

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

1

1. Why we need full-system simulation in PIM?

Although PIMSim has provided a simple and fast simulation for PIM architecture, it

cannot provide exactly detailed information such as packet traffic. The fast simulation

concentrates more on architecture level instead of circuit and operating system,

leading to lack of such modeling. We recommend PIM researchers who focus on

operating-system-level and circuit-level impacts to set a full-system simulation

environment of PIM. This guide will help you establish GEM5 full system environment

step by step.

2. Modifications on simulator by applying PIM.

In full-system simulation of PIMSim, PIM acts as a memory component with the

capability of computing. We have to fully understand how PIM architecture works. The

figure below shows general execution sequences of PIM architecture.

Host-side
Cores

Code
Snippets

Compiler

PIM
Compuational

Unit(Logic)

Coherence
Check

Memory(s)Control Flow

P
IM

-S
u

p
p

o
rt

 M
em

o
ry

System Level

The frontend of PIM architecture is a compiler. It transforms computer code written in

programming language (the source language) into computer language (operation

code). The collection of operation codes in a particular architecture is called

Instruction Set Architecture(ISA). GEM5 has implemented common ISAs like sparc,

x86_64, arm and so on. However, existed ISAs did not support any PIM operations,

which means we have to integrate our own PIM instructions into full-system simulators.

Another problem is that the existed compiler cannot recognize the added PIM

instructions, causing compiling and execution errors. PIM architecture is a highly-

customized system, which made it incompatible with any current compilers.

After the compiler transferred source code into executable binaries, the host-side

cores start to handle it. In this stage, PIM architecture have to implement how cores

act when execution such PIM operations and send the operation to PIM units, during

which the coherence check is done. Then PIM Unit will start to process data.

In PIMSim, we added some PIM instructions and compiler feature to help you establish

your PIM system. If you just want to use PIM instead of studying PIM, you can follow

the instruction of Section 3. If you want to focus on PIM research, we’ve provided a

detailed method to establish your own PIM architecture in GEM5 at Section 4.

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

2

3. Getting start with PIM-supported GEM5.

This section will help you set up a basic PIM system in GEM5 using PIMSim. GEM5 is a

complex cycle-accurate simulator. Each modification may result to changes complete

differently. You should not avoid or ignore any steps unless you had understood what

the step aimed to do and make sure you really don’t need it.

Build GEM5

Before you setting up PIM architecture in GEM5, you should have an available

GEM5 binary. You can follow the step of Build System and Full System and Benchmark

Files at official website and get a executable GEM5 binary file. If you’re not familiar

with GEM5, we provide a simple guide to help you getting a Ubuntu system in GEM5

in Section 4.

 After building GEM5, you can use PIMSim by simply typing:

 PIMSim supports DRAM, HMC, PCM and NVM (soon available) memory

simulations. DRMSim and HMCSim are integrated into the memory. You can modify it

by using –mem-type=PIM_(mem_type).

 You may add debug flags to debug PIM operations and get detailed information

like this:

Define your own PIM Unit.

This step will help you define your own PIM Unit about what it can do. You may

add two or more PIM Unit if you need.

 First, you should add a python class in $GEM5_HOME/src/dev. For example, if

you can create an adder with 4 inputs and 1 output. You should first create a python

file named $GEM5_HOME/src/dev/PIMAdder.py

> ./$GEM5_HOME/build/your_arch/gem5.opt config/example/fs.py --mem-

type=PIM_DRAM

> ./$GEM5_HOME/build/your_arch/gem5.opt –debug-flags=PIM

config/example/fs.py --mem-type=PIM_DRAM

http://gem5.org/Build_System
http://gem5.org/Download
http://gem5.org/Download

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

3

Parameters latency indicates the processing cycles of your PIM Unit (do not

include memory access latency). Parameters input and output indicates the input and

output variables counts. Parameters cxx_header indicates the cpp class of your unit’s

logic.

After that, you should add two cpp file to implement your PIM Unit designs. These two

files should be placed in the same path as python file. In our example, you should write

$GEM5_HOME/src/dev/pimadder.cc and place it at $GEM5_HOME/src/dev/. You

should implement your logic by get your own functions like void ADD(); The registers

definition is in $GEM5_HOME/src/dev/pimkernel.hh.

Link your PIM Units in GEM5

After you create your own PIM Unit class, you should initial it in full system config

file. Locate $GEM5_HOME/configs/common/MemConfig.py, line 240. Replace

mem_ctrl.kernels.append(PIMAdder()) with mem_ctrl.kernels.append(Your_class_name()).

After this step, GEM5 can already recognize your customized PIM Unit and get it

initialed.

Add PIM operation in your source codes

There are three ways to let GEM5 recognize your PIM operations.

You can replace your operations in source code such as

 with

from m5.params import *

from m5.proxy import *

from m5.SimObject import SimObject

from m5.objects.PIMKernel import PIMKernel

class PIMAdder(PIMKernel):

 type = 'PIMAdder'

 cxx_header = "dev/pimadder.hh"

 name = Param.String("ADDer","PIM Unit name.")

 latency = Param.Int("1", "PIM Unit computation delay cycles.")

 input=Param.Int(4, "num of inputs")

 output=Param.Int(1, "num of outputs")

output_var_1=+input_var_1+input_var_2+input_var_3+input_var_4;

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

4

This function will use PIM to process 4 input variables and write the result to output

variable using PIM Unit #(PIMUnit_ID). If you configure only one PIM Unit, just leave

it 0.

For complex PIM Units, you can use #PIM CODE START and #PIM CODE END label to

mark your PIM code. PIMSim will translate the code snippets automatically into kernel

code and execute it on PIM CPU.

Another way is to use explicit address to tell PIM what to do like this. You may also use

#INPUT = &variable to get it related to program variables. If you provide the detailed

address, PIMSim will handle with as physical addresses.

Compile your codes

After you completing your code modification, you can type the following

PIMKernel(&input_var_1, &input_var_2, &input_var_3, &input_var_4,

&output_var_1, PIMUnit_ID);

#PIM CODE START

#DEFINE input1 a

#DEFINE input2 b

#DEFINE input3 c

#DEFINE output1 d

 if(a!=0)

 d=a*b+c;

 ` else

 a+=1；

#PIM CODE END

#PIM START

#INPUT = 4736648

#INPUT = 3434212

#INPUT = 56345

#INPUT = 34656

#OUTPUT = 23434

#KERNEL ID = 0

#PIM END

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

5

command to compiler it and get an executable binary with PIM operations. Make sure

mono is installed before you compiling your codes.

 After done, you should copy it into your GEM5 full-system image and execute it

by typing this in m5Term:

If you add PIM debug flags, you will see the PIM information in the console.

4. Three cases of PIM research

If the PIM operations provided by PIMSim cannot meet your need, you can

customize your own PIM instruction. We’ll show some cases to help you set up

different types of PIM architecture in the following. We partitioned the hotspot of PIM

researches into four main parts:

 Research on new designs of computing logic/circuit/unit in PIM.

 Research on exploring application partition methods (deicide which code snippets

should be executed in PIM) to gain more performance improvement.

 Research on developing new coherence mechanism in PIM.

CASE 1: Research on new designs of computing

logic/circuit/unit in PIM

 In this section, we’ll guide you to establish PIM architecture in the figure

below. This architecture looks like Intelligent RAM (IRAM).

> mono $GEM5_HOME/tools build.exe YOUR_CODE_FILE OUTPUT_FILE_NAME

> ./ OUTPUT_FILE_NAME

http://ieeexplore.ieee.org/abstract/document/585348/

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

6

CPU

Cores

Cache

Cores Cores Cores

Through Ports

PIM-Support Memory

Through Cross Bar

Memory Controller

DRAM Ranks
Your designed
Logic circuits

Build GEM5 successfully.

Before you setting up PIM architecture in GEM5, you should have an available GEM5

binary. You can follow the step of Build System and Full System and Benchmark Files

at official website and get a executable binary file.

However, the full-system image provided by official website is too old and less user-

friendly. We’ll give a brief instruction to help you establish a latest Ubuntu system in

GEM5 with newer Linux kernel. You may skip this subsection if you need. The

architecture we used is x86, you can build other ISAs at the same way.

1. Creating a disk image

When using gem5 in full-system mode, the first step is to create a disk image for system

installing. GEM5 had provided a python tool to make it simple to use. You can run the

following command:

This command will create a blank image file called “x86root.img” that is 4GB. You need

sudo password if you don't have permission to create loopback devices. gem5img.py

is a tool to manage your image file and we will be using it heavily throughout the whole

process, so you may want to understand it better. If you just run

$GEM5_HOME/util/gem5img.py, it displays all of the possible commands.

> sudo $GEM5_HOME/util/gem5img.py init x86root.img 4096

http://gem5.org/Build_System
http://gem5.org/Download

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

7

2. Copy OS file to the disk file

 Now you had an image file, we need to install Ubuntu OS files into it. We can use

Ubuntu base distributes for propose (other OS is okay). Since I am simulating an x86

machine, I chose the file ubuntu-base-14.04.5-base-amd64.tar.gz downloading form

Ubuntu releases page. You can download whatever image is appropriate for the

system you are simulating.

After you download the tar ball of OS, you should first mount the image file created

by Subsection I.

Now you can copy files to your image by copying files to mnt.

3. Setting up gem5-specific files

By default, gem5 uses the serial port to allow communication from the host system to

the simulated system. To use this, we need to create a serial tty. Since Ubuntu uses

upstart to control the init process, we need to add a file to mnt/etc/init which will

initialize our terminal. Also, in this file, we will add some code to detect if there was a

script passed to the simulated system. If there is a script, we will execute the script

instead of creating a terminal.

Put the following code into a file named mnt/etc/init/tty-gem5.conf

Usage: %s [command] <command arguments>

where [command] is one of

init: Create an image with an empty file system.

mount: Mount the first partition in the disk image.

umount: Unmount the first partition in the disk image.

new: File creation part of "init".

partition: Partition part of "init".

format: Formatting part of "init".

Watch for orphaned loopback devices and delete them with losetup -d.

Mounted images will belong to root, so you may need to use sudo to modify

their contents

> mkdir mnt

> sudo $GEM5_HOME/util/gem5img.py mount x86root.img mnt

> sudo tar xzvf ubuntu-base-14.04.5-base-amd64.tar.gz -C mnt

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

8

The next step is to copy a few required files from your working system onto the disk

so we can chroot into the new disk. We need to copy /etc/resolv.conf onto the new

disk.

We also need to set up the localhost loopback device if we are going to use any

applications that use it. To do this, we need to add the following to the mnt/etc/hosts

file.

start on stopped rc RUNLEVEL=[12345]

stop on runlevel [!12345]

console owner

respawn

script

 # Create the serial tty if it doesn't already exist

 if [! -c /dev/ttyS0]

 then

 mknod /dev/ttyS0 -m 660 /dev/ttyS0 c 4 64

 fi

 # Try to read in the script from the host system

 /sbin/m5 readfile > /tmp/script

 chmod 755 /tmp/script

 if [-s /tmp/script]

 then

 # If there is a script, execute the script and then exit the simulation

 exec su root -c '/tmp/script' # gives script full privileges as root user in multi-

user mode

 /sbin/m5 exit

 else

 # If there is no script, login the root user and drop to a console

 # Use m5term to connect to this console

 exec /sbin/getty --autologin root -8 38400 ttyS0

 fi

end script

> sudo cp /etc/resolv.conf mnt/etc/

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

9

Finally, gem5 comes with an extra binary application that executes pseudo-instructions

to allow the simulated system to interact with the host system. To build this binary,

run make -f Makefile.<isa> in the $GEM5_HOME/util/m5 directory, where <isa> is the

ISA that you are simulating (e.g., x86). After this, you should have an m5 binary file.

Copy this file to mnt/sbin.

After updating the disk with all of the gem5-specific files, unless you are going on to

add more applications or copying additional files, unmount the disk image.

By now, the OS image file has been successfully created.

4. Building Linux Kernel.

Next, you need to build a Linux kernel. Unfortunately, the out-of-the-box Ubuntu

kernel doesn't play well with gem5.

First, you need to download latest kernel from kernel.org. I use Kernel version 3.2.1

which can be found here. Then, to build the kernel, you are going to want to start with

a known-good configure file. The configure file that I'm used for kernel version 2.6.28.4

can be found in full-system files provided GEM5 official website.

Then, you need to move the good config to .config and the run make oldconfig which

starts the kernel configuration process with an existing config file.

At this point you can select any extra drivers you want to build into the kernel. Note:

You cannot use any kernel modules unless you are planning on copying the modules

onto the guest disk at the correct location. All drivers must be built into the kernel

binary.

/etc/fstab: static file system information.

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

<file system> <mount point> <type> <options> <dump>

<pass>

/dev/hda1 / ext3 noatime

0 1

> sudo $GEM5_HOME/util/gem5img.py umount mnt

> tar xvf config-x86.tar.bz2

> cp configs/linux-2.6.28.4 /where/your/linux/kernel/source/.config

https://www.kernel.org/pub/linux/kernel/v3.x/

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

10

Finally, you need to build the kernel.

5. Test you GEM5 simulation.

After you have done all above steps, you can now boot your Ubuntu system by typing

this.

6. Install new applications

The easiest way to install new applications on to your disk, is to use chroot. This

program logically changes the root directory ("/") to a different directory, mnt in this

case. Before you can change the root, you first have to set up the special directories in

your new root. To do this, we use mount -o bind.

After binding those directories, make sure you had mount-ed your image file, you can

now chroot:

At this point you will see a root prompt and you will be in the / directory of your new

disk.

You should update your repository information.

Now, you are able to install any applications you could install on a native Ubuntu

machine via apt-get.

Remember, after you exit you need to unmount all of the directories we used bind on.

Let GEM5 understand your PIM operation.

Naive GEM5 had no recognition of PIM operations, in this step we’ll help you

> $GEM5_HOME/build/x86/gem5.opt configs/example/fs.py --

kernel=your_compiled_kernel

> sudo /bin/mount -o bind /sys mnt/sys

> sudo /bin/mount -o bind /dev mnt/dev

> sudo /bin/mount -o bind /proc mnt/proc

> sudo /usr/sbin/chroot mnt /bin/bash

> apt-get update

> sudo /bin/umount mnt/sys

> sudo /bin/umount mnt/proc

> sudo /bin/umount mnt/dev

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

11

customize your own PIM operations. We assume we designed an adder circuit which

can read the data of a given address in memory, then apply Increment operations and

write results back like ++ operations in c++ below.

1. Define PIM operations in GEM5

The first step is to let GEM5 know our customized operation. You can either modify

GEM5 reserved instructions or add new instructions. If you want to add new

instructions, you should find an un-used operation code. Open

$GEM5_HOME/src/arch/x86/isa/decoder/two_byte_opcodes.isa (you can also

modify one-byte operation code in

$GEM5_HOME/src/arch/x86/isa/decoder/one_byte_opcodes.isa or three in

$GEM5_HOME/src/arch/x86/isa/decoder/three_byte_0f38_opcodes.isa or

$GEM5_HOME/src/arch/x86/isa/decoder/three_byte_0f3a_opcodes.isa).

For example, we can change this

Into :

//X= [Address];

//X++;

//[Address] = X;

X++;

0x55: m5reserved1({{

 warn("M5 reserved opcode 1 ignored.\n");

}}, IsNonSpeculative);

0x55: m5reserved1({{

warn("PIM_Add operation.\n");

PseudoInst::PIM_ADD(xc->tcBase(), Rdi, Rsi);

}}, IsNonSpeculative);

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

12

The m5 reserved operation is a pseudo instruction reserved by GEM5, we can use it to

understand the logic how GEM5 recognizes instructions and what will GEM5 do if

decoding such new instructions. We can add more instructions the same ways as this.

In $GEM5_HOME/src/sim/pseudo_inst.hh, you should add function declaration.

In $GEM5_HOME/src/sim/pseudo_inst.cc, modify here

And add function implement. Now we just test PIM operation execution, so we only

print strings on console at this stage.

Next, rebuild GEM5 by typing:

Now GEM5 can understand your added PIM operations.

2. Compiler codes with PIM operations.

GCC cannot understand our customized PIM operation, so have to use a simple tool to

compile our source code.

In $GEM5_HOME/include/gem5/m5ops.h, add this in the end.

In $GEM5_HOME/include/gem5/m5ops.h, add this in the end.

Now we can create a cpp file to test our PIM operation.

void PIM_ADD(ThreadContext *tc, uint64_t pa1);

case M5OP_ANNOTATE:

PIM_ADD(tc, args[0], args[1]);

break;

void

PIM_ADD(ThreadContext *tc, uint64_t pa1, uint64_t pa2)

{

std::cout<<"PIM_ADD Operation executed"<<std::endl;

//tc->getCpuPtr()->sendCommandtoPIM();

}

> scons $GEM5_HOME/build/x86/gem5.opt

void m5_PIM_ADD(uint64_t pa1);

TWO_BYTE_OP(m5_PIM_ADD, M5OP_ANNOTATE)

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

13

Now create a text file named “pim_test.c”, add below content:

You can compile your code through:

Now you can copy this binary to GEM5 image file using gem5img.py and execute

it in full system mode, you can see your output in the console.

3. Control your PIM unit.

In this section, we are going to help you control your PIM circuits. In step C, we

had confirmed GME5 can decode and execute what we want while executing our

customized PIM operation. We’ll establish control flow to control our designed

PIM circuit.

As we all known, GEM5 use Port mechanism to transfer data through objects. So

we should establish the connection between different objects. The figure below

shows three connections between different objects. Original Memory stands for

the regular memory read/write operation sent by host-side CPUs. PIM Unit CMD

stands for operations on memory required by your ADDer unit. The straight right

arrow stands for the control command sent from host-side CPU while PIM

operation decoding is done. All the command is sent in the form of Packets.

> cd $GEM5_HOME/tests/test_progs/

> mkdir pim_test

> cd pim_test

> mkdir src

> cd src

#include <gem5/m5ops.h>

int main()

{

 m5_PIM_ADD(0);

 return 0;

}

> gcc -o pim_test pim_test.c -I ../../../../include/ ./../../../../util/m5/m5op_x86.S

PIM_ADD Operation executed

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

14

CPU Model CrossBar
Memory

Controller

Through
Ports

Through
Ports

Through
Ports

ADDer
Unit

Original Memory CMD PIM Unit CMD

3.1 Customize your own command.

You have to define your unique command first to support different functions

operated by your designed PIM Units as an identity distinct from original memory

commands. The define file of memory command is in

$GEM5_HOME/src/mem/packet.hh.

You should add your customized PIM operation in the code location of above

figure such as a PIMADD command. Except that, you should add the attributes of

your command for further analysis of your packets. All of packets attributes are

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

15

listed below.

The PIMADD command we added is aimed to let PIM Units start an atomic add

operation on a specified address, so we can set its attributes to IsRequest,

HasData in $GEM5_HOME/src/mem/packet.cc like this.

Or you can add new attributes if you need.

I. CPU -> Memory connection

First, we should add a function in $GEM5_HOME/src/cpu/base.hh in BaseCPU.

And add virtual implements in $GEM5_HOME/src/cpu/base.cc.

After that you should override this function in codes of your CPU model. For

example, if we use AtomicSimpleCPU, we should add declaration of this function

in $GEM5_HOME/src/cpu/simple/atomic.hh.

And add implements in $GEM5_HOME/src/cpu/simple/atomic.cc.

void sendCommandtoPIM(Addr addr_);

Fault

BaseCPU:: sendCommandtoPIM(Addr addr_)

{

 Return NoFault;

}

void sendCommandtoPIM(Addr addr_) override;

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

16

II. Memory -> PIM Unit connection

When memory received Memory command, it should first identify the destiny of

this command. If the destiny is PIM Unit, transmit it. We use default dram

controller as an example.

In $GEM5_HOME/src/mem/dram_ctrl.cc, add transmit mechanisms. Locate the

following code snippets:

Fault AtomicSimpleCPU:: sendCommandtoPIM(Addr addr_)

{

 SimpleExecContext& t_info = *threadInfo[curThread];

 SimpleThread* thread = t_info.thread;

 static uint8_t zero_array[64] = {};

 assert(data != NULL);

Request *req = &data_write_req;

 int fullSize = size;

 dcache_latency = 0;

 req->taskId(taskId());

 // translate to physical address if you use & operations

 //Fault fault = thread->dtb->translateAtomic(req, thread->getTC(),

BaseTLB::Write);

 if (fault == NoFault) {

 MemCmd cmd = MemCmd::WriteReq; // default

 bool do_access = true; // flag to suppress cache access

 cmd = MemCmd::PIMADD;

 Packet pkt = Packet(req, cmd);

 pkt.dataStatic(addr_);

 if (fastmem && system->isMemAddr(pkt.getAddr()))

 system->getPhysMem().access(&pkt);

 else

 dcache_latency += dcachePort.sendAtomic(&pkt);

 threadSnoop(&pkt, curThread);

 assert(!pkt.isError());

 }

 return NoFault;

 }

}

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

17

This function is called when DRAM get a memory command to access data. DRAM

controller only receives command from CPU in state-of-the-art architecture, but

in PIM, it will also receive commands from PIM Unit (you may also implement

your circuits here instead of creating an individual competent in GEM5). Now

you should add determine statements before the function access(pkt); You can

do like this:

Add two ports in $GEM5_HOME/src/mem/dram_ctrl.hh, the add codes in

$GEM5_HOME/src/mem/dram_ctrl.cc. You may include our provided coherence

header file, or you can write your own coherence mechanism.

Create your PIM Unit Component.

You can use circuit-level simulator to get detailed characteristic parameters and

implement it as a black-box unit. You may require latency, energy parameters and

establish the connection mechanism follow the rules of Ports definition in

$GEM5_HOME/src/mem/ports.hh. If you’re not familiar with GEM5, you can

simply implement your circuit through c/c++ in

$GEM5_HOME/src/mem/dram_ctrl.cc.

Tick

DRAMCtrl::recvAtomic(PacketPtr pkt)

{

DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());

 panic_if(pkt->cacheResponding(), "Should not see packets where cache "

 "is responding");

 // do the actual memory access and turn the packet into a response

 access(pkt);

Tick

DRAMCtrl::recvAtomic(PacketPtr pkt)

{

 if(pkt->cmd==MemCmd::PIMADD)

{

// Distribute PIM operation to PIM Unit when receiving PIMADD command.

 pimport.sendAtomic(pkt);

 return;

 }else{

 coherence.check(pkt->getAddr());

 }

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

18

ADD-er
(Black-box Unit)

SentAtomic
(send data requests)

RecvAtomic
(receive commands)

P
ro

c
es

s
 l

a
te

n
cy

Energy
Calculation

RecvAtomic
(receive data)

CASE2: Researchers on discovering PIM's potential and gain

better performance.

If you’re researchers with little circuits knowledge but more coding ability, you

may care less about how the PIM Units are designed but how to take advantages

of PIM. For architectural researchers, they may also extract the hotspots of a

popular application to figure out a way to accelerate the whole system. In this

case, the logic unit in memory is assumed to be several general-propose CPU

cores.

Code
Snippets

Hotspot #1

Hotspot #2

Hotspot #3

 Hotspot #N

Hotspots of Code

……

Analysis Generate

Function Kernel

Function Kernel

Execution on
PIM-Cores

The general sequences of such research start from application analysis. This step will

get the hotspots of a kind of applications. By distilling the critical path of target hotspots

with the consideration of PIM architecture, researchers can get individual kernels that

may benefit from PIM architecture. When host-side CPU encountered such code

snippets, it will inform memory-side cores to start the kernel.

Next, we’ll show how to establish such PIM system in GEM5. This architecture looks

like Practical Near-Data Processing for In-Memory Analytics Frameworks and PEI.

I. Boot your GEM5 simulator.

You should first follow the steps A in CASE 1 to get an executable binary of GEM5 and

https://www.computer.org/csdl/proceedings/pact/2015/9524/00/9524a113.pdf
http://ieeexplore.ieee.org/abstract/document/7284077/

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

19

get it boot. When you’re in the bash shell, you should stop simulations and see how

many instructions had been simulated. Then you can use --at-instruction --take-

checkpoints=N to reboot your GEM5 system and get an initial GEM5 checkpoints in

bash shell.

The aim of this step is to get a fixed start point and prevent data changed by system

boot before application analysis starts. You can boot GEM5 through checkpoints by

applying --at-instruction -r N to fs.py or se.py.

II. Analysis your applications.

In this step, you should distill the kernels that you want to execute at PIM Units. You

can use profiling tools to get detailed information about hotspots.

Note that you have to build newer Linux kernel following the guide of Compiling a Linux

Kernel and apply it to GEM use --kernel= command. The pre-build kernel provided by

GEM5 full-system image file is too old to support such profiling software. You should

always start from a checkpoint to invoke another profiling in order to prevent data

changed by the boot of operating system.

III.Pass the kernel to PIM Cores

After you selected the kernels you want to executed at memory-side PIM cores, you

should provide the information fetched by step B to PIM cores such as kernel stating

PC and ending PC. You should first follow all the guide in CASE 1, where you only need

to pass an address to PIM Units. In this case, you should provide a class named

ThreadContext defined in $GEM5_HOME/src/cpu/thread_context.hh. This definition is

overridden in detailed implement of different CPU model. You can define your function

to pass the ThreadContext of current CPU to PIM Cores in

$GEM5_HOME/src/sim/pseudo_inst.cc like this:

> ./build/x86/gem5.opt configs/examples/fs.py --at-instruction --take-

checkpoints=50000000 --max-checkpoints=1

> ./build/x86/gem5.opt configs/examples/fs.py --at-instruction -r 50000000

http://gem5.org/Compiling_a_Linux_Kernel
http://gem5.org/Compiling_a_Linux_Kernel

PIMSIM, CONTROL COMPUTING LABORATORY, STATE KEY LABORATORY OF COMPUTER ARCHITECTURE,
INSTUTUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SECIENCE

20

You may also call takeOverFrom function defined in

$GEM5_HOME/src/cpu/thread_context.hh to let PIM cores take over all the content

from host-side CPUs.

CASE3: Researches on PIM architecture.

For researcher on PIM architecture, you have to implement all the feature like

CASE1 and CASE2, then modify what you need. In this case, we use PIM coherence as

an example to show how to modify PIM coherence.

Coherence is definitely an important part in PIM architecture due the limited share

in memory between host-side CPUs and memory-side PIM Units. The general solution

is lock mechanism. Whenever host-side cores or PIM Units require data, it should look

up LockTable to ensure the operation atomicity.

Core(s) PIM Unit(s)

t

LD A
LD A

LD A

① Set lock

Lock
Table

②Flush request

FLUSH A

……

Cache contains
data copy of A

③Flush complete
④Data ready

……

ST A⑤ Release lock

……

The simplest way is to check Lock Table before the actual access operation happened.

You should follow the steps in CASE1 and add judgment statement before the doaccess()

function is called.

void

PIM_Kernel_Pass(ThreadContext *tc, uint64_t pa1, uint64_t pa2)

{

 BaseCPU* cpu=(BaseCPU*)tc->getCpuPtr();

 sendContexttoPIM(cpu->threadInfo[cpu->curThread]);

 ThreadID id= cpu->contextToThread(cpu->curThread);

cpu->haltContext(id);

}

