
Practical: HDF5 basicsPractical: HDF5 basics

This practical is an introduction to HDF5. It shows how to read existing HDF5 files, and how to

create and modify your own files.

Before you startBefore you start

Running the examplesRunning the examples

To run a Python example type the following:

python tutorial.py

where ‘tutorial.py’ is the name of your python source.

Viewing the contents of an HDF5 fileViewing the contents of an HDF5 file

The commandline utility ‘h5dump’ allows to view the contents of a data file, like this:

h5dump SampleFile.h5

For large datasets only the header data can be displayed:

h5dump -H SampleFile.h5

There are many more options. See https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Dump

for reference or display the help message:

h5dump --help

Reading an existing HDF5 fileReading an existing HDF5 file

In this section we’re going to read data from an existing HDF5 file.

View the contentsView the contents

An HDF5 file has a container or tree structure, very similar to folders or directories in a Linux or

Windows file system. The root container is always called “/”, just as in a file system, and containers

may contain other containers.

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

1 von 9 28/01/2017 11:18

The leaves of the tree (or “files” if we compare it to a file system) are datasets. A dataset has a

header and a data array. The header contains information such as the name of the dataset, the

dimensions of the data array, the type of its elements, other annotations and user-defined attributes.

To start with, download example.h5 to your local file system:

$ wget http://www2.epcc.ed.ac.uk/~amrey/ARCHER_Data_Management/_downloads/example.h5

We can have a look at its contents using ‘h5dump’:

$ h5dump example.h5
HDF5 "example.h5" {
GROUP "/" {
 DATASET "dset" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (6, 15) / (6, 15) }
 DATA {
 (0,0): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
 (1,0): 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
 (2,0): 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
 (3,0): 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
 (4,0): 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
 (5,0): 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
 }
 }
}
}

This file has one dataset which is located in the root container (GROUP “/”) of the file. The dataset

is called “dset” and contains a ‘SIMPLE’ dataspace which is an array - in this case a 2-dimensional

array of size (6, 15). The type of the elements in the array is ‘H5T_STD_I32BE’, i.e. the values are

32-bit big-endian integers.

Accessing the fileAccessing the file

Now we’re going to write some code to open the data file and close it again:

import h5py

f = h5py.File('example.h5')
print('Opened file')

This opens the file ‘example.h5’ and prints out a message. The options for creating or opening a file

are:

a:

opens an existing file for reading and writing or creates a new file otherwise. This is the default.

w:

creates a new file or opens and overwrites an existing one

r:

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

2 von 9 28/01/2017 11:18

opens an existing file with read-only access

r+:

opens an existing file for reading and writing

w-/x:

creates a new file and fails if the file already exists

See http://docs.h5py.org/en/latest/high/file.html for more details.

To execute this example, create a file (for example ‘tutorial.py’) with the source code above and run

it as explained in the section ‘Before you start’.

Reading dataReading data

Now modify the above example to read the data. As we have seen from the output of h5dump,

there is one dataset called “dset” in the root group “/”. To read it we assign the dataset to a variable

(this assumes that the file ‘f’ has been opened already):

dataset = f['dset']

Now you can read the dataset contents using the NumPy slicing syntax. For example to get the

dataset entry at position (1,5) you select this:

dataset[1, 5]

Here are a few more examples:

the first row (row 0):

dataset[0][:]

the column at position 3:

dataset[..., 3]

See http://docs.h5py.org/en/latest/high/dataset.html#reading-writing-data for more details.

In our example (reading the h5dump output above) we know that the dataset has size (6, 15). Now

can print out all the contents of the dataset to the command line, for example by iterating over the

two dimensions in a nested loop or by printing each row.

Creating groups and datasetsCreating groups and datasets

This section shows how to modify the structure of an HDF5 file, how to create and write datasets,

and how to attach attributes to groups or datasets.

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

3 von 9 28/01/2017 11:18

Creating groupsCreating groups

As we’ve seen above, the example we were reading has only one group, the root container “/”. Now

we’re going to to create a few more groups.

After opening the file and reading its contents, this is how you create a new group named

‘Earthquake’:

group = f.create_group("Earthquake")

Note that groups can be created using absolute paths or relative paths:

laq = group.create_group("/Earthquake/Laquila")

This is the same as:

laq = group.create_group("Laquila")

Now create the following group structure:

You can view and check the group structure using h5dump.

Visting the group structureVisting the group structure

We can also view the group structure by defining a function to recursively visit all objects in a group.

For example to print the name of each group:

def print_name(name):
print(name)

group.visit(print_name)

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

4 von 9 28/01/2017 11:18

If the visit function returns any other value than None the recursion will stop. Now write a function

that finds the group called “Laquila” or returns None if there is no such group.

Creating a new datasetCreating a new dataset

Now we’re going to add a new dataset in the group “/Earthquake/Laquila/Traces”. A dataset has a

name and is characterised by its size, its shape (the shape of the array) and the datatype (the type

of the stored elements). For our scenario we are going to create a dataset that contains a

2-dimensional array of integers.

This is how to create a 2-dimensional array of dimensions (5, 10) with the name “day1” within the

group “Laquila”:

dataset = laq.create_dataset("day1", (5,10), dtype='i');

There are many predefined datatypes. The native type ‘i’ corresponds to a C int type. For example,

on an Intel based PC, this type is the same as H5T_STD_I32LE.

Writing to a datasetWriting to a dataset

Now you can fill the dataset with some data:

dataset[(0,0)] = 23
/* add more data (integer values) to the array here */
...

Try to create more datasets in various groups and write to and read from them. You can always

check the contents of your HDF5 file using h5dump.

AttributesAttributes

Attributes can be attached to HDF5 datasets or groups. An attribute has two parts: a name and a

value. See http://docs.h5py.org/en/latest/high/attr.html for more information. Attributes are defined

with a dataspace and type in the same way as datasets.

Let’s create a string attribute for the root group of our HDF5 file, stating the author:

value = "Amy Krause"
attr = f.attrs.create("author", value)

The attribute is named ‘author’ and the dataspace and data type are determined by reflection - in

this case it is a scalar dataspace (one element) of type String. You can also create attributes with

values that are arrays.

Now add an attribute to the dataset that you created above, within group ‘Laquila’, using the same

technique, to attach a timestamp to your dataset. Remember to use dataset object instead of the file

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

5 von 9 28/01/2017 11:18

object if you create an attribute for a dataset, or the group object if you’re attaching an attribute to a

group.

Modifying the HDF5 file structureModifying the HDF5 file structure

An HDF5 file is structured just like a file system, with directories or folders (called containers) and

files (called datasets). The library allows to modify this structure in the same way as you can modify

a file system.

Moving a datasetMoving a dataset

You can easily move the dataset “dset” from the root container into the container “/Earthquake

/Laquila/Traces/” by calling move on a group or a file, using absolute paths or relative paths. The

following also renames the dataset from “dset” to “day2”:

f = h5py.File('example.h5')
f.move("dset", "Earthquake/Laquila/Traces/dset")

group = f['Earthquake/Laquila/Traces/']
group.move("dset", "day2")

Symbolic linksSymbolic links

It is also possible to create symbolic links to point to objects in other locations in the HDF5 file

structure. Linked objects can be groups or datasets. For example, create a soft link to the dataset

created above from within another group:

f["target"] = h5py.SoftLink('/source')

The source name is either an absolute path of the source of the link, or it a relative path within a

group. Now create a symbolic link to the dataset “Earthquake/Traces/dset” from some other location

within the file structure.

External linksExternal links

External links are links from an HDF5 file to an object in another HDF5 file. Once created the

external object behaves like it is part of the file.

Download the dataset NapaValley.h5. Then link a group ‘Earthquake/NapaValley/’ in your file to

the group ‘Traces’ in the external file:

f[SOURCE_GROUP] = h5py.ExternalLink(<TARGET_FILE>, <TARGET_GROUP>)

In the command above replace TARGET_GROUP with the group in the external file and

SOURCE_GROUP with a new group in your file that points to the external group. Now you can read

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

6 von 9 28/01/2017 11:18

this new group as if it was part of the source HDF5 file.

Partial I/OPartial I/O

Regions and hyperslabsRegions and hyperslabs

As HDF5 is commonly used when writing or reading files in a parallel application, it is possible to

select certain elements of a dataset rather than the whole array, thus allowing to write different

portions of a file or dataset from each process. Regions of a dataset are called hyperslabs.

For example you would use this when writing an MPI application in which data is distributed across

processes. As shown below each row (or column) of a shared array is read by a different process

and each process calculates a result from this data and writes it to a shared output file. The

selection of hyperslabs provides you with a view of the dataset region that each process reads or

writes, without having to worry about the physical location in the file or its shape and size. The

HDF5 library also supports the selection of independent elements of a dataset and creating unions

of selections. It uses numpy indexing and slicing notation for selecting rows, columns or any other

subset of a multi-dimensional array. See http://docs.scipy.org/doc/numpy/reference

/arrays.indexing.html for reference.

An HDF5 hyperslab is defined by the parameters:

offset

stride

count (the number of blocks)

block size

In the following example, select a slice of the dataset you created above, for example:

d = dataset[1:3, 2:5]

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

7 von 9 28/01/2017 11:18

This selects the slice (in this case a rectangle) of size (2,3) located at position (1,2) in the array, like

this:

You can also change the size of blocks and the stride between the blocks, for example:

d = dataset[1:8:3, 2:9:3]

To modify the dataset you assign an array to the selected region:

dataset[1:3, 2:5] = [[0,0,0], [0,0,0]]

Remember that the array that you’re writing must be the same size as the region that you select!

Use h5dump to check how the dataset looks now. Which elements have been replaced by new

ones?

SlicesSlices

You can read or write a whole column or row of a dataset by selecting a slice using the notation ”:”.

The example below selects the first row of our dataset:

dataset[0,:]

If there are more dimensions then you have to add ”:” for each of them, for example:

multidim_dataset[:,4,:,:]

Or you can combine slices and regions:

dataset[0:4,:]

The above selects the first 4 rows of the dataset.

Try reading and writing a few more slices and hyperslabs of the dataset and check with h5dump

how it behaves.

Advanced indexingAdvanced indexing

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

8 von 9 28/01/2017 11:18

You can also select single elements from a dataset, for example to write a sequence of points:

dataset[(0,0), (3,3), (3,5), (5,6)] = [1, 2, 3, 4]

For any axis you can select a list of points:

dataset[0, [0,3,5]]
dataset[0:5, [1,2,3]]

What are the shapes of the resulting arrays in the above examples? Now select the subarray of

rows 0, 2 and 5 and all columns except the first and the last. What is the correct indexing

expression for this?

Practical: HDF5 basics — HDF5 Basics 1.0 documentation http://www2.epcc.ed.ac.uk/~amrey/FDM_2015/Python/

9 von 9 28/01/2017 11:18

