
Teaching Constraints through Logic Puzzles

Péter Szeredi
szeredi@cs.bme.hu

Dept. of Computer Science and Information Theory,
Budapest University of Technology and Economics
H-1117 Budapest, Magyar tudósok körútja 2.

IQSYS
Information Systems Ltd.
H-1135 Budapest, Csata u. 8.

Abstract. The paper describes the experiences of seven years of teach-
ing a constraint logic programming course at the Budapest University of
Technology and Economics. We describe the structure of the course, the
material covered, some examples, assignments, and examination tasks.
Throughout the paper we show how logic puzzles can be used to illustrate
constraint programming techniques.

1 Introduction

Logic puzzles are getting more and more popular. In the last few years, here
in Hungary, four monthly periodicals appeared which publish solely logic puz-
zles. There are numerous web-sites offering this type of amusement. Best puzzle
solvers gather this autumn in the Netherlands for the 12th time to compete
in the World Puzzle Championship. Puzzles from earlier Championships were
published in e.g. [6, 7].

Personally, I found logic puzzles quite intriguing, and started to use them
in my lectures on (constraint) logic programming at the Budapest University of
Technology and Economics (BUTE). This paper gives an account of the con-
straint course, with a brief summary of the preceding Prolog course. While de-
scribing various aspects of the course, I highlight those parts where logic puzzles
can be used.

The paper is structured as follows. First, in Section 2, the prerequisite Prolog
course is briefly introduced. The next two sections describe the structure of the
constraint course. Section 5 presents the details of one of the case studies, in
which two solvers for the Domino puzzle are developed and evaluated. Section 6
describes two puzzles which were issued as major assignments in the past two
years, while Section 7 gives some examination tasks related to puzzles. In the
last two sections we discuss some lessons learned and conclude the paper.

2 Background

The paper presents an elective constraint logic programming course for (under-
graduate) students of informatics at BUTE1. It presupposes the knowledge of
1 Occasionally the course is taken by students of electrical engineering, and by post-

graduates



logic programming, which is taught in a compulsory “Declarative Programming”
(DP) course in the second year. The DP course also covers functional program-
ming, which is represented by Moscow SML, and is taught by Péter Hanák. The
logic programming part, presented by Péter Szeredi, uses SICStus Prolog.

The DP course, in part due to its late introduction into the curriculum,
is a lectures only course, with no laboratory exercises. It is very difficult to
teach programming languages without the students doing some programming
exercises. In an attempt to solve this problem, we have developed a computer
tool, called ETS (Electronic Teaching aSsistant, or Elektronikus TanárSegéd
in Hungarian) [2], which supports Web-based student exercising, assignment
submission/evaluation, marking, etc.

During the DP course we issue 4–6 so called minor programming assignments
and a single major one. The major assignment normally involves writing a solver
for a logic puzzle, a task very much suited for constraint programming. Examples
of such puzzles are given in Sections 5 and 6. The marks for the major assignment
are based on the number of test cases solved by the student’s program, as well as
on the quality of the documentation. There is a so called “ladder competition” for
students who have solved all the normal test cases. In this competition additional
points are awarded to students who can solve the largest puzzles.

This creates some interest in constraint programming, especially when the
students are told that their puzzle-solving programs can be made much faster,
often by two orders of magnitude, by using CLP. Because of this, a relatively
large number of students enroll in the electable constraints course immediately,
in the semester following their DP course. For example, 55 students registered
for the constraints course in fall 2002, of which 38 took DP in the previous
semester2.

3 The structure of the course

The actual title of the constraint course discussed in this paper is “High Effi-
ciency Logic Programming”. This course has been presented since 1997, seven
times up to now (in the spring term till 2000, and in the fall term since 2000).
The title reflects the original idea, which was to split the course into two, roughly
equal parts: one about efficient compilation of logic programs, exemplified by the
Mercury system, and the other about applying constraint techniques for solving
search problems efficiently, in the context of the constraint libraries of SICStus
Prolog [8]. However, from the very start, the focus shifted to the second topic. In
fact, the order of the two parts is reversed, so the Mercury language is presented
at the end of the semester.

There is a 90 minute lecture each week during the term, which usually lasts 14
weeks. There are no laboratory exercises for this course. To ensure that students
do some actual programming, there is (and has always been) a compulsory major
assignment, which can be submitted up till the end of the exam session following
2 Altogether 324 students completed the DP course in the spring 2002 semester, of

which 62 got the highest grade (5), of which 27 enrolled in the constraints course.



the term. To motivate and help the students in doing programming exercises
during the term, minor assignments were introduced in the last, 2002 fall term.
There were four of these, with a due date of approximately two weeks after issue.

The layout of the 2002 fall semester is shown in Table 1, with approximate
time schedule, and the number of (A4 size) handout slides for each topic. The
unit of the time schedule is 45 minutes, i.e. there are 2 units per lecture.

We will now focus on the constraint part of the course, discussing in turn the
topics 1.-5. listed in the table.

Topic Time Slides

1. Prolog extensions relevant for CLP 3 units 15 slides
Minor Assignment 1: CLP(MiniB)

2. The CLP(X ) scheme and CLP(R/Q) 3 units 19 slides

3. CLP(B) 2 units 8 slides

4. CLP(FD) 14 units 109 slides
Minor Assignments 2-4, Major Assignment

5. Constraint Handling Rules 2 units 11 slides

6. Mercury 4 units 23 slides
∑

28 units 185 slides

Table 1. The layout of the course

The first topic deals with SICStus Prolog extensions relevant for constraint
programming. These include the portray hook, term- and goal expansion hooks,
and, most importantly, the coroutining facilities. These features are introduced
by gradually developing a simple “constraint” demo on the domain of natural
numbers. This system, called CLP(MiniNat), is based on the Peano arithmetic,
and allows function symbols +, -, and *, as well as the usual six relational
symbols. The user interface similar is to CLP(R):

| ?- {X*X+Y*Y=25, X > Y}.
X = 4, Y = 3 ? ;
X = 5, Y = 0 ? ;
no

Using goal expansion, such constraints are transformed into a sequence of calls
to predicates plus/3 and times/3. Both predicates block until at least one of
the arguments is ground, and then execute, possibly creating choice-points.

Assignment 1 is issued at the end of the first part. Here the students are
asked to write a coroutining-based simple quasi-CLP system on Booleans, called
CLP(MiniB).

The second part starts with a brief overview of the CLP(X ) scheme, intro-
ducing the notions of constraint store, primitive and non-primitive constraints.
These are then exemplified by discussing the CLP(Q/R) extension, culminating
in Colmerauer’s Perfect Rectangle Problem [1]: tiling a rectangle with different



squares. Next, a summary of the declarative and procedural semantics of the
CLP scheme is given. This setup, where the theoretical issues are discussed after
a concrete example of the CLP(X ) scheme is shown, seems to be more easily
digested by the students.

The next part presents the second instantiation of the CLP scheme: CLP(B).
This is illustrated by simple examples of circuit verification, and a program
playing (the user part of) the well known minesweeper game.

The fourth part, dealing with CLP(FD), is naturally the largest and is dis-
cussed in the next section. There are three minor assignments related to this
part, and the major assignment is also issued here.

The constraint part of the course is concluded with a brief overview of the
Constraint Handling Rules library of SICStus Prolog. Here the biggest example
is a CHR program for solving the Areas puzzle (see Fig. 1).

The Areas puzzle: A rectangular board is given with some squares specified
as positive integers. Fill in all squares of the board with positive integers
so that any maximal contiguous set of squares containing the same integer
has the area equal to this integer (two squares are contiguous if they share
a side). An example puzzle and its unique solution (with thick lines marking
the area boundaries) is given below:

2 1 4 3

2

5 3

3 2

2 4 4 3 3

2 1 4 4 3

3 5 5 2 2

3 5 3 3 3

3 5 5 2 2

Fig. 1. The Areas puzzle, a CHR example

4 The CLP(FD) part of the course

The CLP(FD) topic takes up roughly half of the semester. Its subdivision is
shown in Table 2. We start with a brief overview of the CSP approach. Next,
the basics of the CLP(FD) library are introduced: the arithmetic and mem-
bership constraints, their execution process, the notion of interval and domain
consistency, the importance of redundant constraints. This is exemplified by the
classical CSP/CLP(FD) problems: map colouring, n-queens, the zebra puzzle,
and the magic series.

The last example (magic series) leads to the topic of reified and proposi-
tional constraints, interval and domain entailment. An elegant illustration of the
propositional constraints is a program for solving “knights, knaves and normals”
puzzles of Smullyan [9], shown in the Appendix.



CLP(FD) subtopic Time Slides

4.1. CSP overview, CLP(FD) basics 3 units 23 slides

4.2. Reification, propositional constraints, labeling 3 units 25 slides
Assignment 2: Cross sums puzzle

4.3. Combinatorial constraints 1 unit 12 slides
Major Assignment: Magic Spiral puzzle

4.4. User defined constraints 2 units 20 slides
Assignment 3: Write a specific indexical
Assignment 4: Write a specific global constraint

4.5. The FDBG debugging tool 1 unit 10 slides

4.6. Case studies 4 units 19 slides

Table 2. Subdivision of the CLP(FD) part of the course

Although simple uses of the labeling predicates were already introduced,
the full discussion of labeling comes at this point. This includes user-definable
variable selection and value enumeration functions, as well as a comparison of
the performance of various labeling schemes on the n-queens problem.

Having covered all the stages of constraint solving, the next minor assignment
is issued. The students are required to write a program for solving a numeric
crossword puzzle. Figure 2 describes the assignment and gives a sample run.

The Cross Sums puzzle: Fill in a “numeric” crossword puzzle, with integers
from the [1, Max] interval. All integers within a “word” have to be
different, and the sum of these is given as the “definition” of each word. An
example and its solution (Max = 9):

11 8

10

6

24
21 11 8

10

6

24
21

2

1

8 9 7

7 1

5

Assignment 2: Write a CLP(FD) program for solving the Cross Sums
puzzle. Sample run:
| ?- Table = [[x\x, 11\x,21\x, 8\x],

[x\24, , , ],

[x\10, , , ],

[x\6, , , x\x]], cross sums(Table, 9).

Table = [[x\x, 11\x,21\x,8\x],

[x\24,8, 9, 7 ],

[x\10,2, 7, 1 ],

[x\6, 1, 5, x\x]] ? ;

no

Fig. 2. The Cross Sums puzzle



The next subtopic is an overview of combinatorial constraints provided by
SICStus Prolog. This is rather dry, not much more than the manual pages,
lightened up by a few small additional examples.

At this point the major assignment is issued. In fall 2002, this was the Magic
Spiral puzzle (see Sect. 6.2), exactly the same assignment that had been issued
for the Declarative Programming course in the preceding semester.

Assignment 3: Write an FD-predicate ’z>max(x,y)’(X, Y, Z) which im-
plements a domain-consistent constraint, with the meaning equivalent to
Z #> max(X,Y). Write all four clauses of the FD-predicate.

Assignment 4: Write a global constraint max lt(L, Z), where L is list of
FD variables, and Z is an FD variable. The meaning of the constraint: the
maximum of L is less than Z, Make the global constraint efficient, avoid
re-scanning irrelevant variables, by using a state. For example, the following
goal should run in linear time with respect to N:

| ?- N = 500, length(L, N), domain(L, -5, 0), X in 0..N,

max lt([X|L], Z), X#>0, X#>1, ..., X#>N-1.

Fig. 3. Minor assignments for writing user-defined constraints

The fourth subtopic of the CLP(FD) part is about user-definable constraints.
Both global constraints and FD-predicates (indexicals) are covered, including
the reifiable indexicals. The last two minor assignments are about writing such
constraints, as shown in Fig. 3.

When students submit an assignment, the ETS teaching support tool runs
several predefined test-cases, and sends the results back to the student. I had to
repeatedly extend the set of test cases for the FD-predicate assignment, which
seems to be the most difficult one, as it was not exhaustive, and thus incorrect
student solutions got accepted. Finally, I developed, and handed out to stu-
dents, a simple tool for exhaustively checking the semantics of an FD-predicate
against a specification in Prolog. The specification is a Prolog goal for testing
the constraint with ground arguments. The semantic check can be run automat-
ically, if some directives are inserted in front of the FD-predicate. In the case of
Assignment 3 (Fig. 3) these may look like this:

:- use_module(fdcheck). % This is the file containing the checker
:- fd_pred_semantics(’z>max(x,y)’(X,Y,Z), Z>max(X,Y)).

:- fd_test_range(1, 2). % Try all combinations in this range

’z>max(x,y)’(X,Y,Z) +: ... % Here comes the FD-predicate

The next subtopic within CLP(FD) is debugging, as the students are ex-
pected now to start developing their major assignments. A brief overview of the



SICStus FDBG finite domain debugging library [3] is presented here. An inter-
esting point is that this library has been developed by two former students of
this course.

The CLP(FD) part is concluded by three case studies. First the Perfect
Square Problem from [11] is presented. This gives an opportunity to discuss
the issue of disjunctive constraints and to introduce the technique of dual la-
beling. Performance results are presented for several solution variants, including
those using the SICStus Prolog library predicates cumulative and disjoint2.

The next two case studies are major assignments from earlier years: the
Battleship and the Domino puzzles. The former involves placing rectangles of
size 1 × n, called battleships, on a rectangular board (sea). Battleships can be
placed horizontally or vertically, and they can be of different colours. For each
length (n) and colour we are given the number of battleships to be placed. We
are also given, for each colour, the number of battleship pieces in each row
and column. The battleships can not touch each other, not even diagonally.
Furthermore, for certain squares of the board it is specified that they contain
a certain kind of battleship piece, or sea (i.e. no battleship piece there). The
Battleships case study (program, test-data, results) can be downloaded from
[10].

The third case study is discussed in detail in the next section.

5 A case study: the Domino puzzle

The Domino puzzle was issued as the major assignment in spring 2000.

The puzzle. A rectangular board is tiled with the full set of dominoes with up
to d dots on each half domino. The set of all such dominoes can be described as:

Dd = {〈i, j〉|0 ≤ i ≤ j ≤ d}
For each square of the board we are told the number of dots on the half

domino there, but we do not know domino boundaries. The task is to find out
the tiling, i.e. to reconstruct the domino boundaries.

Figure 4 shows a sample board, its solution, and the Prolog format of these.
The task is to write a domino/2 predicate, which takes, as its first argument,

a board represented by a matrix of values from [0, d], and returns, in the second
argument, a matrix of the same size, filled in with compass point abbreviations:
one of n, w, s, or e. These return values specify, for each square, whether it is a
northern, western, southern, or eastern half of a domino.

In the case study two alternative solutions are presented: one based on the
compass model, and another one using the border model. An independent Eclipse
solution to this puzzle, found in [4], uses the latter model.

The compass model. This model follows naturally from the expected output
format: each square of the board is assigned a compass variable specifying the
compass point of the half domino it is covered with. The compass variables are



The problem: The (only) solution:

1 3 0 1 2

3 2 0 1 3

3 3 0 0 1

2 2 1 2 0

1 3 0 1 2

3 2 0 1 3

3 3 0 0 1

2 2 1 2 0

The Prolog description: The solution in Prolog:

[[1, 3, 0, 1, 2], [[n, w, e, n, n],

[3, 2, 0, 1, 3], [s, w, e, s, s],

[3, 3, 0, 0, 1], [w, e, w, e, n],

[2, 2, 1, 2, 0]] [w, e, w, e, s]]

Fig. 4. A sample Domino problem for d = 3

named CVyx, 1 ≤ y ≤ maxy, 1 ≤ x ≤ maxx (where maxy and maxx are the
number of rows and columns of the board), their domain is an arbitrary numeric
encoding, say n,w, s, e, of the four compass points.

With this representation, it is easy to ensure that the tiling is consistent:
if a square is “northern”, its neighbour to the south has to be “southern”, etc.
However it is difficult to guarantee that each domino of the set is used only once.

Therefore we introduce another, redundant set of variables. For each domino
〈i, j〉 ∈ Dd, we set up a domino variable DVij specifying the position of this
domino on the board. This automatically ensures that each domino is used ex-
actly once.

The domino positions can be described e.g. by suitably encoding the triple
〈row, column, dir〉, where the coordinates are those of the northern/western half
of the domino, and dir specifies its direction (vertical/horizontal). If a domino
〈i, j〉 can be placed on k positions, then the domain of Dij will be [1, k]. The map-
ping from this domain to the triples is needed only while posting the constraints,
and so it can be kept in a separate Prolog data structure.

For example, the 〈0, 2〉 domino of Fig. 4 can be placed on the following board
positions: 〈2, 2, horizontal〉, 〈3, 4, vertical〉 and 〈4, 4, horizontal〉. Therefore the
domain of D02 will be {1, 2, 3}, describing these three placings.

The constraints of the compass model are the following:

Neighbourship constraints. For each pair of neighbouring squares on the
board we state that their compass variables have to be consistent, e.g.
CV14 = n ⇔ CV24 = s, CV14 = w ⇔ CV15 = e, etc.

Placement constraints. For each domino variable, and for each of its possi-
ble values, we state that the given horizontal (vertical) placement holds iff
the compass variable of the square specified by this placement is a western
(northern) half of a domino. For example, the 〈0, 2〉 domino of Fig. 4 gives rise



to the following constraints: DV02 = 1 ⇔ CV22 = w, DV02 = 2 ⇔ CV34 = n,
DV02 = 3 ⇔ CV44 = w.

Note that both constraint types are of form X = c ⇔ Y = d, where c and d
are constants. Three implementations for this constraint are presented. The first
variant is the trivial formulation using reification and propositional constraints.
The second uses an FD-predicate implementing the constraint X = c ⇒ Y = d,
and calls it twice, to ensure equivalence. Third, the whole equivalence is coded as
a single FD-predicate. The two FD-predicates are shown in Fig. 5. All solutions
have the same pruning behaviour. Our measurements (see later, in Table 4) show,
that the second is the fastest variant. This involves 4 indexicals, as opposed to
the the third, single FD-predicate implementation which has only 2. However,
in the latter case the indexicals are more complex, and wake up unnecessarily
often, hence the inferior performance of this solution.

’x=c=>y=d’(X, C, Y, D) +:

X in (dom(Y) /\ {D}) ? (inf..sup) \/ \({C}),

Y in ({X} /\ \({C})) ? (inf..sup) \/ {D}.

’x=c<=>y=d’(X, C, Y, D) +:

X in ((dom(Y) /\ {D}) ? (inf..sup) \/ \({C})) /\

((dom(Y) /\ \({D})) ? (inf..sup) \/ {C}),

Y in ((dom(X) /\ {C}) ? (inf..sup) \/ \({D})) /\

((dom(X) /\ \({C})) ? (inf..sup) \/ {D}).

Fig. 5. FD-predicates for implementing equivalence constraints

The border model. In this model we assign a variable to borders (line segments)
between the squares of the board. Such a border variable is 1, if the given segment
is a centerline of a domino, otherwise it is 0. Let us denote by Eyx (Syx) the
variables corresponding to the eastern (southern) borders of the square (y, x) on
the board (1 ≤ y ≤ maxy, 1 ≤ x ≤ maxx). Note that in this set of variables
there are some, which correspond to line segments on the outer border of the
board (e.g. Smaxyx), these are assigned a constant 0 value. To cover the northern
and western border of the board, we use similarly constant 0 valued variables
S0x and Ey0.

Analogously to the compass model, we have two types of constraints:

Neighbourship constraints. For each square on the board we state that ex-
actly one of the four line segments bordering it will be a centerline, i.e. the
sum of the corresponding variables is 1. For example, for the square (2, 4)
the constraint is: S14 + E23 + S24 + E24 = 1.

Placement constraints. For each domino, consider all its possible placements.
We state that exactly one of these placements has to be selected, i.e. from
amongst the line segments in the centre of these placements, exactly one will



be a domino centerline. For example, the 〈0, 2〉 domino of Fig. 4 gives rise
to the following constraint: E22 + S34 + E44 = 1.

Note that again both constraint types are of the same form: the sum of some
0-1 variables is 1. Two implementations are evaluated for the

∑
n Xi = 1 con-

straint: one using the sum/3 global constraint of SICStus Prolog, the other using
indexicals. For the latter we make use of the fact that the SICStus clpfd library
is capable of compiling linear arithmetic constraints to indexicals. For exam-
ple, an FD-predicate implementing a three-way sum constraint can be specified
as sum3(A,B,C) +: A+B+C #= 1. Measurements show that the FD-predicate is
faster up to 5 summands, and slower above that.

Shaving. The shaving technique [5] was introduced to students in the Battle-
ship puzzle case study. There it was used to exclude a specific value (the one
corresponding to “sea”) from the domain of the FD variables describing the
squares of the board. The process of shaving was performed relatively rarely,
before labeling the placement of ships of each colour. Experiments showed that
it is worthwhile to do shaving, but it does not pay off to do repetitive shaving
(i.e. repeat the shaving, until no domains are pruned).

A slightly more general shaving scheme is presented in the Domino case study.
We still try to prove inconsistency by setting an FD variable to a concrete value.
However, one can specify multiple values to be tried in shaving, one after the
other. The frequency of doing (non-repetitive) shaving can also be prescribed: a
shaving scan can be requested before labeling every kth variable.

In the compass model a shaving step involves scanning all the compass vari-
ables. Out of the two opposite compass values (e.g. northern and southern) it
is enough to try at most one, because the neighbourship constraints will force
the shaving of the other value. Also, shaving all compass variables with two non-
opposite values will result in all domino variables being substituted with all their
possible values, because of the placement constraints. In the compass model we
thus try shaving with [n,w] and [n].

In the border model we explore shaving variants using value sets [0], [1], and
[0, 1].

Performance evaluation. Table 3 shows the test sets used in the evaluation of
the two domino solver variants. Altogether we have 63 test cases, which were
grouped into four sets, based on the performance of the solvers. The difficulty
seems to be most correlated to the number of solutions. The test cases can be
downloaded from [10].

We evaluate the effect of various parameters on the performance of the pre-
sented solutions. The following is a list of tunable parameters and their settings.
We will later refer to these using the phrases typeset in italics.

– labeling:
• which kind of variables to label (only in the compass model): domino

variables (DV ) or compass variables (CV ),
• variable selection options: leftmost, ff, ffc



Test set
Number
of Tests

Best
average
time (sec)

Number of
solutions
(average)

Description

base 16 0.08 19 very basic tests for d = 1..25
easy 24 0.38 13 easy tests mostly of size d = 15..25
diff 22 41 110 difficult tests of size d = 28, 30
hard 1 332 1536 a very hard test of size d = 28

Table 3. Test sets for the Domino problem

– shaving frequency (freq. =) 1, 2, 3, . . . , once (only before labeling), none
(no shaving)

– values shaved (shave = )
• (compass model): [n,w], [n]
• (border model): [0], [1], [0,1]

– base constraint implementation:
• (compass model): implementing X = c ⇔ Y = d through reification

(reif ), or by using an indexical for implication (impl), called twice, or
by using an indexical for equivalence (equiv)

• (border model): implementing the
∑

n Xi = 1 constraint using the li-
brary predicate sum/3 (libsum), or using an FD-predicate for n ≤ 5 and
sum/3 otherwise (fdsum)3.

Table 4 presents performance results for some combinations of the above
parameters, run with SICStus Prolog version 3.10.1 on a VIA C3 866 MHz
processor (roughly equivalent to a 600 MHz Pentium III). For each test case all
solutions were collected, with a CPU time limit of 1800 seconds (except for the
hard test case, where the limit was 7200 seconds).

Table 4 has three parts, presenting the results for the border model, for the
compass model with DV labeling, and for the compass model with CV labeling.
For each part, a full header line shows those parameter-settings which produced
the best results. In subsequent lines the first column shows a (possibly empty)
variation in the settings, while the subsequent columns show the performance
results. Here two figures are given: the first is the total run-time in seconds,
while the second one is the total number of backtracks, both for all test cases
in the test-set. The > symbol in front of the numbers indicates that there was
a time-out while running at least one test case within the test-set. Note that
backtracks during shaving are not counted.

The case study is now concluded with a brief evaluation of the results. Over-
all, the simpler border model seems to be faster than the compass model, except
for the hard test case.

The border model involves Boolean variables only, so obviously the ff vari-
able selection gives exactly the same search space as the leftmost one (as indi-
cated by the same backtrack count). Intuitively, the leftmost strategy should
3 The threshold of 5 seems to be optimal for SICStus Prolog. Additional measurements

(not shown in the Table) give poorer results for thresholds of 4 and 6.



Variation base easy diff hard

border model, leftmost, freq. = 2, shave = [1], fdsum

1.56 1 9.26 8 910 1399 1373 2254
ff 1.53 1 9.18 8 910 1399 1351 2254
ffc 1.56 1 9.85 8 1792 2838 2181 3732
freq. = 1 1.63 1 9.59 3 1100 787 1642 1277
freq. = 3 1.53 1 9.28 20 931 2436 1370 3851
shave = [0] 1.29 2 11.04 103 1532 10719 2306 17300
shave = [0,1] 1.36 1 9.45 7 904 1324 1370 2150
libsum 2.75 1 13.85 8 1193 1399 1782 2254
freq. = once 1.41 1 10.93 1663
freq. = none 2.68 818 49.73 21181

compass model, DV labeling, ff, freq. = 3, shave = [n, w], impl

3.17 1 18.57 19 2536 3597 332 477
leftmost 3.16 1 18.95 38 3389 8782 932 2547
ffc 3.19 1 17.34 17 >3790 >5374 2722 4095
freq. = 2 3.28 1 18.56 13 2516 2074 343 288
freq. = 4 3.15 1 19.06 41 2543 5720 353 727
shave = [n] 2.92 13 23.84 75 3971 11012 737 1820
reif 3.94 1 22.10 19 2670 3597 349 477
equiv 2.99 1 18.83 19 2691 3597 354 477

compass model, CV labeling, ff, freq. = 3, shave = [n, w], impl

3.18 1 16.61 21 1684 2398 2570 3907
leftmost 3.18 1 16.59 21 1684 2398 2571 3907
ffc 3.18 1 19.28 25 >6606 >9840 >7200 >9343
shave = [n] 2.83 5 20.84 73 2600 6889 4609 12697

Table 4. Performance of the Domino solutions

be faster, as its variable selection algorithm is simpler. In practice, both ff and
leftmost settings give the same results (with a 2% variation, probably due to
measurement errors).

For both models the best shaving frequency seems to be around 2-3. With a
single shaving or no shaving at all, the performance is very poor.

In the border model, shaving the [1] value is bound to cause two constraints
to fully instantiate all their variables, hence its performance is better than that
of shaving [0]. On the other, hand shaving with both [0, 1] gives a negligible
reduction in the number of backtracks, and practically the same time as the [1]
variant.

There are some open issues. For example, it would be interesting to find
out those characteristics of the hard test case, which make the compass model
more suitable for it. It also needs to be investigated, why do we get very poor
performance with the ffc variable selection strategy.



6 Major assignments

In 1997 and 1998 the major assignments were the same: writing a Nonogram
solver [12]. The major assignments of the 1999 and 2000 spring semesters, the
Battleship and Domino puzzles, later became part of the course as case studies.
These were discussed in the previous section. In this section the major assign-
ments of the last two years are briefly described.

6.1 The Tents puzzle

A rectangular board of size n ∗ m is given. Certain fields in the board contain
trees. The task is to tie a single tent to each tree. The tent should be placed on a
field next to its tree, either to the south, west, north, or east, but not diagonally.
No tents touch each other, not even diagonally. As an additional constraint, the
number of tents is specified for some rows and columns.

Figure 6 shows an instance of the puzzle for n = m = 5, together with its
solution, where the trees are denoted by Υ and the tents by the ∆ symbol. The
numbers in front of the board and above it are the tent counts for the rows and
the columns.

1 1 1

0

3

Υ

Υ

Υ

Υ Υ

1 1 1

0

3

Υ

Υ

Υ

Υ Υ

∆ ∆

∆∆ ∆

Fig. 6. A Tents Puzzle and its solution

The puzzle is described by a Prolog structure t(RCs ,CCs ,Ts ), where RCs

is a list of length n, containing the tent-counts of the rows. Similarly the list CCs
of length m gives the tent-counts of the columns, while Ts is a list specifying
the coordinates of the trees in the form of Row -Column pairs. In the first two
lists, -1 stands for an unspecified count. A solution is a list which, for each tree
as listed in Ts , gives the direction in which its tent should be placed. The latter
is specified as one of the letters s, w, n, or e. Below is a sample run of the tents
program:

| ?- tents(t([0,-1,-1,3,-1],[1,1,-1,-1,1],[1-2,2-5,3-3,5-1,5-5]), Dirs).

Dirs = [s,w,s,n,n] ? ;

no



6.2 The Magic Spiral puzzle

In this puzzle a square board of n ∗ n fields is given. The task is to place integer
numbers, chosen from the range [1..m], m ≤ n, on certain fields of the board
such that the following conditions hold:

1. in each row and each column all integers in [1,m] occur exactly once, and
there are n − m empty fields;

2. along the spiral starting from the top left corner, the integers follow the pat-
tern 1, 2, . . . m, 1, 2, . . . ,m, . . . (number m is called the period of the spiral).

Initially, some numbers are already placed on the board. Figure 7 shows an
instance of the puzzle for n = 7 and m = 4, as well as its (single) solution.

4

1

1 2 3 4

2 3 4 1

1 3 4 2

4 2 3 1

3 1 4 2

4 3 2 1

2 1 4 3

Fig. 7. A Magic Spiral Puzzle and its solution

The puzzle is specified as a structure spiral(n,m,Ps ), where Ps is a list of
i(Row ,Column ,Value ) triplets specifying the known elements on the board. A
solution is simply a matrix represented as a list of lists of integers, where 0 means
an empty field, while other integers correspond to the values on the board. Here
is a sample run of the spiral program:

| ?- magic_spiral(spiral(7,4,[i(2,4,4),i(3,1,1)]), SpTable).

SpTable = [[0,0,1,2,3,0,4],[2,0,3,4,1,0,0],[1,3,4,0,0,2,0]|...] ? ;

no

7 Examinations

The exams are in writing, with some verbal interaction. The students are asked
to solve two simpler problems selected, for the given exam, from the following
four topics: CLP(Q), CLP(B), CHR, Mercury. Next, they are asked to write an
indexical and a global constraint, similar to ones given as minor assignments



shown in Fig. 3. Finally, they have to solve a simple CLP(FD) problem, usually
involving reification.

In the past years there were some puzzle related problems issued in this last
category.

The first such task, used in 1999, is related to the Nonogram puzzle. The
students were asked to write a predicate constraining a list of 0-1 variables to
contain a specified sequence of blocks of 1’s. This is the base constraint to be
posted for each row and column of a nonogram puzzle.

The task was thus to write the following predicate:
blocks(Bits, N, Lengths ): N is a given integer, Lengths is a given list of
integers, and Bits is a list of N 0..1 valued constraint variables. The list Lengths
specifies the lengths of the blocks (maximal continuous sequences of 1’s) in Bits .
For example [0,1,1,0,1,1,1] contains two blocks and their lengths are [2,3].
Examples:

| ?- blocks(Bits, 7, [2,3]).

Bits = [_A,1,_B,_C,1,1,_D],

_A in 0..1, _B in 0..1, _C in 0..1, _D in 0..1 ?

| ?- blocks(Bits, 7, [2,3]), Bits=[0|_].

Bits = [0,1,1,0,1,1,1] ?

This task proved to be a bit too difficult, but when an auxiliary predicate
was proposed, most students could solve it.

The second exam task, from spring 2000, is linked to the Skyscrapers puzzle.

1 2

2 1

3

3

1

1 2

2 4 3 1

2 3 1 2 4 1

4 3 1 2 3

3 1 2 4 3

1

Fig. 8. A Skyscrapers puzzle and its solution

The Skyscrapers puzzle. A permutation of integers from the [1,n ] interval is
to placed in each row and column of a square board, where n is the size of the
board. Each field of the board represents a skyscraper, the number in the field
is the height of the building. There are some numbers shown by the side of the
square, they indicate how many skyscrapers are visible from these directions.
A skyscraper is visible, if all buildings between it and the viewer are of smaller
height. In Fig. 8 a sample puzzle is shown with its solution.



The students were given the above puzzle description and were then asked
to write a CLP(FD) predicate which implements the following constraint:

visible(List, Length, NVisible ): List is a permutation of integers be-
tween 1 and Length , in which the number of elements visible from the front
is NVisible . An element of the list is visible from the front, if it is greater than
all elements preceding it. Examples:

| ?- visible(L,3,3), labeling([], L).

L = [1,2,3] ? ; no

| ?- visible(L,3,2), labeling([], L).

L = [1,3,2] ? ; L = [2,1,3] ; L = [2,3,1] ? ; no

8 Discussion

This section presents a brief discussion of some general issues related to the topic
of this paper.

The course. The constraint course seems to be fairly successful. In spite of the
competition with less-demanding elective courses, a large number of students
enroll in the course. There is a relatively large drop-out rate: last year only
29 students completed the course, out of the 55 who had enrolled in it. The
biggest obstacle seems to be the compulsory major assignment, which requires
a considerable amount of work to complete. On the other hand, those who do
submit the assignment, get very good grades: last year 24 students got the highest
grade, 5, and only five got the next highest, 4.

The assignments. The recently introduced minor assignments were quite popu-
lar, they gave the opportunity to practice some of the techniques described in
the lectures. Students were given extra points for correct assignments, half the
points were awarded even to students with late submissions.

The major assignment, which involves student competition seems to give
good motivation. Students compete not only against each other, but they would
also like to beat the teacher’s solution, which does happen in some cases. There
was quite a bit of traffic on the course mailing list as the submission deadline
approached. The progress of some students can be seen from the questions they
pose: first they write just the necessary constraints, then they introduce some
redundant ones, and finally they try various labeling schemes and shaving. There
were a lot of questions regarding shaving, this seems to be one of the most difficult
topics of the course.

Automated testing of assignments was found very useful. Students can submit
their solutions any number of times, only the last submission is marked. Students
like the testing tool as they get almost immediate feedback, at least for the
minor assignments. Regarding the major assignment, we got some suggestions
to improve the testing interface, so that students can specify which test cases to
run.



Logic puzzles. Tasks involving puzzles seem to be very good means for teaching
constraints. Simpler puzzles are attractive because of the very concise, logical
solutions, see e.g. the knights and knaves program in the Appendix. More com-
plex puzzles give a good opportunity to present the phases of solving constraint
problems: modelling, establishing constraints, enumeration of solutions. Within
each phase a lot of relevant issues can be discussed, as shown in the Domino
case study (Sect. 5). Students then have to go through this process themselves,
when solving the major assignment.

With logic puzzles, one can try solving them by hand. Since humans rarely
do backtracking search, the human process of solution often gives clues how to
deduce more information, avoiding unnecessary search.

Generating puzzles. Logic puzzles made for humans are not big enough for com-
puter programs to compete. On the other hand, a good puzzle solver can often
be used for generating puzzles. This approach was actually used in the last few
years for generating test cases for both the DP and the constraints course.

6

2

6

4

Fig. 9. A larger Magic Spiral puzzle (n = 11, m = 6, difficulty=10)

For example, a uniquely solvable Magic Spiral puzzle is generated from the
following parameters: the size (n), the period (m) and a difficulty grade on the
scale 0..10. The solver is invoked with the n, m parameters, and no integers
placed on the board. By using a randomizing labeling scheme we arrive at a
random magic spiral. In the next step we omit a randomly selected number from
the spiral, and check, again using the solver, that the resulting problem has a
single solution4. If the deletion leads to multiple solutions, we try other deletions.
By repeating this process we arrive at a (locally) minimal set of numbers which
4 Alternatively, we may insist that the resulting problem is solvable without any la-

beling (but with a single shaving pass). This latter scheme was used in generating
the puzzle of Fig. 9.



still result in a unique solution. If difficulty 10 was requested, we return this as
the puzzle. Otherwise we put back some numbers, again randomly selected (for
difficulty 0 we put back half the numbers taken away, for intermediate difficulties,
proportionally less). Figure 9 shows a puzzle, difficulty grade 10, generated by
the above method.

9 Conclusions

We have presented an overview of the constraint course at Budapest University
of Technology and Economics. We argued that puzzles of various kind and dif-
ficulty can be successfully used in various roles during the course: programming
examples, assignments, case studies.

We believe that the use of puzzles in all these roles contributed to the success
of the course.

Acknowledgements

I am grateful to Tamás Benkő, for the numerous fruitful discussions on how to
teach constraints and for developing the material for the Mercury part. Mats
Carlsson was always at hand when I had problems with understanding CLP. He
also kindly let me use material from his CLP course at Uppsala University. The
major assignments presented here were originally developed for the DP course,
together with Péter Hanák, Tamás Benkő, and Dávid Hanák. Dávid Hanák and
Tamás Szeredi, the developers of the FDBG debugging tool, produced the first
version of the material describing this tool.

Thanks are also due to all the students of the course, who patiently let me
learn the secrets of constraint programming while I was pretending to teach
them.

References

[1] Alain Colmerauer. An introduction to Prolog III. Communications of the ACM,
33(7):69–90, July 1990.

[2] Dávid Hanák, Tamás Benkő, Péter Hanák, and Péter Szeredi. Computer aided
exercising in Prolog and SML. In Proceedings of the Workshop on Functional and
Declarative Programming in Education, PLI 2002, Pittsburgh PA, USA, October
2002.

[3] Dávid Hanák and Tamás Szeredi. Finite domain constraint debugger. In SICStus
Manual (Chapter 36) [8].

[4] Warwick Harvey and Joachim Schimpf. Eclipse sample code: Domino, 2000.
http://www-icparc.doc.ic.ac.uk/eclipse/examples/domino.ecl.txt.

[5] Paul Martin and David B. Shmoys. A new approach to computing optimal sched-
ules for the job-shop scheduling problem. In Proceedings of the 5th International
IPCO Conference, pages 389–403, 1996.

[6] Will Shortz, editor. Brain Twisters from the First World Puzzle Championships.
Times Books, February 1993.



[7] Will Shortz and Nick Baxter, editors. World-Class Puzzles from the World Puzzle
Championships. Times Books, May 2001.

[8] SICS, Swedish Institute of Computer Science. SICStus Prolog Manual, 3.10, Jan-
uary 2003.

[9] Raymond M. Smullyan. What is the Name of This Book? Prentice Hall, Engle-
wood Cliffs, New Jersey, 1978.

[10] Péter Szeredi. CLP resources, 2003. http://www.cs.bme.hu/~szeredi/clp.html.
[11] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and

evaluation of the constraint language cc(FD). In A. Podelski, editor, Constraint
Programming: Basics and Trends, pages 293–316. Springer, Berlin, Heidelberg,
1995.

[12] Toby Walsh. Teaching by Toby Walsh: Nonogram solver .
http://www-users.cs.york.ac.uk/~tw/Teaching/nonogram.html.

Appendix: The Knights, Knaves and Normals puzzle

This appendix describes a CLP(FD) program for solving a generic puzzle type,
made popular by Raymond Smullyan, e.g. in [9].

The puzzle. There is an island, on which there are three kinds of natives: knights
always tell the truth, knaves always lie, and normals sometimes lie and some-
times tell the truth. Some local people make statements about themselves and
we have to find out what kind of natives they are.

For example, in puzzle 39 from [9] three natives make the following state-
ments:

A says: I am normal.
B says: That is true.
C says: I am not normal.

We know that A, B, and C are of different kinds. Determine who they are.

The solution. In Fig. 10 we present a CLP(FD) program for solving puzzles of
the above kind. Knights tell true statements, i.e. ones with the truth value 1,
therefore knights are represented by the integer value 1. For analogous reasons,
knaves are encoded as 0. Finally, a normal person is represented by the value 2.
Statements are Prolog structures with the following syntax:

St ---> Ntv = Ntv | Ntv says St | St and St | St or St | not St

where St denotes a statement, and Ntv an integer or a constraint variable repre-
senting a native, i.e. one in the 0..2 range (says, and, or, and not are declared
operators). As syntactic “sweeteners”, we allow statements of form Ntv is Kind,
where Kind is one of the atoms knight, knave, or normal. This gets transformed
to Ntv = Code, where Code is the numeric encoding of Kind. To “sweeten” the
output, we define an appropriate portray predicate.

The entry point of the program is the says/2 predicate. X says St expresses
the constraint that native X says the statement St. With this interface the above
puzzle can be transformed into an “almost” natural language Prolog goal, shown
at the bottom of Fig. 10.



:- op(700, fy, not). :- op(800, yfx, and).

:- op(900, yfx, or). :- op(950, xfy, says).

% Native A can say sentence Sent.

A says Sent :- truth(A says Sent, 1).

% native(X): X is a native:
native(X) :- X in 0..2.

% truth(S, Value): The truth value of sentence S is Value.

truth(X = Y, V) :-

native(X), native(Y), V #<=> (X #= Y).

truth(X says S, V) :-

native(X), truth(S, V0),

X #= 2 #\/ % Either X is normal or
(V #<=> V0 #= X). % the truth of what he says (V0) should be

% equal to him being a knight (X)
truth(S1 and S2, V) :-

truth(S1, V1), truth(S2, V2), V #<=> V1 #/\ V2.

truth(S1 or S2, V) :-

truth(S1, V1), truth(S2, V2), V #<=> V1 #\/ V2.

truth(not S, V) :-

truth(S, V0), V #<=> #\ V0.

truth(X is Kind, V) :-

code(Kind, Code), truth(X = Code, V).

% code(Kind, Code): Atom Kind is encoded by integer Code.

code(knave, 0).

code(knight, 1).

code(normal, 2).

portray(Code) :-

code(Kind, Code), write(Kind).

| ?- A says A is normal,

B says A is normal,

C says not C is normal,

all_different([A,B,C]),

labeling([], [A,B,C]).

A = knave, B = normal, C = knight ? ;

no

Fig. 10. The CLP(FD) program for the knights, knaves, and normals puzzle


