation results, spatially resolved.
out = Simulation results, summed over all space.

6.18. run_specialproc.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_specialproc(filestring,aaDomain,tmaxi
n,iterin);

DESCRIPTION:
Processing script for Siemens SPECIAL MRS data in .dat format (twix raw
data). Includes combination of reciever channels, removal of bad averages,
freqeuncy drift correction, and leftshifting.

INPUTS:
filestring = String variable for the name of the directory containing the
 water suppressed .dat file. Water unsuppressed .dat file
 should be contained in [filestring '_w/'];
aaDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a limited
 frequency range ('f'). Default is 'f'.
tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.
iterin = (Optional). Maximum number of allowed iterations for the
 spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-processing (No
 bad-averages removal, no frequency drift correction).
out_w_noproc = Water unsuppressed output spectrum without pre-processing.

6.19. run_specialproc_auto.m

USAGE:
[out,out_w,out_noproc,out_w_noproc]=run_specialproc_auto(filestring,aaDomain,
tmaxin,iterin);

DESCRIPTION:
Processing script for Siemens SPECIAL MRS data in .dat format (twix raw
data). Includes combination of reciever channels, removal of bad averages,
freqeuncy drift correction, and leftshifting.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed.dat file
 should be contained in [filestring '_w/'];
aaDomain = (Optional) Perform the spectral registration (drift
 correction) using the full spectrum ('t'), or only a limited
 frequency range ('f'). Default is 'f'.
tmaxin = (Optional). Duration (in sec.) of the time domain signal
 used in the spectral registration (drift correction).
 Default is 0.2 sec.
iterin = (Optional). Maximum number of allowed iterations for the
 spectral registration to converge. Default is 20.

OUTPUTS:
out = Fully processed, water suppressed output spectrum.
out_w = Fully processed, water unsuppressed output spectrum.
out_noproc = Water suppressed output spectrum without pre-processing (No
 bad-averages removal, no frequency drift correction).
out_w_noproc = Water unsuppressed output spectrum without pre-processing.

6.20. run_specialproc_fmrs.m

USAGE:
[out_stimOFF,out_stimON,out_w]=run_specialproc_fmrs(filestring,blockDesign,le
adingAvgsToRmv);

DESCRIPTION:
Processing script for functional MRS data acquired using the SPECIAL MRS
sequence. This script accepts data in Siemens .dat format (twix raw data).
Processing steps include combination of reciever channels, removal of bad
averages, freqeuncy drift correction, and leftshifting. Also includes prior
knowledge of the stimulation paradigm (given by the 'blockDesign’ vector) and
returns the averaged stimulus OFF and simulus ON spectra.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed .dat
 file should be contained in [filestring '_w/'];
blockDesign = This is a vector of positive and negative even integers
 that make up the ON/OFF block design. Each integer
 represents the number of sequential averages in a block.
 Positive integers refer to ON blocks, and negative
 integers refer to OFF blocks. For example, for a block
 design consisting of 30 OFF averages followed by 20 ON
 averages followed by 10 OFF averages, the blockDesign
 vector would be: [-30 20 -10];
leadingAvgsToRmv = The number of averages to omit from the beginning of
 each block. This is done to account for a lag in the
 neurochemical response to stimulus. Must be an even
 integer. (optional. Default=0);

OUTPUTS:
out_stimOFF = Fully processed water suppressed spectrum from the sum
 of the stimulus OFF periods.
out_stimON = Fully processed water suppressed spectrum from the sum
 of the stimulus ON periods.
out_w = Fully processed, water unsuppressed output spectrum.

6.21. run_specialproc_fmrs_slidingWindow.m

USAGE:
[out1,out_w]=run_specialproc_fmrs_slidingWindow(filestring,windowSize);

DESCRIPTION:
Processing script for functional MRS data acquired using the SPECIAL MRS
sequence. This script accepts data in Siemens .dat format (twix raw data).
Processing steps include combination of reciever channels, removal of bad
averages, freqeuncy drift correction, and leftshifting. This code generates
a 'sliding window timecourse' of MR spectra by combining the averages within
a small window given by the windowSize argument, and then sliding the window
by 1 average and combining again. Each summed window is output as an LCModel
text file to be analyzed in LCModel. As a result, this function generates
many text output files.

INPUTS:
filestring = String variable for the name of the directory containing
 the water suppressed .dat file. Water unsuppressed .dat
 file should be contained in [filestring '_w/'];

windowSize = This is an integer that specifies the number of averages
 that are stored within the sliding window. It is
 recommended to choose a window size that is divisible by
 the number of phase cycles so that the window does not
 contain any partial phase cycles.

OUTPUTS:
out1 = The first sliding window spectrum (the others are written
 to LCModel format).
out_w = Fully processed, water unsuppressed output spectrum.

7. Graphical User Interfaces (GUIs)
Although the FID-A software package is primarily a MATLAB

command-line software application, it does contain a three GUI

based tools to enable visual manipulation of MR spectra. The

three GUI based tools are called DiffTool, SpecTool and

subSpecTool, and they can be found in the {FID-

A_DIR}/processingTools/SpecTool/ Directory. A brief description

of each tool is given below:

7.1. DiffTool

The DiffTool Gui is used to visualize at the difference between

two spectra, while interactively controlling the relative

frequency, phase (0th and 1st order), amplitude, and DC offset

between them. This tool is useful to enable subtraction of two

spectra whilst minimizing subtraction errors due to frequency

and phase shifts, etc. The DiffTool GUI is called in the

following way:

DiffTool(in1,in2,ppmmin,ppmmax);

Where in1 and in2 are the two spectra to be subtracted, and

ppmmin and ppmmax are the minimum and maximum frequencies over

which to display the result. The DiffTool GUI is shown in Figure

2, below.

Figure 2: The DiffTool GUI.

7.2. SpecTool

The SpecTool GUI is enables adjustment of the 0th and 1st order

phase of the spectrum, while providing real-time visual feedback

of both the time-domain and frequency-domain signals. The

SpecTool GUI is called in the following way:

SpecTool(in,tmax,ppmmin,ppmmax);

Where in is the input spectrum, tmax is the maximum time over

which to display the result in the time domain, and ppmmin and

ppmmax are the minimum and maximum frequencies over which to

display the result in the frequency domain. The SpecTool GUI is

shown in Figure 3 below.

Figure 3: The SpecTool GUI.

7.3. subSpecTool

The subSpecTool GUI is used to visualize at the difference

between two subspectra of an edited MRS scan, while

interactively controlling the relative frequency and phase (0th

order only), between them. This tool is useful to enable

subtraction of two subspectra whilst minimizing subtraction

errors due to frequency and phase shifts, etc. The subSpecTool

GUI is called in the following way:

subSpecTool(in,ppmmin,ppmmax);

Where in is the input spectrum, and ppmmin and ppmmax are the

minimum and maximum frequencies over which to display the result

in the frequency domain. The subSpecTool GUI is shown in Figure 4

below.

Figure 4: The subSpecTool GUI.

8. Processing the Example Data
As mentioned above, the FID-A toolkit comes with examples of raw

MRS data (both in vivo and in vitro) from a few different

scanner vendors (Bruker, GE and Siemens), and a few different

pulse sequences (PRESS, MEGA-PRESS and SPECIAL). These datasets

can be processed using some of scripts provided in the {FID-

A_dir}/exampleRunScripts directory. Please note that the

Example Data are contained in relatively large files that could

not be stored normally in the GitHub repository due to GitHub’s

native file size limitations. Therefore, in order to download

these data, you must first download and install the “Large File

Storage” (LFS) extension to GitHub, which can be found here:

(https://git-lfs.github.com). Without this extension, a clone

or download of the FID-A repository will result in a {FID-

A_dir}/exampleData directory that is empty. However, after

you’ve downloaded and installed the LFS extension, then re-

cloning or downloading the FID-A repository should result in a

{FID-A_dir}/exampleData folder that correctly contains the

required example data. Below are some quick examples of how to

use the ExampleRunScripts to process the Example Data provided.

8.1. Processing GE PRESS data

The {FID-A_dir}/exampleData/GE/sample01_press directory contains

a P file from a PRESS MRS scan in a brain tissue mimicking

phantom on a 3 Tesla GE MRI scanner. As is commonplace with GE

datasets, both the water suppressed and water unsuppressed data

are contained within the same file. This dataset can be

processed using the ‘run_pressproc_GEauto.m’ script as follows:

1. Open MATLAB and add the FID-A repository to your path
using:

addpath(genpath(‘Enter full path to FID_A directory’));

2. Inside MATLAB, navigate to the {FID-
A_dir}/exampleData/GE/sample01_press/press directory. Note

that this folder contains the desired P file, which is

called ‘P17920.7’.

3. Run the example Run script ‘run_pressproc_GEauto.m’ by
typing the following:

[out,out_w]=run_pressproc_GEauto(‘P17920.7’);

The script should run to completion within about 10 seconds

with no user input, and two new structures (out and out_w)

should appear in your workspace. These are the fully processed

water suppressed (out) and water unsuppressed datasets (out_w).

You can plot the resulting spectra using:

op_plotspec(out);

and

op_plotspec(out_w);

In addition to these outputs, the script should also

generate a new folder called “report” in which you will find an

HTML file (report.html, Figure 5) that summarizes the results of

the various stages of the processing pipeline. This should be

viewable using any standard HTML viewer or internet browser.

Figure 5: The report file generated by run_pressproc_GEauto.

Finally, you will also notice that in the working

directory, two new files are generated: “P17920.7_lcm” and

“P17920.7_w_lcm”. These are the processed water suppressed and

water unsuppressed data files, respectively, in LCModel raw

format. These files can be imported immediately for analysis in

LCModel or Tarquin.

8.2. Processing GE MEGA-PRESS data

The {FID-A_dir}/exampleData/GE/sample02_megapress directory

contains a P file from a GABA-edited MEGA-PRESS MRS scan in a

brain tissue mimicking phantom on a 3 Tesla GE MRI scanner.

Once again, both the water suppressed and water unsuppressed

data are contained within the same file. This dataset can be

processed using the ‘run_megapressproc_GEauto.m’ script as

follows (this time assuming that MATLAB is already open and that

FID-A is already on your path):

1. Navigate into the {FID-
A_dir}/exampleData/GE/sample02_megapress/megapress

directory. Note that this directory contains a GE P file

called ‘21504.7’.

2. Run the example Run script ‘run_megapressproc_GEauto.m’ by
typing the following:

[diff,sum,on,off,out_w]=run_megapressproc_GEauto(‘P21504.7’);

Again, the script should run to completion within about 10

seconds with no user input. This time, five new structures

(diff, sum, on, off and out_w) should appear in your workspace.

These are the fully processed difference spectrum (diff) sum

spectrum (sum), edit-on spectrum (on), edit-off spectrum (off)

and water unsuppressed spectrum (out_w). You can plot the

resulting spectra using:

op_plotspec({diff,sum,on,off},0.2,4.2);
legend(‘diff’,’sum’,’on’,’off’);

and

op_plotspec(out_w,3.5,5.5);

Note that there is no edited peak in the difference

spectrum at 3.0 ppm, because the phantom that we used does not

contain GABA (See Figure 6. oops!!). Also note that the ‘sum’

spectrum is out of phase. This can be fixed with a simple

phasing operation such as ‘op_autophase.m’ or ‘op_addphase.m’.

Like before, this script also generates a new folder called

“report” in which you will find an HTML file (report.html) that

summarizes the results of the various stages of the processing

pipeline. This should be viewable using any standard HTML

viewer or internet browser.

Figure 6: Example GE MEGA-PRESS data, processed using

‘run_megapressproc_GEauto.m’.

Finally, you will again notice that in the working directory,

four new files are generated: “P21504.7_diff_lcm”,

“P21504.7_editON_lcm”, “P21504.7_editOFF_lcm” and

“P17920.7_w_lcm”. These are the processed spectra in LCModel

raw format, which can be imported immediately for analysis in

LCModel or Tarquin.

8.3. Processing Siemens MEGA-PRESS data

The {FID-A_dir}/exampleData/Siemens/sample01_megapress directory

contains two subfolders: one called “megapress”, which contains

an in vivo GABA-edited MEGA-PRESS MRS scan, and one called

“megapress_w”, which contains corresponding water unsuppressed

data acquired from the same region of interest. Both are from

the dorsolateral prefrontal cortex of a healthy human volunteer

3 Tesla Siemens MRI scanner. This dataset can be processed

using the ‘run_megapressproc_auto.m’ script as follows (this

time assuming that you have already opened MATLAB and that {FID-

A_dir} is already on your path):

1. Inside MATLAB, navigate to the {FID-
A_dir}/exampleData/Siemens/sample01_megapress directory.

Note that this folder contains two directories: one called

“megapress” and one called “megapress_w”. The former

contains the Siemens raw twix file (in .dat format)

corresponding to the water suppressed MEGA-PRESS scan,

while the latter contains the corresponding water

unsuppressed data in the same format. In order for

“run_megapressproc_auto.m” to work properly, the water

suppressed and water unsuppressed .dat files must be stored

in separate folders, and the folder names must differ only

by the ‘_w’ extension at the end of the water unsuppressed

folder name.

2. From the sample01_megapress directory, run the example Run
script ‘run_megapressproc_auto.m’ by typing the following:

[diff,sum,on,off]=run_megapressproc_auto(‘megapress’);

Note that the argument to the ‘run_megapressproc_auto’

function, ‘megapress’, is the name of the directory where the

water suppressed data is kept. Now, the script should run to

completion within about one minute with no user input. This

time, four new structures (diff, sum, on, and off) should appear

in your workspace. These are the fully processed difference

spectrum (diff) sum spectrum (sum), edit-on spectrum (on), and

edit-off spectrum (off). You can plot the resulting spectra

using:

op_plotspec({diff,sum,on,off},0.2,4.2);

This time note the presence of the GABA peak in the

difference spectrum at 3.0 ppm, since this data was collected in

a healthy human brain (See Figure 7). Like before, this script

also generates a new folder called “report” in which you will

find an HTML file (report.html) that summarizes the results of

the various stages of the processing pipeline. This should be

viewable using any standard HTML viewer or internet browser.

Finally, you will again notice that in the ‘megapress’

directory, three new files are generated: “megapress_diff_lcm”,

“megapress_editON_lcm”, and “megapress_editOFF_lcm”, while in

the ‘megapress_w’ directory, one new file (“megapress_w_lcm”) is

generated. These are the processed spectra in LCModel raw

format, which can be imported immediately for analysis in

LCModel or Tarquin.

Figure 7: Example Siemens MEGA-PRESS data, processed using

run_megapressproc_auto.m .

8.4. Processing Siemens SPECIAL data

The {FID-A_dir}/exampleData/Siemens/sample02_special directory

contains two subfolders: one called “special”, which contains

an in vivo short-TE SPECIAL MRS scan, and one called

“special_w”, which contains corresponding water unsuppressed

data acquired from the same region of interest. Both are from

the dorsolateral prefrontal cortex of a healthy human volunteer

3 Tesla Siemens MRI scanner. This dataset can be processed

using the ‘run_specialproc_auto.m’ script as follows (this time

assuming that you have already opened MATLAB and that {FID-

A_dir} is already on your path):

1. Inside MATLAB, navigate to the {FID-
A_dir}/exampleData/Siemens/sample02_special directory.

Note that this folder contains two directories: one called

“special” and one called “special_w”. The former contains

the Siemens raw twix file (in .dat format) corresponding to

the water suppressed SPECIAL scan, while the latter

contains the corresponding water unsuppressed data in the

same format. In order for “run_specialproc_auto.m” to work

properly, the water suppressed and water unsuppressed .dat

files must be stored in separate folders, and the folder

names must differ only by the ‘_w’ extension at the end of

the water unsuppressed folder name.

2. From the sample01_special directory, run the example Run
script ‘run_specialproc_auto.m’ by typing the following:

[out,out_w]=run_specialproc_auto(‘special’);

Note that the argument to the ‘run_special_auto’ function,

‘special’, is the name of the directory where the water

suppressed data is kept. Now, the script should run to

completion within about one minute with no user input. This

time, two new structures (out, and out_w) should appear in your

workspace. These are the fully processed water suppressed

spectrum (out), and water unsuppressed spectrum (out_w). You

can plot the resulting spectra using:

op_plotspec(out,0.2,4.2);

and

op_plotspec(out_w,3.5,5.5);

Figure 8 shows the results of the above plot commands. The

plot of the water suppressed data shows the metabolite peaks,

while the plot of the water unsuppressed data shows the water

peak. Like before, this script also generates a new folder

called “report” in which you will find an HTML file

(report.html) that summarizes the results of the various stages

of the processing pipeline. This should be viewable using any

standard HTML viewer or internet browser.

Finally, you will again notice that in the ‘special’

directory, one new file is generated (“special_lcm”), while in

the ‘special_w’ directory, one new file (“special_w_lcm”) is

generated. These are the processed spectra in LCModel raw

format, which can be imported immediately for analysis in

LCModel or Tarquin.

Figure 8: Example Siemens SPECIAL data, processed using

run_specialproc_auto.m .

8.5. Processing Bruker PRESS data

The {FID-A_dir}/exampleData/Bruker/sample01_press directory

contains two subfolders: one called “press”, which contains an

in vivo short-TE PRESS MRS scan, and one called “press_w”, which

contains corresponding water unsuppressed data acquired from the

same region of interest. Both are from the dorsal hippocampus

of a healthy rat on a 7 Tesla Bruker 70/30 MRI scanner. This

dataset can be processed using the ‘run_pressproc_brukAuto.m’

script as follows (this time assuming that you have already

opened MATLAB and that {FID-A_dir} is already on your path):

1. Inside MATLAB, navigate to the {FID-
A_dir}/exampleData/Bruker/sample01_press directory. Note

that this folder contains two directories: one called

“press” and one called “press_w”. The former contains the

Bruker raw data files corresponding to the water suppressed

PRESS scan, while the latter contains the corresponding

water unsuppressed data in the same format. In order for

“run_pressproc_brukAuto.m” to work properly, the water

suppressed and water unsuppressed data must be stored in

separate folders, and the folder names must differ only by

the ‘_w’ extension at the end of the water unsuppressed

folder name. A couple extra things to note here: A) The

Bruker PRESS acquisition was set up so that the individual

averages were stored separately (not the default setting).

B) After scanning, the Bruker scanner saves each scan by

default in a numbered directory whose number corresponds to

the order of the scans in a given study. Here, we have

taken the numbered directories corresponding to the water

suppressed and water unsuppressed PRESS data and re-named

them ‘press’ and ‘press_w’, respectively.

2. From the sample01_press directory, run the example Run
script ‘run_press_brukAuto.m’ by typing the following:

[out,out_w]=run_press_brukAuto(‘press’,’press_w’);

Note that the arguments to the ‘run_pressproc_brukAuto’

function, ‘press’, and ‘press_w’, are the names of the

directories where the water suppressed data are kept. Now, the

script should run to completion within about one minute with no

user input. This time, two new structures (out, and out_w)

should appear in your workspace. These are the fully processed

water suppressed spectrum (out), and water unsuppressed spectrum

(out_w). You can plot the resulting spectra using:

op_plotspec(out,0.2,4.2,’Frequency’,’Signal Amplitude’);

and

op_plotspec(out_w,3.5,5.5,’Frequency’,’Signal Amplitude’);

Figure 9 shows the results of the above plot commands. The

plot of the water suppressed data shows the metabolite peaks,

while the plot of the water unsuppressed data shows the water

peak. Note this time that by specifying the y- axis labels in

op_plotspec (5th argument), we are now shown the signal

intensity values on the y-axis. Like before, this script also

generates a new folder called “report” in which you will find an

HTML file (report.html) that summarizes the results of the

various stages of the processing pipeline. This should be

viewable using any standard HTML viewer or internet browser.

Finally, you will again notice that in the ‘press’

directory, two new directories are generated (“press” and

“press_w”). These directories contain the processed water

suppressed (“press_lcm”) and water unsuppressed (“press_w_lcm”)

spectra, respectively, in LCModel raw format, which can be

imported immediately for analysis in LCModel or Tarquin.

Figure 9: Example Bruker PRESS data, processed using

run_pressproc_brukAuto.m .

