

 Unit One Contents

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. iii

Unit One Contents

About This Guide ... vii

1. Fundamentals Introduction ... 1

1.1 Magento 2 Fundamentals: Unit One Home Page ... 1

1.2 Home Page ... 2

1.3 Introduction ... 3

1.4 Appropriate Audience ... 4

1.5 Course Content ... 5

1.6 How to Access Course Modules ... 6

2. Unit One Home Page ... 7

2.1 Magento 2 Fundamentals: Unit One Home Page ... 7

3. Preparation ... 8

3.1 Preparation .. 8

3.2 Module Topics ... 9

3.3 Environment Setup Requirements .. 10

3.4 Modes in Magento 2 ... 11

3.5 Developer Mode in Magento 2 .. 12

3.6 Production Mode in Magento 2 ... 13

3.7 Default Mode in Magento 2 ... 14

3.8 Production Mode in Magento 2 ... 15

3.9 Production Mode in Magento 2 ... 16

3.10 Specifying a Mode .. 17

3.11 Specify a Mode Using an Environment Variable .. 18

3.12 Code Demonstration | Specify Mode using Env. Variable .. 19

3.13 Specifying a Mode | Web Server Environment ... 20

3.14 Specifying a Mode | php.fpm Environment ... 21

3.15 Reinforcement Exercise (1.3.1) .. 22

4. Overview and Architecture ... 23

4.1 Magento 2 Overview and Architecture .. 23

4.2 Module Topics ... 24

4.3 Magento 2 Platform ... 25

4.4 Magento 2 Goals ... 26

4.5 Magento 2 Architecture ... 27

4.6 High-Level Client Server Structural Map .. 28

4.7 High-Level Application Map .. 29

4.8 Modular System .. 30

4.9 Areas ... 31

4.10 Libraries .. 32

Unit One Contents

iv Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.11 Language Packs ... 33

4.12 Themes ... 34

4.13 Modules: Definition ... 35

4.14 Modules: Location .. 36

4.15 Modules: Naming a Module .. 37

4.16 Modules: Declaring a Module ... 38

4.17 Modules: Module Dependencies .. 39

4.18 Declare Dependency with Other Modules .. 40

4.19 Module Dependencies Tasks ... 41

4.20 Modules: Types of Module Dependencies ... 42

4.21 Reinforcement Exercise (1.4.1) .. 43

5. File Systems .. 44

5.1 File Systems ... 44

5.2 Module Topics .. 45

5.3 File System: Library .. 46

5.4 Code Demonstration: File Systems .. 47

5.5 File System: Core Source Code ... 48

5.6 File System: Module Structure ... 49

5.7 File System: Templates .. 50

5.8 File System: Templates .. 51

5.9 Code Demonstration: Templates .. 52

5.10 File System: Skin to Theme.. 53

6. Configuration ... 54

6.1 Configuration .. 54

6.2 Module Topics .. 55

6.3 Configuration Files .. 56

6.4 Configuration Files: Storage ... 57

6.5 Configuration Files: core_config_data .. 58

core_config_data interface (Slide Layer) .. 59

6.6 Configuration Files: Custom Config Files ... 60

6.7 Configuration Files: Scope ... 61

6.8 Configuration Files: Load Order ... 62

6.9 Configuration Files: Merging... 63

6.10 Configuration Files: Validation .. 64

6.11 Magento\Config .. 65

6.12 Magento\Config - Loading Infrastructure .. 66

6.13 Code Demonstration: events.xml ... 67

6.14 Validating a Configuration Type ... 68

6.15 Check Your Understanding .. 69

6.16 Check Your Understanding .. 70

6.17 Error Reporting Settings ... 71

 Unit One Contents

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. v

7. DI & Object Manager .. 72

7.1 DI & Object Manager .. 72

7.2 Module Topics ... 73

7.3 Dependency Injection (DI) Pattern .. 74

7.4 Dependency Injection ... 75

7.5 Using Dependency Injection ... 76

7.6 Dependency Injection Object Manager Classes ... 79

7.7 Dependency Injection | Creating Objects ... 80

7.8 Object Manager... 81

7.9 Object Manager: Shared Instances Concept .. 82

7.10 Object Manager Configuration .. 83

7.11 Object Manager Configuration: Preferences Example ... 85

7.12 Object Manager Configuration: Argument Example ... 86

7.13 Code Demonstration: Object Manager Argument Example ... 87

7.14 Object Manager Configuration: Shared Argument Example .. 88

7.15 Object Manager Configuration .. 89

7.16 Object Manager Initiation Process .. 90

7.17 Objects: Injectable and Non-injectable ... 91

7.18 Objects: Injectable and Non-injectable Rules ... 92

7.19 Objects: Injectable and Non-injectable Rules 2 .. 93

7.20 Class Definition and Definition Compiler Tool .. 94

7.21 Class Definition andRunning the Definition Compiler Tool ... 95

7.22 Definition Compiler Tool Best Practice ... 96

7.23 Cache in Magento 2 .. 97

7.24 Cache Configuration ... 98

7.25 Cache Type ... 99

7.26 Cache Cleaning... 100

7.27 Reinforcement Exercise (1.7.1) .. 101

8. Plugins .. 102

8.1 Plugins .. 102

8.2 Module Topics ... 103

8.3 Plugins: Definition ... 104

8.4 Plugins: Definition ... 105

8.5 Plugins: Interception ... 106

8.6 Declaring a Plugin ... 107

8.7 Before-Listener Method .. 108

8.8 After-Listener Method ... 109

8.9 Around-Listener Method ... 110

8.10 Prioritizing Plugins .. 111

8.11 Configuration Inheritance .. 112

8.12 Code Demonstration: Plugin ... 113

Unit One Contents

vi Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.13 Reinforcement Exercise 1-8-1 .. 114

9. Events ... 115

9.1 Events ... 115

9.2 Module Topics .. 116

9.3 Events: Definition .. 117

9.4 Events: Schema ... 118

Event Firing Code (Slide Layer) .. 119

9.5 Registering an Event in XML .. 120

9.6 Observer Example .. 121

9.7 Code Demonstration: Registering an Event ... 122

9.8 Reinforcement Exercise (1.9.1) .. 123

 About This Guide

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. vii

About This Guide

This guide uses the following symbols in the notes that follow the slides.

Symbol Indicates…

A note, tip, or other information brought to your attention.

Important information that you need to know.

A cross-reference to another document or website.

Best practice recommended by Magento

 1. Fundamentals Introduction

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 1

1. Fundamentals Introduction

1.1 Magento 2 Fundamentals: Unit One Home Page

Notes:

Welcome to the Magento 2 Fundamentals course!

This course contains three different units -- Preparation & Configuration, Request Routing, and Rendering. You access each of the
units as a separate course.

Each unit contains a number of modules. Here, in Unit One, there are seven modules.

1. Fundamentals Introduction

2 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

1.2 Home Page

Notes:

Each module can be accessed at any time by clicking on the appropriate box. The arrows indicate the proper sequence for taking the
course the first time through.

The Home button on each of the following course slides will return you to this page so you can replay a module or select a new one.

The controls on the player allow you to replay a slide (backward curved arrow), proceed to the next slide, or return to the previous slide.

Enjoy your course!

 1. Fundamentals Introduction

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 3

1.3 Introduction

Notes:

This is an extensive, challenging course that presents essential concepts you need to learn about Magento 2 over a series of
comprehensive units. It assumes you have prior experience with Magento 1 and highlights changes in features and functionality
between the two product versions throughout the course.

Be sure to give yourself enough time to go through the material at your own pace.

The built-in navigation allows you to repeat any slide or module as many times as you need, in any order you want.

1. Fundamentals Introduction

4 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

1.4 Appropriate Audience

Notes:

This course is appropriate for developers who are experienced with launching and extending the Magento platform.

The depth of the content may prove challenging to new developers who have no familiarity with the Magento product.

 1. Fundamentals Introduction

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 5

1.5 Course Content

Notes:

Magento 2 is a robust, flexible, and complex product, and it requires many hours of dedicated practice to become proficient in its use.
This course is one important piece - but not the only required piece - in helping you to develop your expertise using the Magento 2
platform. You will also need to work extensively with the product to build your skills.

Be sure to do all the exercises presented in the course, as these are key learning opportunities and provide practical, hands-on
experience with the native Magento 2 installation.

The course guide presents the narration in written form, while the slide highlights key concepts. Find the most effective way to use both
to match your learning style. For example, you may want to read the slide first for a general grasp of the topic, then play the audio as
you follow along with the full notes, to fill in all the details.
Remember, you can replay each slide as many times as you need to comprehend the material.

At this point in time, Magento 2 is still in Beta release, and so some functionality may change before the first official release of the
product. The content in this course is based on Magento 2 Beta 0.74.

1. Fundamentals Introduction

6 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

1.6 How to Access Course Modules

Notes:

To get started with the course, click on the Home button now!

 2. Unit One Home Page

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 7

2. Unit One Home Page

2.1 Magento 2 Fundamentals: Unit One Home Page

3. Preparation

8 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3. Preparation

3.1 Preparation

Notes:

In this module, we will discuss the preparation steps you should take in setting up your Magento 2 installation. We will cover
configuration aspects in the next module.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 9

3.2 Module Topics

Notes:

In particular, this module will discuss environment setup requirements and the system modes available for different phases of the
development lifecycle.

3. Preparation

10 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.3 Environment Setup Requirements

Notes:

Magento 2 requires the familiar LAMP (Linux, Apache, MySQL, and PHP) structure along with PHP Composer, a tool for managing
external dependencies. Magento uses Composer for downloading and installing external dependencies such as Symphony.

Reference:

The following are required for installing Magento 2:

 PHP Extensions

 PDO/MySQL

 Mbstring

 Mcrypt

 Mhash

 Simplexml

 Curl

 Gd2, IMageMagick 6.3.7+, or both

 SOAP

 Application Parameters

 Website

 Environmental Parameters

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 11

3.4 Modes in Magento 2

Notes:

Magento 2 has three primary modes – developer, production, and default.

There is also a maintenance mode, but that operates in a different way, only to prevent access to the system.

3. Preparation

12 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.5 Developer Mode in Magento 2

Notes:

You should use the Developer mode while you are developing the code for the application. The main benefit to this mode is that error
messages are visible to you. It should not be used once in production because of its impact on performance.

In Developer mode, static view files are not cached; instead, they are written to the Magento docroot every time they are called.

Uncaught exceptions are displayed in the browser, while exceptions are thrown in the error handler, rather than being logged. An
exception is thrown whenever an event subscriber cannot be invoked.

System logging in var/report is highly detailed in this mode.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 13

3.6 Production Mode in Magento 2

Notes:

You should run Magento in Production mode once it is deployed to a production server.

Production mode provides the highest performance in Magento 2.

The most important aspect of this mode is that errors are logged to the file system and are never displayed to the user.

In this mode, view files are not materialized; instead, URLs for the files are composed on-the-fly, without going through the fallback
mechanism.

The Magento docroot has read-only permissions.

3. Preparation

14 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.7 Default Mode in Magento 2

Notes:

As its name implies, Default mode is how the Magento software operates if no other mode is specified.

In this mode, errors are logged to file reports at the server, and are never shown to a user. Static file materialization is enabled.

Default mode is not optimized for a production environment, primarily because of the adverse performance impact of static files being
cached rather than materialized.

In other words, creating static files and caching them has a greater performance impact than generating them using the static file
creation tool.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 15

3.8 Production Mode in Magento 2

Notes:

Here is a summary of the key features that distinguish each mode.

3. Preparation

16 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.9 Production Mode in Magento 2

Notes:

Maintenance mode is used when you want to make the site unavailable to the public during updates or other changes.

The method Bootstrap::assertMaintenance() controls this mode, and you have to create a flag file (var/.maintenance.flag) to

enable the mode.

You can specify a group of people to have access to the site while this mode is employed by placing the associated IPs in the file
(var/.maintenance.ip).

Maintenance mode is an out-of-the-box feature in Magento 2.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 17

3.10 Specifying a Mode

Notes:

There are basically two ways in which you can set the mode for your system – using an environment variable, or using the web server
environment.

3. Preparation

18 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.11 Specify a Mode Using an Environment Variable

Notes:

Using environment variables allows you to set the mode for your Linux, Windows, Apple, or any other system. However, this approach
has disadvantages.

All the environment variables differ depending upon how they are set.

The commands used to specify environment variables will depend upon the system.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 19

3.12 Code Demonstration | Specify Mode using Env. Variable

Notes:

If you are using an Apache system, you can follow along with the demo (Apache for NJX will be a little different).

 Open Apache

 Open the .htaccess file

Hopefully, your Apache is configured to allow HTML files.

 Set environment Mage mode to "developer".

Let's test what happens in this mode by making a mistake in the code.

With developer mode enabled, you will see all error messages on the screen.

The error just created is visible on the screen. If the mode were instead "default", you would see an error number but not what
happened exactly. If you then went into the log file, you would see the actual errors in there. Of course, this may not be true for parse
errors or fatal errors, as these will always show you a message on the screen.

Maintenance mode works in a different manner. You don’t need to use mage mode variables - instead, you touch a file. I want to show
you how to touch the file maintenance flag in the bar folder. When maintenance mode is enabled, the screen will show the error
message, "503 Internal server error". If you disable the developer mode to default, this is also the message that you will see.

This is the purpose of maintenance mode - to show people error messages while still being able to work with the files. In this mode, you
can create a file, var/.maintenance.ip., where you put the IP to make the site available.

Currently, maintenance mode is a file that you have to create; most likely in the future it will be a button that will allow you to put your
site in maintenance mode.

3. Preparation

20 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.13 Specifying a Mode | Web Server Environment

Notes:

The other approach to setting mode is to set environment variables in the web server.

The most popular server type is probably Apache. In Apache, more environment variables are set; the .htaccess file is a good

example.

You can set up a mode using the construction links in Magento Default, Developer, or Production mode.

 3. Preparation

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 21

3.14 Specifying a Mode | php.fpm Environment

Notes:

For instructions on specifying the mode using the php-fpm system environment, please consult your OS documentation.

3. Preparation

22 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

3.15 Reinforcement Exercise (1.3.1)

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 23

4. Overview and Architecture

4.1 Magento 2 Overview and Architecture

Notes:

In this overview module, we will provide an introduction to Magento 2, focusing on its architecture and the key component of its modular
system, modules.

4. Overview and Architecture

24 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.2 Module Topics

Notes:

The topics to be addressed in this module are: an overview of the Magento 2 platform, an overview of its architecture, and a discussion
around modules and their role in Magento 2's system.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 25

4.3 Magento 2 Platform

Notes:

Magento 2 continues to provide the same flexibility and extensibility of Magento 1, while introducing structural changes that address
challenges around describing dependencies across the system (for easier upgrades), and around containing business logic within one
system layer. All modules are developed in PHP so they are related in a consistent way.

Magento 2's instantiation mechanism and code generation provides numerous ways to customize, such as through the use of plugins.

4. Overview and Architecture

26 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.4 Magento 2 Goals

Notes:

Built on a new and modern technology stack, Magento 2 integrates better with third-party solutions, and is more accessible and open to
frontend developers. With an improved implementation process, partners and merchants will realize faster deployments, simplified
upgrades, and faster time to value.

There were six key goals in designing and producing the Magento 2 platform:

 Streamline the customization process.

 Update the technology stack.

 Improve performance and scalability.

 Reduce upgrade efforts and costs.

 Simplify integrations.

 Provide high quality tested code, testing resources, and documentation (and increase engagement with the Magento community).

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 27

4.5 Magento 2 Architecture

Notes:

Magento 2, like Magento 1, is a modular system but to a much higher degree. Magento 2 assigns greater independence to the modules
– they function more as standalone units.

4. Overview and Architecture

28 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.6 High-Level Client Server Structural Map

Notes:

This structural map shows a standard client-server setup. A client sends a request to the web server or cloud, which then distributes the
request among one or more front nodes. This depends on the website setup of the customer.

 Note that often the database and frontend are located in separate servers.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 29

4.7 High-Level Application Map

Notes:

This diagram presents a very high level application map. You are probably already familiar with the Model-View-Controller (MVC)
concept. The model (or data layer) manipulates the data, the view layer renders the data, and the controller layer makes it all work
together.

CONTROLLER

Magento has its own version of the MVC structure with respect to controllers. Unlike Magento 1, where one controller could process
many requests, Magento 2 assigns a single controller to a single request. It is not possible to process multiple URLs in one file. The
controller layer is composed of 3 systems - the front controller, the routing system, and other controllers.

MODEL

The model is the part of the application that works with stored data. Magento 2 retains the resources model and collections that were in
Magento 1, while adding an additional system of repositories and services.

VIEW

Within Magento 2, the view system and layout remains conceptually the same as with Magento 1, but the organization of the layout,
templates, and blocks is different. Consequently, the approach for frontend development has changed dramatically.

4. Overview and Architecture

30 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.8 Modular System

Notes:

The Magento framework provides core business logic and functionality, base classes, resource models, and data access capabilities.
The fundamental concepts and rules for how the components of the website behave are defined within the Magento framework. The
framework provides core components with base functionality that can then be inherited by custom components for a specific website or
application.

The final behavior, look-and-feel, and capabilities of the website are determined by how the components are extended and customized.
Modules and themes are the units of customization in Magento -- modules for business features, and themes for the user experience
and look-and-feel. Both have a lifecycle allowing them to be installed, deleted, disabled, and so on.

The libraries contain reusable logic that acts as building blocks for modules and themes.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 31

4.9 Areas

Notes:

Area is a scope in configuration that allows you to load configuration files and options. Within Magento 2, there are areas for frontend,
admin and install, just as in Magento 1.

The purpose of areas within Magento is to increase efficiency by not requiring the loading of the entire configuration for every request.

For example, if you are invoking a REST web service, a corresponding area (such as /rest) loads code that answers only the REST call
and not the code that generates HTML pages using layouts.

Each area can have completely different code on how to process URLs and requests. Magento 2 processes a URL request by first
stripping off the base URL.

Typically, an area contains behavior and view components that operate separately. However, an area can have only one component --
for instance, the cron area, which has no view component. If your extension works in several areas, you should make sure it has
separate behavior and view components for each area.

4. Overview and Architecture

32 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.10 Libraries

Notes:

Libraries play a big role in configuration and file management. Magento 2 places a special focus on libraries - the library component is
much larger and better than in Magento 1. You can have the native implementation or substitute with your own implementation, which is
a different approach from Magento 1. Magento 2 also uses interfaces much more than Magento 1.

Magento is a unique application where owners can sell products, process orders, and receive payments. To provide this functionality,
Magento combines framework features like those in Symphony and Zend Framework with application features. This mix can sometimes
make the system difficult to work with.

Magento 2 separates the framework from the application, which helps to alleviate this issue. The framework code and remaining code
are stored in the code folder.

The most important library is Magento/Framework, located in lib/internal/Magento/Framework.

We will provide more detailed information about libraries later in the course, in Unit Three: Rendering.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 33

4.11 Language Packs

Notes:

Magento 2 allows you to present a user interface in multiple languages without having to modify the application source code.

By default, all labels and system messages are expressed in English in the source code, but they can be replaced with another
language when the code is by providing dictionary files that contain phrases from en_US translated into a different language. The
dictionary packages in other languages either ship with Magento out-of-the-box, or are provided by the community.

4. Overview and Architecture

34 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.12 Themes

Notes:

Magento 2 introduces significant changes to how Magento handles themes.

Theming now primarily focuses on creating CSS files and incorporating responsive design. Also, backend tasks and frontend tasks
have been separated. In this course, we will discuss the backend part of theming, which involves blocks, templates, and more.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 35

4.13 Modules: Definition

Notes:

In Magento 2, a module is still a folder as in Magento 1.

Modules have been made more granular and better organized, in terms of content and interactions among modules, in facilitate
scalability and performance. They are also smaller and more logical (for example, if you are looking for a checkout code, you only have
to look in checkout and nowhere else).

A module provides specific product features by implementing new functionality or extending the functionality of other modules. Each
module is designed to function independently, so the inclusion or exclusion of a particular module does not impact the functionality of
other modules. This maximizes flexibility when customizing a site.

While modules primarily define new business features, or customizations to existing ones, they can also define a default user interface
for those features, which are customizable by themes.

4. Overview and Architecture

36 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.14 Modules: Location

Notes:

Modules contain PHP and XML files that are related to a specific functionality.

Location example: the Customer module of Magento can be found at /app/code/Magento/Customer.

The location of these files will be covered in more detail in Unit Four: File Systems.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 37

4.15 Modules: Naming a Module

Notes:

To name a module, follow the Magento standards on naming convention and module location within a file system. Magento 2 uses the
same folder structure as with Magento 1, but the syntax is a little bit different.

Example: Naming Convention for Modules with Composite Names

To solve the difficulty of converting a module name with multiple capitalized first letters to a lowercase alias, Magento provides a class
containing a corresponding array of modules with composite names. This is then used to generate a class name.

Example: Module Location Conventions

Code Base of Custom Module <root>/app/code/<Vendor>/<Module>

Custom Theme Files <root>/app/design/<Module>/<theme>

Libraries ...<root>/lib/<Vendor_Library>

4. Overview and Architecture

38 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.16 Modules: Declaring a Module

Notes:

The module declaration - configuration system has changed in Magento 2. Now if you want to declare a new module, you have to do it
in the module.xml (not the app/etc folder, as with Magento 1).

Minimal declaration sample:

<config>
 <module name="Vendor_Module" schema_version="2.0.0">
 </module>
</config>

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 39

4.17 Modules: Module Dependencies

Notes:

The concept of dependencies, or using and being dependent upon another module’s features, is important in Magento. Dependency
usually means that a module is loaded after another module. You define your module in the module node, and then define which
modules depend on this module in the sequence node.

Modules can be dependent upon the following components:

 Other modules

 PHP extensions

 Libraries (either Magento Framework Library or third-party libraries)

 Best Practice: When using Magento's modularity, you can lose historical information contained in a module if it is removed or
disabled. We recommend storing such information before you remove or disable a module.

4. Overview and Architecture

40 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.18 Declare Dependency with Other Modules

Notes:

This code example from the core shows that Magento_CatalogInventory depends on Magento_Catalog.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 41

4.19 Module Dependencies Tasks

Notes:

If your app has external dependencies - for example, you need a 3rd party library for a module - you will need to use Composer.

A module’s dependencies (that is, all of the components upon which the module is dependent) are listed in the module’s
composer.json file.

The load order of any dependencies on a module is declared using the <sequence> element in the module.xml file.

You use the <sequence> node to define the load order for modules. If your module depends upon other Magento modules, you can

include that module in the <sequence>, so it will be loaded afterwards.

The <sequence> element is optional, and is used:

 Only when the order in which components are loaded /installed is important.

 Only for modules – no other component type is entered in the <sequence> section.

4. Overview and Architecture

42 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

4.20 Modules: Types of Module Dependencies

Notes:

Knowing the difference between hard and soft dependencies is important when you have to make configuration changes.

Hard Dependencies: The module cannot work if the module on which it is dependent is not installed. Examples of hard dependencies

include:

 The module contains code that directly uses logic from another module (instances, class constants, static methods, public class
properties, interfaces, and traits).

 The module contains strings that include class names, method names, class constants, class properties, interfaces, and traits from
another module.

 The module de-serializes an object declared in another module.

 The module uses or modifies the database tables used by another module.

Soft Dependencies: The module is able to function without the other module(s) on which it depends. Examples of soft dependencies

include:

 The module directly checks another module’s availability.

 The module extends another module’s configuration.

 The module extends another module’s layout.

 4. Overview and Architecture

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 43

4.21 Reinforcement Exercise (1.4.1)

Notes:

The purpose of the exercise is to learn how modules work. You will first create a module, and then break the code to see what happens
when it fails.

Next, you will create a second module and make it dependent on the first. You will test the dependency by disabling the first module
and seeing the effect this has on the second module.

5. File Systems

44 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

5. File Systems

5.1 File Systems

Notes:

Let's look at the Magento 2 file system.

 5. File Systems

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 45

5.2 Module Topics

Notes:

This module will discuss the file system structure within Magento 2 and where critical files are located.

5. File Systems

46 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

5.3 File System: Library

Notes:

There are 3 different levels of code in Magento 2: library; core; and business logic. Each of these levels is part of the same file system.

The Magento 2 file system requirements are not as strict as in Magento 1. All classes follow the same rules, the same customization,
and same principles. This means that in your module, you can create any folder you want and you will be able to access this class.

For example, in Magento 1, the core/app class and config.php were both under model - this happened because you had to declare

one type of class.

In Magento 2, you don’t need to declare anymore, it is all based on agreement. So, you can just decide you want a class and place it in
any folder you like. You will be able to access the module or class without any declaration.

 5. File Systems

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 47

5.4 Code Demonstration: File Systems

Notes:

Let’s look at the root folder, app/. The app folder is where you have code and design folders. As there are no longer any code pools,
the vendor name goes right after the app/code/<vendor> folder inside the list of modules.

Inside is the index.php file - the entry point for every HTTP request. The setup folder contains code for installing Magento.

/pub is a new folder introduced in Magento 2. It stands for "public access and production. The /pub folder becomes available in
Production mode.

The /lib folder is where the internal Magento library is stored, replacing the /lib Varian.

The /dev folder contains the tools.

Every module has an /etc folder, and the first letter of the controller is now capitalized "C". All files follow the same concept.

In Magento 2, you don’t have to declare the types of classes. You can create any folder you want and put any class in the folder. It is
much easier to work without declarations and it decreases the probability of making mistakes. For example, when using a controller or
creating a class, you may make small mistakes in the resource note or somewhere else and then nothing works. It can be a real
headache to find out where the mistake is.

5. File Systems

48 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

5.5 File System: Core Source Code

Notes:

Magento code is organized in the following way. There is a folder, app/code, which is where all the php code is located. The code is
packaged inside modules and modules belong to a vendor. In the native Magento installation, there is only one vendor - Magento.
When you create custom code, you can create additional vendors. So, the folder structure is app/code/<vendor>, and inside this

folder is the list of modules.

 5. File Systems

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 49

5.6 File System: Module Structure

Notes:

The diagram shows possible subfolders of a module folder. It is not as strict as in Magento 1, so a module might have any subfolder.
The most popular are:

 Model: Where models and resource models are located

 Controller: For controllers

 Block: For blocks

 Helper: For helpers

 View: For layout xml files and templates.

 Sql: For upgrade scripts.

5. File Systems

50 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

5.7 File System: Templates

Notes:

As we mentioned, modules are located in the app/code folder. All the native modules are located in the app/code/Magento folder.

In Magento 1, all templates were located in the design folder, separated from the php code, and grouped by themes and packages.
In Magento 2, all templates and layout *.xml files are located in the view folder. This makes modules more granular, as all associated
files are packaged within one folder.

In Magento 1, templates were separated from the php code, so it was difficult to package. Now, in Magento 2, the two can be packaged
together.

 5. File Systems

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 51

5.8 File System: Templates

Notes:

Within the view folder are some folders that are frontend and adminhtml based. They represent areas with folders such as templates,
layouts, and web. Template folders contain the phtml files, layout folders contain layout files, and web folders contain files that should
be available in the web-like CSS and JavaScript.

From one point of view, this is a good thing because everything is in one module. We can package it all in one folder for distribution,
making it very convenient.

However, we are no longer able to provide access from the server to our module to search for files, which can be an issue. The only
folder that is visible from the web is “pub”, but modules are located in another folder “app”. So, if there is a file that has to be accessible

through the web (like a css or image file), this can’t be done easily because the file’s location is restricted.

Magento provides a special mechanism for accessing them in dev mode, and special mechanisms to copy static files into the /pub

folder for production mode.

5. File Systems

52 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

5.9 Code Demonstration: Templates

Notes:

Catalog View Example:

To customize the catalog view template, you need to create a new view folder in your module, and then physically set this template to
the corresponding block (for example, using layout). This will be covered in more detail in the Rendering unit (unit three).

 5. File Systems

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 53

5.10 File System: Skin to Theme

Notes:

Magento 2 introduces a new concept for the platform, themes, which contain not only the "skins" that were a part of Magento 1, but also
templates and layout files. Themes can be thought of as a superset of Magento 1's Skins concept.

Themes in Magento 2 are specific to the look of the site, and no longer include templates. Themes inherit each other infinitely. You
don’t have to register a theme to use it. You create a new theme using xml (theme.xml). Theme folder might contain

<Vendor>_<Module> folders (ex: Magento_Cms), which in turn can contain module-specific files.

For example, in luma.xml, you can see a parent and multiple levels of inheritance.

Magento 2 houses all the design elements in one folder located in the folder app/design.

6. Configuration

54 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6. Configuration

6.1 Configuration

Notes:

We now move on to discuss Magento 2 configuration.

Magento 2 has made substantial changes to how configuration was handled in Magento 1. Now, files are split by function and meaning,
so you are left with a number of XML files composed of different file types.

For example, there is a module.xml for modules, a config.xml for generic settings like system level settings, an event.xml for

events, and so on. These are smaller XML files, and each file is functional and follows a very strict syntax. This allows validation by
XSD, which is helpful to developers when debugging XML files.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 55

6.2 Module Topics

Notes:

Within this module, we will address a number of key topics:

 Configuration files

 Error reporting settings

6. Configuration

56 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.3 Configuration Files

Notes:

In the Magento system, configuration files are simple to use, easy to troubleshoot, and validated automatically. Predefined configuration
files include:

config.php:

 Contains database connection information

 Contains declaration of all modules

config.xml:

 Contains the configurations specified in the Stores > Configuration menu in the Admin panel for the default, website, and store
scopes of your Magento instance.

 This menu is itself configured by the system.xml file, which declares the configuration keys for application configuration and defines
how they are displayed in Stores > Configuration.

di.xml: Contains the configurations for dependency injection.

events.xml: Lists observers and the events to which they are subscribed.

routes.xml: Lists the routes and routers.

Magento loads different files and different areas separately. It will not load HTML on the frontend. It has different loaders for each file
type, and does not use on demand loading.

 A complete list of configuration files can be found in the "Configuration Changes from Magento 1.x to 2.x" documentation.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 57

6.4 Configuration Files: Storage

Notes:

In Magento 2, there are two main ways to store configuration: in a database (for merchants) and in xml files (for developers).

Storing the configuration in a database (core_config_data) allows a merchant to be able to change it through a generic interface.

Therefore, database-level configuration options are usually ones that a merchant can understand and change.

xml file-level configuration options are usually more technical and should be changed by a developer.
The names of xml files generally make their function obvious, such as widget.xml, events.xml, routes.xml. Magento 2 has added some
important new xml files as well - module.xml and di.xml.

6. Configuration

58 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.5 Configuration Files: core_config_data

Notes:

This diagram displays a core_config_data table structure, which feeds data into the interface a merchant uses to make changes to

the site.

core_config_data is the same as in Magento 1. It includes scope and scope_id fields.

Scope can be global, website or store. For a website, Scope_id is treated as website_id; for a store, as store_id; for global, it is not

applicable.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 59

core_config_data interface (Slide Layer)

6. Configuration

60 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.6 Configuration Files: Custom Config Files

Notes:

If you need custom options for a module, you have to create a new .xml and .xsd file.
Example: Magento/Catalog/etc/
 product_types.xml and product_types.xsd

Module-specific configuration
 <?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../Catalog/etc/product_types.xsd">
 <type name="simple" label="Simple Product" modelInstance=
 "Magento\Catalog\Model\Product\Type\Simple" indexPriority="10" sortOrder="10">
 <customAttributes>
 <attribute name="refundable" value="true"/>
 </customAttributes>
 </type>
 <type name="virtual" label="Virtual Product" modelInstance=
 "Magento\Catalog\Model\Product\Type\Virtual" indexPriority="20" sortOrder="40">
 <customAttributes>
 <attribute name="is_real_product" value="false"/>
 <attribute name="refundable" value="false"/>
 </customAttributes>
 </type>
 <composableTypes>
 <type name="simple" />
 <type name="virtual" />
 </composableTypes>
</config>

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 61

6.7 Configuration Files: Scope

Notes:

Within the Magento 2 xml configuration files, there are three scopes: global, frontend, and admin. Some configuration options are
"scopable", others not. For example, an event can be either global or frontend or admin.

Everything defined in the <default> node overrides data from core_config_data.

Magento 2 provides corresponding folders for scope - a folder for frontend, and a folder for adminhtml. This means that a file like
events.xml might appear in more than one folder. This separation into folders with Magento 2 is an advance over Magento 1, as now
the system will load only the event needed. For frontend files, it will not go to the adminhtml folder, and vice versa. If you need files from
both, they will be loaded and merged together.

 Note that some configuration options work only on the backend (admin), some on the frontend (frontend), and some on both
(global).

6. Configuration

62 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.8 Configuration Files: Load Order

Notes:

There are three steps in loading configuration files:

1. Primary, system-level files: These are files required for the application to start and installation-specific configuration (ex:
config.php)

2. Secondary, global files: The global di.xml file (app/etc/di.xml) is loaded first, followed by the di.xml file from every module,

along with other module configuration files (like event.xml).

3. Tertiary, area-specific files: These are configuration files for other specific areas, like routes.xml.

Some config files can be loaded at more than one stage -- for example, di.xml can be loaded at any of the stages; config.xml can be
loaded as a primary or global file.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 63

6.9 Configuration Files: Merging

Notes:

Let’s talk about the merging of configuration files. In Magento, nodes are merged based on their XPaths and then identifier attributes.

The assigned identifier must be unique for all nodes nested under the same parent node; otherwise, an error occurs.

6. Configuration

64 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.10 Configuration Files: Validation

Notes:

Magento 2 uses schemas to make validation of configuration files faster and easier. The validation process differs significantly between
Magento 2 and Magento 1. In Magento 2, in addition to every *.xml file, there is an *.xsd file that helps validate against a schema. The

*.xsd files are located in the subfolders of lib/internal/Magento/Framework and other directory branches.

Example: Events are declared within the events.xml file, and then the configuration type is validated in the events.xsd file. The

events.xsd file is located at: lib/internal/Magento/Framework/Event/etc/events.xsd

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 65

6.11 Magento\Config

Notes:

Magento\Config processes the loading, merging, validation, and processing of the configurations. You can change the standard

loading procedure by providing your own implementation of its interfaces. Magento\Config should be used to introduce a new
configuration type.

Magento\Config provides the following interfaces for extension developers to manage configuration files:

 \Magento\Config\DataInterface retrieves the configuration data within a scope.

 \Magento\Config\ScopeInterface identifies current application scope and provides information about the scope's data.

 \Magento\Config\FileResolverInterface identifies the set of files to be read by \Magento\Config\ReaderInterface.

 \Magento\Config\ReaderInterface reads the configuration data from storage and selects the storage from which it reads.

The file system, database, and other storage merge configuration files according to the merging rules, and then validate the
configuration files with the validation schema.

6. Configuration

66 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.12 Magento\Config - Loading Infrastructure

Notes:

A list of the files used to load an xml configuration.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 67

6.13 Code Demonstration: events.xml

6. Configuration

68 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.14 Validating a Configuration Type

Notes:

In Magento, there are two possible schemas for validating configuration xml before and after merging config files. It could be the same
schema, or two different schemas.

If you must use two xsd files for a single xml file, the names of the schemas should be recognizable and associated with the xml file.

To ensure validation of an xml file by an appropriate xsd file, you must specify the relative path to the xsd file in the xml file.

IDEs can validate your configuration files during development.

For example:

<config
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../../../../lib/Magento/ObjectManager/etc/
config.xsd">

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 69

6.15 Check Your Understanding

6. Configuration

70 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

6.16 Check Your Understanding

The loader and schema already exist. The new .xml file will be merged with the other existing ones. The new .xml file you
create will be automatically merged with the other .xml files.

 6. Configuration

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 71

6.17 Error Reporting Settings

Notes:

Error reporting settings in Magento 2 are similar to Magento 1. Magento 2 uses the strongest level of error reporting so that even a PHP
notice will cause an exception.

 Note that the way errors look is determined by the mode. In Developer mode, errors will be displayed, allowing you to see the
exceptions and refine your code. In other modes, there will only be a message that an error has occurred but the error itself will be
recorded into the log file.

7. DI & Object Manager

72 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7. DI & Object Manager

7.1 DI & Object Manager

Notes:

We will now discuss the important topic of dependency injection, and its relation to Magento's object manager.

Dependency injection is a complex topic, and may be new to you. Do not worry if you do not immediately absorb all the concepts
presented in this module.

We will use dependency injection throughout the course, in many of your exercises, and each time you work with the concept, you will
build your knowledge and confidence.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 73

7.2 Module Topics

Notes:

Within this module, we will address a number of key topics:

 Dependency injection

 Objects & object manager

 Cache settings

7. DI & Object Manager

74 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.3 Dependency Injection (DI) Pattern

Notes:

Dependency injection means how you will get the objects. It creates parameters for the objects that you define on your constructor.
How does it work?

You define your class and your class defines your constructor with the object that you need.

The dependency injection system is basically an object manager and the factory will create it for you, and everything is based on the
configuration that we have seen before.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 75

7.4 Dependency Injection

Notes:

Dependency injection is configuration-based, validated by config.xsd.

Magento 2 uses dependency injection as an alternative to the Magento 1.x Mage class.

Assume you need a storeManager class in your Product class. You can declare StoreManagerInterface in the constructor of a product.

Now, using di.xml you have to define which class will be substituted for that interface. For that, you have two options:

 Define a preference and it will work globally (which means every other class that declares StoreManagerInterface will receive what
you defined in preference).

 In your di.xml, assign a class for this particular object (Product), and it won’t be global, just for Product.

7. DI & Object Manager

76 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.5 Using Dependency Injection

Notes:

Constructor Injection

Constructor injection must be used for all optional and required service dependencies of an object. Service dependencies fulfill
business functions of your object. Proxies must be used for expensive optional dependencies.

Method Injection

Method injection must be used for API parameters (the API objects that your object acts on).

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 77

Constructor Injection Example:

<?php
class Foo
{
 protected $_bar;

 public function __construct(Bar $bar)
 {
 $this->_bar = $bar;
 }

 public function execute()
 {
 //some code
 $this->_bar->execute();
 //some code
 }
}
$bar = new Bar();
$foo = new Foo($bar);
$foo->execute();

7. DI & Object Manager

78 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

Method Injection Example:

<?php
namespace Magento\Backend\Model\Menu;
class Builder
{
 /**
 * @param \Magento\Backend\Model\Menu\Item\Factory $menuItemFactory
 * @param \Magento\Backend\Model\Menu $menu
 */
 public function __construct(
 Magento\Backend\Model\Menu\Item\Factory $menuItemFactory,
 // Service dependency
 Magento\Backend\Model\Menu $menu // Service dependency
) {
 $this->_itemFactory = $menuItemFactory;
 $this->_menu = $menu;
 }
public function processCommand(\Magento\Backend\Model\Menu\Builder\CommandAbstract $command)
 // API param
 {
 if (!isset($this->_commands[$command->getId()])) {
 $this->_commands[$command->getId()] = $command;
 } else {
 $this->_commands[$command->getId()]->chain($command);
 }
 return $this;
 }

 }

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 79

7.6 Dependency Injection Object Manager Classes

Notes:

The following object manager classes are located under Magento\Framework:

 ObjectManagerInterface, which provides an interface.

 ObjectManager\ObjectManager and App\ObjectManager, which both provide an implementation.

 ObjectManagerFactory, a class that creates object manager.

 App\ObjectManager\Factory\Dynamic\Developer and App\ObjectManager\Factory\Dynamic\Production,

 two factories used by object manager to create an instance of a class.

7. DI & Object Manager

80 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.7 Dependency Injection | Creating Objects

Notes:

The class, Magento\Framework\ObjectManager\Factory, and the method, create(), are used in creating objects.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 81

7.8 Object Manager

Notes:

Now let’s talk about how Magento 2 instantiates objects. This involves a discussion of object management, dependence injection, and
plugins, as they are all part of the same system. This is the biggest change in Magento 2, and resolves some of the issues encountered
with instantiation of parameters. The new approach makes it much easier to make customizations.

In Magento 2, the object manager has replaced the Mage class. Object manager is the class that creates all objects and is responsible

for instantiation. Generally, the creation of an object is one of the biggest problems in software development.

In Magento 1, instantiation was more or less centralized, and most of the classes were created through the config file. There are four
generic patterns within Magento for working with objects: Abstract Factory, Factory method, Singleton and Builder. Each one applies in
a different situation and all four of them are implemented in Magento 1. For all singletons, you can create another instance of that
singleton. In Magento 1, it was registry - so Magento 1 created a class and put it in the registry. If you requested singletons, then it
would go to the registry and retrieve them.

In Magento 2, the object manager class has two methods - GET and CREATE.GET will return a singleton object (shared instance) from

the protected registry while CREATE will create a new instance. This is an important difference. In Magento 1, the class Mage was a

static class and it was included at the beginning of the request flow, so you always had access. Now, it is no longer a Mage Class nor

static. Generally, you won't call object manager. Instead, you will create the objects in another way. We will look at this a little later in
the module.

Object Manager is concerned with a class's parameters and arguments.

 Arguments are injected into a class instance during its creation.

 Parameter names must correspond to constructor parameters of the configured class.

7. DI & Object Manager

82 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.9 Object Manager: Shared Instances Concept

Notes:

If you declare your instances to be shared then it means they will act as singletons. Shared instances can still be modified but it
becomes more difficult with Magento 2.

get() method:

public function get($type)
 {
 $type = $this->_config->getPreference($type);
 if (!isset($this->_sharedInstances[$type])) {
 $this->_sharedInstances[$type] =
 $this->_factory->create($type);
 }
 return $this->_sharedInstances[$type];
 }

create() method:
public function create($type, array $arguments = array())
 {
 return $this->_factory->create($this->
 _config->getPreference($type), $arguments);
 }

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 83

7.10 Object Manager Configuration

Notes:

Magento 2 provides a new approach on how to work with objects. It not only encourages you to call object manager, but it also creates
an object for you. You no longer register classes as with Magento 1 - there are no factory names as, for example, catalog/product.

Now, you need to use the full class name when you call a class.

The creation of objects is such an important process that Magento 2 handles it automatically, via the object manager and class
dependencies. Object manager creates the objects you need injected into your classes. It will also create arguments for your objects.

With Magento 2, a developer declares an interface in the constructor, and object manager automatically creates objects for it, so you
don’t have to call it directly. So, you create a class and you might require an interface in this class as a parameter in a constructor. You
may not know what object you are getting because it is programmed according to the interface, without class definition. You use
preferences to define what class will implement the interface.

This is a very modern approach, thinking in terms of interfaces and not implementations. You can create a customization that will make
Magento return something as an implementation using your classes and not the native classes.

To view the interface preferences for the object manager, use the following files (depending on the level):

 app/etc/di.xml

 <core module dir>/etc/<areaname>/di.xml

 <core module dir>/etc/di.xml

To define your own preferences, you need to define your own di.xml:

 <your module dir>/etc/<areaname>/di.xml

 <your module dir>/etc/di.xml

7. DI & Object Manager

84 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

Constructor Method Signature Example:
public function __construct(
 \Magento\Framework\Model\Context $context,
 \Magento\Framework\Registry $registry,
 \Magento\Framework\Api\ExtensionAttributesFactory $extensionFactory,
 AttributeValueFactory $customAttributeFactory,
 \Magento\Store\Model\StoreManagerInterface $storeManager,
 \Magento\Catalog\Api\ProductAttributeRepositoryInterface $metadataService,
 Product\Url $url,
 Product\Link $productLink,
 \Magento\Catalog\Model\Product\Configuration\Item\OptionFactory $itemOptionFactory,
 \Magento\CatalogInventory\Api\Data\StockItemInterfaceFactory $stockItemFactory,
 \Magento\Catalog\Model\Product\Option $catalogProductOption,
 \Magento\Catalog\Model\Product\Visibility $catalogProductVisibility,
 \Magento\Catalog\Model\Product\Attribute\Source\Status $catalogProductStatus,
 \Magento\Catalog\Model\Product\Media\Config $catalogProductMediaConfig,
 Product\Type $catalogProductType,
 \Magento\Framework\Module\Manager $moduleManager,
 \Magento\Catalog\Helper\Product $catalogProduct,
 Resource\Product $resource,
 Resource\Product\Collection $resourceCollection,
 \Magento\Framework\Data\CollectionFactory $collectionFactory,
 \Magento\Framework\Filesystem $filesystem,
 \Magento\Indexer\Model\IndexerRegistry $indexerRegistry,
 \Magento\Catalog\Model\Indexer\Product\Flat\Processor $productFlatIndexerProcessor,
 \Magento\Catalog\Model\Indexer\Product\Price\Processor $productPriceIndexerProcessor,
 \Magento\Catalog\Model\Indexer\Product\Eav\Processor $productEavIndexerProcessor,
 CategoryRepositoryInterface $categoryRepository,
 Product\Image\CacheFactory $imageCacheFactory,
 \Magento\Framework\Api\DataObjectHelper $dataObjectHelper,
 array $data = []
) {
 $this->metadataService = $metadataService;
 $this->_itemOptionFactory = $itemOptionFactory;
 $this->_stockItemFactory = $stockItemFactory;
 $this->_optionInstance = $catalogProductOption;
 $this->_catalogProductVisibility = $catalogProductVisibility;
 $this->_catalogProductStatus = $catalogProductStatus;
 $this->_catalogProductMediaConfig = $catalogProductMediaConfig;
 $this->_catalogProductType = $catalogProductType;
 $this->moduleManager = $moduleManager;
 $this->_catalogProduct = $catalogProduct;
 $this->_collectionFactory = $collectionFactory;
 $this->_urlModel = $url;
 $this->_linkInstance = $productLink;
 $this->_filesystem = $filesystem;
 $this->indexerRegistry = $indexerRegistry;
 $this->_productFlatIndexerProcessor = $productFlatIndexerProcessor;
 $this->_productPriceIndexerProcessor = $productPriceIndexerProcessor;
 $this->_productEavIndexerProcessor = $productEavIndexerProcessor;
 $this->categoryRepository = $categoryRepository;
 $this->imageCacheFactory = $imageCacheFactory;
 $this->dataObjectHelper = $dataObjectHelper;
 parent::__construct(
 $context,
 $registry,
 $extensionFactory,
 $customAttributeFactory,
 $storeManager,
 $resource,
 $resourceCollection,
 $data
);
 }

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 85

7.11 Object Manager Configuration: Preferences Example

Notes:

You can define preferences for interfaces, classes, and so on. Preferences define which classes will be instantiated for an interface in a
constructor method. They are configured by the preference node.

Example: Magento\Catalog\Api\Data\ProductInterface

If you require this interface in your code, you will get an instance of this class because of this configuration. This configuration is located
in the di.xml. The global di.xml (app\etc\di.xml) defines preferences for key Magento classes.

In your code, you can request the http\response interface. You will not request objects but rather interfaces.

The global file di.xml contains preferences for key interfaces. You will look into this file periodically to check for preferences.

7. DI & Object Manager

86 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.12 Object Manager Configuration: Argument Example

Notes:

There are different types of arguments. In this example, you can see several types: string, array and object. DI allows you to define
which objects should come as an argument when a new instance is created.

So, we have a system where something is required (ex: an object or interface) in the parameters, without calling the object manager,
and Magento delivers the object that implements that interface.

The question is what it will deliver? If a product interface is required, what implementation of that product interface will be delivered?
The implementation may not seem to make sense in some cases - for example, when you need specific products with specific data, but
you require a product object that may not be the exact object that you need.

How does Magento know what product I require? Some objects are not injectable. It is not a hard but rather soft separation. The system
allows you to get the objects you want but for some objects, it does not make sense to have them generated by dependency injection.

You will have to get those by object manager, load and so on.

Another issue occurs when we want an object in a particular class. Object manager will create the object, but it also contains a
constructor, which might have a huge system of dependencies that Magento has to handle. It is like a recursive system, with
requirements, arguments, and so on.

Not only can you define preferences for interfaces, as shown earlier - you can also describe arguments you want included in your
object. For example, the code on the slide shows an sample class that has an argument.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 87

7.13 Code Demonstration: Object Manager Argument Example

Notes:

Let's look at a code example, the class, Magento\Catalog\Helper\Product. This is what the constructor looks like. You can see that

it requires many different classes and interfaces. It will get instances of this interface according to the preferences from di.xml.

The code states that for the argument typeSwitcherLabel, put Virtual. Therefore, when somebody creates a class of

Catalog\Helper\Product in its constructor, it will generate classes according to the preferences and will put Virtual as a value for

the typeSwitcherLabel parameter. This is a very important mechanism because it allows you to customize.

 Note that you can perform the same action in your module, which then redefines di.xml. You might open a class and see

argument values that come from ‘nowhere’. To identify where they actually come from, you will have to find the right di.xml and
explore it. It might be that di.xml files from multiple modules are involved. You have to know where the values come from and you
have to know the di.xml configuration. This is a very popular customization approach in Magento 2.

As another example, say one class has an array of routers as a parameter. Where does the array of routers come from? They come
from configuration files that affect the parameters that are in that class and that add something to that array. This is the new way of
customization. Arguments of some objects in your di.xml help you find what you want to add to that array.

In Magento 1, a router works by creating an event and then an observer. Different modules can add items to the array of parameters
and objects, and you create Mage::getModel()->setSomething(). This is in contrast to Magento 2, where arguments can be passed

based on configuration in di.xml.

7. DI & Object Manager

88 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.14 Object Manager Configuration: Shared Argument Example

Notes:

A shared object is an analog of a singleton.

You may encounter situations where you have an indexer in a class, and you want that object in a new session every time. In some
cases, you will need a new object, as it will not be shared. Share here refers to the parameter of an argument, which is false. It defines
whether it is a singleton or not. Basically, such an approach raises new theoretical problems.

For example, it makes sense in such cases to inject. In Magento 1 classes instantiate each other directly whenever an instance is
required. In Magento 2, this is no longer the case. Instead, all dependencies are defined in constructors as arguments. When there are
2000 lines of code, you don’t know what will happen so instead of quoting directly for classes you have to do it the constructor.

This might create a few issues, however. For example, it makes sense to inject a system into a session’s request, but it doesn’t make
sense to inject objects such as products, or to inject everything, as it raises the issue of dependency management.

Example:

A product controller and a Magento method create a list of products in object manager. There are situations where you have a class
and the class has a constructor. You extend the class and need new objects. So should you extend the constructor? This is not always
appropriate, and will not always work. In these cases, you will need to use object manager. If you extend classes that already have a
constructor, you won’t want to change the signature in a new object.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 89

7.15 Object Manager Configuration

Notes:

* Area-specific means specific to a module's area (example: frontend).

An area configuration overrides the global configuration.

The area-specific di.xml file is located in modulename/etc/frontend/di.xml or modulename/etc/adminhtml/di.xml.

7. DI & Object Manager

90 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.16 Object Manager Initiation Process

Notes:

The object manager factory creates object manager, not objects. If you look at the bootstrap, you will see that the factory creates an

object manager. In turn, then, the object manager then creates a factory, which creates an object.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 91

7.17 Objects: Injectable and Non-injectable

Notes:

We have briefly discussed injectables and non-injectables earlier.

Examples:

 Database objects are not injectable.

 System objects like singletons (shared instances) are injectable.

7. DI & Object Manager

92 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.18 Objects: Injectable and Non-injectable Rules

Notes:

Only injectables can request other injectables in a constructor.

For an injectable object to produce a non-injectable object, it requires a factory in its constructor.

For an injectable object to perform actions on a non-injectable object, it has to receive the non-injectable object as a method argument.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 93

7.19 Objects: Injectable and Non-injectable Rules 2

Notes:

You can create non-injectables in services with object factories or pass them in as method parameters.

Do not push injectables to non-injectables because it requires additional lookup during object unserialization.

7. DI & Object Manager

94 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.20 Class Definition and Definition Compiler Tool

Notes:

Magento uses class constructor signatures to retrieve information about class dependencies, and define what dependencies to pass to
an object.

The parameters specified for a class type are inherited by its descendant classes.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 95

7.21 Class Definition andRunning the Definition Compiler Tool

Notes:

Running the compiler tool generates the following files and directories:

 <your Magento install dir>/var/generation directory, which contains all generated classes by Magento and modules. Code generation
is used to create service classes (proxies, interceptors, factories, and builders).

 <your Magento install dir>/var/di directory, which contains the following:

 Definitions.php for compiled definitions

 Plugins.php for declared public methods in plugin definitions

 Relations.php for class inheritance implementation relations

These php files are used by Magento\Framework\ObjectManager\Definition\Compiled. If you don’t run the compiler tool and if the

preceding php files do not exist, the slower Magento\Framework\ObjectManager\Definition\Runtime is used instead.

More information about the Compiler Tool can be found
at:<https://wiki.magento.com/display/MAGE2DOC/Using+Dependency+Injection#CompilerTool>

7. DI & Object Manager

96 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.22 Definition Compiler Tool Best Practice

Notes:

The definition compiler tool does not analyze auto-generated factory classes in files that are located in the <your Magento install
dir>lib/internal/Magento directory. Do not use auto-generated factory classes at the library level - these classes must be created
manually.

 Best Practice:

Use the slower runtime object during development, and then the compiled code in production.

The definition compiler tool will go to all classes to read all the definitions and compile them together, and then the object manager will
create an instance. It will not do reflection - it will just read the definitions.

This is much faster for production because it is all pre-compiled. It does not work well in development mode, because it is time
consuming, having to go to thousands of classes and read every constructor.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 97

7.23 Cache in Magento 2

Notes:

Caching in Magento 2 is similar to Magento 1. In Magento 2, you use the Magento\Cache library component.

7. DI & Object Manager

98 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.24 Cache Configuration

Notes:

Configuring the cache involves setting up the cache frontend and cache backend. Therefore, you will need to specify the cache
frontend configuration, attach the cache types to the cache frontend, and set up the cache backend for the cache frontend.
Magento 2 uses the cache frontend for all caching operations. Use the di.xml file of a module to make the settings for the cache
frontend. These settings should contain a unique identifier, so the cache frontend can be easily retrieved from the pool.

The custom settings will override the default settings for the parts of the application that use the corresponding cache frontend. If
needed, you can avoid saving the new cache into storage using the Magento\Cache\Core class.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 99

7.25 Cache Type

Notes:

Interception is an approach used to reduce conflicts among extensions by changing the behavior of the same class or method.

An interceptor is technically a new generated class, which will call every plugin as well as the original method.

Interception Example:

<?php
namespace Magento\Catalog\Model\Product\Type;
/**
 * Interceptor class for @see \Magento\Catalog\Model\Product\Type
 */
class Interceptor extends \Magento\Catalog\Model\Product\Type

Magento 2 includes code generation. Let's look at the process of creating a plugin for a client, as an example. When someone requires
a class, it will not get the class instance but an interceptor of the class, a generated class. This class will include your plugin, either at
the beginning or the end. If you put it in the middle it will execute the original class.

7. DI & Object Manager

100 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

7.26 Cache Cleaning

Notes:

Cache cleaning in Magento 2 is similar to Magento 1. There are two options for cleaning: using set admin functionality, or by manually
removing files.

It is preferable to clean cache via the backend because it thoroughly cleans the cache.

The second option is to manually remove the cache files individually. The second option is much easier and faster in developer mode.

 7. DI & Object Manager

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 101

7.27 Reinforcement Exercise (1.7.1)

Notes:

8. Plugins

102 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8. Plugins

8.1 Plugins

Notes:

This module discusses how best to use one of the powerful new features within Magento 2, plugins.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 103

8.2 Module Topics

Notes:

The topics covered within this module are plugins and configuration inheritance.

8. Plugins

104 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.3 Plugins: Definition

Notes:

Plugins together with DI change the developer experience. The purpose is to make Magento customization simpler, and to decrease
the probability of conflict.

Plugins are used to extend (change) the behavior of any native method within a Magento class. Native methods refer to those Magento
class methods included with a native installation. The behavior of native methods can be changed by creating an extension. Extensions
use the Plugin class to change the behavior of the methods. Plugins change the behavior of the original class, but not the class itself.

You cannot use plugins for final methods, final classes, and classes created without dependency injection. To ensure that plugins work
correctly, you must follow declaration and naming rules.

 Note: Plugins allow you to modify a single method, while a preference allows you to change a whole class.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 105

8.4 Plugins: Definition

Notes:

In Magento 1, there are two major ways to customize: events and rewrites. Events are good but you may not find them in the places
you want every time, and if there are too many events, you may end up with one event triggering another and another. Rewrites is a
powerful approach but it requires a solid understanding of what you are doing and how to fix possible issues.

In Magento 2, customizations are accomplished through: preferences, which allow you to rewrite a class and work on the whole class
level; dependency injection; and plugins, which allow you to customize a method. This method is basically rewrites and events at the
class level.

You can begin your plugin after a method to modify its result. With each plugin, you can put an observer before or after the method
ends. Plugins do not conflict with each other because they are executed one after another.

8. Plugins

106 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.5 Plugins: Interception

Notes:

In Magento 1, there were different cache types, cache groups, configuration caches, and so on. In Magento 2, there are even more
cache types - for example, the definition of caches.

To create a new cache type:
<?php

class %Vendor%_%Module%_Model_Cache_Type extends \Magento\Cache\Frontend\Decorator\TagScope
 {
 public function __construct(\Magento\App\Cache\Type\FrontendPool
 $cacheFrontendPool)
 {
 parent::__construct($cacheFrontendPool->get('%cache_type_id%'),
 '%cache_type_tag%');
 }
}

You must specify the following parameters:

 Vendor_Module defines the name of a module that uses a cache type. A module can use several cache types, and a cache type can
be used in several modules.

 %cache_type_id% defines a unique identifier for cache type.

 %cache_type_tag% defines a unique tag to be used in cache-type scoping.

You must then configure the grid on the Cache Management page, or using the programming interface at runtime.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 107

8.6 Declaring a Plugin

Notes:

You must specify the following elements when declaring a plugin:

 Type name: A class, interface, or virtual type that the plugin observes.

 Plugin name: An arbitrary name that identifies the plugin; used to merge the configurations for the plugin.

 Plugin type: The name of a plugin class or its virtual type; uses the naming convention <ModelName>\Plugin.

 Plugin sort order: The order in which plugins that call the same method are run.

 Plugin disabled: Set to true to disable a plugin.

Here is an example of a plugin. The syntax is very simple. The way it works: you define a plugin - you create a class within another
class, then inside that class you can define which methods write the plugin.

8. Plugins

108 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.7 Before-Listener Method

Notes:

If you need to change the arguments of an original method, or add some behavior before the method is called, you should use the

before-listener method.

A code example is presented on the slide.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 109

8.8 After-Listener Method

Notes:

If you need to change the values returned by an original method, or add some behavior after an original method is called, you should

use the after-listener method.

A code example is presented on the slide.

8. Plugins

110 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.9 Around-Listener Method

Notes:

If you need to change both the arguments and returned values of an original method, or add some behavior before or after the method

is called, you should use the around-listener method.

The around-listener method will receive two parameters ($subject and $proceed) followed by the arguments belonging to an original
method:

 $subject parameter will provide an access to all public methods of the original class.

 $proceed parameter will call the next plugin or method.

Any further method arguments will be passed to the around plugin methods after the $subject and the $proceed arguments. They

have to be passed on to the next plugin method when calling $proceed().

A code example is presented on the slide.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 111

8.10 Prioritizing Plugins

Notes:

Use one or more of the following methods to extend/modify an original method's behavior with the interception functionality:

 Change the arguments of an original method through the before-listener.

 Change the values returned by an original method through the after-listener.

 Change both the arguments and returned values of an original method through the around-listener.

 Override an original method (a conflicting change).

 Note: Overriding a class is a conflicting change. Extending a class's behavior is a non-conflicting change.

If several plugins apply to the same original method, the following sequence is observed:

1. The before listener in a plugin with the highest priority - that is, with the smallest value of sortOrderargument().

2. The around listener in a plugin with the highest priority - that is, with the smallest value of sortOrderargument().

3. Other before listeners in plugins according to sort order specified for them - that is, from the smallest to the greatest value().

4. Other around listeners in plugins according to the sort order specified for them - that is, from the smallest to the greatest value.

5. The after listener in a plugin with the lowest priority - that is, with the greatest value of sortOrderargument().

6. Other after listeners in plugins, in the reverse sort order specified for them - that is, from the greatest to the smallest value

8. Plugins

112 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.11 Configuration Inheritance

Notes:

Because of configuration inheritance, we can create a module, make it dependent from the core module (using the <sequence> node in

the module.xml) and redefine preference for a certain interface.

In this case, our preference will be taken into account, which will have a similar effect as a rewrite in Magento 1.

For another option, we can redefine the argument declaration in the di.xml (in the same way as with a preference), which adds more

flexibility into customizations.

 8. Plugins

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 113

8.12 Code Demonstration: Plugin

Notes:

Here is an example of a plugin. You see is it just a class, not extending anything, which means it doesn’t have access to its protected
variables.

The after-plugin will have as a parameter the original object and result. So you can modify the result, So that whatever you return here
will be a new result.

The around plugin here, takes all parameter that the original plugin takes.

You can see here in the interceptor.php the call for the before plugin to be executed, then it checks Around plugin, or executes the
original method,depending on what is found.

8. Plugins

114 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

8.13 Reinforcement Exercise 1-8-1

 9. Events

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 115

9. Events

9.1 Events

Notes:

This module focuses on Events and related topics.

9. Events

116 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

9.2 Module Topics

Notes:

The topic to be addressed in this module is: events.

 9. Events

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 117

9.3 Events: Definition

Notes:

Events are commonly used in applications to handle external actions or input, such as a user clicking a mouse. Each action is

interpreted as an event.

Events are part of the event-observer pattern. This design pattern is characterized by objects (subjects) and their list of dependents
(observers). Events trigger objects to notify their observers of any state changes, usually by calling one of their methods.

It is the same concept as in Magento 1. Assume you need an event at certain place in the code. In Magento 1 it would be fired by
Mage::dispatchEvent(), while in Magento 2 there is a special event manager class that fires events.

9. Events

118 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

9.4 Events: Schema

Notes:

The code fires an event, and the event manager checks whether there are any observers registered. Events can be global, frontend, or
admin. Events are declared in an events.xml file. If there is an observer registered, event manager will call this observer and pass the
event’s parameters to the observer. So, an observer has access to an event’s parameters. If there are no observers registered, then the
event has no effect.

 9. Events

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 119

Event Firing Code (Slide Layer)

9. Events

120 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

9.5 Registering an Event in XML

Notes:

In the firing code example, you can see how the product class fires two events: catalog_product_is_salable_before and
catalog_product_is_salable_after, with parameters that will be available to the observer.

 9. Events

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 121

9.6 Observer Example

Notes:

This code example shows an observer from the class Magento\Catalog\Model\Product\Compare\Item, method

bindCustomerLogin().

9. Events

122 Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc.

9.7 Code Demonstration: Registering an Event

 9. Events

Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide © 2015 Magento, Inc. 123

9.8 Reinforcement Exercise (1.9.1)

Notes:

Note that if you decide to extend the xml config file, you might also need to update the xsd schema as well.

	Fundamentals of Magento 2 Development v. 1.0: Unit One Student Guide

	Unit One Contents
	About This Guide
	1. Fundamentals Introduction
	1.1 Magento 2 Fundamentals: Unit One Hom
	1.2 Home Page
	1.3 Introduction
	1.4 Appropriate Audience
	1.5 Course Content
	1.6 How to Access Course Modules

	2. Unit One Home Page
	2.1 Magento 2 Fundamentals: Unit One Hom

	3. Preparation
	3.1 Preparation
	3.2 Module Topics
	3.3 Environment Setup Requirements
	3.4 Modes in Magento 2
	3.5 Developer Mode in Magento 2
	3.6 Production Mode in Magento 2
	3.7 Default Mode in Magento 2
	3.8 Production Mode in Magento 2
	3.9 Production Mode in Magento 2
	3.10 Specifying a Mode
	3.11 Specify a Mode Using an Environment
	3.12 Code Demonstration | Specify Mode u
	3.13 Specifying a Mode | Web Server Envi
	3.14 Specifying a Mode | php.fpm Environ
	3.15 Reinforcement Exercise (1.3.1)

	4. Overview and Architecture
	4.1 Magento 2 Overview and Architecture
	4.2 Module Topics
	4.3 Magento 2 Platform
	4.4 Magento 2 Goals
	4.5 Magento 2 Architecture
	4.6 High-Level Client Server Structural
	4.7 High-Level Application Map
	4.8 Modular System
	4.9 Areas
	4.10 Libraries
	4.11 Language Packs
	4.12 Themes
	4.13 Modules: Definition
	4.14 Modules: Location
	4.15 Modules: Naming a Module
	4.16 Modules: Declaring a Module
	4.17 Modules: Module Dependencies
	4.18 Declare Dependency with Other Modul
	4.19 Module Dependencies Tasks
	4.20 Modules: Types of Module Dependenci
	4.21 Reinforcement Exercise (1.4.1)

	5. File Systems
	5.1 File Systems
	5.2 Module Topics
	5.3 File System: Library
	5.4 Code Demonstration: File Systems
	5.5 File System: Core Source Code
	5.6 File System: Module Structure
	5.7 File System: Templates
	5.8 File System: Templates
	5.10 File System: Skin to Theme
	5.9 Code Demonstration: Templates

	6. Configuration
	6.1 Configuration
	6.2 Module Topics
	6.3 Configuration Files
	6.4 Configuration Files: Storage
	6.5 Configuration Files: core_config_dat
	6.6 Configuration Files: Custom Config F
	6.7 Configuration Files: Scope
	6.8 Configuration Files: Load Order
	6.9 Configuration Files: Merging
	6.10 Configuration Files: Validation
	6.11 Magento\Config
	6.12 Magento\Config - Loading Infrastruc
	6.13 Code Demonstration: events.xml
	6.14 Validating a Configuration Type
	6.15 Check Your Understanding
	6.16 Check Your Understanding
	6.17 Error Reporting Settings

	7. DI & Object Manager
	7.1 DI & Object Manager
	7.2 Module Topics
	7.3 Dependency Injection (DI) Pattern
	7.4 Dependency Injection
	7.5 Using Dependency Injection
	7.6 Dependency Injection Object Manager
	7.7 Dependency Injection | Creating Obje
	7.8 Object Manager
	7.9 Object Manager: Shared Instances Con
	7.10 Object Manager Configuration
	7.11 Object Manager Configuration: Prefe
	7.12 Object Manager Configuration: Argum
	7.13 Code Demonstration: Object Manager
	7.14 Object Manager Configuration: Share
	7.15 Object Manager Configuration
	7.16 Object Manager Initiation Process
	7.17 Objects: Injectable and Non-injecta
	7.18 Objects: Injectable and Non-injecta
	7.19 Objects: Injectable and Non-injecta
	7.20 Class Definition and Definition Com
	7.21 Class Definition andRunning the Def
	7.22 Definition Compiler Tool Best Pract
	7.23 Cache in Magento 2
	7.24 Cache Configuration
	7.25 Cache Type
	7.26 Cache Cleaning
	7.27 Reinforcement Exercise (1.7.1)

	8. Plugins
	8.1 Plugins
	8.2 Module Topics
	8.3 Plugins: Definition
	8.4 Plugins: Definition
	8.5 Plugins: Interception
	8.6 Declaring a Plugin
	8.7 Before-Listener Method
	8.8 After-Listener Method
	8.9 Around-Listener Method
	8.10 Prioritizing Plugins
	8.11 Configuration Inheritance
	8.12 Code Demonstration: Plugin
	8.13 Reinforcement Exercise 1-8-1

	9. Events
	9.1 Events
	9.2 Module Topics
	9.3 Events: Definition
	9.4 Events: Schema
	9.5 Registering an Event in XML
	9.6 Observer Example
	9.7 Code Demonstration: Registering an E
	9.8 Reinforcement Exercise (1.9.1)

	Item Descriptor: Student Guide
	Text2:
Fundamentals of Magento 2 Development
Unit One
	URL web address: magento.com/training/overview
	Season or Semester: v.1.0
	URLs web addresses: training@magento.com

magento.com/training/overview

magento.com/training/catalog/certification
	Copyright Info: Copyright © 2015 Magento, Inc. All rights reserved. 05-01-15
	legal text: The content provided in this student guide and all other intellectual property related to this course, including electronic knowledge products delivered via the Internet (“Training Materials”), are copyrighted by Magento. Reproduction, copying or translation of Training Materials is strictly prohibited. All Training Materials shall be used only for the private use of an individual participating in the specific training course for which the materials are intended. Any other use or repurposing of the Training Materials, including use of the Training Materials for training outside of Magento, is strictly prohibited. Offenders may be liable for payment of damages.

