

Floorplanning
Methodology Guide

UG633 (v 12.1) May 3, 2010

2 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to
operate on, or interface with Xilinx FPGAs. Except as stated herein, none of the
Design may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of
the Design may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx
convey any license under its patents, copyrights, or any rights of others. You are responsible for obtaining
any rights you may require for your use or implementation of the Design. Xilinx reserves the right to make
changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx
will not assume any liability for the accuracy or correctness of any engineering or technical support or
assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS
FUNCTION AND IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU
HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR ADVICE, WHETHER GIVEN BY
XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY,
SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING
FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR
OTHERWISE, WILL IN NO EVENT EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX
HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF ANY, REFLECT
THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments
requiring fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic
control, life support, or weapons systems (“High-Risk Applications” Xilinx specifically disclaims any express or implied warranties of
fitness for such High-Risk Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2010 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Demo Design License
© 2010 Xilinx, Inc.

This Design is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Library General Public License along with this design file; if not, see:
http://www.gnu.org/licenses/

Floorplanning Methodology Guide www.xilinx.com 3
UG633 (v 12.1) May 3, 2010

The PlanAheadTM software source code includes the source code for the following programs:

Centerpoint XML

The initial developer of the original code is CenterPoint – Connective Software

Software Engineering GmbH. portions created by CenterPoint – Connective Software

Software Engineering GmbH. are Copyright© 1998-2000 CenterPoint - Connective Software Engineering GmbH. All Rights
Reserved. Source code for CenterPoint is available at http://www.cpointc.com/XML/

NLView Schematic Engine

Copyright© Concept Engineering.

Static Timing Engine by Parallax Software Inc.

Copyright© Parallax Software Inc.

Java Two Standard Edition

Includes portions of software from RSA Security, Inc. and some portions licensed from IBM are available at
http://oss.software.ibm.com/icu4j/

Powered By JIDE – http://www.jidesoft.com

The BSD License for the JGoodies Looks

Copyright© 2001-2010 JGoodies Karsten Lentzsch. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of JGoodies Karsten Lentzsch nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Free IP Core License

This is the Entire License for all of our Free IP Cores.
Copyright (C) 2000-2003, ASICs World Services, LTD. AUTHORS

All rights reserved.

Redistribution and use in source, netlist, binary and silicon forms, with or without modification, are permitted provided that the
following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Neither the name of ASICS World Services, the Authors and/or the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Floorplanning Methodology Guide www.xilinx.com 5
UG633 (v 12.1) May 3, 2010

Table of Contents
About this Manual... 7

Additional Resources ... 7

Introduction to Floorplanning .. 9

Introduction... 9
Timing Closure Basics.. 9
Floorplanning Basics .. 11
Considerations .. 13

Floorplanning Logic with Critical Timing ...13
Working with Hierarchical Netlists ...13

Logic Synthesis Recommendations ... 13
Increasing Consistency .. 14
Using Clock Resources to Guide Floorplanning .. 14

The Floorplanning Flows ... 15

Recommended Flows ... 15
Re-use Flow ...15
Hierarchical Floorplanning Flow ...16

Re-use Flow ... 16
Hierarchical Floorplanning Flow ... 21
Using Floorplanning for Timing Closure: An Example .. 21

Looking at Place and Route Results ...21
Looking at Timing Results ...22
Looking at the Gates and the Hierarchies ..23
Shaping the Floorplan for the Critical Hierarchy ..26
Deciding What Else Should Be Floorplanned ..26

Floorplanning Iteratively .. 28
Summary ... 28

6 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Floorplanning Methodology Guide www.xilinx.com 7
UG633 (v 12.1) May 3, 2010

Preface

About this Manual
FPGA devices have grown considerably over the years. Engineers are taking advantage of larger FPGAs
to implement more complex designs. The implementation tools have improved along with these
complexities. On some designs, guidance from the designer can guide the implementation tools to a
higher system clock frequency, shorter implementation run times, more consistency in timing, or, in some
cases, all of these benefits together.

This guide covers some of the basics of floorplanning and presents two approaches to floorplanning that
can help a design meet timing more consistently. This guide focuses on the floorplanning considerations
and techniques of the Xilinx® software.

This document covers the following:

• Chapter 1, “Introduction to Floorplanning,” which includes floorplanning and timing closure
basics, and design considerations and techniques when floorplanning.

• Chapter 2, “The Floorplanning Flows,” which covers the two recommended approaches to
floorplanning: placement re-use, and hierarchical floorplanning.

Note: It is recommended that readers of this guide be familiar with the PlanAhead™ software to get the most out of
this guide. Refer to the PlanAhead tutorials and the PlanAhead User Guide (UG632) for more information about the
PlanAhead software.

Additional Resources
Perform one of the PlanAhead tutorials to learn about the PlanAhead functionality using a sample
design:

http://www.xilinx.com/support/documentation/dt_planahead_planahead12-1_tutorials.htm

Refer to the PlanAhead User Guide (UG632) for information about specific PlanAhead functionality and
more details on specific commands:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/PlanAhead_UserGuide.pdf

For general PlanAhead information, video demonstrations, and white papers, go to:

http://www.xilinx.com/planahead

Additional Resources

8 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Floorplanning Methodology Guide www.xilinx.com 9
UG633 (v 12.1) May 3, 2010

Chapter 1

Introduction to Floorplanning
This chapter contains the following sections:

• Introduction

• Timing Closure Basics

• Floorplanning Basics

• Considerations

• Logic Synthesis Recommendations

• Increasing Consistency

• Using Clock Resources to Guide Floorplanning

Introduction
A good floorplanning methodology can improve performance and help the placed and routed design
meet timing. Floorplanning is the process of choosing the best grouping and connectivity of logic in a
design, and of manually placing blocks of logic in an FPGA, where the goal is to increase density,
routability, or performance. The intent is to reduce route delays for selected logic by suggesting a better
placement.

Floorplanning may be considered when a design does not meet timing consistently or when the design
has never met timing. Floorplanning can range from the detailed approach, such as placing individual
logic elements of a critical path to a specific site on the chip, to the more abstract approach, such as
constraining levels of hierarchy to specific regions on the chip.

Some design teams may spend time floorplanning a design before the first iteration through place and
route. Others may take a wait-and-see approach, electing to wait until a problem is identified before
floorplanning.

The various strategies for floorplanning have benefits and tradeoffs, which are discussed in this guide.

Timing Closure Basics
Most engineers begin to floorplan when a design does not meet the setup timing constraints consistently.
Floorplanning is introduced as a means to reduce path delays, leading to timing closure. During the
implementation process, the implementation tools compare the delay of the logic and routing against the
time allowed by the timing constraint, with some modifications for clock-to-clock skew and clock noise.

The tool reports how much time the paths beat timing constraints (i.e., met timing) or exceeded timing
constraints (i.e., failed timing). Figure 1 shows an example timing report.

Timing Closure Basics

10 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 1: An Example Timing Report

A first step is to ensure the timing constraints are accurate. Determine whether the path is a multi-cycle
path or a false path. Sections of some designs are not clocked every clock cycle or the paths may not be
reached due to the control structure. The implementation tools cannot make this determination. These
paths will be needlessly timed unless timing constraints mark this logic as multi-cycle paths or false
paths. Many designs improve timing when the constraints are relaxed to match the design logic. See the
Xilinx Timing Constraints User Guide (UG612) for a discussion of multi-cycle paths and false paths
(http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug612.pdf).

The allowed time is modified by clock jitter and clock-to-clock skew. If the destination clock rises before
the source clock, the allowable time is reduced, effectively tightening the period. If the source clock has
jitter, the tools need to modify the allowed time. The timing report shows the modifications. For failing
timing paths, make sure the jitter and skew numbers are reasonable.

Once the timing constraints and clocking structures are verified, timing can be met by reducing path
delay. The path delay is split between the logic and the routing. The delay contributions from one or both
must be reduced. Compare the logic delay against the allowed period. If the logic delay exceeds or is a
large percentage of the allowed path delay, the path needs additional gates. Either the RTL needs to be
modified or the synthesis engine needs to be set up differently.

If a large percentage of the path delay is from the routing and the logic is spread out over the device,
there could be a placement problem. Check to see if high fanout nets, pin placement, or other structures
force a spread out of placement. If not, floorplanning can be used either to reduce route delay or to
determine how RTL needs to be modified.

 Floorplanning Basics

Floorplanning Methodology Guide www.xilinx.com 11
UG633 (v 12.1) May 3, 2010

Floorplanning Basics
Floorplanning is a technique that can be used to reduce the amount of route delay in a critical path. You
can identify logic that is contributing to timing problems and guide the place and route tools to keep the
logic close together. The end goal is to improve the timing of the critical paths by reducing the amount of
routing delay.

Floorplanning does not change the logic that makes up the critical path. You must guide the synthesis
tool to structure the gates to support the floorplan. If most of the delay in the critical path is coming from
logic delay, re-synthesizing the design can bring larger gains then floorplanning. Other issues may be
discovered during floorplanning that benefit from re-synthesis. One common practice is to replicate
registers to stay local to clusters of dispersed loads.

Many designs benefit from floorplanning. Even with a good floorplan there is no guarantee that a design
will meet timing. The floorplan does nothing to fix routing. It only provides a placement seed. For those
whose design goals value design consistency over absolute performance, incremental design techniques
can be used with floorplanning. For more information, see “Floorplanning Partitions” in Chapter 2,
“Design Considerations” of the Hierarchical Design Methodology Guide (UG748):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/Hierarchical_Design_Methodology_Guide.pdf.

Floorplanning can range from the abstract to the detailed. It is possible for an engineer to hand place
every gate for a tight timing critical path, as shown in Figure 2. This approach is only recommended as a
last resort. It is time consuming and requires knowledge of the device to get the proper routing. The gate-
level placement is also fragile, and if gates or gate names change during synthesis, the placement may no
longer be valid.

Figure 2: Floorplanned Logic by Hand

Floorplanning Basics

12 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Hierarchical floorplanning is recommended in place of gate level floorplanning. Hierarchical
floorplanning enables you to place one or more levels of hierarchy on a small region of the chip, as shown
in Figure 3. It enables you to provide quick guidance to the placer. The placer relies on a detailed
knowledge of the device and timing arcs to generate a fine grain placement. The resulting floorplan is
typically resistant to design changes. The hierarchy contains all of the gates. As long as the hierarchy
names do not change, gate changes do not render the floorplan invalid.

Figure 3: A Floorplanned Hierarchy

Occasionally, you may need to generate a high-level floorplan for a design as the RTL is being architected
and as the pinout is being done. The high-level floorplan enables you to visualize data flow across the
device. This must be done on the hierarchical blocks when the synthesized netlist does not exist. This
exercise can be used to generate better RTL and a better pinout. Do not use this floorplan for place and
route. It is recommended that you:

• Synthesize the design.

• Run implementation first with only pinout constraints.

• If the design fails timing, use a high-level floorplan in conjunction with the information from
place and route to generate a new floorplan that is likely to improve timing.

 Considerations

Floorplanning Methodology Guide www.xilinx.com 13
UG633 (v 12.1) May 3, 2010

Considerations
Floorplanning is often an iterative process. The first pass at a floorplan may address the issues in a section
of the design only to show that a second section is failing. Floorplanning can hurt timing as well as
improve it, especially when it is not clear what needs to be floorplanned and where the design needs to
be placed. Multiple trials and notes about the design can help guide you to a working floorplan.

Floorplanning Logic with Critical Timing
A good starting point when floorplanning for the first time is to floorplan only the logic that the
implementation tools consider timing critical. Generally start with the lower-level hierarchies that the
Place and Route (PAR) tool finds to be timing critical. It can be tempting to floorplan the entire chip based
on the data flow diagrams. This almost always hurts timing. Most FPGA designs, as presented to PAR in
the post-synthesis netlist form, are designed to support full design floorplanning. However,
floorplanning the entire design is not recommended.

Working with Hierarchical Netlists
The structure of the RTL can help or hinder floorplanning for timing closure. You can floorplan the
hierarchy that is coded into the RTL as presented by the synthesis tool. The synthesis tool should be set
up to generate a hierarchical netlist. It is much easier to work with a hierarchical netlist than one without
a hierarchy. Timing can be met more easily if the hierarchy is constructed with knowledge of how the
design will be spread out on the chip.

If two similar memory interfaces have to be on opposite sides of the chip, you can give each one their
own copy of high fanout control signals in the RTL source. The synthesis tools often do not replicate
signals optimally. When synthesis replicates a high fanout driving a flip flop, such as a reset flop,
synthesis may make two copies with lower loading that both have to span the chip. Instead, the RTL
designer can replicate the register by hand to create two copies with lower fanout, where one drives the
loads on one side of the chip and the other drives the loads on the opposite side of the chip.

Logic Synthesis Recommendations
The following are suggestions on a logic synthesis methodology:

• To the extent possible, structure the RTL logic so that critical timing paths are confined to
individual modules. Critical paths that span large numbers of hierarchical modules can be
difficult to floorplan.

• Register the outputs of all the modules to help limit the number of modules involved in a critical
path.

• Replicate the drivers of nets that will be separated on the die. Synthesis may need an attribute to
preserve logically equivalent logic.

• Long paths in single large hierarchical block can make floorplanning a difficult task. Consider
dividing large hierarchical blocks in the RTL. It is easier to work with smaller hierarchical blocks.

• Intermingled critical paths can be difficult to floorplan. Consider dividing large critical blocks
into smaller and easier to isolate blocks.

Increasing Consistency

14 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

• If the design is expected to change often, consider an incremental approach to synthesis. In an
incremental approach, individual blocks can be synthesized separately or the synthesis attributes
(SYN_HIER=HARD) can be used to preserve the hierarchy. Hierarchy preservation helps an
incremental flow but may hurt performance since global optimizations across hierarchy are
disabled. This tradeoff needs to be considered before you embark on an incremental RTL
synthesis methodology.

• Constrain the synthesis engine to rebuild or otherwise preserve the hierarchy in the synthesized
netlist. Flattened netlists may be optimal from a synthesis perspective, but they make it very
difficult to reliably floorplan and constrain placement. Consider using the synthesis option to
rebuild the hierarchy. For XST, use –netlist_hierarchy = rebuilt. If using the
PlanAhead™ tool for synthesis, the PlanAhead defaults strategy includes this option.

Increasing Consistency
Floorplanning can help with design consistency and quality of results (QOR). It is possible to create a
floorplan that takes a design from failing timing to meeting timing. Many hierarchical floorplans will
work across multiple netlist revisions as bug fixes are incorporated from simulation and board testing.
However, blocks that meet timing on one pass may fail timing on another pass. Placement is only a guide
to place and route. Routing is not locked down. If achieving design consistency is more important than
achieving the highest performance, consider the tradeoffs of incorporating incremental synthesis and
implementation. These flows can limit the scope of gate-level netlist changes and preserve placement and
routing between different runs. These techniques gain consistency at the cost of some QOR. The decision
to use either of these flows should be made at the start of a design cycle and not once the design is well
underway. For more information, refer to Chapter 2, “Design Considerations” of the Hierarchical Design
Methodology Guide (UG748):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/Hierarchical_Design_Methodology_Guide.pdf.

Using Clock Resources to Guide Floorplanning
Different FPGA device families have different restrictions on the placement of logic for a design with a
high percentage of clock resources of the device. Consider the clock rules of the device when placing the
logic. The PlanAhead tool can help constrain certain clocks to certain regions on the chip. It is possible to
graphically display the various clock regions or clock quadrants within the chip. The Clock Region
Properties or Pblock Properties Statistics will show what clock nets and clock regions are in all Pblocks,
which are defined by AREA_GROUP constraints. The schematic view can show what logic and hierarchy
is attached to each clock net.

Floorplanning Methodology Guide www.xilinx.com 15
UG633 (v 12.1) May 3, 2010

Chapter 2

The Floorplanning Flows
This chapter contains the following sections:

• Recommended Flows

• Re-use Flow

• Hierarchical Floorplanning Flow

• Using Floorplanning for Timing Closure: An Example

• Summary

Recommended Flows
The two commonly used floorplanning flows discussed in this guide are:

• Re-use flow

• Hierarchical floorplanning flow

Re-use Flow
The re-use flow can quickly help a design that meets timing only some of the time. The idea is to re-use
some of the block RAM and DSP48 placement from a successful implementation run to seed a later run.

The re-use flow has the following advantages:

• Is quick to apply.

• Can cut down implementation run times.

• Can improve consistency of meeting timing.

• Does not require much knowledge of the device to get the design placed.

The re-use flow has the following disadvantages:

• Will not work if the design does not meet timing some of the time.

• Limits design change.

• May not consistently meet timing.

Re-use Flow

16 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Hierarchical Floorplanning Flow
The hierarchical floorplanning flow is more powerful than the re-use flow. A good hierarchical floorplan
can close timing on a design that has never met timing. The analysis done to create a good floorplan can
suggest design and logic changes to meet timing more easily and consistently.

The hierarchical floorplanning flow has the following advantages:

• Is resistant to design change.

• Can close timing.

• Can bring consistency.

The flow requires engineering time, and may require iterations.

In both flows, it is possible to significantly impact timing. If floorplanned logic is slower now, remove the
floorplanned logic and try something else. If logic that is not floorplanned is slower try floorplanning it as
well.

Re-use Flow
One of the sources of timing variability is the macro placement, such as block RAM and DSP48. Placed
macros can act as a seed to the LUT/FF placement. By looking at the macro placement from an
implementation run that meets timing and re-using the macro placement, it is possible to reduce some of
the variability from one implementation run to the next. The idea is to let the implementation tools find a
placement that meets timing and re-use some of it for later turns. This approach can be used when:

• The design meets timing some of the time.

• The names and structures for the macros do not change.

The placement of the larger macros can help suggest a placement for the other gates. Timing can be more
stable and, in some cases, implementation run times will decrease.

Start with a PAR run that routes and meets timing. Look for a Timing Score of 0, and 0 unroutes in the
Project Summary (timing report), as shown in the following figure. If you have multiple runs that meet
timing, start with the one that has the shortest implementation run time. You can use an implementation
run in scripts, in Project Navigator, or in the PlanAhead™ tool. You will want to load the design that
meets timing into PlanAhead to constrain placement.

 Re-use Flow

Floorplanning Methodology Guide www.xilinx.com 17
UG633 (v 12.1) May 3, 2010

Figure 4: Project Summary

To see where the implementation tools placed the gates, use one of:

• Run the Analyze Timing / Floorplan Design process in Project Navigator.

• Click the Implement Design button in the Flow Navigator in PlanAhead to open the
implemented design.

• If implementation was run in stand-alone scripts, create a new PlanAhead project and select
Import ISE Place and Route results in the New Project wizard.

Re-use Flow

18 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 5: Viewing Implementation Placement

 Re-use Flow

Floorplanning Methodology Guide www.xilinx.com 19
UG633 (v 12.1) May 3, 2010

Figure 6: Viewing Implementation Placement

When the design meets timing, it is also possible to re-use the placement. Do not fix everything in place
since the design is likely to change. On most designs the block RAM and DSP48 primitives have a
relatively stable set of primitives and names. Re-using the placement of just the block RAM and DSP48
can help keep timing as other gates change. In the PlanAhead tool, it is easy to find all Block Memory
(RAMB and FIFO primitives), as well as Block Arithmetic (MULT and DSP primitives, depending on
architecture). It might be easier to visualize placements using the Highlight or Mark commands.

Select Edit > Find, and use the Find dialog box to search for these primitives.

Figure 7: Searching for the Memory and Arithmetic Blocks

Re-use Flow

20 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

The search compiles a list of all matching objects. All placements for the implementation run are loaded.
The macro placement that is needed for a seed needs to be isolated from the other placement.

The PlanAhead software has two types of placement:

• Fixed - Placement from a UCF, hand created by the user, or designated by the user in the
PlanAhead tool is defined as fixed. This type of placement can be reused.

• Unfixed - Placement that is back-annotated from the implementation tools is defined as unfixed.
This type of placement should not be reused.

To fix the logic:

1. Select all placements you wish to fix (as from the Find Results, as shown in Figure 8).

2. Right-click and select Fix Instances.

Figure 8 Selecting Logic in Find Results Dialog Box

The color of the placed logic in the Device view will change color to denote the change in how the tool
handles the placement. Save and close the project. The UCF will now have multiple gate level constraints
of the form:

INST "usbEngine0/usb_out/buffer_fifo/Mram_fifo_ram" LOC = RAMB36_X3Y14;

INST "fftEngine/fftInst/arnd2/ct5/Maddsub_n0027" LOC = DSP48_X1Y26;

 Hierarchical Floorplanning Flow

Floorplanning Methodology Guide www.xilinx.com 21
UG633 (v 12.1) May 3, 2010

If the names in the gate level netlist change, the placement will need to be re-run as the references defined
in the LOC constraints need updating. If there is a change to the macros or the logic around the macros,
the placement should be cleared and rerun. Additionally, if the design starts failing timing on a regular
basis, you can run PAR without the LOC constraints on the macros. A more advanced user may want to
tweak placement of individual block RAM or DSP48. For information on how to analyze and modify
placement, see Chapter 10, “Analyzing the Implementation Results” and Chapter 11, “Floorplanning the
Design” of the PlanAhead User Guide (UG632)
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/PlanAhead_UserGuide.pdf.

Hierarchical Floorplanning Flow
Designs that have not met timing require a more involved approach. The hierarchical floorplanning flow
is the best approach for closing timing in a design that has not met timing. You can take smaller levels of
hierarchy, constrain the hierarchy to a region on the chip, and use that as a guide to implementation.
Implementation has comprehensive knowledge of the critical paths and the structure of the chip.
Implementation generally does a good job of the fine grain placement. It cannot always find a solution for
the coarse placement for a large flat design. You can help implementation by seeding a coarse placement
with the hierarchies that contain gates that fail timing after implementation.

It is helpful to have an idea of the final pinout when floorplanning. Blocks that connect to IOs often want
to be placed near their IOs. During the floorplanning process it may become obvious that a pinout is
pulling timing critical paths apart. If caught early enough it may be possible to change the pinout or logic
to improve timing closure.

Using Floorplanning for Timing Closure: An Example
When creating a floorplan, the following questions should be kept in mind:

• What are the timing failures?

• What is the critical hierarchy?

• Are changes to floorplanning or logic alone sufficient to close timing?

• Does anything else need to be floorplanned?

• Can the critical hierarchies be floorplanned?

• What should be placed where?

These questions can be answered by looking at the timing paths, placement and structure of the logic in
the paths, and by knowledge of the pinout and the design, as described in the following example of a
design walk through.

Looking at Place and Route Results
Only post implementation timing numbers identify what logic is failing timing. After the design has been
run through implementation, and the design fails timing, load the results into the PlanAhead tool. The
placement and timing results, and gates can all be seen in one place. Selecting multiple critical paths and
viewing the placement can offer ideas for troubleshooting, as shown in Figure 9.

Using Floorplanning for Timing Closure: An Example

22 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 9: Placement of Paths Failing Timing

The block RAMs with the critical paths are spread out over more of the chip then they need to be.
Floorplanning can be used to generate a tighter placement. The timing problem occurs in the paths
between block RAM. These paths are good candidates for floorplanning.

Looking at Timing Results
Analyzing the paths between block RAM will enable you to determine whether you need to floorplan,
change logic, or both to close timing. The path delay for the above critical path shows two nets with long
route delays. The details are shown in Figure 10. The path is failing timing by over 1 ns. The first net has
2.25 ns route delay. The third net has 1.5 ns route delay. Even though the fanouts are 40 and 256, the route
delay can be reduced with improved placement.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 23
UG633 (v 12.1) May 3, 2010

Figure 10: Detailed Data Path

A hierarchical floorplan can reduce the route delay in the critical logic. Logic delay limits the amount of
performance gain you can achieve. For designs with a large percentage of logic delay, you can change the
code or update synthesis to modify the gates.

Looking at the Gates and the Hierarchies
You can floorplan gates through individual LOC and placement constraints. Moving the gates around by
hand to improve timing is not recommended because identifying the gates is a slow process and placing
the gates is a slow and difficult process. Also, remember that when the logic in the gate floorplan
changes, the floorplan needs to be redone.

Instead ask the question, what hierarchy is timing critical? Implementation reports timing problems for
usbEngine1 in Figure 10. This level of hierarchy or one or more levels of sub-hierarchy are candidates for
hierarchical floorplanning. You must investigate the design to determine which hierarchy should be
floorplanned.

Start off by loading the critical paths into the schematic. As shown in Figure 11, the schematic will show
which gates are involved in the critical path and in which hierarchy the gates are located. You can trace
the logic around the critical gates in the schematic to see how the non-critical logic is structured.

Using Floorplanning for Timing Closure: An Example

24 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 11: The Gates and Hierarchy in the Critical Path

The floorplan should constraint at least the timing critical paths between block RAMs inside usbEngine1.
So far, usbEngine1 appears to be a good candidate for floorplanning. If usbEngine1 is a large portion of
the chip, instead we would try to floorplan the four levels of sub hierarchy that contain the critical path.

To quickly determine which gates should be floorplanned, look at the placement in the Device view. In
Figure 12, the gates in the critical hierarchies are colored green. The gates in the non-critical hierarchies
are colored yellow. In the critical hierarchies there is high utilization of the block RAM. The non-critical
hierarchies contain a lot of LUT/FF logic that can be placed between the block RAM. The entire hierarchy
is approximately 20% of the design. Before floorplanning usbEngine1, examine the pinout and design
connectivity. The design may show that usbEngine1 is not a good candidate.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 25
UG633 (v 12.1) May 3, 2010

Figure 12: Critical and Non-Critical parts of usbEgine1

The next step is to confirm that usbEngine1 is a good candidate for floorplanning and to figure out where
it should be placed. It is helpful to create a top-level floorplan on the device. The top-level floorplan can
provide hints about what logic is influencing the placement of other logic. The blocks that are spread out
across the chip are bad candidates for floorplanning.

IO connectivity is displayed as green IO lines. An example is shown in Figure 13. Look for the lines going
from the middle IO bank on the left side of the chip to the yellow logic in the middle. Connectivity
between hierarchical blocks displays as bundles of nets between the placed hierarchies. An example of
this is shown in Figure 13. At quick glance, you can see that there are many inter-connected hierarchies.
You can see when a pinout draws a hierarchy across the chip.

Figure 13 shows the top-level floorplan for this design. It is easy to see that only one hierarchy is spread
around the chip. A second hierarchy spans the length of the right side. The pinout would support
floorplanning usbEngine1. Based on the pinout, usbEngine1 (in white) should be placed in the upper left
corner of the device.

Using Floorplanning for Timing Closure: An Example

26 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Figure 13: A Top-Level Floorplan for Analysis

Shaping the Floorplan for the Critical Hierarchy
The floorplan suggests the critical hierarchy should be in the upper left corner. Design analysis shows
that the critical hierarchy uses multiple block RAM sites. The pinout shows the critical hierarchy connects
to the two IO banks on the top left of the chip. It makes sense to try to floorplan the logic to use slices and
block RAM between these banks. A good target is to try to size the block to use 100% of the block RAM
(or DSP, if applicable) and about 80% of the slices.

Deciding What Else Should Be Floorplanned
This design has two copies of the same gates: usbEngine1 and usbEngine0. Implementation has shown
that there is a timing problem with usbEngine1, which will likely appear in usbEngine0 as well. You will
need to solve the timing problems of each block separately. Consider both USB blocks as two separate
timing critical hierarchies, and floorplan each hierarchy separately. A final floorplan that meets timing is
shown below in Figure 14.

 Using Floorplanning for Timing Closure: An Example

Floorplanning Methodology Guide www.xilinx.com 27
UG633 (v 12.1) May 3, 2010

Figure 14: A First Pass Floorplan

PlanAhead creates a construct that enables you to constrain any subset of netlist hierarchy to a region on
the chip. They are created using the New Pblock and Assign to Pblock commands. The Pblocks are
turned into AREA_GROUP constraints in the UCF to guide implementation and they keep the level(s) of
hierarchy to various regions on the chip.

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";

AREA_GROUP "pblock_usbEngine1" RANGE=SLICE_X0Y60:SLICE_X43Y119;

AREA_GROUP "pblock_usbEngine1" RANGE=DSP48_X0Y24:DSP48_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

These lines define the shape on the chip, and what to place into it. It is possible to set up a region that
does not constrain all these ranges. It is possible to constrain only the block RAM to sites on the chip by
using:

INST "usbEngine1" AREA_GROUP = "pblock_usbEngine1";

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB18_X0Y24:RAMB18_X2Y47;

AREA_GROUP "pblock_usbEngine1" RANGE=RAMB36_X0Y12:RAMB36_X2Y23;

The slices and DSP are now unconstrained.

Floorplanning Iteratively

28 www.xilinx.com Floorplanning Methodology Guide
UG633 (v 12.1) May 3, 2010

Floorplanning Iteratively
Floorplanning is an iterative process. When it is not obvious what hierarchy should be floorplanned, use
trial and error until some timing improvement is seen. If timing degrades in the blocks that are
floorplanned, analyze why. The design may have connections that are not obvious on the first analysis.
After the first floorplan, you may need to revise the floorplan. It is helpful to save each floorplan in case
you want to revisit your work later. A simple approach generally works better and takes less time, so
keep things simple.

Some helpful hints when working iteratively:

• If critical paths are located within logic that is not floorplanned, create a new Pblock. Identify the
levels of hierarchy that contain the critical paths, assign them to a new Pblock, and place the
Pblock on the chip. If the placement is reasonable, keep this Pblock for place and route.

• If critical paths are within a single Pblock, revise the Pblock. Consider creating a Pblock within
the Pblock that contained the failing timing path to constrain the critical hierarchy more tightly.
Alternately, work with lower levels of hierarchy, remove some logic and use a smaller Pblock.

• If critical paths are between a Pblock and unconstrained hierarchy, add the unconstrained logic to
a Pblock. The first option is to create a new Pblock to hold the critical path and place it nearby.
The second option, which works if the unconstrained logic is small, is to create a Pblock to hold
both the critical path as well as the unconstrained logic.

• If critical paths are between two Pblocks, revise the Pblocks. Consider moving or reshaping the
Pblocks so they are closer. Consider embedding one Pblock inside the other. Consider moving
logic from one Pblock to the other.

• In all cases, if the logic in a critical hierarchy is large, heavily interconnected, or being pulled
around the chip by scattered loads, do not place it at first. Start working with the timing critical
hierarchy that has a good placement. Revisit the hierarchy on a later pass if it is still a problem. If
paths are a persistent timing problem consider revising the RTL and re-synthesizing.

• If sections of the design are floorplanned and consistently failing timing it may be time to take a
step back. Consider removing the floorplanning constraints to see what happens. If timing
improves, try something different. Sometimes a new approach suggests itself.

• When upgrading from one ISE® Design Suite release to the next, run the design through
implementation unconstrained. A new release may obviate the need for floorplanning.

Summary
Floorplanning can help improve timing performance and consistency. The re-use flow can bring
consistency to a design that has met timing. The hierarchical floorplanning flow can help a design that
has not met timing or can improve consistency. As the design changes it may be necessary to revisit
either approach.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

