
Animated LED Sand
Created by Ruiz Brothers

Last updated on 2018-02-06 04:55:15 PM UTC

2
3
3
3
4
4
5
5
5
5
6

7
8

13
14
14

15
15
15
17
17
18
19
20
20
21
22
23
24
24
24
24
25
27
27
27
27
28

Guide Contents

Guide Contents
Overview

Simulated Glowy Physics!
Prerequisite Guides

Adafruit Feather M0 Basic Proto - ATSAMD21 Cortex M0
Adafruit 15x7 CharliePlex LED Matrix Display FeatherWings
Lithium Ion Polymer Battery - 3.7v 350mAh
Adafruit LIS3DH Triple-Axis Accelerometer (+-2g/4g/8g/16g)
Breadboard-friendly SPDT Slide Switch
Ultimaker 2+ 3D Printer
PLA Filament for 3D Printers - 1.75mm Diameter - Teal - 1KG

Circuit Diagram
Code
3D Printing

Slice Settings
Clean up

Assembly
Measure Wires
Assemble Slide Switch
Wire Boards
Solder Slide Switch
Solder Accelerometer
Accelerometer Mount
Spacer
Attach boards
Bundle wires
Mount Battery
Attach Spacer
Plug in battery
Mount inside enclosure
Tuck wires
Align mounting holes
Face cover
Slide Switch Tolerances
Slide Switch Mount
Attach Lid
Gimbal Assemble
Teeter totter

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 2 of 29

Overview

Simulated Glowy Physics!

These LEDs interact with motion and looks like they’re affect by gravity. An Adafruit LED matrix displays the LEDs as
little grains of sand which are driven by sampling an accelerometer with an Adafruit Feather.

The code, written by Phillip Burgess, simulates physics by calculating collisions and terminal velocity.

We designed 3d printed enclosures to take advantage of sensor readings by allowing it teeter totter as well as a
gimbal to create interesting simulations.

Prerequisite Guides

I suggest walking through the following guides to get a better understanding of the electronics.

Adafruit LIS3DH Triple-Axis Accelerometer
Adafruit 15x7 CharliePlex LED Matrix
Adafruit Feather M0 Basic

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 3 of 29

file:///users/pburgess
file:///adafruit-lis3dh-triple-axis-accelerometer-breakout
file:///adafruit-15x7-7x15-charlieplex-led-matrix-charliewing-featherwing
file:///adafruit-feather-m0-basic-proto

6 x M2X8mm Screws
M2x8mm screws

2 x M2X4mm screws
M2X4mm screws

Adafruit Feather M0 Basic Proto - ATSAMD21 Cortex M0
PRODUCT ID: 2772

https://adafru.it/s1d $19.95
IN STOCK

Your browser does not support the video tag. Adafruit 15x7 CharliePlex LED Matrix Display FeatherWings
PRODUCT ID: 2965

https://adafru.it/wft $0.00
OUT OF STOCK

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 4 of 29

https://www.adafruit.com/product/2772
https://www.adafruit.com/product/2965

Lithium Ion Polymer Battery - 3.7v 350mAh
PRODUCT ID: 2750

https://adafru.it/kBj $6.95
IN STOCK

Adafruit LIS3DH Triple-Axis Accelerometer (+-
2g/4g/8g/16g)
PRODUCT ID: 2809

https://adafru.it/uBq $4.95
IN STOCK

Breadboard-friendly SPDT Slide Switch
PRODUCT ID: 805

https://adafru.it/drN $0.95
IN STOCK

Ultimaker 2+ 3D Printer
PRODUCT ID: 2673

https://adafru.it/zef $2,499.00
IN STOCK

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 5 of 29

https://www.adafruit.com/product/2750
https://www.adafruit.com/product/2809
https://www.adafruit.com/product/805
https://www.adafruit.com/product/2673

PLA Filament for 3D Printers - 1.75mm Diameter - Teal -
1KG
PRODUCT ID: 3069

https://adafru.it/AeV $39.95
IN STOCK

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 6 of 29

https://www.adafruit.com/product/3069

Circuit Diagram

Take a moment to review the components in the circuit diagram. This illustration is meant for referencing wired
connections - The length of wire, position and size of components are not exact.

The Slide switch will connect to the Feather board and will need to be 70mm for the GND and 50mm for the EN pin

CharliePlex Featherwing connects the Feather.
The connections for SDA and SCL wires will need to be 70mm long.
3V and GND connections can both be 80mm long

LIS3DH connects to the top of the Feather via the 3d printed mount and will needto be 40mm long for 3V, GND, SDA
and SCL connections.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 7 of 29

Code
To use the LED Sand sketch you'll want to make sure you're using the latest version of the Arduino IDE (1.6.5 at the
time of this writing).

If you're totally new to Arduino take a little time to go through some introductory tutorials like how to make a LED blink.
 This will help you understand how to use the IDE, load a sketch, and upload code.

Next you'll need to make sure the libraries used by the sketch are installed. With the latest Arduino IDE you can use its
library manager to easily install libraries, or check out this guide on how to manually install a library. You'll want to
install the following libraries:

Adafruit LIS3DH
Adafruit Unified Sensor
Adafruit IS31FL3731 Charlieplex LED

Search for the libraries in the library manager and they should be easy to find and install.
If you already have one or more of these libraries installed then make sure to update it to the latest version.

//--
// Animated 'sand' for Adafruit Feather. Uses the following parts:
// - Feather 32u4 Basic Proto (adafruit.com/product/2771)
// - Charlieplex FeatherWing (adafruit.com/product/2965 - any color!)
// - LIS3DH accelerometer (2809)
// - 350 mAh LiPoly battery (2750)
// - SPDT Slide Switch (805)
//
// This is NOT good "learn from" code for the IS31FL3731; it is "squeeze
// every last byte from the microcontroller" code. If you're starting out,
// download the Adafruit_IS31FL3731 and Adafruit_GFX libraries, which
// provide functions for drawing pixels, lines, etc.
//--

#include <Wire.h> // For I2C communication
#include <Adafruit_LIS3DH.h> // For accelerometer

#define DISP_ADDR 0x74 // Charlieplex FeatherWing I2C address
#define ACCEL_ADDR 0x18 // Accelerometer I2C address
#define N_GRAINS 20 // Number of grains of sand
#define WIDTH 15 // Display width in pixels
#define HEIGHT 7 // Display height in pixels
#define MAX_FPS 45 // Maximum redraw rate, frames/second

// The 'sand' grains exist in an integer coordinate space that's 256X
// the scale of the pixel grid, allowing them to move and interact at
// less than whole-pixel increments.
#define MAX_X (WIDTH * 256 - 1) // Maximum X coordinate in grain space
#define MAX_Y (HEIGHT * 256 - 1) // Maximum Y coordinate
struct Grain {
 int16_t x, y; // Position
 int16_t vx, vy; // Velocity
} grain[N_GRAINS];

Adafruit_LIS3DH accel = Adafruit_LIS3DH();
uint32_t prevTime = 0; // Used for frames-per-second throttle
uint8_t backbuffer = 0, // Index for double-buffered animation
 img[WIDTH * HEIGHT]; // Internal 'map' of pixels

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 8 of 29

https://www.arduino.cc/en/Main/Software
file:///adafruit-arduino-lesson-1-blink
https://www.arduino.cc/en/Guide/Libraries#toc3
file:///adafruit-all-about-arduino-libraries-install-use/arduino-libraries
https://github.com/adafruit/Adafruit_Sensor

 img[WIDTH * HEIGHT]; // Internal 'map' of pixels

const uint8_t PROGMEM remap[] = { // In order to redraw the screen super
 0, 90, 75, 60, 45, 30, 15, 0, // fast, this sketch bypasses the
 0, 0, 0, 0, 0, 0, 0, 0, // Adafruit_IS31FL3731 library and
 0, 91, 76, 61, 46, 31, 16, 1, // writes to the LED driver directly.
 14, 29, 44, 59, 74, 89,104, 0, // But this means we need to do our
 0, 92, 77, 62, 47, 32, 17, 2, // own coordinate management, and the
 13, 28, 43, 58, 73, 88,103, 0, // layout of pixels on the Charlieplex
 0, 93, 78, 63, 48, 33, 18, 3, // Featherwing is strange! This table
 12, 27, 42, 57, 72, 87,102, 0, // remaps LED register indices in
 0, 94, 79, 64, 49, 34, 19, 4, // sequence to the corresponding pixel
 11, 26, 41, 56, 71, 86,101, 0, // indices in the img[] array.
 0, 95, 80, 65, 50, 35, 20, 5,
 10, 25, 40, 55, 70, 85,100, 0,
 0, 96, 81, 66, 51, 36, 21, 6,
 9, 24, 39, 54, 69, 84, 99, 0,
 0, 97, 82, 67, 52, 37, 22, 7,
 8, 23, 38, 53, 68, 83, 98
};

// IS31FL3731-RELATED FUNCTIONS --

// Begin I2C transmission and write register address (data then follows)
uint8_t writeRegister(uint8_t n) {
 Wire.beginTransmission(DISP_ADDR);
 Wire.write(n); // No endTransmission() - left open for add'l writes
 return 2; // Always returns 2; count of I2C address + register byte n
}

// Select one of eight IS31FL3731 pages, or the Function Registers
void pageSelect(uint8_t n) {
 writeRegister(0xFD); // Command Register
 Wire.write(n); // Page number (or 0xB = Function Registers)
 Wire.endTransmission();
}

// SETUP - RUNS ONCE AT PROGRAM START --------------------------------------

void setup(void) {
 uint8_t i, j, bytes;

 if(!accel.begin(ACCEL_ADDR)) { // Init accelerometer. If it fails...
 pinMode(LED_BUILTIN, OUTPUT); // Using onboard LED
 for(i=1;;i++) { // Loop forever...
 digitalWrite(LED_BUILTIN, i & 1); // LED on/off blink to alert user
 delay(250); // 1/4 second
 }
 }
 accel.setRange(LIS3DH_RANGE_4_G); // Select accelerometer +/- 4G range

 Wire.setClock(400000); // Run I2C at 400 KHz for faster screen updates

 // Initialize IS31FL3731 Charlieplex LED driver "manually"...
 pageSelect(0x0B); // Access the Function Registers
 writeRegister(0); // Starting from first...
 for(i=0; i<13; i++) Wire.write(10 == i); // Clear all except Shutdown
 Wire.endTransmission();
 for(j=0; j<2; j++) { // For each page used (0 & 1)...
 pageSelect(j); // Access the Frame Registers
 for(bytes=i=0; i<180; i++) { // For each register...

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 9 of 29

 for(bytes=i=0; i<180; i++) { // For each register...
 if(!bytes) bytes = writeRegister(i); // Buf empty? Start xfer @ reg i
 Wire.write(0xFF * (i < 18)); // 0-17 = enable, 18+ = blink+PWM
 if(++bytes >= 32) bytes = Wire.endTransmission();
 }
 if(bytes) Wire.endTransmission(); // Write any data left in buffer
 }

 memset(img, 0, sizeof(img)); // Clear the img[] array
 for(i=0; i<N_GRAINS; i++) { // For each sand grain...
 do {
 grain[i].x = random(WIDTH * 256); // Assign random position within
 grain[i].y = random(HEIGHT * 256); // the 'grain' coordinate space
 // Check if corresponding pixel position is already occupied...
 for(j=0; (j<i) && (((grain[i].x / 256) != (grain[j].x / 256)) ||
 ((grain[i].y / 256) != (grain[j].y / 256))); j++);
 } while(j < i); // Keep retrying until a clear spot is found
 img[(grain[i].y / 256) * WIDTH + (grain[i].x / 256)] = 255; // Mark it
 grain[i].vx = grain[i].vy = 0; // Initial velocity is zero
 }
}

// MAIN LOOP - RUNS ONCE PER FRAME OF ANIMATION ----------------------------

void loop() {
 // Limit the animation frame rate to MAX_FPS. Because the subsequent sand
 // calculations are non-deterministic (don't always take the same amount
 // of time, depending on their current states), this helps ensure that
 // things like gravity appear constant in the simulation.
 uint32_t t;
 while(((t = micros()) - prevTime) < (1000000L / MAX_FPS));
 prevTime = t;

 // Display frame rendered on prior pass. It's done immediately after the
 // FPS sync (rather than after rendering) for consistent animation timing.
 pageSelect(0x0B); // Function registers
 writeRegister(0x01); // Picture Display reg
 Wire.write(backbuffer); // Page # to display
 Wire.endTransmission();
 backbuffer = 1 - backbuffer; // Swap front/back buffer index

 // Read accelerometer...
 accel.read();
 int16_t ax = -accel.y / 256, // Transform accelerometer axes
 ay = accel.x / 256, // to grain coordinate space
 az = abs(accel.z) / 2048; // Random motion factor
 az = (az >= 3) ? 1 : 4 - az; // Clip & invert
 ax -= az; // Subtract motion factor from X, Y
 ay -= az;
 int16_t az2 = az * 2 + 1; // Range of random motion to add back in

 // ...and apply 2D accel vector to grain velocities...
 int32_t v2; // Velocity squared
 float v; // Absolute velocity
 for(int i=0; i<N_GRAINS; i++) {
 grain[i].vx += ax + random(az2); // A little randomness makes
 grain[i].vy += ay + random(az2); // tall stacks topple better!
 // Terminal velocity (in any direction) is 256 units -- equal to
 // 1 pixel -- which keeps moving grains from passing through each other
 // and other such mayhem. Though it takes some extra math, velocity is

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 10 of 29

 // and other such mayhem. Though it takes some extra math, velocity is
 // clipped as a 2D vector (not separately-limited X & Y) so that
 // diagonal movement isn't faster
 v2 = (int32_t)grain[i].vx*grain[i].vx+(int32_t)grain[i].vy*grain[i].vy;
 if(v2 > 65536) { // If v^2 > 65536, then v > 256
 v = sqrt((float)v2); // Velocity vector magnitude
 grain[i].vx = (int)(256.0*(float)grain[i].vx/v); // Maintain heading
 grain[i].vy = (int)(256.0*(float)grain[i].vy/v); // Limit magnitude
 }
 }

 // ...then update position of each grain, one at a time, checking for
 // collisions and having them react. This really seems like it shouldn't
 // work, as only one grain is considered at a time while the rest are
 // regarded as stationary. Yet this naive algorithm, taking many not-
 // technically-quite-correct steps, and repeated quickly enough,
 // visually integrates into something that somewhat resembles physics.
 // (I'd initially tried implementing this as a bunch of concurrent and
 // "realistic" elastic collisions among circular grains, but the
 // calculations and volument of code quickly got out of hand for both
 // the tiny 8-bit AVR microcontroller and my tiny dinosaur brain.)

 uint8_t i, bytes, oldidx, newidx, delta;
 int16_t newx, newy;
 const uint8_t *ptr = remap;

 for(i=0; i<N_GRAINS; i++) {
 newx = grain[i].x + grain[i].vx; // New position in grain space
 newy = grain[i].y + grain[i].vy;
 if(newx > MAX_X) { // If grain would go out of bounds
 newx = MAX_X; // keep it inside, and
 grain[i].vx /= -2; // give a slight bounce off the wall
 } else if(newx < 0) {
 newx = 0;
 grain[i].vx /= -2;
 }
 if(newy > MAX_Y) {
 newy = MAX_Y;
 grain[i].vy /= -2;
 } else if(newy < 0) {
 newy = 0;
 grain[i].vy /= -2;
 }

 oldidx = (grain[i].y/256) * WIDTH + (grain[i].x/256); // Prior pixel #
 newidx = (newy /256) * WIDTH + (newx /256); // New pixel #
 if((oldidx != newidx) && // If grain is moving to a new pixel...
 img[newidx]) { // but if that pixel is already occupied...
 delta = abs(newidx - oldidx); // What direction when blocked?
 if(delta == 1) { // 1 pixel left or right)
 newx = grain[i].x; // Cancel X motion
 grain[i].vx /= -2; // and bounce X velocity (Y is OK)
 newidx = oldidx; // No pixel change
 } else if(delta == WIDTH) { // 1 pixel up or down
 newy = grain[i].y; // Cancel Y motion
 grain[i].vy /= -2; // and bounce Y velocity (X is OK)
 newidx = oldidx; // No pixel change
 } else { // Diagonal intersection is more tricky...
 // Try skidding along just one axis of motion if possible (start w/
 // faster axis). Because we've already established that diagonal
 // (both-axis) motion is occurring, moving on either axis alone WILL

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 11 of 29

 // (both-axis) motion is occurring, moving on either axis alone WILL
 // change the pixel index, no need to check that again.
 if((abs(grain[i].vx) - abs(grain[i].vy)) >= 0) { // X axis is faster
 newidx = (grain[i].y / 256) * WIDTH + (newx / 256);
 if(!img[newidx]) { // That pixel's free! Take it! But...
 newy = grain[i].y; // Cancel Y motion
 grain[i].vy /= -2; // and bounce Y velocity
 } else { // X pixel is taken, so try Y...
 newidx = (newy / 256) * WIDTH + (grain[i].x / 256);
 if(!img[newidx]) { // Pixel is free, take it, but first...
 newx = grain[i].x; // Cancel X motion
 grain[i].vx /= -2; // and bounce X velocity
 } else { // Both spots are occupied
 newx = grain[i].x; // Cancel X & Y motion
 newy = grain[i].y;
 grain[i].vx /= -2; // Bounce X & Y velocity
 grain[i].vy /= -2;
 newidx = oldidx; // Not moving
 }
 }
 } else { // Y axis is faster, start there
 newidx = (newy / 256) * WIDTH + (grain[i].x / 256);
 if(!img[newidx]) { // Pixel's free! Take it! But...
 newx = grain[i].x; // Cancel X motion
 grain[i].vy /= -2; // and bounce X velocity
 } else { // Y pixel is taken, so try X...
 newidx = (grain[i].y / 256) * WIDTH + (newx / 256);
 if(!img[newidx]) { // Pixel is free, take it, but first...
 newy = grain[i].y; // Cancel Y motion
 grain[i].vy /= -2; // and bounce Y velocity
 } else { // Both spots are occupied
 newx = grain[i].x; // Cancel X & Y motion
 newy = grain[i].y;
 grain[i].vx /= -2; // Bounce X & Y velocity
 grain[i].vy /= -2;
 newidx = oldidx; // Not moving
 }
 }
 }
 }
 }
 grain[i].x = newx; // Update grain position
 grain[i].y = newy;
 img[oldidx] = 0; // Clear old spot (might be same as new, that's OK)
 img[newidx] = 255; // Set new spot
 }

 // Update pixel data in LED driver
 pageSelect(backbuffer); // Select background buffer
 for(i=bytes=0; i<sizeof(remap); i++) {
 if(!bytes) bytes = writeRegister(0x24 + i);
 Wire.write(img[pgm_read_byte(ptr++)] / 3); // Write each byte to matrix
 if(++bytes >= 32) bytes = Wire.endTransmission();
 }
 if(bytes) Wire.endTransmission();
}

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 12 of 29

3D Printing

The 3D printed parts are fairly easy to make with most common home desktop 3D printers that are on the market.

And if you don’t have access a 3D printer, you can order our parts by visiting our Thingiverse page and have someone
local 3D print the parts and ship them to you.

Download the Fusion360 files (dome version)

https://adafru.it/ArR

Download the Fusion 360 files (gimbal version)

https://adafru.it/ArS

Download from Thingiverse

https://adafru.it/ArT

Download from Youmagine

https://adafru.it/svF

Download from Pinshape

https://adafru.it/ArU

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 13 of 29

http://a360.co/2AD3VJo
http://a360.co/2ABZdMa
https://www.thingiverse.com/thing:2751250
file:////tmp/Enter a Link
https://pinshape.com/items/41902-3d-printed-animated-led-sand-physics-toy

Slice Settings

Download the STL file and import it into your 3D printing

slicing software. You'll need to adjust your settings

accordingly if you're using material different than PLA.

230C Extruder Temp

No heated bed (65C for heated)

1.0 Extrusion Multiplier

.4mm Nozzle

0.38 Extrusion Width

.2mm Layer Height

30% infill

No Supports

skirt

60mm/s | 120mm travel speed

Clean up

We used a flush diagonal cutter to clean up any stringing and overhangs around the port openings and around the
standoffs inside the enclosure.

Make sure the openings for the USB ports are cleaned before mounting components. Use a hobby knife to help cut
away stringing that could block components from mounting.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 14 of 29

https://learn.adafruit.com/assets/49931

Assembly

Measure Wires

First we'll need to measure wires for each component so

its long enough to reach each mount inside the

enclosure.

The Slide Switch will connect to the Feather board and

will need to be 70mm for the GND and 50mm for the

EN pin.

CharliePlex Featherwing connects the Feather.

Connections for SDA and SCL wires will need to be

70mm long. Measure the 3v and GND connections to

both be 80mm long.

LIS3DH connects to the Feather and will need all four

connections to be 40mm long.

Assemble Slide Switch

A slide switch is used to tie the enable and ground pins

so we can turn off the 3 volt regulator, while still

enabling you to charge the lipo battery through a USB

cable.

Use heat shrink to prevent the pins from touching other

components when inserted into the enclosure.

We used 1x45mm sized heat shrink tubes. You can use

the side of the soldering iron to heat up and shrink the

tubes around the solder connections.

Use a flush diagonal cutter to remove the unused third

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 15 of 29

https://learn.adafruit.com/assets/49889
https://learn.adafruit.com/assets/49890
https://learn.adafruit.com/assets/49891

pin.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 16 of 29

https://learn.adafruit.com/assets/49892
https://learn.adafruit.com/assets/49893
https://learn.adafruit.com/assets/49894

Wire Boards

The LED matrix is free-wired to the Adafruit Feather to

make the assembly as slim as possible.

We can solder the wires from the bottom side of the

boards to make them easy to attach to each other. This

also gives room for the battery to fit between the two

boards.

We used 30AWG silicone coated wires to provide

flexibility and durable handling.

Solder Slide Switch

Next, we'll solder the slide switch to the EN and GND

pin on the top of the Feather board.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 17 of 29

https://learn.adafruit.com/assets/49898
https://learn.adafruit.com/assets/49899

Solder Accelerometer

The LIS3DH is soldered in the same way, with the wires

underneath the board.

We can then solder connections for SDA, SCL, GND and

3V to the top side of the Feather board.

Later, will mount it to the top of the Feather board with

the help of a 3d printed mount.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 18 of 29

https://learn.adafruit.com/assets/49900
https://learn.adafruit.com/assets/49901

Accelerometer Mount

This 3d printed mount will secure the LIS3DH to the top

of the Feather board.

We'll use M2x4mm screws to connect the LIS3DH to the

3d printed mount.

Next we'll fasten the the 3d printed mount on top of the

feather board. We'll use the two mounts close to the

prototyping area.

Use two M2x8mm screws so they can reach through

the Feather and in the 3d printed spacer.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 19 of 29

https://learn.adafruit.com/assets/49902
https://learn.adafruit.com/assets/49903

Spacer

This 3d printed spacer will join the Feather and

CharliePlex board together.

This will allow a 350mAh lipo battery to safely sit

between the two boards, with just enough space to fit

the wires from both boards.

Attach boards

First fasten the two screws on the accelerometer mount.

Leave the other two screws unfastened until we fit the

battery cable through the opening on the spacer.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 20 of 29

https://learn.adafruit.com/assets/49904
https://learn.adafruit.com/assets/49905

Bundle wires

Next, we'll want to tidy up the wires by bundling them up

with a small pieces of kapton tape. This will make it

easier to arrange the wires allowing the battery to fit

between the boards.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 21 of 29

https://learn.adafruit.com/assets/49906
https://learn.adafruit.com/assets/49907

Mount Battery

Now we can pass the battery wire through the opening

on the side of the 3d printed spacer.

Reference the picture so the wires wraps around the

board with enough space to plug into the Feather board.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 22 of 29

https://learn.adafruit.com/assets/49908
https://learn.adafruit.com/assets/49909

Attach Spacer

Now we can fasten the other two M2x8mm screws

through the Feather board. Tighten them in from the top

of the Feather, into the spacer.

The Feather board should now be firmly attached to the

3d printed spacer. The CharliePlex board will attach

after we mount it into the enclosure.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 23 of 29

https://learn.adafruit.com/assets/49910
https://learn.adafruit.com/assets/49911

Plug in battery

First we'll need to plug in the battery before we insert it

into the enclosure.

Reference the picture to route the wire along the side of

the spacer, to the JST PH-2 connector on the Feather

board.

If the LEDs light up, use the slide switch to turn the

circuit off.

Mount inside enclosure

Align the CharliePlex to the enclosure, making sure the

display cutout matches the LED matrix. (We're showing

the box enclosure, but all of the design variants mount

the same).

Tuck wires

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 24 of 29

https://learn.adafruit.com/assets/49912
https://learn.adafruit.com/assets/49913

One side of the enclosure is wider to accommodate the

JST connection on the side of the Feather board.

Carefully fit the wires inside the enclosure. You can use

tweezers to arrange them next to the spacer.

Align mounting holes

Flip the enclosure to the display cutout. Move the

CharliePlex board so it aligns with the mounting holes

on the front face of the enclosure.

Use four M2x8mm screws on the front face of the

enclosure to attach the CharliePlex to the spacer.

Face cover

To hide the screws on the front of the enclosure, we

used a small amount of tac to adhere one of the printed

face cover.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 25 of 29

https://learn.adafruit.com/assets/49914
https://learn.adafruit.com/assets/49915
https://learn.adafruit.com/assets/49916

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 26 of 29

https://learn.adafruit.com/assets/49917
https://learn.adafruit.com/assets/49918
https://learn.adafruit.com/assets/49946

Slide Switch Tolerances

To adjust for different printer tolerances and to ensure

the slide switch tightly press fits into the enclosure, we

might need to gently spread the two metal sides. This

will help the slide switch snap fit into place on the

printed part.

Slide Switch Mount

First, carefully flip the slide the switch into the middle

position. This will make it easier to pass through the

opening in the enclosure.

Now we can insert the slide switch into the mount. Tilt

the slide switch at an angle and then press fit into place.

Attach Lid

The lid press fits onto the enclosure by aligning the nubs

on both parts. Insert the protruding nubs on the lid into

its matching cavity on the enclosure.

Gimbal Assemble

To assemble the gimbal version of the enclosure, simply

insert the points on the sides, one by one, at an angle.

Use by holding the outer ring close, but not over the

points that attach them to each other ring. Gently move

in an up and down motion to spin the center of the

gimbal!

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 27 of 29

https://learn.adafruit.com/assets/49919
https://learn.adafruit.com/assets/49920
https://learn.adafruit.com/assets/49921

Teeter totter

The boards are offset so the display can mount to the

center of the enclosure. This make it unstable on a

dome, making the "grains of sand" bounce in

unexpected fun ways.

Simply push on the side close to the USB port to

randomly spin the enclosure on a flat table.

© Adafruit Industries https://learn.adafruit.com/animated-led-sand Page 28 of 29

https://learn.adafruit.com/assets/49922
https://learn.adafruit.com/assets/49923
https://learn.adafruit.com/assets/49924

© Adafruit Industries Last Updated: 2018-02-06 04:55:12 PM UTC Page 29 of 29

	Guide Contents
	Overview
	Simulated Glowy Physics!
	Prerequisite Guides
	Adafruit Feather M0 Basic Proto - ATSAMD21 Cortex M0
	Adafruit 15x7 CharliePlex LED Matrix Display FeatherWings
	Lithium Ion Polymer Battery - 3.7v 350mAh
	Adafruit LIS3DH Triple-Axis Accelerometer (+-2g/4g/8g/16g)
	Breadboard-friendly SPDT Slide Switch
	Ultimaker 2+ 3D Printer
	PLA Filament for 3D Printers - 1.75mm Diameter - Teal - 1KG

	Circuit Diagram
	Code
	3D Printing
	Slice Settings
	Clean up

	Assembly
	Measure Wires
	Assemble Slide Switch
	Wire Boards
	Solder Slide Switch
	Solder Accelerometer
	Accelerometer Mount
	Spacer
	Attach boards
	Bundle wires
	Mount Battery
	Attach Spacer
	Plug in battery
	Mount inside enclosure
	Tuck wires
	Align mounting holes
	Face cover
	Slide Switch Tolerances
	Slide Switch Mount
	Attach Lid
	Gimbal Assemble
	Teeter totter

