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Preface

0.1 Introduction

0.2 What is econometrics, and why study it?

Econometrics is the application of statistical methods to the quantification and critical
assessment of hypothetical economic relationships using data. It is with the aid of
econometrics that we discriminate between competing economic theories and put
numerical clothing onto the successful ones. Econometric analysis may be motivated by
a simple desire to improve our understanding of how the economy works, at either the
microeconomic or macroeconomic level, but more often it is undertaken with a specific
objective in mind. In the private sector, the financial benefits that accrue from a
sophisticated understanding of relevant markets and an ability to predict change may
be the driving factor. In the public sector, the impetus may come from an awareness
that evidence-based policy initiatives are likely to have the greatest impact.

It is now generally recognised that nearly all professional economists, not just those
actually working with data, should have a basic understanding of econometrics. There
are two major benefits. One is that it facilitates communication between
econometricians and the users of their work. The other is the development of the ability
to obtain a perspective on econometric work and to make a critical evaluation of it.
Econometric work is more robust in some contexts than in others. Experience with the
practice of econometrics and a knowledge of the potential problems that can arise are
essential for developing an instinct for judging how much confidence should be placed
on the findings of a particular study.

Such is the importance of econometrics that, in common with intermediate
macroeconomics and microeconomics, an introductory course forms part of the core of
any serious undergraduate degree in economics and is a prerequisite for admission to a
serious Master’s level course in economics or finance.

0.3 Aims

The aim of EC2020 Elements of econometrics is to give you an opportunity to
develop an understanding of econometrics to a standard that will equip you to
understand and evaluate most applied analysis of cross-sectional data and to be able to
undertake such analysis yourself. The restriction to cross-sectional data (data raised at
one moment in time, often through a survey of households, individuals, or enterprises)
should be emphasised because the analysis of time series data (observations on a set of
variables over a period of time) is much more complex. Chapters 11 to 13 of the
textbook, Introduction to econometrics, and this subject guide are devoted to the
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analysis of time series data, but, beyond very simple applications, the objectives are
confined to giving you an understanding of the problems involved and making you
aware of the need for a Master’s level course if you intend to work with such data.

Specifically the aims of the course are to:

develop an understanding of the use of regression analysis and related techniques
for quantifying economic relationships and testing economic theories

equip you to read and evaluate empirical papers in professional journals

provide you with practical experience of using mainstream regression programmes
to fit economic models.

0.4 Learning outcomes

By the end of this course, and having completed the Essential reading and activities,
you should be able to:

describe and apply the classical regression model and its application to
cross-sectional data

describe and apply the:

• Gauss–Markov conditions and other assumptions required in the application of
the classical regression model

• reasons for expecting violations of these assumptions in certain circumstances

• tests for violations

• potential remedial measures, including, where appropriate, the use of
instrumental variables

recognise and apply the advantages of logit, probit and similar models over
regression analysis when fitting binary choice models

competently use regression, logit and probit analysis to quantify economic
relationships using standard regression programmes (Stata and EViews) in simple
applications

describe and explain the principles underlying the use of maximum likelihood
estimation

apply regression analysis to fit time-series models using stationary time series, with
awareness of some of the econometric problems specific to time-series applications
(for example, autocorrelation) and remedial measures

recognise the difficulties that arise in the application of regression analysis to
nonstationary time series, know how to test for unit roots, and know what is meant
by cointegration.

2



0.5. How to make use of the textbook

0.5 How to make use of the textbook

The only reading required for this course is my textbook:

C. Dougherty, Introduction to econometrics (Oxford: Oxford University Press,
2016) fifth edition [ISBN 9780199676828].

The syllabus is the same as that for EC220 Introduction to econometrics, the
corresponding internal course at the London School of Economics. The textbook has
been written to cover it with very little added and nothing subtracted.

When writing a textbook, there is a temptation to include a large amount of non-core
material that may potentially be of use or interest to students. There is much to be said
for this, since it allows the same textbook to be used to some extent for reference as
well as a vehicle for a taught course. However, my textbook is stripped down to nearly
the bare minimum for two reasons. First, the core material provides quite enough
content for an introductory year-long course and I think that students should initially
concentrate on gaining a good understanding of it. Second, if the textbook is focused
narrowly on the syllabus, students can read through it as a continuous narrative
without a need for directional guidance. Obviously, this is particularly important for
those who are studying the subject on their own, as is the case for most of those
enrolled on EC2020 Elements of econometrics.

An examination syllabus is provided as an appendix to this subject guide, but its
function is mostly to indicate the expected depth of understanding of each topic, rather
than the selection of the topics themselves.

0.6 How to make use of this subject guide

The function of this subject guide differs from that of other subject guides you may be
using. Unlike those for other courses, this subject guide acts as a supplementary
resource, with the textbook as the main resource. Each chapter forms an extension to a
corresponding chapter in the textbook with the same title. You must have a copy of the
textbook to be able to study this course. The textbook will give you the information you
need to carry out the activities and achieve the learning outcomes in the subject guide.

The main purpose of the subject guide is to provide you with opportunities to gain
experience with econometrics through practice with exercises. Each chapter of the
subject guide falls into two parts. The first part begins with an overview of the
corresponding chapter in the textbook. Then there is a checklist of learning outcomes
anticipated as a result of studying the chapter in the textbook, doing the exercises in
the subject guide, and making use of the corresponding resources on the website.
Finally, in some of the chapters, comes a section headed ‘Further material’. This
consists of new topics that may be included in the next edition of the textbook. The
second part of each chapter consists of additional exercises, followed by answers to the
starred exercises in the text and answers to the additional exercises.

You should organise your studies in the following way:

first read this introductory chapter

3
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read the Overview section from the Review chapter of the subject guide

read the Review chapter of the textbook and do the starred exercises

refer to the subject guide for answers to the starred exercises in the text and for
additional exercises

check that you have covered all the items in the learning outcomes section in the
subject guide.

You should repeat this process for each of the numbered chapters. Note that the subject
guide chapters have the same titles as the chapters in the text. In those chapters where
there is a ‘Further material’ section in the subject guide, this should be read after
reading the chapter in the textbook.

0.7 How to make use of the website

You should make full use of the resources available at the Online Resource Centre
maintained by the publisher, Oxford University Press (OUP):
www.oup.com/uk/orc/bin/9780199567089. Here you will find PowerPoint slideshows
that provide a graphical treatment of the topics covered in the textbook, data sets for
practical work and statistical tables.

0.7.1 Slideshows

In principle you will be able to acquire mastery of the subject by studying the contents
of the textbook with the support of this subject guide and doing the exercises
conscientiously. However, I strongly recommend that you do study all the slideshows as
well. Some do not add much to the material in the textbook, and these you can skim
through quickly. Some, however, provide a much more graphical treatment than is
possible with print and they should improve your understanding. Some present and
discuss regression results and other hands-on material that could not be included in the
text for lack of space, and they likewise should be helpful.

0.7.2 Data sets

To use the data sets, you must have access to a proper statistics application with
facilities for regression analysis, such as Stata or EViews. The student versions of such
applications are adequate for doing all, or almost all, the exercises and of course are
much cheaper than the professional ones. Product and pricing information can be
obtained from the applications’ websites, the URL usually being the name of the
application sandwiched between ‘www.’ and ‘.com’.

If you do not have access to a commercial econometrics application, you should use
gretl. This is a sophisticated application almost as powerful as the commercial ones, and
it is free. See the gretl manual on the OUP website for further information.

Whatever you do, do not be tempted to try to get by with the regression engines built
into some spreadsheet applications, such as Microsoft Excel. They are not remotely

4
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adequate for your needs.

There are three major data sets on the website. The most important one, for the
purposes of this subject guide, is the Consumer Expenditure Survey (CES ) data set.
You will find on the website versions in the formats used by Stata, EViews and gretl. If
you are using some other application, you should download the text version
(comma-delimited ASCII) and import it. Answers to all of the exercises are provided in
the relevant chapters of this subject guide.

The exercises for the CES data set cover Chapters 1–10 of the text. For Chapters
11–13, you should use the Demand Functions data set, another major data set, to do
the additional exercises in the corresponding chapters of this subject guide. Again you
should download the data set in the appropriate format. For these exercises, also,
answers are provided.

The third major data set on the website is the Educational Attainment and Earnings
Function data set, which provides practical work for the first 10 chapters of the text
and Chapter 14. No answers are provided, but many parallel examples will be found in
the text.

0.8 Online study resources

In addition to the subject guide and the Essential reading, it is crucial that you take
advantage of the study resources that are available online for this course, including the
VLE and the Online Library.

You can access the VLE, the Online Library and your University of London email
account via the Student Portal at: http://my.londoninternational.ac.uk

You should have received your login details for the Student Portal with your official
offer, which was emailed to the address that you gave on your application form. You
have probably already logged into the Student Portal in order to register! As soon as
you registered, you will automatically have been granted access to the VLE, Online
Library and your fully functional University of London email account.

If you forget your login details at any point, please email uolia.support@london.ac.uk
quoting your student number.

0.8.1 The VLE

The VLE, which complements this subject guide, has been designed to enhance your
learning experience, providing additional support and a sense of community. It forms an
important part of your study experience with the University of London and you should
access it regularly.

The VLE provides a range of resources for EMFSS courses:

Electronic study materials: All of the printed materials which you receive from
the University of London are available to download, to give you flexibility in how
and where you study.

Discussion forums: An open space for you to discuss interests and seek support
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from your peers, working collaboratively to solve problems and discuss subject
material. Some forums are moderated by an LSE academic.

Videos: Recorded academic introductions to many subjects; interviews and
debates with academics who have designed the courses and teach similar ones at
LSE.

Recorded lectures: For a few subjects, where appropriate, various teaching
sessions of the course have been recorded and made available online via the VLE.

Audio-visual tutorials and solutions: For some of the first year and larger later
courses such as Introduction to Economics, Statistics, Mathematics and Principles
of Banking and Accounting, audio-visual tutorials are available to help you work
through key concepts and to show the standard expected in examinations.

Self-testing activities: Allowing you to test your own understanding of subject
material.

Study skills: Expert advice on getting started with your studies, preparing for
examinations and developing your digital literacy skills.

Note: Students registered for Laws courses also receive access to the dedicated Laws
VLE.

Some of these resources are available for certain courses only, but we are expanding our
provision all the time and you should check the VLE regularly for updates.

0.8.2 Making use of the Online Library

The Online Library (http://onlinelibrary.london.ac.uk) contains a huge array of journal
articles and other resources to help you read widely and extensively.

To access the majority of resources via the Online Library you will either need to use
your University of London Student Portal login details, or you will be required to
register and use an Athens login.

The easiest way to locate relevant content and journal articles in the Online Library is
to use the Summon search engine.

If you are having trouble finding an article listed in a reading list, try removing any
punctuation from the title, such as single quotation marks, question marks and colons.

For further advice, please use the online help pages
(http://onlinelibrary.london.ac.uk/resources/summon) or contact the Online Library
team: onlinelibrary@shl.london.ac.uk

0.9 Prerequisite for studying this subject

The prerequisite for studying this subject is a solid background in mathematics and
elementary statistical theory. The mathematics requirement is a basic understanding of
multivariate differential calculus. With regard to statistics, you must have a clear
understanding of what is meant by the sampling distribution of an estimator, and of the
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principles of statistical inference and hypothesis testing. This is absolutely essential. I
find that most problems that students have with introductory econometrics are not
econometric problems at all but problems with statistics, or rather, a lack of
understanding of statistics. There are no short cuts. If you do not have this background
knowledge, you should put your study of econometrics on hold and study statistics first.
Otherwise there will be core parts of the econometrics syllabus that you do not begin to
understand.

In addition, it would be helpful if you have some knowledge of economics. However,
although the examples and exercises relate to economics, most of them are so
straightforward that a previous study of economics is not a requirement.

0.10 Application of linear algebra to econometrics

At the end of this subject guide you will find a primer on the application of linear
algebra (matrix algebra) to econometrics. It is not part of the syllabus for the
examination, and studying it is unlikely to confer any advantage for the examination. It
is provided for the benefit of those students who intend to take a further course in
econometrics, especially at the Master’s level. The present course is ambitious, by
undergraduate standards, in terms of its coverage of concepts and, above all, its focus
on the development of an intuitive understanding. For its purposes, it has been quite
sufficient and appropriate to work with uncomplicated regression models, typically with
no more than two explanatory variables.

However, when you progress to the next level, it is necessary to generalise the theory to
cover multiple regression models with many explanatory variables, and linear algebra is
ideal for this purpose. The primer does not attempt to teach it. There are many
excellent texts and there is no point in duplicating them. The primer assumes that such
basic study has already been undertaken, probably taking about 20 to 50 hours,
depending on the individual. It is intended to show how the econometric theory in the
text can be handled with this more advanced mathematical approach, thus serving as
preparation for the higher-level course.

0.11 The examination

Important: the information and advice given here are based on the examination
structure used at the time this subject guide was written. Please note that subject
guides may be used for several years. Because of this we strongly advise you to always
check both the current Programme regulations for relevant information about the
examination, and the VLE where you should be advised of any forthcoming changes.
You should also carefully check the rubric/instructions on the paper you actually sit
and follow those instructions.

Candidates should answer eight out of 10 questions in three hours: all of the questions
in Section A (8 marks each) and three questions from Section B (20 marks each).

A calculator may be used when answering questions on this paper and it must comply
in all respects with the specification given with your Admission Notice.
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Remember, it is important to check the VLE for:

up-to-date information on examination and assessment arrangements for this course

where available, past examination papers and Examiners’ commentaries for the
course which give advice on how each question might best be answered.
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0.12. Overview

Review: Random variables and
sampling theory

0.12 Overview

The textbook and this subject guide assume that you have previously studied basic
statistical theory and have a sound understanding of the following topics:

descriptive statistics (mean, median, quartile, variance, etc.)

random variables and probability

expectations and expected value rules

population variance, covariance, and correlation

sampling theory and estimation

unbiasedness and efficiency

loss functions and mean square error

normal distribution

hypothesis testing, including:

• t tests

• Type I and Type II error

• the significance level and power of a t test

• one-sided versus two-sided t tests

confidence intervals

convergence in probability, consistency, and plim rules

convergence in distribution and central limit theorems.

There are many excellent textbooks that offer a first course in statistics. The Review
chapter of my textbook is not a substitute. It has the much more limited objective of
providing an opportunity for revising some key statistical concepts and results that will
be used time and time again in the course. They are central to econometric analysis and
if you have not encountered them before, you should postpone your study of
econometrics and study statistics first.
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0.13 Learning outcomes

After working through the corresponding chapter in the textbook, studying the
corresponding slideshows, and doing the starred exercises in the textbook and the
additional exercises in this subject guide, you should be able to explain what is meant
by all of the items listed in the Overview. You should also be able to explain why they
are important. The concepts of efficiency, consistency, and power are often
misunderstood by students taking an introductory econometrics course, so make sure
that you aware of their precise meanings.

0.14 Additional exercises

[Note: Each chapter has a set of additional exercises. The answers to them are
provided at the end of the chapter after the answers to the starred exercises in the text.]

AR.1 A random variable X has a continuous uniform distribution from 0 to 2. Define its
probability density function.

 

X

( )

s.d. s.d.

acceptance regionrejection region rejection region

2.5% 2.5%

probability 

density 

0 2 X 

AR.2 Find the expected value of X in Exercise AR.1, using the expression given in Box
R.1 in the text.

AR.3 Derive E(X2) for X defined in Exercise AR.1, using the expression given in Box
R.1.

AR.4 Derive the population variance and the standard deviation of X as defined in
Exercise AR.1, using the expression given in Box R.1.

AR.5 Using equation (R.9), find the variance of the random variable X defined in
Exercise AR.1 and show that the answer is the same as that obtained in Exercise
AR.4. (Note: You have already calculated E(X) in Exercise AR.2 and E(X2) in
Exercise AR.3.)

AR.6 In Table R.6, µ0 and µ1 were three standard deviations apart. Construct a similar
table for the case where they are two standard deviations apart.
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AR.7 Suppose that a random variable X has a normal distribution with unknown mean µ
and variance σ2. To simplify the analysis, we shall assume that σ2 is known. Given
a sample of observations, an estimator of µ is the sample mean, X. An investigator
wishes to test H0 : µ = 0 and believes that the true value cannot be negative. The
appropriate alternative hypothesis is therefore H1 : µ > 0 and the investigator
decides to perform a one-sided test. However, the investigator is mistaken because
µ could in fact be negative. What are the consequences of erroneously performing a
one-sided test when a two-sided test would have been appropriate?

AR.8 Suppose that a random variable X has a normal distribution with mean µ and
variance σ2. Given a sample of n independent observations, it can be shown that:

σ̂2 =
1

n− 1

∑(
Xi −X

)2

is an unbiased estimator of σ2. Is
√
σ̂2 either an unbiased or a consistent estimator

of σ?

0.15 Answers to the starred exercises in the textbook

R.2 A random variable X is defined to be the larger of the two values when two dice
are thrown, or the value if the values are the same. Find the probability
distribution for X.

Answer:

The table shows the 36 possible outcomes. The probability distribution is derived
by counting the number of times each outcome occurs and dividing by 36. The
probabilities have been written as fractions, but they could equally well have been
written as decimals.

red 1 2 3 4 5 6
green

1 1 2 3 4 5 6
2 2 2 3 4 5 6
3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6
6 6 6 6 6 6 6

Value of X 1 2 3 4 5 6
Frequency 1 3 5 7 9 11
Probability 1/36 3/36 5/36 7/36 9/36 11/36
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R.4 Find the expected value of X in Exercise R.2.

Answer:

The table is based on Table R.2 in the text. It is a good idea to guess the outcome
before doing the arithmetic. In this case, since the higher numbers have the largest
probabilities, the expected value should clearly lie between 4 and 5. If the
calculated value does not conform with the guess, it is possible that this is because
the guess was poor. However, it may be because there is an error in the arithmetic,
and this is one way of catching such errors.

X p Xp
1 1/36 1/36
2 3/36 6/36
3 5/36 15/36
4 7/36 28/36
5 9/36 45/36
6 11/36 66/36

Total 161/36 = 4.4722

R.7 Calculate E(X2) for X defined in Exercise R.2.

Answer:

The table is based on Table R.3 in the text. Given that the largest values of X2

have the highest probabilities, it is reasonable to suppose that the answer lies
somewhere in the range 15–30. The actual figure is 21.97.

X X2 p X2p
1 1 1/36 1/36
2 4 3/36 12/36
3 9 5/36 45/36
4 16 7/36 112/36
5 25 9/36 225/36
6 36 11/36 396/36

Total 791/36 = 21.9722

R.10 Calculate the population variance and the standard deviation of X as defined in
Exercise R.2, using the definition given by equation (R.8).

Answer:

The table is based on Table R.4 in the textbook. In this case it is not easy to make
a guess. The population variance is 1.97, and the standard deviation, its square
root, is 1.40. Note that four decimal places have been used in the working, even
though the estimate is reported to only two. This is to eliminate the possibility of
the estimate being affected by rounding error.
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X p X − µX (X − µX)2 (X − µX)2p
1 1/36 −3.4722 12.0563 0.3349
2 3/36 −2.4722 6.1119 0.5093
3 5/36 −1.4722 2.1674 0.3010
4 7/36 −0.4722 0.2230 0.0434
5 9/36 0.5278 0.2785 0.0696
6 11/36 1.5278 2.3341 0.7132

Total 1.9715

R.12 Using equation (R.9), find the variance of the random variable X defined in
Exercise R.2 and show that the answer is the same as that obtained in Exercise
R.10. (Note: You have already calculated µX in Exercise R.4 and E(X2) in
Exercise R.7.)

Answer:

E(X2) is 21.9722 (Exercise R.7). E(X) is 4.4722 (Exercise R.4), so µ2
X is 20.0006.

Thus the variance is 21.9722− 20.0006 = 1.9716. The last-digit discrepancy
between this figure and that in Exercise R.10 is due to rounding error.

R.14 Suppose a variable Y is an exact linear function of X:

Y = λ+ µX

where λ and µ are constants, and suppose that Z is a third variable. Show that
ρXZ = ρY Z

Answer:

We start by noting that
(
Yi −Y

)
= µ

(
Xi −X

)
. Then:

ρY Z =
E
[(
Yi −Y

)(
Zi −Z

)]
√
E

[(
Yi −Y

)2
]
E

[(
Zi −Z

)2
]

=
E
[
µ
(
Xi −X

)(
Zi −Z

)]
√
E

[
µ2
(
Xi −X

)2
]
E

[
µ2
(
Zi −Z

)2
]

=
µE
[(
Xi −X

)(
Zi −Z

)]
√
µ2E

[(
Xi −X

)2
]
E

[(
Zi −Z

)2
]

= ρXZ .

R.16 Show that, when you have n observations, the condition that the generalised
estimator (λ1X1 + · · ·+ λnXn) should be an unbiased estimator of µX is
λ1 + · · ·+ λn = 1.
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Answer:

E(Z) = E(λ1X1 + · · ·+ λnXn)

= E(λ1X1) + · · ·+ E(λnXn)

= λ1E(X1) + · · ·+ λnE(Xn)

= λ1µX + · · ·+ λnµX

= (λ1 + · · ·+ λn)µX .

Thus E(Z) = µX requires λ1 + · · ·+ λn = 1.

R.19 In general, the variance of the distribution of an estimator decreases when the
sample size is increased. Is it correct to describe the estimator as becoming more
efficient?

Answer:

No, it is incorrect. When the sample size increases, the variance of the estimator
decreases, and as a consequence it is more likely to give accurate results. Because it
is improving in this important sense, it is very tempting to describe the estimator
as becoming more efficient. But it is the wrong use of the term. Efficiency is a
comparative concept that is used when you are comparing two or more alternative
estimators, all of them being applied to the same data set with the same sample
size. The estimator with the smallest variance is said to be the most efficient. You
cannot use efficiency as suggested in the question because you are comparing the
variances of the same estimator with different sample sizes.

R.21 Suppose that you have observations on three variables X, Y , and Z, and suppose
that Y is an exact linear function of Z:

Y = λ+ µZ

where λ and µ are constants. Show that ρ̂XZ = ρ̂XY . (This is the counterpart of
Exercise R.14.)

Answer:

We start by noting that
(
Yi −Y

)
= µ

(
Zi −Z

)
. Then:

ρ̂XY =

∑(
Xi −X

)(
Yi −Y

)
√∑(

Xi −X
)2∑(

Yi −Y
)2

=

∑(
Xi −X

)
µ
(
Zi −Z

)
√∑(

Xi −X
)2∑

µ2
(
Zi −Z

)2

=

∑(
Xi −X

)(
Zi −Z

)
√∑(

Xi −X
)2∑(

Zi −Z
)2

= ρ̂XZ
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R.26 Show that, in Figures R.18 and R.22, the probabilities of a Type II error are 0.15
in the case of a 5 per cent significance test and 0.34 in the case of a 1 per cent test.
Note that the distance between µ0 and µ1 is three standard deviations. Hence the
right-hand 5 per cent rejection region begins 1.96 standard deviations to the right
of µ0. This means that it is located 1.04 standard deviations to the left of µ1.
Similarly, for a 1 per cent test, the right-hand rejection region starts 2.58 standard
deviations to the right of µ0, which is 0.42 standard deviations to the left of µ1.

Answer:

For the 5 per cent test, the rejection region starts 3− 1.96 = 1.04 standard
deviations below µ1, given that the distance between µ1 and µ0 is 3 standard
deviations. See Figure R.18. According to the standard normal distribution table,
the cumulative probability of a random variable lying 1.04 standard deviations (or
less) above the mean is 0.8508. This implies that the probability of it lying 1.04
standard deviations below the mean is 0.1492. For the 1 per cent test, the rejection
region starts 3− 2.58 = 0.42 standard deviations below the mean. See Figure R.22.
The cumulative probability for 0.42 in the standard normal distribution table is
0.6628, so the probability of a Type II error is 0.3372.

R.27 Explain why the difference in the power of a 5 per cent test and a 1 per cent test
becomes small when the distance between µ0 and µ1 becomes large.

Answer:

The powers of both tests tend to one as the distance between µ0 and µ1 becomes
large. The difference in their powers must therefore tend to zero.

R.28 A random variable X has unknown population mean µ. A researcher has a sample
of observations with sample mean X. He wishes to test the null hypothesis
H0 : µ = µ0. The figure shows the potential distribution of X conditional on H0

being true. It may be assumed that the distribution is known to have variance
equal to one.

 

0

0

5% rejection region

X

f(X)

µ0

The researcher decides to implement an unorthodox (and unwise) decision rule. He
decides to reject H0 ifX lies in the central 5 per cent of the distribution (the tinted
area in the figure).

(a) Explain why his test is a 5 per cent significance test.
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(b) Explain in intuitive terms why his test is unwise.

(c) Explain in technical terms why his test is unwise.

Answer:

The following discussion assumes that you are performing a 5 per cent significance
test, but it applies to any significance level.

If the null hypothesis is true, it does not matter how you define the 5 per cent
rejection region. By construction, the risk of making a Type I error will be 5 per
cent. Issues relating to Type II errors are irrelevant when the null hypothesis is true.

The reason that the central part of the conditional distribution is not used as a
rejection region is that it leads to problems when the null hypothesis is false. The
probability of not rejecting H0 when it is false will be lower. To use the obvious
technical term, the power of the test will be lower.

The figure shows the power functions for the test using the conventional upper and
lower 2.5 per cent tails and the test using the central region. The horizontal axis is
the difference between the true value and the hypothetical value µ0 in terms of
standard deviations. The vertical axis is the power of the test. The first figure has
been drawn for the case where the true value is greater than the hypothetical value.
The second figure is for the case where the true value is lower than the hypothetical
value. It is the same, but reflected horizontally.

The greater the difference between the true value and the hypothetical mean, the
more likely is it that the sample mean will lie in the right tail of the distribution
conditional on H0 being true, and so the more likely is it that the null hypothesis
will be rejected by the conventional test. The figure shows that the power of the
test approaches one asymptotically. However, if the central region of the
distribution is used as the rejection region, the probability of the sample mean
lying in it will diminish as the difference between the true and hypothetical values
increases, and the power of the test approaches zero asymptotically. This is an
extreme example of a very bad test procedure.

 

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4

conventional rejection region 

(upper and lower 2.5% tails)

rejection region central 5%

Figure 1: Power functions of a conventional 5 per cent test and one using the central
region (true value > µ0).
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Figure 2: Power functions of a conventional 5 per cent test and one using the central
region (true value < µ0).

R.29 A researcher is evaluating whether an increase in the minimum hourly wage has
had an effect on employment in the manufacturing industry in the following three
months. Taking a sample of 25 firms, what should she conclude if:

(a) the mean decrease in employment is 9 per cent, and the standard error of the
mean is 5 per cent

(b) the mean decrease is 12 per cent, and the standard error is 5 per cent

(c) the mean decrease is 20 per cent, and the standard error is 5 per cent

(d) there is a mean increase of 11 per cent, and the standard error is 5 per cent?

Answer:

There are 24 degrees of freedom, and hence the critical values of t at the 5 per cent,
1 per cent, and 0.1 per cent levels are 2.06, 2.80, and 3.75, respectively.

(a) The t statistic is −1.80. Fail to reject H0 at the 5 per cent level.

(b) t = −2.40. Reject H0 at the 5 per cent level but not the 1 per cent level.

(c) t = −4.00. Reject H0 at the 1 per cent level. Better, reject at the 0.1 per cent
level.

(d) t = 2.20. This would be a surprising outcome, but if one is performing a
two-sided test, then reject H0 at the 5 per cent level but not the 1 per cent
level.

R3.33 Demonstrate that the 95 per cent confidence interval defined by equation (R.89)
has a 95 per cent probability of capturing µ0 if H0 is true.

Answer:

If H0 is true, there is 95 per cent probability that:∣∣∣∣∣X− µ0

s.e.(X)

∣∣∣∣∣ < tcrit.
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Hence there is 95 per cent probability that |X− µ0| < tcrit × s.e.(X). Hence there is
95 per cent probability that (a) X− µ0 < tcrit × s.e.(X) and (b)
µ0 −X < tcrit × s.e.(X).

(a) can be rewrittenX− tcrit × s.e.(X) < µ0, giving the lower limit of the confidence
interval.

(b) can be rewritten X− µ0 > −tcrit × s.e.(X) and hence X+ tcrit × s.e.(X) > µ0,
giving the upper limit of the confidence interval.

Hence there is 95 per cent probability that µ0 will lie in the confidence interval.

R.34 In Exercise R.29, a researcher was evaluating whether an increase in the minimum
hourly wage has had an effect on employment in the manufacturing industry.
Explain whether she might have been justified in performing one-sided tests in
cases (a) – (d), and determine whether her conclusions would have been different.

Answer:

First, there should be a discussion of whether the effect of an increase in the
minimum wage could have a positive effect on employment. If it is decided that it
cannot, we can use a one-sided test and the critical values of t at the 5 per cent, 1
per cent, and 0.1 per cent levels become 1.71, 2.49, and 3.47, respectively.

1. The t statistic is −1.80. We can now reject H0 at the 5 per cent level.

2. t = −2.40. No change, but much closer to rejecting at the 1 per cent level.

3. t = −4.00. No change. Reject at the 1 per cent level (and 0.1 per cent level).

4. t = 2.20. Here there is a problem because the coefficient has the unexpected
sign. In principle we should stick to our guns and fail to reject H0. However,
we should consider two further possibilities. One is that the justification for a
one-sided test is incorrect (not very likely in this case). The other is that the
model is misspecified in some way and the misspecification is responsible for
the unexpected sign. For example, the coefficient might be distorted by
omitted variable bias, to be discussed in Chapter 6.

R.37 A random variable X has population mean µX and population variance σ2
X . A

sample of n observations {X1, . . . , Xn} is generated. Using the plim rules,
demonstrate that, subject to a certain condition that should be stated:

plim

(
1

X

)
=

1

µX
.

Answer:

plim X = µX by the weak law of large numbers. Provided that µX 6= 0, we are
entitled to use the plim quotient rule, so:

plim

(
1

X

)
=

plim 1

plim X
=

1

µX
.
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R.39 A random variable X has unknown population mean µX and population variance
σ2
X . A sample of n observations {X1, . . . , Xn} is generated. Show that:

Z =
1

2
X1 +

1

4
X2 +

1

8
X3 + · · ·+ 1

2n−1
+

1

2n−1
Xn

is an unbiased estimator of µX . Show that the variance of Z does not tend to zero
as n tends to infinity and that therefore Z is an inconsistent estimator, despite
being unbiased.

Answer:

The weights sum to unity, so the estimator is unbiased. However, its variance is:

σ2
Z =

(
1

4
+

1

16
+ · · ·+ 1

4n−1
+

1

4n−1

)
σ2
X .

This tends to σ2
X/3 as n becomes large, not zero, so the estimator is inconsistent.

Note: the sum of a geometric progression is given by:

1 + a+ a2 + · · ·+ an =
1− an+1

1− a
.

Hence:

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n−1
+

1

2n−1
=

1

2

(
1 +

1

2
+ · · ·+ 1

2n−2

)
+

1

2n−1

=
1

2
×

1−
(

1
2

)n−1

1− 1
2

+
1

2n−1

= 1− 1

2n−1
+

1

2n−1
= 1

and:

1

4
+

1

16
+ · · ·+ 1

4n−1
+

1

4n−1
=

1

4

(
1 +

1

4
+ · · ·+ 1

4n−2

)
+

1

4n−1

=
1

4
×

1−
(

1
4

)n−1

1− 1
4

+
1

4n−1

=
1

3

(
1−

(
1

4

)n−1
)

+
1

4n−1
→ 1

3

as n becomes large.

R.41 A random variable X has a continuous uniform distribution over the interval from
0 to θ, where θ is an unknown parameter.
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0

0 θ X

f (X)

The following three estimators are used to estimate θ, given a sample of n
observations on X:

(a) twice the sample mean

(b) the largest value of X in the sample

(c) the sum of the largest and smallest values of X in the sample.

Explain verbally whether or not each estimator is (1) unbiased, and (2) consistent.

Answer:

(a) It is evident that E(X) = E(X) = θ/2. Hence 2X is an unbiased estimator of θ.
The variance of X is σ2

X/n. The variance of 2X is therefore 4σ2
X/n. This will

tend to zero as n tends to infinity. Thus the distribution of 2X will collapse to
a spike at θ and the estimator is consistent.

(b) The estimator will be biased downwards since the highest value of X in the
sample will always be less than θ. However, as n increases, the distribution of
the estimator will be increasingly concentrated in a narrow range just below θ.
To put it formally, the probability of the highest value being more than ε
below θ will be

(
1− ε

θ

)n
and this will tend to zero, no matter how small ε is,

as n tends to infinity. The estimator is therefore consistent. It can in fact be
shown that the expected value of the estimator is n

n+1
θ and this tends to θ as n

becomes large.

(c) The estimator will be unbiased. Call the maximum value of X in the sample
Xmax and the minimum value Xmin. Given the symmetry of the distribution of
X, the distributions of Xmax and Xmin will be identical, except that that of
Xmin will be to the right of 0 and that of Xmax will be to the left of θ. Hence,
for any n, E(Xmin)− 0 = θ − E(Xmax) and the expected value of their sum is
equal to θ. The estimator will be consistent for the same reason as explained in
(b).

The first figure shows the distributions of the estimators (a) and (b) for 1,000,000
samples with only four observations in each sample, with θ = 1. The second figure
shows the distributions when the number of observations in each sample is equal to
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0.15. Answers to the starred exercises in the textbook

100. The table gives the means and variances of the distributions as computed from
the results of the simulations. If the mean square error is used to compare the
estimators, which should be preferred for sample size 4? For sample size 100?
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(b) 

(b) 

(a) 

(a) 

Sample size = 4 

Sample size = 100 

Sample size 4 Sample size 100
(a) (b) (a) (b)

Mean 1.0000 0.8001 1.0000 0.9901
Variance 0.0833 0.0267 0.0033 0.0001
Estimated bias 0.0000 −0.1999 0.0000 −0.0099
Estimated mean square error 0.0833 0.0667 0.0033 0.0002

It can be shown (Larsen and Marx, An Introduction to Mathematical Statistics and
Its Applications, p.382, that estimator (b) is biased downwards by an amount
θ/(n+ 1) and that its variance is:

nθ2

(n+ 1)2(n+ 2)
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while estimator (a) has variance θ2/3n. How large does n have to be for (b) to be
preferred to (a) using the mean square error criterion?

The crushing superiority of (b) over (a) may come as a surprise, so accustomed are
we to finding that the sample mean in the best estimator of a parameter. The
underlying reason in this case is that we are estimating a boundary parameter,
which, as its name implies, defines the limit of a distribution. In such a case the
optimal properties of the sample mean are no longer guaranteed and it may be
eclipsed by a score statistic such as the largest observation in the sample. Note that
the standard deviation of the sample mean is inversely proportional to

√
n, while

that of (b) is inversely proportional to n (disregarding the differences between n,
n+ 1, and n+ 2). (b) therefore approaches its limiting (asymptotically unbiased)
value much faster than (a) and is said to be superconsistent. We will encounter
superconsistent estimators again when we come to cointegration in Chapter 13.
Note that if we multiply (b) by (n+ 1)/n, it is unbiased for finite samples as well
as superconsistent.

0.16 Answers to the additional exercises

AR.1 The total area under the function over the interval [0, 2] must be equal to 1. Since
the length of the rectangle is 2, its height must be 0.5. Hence f(X) = 0.5 for
0 ≤ X ≤ 2, and f(X) = 0 for X < 0 and X > 2.

AR.2 Obviously, since the distribution is uniform, the expected value of X is 1. However
we will derive this formally.

E(X) =

∫ 2

0

Xf(X) dX =

∫ 2

0

0.5X dX =

[
X2

4

]2

0

=

[
22

4

]
−
[

02

4

]
= 1.

AR.3 The expected value of X2 is given by:

E(X2) =

∫ 2

0

X2f(X) dX =

∫ 2

0

0.5X2 dX =

[
X3

6

]2

0

=

[
23

6

]
−
[

03

6

]
= 1.3333.

AR.4 The variance of X is given by:

E
(
[X − µX ]2

)
=

∫ 2

0

[X − µX ]2f(X) dX =

∫ 2

0

0.5[X − 1]2 dX

=

∫ 2

0

(0.5X2 −X + 0.5) dX

=

[
X3

6
− X2

2
+
X

2

]2

0

=

[
8

6
− 2 + 1

]
− [0] = 0.3333.

The standard deviation is equal to the square root, 0.5774.
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0.16. Answers to the additional exercises

AR.5 From Exercise AR.3, E(X2) = 1.3333. From Exercise AR.2, the square of E(X) is
1. Hence the variance is 0.3333, as in Exercise AR.4.

AR.6 Table R.6 is reproduced for reference:

Table R.6 Trade-off between Type I and Type II errors, one-sided and two-sided tests
Probability of Type II error if µ = µ1

One-sided test Two-sided test
5 per cent significance test 0.09 0.15
2.5 per cent significance test 0.15 (not investigated)
1 per cent significance test 0.25 0.34

Note: The distance between µ1 and µ0 in this example was 3 standard deviations.

Two-sided tests

Under the (false) H0 : µ = µ0, the right rejection region for a two-sided 5 per cent
significance test starts 1.96 standard deviations above µ0, which is 0.04 standard
deviations below µ1. A Type II error therefore occurs if X is more than 0.04
standard deviations to the left of µ1. Under H1 : µ = µ1, the probability is 0.48.

Under H0, the right rejection region for a two-sided 1 per cent significance test
starts 2.58 standard deviations above µ0, which is 0.58 standard deviations above
µ1. A Type II error therefore occurs if X is less than 0.58 standard deviations to
the right of µ1. Under H1 : µ = µ1, the probability is 0.72.

One-sided tests

Under H0 : µ = µ0, the right rejection region for a one-sided 5 per cent significance
test starts 1.65 standard deviations above µ0, which is 0.35 standard deviations
below µ1. A Type II error therefore occurs if X is more than 0.35 standard
deviations to the left of µ1. Under H1 : µ = µ1, the probability is 0.36.

Under H0, the right rejection region for a one-sided 1 per cent significance test
starts 2.33 standard deviations above µ0, which is 0.33 standard deviations above
µ1. A Type II error therefore occurs if X is less than 0.33 standard deviations to
the right of µ1. Under H1 : µ = µ1, the probability is 0.63.

Hence the table is:

Trade-off between Type I and Type II errors, one-sided and two-sided tests
Probability of Type II error if µ = µ1

One-sided test Two-sided test
5 per cent significance test 0.36 0.48
1 per cent significance test 0.63 0.72

AR.7 We will assume for sake of argument that the investigator is performing a 5 per
cent significance test, but the conclusions apply to all significance levels.

If the true value is 0, the null hypothesis is true. The risk of a Type I error is, by
construction, 5 per cent for both one-sided and two-sided tests. Issues relating to
Type II error do not arise because the null hypothesis is true.
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If the true value is positive, the investigator is lucky and makes the gain associated
with a one-sided test. Namely, the power of the test is uniformly higher than that
for a two-sided test for all positive values of µ. The power functions for one-sided
and two-sided tests are shown in the first figure below.

If the true value is negative, the power functions are as shown in the second figure.
That for the two-sided test is the same as that in the first figure, but reflected
horizontally. The larger (negatively) is the true value of µ, the greater will be the
probability of rejecting H0 and the power approaches 1 asymptotically. However,
with a one-sided test, the power function will decrease from its already very low
value. The power is not automatically zero for true values that are negative because
even for these it is possible that a sample might have a mean that lies in the right
tail of the distribution under the null hypothesis. But the probability rapidly falls
to zero as the (negative) size of µ grows.
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Figure 3: Power functions of one-sided and two-sided 5 per cent tests (true value > 0).
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Figure 4: Power functions of one-sided and two-sided 5 per cent tests (true value < 0).
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0.16. Answers to the additional exercises

AR.8 We will refute the unbiasedness proposition by considering the more general case
where Z2 is an unbiased estimator of θ2. We know that:

E
[
(Z − θ)2

]
= E(Z2)− 2θE(Z) + θ2 = 2θ2 − 2θE(Z).

Hence:

E(Z) = θ − 1

2θ
E
[
(Z − θ)2

]
.

Z is therefore a biased estimator of θ except for the special case where Z is equal
to θ for all samples, that is, in the trivial case where there is no sampling error.

Nevertheless, since a function of a consistent estimator will, under quite general
conditions, be a consistent estimator of the function of the parameter,

√
σ̂2 will be

a consistent estimator of σ.
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Chapter 1

Simple regression analysis

1.1 Overview

This chapter introduces the least squares criterion of goodness of fit and demonstrates,
first through examples and then in the general case, how it may be used to develop
expressions for the coefficients that quantify the relationship when a dependent variable
is assumed to be determined by one explanatory variable. The chapter continues by
showing how the coefficients should be interpreted when the variables are measured in
natural units, and it concludes by introducing R2, a second criterion of goodness of fit,
and showing how it is related to the least squares criterion and the correlation between
the fitted and actual values of the dependent variable.

1.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to explain what is meant by:

dependent variable

explanatory variable (independent variable, regressor)

parameter of a regression model

the nonstochastic component of a true relationship

the disturbance term

the least squares criterion of goodness of fit

ordinary least squares (OLS)

the regression line

fitted model

fitted values (of the dependent variable)

residuals

total sum of squares, explained sum of squares, residual sum of squares

R2.
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1. Simple regression analysis

In addition, you should be able to explain the difference between:

the nonstochastic component of a true relationship and a fitted regression line, and

the values of the disturbance term and the residuals.

1.3 Additional exercises

A1.1 The output below gives the result of regressing FDHO, annual household
expenditure on food consumed at home, on EXP, total annual household
expenditure, both measured in dollars, using the Consumer Expenditure Survey
data set. Give an interpretation of the coefficients.

. reg FDHO EXP if FDHO>0

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 1, 6332) = 3431.01

Model | 972602566 1 972602566 Prob > F = 0.0000

Residual | 1.7950e+09 6332 283474.003 R-squared = 0.3514

-------------+------------------------------ Adj R-squared = 0.3513

Total | 2.7676e+09 6333 437006.15 Root MSE = 532.42

------------------------------------------------------------------------------

FDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXP | .0627099 .0010706 58.57 0.000 .0606112 .0648086

_cons | 369.4418 10.65718 34.67 0.000 348.5501 390.3334

------------------------------------------------------------------------------

A1.2 Download the CES data set from the website (see Appendix B of the text),
perform a regression parallel to that in Exercise A1.1 for your category of
expenditure, and provide an interpretation of the regression coefficients.

A1.3 The output shows the result of regressing the weight of the respondent, in pounds,
in 2011 on the weight in 2004, using EAWE Data Set 22. Provide an interpretation
of the coefficients. Summary statistics for the data are also provided.

. reg WEIGHT11 WEIGHT04

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 1207.55

Model | 769248.875 1 769248.875 Prob > F = 0.0000

Residual | 317241.693 498 637.031513 R-squared = 0.7080

-------------+------------------------------ Adj R-squared = 0.7074

Total | 1086490.57 499 2177.33581 Root MSE = 25.239

------------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

WEIGHT04 | .9739736 .0280281 34.75 0.000 .9189056 1.029042

_cons | 17.42232 4.888091 3.56 0.000 7.818493 27.02614

------------------------------------------------------------------------------
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1.3. Additional exercises

. sum WEIGHT04 WEIGHT11

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

WEIGHT04 | 500 169.686 40.31215 95 330

WEIGHT11 | 500 182.692 46.66193 95 370

A1.4 The output shows the result of regressing the hourly earnings of the respondent, in
dollars, in 2011 on height in 2004, measured in inches, using EAWE Data Set 22.
Provide an interpretation of the coefficients, comment on the plausibility of the
interpretation, and attempt to give an explanation.

. reg EARNINGS HEIGHT

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 9.23

Model | 1393.77592 1 1393.77592 Prob > F = 0.0025

Residual | 75171.3726 498 150.946531 R-squared = 0.0182

-------------+------------------------------ Adj R-squared = 0.0162

Total | 76565.1485 499 153.437171 Root MSE = 12.286

------------------------------------------------------------------------------

EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HEIGHT | .4087231 .1345068 3.04 0.003 .1444523 .6729938

_cons | -9.26923 9.125089 -1.02 0.310 -27.19765 8.659188

------------------------------------------------------------------------------

A1.5 A researcher has data for 50 countries on N , the average number of newspapers
purchased per adult in one year, and G, GDP per capita, measured in US $, and
fits the following regression (RSS = residual sum of squares):

N̂ = 25.0 + 0.020G R2 = 0.06, RSS = 4,000.0

The researcher realises that GDP has been underestimated by $100 in every
country and that N should have been regressed on G∗, where G∗ = G+ 100.
Explain, with mathematical proofs, how the following components of the output
would have differed:

• the coefficient of GDP

• the intercept

• RSS

• R2.

A1.6 A researcher with the same model and data as in Exercise A1.5 believes that GDP
in each country has been underestimated by 50 per cent and that N should have
been regressed on G∗, where G∗ = 2G. Explain, with mathematical proofs, how the
following components of the output would have differed:

• the coefficient of GDP

• the intercept

• RSS

• R2.
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1. Simple regression analysis

A1.7 Some practitioners of econometrics advocate ‘standardising’ each variable in a
regression by subtracting its sample mean and dividing by its sample standard
deviation. Thus, if the original regression specification is:

Yi = β1 + β2Xi + ui

the revised specification is:

Y ∗i = β∗1 + β∗2X
∗
i + vi

where:

Y ∗i =
Yi −Y
σ̂Y

and X∗i =
Xi −X
σ̂X

Y and X are the sample means of Y and X, σ̂Y and σ̂X are the estimators of the
standard deviations of Y and X, defined as the square roots of the estimated
variances:

σ̂2
Y =

1

n− 1

n∑
i=1

(Yi −Y )2 and σ̂2
X =

1

n− 1

n∑
i=1

(Xi −X)2

and n is the number of observations in the sample. We will write the fitted models
for the two specifications as:

Ŷi = β̂1 + β̂2Xi

and:
Ŷ ∗i = β̂∗1 + β̂∗2X

∗
i .

Taking account of the definitions of Y ∗ and X∗, show that β̂∗1 = 0 and that

β̂∗2 = σ̂X
σ̂Y
β̂2. Provide an interpretation of β̂∗2 .

A1.8 For the model described in Exercise A1.7, suppose that Y ∗ is regressed on X∗

without an intercept:
Ŷ ∗i = β̂∗∗2 X

∗
i .

Determine how β̂∗∗2 is related to β̂∗2 .

A1.9 A variable Yi is generated as:
Yi = β1 + ui (1.1)

where β1 is a fixed parameter and ui is a disturbance term that is independently
and identically distributed with expected value 0 and population variance σ2

u. The
least squares estimator of β1 is Y , the sample mean of Y . Give a mathematical
demonstration that the value of R2 in such a regression is zero.

1.4 Answers to the starred exercises in the textbook

1.9 The output shows the result of regressing the weight of the respondent in 2004,
measured in pounds, on his or her height, measured in inches, using EAWE Data
Set 21. Provide an interpretation of the coefficients.
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1.4. Answers to the starred exercises in the textbook

. reg WEIGHT04 HEIGHT

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 176.74

Model | 211309 1 211309 Prob > F = 0.0000

Residual | 595389.95 498 1195.56215 R-squared = 0.2619

-------------+------------------------------ Adj R-squared = 0.2605

Total | 806698.98 499 1616.63116 Root MSE = 34.577

------------------------------------------------------------------------------

WEIGHT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HEIGHT | 5.073711 .381639 13.29 0.000 4.32389 5.823532

_cons | -177.1703 25.93501 -6.83 0.000 -228.1258 -126.2147

------------------------------------------------------------------------------

Answer:

Literally the regression implies that, for every extra inch of height, an individual
tends to weigh an extra 5.1 pounds. The intercept, which literally suggests that an
individual with no height would weigh −177 pounds, has no meaning.

1.11 A researcher has international cross-sectional data on aggregate wages, W ,
aggregate profits, P , and aggregate income, Y , for a sample of n countries. By
definition:

Yi = Wi + Pi.

The regressions:

Ŵi = α̂1 + α̂2Yi

P̂i = β̂1 + β̂2Yi

are fitted using OLS regression analysis. Show that the regression coefficients will
automatically satisfy the following equations:

α̂2 + β̂2 = 1

α̂1 + β̂1 = 0.

Explain intuitively why this should be so.

Answer:

α̂2 + β̂2 =

∑(
Yi −Y

)(
Wi −W

)
∑(

Yi −Y
)2 +

∑(
Yi −Y

)(
Pi −P

)
∑(

Yi −Y
)2

=

∑(
Yi −Y

)(
Wi + Pi −W −P

)
∑(

Yi −Y
)2

=

∑(
Yi −Y

)(
Yi −Y

)
∑(

Yi −Y
)2

= 1
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1. Simple regression analysis

α̂1 + β̂1 =
(
W − α̂2Y

)
+
(
P − β̂2Y

)
=
(
W +P

)
− (α̂2 + β̂2)Y = Y −Y = 0.

The intuitive explanation is that the regressions break down income into predicted
wages and profits and one would expect the sum of the predicted components of
income to be equal to its actual level. The sum of the predicted components is
Ŵi + P̂i = (α̂1 + α̂2Yi) + (β̂1 + β̂2Yi), and in general this will be equal to Yi only if
the two conditions are satisfied.

1.13 Suppose that the units of measurement of X are changed so that the new measure,
X∗, is related to the original one by X∗i = µ2Xi. Show that the new estimate of the

slope coefficient is β̂2/µ2, where β̂2 is the slope coefficient in the original regression.

Answer:

β̂∗2 =

∑(
X∗i −X

∗)(
Yi −Y

)
∑(

X∗i −X
∗)2

=

∑(
µ2Xi − µ2X

)(
Yi −Y

)
∑(

µ2Xi − µ2X
)2

=
µ2

∑(
Xi −X

)(
Yi −Y

)
µ2

2

∑(
Xi −X

)2

=
β̂2

µ2

.

1.14 Demonstrate that if X is demeaned but Y is left in its original units, the intercept
in a regression of Y on demeaned X will be equal to Y .

Answer:

Let X∗i = Xi −X and β̂∗1 and β̂∗2 be the intercept and slope coefficient in a

regression of Y on X∗. Note that X
∗

= 0. Then:

β̂∗1 = Y − β̂∗2X
∗

= Y.

The slope coefficient is not affected by demeaning:

β̂∗2 =

∑(
X∗i −X

∗)(
Yi −Y

)
∑(

X∗i −X
∗)2 =

∑(
[Xi −X]− 0

)(
Yi −Y

)
∑(

[Xi −X]− 0
)2 = β̂2.

1.15 The regression output shows the result of regressing weight on height using the
same sample as in Exercise 1.9, but with weight and height measured in kilos and
centimetres: WMETRIC = 0.454 ∗WEIGHT04 and HMETRIC = 2.54 ∗HEIGHT .
Confirm that the estimates of the intercept and slope coefficient are as should be
expected from the changes in the units of measurement.
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1.4. Answers to the starred exercises in the textbook

. gen WTMETRIC = 0.454*WEIGHT04

. gen HMETRIC = 2.54*HEIGHT

. reg WTMETRIC HMETRIC

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 176.74

Model | 43554.1641 1 43554.1641 Prob > F = 0.0000

Residual | 122719.394 498 246.424486 R-squared = 0.2619

-------------+------------------------------ Adj R-squared = 0.2605

Total | 166273.558 499 333.213544 Root MSE = 15.698

------------------------------------------------------------------------------

WMETRIC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HMETRIC | .9068758 .0682142 13.29 0.000 .7728527 1.040899

_cons | -80.43529 11.77449 -6.83 0.000 -103.5691 -57.30148

------------------------------------------------------------------------------

Answer:

Abbreviate WEIGHT04 to W , HEIGHT to H, WMETRIC to WM , and
HMETRIC to HM . WM = 0.454W and HM = 2.54H. The slope coefficient and
intercept for the regression in metric units, β̂M2 and β̂M1 , are then given by:

β̂M
2 =

∑(
HMi −HM

)(
WMi −WM

)
∑(

HMi −HM
)2

=

∑
2.54

(
Hi −H

)
0.454

(
Wi −W

)
∑

2.542
(
Hi −H

)2

= 0.179

∑(
Hi −H

)(
Wi −W

)
∑(

Hi −H
)2

= 0.179β̂2

= 0.179× 5.074

= 0.908

β̂M1 = WM− β̂M2 HM

= 0.454W −
(

0.454

2.54
β̂2

)
(2.54H)

= 0.454(W − β̂2H)

= 0.454β̂1

= 0.454×−177.2

= −80.4.
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1. Simple regression analysis

The regression output confirms that the calculations are correct (subject to
rounding error in the last digit).

1.16 Consider the regression model:

Yi = β1 + β2Xi + ui.

It implies:
Y = β1 + β2X+u

and hence that:
Y ∗i = β2X

∗
i + vi

where Y ∗i = Yi −Y , X∗i = Xi −X and vi = ui −u.
Demonstrate that a regression of Y ∗ on X∗ using (1.49) will yield the same
estimate of the slope coefficient as a regression of Y on X. Note: (1.49) should be
used instead of (1.35) because there is no intercept in this model.

Evaluate the outcome if the slope coefficient were estimated using (1.35), despite
the fact that there is no intercept in the model.

Determine the estimate of the intercept if Y ∗ were regressed on X∗ with an
intercept included in the regression specification.

Answer:

Let β̂∗2 be the slope coefficient in a regression of Y ∗ on X∗ using (1.49). Then:

β̂∗2 =

∑
X∗i Y

∗
i∑

X∗2i
=

∑(
Xi −X

)(
Yi −Y

)
∑(

Xi −X
)2 = β̂2.

Let β̂∗∗2 be the slope coefficient in a regression of Y ∗ on X∗ using (1.35). Note that

Y
∗

and X
∗

are both zero. Then:

β̂∗∗2 =

∑(
X∗i −X

∗)(
Y ∗i −Y

∗)
∑(

X∗i −X
∗)2 =

∑
X∗i Y

∗
i∑

X∗2i
= β̂2.

Let β̂∗∗1 be the intercept in a regression of Y ∗ on X∗ using (1.35). Then:

β̂∗∗1 = Y
∗ − β̂∗∗2 X

∗
= 0.

1.18 Demonstrate that the fitted values of the dependent variable are uncorrelated with
the residuals in a simple regression model. (This result generalises to the multiple
regression case.)

Answer:

The numerator of the sample correlation coefficient for Ŷ and û can be decomposed
as follows, using the fact that û= 0:

1

n

∑(
Ŷi − Ŷ

)(
ûi − û

)
=

1

n

∑(
[β̂1 + β̂2Xi]− [β̂1 + β̂2X]

)
ûi

=
1

n
β̂2

∑(
Xi −X

)
ûi

= 0
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by (1.65). Hence the correlation is zero.

1.23 Demonstrate that, in a regression with an intercept, a regression of Y on X∗ must
have the same R2 as a regression of Y on X, where X∗ = µ2X.

Answer:

Let the fitted regression of Y on X∗ be written Ŷ ∗i = β̂∗1 + β̂∗2X
∗
i . β̂∗2 = β̂2/µ2

(Exercise 1.13).

β̂∗1 = Y − β̂∗2X
∗

= Y − β̂2

µ2

µ2X = β̂1.

Hence:

Ŷ ∗i = β̂1 +
β̂2

µ2

µ2Xi = Ŷi.

The fitted and actual values of Y are not affected by the transformation and so R2

is unaffected.

1.25 The output shows the result of regressing weight in 2011 on height, using EAWE
Data Set 21. In 2011 the respondents were aged 27–31. Explain why R2 is lower
than in the regression reported in Exercise 1.9.

. reg WEIGHT11 HEIGHT

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 139.97

Model | 236642.736 1 236642.736 Prob > F = 0.0000

Residual | 841926.912 498 1690.61629 R-squared = 0.2194

-------------+------------------------------ Adj R-squared = 0.2178

Total | 1078569.65 499 2161.46222 Root MSE = 41.117

------------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HEIGHT | 5.369246 .4538259 11.83 0.000 4.477597 6.260895

_cons | -184.7802 30.8406 -5.99 0.000 -245.3739 -124.1865

------------------------------------------------------------------------------

Answer:

The explained sum of squares is actually higher than that in Exercise 1.9. The
reason for the fall in R2 is the huge increase in the total sum of squares, no doubt
caused by the cumulative effect of variations in eating habits.

1.5 Answers to the additional exercises

A1.1 Expenditure on food consumed at home increases by 6.3 cents for each dollar of
total household expenditure. Literally the intercept implies that $369 would be
spent on food consumed at home if total household expenditure were zero.
Obviously, such an interpretation does not make sense. If the explanatory variable
were income, and household income were zero, positive expenditure on food at
home would still be possible if the household received food stamps or other
transfers, but here the explanatory variable is total household expenditure.
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1. Simple regression analysis

A1.2 For each category, the regression sample has been restricted to households with
non-zero expenditure. All the slope coefficients are highly significant. Housing has
the largest coefficient, as one should expect. Surprisingly, it is followed by
education. However, most households spent nothing at all on this category. For
those that did, it was important.

EXP

n β̂2 R2

ADM 2,815 0.0235 0.228
CLOT 4,500 0.0316 0.176
DOM 1,661 0.0409 0.134
EDUC 561 0.1202 0.241
ELEC 5,828 0.0131 0.180
FDAW 5,102 0.0527 0.354
FDHO 6,334 0.0627 0.351
FOOT 1,827 0.0058 0.082
FURN 487 0.0522 0.102
GASO 5,710 0.0373 0.278
HEAL 4,802 0.0574 0.174
HOUS 6,223 0.1976 0.469
LIFE 1,253 0.0193 0.101
LOCT 692 0.0068 0.059
MAPP 399 0.0329 0.102
PERS 3,817 0.0069 0.213
READ 2,287 0.0048 0.104
SAPP 1,037 0.0045 0.034
TELE 5,788 0.0160 0.268
TEXT 992 0.0040 0.051
TOB 1,155 0.0165 0.088
TOYS 2,504 0.0145 0.076
TRIP 516 0.0466 0.186

A1.3 The summary data indicate that, on average, the respondents put on 13 pounds
over the period 2004–2011. Was this due to the relatively heavy becoming even
heavier, or to a general increase in weight? The regression output indicates that
weight in 2011 was approximately equal to weight in 2004 plus 17 pounds, so the
second explanation appears to be the correct one. Note that this is an instance
where the constant term can be given a meaningful interpretation and where it is as
of much interest as the slope coefficient. The R2 indicates that 2004 weight accounts
for 71 per cent of the variance in 2011 weight, so other factors are important.

A1.4 The slope coefficient indicates that hourly earnings increase by 41 cents for every
extra inch of height. The negative intercept has no possible interpretation. The
interpretation of the slope coefficient is obviously highly implausible, so we know
that something must be wrong with the model. The explanation is that this is a
very poorly specified earnings function and that, in particular, we are failing to
control for the sex of the respondent. Later on, in Chapter 5, we will find that
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males earn more than females, controlling for observable characteristics. Males also
tend to be taller. Hence we find an apparent positive association between earnings
and height in a simple regression. Note that R2 is very low.

A1.5 The coefficient of GDP: Let the revised measure of GDP be denoted G∗, where
G∗ = G+ 100. Since G∗i = Gi + 100 for all i,G

∗
=G+ 100 and so G∗i −G

∗
= Gi −G

for all i. Hence the new slope coefficient is:

β̂∗2 =

∑(
G∗i −G

∗)(
Ni −N

)
∑(

G∗i −G
∗)2 =

∑(
Gi −G

)(
Ni −N

)
∑(

Gi −G
)2 = β̂2.

The coefficient is unchanged.

The intercept: The new intercept is:

β̂∗1 =N− β̂∗2G
∗

=N− β̂2

(
G+ 100

)
= β̂1 − 100β̂2 = 23.0.

RSS: The residual in observation i in the new regression, û∗i , is given by:

û∗i = Ni − β̂∗1 − β̂∗2G∗i = Ni − (β̂1 − 100β̂2)− β̂2(Gi + 100) = ûi

the residual in the original regression. Hence RSS is unchanged.

R2:

R2 = 1− RSS∑(
Ni −N

)2

and is unchanged since RSS and
∑(

Ni −N
)2

are unchanged.

Note that this makes sense intuitively. R2 is unit-free and so it is not possible for
the overall fit of a relationship to be affected by the units of measurement.

A1.6 The coefficient of GDP: Let the revised measure of GDP be denoted G∗, where

G∗ = 2G. Since G∗i = 2Gi for all i, G
∗

= 2G and so G∗i −G
∗

= 2
(
Gi −G

)
for all i.

Hence the new slope coefficient is:

β̂∗2 =

∑(
G∗i −G

∗)(
Ni −N

)
∑(

G∗i −G
∗)2

=

∑
2
(
Gi −G

)(
Ni −N

)
∑

4
(
Gi −G

)2

=
2
∑(

Gi −G
)(

Ni −N
)

4
∑(

Gi −G
)2

=
β̂2

2

= 0.010
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1. Simple regression analysis

where β̂2 = 0.020 is the slope coefficient in the original regression.

The intercept: The new intercept is:

β̂∗1 =N− β̂∗2G
∗

=N− β̂2

2
2G=N− β̂2G= β̂1 = 25.0

the original intercept.

RSS : The residual in observation i in the new regression, û∗i , is given by:

û∗i = Ni − β̂∗1 − β̂∗2G∗i = Ni − β̂1 −
β̂2

2
2Gi = ûi

the residual in the original regression. Hence RSS is unchanged.

R2:

R2 = 1− RSS∑(
Ni −N

)2

and is unchanged since RSS and
∑(

Ni −N
)2

are unchanged. As in Exercise A1.6,

this makes sense intuitively.

A1.7 By construction, Y
∗

=X
∗

= 0. So β̂∗1 = Y
∗ − β̂∗2X

∗
= 0.

β̂∗2 =

∑(
X∗i −X

∗)(
Y ∗i −Y

∗)
∑(

X∗i −X
∗)2

=

∑
X∗i Y

∗
i∑

X∗2i

=

∑(
Xi−X̄
σ̂X

)(
Yi−Ȳ
σ̂Y

)
∑(

Xi−X̄
σ̂X

)2

=
σ̂X
σ̂Y

∑(
Xi −X

)(
Yi −Y

)
∑(

Xi −X
)2

=
σ̂X
σ̂Y

β̂2.

β̂∗2 provides an estimate of the effect on Y , in terms of standard deviations of Y , of
a one-standard deviation change in X.

A1.8 We have:

β̂∗∗2 =

∑
X∗i Y

∗
i∑

X∗2i
=

∑(
X∗i −X

∗)(
Y ∗i −Y

∗)
∑(

X∗i −X
∗)2 = β̂∗2 .
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1.5. Answers to the additional exercises

A1.9 We have:

R2 =

∑(
Ŷi −Y

)2

∑(
Yi −Y

)2

and Ŷi = Y for all i.
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Chapter 2

Properties of the regression
coefficients and hypothesis testing

2.1 Overview

Chapter 1 introduced least squares regression analysis, a mathematical technique for
fitting a relationship given suitable data on the variables involved. It is a fundamental
chapter because much of the rest of the text is devoted to extending the least squares
approach to handle more complex models, for example models with multiple explanatory
variables, nonlinear models, and models with qualitative explanatory variables.

However, the mechanics of fitting regression equations are only part of the story. We are
equally concerned with assessing the performance of our regression techniques and with
developing an understanding of why they work better in some circumstances than in
others. Chapter 2 is the starting point for this objective and is thus equally
fundamental. In particular, it shows how two of the three main criteria for assessing the
performance of estimators, unbiasedness and efficiency, are applied in the context of a
regression model. The third criterion, consistency, will be considered in Chapter 8.

2.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to explain what is meant by:

cross-sectional, time series, and panel data

unbiasedness of OLS regression estimators

variance and standard errors of regression coefficients and how they are determined

Gauss–Markov theorem and efficiency of OLS regression estimators

two-sided t tests of hypotheses relating to regression coefficients and one-sided t
tests of hypotheses relating to regression coefficients

F tests of goodness of fit of a regression equation

in the context of a regression model. The chapter is a long one and you should take
your time over it because it is essential that you develop a perfect understanding of
every detail.
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2. Properties of the regression coefficients and hypothesis testing

2.3 Further material

Derivation of the expression for the variance of the näıve estimator in
Section 2.3.

The variance of the näıve estimator in Section 2.3 and Exercise 2.9 is not of any great
interest in itself, but its derivation provides an example of how one obtains expressions
for variances of estimators in general.

In Section 2.3 we considered the näıve estimator of the slope coefficient derived by
joining the first and last observations in a sample and calculating the slope of that line:

β̂2 =
Yn − Y1

Xn −X1

.

It was demonstrated that the estimator could be decomposed as:

β̂2 = β2 +
un − u1

Xn −X1

and hence that E(β̂2) = β2.

The population variance of a random variable X is defined to be E([X − µX ]2) where

µX = E(X). Hence the population variance of β̂2 is given by:

σ2
β̂2

= E
(

[β̂2 − β2]2
)

= E

([{
β2 +

un − u1

Xn −X1

}
− β2

]2
)

= E

([
un − u1

Xn −X1

]2
)
.

On the assumption that X is nonstochastic, this can be written as:

σ2
β̂2

=

[
1

Xn −X1

]2

E
(
[un − u1]2

)
.

Expanding the quadratic, we have:

σ2
β̂2

=

[
1

Xn −X1

]2

E
(
u2
n + u2

1 − 2unu1

)
=

[
1

Xn −X1

]2 [
E(u2

n) + E(u2
1)− 2E(unu1)

]
.

Each value of the disturbance term is drawn randomly from a distribution with mean 0
and population variance σ2

u, so E(u2
n) and E(u2

1) are both equal to σ2
u. un and u1 are

drawn independently from the distribution, so E(unu1) = E(un)E(u1) = 0. Hence:

σ2
β̂2

=
2σ2

u

(Xn −X1)2
=

σ2
u

1
2
(Xn −X1)2

.
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2.4. Additional exercises

Define A = 1
2
(X1 +Xn), the average of X1 and Xn, and D = Xn − A = A−X1. Then:

1

2
(Xn −X1)2 =

1

2
(Xn − A+ A−X1)2

=
1

2

[
(Xn − A)2 + (A−X1)2 + 2(Xn − A)(A−X1)

]
=

1

2

[
D2 +D2 + 2(D)(D)

]
= 2D2

= (Xn − A)2 + (A−X1)2

= (Xn − A)2 + (X1 − A)2

= (Xn −X+X− A)2 + (X1 −X+X− A)2

= (Xn −X)2 + (X− A)2 + 2(Xn −X)(X− A)

+(X1 −X)2 + (X− A)2 + 2(X1 −X)(X− A)

= (X1 −X)2 + (Xn −X)2 + 2(X− A)2 + 2(X1 +Xn − 2X)(X− A)

= (X1 −X)2 + (Xn −X)2 + 2(X− A)2 + 2(2A− 2X)(X− A)

= (X1 −X)2 + (Xn −X)2 − 2(X− A)2

= (X1 −X)2 + (Xn −X)2 − 2(A−X)2

= (X1 −X)2 + (Xn −X)2 − 1

2
(X1 +Xn − 2X)2.

Hence we obtain the expression in Exercise 2.9. There must be a shorter proof.

2.4 Additional exercises

A2.1 A variable Y depends on a nonstochastic variable X with the relationship:

Y = β1 + β2X + u

where u is a disturbance term that satisfies the regression model assumptions.
Given a sample of n observations, a researcher decides to estimate β2 using the
expression:

β̂2 =

∑
XiYi∑
X2
i

.

(This is the OLS estimator of β2 for the model Y = β2X + u.)

(a) Demonstrate that β̂2 is in general a biased estimator of β2.

(b) Discuss whether it is possible to determine the sign of the bias.

(c) Demonstrate that β̂2 is unbiased if β1 = 0.

(d) Demonstrate that β̂2 is unbiased if X = 0.

A2.2 A variable Yi is generated as:
Yi = β1 + ui
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2. Properties of the regression coefficients and hypothesis testing

where β1 is a fixed parameter and ui is a disturbance term that is independently
and identically distributed with expected value 0 and population variance σ2

u. The
least squares estimator of β1 is Y , the sample mean of Y . However, a researcher
believes that Y is a linear function of another variable X and uses ordinary least
squares to fit the relationship:

Ŷ = β̂1 + β̂2X

calculating β̂1 as Y − β̂2X, whereX is the sample mean of X. X may be assumed to
be a nonstochastic variable. Determine whether the researcher’s estimator β̂1 is
biased or unbiased, and if biased, determine the direction of the bias.

A2.3 With the model described in Exercise A2.2, standard theory states that the
population variance of the researcher’s estimator of β1 is:

σ2
u

 1

n
+

X
2∑(

Xi −X
)2

 .
In general, this is larger than the population variance of Y , which is σ2

u/n. Explain
the implications of the difference in the variances.

In the special case where X = 0, the variances are the same. Give an intuitive
explanation.

A2.4 A variable Y depends on a nonstochastic variable X with the relationship:

Y = β1 + β2X + u

where u is a disturbance term that satisfies the regression model assumptions.
Given a sample of n observations, a researcher decides to estimate β2 using the
expression:

β̂2 =

∑
XiYi∑
X2
i

.

It can be shown that the population variance of this estimator is σ2
u/
∑
X2
i .

We saw in Exercise A2.1 that β̂2 is in general a biased estimator of β2. However, if
either β1 = 0 or X = 0, the estimator is unbiased. What can be said in this case
about the efficiency of the estimator in these two cases, comparing it with the
estimator: ∑(

Xi −X
)(

Yi −Y
)

∑(
Xi −X

)2 ?

Returning to the general case where β1 6= 0 and X 6= 0, suppose that there is very
little variation in X in the sample. Is it possible that β̂2 might be a better
estimator than the OLS estimator?

A2.5 Using the output for the regression in Exercise A1.1, reproduced below, perform
appropriate statistical tests.
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. reg FDHO EXP if FDHO>0

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 1, 6332) = 3431.01

Model | 972602566 1 972602566 Prob > F = 0.0000

Residual | 1.7950e+09 6332 283474.003 R-squared = 0.3514

-------------+------------------------------ Adj R-squared = 0.3513

Total | 2.7676e+09 6333 437006.15 Root MSE = 532.42

------------------------------------------------------------------------------

FDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXP | .0627099 .0010706 58.57 0.000 .0606112 .0648086

_cons | 369.4418 10.65718 34.67 0.000 348.5501 390.3334

------------------------------------------------------------------------------

A2.6 Using the output for your regression in Exercise A1.2, perform appropriate
statistical tests.

A2.7 Using the output for the regression of weight in 2004 on height in Exercise 1.9,
reproduced below, perform appropriate statistical tests.

. reg WEIGHT04 HEIGHT

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 176.74

Model | 211309 1 211309 Prob > F = 0.0000

Residual | 595389.95 498 1195.56215 R-squared = 0.2619

-------------+------------------------------ Adj R-squared = 0.2605

Total | 806698.95 499 1616.63116 Root MSE = 34.577

------------------------------------------------------------------------------

WEIGHT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HEIGHT | 5.073711 .381639 13.29 0.000 4.32389 5.823532

_cons | -177.1703 25.93501 -6.83 0.000 -228.1258 -126.2147

------------------------------------------------------------------------------

A2.8 Using the output for the regression of earnings on height in Exercise A1.4,
reproduced below, perform appropriate statistical tests.

. reg EARNINGS HEIGHT

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 9.23

Model | 1393.77592 1 1393.77592 Prob > F = 0.0025

Residual | 75171.3726 498 150.946531 R-squared = 0.0182

-------------+------------------------------ Adj R-squared = 0.0162

Total | 76565.1485 499 153.437171 Root MSE = 12.286

------------------------------------------------------------------------------

EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

HEIGHT | .4087231 .1345068 3.04 0.003 .1444523 .6729938

_cons | -9.26923 9.125089 -1.02 0.310 -27.19765 8.659188

------------------------------------------------------------------------------
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2. Properties of the regression coefficients and hypothesis testing

A2.9 Explain whether it would be justifiable to use a one-sided test on the slope
coefficient in the regression of the rate of growth of employment on the rate of
growth of GDP in Exercise 2.20.

A2.10 Explain whether it would be justifiable to use a one-sided test on the slope
coefficient in the regression of weight on height in Exercise 1.9.

A2.11 With the information given in Exercise A1.5, how would the change in the
measurement of GDP affect:

• the standard error of the coefficient of GDP

• the F statistic for the equation?

A2.12 With the information given in Exercise A1.6, how would the change in the
measurement of GDP affect:

• the standard error of the coefficient of GDP

• the F statistic for the equation?

A2.13 [This is a continuation of Exercise 1.16 in the text.] A sample of data consists of n
observations on two variables, Y and X. The true model is:

Yi = β1 + β2Xi + ui

where β1 and β2 are parameters and u is a disturbance term that satisfies the usual
regression model assumptions. In view of the true model:

Y = β1 + β2X+u

where Y , X, and u are the sample means of Y , X, and u. Subtracting the second
equation from the first, one obtains:

Y ∗i = β2X
∗
i + u∗i

where Y ∗i = Yi −Y , X∗i = Xi −X and u∗i = ui −u. Note that, by construction, the
sample means of Y ∗, X∗, and u∗ are all equal to zero.

One researcher fits:
Ŷ = β̂1 + β̂2X. (1)

A second researcher fits:

Ŷ ∗ = β̂∗1 + β̂∗2X
∗. (2)

[Note: The second researcher included an intercept in the specification.]

• Comparing regressions (1) and (2), demonstrate that Ŷ ∗i = Ŷi −Y .

• Demonstrate that the residuals in (2) are identical to the residuals in (1).

• Demonstrate that the OLS estimator of the variance of the disturbance term
in (2) is equal to that in (1).

• Explain how the standard error of the slope coefficient in (2) is related to that
in (1).
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• Explain how R2 in (2) is related to R2 in (1).

• Explain why, theoretically, the specification (2) of the second researcher is
incorrect and he should have fitted:

Ŷ ∗ = β̂∗2X
∗ (3)

not including a constant in his specification.

• If the second researcher had fitted (3) instead of (2), how would this have
affected his estimator of β2? Would dropping the unnecessary intercept lead to
a gain in efficiency?

A2.14 For the model described in Exercise A1.7, show that Ŷ ∗i = (Ŷi −Y )/σ̂Y , and thus

that û∗i = ûi/σ̂Y , where Ŷ ∗i and û∗i are the fitted value of Y ∗i and the residual in the
transformed model.

Hence show that:

s.e.(β̂∗2) =
σ̂X
σ̂Y
× s.e.(β̂2).

Hence find the relationship between the t statistic for β̂∗2 and the t statistic for β̂2

and the relationship between R2 for the original specification and R2 for the revised
specification.

A2.15 A variable Yi is generated as:

Yi = β1 + β2Xi + ui (1)

where β1 and β2 are fixed parameters and ui is a disturbance term that satisfies the
regression model assumptions. The values of X are fixed and are as shown in the
figure. Four of them, X1 to X4, are close together. The fifth, X5, is much larger.
The corresponding values that Y would take, if there were no disturbance term, are
given by the circles on the line. The presence of the disturbance term in the model
causes the actual values of Y in a sample to be different. The solid black circles
depict a typical sample of observations.

 

0

0 X1 X2 X3 X4 X5 X 

Y 

 1 
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Discuss the advantages and disadvantages of dropping the observation
corresponding to X5 when regressing Y on X. If you keep the observation in the
sample, will this cause the regression estimates to be biased?

2.5 Answers to the starred exercises in the textbook

2.1 Derive the decomposition of β̂1 shown in equation (2.29):

β̂1 = β1 +
∑

ciui

where ci = 1
n
− aiX and ai is defined in equation (2.23).

Answer:

β̂1 = Y − β̂2X =
(
β1 + β2X+u

)
−X

(
β2 +

∑
aiui

)
= β1 +

1

n

∑
ui −X

∑
aiui

= β1 +
∑

ciui.

2.5 An investigator correctly believes that the relationship between two variables X
and Y is given by:

Yi = β1 + β2Xi + ui.

Given a sample of observations on Y , X, and a third variable Z (which is not a
determinant of Y ), the investigator estimates β2 as:∑(

Zi −Z
)(

Yi −Y
)

∑(
Zi −Z

)(
Xi −X

) .
Demonstrate that this estimator is unbiased.

Answer:

Noting that Yi −Y = β2

(
Xi −X

)
+ ui −u, we have:

β̂2 =

∑(
Zi −Z

)(
Yi −Y

)
∑(

Zi −Z
)(

Xi −X
)

=

∑(
Zi −Z

)
β2

(
Xi −X

)
+
∑(

Zi −Z
)

(ui −u)∑(
Zi −Z

)(
Xi −X

)

= β2 +

∑(
Zi −Z

)
(ui −u)∑(

Zi −Z
)(

Xi −X
) .
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Hence:

E(β̂2) = β2 +

∑(
Zi −Z

)
E (ui −u)∑(

Zi −Z
)(

Xi −X
) = β2.

2.8 Using the decomposition of β̂1 obtained in Exercise 2.1, derive the expression for
σ2
β̂1

given in equation (2.42).

Answer:

β̂1 = β1 +
∑
ciui, where ci = 1

n
− aiX, and E(β̂1) = β1. Hence:

σ2
β̂1

= E

[(∑
ciui

)2
]

= σ2
u

∑
c2
i = σ2

u

(
n

1

n2
− 2

X

n

∑
ai +X

2∑
a2
i

)
.

From Box 2.2,
∑
ai = 0 and: ∑

a2
i =

1∑(
Xi −X

)2 .

Hence:

σ2
β̂1

= σ2
u

 1

n
+

X
2∑(

Xi −X
)2

 .

2.9 Given the decomposition in Exercise 2.2 of the OLS estimator of β2 in the model
Yi = β2Xi + ui, demonstrate that the variance of the slope coefficient is given by:

σ2
β̂2

=
σ2
u∑
X2
j

.

Answer:

β̂2 = β2 +
n∑
i=1

diui, where di = Xi/
n∑
j=1

X2
j , and E(β̂2) = β2. Hence:

σ2
β̂2

= E

( n∑
i=1

diui

)2
 = σ2

u

n∑
i=1

d2
i = σ2

u

n∑
i=1


X2
i(

n∑
j=1

X2
j

)2


=

σ2
u(

n∑
j=1

X2
j

)2

n∑
i=1

X2
i

=
σ2
u

n∑
j=1

X2
j

.
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2.12 It can be shown that the variance of the estimator of the slope coefficient in
Exercise 2.5: ∑(

Zi −Z
)(

Yi −Y
)

∑(
Zi −Z

)(
Xi −X

)
is given by:

σ2
β̂2

=
σ2
u∑(

Xi −X
)2 ×

1

r2
XZ

where rXZ is the correlation between X and Z. What are the implications for the
efficiency of the estimator?

Answer:

If Z happens to be an exact linear function of X, the population variance will be
the same as that of the OLS estimator. Otherwise 1/r2

XZ will be greater than 1, the
variance will be larger, and so the estimator will be less efficient.

2.15 Suppose that the true relationship between Y and X is Yi = β1 + β2Xi + ui and
that the fitted model is Ŷi = β̂1 + β̂2Xi. In Exercise 1.13 it was shown that if
X∗i = µ2Xi, and Y is regressed on X∗, the slope coefficient β̂∗2 = β̂2/µ2. How will

the standard error of β̂∗2 be related to the standard error of β̂2?

Answer:

In Exercise 1.23 it was demonstrated that the fitted values of Y would be the same.
This means that the residuals are the same, and hence σ̂2

u, the estimator of the

variance of the disturbance term, is the same. The standard error of β̂∗2 is then
given by:

s.e.(β̂∗2) =

√√√√ σ̂2
u∑(

X∗i −X
∗)2

=

√√√√ σ̂2
u∑(

µ2Xi − µ2X
)2

=

√√√√ σ̂2
u

µ2
2

∑(
Xi −X

)2

=
1

µ2

s.e.(β̂2).

2.17 A researcher with a sample of 50 individuals with similar education, but differing
amounts of training, hypothesises that hourly earnings, EARNINGS, may be
related to hours of training, TRAINING, according to the relationship:

EARNINGS = β1 + β2TRAINING + u.
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He is prepared to test the null hypothesis H0 : β2 = 0 against the alternative
hypothesis H1 : β2 6= 0 at the 5 per cent and 1 per cent levels. What should he
report:

(a) if β̂2 = 0.30, s.e.(β̂2) = 0.12?

(b) if β̂2 = 0.55, s.e.(β̂2) = 0.12?

(c) if β̂2 = 0.10, s.e.(β̂2) = 0.12?

(d) if β̂2 = −0.27, s.e.(β̂2) = 0.12?

Answer:

There are 48 degrees of freedom, and hence the critical values of t at the 5 per cent,
1 per cent, and 0.1 per cent levels are 2.01, 2.68, and 3.51, respectively.

(a) The t statistic is 2.50. Reject H0 at the 5 per cent level but not at the 1 per
cent level.

(b) t = 4.58. Reject at the 0.1 per cent level.

(c) t = 0.83. Fail to reject at the 5 per cent level.

(d) t = −2.25. Reject H0 at the 5 per cent level but not at the 1 per cent level.

2.22 Explain whether it would have been possible to perform one-sided tests instead of
two-sided tests in Exercise 2.17. If you think that one-sided tests are justified,
perform them and state whether the use of a one-sided test makes any difference.

Answer:

First, there should be a discussion of whether the parameter β2 in:

EARNINGS = β1 + β2TRAINING + u

can be assumed not to be negative. The objective of training is to impart skills. It
would be illogical for an individual with greater skills to be paid less on that
account, and so we can argue that we can rule out β2 < 0. We can then perform a
one-sided test. With 48 degrees of freedom, the critical values of t at the 5 per cent,
1 per cent, and 0.1 per cent levels are 1.68, 2.40, and 3.26, respectively.

(a) The t statistic is 2.50. We can now reject H0 at the 1 per cent level (but not at
the 0.1 per cent level).

(b) t = 4.58. Not affected by the change. Reject at the 0.1 per cent level.

(c) t = 0.83. Not affected by the change. Fail to reject at the 5 per cent level.

(d) t = −2.25. Reject H0 at the 5 per cent level but not at the 1 per cent level.
Here there is a problem because the coefficient has an unexpected sign and is
large enough to reject H0 at the 5 per cent level with a two-sided test.

In principle we should ignore this and fail to reject H0. Admittedly, the
likelihood of such a large negative t statistic occurring under H0 is very small,
but it would be smaller still under the alternative hypothesis H1 : β2 > 0.

However, we should consider two further possibilities. One is that the
justification for a one-sided test is incorrect. For example, some jobs pay
relatively low wages because they offer training that is valued by the employee.
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Apprenticeships are the classic example. Alternatively, workers in some
low-paid occupations may, for technical reasons, receive a relatively large
amount of training. In either case, the correlation between training and
earnings might be negative instead of positive.

Another possible reason for a coefficient having an unexpected sign is that the
model is misspecified in some way. For example, the coefficient might be
distorted by omitted variable bias, to be discussed in Chapter 6.

2.27 Suppose that the true relationship between Y and X is Yi = β1 + β2Xi + ui and
that the fitted model is Ŷi = β̂1 + β̂2Xi. In Exercise 1.13 it was shown that if
X∗i = µ2Xi, and Y is regressed on X∗, the slope coefficient β̂∗2 = β̂2/µ2. How will

the t statistic for β̂∗2 be related to the t statistic for β̂2? (See also Exercise 2.15.)

Answer:

In Exercise 2.15 it was shown that s.e.(β̂∗2) = s.e.(β̂2)/µ2. Hence the t statistic is
unaffected by the transformation.

Alternatively, since we saw in Exercise 1.23 that R2 must be the same, it follows
that the F statistic for the equation must be the same. For a simple regression the
F statistic is the square of the t statistic on the slope coefficient, so the t statistic
must be the same.

2.30 Calculate the 95 per cent confidence interval for β2 in the price inflation/wage
inflation example:

p̂ = −1.21 + 0.82w.

(0.05) (0.10)

What can you conclude from this calculation?

Answer:

With n equal to 20, there are 18 degrees of freedom and the critical value of t at
the 5 per cent level is 2.10. The 95 per cent confidence interval is therefore:

0.82− 0.10× 2.10 ≤ β2 ≤ 0.82 + 0.10× 2.10

that is:

0.61 ≤ β2 ≤ 1.03.

We see that we cannot (quite) reject the null hypothesis H0 : β2 = 1.

2.36 Suppose that the true relationship between Y and X is Yi = β1 + β2Xi + ui and
that the fitted model is Ŷi = β̂1 + β̂2Xi. Suppose that X∗i = µ2Xi, and Y is
regressed on X∗. How will the F statistic for this regression be related to the F
statistic for the original regression? (See also Exercises 1.23, 2.15, and 2.27.)

Answer:

We saw in Exercise 1.23 that R2 would be the same, and it follows that F must
also be the same.
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2.6 Answers to the additional exercises

Note: Each of the exercises below relates to a simple regression. Accordingly, the F test
is equivalent to a two-sided t test on the slope coefficient and there is no point in
performing both tests. The F statistic is equal to the square of the t statistic and, for
any significance level, the critical value of F is equal to the critical value of t. Obviously
a one-sided t test, when justified, is preferable to either in that it has greater power for
any given significance level.

A2.1 We have:

β̂2 =

∑
XiYi∑
X2
i

=

∑
Xi(β1 + β2Xi + ui)∑

X2
i

=
β1

∑
Xi∑

X2
i

+ β2 +

∑
Xiui∑
X2
i

.

Hence:

E(β̂2) =
β1

∑
Xi∑

X2
i

+ β2 + E

(∑
Xiui∑
X2
i

)
=
β1

∑
Xi∑

X2
i

+ β2 +

∑
XiE(ui)∑
X2
i

assuming that X is nonstochastic. Since E(ui) = 0, then:

E(β̂2) =
β1

∑
Xi∑

X2
i

+ β2.

Thus β̂2 will in general be a biased estimator. The sign of the bias depends on the
signs of β1 and

∑
Xi. In general, we have no information about either of these.

However, if either β1 = 0 orX = 0 (and so
∑
Xi = 0), the bias term disappears and

β̂2 is unbiased after all.

A2.2 First we need to show that E(β̂2) = 0.

β̂2 =

∑(
Xi −X

)(
Yi −Y

)
∑(

Xi −X
)2 =

∑(
Xi −X

)
(β1 + ui − β1 −u)∑(
Xi −X

)2 =

∑(
Xi −X

)
(ui −u)∑(

Xi −X
)2 .

Hence, given that we are told that X is nonstochastic:

E(β̂2) = E


∑(

Xi −X
)

(ui −u)∑(
Xi −X

)2


=

1∑(
Xi −X

)2E
(∑(

Xi −X
)

(ui −u)
)

=
1∑(

Xi −X
)2

∑(
Xi −X

)
E (ui −u)

= 0

since E(u) = 0. Thus:

E(β̂1) = E
(
Y − β̂2X

)
= β1 −XE(β̂2) = β1

and the estimator is unbiased.
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A2.3 In general, the researcher’s estimator will have a larger variance than Y and
therefore will be inefficient. However, if X = 0, the variances are the same. This is
because the estimators are then identical. Y − β̂2X reduces to Y .

A2.4 The variance of the estimator is σ2
u/
∑
X2
i whereas that of the estimator:

∑
(Xi −X)(Yi −Y )∑

(Xi −X)2

is:

σ2
u∑

(Xi −X)2
=

σ2
u∑

X2
i − nX

2 .

Thus, provided X 6= 0, σ2
u/
∑
X2
i is more efficient than:

∑
(Xi −X)(Yi −Y )∑

(Xi −X)2

if β1 = 0 because it is unbiased and has a smaller variance. It is the OLS estimator
in this case.

If X = 0, the estimators are equally efficient because the population variance
expressions are identical. The reason for this is that the estimators are now
identical:

∑
(Xi −X)(Yi −Y )∑

(Xi −X)2
=

∑
Xi(Yi −Y )∑

X2
i

=

∑
XiYi∑
X2
i

− Y
∑
Xi∑
X2
i

=

∑
XiYi∑
X2
i

since
∑
Xi = nX = 0.

Returning to the general case, if there is little variation in X in the sample,∑
(Xi −X)2 may be small and hence the population variance of∑
(Xi −X)(Yi −Y )/

∑
(Xi −X)2 may be large. Thus using a criterion such as mean

square error, β̂2 may be preferable if the bias is small.

A2.5 The t statistic for the coefficient of EXP is 58.57, very highly significant. There is
little point performing a t test on the intercept, given that it has no plausible
meaning. The F statistic is 3431.0, very highly significant. Since this is a simple
regression model, the two tests are equivalent.

A2.6 The slope coefficient for every category is significantly different from zero at a very
high significance level. (The F test is equivalent to the t test on the slope
coefficient.)
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EXP

n β̂2 s.e.(β̂2) t R2 F
ADM 2,815 0.0235 0.0008 28.86 0.228 832.8
CLOT 4,500 0.0316 0.0010 30.99 0.176 960.6
DOM 1,661 0.0409 0.0026 16.02 0.134 256.6
EDUC 561 0.1202 0.0090 13.30 0.241 177.0
ELEC 5,828 0.0131 0.0004 35.70 0.180 1274.8
FDAW 5,102 0.0527 0.0010 52.86 0.354 2794.7
FDHO 6,334 0.0627 0.0011 58.57 0.351 3431.0
FOOT 1,827 0.0058 0.0005 12.78 0.082 163.4
FURN 487 0.0522 0.0070 7.44 0.102 55.3
GASO 5,710 0.0373 0.0008 46.89 0.278 2198.5
HEAL 4,802 0.0574 0.0018 31.83 0.174 1013.4
HOUS 6,223 0.1976 0.0027 74.16 0.469 5499.9
LIFE 1,253 0.0193 0.0016 11.86 0.101 140.7
LOCT 692 0.0068 0.0010 6.59 0.059 43.5
MAPP 399 0.0329 0.0049 6.72 0.102 45.1
PERS 3,817 0.0069 0.0002 32.15 0.213 1033.4
READ 2,287 0.0048 0.0003 16.28 0.104 265.1
SAPP 1,037 0.0045 0.0007 6.03 0.034 36.4
TELE 5,788 0.0160 0.0003 46.04 0.268 2119.7
TEXT 992 0.0040 0.0006 7.32 0.051 53.5
TOB 1,155 0.0165 0.0016 10.56 0.088 111.6
TOYS 2,504 0.0145 0.0010 14.34 0.076 205.7
TRIP 516 0.0466 0.0043 10.84 0.186 117.5

A2.7 The t statistic, 13.29, is very highly significant. (The F test is equivalent.)

A2.8 The t statistic for height, 3.04, suggests that the effect of height on earnings is
highly significant, despite the very low R2. In principle the estimate of an extra 41
cents of hourly earnings for every extra inch of height could have been a purely
random result of the kind that one obtains with nonsense models. However, the
fact that it is apparently highly significant causes us to look for other explanations,
the most likely one being that suggested in the answer to Exercise A1.4. Of course,
we would not attempt to test the negative constant.

A2.9 One could justify a one-sided test on the slope coefficient in the regression of the
rate of growth of employment on the rate of growth of GDP on the grounds that an
increase in the rate of growth of GDP is unlikely to cause a decrease in the rate of
growth of employment.

A2.10 One could justify a one-sided test on the slope coefficient in the regression of
weight on height in Exercise 1.9 on the grounds that an increase in height is
unlikely to cause a decrease in weight.
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A2.11 The standard error of the coefficient of GDP. This is given by:√
σ̂∗2u√∑(
G∗i −G

∗)2

where σ̂∗2u , the estimator of the variance of the disturbance term, is
∑
û∗2i /(n− 2).

Since RSS is unchanged, σ̂∗2u = σ̂2
u.

We saw in Exercise A1.6 that G∗i −G
∗

= Gi −G for all i. Hence the new standard
error is given by: √

σ̂2
u√∑(

Gi −G
)2

and is unchanged.

F =
ESS

RSS/(n− 2)

where:

ESS = explained sum of squares =
∑(

Ŷ ∗i − Ŷ
∗)2

.

Since û∗i = ûi, Ŷ
∗
i = Ŷi and ESS is unchanged. We saw in Exercise A1.6 that RSS

is unchanged. Hence F is unchanged.

A2.12 The standard error of the coefficient of GDP. This is given by:√
σ̂∗2u√∑(
G∗i −G

∗)2

where σ̂∗2u , the estimator of the variance of the disturbance term, is
∑
û∗2i /(n− 2).

We saw in Exercise 1.7 that û∗i = ûi and so RSS is unchanged. Hence σ̂∗2u = σ̂2
u.

Thus the new standard error is given by:√
σ̂2
u√∑(

2Gi − 2G
)2

=
1

2

√
σ̂2
u√∑(

Gi −G
)2

= 0.005.

F = ESS/(RSS/(n− 2)) where:

ESS = explained sum of squares =
∑(

Ŷ ∗i − Ŷ
∗)2

.

Since û∗i = ûi, Ŷ
∗
i = Ŷi and ESS is unchanged. Hence F is unchanged.

A2.13 One way of demonstrating that Ŷ ∗i = Ŷi −Y :

Ŷ ∗i = β̂∗1 + β̂∗2X
∗
i = β̂2(Xi −X)

Ŷi −Y = (β̂1 + β̂2Xi)−Y =
(
Y − β̂2X

)
+ β̂2Xi −Y = β̂2

(
Xi −X

)
.
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Demonstration that the residuals are the same:

û∗i = Y ∗i − Ŷ ∗i =
(
Yi −Y

)
−
(
Ŷi −Y

)
= ûi.

Demonstration that the OLS estimator of the variance of the disturbance term in
(2) is equal to that in (1):

σ̂∗2u =

∑
û∗2i

n− 2
=

∑
û2
i

n− 2
= σ̂2

u.

The standard error of the slope coefficient in (2) is equal to that in (1).

σ̂2
β̂∗
2

=
σ̂∗2u∑(
X∗i −X

)2 =
σ̂2
u∑
X∗2i

=
σ̂2
u∑(

Xi −X
)2 = σ̂2

β̂2
.

Hence the standard errors are the same.

Demonstration that R2 in (2) is equal to R2 in (1):

R2∗ =

∑(
Ŷ ∗i − Ŷ ∗

)2

∑(
Y ∗i −Y

∗)2 .

Ŷ ∗i = Ŷi −Y and Ŷ = Y . Hence Ŷ ∗= 0. Y ∗= Y −Y = 0. Hence:

R2∗ =

∑(
Ŷ ∗i

)2

∑
(Y ∗i )2 =

∑(
Ŷi −Y

)2

∑(
Yi −Y

)2 = R2.

The reason that specification (2) of the second researcher is incorrect is that the
model does not include an intercept.

If the second researcher had fitted (3) instead of (2), this would not in fact have
affected his estimator of β2. Using (3), the researcher should have estimated β2 as:

β̂∗2 =

∑
X∗i Y

∗
i∑

X∗2i
.

However, Exercise 1.16 demonstrates that, effectively, he has done exactly this.
Hence the estimator will be the same. It follows that dropping the unnecessary
intercept would not have led to a gain in efficiency.

A2.14 We have:

Ŷ ∗i = β̂∗2X
∗
i =

σ̂X
σ̂Y

β̂2

(
Xi −X
σ̂X

)
=

1

σ̂Y
β̂2(Xi −X)

and:
Ŷi = β̂1 + β̂2Xi = (Y − β̂2X) + β̂2Xi = Y + β̂2(Xi −X).

Hence:

Ŷ ∗i =
1

σ̂Y
(Ŷi −Y ).
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Also:

û∗i = Y ∗i − Ŷ ∗i =
1

σ̂Y
(Yi −Y )− 1

σ̂Y
(Ŷi −Y ) =

1

σ̂Y
(Yi − Ŷi) =

1

σ̂Y
ûi

and:

s.e.(β̂∗2) =

√
1

n−2

∑
û∗2i∑

(X∗i −X∗)2
=

√√√√√√
(

1
σ̂Y

)2
1

n−2

∑
û2
i∑(

Xi−X̄
σ̂X

)2 =
σ̂X
σ̂Y
× s.e.(β̂2).

Given the expressions for β̂∗2 and s.e.(β̂∗2), the t statistic for β̂∗2 is the same as that

for β̂2. Hence the F statistic will be the same and R2 will be the same.

A2.15 The inclusion of the fifth observation does not cause the model to be misspecified
or the regression model assumptions to be violated, so retaining it in the sample
will not give rise to biased estimates. There would be no advantages in dropping it

and there would be one major disadvantage.
∑(

Xi −X
)2

would be greatly

reduced and hence the variances of the coefficients would be increased, adversely
affecting the precision of the estimates.

This said, in practice one would wish to check whether it is sensible to assume that
the model relating Y to X for the other observations really does apply to the
observation corresponding to X5 as well. This question can be answered only by
being familiar with the context and having some intuitive understanding of the
relationship between Y and X.
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Chapter 3

Multiple regression analysis

3.1 Overview

This chapter introduces regression models with more than one explanatory variable.
Specific topics are treated with reference to a model with just two explanatory
variables, but most of the concepts and results apply straightforwardly to more general
models. The chapter begins by showing how the least squares principle is employed to
derive the expressions for the regression coefficients and how the coefficients should be
interpreted. It continues with a discussion of the precision of the regression coefficients
and tests of hypotheses relating to them. Next comes multicollinearity, the problem of
discriminating between the effects of individual explanatory variables when they are
closely related. The chapter concludes with a discussion of F tests of the joint
explanatory power of the explanatory variables or subsets of them, and shows how a t
test can be thought of as a marginal F test.

3.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to explain what is meant by:

the principles behind the derivation of multiple regression coefficients (but you are
not expected to learn the expressions for them or to be able to reproduce the
mathematical proofs)

how to interpret the regression coefficients

the Frisch–Waugh–Lovell graphical representation of the relationship between the
dependent variable and one explanatory variable, controlling for the influence of
the other explanatory variables

the properties of the multiple regression coefficients

what factors determine the population variance of the regression coefficients

what is meant by multicollinearity

what measures may be appropriate for alleviating multicollinearity

what is meant by a linear restriction

the F test of the joint explanatory power of the explanatory variables

59
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the F test of the explanatory power of a group of explanatory variables

why t tests on the slope coefficients are equivalent to marginal F tests.

You should know the expression for the population variance of a slope coefficient in a
multiple regression model with two explanatory variables.

3.3 Additional exercises

A3.1 The output shows the result of regressing FDHO, expenditure on food consumed at
home, on EXP, total household expenditure, and SIZE, number of persons in the
household, using the CES data set. Provide an interpretation of the regression
coefficients and perform appropriate tests.

. reg FDHO EXP SIZE if FDHO>0

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 2, 6331) = 2257.59

Model | 1.1521e+09 2 576056293 Prob > F = 0.0000

Residual | 1.6154e+09 6331 255164.645 R-squared = 0.4163

-------------+------------------------------ Adj R-squared = 0.4161

Total | 2.7676e+09 6333 437006.15 Root MSE = 505.14

------------------------------------------------------------------------------

FDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXP | .056366 .0010435 54.02 0.000 .0543204 .0584116

SIZE | 115.1636 4.341912 26.52 0.000 106.652 123.6752

_cons | 130.5997 13.53959 9.65 0.000 104.0575 157.1419

------------------------------------------------------------------------------

A3.2 Perform a regression parallel to that in Exercise A3.1 for your CES category of
expenditure, provide an interpretation of the regression coefficients and perform
appropriate tests. Delete observations where expenditure on your category is zero.

A3.3 The output shows the result of regressing FDHOPC, expenditure on food
consumed at home per capita, on EXPPC, total household expenditure per capita,
and SIZE, number of persons in the household, using the CES data set. Provide an
interpretation of the regression coefficients and perform appropriate tests.

. reg FDHOPC EXPPC SIZE if FDHO>0

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 2, 6331) = 1572.95

Model | 202590496 2 101295248 Prob > F = 0.0000

Residual | 407705728 6331 64398.3143 R-squared = 0.3320

-------------+------------------------------ Adj R-squared = 0.3317

Total | 610296223 6333 96367.6336 Root MSE = 253.77
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------------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXPPC | .0480294 .0010064 47.72 0.000 .0460564 .0500023

SIZE | -26.45917 2.253999 -11.74 0.000 -30.87777 -22.04057

_cons | 283.2498 8.412603 33.67 0.000 266.7582 299.7413

------------------------------------------------------------------------------

A3.4 Perform a regression parallel to that in Exercise A3.3 for your CES category of
expenditure. Provide an interpretation of the regression coefficients and perform
appropriate tests.

A3.5 The output shows the result of regressing FDHOPC, expenditure on food
consumed at home per capita, on EXPPC, total household expenditure per capita,
and SIZEAM, SIZEAF, SIZEJM, SIZEJF, and SIZEIN, numbers of adult males,
adult females, junior males, junior females, and infants, respectively, in the
household, using the CES data set. Provide an interpretation of the regression
coefficients and perform appropriate tests.

. reg FDHOPC EXPPC SIZEAM SIZEAF SIZEJM SIZEJF SIZEIN if FDHO>0

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 6, 6327) = 524.59

Model | 202746894 6 33791149 Prob > F = 0.0000

Residual | 407549329 6327 64414.3084 R-squared = 0.3322

-------------+------------------------------ Adj R-squared = 0.3316

Total | 610296223 6333 96367.6336 Root MSE = 253.8

------------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

EXPPC | .0479717 .0010087 47.56 0.000 .0459943 .0499491

SIZEAM | -25.77747 4.757056 -5.42 0.000 -35.10291 -16.45203

SIZEAF | -32.38649 5.065782 -6.39 0.000 -42.31714 -22.45584

SIZEJM | -20.24693 5.731645 -3.53 0.000 -31.4829 -9.010967

SIZEJF | -26.66374 6.122262 -4.36 0.000 -38.66544 -14.66203

SIZEIN | -28.6047 11.75666 -2.43 0.015 -51.65174 -5.557656

_cons | 287.5695 9.280372 30.99 0.000 269.3769 305.7622

------------------------------------------------------------------------------

A3.6 Perform a regression parallel to that in Exercise A3.5 for your CES category of
expenditure. Provide an interpretation of the regression coefficients and perform
appropriate tests.

A3.7 A researcher hypothesises that, for a typical enterprise, V , the logarithm of value
added per worker, is related to K, the logarithm of capital per worker, and S, the
logarithm of the average years of schooling of the workers, the relationship being:

V = β1 + β2K + β3S + u

where u is a disturbance term that satisfies the usual regression model
assumptions. She fits the relationship (1) for a sample of 25 manufacturing
enterprises, and (2) for a sample of 100 services enterprises. The table provides
some data on the samples.
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(1) (2)
Manufacturing Services

sample sample
Number of enterprises 25 100
Estimate of variance of u 0.16 0.64
Mean square deviation of K 4.00 16.00
Correlation between K and S 0.60 0.60

The mean square deviation of K is defined as 1
n

∑(
Ki −K

)2

, where n is the

number of enterprises in the sample and K is the average value of K in the sample.

The researcher finds that the standard error of the coefficient of K is 0.050 for the
manufacturing sample and 0.025 for the services sample. Explain the difference
quantitatively, given the data in the table.

A3.8 A researcher is fitting earnings functions using a sample of data relating to
individuals born in the same week in 1958. He decides to relate Y , gross hourly
earnings in 2001, to S, years of schooling, and PWE, potential work experience,
using the semilogarithmic specification:

log Y = β1 + β2S + β3PWE + u

where u is a disturbance term assumed to satisfy the regression model assumptions.
PWE is defined as age – years of schooling – 5. Since the respondents were all aged
43 in 2001, this becomes:

PWE = 43− S − 5 = 38− S.

The researcher finds that it is impossible to fit the model as specified. Stata output
for his regression is reproduced below:

. reg LGY S PWE

Source | SS df MS Number of obs = 5660

-------------+------------------------------ F( 1, 5658) = 1232.62

Model | 237.170265 1 237.170265 Prob > F = 0.0000

Residual | 1088.66373 5658 .192411405 R-squared = 0.1789

-------------+------------------------------ Adj R-squared = 0.1787

Total | 1325.834 5659 .234287682 Root MSE = .43865

------------------------------------------------------------------------------

LGY | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

S | .1038011 .0029566 35.11 0.000 .0980051 .1095971

PWE | (dropped)

_cons | .5000033 .0373785 13.38 0.000 .4267271 .5732795

------------------------------------------------------------------------------

Explain why the researcher was unable to fit his specification.

Explain how the coefficient of S might be interpreted.
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3.4 Answers to the starred exercises in the textbook

3.5 Explain why the intercept in the regression of EEARN on ES is equal to zero.

Answer:

The intercept is calculated as EEARN− β̂2ES. However, since the mean of the
residuals from an OLS regression is zero, both EEARN and ES are zero, and hence
the intercept is zero.

3.6 Show that, in the general case, the mean of the residuals from a fitted OLS
multiple regression is equal to zero, provided that an intercept is included in the
specification. Note: This is an extension of one of the useful results in Section 1.5.

Answer:

If the model is:

Y = β1 + β2X2 + · · ·+ βkXk + u

β̂1 = Y − β̂2X2 − · · · − β̂kXk.

For observation i we have:

ûi = Yi − Ŷi = Yi − β̂1 − β̂2X2i − · · · − β̂kXki.

Hence:

û = Y − β̂1 − β̂2X2 − · · · − β̂kXk

= Y −
[
Y − β̂2X2 − · · · − β̂kXk

]
− β̂2X2 − · · · − β̂kXk = 0.

3.16 A researcher investigating the determinants of the demand for public transport in a
certain city has the following data for 100 residents for the previous calendar year:
expenditure on public transport, E, measured in dollars; number of days worked,
W ; and number of days not worked, NW. By definition NW is equal to 365−W .
He attempts to fit the following model:

E = β1 + β2W + β3NW + u.

Explain why he is unable to fit this equation. (Give both intuitive and technical
explanations.) How might he resolve the problem?

Answer:

There is exact multicollinearity since there is an exact linear relationship between
W , NW and the constant term. As a consequence it is not possible to tell whether
variations in E are attributable to variations in W or variations in NW, or both.
Noting that NWi −NW = −(Wi −W), we have:

β̂2 =

∑(
Ei −E

)(
Wi −W

)∑(
NWi −NW

)2
−
∑(

Ei −E
)(

NWi −NW
)∑(

Wi −W
)(

NWi −NW
)

∑(
Wi −W

)2∑(
NWi −NW

)2
−
(∑(

Wi −W
)(

NWi −NW
))2

=

∑(
Ei −E

)(
Wi −W

)∑(
Wi −W

)2
−
∑(

Ei −E
)(
−Wi +W

)∑(
Wi −W

)(
−Wi +W

)
∑(

Wi −W
)2∑(

Wi −W
)2
−
(∑(

Wi −W
)(
−Wi +W

))2
=

0

0
.
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One way of dealing with the problem would be to drop NW from the regression.
The interpretation of β̂2 now is that it is an estimate of the extra expenditure on
transport per day worked, compared with expenditure per day not worked.

3.21 The researcher in Exercise 3.16 decides to divide the number of days not worked
into the number of days not worked because of illness, I, and the number of days
not worked for other reasons, O. The mean value of I in the sample is 2.1 and the
mean value of O is 120.2. He fits the regression (standard errors in parentheses):

Ê = −9.6 + 2.10W + 0.45O R2 = 0.72

(8.3) (1.98) (1.77)

Perform t tests on the regression coefficients and an F test on the goodness of fit of
the equation. Explain why the t tests and F test have different outcomes.

Answer:

Although there is not an exact linear relationship between W and O, they must
have a very high negative correlation because the mean value of I is so small.
Hence one would expect the regression to be subject to multicollinearity, and this is
confirmed by the results. The t statistics for the coefficients of W and O are only
1.06 and 0.25, respectively, but the F statistic:

F (2, 97) =
0.72/2

(1− 0.72)/97
= 124.7

is greater than the critical value of F at the 0.1 per cent level, 7.41.

3.5 Answers to the additional exercises

A3.1 The regression indicates that 5.6 cents out of the marginal expenditure dollar is
spent on food consumed at home, and that expenditure on this category increases
by $115 for each individual in the household, keeping total expenditure constant.
Both of these effects are very highly significant. Just over 40 per cent of the
variance in FDHO is explained by EXP and SIZE. The intercept has no plausible
interpretation.

A3.2 With the exception of LOCT, all of the categories have positive coefficients for
EXP, with high significance levels, but the SIZE effect varies:

• Positive, significant at the 1 per cent level: FDHO, TELE, CLOT, FOOT,
GASO.

• Positive, significant at the 5 per cent level: LOCT.

• Negative, significant at the 1 per cent level: TEXT, FEES, READ.

• Negative, significant at the 5 per cent level: SHEL, EDUC.

• Not significant: FDAW, DOM, FURN, MAPP, SAPP, TRIP, HEAL, ENT,
TOYS, TOB.

At first sight it may seem surprising that SIZE has a significant negative effect for
some categories. The reason for this is that an increase in SIZE means a reduction
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in expenditure per capita, if total household expenditure is kept constant, and thus
SIZE has a (negative) income effect in addition to any direct effect. Effectively
poorer, the larger household has to spend more on basics and less on luxuries. To
determine the true direct effect, we need to eliminate the income effect, and that is
the point of the re-specification of the model in the next exercise.

EXP SIZE

n β̂2 s.e.(β̂2) β̂3 s.e.(β̂3) R2 F
ADM 2,815 0.0238 0.0008 −8.09 4.19 0.230 418.7
CLOT 4,500 0.0309 0.0010 16.39 4.50 0.178 488.2
DOM 1,661 0.0388 0.0026 52.34 14.06 0.141 136.2
EDUC 561 0.1252 0.0090 −179.23 48.92 0.258 97.2
ELEC 5,828 0.0121 0.0004 18.92 1.57 0.199 725.5
FDAW 5,102 0.0538 0.0010 −20.72 4.47 0.357 1,413.7
FDHO 6,334 0.0564 0.0010 115.16 4.34 0.416 2,257.6
FOOT 1,827 0.0056 0.0005 3.24 2.05 0.083 83.0
FURN 487 0.0541 0.0071 −61.87 35.92 0.108 29.3
GASO 5,710 0.0347 0.0008 50.29 3.40 0.305 1,250.9
HEAL 4,802 0.0580 0.0019 −9.96 8.60 0.175 507.4
HOUS 6,223 0.1997 0.0027 −38.78 11.41 0.470 2,760.4
LIFE 1,253 0.0198 0.0017 −9.01 8.99 0.102 70.9
LOCT 692 0.0062 0.0011 14.61 4.72 0.072 26.8
MAPP 399 0.0309 0.0050 44.48 23.94 0.110 24.4
PERS 3,817 0.0070 0.0002 −2.17 1.03 0.214 519.4
READ 2,287 0.0049 0.0003 −1.06 1.58 0.104 132.7
SAPP 1,037 0.0046 0.0008 −3.12 3.99 0.035 18.5
TELE 5,788 0.0150 0.0004 17.92 1.47 0.287 1,161.2
TEXT 992 0.0041 0.0006 −0.71 2.90 0.051 26.8
TOB 1,155 0.0161 0.0016 6.79 6.24 0.089 56.4
TOYS 2,504 0.0140 0.0010 12.19 4.88 0.078 106.2
TRIP 516 0.0450 0.0045 37.48 31.21 0.188 59.5

A3.3 Another surprise, perhaps. The purpose of this specification is to test whether
household size has an effect on expenditure per capita on food consumed at home,
controlling for the income effect of variations in household size mentioned in the
answer to Exercise A3.2. Expenditure per capita on food consumed at home
increases by 4.8 cents out of the marginal dollar of total household expenditure per
capita. Now SIZE has a very significant negative effect. Expenditure per capita on
FDHO decreases by $26 per year for each extra person in the household, suggesting
that larger households are more efficient than smaller ones with regard to
expenditure on this category, the effect being highly significant. R2 is lower than in
Exercise A3.1, but a comparison is invalidated by the fact that the dependent
variable is different.

A3.4 Nearly all of the categories have negative SIZE effects, the majority highly
significant. One explanation of the negative effects could be economies of scale, but
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this is not plausible in the case of some. Another might be family composition –
larger families having more children. In the case of DOM, SIZE has a positive
effect, significant at the 5 per cent level. Again, this might be attributable to larger
families having more children and needing greater expenditure on childcare.

EXP SIZE

n β̂2 s.e.(β̂2) β̂3 s.e.(β̂3) R2 F
ADM 2,815 0.0244 0.0008 2.56 2.26 0.251 470.4
CLOT 4,500 0.0324 0.0012 −1.07 2.91 0.151 400.8
DOM 1,661 0.0311 0.0025 18.54 7.35 0.086 78.1
EDUC 561 0.1391 0.0108 −31.92 27.57 0.290 113.7
ELEC 5,828 0.0117 0.0004 −17.53 0.89 0.247 953.9
FDAW 5,102 0.0528 0.0011 −13.51 2.53 0.375 1,526.3
FDHO 6,334 0.0480 0.0010 −26.46 2.25 0.332 1,573.0
FOOT 1,827 0.0068 0.0005 −8.13 1.11 0.194 219.5
FURN 487 0.0935 0.0091 3.40 26.82 0.216 66.6
GASO 5,710 0.0308 0.0008 −12.43 1.80 0.255 976.5
HEAL 4,802 0.0597 0.0020 −34.16 4.99 0.197 588.5
HOUS 6,223 0.2127 0.0030 −48.86 6.67 0.501 3,123.3
LIFE 1,253 0.0205 0.0017 −10.33 4.65 0.131 94.4
LOCT 692 0.0062 0.0010 −9.06 2.54 0.098 37.4
MAPP 399 0.0384 0.0051 −15.52 12.32 0.171 41.0
PERS 3,817 0.0071 0.0003 −3.96 0.63 0.228 564.0
READ 2,287 0.0052 0.0003 −3.60 0.84 0.154 208.1
SAPP 1,037 0.0076 0.0010 −6.71 2.61 0.090 51.1
TELE 5,788 0.0139 0.0003 −9.77 0.75 0.307 1,282.6
TEXT 992 0.0041 0.0005 −8.96 1.45 0.138 79.2
TOB 1,155 0.0220 0.0019 −22.68 3.55 0.187 132.1
TOYS 2,504 0.0216 0.0012 −8.86 2.92 0.141 205.7
TRIP 516 0.0361 0.0043 −16.33 16.32 0.150 45.2

A3.5 The coefficients of the SIZE variables are fairly similar, suggesting that household
composition is not important for this category of expenditure.

A3.6 The regression results for this specification are summarised in the table below. In
the case of SHEL, the regression indicates that the SIZE effect is attributable to
SIZEAM. To investigate this further, the regression was repeated: (1) restricting
the sample to households with at least one adult male, and (2) restricting the
sample to households with either no adult male or just 1 adult male. The first
regression produces a negative effect for SIZEAM, but it is smaller than with the
whole sample and not significant. In the second regression the coefficient of
SIZEAM jumps dramatically, from −$424 to −$793, suggesting very strong
economies of scale for this particular comparison.

As might be expected, the SIZE composition variables on the whole do not appear
to have significant effects if the SIZE variable does not in Exercise A3.4. The
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results for TOB are puzzling, in that the apparent economies of scale do not
appear to be related to household composition.

Category ADM CLOT DOM EDUC ELEC FDAW FDHO FOOT
EXP 0.0245 0.0309 0.0422 0.1191 0.0120 0.0531 0.0561 0.0056

(0.0008) (0.0011) (0.0026) (0.0092) (0.0004) (0.0010) (0.0011) (0.0005)
SIZEAM −37.17 12.84 −141.47 120.11 23.40 29.36 129.69 2.65

(9.22) (10.33) (32.71) (107.51) (3.44) (9.88) (9.64) (4.71)
SIZEAF −40.47 12.26 −67.26 −58.21 35.73 −45.07 105.17 9.40

(9.52) (10.95) (34.79) (107.96) (3.60) (10.17) (9.96) (5.25)
SIZEJM 1.33 17.11 114.68 −413.28 12.53 −24.45 126.94 1.23

(9.86) (11.41) (31.91) (107.79) (4.06) (11.53) (11.35) (4.99)
SIZEJF 48.55 29.98 93.82 −287.35 8.93 −26.03 105.01 6.32

(10.54) (12.15) (33.66) (103.15) (4.31) (12.05) (12.07) (5.01)
SIZEIN −34.51 −2.08 441.46 −123.20 −4.05 −61.38 95.90 −16.33

(22.79) (22.20) (59.10) (289.63) (8.36) (23.77) (23.34) (11.07)
R2 0.243 0.179 0.184 0.278 0.204 0.361 0.417 0.086
F 150.1 163.0 62.1 35.6 249.2 480.2 753.6 28.5
n 2,815 4,500 1,661 561 5,828 5,102 6,334 1,827

Category FURN GASO HEAL HOUS LIFE LOCT MAPP PERS
EXP 0.0547 0.0341 0.0579 0.2022 0.0195 0.0061 0.0321 0.0071

(0.0072) (0.0008) (0.0019) (0.0027) (0.0017) (0.0011) (0.0051) (0.0002)
SIZEAM −119.30 90.70 3.01 −175.23 10.54 12.02 2.41 −13.99

(81.65) (7.47) (18.25) (25.24) (19.50) (9.90) (54.58) (2.23)
SIZEAF −55.42 52.23 89.64 −111.39 25.43 19.16 0.75 12.33

(93.37) (7.79) (19.10) (26.12) (20.83) (10.61) (63.11) (2.34)
SIZEJM −27.44 30.83 −62.83 52.32 −23.28 −6.41 131.15 −3.33

(87.24) (8.72) (22.56) (29.65) (21.17) (12.81) (61.75) (2.59)
SIZEJF −15.06 46.24 −57.94 34.65 −15.65 32.97 24.87 −2.10

(89.23) (9.27) (23.96) (31.58) (22.98) (15.85) (64.61) (2.71)
SIZEIN −146.90 −8.90 −109.08 119.91 −116.37 33.48 26.25 −11.30

(160.29) (18.02) (46.46) (61.40) (46.00) (25.82) (139.98) (5.32)
R2 0.110 0.310 0.181 0.475 0.109 0.077 0.116 0.228
F 9.9 427.6 177.0 937.6 25.3 9.6 8.6 187.4
n 487 5,710 4,802 6,223 1,253 692 399 3,817

Category READ SAPP TELE TEXT TOB TOYS TRIP
EXP 0.0049 0.0046 0.0148 0.0040 0.0151 0.0148 0.0448

(0.0003) (0.0008) (0.0004) (0.0006) (0.0016) (0.0010) (0.0045)
SIZEAM −6.37 −1.64 29.33 7.42 30.92 −39.66 64.35

(3.46) (8.26) (3.25) (5.98) (13.49) (11.19) (59.55)
SIZEAF 1.69 8.95 35.59 2.58 22.09 1.30 4.87

(3.80) (9.65) (3.38) (6.77) (13.68) (12.49) (71.23)
SIZEJM 0.63 −13.21 6.38 −15.90 17.42 42.46 81.61

(3.93) (9.73) (3.78) (7.51) (16.52) (11.30) (79.96)
SIZEJF 4.73 1.17 12.74 −4.92 −45.12 19.34 102.45

(4.26) (10.88) (4.06) (7.50) (16.82) (11.71) (91.86)
SIZEIN −18.98 −19.58 −26.42 19.17 2.92 50.91 −294.14

(8.56) (18.58) (7.82) (14.13) (32.83) (22.49) (157.82)
R2 0.108 0.038 0.296 0.059 0.100 0.090 0.197
F 45.8 6.7 404.9 10.4 21.2 41.2 20.8
n 2,287 1,037 5,788 992 368 2,504 516
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A3.7 The standard error is given by:

s.e.(β̂2) = σ̂u ×
1√
n
× 1√

MSD(K)
× 1√

1− r2
K,S

.

Data Factors
manufacturing services manufacturing services

sample sample sample sample
Number of 25 100 0.20 0.10
enterprises
Estimate of 0.16 0.64 0.40 0.80

variance of u
Mean square 4 16 0.50 0.25

deviation of K
Correlation 0.6 0.6 1.25 1.25

between K and S
Standard errors 0.050 0.025

The table shows the four factors for the two sectors. Other things being equal, the
larger number of enterprises and the greater MSD of K would separately cause the
standard error of β̂2 for the services sample to be half that in the manufacturing
sample. However, the larger estimate of the variance of u would, taken in isolation,
causes it to be double. The net effect, therefore, is that it is half.

A3.8 Exact multicollinearity. An extra year of schooling implies one fewer year of
potential work experience. Thus the coefficient of schooling estimates the
proportional increase in earnings associated with an additional year of schooling,
taking account of the loss of a year of potential work experience.
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Chapter 4

Transformations of variables

4.1 Overview

This chapter shows how least squares regression analysis can be extended to fit
nonlinear models. Sometimes an apparently nonlinear model can be linearised by taking
logarithms. Y = β1X

β2 and Y = β1eβ2X are examples. Because they can be fitted using
linear regression analysis, they have proved very popular in the literature, there usually
being little to be gained from using more sophisticated specifications. If you plot
earnings on schooling, using the EAWE data set, or expenditure on a given category of
expenditure on total household expenditure, using the CES data set, you will see that
there is so much randomness in the data that one nonlinear specification is likely to be
just as good as another, and indeed a linear specification may not be obviously inferior.
Often the real reason for preferring a nonlinear specification to a linear one is that it
makes more sense theoretically. The chapter shows how the least squares principle can
be applied when the model cannot be linearised.

4.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the difference between nonlinearity in parameters and nonlinearity in
variables

explain why nonlinearity in parameters is potentially a problem while nonlinearity
in variables is not

define an elasticity

explain how to interpret an elasticity in simple terms

perform basic manipulations with logarithms

interpret the coefficients of semi-logarithmic and logarithmic regressions

explain why the coefficients of semi-logarithmic and logarithmic regressions should
not be interpreted using the method for regressions in natural units described in
Chapter 1

perform a RESET test of functional misspecification
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explain the role of the disturbance term in a nonlinear model

explain how in principle a nonlinear model that cannot be linearised may be fitted

perform a transformation for comparing the fits of models with linear and
logarithmic dependent variables.

4.3 Further material

Box–Cox tests of functional specification

The theory behind the procedure for discriminating between a linear and a logarithmic
specification of the dependent variable is explained in the Appendix to Chapter 10 of
the text. However, the exposition there is fairly brief. An expanded version is offered
here. It should be skipped on first reading because it makes use of material on maximum
likelihood estimation. To keep the mathematics uncluttered, the theory will be
described in the context of the simple regression model, where we are choosing between:

Y = β1 + β2X + u

and:
log Y = β1 + β2X + u.

It generalises with no substantive changes to the multiple regression model.

The two models are actually special cases of the more general model:

Yλ =
Y λ − 1

λ
= β1 + β2X + u

with λ = 1 yielding the linear model (with an unimportant adjustment to the intercept)
and λ = 0 yielding the logarithmic specification at the limit as λ tends to zero.
Assuming that u is iid (independently and identically distributed) N(0, σ2), the density
function for ui is:

f(ui) =
1

σ
√

2π
e−u

2
i /2σ

2

and hence the density function for Yλi is:

f(Yλi) =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

.

From this we obtain the density function for Yi:

f(Yi) =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

∣∣∣∣∂Yλi∂Yi

∣∣∣∣ =
1

σ
√

2π
e−(Yλi−β1−β2Xi)2/2σ2

Y λ−1
i .

The factor
∣∣∣∂Yλi∂Yi

∣∣∣ is the Jacobian for relating the density function of Yλi to that of Yi.

Hence the likelihood function for the parameters is:

L(β1, β2, σ, λ) =

(
1

σ
√

2π

)n n∏
i=1

e−(Yλi−β1−β2Xi)2/2σ2
n∏
i=1

Y λ−1
i
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and the log-likelihood is:

logL(β1, β2, σ, λ) = −n
2

log 2πσ2 −
n∑
i=1

1

2σ2
(Yλi − β1 − β2Xi)

2 +
n∑
i=1

log Y λ−1
i

= −n
2

log 2π − n log σ − 1

2σ2

n∑
i=1

(Yλi − β1 − β2Xi)
2 + (λ− 1)

n∑
i=1

log Yi.

From the first-order condition ∂ logL/∂σ = 0, we have:

−n
σ

+
1

σ3

n∑
i=1

(Yλi − β1 − β2Xi)
2 = 0

giving:

σ̂2 =
1

n

n∑
i=1

(Yλi − β1 − β2Xi)
2.

Substituting into the log-likelihood function, we obtain the concentrated log-likelihood:

logL(β1, β2, λ) = −n
2

log 2π − n

2
log

1

n

n∑
i=1

(Yλi − β1 − β2Xi)
2 − n

2
+ (λ− 1)

n∑
i=1

log Yi.

The expression can be simplified (Zarembka, 1968) by working with Y ∗i rather than Yi,
where Y ∗i is Yi divided by YGM, the geometric mean of the Yi in the sample, for:

n∑
i=1

log Y ∗i =
n∑
i=1

log(Yi/YGM) =
n∑
i=1

(log Yi − log YGM)

=
n∑
i=1

log Yi − n log YGM =
n∑
i=1

log Yi − n log

(
n∏
i=1

Yi

)1/n

=
n∑
i=1

log Yi − log

(
n∏
i=1

Yi

)
=

n∑
i=1

log Yi −
n∑
i=1

log Yi = 0.

With this simplification, the log-likelihood is:

logL(β1, β2, λ) = −n
2

(
log 2π + log

1

n
+ 1

)
− n

2
log

n∑
i=1

(Y ∗λi − β1 − β2Xi)
2

and it will be maximised when β1, β2 and λ are chosen so as to minimise
n∑
i=1

(Y ∗λi − β1 − β2Xi)
2, the residual sum of squares from a least squares regression of the

scaled, transformed Y on X. One simple procedure is to perform a grid search, scaling
and transforming the data on Y for a range of values of λ and choosing the value that
leads to the smallest residual sum of squares (Spitzer, 1982).

A null hypothesis λ = λ0 can be tested using a likelihood ratio test in the usual way.
Under the null hypothesis, the test statistic 2(logLλ − logL0) will have a chi-squared
distribution with one degree of freedom, where logLλ is the unconstrained log-likelihood
and L0 is the constrained one. Note that, in view of the preceding equation:

2(logLλ − logL0) = n(logRSS0 − logRSSλ)
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where RSS0 and RSSλ are the residual sums of squares from the constrained and
unconstrained regressions with Y ∗.

The most obvious tests are λ = 0 for the logarithmic specification and λ = 1 for the
linear one. Note that it is not possible to test the two hypotheses directly against each
other. As with all tests, one can only test whether a hypothesis is incompatible with the
sample result. In this case we are testing whether the log-likelihood under the
restriction is significantly smaller than the unrestricted log-likelihood. Thus, while it is
possible that we may reject the linear but not the logarithmic, or vice versa, it is also
possible that we may reject both or fail to reject both.

Example
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The figure shows the residual sum of squares for values of λ from −1 to 1 for the wage
equation example described in Section 4.2 in the text. The maximum likelihood estimate
is 0.10, with RSS = 130.3. For the linear and logarithmic specifications, RSS was 217.0
and 131.4, respectively, with likelihood ratio statistics 500(log 217.0− log 130.3) = 255.0
and 500(log 131.4− log 130.3) = 4.20.The logarithmic specification is clearly much to be
preferred, but even it is rejected at the 5 per cent level, with χ2(1) = 3.84.

4.4 Additional exercises

A4.1 Is expenditure on your category per capita related to total expenditure per capita?
An alternative model specification.

Define a new variable LGCATPC as the logarithm of expenditure per capita on
your category. Define a new variable LGEXPPC as the logarithm of total
household expenditure per capita. Regress LGCATPC on LGEXPPC. Provide an
interpretation of the coefficients, and perform appropriate statistical tests.

A4.2 Is expenditure on your category per capita related to household size as well as to
total expenditure per capita? An alternative model specification.

Regress LGCATPC on LGEXPPC and LGSIZE. Provide an interpretation of the
coefficients, and perform appropriate statistical tests.
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A4.3 A researcher is considering two regression specifications:

log Y = β1 + β2 logX + u (1)

and:

log
Y

X
= α1 + α2 logX + u (2)

where u is a disturbance term.

Writing y = log Y , x = logX, and z = log Y
X

, and using the same sample of n
observations, the researcher fits the two specifications using OLS:

ŷ = β̂1 + β̂2x (3)

and:
ẑ = α̂1 + α̂2x. (4)

• Using the expressions for the OLS regression coefficients, demonstrate that
β̂2 = α̂2 + 1.

• Similarly, using the expressions for the OLS regression coefficients,
demonstrate that β̂1 = α̂1.

• Hence demonstrate that the relationship between the fitted values of y, the
fitted values of z, and the actual values of x, is ŷi − xi = ẑi.

• Hence show that the residuals for regression (3) are identical to those for (4).

• Hence show that the standard errors of β̂2 and α̂2 are the same.

• Determine the relationship between the t statistic for β̂2 and the t statistic for
α̂2, and give an intuitive explanation for the relationship.

• Explain whether R2 would be the same for the two regressions.

A4.4 A researcher has data on a measure of job performance, SKILL, and years of work
experience, EXP, for a sample of individuals in the same occupation. Believing
there to be diminishing returns to experience, the researcher proposes the model:

SKILL = β1 + β2 log(EXP) + β3 log
(
EXP2

)
+ u.

Comment on this specification.

A4.5 A researcher hypothesises that a variable Y is determined by a variable X and
considers the following four alternative regression specifications, using
cross-sectional data:

Y = β1 + β2X + u (1)

log Y = β1 + β2X + u (2)

Y = β1 + β2 logX + u (3)

log Y = β1 + β2 logX + u. (4)

Explain why a direct comparison of R2, or of RSS, in models (1) and (2) is
illegitimate. What should be the strategy of the researcher for determining which of
the four specifications has the best fit?
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A4.6 Is a logarithmic specification preferable to a linear specification for an expenditure
function?

Use your category of expenditure from the CES data set. Define CATPCST as
CATPC scaled by its geometric mean and LGCATST as the logarithm of
CATPCST. Regress CATPCST on EXPPC and SIZE and regress LGCATST on
LGEXPPC and LGSIZE. Compare the RSS for these equations.

A4.7

. reg LGEARN S EXP ASVABC SASVABC

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 4, 495) = 22.68

Model | 23.6368302 4 5.90920754 Prob > F = 0.0000

Residual | 128.96239 495 .26053008 R-squared = 0.1549

-------------+------------------------------ Adj R-squared = 0.1481

Total | 152.59922 499 .30581006 Root MSE = .51042

------------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

S | .0764243 .0116879 6.54 0.000 .0534603 .0993883

EXP | .0400506 .0096479 4.15 0.000 .0210948 .0590065

ASVABC | -.2096325 .1406659 -1.49 0.137 -.4860084 .0667434

SASVABC | .0188685 .0093393 2.02 0.044 .0005189 .0372181

_cons | 1.386753 .2109596 6.57 0.000 .9722664 1.80124

------------------------------------------------------------------------------

The output above shows the result of regressing the logarithm of hourly earnings
on years of schooling, years of work experience, ASVABC score, and SASVABC, an
interactive variable defined as the product of S and ASVABC, using EAWE Data
Set 21. The mean values of S, EXP, and ASVABC in the sample were 14.9, 6.4,
and 0.27, respectively. Give an interpretation of the regression output.

A4.8 Perform a RESET test of functional misspecification. Using your EAWE data set,
regress WEIGHT11 on HEIGHT. Save the fitted values as YHAT and define
YHATSQ as its square. Add YHATSQ to the regression specification and test its
coefficient.

4.5 Answers to the starred exercises in the textbook

4.8 Suppose that the logarithm of Y is regressed on the logarithm of X, the fitted
regression being:

log Ŷ = β̂1 + β̂2 logX.

Suppose X∗ = µX, where µ is a constant, and suppose that log Y is regressed on
logX∗. Determine how the regression coefficients are related to those of the original
regression. Determine also how the t statistic for β̂2 and R2 for the equation are
related to those in the original regression.
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4.5. Answers to the starred exercises in the textbook

Answer:

Nothing of substance is affected since the change amounts only to a fixed constant
shift in the measurement of the explanatory variable.

Let the fitted regression be:

log Ŷ = β̂∗1 + β̂∗2 logX∗.

Note that:

logX∗i − logX∗ = log µXi −
1

n

n∑
j=1

logX∗j

= log µXi −
1

n

n∑
j=1

log µXj

= log µ+ logXi −
1

n

n∑
j=1

(log µ+ logXj)

= logXi −
1

n

n∑
j=1

logXj

= logXi − logX.

Hence β̂∗2 = β̂2. To compute the standard error of β̂∗2 , we will also need β̂∗1 .

β̂∗1 = log Y − β̂∗2 logX∗ = log Y − β̂2
1

n

n∑
j=1

(log µ+ logXj)

= log Y − β̂2 log µ− β̂2 logX

= β̂1 − β̂2 log µ.

Thus the residual û∗i is given by:

û∗i = log Yi − β̂∗1 − β̂∗2 logX∗i = log Yi − (β̂1 − β̂2 log µ)− β̂2(logXi + log µ) = ûi.

Hence the estimator of the variance of the disturbance term is unchanged and so
the standard error of β̂∗2 is the same as that for β̂2. As a consequence, the t statistic
must be the same. R2 must also be the same:

R2∗ = 1−
∑
û∗2i∑(

log Yi − log Y
) = 1−

∑
û2
i∑(

log Yi − log Y
) = R2.

4.11 RSS was the same in Tables 4.6 and 4.8. Demonstrate that this was not a
coincidence.

Answer:

This is a special case of the transformation in Exercise 4.7.
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4.14

. gen LGHTSQ = ln(HEIGHTSQ)

. reg LGWT04 LGHEIGHT LGHTSQ

Source | SS df MS Number of obs = 500

-------------+------------------------------ F( 1, 498) = 211.28

Model | 7.90843858 1 7.90843858 Prob > F = 0.0000

Residual | 18.6403163 498 .037430354 R-squared = 0.2979

-------------+------------------------------ Adj R-squared = 0.2965

Total | 26.5487548 499 .053203918 Root MSE = .19347

------------------------------------------------------------------------------

LGWT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

LGHEIGHT | (dropped)

LGHTSQ | 1.053218 .0724577 14.54 0.000 .9108572 1.195578

_cons | -3.78834 .610925 -6.20 0.000 -4.988648 -2.588031

------------------------------------------------------------------------------

The output shows the results of regressing, LGWT04, the logarithm of
WEIGHT04, on LGHEIGHT, the logarithm of HEIGHT, and LGHTSQ, the
logarithm of the square of HEIGHT, using EAWE Data Set 21. Explain the
regression results, comparing them with those in Exercise 4.2.

Answer:

LGHTSQ = 2 LGHEIGHT, so the specification is subject to exact
multicollinearity. In such a situation, Stata drops one of the variables responsible.

4.18

. nl (S = {beta1} + {beta2}/({beta3} + SIBLINGS)) if SIBLINGS>0

(obs = 473)

Iteration 0: residual SS = 3502.041

Iteration 1: residual SS = 3500.884

.....................................

Iteration 14: residual SS = 3482.794

Source | SS df MS

-------------+------------------------------ Number of obs = 473

Model | 132.339291 2 66.1696453 R-squared = 0.0366

Residual | 3482.7939 470 7.41019979 Adj R-squared = 0.0325

-------------+------------------------------ Root MSE = 2.722168

Total | 3615.13319 472 7.65918049 Res. dev. = 2286.658

------------------------------------------------------------------------------

S | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/beta1 | 10.45811 5.371492 1.95 0.052 -.0970041 21.01322

/beta2 | 47.95198 125.3578 0.38 0.702 -198.3791 294.2831

/beta3 | 8.6994 15.10277 0.58 0.565 -20.97791 38.37671

------------------------------------------------------------------------------

Parameter beta1 taken as constant term in model & ANOVA table
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The output uses EAWE Data Set 21 to fit the nonlinear model:

S = β1 +
β2

β3 + SIBLINGS
+ u

where S is the years of schooling of the respondent and SIBLINGS is the number
of brothers and sisters. The specification is an extension of that for Exercise 4.1,
with the addition of the parameter β3. Provide an interpretation of the regression
results and compare it with that for Exercise 4.1.

Answer:

As in Exercise 4.1, the estimate of β1 provides an estimate of the lower bound of
schooling, 10.46 years, when the number of siblings is large. The other parameters
do not have straightforward interpretations. The figure below represents the
relationship. Comparing this figure with that for Exercise 4.1, it can be seen that it
gives a very different picture of the adverse effect of additional siblings. The
specification in Exercise 4.1 suggests that the adverse effect is particularly large for
the first few siblings, and then attenuates. The revised specification indicates that
the adverse effect is more evenly spread and is more enduring. However, the
relationship has been fitted with imprecision since the estimates of β2 and β3 are
not significant.
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4.6 Answers to the additional exercises

A4.1

. reg LGFDHOPC LGEXPPC

Source | SS df MS Number of obs = 6334

-------------+------------------------------ F( 1, 6332) = 4757.00

Model | 1502.58932 1 1502.58932 Prob > F = 0.0000

Residual | 2000.08269 6332 .315869029 R-squared = 0.4290

-------------+------------------------------ Adj R-squared = 0.4289

Total | 3502.67201 6333 .553082585 Root MSE = .56202
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------------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

LGEXPPC | .6092734 .0088338 68.97 0.000 .5919562 .6265905

_cons | .8988291 .0703516 12.78 0.000 .7609161 1.036742

------------------------------------------------------------------------------

The regression implies that the income elasticity of expenditure on food is 0.61
(supposing that total household expenditure can be taken as a proxy for permanent
income). In addition to testing the null hypothesis that the elasticity is equal to
zero, which is rejected at a very high significance level for all the categories, one
might test whether it is different from 1, as a means of classifying the categories of
expenditure as luxuries (elasticity > 1) and necessities (elasticity < 1).

The table gives the results for all the categories of expenditure.

Regression of LGCATPC on EXPPC

n β̂2 s.e.(β̂2) t (β2 = 0) t (β2 = 1) R2 RSS
ADM 2,815 1.098 0.030 37.20 3.33 0.330 1,383.9
CLOT 4,500 0.794 0.021 37.34 −9.69 0.237 1,394.0
DOM 1,661 0.812 0.049 16.54 −3.84 0.142 273.5
EDUC 561 1.382 0.090 15.43 4.27 0.299 238.1
ELEC 5,828 0.586 0.011 50.95 −36.05 0.308 2,596.3
FDAW 5,102 0.947 0.015 64.68 −3.59 0.451 4,183.6
FDHO 6,334 0.609 0.009 68.97 −44.23 0.429 4,757.0
FOOT 1,827 0.608 0.027 22.11 −14.26 0.211 488.7
FURN 487 0.912 0.085 10.66 −1.03 0.190 113.7
GASO 5,710 0.677 0.012 56.92 −27.18 0.362 3,240.1
HEAL 4,802 0.868 0.021 40.75 −6.22 0.257 1,660.6
HOUS 6,223 1.033 0.014 73.34 2.34 0.464 5,378.5
LIFE 1,253 0.607 0.047 13.00 −8.40 0.119 169.1
LOCT 692 0.510 0.055 9.29 −8.92 0.111 86.2
MAPP 399 0.817 0.033 9.87 −2.21 0.197 97.5
PERS 3,817 0.891 0.019 48.14 −5.88 0.378 2,317.3
READ 2,287 0.909 0.032 28.46 −2.84 0.262 809.9
SAPP 1,037 0.665 0.045 14.88 −7.49 0.176 221.3
TELE 5,788 0.710 0.012 58.30 −23.82 0.370 3,398.8
TEXT 992 0.629 0.046 13.72 −8.09 0.160 188.2
TOB 1,155 0.721 0.035 20.39 −7.87 0.265 415.8
TOYS 2,504 0.733 0.028 26.22 −9.57 0.216 687.5
TRIP 516 0.723 0.077 9.43 −3.60 0.147 88.9
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A4.2

. reg LGFDHOPC LGEXPPC LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2410.79

Model | 1514.30728 2 757.15364 Prob> F = 0.0000

Residual | 1988.36473 6331 .314068035 R-squared = 0.4323

-----------+------------------------------ Adj R-squared = 0.4321

Total | 3502.67201 6333 .553082585 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | -.0814427 .0133333 -6.11 0.000 -.1075806 -.0553049

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------

The income elasticity, 0.58, is now a little lower than before. The size elasticity is
significantly negative, suggesting economies of scale and indicating that the model
in the previous exercise was misspecified.

The specification is equivalent to that in Exercise 4.5 in the text. Writing the latter
again as:

LGCAT = β1 + β2LGEXP + β3LGSIZE + u

we have:

LGCAT − LGSIZE = β1 + β2(LGEXP − LGSIZE ) + (β3 + β2 − 1)LGSIZE + u

and so:

LGCATPC = β1 + β2LGEXPPC + (β3 + β2 − 1)LGSIZE + u.

Note that the estimates of the income elasticity are identical to those in Exercise
4.5 in the text. This follows from the fact that the theoretical coefficient, β2, has
not been affected by the manipulation. The specification differs from that in
Exercise A4.1 in that we have not dropped the LGSIZE term and so we are not
imposing the restriction β3 + β2 − 1 = 0.
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Dependent variable LGCATPC
LGEXPPC LGSIZE

n β̂2 s.e.(β̂2) β̂3 s.e.(β̂3) R2 F RSS
ADM 2,815 1.080 0.033 −0.055 0.043 0.330 692.9 3,945.2
CLOT 4,500 0.842 0.024 0.146 0.032 0.240 710.1 5,766.1
DOM 1,661 0.941 0.054 0.415 0.075 0.157 154.6 4,062.5
EDUC 561 1.229 0.101 −0.437 0.139 0.311 125.9 1,380.1
ELEC 5,828 0.372 0.012 −0.362 0.017 0.359 1,627.8 2,636.3
FDAW 5,102 0.879 0.016 −0.213 0.022 0.461 2,176.6 3,369.1
FDHO 6,334 0.584 0.010 −0.081 0.013 0.432 2,410.8 1,988.4
FOOT 1,827 0.396 0.031 −0.560 0.042 0.281 356.1 1,373.5
FURN 487 0.807 0.103 −0.246 0.137 0.195 58.7 913.9
GASO 5,710 0.676 0.013 −0.004 0.018 0.362 1,691.8 2,879.3
HEAL 4,802 0.779 0.023 −0.306 0.031 0.272 894.6 6,062.5
HOUS 6,223 0.989 0.016 −0.140 0.021 0.467 2,729.5 4,825.6
LIFE 1,253 0.464 0.050 −0.461 0.065 0.154 113.4 1,559.2
LOCT 692 0.389 0.060 −0.396 0.086 0.138 54.9 1,075.1
MAPP 399 0.721 0.094 −0.264 0.123 0.206 51.5 576.8
PERS 3,817 0.824 0.020 −0.217 0.028 0.388 1,206.3 3,002.2
READ 2,287 0.764 0.034 −0.503 0.047 0.297 482.8 2,892.1
SAPP 1,037 0.467 0.048 −0.592 0.066 0.236 160.1 1,148.9
TELE 5,788 0.640 0.013 −0.222 0.018 0.386 1,816.3 3,055.1
TEXT 992 0.388 0.049 −0.713 0.067 0.246 161.0 1,032.9
TOB 1,155 0.563 0.037 −0.515 0.049 0.329 282.1 873.4
TOYS 2,504 0.638 0.031 −0.304 0.043 0.231 375.8 2,828.3
TRIP 516 0.681 0.083 −0.142 0.109 0.150 45.3 792.8

A4.3 A researcher is considering two regression specifications:

log Y = β1 + β2 logX + u (1)

and:

log
Y

X
= α1 + α2 logX + u (2)

where u is a disturbance term.

Determine whether (2) is a reparameterised or a restricted version of (1).

(2) may be rewritten:

log Y = α1 + (α2 + 1) logX + u

so it is a reparameterised version of (1) with β1 = α1 and β2 = α2 + 1.

Writing y = log Y , x = logX, and z = log Y
X

, and using the same sample of n
observations, the researcher fits the two specifications using OLS:

ŷ = β̂1 + β̂2x (3)

and:
ẑ = α̂1 + α̂2x. (4)
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Using the expressions for the OLS regression coefficients, demonstrate that
β̂2 = α̂2 + 1.

α̂2 =

∑
(xi −x)(zi −z)∑

(xi −x)2
=

∑
(xi −x)([yi − xi]− [y−x])∑

(xi −x)2

=

∑
(xi −x)(yi −y)∑

(xi −x)2
−
∑

(xi −x)2∑
(xi −x)2

= β̂2 − 1.

Similarly, using the expressions for the OLS regression coefficients, demonstrate
that β̂1 = α̂1.

α̂1 = z− α̂2x= (y−x)− α̂2x= y− (α̂2 + 1)x= y− β̂2x= β̂1.

Hence demonstrate that the relationship between the fitted values of y, the fitted
values of z, and the actual values of x, is ŷi − xi = ẑi.

ẑi = α̂1 + α̂2xi = β̂1 + (β̂2 − 1)xi = β̂1 + β̂2xi − xi = ŷi − xi.

Hence show that the residuals for regression (3) are identical to those for (4).

Let ûi be the residual in (3) and v̂i the residual in (4). Then:

v̂i = zi − ẑi = yi − xi − (ŷi − xi) = yi − ŷi = ûi.

Hence show that the standard errors of β̂2 and α̂2 are the same.

The standard error of β̂2 is:

s.e.(β̂2) =

√∑
û2
i /(n− 2)∑
(xi −x)2

=

√∑
v̂2
i /(n− 2)∑
(xi −x)2

= s.e.(α̂2).

Determine the relationship between the t statistic for β̂2 and the t statistic for α̂2,
and give an intuitive explanation for the relationship.

tβ̂2 =
β̂2

s.e.(β̂2)
=

α̂2 + 1

s.e.(α̂2)
.

The t statistic for β̂2 is for the test of H0 : β2 = 0. Given the relationship, it is also
for the test of H0 : α2 = −1. The tests are equivalent since both of them reduce the
model to log Y depending only on an intercept and the disturbance term.

Explain whether R2 would be the same for the two regressions.

R2 will be different because it measures the proportion of the variance of the
dependent variable explained by the regression, and the dependent variables are
different.

A4.4 The proposed model:

SKILL = β1 + β2 log(EXP) + β3 log(EXP2) + u

cannot be fitted since:
log(EXP2) = 2 log(EXP)

and the specification is therefore subject to exact multicollinearity.

81



4. Transformations of variables

A4.5 In (1) R2 is the proportion of the variance of Y explained by the regression. In (2)
it is the proportion of the variance of log Y explained by the regression. Thus,
although related, they are not directly comparable. In (1) RSS has dimension the
squared units of Y . In (2) it has dimension the squared units of log Y . Typically it
will be much lower in (2) because the logarithm of Y tends to be much smaller
than Y .

The specifications with the same dependent variable may be compared directly in
terms of RSS (or R2) and hence two of the specifications may be eliminated
immediately. The remaining two specifications should be compared after scaling,
with Y replaced by Y ∗ where Y ∗ is defined as Y divided by the geometric mean of
Y in the sample. RSS for the scaled regressions will then be comparable.

A4.6 The RSS comparisons for all the categories of expenditure indicate that the
logarithmic specification is overwhelmingly superior to the linear one. The
differences are actually surprisingly large and suggest that some other factor may
also be at work. One possibility is that the data contain many outliers, and these
do more damage to the fit in linear than in logarithmic specifications. To see this,
plot CATPC and EXPPC and compare with a plot of LGCATPC and LGEXPPC.
(Strictly speaking, you should control for SIZE and LGSIZE using the
Frisch–Waugh–Lovell method described in Chapter 3.)

The following Stata output gives the results of fitting the model for FDHO,
assuming that both the dependent variable and the explanatory variables are
subject to the Box–Cox transformation with the same value of λ. Iteration
messages have been deleted. The maximum likelihood estimate of λ is 0.10, so the
logarithmic specification is a better approximation than the linear specification.
The latter is very soundly rejected by the likelihood-ratio test.

. boxcox FDHOPC EXPPC SIZE if FDHO>0, model(lambda)

Number of obs = 6334

LR chi2(2) = 3592.55

Log likelihood = -41551.328 Prob > chi2 = 0.000

------------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/lambda | .1019402 .0117364 8.69 0.000 .0789372 .1249432

------------------------------------------------------------------------------

Estimates of scale-variant parameters

----------------------------

| Coef.

-------------+--------------

Notrans |

_cons | 2.292828

-------------+--------------

Trans |

EXPPC | .4608736

SIZE | -.1486856

-------------+--------------

/sigma | .9983288

----------------------------
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---------------------------------------------------------

Test Restricted LR statistic P-value

H0: log likelihood chi2 Prob > chi2

---------------------------------------------------------

lambda = -1 -50942.835 18783.01 0.000

lambda = 0 -41590.144 77.63 0.000

lambda = 1 -44053.749 5004.84 0.000

---------------------------------------------------------

A4.7 Let the theoretical model for the regression be written:

LGEARN = β1 + β2S + β3EXP + β4ASVABC + β5SA + u.

The estimate of β4 is negative, at first sight suggesting that cognitive ability has an
adverse effect on earnings, contrary to common sense and previous results with
wage equations of this kind. However, rewriting the model as:

LGEARN = β1 + β2S + β3EXP + (β4 + β5S)ASVABC + u

it can be seen that, as a consequence of the inclusion of the interactive term, β4

represents the effect of a marginal year of schooling for an individual with no
schooling. Since no individual in the sample had fewer than 8 years of schooling,
the perverse sign of the estimate illustrates only the danger of extrapolating
outside the data range. It makes better sense to evaluate the implicit coefficient for
an individual with the mean years of schooling, 14.9. This is
(−0.2096 + 0.0189× 14.9) = 0.072, implying a much more plausible 7.2 per cent
increase in earnings for each standard deviation increase in cognitive ability. The
positive sign of the coefficient of SA suggests that schooling and cognitive ability
have mutually reinforcing effects on earnings.

One way of avoiding nonsense parameter estimates is to measure the variables in
question from their sample means. This has been done in the regression output
below, where S1 and ASVABC1 are schooling and ASVABC measured from their
sample means and SASVABC1 is their interaction. The coefficients of S and
ASVABC now provide estimates of their effects when the other variable is equal to
its sample mean.

. reg LGEARN S1 EXP ASVABC1 SASVABC1

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 4, 495) = 22.68

Model | 23.6368304 4 5.90920759 Prob > F = 0.0000

Residual | 128.962389 495 .260530079 R-squared = 0.1549

-----------+------------------------------ Adj R-squared = 0.1481

Total | 152.59922 499 .30581006 Root MSE = .51042

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S1 | .0815188 .0116521 7.00 0.000 .0586252 .1044125

EXP | .0400506 .0096479 4.15 0.000 .0210948 .0590065

ASVABC1 | .0715084 .0298278 2.40 0.017 .0129036 .1301132

SASVABC1 | .0188685 .0093393 2.02 0.044 .0005189 .0372181

_cons | 2.544783 .0675566 37.67 0.000 2.41205 2.677516

----------------------------------------------------------------------------
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A4.8 In the first part of the output, WEIGHT11 is regressed on HEIGHT, using EAWE
Data Set 21. The predict command saves the fitted values from the most recent
regression, assigning them the variable name that follows the command, in this
case YHAT. YHATSQ is defined as the square of YHAT, and this is added to the
regression specification. Somewhat surprisingly, its coefficient is not significant. A
logarithmic regression of WEIGHT11 on HEIGHT yields an estimated elasticity of
2.05, significantly different from 1 at a high significance level. Multicollinearity is
responsible for the failure to detect nonlinearity hear. YHAT is very highly
correlated with HEIGHT.

. reg WEIGHT11 HEIGHT

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 1, 498) = 139.97

Model | 236642.736 1 236642.736 Prob > F = 0.0000

Residual | 841926.912 498 1690.61629 R-squared = 0.2194

-----------+------------------------------ Adj R-squared = 0.2178

Total | 1078569.65 499 2161.46222 Root MSE = 41.117

----------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | 5.369246 .4538259 11.83 0.000 4.477597 6.260895

_cons | -184.7802 30.8406 -5.99 0.000 -245.3739 -124.1865

----------------------------------------------------------------------------

. predict YHAT

. gen YHATSQ = YHAT*YHAT

. reg WEIGHT11 HEIGHT YHATSQ

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 2, 497) = 70.33

Model | 237931.888 2 118965.944 Prob > F = 0.0000

Residual | 840637.76 497 1691.42407 R-squared = 0.2206

-----------+------------------------------ Adj R-squared = 0.2175

Total | 1078569.65 499 2161.46222 Root MSE = 41.127

----------------------------------------------------------------------------

WEIGHT11 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | -.4995924 6.737741 -0.07 0.941 -13.73756 12.73837

YHATSQ | .0030233 .003463 0.87 0.383 -.0037807 .0098273

_cons | 114.5523 344.2538 0.33 0.739 -561.8199 790.9244

----------------------------------------------------------------------------
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Chapter 5

Dummy variables

5.1 Overview

This chapter explains the definition and use of a dummy variable, a device for allowing
qualitative characteristics to be introduced into the regression specification. Although
the intercept dummy may appear artificial and strange at first sight, and the slope
dummy even more so, you will become comfortable with the use of dummy variables
very quickly. The key is to keep in mind the graphical representation of the regression
model.

5.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to explain:

how the intercept and slope dummy variables are defined

what impact they have on the regression specification

how the choice of reference (omitted) category affects the interpretation of t tests
on the coefficients of dummy variables

how a change of reference category would affect the regression results

how to perform a Chow test

when and why a Chow test is equivalent to a particular F test of the joint
explanatory power of a set of dummy variables.

5.3 Additional exercises

A5.1 In Exercise A1.4 the logarithm of earnings was regressed on height using EAWE
Data Set 21 and, somewhat surprisingly, it was found that height had a highly
significant positive effect. We have seen that the logarithm of earnings is more
satisfactory than earnings as the dependent variable in a wage equation. Fitting the
semilogarithmic specification, we obtain:
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. reg LGEARN HEIGHT

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 1, 498) = 6.27

Model | 1.84965685 1 1.84965685 Prob > F = 0.0126

Residual | 146.79826 498 .294775622 R-squared = 0.0124

-----------+------------------------------ Adj R-squared = 0.0105

Total | 148.647917 499 .297891616 Root MSE = .54293

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | .0148894 .005944 2.50 0.013 .003211 .0265678

_cons | 1.746174 .4032472 4.33 0.000 .9538982 2.538449

----------------------------------------------------------------------------

The t statistic for HEIGHT is again significant, if only at the 5 per cent level. In
Exercise A1.4 it was hypothesised that the effect might be attributable to males
tending to have greater earnings than females and also tending to be taller. The
output below shows the result of adding the dummy variable to the specification,
to control for sex. Comment on the results.

. reg LGEARN HEIGHT MALE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 2, 497) = 4.20

Model | 2.47043329 2 1.23521664 Prob > F = 0.0155

Residual | 146.177483 497 .294119685 R-squared = 0.0166

-----------+------------------------------ Adj R-squared = 0.0127

Total | 148.647917 499 .297891616 Root MSE = .54233

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | .0060845 .0084844 0.72 0.474 -.0105852 .0227541

MALE | .1007018 .0693157 1.45 0.147 -.0354862 .2368898

_cons | 2.292078 .5508559 4.16 0.000 1.209784 3.374371

----------------------------------------------------------------------------

A5.2 Does ethnicity have an effect on household expenditure?

The variable REFRACE in the CES data set is coded 1 if the reference individual
in the household, usually the head of the household, is white and it is coded greater
than 1 for other ethnicities. Define a dummy variable NONWHITE that is 0 if
REFRACE is 1 and 1 if REFRACE is greater than 1. Regress LGCATPC on
LGEXPPC, LGSIZE, and NONWHITE. Provide an interpretation of the
coefficients, and perform appropriate statistical tests.

A5.3 Does education have an effect on household expenditure?

The variable REFEDUC in the CES data set provides information on the
education of the reference individual in the household. Define dummy variables
EDUCDO (high-school drop out or less), EDUCSC (some college), and EDUCBA
(complete college or more) using the following rules:
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• EDUCDO = 1 if REFEDUC < 12, 0 otherwise

• EDUCSC = 1 if REFEDUC = 13 or 14, 0 otherwise

• EDUCBA = 1 if REFEDUC > 14, 0 otherwise.

Regress LGCATPC on LGEXPPC, LGSIZE, EDUCDO, EDUCSC, and EDUCBA.
Provide an interpretation of the coefficients, and perform appropriate statistical
tests. Note that the reference (omitted) category for the dummy variables is high
school graduate with no college (REFEDUC = 12).

A5.4 Using the CES data set, evaluate whether the education dummies as a group have
significant explanatory power for expenditure on your category of expenditure by
comparing the residual sums of squares in the regressions in Exercises A4.2 and
A5.3.

A5.5 Repeat Exercise A5.3 making EDUCDO the reference (omitted) category.
Introduce a new dummy variable EDUCHSD for high school diploma, since this is
no longer the omitted category:

• EDUCHSD = 1 if REFEDUC = 12, 0 otherwise.

Evaluate the impact on the interpretation of the coefficients and the statistical
tests.

A5.6 A researcher has data on hourly earnings in dollars, EARNINGS, years of schooling
(highest grade completed), S, and sector of employment, GOV, for 1,355 male
respondents in the National Longitudinal Survey of Youth 1979– for 2002. GOV is
defined as a dummy variable equal to 0 if the respondent was working in the
private sector and 1 if the respondent was working in the government sector. 91 per
cent of the private sector workers and 95 per cent of the government sector workers
had at least 12 years of schooling. The mean value of S was 13.5 for the private
sector and 14.6 for the government sector. The researcher regresses LGEARN, the
natural logarithm of EARNINGS :

• (1) on GOV alone

• (2) on GOV and S

• (3) on GOV, S, and SGOV

where the variable SGOV is defined to be the product of S and GOV, with the
results shown in the following table.

Standard errors are shown in parentheses and t statistics in square brackets. RSS
= residual sum of squares.
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5. Dummy variables

(1) (2) (3)
0.007 −0.121 0.726

GOV (0.043) (0.038) (0.193)
[0.16] [−3.22] [3.76]

0.116 0.130
S — (0.006) (0.006)

[21.07] [20.82]
−0.059

SGOV — — (0.013)
[−4.48]

2.941 1.372 1.195
constant (0.018) (0.076) (0.085)

[163.62] [18.04] [14.02]
R2 0.000 0.247 0.258
RSS 487.7 367.2 361.8

• Explain verbally why the estimates of the coefficient of GOV are different in
regressions (1) and (2).

• Explain the difference in the estimates of the coefficient of GOV in regressions
(2) and (3).

• The correlation between GOV and SGOV was 0.977. Explain the variations in
the standard error of the coefficient of GOV in the three regressions.

A5.7 A researcher has data on the average annual rate of growth of employment, e, and
the average annual rate of growth of GDP, x, both measured as percentages, for a
sample of 27 developing countries and 23 developed ones for the period 1985–1995.
He defines a dummy variable D that is equal to 1 for the developing countries and
0 for the others. Hypothesising that the impact of GDP growth on employment
growth is lower in the developed countries than in the developing ones, he defines a
slope dummy variable xD as the product of x and D and fits the regression
(standard errors in parentheses):

whole sample ê = −1.45 + 0.19x+ 0.78xD R2 = 0.61

(0.36) (0.10) (0.10) RSS = 50.23

He also runs simple regressions of e on x for the whole sample, for the developed
countries only, and for the developing countries only, with the following results:

whole sample ê = −0.56 + 0.24x R2 = 0.04

(0.53) (0.16) RSS = 121.61

developed ê = −2.74 + 0.50x R2 = 0.35

countries (0.58) (0.15) RSS = 18.63

developing ê = −0.85 + 0.78x R2 = 0.51

countries (0.42) (0.15) RSS = 25.23

• Explain mathematically and graphically the role of the dummy variable xD in
this model.
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• The researcher could have included D as well as xD as an explanatory variable
in the model. Explain mathematically and graphically how it would have
affected the model.

• Suppose that the researcher had included D as well as xD.

◦ What would the coefficients of the regression have been?

◦ What would the residual sum of squares have been?

◦ What would the t statistic for the coefficient of D have been?

• Perform two tests of the researcher’s hypothesis. Explain why you would not
test it with a t test on the coefficient of xD in regression (1).

A5.8 Does going to college have an effect on household expenditure?

Using the CES data set, define a dummy variable COLLEGE that is 0 if
REFEDUC is less than 13 (no college education) and 1 if REFEDUC is greater
than 12 (partial or complete college education). Regress LGCATPC on LGEXPPC
and LGSIZE : (1) for those respondents with COLLEGE = 1, (2) for those
respondents with COLLEGE = 0, and (3) for the whole sample. Perform a Chow
test.

A5.9 How does education impact on household expenditure?

In Exercise A5.8 you defined an intercept dummy COLLEGE that allowed you to
investigate whether going to college caused a shift in your expenditure function.
Now define slope dummy variables that allow you to investigate whether going to
college affects the coefficients of LGEXPPC and LGSIZE. Define LEXPCOL as the
product of LGEXPPC and COLLEGE, and define LSIZECOL as the product of
LGSIZE and COLLEGE. Regress LGCATPC on LGEXPPC, LGSIZE,
COLLEGE, LEXPCOL, and LSIZECOL. Provide an interpretation of the
coefficients, and perform appropriate tests. Include a test of the joint explanatory
power of the dummy variables by comparing RSS in this regression with that in
Exercise A4.3. Verify that the outcome of this F test is identical to that for the
Chow test in Exercise A5.8.

A5.10 You are given the following data on 2,800 respondents in the National Longitudinal
Survey of Youth 1979– with jobs in 2011:

• hourly earnings in the respondent’s main job at the time of the 2011 interview

• educational attainment (highest grade completed)

• mother’s and father’s educational attainment

• ASVABC score

• sex

• ethnicity: black, Hispanic, or white, that is (not black nor Hispanic)

• whether the main job in 2011 was in the government sector or the private
sector.

As a policy analyst, you are asked to investigate whether there is evidence of
earnings discrimination, positive or negative, by sex or ethnicity in (1) the

89
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government sector, and (2) the private sector. Explain how you would do this,
giving a mathematical representation of your regression specification(s).

You are also asked to investigate whether the incidence of earnings discrimination,
if any, is significantly different in the two sectors. Explain how you would do this,
giving a mathematical representation of your regression specification(s). In
particular, discuss whether a Chow test would be useful for this purpose.

A5.11 A researcher has data from the National Longitudinal Survey of Youth 1997– for
the year 2000 on hourly earnings, Y , years of schooling, S, and years of work
experience, EXP, for a sample of 1,774 males and 1,468 females. She defines a
dummy variable MALE for being male, a slope dummy variable SMALE as the
product of S and MALE, and another slope dummy variable EXPMALE as the
product of EXP and MALE. She performs the following regressions (1) log Y on S
and EXP for the entire sample, (2) log Y on S and EXP for males only, (3) log Y
on S and EXP for females only, (4) log Y on S, EXP, and MALE for the entire
sample, and (5) log Y on S, EXP, MALE, SMALE, and EXPMALE for the entire
sample. The results are shown in the table, with standard errors in parentheses.
RSS is the residual sum of squares and n is the number of observations.

(1) (2) (3) (4) (5)
S 0.094 0.099 0.094 0.0967 0.094

(0.003) (0.004) (0.005) (0.003) (0.005)
EXP 0.046 0.042 0.039 0.040 0.039

(0.002) (0.003) (0.002) (0.002) (0.003)
MALE — — — 0.234 0.117

(0.016) (0.108)
SMALE — — — — 0.005

(0.007)
EXPMALE — — — — 0.003

(0.004)
constant 5.165 5.283 5.166 5.111 5.166

(0.054) (0.083) (0.068) (0.052) (0.074)
R2 0.319 0.277 0.363 0.359 0.359
RSS 714.6 411.0 261.6 672.8 672.5
n 3,242 1,774 1,468 3,242 3,242

The correlations between MALE and SMALE, and MALE and EXPMALE, were
both 0.96. The correlation between SMALE and EXPMALE was 0.93.

• Give an interpretation of the coefficients of S and SMALE in regression (5).

• Give an interpretation of the coefficients of MALE in regressions (4) and (5).

• The researcher hypothesises that the earnings function is different for males
and females. Perform a test of this hypothesis using regression (4), and also
using regressions (1) and (5).

• Explain the differences in the tests using regression (4) and using regressions
(1) and (5).
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• At a seminar someone suggests that a Chow test could shed light on the
researcher’s hypothesis. Is this correct?

• Explain which of (1), (4), and (5) would be your preferred specification.

A5.12 A researcher has data for the year 2000 from the National Longitudinal Survey of
Youth 1997– on the following characteristics of the respondents: hourly earnings,
EARNINGS, measured in dollars; years of schooling, S; years of work experience,
EXP ; sex; and ethnicity (blacks, hispanics, and ‘whites’ (those not classified as
black or hispanic). She drops the hispanics from the sample, leaving 2,135 ‘whites’
and 273 blacks, and defines dummy variables MALE and BLACK. MALE is
defined to be 1 for males and 0 for females. BLACK is defined to be 1 for blacks
and 0 for ‘whites’. She defines LGEARN to be the natural logarithm of
EARNINGS. She fits the following ordinary least squares regressions, each with
LGEARN as the dependent variable:

• (1) Explanatory variables S, EXP, and MALE, whole sample

• (2) Explanatory variables S, EXP, MALE, and BLACK, whole sample

• (3) Explanatory variables S, EXP, and MALE, ‘whites’ only

• (4) Explanatory variables S, EXP, and MALE, blacks only.

She then defines interaction terms SB = S×BLACK, EB = EXP×BLACK, and
MB = MALE×BLACK, and runs a fifth regression, still with LGEARN as the
dependent variable:

• (5) Explanatory variables S, EXP, MALE, BLACK, SB, EB, MB, whole
sample.

The results are shown in the table. Unfortunately, some of those for Regression 4
are missing from the table. RSS = residual sum of squares. Standard errors are
given in parentheses.
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(1) (2) (3) (4) (5)
whole whole ‘whites’ blacks whole
sample sample only only sample

S 0.124 0.121 0.122 V 0.122
(0.004) (0.004) (0.004) (0.004)

EXP 0.033 0.032 0.033 W 0.033
(0.002) (0.002) (0.003) (0.003)

MALE 0.278 0.277 0.306 X 0.306
(0.020) (0.020) (0.021) (0.021)

BLACK — −0.144 — — 0.205
(0.032) (0.225)

SB — — — — −0.009
(0.016)

EB — — — — −0.006
(0.007)

MB — — — — −0.280
(0.065)

constant 0.390 0.459 0.411 Y 0.411
(0.075) (0.076) (0.084) (0.082)

R2 0.335 0.341 0.332 0.321 0.347
RSS 610.0 605.1 555.7 Z 600.0
n 2,408 2,408 2,135 273 2,408

• Calculate the missing coefficients V, W, X, and Y in Regression 4 (just the
coefficients, not the standard errors) and Z, the missing RSS, giving an
explanation of your computations.

• Give an interpretation of the coefficient of BLACK in Regression 2.

• Perform an F test of the joint explanatory power of BLACK, SB, EB, and
MB in Regression 5.

• Explain whether it is possible to relate the F test in part (c) to a Chow test
based on Regressions 1, 3, and 4.

• Give an interpretation of the coefficients of BLACK and MB in Regression 5.

• Explain whether a simple t test on the coefficient of BLACK in Regression 2 is
sufficient to show that the wage equations are different for blacks and ‘whites’.

A5.13 As part of a workshop project, four students are investigating the effects of
ethnicity and sex on earnings using data for the year 2002 in the National
Longitudinal Survey of Youth 1979–. They all start with the same basic
specification:

log Y = β1 + β2S + β3EXP + u

where Y is hourly earnings, measured in dollars, S is years of schooling completed,
and EXP is years of work experience. The sample contains 123 black males, 150
black females, 1,146 white males, and 1,127 white females. (All respondents were
either black or white. The Hispanic subsample was dropped.) The output from
fitting this basic specification is shown in column 1 of the table (standard errors in
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parentheses; RSS is residual sum of squares, n is the number of observations in the
regression).

Basic Student C Student D
(1) (2) (3) (4a) (4b) (5a) (5b)
All All All Males Females Whites Blacks

S 0.126 0.121 0.121 0.133 0.112 0.126 0.112
(0.004) (0.004) (0.004) (0.006) (0.006) (0.005) (0.012)

EXP 0.040 0.032 0.032 0.032 0.035 0.041 0.028
(0.002) (0.002) (0.002) (0.004) (0.003) (0.003) (0.005)

MALE — 0.277 0.308 — — — —
(0.020) (0.021)

BLACK — −0.144 −0.011 — — —- —
(0.032) (0.043)

MALEBLACK — — −0.290 — — — —
(0.063)

constant 0.376 0.459 0.447 0.566 0.517 0.375 0.631
(0.078) (0.076) (0.076) (0.124) (0.097) (0.087) (0.172)

R2 0.285 0.341 0.346 0.287 0.275 0.271 0.320
RSS 659 608 603 452 289 609 44
n 2,546 2,546 2,546 1,269 1,277 2,273 273

Student A divides the sample into the four ethnicity/sex categories. He chooses
white females as the reference category and fits a regression that includes three
dummy variables BM, WM, and BF. BM is 1 for black males, 0 otherwise; WM is
1 for white males, 0 otherwise, and BF is 1 for black females, 0 otherwise.

Student B simply fits the basic specification separately for the four ethnicity/sex
subsamples.

Student C defines dummy variables MALE, equal to 1 for males and 0 for females,
and BLACK, equal to 1 for blacks and 0 for whites. She also defines an interactive
dummy variable MALEBLACK as the product of MALE and BLACK. She fits a
regression adding MALE and BLACK to the basic specification, and a further
regression adding MALEBLACK as well. The output from these regressions is
shown in columns 2 and 3 in the table.

Student D divides the sample into males and females and performs the regression
for both sexes separately, using the basic specification. The output is shown in
columns 4a and 4b. She also divides the sample into whites and blacks, and again
runs separate regressions using the basic specification. The output is shown in
columns 5a and 5b.

Reconstruction of missing output.

Students A and B left their output on a bus on the way to the workshop. This is
why it does not appear in the table.

• State what the missing output of Student A would have been, as far as this is
can be done exactly, given the results of Students C and D. (Coefficients,
standard errors, R2, RSS.)
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• Explain why it is not possible to reconstruct any of the output of Student B.

Tests of hypotheses.

The approaches of the students allowed them to perform different tests, given the
output shown in the table and the corresponding output for Students A and B.
Explain the tests relating to the effects of sex and ethnicity that could be
performed by each student, giving a clear indication of the null hypothesis in each
case. (Remember, all of them started with the basic specification (1), before
continuing with their individual regressions.) In the case of F tests, state the test
statistic in terms of its components.

• Student A (assuming he had found his output)

• Student B (assuming he had found his output)

• Student C

• Student D.

If you had been participating in the project and had had access to the data set,
what regressions and tests would you have performed?

5.4 Answers to the starred exercises in the textbook

5.2 The Stata output for Data Set 21 shows the result of regressing weight in 2004,
measured in pounds, on height, measured in inches, first with a linear specification,
then with a logarithmic one, in both cases including a dummy variable MALE,
defined as in Exercise 5.1. Give an interpretation of the coefficients and perform
appropriate statistical tests. See Box 5.1 for a guide to the interpretation of dummy
variable coefficients in logarithmic regressions.

. reg WEIGHT04 HEIGHT MALE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 2, 497) = 90.45

Model | 215264.34 2 107632.17 Prob > F = 0.0000

Residual | 591434.61 497 1190.00927 R-squared = 0.2668

-----------+------------------------------ Adj R-squared = 0.2639

Total | 806698.95 499 1616.63116 Root MSE = 34.497

----------------------------------------------------------------------------

WEIGHT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

HEIGHT | 4.424345 .5213809 8.49 0.000 3.399962 5.448727

MALE | 7.702828 4.225065 1.82 0.069 -.598363 16.00402

_cons | -136.9713 33.9953 -4.03 0.000 -203.7635 -70.17904

----------------------------------------------------------------------------
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. reg LGWT04 LGHEIGHT MALE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 2, 497) = 109.53

Model | 8.12184709 2 4.06092355 Prob > F = 0.0000

Residual | 18.4269077 497 .037076273 R-squared = 0.3059

-----------+------------------------------ Adj R-squared = 0.3031

Total | 26.5487548 499 .053203918 Root MSE = .19255

----------------------------------------------------------------------------

LGWT04 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGHEIGHT | 1.7814 .1978798 9.00 0.000 1.392616 2.170185

MALE | .0566894 .0236289 2.40 0.017 .0102645 .1031142

_cons | -2.44656 .8261259 -2.96 0.003 -4.06969 -.8234307

----------------------------------------------------------------------------

Answer:

The first regression indicates that weight increase by 4.4 pounds for each inch of
stature and that males tend to weigh 7.7 pounds more than females, controlling for
height, but the coefficient of MALE is not significant. The second regression
indicates that the elasticity of weight with respect to height is 1.78, and that males
weigh 5.7 per cent more than females, the latter effect now being significantly
different from zero at the 5 per cent level.

The null hypothesis that the elasticity is zero is not worth testing, except perhaps
in a negative sense, for if the result were not highly significant there would have to
be something seriously wrong with the model specification. Two other hypotheses
might be of greater interest: the elasticity being equal to 1, weight growing
proportionally with height, and the elasticity being equal to 3, all dimensions
increasing proportionally with height. The t statistics are 4.27 and −8.37,
respectively, so both hypotheses are rejected.

5.5 Suppose that the relationship:

Yi = β1 + β2Xi + ui

is being fitted and that the value of X is missing for some observations. One way of
handling the missing values problem is to drop those observations. Another is to
set X = 0 for the missing observations and include a dummy variable D defined to
be equal to 1 if X is missing, 0 otherwise. Demonstrate that the two methods must
yield the same estimates of β1 and β2. Write down an expression for RSS using the
second approach, decompose it into the RSS for observations with X present and
RSS for observations with X missing, and determine how the resulting expression
is related to RSS when the missing value observations are dropped.

Answer:

Let the fitted model, with D included, be:

Ŷi = β̂1 + β̂2Xi + β̂3Di.
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If X is missing for observations m+ 1 to n, then:

RSS =
n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Yi − (β̂1 + β̂2Xi + β̂3Di))
2

=
m∑
i=1

(Yi − (β̂1 + β̂2Xi + β̂3Di))
2 +

n∑
i=m+1

(Yi − (β̂1 + β̂2Xi + β̂3Di))
2

=
m∑
i=1

(Yi − (β̂1 + β̂2Xi))
2 +

n∑
i=m+1

(Yi − (β̂1 + β̂3))2.

The normal equation for β̂3 will yield:

β̂3 = β̂1 −Ymissing

where Ymissing is the mean value of Y for those observations for which X is missing.

This relationship means that β̂1 and β̂2 may be chosen so as to minimise the first
term in RSS. This, of course, is RSS for the regression omitting the observations
for which X is missing, and hence β̂1 and β̂2 will be the same as for that regression.

5.7

. reg LGEARN EDUCPROF EDUCPHD EDUCMAST EDUCBA EDUCAA EDUCGED EDUCDO EXP MALE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 8, 491) = 17.75

Model | 34.2318979 8 4.27898724 Prob > F = 0.0000

Residual | 118.367322 491 .241073975 R-squared = 0.2243

-----------+------------------------------ Adj R-squared = 0.2117

Total | 152.59922 499 .30581006 Root MSE = .49099

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

EDUCPROF | 1.233278 .1920661 6.42 0.000 .8559049 1.610651

EDUCPHD | (dropped)

EDUCMAST | .7442879 .0875306 8.50 0.000 .5723071 .9162686

EDUCBA | .3144576 .0578615 5.43 0.000 .2007709 .4281443

EDUCAA | .2076079 .084855 2.45 0.015 .0408843 .3743316

EDUCGED | -.2000523 .0886594 -2.26 0.024 -.374251 -.0258537

EDUCDO | -.2216305 .132202 -1.68 0.094 -.4813819 .038121

EXP | .0261946 .0085959 3.05 0.002 .0093054 .0430839

MALE | .1756002 .0445659 3.94 0.000 .0880369 .2631636

_cons | 2.385391 .0804166 29.66 0.000 2.227388 2.543394

----------------------------------------------------------------------------

The Stata output shows the result of a semilogarithmic regression of earnings on
highest educational qualification obtained, work experience, and the sex of the
respondent, the educational qualifications being a professional degree, a PhD (no
respondents in this sample), a Master’s degree, a Bachelor’s degree, an Associate of
Arts degree, the GED certification, and no qualification (high school drop-out).
The high school diploma was the reference category. Provide an interpretation of
the coefficients and perform t tests.
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Answer:

The regression results indicate that those with professional degrees earn 123 per
cent more than high school graduates, or 243 per cent more if calculated as
100(e1.233 − 1), the coefficient being significant at the 0.1 per cent level. There was
no respondent with a PhD in this subsample. For the other qualifications the
corresponding figures are:

• Master’s: 74.4, 110.4, 0.1 per cent.

• Bachelor’s: 31.4, 36.9, 0.1 per cent.

• Associate’s: 20.8, 23.1, 5 per cent.

• GED: −20.0, −18.1, 5 per cent.

• Drop-out: −22.2, −19.9, 5 per cent, using a one-sided test, as seems reasonable.

Males earn 17.6 per cent (19.2 per cent) more than females, and every year of work
experience increases earnings by 2.6 per cent. The coefficient of those with a
professional degree should be treated cautiously since there were only seven such
individuals in the subsample (EAWE 21). For the other categories the numbers of
observations were: Master’s 42; Bachelor’s 168; Associate’s 44; High school diploma
187; GED 37; and drop-out 15.

5.8 Given a hierarchical classification such as that of educational qualifications in
Exercise 5.7, some researchers unthinkingly choose the bottom category as the
omitted category. In the case of Exercise 5.7, this would be EDUCDO, the high
school drop-outs. Explain why this procedure may be undesirable (and, in the case
of Exercise 5.7, definitely would not be recommended).

Answer:

The use of drop-outs as the reference category would make the tests of the
coefficients of the other categories of little interest. If one wishes to evaluate the
earnings premium for a bachelor’s or associate’s degree, it is much more sensible to
use high school diploma as the benchmark. There is also the consideration that the
drop-out category is tiny and unrepresentative.

5.16 Column (1) of the table shows the result of regressing WEIGHT04 on HEIGHT,
MALE, and ethnicity dummy variables, using EAWE Data Set 21. The omitted
ethnicity category was ETHWHITE. Column (2) shows in abstract the result of the
same regression, using ETHBLACK as the omitted ethnicity category instead of
ETHWHITE. As far as this is possible, determine the numbers represented by the
letters.
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5. Dummy variables

(1) (2)
HEIGHT 4.45 A

(0.53) (B)

MALE 7.68 C
(4.26) (D)

ETHBLACK 4.08 —
(4.52)

ETHHISP 0.07 E
(4.90) (F)

ETHWHITE — G
(H)

constant −139.41 I
(34.64) (J)

R2 0.27 K
RSS 590,443 L
n 500 500

Answer:

The parts of the output unrelated to the dummy variables will not be affected, so
A, B, C, D, K, and L are as in column (1). G = −4.08 and H = 4.52.
E = 0.07− 4.08 = −4.01. I = −139.41 + 4.08 = −135.33. F and J cannot be
determined.

5.19 Is the effect of education on earnings different for members of a union? In the
output below, COLLBARG is a dummy variable defined to be 1 for workers whose
wages are determined by collective bargaining and 0 for the others. SBARG is a
slope dummy variable defined as the product of S and COLLBARG. Provide an
interpretation of the regression coefficients, comparing them with those in Exercise
5.10, and perform appropriate statistical tests.

98



5.4. Answers to the starred exercises in the textbook

. gen SBARG=S*COLLBARG

. reg LGEARN S EXP MALE COLLBARG SBARG

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 5, 494) = 23.88

Model | 29.6989993 5 5.93979987 Prob > F = 0.0000

Residual | 122.90022 494 .248785871 R-squared = 0.1946

-----------+------------------------------ Adj R-squared = 0.1865

Total | 152.59922 499 .30581006 Root MSE = .49878

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S | .093675 .010815 8.66 0.000 .072426 .1149241

EXP | .0423016 .0094148 4.49 0.000 .0238037 .0607995

MALE | .1713487 .0453584 3.78 0.000 .0822295 .2604679

COLLBARG | .2982818 .3573731 0.83 0.404 -.4038769 1.000441

SBARG | -.0026071 .0226557 -0.12 0.908 -.0471205 .0419064

_cons | 1.034781 .2049246 5.05 0.000 .6321502 1.437413

----------------------------------------------------------------------------

Answer:

In this specification, the coefficient of S is an estimate of the effect of schooling on
the earnings of those whose earnings are not subject to collective bargaining
(henceforward, for short, unionised workers, though obviously the category includes
some who do not actually belong to unions), and the coefficient of SBARG is the
extra effect in the case of those whose earnings are. One might have anticipated a
negative coefficient, since seniority and skills are often thought to be more
important than schooling for the earnings of union workers, but in fact there is no
significant difference.

5.23 Column (1) of the table shows the result of regressing HOURS, hours worked per
week, on S, MALE, and MALES using EAWE Data Set 21. MALES is defined as
the product of MALE and S. Provide an interpretation of the coefficients.

Column (2) gives the output in abstract when FEMALE is used instead of MALE
and FEMALES instead of MALES. FEMALES is the product of FEMALE and S.
As far as this is possible, determine the numbers represented by the letters.
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5. Dummy variables

(1) (2)
S 0.79 A

(0.24) (B)

MALE 14.00 —
(4.99)

FEMALE — C
(D)

MALES −0.69 —
(0.33)

FEMALES — E
(F)

constant 25.56 G
(3.71) (H)

R2 0.05 I
RSS 49,384 J
n 500 500

Answer:

The coefficient of MALE indicates that a male with no schooling works 14 hours
longer than a similar female. The coefficient of S indicates that a female works an
extra 0.79 hours per year of schooling. For males, the corresponding figure would
be 0.10 hours, taking account of the interactive effect.

A = 0.79− 0.69 = 0.10. C = −14.00. D = 4.99. E = 0.69.
G = 25.56 + 14.00 = 39.56. I and J are not affected. B, F and H cannot be
determined.

5.29 The first paragraph of Section 5.4 used the words ‘satisfactory’ and ‘better’. Such
intuitive terms have no precise meaning in econometrics. What ideas were they
trying to express?

Answer:

The Chow test is effectively an F test of the joint explanatory power of a full set of
dummy variables. If the joint explanatory power is significant, this implies that the
model is misspecified if they are omitted. In this sense, it is ‘better’ to include them.

5.5 Answers to the additional exercises

A5.1 As was to be expected, the coefficient of HEIGHT falls with the addition of MALE
to the specification and is no longer significant. However, the coefficient of MALE
is not significant, either. This is because MALE and HEIGHT are sufficiently
correlated (correlation coefficient 0.71) to give rise to a problem of multicollinearity.
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A5.2

. reg LGFDHOPC LGEXPPC LGSIZE NONWHITE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 3, 6330) = 1607.67

Model | 1514.69506 3 504.898354 Prob > F = 0.0000

Residual | 1987.97695 6330 .31405639 R-squared = 0.4324

-----------+------------------------------ Adj R-squared = 0.4322

Total | 3502.67201 6333 .553082585 Root MSE = .56041

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .5831052 .0097679 59.70 0.000 .5639568 .6022535

LGSIZE | -.0814498 .0133331 -6.11 0.000 -.1075871 -.0553124

NONWHITE | -.0195916 .0176311 -1.11 0.267 -.0541544 .0149713

_cons | 1.171052 .0828062 14.14 0.000 1.008723 1.33338

----------------------------------------------------------------------------

The regression indicates that, controlling for total household expenditure per
capita and size of household, non-whites spend 2.0 per cent less per year than
whites on food consumed at home. However, the effect is not significant. The
coefficients of LGEXPPC and LGSIZE are not affected by the introduction of the
dummy variable.

Summarising the effects for all the categories of expenditure, one finds:

• Positive, significant at the 1 per cent level: HOUS, LOCT, PERS.

• Positive, significant at the 5 per cent level: FOOT, TELE.

• Negative, significant at the 1 per cent level: HEAL, TOB.

• Not significant: the rest.

Under the hypothesis that non-whites tend to live in urban areas, some of these
effects may have more to do with residence than ethnicity – for example, the
positive effect on LOCT. The results for all the categories are shown in the table.
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5. Dummy variables

Dependent variable LGCATPC

LGEXPPC LGSIZE NONWHITE

n β̂2 s.e.(β̂2) β̂3 s.e.(β̂3) β̂4 s.e.(β̂4) R2 F

ADM 2,815 1.078 0.033 −0.053 0.043 −0.084 0.061 0.331 462.7
CLOT 4,500 0.843 0.024 0.146 0.032 0.006 0.042 0.240 473.3
DOM 1,661 0.927 0.055 0.420 0.075 −0.152 0.096 0.159 104.0
EDUC 561 1.231 0.101 −0.436 0.139 0.107 0.166 0.312 84.0
ELEC 5,828 0.475 0.012 −0.363 0.017 0.042 0.022 0.359 1,086.9
FDAW 5,102 0.879 0.016 −0.213 0.022 −0.010 0.029 0.461 1,450.9
FDHO 6,334 0.583 0.010 −0.081 0.013 −0.020 0.018 0.432 1,607.7
FOOT 1,827 0.404 0.031 −0.555 0.042 0.119 0.050 0.283 239.9
FURN 487 0.826 0.104 −0.251 0.137 0.248 0.159 0.199 40.1
GASO 5,710 0.676 0.013 −0.004 0.018 0.008 0.024 0.362 1,079.7
HEAL 4,802 0.773 0.023 −0.306 0.031 −0.142 0.042 0.273 601.4
HOUS 6,223 1.001 0.016 −0.140 0.021 0.206 0.028 0.472 1,853.6
LIFE 1,253 0.470 0.050 −0.460 0.065 0.082 0.081 0.154 75.9
LOCT 692 0.418 0.061 −0.390 0.086 −0.390 0.100 0.150 40.3
MAPP 399 0.725 0.094 −0.266 0.124 0.073 0.157 0.207 34.3
PERS 3,817 0.834 0.020 −0.224 0.028 0.188 0.038 0.391 817.5
READ 2,287 0.760 0.034 −0.504 0.047 −0.127 0.068 0.298 323.4
SAPP 1,037 0.465 0.049 −0.591 0.066 −0.036 0.085 0.237 106.7
TELE 5,788 0.642 0.013 −0.222 0.018 0.053 0.024 0.386 1,213.3
TEXT 992 0.384 0.049 −0.712 0.067 −0.072 0.083 0.246 107.5
TOB 1,155 0.552 0.037 −0.531 0.049 −0.257 0.067 0.337 195.2
TOYS 2,504 0.639 0.031 −0.306 0.043 0.032 0.062 0.231 250.6
TRIP 516 0.691 0.084 −0.146 0.109 0.158 0.136 0.152 30.7

A5.3

. reg LGFDHOPC LGEXPPC LGSIZE EDUCBA EDUCSC EDUCDO;

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 5, 6328) = 1012.42

Model | 1556.69485 5 311.33897 Prob > F = 0.0000

Residual | 1945.97716 6328 .307518514 R-squared = 0.4444

-----------+------------------------------ Adj R-squared = 0.4440

Total | 3502.67201 6333 .553082585 Root MSE = .55454

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .6268014 .0102972 60.87 0.000 .6066154 .6469874

LGSIZE | -.0660179 .0132808 -4.97 0.000 -.0920527 -.0399831

EDUCBA | -.1639669 .0193625 -8.47 0.000 -.201924 -.1260097

EDUCSC | -.0702103 .0189683 -3.70 0.000 -.1073947 -.0330259

EDUCDO | .1022739 .0245346 4.17 0.000 .0541778 .15037

_cons | .8718572 .0854964 10.20 0.000 .7042553 1.039459

----------------------------------------------------------------------------

The dummies have been defined with high school graduate as the reference
category. Their coefficients indicate a significant negative association between level
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of education and expenditure on food consumed at home, controlling for
expenditure per person and the size of the household. The finding does not shed
light on the reason for the negative association. Possibly those with greater
education tend to eat less. There is also a negative association between level of
education and expenditure on tobacco.

Dependent variable LGCATPC

Category ADM CLOT DOM EDUC ELEC FDAW FDHO FOOT

LGEXPPC 1.049 0.832 0.040 1.132 0.541 0.882 0.627 0.307
(0.034) (0.026) (0.058) (0.107) (0.013) (0.017) (0.010) (0.033)

LGSIZE −0.060 0.141 0.386 −0.448 −0.334 −0.214 −0.066 −0.560
(0.043) (0.033) (0.076) (0.139) (0.017) (0.022) (0.013) (0.043)

EDUCBA 0.239 0.072 0.187 0.601 −0.319 0.011 −0.164 0.005
(0.065) (0.047) (0.113) (0.214) (0.024) (0.031) (0.019) (0.058)

EDUCSC 0.193 0.055 −0.035 0.320 −0.114 −0.014 −0.070 0.012
(0.068) (0.048) (0.120) (0.218) (0.024) (0.032) (0.019) (0.057)

EDUCDO 0.000 0.035 0.075 0.133 0.055 0.065 0.102 0.009
(0.116) (0.062) (0.163) (0.320) (0.031) (0.044) (0.025) (0.077)

R2 0.334 0.240 0.160 0.323 0.384 0.461 0.444 0.281

F 281.8 284.5 63.3 52.8 724.7 871.5 1,012.4 142.2

n 2,815 4,500 1,661 461 5,828 5,102 6,334 1,827

Dependent variable LGCATPC

Category FURN GASO HEAL HOUS LIFE LOCT MAPP PERS

LGEXPPC 0.875 0.719 0.822 0.960 0.468 0.464 0.728 0.826
(0.107) (0.014) (0.024) (0.017) (0.053) (0.067) (0.100) (0.021)

LGSIZE −0.228 0.015 −0.279 −0.155 −0.453 −0.394 −0.268 −0.213
(0.137) (0.018) (0.031) (0.021) (0.066) (0.086) (0.124) (0.028)

EDUCBA −0.345 −0.215 −0.222 0.190 0.045 −0.325 −0.058 −0.043
(0.174) (0.026) (0.044) (0.031) (0.087) (0.143) (0.171) (0.039)

EDUCSC −0.363 −0.010 −0.152 0.127 −0.031 −0.404 −0.375 −0.002
(0.177) (0.025) (0.045) (0.030) (0.089) (0.146) (0.167) (0.041)

EDUCDO 0.071 −0.004 0.002 0.084 0.190 0.558 −0.150 −0.087
(0.297) (0.034) (0.061) (0.039) (0.134) (0.167) (0.214) (0.057)

R2 0.206 0.373 0.276 0.471 0.156 0.154 0.219 0.388

F 24.9 679.8 366.1 1,105.8 46.0 25.0 22.1 483.4

n 487 5,710 4,802 6,223 1,253 692 399 3,817
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Dependent variable LGCATPC

Category READ SAPP TELE TEXT TOB TOYS TRIP

LGEXPPC 0.748 0.486 0.676 0.376 0.667 0.644 0.652
(0.036) (0.052) (0.014) (0.052) (0.038) (0.033) (0.087)

LGSIZE −0.512 −0.586 −0.204 −0.718 −0.483 −0.300 −0.155
(0.047) (0.066) (0.018) (0.068) (0.048) (0.043) (0.110)

EDUCBA 0.112 −0.150 −0.205 0.015 −0.593 −0.030 0.092
(0.066) (0.093) (0.026) (0.093) (0.075) (0.059) (0.175)

EDUCSC 0.169 −0.180 −0.017 0.038 −0.258 0.031 −0.031
(0.069) (0.094) (0.026) (0.096) (0.061) (0.059) (0.189)

EDUCDO −0.036 −0.093 −0.056 −0.095 0.117 −0.021 −0.147
(0.113) (0.138) (0.033) (0.135) (0.077) (0.085) (0.299)

R2 0.300 0.239 0.394 0.246 0.375 0.232 0.153

F 195.1 64.9 752.8 64.5 137.7 150.5 18.4

n 2,287 1,037 5,788 992 1,155 2,504 516

A5.4 For FDHO, RSS was 1,988.4 without the education dummy variables and 1,946.0
with them. 3 degrees of freedom were consumed when adding them, and
6334− 6 = 6328 degrees of freedom remained after they had been added. The F
statistic is, therefore:

F (3, 6328) =
(1988.4− 1946.0)/3

1946.0/6328
= 45.98.

The critical value of F (3, 1000) at the 5 per cent level is 2.61. The critical value of
F (3, 6328) must be lower. Hence we reject the null hypothesis that the dummy
variables have no explanatory power (that is, that all their coefficients are jointly
equal to zero).

F test of dummy variables as a group
n RSS without dummies RSS with dummies F

ADM 2,815 3,945.2 3,922.3 5.47
CLOT 4,500 5,766.1 5,763.0 0.81
DOM 1,661 4,062.5 4,047.0 2.12
EDUC 561 1,380.1 1,356.9 3.16
ELEC 5,828 2,636.3 2,533.2 79.01
FDAW 5,102 3,369.1 3,366.7 1.23
FDHO 6,334 1,988.4 1,946.0 45.98
FOOT 1,827 1,373.5 1,373.5 0.01
FURN 487 913.9 902.0 2.12
GASO 5,710 2,879.3 2,828.4 34.23
HEAL 4,802 6,062.5 6,023.7 10.30
HOUS 6,223 4,825.6 4,795.7 12.91
LIFE 1,253 1,559.2 1,555.2 1.08
LOCT 692 1,075.1 1,054.7 4.41
MAPP 399 576.8 567.4 2.18
PERS 3,817 3,002.2 2,999.2 1.25
READ 2,287 2,892.1 2,882.2 2.61
SAPP 1,037 1,148.9 1,144.5 1.31
TELE 5,788 3,055.1 3,012.4 27.31
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TEXT 992 1,032.9 1,031.8 0.36
TOB 1,155 873.4 813.5 28.18
TOYS 2,504 2,828.3 2,826.7 0.48
TRIP 516 792.8 790.6 0.48

A5.5

. reg LGFDHOPC LGEXPPC LGSIZE EDUCBA EDUCSC EDUCHSD;

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 5, 6328) = 1012.42

Model | 1556.69485 5 311.33897 Prob > F = 0.0000

Residual | 1945.97716 6328 .307518514 R-squared = 0.4444

-----------+------------------------------ Adj R-squared = 0.4440

Total | 3502.67201 6333 .553082585 Root MSE = .55454

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .6268014 .0102972 60.87 0.000 .6066154 .6469874

LGSIZE | -.0660179 .0132808 -4.97 0.000 -.0920527 -.0399831

EDUCBA | -.2662408 .0246636 -10.79 0.000 -.3145898 -.2178917

EDUCSC | -.1724842 .0239688 -7.20 0.000 -.2194713 -.1254972

EDUCHSD | -.1022739 .0245346 -4.17 0.000 -.15037 -.0541778

_cons | .9741311 .0845451 11.52 0.000 .8083941 1.139868

----------------------------------------------------------------------------

The results for all the categories of expenditure have not been tabulated but are
easily summarised:

• The analysis of variance in the upper half of the output is unaffected.

• The results for variables other than the dummy variables are unaffected.

• The results for EDUCHSD are identical to those for EDUCDO in the first
regression, except for a change of sign in the coefficient, the t statistic, and the
limits of the confidence interval.

• The constant is equal to the old constant plus the coefficient of EDUCDO in
the first regression.

• The coefficients of the other dummy variables are equal to their values in the
first regression minus the coefficient of EDUCDO in the first regression.

• One substantive change is in the standard errors of EDUCIC and EDUCCO,
caused by the fact that the comparisons are now between these categories and
EDUCDO, not EDUCHSD.

• The other is that the t statistics are for the new comparisons, not the old ones.
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5. Dummy variables

A5.6 Explain verbally why the estimates of the coefficient of GOV are different in
regressions (1) and (2).

The second specification indicates that earnings are positively related to schooling
and negatively related to working in the government sector. S has a significant
coefficient in (2) and therefore ought to be in the model. If S is omitted from the
specification the estimate of the coefficient of GOV will be biased upwards because
schooling is positively correlated with working in the government sector. (We are
told in the question that government workers on average have an extra year of
schooling.) The bias is sufficiently strong to make the negative coefficient disappear.

Explain the difference in the estimates of the coefficient of GOV in regressions (2)
and (3).

The coefficient of GOV in the third regression is effectively a linear function of S:
0.726− 0.059S. The coefficient of the GOV intercept dummy is therefore an
estimate of the extra earnings of a government worker with no schooling. The
premium disappears for S = 12 and becomes negative for higher values of S. The
second regression does not take account of the variation of the coefficient of GOV
with S and hence yields an average effect of GOV. The average effect was negative
since only a small minority of government workers had fewer than 12 years of
schooling.

The correlation between GOV and SGOV was 0.977. Explain the variations in the
standard error of the coefficient of GOV in the three regressions.

The standard error in the first regression is meaningless given severe omitted
variable bias. For comparing the standard errors in (2) and (3), it should be noted
that the same problem in principle applies in (2), given that the coefficient of
SGOV in (3) is highly significant. However, part of the reason for the huge increase
must be the high correlation between GOV and SGOV.

A5.7 1. The dummy variable allows the slope coefficient to be different for developing
and developed countries. From equation (1) one may derive the following
relationships:

developed countries ê = −1.45 + 0.19x

developing countries ê = −1.45 + 0.19x+ 0.78x

= −1.45 + 0.97x.
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ê

ê

e

2. The inclusion of D would allow the intercept to be different for the two types
of country. If the model was written as:

e = β1 + β2x+ δD + λDx+ u

the implicit relationships for the two types of country would be:

developed countries e = β1 + β2x+ u

developing countries e = β1 + β2x+ δ + λx+ u

= (β1 + δ) + (β2 + λ)x+ u.

 

e

e

3. When the specification includes both an intercept dummy and a slope dummy,
the coefficients for the two categories will be the same as in the separate
regressions (2) and (3). Hence the intercept and coefficient of x will be the
same as in the regression for the reference category, regression (3), and the
coefficients of the dummies will be such that they modify the intercept and
slope coefficient so that they are equal to their counterparts in regression (4):

ê = −2.74 + 0.50x+ 1.89D + 0.28xD.

Since the coefficients are the same, the overall fit for this regression will be the
same as that for regressions (2) and (3). Hence RSS = 18.63 + 25.23 = 43.86.
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The t statistic for the coefficient of x will be the square root of the F statistic
for the test of the marginal explanatory power of D when it is included in the
equation. The F statistic is:

F (1, 46) =
(50.23− 43.86)/1

43.86/46
= 6.6808.

The t statistic is therefore 2.58.

4. One method is to use a Chow test comparing RSS for the pooled regression,
regression (2), with the sum of RSS regressions (3) and (4):

F (2, 46) =
(121.61− 43.86)/2

43.86/46
= 40.8.

The critical value of F (2, 40) at the 0.1 per cent significance level is 8.25. The
critical value of F (2, 46) must be lower. Hence the null hypothesis that the
coefficients are the same for developed and developing countries is rejected.

We should also consider t tests on the coefficients of D and xD. We saw in (3)
that the t statistic for the coefficient of D was 2.58, so we would reject the null
hypothesis of no intercept shift at the 5 per cent level, and nearly at the 1 per
cent level. We do not have enough information to derive the t statistic for xD.
We would not perform a t test on the coefficient of xD in regression (1)
because that regression is clearly misspecified.

A5.8

Chow test
RSS RSS RSS

n All COLLEGE = 0 COLLEGE = 1 F
ADM 2,815 3,945.2 789.5 3,129.9 6.15
CLOT 4,500 5,766.1 1,837.9 3,913.8 3.77
DOM 1,661 4,062.5 1,048.5 2,984.0 4.10
EDUC 561 1,380.1 278.0 1,087.0 2.05
ELEC 5,828 2,636.3 962.6 1,594.6 60.02
FDAW 5,102 3,369.1 1,114.8 2,251.7 1.32
FDHO 6,334 1,988.4 751.9 1,205.3 33.63
FOOT 1,827 1,373.5 513.1 858.5 0.82
FURN 487 913.9 238.7 662.1 2.32
GASO 5,710 2,879.3 1,043.2 1,811.7 16.27
HEAL 4,802 6,062.5 2,211.7 3,796.6 14.42
HOUS 6,223 4,825.6 2,234.6 2,566.5 10.55
LIFE 1,253 1,559.2 424.0 1,119.6 4.20
LOCT 692 1,075.1 283.3 769.3 4.88
MAPP 399 576.8 205.6 367.5 0.84
PERS 3,817 3,002.2 918.5 2,081.1 1.10
READ 2,287 2,892.1 752.6 2,129.1 2.75
SAPP 1,037 1,148.9 342.9 802.1 1.18
TELE 5,788 3,055.1 1,132.8 1,903.2 12.10
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TEXT 992 1,032.9 278.0 754.1 0.25
TOB 1,155 873.4 351.3 476.8 20.91
TOYS 2,504 2,828.3 862.5 1,964.2 0.46
TRIP 516 792.8 114.2 675.6 0.66

For FDHO, RSS for the logarithmic regression without college in Exercise A4.2 was
1,988.4. When the sample is split, RSS for COLLEGE = 0 is 751.9 and for
COLLEGE = 1 is 1,205.3. Three degrees of freedom are consumed because the
coefficients of LGEXPPC and LGSIZE and the constant have to be estimated
twice. The number of degrees of freedom remaining after splitting the sample is
6334− 6 = 6328. Hence the F statistic is:

F (3, 6328) =
(1988.4− (751.9 + 1205.3))/3

(751.9 + 1205.3)/6328
= 33.63.

The critical value of F (3, 1000) at the 1 per cent level is 2.62 and so we reject the
null hypothesis of no difference in the expenditure functions at that significance
level. The results for all the categories are shown in the table.

A5.9 . gen LEXPCOL = LGEXPPC*COLLEGE

. gen LSIZECOL = LGSIZE*COLLEGE

. reg LGFDHOPC LGEXPPC LGSIZE COLLEGE LEXPCOL LSIZECOL

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 5, 6328) = 999.36

Model | 1545.47231 5 309.094462 Prob > F = 0.0000

Residual | 1957.1997 6328 .309291987 R-squared = 0.4412

-----------+------------------------------ Adj R-squared = 0.4408

Total | 3502.67201 6333 .553082585 Root MSE = .55614

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .648295 .0171599 37.78 0.000 .6146559 .6819342

LGSIZE | -.0559735 .0216706 -2.58 0.010 -.0984552 -.0134917

COLLEGE | .3046012 .1760486 1.73 0.084 -.0405137 .6497161

LEXPCOL | -.0558931 .0211779 -2.64 0.008 -.097409 -.0143772

LSIZECOL | -.0198021 .0274525 -0.72 0.471 -.0736182 .034014

_cons | .7338499 .1403321 5.23 0.000 .4587514 1.008948

----------------------------------------------------------------------------

The example output is for FDHO. In Exercise A4.2, RSS was 1,988.4 for the same
regression without the dummy variables. To perform the F test of the explanatory
power of the intercept dummy variable and the two slope dummy variables as a
group, we evaluate whether RSS for this regression is significantly lower. RSS has
fallen from 1,988.4 to 1,957.2. 3 degrees of freedom are consumed by adding the
dummy variables, and 6334− 6 = 6328 degrees of freedom remain after adding the
dummy variables. The F statistic is therefore:

F (3, 6328) =
(1988.4− 1957.2)/3

1957.2/6328
= 33.63.

This is highly significant. This F test is, of course, equivalent to the Chow test in
the previous exercise. One possible explanation was offered there. The present
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regression suggests another. The slope dummy variable LGEXPCOL has a
significant negative coefficient, implying that the elasticity falls as income rises.
This is plausible for a basic necessity such as food.

A5.10 (a) You should fit models such as:

LGEARN = β1 + β2S + β3ASVABC + β4MALE + β5ETHBLACK + β6ETHHISP + u

separately for the private and government sectors. To investigate
discrimination, for each sector t tests should be performed on the coefficients
of MALE, ETHBLACK, and ETHHISP and an F test on the joint
explanatory power of ETHBLACK and ETHHISP.

(b) You should combine the earnings functions for the two sectors, while still
allowing their parameters to differ, by fitting a model such as:

LGEARN = β1 + β2S + β3ASVABC + β4MALE + β5ETHBLACK + β6ETHHISP

+δ1GOV + δ2GOVS + δ3GOVASV + δ4GOVMALE + δ5GOVBLACK

+δ6GOVHISP + u

where GOV is equal to 1 if the respondent works in the government sector and
0 otherwise, and GOVS, GOVASV, GOVMALE, GOVBLACK, and GOVHISP
are slope dummy variables defined as the product of GOV and the respective
variables. To investigate whether the level of discrimination is different in the
two sectors, one should perform t tests on the coefficients of GOVMALE,
GOVBLACK, and GOVHISP and an F test on the joint explanatory power of
GOVBLACK and GOVHISP.

A Chow test would not be appropriate because if it detected a significant
difference in the earnings functions, this could be due to differences in the
coefficients of S and ASVABC rather than the discrimination variables.

A5.11 Give an interpretation of the coefficients of S and SMALE in regression (5).

An extra year of schooling increases female earnings by 9.4 per cent. (Strictly,
100(e0.094 − 1) = 9.9 per cent.) For males, an extra year of schooling leads to an
increase in earnings 0.5 per cent greater than for females, i.e. 9.9 per cent.

Give an interpretation of the coefficients of MALE in regressions (4) and (5).

(4): males earn 23.4 per cent more than females (controlling for other factors). (5):
males with no schooling or work experience earn 11.7 per cent more than similar
females.

The researcher hypothesises that the earnings function is different for males and
females. Perform a test of this hypothesis using regression (4), and also using
regressions (1) and (5).

Looking at regression (4), the coefficient of MALE is highly significant, indicating
that the earnings functions are indeed different. Looking at regression (5), and
comparing it with (1), the null hypothesis is that the coefficients of the male
dummy variables in (5) are all equal to zero.

F (3, 3236) =
(714.6− 672.5)/3

672.5/3236
= 67.5.
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The critical value of F (3, 1000) at the 1 per cent level is 3.80. The corresponding
critical value for F (3, 3236) must be lower, so we reject the null hypothesis and
conclude that the earnings functions are different.

Explain the differences in the tests using regression (4) and using regressions (1)
and (5).

In regression (4) the coefficient of MALE is highly significant. In regression (5) it is
not. Likewise the coefficients of the slope dummies are not significant. This is
(partly) due to the effect of multicollinearity. The male dummy variables are very
highly correlated and as a consequence the standard error of the coefficient of
MALE is much larger than in regression (4). Nevertheless the F test reveals that
their joint explanatory power is highly significant.

At a seminar someone suggests that a Chow test could shed light on the researcher’s
hypothesis. Is this correct?

Yes. Using regressions (1)–(3):

F (3, 3236) =
(714.6− (411.0 + 261.6))/3

(411.0 + 261.6)/3236
= 67.4.

The null hypothesis that the coefficients are the same for males and females is
rejected at the 1 per cent level. The test is, of course, equivalent to the dummy
variable test comparing (1) and (5).

Explain which of (1), (4), and (5) would be your preferred specification.

(4) seems best, given that the coefficients of S and EXP are fairly similar for males
and females and that introducing the slope dummies causes multicollinearity. The
F statistic of their joint explanatory power is only 0.72, not significant at any
significance level.

A5.12 Calculate the missing coefficients V, W, X, and Y in Regression 4 (just the
coefficients, not the standard errors) and Z, the missing RSS, giving an explanation
of your computations.

Since Regression 5 includes a complete set of black intercept and slope dummy
variables, the basic coefficients will be the same as for a regression using the
‘whites’ only subsample and the coefficients modified by the dummies will give the
counterparts for the blacks only subsample. Hence V = 0.122− 0.009 = 0.113;
W = 0.033− 0.006 = 0.027; X = 0.306− 0.280 = 0.026; and
Y = 0.411 + 0.205 = 0.616. The residual sum of squares for Regression 5 will be
equal to the sum of RSS for the ‘whites’ and blacks subsamples. Hence
Z = 600.0− 555.7 = 44.3.

Give an interpretation of the coefficient of BLACK in Regression 2.

It suggests that blacks earn 14.4 per cent less than whites, controlling for other
characteristics.

Perform an F test of the joint explanatory power of BLACK, SB, EB, and MB in
Regression 5.

Write the model as:

LGEARN = β1 +β2S+β3EXP +β4MALE +β5BLACK +β6SB +β7EB +β8MB +u.
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The null hypothesis for the test is if H0 : β5 = β6 = β7 = β8 = 0, and the alternative
hypothesis is H1: at least one coefficient different from 0. The F statistic is:

F (4, 2400) =
(610.0− 600.0)/4

600.0/2400
=

2400

240
= 10.0.

This is significant at the 0.1 per cent level (critical value 4.65) and so the null
hypothesis is rejected.

Explain whether it is possible to relate the F test in part (c) to a Chow test based
on Regressions 1, 3, and 4.

The Chow test would be equivalent to the F test in this case.

Give an interpretation of the coefficients of BLACK and MB in Regression 5.

Re-write the model as:

LGEARN = β1+β2S+β3EXP+β4MALE+(β5+β6S+β7EXP+β8MALE )BLACK +u.

From this it follows that β5 is the extra proportional earnings of a black, compared
with a white, when S = EXP = MALE = 0. Thus the coefficient of BLACK
indicates that a black female with no schooling or experience earns 20.5 per cent
more than a similar white female. The interpretation of the coefficient of any
interactive term requires care. Holding S = EXP = MALE = 0, the coefficients of
MALE and BLACK indicate that black males will earn 30.6 + 20.5 = 51.1 per cent
more than white females. The coefficient of MB modifies this estimate, reducing it
by 28.0 per cent to 23.1 per cent.

Explain whether a simple t test on the coefficient of BLACK in Regression 2 is
sufficient to show that the wage equations are different for blacks and whites.

Regression 2 is misspecified because it embodies the restriction that the effect of
being black is the same for males and females, and that is contradicted by
Regression 5. Hence any test is in principle invalid. However, the fact that the
coefficient has a very high t statistic is suggestive that something associated with
being black is affecting the wage equation.

A5.13 Reconstruction of missing output

Students A and B left their output on a bus on the way to the workshop. This is
why it does not appear in the table.

State what the missing output of Student A would have been, as far as this can be
done exactly, given the results of Students C and D. (Coefficients, standard errors,
R2, RSS.)

The output would be as for column (3) (coefficients, standard errors, R2), with the
following changes:

• the row label MALE should be replaced with WM

• the row label BLACK should be replaced with BF

• the row label MALEBLACK should be replaced with BM and the coefficient
for that row should be the sum of the coefficients in column (3):
0.308− 0.011− 0.290 = 0.007, and the standard error would not be known.
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Explain why it is not possible to reconstruct any of the output of Student B.

One could not predict the coefficients of either S or EXP in the four regressions
performed by Student B. They will, except by coincidence, be different from any of
the estimates of the other students because the coefficients for S and EXP in the
other specifications are constrained in some way. As a consequence, one cannot
predict exactly any part of the rest of the output, either.

Tests of hypotheses

• Student A (assuming he had found his output)

Student A could perform tests of the differences in earnings between white
males and white females, black males and white females, and black females and
white females, through simple t tests on the coefficients of WM, BM, and BF.

He could also test the null hypothesis that there are no sex/ethnicity
differences with an F test, comparing RSS for his regression with that of the
basic regression:

F (3, 2540) =
(922− 603)/3

603/2540
.

This would be compared with the critical value of F with 3 and 2,540 degrees
of freedom at the significance level chosen and the null hypothesis of no
sex/ethnicity effects would be rejected if the F statistic exceeded the critical
value.

• Student B (assuming he had found his output)

In the case of Student B, with four separate subsample regressions, candidates
are expected say that no tests would be possible because no relevant standard
errors would be available. We have covered Chow tests only for two categories.
However, a four-category test could be performed, with:

F (9, 2534) =
(922−X)/9

X/2534

where RSS = 922 for the basic regression and X is the sum of RSS in the four
separate regressions.

• Student C

Student C could perform the same t tests and the same F test as Student A,
with one difference: the t test of the difference between the earnings of black
males and white females would not be available. Instead, the t statistic of
MALEBLACK would allow a test of whether there is any interactive effect of
being black and being male on earnings.

• Student D

Student D could perform a Chow test to see if the wage equations of males
and females differed:

F (3, 2540) =
(659− (322 + 289))/3

(322 + 289)/2540
.

RSS = 322 for males and 289 for females. This would be compared with the
critical value of F with 3 and 2,540 degrees of freedom at the significance level
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chosen and the null hypothesis of no sex/ethnicity effects would be rejected if
the F statistic exceeded the critical value. She could also perform a
corresponding Chow test for blacks and whites:

F (3, 2540) =
(659− (609 + 44))/3

(609 + 44)/2540
.

If you had been participating in the project and had had access to the data set, what
regressions and tests would you have performed?

The most obvious development would be to relax the sex/ethnicity restrictions on
the coefficients of S and EXP by including appropriate interaction terms. This
could be done by interacting these variables with the dummy variables defined by
Student A or those defined by Student C.
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Chapter 6

Specification of regression variables

6.1 Overview

This chapter treats a variety of topics relating to the specification of the variables in a
regression model. First there are the consequences for the regression coefficients, their
standard errors, and R2 of failing to include a relevant variable, and of including an
irrelevant one. This leads to a discussion of the use of proxy variables to alleviate a
problem of omitted variable bias. Next come F and t tests of the validity of a
restriction, the use of which was advocated in Chapter 3 as a means of improving
efficiency and perhaps mitigating a problem of multicollinearity. The chapter concludes
by outlining the potential benefit to be derived from examining observations with large
residuals after fitting a regression model.

6.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

derive the expression for the bias in an OLS estimator of a slope coefficient when
the true model has two explanatory variables but the regression model has only one

determine the likely direction of omitted variable bias, given data on the
correlation between the explanatory variables

explain the consequence of omitted variable bias for the standard errors of the
coefficients and for t tests and F tests

explain the consequences of including an irrelevant variable for the regression
coefficients, their standard errors, and t and F tests

explain how the regression results are affected by the substitution of a proxy
variable for a missing explanatory variable

perform an F test of a restriction, stating the null hypothesis for the test

perform a t test of a restriction, stating the null hypothesis for the test.
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6.3 Additional exercises

A6.1 Does the omission of total household expenditure or household size give rise to
omitted variable bias in your CES regressions?

Regress LGCATPC (1) on both LGEXPPC and LGSIZE, (2) on LGEXPPC only,
and (3) on LGSIZE only. Assuming that (1) is the correct specification, analyse the
likely direction of the bias in the estimate of the coefficient of LGEXPPC in (2)
and that of LGSIZE in (3). Check whether the regression results are consistent
with your analysis.

A6.2 A school has introduced an extra course of reading lessons for children starting
school and a researcher is evaluating the impact of the course on the scores on a
literacy test taken at the age of seven. In the first year of its implementation, those
children whose surnames begin A–M are assigned to the extra course, while the rest
have the normal curriculum. The researcher hypothesises that:

Y = β1 + β2D + β3A+ u

where Y is the score on the literacy test, D is a dummy variable that is equal to 1
for those assigned to the extra course and 0 for the others, A is a measure of the
cognitive ability of the child when starting school, and u is an iid (independently
and identically distributed) disturbance term assumed to have a normal
distribution. Unfortunately, the researcher has no data on A. Using OLS (ordinary
least squares), she fits the regression:

Ŷ = β̂1 + β̂2D.

• Demonstrate that β̂2 is an unbiased estimator of β2.

• A commentator says that the standard error of β̂2 will be invalid because an
important variable, A, has been omitted from the specification. The researcher
replies that the standard error will remain valid if A can be assumed to have a
normal distribution. Explain whether the commentator or the researcher is
correct.

• Another commentator says that whether the distribution of A is normal or not
makes no difference to the validity of the standard error. Evaluate this
assertion.

A6.3 A researcher obtains data on household annual expenditure on books, B, and
annual household income, Y , for 100 households. He hypothesises that B is related
to Y and the average cognitive ability of adults in the household, IQ, by the
relationship:

logB = β1 + β2 log Y + β3 log IQ + u (A)

where u is a disturbance term that satisfies the regression model assumptions. He
also considers the possibility that logB may be determined by log Y alone:

logB = β1 + β2 log Y + u. (B)
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He does not have data on IQ and decides to use average years of schooling of the
adults in the household, S, as a proxy in specification (A). It may be assumed that
Y and S are both nonstochastic. In the sample the correlation between log Y and
logS is 0.86. He performs the following regressions: (1) logB on both log Y and
logS, and (2) logB on log Y only, with the results shown in the table (standard
errors in parentheses):

(1) (2)
log Y 1.10 2.10

(0.69) (0.35)
logS 0.59 —

(0.35)
constant −6.89 −3.37

(2.28) (0.89)
R2 0.29 0.27

• Assuming that (A) is the correct specification, explain, with a mathematical
proof, whether you would expect the coefficient of log Y to be greater in
regression (2).

• Assuming that (A) is the correct specification, describe the various benefits
from using logS as a proxy for log IQ, as in regression (1), if logS is a good
proxy.

• Explain whether the low value of R2 in regression (1) implies that log S is not
a good proxy.

• Assuming that (A) is the correct specification, provide an explanation of why
the coefficients of log Y and logS in regression (1) are not significantly
different from zero, using two-sided t tests.

• Discuss whether the researcher would be justified in using one-sided t tests in
regression (1).

• Assuming that (B) is the correct specification, explain whether you would
expect the coefficient of log Y to be lower in regression (1).

• Assuming that (B) is the correct specification, explain whether the standard
errors in regression (1) are valid estimates.

A6.4 A researcher has the following data for the year 2012: T , annual total sales of
cinema tickets per household, and P , the average price of a cinema ticket in the
city. She believes that the true relationship is:

log T = β1 + β2 logP + β3 log Y + u

where Y is average household income, but she lacks data on Y and fits the
regression (standard errors in parentheses):

l̂og T = 13.74 + 0.17 logP R2 = 0.01

(0.52) (0.23)
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Explain analytically whether the slope coefficient is likely to be biased. You are
told that if the researcher had been able to obtain data on Y , her regression would
have been:

l̂og T = −1.63− 0.48 logP + 1.83 log Y R2 = 0.44

(2.93) (0.21) (0.35)

You are also told that Y and P are positively correlated.

The researcher is not able to obtain data on Y but, from local records, she is able
to obtain data on H, the average value of a house in each city, and she decides to
use it as a proxy for Y . She fits the following regression (standard errors in
parentheses):

l̂og T = −0.63− 0.37 logP + 1.69 logH R2 = 0.36

(3.22) (0.22) (0.38)

Describe the theoretical benefits from using H as a proxy for Y , discussing whether
they appear to have been obtained in this example.

A6.5 A researcher has data on years of schooling, S, weekly earnings in dollars, W , hours
worked per week, H, and hourly earnings, E (computed as W/H) for a sample of
1,755 white males in the United States in the year 2000. She calculates LW, LE,
and LH as the natural logarithms of W , E, and H, respectively, and fits the
following regressions, with the results shown in the table below (standard errors in
parentheses; RSS = residual sum of squares):

• Column 1: a regression of LE on S.

• Column 2: a regression of LW on S and LH.

• Column 3: a regression of LE on S and LH.

The correlation between S and LH is 0.06.

(1) (2) (3) (4) (5)
Respondents All All All FT PT
Dependent variable LE LW LE LW LW
S 0.099 0.098 0.098 0.101 0.030

(0.006) (0.006) (0.006) (0.006) (0.049)
LH — 1.190 0.190 0.980 0.885

(0.065) (0.065) (0.088) (0.325)
constant 6.111 5.403 5.403 6.177 7.002

(0.082) (0.254) (0.254) (0.345) (1.093)
RSS 741.5 737.9 737.9 626.1 100.1
Observations 1,755 1,755 1,755 1,669 86

• Explain why specification (1) is a restricted version of specification (2), stating
and interpreting the restriction.

• Supposing the restriction to be valid, explain whether you expect the
coefficient of S and its standard error to differ, or be similar, in specifications
(1) and (2).
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• Supposing the restriction to be invalid, how would you expect the coefficient of
S and its standard error to differ, or be similar, in specifications (1) and (2)?

• Perform an F test of the restriction.

• Perform a t test of the restriction.

• Explain whether the F test and the t test could lead to different conclusions.

• At a seminar, a commentator says that part-time workers tend to be paid
worse than full-time workers and that their earnings functions are different.
Defining full-time workers as those working at least 35 hours per week, the
researcher divides the sample and fits the earnings functions for full-time
workers (column 4) and part-time workers (column 5). Test whether the
commentator’s assertion is correct.

• What are the implications of the commentator’s assertion for the test of the
restriction?

A6.6 A researcher investigating whether government expenditure tends to crowd out
investment has data on government recurrent expenditure, G, investment, I, and
gross domestic product, Y , all measured in US$ billion, for 30 countries in 2012.
She fits two regressions (standard errors in parentheses; t statistics in square
brackets; RSS = residual sum of squares).

(1) A regression of log I on logG and log Y :

̂log I = −2.44− 0.63 logG+ 1.60 log Y R2 = 0.98 (1)

(0.26) (0.12) (0.12) RSS = 0.90

[9.42] [−5.23] [12.42]

(2) a regression of log(I/Y ) on log(G/Y ):

̂
log

(
I

Y

)
= 2.65− 0.63 log

(
G

Y

)
R2 = 0.48 (2)

(0.23) (0.12) RSS = 0.99

[11.58] [−5.07]

The correlation between logG and log Y in the sample is 0.98. The table gives
some further basic data on logG, log Y , and log(G/Y ).

Sample mean Mean square
deviation

logG 3.75 2.00
log Y 5.57 1.95
log (G/Y ) −1.81 0.08

• Explain why the second specification is a restricted version of the first. State
the restriction.

• Perform a test of the restriction.
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• The researcher expected the standard error of the coefficient of log(G/Y ) in
(2) to be smaller than the standard error of the coefficient of logG in (1).
Explain why she expected this.

• However, the standard error is the same, at least to two decimal places. Give
an explanation.

• Show how the restriction could be tested using a t test in a reparameterised
version of the specification for (1).

A6.7 Is expenditure per capita on your CES category related to total household
expenditure per capita?

The model specified in Exercise A4.1 is a restricted version of that in Exercise 4.5
in the text. Perform an F test of the restriction. Also perform a t test of the
restriction.

[Exercise 4.5: regress LGCAT on LGEXP and LGSIZE ; Exercise A4.1: regress
LGCATPC on LGEXPPC.]

A6.8 A researcher is considering two regression specifications:

log Y = β1 + β2 logX + u (1)

and:

log
Y

X
= α1 + α2 logX + u (2)

where u is a disturbance term. Determine whether (2) is a reparameterised or a
restricted version of (1).

A6.9 Three researchers investigating the determinants of hourly earnings have the
following data for a sample of 104 male workers in the United States in 2006: E,
hourly earnings in dollars; S, years of schooling; NUM, score on a test of numeracy;
and VERB, score on a test of literacy. The NUM and VERB tests are marked out
of 100. The correlation between them is 0.81. Defining LGE to be the natural
logarithm of E, Researcher 1 fits the following regression (standard errors in
parentheses; RSS = residual sum of squares):

L̂GE = 2.02 + 0.063S + 0.0044NUM + 0.0026VERB RSS = 2,000

(1.81) (0.007) (0.0011) (0.0010)

Researcher 2 defines a new variable SCORE as the average of NUM and VERB.
She fits the regression:

L̂GE = 1.72 + 0.050S + 0.0068SCORE RSS = 2,045

(1.78) (0.005) (0.0010)

Researcher 3 fits the regression:

L̂GE = 2.02 + 0.063S + 0.0088SCORE − 0.0018VERB RSS = 2,000

(1.81) (0.007) (0.0022) (0.0012)
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• Show that the specification of Researcher 2 is a restricted version of the
specification of Researcher 1, stating the restriction.

• Perform an F test of the restriction.

• Show that the specification of Researcher 3 is a reparameterised version of the
specification of Researcher 1 and hence perform a t test of the restriction in
the specification of Researcher 2.

• Explain whether the F test and the t test could have led to different results.

• Perform a test of the hypothesis that the numeracy score has a greater effect
on earnings than the literacy score.

• Compare the regression results of the three researchers.

A6.10 It is assumed that manufacturing output is subject to the production function:

Q = AKαLβ (1)

where Q is output and K and L are capital and labour inputs. The cost of
production is:

C = ρK + wL (2)

where ρ is the cost of capital and w is the wage rate. It can be shown that, if the
cost is minimised, the wage bill wL will be given by the relationship:

logwL =
1

α + β
logQ+

α

α + β
log ρ+

β

α + β
logw + constant. (3)

(Note: You are not expected to prove this.)

A researcher has annual data for 2002 for Q, K, L, ρ, and w (all monetary
measures being converted into US dollars) for the manufacturing sectors of 30
industrialised countries and regresses logwL on logQ, log ρ, and logw.

• Demonstrate that relationship (3) embodies a testable restriction and show
how the model may be reformulated to take advantage of it.

• Explain how the restriction could be tested using an F test.

• Explain how the restriction could be tested using a t test.

• Explain the theoretical benefits of making use of a valid restriction. How could
the researcher assess whether there are any benefits in practice, in this case?

• At a seminar, someone suggests that it is reasonable to hypothesise that
manufacturing output is subject to constant returns to scale, so that
α + β = 1. Explain how the researcher could test this hypothesis (1) using an
F test, (2) using a t test.

A6.11 A researcher hypothesises that the net annual growth of private sector purchases of
government bonds, B, is positively related to the nominal rate of interest on the
bonds, I, and negatively related to the rate of price inflation, P :

B = β1 + β2I + β3P + u
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where u is a disturbance term. The researcher anticipates that β2 > 0 and β3 < 0.
She also considers the possibility that B depends on the real rate of interest on the
bonds, R, where R = I − P . Using a sample of observations for 40 countries, she
regresses B:

• (1) on I and P

• (2) on R

• (3) on I

• (4) on P and R

with the results shown in the corresponding columns of the table below (standard
errors in parentheses; RSS is the residual sum of squares). The correlation
coefficient for I and P was 0.97.

(1) (2) (3) (4)
I 2.17 — 0.69 —

(1.04) (0.25)
P −3.19 — — −1.02

(2.17) (1.19)
R — 1.37 — 2.17

(0.44) (1.04)
constant −5.14 −3.15 −1.53 −5.14

(2.62) (1.21) (0.92) (2.62)
R2 0.22 0.20 0.17 0.22
RSS 967.9 987.1 1,024.3 967.9

• Explain why the researcher was dissatisfied with the results of regression (1).

• Demonstrate that specification (2) may be considered to be a restricted
version of specification (1).

• Perform an F test of the restriction, stating carefully your null hypothesis and
conclusion.

• Perform a t test of the restriction.

• Demonstrate that specification (3) may also be considered to be a restricted
version of specification (1).

• Perform both an F test and a t test of the restriction in specification (3),
stating your conclusion in each case.

• At a seminar, someone suggests that specification (4) is also a restricted
version of specification (1). Is this correct? If so, state the restriction.

• State, with an explanation, which would be your preferred specification.

A6.12 A researcher has a sample of 43 observations on a dependent variable, Y , and two
potential explanatory variables, X and Z. He defines two further variables V and
W as the sum of X and Z and the difference between them:

Vi = Xi + Zi

Wi = Xi − Zi.
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He fits the following four regressions:

(1) A regression of Y on X and Z.

(2) A regression of Y on V and W .

(3) A regression of Y on V .

(4) A regression of Y on Z and V .

The table shows the regression results (standard errors in parentheses; RSS =
residual sum of squares; there was an intercept, not shown, in each regression).
Unfortunately, a goat ate part of the regression output and some of the numbers
are missing. These are indicated by letters.

(1) (2) (3) (4)
X 0.60 — — —

(0.04)
Z 0.80 — — H

(0.04) (I)
V — A 0.72 J

(B) (0.02) (K)
W — C — —

(D)
R2 0.60 E G L
RSS 200 F 220 M

Each regression included an intercept (not shown).

Reconstruct each missing number if this is possible, giving a brief explanation. If it
is not possible to reconstruct a number, give a brief explanation.

A6.13 In Exercise A6.7, a researcher proposes to test the restriction using variations in R2

instead of variations in RSS. For food consumed at home, the unrestricted
regression of LGFDHO on LGEXP and LGSIZE had R2 = 0.4831. For the
regression of LGFDHOPC on LGEXPPC, R2 = 0.4290. Hence the researcher’s
statistic is:

F =
(0.4831− 0.4290)/1

(1− 0.4290)/6331
= 599.8.

Explain why this is different from the F statistic reported for food consumed at
home in the answer to Exercise A6.7.

6.4 Answers to the starred exercises in the textbook

6.4 The table gives the results of multiple and simple regressions of LGFDHO, the
logarithm of annual household expenditure on food eaten at home, on LGEXP, the
logarithm of total annual household expenditure, and LGSIZE, the logarithm of
the number of persons in the household, using a sample of 6,334 households in the
2013 Consumer Expenditure Survey. The correlation coefficient for LGEXP and
LGSIZE was 0.32. Explain the variations in the regression coefficients.
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(1) (2) (3)
LGEXP 0.58 0.67 —

(0.01) (0.01)
LGSIZE 0.33 — 0.58

(0.01) (0.02)
constant 1.16 0.70 6.04

(0.08) (0.08) (0.01)
R2 0.48 0.43 0.19

Answer:

If the model is written as:

LGFDHO = β1 + β2LGEXP + β3LGSIZE + u

the expected value of β̂2 in the second regression is given by:

E(β̂2) = β2 + β3

∑(
LGEXP i −LGEXP

)(
LGSIZE i −LGSIZE

)
∑(

LGEXP i −LGEXP
)2 .

We know that the covariance is positive because the correlation is positive, and it is
reasonable to suppose that β3 is also positive, especially given the highly significant
positive estimate in the first regression, and so β̂2 is biased upwards. This accounts
for the large increase in its size in the second regression. In the third regression:

E(β̂3) = β3 + β2

∑(
LGEXP i −LGEXP

)(
LGSIZE i −LGSIZE

)
∑(

LGSIZE i −LGSIZE
)2 .

β2 is certainly positive, especially given the highly significant positive estimate in
the first regression, and so β̂3 is also biased upwards. As a consequence, the
estimate in the third regression is greater than that in the first.

6.7 A researcher thinks that the level of activity in the shadow economy, Y , depends
either positively on the level of the tax burden, X, or negatively on the level of
government expenditure to discourage shadow economy activity, Z. Y might also
depend on both X and Z. International cross-sectional data on Y , X, and Z, all
measured in US$ million, are obtained for a sample of 30 industrialised countries
and a second sample of 30 developing countries. The researcher regresses (1) log Y
on both logX and logZ, (2) log Y on logX alone, and (3) log Y on logZ alone, for
each sample, with the following results (standard errors in parentheses):

Industrialised countries Developing countries
(1) (2) (3) (1) (2) (3)

logX 0.699 0.201 — 0.806 0.727 —
(0.154) (0.112) (0.137) (0.090)

logZ −0.646 — −0.053 −0.091 — 0.427
(0.162) (0.124) (0.117) (0.116)

constant −1.137 −1.065 1.230 −1.122 −1.024 2.824
(0.863) (1.069) (0.896) (0.873) (0.858) (0.835)

R2 0.44 0.10 0.01 0.71 0.70 0.33
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X was positively correlated with Z in both samples. Having carried out the
appropriate statistical tests, write a short report advising the researcher how to
interpret these results.

Answer:

One way to organise an answer to this exercise is, for each sample, to consider the
evidence for and against each of the three specifications in turn. The t statistics for
the slope coefficients are given in the following table. * indicates significance at the
5 per cent level, ** at the 1 per cent level, and *** at the 0.1 per cent level, using
one-sided tests. (Justification for one-sided tests: one may rule out a negative
coefficient for X and a positive one for Y .)

Industrialised countries Developing countries
(1) (2) (3) (1) (2) (3)

logX 4.54*** 1.79* — 5.88**** 8.08*** —
logZ −3.99*** — −0.43 −0.78 — 3.68***

Industrialised countries:

The first specification is clearly the only satisfactory one for this sample, given the
t statistics. Writing the model as:

log Y = β1 + β2 logX + β3 logZ + u

in the second specification:

E(β̂2) = β2 + β3

∑(
logXi − logX

)(
logZi −Z

)
∑(

logXi − logX
)2 .

Anticipating that β3 is negative, and knowing that X and Z are positively
correlated, the bias term should be negative. The estimate of β2 is indeed lower in
the second specification. In the third specification:

E(β̂3) = β3 + β2

∑(
logXi − logX

)(
logZi −Z

)
∑(

logZi − logZ
)2

and the bias should be positive, assuming β2 is positive. β̂3 is indeed less negative
than in the first specification.

Note that the sum of the R2 statistics for the second and third specifications is less
than R2 in the first. This is because the bias terms undermine the apparent
explanatory power of X and Z in the second and third specifications. In the third
specification, the bias term virtually neutralises the true effect and R2 is very low
indeed.

Developing countries:

In principle the first specification is acceptable. The failure of the coefficient of Z to
be significant might be due to a combination of a weak effect of Z and a relatively
small sample.
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6. Specification of regression variables

The second specification is also acceptable since the coefficient of Z and its t
statistic in the first specification are very low. Because the t statistic of Z is low,
R2 is virtually unaffected when it is omitted.

The third specification is untenable because it cannot account for the highly
significant coefficient of X in the first. The omitted variable bias is now so large
that it overwhelms the negative effect of Z with the result that the estimated
coefficient is positive.

6.11 A researcher has data on output per worker, Y , and capital per worker, K, both
measured in thousands of dollars, for 50 firms in the textiles industry in 2012. She
hypothesises that output per worker depends on capital per worker and perhaps
also the technological sophistication of the firm, TECH :

Y = β1 + β2K + β3TECH + u

where u is a disturbance term. She is unable to measure TECH and decides to use
expenditure per worker on research and development in 2012, R&D, as a proxy for
it. She fits the following regressions (standard errors in parentheses):

Ŷ = 1.02 + 0.32K R2 = 0.749

(0.45) (0.04)

Ŷ = 0.34 + 0.29K + 0.05R&D R2 = 0.750

(0.61) (0.22) (0.15)

The correlation coefficient for K and R&D is 0.92. Discuss these regression results:

1. assuming that Y does depend on both K and TECH

2. assuming that Y depends only on K.

Answer:

If Y depends on both K and TECH, the first specification is subject to omitted
variable bias, with the expected value of β̂2 being given by:

E(β̂2) = β2 + β3

∑(
Ki −K

)(
TECH i −TECH

)
∑(

Ki −K
)2 .

Since K and R&D have a high positive correlation, it is reasonable to assume that
K and TECH are positively correlated. It is also reasonable to assume that β3 is
positive. Hence one would expect β̂2 to be biased upwards. It is indeed greater than
in the second equation, but not by much. The second specification is clearly subject
to multicollinearity, with the consequence that, although the estimated coefficients
remain unbiased, they are erratic, this being reflected in large standard errors. The
large variance of the estimate of the coefficient of K means that much of the
difference between it and the estimate in the first specification is likely to be purely
random, and this could account for the fact that the omitted variable bias appears
to be so small.

If Y depends only on K, the inclusion of R&D in the second specification gives rise
to inefficiency. Since the standard errors in both equations remain valid, they can
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be compared and it is evident that the loss of efficiency is severe. As expected in
this case, the coefficient of R&D is not significantly different from zero and the
increase in R2 in the second specification is minimal.

6.14 The first regression shows the result of regressing LGFDHO, the logarithm of
annual household expenditure on food eaten at home, on LGEXP, the logarithm of
total annual household expenditure, and LGSIZE, the logarithm of the number of
persons in the household, using a sample of 6,334 households in the 2013 Consumer
Expenditure Survey. In the second regression, LGFDHOPC, the logarithm of food
expenditure per capita (FDHO/SIZE ), is regressed on LGEXPPC, the logarithm
of total expenditure per capita (EXP/SIZE ). In the third regression LGFDHOPC
is regressed on LGEXPPC and LGSIZE.

. reg LGFDHO LGEXP LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2958.94

Model | 1858.61471 2 929.307357 Prob> F = 0.0000

Residual | 1988.36474 6331 .314068037 R-squared = 0.4831

-----------+------------------------------ Adj R-squared = 0.4830

Total | 3846.97946 6333 .60744978 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXP | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | .3343475 .0127587 26.21 0.000 .3093362 .3593589

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------

. gen LGFDHOPC = ln(FDHO/SIZE)

. gen LGEXPPC = ln(EXP/SIZE)

. reg LGFDHOPC LGEXPPC

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 1, 6332) = 4757.00

Model | 1502.58928 1 1502.58928 Prob> F = 0.0000

Residual | 2000.0827 6332 .31586903 R-squared = 0.4290

-----------+------------------------------ Adj R-squared = 0.4289

Total | 3502.67197 6333 .553082579 Root MSE = .56202

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .6092734 .0088338 68.97 0.000 .5919562 .6265905

_cons | .8988292 .0703516 12.78 0.000 .7609162 1.036742

----------------------------------------------------------------------------
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. reg LGFDHOPC LGEXPPC LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2410.79

Model | 1514.30723 2 757.153617 Prob> F = 0.0000

Residual | 1988.36474 6331 .314068037 R-squared = 0.4323

-----------+------------------------------ Adj R-squared = 0.4321

Total | 3502.67197 6333 .553082579 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | -.0814427 .0133333 -6.11 0.000 -.1075805 -.0553049

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------

1. Explain why the second model is a restricted version of the first, stating the
restriction.

2. Perform an F test of the restriction.

3. Perform a t test of the restriction.

4. Summarise your conclusions from the analysis of the regression results.

Answer:

Write the first specification as:

LGFDHO = β1 + β2LGEXP + β3LGSIZE + u.

Then the restriction implicit in the second specification is β3 = 1− β2, for:

LGFDHO = β1 + β2LGEXP + (1− β2)LGSIZE + u

LGFDHO − LGSIZE = β1 + β2(LGEXP − LGSIZE ) + u

log
FDHO

SIZE
= β1 + β2 log

EXP

SIZE
+ u

LGFDHOPC = β1 + β2LGEXPPC + u

the last equation being the second specification. The F statistic for the null
hypothesis H0 : β3 = 1− β2 is:

F (1, 6331) =
(2000.1− 1988.4)/1

1988.4/6331
= 37.3.

The critical value of F (1, 1000) at the 0.1 per cent level is 10.9, and hence the
restriction is rejected at that significance level.

Alternatively, we could use the t test approach. Under the null hypothesis that the
restriction is valid, θ = 1− β2 − β3 = 0. Substituting for β3, the unrestricted
version may be rewritten:

LGFDHO = β1 + β2LGEXP + (1− β2 − θ)LGSIZE + u.
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This may be rewritten:

log
FDHO

SIZE
= β1 + β2 log

EXP

SIZE
− θ log SIZE + u

that is:

LGFDHOPC = β1 + β2LGEXPPC − θLGSIZE + u.

The t statistic for the coefficient of LGSIZE is −6.11, so we reject the restriction at
a very high significance level. Note that the t statistic is the square root of the F
statistic and the critical value of t at the 0.1 per cent level will be the square root
of the critical value of F .

6.5 Answers to the additional exercises

A6.1 The output below gives the results of a simple regression of LGFDHOPC on
LGSIZE. See Exercise A4.1 for the simple regression of LGFDHOPC on
LGEXPPC and Exercise A4.2 for the multiple regression of LGFDHOPC on
LGEXPPC and LGSIZE.

. reg LGFDHOPC LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 1, 6332) = 768.56

Model | 379.128845 1 379.128845 Prob> F = 0.0000

Residual | 3123.54316 6332 .493294877 R-squared = 0.1082

-----------+------------------------------ Adj R-squared = 0.1081

Total | 3502.67201 6333 .553082585 Root MSE = .70235

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGSIZE | -.4199282 .0151473 -27.72 0.000 -.449622 -.3902344

_cons | 6.040547 .0143586 420.69 0.000 6.012399 6.068695

----------------------------------------------------------------------------

If the true model is assumed to be:

LGFDHOPC = β1 + β2LGEXPPC + β3LGSIZE + u

the expected value of β̂2 in the simple regression of LGFDHOPC on LGEXPPC is
given by:

E(β̂2) = β2 + β3

∑(
LGEXPPC i −LGEXPPC

)(
LGSIZE i −LGSIZE

)
∑(

LGEXPPC i −LGEXPPC
)2 .

We know that the numerator of the second factor in the bias term is negative
because the correlation is negative:
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. cor LGEXPPC LGSIZE

(obs=6334)

| LGEXPPC LGSIZE

-----------+------------------

LGEXPPC | 1.0000

LGSIZE | -0.4223 1.0000

It is reasonable to suppose that economies of scale will cause β3 to be negative, and
the highly significant negative estimate in the multiple regression provides
empirical support, so β̂2 is biased upwards. This accounts for the increase in its size
in the second regression. In the third regression:

E(β̂3) = β3 + β2

∑(
LGEXPPC i −LGEXPPC

)(
LGSIZE i −LGSIZE

)
∑(

LGSIZE i −LGSIZE
)2 .

β2 is certainly positive, especially given the highly significant positive estimate in
the first regression, and so β̂3 is biased downwards. As a consequence, the estimate
in the third regression is lower than that in the first.

Similar results are obtained for the other categories of expenditure. The correlation
between LGEXPPC and LGSIZE varies because the missing observations are
different for different categories.

Omitted variable bias, dependent variable LGCATPC
Multiple regression Simple regressions

n LGEXPPC LGSIZE LGEXPPC LGSIZE
ADM 2,815 1.080 −0.055 1.098 −0.678
CLOT 4,500 0.842 0.146 0.794 −0.375
DOM 1,661 0.941 0.415 0.812 −0.150
EDUC 561 1.229 −0.437 1.382 −1.243
ELEC 5,828 0.472 −0.362 0.586 −0.645
FDAW 5,102 0.879 −0.213 0.947 −0.735
FDHO 6,334 0.584 −0.081 0.609 −0.420
FOOT 1,827 0.396 −0.560 0.608 −0.842
FURN 487 0.807 −0.246 0.912 −0.848
GASO 5,710 0.676 −0.004 0.677 −0.410
HEAL 4,802 0.779 −0.306 0.868 −0.723
HOUS 6,223 0.989 −0.140 1.033 −0.716
LIFE 1,253 0.464 −0.461 0.607 −0.701
LOCT 692 0.389 −0.396 0.510 −0.639
MAPP 399 0.721 −0.264 0.817 −0.717
PERS 3,817 0.824 −0.217 0.891 −0.703
READ 2,287 0.764 −0.503 0.909 −0.923
SAPP 1,037 0.467 −0.592 0.665 −0.879
TELE 5,788 0.640 −0.222 0.710 −0.603
TEXT 992 0.388 −0.713 0.629 −0.959
TOB 1,155 0.563 −0.515 0.721 −0.822
TOYS 2,504 0.638 −0.304 0.733 −0.691
TRIP 516 0.681 −0.142 0.723 −0.492
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A6.2 Demonstrate that β̂2 is an unbiased estimator of β2.

β̂2 =

∑(
Di −D

)(
Yi −Y

)
∑(

Di −D
)2

=

∑(
Di −D

)(
(β1 + β2Di + β3Ai + ui)− (β1 + β2D+ β3A+u)

)
∑(

Di −D
)2

= β2 + β3

∑(
Di −D

)(
Ai −A

)
∑(

Di −D
)2 +

∑(
Di −D

)
(ui −u)∑(

Di −D
)2 .

Hence:
β̂2 = β2 + β3

∑
di(Ai −A) +

∑
di(ui −u)

where:

di =
Di −D∑
(Dj −D)2

.

Hence:
E(β̂2) = β2 + β3

∑
E(di(Ai −A)) +

∑
E(di(ui −u)).

Now, since the assignment to the course was random, D is distributed
independently of both A and u, and hence:

E(di(Ai −A)) = E(di)E(Ai −A) = 0

and:
E(di(ui −u)) = E(di)E(ui −u) = 0.

Hence β̂2 is an unbiased estimator of β2.

A commentator says that the standard error of β̂2 will be invalid because an
important variable, A, has been omitted from the specification. The researcher
replies that the standard error will remain valid if A can be assumed to have a
normal distribution. Explain whether the commentator or the researcher is correct.

The researcher is nearly correct. Given the random selection of the sample, A will
be distributed independently of D and so it can be treated as part of the
disturbance term and the standard error will remain valid. The requirement that A
have a normal distribution is too strong, since the expression for the standard error
does not depend on it. However, if the standard error is to be used for t tests, then
it is important that the enlarged standard error should have a normal distribution,
and this will be the case if an only if A has a normal distribution (assuming that u
has one). If both A and u have normal distributions, a linear combination will also
have one.

Another commentator says that whether the distribution of A is normal or not
makes no difference to the validity of the standard error. Evaluate this assertion.

The commentator is correct for the reasons just explained.
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A6.3 Assuming that (A) is the correct specification, explain, with a mathematical proof,
whether you would expect the coefficient of log Y to be greater in regression (2).

To simplify the algebra, throughout this answer logB, log Y , logS and log IQ will
be written as B, Y , S and IQ, it being understood that these are logarithms.

β̂2 =

∑(
Bi −B

)(
Yi −Y

)
∑(

Yi −Y
)2

=

∑(
β1 + β2Yi + β3IQi + ui − β1 − β2Y − β3IQ−u

)(
Yi −Y

)
∑(

Yi −Y
)2

=

∑(
β2Yi − β2Y

)(
Yi −Y

)
+
∑(

β3IQi − β3IQ
)(

Yi −Y
)

+
∑

(ui −u)
(
Yi −Y

)
∑(

Yi −Y
)2

= β2 + β3

∑(
IQi −IQ

)(
Yi −Y

)
∑(

Yi −Y
)2 +

∑
(ui −u)

(
Yi −Y

)
∑(

Yi −Y
)2 .

Hence:

E(β̂2) = β2 + β3

∑(
IQi −IQ

)(
Yi −Y

)
∑(

Yi −Y
)2 +

1∑(
Yi −Y

)2E
(∑

(ui −u)(Yi −Y )
)

= β2 + β3

∑(
IQi −IQ

)(
Yi −Y

)
∑(

Yi −Y
)2 +

1∑(
Yi −Y

)2

∑
E
(
(ui −u)(Yi − Ȳ )

)

= β2 + β3

∑(
IQi −IQ

)(
Yi −Y

)
∑(

Yi −Y
)2 +

1∑(
Yi −Y

)2

∑
(Yi −Y )E(ui −u)

= β2 + β3

∑(
IQi −IQ

)(
Yi −Y

)
∑(

Yi −Y
)2

assuming that Y and IQ are nonstochastic. Thus β̂2 is biased, the direction of the

bias depending on the signs of β3 and
∑(

IQi −IQ
)(

Yi −Y
)

. We would expect

the former to be positive and we expect the latter to be positive since we are told
that the correlation between S and Y is positive and S is a proxy for IQ. So we
would expect an upward bias in regression (2).

Assuming that (A) is the correct specification, describe the various benefits from
using log S as a proxy for log IQ, as in regression (1), if log S is a good proxy.

The use of S as a proxy for IQ will alleviate the problem of omitted variable bias.
In particular, comparing the results of regression (1) with those that would have
been obtained if B had been regressed on Y and IQ :
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6.5. Answers to the additional exercises

• the coefficient of Y will be approximately the same

• its standard error will be approximately the same

• the t statistic for S will be approximately equal to that of IQ

• R2 will be approximately the same.

Explain whether the low value of R2 in regression (1) implies that log S is not a
good proxy.

Not necessarily. It could be that S is a poor proxy for IQ, but it could also be that
the original model had low explanatory power.

Assuming that (A) is the correct specification, provide an explanation of why the
coefficients of log Y and log S in regression (1) are not significantly different from
zero, using two-sided t tests.

The high correlation between Y and S has given rise to multicollinearity, the
standard errors being so large that the coefficients are not significantly different
from zero.

Discuss whether the researcher would be justified in using one-sided t tests in
regression (1).

Yes. It is reasonable to suppose that expenditure on books should not be negatively
influenced by either income or cognitive ability. (Note that one should not say that
it is reasonable to suppose that expenditure on books is positively influenced by
them. This rules out the null hypothesis.)

Assuming that (B) is the correct specification, explain whether you would expect the
coefficient of log Y to be lower in regression (1).

No. It would be randomly higher or lower, if S is an irrelevant variable.

Assuming that (B) is the correct specification, explain whether the standard errors
in regression (1) are valid estimates.

Yes. The inclusion of an irrelevant variable in general does not invalidate the
standard errors. It causes them to be larger than those in the correct specification.

A6.4 Explain analytically whether the slope coefficient is likely to be biased.

If the fitted model is:
l̂og T = β̂1 + β̂2 logP

then:

β̂2 =

∑(
logPi − logP

)(
log Ti − log T

)
∑(

logPi − logP
)2

=

∑(
logPi − logP

)(
β1 + β2 logPi + β3 log Yi + ui − β1 − β2logP − β3log Y −u

)
∑(

logPi − logP
)2

= β2 + β3

∑(
logPi − logP

)(
log Yi − log Y

)
∑(

logPi − logP
)2 +

∑(
logPi − logP

)
(ui −u)∑(

logPi − logP
)2 .
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Hence:

E(β̂2) = β2 + β3

∑(
logPi − logP

)(
log Yi − log Y

)
∑(

logPi − logP
)2

provided that any random component of logP is distributed independently of u.
Since it is reasonable to assume β3 > 0, and since we are told that Y and P are
positively correlated, the bias will be upwards. This accounts for the nonsensical
positive price elasticity in the fitted equation.

Describe the theoretical benefits from using H as a proxy for Y, discussing whether
they appear to have been obtained in this example.

Suppose that H is a perfect proxy for Y :

log Y = λ+ µ logH.

Then the relationship may be rewritten:

log T = β1 + β3λ+ β2 logP + β3µ logH + u.

The coefficient of logP ought to be the same as in the true relationship. However in
this example it is not the same. However it is of the right order of magnitude and
much more plausible than the estimate in the first regression. The standard error of
the coefficient ought to be the same as in the true relationship, and this is the case.

The coefficient of logH will be an estimate of β3µ, and since µ is unknown, β3 is
not identified. However, if it can be assumed that the average household income in
a city is proportional to average house values, it could be asserted that µ is equal
to 1, in which case the coefficient of logH will be a direct estimate of β3 after all.
The coefficient of logH is indeed quite close to that of log Y . The t statistic for the
coefficient of logH ought to be the same as that for log Y , and this is approximately
true, being a little lower. R2 ought to be the same, but it is somewhat lower,
suggesting that H appears to have been a good proxy, but not a perfect one.

A6.5 Explain why specification (1) is a restricted version of specification (2), stating and
interpreting the restriction.

First note that, since E = W/H, LE = log(W/H) = LW − LH.

Write specification (2) as:

LW = β1 + β2S + β3LH + u.

If one imposes the restriction β3 = 1, the model becomes specification (1):

LW − LH = β1 + β2S + u.

The restriction implies that weekly earnings are proportional to hours worked,
controlling for schooling.

Supposing the restriction to be valid, explain whether you expect the coefficient of S
and its standard error to differ, or be similar, in specifications (1) and (2).

If the restriction is valid, the coefficient of S should be similar in the restricted
specification (1) and the unrestricted specification (2). Both estimates will be
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unbiased, but that in specification (1) will be more efficient. The gain in efficiency
in specification (1) should be reflected in a smaller standard error. However, the
gain will be small, given the low correlation.

Supposing the restriction to be invalid, how would you expect the coefficient of S
and its standard error to differ, or be similar, in specifications (1) and (2)?

The estimate of the coefficient of S would be biased. The standard error in
specification (1) would be invalid and so a comparison with the standard error in
specification (2) would be illegitimate.

Perform an F test of the restriction.

The null and alternative hypotheses are H0 : β3 = 1 and H1 : β3 6= 1.

F (1, 1752) =
(741.5− 737.9)/1

737.9/1752
= 8.5.

The critical value of F (1, 1000) at the 1 per cent level is 6.66. The critical value of
F (1, 1752) must be lower. Thus we reject the restriction at the 1 per cent level.
(The critical value at the 0.1 per cent level is about 10.8.)

Perform a t test of the restriction.

The restriction is so simple that it can be tested with no reparameterisation: a
simple t test on the coefficient of LH in specification (2), H0 : β3 = 1.

Alternatively, mechanically following the standard procedure, we rewrite the
restriction as β3 − 1 = 0. The reparameterisation will be:

θ = β3 − 1

and so:
β3 = θ + 1.

Substituting this into the unrestricted specification, the latter may be rewritten:

LW = β1 + β2S + (θ + 1)LH + u.

Hence:
LW − LH = β1 + β2S + θLH + u.

This is regression specification (3) and the restriction may be tested with a t test
on the coefficient of LH, the null hypothesis being H0 : θ = β3 − 1 = 0. The t
statistic is 2.92, which is significant at the 1 per cent level, implying that the
restriction should be rejected.

Explain whether the F test and the t test could lead to different conclusions.

The tests must lead to the same conclusion since the F statistic is the square of the
t statistic and the critical value of F is the square of the critical value of t.

At a seminar, a commentator says that part-time workers tend to be paid worse
than full-time workers and that their earnings functions are different. Defining
full-time workers as those working at least 35 hours per week, the researcher divides
the sample and fits the earnings functions for full-time workers (column 4) and
part-time workers (column 5). Test whether the commentators assertion is correct.
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The appropriate test is a Chow test. The test statistic under the null hypothesis of
no difference in the earnings functions is:

F (3, 1749) =
(737.9− 626.1− 100.1)/3

(626.1 + 100.1)/1749
= 9.39.

The critical value of F (3, 1000) at the 0.1 per cent level is 5.46. Hence we reject the
null hypothesis and conclude that the commentator is correct.

What are the implications of the commentators assertion for the test of the
restriction?

The elasticity of LH is now not significantly different from 1 for either full-time or
part-time workers, so the restriction is no longer rejected.

A6.6 Explain why the second specification is a restricted version of the first. State the
restriction.

Write the second equation as:

log
I

Y
= β1 + β2 log

(
G

Y

)
+ u.

It may be re-written as:

log I = β1 + β2 logG+ (1− β2) log Y + u.

This is a special case of the specification of the first equation:

log I = β1 + β2 logG+ β3 log Y + u

with the restriction β3 = 1− β2.

Perform a test of the restriction.

The null hypothesis is H0 : β2 + β3 = 1. The test statistic is:

F (1, 27) =
(0.99− 0.90)/1

0.90/27
= 2.7.

The critical value of F (1, 27) is 4.21 at the 5 per cent level. Hence we do not reject
the null hypothesis that the restriction is valid.

The researcher expected the standard error of the coefficient of log (G/Y) in (2) to
be smaller than the standard error of the coefficient of log G in (1). Explain why
she expected this.

The imposition of the restriction, if valid, should lead to a gain in efficiency and
this should be reflected in lower standard errors.

However the standard error is the same, at least to two decimal places. Give an
explanation.

The standard errors of the coefficients of G in (1) and G/Y in (2) are given by:√
σ̂2
u

nMSD(G)
× 1

1− r2
G,Y

and

√
σ̂2
u

nMSD(G/Y )
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respectively, where σ̂2
u is an estimate of the variance of the disturbance term, n is

the number of observations, MSD is the mean square deviation in the sample, and
rG,Y is the sample correlation coefficient of G and Y . n is the same for both
standard errors and σ̂2

u will be very similar. We are told that rG,Y = 0.98, so its
square is 0.96 and the second factor in the expression for the standard error of G is
(1/0.04) = 25. Hence, other things being equal, the standard error of G/Y should
be much lower than that of G. However the table shows that the MSD of G/Y is
only 1/25 as great as that of G. This just about exactly negates the gain in
efficiency attributable to the elimination of the correlation between G and Y .

Show how the restriction could be tested using a t test in a reparameterised version
of the specification for (1).

Define θ = β2 + β3 − 1, so that the restriction may be written θ = 0. Then
β3 = θ − β2 + 1. Use this to substitute for β3 in the unrestricted model:

log I = β1 + β2 logG+ β3 log Y + u

= β1 + β2 logG+ (θ − β2 + 1) log Y + u.

Then:

log I − log Y = β1 + β2(logG− log Y ) + θ log Y + u

and:

log

(
I

Y

)
= β1 + β2

(
G

Y

)
+ θ log Y + u.

Hence the restriction may be tested by a t test of the coefficient of log Y in a
regression using this specification.

A6.7 This is a generalisation of the example with FDHO in Exercise 6.14 in the text.
The reason for the discrepancy in the number of observations is not known.
Possibly it used an earlier version of the data set.

. reg LGFDHO LGEXP LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2958.94

Model | 1858.61471 2 929.307357 Prob> F = 0.0000

Residual | 1988.36474 6331 .314068037 R-squared = 0.4831

-----------+------------------------------ Adj R-squared = 0.4830

Total | 3846.97946 6333 .60744978 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHO | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXP | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | .3343475 .0127587 26.21 0.000 .3093362 .3593589

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------
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. reg LGFDHOPC LGEXPPC

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 1, 6332) = 4757.00

Model | 1502.58932 1 1502.58932 Prob> F = 0.0000

Residual | 2000.08269 6332 .315869029 R-squared = 0.4290

-----------+------------------------------ Adj R-squared = 0.4289

Total | 3502.67201 6333 .553082585 Root MSE = .56202

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .6092734 .0088338 68.97 0.000 .5919562 .6265905

_cons | .8988291 .0703516 12.78 0.000 .7609161 1.036742

----------------------------------------------------------------------------

Write the first specification as:

LGFDHO = β1 + β2LGEXP + β3LGSIZE + u.

Then the restriction implicit in the second specification is β3 = 1− β2, for then:

LGFDHO = β1 + β2LGEXP + (1− β2)LGSIZE + u

LGFDHO − LGSIZE = β1 + β2(LGEXP − LGSIZE ) + u

log
FDHO

SIZE
= β1 + β2 log

EXP

SIZE
+ u

LGFDHOPC = β1 + β2LGEXPPC + u

the last equation being the second specification. The F statistic for the null
hypothesis H0 : β3 = 1− β2 is:

F (1, 6331) =
(2000.1− 1988.4)/1

1998.4/6331
= 37.25.

The critical value of F (1, 1000) at the 0.1 per cent level is 10.9, and hence the
restriction is rejected at that significance level. This is not a surprising result, given
that the estimates of β2 and β3 in the unrestricted specification were 0.58 and 0.33,
respectively, their sum being well short of 1, as implied by the restriction.

Summarising the results of the test for all the categories, we have:

• Restriction rejected at the 1 per cent level: FDHO, FDAW, HOUS, TELE,
FURN, MAPP, SAPP, CLOT, HEAL, ENT, FEES, READ, TOB.

• Restriction rejected at the 5 per cent level: TRIP, LOCT.

• Restriction not rejected at the 5 per cent level: DOM, TEXT, FOOT, GASO,
TOYS, EDUC.
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n RSS restricted RSS unrestricted F t
ADM 2,815 3,947.5 3,945.2 1.6 −1.26
CLOT 4,500 5,792.0 5,766.1 20.2 4.50
DOM 1,661 4,138.0 4,062.5 30.8 5.55
EDUC 561 1,404.6 1,380.1 9.9 −3.15
ELEC 5,828 2,842.9 2,636.3 456.4 −21.36
FDAW 5,102 3,430.9 3,369.1 93.6 −9.68
FDHO 6,334 2,000.1 1,988.4 37.2 −6.11
FOOT 1,827 1,506.4 1,373.5 176.4 −13.28
FURN 487 920.0 913.9 3.2 −1.80
GASO 5,710 2,879.4 2,879.3 0.0 −0.20
HEAL 4,802 6,183.4 6,062.5 95.7 −9.79
HOUS 6,223 4,859.4 4,825.6 43.6 −6.60
LIFE 1,253 1,622.7 1,559.2 50.9 −7.13
LOCT 692 1,108.1 1,075.1 21.1 −4.60
MAPP 399 583.5 576.8 4.6 −2.14
PERS 3,817 3,049.1 3,002.2 59.6 −7.72
READ 2,287 3,038.1 2,892.1 115.3 −10.74
SAPP 1,037 1,239.6 1,148.9 81.6 −9.03
TELE 5,788 3,133.1 3,055.1 147.6 −12.15
TEXT 992 1,150.5 1,032.9 112.6 −10.61
TOB 1,155 956.3 873.4 109.4 −10.46
TOYS 2,504 2,885.4 2,828.3 50.5 −7.11
TRIP 516 795.4 792.8 1.7 −1.30

For the t test, we first rewrite the restriction as β2 + β3− 1 = 0. The test statistic is
therefore θ = β2 + β3 − 1. This allows us to write β3 = θ − β2 + 1. Substituting for
β3, the unrestricted version becomes:

LGFDHO = β1 + β2LGEXP + (θ − β2 + 1)LGSIZE + u.

Hence the unrestricted version may be rewritten:

LGFDHO − LGSIZE = β1 + β2(LGEXP − LGSIZE ) + θLGSIZE + u

that is:

LGFDHOPC = β1 + β2LGEXPPC + θLGSIZE + u.

We use a t test to see if the coefficient of LGSIZE is significantly different from 0.
If it is not, we can drop the LGSIZE term and we conclude that the restricted
specification is an adequate representation of the data. If it is, we have to stay with
the unrestricted specification.

From the output for the third regression, we see that t is −6.11 and hence the null
hypothesis H0 : β2 + β3 − 1 = 0 is rejected (critical value of t at the 0.1 per cent
level is 3.29). Note that the t statistic is the square root of the F statistic and the
critical value of t at the 0.1 per cent level is the square root of the critical value of
F . The results for the other categories are likewise identical to those for the F test.
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. reg LGFDHOPC LGEXPPC LGSIZE

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 6334

-----------+------------------------------ F( 2, 6331) = 2410.79

Model | 1514.30728 2 757.15364 Prob> F = 0.0000

Residual | 1988.36473 6331 .314068035 R-squared = 0.4323

-----------+------------------------------ Adj R-squared = 0.4321

Total | 3502.67201 6333 .553082585 Root MSE = .56042

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .5842097 .0097174 60.12 0.000 .5651604 .6032591

LGSIZE | -.0814427 .0133333 -6.11 0.000 -.1075806 -.0553049

_cons | 1.158326 .0820119 14.12 0.000 .9975545 1.319097

----------------------------------------------------------------------------

A6.8 (2) may be rewritten:

log Y = α1 + (α2 + 1) logX + u

so it is a reparameterised version of (1) with β1 = α1 and β2 = α2 + 1.

A6.9 Show that the specification of Researcher 2 is a restricted version of the
specification of Researcher 1, stating the restriction.

Let the model be written:

LGE = β1 + β2S + β3NUM + β4VERB + u.

The restriction is β4 = β3 since NUM and VERB are given equal weights in the
construction of SCORE. Using the restriction, the model can be rewritten

LGE = β1 + β2S + β3(NUM + VERB) + u

= β1 + β2S + 2β3SCORE + u.

Perform an F test of the restriction.

The null and alternative hypotheses are H0 : β4 = β3 and H1 : β4 6= β3. The F
statistic is:

F (1, 100) =
(2045− 2000)/1

2000/100
= 2.25.

The critical value of F (1, 100) is 3.94 at the 5 per cent level. Hence we do not reject
the restriction at the 5 per cent level.

Show that the specification of Researcher 3 is a reparameterised version of the
specification of Researcher 1 and hence perform a t test of the restriction in the
specification of Researcher 2.

The restriction may be rewritten β4 − β3 = 0. The test statistic is therefore
θ = β4 − β3. Hence β4 = θ + β3. Substituting for β4 in the unrestricted model, one
has:

LGE = β1 + β2S + β3NUM + (θ + β3)VERB + u

= β1 + β2S + β3(NUM + VERB) + θVERB + u

= β1 + β2S + 2β3SCORE + θVERB + u.
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This is the specification of Researcher 3. To test the hypothesis that the restriction
is valid, we perform a t test on the coefficient of VERB. The t statistic is −1.5, so
we do not reject the restriction at the 5 per cent level.

Explain whether the F test in (b) and the t test in (c) could have led to different
results.

No, the F test and the t test must give the same result because the F statistic
must be the square of the t statistic and the critical value of F must be the square
of the critical value of t for any given significance level. Note that this assumes a
two-sided t test. If one is in a position to perform a one-sided test, the t test would
be more powerful.

Perform a test of the hypothesis that the numeracy score has a greater effect on
earnings than the literacy score.

One should perform a one-sided t test on the coefficient of VERB in regression 3
with the null hypothesis H0 : θ = 0 and the alternative hypothesis H1 : θ < 0. The
null hypothesis is not rejected and hence one concludes that there is no significant
difference.

Compare the regression results of the three researchers.

The regression results of Researchers 1 and 3 are equivalent, the only difference
being that the coefficient of VERB provides a direct estimate of β4 in the
specification of Researcher 1 and (β4 − β3) in the specification of Researcher 3.
Assuming the restriction is valid, there is a large gain in efficiency in the estimation
of β3 in specification (2) because its standard error is effectively 0.0005, as opposed
to 0.0011 in specifications (1) and (3).

A6.10 Demonstrate that relationship (3) embodies a testable restriction and show how the
model may be reformulated to take advantage of it.

The coefficients of log ρ and logw sum to 1. Hence the model should be
reformulated as:

logL =
1

α + β
logQ+

α

α + β
log

ρ

w
(4)

(plus a disturbance term).

Explain how the restriction could be tested using an F test.

Let RSSU and RSSR be the residual sums of squares from the unrestricted and
restricted regressions. To test the null hypothesis that the coefficients of log ρ and
logw sum to 1, one should calculate the F statistic:

F (1, 27) =
(RSSR −RSSU)/1

RSSU/27

and compare it with the critical values of F (1, 27).

Explain how the restriction could be tested using a t test.

Alternatively, writing (3) as an unrestricted model:

logwL = γ1 logQ+ γ2 log ρ+ γ3 logw + u (5)
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the restriction is γ2 + γ3 − 1 = 0. Define θ = γ2 + γ3 − 1. Then γ3 = θ − γ2 + 1 and
the unrestricted model may be rewritten as:

logwL = γ1 logQ+ γ2 log ρ+ (θ − γ2 + 1) logw + u.

Hence:
logwL− logw = γ1 logQ+ γ2(log ρ− logw) + θ logw + u.

Hence:
logL = γ1 logQ+ γ2 log

ρ

w
+ θ logw + u.

Thus one should regress logL on logQ, log(ρ/w), and logw and perform a t test on
the coefficient of logw.

Explain the theoretical benefits of making use of a valid restriction. How could the
researcher assess whether there are any benefits in practice, in this case?

The main theoretical benefit of making use of a valid restriction is that one obtains
more efficient estimates of the coefficients. The use of a restriction would eliminate
the problem of duplicate estimates of the same parameter. Reduced standard errors
should provide evidence of the gain in efficiency.

At a seminar, someone suggests that it is reasonable to hypothesise that
manufacturing output is subject to constant returns to scale, so that α + β = 1.
Explain how the researcher could test this hypothesis (1) using an F test, (2) using
a t test.

Under the assumption of constant returns to scale, the model becomes:

log
L

Q
= α log

ρ

w
. (6)

One could test the hypothesis by computing the F statistic:

F (1, 28) =
(RSSR −RSSU)/1

RSSU/28

where RSSU and RSSR are for the specifications in (4) and (6) respectively.

Alternatively, one could perform a simple t test of the hypothesis that the
coefficient of logQ in (4) is equal to 1.

A6.11 Explain why the researcher was dissatisfied with the results of regression (1).

The high correlation between I and P has given rise to a problem of
multicollinearity. The standard errors are relatively large and the t statistics low.

Demonstrate that specification (2) may be considered to be a restricted version of
specification (1).

The restriction is β3 = −β2. Imposing it, we have:

B = β1 + β2I + β3P + u

= β1 + β2I − β2P + u

= β1 + β2R + u.
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Perform an F test of the restriction, stating carefully your null hypothesis and
conclusion.

The null hypothesis is H0 : β3 = −β2. The test statistic is:

F (1, 37) =
(987.1− 967.9)/1

967.9/37
= 0.73.

The null hypothesis is not rejected at any significance level since F < 1.

Perform a t test of the restriction

The unrestricted specification may be rewritten:

B = β1 + β2I + β3P + u

= β1 + β2(P +R) + β3P + u

= β1 + (β2 + β3)P + β2R + u.

Thus a t test on the coefficient of P in this specification is a test of the restriction.
The null hypothesis is not rejected, given that the t statistic is 0.86. Of course, the
F statistic is the square of the t statistic and the tests are equivalent.

Demonstrate that specification (3) may also be considered to be a restricted version
of specification (1)

The restriction is β3 = 0.

Perform both an F test and a t test of the restriction in specification (3), stating
your conclusion in each case.

F (1, 37) =
(1024.3− 967.9)/1

967.9/37
= 2.16.

The critical value of F (1, 37) at 5 per cent is approximately 4.08, so the null
hypothesis that P does not influence B is not rejected. Of course, with t = −1.47,
the t test, which is equivalent, leads to the same conclusion.

At a seminar, someone suggests that specification (4) is also a restricted version of
specification (1). Is this correct? If so, state the restriction.

No, it is not correct. As shown above, it is an alternative form of the unrestricted
specification.

State, with an explanation, which would be your preferred specification.

None of the specifications has been rejected. The second should be preferred
because it should be more efficient than the unrestricted specification. The much
lower standard error of the slope coefficient provides supportive evidence. The third
specification should be eliminated on the grounds that price inflation ought to be a
determinant.

A6.12 Write the original model:

Y = β1 + β2X + β3Z + u. (1)

Then, with:
X = 0.5(V +W ), Z = 0.5(V −W )
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6. Specification of regression variables

the other specifications are:

Y = β1 + 0.5(β2 + β3)V + 0.5(β2 − β3)W + u (2)

Y = β1 + β2V + u (3)

with the implicit restriction β3 = β2, and, using X = V − Z:

Y = β1 + β2V + (β3 − β2)Z + u. (4)

(2) and (4) are reparameterisations of (1), so the measures of fit are unchanged: E
= L = 0.60, F = M = 200.

Given the relationships among the parameters, A = 0.70, C = −0.10, J = 0.60, H
= 0.20.

The standard errors B and D cannot be reconstructed because the standard errors
of β̂2 and β̂3 cannot be used (on their own) to construct standard errors of linear
combinations (a loose explanation is acceptable because we have hardly touched on
covariances between estimators).

K = 0.04 since J = coefficient of X in specification (1).

The F statistic for the restriction β3 = β2 implicit in specification (3) is:

F (1, 40) =
(220− 200)/1

200/40
= 4.0.

In terms of R2 it would be:

F (1, 40) =
(0.60−G)/1

0.40/40
.

Hence G = 0.56.

A two-sided t test on the coefficient of Z in specification (4) provides an equivalent
test of the restriction. The t statistic must therefore be

√
4.0 = 2.0 and so I = 0.10.

[Note: One may also compute G using the t statistic for the coefficient of V in
specification (3):

G

(1−G)/41
= t2.

Yet another was of computing G is as follows. Since R2 in specification (1) is 0.60,
TSS must be 500, using:

R2 = 1− RSS

TSS
.

TSS is the same in specification (3). Hence one obtains G = 0.56.]

A6.13 F statistics should always be computed using RSS, not R2. Often the R2 version is
equivalent, but often it is not, and this is a case in point. The reason is very simple:
the dependent variables in the two specifications are different, and so the R2 for the
specifications are not comparable. The RSS are comparable because:

LGFDHOPC − LGFDHOPC = (LGFDHO − LGSIZE )− ( ̂LGFDHO − LGSIZE )

= LGFDHO − ̂LGFDHO .
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Chapter 7

Heteroskedasticity

7.1 Overview

This chapter begins with a general discussion of homoskedasticity and
heteroskedasticity: the meanings of the terms, the reasons why the distribution of a
disturbance term may be subject to heteroskedasticity, and the consequences of the
problem for OLS estimators. It continues by presenting several tests for
heteroskedasticity and methods of alleviating the problem. It shows how apparent
heteroskedasticty may be caused by model misspecification. It concludes with a
description of the use of heteroskedasticity-consistent standard errors.

7.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the concepts of homoskedasticity and heteroskedasticity

describe how the problem of heteroskedasticity may arise

explain the consequences of heteroskedasticity for OLS estimators, their standard
errors, and t and F tests

perform the Goldfeld–Quandt test for heteroskedasticity

perform the White test for heteroskedasticity

explain how the problem of heteroskedasticity may be alleviated

explain why a mathematical misspecification of the regression model may give rise
to a problem of apparent heteroskedasticity

explain the use of heteroskedasticity-consistent standard errors.

7.3 Additional exercises

A7.1 Is the disturbance term in your CES expenditure function heteroskedastic?

Sort the data by EXPPC. Excluding observations for which EXPPC is zero,
regress CATPC on EXPPC and SIZE (a) for the first three-eighths of the non-zero
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7. Heteroskedasticity

observations, and (b) for the last three-eighths. Perform a Goldfeld–Quandt test to
test for heteroskedasticity in the EXPPC dimension. Repeat using LGCATPC as
the dependent variable and regressing it on LGEXPPC and LGSIZE.

A7.2 Repeat Exercise A7.1, using a White test instead of a Goldfeld–Quandt test.

A7.3 The observations for the occupational schools (see Chapter 5 in the text) in the
figure suggest that a simple linear regression of cost on number of students,
restricted to the subsample of these schools, would be subject to heteroskedasticity.
Download the data set from the Online Resource Centre and use a
Goldfeld–Quandt test to investigate whether this is the case. If the relationship is
heteroskedastic, what could be done to alleviate the problem?
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A7.4 A researcher hypothesises that larger economies should be more self-sufficient than
smaller ones and that M/G, the ratio of imports, M , to gross domestic product, G,
should be negatively related to G:

M

G
= β1 + β2G+ u

with β2 < 0. Using data for a sample of 42 countries, with M and G both measured
in US$ billion, he fits the regression (standard errors in parentheses):

M̂

G
= 0.37− 0.000086G R2 = 0.12 (1)

(0.03) (0.000036)

He plots a scatter diagram, reproduced as Figure 7.1, and notices that the ratio
M/G tends to have relatively high variance when G is small. He also plots a scatter
diagram for M and G, reproduced as Figure 7.2. Defining GSQ as the square of G,
he regresses M on G and GSQ :

M̂ = 7.27 + 0.30G− 0.000049GSQ R2 = 0.86 (2)

(10.77) (0.03) (0.000009)
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7.3. Additional exercises

Finally, he plots a scatter diagram for logM and logG, reproduced as Figure 7.3,
and regresses logM on logG:

l̂ogM = −0.14 + 0.80 logG R2 = 0.78 (3)

(0.37) (0.07)

Having sorted the data by G, he tests for heteroskedasticity by regressing
specifications (1) – (3) first for the 16 countries with smallest G, and then for the
16 countries with the greatest G. RSS1 and RSS2, the residual sums of squares for
these regressions, are summarised in the following table.

Specification RSS1 RSS2

(1) 0.53 0.21
(2) 3178 71404
(3) 3.45 3.60
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Figure 7.1: Scatter diagram of M/G against G.
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Figure 7.2: Scatter diagram of M against G.
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Figure 7.3: Scatter diagram of logM against logG.

• Discuss whether (1) appears to be an acceptable specification, given the data
in the table and Figure 7.1.

• Explain what the researcher hoped to achieve by running regression (2).

• Discuss whether (2) appears to be an acceptable specification, given the data
in the table and Figure 7.2.

• Explain what the researcher hoped to achieve by running regression (3).

• Discuss whether (3) appears to be an acceptable specification, given the data
in the table and Figure 7.3.

• What are your conclusions concerning the researcher’s hypothesis?

A7.5 A researcher has data on the number of children attending, N , and annual
recurrent expenditure, EXP, measured in US$, for 50 nursery schools in a US city
for 2006 and hypothesises that the cost function is of the quadratic form:

EXP = β1 + β2N + β3NSQ + u

where NSQ is the square of N , anticipating that economies of scale will cause β3 to
be negative. He fits the following equation:

ÊXP = 17999 + 1060N − 1.29NSQ R2 = 0.74 (1)

(12908) (133) (0.30)

Suspecting that the regression was subject to heteroskedasticity, the researcher
runs the regression twice more, first with the 19 schools with lowest enrolments,
then with the 19 schools with the highest enrolments. The residual sums of squares
in the two regressions are 8.0 million and 64.0 million, respectively.

The researcher defines a new variable, EXPN, expenditure per student, as EXPN
= EXP/N , and fits the equation:

ÊXPN = 1080− 1.25N + 16114NREC R2 = 0.65 (2)

(90) (0.25) (6000)
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where NREC = 1/N . He again runs regressions with the 19 smallest schools and
the 19 largest schools and the residual sums of squares are 900,000 and 600,000.

• Perform a Goldfeld–Quandt test for heteroskedasticity on both of the
regression specifications.

• Explain why the researcher ran the second regression.

• R2 is lower in regression (2) than in regression (1). Does this mean that
regression (1) is preferable?

A7.6 This is a continuation of Exercise A6.5.

• When the researcher presents her results at a seminar, one of the participants
says that, since I and G have been divided by Y , (2) is less likely to be subject
to heteroskedasticity than (1). Evaluate this suggestion.

A7.7 A researcher has data on annual household expenditure on food, F , and total
annual household expenditure, E, both measured in dollars, for 400 households in
the United States for 2010. The scatter plot for the data is shown as Figure 7.4.
The basic model of the researcher is:

F = β1 + β2E + u (1)

where u is a disturbance term. The researcher suspects heteroskedasticity and
performs a Goldfeld–Quandt test and a White test. For the Goldfeld–Quandt test,
she sorts the data by size of E and fits the model for the subsample with the 150
smallest values of E and for the subsample with the 150 largest values. The
residual sums of squares (RSS ) for these regressions are shown in column (1) of the
table. She also fits the regression for the entire sample, saves the residuals, and
then fits an auxiliary regression of the squared residuals on E and its square. R2 for
this regression is also shown in column (1) in the table. She performs parallel tests
of heteroskedasticity for two alternative models:

F

A
= β1

1

A
+ β2

E

A
+ v (2)

logF = β1 + β2 logE + w. (3)

A is household size in terms of equivalent adults, giving each adult a weight of 1
and each child a weight of 0.7. The scatter plot for F/A and E/A is shown as Figure
7.5, and that for logF and logE as Figure 7.6. The data for the heteroskedasticity
tests for models (2) and (3) are shown in columns (2) and (3) of the table.

Specification (1) (2) (3)
Goldfeld–Quandt test
RSS smallest 150 200 million 40 million 20.0
RSS largest 150 820 million 240 million 21.0
White test
R2 from auxiliary regression 0.160 0.140 0.001

• Perform the Goldfeld–Quandt test for each model and state your conclusions.
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7. Heteroskedasticity

• Explain why the researcher thought that model (2) might be an improvement
on model (1).

• Explain why the researcher thought that model (3) might be an improvement
on model (1).

• When models (2) and (3) are tested for heteroskedasticity using the White
test, auxiliary regressions must be fitted. State the specification of this
auxiliary regression for model (2).

• Perform the White test for the three models.

• Explain whether the results of the tests seem reasonable, given the scatter
plots of the data.
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Figure 7.4: Scatter diagram of household expenditure on food against total household
expenditure.

 

 

0

2000

4000

6000

8000

0 20000 40000 60000

Total household expenditure per equivalent adult ($)

H
o

u
se

h
o

ld
 e

xp
e

n
d

itu
re

 o
n

 f
o

o
d

 p
e

r 
e

q
u

iv
a

le
n

t 
a

d
u

lt 
($

)

Figure 7.5: Scatter diagram of household expenditure on food per equivalent adult against
total household expenditure per equivalent adult.
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Figure 7.6: Scatter diagram of log household expenditure on food against log total
household expenditure.

A7.8 Explain what is correct, mistaken, confused or in need of further explanation in the
following statements relating to heteroskedasticity in a regression model:

• ‘Heteroskedasticity occurs when the disturbance term in a regression model is
correlated with one of the explanatory variables.’

• ‘In the presence of heteroskedasticity ordinary least squares (OLS) is an
inefficient estimation technique and this causes t tests and F tests to be
invalid.’

• ‘OLS remains unbiased but it is inconsistent.

• ‘Heteroskedasticity can be detected with a Chow test.’

• ‘Alternatively one can compare the residuals from a regression using half of the
observations with those from a regression using the other half and see if there
is a significant difference. The test statistic is the same as for the Chow test.’

• ‘One way of eliminating the problem is to make use of a restriction involving
the variable correlated with the disturbance term.’

• ‘If you can find another variable related to the one responsible for the
heteroskedasticity, you can use it as a proxy and this should eliminate the
problem.’

• ‘Sometimes apparent heteroskedasticity can be caused by a mathematical
misspecification of the regression model. This can happen, for example, if the
dependent variable ought to be logarithmic, but a linear regression is run.’
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7.4 Answers to the starred exercises in the textbook

7.5 The following regressions were fitted using the Shanghai school cost data
introduced in Section 6.1 (standard errors in parentheses):

ĈOST = 24000 + 339N R2 = 0.39

(27000) (50)

ĈOST = 51000− 4000OCC + 152N + 284NOCC R2 = 0.68.

(31000) (41000) (60) (76)

where COST is the annual cost of running a school, N is the number of students,
OCC is a dummy variable defined to be 0 for regular schools and 1 for
occupational schools, and NOCC is a slope dummy variable defined as the product
of N and OCC. There are 74 schools in the sample. With the data sorted by N , the
regressions are fitted again for the 26 smallest and 26 largest schools, the residual
sums of squares being as shown in the table.

26 smallest 26 largest
First regression 7.8× 1010 54.4× 1010

Second regression 6.7× 1010 13.8× 1010

Perform a Goldfeld–Quandt test for heteroskedasticity for the two models and,
with reference to Figure 6.5, explain why the problem of heteroskedasticity is less
severe in the second model.

Answer:

For both regressions RSS will be denoted RSS1 for the 26 smallest schools and
RSS2 for the 26 largest schools. In the first regression,
RSS2/RSS1 = (54.4× 1010)/(7.8× 1010) = 6.97. There are 24 degrees of freedom in
each subsample (26 observations, 2 parameters estimated). The critical value of
F (24, 24) is approximately 3.7 at the 0.1 per cent level, and so we reject the null
hypothesis of homoskedasticity at that level. In the second regression,
RSS2/RSS1 = (13.8× 1010)/(6.7× 1010) = 2.06. There are 22 degrees of freedom in
each subsample (26 observations, 4 parameters estimated). The critical value of
F (22, 22) is 2.05 at the 5 per cent level, and so we (just) do not reject the null
hypothesis of homoskedasticity at that significance level.

Why is the problem of heteroskedasticity less severe in the second regression? The
figure in Exercise A7.2 reveals that the cost function is much steeper for the
occupational schools than for the regular schools, reflecting their higher marginal
cost. As a consequence the two sets of observations diverge as the number of
students increases and the scatter is bound to appear heteroskedastic, irrespective
of whether the disturbance term is truly heteroskedastic or not. The first regression
takes no account of this and the Goldfeld–Quandt test therefore indicates
significant heteroskedasticity. In the second regression the problem of apparent
heteroskedasticity does not arise because the intercept and slope dummy variables
allow separate implicit regression lines for the two types of school.
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Looking closely at the diagram, the observations for the occupational schools
exhibit a classic pattern of true heteroskedasticity, and this would be confirmed by
a Goldfeld–Quandt test confined to the subsample of those schools (see Exercise
A7.2). However the observations for the regular schools appear to be homoskedastic
and this accounts for the fact that we did not (quite) reject the null hypothesis of
homoskedasticity for the combined sample.

7.6 The file educ.dta on the website contains contains international cross-sectional data
on aggregate expenditure on education, EDUC, gross domestic product, GDP, and
population, POP , for a sample of 38 countries in 1997. EDUC and GDP are
measured in US$ million and POP is measured in thousands. Download the data
set, plot a scatter diagram of EDUC on GDP, and comment on whether the data
set appears to be subject to heteroskedasticity. Sort the data set by GDP and
perform a Goldfeld–Quandt test for heteroskedasticity, running regressions using
the subsamples of 14 countries with the smallest and greatest GDP.

Answer:

The figure plots expenditure on education, EDUC, and gross domestic product,
GDP, for the 38 countries in the sample, measured in $ billion rather than $ million.
The observations exhibit heteroskedasticity. Sorting them by GDP and regressing
EDUC on GDP for the subsamples of 14 countries with smallest and greatest
GDP, the residual sums of squares for the first and second subsamples, denoted
RSS1 and RSS2, respectively, are 1,660,000 and 63,113,000, respectively. Hence:

F (12, 12) =
RSS2

RSS1

=
63113000

1660000
= 38.02.

The critical value of F (12, 12) at the 0.1 per cent level is 7.00, and so we reject the
null hypothesis of homoskedasticity.
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Figure 7.7: Expenditure on education and GDP ($ billion).

7.9 Repeat Exercise 7.6, using the Goldfeld–Quandt test to investigate whether scaling
by population or by GDP, or whether running the regression in logarithmic form,
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7. Heteroskedasticity

would eliminate the heteroskedasticity. Compare the results of regressions using the
entire sample and the alternative specifications.

Answer:

Dividing through by population, POP, the model becomes:

EDUC

POP
= β1

1

POP
+ β2

GDP

POP
+

u

POP

with expenditure on education per capita, denoted EDUCPOP, hypothesised to be
a function of gross domestic product per capita, GDPPOP, and the reciprocal of
population, POPREC, with no intercept. Sorting the sample by GDPPOP and
running the regression for the subsamples of 14 countries with smallest and largest
GDPPOP, RSS1 = 0.006788 and RSS2 = 1.415516. Now:

F (12, 12) =
RSS2

RSS1

=
1.415516

0.006788
= 208.5.

Thus the model is still subject to heteroskedasticity at the 0.1 per cent level. This
is evident in Figure 7.8.
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Figure 7.8: Expenditure on education per capita and GDP per capita ($ per capita).

Dividing through instead by GDP, the model becomes:

EDUC

GDP
= β1

1

GDP
+ β2 +

u

GDP

with expenditure on education as a share of gross domestic product, denoted
EDUCGDP, hypothesised to be a simple function of the reciprocal of gross
domestic product, GDPREC, with no intercept. Sorting the sample by GDPREC
and running the regression for the subsamples of 14 countries with smallest and
largest GDPREC, RSS1 = 0.00413 and RSS2 = 0.00238. Since RSS2 is less than
RSS1, we test for heteroskedasticity under the hypothesis that the standard
deviation of the disturbance term is inversely related to GDPREC :

F (12, 12) =
RSS1

RSS2

=
0.00413

0.00238
= 1.74.
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Figure 7.9: Expenditure on education as a proportion of GDP and the reciprocal of GDP
(measured in $ billion).

The critical value of F (12, 12) at the 5 per cent level is 2.69, so we do not reject the
null hypothesis of homoskedasticity. Could one tell this from Figure 7.9? It is a
little difficult to say.

Finally, we will consider a logarithmic specification. If the true relationship is
logarithmic, and homoskedastic, it would not be surprising that the linear model
appeared heteroskedastic. Sorting the sample by GDP, RSS1 and RSS2 are 2.733
and 3.438 for the subsamples of 14 countries with smallest and greatest GDP. The
F statistic is:

F (12, 12) =
RSS1

RSS2

=
3.438

2.733
= 1.26.

Thus again we would not reject the null hypothesis of homoskedasticity.
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Figure 7.10: Expenditure on education and GDP, logarithmic.
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The third and fourth models both appear to be free from heteroskedasticity. How
do we choose between them? We will examine the regression results, shown for the
two models with the full sample:

. reg EDUCGDP GDPREC

Source | SS df MS Number of obs = 38

---------+------------------------------ F( 1, 36) = 5.62

Model | .001348142 1 .001348142 Prob > F = 0.0233

Residual | .008643037 36 .000240084 R-squared = 0.1349

---------+------------------------------ Adj R-squared = 0.1109

Total | .009991179 37 .000270032 Root MSE = .01549

------------------------------------------------------------------------------

EDUCGDP | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

GDPREC | -234.0823 98.78309 -2.370 0.023 -434.4236 -33.74086

_cons | .0484593 .0036696 13.205 0.000 .0410169 .0559016

------------------------------------------------------------------------------

. reg LGEE LGGDP

Source | SS df MS Number of obs = 38

---------+------------------------------ F( 1, 36) = 246.20

Model | 51.9905508 1 51.9905508 Prob > F = 0.0000

Residual | 7.6023197 36 .211175547 R-squared = 0.8724

---------+------------------------------ Adj R-squared = 0.8689

Total | 59.5928705 37 1.61061812 Root MSE = .45954

------------------------------------------------------------------------------

LGEE | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

LGGDP | 1.160594 .0739673 15.691 0.000 1.010582 1.310607

_cons | -5.025204 .8152239 -6.164 0.000 -6.678554 -3.371853

------------------------------------------------------------------------------

In equation form, the first regression is:

ÊDUC

GDP
= 0.048− 234.1

1

GDP
R2 = 0.13

(0.004) (98.8)

Multiplying through by GDP, it may be rewritten:

ÊDUC = −234.1 + 0.048GDP .

It implies that expenditure on education accounts for 4.8 per cent of gross domestic
product at the margin. The constant does not have any sensible interpretation. We
will compare this with the output from an OLS regression that makes no attempt
to eliminate heteroskedasticity:
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. reg EDUC GDP

Source | SS df MS Number of obs = 38

---------+------------------------------ F( 1, 36) = 509.80

Model | 1.0571e+09 1 1.0571e+09 Prob > F = 0.0000

Residual | 74645819.2 36 2073494.98 R-squared = 0.9340

---------+------------------------------ Adj R-squared = 0.9322

Total | 1.1317e+09 37 30586911.0 Root MSE = 1440.0

------------------------------------------------------------------------------

EDUC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

GDP | .0480656 .0021288 22.579 0.000 .0437482 .052383

_cons | -160.4669 311.699 -0.515 0.610 -792.6219 471.688

------------------------------------------------------------------------------

The slope coefficient, 0.048, is identical to three decimal places. This is not entirely
a surprise, since heteroskedasticity does not give rise to bias and so there should be
no systematic difference between the estimate from an OLS regression and that
from a specification that eliminates heteroskedasticity. Of course, it is a surprise
that the estimates are so close. Generally there would be some random difference,
and of course the OLS estimate would tend to be less accurate. In this case, the
main difference is in the estimated standard error. That for the OLS regression is
actually smaller than that for the regression of EDUCGDP on GDPREC, but it is
misleading. It is incorrectly calculated and we know that, since OLS is inefficient,
the true standard error for the OLS estimate is actually larger.

The logarithmic regression in equation form is:

̂log EDUC = −5.03 + 1.16 log GDP R2 = 0.87

(0.82) (0.07)

implying that the elasticity of expenditure on education with regard to gross
domestic product is 1.16. In substance the interpretations of the models are similar,
since both imply that the proportion of GDP allocated to education increases
slowly with GDP, but the elasticity specification seems a little more informative
and probably serves as a better starting point for further exploration. For example,
it would be natural to add the logarithm of population to see if population had an
independent effect.

7.10 It was reported above that the heteroskedasticity-consistent estimate of the
standard error of the coefficient of GDP in equation (7.18) was 0.18. Explain why
the corresponding standard error in equation (7.20) ought to be lower and
comment on the fact that it is not.

Answer:

(7.20), unlike (7.18) appears to be free from heteroskedasticity and therefore should
provide more efficient estimates of the coefficients, reflected in lower standard
errors when computed correctly. However the sample may be too small for the
heteroskedasticity-consistent estimator to be a good guide.

7.11 A health economist plans to evaluate whether screening patients on arrival or
spending extra money on cleaning is more effective in reducing the incidence of
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infections by the MRSA bacterium in hospitals. She hypothesises the following
model:

MRSAi = β1 + β2Si + β3Ci + ui

where, in hospital i, MRSA is the number of infections per thousand patients, S is
expenditure per patient on screening, and C is expenditure per patient on cleaning.
ui is a disturbance term that satisfies the usual regression model assumptions. In
particular, ui is drawn from a distribution with mean zero and constant variance
σ2. The researcher would like to fit the relationship using a sample of hospitals.
Unfortunately, data for individual hospitals are not available. Instead she has to
use regional data to fit:

MRSAj = β1 + β2Sj + β3Cj +uj

where MRSAj , Sj , Cj, and uj are the averages of MRSA, S, C, and u for the
hospitals in region j. There were different numbers of hospitals in the regions, there
being nj hospitals in region j.

Show that the variance of uj is equal to σ2/nj and that an OLS regression using the
grouped regional data to fit the relationship will be subject to heteroskedasticity.

Assuming that the researcher knows the value of nj for each region, explain how
she could re-specify the regression model to make it homoskedastic. State the
revised specification and demonstrate mathematically that it is homoskedastic.
Give an intuitive explanation of why the revised specification should tend to
produce improved estimates of the parameters.

Answer:

var(uj) = var

(
1

n

nj∑
k=1

ujk

)
=

(
1

nj

)2

var

(
nj∑
k=1

ujk

)
=

(
1

nj

)2 nj∑
k=1

var(ujk)

since the covariance terms are all 0. Hence:

var(uj) =

(
1

nj

)2

njσ
2 =

σ2

nj
.

To eliminate the heteroskedasticity, multiply observation j by
√
nj. The regression

becomes: √
njMRSAj = β1

√
nj + β2

√
njSj + β3

√
njCj +

√
njuj.

The variance of the disturbance term is now:

var
(√

njuj
)

=
(√

nj
)2

var(uj) = nj
σ2

nj
= σ2

and is thus the same for all observations.

From the expression for var(uj), we see that, the larger the group, the more reliable
should be its observation (the closer its observation should tend to be to the
population relationship). The scaling gives greater weight to the more reliable
observations and the resulting estimators should be more efficient.

158



7.5. Answers to the additional exercises

7.5 Answers to the additional exercises

A7.1 The first step is to drop the zero-observations from the data set and sort it by
EXPPC. The F statistic is then computed as:

F (n2 − k, n1 − k) =
RSS2/(n2 − k)

RSS1/(n1 − k)

where n1 and n2 are the number of available observations and k is the number of
parameters in the regression specification.

. drop if FDHO == 0

(0 observations deleted)

. gen EXPPC = EXP/SIZE

. sort EXPPC

. gen LGEXPPC = ln(EXPPC)

. gen LGSIZE = ln(SIZE)

. gen FDHOPC = FDHO/SIZE

. gen LGFDHOPC = ln(FDHOPC)

. reg FDHOPC EXPPC SIZE in 1/2375

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 2375

-----------+------------------------------ F( 2, 2372) = 278.36

Model | 7382348.18 2 3691174.09 Prob> F = 0.0000

Residual | 31453534.1 2372 13260.3432 R-squared = 0.1901

-----------+------------------------------ Adj R-squared = 0.1894

Total | 38835882.2 2374 16358.8383 Root MSE = 115.15

----------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

EXPPC | .1107869 .0051862 21.36 0.000 .1006169 .1209569

SIZE | -4.462209 1.438899 -3.10 0.002 -7.283838 -1.640579

_cons | 85.38055 9.590628 8.90 0.000 66.57366 104.1874

----------------------------------------------------------------------------

. reg FDHOPC EXPPC SIZE in 3960/6334

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 2375

-----------+------------------------------ F( 2, 2372) = 170.94

Model | 40643447.8 2 20321723.9 Prob> F = 0.0000

Residual | 281980931 2372 118878.976 R-squared = 0.1260

-----------+------------------------------ Adj R-squared = 0.1252

Total | 322624379 2374 135899.064 Root MSE = 344.79

----------------------------------------------------------------------------

FDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

EXPPC | .0286606 .0019716 14.54 0.000 .0247944 .0325268

SIZE | -54.33452 7.047302 -7.71 0.000 -68.15403 -40.51501

_cons | 508.6148 22.37631 22.73 0.000 464.7356 552.4939

----------------------------------------------------------------------------
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. reg LGFDHOPC LGEXPPC LGSIZE in 1/2375

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 2375

-----------+------------------------------ F( 2, 2372) = 369.49

Model | 207.241064 2 103.620532 Prob> F = 0.0000

Residual | 665.204785 2372 .280440466 R-squared = 0.2375

-----------+------------------------------ Adj R-squared = 0.2369

Total | 872.445849 2374 .367500357 Root MSE = .52957

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .6510802 .0265608 24.51 0.000 .5989953 .703165

LGSIZE | -.0567001 .0198997 -2.85 0.004 -.0957227 -.0176775

_cons | .6450249 .1965331 3.28 0.001 .2596305 1.030419

----------------------------------------------------------------------------

. reg LGFDHOPC LGEXPPC LGSIZE in 3960/6334

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 2375

-----------+------------------------------ F( 2, 2372) = 138.91

Model | 94.0495475 2 47.0247737 Prob> F = 0.0000

Residual | 802.969196 2372 .338519897 R-squared = 0.1048

-----------+------------------------------ Adj R-squared = 0.1041

Total | 897.018744 2374 .377851198 Root MSE = .58182

----------------------------------------------------------------------------

LGFDHOPC | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

LGEXPPC | .4072631 .0297285 13.70 0.000 .3489666 .4655596

LGSIZE | -.1426229 .0247966 -5.75 0.000 -.1912482 -.0939976

_cons | 2.742439 .2635057 10.41 0.000 2.225714 3.259165

----------------------------------------------------------------------------

The F statistic for the linear specification is:

F (2372, 2372) =
281980931/2372

31453534/2372
= 8.97.

This is significant at the 0.1 per cent level. The corresponding F statistic for the
logarithmic specification is 1.21. The critical value of F (200, 200) at the 5 per cent
level is 1.26. The critical value for F (2372, 2372) must be lower, so the null
hypothesis of homoskedasticity is probably rejected at that level. However, the
problem has evidently been largely eliminated.

The logarithmic specification in general appears to be much less heteroskedastic
than the linear one and for some categories the null hypothesis of homoskedasticity
would not be rejected. Note that for a few of these RSS2 < RSS1 for the
logarithmic specification.
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Goldfeld–Quandt tests

Linear Logarithmic

n1 n2 RSS1 × 10−6 RSS2 × 10−6 F RSS1 RSS2 F

ADM 1,056 1,056 1.95 62.93 32.30 1,324.96 1,593.31 1.20
CLOT 1,688 1,688 7.17 316.80 44.17 2,107.28 2,196.79 1.04
DOM 623 623 7.23 238.90 33.05 1,571.19 1,505.92 1.04*
EDUC 210 210 11.70 376.01 32.15 495.12 507.27 1.02
ELEC 2,186 2,186 7.55 33.34 4.41 1,034.70 923.18 1.12*
FDAW 1,913 1,913 9.00 278.13 30.89 1,136.09 1,361.12 1.20
FDHO 2,375 2,375 31.45 281.98 8.97 665.20 802.97 1.21
FOOT 685 685 0.55 5.74 10.37 513.08 514.24 1.00
FURN 183 183 7.17 258.26 36.00 322.50 368.42 1.14
GASO 2,141 2,141 11.06 159.54 14.43 921.26 1,245.55 1.35
HEAL 1,801 1,801 32.91 876.72 26.64 2,233.73 2,192.92 1.02*
HOUS 2,334 2,334 105.48 3,031.19 28.74 2,129.27 1,475.02 1.44*
LIFE 470 470 2.85 48.37 16.95 503.19 667.14 1.33
LOCT 260 260 0.58 5.32 9.13 366.16 409.90 1.12
MAPP 150 150 2.85 37.01 12.96 211.71 243.18 1.15
PERS 1,431 1,431 0.47 9.01 19.34 1,045.70 1,204.31 1.15
READ 858 858 0.36 4.95 13.69 1,076.35 1,085.38 1.01
SAPP 389 389 0.56 10.68 19.04 396.41 433.37 1.09
TELE 2,171 2,171 3.27 26.80 8.19 1,133.43 1,123.46 1.01*
TEXT 372 372 0.57 2.05 3.61 410.29 393.80 1.04*
TOB 433 433 1.56 27.81 17.84 312.71 338.28 1.08
TOYS 939 939 6.83 87.65 12.83 1,079.76 1,064.92 1.01*
TRIP 194 194 9.62 77.65 8.07 300.70 335.75 1.12

* indicates RSS2 < RSS1

A7.2 The table shows the construction of the White test statistics for the linear and
logarithmic specifications for each category of expenditure. The regressors in the
auxiliary regression were expenditure per capita and its square, size and its square,
and the product of expenditure per capita and size. Hence there were five degrees
of freedom for the chi-squared test. The critical values are 11.1 and 15.1 at the 5
per cent and 1 per cent levels. Thus there is strong evidence of heteroskedasticity
for all of the categories in the linear specification. There is also evidence for some
categories in the logarithmic specification. It is possible that the White test, being
more general, is finding evidence of heteroskedasticity not detected by the
Goldfeld–Quandt test.
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White tests

Linear Logarithmic

n R2 nR2 R2 nR2

ADM 2,815 0.1710 481.4 0.0097 27.3
CLOT 4,500 0.0180 81.0 0.0074 33.3
DOM 1,661 0.0191 31.7 0.0062 10.3
EDUC 561 0.1432 80.3 0.0078 4.4
ELEC 5,828 0.0487 283.8 0.0090 52.5
FDAW 5,102 0.1072 546.9 0.0067 34.2
FDHO 6,334 0.1143 724.0 0.0129 81.7
FOOT 1,827 0.0191 34.9 0.0023 4.2
FURN 487 0.3287 160.1 0.0197 9.6
GASO 5,710 0.0575 328.3 0.0152 86.8
HEAL 4,802 0.0608 292.0 0.0021 10.1
HOUS 6,223 0.2002 1,245.8 0.0120 74.7
LIFE 1,253 0.0535 67.0 0.0132 16.5
LOCT 692 0.0388 26.8 0.0192 13.3
MAPP 399 0.0882 35.2 0.0168 6.7
PERS 3,817 0.0607 231.7 0.0086 32.8
READ 2,287 0.0158 36.1 0.0072 16.5
SAPP 1,037 0.0221 22.9 0.0032 3.3
TELE 5,788 0.0724 419.1 0.0021 12.2
TEXT 992 0.0183 18.2 0.0049 4.9
TOB 1,155 0.0235 27.1 0.0061 7.0
TOYS 2,504 0.0347 86.9 0.0026 6.5
TRIP 516 0.0571 29.5 0.0047 2.4

A7.3 Having sorted by N , the number of students, RSS1 and RSS2 are 2.02× 1010 and
22.59× 1010, respectively, for the subsamples of the 13 smallest and largest schools.
The F statistic is 11.18. The critical value of F (11, 11) at the 0.1 per cent level
must be a little below 8.75, the critical value for F (10, 10), and so the null
hypothesis of homoskedasticity is rejected at that significance level.

One possible way of alleviating the heteroskedasticity is by scaling through by the
number of students. The dependent variable now becomes the unit cost per student
year, and this is likely to be more uniform than total recurrent cost. Scaling
through by N , and regressing UNITCOST, defined as COST divided by N , on
NREC, the reciprocal of N , having first sorted by NREC, RSS1 and RSS2 are now
349,000 and 504,000. The F statistic is therefore 1.44, and this is not significant
even at the 5 per cent level since the critical value must be a little above 2.69, the
critical value for F (12, 12). The regression output for this specification using the
full sample is shown.

. reg UNITCOST NREC

Source | SS df MS Number of obs = 34

---------+------------------------------ F( 1, 32) = 0.74

Model | 27010.3792 1 27010.3792 Prob > F = 0.3954

Residual | 1164624.44 32 36394.5138 R-squared = 0.0227

---------+------------------------------ Adj R-squared = -0.0079

Total | 1191634.82 33 36110.1461 Root MSE = 190.77
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------------------------------------------------------------------------------

UNITCOST | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

NREC | 10975.91 12740.7 0.861 0.395 -14976.04 36927.87

_cons | 524.813 53.88367 9.740 0.000 415.0556 634.5705

------------------------------------------------------------------------------

In equation form, the regression is:

ĈOST

N
= 524.8 + 10976

1

N
R2 = 0.03

(53.9) (12741)

Multiplying through by N , it may be rewritten:

ĈOST = 10976 + 524.8N.

The estimate of the marginal cost is somewhat higher than the estimate of 436
obtained using OLS in Section 5.3 of the text.

A second possible way of alleviating the heteroskedasticity is to hypothesise that
the true relationship is logarithmic, in which case the use of an inappropriate linear
specification would give rise to apparent heteroskedasticity. Scaling through by N ,
and regressing LGCOST, the (natural) logarithm of COST, on LGN, the logarithm
of N , RSS1 and RSS2 are 2.16 and 1.58. The F statistic is therefore 1.37, and
again this is not significant even at the 5 per cent level. The regression output for
this specification using the full sample is shown.

. reg LGCOST LGN

Source | SS df MS Number of obs = 34

---------+------------------------------ F( 1, 32) = 100.98

Model | 14.7086057 1 14.7086057 Prob > F = 0.0000

Residual | 4.66084501 32 .145651406 R-squared = 0.7594

---------+------------------------------ Adj R-squared = 0.7519

Total | 19.3694507 33 .58695305 Root MSE = .38164

------------------------------------------------------------------------------

LGCOST | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

LGN | .909126 .0904681 10.049 0.000 .7248485 1.093404

_cons | 6.808312 .5435035 12.527 0.000 5.701232 7.915393

------------------------------------------------------------------------------

The estimate of the elasticity of cost with respect to number of students, 0.91, is
less than 1 and thus suggests that the schools are subject to economies of scale.
However, we are not able to reject the null hypothesis that the elasticity is equal to
1 and thus that costs are proportional to numbers, the t statistic for the null
hypothesis being too low:

t =
0.909− 1.000

0.091
= −1.00.

163



7. Heteroskedasticity

A7.4 Discuss whether (1) appears to be an acceptable specification, given the data in the
table and Figure 7.1.

Using the Goldfeld–Quandt test to test specification (1) for heteroskedasticity
assuming that the standard deviation of u is inversely proportional to G, we have:

F (14, 14) =
0.53

0.21
= 2.52.

The critical value of F (14, 14) at the 5 per cent level is 2.48, so we just reject the
null hypothesis of homoskedasticity at that level. Figure 7.1 does strongly suggest
heteroskedasticity. Thus (1) does not appear to be an acceptable specification.

Explain what the researcher hoped to achieve by running regression (2).

If it is true that the standard deviation of u is inversely proportional to G, the
heteroskedasticity could be eliminated by multiplying through by G. This is the
motivation for the second specification. An intercept that in principle does not
exist has been added, thereby changing the model specification slightly.

Discuss whether (2) appears to be an acceptable specification, given the data in the
table and Figure 7.2.

F (13, 13) =
71404

3178
= 22.47.

The critical value of F (13, 13) at the 0.1 per cent level is about 6.4, so the null
hypothesis of homoskedasticity is rejected. Figure 7.2 confirms the
heteroskedasticity.

Explain what the researcher hoped to achieve by running regression (3).

Heteroskedasticity can appear to be present in a regression in natural units if the
true relationship is logarithmic. The disturbance term in a logarithmic regression is
effectively increasing or decreasing the value of the dependent variable by random
proportions. Its effect in absolute terms will therefore tend to be greater, the larger
the value of G. The researcher is checking to see if this is the reason for the
heteroskedasticity in the second specification.

Discuss whether (3) appears to be an acceptable specification, given the data in the
table and Figure 7.3.

Obviously there is no problem with the Goldfeld–Quandt test, since:

F (14, 14) =
3.60

3.45
= 1.04.

Figure 7.3 looks free from heteroskadasticity.

What are your conclusions concerning the researcher’s hypothesis?

Evidence in support of the hypothesis is provided by (3) where, with:

t =
0.80− 1

0.07
= −2.86

the elasticity is significantly lower than 1. Figures 7.1 and 7.2 also strongly suggest
that on balance larger economies have lower import ratios than smaller ones.
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A7.5 Perform a Goldfeld–Quandt test for heteroskedasticity on both of the regression
specifications.

The F statistics for the G–Q test for the two specifications are:

F (16, 16) =
64/16

8/16
= 8.0 and F (16, 16) =

900/16

600/16
= 1.5.

The critical value of F (16, 16) is 2.33 at the 5 per cent level and 5.20 at the 0.1 per
cent level. Hence one would reject the null hypothesis of homoskedasticity at the
0.1 per cent level for regression 1 and one would not reject it even at the 5 per cent
level for regression 2.

Explain why the researcher ran the second regression.

He hypothesised that the standard deviation of the disturbance term in observation
i was proportional to Ni : σi = λNi for some λ. If this is the case, dividing through
by Ni makes the specification homoskedastic, since:

var

(
ui
Ni

)
=

1

N2
var(ui) =

1

N2
i

(λNi)
2 = λ2

and is therefore the same for all i.

R2 is lower in regression (2) than in regression (1). Does this mean that regression
(1) is preferable?

R2 is not comparable because the dependent variable is different in the two
regressions. Regression (2) is to be preferred since it is free from heteroskedasticity
and therefore ought to tend to yield more precise estimates of the coefficients with
valid standard errors.

A7.6 When the researcher presents her results at a seminar, one of the participants says
that, since I and G have been divided by Y, (2) is less likely to be subject to
heteroskedasticity than (1). Evaluate this suggestion.

If the restriction is valid, imposing it will have no implications for the disturbance
term and so it could not lead to any mitigation of a potential problem of
heteroskedasticity. [If there were heteroskedasticity, and if the specification were
linear, scaling through by a variable proportional in observation i to the standard
deviation of ui in observation i would lead to the elimination of heteroskedasticity.
The present specification is logarithmic and dividing I and G by Y does not affect
the disturbance term.]

A7.7 Perform the Goldfeld–Quandt test for each model and state your conclusions.

The ratios are 4.1, 6.0, and 1.05. In each case we should look for the critical value
of F (148, 148). The critical values of F (150, 150) at the 5 per cent, 1 per cent, and
0.1 per cent levels are 1.31, 1.46, and 1.66, respectively. Hence we reject the null
hypothesis of homoskedasticity at the 0.1 per cent level (1 per cent is OK) for
models (1) and (2). We do not reject it even at the 5 per cent level for model (3).

165



7. Heteroskedasticity

Explain why the researcher thought that model (2) might be an improvement on
model (1).

If the assumption that the standard deviation of the disturbance term is
proportional to household size, scaling through by A should eliminate the
heteroskedasticity, since:

E(v2) = E

([ u
A

]2
)

=
1

A2
E(u2) = λ2

if the standard deviation of u = λA.

Explain why the researcher thought that model (3) might be an improvement on
model (1).

It is possible that the (apparent) heteroskedasticity is attributable to mathematical
misspecification. If the true model is logarithmic, a homoskedastic disturbance
term would appear to have a heteroskedastic effect if the regression is performed in
the original units.

When models (2) and (3) are tested for heteroskedasticity using the White test,
auxiliary regressions must be fitted. State the specification of this auxiliary
regression for model (2).

The dependent variable is the squared residuals from the model regression. The
explanatory variables are the reciprocal of A and its square, E/A and its square,
and the product of the reciprocal of A and E/A. (No constant.)

Perform the White test for the three models.

nR2 is 64.0, 56.0, and 0.4 for the three models. Under the null hypothesis of
homoskedasticity, this statistic has a chi-squared distribution with degrees of
freedom equal to the number of terms on the right side of the regression, minus
one. This is two for models (1) and (3). The critical value of chi-squared with two
degrees of freedom is 5.99, 9.21, and 13.82 at the 5, 1, and 0.1 per cent levels. Hence
H0 is rejected at the 0.1 per cent level for model (1), and not rejected even at the 5
per cent level for model (3). In the case of model (2), there are five terms on the
right side of the regression. The critical value of chisquared with four degrees of
freedom is 18.47 at the 0.1 per cent level. Hence H0 is rejected at that level.

Explain whether the results of the tests seem reasonable, given the scatter plots of
the data.

Absolutely. In Figures 7.1 and 7.2, the variances of the dispersions of the dependent
variable clearly increase with the size of the explanatory variable. In Figure 7.3, the
dispersion is much more even.

A7.8 ‘Heteroskedasticity occurs when the disturbance term in a regression model is
correlated with one of the explanatory variables.’

This is false. Heteroskedasticity occurs when the variance of the disturbance term
is not the same for all observations.
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‘In the presence of heteroskedasticity ordinary least squares (OLS) is an inefficient
estimation technique and this causes t tests and F tests to be invalid.’

It is true that OLS is inefficient and that the t and F tests are invalid, but ‘and
this causes’ is wrong.

‘OLS remains unbiased but it is inconsistent.’

It is true that OLS is unbiased, but false that it is inconsistent.

‘Heteroskedasticity can be detected with a Chow test.’

This is false.

‘Alternatively one can compare the residuals from a regression using half of the
observations with those from a regression using the other half and see if there is a
significant difference. The test statistic is the same as for the Chow test.’

The first sentence is basically correct with the following changes and clarifications:
one is assuming that the standard deviation of the disturbance term is proportional
to one of the explanatory variables; the sample should first be sorted according to
the size of the explanatory variable; rather than split the sample in half, it would
be better to compare the first three-eighths (or one third) of the observations with
the last three-eighths (or one third); ‘comparing the residuals’ is too vague: the F
statistic is F (n′ − k, n′ − k) = RSS2/RSS1 assuming n′ observations and k
parameters in each subsample regression, and placing the larger RSS over the
smaller.

The second sentence is false.

‘One way of eliminating the problem is to make use of a restriction involving the
variable correlated with the disturbance term.’

This is nonsense.

‘If you can find another variable related to the one responsible for the
heteroskedasticity, you can use it as a proxy and this should eliminate the problem.’

This is more nonsense.

‘Sometimes apparent heteroskedasticity can be caused by a mathematical
misspecification of the regression model. This can happen, for example, if the
dependent variable ought to be logarithmic, but a linear regression is run.’

True. A homoskedastic disturbance term in a logarithmic regression, which is
responsible for proportional changes in the dependent variable, may appear to be
heteroskedastic in a linear regression because the absolute changes in the
dependent variable will be proportional to its size.
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Chapter 8

Stochastic regressors and
measurement errors

8.1 Overview

Until this point it has been assumed that the only random element in a regression
model is the disturbance term. This chapter extends the analysis to the case where the
variables themselves have random components. The initial analysis shows that in
general OLS estimators retain their desirable properties. A random component
attributable to measurement error, the subject of the rest of the chapter, is however
another matter. While measurement error in the dependent variable merely inflates the
variances of the regression coefficients, measurement error in the explanatory variables
causes OLS estimates of the coefficients to be biased and invalidates standard errors, t
tests, and F tests. The analysis is illustrated with reference to the Friedman permanent
income hypothesis, the most celebrated application of measurement error analysis in the
economic literature. The chapter then introduces instrumental variables (IV) estimation
and gives an example of its use to fit the Friedman model. The chapter concludes with a
description of the Durbin–Wu–Hausman test for investigating whether measurement
errors are serious enough to warrant using IV instead of OLS.

8.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the conditions under which OLS estimators remain unbiased when the
variables in the regression model possess random components

derive the large-sample expression for the bias in the slope coefficient in a simple
regression model with measurement error in the explanatory variable

demonstrate, within the context of the same model, that measurement error in the
dependent variable does not cause the regression coefficients to be biased but does
increase their standard errors

describe the Friedman permanent income hypothesis and explain why OLS
estimates of a conventional consumption function will be biased if it is correct

explain what is meant by an instrumental variables estimator and state the
conditions required for its use
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demonstrate that the IV estimator of the slope coefficient in a simple regression
model is consistent, provided that the conditions required for its use are satisfied

explain the factors responsible for the population variance of the IV estimator of
the slope coefficient in a simple regression model

perform the Durbin–Wu–Hausman test in the context of measurement error.

8.3 Additional exercises

A8.1 A researcher believes that a variable Y is determined by the simple regression
model:

Y = β1 + β2X + u.

She thinks that X is not distributed independently of u but thinks that another
variable, Z, would be a suitable instrument. The instrumental estimator of the
intercept, β̂IV

1 , is given by:

β̂IV
1 = Y − β̂IV

2 X

where β̂IV
2 is the IV estimator of the slope coefficient. [Exercise 8.12 in the textbook

asks for a proof that β̂IV
1 is a consistent estimator of β1.]

Explain, with a brief mathematical proof, why β̂OLS
1 , the ordinary least squares

estimator of β1, would be inconsistent, if the researcher is correct in believing that
X is not distributed independently of u.

The researcher has only 20 observations in her sample. Does the fact that β̂IV
1 is

consistent guarantee that it has desirable small-sample properties? If not, explain
how the researcher might investigate the small-sample properties.

A8.2 Suppose that the researcher in Exercise A8.1 is wrong and X is in fact distributed
independently of u. Explain the consequences of using β̂IV

1 instead of β̂OLS
1 to

estimate β1.

Note: The population variance of β̂IV
1 is given by:

σ2
β̂IV
1

=

(
1 +

µ2
X

σ2
X

× 1

r2
XZ

)
σ2
u

n

where µX is the population mean of X, σ2
X is its population variance, rXZ is the

correlation between X and Z, and σ2
u is the population variance of the disturbance

term, u. For comparison, the population variance of the OLS estimator is:

σ2
β̂OLS
1

=

(
1 +

µ2
X

σ2
X

)
σ2
u

n

when the model is correctly specified and the regression model assumptions are
satisfied.
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A8.3 A researcher investigating the incidence of teenage knife crime has the following
data for each of 35 cities for 2008:

• K = number of knife crimes per 1,000 population in 2008

• N = number of teenagers per 1,000 population living in social deprivation in
2008.

The researcher hypothesises that the relationship between K and N is given by:

K = β1 + β2N + u (1)

where u is a disturbance term that satisfies the usual regression model
assumptions. However, knife crime tends to be under-reported, with the degree of
under-reporting worst in the most heavily afflicted boroughs, so that:

R = K + w (2)

where R = number of reported knife crimes per 1,000 population in 2008 and w is
a random variable with E(w) < 0 and cov(w,K) < 0. w may be assumed to be
distributed independently of u. Note that cov(w,K) < 0 implies cov(w,N) < 0.
Derive analytically the sign of the bias in the estimator of β2 if the researcher
regresses R on N using ordinary least squares.

A8.4 Suppose that in the model:
Y = β1 + β2X + u

where the disturbance term u satisfies the regression model assumptions, the
variable X is subject to measurement error, being underestimated by a fixed
amount α in all observations.

• Discuss whether it is true that the ordinary least squares estimator of β2 will
be biased downwards by an amount proportional to both α and β2.

• Discuss whether it is true that the fitted values of Y from the regression will
be reduced by an amount αβ2.

• Discuss whether it is true that R2 will be reduced by an amount proportional
to α.

A8.5 A researcher believes that the rate of migration from Country B to Country A, Mt,
measured in thousands of persons per year, is a linear function of the relative
average wage, RWt, defined as the average wage in Country A divided by the
average wage in Country B, both measured in terms of the currency of Country A:

Mt = β1 + β2RWt + ut. (1)

ut is a disturbance term that satisfies the regression model assumptions. However,
Country B is a developing country with limited resources for statistical surveys and
the wage data for that country, derived from a small sample of social security
records, are widely considered to be unrepresentative, with a tendency to overstate
the true average wage because those working in the informal sector are excluded.
As a consequence the measured relative wage, MRWt, is given by

MRWt = RWt + wt (2)
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where wt is a random quantity with expected value less than 0. It may be assumed
to be distributed independently of ut and RWt.

The researcher also has data on relative GDP per capita, RGDP t, defined as the
ratio of GDP per capita in countries A and B, respectively, both measured in terms
of the currency of Country A. He has annual observations on Mt, MRWt, and
RGDP t for a 30-year period. The correlation between MRWt, and RGDP t in the
sample period is 0.8. Analyse mathematically the consequences for the estimates of
the intercept and the slope coefficient, the standard errors and the t statistics, if
the migration equation (1) is fitted:

• using ordinary least squares with MRWt as the explanatory variable.

• using OLS, with RGDP t as a proxy for RWt.

• using instrumental variables, with RGDP t as an instrument for MRWt.

A8.6 Suppose that in Exercise A8.5 RGDPt is subject to the same kind of measurement
error as RWt, and that as a consequence there is an exact linear relationship
between RGDP t and MRWt. Demonstrate mathematically how this would affect
the IV estimator of β2 in part (3) of Exercise A8.5 and give a verbal explanation of
your result.

8.4 Answers to the starred exercises in the textbook

8.5 A variable Q is determined by the model:

Q = β1 + β2X + v

where X is a variable and v is a disturbance term that satisfies the regression
model assumptions. The dependent variable is subject to measurement error and is
measured as Y where:

Y = Q+ r

and r is the measurement error, distributed independently of v. Describe
analytically the consequences of using OLS to fit this model if:

1. The expected value of r is not equal to zero (but r is distributed independently
of Q).

2. r is not distributed independently of Q (but its expected value is zero).

Answer:

Substituting for Q, the model may be rewritten:

Y = β1 + β2X + v + r

= β1 + β2X + u

where u = v + r. Then:

β̂2 = β2 +

(
Xi −X

)
(ui −u)∑(

Xi −X
)2 = β2 +

∑(
Xi −X

)
(vi −v) +

∑(
Xi −X

)
(ri −r)∑(

Xi −X
)2
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and:

E(β̂2) = E

β2 +

∑(
Xi −X

)
(vi −v) +

∑(
Xi −X

)
(ri −r)∑(

Xi −X
)2


= β2 +

1∑(
Xi −X

)2E
(∑(

Xi −X
)

(vi −v) +
∑(

Xi −X
)

(ri −r)
)

= β2 +
1∑(

Xi −X
)2

(∑(
Xi −X

)
E (vi −v) +

∑(
Xi −X

)
E (ri −r)

)
= β2

provided that X is nonstochastic. (If X is stochastic, the proof that the expected

value of the error term is zero is parallel to that in Section 8.2 of the text.) Thus β̂2

remains an unbiased estimator of β2.

However, the estimator of the intercept is affected if E(r) is not zero.

β̂1 = Y − β̂2X = β1 + β2X+u− β̂2X = β1 + β2X+v+r− β̂2X.

Hence:

E(β̂1) = β1 + β2X+ E(v) + E(r)− E(β̂2X)

= β1 + β2X+ E(v) + E(r)−XE(β̂2)

= β1 + E(r).

Thus the intercept is biased if E(r) is not equal to zero, for then E(r) is not equal
to 0.

If r is not distributed independently of Q, the situation is a little bit more
complicated. For it to be distributed independently of Q, it must be distributed
independently of both X and v, since these are the determinants of Q. Thus if it is
not distributed independently of Q, one of these two conditions must be violated.
We will consider each in turn.

(a) r not distributed independently of X. We now have:

plim β̂2 = β2 +
plim 1

n

∑(
Xi −X

)
(vi −v) + plim 1

n

∑(
Xi −X

)
(ri −r)

plim 1
n

∑(
Xi −X

)2

= β2 +
σXr
σ2
X

.

Since σXr 6= 0, β̂2 is an inconsistent estimator of β2. It follows that β̂1 will also
be an inconsistent estimator of β1:

β̂1 = β1 + β2X+v+r− β̂2X.
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8. Stochastic regressors and measurement errors

Hence:

plim β̂1 = β1 + β2X+ plim v+ plim r−X plim β̂2

= β1 +X(β2 − plim β̂2)

and this is different from β1 if plim β̂2 is not equal to β2.

(b) r is not distributed independently of v. This condition is not required in the

proof of the unbiasedness of either β̂1 or β̂2 and so both remain unbiased.

8.6 A variable Y is determined by the model:

Y = β1 + β2Z + v

where Z is a variable and v is a disturbance term that satisfies the regression model
conditions. The explanatory variable is subject to measurement error and is
measured as X where:

X = Z + w

and w is the measurement error, distributed independently of v. Describe
analytically the consequences of using OLS to fit this model if:

(1) the expected value of w is not equal to zero (but w is distributed
independently of Z)

(2) w is not distributed independently of Z (but its expected value is zero).

Answer:

Substituting for Z, we have:

Y = β1 + β2(X − w) + v = β1 + β2X + u

where u = v − β2w.

β̂2 = β2 +

∑(
Xi −X

)
(ui −u)∑(

Xi −X
)2 .

It is not possible to obtain a closed-form expression for the expectation of the error
term since both its numerator and its denominator depend on w. Instead we take
plims, having first divided the numerator and the denominator of the error term by
n so that they have limits:

plim β̂2 = β2 +
plim 1

n

∑(
Xi −X

)
(ui −u)

plim 1
n

∑(
Xi −X

)2

= β2 +
cov(X, u)

var(X)
= β2 +

cov([Z + w], [v − β2w])

var(X)

= β2 +
cov(Z, v)− β2cov(Z,w) + cov(w, v)− β2cov(w,w)

var(X)
.
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8.4. Answers to the starred exercises in the textbook

If E(w) is not equal to zero, β̂2 is not affected. The first three terms in the
numerator are zero and:

plim β̂2 = β2 +
−β2σ

2
w

σ2
X

so β̂2 remains inconsistent as in the standard case. If w is not distributed
independently of Z, then the second term in the numerator is not 0. β̂2 remains
inconsistent, but the expression is now:

plim β̂2 = β2 +
−β2(σZw + σ2

w)

σ2
X

.

The OLS estimator of the intercept is affected in both cases, but like the slope
coefficient, it was inconsistent anyway.

β̂1 = Y − β̂2X = β1 + β2X+u− β̂2X = β1 + β2X+v− β2w− β̂2X.

Hence:
plim β̂1 = β1 + (β2 − plim β̂2)X+ plim v− β2 plim w.

In the standard case this would reduce to:

plim β̂1 = β1 + (β2 − plim β̂2)X

= β1 + β2
σ2
w

σ2
X

X.

If w has expected value µw, not equal to zero:

plim β̂1 = β1 + β2

(
σ2
w

σ2
X

X− µw
)
.

If w is not distributed independently of Z:

plim β̂1 = β1 + β2
σZw + σ2

w

σ2
X

X.

8.10 A researcher investigating the shadow economy using international crosssectional
data for 25 countries hypothesises that consumer expenditure on shadow goods and
services, Q, is related to total consumer expenditure, Z, by the relationship:

Q = β1 + β2Z + v

where v is a disturbance term that satisfies the regression model assumptions. Q is
part of Z and any error in the estimation of Q affects the estimate of Z by the
same amount. Hence:

Yi = Qi + wi

and:
Xi = Zi + wi

where Yi is the estimated value of Qi, Xi is the estimated value of Zi, and wi is the
measurement error affecting both variables in observation i. It is assumed that the
expected value of w is 0 and that v and w are distributed independently of Z and
of each other.
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1. Derive an expression for the large-sample bias in the estimate of β2 when OLS
is used to regress Y on X, and determine its sign if this is possible. [Note: The
standard expression for measurement error bias is not valid in this case.]

2. In a Monte Carlo experiment based on the model above, the true relationship
between Q and Z is:

Q = 2.0 + 0.2Z.

A sample of 25 observations is generated using the integers 1, 2,..., 25 as data
for Z. The variance of Z is 52.0. A normally distributed random variable with
mean 0 and variance 25 is used to generate the values of the measurement
error in the dependent and explanatory variables. The results with 10 samples
are summarised in the table below. Comment on the results, stating whether
or not they support your theoretical analysis.

Sample β̂1 s.e.(β̂1) β̂2 s.e.(β̂2) R2

1 −0.85 1.09 0.42 0.07 0.61
2 −0.37 1.45 0.36 0.10 0.36
3 −2.85 0.88 0.49 0.06 0.75
4 −2.21 1.59 0.54 0.10 0.57
5 −1.08 1.43 0.47 0.09 0.55
6 −1.32 1.39 0.51 0.08 0.64
7 −3.12 1.12 0.54 0.07 0.71
8 −0.64 0.95 0.45 0.06 0.74
9 0.57 0.89 0.38 0.05 0.69
10 −0.54 1.26 0.40 0.08 0.50

3. The figure below plots the points (Q,Z), represented as circles, and (Y,X),
represented as solid markers, for the first sample, with each (Q,Z) point linked
to the corresponding (Y,X) point. Comment on this graph, given your answers
to parts 1 and 2.

 

Answer:

1. Substituting for Q and Z in the first equation:

(Y − w) = β1 + β2(X − w) + v.
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Hence:

Y = β1 + β2X + v + (1− β2)w

= β1 + β2X + u

where u = v + (1− β2)w. So:

β̂2 = β2 +

∑(
Xi −X

)
(ui −u)∑(

Xi −X
)2 .

It is not possible to obtain a closed-form expression for the expectation of the
error term since both its numerator and its denominator depend on w. Instead
we take plims, having first divided the numerator and the denominator of the
error term by n so that they have limits:

plim β̂2 = β2 +
plim 1

n

∑(
Xi −X

)
(ui −u)

plim 1
n

∑(
Xi −X

)2

= β2 +
cov(X, u)

var(u)
= β2 +

cov([Z + w], [v + (1− β2)w])

var(X)

= β2 +
cov(Z, v) + (1− β2)cov(Z,w) + cov(w, v) + (1− β2)cov(w,w)

var(X)
.

Since v and w are distributed independently of Z and of each other,
cov(Z, v) = cov(Z,w) = cov(w, v) = 0, and so:

plim β̂2 = β2 + (1− β2)
σ2
w

σ2
X

.

β2 clearly should be positive and less than 1, so the bias is positive.

2. σ2
X = σ2

Z + σ2
w, given that w is distributed independently of Z, and hence

σ2
X = 52 + 25 = 77. Thus:

plim β̂2 = 0.2 +
(1− 0.2)× 25

77
= 0.46.

The estimates of the slope coefficient do indeed appear to be distributed
around this number.

As a consequence of the slope coefficient being overestimated, the intercept is
underestimated, negative estimates being obtained in each case despite the
fact that the true value is positive. The standard errors are invalid, given the
severe problem of measurement error.

3. The diagram shows how the measurement error causes the observations to be
displaced along 45◦ lines. Hence the slope of the regression line will be a
compromise between the true slope, β2 and 1. More specifically, plim β̂2 is a
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weighted average of β2 and 1, the weights being proportional to the variances
of Z and w:

plim β̂2 = β1 + (1− β2)
σ2
w

σ2
Z + σ2

w

=
σ2
Z

σ2
Z + σ2

w

β2 +
σ2
w

σ2
Z + σ2

w

.

8.16 It is possible that the ASVABC test score is a poor measure of the kind of ability
relevant for earnings. Accordingly, perform an OLS regression of the logarithm of
hourly earnings on S, EXP, ASVABC, MALE, ETHBLACK, and ETHHISP using
your EAWE data set and an IV regression using SM, SF, and SIBLINGS as
instruments for ASVABC. Perform a Durbin–Wu–Hausman test to evaluate
whether ASVABC appears to be subject to measurement error.

Answer:

Contrary to expectations, the coefficient of ASVABC is lower in the IV regression.
It is 0.048 in the OLS regression and −0.094 in the IV regression. The chi-squared
statistic, 1.21, is low. One might therefore conclude that there is no serious
measurement error and the change in the coefficient is random. Another possibility
is that the instruments are too weak. ASVABC is not highly correlated with any of
the instruments and the standard error of the coefficient rises from 0.028 in the
OLS regression to 0.132 in the IV regression.

. ivreg LGEARN S EXP MALE ETHBLACK ETHHISP (ASVABC=SM SF SIBLINGS)

Instrumental variables (2SLS) regression

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 6, 493) = 22.29

Model | 27.631679 6 4.60527983 Prob> F = 0.0000

Residual | 121.501359 493 .246453061 R-squared = 0.1853

-----------+------------------------------ Adj R-squared = 0.1754

Total | 149.133038 499 .298863804 Root MSE = .49644

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

ASVABC | -.0938253 .1319694 -0.71 0.477 -.3531172 .1654666

S | .1203265 .0251596 4.78 0.000 .0708931 .1697599

EXP | .0444094 .0092246 4.81 0.000 .026285 .0625338

MALE | .1909863 .0456252 4.19 0.000 .1013424 .2806302

ETHBLACK | -.1678914 .1355897 -1.24 0.216 -.4342963 .0985136

ETHHISP | .075698 .0828383 0.91 0.361 -.0870617 .2384576

_cons | .6503199 .3570741 1.82 0.069 -.0512548 1.351895

----------------------------------------------------------------------------

Instrumented: ASVABC

Instruments: S EXP MALE ETHBLACK ETHHISP SM SF SIBLINGS

----------------------------------------------------------------------------
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. estimates store IV1

. reg LGEARN S EXP ASVABC MALE ETHBLACK ETHHISP

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 6, 493) = 23.81

Model | 33.5095496 6 5.58492493 Prob> F = 0.0000

Residual | 115.623489 493 .234530403 R-squared = 0.2247

-----------+------------------------------ Adj R-squared = 0.2153

Total | 149.133038 499 .298863804 Root MSE = .48428

----------------------------------------------------------------------------

LGEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S | .0953713 .0106101 8.99 0.000 .0745246 .1162179

EXP | .043139 .0089279 4.83 0.000 .0255976 .0606805

ASVABC | .0477892 .0282877 1.69 0.092 -.00779 .1033685

MALE | .1954406 .0443323 4.41 0.000 .1083371 .2825441

ETHBLACK | -.0448382 .074738 -0.60 0.549 -.1916824 .102006

ETHHISP | .1226463 .0692577 1.77 0.077 -.0134303 .258723

_cons | .9766376 .1938648 5.04 0.000 .5957345 1.357541

----------------------------------------------------------------------------

. estimates store OLS1

. hausman IV1 OLS1, constant

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| IV1 OLS1 Difference S.E.

-------------+----------------------------------------------------------------

ASVABC | -.0938253 .0477892 -.1416145 .1289021

S | .1203265 .0953713 .0249552 .022813

EXP | .0444094 .043139 .0012704 .0023208

MALE | .1909863 .1954406 -.0044543 .0107847

ETHBLACK | -.1678914 -.0448382 -.1230532 .1131318

ETHHISP | .075698 .1226463 -.0469484 .0454484

_cons | .6503199 .9766376 -.3263177 .2998639

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from ivreg

B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2(7) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 1.21

Prob>chi2 = 0.9908

. cor ASVABC SM SF SIBLINGS

(obs=500)

| ASVABC SM SF SIBLINGS

-------------+------------------------------------

ASVABC | 1.0000

SM | 0.3426 1.0000

SF | 0.3613 0.5622 1.0000

SIBLINGS | -0.2360 -0.3038 -0.2516 1.0000
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8.17 What is the difference between an instrumental variable and a proxy variable (as
described in Section 6.4)? When would you use one and when would you use the
other?

Answer:

An instrumental variable estimator is used when one has data on an explanatory
variable in the regression model but OLS would give inconsistent estimates because
the explanatory variable is not distributed independently of the disturbance term.
The instrumental variable partially replaces the original explanatory variable in the
estimator and the estimator is consistent.

A proxy variable is used when one has no data on an explanatory variable in a
regression model. The proxy variable is used as a straight substitute for the original
variable. The interpretation of the regression coefficients will depend on the
relationship between the proxy and the original variable, and the properties of the
other estimators in the model and the tests and diagnostic statistics will depend on
the degree of correlation between the proxy and the original variable.

8.5 Answers to the additional exercises

A8.1

β̂OLS
1 = Y − β̂OLS

2 X

= β1 + β2X+u− β̂OLS
2 X.

Therefore:

plim β̂OLS
1 = β1 − (plim β̂OLS

2 − β2) plim X

6= β1.

However:

β̂IV
1 = Y − β̂IV

2 X

= β1 + β2X+u− β̂IV
2 X

= β1 − (β̂IV
2 − β2)X+u.

Therefore:

plim β̂IV
1 = β1 − (plim β̂IV

2 − β2) plim X

= β1.

Consistency does not guarantee desirable small-sample properties. The latter could
be investigated with a Monte Carlo experiment.

A8.2 Both estimators will be consistent (actually, unbiased) but the IV estimator will be
less efficient than the OLS estimator, as can be seen from a comparison of the
expressions for the population variances.
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A8.3 The regression model is:
R = β1 + β2N + u+ w.

Hence:

β̂OLS
2 = β2 +

∑(
Ni −N

)
(ui + wi −u−w)∑(
Ni −N

)2 .

It is not possible to obtain a closed-form expression for the expectation since N
and w are correlated. Hence, instead, we investigate the plim:

plim β̂OLS
2 = β2 + plim

1
n

∑(
Ni −N

)
(ui + wi −u−w)

1
n

∑(
Ni −N

)2

= β2 +
cov(N, u) + cov(N,w)

var(N)
< β2

since cov(N, u) = 0 and cov(N,w) < 0.

A8.4 Discuss whether it is true that the ordinary least squares estimator of β2 will be
biased downwards by an amount proportional to both α and β2.

It is not true. Let the measured X be X ′, where X ′ = X − α. Then:

β̂OLS
2 =

∑
(X ′i −X ′)

(
Yi −Y

)
∑

(X ′i −X ′)
2 =

∑(
Xi − α− [X− α]

)(
Yi −Y

)
∑(

Xi − α− [X− α]
)2 =

∑(
Xi −X

)(
Yi −Y

)
∑(

Xi −X
)2 .

Thus the measurement error has no effect on the estimate of the slope coefficient.

Discuss whether it is true that the fitted values of Y from the regression will be
reduced by an amount αβ2.

The estimator of the intercept will be Y − β̂2X
′
= Y − β̂2(X− α). Hence the fitted

value in observation i will be:

Y − β̂2(X− α) + β̂2X
′
i = Y − β̂2(X− α) + β̂2(Xi − α) = Y − β̂2X+ β̂2Xi

which is what it would be in the absence of the measurement error.

Discuss whether it is true that R2 will be reduced by an amount proportional to α.

Since R2 is the variance of the fitted values of Y divided by the variance of the
actual values, it will be unaffected.

A8.5 Using ordinary least squares with MRWt as the explanatory variable.

plim β̂OLS
2 = β2 − β2

σ2
w

σ2
Rw + σ2

w

= β2
σ2
Rw

σ2
Rw + σ2

w

(standard theory). Hence the bias is towards zero.

β̂OLS
1 = M− β̂OLS

2 MRW

= β1 + β2RW +u− β̂OLS
2

(
RW +w

)
= β1 + (β2 − β̂OLS

2 )RW +u− β̂OLS
2 w
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and so:

plim β̂OLS
1 = β1 + β2

σ2
w

σ2
Rw + σ2

w

RW − β2
σ2
Rw

σ2
Rw + σ2

w

µw

where µw is the population mean of w. The first component of the bias will be
positive and the second negative, given that µw is negative. It is not possible
without further information to predict the direction of the bias. The standard
errors and t statistics will be invalidated if there is substantial measurement error
in MRW.

Using OLS, with RGDPt as a proxy for RW.

Suppose RW = α1 + α2RGDP . Then the migration equation may be rewritten:

Mt = β1 + β2(α1 + α2RGDPt) + ut

= (β1 + α1β2) + α2β2RGDPt + ut.

In general it would not be possible to derive estimates of either β1 or β2. Likewise
one has no information on the standard errors of either β̂1 or β̂2. Nevertheless the t
statistic for the slope coefficient would be approximately equal to the t statistic in
a regression of M on RW, if the proxy is a good one. R2 will be approximately the
same as it would have been in a regression of M on RW, if the proxy is a good one.
One might hypothesise that RGDP might be approximately equal to RW, in which
case α1 = 0 and α2 = 1 and one can effectively fit the original model.

Using instrumental variables, with RGDPt as an instrument for MRWt.

The IV estimator of β2 is consistent:

β̂IV
2 =

∑(
Mi −M

)(
RGDPi −RGDP

)
∑(

MRWi −MRW
)(

RGDPi −RGDP
)

= β2 +

∑
(ui − β2wi −u+ β2w)

(
RGDPi −RGDP

)
∑(

MRWi −MRW
)(

RGDPi −RGDP
) .

Hence plim β̂IV
2 = β2 if u and w are distributed independently of RGDP. Likewise

the IV estimator of β̂1 is consistent:

β̂IV
1 =M− β̂IV

2 MRW = β1 + β2RW +u− β̂IV
2 RW − β̂IV

2 w.

Hence:

plim β̂IV
1 = β1 + β2RW + plim u− plim β̂IV

2 RW − plim β̂IV
2 plim w

= β1

since plim β̂IV
2 = β2 and plim u = plim w = 0. The standard errors will be higher,

and hence t statistics lower, than they would have been if it had been possible to
run the original regression using OLS.
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A8.6 Suppose RGDP = θ + φMRW . Then:

β̂IV
2 =

∑(
Mi −M

)(
RGDPi −RGDP

)
∑(

MRWi −MRW
)(

RGDPi −RGDP
)

=

∑(
Mi −M

)(
φMRWi − φMRW

)
∑(

MRWi −MRW
)(

φMRWi − φMRW
)

= β̂OLS
2 .

The instrument is no longer valid because it is correlated with the measurement
error.
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Chapter 9

Simultaneous equations estimation

9.1 Overview

Until this point the analysis has been confined to the fitting of a single regression
equation on its own. In practice, most economic relationships interact with others in a
system of simultaneous equations, and when this is the case the application of ordinary
least squares (OLS) to a single relationship in isolation yields biased estimates. Having
defined what is meant by an endogenous variable, an exogenous variable, a structural
equation, and a reduced form equation, the first objective of this chapter is to
demonstrate this. The second is to show how it may be possible to use instrumental
variables (IV) estimation, with exogenous variables acting as instruments for
endogenous ones, to obtain consistent estimates of the coefficients of a relationship. The
conditions for exact identification, underidentification, and overidentification are
discussed. In the case of overidentification, it is shown how two-stage least squares can
be used to obtain estimates that are more efficient than those obtained with simple IV
estimation. The chapter concludes with a discussion of the problem of unobserved
heterogeneity and the use of the Durbin–Wu–Hausman test in the context of
simultaneous equations estimation.

9.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain what is meant by:

• an endogenous variable

• an exogenous variable

• a structural equation

• a reduced form equation

explain why the application of OLS to a single equation in isolation is likely to
yield inconsistent estimates of the coefficients if the equation is part of a
simultaneous equations model

derive an expression for the large-sample bias in the slope coefficient when OLS is
used to fit a simple regression equation in a simultaneous equations model
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9. Simultaneous equations estimation

explain how consistent estimates of the coefficients of an equation in a simultaneous
equations model might in principle be obtained using instrumental variables

explain what is meant by exact identification, underidentification, and
overidentification

explain the principles underlying the use of two-stage least squares, and the reason
why it is more efficient than simple IV estimation

explain what is meant by the problem of unobserved heterogeneity

perform the Durbin–Wu–Hausman test in the context of simultaneous equations
estimation.

9.3 Further material

Good governance and economic development

In development economics it has long been observed that there is a positive association
between economic performance, Y , and good governance, R, especially in developing
countries. However, quantification of the relationship is made problematic by the fact
that it is unlikely that causality is unidirectional. While good governance may
contribute to economic performance, better performing countries may also develop
better institutions. Hence in its simplest form one has a simultaneous equations mode:

Y = β1 + β2R + u (1)

R = α1 + α2Y + v (2)

where u and v are disturbance terms. Assuming that the latter are distributed
independently, an OLS regression of the first equation will lead to an upwards biased
estimate of β2, at least in large samples. The proof is left as an exercise (Exercise
A9.10). Thus to fit the first equation, one needs an instrument for R. Obviously a
better-specified model would have additional explanatory variables in both equations,
but there is a problem. In general any variable that influences R is also likely to
influence Y and is therefore unavailable as an instrument.

In a study of 64 ex-colonial countries that is surely destined to become a classic, ‘The
colonial origins of comparative development: an empirical investigation’, American
Economic Review 91(5): 1369–1401, December 2001, Acemoglu, Johnson, and Robinson
(henceforward AJR) argue that settler mortality rates provide a suitable instrument.
Put simply, the thesis is that where mortality rates were low, European colonisers
founded neo-European settlements with European institutions and good governance.
Such settlements eventually prospered. Examples are the United States, Canada,
Australia, and New Zealand. Where mortality rates were high, on account of malaria,
yellow fever and other diseases for which Europeans had little or no immunity,
settlements were not viable. In such countries the main objective of the coloniser was
economic exploitation, especially of mineral wealth. Institutional development was not a
consideration. Post-independence regimes have often been as predatory as their
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predecessors, indigenous rulers taking the place of the former colonisers. Think of the
Belgian Congo, first exploited by King Leopold and more recently by Mobutu.

The study is valuable as an example of IV estimation in that it places minimal technical
demands on the reader. There is nothing that would not be easily comprehensible to
students in an introductory econometrics course that covers IV. Nevertheless, it gives
careful attention to the important technical issues. In particular, it discusses at length
the validity of the exclusion restriction. To use mortality as an instrument for R in the
first equation, one must be sure that it is not a determinant of Y in its own right, either
directly or indirectly (other than through R).

The conclusion of the study is surprising. According to theory (see Exercise A9.10), the
OLS estimate of β2 will be biased upwards by the endogeneity of R. The objective of the
study was to demonstrate that the estimate remains positive and significant even when
the upward bias has been removed by using IV. However, the IV estimate turns out to
be higher than the OLS estimate. In fact it is nearly twice as large. AJR suggest that
this is attributable to measurement error in the measurement of R. This would cause the
OLS estimate to be biased downwards, and the bias would be removed (asymptotically)
by the use of IV. AJR conclude that the downward bias in the OLS estimate caused by
measurement error is greater than the upward bias caused by endogeneity.

9.4 Additional exercises

A9.1 In a certain agricultural country, aggregate consumption, C, is simply equal to
2,000 plus a random quantity z that depends upon the weather:

C = 2000 + z.

z has mean zero and standard deviation 100. Aggregate investment, I, is subject to
a four-year trade cycle, starting at 200, rising to 300 at the top of the cycle, and
falling to 200 in the next year and to 100 at the bottom of the cycle, rising to 200
again the year after that, and so on. Aggregate income, Y , is the sum of C and I:

Y = C + I.

Data on C and I, and hence Y , are given in the table. z was generated by taking
normally distributed random numbers with mean zero and unit standard deviation
and multiplying them by 100.

t C I Y t C I Y
1 1,813 200 2,013 11 1,981 200 2,181
2 1,893 300 2,193 12 2,211 100 2,311
3 2,119 200 2,319 13 2,127 200 2,327
4 1,967 100 2,067 14 1,953 300 2,253
5 1,997 200 2,197 15 2,141 200 2,341
6 2,050 300 2,350 16 1,836 100 1,936
7 2,035 200 2,235 17 2,103 200 2,303
8 2,088 100 2,188 18 2,058 300 2,358
9 2,023 200 2,223 19 2,119 200 2,319
10 2,144 300 2,444 20 2,032 100 2,132
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An orthodox economist regresses C on Y , using the data in the table, and obtains
(standard errors in parentheses):

Ĉ = 512 + 0.68Y R2 = 0.67

(252) (0.11) F = 36.49

Explain why this result was obtained, despite the fact that C does not depend on
Y at all. In particular, comment on the t and F statistics.

A9.2 A small macroeconomic model of a closed economy consists of a consumption
function, an investment function, and an income identity:

Ct = β1 + β2Yt + ut

It = α1 + α2rt + vt

Yt = Ct + It +Gt

where Ct is aggregate consumer expenditure in year t, It is aggregate investment,
Gt is aggregate current public expenditure, Yt is aggregate output, and rt is the
rate of interest. State which variables in the model are endogenous and exogenous,
and explain how you would fit the equations, if you could.

A9.3 The model is now expanded to include a demand for money equation and an
equilibrium condition for the money market:

Md
t = δ1 + δ2Yt + δ3rt + wt

Md
t = Mt

where Md
t is the demand for money in year t and Mt is the supply of money,

assumed exogenous. State which variables are endogenous and exogenous in the
expanded model and explain how you would fit the equations, including those in
Exercise A9.2, if you could.

A9.4 Table 9.2 reports a simulation comparing OLS and IV parameter estimates and
standard errors for 10 samples. The reported R2 (not shown in that table) for the
OLS and IV regressions are shown in the table below.

Sample OLS R2 IV R2

1 0.59 0.16
2 0.69 0.52
3 0.78 0.73
4 0.61 0.37
5 0.40 0.06
6 0.72 0.57
7 0.60 0.33
8 0.58 0.44
9 0.69 0.43
10 0.39 0.13
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We know that, for large samples, the IV estimator is preferable to the OLS
estimator because it is consistent, while the OLS estimator is inconsistent.
However, do the smaller OLS standard errors in Table 9.2 and the larger OLS
values of R2 in the present table indicate that OLS is actually preferable for small
samples (n = 20 in the simulation)?

A9.5 A researcher investigating the relationship between aggregate wages, W , aggregate
profits, P , and aggregate income, Y , postulates the following model:

W = β1 + β2Y + u (1)

P = α1 + α2Y + α3K + v (2)

Y = W + P (3)

where K is aggregate stock of capital and u and v are disturbance terms that satisfy
the usual regression model assumptions and may be assumed to be distributed
independently of each other. The third equation is an identity, all forms of income
being classified either as wages or as profits. The researcher intends to fit the model
using data from a sample of industrialised countries, with the variables measured
on a per capita basis in a common currency. K may be assumed to be exogenous.

• Explain why ordinary least squares (OLS) would yield inconsistent estimates if
it were used to fit (1) and derive the large-sample bias in the slope coefficient.

• Explain what can be inferred about the finite-sample properties of OLS if used
to fit (1).

• Demonstrate mathematically how one might obtain a consistent estimate of β2

in (1).

• Explain why (2) is not identified (underidentified).

• Explain whether (3) is identified.

• At a seminar, one of the participants asserts that it is possible to obtain an
estimate of α2 even though equation (2) is underidentified. Any change in
income that is not a change in wages must be a change in profits, by definition,
and so one can estimate α2 as (1− β̂2), where β̂2 is the consistent estimate of
β2 found in the third part of this question. The researcher does not think that
this is right but is confused and says that he will look into it after the seminar.
What should he have said?

A9.6 A researcher has data on e, the annual average rate of growth of employment, x the
annual average rate of growth of output, and p, the annual average rate of growth
of productivity, for a sample of 25 countries, the average rates being calculated for
the period 1995–2005 and expressed as percentages. The researcher hypothesises
that the variables are related by the following model:

e = β1 + β2x+ u (1)

x = e+ p. (2)

The second equation is an identity because p is defined as the difference between x
and e. The researcher believes that p is exogenous. The correlation coefficient for x
and p is 0.79.
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• Explain why the OLS estimator of β2 would be inconsistent, if the researcher’s
model is correctly specified. Derive analytically the large-sample bias, and
state whether it is possible to determine its sign.

• Explain how the researcher might use p to construct an IV estimator of β2,
that is consistent if p is exogenous. Demonstrate analytically that the
estimator is consistent.

• The OLS and IV regressions are summarised below (standard errors in
parentheses). Comment on them, making use of your answers to the first two
parts of this question.

OLS ê = −0.52 + 0.48x (3)

(0.27) (0.08)

IV ê = 0.37 + 0.17x (4)

(0.42) (0.14)

• A second researcher hypothesises that both x and p are exogenous and that
equation (2) should be written:

e = x− p. (5)

On the assumption that this is correct, explain why the slope coefficients in (3)
and (4) are both biased and determine the direction of the bias in each case.

• Explain what would be the result of fitting (5), regressing e on x and p.

A9.7 A researcher has data from the World Bank World Development Report 2000 on F ,
average fertility (average number of children born to each woman during her life),
M , under-five mortality (number of children, per 100, dying before reaching the age
of 5), and S, average years of female schooling, for a sample of 54 countries. She
hypothesises that fertility is inversely related to schooling and positively related to
mortality, and that mortality is inversely related to schooling:

F = β1 + β2S + β3M + u (1)

M = α1 + α2S + v (2)

where u and v are disturbance terms that may be assumed to be distributed
independently of each other. S may be assumed to be exogenous.

• Derive the reduced form equations for F and M .

• Explain what would be the most appropriate method to fit equation (1).

• Explain what would be the most appropriate method to fit equation (2).

The researcher decides to fit (1) using ordinary least squares, and she decides also
to perform a simple regression of F on S, again using ordinary least squares, with
the following results (standard errors in parentheses):

F̂ = 4.08− 0.17S + 0.015M R2 = 0.83 (3)

(0.61) (0.04) (0.003)

F̂ = 6.99− 0.36S R2 = 0.71 (4)

(0.39) (0.03)
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• Explain why the coefficient of S differs in the two equations.

• Explain whether one may validly perform t tests on the coefficients of (4).

At a seminar someone hypothesises that female schooling may be negatively
influenced by fertility, especially in the poorer developing countries in the sample,
and this would affect (4). To investigate this, the researcher adds the following
equation to the model:

S = δ1 + δ2F + δ3G+ w (5)

where G is GNP per capita and w is a disturbance term. She regresses F on S (1)
instrumenting for S with G (column (b) in the output below), and (2) using
ordinary least squares, as in equation (4) (column (B) in the output below). The
correlation between S and G was 0.70. She performs a Durbin–Wu–Hausman test
to compare the coefficients.

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| IV OLS Difference S.E.

-------------+----------------------------------------------------------------

S | -.2965323 -.3637397 .0672074 .0347484

_cons | 6.162605 6.992907 -.8303019 .4194891

------------------------------------------------------------------------------

b = consistent under Ho and Ha; obtained from ivreg

B = inconsistent under Ha, efficient under Ho; obtained from regress

Test: Ho: difference in coefficients not systematic

chi2( 1) = (b-B)’[(V_b-V_B)^(-1)](b-B)

= 3.31

Prob>chi2 = 0.1158

• Discuss whether G is likely to be a valid instrument.

• What should the researcher’s conclusions be with regard to the test?

A9.8 Aggregate demand QD for a certain commodity is determined by its price, P ,
aggregate income, Y , and population, POP :

QD = β1 + β2P + β3Y + β4POP + uD

and aggregate supply is given by:

QS = α1 + α2P + uS

where uD and uS are independently distributed disturbance terms.

• Demonstrate that the estimator of α2 will be inconsistent if ordinary least
squares (OLS) is used to fit the supply equation, showing that the
large-sample bias is likely to be negative.

• Demonstrate that a consistent estimator of α2 will be obtained if the supply
equation is fitted using instrumental variables (IV), using Y as an instrument.

The model is used for a Monte Carlo experiment, with α2 set equal to 0.2 and
suitable values chosen for the other parameters. The table shows the estimates of

191



9. Simultaneous equations estimation

α2 obtained in 10 samples using OLS, using IV with Y as an instrument, using IV
with POP as an instrument, and using two-stage least squares (TSLS) with Y and
POP. s.e. is standard error. The correlation between P and Y averaged 0.50 across
the samples. The correlation between P and POP averaged 0.63 across the
samples. Discuss the results obtained.

OLS IV with Y IV with POP TSLS
coef. s.e. coef. s.e. coef. s.e. coef. s.e.

1 0.15 0.03 0.22 0.05 0.21 0.05 0.21 0.03
2 0.08 0.04 0.24 0.11 0.19 0.08 0.21 0.06
3 0.11 0.02 0.18 0.06 0.19 0.05 0.19 0.04
4 0.16 0.02 0.20 0.04 0.19 0.03 0.19 0.02
5 0.15 0.02 0.27 0.09 0.18 0.04 0.20 0.03
6 0.14 0.03 0.24 0.08 0.18 0.05 0.20 0.04
7 0.20 0.03 0.22 0.05 0.26 0.04 0.25 0.03
8 0.15 0.03 0.21 0.06 0.24 0.05 0.23 0.04
9 0.11 0.02 0.17 0.05 0.14 0.03 0.15 0.03
10 0.17 0.03 0.16 0.05 0.24 0.05 0.20 0.03

A9.9 A researcher has the following data for a sample of 1,000 manufacturing enterprises
on the following variables, each measured as an annual average for the period
2001–2005: G, average annual percentage rate of growth of sales; R, expenditure on
research and development; and A, expenditure on advertising. R and A are
measured as a proportion of sales revenue. He hypothesises the following model:

G = β1 + β2R + β3A+ uG (1)

R = α1 + α2G+ uR (2)

where uG and uR are disturbance terms distributed independently of each other.

A second researcher believes that expenditure on quality control, Q, measured as a
proportion of sales revenue, also influences the growth of sales, and hence that the
first equation should be written:

G = β1 + β2R + β3A+ β4Q+ uG. (1∗)

A and Q may be assumed to be exogenous variables.

• Derive the reduced form equation for G for the first researcher.

• Explain why ordinary least squares (OLS) would be an inconsistent estimator
of the parameters of equation (2).

• The first researcher uses instrumental variables (IV) to estimate α2 in (2).
Explain the procedure and demonstrate that the IV estimator of α2 is
consistent.

• The second researcher uses two stage least squares (TSLS) to estimate α2 in
(2). Explain the procedure and demonstrate that the TSLS estimator is
consistent.
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• Explain why the TSLS estimator used by the second researcher ought to
produce ‘better’ results than the IV estimator used by the first researcher, if
the growth equation is given by (1*). Be specific about what you mean by
‘better’.

• Suppose that the first researcher is correct and the growth equation is actually
given by (1), not (1*). Compare the properties of the two estimators in this
case.

• Suppose that the second researcher is correct and the model is given by (1*)
and (2), but A is not exogenous after all. Suppose that A is influenced by G:

A = γ1 + γ2G+ uA (3)

where uA is a disturbance term distributed independently of uG and uR. How
would this affect the properties of the IV estimator of α2 used by the first
researcher?

A9.10 A researcher has data for 100 workers in a large organisation on hourly earnings,
EARNINGS, skill level of the worker, SKILL, and a measure of the intelligence of
the worker, IQ. She hypothesises that LGEARN, the natural logarithm of
EARNINGS, depends on SKILL, and that SKILL depends on IQ.

LGEARN = β1 + β2SKILL + u (1)

SKILL = α1 + α2IQ + v (2)

where u and v are disturbance terms. The researcher is not sure whether u and v
are distributed independently of each other.

• State, with a brief explanation, whether each variable is endogenous or
exogenous, and derive the reduced form equations for the endogenous variables.

• Explain why the researcher could use ordinary least squares (OLS) to fit
equation (1) if u and v are distributed independently of each other.

• Show that the OLS estimator of β2 is inconsistent if u and v are positively
correlated and determine the direction of the large-sample bias.

• Demonstrate mathematically how the researcher could use instrumental
variables (IV) estimation to obtain a consistent estimate of β2.

• Explain the advantages and disadvantages of using IV, rather than OLS, to
estimate β2, given that the researcher is not sure whether u and v are
distributed independently of each other.

• Describe in general terms a test that might help the researcher decide whether
to use OLS or IV. What are the limitations of the test?

• Explain whether it is possible for the researcher to fit equation (2) and obtain
consistent estimates.
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A9.11 This exercise relates to the Further material section.

In general in an introductory econometrics course, issues and problems are treated
separately, one at a time. In practice in empirical work, it is common for multiple
problems to be encountered simultaneously. When this is the case, the
one-at-a-time analysis may no longer be valid. In the case of the AJR study, both
endogeneity and measurement error seem to be issues. This exercise looks at both
together, within the context of that model.

Let S be the correct good governance variable and let R be the measured variable,
with measurement error w. Thus the model may be written:

Y = β1 + β2S + u

S = α1 + α2Y + v

R = S + w.

It may be assumed that w has zero expectation and constant variance σ2
w across

observations, and that it is distributed independently of S and the disturbance
terms in the equations in the model. Investigate the likely direction of the bias in
the OLS estimator of β2 in large samples.

9.5 Answers to the starred exercises in the textbook

9.1 A simple macroeconomic model consists of a consumption function and an income
identity:

C = β1 + β2Y + u

Y = C + I

where C is aggregate consumption, I is aggregate investment, Y is aggregate
income, and u is a disturbance term. On the assumption that I is exogenous, derive
the reduced form equations for C and Y .

Answer:

Substituting for Y in the first equation:

C = β1 + β2(C + I) + u.

Hence:

C =
β1

1− β2

+
β2I

1− β2

+
u

1− β2

and:

Y = C + I =
β1

1− β2

+
I

1− β2

+
u

1− β2

.

9.2 It is common to write an earnings function with the logarithm of the hourly wage
as the dependent variable and characteristics such as years of schooling, cognitive
ability, years of work experience, etc as the explanatory variables. Explain whether
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such an equation should be regarded as a reduced form equation or a structural
equation.

Answer:

In the conventional model of the labour market, the wage rate and the quantity of
labour employed are both endogenous variables jointly determined by the
interaction of demand and supply. According to this model, the wage equation is a
reduced form equation.

9.3 In the simple macroeconomic model:

C = β1 + β2Y + u

Y = C + I

described in Exercise 9.1, demonstrate that OLS would yield inconsistent results if
used to fit the consumption function, and investigate the direction of the bias in
the slope coefficient.

Answer:

The first step in the analysis of the OLS slope coefficient is to break it down into
the true value and error component in the usual way:

β̂OLS
2 =

∑(
Yi −Y

)(
Ci −C

)
∑(

Yi −Y
)2 = β2 +

∑(
Yi −Y

)
(ui −u)∑(

Yi −Y
)2 .

From the reduced form equation in Exercise 9.1 we see that Y depends on u and
hence we will not be able to obtain a closed-form expression for the expectation of
the error term. Instead we take plims, having first divided the numerator and the
denominator of the error term by n so that they will possess limits as n goes to
infinity.

plim β̂OLS
2 = β2 +

plim 1
n

∑(
Yi −Y

)
(ui −u)

plim 1
n

∑(
Yi −Y

)2 = β2 +
cov(Y, u)

var(Y)
.

We next substitute for Y since it is an endogenous variable. We have two choices:
we could substitute from the structural equation, or we could substitute from the
reduced form. If we substituted from the structural equation, in this case the
income identity, we would introduce another endogenous variable, C, and we would
find ourselves going round in circles. So we must choose the reduced form.

plim β̂OLS
2 = β2 +

cov
([

β1
1−β2 + I

1−β2 + u
1−β2

]
, u
)

var
(

β1
1−β2 + I

1−β2 + u
1−β2

)
= β2 +

1
1−β2 (cov(I, u) + cov(u, u))(

1
1−β2

)2

var(I + u)

= β2 + (1− β2)
cov(I, u) + var(u)

var(I) + var(u) + 2cov(I, u)
.
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On the assumption that I is exogenous, it is distributed independently of u and
cov(I, u) = 0. So:

plim β̂OLS
2 = β2 + (1− β2)

σ2
u

σ2
I + σ2

u

since the sample variances tend to the population variances as the sample becomes
large. Since the variances are positive, the sign of the bias depends on the sign of
(1− β2). It is reasonable to assume that the marginal propensity to consume is
positive and less than 1, in which case this term will be positive and the
large-sample bias in β̂OLS

2 will be upwards.

The OLS estimate of the intercept is also inconsistent:

β̂OLS
1 =C− β̂OLS

2 Y = β1 + β2Y +u− β̂OLS
2 Y.

Hence:

plim β̂OLS
1 = β1 + (β2 − plim β̂OLS

2 ) plim Y

= β1 − (1− β2)
σ2
u

σ2
I + σ2

u

plim Y.

This is evidently biased downwards, as one might expect, given that the slope
coefficient was biased upwards.

9.6 The table gives consumption per capita, C, gross fixed capital formation per capita,
I, and gross domestic product per capita, Y , all measured in US$, for 33 countries
in 1998. The output from an OLS regression of C on Y , and an IV regression using
I as an instrument for Y , are shown. Comment on the differences in the results.

C I Y C I Y
Australia 15,024 4,749 19,461 South Korea 4,596 1,448 6,829
Austria 19,813 6,787 26,104 Luxembourg 26,400 9,767 42,650
Belgium 18,367 5,174 24,522 Malaysia 1,683 873 3,268
Canada 15,786 4,017 20,085 Mexico 3,359 1,056 4,328
China–PR 446 293 768 Netherlands 17,558 4,865 24,086
China–HK 17,067 7,262 24,452 New Zealand 11,236 2,658 13,992
Denmark 25,199 6,947 32,769 Norway 23,415 9,221 32,933
Finland 17,991 4,741 24,952 Pakistan 389 79 463
France 19,178 4,622 24,587 Philippines 760 176 868
Germany 20,058 5,716 26,219 Portugal 8,579 2,644 9,976
Greece 9,991 2,460 11,551 Spain 11,255 3,415 14,052
Iceland 25,294 6,706 30,622 Sweden 20,687 4487 26,866
India 291 84 385 Switzerland 27,648 7,815 36,864
Indonesia 351 216 613 Thailand 1,226 479 1,997
Ireland 13,045 4,791 20,132 UK 19,743 4,316 23,844
Italy 16,134 4,075 20,580 USA 26,387 6,540 32,377
Japan 21,478 7,923 30,124
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. reg C Y

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 33

-----------+------------------------------ F( 1, 31) = 1331.29

Model | 2.5686e+09 1 2.5686e+09 Prob> F = 0.0000

Residual | 59810749.2 31 1929379.01 R-squared = 0.9772

-----------+------------------------------ Adj R-squared = 0.9765

Total | 2.6284e+09 32 82136829.4 Root MSE = 1389

----------------------------------------------------------------------------

C | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

Y | .7303066 .0200156 36.49 0.000 .6894845 .7711287

_cons | 379.4871 443.6764 0.86 0.399 -525.397 1284.371

----------------------------------------------------------------------------

. ivregress 2sls C (Y=I)

------------------------------------------------------------------------------

Instrumental variables (2SLS) regression Number of obs = 33

Wald chi2(1) = 1269.09

Prob> chi2 = 0.0000

R-squared = 0.9770

Root MSE = 1353.9

----------------------------------------------------------------------------

C | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------------

Y | .7183909 .0201658 35.62 0.000 .6788667 .7579151

_cons | 600.946 442.7386 1.36 0.175 -266.8057 1468.698

----------------------------------------------------------------------------

Instrumented: Y

Instruments: I

----------------------------------------------------------------------------

Answer:

Assuming the simple macroeconomic model:

C = β1 + β2Y + u

Y = C + I

where C is consumption per capita, I is investment per capita, and Y is income per
capita, and I is assumed exogenous, the OLS estimator of the marginal propensity
to consume will be biased upwards. As was shown in Exercise 9.3:

plim β̂OLS
2 = β2 + (1− β2)

σ2
u

σ2
I + σ2

u

.

Hence the IV estimate should be expected to be lower, but only by a small amount,
given the data. With β̂2 estimated at 0.72, (1− β̂2) is 0.28. σ2

u is estimated at 1.95
million and σ2

I is 7.74 million. Hence, on the basis of these estimates, the bias
should be about 0.06. The actual difference in the OLS and IV estimates is smaller
still. However, the actual difference would depend on the purely random sampling
error as well as the bias, and it is possible that in this case the sampling error
happens to have offset the bias to some extent.
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9.11 Consider the price inflation/wage inflation model given by equations (9.1) and (9.2):

p = β1 + β2w + up

w = α1 + α2p+ α3U + uw.

We have seen that the first equation is exactly identified, U being used as an
instrument for w. Suppose that TSLS is applied to this model, despite the fact that
it is exactly identified, rather than overidentified. How will the results differ?

Answer:

If we fit the reduced form, we obtain a fitted equation:

ŵ = h1 + h2U.

The TSLS estimator is then given by

β̂TSLS
2 =

∑(
ŵi − ŵ

)
(pi −p)∑(

ŵi − ŵ
)

(wi −w)
=

∑(
h1 + h2Ui − h1 − h2U

)
(pi −p)∑(

h1 + h2Ui − h1 − h2U
)

(wi −w)

=

∑
h2

(
Ui −U

)
(pi −p)∑

h2

(
Ui −U

)
(wi −w)

= β̂IV
2

where β̂IV
2 is the IV estimator using U . Hence the estimator is exactly the same.

[Note: This is a special case of Exercise 8.18.]

9.15 Suppose the first equation in the model in Box 9.2 is fitted, with Q used as an
instrument for Y . Describe the likely properties of the estimator of α2.

Answer:

The first equation in Box 9.2 is:

X = α1 + α2Y + u

The reduced form equation for Y is:

Y =
1

1− α2β2

(β1 + α1β2 + β2u+ v).

Q is not a valid instrument for Y because it is not a determinant of Y .
Mathematically, it can be shown that:

plim α̂IV
2 = α2 +

cov(Q, u)

cov(Q, Y )
.

The numerator of the second term is zero, but so is its denominator and therefore
the expression is undefined.
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9.6 Answers to the additional exercises

A9.1 The positive coefficient of Yt in the regression is attributable wholly to
simultaneous equations bias. The three figures show this graphically.

The first diagram shows what the time series for Ct, It, and Yt would look like if
there were no random component of consumption. The series for Ct is constant at
2,000. That for It is a wave form, and that for Yt is the same wave form shifted
upward by 2,000. The second diagram shows the effect of adding the random
component to consumption. Yt still has a wave form, but there is a clear correlation
between it and Ct.
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In the third diagram, Ct is plotted against Yt, with and without the random
component. The three large circles represent the data when there is no random
component. One circle represents the five data points [C = 2,000, Y = 2,100]; the
middle circle represents the ten data points [C = 2,000, Y = 2,200]; and the other
circle represents the five data points [C = 2,000, Y = 2,300]. A regression line
based on these three points would be horizontal (the dashed line). The solid circles
represent the 20 data points when the random component is affecting Ct and Yt,
and the solid line is the regression line for these points. Note that these 20 data
points fall into three groups: five which lie on a 45 degree line through the left large
circle, 10 which lie on the 45 degree line through the middle circle (actually, you
can only see nine), and five on the 45 degree line through the right circle.

If OLS is used to fit the equation:

β̂OLS
2 =

∑(
Yi −Y

)(
Ci −C

)
∑(

Yi −Y
)2 =

∑(
Yi −Y

)
([2000 + zi]− [2000 +z])∑(

Yi −Y
)2 =

∑(
Yi −Y

)
(zi −z)∑(

Yi −Y
)2 .

Note that at this stage we have broken down the slope coefficient into its true value
plus an error term. The true value does not appear explicitly because it is zero, so
we only have the error term. We cannot take expectations because both the
numerator and the denominator are functions of z:

Y = C + I = 2000 + I + z.

z is a component of C and hence of Y . As a second-best procedure, we investigate
the large-sample properties of the estimator by taking plims. We must first divide
the numerator and denominator by n so that they tend to finite limits:

plim β̂OLS
2 =

plim 1
n

∑(
Yi −Y

)
(zi −z)

plim 1
n

∑(
Yi −Y

)2 =
cov(Y, z)

var(Y )
.

Substituting for Y from its reduced form equation:

plim β̂OLS
2 =

cov([2000 + i+ z], z)

var(2000 + I + z)
=

cov(I, z) + var(z)

var(I) + var(z) + 2cov(I, z)
=

σ2
z

σ2
I + σ2

z

.
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cov(I, z) = 0 because I is distributed independently of z. σ2
z is equal to 10,000

(since we are told that σz is equal to 100). Over a four-year cycle, the mean value
of I is 200 and hence its population variance is given by:

σ2
I =

1

4

[
0 + 1002 + 0 + (−100)2

]
= 5000.

Hence:

plim β̂OLS
2 =

10000

15000
= 0.67.

The actual coefficient in the 20-observation sample, 0.68, is very close to this
(probably atypically close for such a model).

The estimator of the intercept, whose true value is 2,000, is biased downwards
because β̂OLS

2 is biased upwards. The standard errors of the coefficients are invalid
because the regression model assumption B.7 is violated, and hence t tests would
be invalid.

By virtue of the fact that Y = C + I, C is being regressed against a variable which
is largely composed of itself. Hence the high R2 is inevitable, despite the fact that
there is no behavioural relationship between C and Y . Mathematically, R2 is equal
to the square of the sample correlation between the actual and fitted values of C.
Since the fitted values of C are a linear function of the values of Y , R2 is equal to
the square of the sample correlation between C and Y . The population correlation
coefficient is given by

ρC,Y =
cov(C, Y )√

var(C)var(Y )
=

cov ([2000 + z], [2000 + I + z])√
var ([2000 + z]) var ([2000 + I + z])

=
var(z)√

var(z)var[I + z]
=

σ2
z√

σ2
z (σ2

I + σ2
z)
.

Hence in large samples:

R2 =
100002

10000[10000 + 5000]
= 0.67.

R2 in the regression is exactly equal to this, the closeness probably being
something of a coincidence.

Since regression model assumption B.7 is violated, the F statistic cannot be used
to perform an F test of goodness of fit.

A9.2 Ct, It, and Yt are endogenous, the first two being the dependent variables of the
behavioural relationships and the third being defined by an identity. Gt and rt are
exogenous.

Either It or rt could be used as an instrument for Yt in the consumption function.
If it can be assumed that ut and vt are distributed independently, It can also be
regarded as exogenous as far as the determination of Ct and Yt are concerned. It
would be preferable to rt since it is more highly correlated with Yt. One’s first
thought, then, would be to use TSLS, with the first stage fitting the equation:

Yt =
β1

1− β2

+
It

1− β2

+
Gt

1− β2

+
ut

1− β2

.

201



9. Simultaneous equations estimation

Note, however, that the equation implies the restriction that the coefficients of It
and Gt are equal. Hence all one has to do is to define a variable:

Zt = It +Gt

and use Zt as an instrument for Yt in the consumption function.

The investment function would be fitted using OLS since rt is exogenous. The
income identity does not need to be fitted.

A9.3 Md
t is endogenous because it is determined by the second of the two new

relationships. The addition of the first of these relationships makes rt endogenous.
To see this, substituting for Ct and It in the income identity, using the
consumption function and the investment function, one obtains:

Yt =
(α1 + β1) + α2rt + ut + vt

1− β2

.

This is usually known as the IS curve. Substituting for Md
t in the first of the two

new relationships, using the second, one has:

Mt = δ1 + δ2Yt + δ3rt + wt.

This is usually known as the LM curve. The equilibrium values of both Yt and rt
are determined by the intersection of these two curves and hence rt is endogenous
as well as Yt. Gt remains exogenous, as before, and Mt is also exogenous.

The consumption and investment functions are overidentified and one would use
TSLS to fit them, the exogenous variables being government expenditure and the
supply of money. The demand for money equation is exactly identified, two of the
explanatory variables, rt and Yt, being endogenous, and the two exogenous
variables being available to act as instruments for them.

A9.4 The OLS standard errors are invalid so a comparison is illegitimate. They are not
of any great interest anyway because the OLS estimator is biased. Figure 9.3 in the
text shows that the variance of the OLS estimator is smaller than that of the IV
estimator, but, using a criterion such as the mean square error, there is no doubt
that the IV estimator should be preferred. The comment about R2 is irrelevant.
OLS has a better fit but we have had to abandon the least squares principle
because it yields inconsistent estimates.

A9.5 Explain why ordinary least squares (OLS) would yield inconsistent estimates if it
were used to fit (1) and derive the large-sample bias in the slope coefficient.

At some point we will need the reduced form equation for Y . Substituting into the
third equation from the first two, and rearranging, it is:

Y =
1

1− α2 − β2

(α1 + β1 + α3K + u+ v).

Since Y depends on u, the assumption that the disturbance term be distributed
independently of the regressors is violated in (1).

β̂OLS
2 =

∑(
Yi −Y

)(
Wi −W

)
∑(

Yi −Y
)2 = β2 +

∑(
Yi −Y

)
(ui −u)∑(

Yi −Y
)2
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after substituting for W from (1) and simplifying. We are not able to obtain a
closed-form expression for the expectation of the error term because u influences
both its numerator and denominator, directly and by virtue of being a component
of Y , as seen in the reduced form. Dividing both the numerator and denominator
by n, and noting that:

plim
1

n

∑(
Yi −Y

)2

= var(Y )

as a consequence of a law of large numbers, and that it can also be shown that:

plim
1

n

∑(
Yi −Y

)
(ui −u) = cov(Y, u)

we can write

plim β̂OLS
2 = β2 +

plim 1
n

∑(
Yi −Y

)
(ui −u)

plim 1
n

∑(
Yi −Y

)2 = β2 +
cov(Y, u)

var(Y )
.

Now:

cov(Y, u) = cov

(
1

1− α2 − β2

(α1 + β1 + α3K + u+ v), u

)
=

1

1− α2 − β2

(α3cov(K, u) + var(u) + cov(v, u))

the covariance of u with the constants being zero. Since K is exogenous,
cov(K, u) = 0. We are told that u and v are distributed independently of each
other, and so cov(u, v) = 0. Hence:

plim β̂OLS
2 = β2 +

1

1− α2 − β2

σ2
u

plim var(Y )
.

From the reduced form equation for Y it is evident that (1− α2 − β2) > 0, and so
the large-sample bias will be positive.

Explain what can be inferred about the finite-sample properties of OLS if used to fit
(1).

It is not possible for an estimator that is unbiased in a finite sample to develop a
bias if the sample size increases. Therefore, since the estimator is biased in large
samples, it must also be biased in finite ones. The plim may well be a guide to the
mean of the estimator in a finite sample, but this is not guaranteed and it is
unlikely to be exactly equal to the mean.

Demonstrate mathematically how one might obtain a consistent estimate of β2 in
(1).

Use K as an instrument for Y :

β̂IV
2 =

∑(
Ki −K

)(
Wi −W

)
∑(

Ki −K
)(

Yi −Y
) = β2 +

∑(
Ki −K

)
(ui −u)∑(

Ki −K
)(

Yi −Y
)
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after substituting for W from (1) and simplifying. We are not able to obtain a
closed-form expression for the expectation of the error term because u influences
both its numerator and denominator, directly and by virtue of being a component
of Y , as seen in the reduced form. Dividing both the numerator and denominator
by n, and noting that it can be shown that:

plim
1

n

∑(
Ki −K

)
(ui −u) = cov(K, u) = 0

since K is exogenous, and that:

plim
1

n

∑(
Ki −K

)(
Yi −Y

)
= cov(K,Y )

we can write:

plim β̂IV
2 = β2 +

cov(K, u)

cov(K,Y )
= β2.

cov(K,Y ) is non-zero since the reduced form equation for Y reveals that K is a
determinant of Y . Hence the instrumental variable estimator is consistent.

Explain why (2) is not identified (underidentified).

(2) is underidentified because the endogenous variable Y is a regressor and there is
no valid instrument to use with it. The only potential instrument is the exogenous
variable K and it is already a regressor in its own right.

Explain whether (3) is identified.

(3) is an identity so the issue of identification does not arise.

At a seminar, one of the participants asserts that it is possible to obtain an estimate
of α2 even though equation (2) is underidentified. Any change in income that is not
a change in wages must be a change in profits, by definition, and so one can
estimate α2 as (1− β̂2), where β̂2 is the consistent estimate of β2 found in the third
part of this question. The researcher does not think that this is right but is confused
and says that he will look into it after the seminar. What should he have said?

The argument would be valid if Y were exogenous, in which case one could
characterise β2 and α2 as being the effects of Y on W and P , holding other
variables constant. But Y is endogenous, and so the coefficients represent only part
of an adjustment process. Y cannot change autonomously, only in response to
variations in K, u, or v.

The reduced form equations for W and P are:

W = β1 +
β2

1− α2 − β2

(α1 + β1 + α3K + u+ v) + u

=
1

1− α2 − β2

(β1 + α1β2 − α2β1 + α3β2K + (1− α2)u+ β2v)

P = α1 +
α2

1− α2 − β2

(α1 + β1 + α3K + u+ v) + α3K + v

=
1

1− α2 − β2

(α1 − α1β2 + α2β1 + α3(1− β2)K + α2u+ (1− β2)v).
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Thus, for example, a change in K will lead to changes in W and P in the
proportions β2 : (1− β2), not β2 : α2. The same is true of changes caused by a
variation in v. For a variation in u, the proportions would be (1− α2) : α2.

A9.6 Explain why the OLS estimator of β2 would be inconsistent, if the researcher’s
model is correctly specified. Derive analytically the largesample bias, and state
whether it is possible to determine its sign.

The reduced form equation for x is:

x =
β1 + p+ u

1− β2

.

Thus:

β̂OLS
2 =

∑
(xi −x)(ei −e)∑

(xi −x)2
=

∑
(xi −x)(β1 + β2xi + ui − β1 − β2x−u)∑

(xi −x)2

= β2 +

∑
(xi −x)(ui −u)∑

(xi −x)2
.

It is not possible to obtain a closed-form expression for the expectation of the
estimator because the error term is a nonlinear function of u. Instead we
investigate whether the estimator is consistent, first dividing the numerator and the
denominator of the error term by n so that they tend to limits as the sample size
becomes large.

plim β̂OLS
2 = β2 +

plim 1
n

∑(
1

1−β2 [β1 + pi + ui − β1 −p−u]
)

(ui −u)

plim 1
n

∑
(xi −x)2

= β2 +
1

1− β2

plim 1
n

∑
(pi −p)(ui −u) + plim 1

n

∑
(ui −u)2

plim 1
n

∑
(xi −x)2

= β2 +
1

1− β2

cov(p, u) + var(u)

var(x)
= β2 +

1

1− β2

σ2
u

σ2
x

since cov(p, u) = 0, p being exogenous. It is reasonable to assume that employment
grows less rapidly than output, and hence β2, and so (1− β2), are less than 1. The
bias is therefore likely to be positive.

Explain how the researcher might use p to construct an IV estimator of β2 that is
consistent if p is exogenous. Demonstrate analytically that the estimator is
consistent.

p is available as an instrument, being exogenous, and therefore independent of u,
being correlated with x, and not being in the equation in its own right.

β̂IV
2 =

∑
(pi −p)(ei −e)∑
(pi −p)(xi −x)

=

∑
(pi −p)(β1 + β2xi + ui − β1 − β2x−u)∑

(pi −p)(xi −x)

= β2 +

∑
(pi −p)(ui − ū)∑
(pi −p)(xi −x)

.

205



9. Simultaneous equations estimation

Hence, dividing the numerator and the denominator of the error term by n so that
they tend to limits as the sample size becomes large,

plim β̂IV
2 = β2 +

plim 1
n

∑
(pi −p)(ui −u)

plim 1
n

∑
(pi −p)(xi −x)

= β2 +
cov(p, u)

cov(p, x)
= β2

since cov(p, u) = 0, p being exogenous, and cov(p, x) 6= 0, x being determined
partly by p.

The OLS and IV regressions are summarised below (standard errors in
parentheses). Comment on them, making use of your answers to the first two parts
of this question.

OLS ê = −0.52 + 0.48x (3)

(0.27) (0.08)

IV ê = 0.37 + 0.17x (4)

(0.42) (0.14)

The IV estimate of the slope coefficient is lower than the OLS estimate, as
expected. The standard errors are not comparable because the OLS ones are
invalid.

A second researcher hypothesises that both x and p are exogenous and that equation
(2) should be written:

e = x− p. (5)

On the assumption that this is correct, explain why the slope coefficients in (3) and
(4) are both biased and determine the direction of the bias in each case.

If (5) is correct, (3) is a misspecification that omits p and includes a redundant
intercept. From the identity, the true values of the coefficients of x and p are 1 and
−1, respectively. For (3):

E(β̂OLS
2 ) = 1− 1×

∑
(xi −x)(pi −p)∑

(xi −x)2
.

x and p are positively correlated, so the bias will be downwards.

For (4):

β̂IV
2 =

∑
(pi −p)(ei −e)∑
(pi −p)(xi −x)

=

∑
(pi −p)([xi − pi]− [x−p])∑

(pi −p)(xi −x)

= 1−
∑

(pi −p)2∑
(pi −p)(xi −x)

= 1−
1
n

∑
(pi −p)2

1
n

∑
(pi −p)(xi −x)

.

Hence:

plim β̂IV
2 = 1− var(p)

cov(x, p)

and so again the bias is downwards.

Explain what would be the result of fitting (5), regressing e on x and p.

One would obtain a perfect fit with the coefficient of x equal to 1, the coefficient of
p equal to −1, and R2 = 1.
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A9.7 Derive the reduced form equations for F and M.

(2) is the reduced form equation for M . Substituting for M in (1), we have:

F = (β1 + α1β3) + (β2 + α2β3)S + u+ β3v.

Explain what would be the most appropriate method to fit equation (1).

Since M does not depend on u, OLS may be used to fit (1).

Explain what would be the most appropriate method to fit equation (2).

There are no endogenous explanatory variables in (2), so again OLS may be used.

Explain why the coefficient of S differs in the two equations.

In (3), the coefficient is an estimate of the direct effect of S on fertility, controlling
for M . In (4), the reduced form equation, it is an estimate of the total effect, taking
account of the indirect effect via M (female education reduces mortality, and a
reduction in mortality leads to a reduction in fertility).

Explain whether one may validly perform t tests on the coefficients of (4).

It is legitimate to use OLS to fit (4), so the t tests are valid.

Discuss whether G is likely to be a valid instrument.

G should be a valid instrument since it is highly correlated with S, it may
reasonably be considered to be exogenous and therefore uncorrelated with the
disturbance term in (4), and it does not appear in the equation in its own right
(though perhaps it should).

What should the researchers conclusions be with regard to the test?

With 1 degree of freedom as indicated by the output, the critical value of
chi-squared at the 5 per cent significance level is 3.84. Therefore we do not reject
the null hypothesis of no significant difference between the estimates of the
coefficients and conclude that there is no need to instrument for S. (4) should be
preferred because OLS is more efficient than IV, when both are consistent.

A9.8 Demonstrate that the estimate of α2 will be inconsistent if ordinary least squares
(OLS) is used to fit the supply equation, showing that the large-sample bias is likely
to be negative.

The reduced form equation for P is:

P =
1

α2 − β2

(β1 − α1 + β3Y + β4POP + uD − uS).

The OLS estimator of α2 is:

α̂OLS
2 =

∑(
Pi −P

)(
Qi −Q

)
∑(

Pi −P
)2 =

∑(
Pi −P

)(
α1 + α2Pi + uSi − α1 − α2P −uS

)
∑(

Pi −P
)2

= α2 +

∑(
Pi −P

)
(uSi −uS)∑(

Pi −P
)2 .
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We cannot take expectations because uS is a determinant of both the numerator
and the denominator of the error term, in view of the reduced form equation for P .
Instead, we take probability limits, after first dividing the numerator and the
denominator of the error term by n to ensure that limits exist.

plim α̂OLS
2 = α2 +

plim 1
n

∑(
Pi −P

)
(uSi −uS)

plim 1
n

∑(
Pi −P

)2 = α2 +
cov(P, uS)

var(P )
.

Substituting from the reduced form equation for P :

plim α̂OLS
2 = α2 +

cov
(

1
α2−β2 (β1 − α1 + β3Y + β4POP + uD − uS), uS

)
var(P )

= α2 −
1

α2−β2 var(uS)

var(P )
= α2 −

1

α2 − β2

σ2
uS

σ2
P

assuming that Y and POP are exogenous and so cov(uS, Y ) = cov(uS, POP ) = 0.
We are told that uS and uD are distributed independently, so cov(uS, uD) = 0.
Since it is reasonable to suppose that α2 is positive and β2 is negative, the
large-sample bias will be negative.

Demonstrate that a consistent estimate of α2 will be obtained if the supply equation
is fitted using instrumental variables (IV), using Y as an instrument.

α̂IV
2 =

∑(
Yi −Y

)(
Qi −Q

)
∑(

Yi −Y
)(

Pi −P
) =

∑(
Yi −Y

)(
α1 + α2Pi + uSi − α1 − α2P −uS

)
∑(

Yi −Y
)(

Pi −P
)

= α2 +

∑(
Yi −Y

)
(uSi −uS)∑(

Yi −Y
)(

Pi −P
) .

We cannot take expectations because uS is a determinant of both the numerator
and the denominator of the error term, in view of the reduced form equation for P .
Instead, we take probability limits, after first dividing the numerator and the
denominator of the error term by n to ensure that limits exist.

plim α̂IV
2 = α2 +

plim 1
n

∑(
Yi −Y

)
(uSi −uS)

plim 1
n

∑(
Yi −Y

)(
Pi −P

) = α2 +
cov(Y, u)

cov(Y, P )
= α2

since cov(Y, us) = 0 and cov(P, Y ) 6= 0, Y being a determinant of P .

The model is used for a Monte Carlo experiment ... Discuss the results obtained.

• The OLS estimates are clearly biased downwards.

• The IV and TSLS estimates appear to be distributed around the true value,
although one would need a much larger number of samples to be sure of this.

• The IV estimates with POP appear to be slightly closer to the true value than
those with Y , as should be expected given the higher correlation, and the TSLS
estimates appear to be slightly closer than either, again as should be expected.
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9.6. Answers to the additional exercises

• The OLS standard errors should be ignored. The standard errors for the IV
regressions using POP tend to be smaller than those using Y , reflecting the
fact that POP is a better instrument. Those for the TSLS regressions are
smallest of all, reflecting its greater efficiency.

A9.9 Derive the reduced form equation for G for the first researcher.

G =
1

1− α2β2

(β1 + α1β2 + β3A+ uG + β2uR).

Explain why ordinary least squares (OLS) would be an inconsistent estimator of the
parameters of equation (2).

The reduced form equation for G demonstrates that G is not distributed
independently of the disturbance term uR, a requirement for the consistency of
OLS when fitting (2).

The first researcher uses instrumental variables (IV) to estimate α2 in (2). Explain
the procedure and demonstrate that the IV estimator of α2 is consistent.

The first researcher would use A as an instrument for G. It is exogenous, so
independent of uR; correlated with G; and not in the equation in its own right. The
estimator of the slope coefficient is:

α̂IV
2 =

∑(
Ai −A

)(
Ri −R

)
∑(

Ai −A
)(

Gi −G
) =

∑(
Ai −A

)(
[α1 + α2Gi + uRi]− [α1 + α2G= u]

)
∑(

Ai −A
)(

Gi −G
)

= α2 +

∑(
Ai −A

)
(uRi −uR)∑(

Ai −A
)(

Gi −G
) .

Hence:

plim α̂IV
2 = α2 + plim

1
n

∑(
Ai −A

)
(uRi −uR)

1
n

∑(
Ai −A

)(
Gi −G

) = α2 +
cov(A, uR)

cov(A,G)
= α2

since cov(A, uR) = 0, A being exogenous, and cov(A,G) 6= 0, A being a
determinant of G.

The second researcher uses two stage least squares (TSLS) to estimate α2 in (2).
Explain the procedure and demonstrate that the TSLS estimator is consistent.

The reduced form equation for G for the second researcher is:

G =
1

1− α2β2

(β1 + α1β2 + β3A+ β4Q+ uG + β2uR).

It is fitted using TSLS. The fitted values of G are used as the instrument:

α̂TSLS
2 =

∑(
Ĝi − Ĝ

)(
Ri −R

)
∑(

Ĝi − Ĝ
)(

Gi −G
) .
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9. Simultaneous equations estimation

Following the same method as in the third part of the question:

plim α̂TSLS
2 = α2 +

cov(Ĝ, uR)

cov(Ĝ, G)
= α2

cov(Ĝ, uR) because Ĝ is a linear combination of the exogenous variables, and

cov(Ĝ, G) 6= 0.

Explain why the TSLS estimator used by the second researcher ought to produce
‘better’ results than the IV estimator used by the first researcher, if the growth
equation is given by (1*). Be specific about what you mean by ‘better’.

The TSLS estimator of α2 should have a smaller variance. The variance of an IV
estimator is inversely proportional to the square of the correlation of G and the
instrument. Ĝ is the linear combination of A and Q that has the highest correlation.
It will therefore, in general, have a lower variance than the IV estimator using A.

Suppose that the first researcher is correct and the growth equation is actually given
by (1), not (1*). Compare the properties of the two estimators in this case.

If the first researcher is correct, A is the optimal instrument because it will be more
highly correlated with G (in the population) than the TSLS combination of A and
Q and it will therefore be more efficient.

Suppose that the second researcher is correct and the model is given by (1*) and
(2), but A is not exogenous after all. Suppose that A is influenced by G:

A = γ1 + γ2G+ uA

where uA is a disturbance term distributed independently of uG and uR. How would
this affect the properties of the IV estimator of α2 used by the first researcher?

cov(A, uR) would not be equal to 0 and so the estimator would be inconsistent.

A9.10 State, with a brief explanation, whether each variable is endogenous or exogenous,
and derive the reduced form equations for the endogenous variables.

In this model LGEARN and SKILL are endogenous. IQ is exogenous. The reduced
form equation for LGEARN is:

LGEARN = β1 + α1β2 + α2β2IQ + u+ β2v.

The reduced form equation for SKILL is the structural equation.

Explain why the researcher could use ordinary least squares (OLS) to fit equation
(1) if u and v are distributed independently of each other.

SKILL is not determined either directly or indirectly by u. Thus in equation (1)
there is no violation of the requirement that the regressor be distributed
independently of the disturbance term.
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9.6. Answers to the additional exercises

Show that the OLS estimator of β2 is inconsistent if u and v are positively
correlated and determine the direction of the large-sample bias.

Writing L for LGEARN, S for SKILL:

β̂OLS
2 =

∑(
Si −S

)(
Li −L

)
∑(

Si −S
)2 =

∑(
Si −S

)(
[β1 + β2Si + ui]− [β1 + β2S+u]

)
∑(

Si −S
)2

= β2 +

∑(
Si −S

)
(ui −u)∑(

Si −S
)2 .

We cannot obtain a closed-form expression for the expectation of the error term
since S depends on v and v is correlated with u. Hence instead we take plims,
dividing the numerator and the denominator by n to ensure that the limits exist:

plim β̂OLS
2 = β2 +

plim 1
n

∑(
Si −S

)
(ui −u)

plim 1
n

∑(
Si −S

)2 = β2 +
cov(S, u)

var(S)
.

Now:

cov(S, u) = cov([α1 + α2IQ+ v], u) = cov(v, u)

since α1 is a constant and IQ is exogenous. Hence the numerator of the error term
is positive in large samples. The denominator, being a variance, is also positive. So
the large-sample bias is positive.

Demonstrate mathematically how the researcher could use instrumental variables
(IV) estimation to obtain a consistent estimate of β2.

The researcher could use IQ as an instrument for SKILL:

β̂IV
2 =

∑(
Ii −I

)(
Li −L

)
∑(

Ii −I
)(

Si −S
) =

∑(
Ii −I

)(
[β1 + β2Si + ui]− [β1 + β2S+u]

)
∑(

Ii −I
)(

Si −S
)

= β2 +

∑(
Ii −I

)
(ui −u)∑(

Ii −I
)(

Si −S
) .

We cannot obtain a closed-form expression for the expectation of the error term
since S depends on v and v is correlated with u. Hence instead we take plims,
dividing the numerator and the denominator by n to ensure that the limits exist:

plim β̂IV
2 = β2 +

plim 1
n

∑(
Ii −I

)
(ui −u)

plim 1
n

∑(
Ii −I

)(
Si −S

) = β2 +
cov(I, u)

cov(I, s)
.

The numerator of the error term is zero because I is exogenous. The denominator
is not zero because S is determined by I. Hence the IV estimator is consistent.
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9. Simultaneous equations estimation

Explain the advantages and disadvantages of using IV, rather than OLS, to
estimate β2, given that the researcher is not sure whether u and v are distributed
independently of each other.

The advantage of IV is that, being consistent, there will be no bias in large samples
and hence one may hope that there is no serious bias in a finite sample. One
disadvantage is that there is a loss of efficiency if u and v are independent. Even if
they are not independent, the IV estimator may be inferior to the OLS estimator
using some criterion such as the mean square error that allows a trade-off between
the bias of an estimator and its variance.

Describe in general terms a test that might help the researcher decide whether to
use OLS or IV. What are the limitations of the test?

Durbin–Wu–Hausman test. Also known as Hausman test. The test statistic is a
chi-squared statistic based on the differences of all the coefficients in the regression.
The null hypothesis is that SKILL is distributed independently of u and the
differences in the coefficients are random. If the test statistic exceeds its critical
value, given the significance level of the test, we reject the null hypothesis and
conclude that we ought to use IV rather than OLS. The main limitation is lack of
power if the instrument is weak.

Explain whether it is possible for the researcher to fit equation (2) and obtain
consistent estimates.

There is no reason why the equation should not be fitted using OLS.

A9.11 Substituting for Y from the first equation into the second, and re-arranging, we
have the reduced form equation for S:

S =
α1 + α2β1 + v + α2u

1− α2β2

.

Substituting from the third equation into the first, we have:

Y = β1 + β2R + u− β2w.

If this equation is fitted using OLS, we have:

plim β̂OLS
2 = β2 +

cov(R, [u− β2w])

var(R)
= β2 +

cov([S + w], [u− β2w])

var(S + w)

= β2 +
α2γσ

2
u − β2σ

2
w

σ2
S + σ2

w

= β2 +
α2γσ

2
u − β2σ

2
w

γ2(σ2
v + α2

2σ
2
u) + σ2

w

where:

γ =
1

1− α2β2

.

The denominator of the bias term is positive. Hence the bias will be positive if (the
component attributable to simultaneity) is greater than (the component
attributable to measurement error), and negative if it is smaller.
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Chapter 10

Binary choice and limited dependent
variable models, and maximum
likelihood estimation

10.1 Overview

The first part of this chapter describes the linear probability model, logit analysis, and
probit analysis, three techniques for fitting regression models where the dependent
variable is a qualitative characteristic. Next it discusses tobit analysis, a censored
regression model fitted using a combination of linear regression analysis and probit
analysis. This leads to sample selection models and heckman analysis. The second part
of the chapter introduces maximum likelihood estimation, the method used to fit all of
these models except the linear probability model.

10.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

describe the linear probability model and explain its defects

describe logit analysis, giving the mathematical specification

describe probit analysis, including the mathematical specification

calculate marginal effects in logit and probit analysis

explain why OLS yields biased estimates when applied to a sample with censored
observations, even when the censored observations are deleted

explain the problem of sample selection bias and describe how the heckman
procedure may provide a solution to it (in general terms, without mathematical
detail)

explain the principle underlying maximum likelihood estimation

apply maximum likelihood estimation from first principles in simple models.
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

10.3 Further material

Limiting distributions and the properties of maximum likelihood estimators

Provided that weak regularity conditions involving the differentiability of the likelihood
function are satisfied, maximum likelihood (ML) estimators have the following
attractive properties in large samples:

(1) They are consistent.

(2) They are asymptotically normally distributed.

(3) They are asymptotically efficient.

The meaning of the first property is familiar. It implies that the probability density
function of the estimator collapses to a spike at the true value. This being the case,
what can the other assertions mean? If the distribution becomes degenerate as the
sample size becomes very large, how can it be described as having a normal
distribution? And how can it be described as being efficient, when its variance, and the
variance of any other consistent estimator, tend to zero?

To discuss the last two properties, we consider what is known as the limiting
distribution of an estimator. This is the distribution of the estimator when the
divergence between it and its population mean is multiplied by

√
n. If we do this, the

distribution of a typical estimator remains nondegenerate as n becomes large, and this
enables us to say meaningful things about its shape and to make comparisons with the
distributions of other estimators (also multiplied by

√
n).

To put this mathematically, suppose that there is one parameter of interest, θ, and that
θ̂ is its ML estimator. Then (2) says that:

√
n
(
θ̂ − θ

)
∼ N(0, σ2)

for some variance σ2. (3) says that, given any other consistent estimator θ̃,
√
θ̃ − θ

cannot have a smaller variance.

Test procedures for maximum likelihood estimation

This section on ML tests contains material that is a little advanced for an introductory
econometrics course. It is provided because likelihood ratio tests are encountered in the
sections on binary choice models and because a brief introduction may be of help to
those who proceed to a more advanced course.

There are three main approaches to testing hypotheses in maximum likelihood
estimation: likelihood ratio (LR) tests, Wald tests, and Lagrange multiplier (LM) tests.
Since the theory behind Lagrange multiplier tests is relatively complex, the present
discussion will be confined to the first two types. We will start by assuming that the
probability density function of a random variable X is a known function of a single
unknown parameter θ and that the likelihood function for θ given a sample of n
observations on X, L(θ |X1, . . . , Xn), satisfies weak regularity conditions involving its
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10.3. Further material

differentiability. In particular, we assume that θ is determined by the first-order
condition dL/dθ = 0. (This rules out estimators such as that in Exercise A10.7) The
null hypothesis is H0 : θ = θ0, the alternative hypothesis is H1 : θ 6= θ0, and the
maximum likelihood estimate of θ is θ̂.

Likelihood ratio tests

A likelihood ratio test compares the value of the likelihood function at θ = θ̂ with its
value at θ = θ0. In view of the definition of θ̂, L(θ̂) ≥ L(θ0) for all θ0. However, if the

null hypothesis is true, the ratio L(θ̂)/L(θ0) should not be significantly greater than 1.
As a consequence, the logarithm of the ratio:

log

(
L(θ̂)

L(θ0)

)
= logL(θ̂)− logL(θ0)

should not be significantly different from zero. In that it involves a comparison of the
measures of goodness of fit for unrestricted and restricted versions of the model, the LR
test is similar to an F test.

Under the null hypothesis, it can be shown that in large samples the test statistic:

LR = 2
(

logL(θ̂)− logL(θ0)
)

has a chi-squared distribution with one degree of freedom. If there are multiple
parameters of interest, and multiple restrictions, the number of degrees of freedom is
equal to the number of restrictions.

Examples

We will return to the example in Section 10.6 in the textbook, where we have a
normally-distributed random variable X with unknown population mean µ and known
standard deviation equal to 1. Given a sample of n observations, the likelihood function
is:

L(µ̂ |X1, . . . , Xn) =

(
1√

2πe(X1−µ)2/2

)
× · · · ×

(
1√

2πe(Xn−µ)2/2

)
.

The log-likelihood is:

logL(µ̂ |X1, . . . , Xn) = n log

(
1√
2π

)
− 1

2

∑
(Xi − µ̂)2

and the unrestricted ML estimate is µ̂ =X. The LR statistic for the null hypothesis
H0 : µ = µ0 is therefore:

LR = 2

((
n log

(
1√
2π

)
− 1

2

∑
(Xi −X)2

)
−
(
n log

(
1√
2π

)
− 1

2
(Xi − µ0)2

))
=

∑
(Xi − µ0)2 −

∑
(Xi −X)2 = n(X− µ0)2.

If we relaxed the assumption σ = 1, the unrestricted likelihood function is:

L(µ̂, σ̂ |X1, . . . , Xn) =

(
1

σ̂
√

2π
e
− 1

2

(
X1−µ̂
σ̂

)2)
× · · · ×

(
1

σ̂
√

2π
e−

1
2(Xn−µ̂

σ̂ )
2
)

215



10. Binary choice and limited dependent variable models, and maximum likelihood estimation

and the log-likelihood is:

logL(µ̂, σ̂ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log σ̂ − 1

2σ̂2

∑
(Xi − µ̂)2.

The first-order condition obtained by differentiating by σ is:

∂ logL

∂σ
= −n

σ
+

1

σ3

∑
(Xi − µ)2 = 0

from which we obtain:

σ̂2 =
1

n

∑
(Xi − µ̂)2.

Substituting back into the log-likelihood function, the latter now becomes a function of
µ only (and is known as the concentrated log-likelihood function or, sometimes, the
profile log-likelihood function):

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ)2

)1/2

− n

2
.

As before, the ML estimator of µ is X̄. Hence the LR statistic is:

LR = 2

((
n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi −X)2

)1/2

− n

2

)

−

(
n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ0)2

)1/2

− n

2

))

= n
(

log
∑

(Xi − µ0)2 − log
∑

(Xi −X)2
)
.

It is worth noting that this is closely related to the F statistic obtained when one fits
the least squares model:

Xi = µ+ ui.

The least squares estimator of µ is X and RSS =
∑

(Xi −X)2.

If one imposes the restriction µ = µ0, we have RSSR =
∑

(Xi− µ0)2 and the F statistic:

F (1, n− 1) =

∑
(Xi − µ0)2 −

∑
(Xi −X)2(∑

(Xi −X)2
)
/(n− 1)

.

Returning to the LR statistic, we have:

LR = n log

∑
(Xi − µ0)2∑
(Xi −X)2

= n log

(
1 +

∑
(Xi − µ0)2 −

∑
(Xi −X)2∑

(Xi −X)2

)

∼= n

∑
(Xi − µ0)2 −

∑
(Xi −X)2∑

(Xi −X)2
=

n

n− 1
F ∼= F.

Note that we have used the approximation log(1 + a) = a which is valid when a is small
enough for higher powers to be neglected.
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Wald tests

Wald tests are based on the same principle as t tests in that they evaluate whether the
discrepancy between the maximum likelihood estimate θ and the hypothetical value θ0

is significant, taking account of the variance in the estimate. The test statistic for the
null hypothesis H0 : θ̂ − θ0 = 0 is: (

θ̂ − θ0

)2

σ̂2
θ̂

where σ̂2
θ̂

is the estimate of the variance of θ evaluated at the maximum likelihood

value. σ̂2
θ̂

can be estimated in various ways that are asymptotically equivalent if the
likelihood function has been specified correctly. A common estimator is that obtained as
minus the inverse of the second differential of the log-likelihood function evaluated at
the maximum likelihood estimate. Under the null hypothesis that the restriction is
valid, the test statistic has a chi-squared distribution with one degree of freedom. When
there are multiple restrictions, the test statistic becomes more complex and the number
of degrees of freedom is equal to the number of restrictions.

Examples

We will use the same examples as for the LR test, first, assuming that σ = 1 and then
assuming that it has to be estimated along with µ. In the first case the log-likelihood
function is:

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− 1

2

∑
(Xi − µ)2.

The first differential is
∑

(Xi − µ) and the second is −n, so the estimate of the variance
is 1/n. The Wald test statistic is therefore n(X− µ0)2.

In the second example, where σ was unknown, the concentrated log-likelihood function
is:

logL(µ |X1, . . . , Xn) = n log

(
1√
2π

)
− n log

(
1

n

∑
(Xi − µ)2

)1/2

− n

2

= n log

(
1√
2π

)
− n

2
log

1

n
− n

2
log
(∑

(Xi − µ)2
)
− n

2
.

The first derivative with respect to µ is:

d logL

dµ
= n

∑
(Xi − µ)∑
(Xi − µ)2

.

The second derivative is:

d2 logL

dµ2
= n

(−n) (
∑

(Xi − µ)2)− (
∑

(Xi − µ)) (−2
∑

(Xi − µ))

[
∑

(Xi − µ)2]2
.

Evaluated at the ML estimator µ̂ =X,
∑

(Xi − µ) = 0 and hence:

d2 logL

dµ2
= − n2∑

(Xi − µ)2
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

giving an estimated variance σ̂2/n, given:

σ̂2 =
1

n

∑
(Xi −X)2.

Hence the Wald test statistic is:
(X− µ0)2

σ̂2/n
.

Under the null hypothesis, this is distributed as a chi-squared statistic with one degree
of freedom.

When there is just one restriction, as in the present case, the Wald statistic is the square
of the corresponding asymptotic t statistic (asymptotic because the variance has been
estimated asymptotically). The chi-squared test and the t test are equivalent, given
that, when there is one degree of freedom, the critical value of the chi-squared statistic
for any significance level is the square of the critical value of the normal distribution.

LR test of restrictions in a regression model

Given the regression model:

Yi = β1 +
k∑
j=2

βjXij + ui

with u assumed to be iid N(0, σ2), the log-likelihood function for the parameters is:

logL(β1, . . . , βk, σ |Yi, Xi, i = 1, . . . , n) = n log

(
1

σ
√

2π

)
− 1

2σ2

∑(
Yi − β1 −

k∑
j=2

βjXij

)2

.

This is a straightforward generalisation of the expression for a simple regression derived
in Section 10.6 in the textbook. Hence

logL(β1, . . . , βk, σ |Yi, Xi, i = 1, . . . , n) = −n log σ − n

2
log 2π − 1

2σ2
Z

where:

Z =
∑(

Yi − β1 −
k∑
j=2

βjXij

)2

.

The estimates of the β parameters affect only Z. To maximise the log-likelihood, they
should be chosen so as to minimise Z, and of course this is exactly what one is doing
when one is fitting a least squares regression. Hence Z = RSS. It remains to determine
the ML estimate of σ. Taking the partial differential with respect to σ, we obtain one of
the first-order conditions for a maximum:

∂ logL(β1, . . . , βk, σ)

∂σ
= −n

σ
+

1

σ3
RSS = 0.

From this we obtain:

σ̂2 =
RSS

n
.
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Hence the ML estimator is the sum of the squares of the residuals divided by n. This is
different from the least squares estimator, which is the sum of the squares of the
residuals divided by n− k, but the difference disappears as the sample size becomes
large. Substituting for σ̂2 in the log-likelihood function, we obtain the concentrated
likelihood function:

logL(β1, . . . , βk |Yi, Xi, i = 1, . . . , n) = −n log

(
RSS

n

)1/2

− n

2
log 2π − 1

2Z/n
RSS

= −n
2

log
RSS

n
− n

2
log 2π − n

2

= −n
2

(logRSS + 1 + log 2π − log n).

We will re-write this as:

logLU = −n
2

(logRSSU + 1 + log 2π − log n)

the subscript U emphasising that this is the unrestricted log-likelihood. If we now
impose a restriction on the parameters and maximise the loglikelihood function subject
to the restriction, it will be:

logLR = −n
2

(logRSSR + 1 + log 2π − log n)

where RSSR ≥ RSSU and hence logLR ≤ logLU. The LR statistic for a test of the
restriction is therefore:

2(logLU − LR) = n(logRSSR − logRSSU) = n log
RSSR

RSSU

.

It is distributed as a chi-squared statistic with one degree of freedom under the null
hypothesis that the restriction is valid. If there is more than one restriction, the test
statistic is the same but the number of degrees of freedom under the null hypothesis
that all the restrictions are valid is equal to the number of restrictions.

An example of its use is the common factor test in Section 12.3 in the text. As with all
maximum likelihood tests, it is valid only for large samples. Thus for testing linear
restrictions we should prefer the F test approach because it is valid for finite samples.

10.4 Additional exercises

A10.1 What factors affect the decision to make a purchase of your category of expenditure
in the CES data set?

Define a new variable CATBUY that is equal to 1 if the household makes any
purchase of your category and 0 if it makes no purchase at all. Regress CATBUY
on EXPPC, SIZE, REFAGE, and COLLEGE (as defined in Exercise A5.6) using:
(1) the linear probability model, (2) the logit model, and (3) the probit model.
Calculate the marginal effects at the mean of EXPPC, SIZE, REFAGE, and
COLLEGE for the logit and probit models and compare them with the coefficients
of the linear probability model.
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A10.2 Logit analysis was used to relate the event of a respondent working (WORKING,
defined to be 1 if the respondent was working, and 0 otherwise) to the respondent’s
educational attainment (S, defined as the highest grade completed) using 1994 data
from the National Longitudinal Survey of Youth 1979–. In this year the respondents
were aged 29–36 and a substantial number of females had given up work to raise a
family. The analysis was undertaken for females and males separately, with the
output shown below (first females, then males, with iteration messages deleted):

. logit WORKING S if MALE==0

Logit Estimates Number of obs = 2726

chi2(1) = 70.42

Prob > chi2 = 0.0000

Log Likelihood = -1586.5519 Pseudo R2 = 0.0217

------------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

S | .1511872 .0186177 8.121 0.000 .1146971 .1876773

_cons | -1.049543 .2448064 -4.287 0.000 -1.529355 -.5697314

------------------------------------------------------------------------------

. logit WORKING S if MALE==1

Logit Estimates Number of obs = 2573

chi2(1) = 75.03

Prob > chi2 = 0.0000

Log Likelihood = -802.65424 Pseudo R2 = 0.0446

------------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

S | .2499295 .0306482 8.155 0.000 .1898601 .3099989

_cons | -.9670268 .3775658 -2.561 0.010 -1.707042 -.2270113

------------------------------------------------------------------------------

95 per cent of the respondents had S in the range 9–18 years and the mean value of
S was 13.3 and 13.2 years for females and males, respectively.

From the logit analysis, the marginal effect of S on the probability of working at
the mean was estimated to be 0.030 and 0.020 for females and males, respectively.
Ordinary least squares regressions of WORKING on S yielded slope coefficients of
0.029 and 0.020 for females and males, respectively.

As can be seen from the second figure below, the marginal effect of educational
attainment was lower for males than for females over most of the range S ≥ 9.
Discuss the plausibility of this finding.

As can also be seen from the second figure, the marginal effect of educational
attainment decreases with educational attainment for both males and females over
the range S ≥ 9. Discuss the plausibility of this finding.

Compare the estimates of the marginal effect of educational attainment using logit
analysis with those obtained using ordinary least squares.
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Figure 10.1: Probability of working, as a function of S.
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Figure 10.2: Marginal effect of S on the probability of working.

A10.3 A researcher has data on weight, height, and schooling for 540 respondents in the
National Longitudinal Survey of Youth 1979– for the year 2002. Using the data on
weight and height, he computes the body mass index for each individual. If the
body mass index is 30 or greater, the individual is defined to be obese. He defines a
binary variable, OBESE, that is equal to 1 for the 164 obese individuals and 0 for
the other 376. He wishes to investigate whether obesity is related to schooling and
fits an ordinary least squares (OLS) regression of OBESE on S, years of schooling,
with the following result (t statistics in parentheses):

ÔBESE = 0.595− 0.021S (1)

(5.30) (2.63)

This is described as the linear probability model (LPM). He also fits the logit
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model:

F (Z) =
1

1 + e−Z

where F (Z) is the probability of being obese and Z = β1 + β2S, with the following
result (again, t statistics in parentheses):

Ẑ = 0.588− 0.105S (2)

(1.07) (2.60)

The figure below shows the probability of being obese and the marginal effect of
schooling as a function of S, given the logit regression. Most (492 out of 540) of the
individuals in the sample had 12 to 18 years of schooling.
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Figure 10.3: Scatter diagram of probability of being obese against years of schooling.

• Discuss whether the relationships indicated by the probability and marginal
effect curves appear to be plausible.

• Add the probability function and the marginal effect function for the LPM to
the diagram. Explain why you drew them the way you did.

• The logit model is considered to have several advantages over the LPM.
Explain what these advantages are. Evaluate the importance of the advantages
of the logit model in this particular case.

• The LPM is fitted using OLS. Explain how, instead, it might be fitted using
maximum likelihood estimation:

◦ Write down the probability of being obese for any obese individual, given
Si for that individual, and write down the probability of not being obese
for any non-obese individual, again given Si for that individual.

◦ Write down the likelihood function for this sample of 164 obese
individuals and 376 non-obese individuals.

◦ Explain how one would use this function to estimate the parameters.
[Note: You are not expected to attempt to derive the estimators of the
parameters.]
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◦ Explain whether your maximum likelihood estimators will be the same or
different from those obtained using least squares.

A10.4 A researcher interested in the relationship between parenting, age and schooling
has data for the year 2000 for a sample of 1,167 married males and 870 married
females aged 35 to 42 in the National Longitudinal Survey of Youth 1979–. In
particular, she is interested in how the presence of young children in the household
is related to the age and education of the respondent. She defines CHILDL6 to be
1 if there is a child less than 6 years old in the household and 0 otherwise and
regresses it on AGE, age, and S, years of schooling, for males and females
separately using probit analysis. Defining the probability of having a child less than
6 in the household to be p = F (Z) where:

Z = β1 + β2AGE + β3S

she obtains the results shown in the table below (asymptotic standard errors in
parentheses).

Males Females
AGE −0.137 −0.154

(0.018) (0.023)
S 0.132 0.094

(0.015) (0.020)
constant 0.194 0.547

(0.358) (0.492)

Z −0.399 −0.874

f(Z) 0.368 0.272

For males and females separately, she calculates:

Z = β̂1 + β̂2AGE + β̂3S

where AGE and S are the mean values of AGE and S and β̂1, β̂2, and β̂3 are the
probit coefficients in the corresponding regression, and she further calculates:

f(Z) =
1√
2π

e−Z̄
2/2

where f(Z) = dF/dZ. The values of Z and f(Z) are shown in the table.

• Explain how one may derive the marginal effects of the explanatory variables
on the probability of having a child less than 6 in the household, and calculate
for both males and females the marginal effects at the means of AGE and S.

• Explain whether the signs of the marginal effects are plausible. Explain
whether you would expect the marginal effect of schooling to be higher for
males or for females.
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• At a seminar someone asks the researcher whether the marginal effect of S is
significantly different for males and females. The researcher does not know how
to test whether the difference is significant and asks you for advice. What
would you say?

A10.5 A health economist investigating the relationship between smoking, schooling, and
age, defines a dummy variable D to be equal to 1 for smokers and 0 for
nonsmokers. She hypothesises that the effects of schooling and age are not
independent of each other and defines an interactive term schooling*age. She
includes this as an explanatory variable in the probit regression. Explain how this
would affect the estimation of the marginal effects of schooling and age.

A10.6 A researcher has data on the following variables for 5,061 respondents in the
National Longitudinal Survey of Youth 1979–:

• MARRIED, marital status in 1994, defined to be 1 if the respondent was
married with spouse present and 0 otherwise;

• MALE, defined to be 1 if the respondent was male and 0 if female;

• AGE in 1994 (the range being 29–37);

• S, years of schooling, defined as highest grade completed, and

• ASVABC, score on a test of cognitive ability, scaled so as to have mean 50 and
standard deviation 10.

She uses probit analysis to regress MARRIED on the other variables, with the
output shown:

. probit MARRIED MALE AGE S ASVABC

Probit estimates Number of obs = 5061

LR chi2(4) = 229.78

Prob > chi2 = 0.0000

Log likelihood = -3286.1289 Pseudo R2 = 0.0338

------------------------------------------------------------------------------

MARRIED | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

MALE | -.1215281 .036332 -3.34 0.001 -.1927375 -.0503188

AGE | .028571 .0081632 3.50 0.000 .0125715 .0445705

S | -.0017465 .00919 -0.19 0.849 -.0197587 .0162656

ASVABC | .0252911 .0022895 11.05 0.000 .0208038 .0297784

_cons | -1.816455 .2798724 -6.49 0.000 -2.364995 -1.267916

------------------------------------------------------------------------------

Variable Mean Marginal effect
MALE 0.4841 −0.0467
AGE 32.52 0.0110
S 13.31 −0.0007
ASVABC 48.94 0.0097

The means of the explanatory variables, and their marginal effects evaluated at the
means, are shown in the table.
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• Discuss the conclusions one may reach, given the probit output and the table,
commenting on their plausibility.

• The researcher considers including CHILD, a dummy variable defined to be 1
if the respondent had children, and 0 otherwise, as an explanatory variable.
When she does this, its z-statistic is 33.65 and its marginal effect 0.5685.
Discuss these findings.

10.7 Suppose that the time, t, required to complete a certain process has probability
density function:

f(t) = αe−α(t−β) with t > β > 0

and you have a sample of n observations with times T1, . . . , Tn.

Determine the maximum likelihood estimate of α, assuming that β is known.

A10.8 In Exercise 10.14 in the text, an event could occur with probability p. Given that
the event occurred m times in a sample of n observations, the exercise required
demonstrating that m/n was the ML estimator of p. Derive the LR statistic for the
null hypothesis p = p0. If m = 40 and n = 100, test the null hypothesis p = 0.5.

A10.9 For the variable in Exercise A10.8, derive the Wald statistic and test the null
hypothesis p = 0.5.

10.5 Answers to the starred exercises in the textbook

10.1 [This exercise does not have a star in the text, but an answer to it is needed for
comparison with the answer to Exercise 10.3.]

The output shows the result of an investigation of how the probability of a
respondent obtaining a bachelor’s degree from a four-year college is related to the
score on ASVABC, using EAWE Data Set 21. BACH is a dummy variable equal to
1 for those with bachelor’s degrees (years of schooling at least 16) and 0 otherwise.
ASVABC is a measure of cognitive ability, scaled so that in the population it has
mean 0 and standard deviation 1. Provide an interpretation of the coefficients.
Explain why OLS is not a satisfactory estimation method for this kind of model.

. reg BACH ASVABC

----------------------------------------------------------------------------

Source | SS df MS Number of obs = 500

-----------+------------------------------ F( 1, 498) = 123.14

Model | 24.7674233 1 24.7674233 Prob > F = 0.0000

Residual | 100.160577 498 .201125656 R-squared = 0.1983

-----------+------------------------------ Adj R-squared = 0.1966

Total | 124.928 499 .250356713 Root MSE = .44847

----------------------------------------------------------------------------

BACH | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-----------+----------------------------------------------------------------

ASVABC | .2479312 .0223421 11.10 0.000 .2040348 .2918277

_cons | .4206845 .0209535 20.08 0.000 .3795163 .4618526

----------------------------------------------------------------------------
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Answer:

The slope coefficient indicates that the probability of earning a bachelor’s degree
rises by 25 per cent for every additional unit of the ASVABC score. ASVABC is
scaled so that one unit is one standard deviation and it has mean zero. While this
may be realistic for a range of values of ASVABC, it is not for very low ones. Very
few of those with scores in the low end of the spectrum earned bachelors degrees
and variations in the ASVABC score would be unlikely to have an effect on the
probability. The intercept literally indicates that an individual with average score
would have a 42 per cent probability of earning a bachelor’s degree.

However, the linear probability model predicts nonsense negative probabilities for
all those with scores less of −1.70 or less. It also suffers from the problem that the
standard errors and t and F tests are invalid because the disturbance term does
not have a normal distribution. Its distribution is not even continuous, consisting of
only two possible values for each value of ASVABC.

10.3 The output shows the results of fitting a logit regression for BACH, as defined in
Exercise 10.1, with the iteration messages deleted. 48.8 per cent of the respondents
earned bachelor’s degrees.

. logit BACH ASVABC

----------------------------------------------------------------------------

Logistic regression Number of obs = 500

LR chi2(1) = 110.38

Prob > chi2 = 0.0000

Log likelihood = -291.23809 Pseudo R2 = 0.1593

----------------------------------------------------------------------------

BACH | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------------

ASVABC | 1.240198 .1377998 9.00 0.000 .9701151 1.51028

_cons | -.4077999 .1088093 -3.75 0.000 -.6210623 -.1945375

----------------------------------------------------------------------------

The diagram shows the probability of earning a bachelor’s degree as a function of
ASVABC. It also shows the marginal effect function.

• With reference to the diagram, discuss the variation of the marginal effect of
the ASVABC score implicit in the logit regression.

• Sketch the probability and marginal effect diagrams for the OLS regression in
Exercise 10.1 and compare them with those for the logit regression.

Answer:

ASVABC is scaled so that it has a mean of zero. From the curve for the cumulative
probability in the figure it can be seen that, for a respondent with mean score, the
probability of graduating from college is about 40 per cent. For those one standard
deviation above the mean, it is nearly 70 per cent. For those one standard
deviation below, a little lower than 20 percent. Looking at the curve for the
marginal probability, it can be seen that the marginal effect is greatest for those of
average cognitive ability, and still quite high a standard deviation either way. For
those two standard deviations above the mean, the marginal effect is low because
most are going to college anyway. For those two standard deviations below, the
effect is gain low, for the opposite reason.
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Figure 10.4: Scatter diagram of cumulative and marginal effects against ASVABC.

For the linear probability model in Exercise 10.1, the counterpart to the cumulative
probability curve in the figure is a straight line using the regression result. In this
example, the predictions of the linear probability model do not differ much from
those of the logit model over the central range of the data. Its deficiencies become
visible only at the extremes. The OLS counterpart to the marginal probability
curve is a horizontal straight line at 0.25, showing that the marginal effect is
somewhat underestimated in the central range and overestimated elsewhere.
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Figure 10.5: Scatter diagram of cumulative and marginal effects against ASVABC.

10.7 The following probit regression, with iteration messages deleted, was fitted using
2,108 observations on females in the National Longitudinal Survey of Youth using
the LFP2011 data set described in Exercise 10.2. The respondents were aged 27 to
31 and many of them were raising young families.
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. probit WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

----------------------------------------------------------------------------

Probit regression Number of obs = 2108

LR chi2(7) = 170.55

Prob > chi2 = 0.0000

Log likelihood = -972.89229 Pseudo R2 = 0.0806

----------------------------------------------------------------------------

WORKING | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------+----------------------------------------------------------------

S | .1046085 .0127118 8.23 0.000 .0796939 .1295232

AGE | -.0029273 .0237761 -0.12 0.902 -.0495277 .043673

CHILDL06 | -.4490263 .08128 -5.52 0.000 -.6083322 -.2897204

CHILDL16 | -.3055774 .1060307 -2.88 0.004 -.5133938 -.097761

MARRIED | -.1286145 .0724189 -1.78 0.076 -.2705529 .0133239

ETHBLACK | -.1070784 .0861386 -1.24 0.214 -.2759069 .0617502

ETHHISP | .0364241 .0987625 0.37 0.712 -.1571468 .229995

_cons | -.1885982 .7046397 -0.27 0.789 -1.569667 1.19247

----------------------------------------------------------------------------

WORKING is a binary variable equal to 1 if the respondent was working in 2011, 0
otherwise. CHILDL06 is a dummy variable equal to 1 if there was a child aged less
than 6 in the household, 0 otherwise. CHILDL16 is a dummy variable equal to 1 if
there was a child aged less than 16, but no child less than 6, in the household, 0
otherwise. MARRIED is equal to 1 if the respondent was married with spouse
present, 0 otherwise. The remaining variables are as described in Appendix B. The
mean values of the variables are given in the output from the sum command:

. sum WORKING S AGE CHILDL06 CHILDL16 MARRIED ETHBLACK ETHHISP if MALE==0

--------------------------------------------------------------------

Variable | Obs Mean Std. Dev. Min Max

-----------+--------------------------------------------------------

WORKING | 2108 .7988615 .4009465 0 1

S | 2108 14.32922 2.882736 6 20

AGE | 2108 28.99336 1.386405 27 31

CHILDL06 | 2108 .4407021 .4965891 0 1

CHILDL16 | 2108 .1465844 .3537751 0 1

MARRIED | 2108 .420778 .4938011 0 1

ETHBLACK | 2108 .1783681 .3829132 0 1

ETHHISP | 2108 .1233397 .3289047 0 1

--------------------------------------------------------------------

Calculate the marginal effects and discuss whether they are plausible.

Answer:

The marginal effects are calculated in the table below. As might be expected,
having a child aged less than 6 has a large adverse effect, very highly significant.
Schooling also has a very significant effect, more educated mothers making use of
their investment by tending to stay in the labour force. Age has a significant
negative effect, the reason for which is not obvious (the respondents were aged
29–36 in 1994). Being black also has an adverse effect, the reason for which is
likewise not obvious. (The WORKING variable is defined to be 1 if the individual
has recorded hourly earnings of at least $3. If the definition is tightened to
including also the requirement that the employment status is employed, the latter
effect is smaller, but still significant at the 5 per cent level.)
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Variable Mean β̂2 Mean×β̂2 f(Z) β̂2 × f(Z)
S 14.3292 0.1046 1.4990 0.2627 0.0275
AGE 28.9934 −0.0029 −0.0849 0.2627 −0.0008
CHILD06 0.4407 −0.4490 −0.1979 0.2627 −0.1180
CHILDL16 0.1466 −0.3056 −0.0448 0.2627 −0.0803
MARRIED 0.4208 −0.1286 −0.0541 0.2627 −0.0338
ETHBLACK 0.1784 −0.1071 −0.0191 0.2627 −0.0281
ETHHISP 0.1233 0.1233 0.0045 0.2627 0.0096
constant 1.0000 −0.1886 −0.1886
Total 0.9141

10.12 Show that the tobit model may be regarded as a special case of a selection bias
model.

Answer:

The selection bias model may be written:

B∗i = δ1 +
m∑
j=2

δjQji + εi

Y ∗i = β1

k∑
j=2

βjXji + ui

Yi = Y ∗i for B∗i > 0

Yi is not observed for B∗i ≤ 0

where the Q variables determine selection. The tobit model is the special case
where the Q variables are identical to the X variables and B∗ is the same as Y ∗.

10.14 An event is hypothesised to occur with probability p. In a sample of n observations,
it occurred m times. Demonstrate that the maximum likelihood estimator of p is
m/n.

Answer:

In each observation where the event did occur, the probability was p. In each
observation where it did not occur, the probability was (1− p). Since there were m
of the former and n−m of the latter, the joint probability was pm(1− p)n−m.
Reinterpreting this as a function of p, given m and n, the log-likelihood function for
p is:

logL(p)−m log p+ (n−m) log(1− p).
Differentiating with respect to p, we obtain the first-order condition for a minimum:

d logL(p)

dp
=
m

p
− n−m

1− p
= 0.

This yields p = m/n. We should check that the second differential is negative and
that we have therefore found a maximum. The second differential is:

d2 logL(p)

dp2
= −m

p2
− n−m

(1− p)2
.
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Evaluated at p = m/n:

d2 logL(p)

dp2
= −n

2

m
− n−m(

1− m
n

)2 = −n2

(
1

m
+

1

n−m

)
.

This is negative, so we have indeed chosen the value of p that maximises the
probability of the outcome.

10.18 Returning to the example of the random variable X with unknown mean µ and
variance σ2, the log-likelihood for a sample of n observations was given by equation
(10.36):

logL = −n
2

log 2π − n

2
log σ2 +

1

σ2

(
−1

2
(X1 − µ)2 − · · · − 1

2
(Xn − µ)2

)
.

The first-order condition forµ produced the ML estimator of µ and the first order
condition for σ then yielded the ML estimator for σ. Often, the variance is treated
as the primary dispersion parameter, rather than the standard deviation. Show
that such a treatment yields the same results in the present case. Treat σ2 as a
parameter, differentiate logL with respect to it, and solve.

Answer:

∂ logL

∂σ2
= − n

2σ2
− 1

σ4

(
−1

2
(X1 − µ)2 − · · · − 1

2
(Xn − µ)2

)
.

Hence:

σ̂2 =
1

n

(
(X1 − µ)2 + · · ·+ (Xn − µ)2

)
as before. The ML estimator of µ is X as before.

10.19 In Exercise 10.7, logL0 is −1058.17. Compute the pseudo-R2 and confirm that it is
equal to that reported in the output.

Answer:

As defined in equation (10.48):

pseudo-R2 = 1− logL

logL0

= 1− −972.8923

−1058.17
= 0.0806

as appears in the output.

10.20 In Exercise 10.7, compute the likelihood ratio statistic 2(logL− logL0), confirm
that it is equal to that reported in the output, and perform the likelihood ratio test.

Answer:

The likelihood ratio statistic is 2(−972.89 + 1058.17) = 170.56, which is that
reported in the output, apart from rounding error in the last digit. Under the null
hypothesis that the coefficients of the explanatory variables are all jointly equal to
0, this is distributed as a chi-squared statistic with degrees of freedom equal to the
number of explanatory variables, in this case 7. The critical value of chi-squared at
the 0.1 per cent significance level with 7 degrees of freedom is 24.32, and so we
reject the null hypothesis at that level.
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10.6 Answers to the additional exercises

A10.1 In the case of FDHO there were no non-purchasing households and so it was not
possible to undertake the analysis.

The results for the logit analysis and the probit analysis were very similar. The
linear probability model also yielded similar results for most of the commodities,
the coefficients being similar to the logit and probit marginal effects and the t
statistics being of the same order of magnitude as the z statistics for the logit and
probit.

Most of the effects seem plausible with simple explanations. The total expenditure
of the household and the size of the household were both highly significant factors
in the decision to make a purchase for most categories of expenditure. The main
exception, TOB. was instead influenced (negatively: survival bias?) by the age of
the reference individual and, unsurprisingly, by his or her education.

Linear probability model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE Cases with

probability

n β̂2 t β̂3 t β̂4 t β̂5 t < 0 > 1
ADM 2,815 0.38 20.41 4.00 9.54 −0.34 −9.92 0.22 17.74 0 44
CLOT 4,500 0.33 18.74 5.38 13.61 −0.35 −10.72 0.05 4.12 0 144
DOM 1,661 0.30 17.37 4.18 10.78 0.16 5.08 0.09 7.99 0 181
EDUC 561 0.13 11.83 3.13 12.38 −0.12 −5.80 0.05 6.01 612 0
ELEC 5,828 0.08 7.33 2.71 11.09 0.16 7.76 0.02 2.07 0 254
FDAW 5,102 0.23 14.57 2.23 6.41 −0.27 −9.56 0.11 10.85 0 223
FDHO* 6,334
FOOT 1,827 0.28 15.83 5.93 14.81 −0.22 −6.65 0.01 1.01 0 4
FURN 487 0.14 13.47 1.65 6.87 −0.07 −3.74 0.01 1.66 149 0
GASO 5,710 0.09 7.70 3.23 12.07 −0.00 −0.14 0.07 8.61 0 331
HEAL 4,802 0.21 12.82 3.18 8.77 0.82 27.46 0.11 9.82 0 406
HOUS 6,223 0.03 5.24 0.52 4.36 0.04 4.44 0.01 2.30 0 484
LIFE 1,253 0.35 15.82 3.91 11.02 0.19 8.36 0.04 3.49 0 1
LOCT 692 0.04 3.42 −0.23 −0.80 −0.15 −6.38 0.00 0.42 0 0
MAPP 399 0.10 10.34 1.59 7.23 −0.00 −0.01 −0.01 −1.54 0 0
PERS 3,817 0.30 15.56 4.55 10.53 0.29 8.19 0.12 9.28 0 66
READ 2,287 0.25 13.48 2.52 5.98 0.37 10.76 0.16 13.03 0 10
SAPP 1,037 0.20 13.80 2.86 8.61 −0.03 −1.12 0.03 3.30 0 0
TELE 5,788 0.07 6.29 3.52 14.09 0.31 15.12 0.01 1.65 0 455
TEXT 992 0.19 13.25 2.45 7.50 −0.03 −1.22 0.04 3.84 0 0
TOB 1,155 −0.01 −0.54 0.24 0.69 −0.17 −5.90 −0.10 −9.16 0 0
TOYS 2,504 0.24 12.14 6.26 14.36 −0.13 −3.58 0.06 4.70 0 4
TRIP 516 0.23 21.63 0.93 3.88 −0.03 −1.39 0.03 4.58 415 0
*FDHO had no observations with zero expenditure.
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Logit model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE

n β̂2 z β̂3 z β̂4 z β̂5 z
ADM 2,815 2.06 18.34 20.02 10.04 −1.69 10.02 1.00 16.52
CLOT 4,500 2.51 17.22 32.00 13.44 −1.72 −9.92 0.18 2.98
DOM 1,661 1.50 15.28 22.50 10.55 0.91 4.99 0.54 8.01
EDUC 561 1.38 11.60 35.93 12.32 −2.22 −7.14 0.81 6.99
ELEC 5,828 1.63 7.28 44.17 10.57 2.03 7.48 0.19 1.89
FDAW 5,102 2.71 14.40 17.42 6.78 −1.79 −8.99 0.63 9.16
FDHO 6,334
FOOT 1,827 1.39 14.69 29.17 14.24 −1.25 −7.00 0.08 1.23
FURN 487 1.43 12.00 21.16 6.66 −1.28 −4.17 0.28 2.46
GASO 5,710 1.50 7.50 47.81 11.71 0.16 0.66 0.71 7.87
HEAL 4,802 2.29 13.58 21.11 9.12 5.22 24.36 0.59 8.61
HOUS 6,223 4.31 5.78 37.81 4.81 2.42 4.27 0.35 1.76
LIFE 1,253 1.38 13.94 24.61 10.71 1.28 6.33 0.27 3.71
LOCT 692 0.41 3.50 −1.75 −0.60 −1.57 −6.35 0.05 0.51
MAPP 399 1.21 9.65 23.27 5.89 −0.05 −0.16 −0.13 −1.11
PERS 3,817 1.78 15.07 21.91 10.92 1.30 8.11 0.48 8.46
READ 2,287 1.18 12.35 11.97 5.97 1.77 10.61 0.77 12.64
SAPP 1,037 1.24 12.47 19.99 8.37 −0.29 −1.37 0.29 3.71
TELE 5,788 1.24 6.20 51.87 12.34 3.82 13.66 0.18 1.78
TEXT 992 1.20 11.97 17.77 7.28 −0.31 −1.44 0.34 4.27
TOB 1,155 −0.07 −0.64 1.28 0.55 −1.17 −5.85 −0.62 −8.95
TOYS 2,504 1.04 11.53 27.08 13.84 −0.59 −3.69 0.27 4.70
TRIP 516 1.92 15.76 9.60 2.62 −0.42 −1.41 0.75 5.92

Probit model, dependent variable CATBUY
EXPPC×10−4 SIZE×10−2 REFAGE×10−2 COLLEGE

n β̂2 z β̂3 z β̂4 z β̂5 z
ADM 2,815 1.17 19.26 11.97 9.93 −1.01 −10.03 0.61 16.96
CLOT 4,500 1.34 18.00 18.37 13.62 −1.03 −10.00 0.12 3.31
DOM 1,661 0.89 15.77 13.35 10.52 0.53 5.00 0.31 7.95
EDUC 561 0.78 11.88 19.78 12.61 −1.15 −7.36 0.40 7.02
ELEC 5,828 0.71 7.18 19.93 10.53 0.96 7.17 0.10 2.03
FDAW 5,102 1.37 14.87 9.53 6.72 −1.03 −9.08 0.37 9.50
FDHO 6,334
FOOT 1,827 0.82 15.39 17.60 14.43 −0.74 −6.98 0.05 1.29
FURN 487 0.80 12.45 11.37 6.83 −0.63 −4.15 0.12 2.24
GASO 5,710 0.61 7.37 21.79 11.79 0.08 0.60 0.40 8.43
HEAL 4,802 1.18 13.94 11.97 9.11 3.05 25.25 0.34 8.56
HOUS 6,223 1.33 5.76 14.17 4.56 0.98 4.22 0.19 2.26
LIFE 1,253 0.81 14.78 14.40 10.74 0.76 6.56 0.15 3.69
LOCT 692 0.21 3.30 −0.80 −0.54 −0.79 −6.26 0.02 0.50
MAPP 399 0.67 9.94 12.10 7.00 −0.03 −0.17 −0.07 −1.32
PERS 3,817 0.97 15.47 12.93 10.79 0.80 8.15 0.31 8.81
READ 2,287 0.70 12.74 7.14 5.86 1.07 10.63 0.47 12.87
SAPP 1,037 0.73 12.95 11.49 8.42 −0.15 −1.28 0.15 3.63
TELE 5,788 0.55 6.11 24.85 12.54 1.91 13.66 0.10 2.01
TEXT 992 0.71 12.53 10.21 7.33 −0.18 −1.46 0.18 4.16
TOB 1,155 −0.05 −0.79 0.84 0.63 −0.67 −5.86 −0.35 −8.89
TOYS 2,504 0.62 11.91 16.57 14.04 −0.37 −3.72 0.17 4.77
TRIP 516 1.06 16.91 4.84 2.66 −0.21 −1.42 0.35 5.93
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Marginal effects, linear probability model, logit and probit
EXPPC4×10−4 SIZE×10−2

LPM logit probit LPM logit probit
ADM 0.38 0.51 0.46 4.00 4.93 4.72
CLOT 0.33 0.48 0.44 5.38 6.14 6.04
DOM 0.30 0.28 0.28 4.18 4.21 4.25
EDUC 0.13 0.09 0.10 3.13 2.24 2.57
ELEC 0.08 0.10 0.09 2.71 2.73 2.66
FDAW 0.23 0.36 0.34 2.23 2.32 2.37
FDHO
FOOT 0.28 0.28 0.28 5.93 5.82 5.89
FURN 0.14 0.09 0.10 1.65 1.32 1.48
GASO 0.09 0.11 0.09 3.23 3.47 3.35
HEAL 0.21 0.35 0.33 3.18 3.23 3.34
HOUS 0.03 0.04 0.04 −0.23 −0.17 −0.15
LIFE 0.35 0.21 0.22 3.91 3.72 3.86
LOCT 0.04 0.04 0.04 −0.23 −0.17 −0.15
MAPP 0.10 0.07 0.08 1.59 1.27 1.39
PERS 0.30 0.42 0.37 4.55 5.18 4.96
READ 0.25 0.27 0.26 2.52 2.73 2.65
SAPP 0.20 0.16 0.17 2.86 2.60 2.74
TELE 0.07 0.08 0.07 3.52 3.14 3.29
TEXT 0.19 0.15 0.16 2.45 2.23 2.36
TOB −0.01 −0.01 −0.01 0.24 0.19 0.22
TOYS 0.24 0.25 0.24 6.26 6.45 6.36
TRIP 0.23 0.11 0.13 0.93 0.58 0.61
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Marginal effects, linear probability model, logit and probit
REFAGE×10−2 COLLEGE

LPM logit probit LPM logit probit
ADM −0.34 −0.42 −0.40 0.22 0.24 0.24
CLOT −0.35 −0.33 −0.34 0.05 0.04 0.04
DOM 0.16 0.17 0.17 0.09 0.10 0.10
EDUC −0.12 −0.14 −0.15 0.05 0.05 0.05
ELEC 0.16 0.13 0.13 0.02 0.01 0.01
FDAW −0.27 −0.24 −0.26 0.11 0.08 0.09
FDHO
FOOT −0.22 −0.25 −0.25 0.01 0.02 0.02
FURN −0.07 −0.08 −0.08 0.01 0.02 0.02
GASO −0.00 0.01 0.01 0.07 0.05 0.06
HEAL 0.82 0.80 0.85 0.11 0.09 0.09
HOUS 0.04 0.02 0.03 0.01 0.00 0.01
LIFE 0.19 0.19 0.20 0.04 0.04 0.04
LOCT −0.15 −0.15 −0.15 0.00 0.00 0.00
MAPP −0.00 0.00 0.00 −0.01 −0.01 −0.01
PERS 0.29 0.31 0.31 0.12 0.11 0.12
READ 0.37 0.40 0.40 0.16 0.18 0.17
SAPP −0.03 −0.04 −0.04 0.03 0.04 0.04
TELE 0.31 0.23 0.25 0.01 0.01 0.01
TEXT −0.03 −0.04 −0.04 0.04 0.04 0.04
TOB −0.17 −0.17 −0.17 −0.10 −0.09 −0.09
TOYS −0.13 −0.14 −0.14 0.06 0.06 0.06
TRIP −0.03 −0.03 −0.03 0.03 0.04 0.04

A10.2 The finding that the marginal effect of educational attainment was lower for males
than for females over most of the range S ≥ 9 is plausible because the probability
of working is much closer to 1 for males than for females for S ≥ 9, and hence the
possible sensitivity of the participation rate to S is smaller.

The explanation of the finding that the marginal effect of educational attainment
decreases with educational attainment for both males and females over the range
S ≥ 9 is similar. For both sexes, the greater is S, the greater is the participation
rate, and hence the smaller is the scope for it being increased by further education.

The OLS estimates of the marginal effect of educational attainment are given by
the slope coefficients and they are very similar to the logit estimates at the mean,
the reason being that most of the observations on S are confined to the middle part
of the sigmoid curve where it is relatively linear.

A10.3 Discuss whether the relationships indicated by the probability and marginal effect
curves appear to be plausible.

The probability curve indicates an inverse relationship between schooling and the
probability of being obese. This seems entirely plausible. The more educated tend
to have healthier lifestyles, including eating habits. Over the relevant range, the
marginal effect falls a little in absolute terms (is less negative) as schooling
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increases. This is in keeping with the idea that further schooling may have less
effect on the highly educated than on the less educated (but the difference is not
large).

Add the probability function and the marginal effect function for the LPM to the
diagram. Explain why you drew them the way you did.
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Figure 10.6: Scatter diagram of probability of being obese and marginal effect against
years of schooling.

The estimated probability function for the LPM is just the regression equation and
the marginal effect is the coefficient of S. They are shown as the dashed lines in the
diagram.

The logit model is considered to have several advantages over the LPM. Explain
what these advantages are. Evaluate the importance of the advantages of the logit
model in this particular case.

The disadvantages of the LPM are (1) that it can give nonsense fitted values
(predicted probabilities greater than 1 or less than 0); (2) the disturbance term in
observation i must be equal to either −1− F (Zi) (if the dependent variable is equal
to 1) or −F (Zi) (if the dependent variable is equal to 0) and so it violates the usual
assumption that the disturbance term is normally distributed, although this may
not matter asymptotically; (3) the disturbance term will be heteroskedastic
because Zi is different for different observations; (4) the LPM implicitly assumes
that the marginal effect of each explanatory variable is constant over its entire
range, which is often intuitively unappealing.

In this case, nonsense predictions are clearly not an issue. The assumption of a
constant marginal effect does not seem to be a problem either, given the
approximate linearity of the logit F (Z).

The LPM is fitted using OLS. Explain how, instead, it might be fitted using
maximum likelihood estimation:

Write down the probability of being obese for any obese individual, given Si for that
individual, and write down the probability of not being obese for any non-obese
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10. Binary choice and limited dependent variable models, and maximum likelihood estimation

individual, again given Si for that individual.

Obese: pOi = β1 + β2Si; not obese: pNOi = 1− β1 − β2Si.

Write down the likelihood function for this sample of 164 obese individuals and 376
non-obese individuals.

L(β1, β2 | data) =
∏

OBESE

pOi
∏

NOT OBESE

pNOi =
∏

OBESE

(β1+β2Si)
∏

NOT OBESE

(1−β1−β2Si).

Explain how one would use this function to estimate the parameters. [Note: You
are not expected to attempt to derive the estimators of the parameters.]

You would use some algorithm to find the values of β1 and β2 that maximises the
function.

Explain whether your maximum likelihood estimators will be the same or different
from those obtained using least squares.

Least squares involves finding the extremum of a completely different expression
and will therefore lead to different estimators.

10.4 Explain how one may derive the marginal effects of the explanatory variables on the
probability of having a child less than 6 in the household, and calculate for both
males and females the marginal effects at the means of AGE and S.

Since p is a function of Z, and Z is a linear function of the X variables, the
marginal effect of Xj is:

∂p

∂Xj

=
dp

dZ

∂Z

∂Xj

=
dp

dZ
βj

where βj is the coefficient of Xj in the expression for Z. In the case of probit
analysis, p = F (Z) is the cumulative standardised normal distribution. Hence
dp/dZ is just the standardised normal distribution.

For males, this is 0.368 when evaluated at the means. Hence the marginal effect of
AGE is 0.368×−0.137 = −0.050 and that of S is 0.368× 0.132 = 0.049. For
females the corresponding figures are 0.272×−0.154 = −0.042 and
0.272× 0.094 = 0.026, respectively. So for every extra year of age, the probability is
reduced by 5.0 per cent for males and 4.2 per cent for females. For every extra year
of schooling, the probability increases by 4.9 per cent for males and 2.6 per cent for
females.

Explain whether the signs of the marginal effects are plausible. Explain whether you
would expect the marginal effect of schooling to be higher for males or for females.

Yes. Given that the cohort is aged 35–42, the respondents have passed the age at
which most adults start families, and the older they are, the less likely they are to
have small children in the household. At the same time, the more educated the
respondent, the more likely he or she is to have started having a family relatively
late, so the positive effect of schooling is also plausible. However, given the age of
the cohort, it is likely to be weaker for females than for males, given that most
females intending to have families will have started them by this time, irrespective
of their education.
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At a seminar someone asks the researcher whether the marginal effect of S is
significantly different for males and females. The researcher does not know how to
test whether the difference is significant and asks you for advice. What would you
say?

Fit a probit regression for the combined sample, adding a male intercept dummy
and male slope dummies for AGE and S. Test the coefficient of the slope dummy
for S.

10.5 The Z function will be of the form:

Z = β1 + β2A+ β3S + β4AS

so the marginal effects are:

∂p

∂A
=

dp

dZ

∂Z

∂A
= f(Z)(β2 + β4S)

and:
∂p

∂S
=

dp

dZ

∂Z

∂S
= f(Z)(β3 + β4A).

Both factors depend on the values of A and/or S, but the marginal effects could be
evaluated for a representative individual using the mean values of A and S in the
sample.

A10.6 Discuss the conclusions one may reach, given the probit output and the table,
commenting on their plausibility.

Being male has a small but highly significant negative effect. This is plausible
because males tend to marry later than females and the cohort is still relatively
young.

Age has a highly significant positive effect, again plausible because older people are
more likely to have married than younger people.

Schooling has no apparent effect at all. It is not obvious whether this is plausible.

Cognitive ability has a highly significant positive effect. Again, it is not obvious
whether this is plausible.

The researcher considers including CHILD, a dummy variable defined to be 1 if the
respondent had children, and 0 otherwise, as an explanatory variable. When she
does this, its z-statistic is 33.65 and its marginal effect 0.5685. Discuss these
findings.

Obviously one would expect a high positive correlation between being married and
having children and this would account for the huge and highly significant
coefficient. However getting married and having children are often a joint decision,
and accordingly it is simplistic to suppose that one characteristic is a determinant
of the other. The finding should not be taken at face value.

A10.7 Determine the maximum likelihood estimate of α, assuming that β is known.

The log-likelihood function is:

logL(α | β, T1, . . . , Tn) = n logα− α
∑

(Ti − β).
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Setting the first derivative with respect to α equal to zero, we have:
n

α̂
−
∑

(Ti − β) = 0

and hence:

α̂ =
1

T − β
.

The second derivative is −n/α̂2, which is negative, confirming we have maximised
the loglikelihood function.

A10.8 From the solution to Exercise 10.14, the log-likelihood function for p is:

logL(p) = m log p+ (n−m) log(1− p).
Thus the LR statistic is:

LR = 2
((
m log

m

n
+ (n−m) log

(
1− m

n

))
− (m log p0 + (n−m) log(1− p0))

)
= 2

(
m log

(
m/n

p0

)
+ (n−m) log

(
1−m/n
1− p0

))
.

If m = 40 and n = 100, the LR statistic for H0 : p = 0.5 is:

LR = 2

(
40 log

(
0.4

0.5

)
+ 60 log

(
0.6

0.5

))
= 4.03.

We would reject the null hypothesis at the 5 per cent level (critical value of
chi-squared with one degree of freedom 3.84) but not at the 1 per cent level
(critical value 6.64).

A10.9 The first derivative of the log-likelihood function is:

d logL(p)

dp
=
m

p
− n−m

1− p
= 0

and the second differential is:

d logL(p)

dp2
= −m

p2
− n−m

(1− p)2
.

Evaluated at p = m/n:

d logL(p)

dp2
= −n

2

m
− n−m(

1− m
n

)2 = −n2

(
1

m
+

1

n−m

)
= − n3

m(n−m)
.

The variance of the ML estimate is given by:(
−d logL(p)

dp2

)−1

=

(
n3

m(n−m)

)−1

=
m(n−m)

n3
.

The Wald statistic is therefore:(
m
n
− p0

)2

m(n−m)
n3

=

(
m
n
− p0

)2

1
n
m
n
n−m
n

.

Given the data, this is equal to:

(0.4− 0.5)2

1
100
× 0.4× 0.6

= 4.17.

Under the null hypothesis this has a chi-squared distribution with one degree of
freedom, and so the conclusion is the same as in Exercise A.8.
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Chapter 11

Models using time series data

11.1 Overview

This chapter introduces the application of regression analysis to time series data,
beginning with static models and then proceeding to dynamic models with lagged
variables used as explanatory variables. It is shown that multicollinearity is likely to be
a problem in models with unrestricted lag structures and that this provides an incentive
to use a parsimonious lag structure, such as the Koyck distribution. Two models using
the Koyck distribution, the adaptive expectations model and the partial adjustment
model, are described, together with well-known applications to aggregate consumption
theory, Friedman’s permanent income hypothesis in the case of the former and Brown’s
habit persistence consumption function in the case of the latter. The chapter concludes
with a discussion of prediction and stability tests in time series models.

11.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain why multicollinearity is a common problem in time series models, especially
dynamic ones with lagged explanatory variables

describe the properties of a model with a lagged dependent variable (ADL(1,0)
model)

describe the assumptions underlying the adaptive expectations and partial
adjustment models

explain the properties of OLS estimators of the parameters of ADL(1,0) models

explain how predetermined variables may be used as instruments in the fitting of
models using time series data

explain in general terms the objectives of time series analysts and those
constructing VAR models.
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11. Models using time series data

11.3 Additional exercises

A11.1 The output below shows the result of linear and logarithmic regressions of
expenditure on food on income, relative price, and population (measured in
thousands) using the Demand Functions data set, together with the correlations
among the variables. Provide an interpretation of the regression coefficients and
perform appropriate statistical tests.

============================================================

Dependent Variable: FOOD

Method: Least Squares

Sample: 1959 2003

Included observations: 45

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C -19.49285 88.86914 -0.219343 0.8275

DPI 0.031713 0.010658 2.975401 0.0049

PRELFOOD 0.403356 0.365133 1.104681 0.2757

POP 0.001140 0.000563 2.024017 0.0495

============================================================

R-squared 0.988529 Mean dependent var 422.0374

Adjusted R-squared 0.987690 S.D. dependent var 91.58053

S.E. of regression 10.16104 Akaike info criteri7.559685

Sum squared resid 4233.113 Schwarz criterion 7.720278

Log likelihood -166.0929 F-statistic 1177.745

Durbin-Watson stat 0.404076 Prob(F-statistic) 0.000000

============================================================

============================================================

Dependent Variable: LGFOOD

Method: Least Squares

Sample: 1959 2003

Included observations: 45

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 5.293654 2.762757 1.916077 0.0623

LGDPI 0.589239 0.080158 7.351014 0.0000

LGPRFOOD -0.122598 0.084355 -1.453361 0.1537

LGPOP -0.289219 0.258762 -1.117706 0.2702

============================================================

R-squared 0.992245 Mean dependent var 6.021331

Adjusted R-squared 0.991678 S.D. dependent var 0.222787

S.E. of regression 0.020324 Akaike info criter-4.869317

Sum squared resid 0.016936 Schwarz criterion -4.708725

Log likelihood 113.5596 F-statistic 1748.637

Durbin-Watson stat 0.488502 Prob(F-statistic) 0.000000

============================================================
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Correlation Matrix

============================================================

LGFOOD LGDPI LGPRFOOD LGPOP

============================================================

LGFOOD 1.000000 0.995896 -0.613437 0.990566

LGDPI 0.995896 1.000000 -0.604658 0.995241

LGPRFOOD -0.613437 -0.604658 1.000000 -0.641226

LGPOP 0.990566 0.995241 -0.641226 1.000000

============================================================

A11.2 Perform regressions parallel to those in Exercise A11.1 using your category of
expenditure and provide an interpretation of the coefficients.

A11.3 The output shows the result of a logarithmic regression of expenditure on food per
capita, on income per capita, both measured in US$ million, and the relative price
index for food. Provide an interpretation of the coefficients, demonstrate that the
specification is a restricted version of the logarithmic regression in Exercise A11.1,
and perform an F test of the restriction.

============================================================

Dependent Variable: LGFOODPC

Method: Least Squares

Sample: 1959 2003

Included observations: 45

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C -5.425877 0.353655 -15.34231 0.0000

LGDPIPC 0.280229 0.014641 19.14024 0.0000

LGPRFOOD 0.052952 0.082588 0.641160 0.5249

============================================================

R-squared 0.927348 Mean dependent var-6.321984

Adjusted R-squared 0.923889 S.D. dependent var 0.085249

S.E. of regression 0.023519 Akaike info criter-4.597688

Sum squared resid 0.023232 Schwarz criterion -4.477244

Log likelihood 106.4480 F-statistic 268.0504

Durbin-Watson stat 0.417197 Prob(F-statistic) 0.000000

============================================================

A11.4 Perform a regression parallel to that in Exercise A11.3 using your category of
expenditure. Provide an interpretation of the coefficients, and perform an F test of
the restriction.

A11.5 The output shows the result of a logarithmic regression of expenditure on food per
capita, on income per capita, the relative price index for food, and population.
Provide an interpretation of the coefficients, demonstrate that the specification is
equivalent to that for the logarithmic regression in Exercise A11.1, and use it to
perform a t test of the restriction in Exercise A11.3.

============================================================

Dependent Variable: LGFOODPC

Method: Least Squares

Sample: 1959 2003
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Included observations: 45

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 5.293654 2.762757 1.916077 0.0623

LGDPIPC 0.589239 0.080158 7.351014 0.0000

LGPRFOOD -0.122598 0.084355 -1.453361 0.1537

LGPOP -0.699980 0.179299 -3.903973 0.0003

============================================================

R-squared 0.947037 Mean dependent var-6.321984

Adjusted R-squared 0.943161 S.D. dependent var 0.085249

S.E. of regression 0.020324 Akaike info criter-4.869317

Sum squared resid 0.016936 Schwarz criterion -4.708725

Log likelihood 113.5596 F-statistic 244.3727

Durbin-Watson stat 0.488502 Prob(F-statistic) 0.000000

============================================================

A11.6 Perform a regression parallel to that in Exercise A11.5 using your category of
expenditure, and perform a t test of the restriction implicit in the specification in
Exercise A11.4.

A11.7 In Exercise 11.9 you fitted the model:

LGCAT = β1 +β2LGDPI +β3LGDPI (−1)+β4LGPRCAT +β5LGPRCAT (−1)+u

where CAT stands for your category of expenditure.

• Show that (β2 + β3) and (β4 + β5) are theoretically the long-run (equilibrium)
income and price elasticities.

• Reparameterise the model and fit it to obtain direct estimates of these
long-run elasticities and their standard errors.

• Confirm that the estimates are equal to the sum of the individual shortrun
elasticities found in Exercise 11.9.

• Compare the standard errors with those found in Exercise 11.9 and state your
conclusions.

A11.8 In a certain bond market, the demand for bonds, Bt, in period t is negatively
related to the expected interest rate, iet+1, in period t+ 1:

Bt = β1 + β2i
e
t+1 + ut (1)

where ut is a disturbance term not subject to autocorrelation. The expected
interest rate is determined by an adaptive expectations process:

iet+1 − iet = λ(it − iet ) (2)

where it is the actual rate of interest in period t. A researcher uses the following
model to fit the relationship:

Bt = γ1 + γ2it + γ3Bt−1 + vt (3)

where vt is a disturbance term.
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• Show how this model may be derived from the demand function and the
adaptive expectations process.

• Explain why inconsistent estimates of the parameters will be obtained if
equation (3) is fitted using ordinary least squares (OLS). (A mathematical
proof is not required. Do not attempt to derive expressions for the bias.)

• Describe a method for fitting the model that would yield consistent estimates.

• Suppose that ut was subject to the first-order autoregressive process:

ut = ρut−1 + εt

where εt is not subject to autocorrelation. How would this affect your answer
to the second part of this question?

• Suppose that the true relationship was actually:

Bt = β1 + β2it + ut (1∗)

with ut not subject to autocorrelation, and the model is fitted by regressing Bt

on it and Bt−1, as in equation (3), using OLS. How would this affect the
regression results?

• How plausible do you think an adaptive expectations process is for modelling
expectations in a bond market?

A11.9 The output shows the result of a logarithmic regression of expenditure on food on
income, relative price, population, and lagged expenditure on food using the
Demand Functions data set. Provide an interpretation of the regression coefficients,
paying attention to both short-run and long-run dynamics, and perform
appropriate statistical tests.

============================================================

Dependent Variable: LGFOOD

Method: Least Squares

Sample(adjusted): 1960 2003

Included observations: 44 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 1.487645 2.072156 0.717921 0.4771

LGDPI 0.143829 0.090334 1.592194 0.1194

LGPRFOOD -0.095749 0.061118 -1.566613 0.1253

LGPOP -0.046515 0.189453 -0.245524 0.8073

LGFOOD(-1) 0.727290 0.113831 6.389195 0.0000

============================================================

R-squared 0.995886 Mean dependent var 6.030691

Adjusted R-squared 0.995464 S.D. dependent var 0.216227

S.E. of regression 0.014564 Akaike info criter-5.513937

Sum squared resid 0.008272 Schwarz criterion -5.311188

Log likelihood 126.3066 F-statistic 2359.938

Durbin-Watson stat 1.103102 Prob(F-statistic) 0.000000

============================================================
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A11.10 Perform a regression parallel to that in Exercise A11.9 using your category of
expenditure. Provide an interpretation of the coefficients, and perform appropriate
statistical tests.

A11.11 In his classic study Distributed Lags and Investment Analysis (1954), Koyck
investigated the relationship between investment in railcars and the volume of
freight carried on the US railroads using data for the period 1884–1939. Assuming
that the desired stock of railcars in year t depended on the volume of freight in
year t− 1 and year t− 2 and a time trend, and assuming that investment in
railcars was subject to a partial adjustment process, he fitted the following
regression equation using OLS (standard errors and constant term not reported):

Ît = 0.077Ft−1 + 0.017Ft−2 − 0.0033t− 0.110Kt−1 R2 = 0.85

where It = Kt−Kt−1 is investment in railcars in year t (thousands), Kt is the stock
of railcars at the end of year t (thousands), and Ft is the volume of freight handled
in year t (ton-miles).

Provide an interpretation of the equation and describe the dynamic process implied
by it. (Note: It is best to substitute Kt −Kt−1 for It in the regression and treat it
as a dynamic relationship determining Kt.)

A11.12 Two researchers agree that a model consists of the following relationships:

Yt = α1 + α2Xt + ut (1)

Xt = β1 + β2Yt−1 + vt (2)

Zt = γ1 + γ2Yt + γ3Xt + γ4Qt + wt (3)

where ut, vt, and wt, are disturbance terms that are drawn from fixed distributions
with zero mean. It may be assumed that they are distributed independently of Qt

and of each other and that they are not subject to autocorrelation. All the
parameters may be assumed to be positive and it may be assumed that α2β2 < 1.

• One researcher asserts that consistent estimates will be obtained if (2) is fitted
using OLS and (1) is fitted using IV, with Yt−1 as an instrument for Xt.
Determine whether this is true.

• The other researcher asserts that consistent estimates will be obtained if both
(1) and (2) are fitted using OLS, and that the estimate of β2 will be more
efficient than that obtained using IV. Determine whether this is true.
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11.4 Answers to the starred exercises in the textbook

11.6

Year Y K L Year Y K L
1899 100 100 100 1911 153 216 145
1900 101 107 105 1912 177 226 152
1901 112 114 110 1913 184 236 154
1902 122 122 118 1914 169 244 149
1903 124 131 123 1915 189 266 154
1904 122 138 116 1916 225 298 182
1905 143 149 125 1917 227 335 196
1906 152 163 133 1918 223 366 200
1907 151 176 138 1919 218 387 193
1908 126 185 121 1920 231 407 193
1909 155 198 140 1921 179 417 147
1910 159 208 144 1922 240 431 161
Source: Cobb and Douglas (1928)

The table gives the data used by Cobb and Douglas (1928) to fit the original
Cobb–Douglas production function:

Yt = β1K
β2
t L

β3
t vt

Yt, Kt, and Lt, being index number series for real output, real capital input, and
real labour input, respectively, for the manufacturing sector of the United States for
the period 1899–1922 (1899 = 100). The model was linearised by taking logarithms
of both sides and the following regressions was run (standard errors in parentheses):

l̂og Y = −0.18 + 0.23 logK + 0.81 logL R2 = 0.96

(0.43) (0.06) (0.15)

Provide an interpretation of the regression coefficients.

Answer:

The elasticities of output with respect to capital and labour are 0.23 and 0.81,
respectively, both coefficients being significantly different from zero at very high
significance levels. The fact that the sum of the elasticities is close to one suggests
that there may be constant returns to scale. Regressing output per worker on
capital per worker, one has:

̂
log

Y

L
= 0.01 + 0.25 log

K

L
R2 = 0.63

(0.02) (0.04)

The smaller standard error of the slope coefficient suggests a gain in efficiency.
Fitting a reparameterised version of the unrestricted model:

̂
log

Y

L
= −0.18 + 0.23 log

K

L
+ 0.04 logL R2 = 0.64

(0.43) (0.06) (0.09)

we find that the restriction is not rejected.
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11.7 The Cobb–Douglas model in Exercise 11.6 makes no allowance for the possibility
that output may be increasing as a consequence of technical progress,
independently of K and L. Technical progress is difficult to quantify and a common
way of allowing for it in a model is to include an exponential time trend:

Yt = β1K
β2
t L

β3
t eρtvt

where ρ is the rate of technical progress and t is a time trend defined to be 1 in the
first year, 2 in the second, etc. The correlations between logK, logL and t are
shown in the table. Comment on the regression results.

l̂og Y = 2.81− 0.53 logK + 0.91 logL+ 0.047t R2 = 0.97

(1.38) (0.34) (0.14) (0.021)

Correlation

================================================

LGK LGL TIME

================================================

LGK 1.000000 0.909562 0.996834

LGL 0.909562 1.000000 0.896344

TIME 0.996834 0.896344 1.000000

================================================

Answer:

The elasticity of output with respect to labour is higher than before, now
implausibly high given that, under constant returns to scale, it should measure the
share of wages in output. The elasticity with respect to capital is negative and
nonsensical. The coefficient of time indicates an annual exponential growth rate of
4.7 per cent, holding K and L constant. This is unrealistically high for the period
in question. The implausibility of the results, especially those relating to capital
and time (correlation 0.997), may be attributed to multicollinearity.

11.16 Demonstrate that the dynamic process (11.18) implies the long-run relationship
given by (11.15).

Answer:

Equations (11.15) and (11.18) are:

Ỹ =
β1

1− β3

+
β2

1− β3

X̃ (11.15)

Yt = β1(1 + β3 + β2
3 + · · · ) + β2Xt + β2β3Xt−1 + β2β

2
3Xt−2 + · · · (11.18)

+ut + β3ut−1 + β2
3ut−2 + · · · .

Putting X = X̃ for all X in (11.18), and ignoring the disturbance terms, the
long-run relationship between Y and X is given by:

Ỹ = β1(1 + β3 + β2
3 + · · · ) + β2X̃ + β2β3X̃ + β2β

2
3X̃ + · · ·

=
β1

1− β3

+ (1 + β3 + β2
3 + · · · )β2X̃

=
β1

1− β3

+
β2

1− β3

X̃.
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11.17 The compound disturbance term in the adaptive expectations model (11.37) does
potentially give rise to a problem that will be discussed in Chapter 12 when we
come to the topic of autocorrelation. It can be sidestepped by representing the
model in the alternative form.

Yt = β1 + β2λXt + β2λ(1− λ)Xt−1 + · · ·+ β2λ(1− λ)sXt−s + β2(1− λ)s+1Xe
t−s + ut.

Show how this form might be obtained, and discuss how it might be fitted.

Answer:

We start by reprising equations (11.31) – (11.34) in the text. We assume that the
dependent variable Yt is related to Xe

t+1, the value of X anticipated in the next
time period:

Yt = γ1 + γ2X
e
t+1 + ut. (11.31)

To make the model operational, we hypothesise that expectations are updated in
response to the discrepancy between what had been anticipated for the current
time period, Xe

t+1, and the actual outcome, Xt:

Xe
t+1 −Xe

t = λ(Xt −Xe
t ) (11.32)

where λ may be interpreted as a speed of adjustment. We can rewrite this as
(11.33):

Xe
t+1 = λXt + (1− λ)Xe

t . (11.33)

Hence we obtain (11.34):

Yt = γ1 + γ2λXt + γ2(1− λ)Xe
t + ut. (11.34)

This includes the unobservable Xe
t on the right side. However, lagging (11.33), we

have:
Xe
t = λXt−1 + (1− λ)Xe

t−1.

Hence:
Yt = γ1 + γ2λXt + γ2λ(1− λ)Xt−1 + γ2(1− λ)2Xe

t−1 + ut.

This includes the unobservable Xe
t−1 on the right side. However, continuing to lag

and substitute, we have:

Yt = γ1 + γ2λXt + γ2λ(1− λ)Xt−1 + · · ·+ γ2λ(1− λ)sXt−s + γ2(1− λ)s+1Xe
t−s + ut.

Provided that s is large enough for γ2(1− λ)s+1 to be very small, this may be
fitted, omitting the unobservable final term, with negligible omitted variable bias.

We would fit it with a nonlinear regression technique that respected the constraints
implicit in the theoretical structure of the coefficients.

11.19 The output below shows the result of fitting the model:

LGFOOD = β1 + β2λLGDPI + β2λ(1− λ)LGDPI (−1) + β2λ(1− λ)2LGDPI (−2)

+β2λ(1− λ)3LGDPI (−3) + β3LGPRFOOD + u

using the data on expenditure on food in the Demand Functions data set.
LGFOOD and LGPRFOOD are the logarithms of expenditure on food and the
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relative price index series for food. C(1), C(2), C(3), and C(4) are estimates of β1,
β2, λ and β3, respectively. Explain how the regression equation could be interpreted
as an adaptive expectations model and discuss the dynamics implicit in it, both
short-run and long-run. Should the specification have included further lagged
values of LGDPI ?

============================================================

Dependent Variable: LGFOOD

Method: Least Squares

Sample(adjusted): 1962 2003

Included observations: 42 after adjusting endpoints

Convergence achieved after 25 iterations

LGFOOD=C(1)+C(2)*C(3)*LGDPI + C(2)*C(3)*(1-C(3))*LGDPI(-1) + C(2)

*C(3)*(1-C(3))^2*LGDPI(-2) + C(2)*C(3)*(1-C(3))^3*LGDPI(-3) +

C(4)*LGPRFOOD

============================================================

Coefficient Std. Error t-Statistic Prob.

============================================================

C(1) 2.339513 0.468550 4.993091 0.0000

C(2) 0.496425 0.012264 40.47818 0.0000

C(3) 0.915046 0.442851 2.066264 0.0457

C(4) -0.089681 0.083250 -1.077247 0.2882

============================================================

R-squared 0.989621 Mean dependent var 6.049936

Adjusted R-squared 0.988802 S.D. dependent var 0.201706

S.E. of regression 0.021345 Akaike info criter-4.765636

Sum squared resid 0.017313 Schwarz criterion -4.600143

Log likelihood 104.0784 Durbin-Watson stat 0.449978

============================================================

Answer:

Suppose that the model is:

LGFOOD t = γ1 + γ2LGDPI et+1 + γ3LGPRFOOD t + ut

where LGDPI et+1 is expected LGDPI at time t+ 1, and that expectations for
income are subject to the adaptive expectations process:

LGDPI et+1 − LGDPI et = λ(LGDPI t − LGDPI et ).

The adaptive expectations process may be rewritten:

LGDPI et+1 = λLGDPI t + (1− λ)LGDPI et .

Lagging this equation one period and substituting, one has:

LGDPI et+1 = λLGDPI t + λ(1− λ)LGDPI t−1 + (1− λ)2LGDPI et−1.

Lagging a second time and substituting, one has:

LGDPI et+1 = λLGDPI t+λ(1−λ)LGDPI t−1+λ(1−λ)2LGDPI t−2+(1−λ)3LGDPI et−2.

Lagging a third time and substituting, one has:

LGDPI et+1 = λLGDPI t + λ(1− λ)LGDPI t−1 + λ(1− λ)2LGDPI t−2

+λ(1− λ)3LGDPI et−3 + (1− λ)4LGDPI et−3.

248



11.4. Answers to the starred exercises in the textbook

Substituting this into the model, dropping the final unobservable term, one has the
regression specification as stated in the question.

The estimates imply that the short-run income elasticity is 0.50. The speed of
adjustment of expectations is 0.92. Hence the long-run income elasticity is
0.50/0.92 = 0.54. The price side of the model has been assumed to be static. The
estimate of the price elasticity is −0.09. The coefficient of the dropped
unobservable term is γ2(1− λ)4. Given our estimates of γ2 and λ, its estimate is
0.0003. Hence we are justified in neglecting it.

11.22 A researcher is fitting the following supply and demand model for a certain
commodity, using a sample of time series observations:

Qdt = β1 + β2Pt + udt

Qst = α1 + α2Pt + ust

where Qdt is the amount demanded at time t, Qst is the amount supplied, Pt is the
market clearing price, and udt and ust are disturbance terms that are not
necessarily independent of each other. It may be assumed that the market clears
and so Qdt = Qst.

• What can be said about the identification of (a) the demand equation, (b) the
supply equation?

• What difference would it make if supply at time t was determined instead by
price at time t− 1? That is:

Qst = α1 + α2Pt−1 + ust.

• What difference would it make if it could be assumed that udt is distributed
independently of ust?

Answer:

The reduced form equation for Pt is:

Pt =
1

α2 − β2

(β1 − α1 + udt − ust).

Pt is not independent of the disturbance term in either equation and so OLS would
yield inconsistent estimates. There is no instrument available, so both equations are
underidentified.

Provided that udt is not subject to autocorrelation, Pt−1 could be used as an
instrument in the demand equation. Provided that ust is not subject to
autocorrelation, OLS could be used to fit the second equation. It makes no
difference whether or not udt is distributed independently of ust.

The first equation could, alternatively, be fitted using OLS, with the variables
switched. From the second equation, Pt−1 determines Qt, and then, given Qt, the
demand equation determines Pt:

Pt =
1

β2

(Qt − β1 − udt).

The reciprocal of the slope coefficient provides a consistent estimator of β2.
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11.24 Consider the following simple macroeconomic model:

Ct = β1 + β2Yt + uCt

It = α1 + α2(Yt − Yt−1) + uIt

Yt = Ct + It

where Ct, It, and Yt are aggregate consumption, investment, and income and uCt
and uIt are disturbance terms. The first relationship is a conventional consumption
function. The second relates investment to the change of output from the previous
year. (This is known as an ‘accelerator’ model.) The third is an income identity.
What can be said about the identification of the relationships in the model?

Answer:

The restriction on the coefficients of Yt and Yt−1 in the investment equation
complicates matters. A simple way of handling it is to define:

∆Yt = Yt − Yt−1

and to rewrite the investment equation as:

It = α1 + α2∆Yt + uIt .

We now have four endogenous variables and four equations, and one exogenous
variable. The consumption and investment equations are exactly identified. We
would fit them using Yt−1 as an instrument for Yt and ∆Yt, respectively. The other
two equations are identities and do not need to be fitted.

11.5 Answers to the additional exercises

A11.1 The linear regression indicates that expenditure on food increases by $0.032 billion
for every extra $ billion of disposable personal income (in other words, by 3.2 cents
out of the marginal dollar), that it increases by $0.403 billion for every point
increase in the price index, and that it increases by $0.001 billion for every
additional thousand population. The income coefficient is significant at the 1 per
cent level (ignoring problems to be discussed in Chapter 12). The positive price
coefficient makes no sense (remember that the dependent variable is measured in
real terms). The intercept has no plausible interpretation.

The logarithmic regression indicates that the income elasticity is 0.59 and highly
significant, and the price elasticity is −0.12, not significant. The negative elasticity
for population is not plausible. One would expect expenditure on food to increase
in line with population, controlling for other factors, and hence, as a first
approximation, the elasticity should be equal to 1. However, an increase in
population, keeping income constant, would lead to a reduction in income per
capita and hence to a negative income effect. Given that the income elasticity is
less than 1, one would still expect a positive elasticity overall for population. At
least the estimate is not significantly different from zero. In view of the high
correlation, 0.995, between LGDPI and LGPOP, the negative estimate may well be
a result of multicollinearity.
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A11.2

OLS logarithmic regressions
LGDPI LGP LGPOP R2

coef. s.e. coef. s.e. coef. s.e.
ADM −1.43 0.20 −0.28 0.10 6.88 0.61 0.975
BOOK −0.29 0.28 −1.18 0.21 4.94 0.82 0.977
BUSI 0.36 0.19 −0.11 0.27 2.79 0.51 0.993
CLOT 0.71 0.10 −0.70 0.05 0.15 0.36 0.998
DENT 1.23 0.14 −0.95 0.09 0.26 0.54 0.995
DOC 0.97 0.14 0.26 0.13 −0.27 0.52 0.993
FLOW 0.46 0.32 0.16 0.33 3.07 1.21 0.987
FOOD 0.59 0.08 −0.12 0.08 −0.29 0.26 0.992
FURN 0.36 0.28 −0.48 0.26 1.66 1.12 0.985
GAS 1.27 0.24 −0.24 0.06 −2.81 0.74 0.788
GASO 1.46 0.16 −0.10 0.04 −2.35 0.49 0.982
HOUS 0.91 0.08 −0.54 0.06 0.38 0.25 0.999
LEGL 1.17 0.16 −0.08 0.13 −1.50 0.54 0.976
MAGS 1.05 0.22 −0.73 0.44 −0.82 0.54 0.970
MASS −1.92 0.22 −0.57 0.14 6.14 0.65 0.785
OPHT 0.30 0.45 0.28 0.59 3.68 1.40 0.965
RELG 0.56 0.13 −0.99 0.23 2.72 0.41 0.996
TELE 0.91 0.13 −0.61 0.11 1.79 0.49 0.998
TOB 0.54 0.17 −0.42 0.04 −1.21 0.57 0.883
TOYS 0.59 0.10 −0.54 0.06 2.57 0.39 0.999

The price elasticities mostly lie in the range 0 to −1, as they should, and therefore
seem plausible. However the very high correlation between income and population,
0.995, has given rise to a problem of multicollinearity and as a consequence the
estimates of their elasticities are very erratic. Some of the income elasticities look
plausible, but that may be pure chance, for many are unrealistically high, or
negative when obviously they should be positive. The population elasticities are
even less convincing.

Correlations between prices, income and population
LGP, LGDPI LGP, LGPOP LGP, LGDPI LGP, LGPOP

ADM 0.61 0.61 GASO 0.05 0.03
BOOK 0.88 0.87 HOUS 0.49 0.55
BUSI 0.98 0.97 LEGL 0.99 0.99
CLOT −0.94 −0.96 MAGS 0.99 0.98
DENT 0.94 0.96 MASS 0.90 0.89
DOC 0.98 0.98 OPHT −0.68 −0.67
FLOW −0.93 −0.95 RELG 0.92 0.92
FOOD −0.60 −0.64 TELE −0.98 −0.99
FURN −0.95 −0.97 TOB 0.83 0.86
GAS 0.77 0.76 TOYS −0.97 −0.98

251



11. Models using time series data

A11.3 The regression indicates that the income elasticity is 0.40 and the price elasticity
0.21, the former very highly significant, the latter significant at the 1 per cent level
using a one-sided test. If the specification is:

log
FOOD

POP
= β1 + β2 log

DPI

POP
+ β3 log PRELFOOD + u

it may be rewritten:

log FOOD = β1 + β2 log DPI + β3 log PRELFOOD + (1− β2) log POP + u.

This is a restricted form of the specification in Exercise A11.2:

log FOOD = β1 + β2 log DPI + β3 log PRELFOOD + β4 log POP + u

with β4 = 1− β2. We can test the restriction by comparing RSS for the two
regressions:

F (1, 41) =
(0.023232− 0.016936)/1

0.016936/41
= 15.24.

The critical value of F (1, 40) at the 0.1 per cent level is 12.61. The critical value for
F (1, 41) must be slightly lower. Thus we reject the restriction. Since the restricted
version is misspecified, our interpretation of the coefficients of this regression and
the t tests are invalidated.

A11.4 Given that the critical values of F (1, 41) at the 5 and 1 per cent levels are 4.08 and
7.31 respectively, the results of the F test may be summarised as follows:

• Restriction not rejected: CLOT, DENT, DOC, FURN, HOUS.

• Restriction rejected at the 5 per cent level: MAGS.

• Restriction rejected at the 1 per cent level: ADM, BOOK, BUSI, FLOW,
FOOD, GAS, GASO, LEGL, MASS, OPHT, RELG, TELE, TOB, TOYS.

However, for reasons that will become apparent in the next chapter, these findings
must be regarded as provisional.
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Tests of a restriction
RSSU RSSR F t

ADM 0.125375 0.480709 116.20 10.78
BOOK 0.223664 0.461853 43.66 6.61
BUSI 0.084516 0.167580 40.30 6.35
CLOT 0.021326 0.021454 0.25 −0.50
DENT 0.033275 0.034481 1.49 1.22
DOC 0.068759 0.069726 0.58 −0.76
FLOW 0.220256 0.262910 7.94 2.82
FOOD 0.016936 0.023232 15.24 −3.90
FURN 0.157153 0.162677 1.44 1.20
GAS 0.185578 0.300890 25.48 −5.05
GASO 0.078334 0.139278 31.90 −5.65
HOUS 0.011270 0.012106 3.04 1.74
LEGL 0.082628 0.102698 9.96 −3.16
MAGS 0.096620 0.106906 4.36 −2.09
MASS 0.143775 0.330813 53.34 7.30
OPHT 0.663413 0.822672 9.84 3.14
RELG 0.053785 0.135532 62.32 7.89
TELE 0.054519 0.080728 19.71 4.44
TOB 0.062452 0.087652 16.54 −4.07
TOYS 0.031269 0.071656 52.96 7.28

A11.5 If the specification is:

log
FOOD

POP
= β1 + β2 log

DPI

POP
+ β3 log PRELFOOD + γ1POP + u

it may be rewritten:

log FOOD = β1 + β2 log DPI + β3 log PRELFOOD + (1− β2 + γ1) log POP + u.

This is equivalent to the specification in Exercise A11.1:

log FOOD = β1 + β2 log DPI + β3 log PRELFOOD + β4 log POP + u

with β4 = 1− β2 + γ1. Note that this is not a restriction. (1) – (3) are just different
ways of writing the unrestricted model.

A t test of H0 : γ1 = 0 is equivalent to a t test of H0 : β4 = 1− β2, that is, that the
restriction in Exercise A11.3 is valid. The t statistic for LGPOP in the regression is
−3.90, and hence again we reject the restriction. Note that the test is equivalent to
the F test. −3.90 is the square root of 15.24, the F statistic, and it can be shown
that the critical value of t is the square root of the critical value of F .

A11.6 The t statistics for all the categories of expenditure are supplied in the table in the
answer to Exercise A11.4. Of course they are equal to the square root of the F
statistic, and their critical values are the square roots of the critical values of F , so
the conclusions are identical and, like those of the F test, should be treated as
provisional.
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A11.7 Show that β2 + β3 and (β4 + β5) are theoretically the long-run (equilibrium) income
and price elasticities.

In equilibrium, LGCAT = LGCAT, LGDPI = LGDPI (−1) = LGDPI and
LGPRCAT = LGPRCAT (−1) = LGPRCAT. Hence, ignoring the transient effect
of the disturbance term:

LGCAT = β1 + β2LGDPI + β3LGDPI + β4LGPRCAT + β5LGPRCAT

= β1 + (β2 + β3)LGDPI + (β4 + β5)LGPRCAT.

Thus the long-run equilibrium income and price elasticities are θ = β2 + β3 and
φ = β4 + β5, respectively.

Reparameterise the model and fit it to obtain direct estimates of these long-run
elasticities and their standard errors.

We will reparameterise the model to obtain direct estimates of θ and φ and their
standard errors. Write β3 = θ − β2 and φ = β4 + β5 and substitute for β3 and β5 in
the model. We obtain:

LGCAT = β1 + β2LGDPI + (θ − β2)LGDPI (−1) + β4LGPRCAT + (φ− β4)LGPRCAT (−1) + u

= β1 + β2(LGDPI − LGDPI (−1)) + θLGDPI (−1)
+β4(LGPRCAT − LGPRCAT (−1)) + φLGPRCAT (−1) + u

= β1 + β2DLGDPI + θLGDPI (−1) + β4DLGPRCAT + φLGPRCAT (−1) + u

where DLGDPI = LGDPI − LGDPI (−1) and DLGPRCAT = LGPRCAT −
LGPRCAT (−1).

The output for HOUS is shown below. DLGPRCAT has been abbreviated as
DLGP.

============================================================

Dependent Variable: LGHOUS

Method: Least Squares

Sample(adjusted): 1960 2003

Included observations: 44 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 0.020785 0.144497 0.143844 0.8864

DLGDPI 0.329571 0.150397 2.191340 0.0345

LGDPI(-1) 1.013147 0.006815 148.6735 0.0000

DLGP -0.088813 0.165651 -0.536144 0.5949

LGPRHOUS(-1) -0.447176 0.035927 -12.44689 0.0000

============================================================

R-squared 0.999039 Mean dependent var 6.379059

Adjusted R-squared 0.998940 S.D. dependent var 0.421861

S.E. of regression 0.013735 Akaike info criter-5.631127

Sum squared resid 0.007357 Schwarz criterion -5.428379

Log likelihood 128.8848 F-statistic 10131.80

Durbin-Watson stat 0.536957 Prob(F-statistic) 0.000000

============================================================

Confirm that the estimates are equal to the sum of the individual shortrun
elasticities found in Exercise 11.9.

The estimates of the long-run income and price elasticities are 1.01 and −0.45,
respectively. The output below is for the model in its original form, where the
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coefficients are all short-run elasticities. It may be seen that, for both income and
price, the sum of the estimates of the shortrun elasticities is indeed equal to the
estimate of the long-run elasticity in the reparameterised specification.

============================================================

Dependent Variable: LGHOUS

Method: Least Squares

Sample(adjusted): 1960 2003

Included observations: 44 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 0.020785 0.144497 0.143844 0.8864

LGDPI 0.329571 0.150397 2.191340 0.0345

LGDPI(-1) 0.683575 0.147111 4.646648 0.0000

LGPRHOUS -0.088813 0.165651 -0.536144 0.5949

LGPRHOUS(-1) -0.358363 0.165782 -2.161660 0.0368

============================================================

R-squared 0.999039 Mean dependent var 6.379059

Adjusted R-squared 0.998940 S.D. dependent var 0.421861

S.E. of regression 0.013735 Akaike info criter-5.631127

Sum squared resid 0.007357 Schwarz criterion -5.428379

Log likelihood 128.8848 F-statistic 10131.80

Durbin-Watson stat 0.536957 Prob(F-statistic) 0.000000

============================================================

Compare the standard errors with those found in Exercise 11.9 and state your
conclusions.

The standard errors of the long-run elasticities in the reparameterised version are
much smaller than those of the short-run elasticities in the original specification,
and the t statistics accordingly much greater. Our conclusion is that it is possible
to obtain relatively precise estimates of the long-run impact of income and price,
even though multicollinearity prevents us from deriving precise short-run estimates.

A11.8 Show how this model may be derived from the demand function and the adaptive
expectations process.

The adaptive expectations process may be rewritten:

iet+1 = λit + (1− λ)iet .

Substituting this into (1), one obtains:

Bt = β1 + β2λit + β2(1− λ)iet + ut.

We note that if we lag (1) by one time period:

Bt−1 = β1 + β2i
e
t + ut−1.

Hence:
β2i

e
t = Bt−1 − β1 − ut−1.

Substituting this into the second equation above, one has:

Bt = β1λ+ β2λit + (1− λ)Bt−1 + ut − (1− λ)ut−1.
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This is equation (3) in the question, with γ1 = β1λ, γ2 = β2λ, γ3 = 1− λ, and
vt = ut − (1− λ)ut−1.

Explain why inconsistent estimates of the parameters will be obtained if equation
(3) is fitted using ordinary least squares (OLS). (A mathematical proof is not
required. Do not attempt to derive expressions for the bias.)

In equation (3), the regressor Bt−1 is partly determined by ut−1. The disturbance
term vt also has a component ut−1. Hence the requirement that the regressors and
the disturbance term be distributed independently of each other is violated. The
violation will lead to inconsistent estimates because the regressor and the
disturbance term are contemporaneously correlated.

Describe a method for fitting the model that would yield consistent estimates.

If the first equation in this exercise is true for time period t+ 1, it is true for time
period t:

iet = λit−1 + (1− λ)iet−1.

Substituting into the second equation in (a), we now have:

Bt = β1 + β2λit + β2λ(1− λ)it−1 + (1− λ)2iet−1 + ut.

Continuing to lag and substitute, we have:

Bt = β1 + β2λit + β2λ(1− λ)it−1 + · · ·+ β2λ(1− λ)s−1it−s+1 + (1− λ)siet−s+1 + ut.

For s large enough, (1−λ)s will be so small that we can drop the unobservable term
iet−s+1 with negligible omitted variable bias. The disturbance term is distributed
independently of the regressors and hence we obtain consistent estimates of the
parameters. The model should be fitted using a nonlinear estimation technique that
takes account of the restrictions implicit in the specification.

Suppose that ut were subject to the first-order autoregressive process:

ut = ρut−1 + εt

where εt is not subject to autocorrelation. How would this affect your answer to the
second part of this question?

vt is now given by:

vt = ut − (1− λ)ut−1 = ρut−1 + εt − (1− λ)ut−1 = εt − (1− ρ− λ)ut−1.

Since ρ and λ may reasonably be assumed to lie between 0 and 1, it is possible that
their sum is approximately equal to 1, in which case vt is approximately equal to
the innovation εt. If this is the case, there would be no violation of the regression
assumption described in the second part of this question and one could use OLS to
fit (3) after all.

Suppose that the true relationship was actually:

Bt = β1 + β2it + ut (1∗)

with ut not subject to autocorrelation, and the model is fitted by regressing Bt on it
and Bt−1, as in equation (3), using OLS. How would this affect the regression
results?
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The estimators of the coefficients will be inefficient in that Bt−1 is a redundant
variable. The inclusion of Bt−1 will also give rise to finite sample bias that would
disappear in large samples.

How plausible do you think an adaptive expectations process is for modelling
expectations in a bond market?

The adaptive expectations model is implausible since the expectations process
would change as soon as those traders taking advantage of their knowledge of it
started earning profits.

A11.9 The regression indicates that the short-run income, price, and population
elasticities for expenditure on food are 0.14, −0.10, and −0.05, respectively, and
that the speed of adjustment is (1− 0.73) = 0.27. Dividing by 0.27, the long-run
elasticities are 0.52, −0.37, and −0.19, respectively. The income and price
elasticities seem plausible. The negative population elasticity makes no sense, but it
is small and insignificant. The estimates of the short-run income and price
elasticities are likewise not significant, but this is not surprising given that the
point estimates are so small.

A11.10 The table gives the result of the specification with a lagged dependent variable for
all the categories of expenditure.

OLS logarithmic regression
LGDPI LGP LGPOP LGCAT (−1) Long-run effects

coef. s.e. coef. s.e. coef. s.e. coef. s.e. DPI P
ADM −0.38 0.18 −0.10 0.06 2.03 0.74 0.68 0.09 −1.18 −0.33
BOOK −0.36 0.20 −0.21 0.22 2.07 0.74 0.75 0.12 −1.46 −1.05
BUSI 0.10 0.13 0.03 0.18 0.78 0.45 0.72 0.11 0.33 0.09
CLOT 0.44 0.10 −0.40 0.07 0.01 0.32 0.43 0.09 0.77 −0.70
DENT 0.71 0.18 −0.46 0.16 −0.13 0.51 0.47 0.13 1.34 −0.87
DOC 0.23 0.14 −0.11 0.10 0.21 0.35 0.78 0.10 1.04 −0.52
FLOW 0.20 0.24 −0.31 0.27 0.07 0.98 0.75 0.11 0.81 −1.25
FOOD 0.14 0.09 −0.10 0.06 −0.05 0.19 0.73 0.11 0.53 −0.35
FURN 0.07 0.22 −0.07 0.22 0.82 0.91 0.68 0.12 0.21 −0.23
GAS 0.10 0.17 −0.06 0.03 −0.13 0.45 0.76 0.08 0.42 −0.26
GASO 0.32 0.11 −0.10 0.02 −0.59 0.25 0.80 0.06 1.56 −0.47
HOUS 0.30 0.05 −0.09 0.04 −0.13 0.10 0.73 0.05 1.11 −0.32
LEGL 0.40 0.14 0.10 0.09 −0.90 0.36 0.68 0.09 1.23 0.30
MAGS 0.57 0.21 −0.48 0.37 −0.56 0.44 0.55 0.12 1.27 −1.08
MASS −0.28 0.29 −0.23 0.11 1.08 0.89 0.75 0.12 −1.14 −0.93
OPHT 0.30 0.24 −0.28 0.33 −0.45 0.85 0.88 0.09 2.48 −2.25
RELG 0.34 0.09 −0.71 0.17 1.25 0.38 0.51 0.09 0.68 −1.44
TELE 0.15 0.14 0.00 0.12 0.68 0.37 0.81 0.12 0.77 0.02
TOB 0.12 0.14 −0.12 0.05 −0.31 0.43 0.71 0.11 0.43 −0.43
TOYS 0.31 0.11 −0.27 0.08 1.44 0.47 0.47 0.12 0.58 −0.51
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A11.11 In his classic study Distributed Lags and Investment Analysis (1954), Koyck
investigated the relationship between investment in railcars and the volume of
freight carried on the US railroads using data for the period 1884–1939. Assuming
that the desired stock of railcars in year t depended on the volume of freight in year
t− 1 and year t− 2 and a time trend, and assuming that investment in railcars was
subject to a partial adjustment process, he fitted the following regression equation
using OLS (standard errors and constant term not reported):

Ît = 0.077Ft−1 + 0.017Ft−2 − 0.0033t− 0.110Kt−1 R2 = 0.85

where It = Kt −Kt−1 is investment in railcars in year t (thousands), Kt is the
stock of railcars at the end of year t (thousands), and Ft is the volume of freight
handled in year t (ton-miles).

Provide an interpretation of the equation and describe the dynamic process implied
by it. (Note: It is best to substitute Kt −Kt−1 for It in the regression and treat it as
a dynamic relationship determining Kt).

Given the information in the question, the model may be written:

K∗t = β1 + β2Ft−1 + β3Ft−2 + β4t+ ut

Kt −Kt−1 = It = λ(K∗t −Kt−1).

Hence:

It = λβ1 + λβ2Ft−1 + λβ3Ft−2 + λβ4t− λKt−1 + λut.

From the fitted equation:

λ̂ = 0.110

β̂2 =
0.077

0.110
= 0.70

β̂3 =
0.017

0.110
= 0.15

β̂4 =
−0.0033

0.110
= −0.030.

Hence the short-run effect of an increase of 1 million ton-miles of freight is to
increase investment in railcars by 7,000 one year later and 1,500 two years later. It
does not make much sense to talk of a short-run effect of a time trend.

In the long-run equilibrium, neglecting the effects of the disturbance term, Kt and
K∗t are both equal to the equilibrium value K and Ft−1 and Ft−2 are both equal to
their equilibrium value F. Hence, using the first equation:

K = β1 + (β2 + β3)F + β4t.

Thus an increase of one million ton-miles of freight will increase the stock of
railcars by 940 and the time trend will be responsible for a secular decline of 33
railcars per year.
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A11.12 One researcher asserts that consistent estimates will be obtained if (2) is fitted
using OLS and (1) is fitted using IV, with Yt−1 as an instrument for Xt. Determine
whether this is true.

(2) may indeed be fitted using OLS. Strictly speaking, there may be an element of
bias in finite samples because of noncontemporaneous correlation between vt and
future values of Yt−1.

We could indeed use Yt−1 as an instrument for Xt in (1) because Yt−1 is a
determinant of Xt but is not (contemporaneously) correlated with ut.

The other researcher asserts that consistent estimates will be obtained if both (1)
and (2) are fitted using OLS, and that the estimate of β2 will be more efficient than
that obtained using IV. Determine whether this is true.

This assertion is also correct. Xt is not correlated with ut, and OLS estimators are
more efficient than IV estimators when both are consistent. Strictly speaking, there
may be an element of bias in finite samples because of noncontemporaneous
correlation between ut and future values of Xt.
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Chapter 12

Properties of regression models with
time series data

12.1 Overview

This chapter begins with a statement of the regression model assumptions for
regressions using time series data, paying particular attention to the assumption that
the disturbance term in any time period be distributed independently of the regressors
in all time periods. There follows a general discussion of autocorrelation: the meaning of
the term, the reasons why the disturbance term may be subject to it, and the
consequences of it for OLS estimators. The chapter continues by presenting the
Durbin–Watson test for AR(1) autocorrelation and showing how the problem may be
eliminated. Next it is shown why OLS yields inconsistent estimates when the
disturbance term is subject to autocorrelation and the regression model includes a
lagged dependent variable as an explanatory variable. Then the chapter shows how the
restrictions implicit in the AR(1) specification may be tested using the common factor
test, and this leads to a more general discussion of how apparent autocorrelation may be
caused by model misspecification. This in turn leads to a general discussion of the issues
involved in model selection and, in particular, to the general-to-specific methodology.

12.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the concept of autocorrelation and the difference between positive and
negative autocorrelation

describe how the problem of autocorrelation may arise

describe the consequences of autocorrelation for OLS estimators, their standard
errors, and t and F tests, and how the consequences change if the model includes a
lagged dependent variable

perform the Breusch–Godfrey and Durbin–Watson d tests for autocorrelation

explain how the problem of AR(1) autocorrelation may be eliminated

describe the restrictions implicit in the AR(1) specification
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perform the common factor test

explain how apparent autocorrelation may arise as a consequence of the omission of
an important variable or the mathematical misspecification of the regression model

demonstrate that the static, AR(1), and ADL(1,0) specifications are special cases
of the ADL(1,1) model

explain the principles of the general-to-specific approach to model selection and the
defects of the specific-to-general approach.

12.3 Additional exercises

A12.1 The output shows the result of a logarithmic regression of expenditure on food on
income, relative price, and population, using an AR(1) specification. Compare the
results with those in Exercise A11.1.

============================================================

Dependent Variable: LGFOOD

Method: Least Squares

Sample(adjusted): 1960 2003

Included observations: 44 after adjusting endpoints

Convergence achieved after 14 iterations

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

C 2.945983 3.943913 0.746969 0.4596

LGDPI 0.469216 0.118230 3.968687 0.0003

LGPRFOOD -0.361862 0.122069 -2.964413 0.0052

LGPOP 0.072193 0.379563 0.190200 0.8501

AR(1) 0.880631 0.092512 9.519085 0.0000

============================================================

R-squared 0.996695 Mean dependent var 6.030691

Adjusted R-squared 0.996356 S.D. dependent var 0.216227

S.E. of regression 0.013053 Akaike info criter-5.732970

Sum squared resid 0.006645 Schwarz criterion -5.530221

Log likelihood 131.1253 F-statistic 2940.208

Durbin--Watson stat 1.556480 Prob(F-statistic) 0.000000

============================================================

Inverted AR Roots .88

============================================================

A12.2 Perform Breusch–Godfrey and Durbin–Watson tests for autocorrelation for the
logarithmic regression in Exercise A11.2. If you reject the null hypothesis of no
autocorrelation, run the regression again using an AR(1) specification, and
compare the results with those in Exercise A11.2.

A12.3 Perform an OLS ADL(1,1) logarithmic regression of expenditure on your category
on current income, price, and population and lagged expenditure, income, price,
and population. Use the results to perform a common factor test of the validity of
the AR(1) specification in Exercise A12.2.
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A12.4 A researcher has annual data on LIFE, aggregate consumer expenditure on life
insurance, DPI, aggregate disposable personal income, and PRELLIFE, a price
index for the cost of life insurance relative to general inflation, for the United
States for the period 1959–1994. LIFE and DPI are measured in US$ billion.
PRELLIFE is an index number series with 1992 = 100. She defines LGLIFE,
LGDPI, and LGPRLIFE as the natural logarithms of LIFE, DPI, and PRELLIFE,
respectively. She fits the regressions shown in columns (1) – (4) of the table, each
with LGLIFE as the dependent variable. (Standard errors in parentheses; OLS =
ordinary least squares; AR(1) is a specification appropriate when the disturbance
term follows a first-order autoregressive process; B–G is the Breusch–Godfrey test
statistic for AR(1) autocorrelation; d = Durbin–Watson d statistic; ρ̂ is the
estimate of the autoregressive parameter in a first-order autoregressive process.)

(1) (2) (3) (4) (5)
OLS AR(1) OLS OLS OLS

LGDPI 1.37 1.41 0.42 0.28 —
(0.10) (0.25) (0.60) (0.17)

LGPRLIFE −0.67 −0.78 −0.59 −0.26 —
(0.35) (0.50) (0.51) (0.21)

LGLIFE (−1) — — 0.82 0.79 0.98
(0.10) (0.09) (0.02)

LGDPI (−1) — — −0.15 — —
(0.61)

LGPRLIFE (−1) — — 0.38 — —
(0.53)

constant −4.39 −4.20 −0.50 −0.51 0.12
(0.88) (1.69) (0.72) (0.70) (0.08)

R2 0.958 0.985 0.986 0.986 0.984
RSS 0.2417 0.0799 0.0719 0.0732 0.0843
B–G 23.48 — 0.61 0.34 0.10
d 0.36 1.85 2.02 1.92 2.05
ρ̂ — 0.82 — — —

(0.11)

• Discuss whether specification (1) is an adequate representation of the data.

• Discuss whether specification (3) is an adequate representation of the data.

• Discuss whether specification (2) is an adequate representation of the data.

• Discuss whether specification (4) is an adequate representation of the data.

• If you were presenting these results at a seminar, what would you say were
your conclusions concerning the most appropriate of specifications (1) – (4)?

• At the seminar a commentator points out that in specification (4) neither
LGDPI nor LGPRLIFE have significant coefficients and so these variables
should be dropped. As it happens, the researcher has considered this
specification, and the results are shown as specification (5) in the table. What
would be your answer to the commentator?
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A12.5 A researcher has annual data on the yearly rate of change of the consumer price
index, p, and the yearly rate of change of the nominal money supply, m, for a
certain country for the 51-year period 1958–2008. He fits the following regressions,
each with p as the dependent variable. The first four regressions are fitted using
OLS. The fifth is fitted using a specification appropriate when the disturbance term
is assumed to follow an AR(1) process. p(−1) indicates p lagged one year. m(−1),
m(−2), and m(−3) indicate m lagged 1, 2, and 3 years, respectively.

(1) explanatory variable m.

(2) explanatory variables m, m(−1), m(−2), and m(−3).

(3) explanatory variables m, p(−1), and m(−1).

(4) explanatory variables m and p(−1).

(5) explanatory variable m.

The results are shown in the table. Standard errors are shown in parentheses. RSS
is the residual sum of squares. B −G is the Breusch–Godfrey test statistic for
AR(1) autocorrelation. d is the Durbin–Watson d statistic.

1 2 3 4 5
OLS OLS OLS OLS AR(1)

m 0.95 0.50 0.40 0.18 0.90
(0.05) (0.30) (0.12) (0.09) (0.08)

m(−1) — 0.30 −0.30 — —
(0.30) (0.10)

m(−2) — −0.15 — — —
(0.30)

m(−3) — 0.30 — — —
(0.30)

p(−1) — — 0.90 0.80 —
(0.20) (0.20)

constant 0.05 0.04 0.06 0.05 0.06
(0.04) (0.04) (0.04) (0.04) (0.03)

RSS 0.0200 0.0150 0.0100 0.0120 0.0105
B–G 35.1 27.4 0.39 0.26 0.57
d 0.10 0.21 2.00 2.00 1.90

• Looking at all five regressions together, evaluate the adequacy of:

◦ specification 1.

◦ specification 2.

◦ specification 3.

◦ specification 4.

• Explain why specification 5 is a restricted version of one of the other
specifications, stating the restriction, and explaining the objective of the
manipulations that lead to specification 5.

• Perform a test of the restriction embodied in specification 5.

• Explain which would be your preferred specification.
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A12.6 Derive the short-run (current year) and long-run (equilibrium) effect of m on p for
each of the five specifications in Exercise A12.5, using the estimated coefficients.

A12.7 A researcher has annual data on aggregate consumer expenditure on taxis, TAXI,
and aggregate disposable personal income, DPI, both measured in $ billion at 2000
constant prices, and a relative price index for taxis, P , equal to 100 in 2000, for the
United States for the period 1981–2005.

Defining LGTAXI, LGDPI, and LGP as the natural logarithms of TAXI, DPI, and
P , respectively, he fits regressions (1) – (4) shown in the table. OLS = ordinary
least squares; AR(1) indicates that the equation was fitted using a specification
appropriate for first-order autoregressive autocorrelation; ρ̂ is an estimate of the
parameter in the AR(1) process; B–G is the Breusch–Godfrey statistic for AR(1)
autocorrelation; d is the Durbin–Watson d statistic; standard errors are given in
parentheses.

(1) (2) (3) (4)
OLS AR(1) OLS AR(1)

LGDPI 2.06 1.28 2.28 2.24
(0.10) (0.84) (0.05) (0.07)

LGP — — −0.99 −0.97
(0.09) (0.11)

constant −12.75 −7.45 −9.58 −9.45
(0.68) (5.89) (0.40) (0.54)

ρ̂ — 0.88 — 0.26
(0.09) (0.22)

B–G 17.84 — 1.47 —
d 0.31 1.40 1.46 1.88
R2 0.95 0.98 0.99 0.99

Figure 12.1 shows the actual values of LGTAXI and the fitted values from
regression (1). Figure 12.2 shows the residuals from regression (1) and the values of
LGP.

• Evaluate regression (1).

• Evaluate regression (2). Explain mathematically what assumptions were being
made by the researcher when he used the AR(1) specification and why he
hoped the results would be better than those obtained with regression (1).

• Evaluate regression (3).

• Evaluate regression (4). In particular, discuss the possible reasons for the
differences in the standard errors in regressions (3) and (4).

• At a seminar one of the participants says that the researcher should consider
adding lagged values of LGTAXI, LGDPI, and LGP to the specification. What
would be your view?
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Figure 12.1: Actual values of LGTAXI and the fitted values from regression (1).
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Figure 2 

Figure 12.2: Residuals from regression (1) and the values of LGP.

A12.8 A researcher has annual data on I, investment as a percentage of gross domestic
product, and r, the real long-term rate of interest for a certain economy for the
period 1981–2010. He regresses I on r, (1) using ordinary least squares (OLS), (2)
using an estimator appropriate for AR(1) residual autocorrelation, and (3) using
OLS but adding I(−1) and r(−1) (I and r lagged one time period) as explanatory
variables. The results are shown in columns (1), (2), and (3) of the table below.
The residuals from regression (1) are shown in Figure 12.3.

He then obtains annual data on g, the rate of growth of gross domestic product of
the economy, for the same period, and repeats the regressions, adding g (and,
where appropriate, g(−1)) to the specifications as an explanatory variable. The
results are shown in columns (4), (5), and (6) of the table. r and g are measured as
per cent per year. The data for g are plotted in the figure.
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Figure 12.3: Residuals from regression (1).

OLS AR(1) OLS OLS AR(1) OLS
(1) (2) (3) (4) (5) (6)

r −0.87 −0.83 −0.87 −1.81 −1.88 −1.71
(0.98) (1.05) (1.08) (0.49) (0.50) (0.52)

I(−1) — — 0.37 — — −0.22
(0.16) (0.18)

r(−1) — — 0.64 — — −0.98
(1.08) (0.64)

g — — — 1.61 1.61 1.92
(0.17) (0.18) (0.20)

g(−1) — — — — — −0.02
(0.33)

ρ̂ — 0.37 — — −0.16 —
(0.18) (0.20)

Constant 9.31 9.21 4.72 9.26 9.54 13.24
(3.64) (3.90) (4.48) (1.77) (1.64) (2.69)

B–G 4.42 — 4.24 0.70 — 0.98
d 0.99 1.36 1.33 2.30 2.05 2.09
RSS 120.5 103.9 103.5 27.4 26.8 23.5
Note: standard errors are given in parentheses. ρ̂ is the
estimate of the autocorrelation parameter in the AR(1)
specification. B–G is the Breusch–Godfrey statistic for AR(1)
autocorrelation. d is the Durbin–Watson d statistic.

• Explain why the researcher was not satisfied with regression (1).

• Evaluate regression (2). Explain why the coefficients of I(−1) and r(−1) are
not reported, despite the fact that they are part of the regression specification.

• Evaluate regression (3).
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• Evaluate regression (4).

• Evaluate regression (5).

• Evaluate regression (6).

• Summarise your conclusions concerning the evaluation of the different
regressions. Explain whether an examination of the figure supports your
conclusions

A12.9 In Exercise A11.5 you performed a test of a restriction. The result of this test will
have been invalidated if you found that the specification was subject to
autocorrelation. How should the test be performed, assuming the correct
specification is ADL(1,1)?

A12.10 Given data on a univariate process:

Yt = β1 + β2yt−1 + ut

where |β2| < 1 and ut is iid, the usual OLS estimators will be consistent but
subject to finite-sample bias. How should the model be fitted if ut is subject to an
AR(1) process?

A12.11 Explain what is correct, incorrect, confused or incomplete in the following
statements, giving a brief explanation if not correct.

• The disturbance term in a regression model is said to be autocorrelated if its
values in a sample of observations are not distributed independently of each
other.

• When the disturbance term is subject to autocorrelation, the ordinary least
squares estimators are inefficient and inconsistent, but they are not biased,
and the t tests are invalid.

• It is a common problem in time series models because it always occurs when
the dependent variable is correlated with its previous values.

• If this is the case, it could be eliminated by including the lagged value of the
dependent variable as an explanatory variable.

• However, if the model is correctly specified and the disturbance term satisfies
the regression model assumptions, adding the lagged value of the dependent
variable as an explanatory variable will have the opposite effect and cause the
disturbance term to be autocorrelated.

• A second way of dealing with the problem of autocorrelation is to use an
instrumental variable.

• If the autocorrelation is of the AR(1) type, randomising the order of the
observations will cause the Breusch–Godfrey statistic to be near zero, and the
Durbin–Watson statistic to be near 2, thereby eliminating the problem.
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12.4 Answers to the starred exercises in the textbook

12.7 Prove that σ2
u is related to σ2

ε as shown in (12.31), and show that weighting the
first observation by

√
1− ρ2 eliminates the heteroskedasticity.

Answer:

(12.31) is:

σ2
u =

1

1− ρ2
σ2
ε

and it assumes the first order AR(1) process (12.26): ut = ρut−1 + εt. From the
AR(1) process, neglecting transitory effects, σut = σut−1 = σu and so:

σ2
u = ρ2σ2

u + σ2
ε =

1

1− ρ2
σ2
ε .

(Note that the covariance between ut−1 and εt is zero.) If the first observation is
weighted by

√
1− ρ2, the variance of the disturbance term will be:(√

1− ρ2
)2

σ2
u = (1− ρ2)

1

1− ρ2
σ2
ε = σ2

ε

and it will therefore be the same as in the other observations in the sample.

12.10 The table gives the results of three logarithmic regressions using the Cobb–Douglas
data for Yt, Kt, and Lt, index number series for real output, real capital input, and
real labor input, respectively, for the manufacturing sector of the United States for
the period 1899–1922, reproduced in Exercise 11.6 (method of estimation as
indicated; standard errors in parentheses; d = Durbin–Watson d statistic; B–G =
Breusch–Godfrey test statistic for first-order autocorrelation):

1: OLS 2: AR(1) 3: OLS
logK 0.23 0.22 0.18

(0.06) (0.07) (0.56)
logL 0.81 0.86 1.03

(0.15) (0.16) (0.15)
log Y (−1) — — 0.40

(0.21)
logK(−1) — — 0.17

(0.51)
logL(−1) — — −1.01

(0.25)
constant −0.18 −0.35 1.04

(0.43) (0.51) (0.41)
ρ̂ — 0.19 —

(0.25)
R2 0.96 0.96 0.98
RSS 0.0710 0.0697 0.0259
d 1.52 1.54 1.46
B–G 0.36 — 1.54

269



12. Properties of regression models with time series data

The first regression is that performed by Cobb and Douglas. The second fits the
same specification, allowing for AR(1) autocorrelation. The third specification uses
OLS with lagged variables. Evaluate the three regression specifications.

Answer:

For the first specification, the Breusch–Godfrey LM test for autocorrelation yields
statistics of 0.36 (first order) and 1.39 (second order), both satisfactory. For the
Durbin–Watson test, dL and dU are 1.19 and 1.55 at the 5 per cent level and 0.96
and 1.30 at the 1 per cent level, with 24 observations and two explanatory
variables. Hence the specification appears more or less satisfactory. Fitting the
model with an AR(1) specification makes very little difference, the estimate of ρ
being low. However, when we fit the general ADL(1,1) model, neither of the first
two specifications appears to be an acceptable simplification. The F statistic for
dropping all the lagged variables is:

F (3, 18) =
(0.0710− 0.0259)/3

0.0259/18
= 10.45.

The critical value of F (3, 18) at the 0.1 per cent level is 8.49. The common factor
test statistic is:

23 log
0.0697

0.0259
= 22.77

and the critical value of chi-squared with two degrees of freedom is 13.82 at the 0.1
per cent level. The Breusch–Godfrey statistic for first-order autocorrelation is 1.54.

We come to the conclusion that Cobb and Douglas, who actually fitted a restricted
version of the first specification, imposing constant returns to scale, were a little
fortunate to obtain the plausible results they did.

12.11 Derive the final equation in Box 12.2 from the first two equations in the box. What
assumptions need to be made when fitting the model?

Answer:

This exercise overlaps Exercise 11.17. The first two equations in the box are:

Yt = β1 + β2X
e
t+1 + ut

Xe
t+1 −Xe

t = λ(Xt −Xe
t ).

We can rewrite the second equation as:

Xe
t+1 = λXt + (1− λ)Xe

t .

Substituting this into the first equation, we have:

Yt = β1 + β2λXt + β2(1− λ)Xe
t + ut.

This includes the unobservable Xe
t on the right side. However, lagging the second

equation, we have:
Xe
t = λXt−1 + (1− λ)Xe

t−1.

Hence:
Yt = β1 + β2λXt + β2λ(1− λ)Xt−1 + β2(1− λ)2Xe

t−1 + ut.
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This includes the unobservable Xe
t−1 on the right side. However, continuing to lag

and substitute, we have:

Yt = β1 + β2λXt + β2λ(1− λ)Xt−1 + · · ·+ β2λ(1− λ)sXt−s + β2(1− λ)s+1Xe
t−s + ut.

Provided that s is large enough for β2(1− λ)s+1 to be very small, this may be
fitted, omitting the unobservable final term, with negligible omitted variable bias.
We would fit it with a nonlinear regression technique that respected the constraints
implicit in the theoretical structure of the coefficients. The disturbance term is
unaffected by the manipulations. Hence it is sufficient to assume that it is
well-behaved in the original specification.

12.14 Using the 50 observations on two variables Y and X shown in the diagram below,
an investigator runs the following five regressions (estimation method as indicated;
standard errors in parentheses; all variables as logarithms in the logarithmic
regressions; d = Durbin–Watson d statistic; B–G = Breusch–Godfrey test statistic):
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1 2 3 4 5
Linear Logarithmic

OLS AR(1) OLS AR(1) OLS
X 0.16 0.03 2.39 2.39 1.35

(0.01) (0.05) (0.03) (0.03) (0.70)
Y (−1) — — — — −0.11

(0.15)
X(−1) — — — — 1.30

(0.75)
ρ̂ — 1.16 — −0.14 —

(0.06) (0.15)
constant −21.88 −2.52 −11.00 −10.99 −12.15

(3.17) (8.03) (0.15) (0.14) (1.67)
R2 0.858 0.974 0.993 0.993 0.993
RSS 7663 1366 1.011 0.993 0.946
d 0.26 2.75 2.17 1.86 21.95
B–G 39.54 — 0.85 — 1.03
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Discuss each of the five regressions, explaining which is your preferred specification.

Answer:

The scatter diagram reveals that the relationship is nonlinear. If it is fitted with a
linear regression, the residuals must be positive for the largest and smallest values
of X and negative for the middle ones. As a consequence it is no surprise to find a
high Breusch–Godfrey statistic, above 10.83, the critical value of χ2(1) at the 0.1%
level, and a low Durbin–Watson statistic, below 1.32, the critical value at the 1 per
cent level. Equally it is no surprise to find that an AR(1) specification does not
yield satisfactory results, the Durbin–Watson statistic now indicating negative
autocorrelation.

By contrast the logarithmic specification appears entirely satisfactory, with a
Breusch–Godfrey statistic of 0.85 and a Durbin–Watson statistic of 1.82 (dU is 1.59
at the 5 per cent level). Comparing it with the ADL(1,1) specification, the F
statistic for dropping the lagged variables is:

F (2, 46) =
(1.084− 1.020)/2

1.020/46
= 1.44.

The critical value of F (2, 40) at the 5 per cent level is 3.23. Hence we conclude that
specification (3) is an acceptable simplification. Specifications (4) and (5) are
inefficient, and this accounts for their larger standard errors.

12.15 Using the data on food in the Demand Functions data set, the following regressions
were run, each with the logarithm of food as the dependent variable: (1) an OLS
regression on a time trend T defined to be 1 in 1959, 2 in 1960, etc., (2) an AR(1)
regression using the same specification, and (3) an OLS regression on T and the
logarithm of food lagged one time period, with the results shown in the table
(standard errors in parentheses).

1: OLS 2: AR(1) 3: OLS
T 0.0181 0.0166 0.0024

(0.0005) (0.0021) (0.0016)
LGFOOD(−1) — — 0.8551

(0.0886)
constant 5.7768 5.8163 0.8571

(0.0106) (0.0586) (0.5101)
ρ̂ — 0.8551 —

(0.0886)
R2 0.9750 0.9931 0.9931
RSS 0.0327 0.0081 0.0081
d 0.2752 1.3328 1.3328
h — — 2.32

Discuss why each regression specification appears to be unsatisfactory. Explain why
it was not possible to perform a common factor test.
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Answer:

The Durbin–Watson statistic in regression (1) is very low, suggesting AR(1)
autocorrelation. However, it remains below 1.40, dL for a 5 per cent significance
test with one explanatory variable and 35 observations, in the AR(1) specification
in regression (2). The reason of course is that the model is very poorly specified,
with two obvious major variables, income and price, excluded.

With regard to the impossibility of performing a common factor test, suppose that
the original model is written:

LGFOOD t = β1 + β2T + ut.

Lagging the model and multiplying through by ρ, we have:

ρLGFOOD t−1 = β1ρ+ β2ρ(T − 1) + ρut−1.

Subtracting and rearranging, we obtain the AR(1) specification:

LGFOOD t = β1(1− ρ) + ρLGFOOD t−1 + β2T − β2ρ(T − 1) + ut − ρut−1

= β1(1− ρ) + β2ρ+ ρLGFOOD t−1 + β2(1− ρ)T + εt.

However, this specification does not include any restrictions. The coefficient of
LGFOOD t−1 provides an estimate of ρ. The coefficient of T then provides an
estimate of β2. Finally, given these estimates, the intercept provides an estimate of
β1. The AR(1) and ADL(1,1) specifications are equivalent in this model, the reason
being that the variable (T − 1) is merged into T and the intercept.

12.5 Answers to the additional exercises

A12.1 The Durbin–Watson statistic in the OLS regression is 0.49, causing us to reject the
null hypothesis of no autocorrelation at the 1 per cent level. The Breusch–Godfrey
statistic (not shown) is 25.12, also causing the null hypothesis of no autocorrelation
to be rejected at a high significance level. Apart from a more satisfactory
Durbin–Watson statistic, the results for the AR(1) specification are similar to those
of the OLS one. The income and price elasticities are a little larger. The estimate of
the population elasticity, negative in the OLS regression, is now effectively zero,
suggesting that the direct effect of population on expenditure on food is offset by a
negative income effect. The standard errors are larger than those for the OLS
regression, but the latter are invalidated by the autocorrelation and therefore
should not be taken at face value.

A12.2 All of the regressions exhibit strong evidence of positive autocorrelation. The
Breusch–Godfrey test statistic for AR(1) autocorrelation is above the critical value
of 10.82 (critical value of chi-squared with one degree of freedom at the 0.1%
significance level) and the Durbin–Watson d statistic is below 1.20 (dL, 1 per cent
level, 45 observations, k = 4). The Durbin–Watson statistics for the AR(1)
specification are generally much more healthy than those for the OLS one, being
scattered around 2.
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Breusch–Godfrey and Durbin–Watson statistics,
logarithmic OLS regression including population

B–G d B–G d
ADM 19.37 0.683 GASO 36.21 0.212
BOOK 25.85 0.484 HOUS 23.88 0.523
BUSI 24.31 0.507 LEGL 24.30 0.538
CLOT 18.47 0.706 MAGS 19.27 0.667
DENT 14.02 0.862 MASS 21.97 0.612
DOC 24.74 0.547 OPHT 31.64 0.328
FLOW 24.13 0.535 RELG 26.30 0.497
FOOD 24.95 0.489 TELE 30.08 0.371
FURN 22.92 0.563 TOB 27.84 0.421
GAS 23.41 0.569 TOYS 20.04 0.668

Since autocorrelation does not give rise to bias, one would not expect to see
systematic changes in the point estimates of the coefficients. However, since
multicollinearity is to some extent a problem for most categories, the coefficients do
exhibit greater volatility than is usual when comparing OLS and AR(1) results.
Fortunately, most of the major changes seem to be for the better. In particular,
some implausibly high income elasticities are lower. Likewise, the population
elasticities are a little less erratic, but most are still implausible, with large
standard errors that reflect the continuing underlying problem of multicollinearity.

AR(1) logarithmic regression
LGDPI LGP LGPOP ρ̂ R2 d

coef. s.e. coef. s.e. coef. s.e. coef. s.e.
ADM −0.34 0.34 0.00 0.20 3.73 0.95 0.76 0.08 0.992 2.03
BOOK 0.46 0.41 −1.06 0.29 2.73 1.25 0.82 0.10 0.990 1.51
BUSI 0.43 0.24 0.19 0.25 2.45 0.70 0.69 0.10 0.997 1.85
CLOT 1.07 0.16 −0.56 0.15 −0.49 0.71 0.84 0.08 0.999 2.19
DENT 1.14 0.18 −1.01 0.15 0.69 0.73 0.56 0.13 0.996 1.86
DOC 0.85 0.25 −0.30 0.26 1.26 0.77 0.83 0.10 0.997 1.61
FLOW 0.71 0.41 −1.04 0.44 0.74 1.33 0.78 0.09 0.994 1.97
FOOD 0.47 0.12 −0.36 0.12 0.07 0.38 0.88 0.09 0.997 1.56
FURN 1.73 0.36 −0.37 0.51 −1.62 1.55 0.92 0.06 0.994 2.00
GAS −0.02 0.34 0.01 0.08 0.29 0.97 0.83 0.06 0.933 2.12
GASO 0.75 0.15 −0.14 0.03 −0.64 0.48 0.93 0.04 0.998 1.65
HOUS 0.27 0.08 −0.27 0.09 −0.03 0.54 0.98 0.00 0.997 1.66
LEGL 0.89 0.20 −0.19 0.22 −0.54 0.80 0.77 0.10 0.989 1.90
MAGS 0.98 0.30 −1.24 0.39 −0.23 0.92 0.73 0.12 0.983 1.73
MASS 0.06 0.28 −0.72 0.11 1.31 0.97 0.94 0.04 0.944 1.95
OPHT 1.99 0.60 −0.92 0.97 −1.45 1.85 0.90 0.08 0.991 1.67
RELG 0.86 0.18 −1.15 0.26 2.00 0.56 0.66 0.10 0.999 2.08
TELE 0.70 0.20 −0.56 0.13 2.44 0.71 0.87 0.10 0.999 1.51
TOB 0.38 0.22 −0.35 0.07 −0.99 0.66 0.79 0.10 0.960 2.37
TOYS 0.89 0.18 −0.58 0.13 1.61 0.66 0.75 0.12 0.999 1.77
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A12.3 The table gives the residual sum of squares for the unrestricted ADL(1,1)
specification and that for the restricted AR(1) one, the fourth column giving the
chi-squared statistic for the common factor test.

Before performing the common factor test, one should check that the ADL(1,1)
specification is itself free from autocorrelation using the Breusch–Godfrey test. The
fifth column gives the B–G statistic for AR(1) autocorrelation. All but one of the
statistics are below the critical value at the 5 per cent level, 3.84. The exception is
that for LEGL. It should be remembered that the Breusch–Godfrey test is a
large-sample tests and in this application, with only 44 observations, the sample is
rather small.

Common factor test and tests of autocorrelation for ADL(1,1) model
RSSADL(1,2) RSSAR(1) Chi-squared B–G

ADM 0.029792 0.039935 12.89 0.55
BOOK 0.070478 0.086240 8.88 1.25
BUSI 0.032074 0.032703 0.85 0.57
CLOT 0.009097 0.010900 7.96 1.06
DENT 0.019281 0.021841 5.49 1.22
DOC 0.025598 0.028091 4.09 0.33
FLOW 0.084733 0.084987 0.13 0.01
FOOD 0.005562 0.006645 7.83 3.12
FURN 0.050880 0.058853 6.41 0.29
GAS 0.035682 0.045433 10.63 0.66
GASO 0.006898 0.009378 13.51 2.91
HOUS 0.001350 0.002249 22.46 0.77
LEGL 0.026650 0.034823 11.77 8.04
MAGS 0.043545 0.051808 7.64 0.03
MASS 0.029125 0.033254 5.83 0.15
OPHT 0.139016 0.154629 4.68 0.08
RELG 0.013910 0.014462 1.71 0.32
TELE 0.014822 0.017987 8.52 0.97
TOB 0.021403 0.021497 0.19 3.45
TOYS 0.015313 0.015958 1.82 2.60

For the common factor test, the critical values of chi-squared are 7.81 and 11.34 at
the 5 and 1 per cent levels, respectively, with 3 degrees of freedom. Summarising
the results, we find:

• AR(1) specification not rejected: BUSI, DENT , DOC, FLOW , FURN ,
MAGS, MASS, OPHT , RELG, TOB, TOY S.

• AR(1) specification rejected at 5 per cent level: BOOK, CLOT , FOOD,
GAS, TELE.

• AR(1) specification rejected at 1 per cent level: ADM , GASO, HOUS, LEGL.

A12.4 Discuss whether specification (1) is an adequate representation of the data.

The Breusch–Godfrey statistic is well in excess of the critical value at the 0.1 per
cent significance level, 10.83. Likewise, the Durbin–Watson statistic is far below
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1.15, dL at the 1 per cent level with two explanatory variables and 36 observations.
There is therefore strong evidence of either severe AR(1) autocorrelation or some
serious misspecification.

Discuss whether specification (3) is an adequate representation of the data.

The only item that we can check is whether it is free from autocorrelation. The
Breusch–Godfrey statistic is well under 3.84, the critical value at the 5 per cent
significance level, and so there is no longer evidence of autocorrelation or
misspecification.

Discuss whether specification (2) is an adequate representation of the data.

Let the original model be written:

LGLIFE = β1 + β2LGDPI + β3LGDPRLIFE + u

ut = ρut−1 + εt.

The AR(1) specification is then:

LGLIFE = β1(1− ρ) + ρLGLIFE (−1) + β2LGDPI − β2ρLGDPI (−1)

+β3LGDPRLIFE − β3ρLGPRLIFE (−1) + εt.

This is a restricted version of the ADL(1,1) model because it incorporates
nonlinear restrictions on the coefficients of LGDPI (−1) and LGPRLIFE (−1). In
the ADL(1,1) specification, minus the product of the coefficients of LGLIFE (−1)
and LGDPI is −0.82× 0.42 = −0.34. The coefficient of LGDPI (−1) is smaller
than this, but then its standard error is large. Minus the product of the coefficients
of LGLIFE (−1) and LGPRLIFE is −0.82×−0.59 = 0.48. The coefficient of
LGPRLIFE (−1) is fairly close, bearing in mind that its standard error is also
large. The coefficient of LGLIFE (−1) is exactly equal to the estimate of ρ in the
AR(1) specification.

The common factor test statistic is:

35 loge

0.799

0.719
= 3.69.

The null hypothesis is that the two restrictions are valid. Under the null
hypothesis, the test statistic has a chi-squared distribution with 2 degrees of
freedom. Its critical value at the 5 per cent level is 5.99. Hence we do not reject the
restrictions and the AR(1) specification therefore does appear to be acceptable.

Discuss whether specification (4) is an adequate representation of the data.

We note that LGLDPI (−1) and LGPRLIFE (−1) do not have significant t
statistics, but since they are being dropped simultaneously, we should perform an
F test of their joint explanatory power:

F (2, 29) =
(0.732− 0.719)/2

0.719/29
= 0.26.

Since this is less than 1, it is not significant at any significance level and so we do
not reject the null hypothesis that the coefficients of LGLDPI (−1) and
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LGPRLIFE (−1) are both 0. Hence it does appear that we can drop these
variables. We should also check for autocorrelation. The Breusch–Godfrey statistic
indicates that there is no problem.

If you were presenting these results at a seminar, what would you say were your
conclusions concerning the most appropriate of specifications (1) – (4)?

There is no need to mention (1). (3) is not a candidate because we have found
acceptable simplifications that are likely to yield more efficient parameter estimates
, and this is reflected in the larger standard errors compared with (2) and (4). We
cannot discriminate between (2) and (4).

At the seminar a commentator points out that in specification (4) neither LGDPI
nor LGPRLIFE have significant coefficients and so these variables should be
dropped. As it happens, the researcher has considered this specification, and the
results are shown as specification (5) in the table. What would be your answer to
the commentator?

Comparing (3) and (5):

F (4, 29) =
(0.843− 0.719)/4

0.719/29
= 1.25.

The critical value of F (4, 29) at the 5 per cent level is 2.70, so it would appear that
the joint explanatory power of the 4 income and price variables is not significant.
However, it does not seem sensible to drop current income and current price from
the model. The reason that they have so little explanatory power is that the
short-run effects are small, life insurance being subject to long-term contracts and
thus a good example of a category of expenditure with a large amount of inertia.
The fact that income in the AR(1) specification has a highly significant coefficient
is concrete evidence that it should not be dropped.

A12.5 Looking at all five regressions together, evaluate the adequacy of:

• specification 1.

• specification 2.

• specification 3.

• specification 4.

• Specification 1 has a very high Breusch–Godfrey statistic and a very low
Durbin–Watson statistic. There is evidence of either severe autocorrelation or
model misspecification.

• Specification 2 also has a very high Breusch–Godfrey statistic and a very low
Durbin–Watson statistic. Further, there is evidence of multicollinearity: large
standard errors (although comparisons are very dubious given low DW), and
implausible coefficients.

• Specification 3 seems acceptable. In particular, there is no evidence of
autocorrelation since the Breusch–Godfrey statistic is low.

• Specification 4: dropping m(−1) may be expected to cause omitted variable
bias since the t statistic for its coefficient was −3.0 in specification 3.
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(Equivalently, the F statistic is:

F (1, 46) =
(0.0120− 0.0100)/1

0.0100/46
= 0.2× 46 = 9.2

the square of the t statistic and similarly significant.)

Explain why specification 5 is a restricted version of one of the other specifications,
stating the restriction, and explaining the objective of the manipulations that lead to
specification 5.

Write the original model and AR(1) process:

pt = β1 + β2mt + ut

uy = ρut−1 + εt.

Then fitting:

pt = β1(1− ρ) + ρpt−1 + β2mt − β2ρmt−1 + εt

removes the autocorrelation. This is a restricted version of specification 3, with
restriction that the coefficient of mt−1 is equal to minus the product of the
coefficients of mt and pt−1.

Perform a test of the restriction embodied in specification 5.

Comparing specifications 3 and 5, the common factor test statistic is:

n loge

(
RSSR
RSSU

)
= 50 log

(
0.0105

0.0100

)
= 50 log 1.05 ∼= 50× 0.05 = 2.5.

Under the null hypothesis that the restriction implicit in the specification is valid,
the test statistic is distributed as chi-squared with one degree of freedom. The
critical value at the 5 per cent significance level is 3.84, so we do not reject the
restriction. Accordingly, specification 5 appears to be an adequate representation of
the data.

Explain which would be your preferred specification.

Specifications (3) and (5) both appear to be adequate representations of the data.
(5) should yield more efficient estimators of the parameters because, exploiting an
apparently-valid restriction, it is less susceptible to multicollinearity, and this
appears to be confirmed by the lower standard errors.

A12.6 The models are:

1. pt = β1 + β2mt + ut

2. pt = β1 + β2mt + β3mt−1 + β4mt−2 + β5mt−3 + ut

3. pt = β1 + β2mt + β3mt−1 + β6pt−1 + ut

4. pt = β1 + β2mt + β6pt−1 + ut

5. pt = β1(1− β6) + β6pt−1 + β2mt − β2β6mt−1 + εt (writing ρ = β6).
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Hence we obtain the following estimates of ∂pt/∂mt:

1. 0.95

2. 0.50

3. 0.40

4. 0.18

5. 0.90.

Putting p and m equal to equilibrium values, and ignoring the disturbance term,
we have:

1. p= β1 + β2m

2. p= β1 + (β2 + β3 + β4)m

3. p= 1
1−β6 (β1 + (β2 + β3)m)

4. p= 1
1−β6 (β1 + β2m)

5. p= β1 + β2m.

Hence we obtain the following estimates of dp/dm:

1. 0.95

2. 0.95

3. 1.00

4. 0.90

5. 0.90.

A12.7 Evaluate regression (1).

Regression (1) has a very high Breusch–Godfrey statistic and a very low
Durbin–Watson statistic. The null hypothesis of no autocorrelation is rejected at
the 1 per cent level for both tests. Alternatively, the test statistics might indicate
some misspecification problem.

Evaluate regression (2). Explain mathematically what assumptions were being made
by the researcher when he used the AR(1) specification and why he hoped the results
would be better than those obtained with regression (1).

Regression (2) has been run on the assumption that the disturbance term follows
an AR(1) process:

ut = ρut−1 + εt.

On the assumption that the regression model should be:

LGTAXI t = β1 + β2LGDPI t + ut,

the autocorrelation can be eliminated in the following way: lag the regression
model by one time period and multiply through by ρ:

ρLGTAXI t−1 = β1ρ+ β2ρLGDPI t−1 + ρut−1.

Subtract this from the regression model:

LGTAXI t − ρLGTAXI t−1 = β1(1− ρ) + β2LGDPI t − β2ρLGDPI t−1 + ut − ρut−1.
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Hence one obtains a specification free from autocorrelation:

LGTAXI t = β1(1− ρ) + ρLGTAXI t−1 + β2LGDPI t − β2ρLGDPI t−1 + εt.

The Durbin–Watson statistic is still low, suggesting that fitting the AR(1)
specification was an inappropriate response to the problem.

Evaluate regression (3).

In regression (3) the Breusch–Godfrey statistic suggests that, for this specification,
there is not a problem of autocorrelation (the Durbin–Watson statistic is
indecisive). This suggests that the apparent autocorrelation in the regression (1) is
in fact attributable to the omission of the price variable.

This is corroborated by the diagrams, which show that large negative residuals
occurred when the price rose and positive ones when it fell. The effect is especially
obvious in the final years of the sample period.

Evaluate regression (4). In particular, discuss the possible reasons for the
differences in the standard errors in regressions (3) and (4).

In regression (4), the Durbin–Watson statistic does not indicate a problem of
autocorrelation. Overall, there is little to choose between regressions (3) and (4). It
is possible that there was some autocorrelation in regression (3) and that it has
been rectified by using AR(1) in regression (4). It is also possible that
autocorrelation was not actually a problem in regression (3). Regressions (3) and
(4) yield similar estimates of the income and price elasticities and in both cases the
elasticities are significantly different from zero at a high significance level. If
regression (4) is the correct specification, the lower standard errors in regression (3)
should be disregarded because they are invalid. If regression (3) is the correct
specification, AR(1) estimation will yield inefficient estimates; which could account
for the higher standard errors in regression (4).

At a seminar one of the participants says that the researcher should consider adding
lagged values of LGTAXI, LGDPI, and LGP to the specification. What would be
your view?

Specifications (2) and (4) already contain the lagged values, with restrictions on
the coefficients of LGDPI (−1) and LGP (−1).

A12.8 Explain why the researcher was not satisfied with regression (1).

The researcher was not satisfied with the results of regression (1) because the
Breusch–Godfrey statistic was 4.42, above the critical value at the 5 per cent level,
3.84, and because the Durbin–Watson d statistic was only 0.99. The critical value
of dL with one explanatory variable and 30 observations is 1.35. Thus there is
evidence that the specification may be subject to autocorrelation.

Evaluate regression (2). Explain why the coefficients of I(-1) and r(-1) are not
reported, despite the fact that they are part of the regression specification.

Specification (2) is equally unsatisfactory. The fact that the Durbin–Watson
statistic has remained low is an indication that the reason for the low d in (1) was
not an AR(1) disturbance term. RSS is very high compared with those in
specifications (4) – (6). The coefficient of I(−1) is not reported as such because it
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is the estimate ρ̂. The coefficient of r(−1) is not reported because it is constrained
to be minus the product of ρ̂. and the coefficient of I.

Evaluate regression (3).

Specification (3) is the unrestricted ADL(1,1) model of which the previous AR(1)
model was a restricted version and it suffers from the same problems. There is still
evidence of positive autocorrelation, since the Breusch–Godfrey statistic, 4.24, is
high and RSS is still much higher than in the three remaining specifications.

Evaluate regression (4).

Specification (4) seems fine. The null hypothesis of no autocorrelation is not
rejected by either the Breusch–Godfrey statistic or the Durbin–Watson statistic.
The coefficients are significant and have the expected signs.

Evaluate regression (5).

The AR(1) specification (5) does not add anything because there was no evidence
of autocorrelation in (4). The estimate of ρ is not significantly different from zero.

Evaluate regression (6).

Specification (6) does not add anything either. t tests on the coefficients of the
lagged variables indicate that they are individually not significantly different from
zero. Likewise the joint hypothesis that their coefficients are all equal to zero is not
rejected by an F test comparing RSS in (4) and (6):

F (3, 23) =
(27.4− 23.5)/3

23.5/23
= 1.27.

The critical value of F (3, 23) at the 5 per cent level is 3.03. [There is no point in
comparing (5) and (6) using a common factor test, but for the record the test
statistic is:

n loge

RSSR
RSSU

= 29 loge
26.8

23.5
= 3.81.

The critical value of chi-squared with 2 degrees of freedom at the 5 per cent level is
5.99.]

Summarise your conclusions concerning the evaluation of the different regressions.
Explain whether an examination of the figure supports your conclusions.

The overall conclusion is that the static model (4) is an acceptable representation
of the data and the apparent autocorrelation in specifications (1) – (3) is
attributable to the omission of g. Figure 12.3 shows very clearly that the residuals
in specification (1) follow the same pattern as g, confirming that the apparent
autocorrelation in the residuals is in fact attributable to the omission of g from the
specification.

A12.9 In Exercise A11.5 you performed a test of a restriction. The result of this test will
have been invalidated if you found that the specification was subject to
autocorrelation. How should the test be performed, assuming the correct
specification is ADL(1,1)?
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If the ADL(1,1) model is written:

log CAT = β1 + β2 log DPI + β3 logP + β4 log POP + β5 log CAT−1

+β6logDPI−1 + β7 logP−1 + β8 log POP−1 + u

the restricted version with expenditure per capita a function of income per capita
is:

log
CAT

POP
= β1 + β2 log

DPI

POP
+ β3 logP + β5 log

CAT−1

POP−1

+β6 log
DPI−1

POP−1

+ β7 logP−1 + u.

Comparing the two equations, we see that the restrictions are β4 = 1− β2 and
β8 = −β5 − β6. The usual F statistic should be constructed and compared with the
critical values of F (2, 28).

A12.10 Let the AR(1) process be written:

ut = ρut−1 + εt.

As the specification stands, OLS would yield inconsistent estimates because both
the explanatory variable and the disturbance term depend on ut−1. Applying the
standard procedure, multiplying the lagged relationship by ρ and subtracting, one
has:

Yt − ρYt−1 = β1(1− ρ) + β2Yt−1 − β2ρYt−1 + ut − ρut−1.

Hence:
Yt = β1(1− ρ) + (β2 + ρ)Yt−1 − β2ρYt−2 + εt.

It follows that the model should be fitted as a second-order, rather than as a
first-order, process. There are no restrictions on the coefficients. OLS estimators
will be consistent, but subject to finite-sample bias.

A12.11 Explain what is correct. incorrect, confused or incomplete in the following
statements, giving a brief explaination if not correct.

• The disturbance term in a regression model is said to be autocorrelated if its
values in a sample of observations are not distributed independently of each
other.

Correct.

• When the disturbance term is subject to autocorrelation, the ordinary least
squares estimators are inefficient ...

Correct.

• ...and inconsistent...

Incorrect, unless there is a lagged dependent variable.

• ...but they are not biased...

Correct, unless there is a lagged dependent variable.
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• ...and the t tests are invalid.

Correct.

• It is a common problem in time series models because it always occurs when
the dependent variable is correlated with its previous values.

Incorrect.

• If this is the case, it could be eliminated by including the lagged value of the
dependent variable as an explanatory variable.

In general, incorrect. However, a model requiring a lagged dependent variable
could appear to exhibit autocorrelation if the lagged dependent variable were
omitted, and including it could eliminate the apparent problem.

• However, if the model is correctly specified and the disturbance term satisfies
the regression model assumptions, adding the lagged value of the dependent
variable as an explanatory variable will have the opposite effect and cause the
disturbance term to be autocorrelated.

Nonsense.

• A second way of dealing with the problem of autocorrelation is to use an
instrumental variable.

More nonsense.

• If the autocorrelation is of the AR(1) type, randomising the order of the
observations will cause the Durbin–Watson statistic to be near 2...

Correct.

• ...thereby eliminating the problem.

Incorrect. The problem will have been disguised, not rectified.
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Chapter 13

Introduction to nonstationary time
series

13.1 Overview

This chapter begins by defining the concepts of stationarity and nonstationarity as
applied to univariate time series and, in the case of nonstationary series, the concepts of
difference-stationarity and trend-stationarity. It next describes the consequences of
nonstationarity for models fitted using nonstationary time-series data and gives an
account of the Granger–Newbold Monte Carlo experiment with random walks. Next the
two main methods of detecting nonstationarity in time series are described, the
graphical approach using correlograms and the more formal approach using Augmented
Dickey–Fuller unit root tests. This leads to the topic of cointegration. The chapter
concludes with a discussion of methods for fitting models using nonstationary time
series: detrending, differencing, and error-correction models.

13.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain what is meant by stationarity and nonstationarity.

explain what is meant by a random walk and a random walk with drift

derive the condition for the stationarity of an AR(1) process

explain what is meant by an integrated process and its order of integration

explain why Granger and Newbold obtained the results that they did

explain what is depicted by a correlogram

perform an Augmented Dickey–Fuller unit root test to test a time series for
nonstationarity

test whether a set of time series are cointegrated

construct an error-correction model and describe its advantages over detrending
and differencing.
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13.3 Further material

Addition to Section 13.6 Cointegration

Section 13.6 contains the following paragraph on page 507:

In the case of a cointegrating relationship, least squares estimators can be shown to be
superconsistent (Stock, 1987). An important consequence is that OLS may be used to fit
a cointegrating relationship, even if it belongs to a system of simultaneous relationships,
for any simultaneous equations bias tends to zero asymptotically.

This cries out for an illustrative simulation, so here is one. Consider the model:

Yt = β1 + β2Xt + β3Zt + εY t

Xt = α1 + α2Yt + εXt

Zt = ρZt−1 + εZt

where Yt and Xt are endogenous variables, Zt is exogenous, and εY t, εXt, and εZt are iid
N(0, 1) disturbance terms. We expect OLS estimators to be inconsistent if used to fit
either of the first two equations. However, if ρ = 1, Z is nonstationary, and X and Y
will also be nonstationary. So, if we fit the second equation, for example, the OLS
estimator of α2 will be superconsistent. This is illustrated by a simulation where the
first two equations are:

Yt = 1.0 + 0.8Xt + 0.5Zt + εY t

Xt = 2.0 + 0.4Yt + εXt.

The distributions in the right of the figure below (dashed lines) are for the case ρ = 0.5.
Z is stationary, and so are Y and X. You will have no difficulty in demonstrating that
plim α̂OLS2 = 0.68. The distributions to the left of the figure (solid lines) are for ρ = 1,
and you can see that in this case the estimator is consistent. But is it superconsistent?
The variance seems to be decreasing relatively slowly, not fast, especially for small
sample sizes. The explanation is that the superconsistency becomes apparent only for
very large sample sizes, as shown in the second figure.
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13.4 Additional exercises

A13.1 The Figure 13.1 plots the logarithm of the US population for the period 1959–2003.
It is obviously nonstationary. Discuss whether it is more likely to be
difference-stationary or trend-stationary.
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Figure 13.1: Logarithm of the US population.

A13.2 Figure 13.2 plots the first difference of the logarithm of the US population for the
period 1959–2003. Explain why the vertical axis measures the proportional growth
rate. Comment on whether the series appears to be stationary or nonstationary.

A13.3 The regression output below shows the results of ADF unit root tests on the
logarithm of the US population, and its difference, for the period 1959–2003.
Comment on the results and state whether they confirm or contradict your
conclusions in Exercise A13.2.
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Figure 13.2: Logarithm of the US population, first difference.

Augmented Dickey--Fuller Unit Root Test on LGPOP

============================================================

Null Hypothesis: LGPOP has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Fixed)

============================================================

t-Statistic Prob.*

============================================================

Augmented Dickey--Fuller test statistic -2.030967 0.5682

Test critical values1% level -4.186481

5% level -3.518090

10% level -3.189732

============================================================

*MacKinnon (1996) one-sided p-values.

Augmented Dickey--Fuller Test Equation

Dependent Variable: D(LGPOP)

Method: Least Squares

Sample(adjusted): 1961 2003

Included observations: 43 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

LGPOP(-1) -0.047182 0.023231 -2.030967 0.0491

D(LGPOP(-1)) 0.687772 0.058979 11.66139 0.0000

C 0.574028 0.281358 2.040209 0.0481

@TREND(1959) 0.000507 0.000246 2.060295 0.0461

============================================================

R-squared 0.839263 Mean dependent var 0.011080

Adjusted R-squared 0.826898 S.D. dependent var 0.001804

S.E. of regression 0.000750 Akaike info criter-11.46327

Sum squared resid 2.20E-05 Schwarz criterion -11.29944

Log likelihood 250.4603 F-statistic 67.87724

Durbin-Watson stat 1.164933 Prob(F-statistic) 0.000000

============================================================
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Augmented Dickey--Fuller Unit Root Test on DLGPOP

============================================================

Null Hypothesis: DLGPOP has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 1 (Fixed)

============================================================

t-Statistic Prob.*

============================================================

Augmented Dickey--Fuller test statistic -2.513668 0.3203

Test critical values1% level -4.192337

5% level -3.520787

10% level -3.191277

============================================================

*MacKinnon (1996) one-sided p-values.

Augmented Dickey--Fuller Test Equation

Dependent Variable: D(DLGPOP)

Method: Least Squares

Sample(adjusted): 1962 2003

Included observations: 42 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

DLGPOP(-1) -0.161563 0.064274 -2.513668 0.0163

D(DLGPOP(-1)) 0.294717 0.117766 2.502573 0.0167

C 0.001714 0.000796 2.152327 0.0378

@TREND(1959) -1.32E-07 9.72E-06 -0.013543 0.9893

============================================================

R-squared 0.320511 Mean dependent var-0.000156

Adjusted R-squared 0.266867 S.D. dependent var 0.000827

S.E. of regression 0.000708 Akaike info criter-11.57806

Sum squared resid 1.90E-05 Schwarz criterion -11.41257

Log likelihood 247.1393 F-statistic 5.974780

Durbin-Watson stat 1.574084 Prob(F-statistic) 0.001932

============================================================

A13.4 A researcher believes that a time series is generated by the process:

Xt = ρXt−1 + εt

where εt is a white noise series generated randomly from a normal distribution with
mean zero, constant variance, and no autocorrelation. Explain why the null
hypothesis for a test of nonstationarity is that the series is nonstationary, rather
than stationary.

A13.5 A researcher correctly believes that a time series is generated by the process:

Xt = ρXt−1 + εt

where εt is a white noise series generated randomly from a normal distribution with
mean zero, constant variance, and no autocorrelation. Unknown to the researcher,
the true value of ρ is 0.7. The researcher uses a unit root test to test the series for
nonstationarity. The output is shown. Discuss the result of the test.
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Augmented Dickey--Fuller Unit Root Test on X

============================================================

ADF Test Statistic -2.528841 1% Critical Value*-3.6289

5% Critical Value -2.9472

10% Critical Value -2.6118

============================================================

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey--Fuller Test Equation

Dependent Variable: D(X)

Method: Least Squares

Sample(adjusted): 2 36

Included observations: 35 after adjusting endpoints

============================================================

Variable Coefficient Std. Error t-Statistic Prob.

============================================================

X(-1) -0.379661 0.150132 -2.528841 0.0164

C 0.222066 0.203435 1.091580 0.2829

============================================================

R-squared 0.162331 Mean dependent var-0.052372

Adjusted R-squared 0.136947 S.D. dependent var 1.095782

S.E. of regression 1.017988 Akaike info criteri2.928979

Sum squared resid 34.19792 Schwarz criterion 3.017856

Log likelihood -49.25714 F-statistic 6.395035

Durbin-Watson stat 1.965388 Prob(F-statistic) 0.016406

============================================================

A13.6 Test of cointegration. Perform a logarithmic regression of expenditure on your
commodity on income, relative price, and population. Save the residuals and test
them for stationarity. (Note: the critical values in the regression output do not
apply to tests of cointegration. For the correct critical values, see the text.)

A13.7 A variable Yt is generated by the autoregressive process:

Yt = β1 + β2Yt−1 + εt

where β2 = 1 and εt satisfies the regression model assumptions. A second variable
Zt is generated as the lagged value of Yt:

Zt = Yt−1.

Show that Y and Z are nonstationary processes. Show that nevertheless they are
cointegrated.

A13.8 Xt and Zt are independent I(1) (integrated of order 1) time series. Wt is a
stationary time series. Yt is generated as the sum of Xt, Zt, and Wt. Not knowing
this, a researcher regresses Yt on Xt and Zt. Explain whether he would find a
cointegrating relationship.
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A13.9 Two random walks RAt and RBt, and two stationary processes SAt and SB t are
generated by the following processes:

RAt = RAt−1 + ε1t

RB t = RB t−1 + ε2t

SAt = ρASAt−1 + ε3t, 0 < ρA < 1

SB t = ρBSB t−1 + ε4t, 0 < ρB < 1

where ε1t, ε2t, ε3t, and ε4t, are iid N(0, 1) (independently and identically
distributed from a normal distribution with mean 0 and variance 1).

• Two series XAt and XB t are generated as:

XAt = RAt + SAt

XB t = RB t + SB t.

Explain whether it is possible for XAt and XB t to be stationary.

Explain whether it is possible for them to be cointegrated.

• Two series YAt and YB t are generated as:

YAt = RAt + SAt

YB t = RAt + SB t.

Explain whether it is possible for YAt and YB t to be cointegrated.

• Two series ZAt and ZB t are generated as:

ZAt = RAt + RB t + SAt

ZB t = RAt − RB t + SB t.

Explain whether it is possible for ZAt and ZB t to be stationary.

Explain whether it is possible for them to be cointegrated.

13.5 Answers to the starred exercises in the textbook

13.1 Demonstrate that the MA(1) process:

Xt = εt + α2εt−1

is stationary. Does the result generalise to higher-order MA processes?

Answer:

The expected value of Xt is zero and therefore independent of time:

E(Xt) = E(εt + α2εt−1) = E(εt) + α2E(εt−1) = 0 + 0 = 0.
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Since εt and εt−1 are uncorrelated:

σ2
Xt = σ2

εt + α2
2σ

2
εt−1

and this is independent of time. Finally, because:

Xt−1 = εt−1 + α2εt−2,

the population covariance of Xt and Xt−1 is given by:

σXt,Xt−1 = α2σ
2
ε .

This is fixed and independent of time. The population covariance between Xt and
Xt−s is zero for all s > 1 since then Xt and Xt−1 have no elements in common.
Thus the third condition for stationarity is also satisfied.

All MA processes are stationary, the general proof being a simple extension of that
for the MA(1) case.

13.2 A stationary AR(1) process:

Xt = β1 + β2Xt−1 + εt

with |β2| < 1, has initial value X0, where X0 is defined as:

X0 =
β1

1− β2

+

√
1

1− β2
2

ε0.

Demonstrate that X0 is a random draw from the ensemble distribution for X.

Answer:

Lagging and substituting, it was shown, equation (13.12), that:

Xt = βt2X0 + β1
1− βt2
1− β2

+ βt−1
2 ε1 + · · ·+ β2

2εt−2 + β2εt−1 + εt.

With the stochastic definition of X0, we now have:

Xt = βt2

(
β1

1− β2

+

√
1

1− β2
2

ε0

)
+ β1

1− βt2
1− β2

+ βt−1
2 ε1 + · · ·+ β2

2εt−2 + β2εt−1 + εt

=
β1

1− β2

+ βt2

√
1

1− β2
2

ε0 + βt−1
2 ε1 + · · ·+ β2

2εt−2 + β2εt−1 + εt.

Hence:

E(Xt) =
β1

1− β2

and:

var(Xt) = var

(
βt2

√
1

1− β2
2

ε0 + βt−1
2 ε1 + · · ·+ β2

2εt−2 + β2εt−1 + εt

)

=
β2t

2

1− β2
2

σ2
ε +

(
β2t−2

2 + · · ·+ β4
2 + β2

2 + 1
)
σ2
ε

=
β2t

2

1− β2
2

σ2
ε +

1− β2t
2

1− β2
2

σ2
ε =

σ2
ε

1− β2
2

.
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Given the generating process for X0, one has:

E(X0) =
β1

1− β2

and var(X0) =
σ2
ε

1− β2
2

.

Hence X0 is a random draw from the ensemble distribution. Implicitly it has been
assumed that the distributions of ε and X0 are both normal. This should have been
stated explicitly.

13.4 Suppose that Yt is determined by the process:

Yt = Yt−1 + εt + λεt−1

where εt is iid. Show that the process for Yt is nonstationary unless λ takes a
certain value.

Answer:

Lagging and substituting back to time 0:

Yt = Y0 +
t∑

s=1

εt + λ
t−1∑
s=0

εt = Y0 + (1 + λ)
t−1∑
s=1

εt + εt + λε0.

The expectation of Yt, taken at time 0, is Y0 and independent of time. The variance
of Yt is ((t− 1)(1 + λ)2 + 1 + λ2)σ2

ε . The process is nonstationary because the
variance is dependent on time, unless λ = −1, in which case the process is
stationary. It reduces to:

Yt = Y0 + εt − ε0.

The covariance between Yt and Yt−s is zero for all s greater than 0 if ε0 is taken as
predetermined. It is equal to the variance of ε if ε0 is treated as random. Either
way, it is independent of time.

13.11 Suppose that a series is generated as:

Xt = β2Xt−1 + εt

with β2 equal to 1− δ, where δ is small. Demonstrate that, if δ is small enough that
terms involving δ2 may be neglected, the variance may be approximated as:

σ2
Xt = ((1− [2t− 2]δ) + · · ·+ (1− 2δ) + 1) σ2

ε

= (1− (t− 1)δ) t σ2
ε

and draw your conclusions concerning the properties of the time series.

Answer:

Xt = βt2X0 + βt−1
2 ε1 + · · ·+ εt.

Hence:

σ2
Xt =

(
β2t−2

2 + · · ·+ β2
2 + 1

)
σ2
ε

=
(
(1− δ)2t−2 + · · ·+ (1− δ)2 + 1

)
σ2
ε

= ((1− (2t− 2)δ) + · · ·+ (1− 2δ) + 1) σ2
ε
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assuming that δ is so small that terms involving δ2 may be neglected. (Note that

the expansion of (1 + x)n is
(

1 + nx+ n(n−1)
2!

x2 + · · ·
)

and if x is so small that

terms involving x2 and higher powers of x may be neglected, the expansion reduces
to (1 + nx).) Thus:

σ2
Xt = (t− 2δ(t− 1 + · · ·+ 1))σ2

ε

= (t− δt(t− 1))σ2
ε

= (1− (t− 1)δ) t σ2
ε .

It follows that, for finite t, the variance is a function of t and hence that the series
exhibits nonstationary behavior for finite t, even though it is stationary.

13.15 Demonstrate that, for Case (e), Yt is determined by:

Yt = t β1 +
t(t+ 1)

2
δ + Y0 +

t∑
s=1

εs.

This implies that the process is a convex quadratic function of time, implausible
empirically.

Answer:

The simplest proof is a proof by induction. Suppose that the expression is valid for
time t. Then Yt+1 is given by:

Yt = β1 + Yt + δ(t+ 1) + εt+1

= β1 +

(
t β1 +

t(t+ 1)

2
δ + Y0 +

t∑
s=1

εs

)
+ δ(t+ 1) + εt+1

= (t+ 1)β1 +
(t+ 1)(t+ 2)

2
δ + Y0 +

t+1∑
s=1

εs

and so it is valid for time t+ 1. But it is true for time 1. So it is valid for all t ≥ 1.

13.17 Demonstrate that the OLS estimator of δ in the model:

Yt = β1 + δt+ εt, t = 1, . . . , T

is hyperconsistent. Show also that it is unbiased in finite samples, despite the fact
that Yt is nonstationary.

Answer:

Let δ̂ be the OLS estimator of δ. Following the analysis in Chapter 2, δ̂ may be
decomposed as:

δ̂ = δ +
T∑
t=1

atut

where:

at =
t− 0.5T

T∑
s=1

(s− 0.5T )2

.

294



13.6. Answers to the additional exercises

Since at is deterministic:

E(δ̂) = δ +
T∑
t=1

atE(ut) = δ

and the estimator is unbiased. The variance of δ̂, conditional on T , is:

σ2
δ̂

=
σ2
ε

T∑
t=1

(t− 0.5(T + 1))2

.

Now:

T∑
t=1

(
t− 1

2
(T + 1)

)2

=
T∑
t=1

t2 − (T + 1)
T∑
t=1

t+
1

4
T (T + 1)2

=
1

6
T (T + 1)(2T + 1)− 1

2
T (T + 1)2 +

1

4
T (T + 1)2

=
T + 1

12
(4T 2 + 2T − 6T 2 − 6T + 3T 2 + 3T )

=
T 3 − T

12
.

Thus the variance is (asymptotically) inversely proportional to T 3 and the
estimator is hyperconsistent.

13.6 Answers to the additional exercises

A13.1 The population series exhibits steady growth and is therefore obviously
nonstationary. The growth is partly due to an excess of births over deaths and
partly due to immigration. The question is whether variations in these factors are
likely to be offsetting in the sense that a relatively large birth/ death excess one
year is somehow automatically counterbalanced by a relatively small one in a
subsequent year, or that a relatively large rate of immigration one year stimulates a
reaction that leads to a relatively small one later. Such compensating mechanisms
do not seem to exist, so trendstationarity may be ruled out. Population is a very
good example of an integrated series with the effects of shocks being permanently
incorporated in its level.

A13.2 It is difficult to come to any firm conclusion regarding this series. At first sight it
looks like a random walk. On closer inspection, you will notice that after an initial
decline in the first few years, the series appears to be stationary, with a high degree
of correlation. The series is too short to allow one to discriminate between the two
possibilities.

A13.3 As expected, given that the series is evidently nonstationary, the coefficient of
LGPOP(−1), −0.05, is close to zero and not significant. When we difference the
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series, the coefficient of DLGPOP(−1) is −0.16 and not significant, even at the 5
per cent level. One possibility, which does not seem plausible, is that the
population series is I(2). It is more likely that it is I(1), the first difference being
stationary but highly autocorrelated.

A13.4 If the process is nonstationary, ρ = 1. If it is stationary, it could lie anywhere in the
range −1 < ρ < 1. We must have a specific value for the null hypothesis. Hence we
are forced to use nonstationarity as the null hypothesis, despite the inconvenience
of having to compute alternative critical values of t.

A13.5 The model has been rewritten:

Xt −Xt−1 = (ρ− 1)Xt−1 + εt

so that the coefficient of Xt−1 is zero under the null hypothesis of nonstationarity.
We see that the null hypothesis is not rejected at any significance level, despite the
fact that we know that the series is stationary. However, the estimate of the
coefficient of Xt−1, −0.38, is not particularly close to zero. It implies an estimate of
0.67 for ρ, close to the actual value. This is a common outcome. Unit root tests
generally have low power, making it generally difficult or impossible to discriminate
between nonstationary processes and highly autocorrelated stationary processes.

A13.6 Where the hypothetical cointegrating relationship has a constant but no trend, as
in the present case, the critical values of t are −3.34 and −3.90 at the 5 and 1 per
cent levels, respectively (Davidson and MacKinnon, 1993). Hence the test indicates
that we have a cointegrating relationship only for DENT and then only at the 5 per
cent level. However, one knows in advance that the residuals are likely to be highly
autocorrelated. Many of the coefficients are greater than 0.2 in absolute terms and
perfectly compatible with a hypothesis of highly autocorrelated stationarity.

Test of cointegration

β̂2 s.e. t β̂2 s.e. t
ADM −0.09 0.06 −1.69 GASO −0.08 0.05 −1.62
BOOK −0.17 0.08 −2.24 HOUS −0.31 0.12 −2.52
BUSI −0.23 0.09 −2.40 LEGL −0.26 0.10 −2.59
CLOT −0.41 0.13 −3.17 MAGS −0.39 0.13 −3.03
DENT −0.51 0.15 −3.51 MASS −0.07 0.05 −1.48
DOC −0.35 0.12 −2.99 OPHT −0.14 0.08 −1.86
FLOW −0.22 0.10 −2.14 RELG −0.17 0.07 −2.35
FOOD −0.29 0.11 −2.61 TELE −0.22 0.09 −2.35
FURN −0.32 0.10 −3.29 TOB −0.16 0.10 −1.66
GAS −0.24 0.09 −2.79 TOYS −0.17 0.09 −1.96

A13.7 The expected value of Yt is β1t+ Y0, and thus it is not independent of t, one of the
conditions for stationarity. Similarly for Zt. However:

Yt − β1 − β2Zt = εt

and is therefore I(0).
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A13.8

Yt −Xt − Zt = Wt.

Since Wt is stationary, the left side of the equation is a cointegrating relationship.

A13.9 Two series XAt and XBt are generated as:

XAt = RAt + SAt

XB t = RB t + SB t.

Explain whether it is possible for XAt and XBt to be stationary.

Explain whether it is possible for them to be cointegrated.

A combination of a nonstationary process and a stationary one is nonstationary.
Hence both XA and XB are nonstationary.

Since the nonstationary components of XA and XB are unrelated, there is no linear
combination that is stationary, and so the series are not cointegrated.

Two series Y At and Y Bt are generated as

YAt = RAt + SAt

YB t = RAt + SB t.

Explain whether it is possible for YAt and YBt to be cointegrated.

YAt − YB t = SAt − SB t.

This is a cointegrating relationship for YAt and YB t since SAt − SB t is stationary.

Two series ZAt and ZBt are generated as

ZAt = RAt + RB t + SAt

ZB t = RAt − RB t + SB t.

Explain whether it is possible for ZAt and ZBt to be stationary.

No linear combination of RAt and RB t can be stationary since they are
independent random walks, and so ZAt and ZB t are both nonstationary.

Explain whether it is possible for them to be cointegrated.

No linear combination of ZAt and ZB t can eliminate both RAt and RB t, so there is
no cointegrating relationship.
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Chapter 14

Introduction to panel data

14.1 Overview

Increasingly, researchers are now using panel data where possible in preference to
cross-sectional data. One major reason is that dynamics may be explored with panel
data in a way that is seldom possible with crosssectional data. Another is that panel
data offer the possibility of a solution to the pervasive problem of omitted variable bias.
A further reason is that panel data sets often contain very large numbers of
observations and the quality of the data is high. This chapter describes fixed effects
regression and random effects regression, alternative techniques that exploit the
structure of panel data.

14.2 Learning outcomes

After working through the corresponding chapter in the text, studying the
corresponding slideshows, and doing the starred exercises in the text and the additional
exercises in this subject guide, you should be able to:

explain the differences between panel data, cross-sectional data, and time series
data

explain the benefits that can be obtained using panel data

explain the differences between OLS pooled regressions, fixed effects regressions,
and random effects regressions

explain the potential advantages of the fixed effects model over pooled OLS

explain the differences between the within-groups, first differences, and least
squares dummy variables variants of the fixed effects model

explain the assumptions required for the use of the random effects model

explain the advantages of the random effects model over the fixed effects model
when the assumptions are valid

explain how to use a Durbin–Wu–Hausman test to determine whether the random
effects model may be used instead of the fixed effects model.
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14.3 Additional exercises

A14.1 The NLSY2000 data set contains the following data for a sample of 2,427 males
and 2,392 females for the years 1980–2000: years of work experience, EXP, years of
schooling, S, and age, AGE. A researcher investigating the impact of schooling on
willingness to work regresses EXP on S, including potential work experience,
PWE, as a control. PWE was defined as:

PWE = AGE − S − 5.

The following regressions were performed for males and females separately:

(1) an ordinary least squares (OLS) regression pooling the observations

(2) a within-groups fixed effects regression

(3) a random effects regression.

The results of these regressions are shown in the table below. Standard errors are
given in parentheses.

Males Females
OLS FE RE OLS FE RE

S 0.78 0.65 0.72 0.89 0.71 0.85
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

PWE 0.83 0.94 0.94 0.74 0.88 0.87
(0.003) (0.001) (0.001) (0.004) (0.002) (0.002)

constant −10.16 dropped −10.56 −11.11 dropped −12.39
(0.09) (0.14) (0.12) (0.19)

R2 0.79 — — 0.71 — —
n 24,057 24,057 24,057 18,758 18,758 18,758
DHW χ2(2) 10.76 1.43

• Explain why the researcher included PWE as a control.

• Evaluate the results of the Durbin–Wu–Hausman tests.

• For males and females separately, explain the differences in the coefficients of
S in the OLS and FE regressions.

• For males and females separately, explain the differences in the coefficients of
PWE in the OLS and FE regressions.

A14.2 Using the NLSY2000 data set, a researcher fits OLS and fixed effects regressions of
the logarithm of hourly wages on schooling, years of work experience, EXP,
ASVABC score, and dummies MALE, ETHBLACK, and ETHHISP for being
male, black, or hispanic. Schooling was split into years of high school, SH, and
years of college, SC. The results are shown in the table below, with standard errors
placed in parentheses.
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OLS FE RE
SH 0.026 0.005 0.016

(0.002) (0.007) (0.004)
SC 0.063 0.073 0.067

(0.001) (0.004) (0.002)
EXP 0.033 0.032 0.033

(0.004) (0.003) (0.003)
ASVABC 0.012 — 0.011

(0.003) (0.001)
MALE 0.193 0.197

(0.004) (0.009)
ETHBLACK −0.040 — −0.030

(0.007) (0.015)
ETHHISP 0.047 — 0.033

(0.008) (0.018)
constant 5.639 — 5.751

(0.028) (0.051)
R2 0.0367 — —
DWH χ2(3) — — 9.31

If an individual reported being in high school or college, the observation for that
individual for that year was deleted from the sample. As a consequence, the
observations for most individuals in the sample begin when the formal education of
that individual has been completed. However, a small minority of individuals,
having apparently completed their formal education and having taken employment,
subsequently resumed their formal education, either to complete high school with a
general educational development (GED) degree equivalent to the high school
diploma, or to complete one or more years of college.

• Discuss the differences in the estimates of the coefficient of SH.

• Discuss the differences in the estimates of the coefficient of SC.

A14.3 A researcher has data on G, the average annual rate of growth of GDP 2001–2005,
and S, the average years of schooling of the workforce in 2005, for 28 European
Union countries. She believes that G depends on S and on E, the level of
entrepreneurship in the country, and a disturbance term u:

G = β1 + β2S + β3E + u. (1)

u may be assumed to satisfy the usual regression model assumptions.
Unfortunately the researcher does not have data on E.

• Explain intuitively and mathematically the consequences of performing a
simple regression of G on S. For this purpose S and E may be treated as
nonstochastic variables.

The researcher does some more research and obtains data on G∗, the average
annual rate of growth of GDP 1996–2000, and S∗, the average years of
schooling of the workforce in 2000, for the same countries. She thinks that she
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can deal with the unobservable variable problem by regressing ∆G, the change
in G, on ∆S, the change in S, where:

∆G = G−G∗

∆S = S − S∗

assuming that E would be much the same for each country in the two periods.
She fits the equation:

∆G = δ1 + δ2∆S + w (2)

where w is a disturbance term that satisfies the usual regression model
assumptions.

• Compare the properties of the estimators of the coefficient of S in (1) and of
the coefficient of ∆S in (2).

• Explain why in principle you would expect the estimate of δ1 in (2) not to be
significant. Suppose that nevertheless the researcher finds that the coefficient is
significant. Give two possible explanations.

Random effects regressions have potential advantages over fixed effect regressions.

• Could the researcher have used a random effects regression in the present case?

A14.4 A researcher has the following data for 3,763 respondents in the National
Longitudinal Survey of Youth 1979– : hourly earnings in dollars in 1994 and 2000,
years of schooling as recorded in 1994 and 2000, and years of work experience as
recorded in 1994 and 2000. The respondents were aged 14–21 in 1979, so they were
aged 29–36 in 1994 and 35–42 in 2000. 371 of the respondents had increased their
formal schooling between 1994 and 2000, 210 by one year, 101 by two years, 47 by
three years, and 13 by more than three years, mostly at college level in non-degree
courses. The researcher performs the following regressions:

(1) the logarithm of hourly earnings in 1994 on schooling and work experience in
1994

(2) the logarithm of hourly earnings in 2000 on schooling and work experience in
2000

(3) the change in the logarithm of hourly earnings from 1994 to 2000 on the
changes in schooling and work experience in that interval.

The results are shown in columns (1) – (3) in the table (t statistics in parentheses),
and are presented at a seminar.
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(1) (2) (3) (4) (5)
Dependent log earnings log earnings Change in log earnings Change in

variable 1994 2000 log earnings 2000 log earnings
1994–2000 1994–2000

Schooling 0.114 0.116 — 0.108 —
(30.16) (28.99) (24.53)

Experience 0.052 0.038 — 0.037 —
(18.81) (14.59) (14.10) —

Cognitive — — — 0.004 —
ability score (4.79)

Male 0.214 0.229 — 0.230 —
(12.03) (11.77) (11.88)

Black −0.149 −0.199 — −0.167 —
(−5.23) (−6.44) (−5.29)

Hispanic 0.039 0.053 — 0.071 —
(1.11) (1.38) (1.84)

Change in — — 0.090 — −0.006
schooling (5.00) (−0.16)
Change in — — 0.024 — 0.003
experience (2.75) (0.15)
constant 4.899 5.023 0.102 4.966 0.389

(74.59) (65.02) (2.13) (63.69) (3.05)
R2 0.265 0.243 0.007 0.248 0.0002
n 3,763 3,763 3,763 3,763 371

• The researcher is unable to explain why the coefficient of the change in
schooling in regression (3) is so much lower than the schooling coefficients in
(1) and (2). Someone says that it is because he has left out relevant variables
such as cognitive ability, region of residence, etc, and the coefficients in (1) and
(2) are therefore biased. Someone else says that cannot be the explanation
because these variables are also omitted from regression (3). Explain what
would be your view.

• He runs regressions (1) and (2) again, adding a measure of cognitive ability.
The results for the 2000 regression are shown in column (4). The results for
1994 were very similar. Discuss possible reasons for the fact that the estimate
of the schooling coefficient differs from those in (2) and (3).

• Someone says that the researcher should not have included a constant in
regression (3). Explain why she made this remark and assess whether it is
valid.

• Someone else at the seminar says that the reason for the relatively low
coefficient of schooling in regression (3) is that it mostly represented
non-degree schooling. Hence one would not expect to find the same
relationship between schooling and earnings as for the regular pre-employment
schooling of young people. Explain in general verbal terms what investigation
the researcher should undertake in response to this suggestion.

• Another person suggests that the small minority of individuals who went back
to school or college in their thirties might have characteristics different from
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those of the individuals who did not, and that this could account for a
different coefficient. Explain in general verbal terms what investigation the
researcher should undertake in response to this suggestion.

• Finally, another person says that it might be a good idea to look at the
relationship between earnings and schooling for the subsample who went back
to school or college, restricting the analysis to these 371 individuals. The
researcher responds by running the regression for that group alone. The result
is shown in column (5) in the table. The researcher also plots a scatter
diagram, reproduced below, showing the change in the logarithm of earnings
and the change in schooling. For those with one extra year of schooling, the
mean change in log earnings was 0.40. For those with two extra years, 0.37.
For those with three extra years, 0.47. What conclusions might be drawn from
the regression results?
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A14.5 In the discussion of the DWH test, it was stated that the test compares the
coefficients of those variables not dropped in the FE regression. Explain why the
constant is not included in the comparison.

14.4 Answer to the starred exercise in the textbook

14.9 The NLSY2000 data set contains the following data for a sample of 2,427 males
and 2,392 females for the years 1980–2000: weight in pounds, years of schooling,
age, marital status in the form of a dummy variable MARRIED defined to be 1 if
the respondent was married, 0 if single, and height in inches. Hypothesizing that
weight is influenced by schooling, age, marital status, and height, the following
regressions were performed for males and females separately:

(1) an ordinary least squares (OLS) regression pooling the observations

(2) a within-groups fixed effects regression

(3) a random effects regression.
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The results of these regressions are shown in the table. Standard errors are given in
parentheses.

Males Females
OLS FE RE OLS FE RE

Year of −0.98 −0.02 −0.45 −1.95 −0.60 −1.25
schooling (0.09) (0.23) (0.16) (0.12) (0.27) (0.18)
Age 1.61 1.64 1.65 2.03 1.66 1.72

(0.04) (0.02) (0.02) (0.05) (0.03) (0.03)
Married 3.70 2.92 3.00 −8.27 3.08 1.98

(0.48) (0.33) (0.32) (0.59) (0.46) (0.44)
Height 5.07 dropped 4.95 3.48 dropped 3.38

(0.08) (0.18) (0.10) (0.21)
constant −209.52 dropped −209.81 −105.90 dropped −107.61

(5.39) (12.88) (6.62) (13.43)
R2 0.27 — — 0.17 — —
n 17,299 17,299 17,299 13,160 13,160 13,160
DWH χ2(3) 7.22 92.94

Explain why height is excluded from the FE regression.

Evaluate, for males and females separately, whether the fixed effects or random
effects model should be preferred.

For males and females separately, compare the estimates of the coefficients in the
OLS and FE models and attempt to explain the differences.

Explain in principle how one might test whether individual-specific fixed effects
jointly have significant explanatory power, if the number of individuals is small.
Explain why the test is not practical in this case.

Answer:

Height is constant over observations. Hence, for each individual:

HEIGHT it −HEIGHT i = 0

for all t, where HEIGHT i is the mean height for individual i for the observations
for that individual. Hence height has to be dropped from the regression model.

The critical value of chi-squared, with three degrees of freedom, is 7.82 at the 5
percent level and 16.27 at the 0.1 percent level. Hence there is a possibility that the
random effects model may be appropriate for males, but it is definitely not
appropriate for females.

Males

The OLS regression suggests that schooling has a small (one pound less per year of
schooling) but highly significant negative effect on weight. The fixed effects
regression eliminates the effect, indicating that an unobserved effect is responsible:
males with unobserved qualities that have a positive effect on educational
attainment, controlling for other measured variables, have lower weight as a
consequence of the same unobserved qualities. We cannot compare estimates of the
effect of height since it is dropped from the FE regression. The effect of age is the
same in the two regressions. There is a small but highly significant positive effect of
being married, the OLS estimate possibly being inflated by an unobserved effect.
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Females

The main, and very striking, difference is in the marriage coefficient. The OLS
regression suggests that marriage reduces weight by eight pounds, a remarkable
amount. The FE regression suggests the opposite, that marriage leads to an
increase in weight that is similar to that for males. The clear implication is that
women who weigh less are relatively successful in the marriage market, but once
they are married they put on weight.

For schooling the story is much the same as for males, except that the OLS
coefficient is much larger and the coefficient remains significant at the 5 percent
level in the FE regression. The effect of age appears to be exaggerated in the OLS
regression, for reasons that are not obvious.

One might test whether individual-specific fixed effects jointly have significant
explanatory power by performing a LSDV regression, eliminating the intercept in
the model and adding a dummy variable for each individual. One would compare
RSS for this regression with that for the regression without the dummy variables,
using a standard F test. In the present case it is not a practical proposition
because there are more than 17,000 males and 13,000 females.

14.5 Answers to the additional exercises

A14.1 Explain why the researcher included PWE as a control.

Clearly actual work experience is positively influenced by PWE. Omitting it would
cause the coefficient of S to be biased downwards since PWE and S are negatively
correlated.

Evaluate the results of the Durbin–Wu–Hausman tests

With two degrees of freedom, the critical value of chi-squared is 5.99 at the 5
percent level and 9.21 at the 1 percent level. Thus the random effects model is
rejected for males but seemingly not for females.

For males and females separately, explain the differences in the coefficients of S in
the OLS and FE regressions.

For both sexes the OLS estimate is greater than the FE estimate. One possible
reason is that some unobserved characteristics, for example drive, are positively
correlated with both acquiring schooling, and seeking and gaining employment.

For males and females separately, explain the differences in the coefficients of PWE
in the OLS and FE regressions.

Since S and PWE are negatively correlated, these same unobserved characteristics
would cause the OLS estimate of the coefficient of PWE to be biased downwards.

A14.2 First, note that the DWH statistic is significant at the 5 per cent level (critical
value 7.82) but not at the 1 per cent level (critical value 11.35).

The coefficients of SH and SC in the OLS regression is an estimate of the impact
of variations in years of high school and years of college among all the individuals
in the sample. Most individuals in fact completed high school and so had SH = 12.
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However, a small minority did not and this variation made possible the estimation
of the SH coefficient. The majority of the remainder did not complete any years of
college and therefore had SC = 0, but a substantial minority did have a partial or
complete college education, some even pursuing postgraduate studies, and this
variation made possible the estimation of the SC coefficient.

Most individuals completed their formal education before entering employment. For
them, SHit =SHi for all t and hence SHit −SHi = 0 for all t. As a consequence,
the observations for such individuals provide no variation in the SH variable.
Likewise they provide no variation in the SC variable. If all observations pertained
to such individuals, schooling would be washed out in the FE regression along with
other unchanging characteristics such as sex, ethnicity, and ASVABC score. The
schooling coefficients in the FE regression therefore relate to those individuals who
returned to formal education after a break in which they found employment.

The fact that these individuals account for a relatively small proportion of the
observations in the data set has an adverse effect on the precision of the FE
estimates of the coefficients of SH and SC. This is reflected in standard errors that
are much larger than those obtained in the OLS pooled regression.

Discuss the differences in the estimates of the coefficient of SH.

Most of the variation in SH in the FE regressions come from individuals earning
the GED degree. This degree provides an opportunity for high school drop-outs to
make good their shortfall by taking courses and passing the examinations required
for this diploma. These courses may be civilian or military adult education classes,
but very often they are programmes offered to those in jail. In principle the GED
should be equivalent to the high school diploma, but there is some evidence that
standards are sometimes lower. The results in the table appear to corroborate this
view. The OLS regression indicates that a year of high school raises earnings by 2.6
per cent, with the coefficient being highly significant, whereas the FE coefficient
indicates that the effect is only 0.5 per cent and not significant.

Discuss the differences in the estimates of the coefficient of SC.

Some of the variation in SC in the FE regressions comes from individuals entering
employment for a year or two after finishing high school and then going to college,
resuming their formal education. However, most comes from individuals returning
to college for a year or two after having been employment for a number of years. A
typical example is a high school graduate who has settled down in an occupation
and who has then decided to upgrade his or her professional skills by taking a
two-year associate of arts degree. Similarly one encounters college graduates who
upgrade to masters level after having worked for some time. One would expect such
students to be especially well motivated – they are often undertaking studies that
are relevant to an established career, and they are often bearing high opportunity
costs from loss of earnings while studying – and accordingly one might expect the
payoff in terms of increased earnings to be relatively high. This seems to be borne
out in a comparison of the OLS and FE estimates of the coefficient of SC, though
the difference is not dramatic.

On the surface, this exercise appeared to be about how one might use FE to
eliminate the bias in OLS pooled regression caused by unobserved effects. Has the
analysis been successful in this respect? Absolutely not. In particular, the apparent
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conclusion that high school education has virtually no effect on earnings should not
be taken at face value. The reason is that the issue of biases attributable to
unobserved effects has been overtaken by the much more important issue of the
difference in the interpretation of the SH and SC coefficients discussed in the
exercise. This illustrates a basic point in econometrics: understanding the context
of the data is often just as important as being proficient at technical analysis.

A14.3 Explain intuitively and mathematically the consequences of performing a simple
regression of G on S. For this purpose S and E may be treated as nonstochastic
variables.

If one fits the regression:
Ĝ = β̂1 + β̂2S

then

β̂2 =

∑(
Si −S

)(
Gi −G

)
∑(

Si −S
)2

=

∑(
Si −S

)(
(β1 + β2Si + β3Ei + ui)−

(
β1 + β2S+ β2E+u

))
∑(

Si −S
)2

= β2 + β3

∑(
SiS
)(

Ei −E
)

∑(
Si −S

)2 +

∑(
Si −S

)
(ui −u)∑(

Si −S
)2 .

Taking expectations, and making use of the invitation to treat S and E as
nonstochastic:

E(β̂2) = β2 + β3

∑(
SiS
)(

Ei −E
)

∑(
Si −S

)2 +

∑(
Si −S

)
E (ui −u)∑(

Si −S
)2

= β2 + β3

∑(
Si −S

)(
Ei −E

)
∑(

Si −S
)2 .

Hence the estimator is biased unless S and E happen to be uncorrelated in the
sample. As a consequence, the standard errors will be invalid.

Compare the properties of the estimators of the coefficient of S in (1) and of the
coefficient of ∆S in (2).

Given (1), the differenced model should have been:

∆G = δ2∆S + w

where w = u− u∗.
The estimator of the coefficient of ∆S in (2) should be unbiased, while that of S in
(1) will be subject to omitted variable bias. However:
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• it is possible that the bias in (1) may be small. This would be the case if E
were a relatively unimportant determinant of G or if its correlation with S
were low.

• it is possible that the variance in ∆S is smaller than that of S. This would be
the case if S were changing slowly in each country, or if the rate of change of S
were similar in each country.

Thus there may be a trade-off between bias and variance and it is possible that the
estimator of β2 using specification (1) could actually be superior according to some
criterion such as the mean square error. It should be noted that the inclusion of δ1

in (2) will make the estimation of δ2 even less efficient.

Explain why in principle you would expect the estimate of δ1 in (2) not to be
significant. Suppose that nevertheless the researcher finds that the coefficient is
significant. Give two possible explanations.

If specification (1) is correct, there should be no intercept in (2) and for this reason
the estimate of the intercept should not be significantly different from zero. If it is
significant, this could have occurred as a matter of Type I error. Alternatively, it
might indicate a shift in the relationship between the two time periods. Suppose
that (1) should have included a dummy variable set equal to 0 in the first time

period and 1 in the second. δ̂1 would then be an estimate of its coefficient.

Could the researcher have used a random effects regression in the present case?

Random effects requires the sample to be drawn randomly from a population and
for unobserved effects to be uncorrelated with the regressors. The first condition is
not satisfied here, so random effects would be inappropriate.

A14.4 The researcher is unable to explain why the coefficient of the change in schooling in
regression (3) is so much lower than the schooling coefficients in (1) and (2).
Someone says that it is because he has left out relevant variables such as cognitive
ability, region of residence, etc, and the coefficients in (1) and (2) are therefore
biased. Someone else says that cannot be the explanation because these variables are
also omitted from regression (3). Explain what would be your view.

Suppose that the true model is:

LGEARN = β1 + β2S + β3EXP + β4ASVABC + β5MALE

+β6ETHBLACK + β7ETHHISP + β8X8 + u

where X8 is some further fixed characteristic of the respondent. ASVABC and X8

are absent from regressions (1) and (2) and so those regressions will be subject to
omitted variable bias. In particular, since ASVABC is likely to be positively
correlated with S, and to have a positive coefficient, its omission will tend to bias
the coefficient of S upwards.

However, if the specification is valid for both 1994 and 2000 and unchanged, one can
eliminate the omitted variable bias by taking first differences as in regression (3):

∆LGEARN = β2∆S + β3∆EXP + ∆u.

By fitting this specification one should obtain unbiased estimates of the coefficients
of schooling and experience, and the former should therefore be smaller than in (1)
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and (2). Note that all the fixed characteristics have been washed out. The
suggestion that ASVABC should have been included in (3) is therefore incorrect.

Note that (3) should not have included an intercept. This is discussed later in the
question.

He runs regressions (1) and (2) again, adding a measure of cognitive ability. The
results for the 2000 regression are shown in column (4). The results for 1994 were
very similar. Discuss possible reasons for the fact that the estimate of the schooling
coefficient differs from those in (2) and (3).

The estimate of the coefficient of S differs from that in (2) because the omitted
variable bias attributable to the omission of ASVABC in that specification has now
been corrected. However it is still biased if X8 (representing other omitted
characteristics) is a determinant of earnings and is correlated with S. This partial
rectification of the omitted variable problem accounts for the fact that the
coefficient of S in (4) lies between those in (2) and (3).

Someone says that the researcher should not have included a constant in regression
(3). Explain why she made this remark and assess whether it is valid.

Given the specification in (1) and (2), there should have been no intercept in the
first differences specification (3). One would therefore expect the estimate of the
intercept to be somewhere near zero in the sense of not being significantly different
from it. Nevertheless, it is significantly different at the 5 percent level. However,
suppose that the relationship shifted between 1994 and 2000, and that the shift
could be represented by a dummy variable D equal to zero in 1994 and 1 in 2000,
with coefficient δ. Then (3) should have an intercept δ. Its estimate, 0.102, suggests
that earnings grew by 10 percent from 1994 to 2000, holding other factors constant.
This seems entirely reasonable, perhaps even a little low.

Alternatively, the apparently significant t statistic might have arisen as a matter of
Type I error.

Someone else at the seminar says that the reason for the relatively low coefficient of
schooling in regression (3) is that it mostly represented non-degree schooling. Hence
one would not expect to find the same relationship between schooling and earnings
as for the regular preemployment schooling of young people. Explain in general
verbal terms what investigation the researcher should undertake in response to this
suggestion.

Divide S into two variables, schooling as of 1994 and extra schooling as of 2000,
with separate coefficients. Then use a standard F test (or t test) of a restriction to
test whether the coefficients are significantly different.

Another person suggests that the small minority of individuals who went back to
school or college in their thirties might have characteristics different from those of
the individuals who did not, and that this could account for a different coefficient.
Explain in general verbal terms what investigation the researcher should undertake
in response to this suggestion.

The issue is sample selection bias and an appropriate procedure would be that
proposed by Heckman. One would use probit analysis with an appropriate set of
determinants to model the decision to return to school between 1994 and 2000, and
a regression model to explain variations in the logarithm of earnings of those
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respondents who do return to school, linking the two models by allowing their
disturbance terms to be correlated. One would test whether the estimate of this
correlation is significantly different from zero.

Finally, another person says that it might be a good idea to look at the relationship
between earnings and schooling for the subsample who went back to school or
college, restricting the analysis to these 371 individuals. The researcher responds by
running the regression for that group alone. The result is shown in column (5) in
the table. The researcher also plots a scatter diagram, reproduced below, showing the
change in the logarithm of earnings and the change in schooling. For those with one
extra year of schooling, the mean change in log earnings was 0.40. For those with
two extra years, 0.37. For those with three extra years, 0.47. What conclusions
might be drawn from the regression results?

The schooling coefficient is effectively zero! [These are real data, incidentally.] The
scatter diagram shows why. Irrespective of whether the respondent had one, two, or
three years of extra schooling, the gain is about the same, on average. (These are
the only categories with large numbers of observations, given the information at the
beginning of the question, confirmed by the scatter diagram.) So the results
indicate that the fact of going back to school, rather than the duration of the
schooling, is the relevant determinant of the change in earnings. The intercept
indicates that this subsample on average increased their earnings between 1994 and
2000 by 38.9 percent. (As a first approximation. The actual proportion would be
better estimated as e0.389− 1 = 0.476.) This figure is confirmed by the diagram, and
it would appear to be much greater than the effect of regular schooling. One
explanation could be sample selection bias, as already discussed. A more likely
possibility is that the respondents were presented with opportunities to increase
their earnings substantially if they undertook certain types of formal course, and
they took advantage of these opportunities.

A14.5 In a random effects regression, the interpretation of an intercept is not affected by
the estimation technique. In a fixed effects regression, the intercept is washed out.
Hence there is no basis for a comparison. In general, the model is fitted without an
intercept. The only case where an intercept should be included is in first-differences
fixed effects estimation of a model containing a deterministic trend. For example,
suppose one is fitting the model:

Yit = β1 + β2Xit + δt+ uit.

For individual i in the previous time period, one has:

Yi, t−1 = β1 + β2Xi, t−1 + δ(t− 1) + ui, t−1.

Subtracting, one obtains:

Yit − Yi, t−1 = β2(Xit −Xi, t−1) + δ + uit − ui, t−1.

The model now does have an intercept, but its meaning is different from that in the
original specification. It now provides an estimate of δ, not β1.
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Chapter 15

Regression analysis with linear
algebra primer

15.1 Overview

This primer is intended to provide a mathematical bridge to a master’s level course that
uses linear algebra for students who have taken an undergraduate econometrics course
that does not. Why should we make the mathematical shift? The most immediate
reason is the huge double benefit of allowing us to generalise the core results to models
with many explanatory variables while simultaneously permitting a great simplification
of the mathematics. This alone justifies the investment in time – probably not more
than ten hours – required to acquire the necessary understanding of basic linear algebra.

In fact, one could very well put the question the other way. Why do introductory
econometrics courses not make this investment and use linear algebra from the start?
Why do they (almost) invariably use ordinary algebra, leaving students to make the
switch when they take a second course?

The answer to this is that the overriding objective of an introductory econometrics
course must be to encourage the development of a solid intuitive understanding of the
material and it is easier to do this with familiar, everyday algebra than with linear
algebra, which for many students initially seems alien and abstract. An introductory
course should ensure that at all times students understand the purpose and value of
what they are doing. This is far more important than proofs and for this purpose it is
usually sufficient to consider models with one, or at most two, explanatory variables.
Even in the relatively advanced material, where we are forced to consider asymptotics
because we cannot obtain finite-sample results, the lower-level mathematics holds its
own. This is especially obvious when we come to consider finite-sample properties of
estimators when only asymptotic results are available mathematically. We invariably
use a simple model for a simulation, not one that requires a knowledge of linear algebra.

These comments apply even when it comes to proofs. It is usually helpful to see a proof
in miniature where one can easily see exactly what is involved. It is then usually
sufficient to know that in principle it generalises, without there being any great urgency
to see a general proof. Of course, the linear algebra version of the proof will be general
and often simpler, but it will be less intuitively accessible and so it is useful to have
seen a miniature proof first. Proofs of the unbiasedness of the regression coefficients
under appropriate assumptions are obvious examples.

At all costs, one wishes to avoid the study of econometrics becoming an extended
exercise in abstract mathematics, most of which practitioners will never use again. They
will use regression applications and as long as they understand what is happening in
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principle, the actual mechanics are of little interest.

This primer is not intended as an exposition of linear algebra as such. It assumes that a
basic knowledge of linear algebra, for which there are many excellent introductory
textbooks, has already been acquired. For the most part, it is sufficient that you should
know the rules for multiplying two matrices together and for deriving the inverse of a
square matrix, and that you should understand the consequences of a square matrix
having a zero determinant.

15.2 Notation

Matrices and vectors will be written bold, upright, matrices upper case, for example A,
and vectors lower case, for example b. The transpose of a matrix will be denoted by a
prime, so that the transpose of A is A′, and the inverse of a matrix will be denoted by a
superscript −1, so that the inverse of A is A−1.

15.3 Test exercises

Answers to all of the exercises in this primer will be found at its end. If you are unable
to answer the following exercises, you need to spend more time learning basic matrix
algebra before reading this primer. The rules in Exercises 3–5 will be used frequently
without further explanation.

1. Demonstrate that the inverse of the inverse of a matrix is the original matrix.

2. Demonstrate that if a (square) matrix possesses an inverse, the inverse is unique.

3. Demonstrate that, if A = BC, A′ = C′B′.

4. Demonstrate that, if A = BC, A−1 = C−1B−1, provided that B−1 and C−1 exist.

5. Demonstrate that [A′]−1 = [A−1]′.

15.4 The multiple regression model

The most obvious benefit from switching to linear algebra is convenience. It permits an
elegant simplification and generalisation of much of the mathematical analysis
associated with regression analysis. We will consider the general multiple regression
model:

Yi = β1Xi1 + · · ·+ βkXik + ui (1)

where the second subscript identifies the variable and the first the observation. In the
textbook, as far as the fourth edition, the subscripts were in the opposite order. The
reason for the change of notation here, which will be adopted in the next edition of the
textbook, is that it is more compatible with a linear algebra treatment.
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Equation (1) is a row relating to observation i in a sample of n observations. The entire
layout would be:

Y1
...
Yi
...
Yn

 =


β1X11 + · · ·+ βjX1j + · · ·+ βkX1k

...
β1Xi1 + · · ·+ βjXij + · · ·+ βkXik

...
β1Xn1 + · · ·+ βjXnj + · · ·+ βkXnk

+


u1
...
ui
...
un

 .

This, of course, may be written in linear algebra form as:

y = Xβ + u (2)

where:

y =


Y1
...
Yi
...
Yn

 , X =


X11 · · ·X1j · · ·X1k

...
Xi1 · · ·Xij · · ·Xik

...
Xn1 · · ·Xnj · · ·Xnk

 , β =


β1
...
βi
...
βn

 , and u =


u1
...
ui
...
un


with the first subscript of Xij relating to the row and the second to the column, as is
conventional with matrix notation. This was the reason for the change in the order of
the subscripts in equation (1).

Frequently, it is convenient to think of the matrix X as consisting of a set of column
vectors:

X = [x1 · · ·xj · · ·xk]
where:

xj =


X1j

...
Xij

...
Xnj

 .
xj is the set of observations relating to explanatory variable j. It is written lower case,
bold, not italic because it is a vector.

15.5 The intercept in a regression model

As described above, there is no special intercept term in the model. If, as is usually the
case, one is needed, it is accommodated within the matrix framework by including an X
variable, typically placed as the first, with value equal to 1 in all observations:

x1 =


1
...
1
...
1

 .
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The coefficient of this unit vector is the intercept in the regression model. If it is
included, and located as the first column, the X matrix becomes:

X =


1 X12 · · · X1j · · · X1k

...
1 Xi2 · · · Xij · · · Xik

...
1 Xn2 · · · Xnj · · · Xnk

 = [1 x2 · · · xj · · · xk] .

15.6 The OLS regression coefficients

Using the matrix and vector notation, we may write the fitted equation:

Ŷi = β̂1Xi1 + · · ·+ β̂kXik

as:
ŷ = Xβ̂

with obvious definitions of ŷ and β̂. Then we may define the vector of residuals as:

û = y − ŷ = y −Xβ̂

and the residual sum of squares as:

RSS = û′û = (y −Xβ̂)′(y −Xβ̂)

= y′y − y′Xβ̂ − β̂
′
X′y + β̂

′
X′Xβ̂

= y′y − 2y′Xβ̂ + β̂
′
X′Xβ̂

(y′Xβ̂ = β̂
′
X′y since it is a scalar.) The next step is to obtain the normal equations:

∂RSS

∂β̂j
= 0

for j = 1, . . . , k and solve them (if we can) to obtain the least squares coefficients. Using
linear algebra, the normal equations can be written:

X′Xβ̂ −X′y = 0.

The derivation is straightforward but tedious and has been consigned to Appendix A.
X′X is a square matrix with k rows and columns. If assumption A.2 is satisfied (that it
is not possible to write one X variable as a linear combination of the others), X′X has
an inverse and we obtain the OLS estimator of the coefficients:

β̂ = [X′X]−1X′y. (3)

Exercises

6. If Y = β1 + β2X + u, obtain the OLS estimators of β1 and β2 using (3).

7. If Y = β2 + u, obtain the OLS estimator of β2 using (3).

8. If Y = β1 + u, obtain the OLS estimator of β1 using (3).
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15.7 Unbiasedness of the OLS regression coefficients

Substituting for y from (2) into (3), we have:

β̂ = [X′X]−1X′(Xβ + u)

= [X′X]−1X′Xβ + [X′X]−1X′u

= β + [X′X]−1X′u.

Hence each element of β̂ is equal to the corresponding value of β plus a linear
combination of the values of the disturbance term in the sample. Next:

E(β̂ |X) = β + E([X′X]−1X′u |X).

To proceed further, we need to be specific about the data generation process (DGP) for
X and the assumptions concerning u and X. In Model A, we have no DGP for X: the
data are simply taken as given. When we describe the properties of the regression
estimators, we are either talking about the potential properties, before the sample has
been drawn, or about the distributions that we would expect in repeated samples using
those given data on X. If we make the assumption E(u |X) = 0, then:

E(β̂ |X) = β + [X′X]−1X′E(u |X) = β

and so β̂ is an unbiased estimator of β. It should be stressed that unbiasedness in
Model A, along with all other properties of the regression estimators, are conditional on
the actual given data for X.

In Model B, we allow X to be drawn from a fixed joint distribution of the explanatory
variables. The appropriate assumption for the disturbance term is that it is distributed
independently of X and hence its conditional distribution is no different from its
absolute distribution: E(u |X) = E(u) for all X. We also assume E(u) = 0. The
independence of the distributions of X and u allows us to write:

E(β̂ |X) = β + E
(
[X′X]−1X′u|X

)
= β + E

(
[X′X]−1X′

)
E(u)

= β.

15.8 The variance-covariance matrix of the OLS
regression coefficients

We define the variance-covariance matrix of the disturbance term to be the matrix
whose element in row i and column j is the population covariance of ui and uj. By
assumption A.4, the covariance of ui and uj is constant and equal to σ2

u if j = i and by
assumption A.5 it is equal to zero if j 6= i. Thus the variance-covariance matrix is:
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σ2
u 0 0 · · · 0 0 0

0 σ2
u 0 · · · 0 0 0

0 0 σ2
u · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · σ2

u 0 0
0 0 0 · · · 0 σ2

u 0
0 0 0 · · · 0 0 σ2

u


that is, a matrix whose diagonal elements are all equal to σ2

u and whose off-diagonal
elements are all zero. It may more conveniently be written Inσ

2
u where In is the identity

matrix of order n.

Similarly, we define the variance-covariance matrix of the regression coefficients to be
the matrix whose element in row i and column j is the population covariance of β̂i and
β̂j:

cov(β̂i, β̂j) = E
[
(β̂i − E(β̂i))(β̂j − E(β̂j))

]
= E

[
(β̂i − βi)(β̂j − βj)

]
.

The diagonal elements are of course the variances of the individual regression
coefficients. We denote this matrix var(β̂). If we are using the framework of Model A,
everything will be conditional on the actual given data for X, so we should refer to
var(β̂ |X) rather than var(β̂). Then:

var(β̂ |X) = E((β̂ − E(β̂))(β̂ − E(β̂))′|X)

= E((β̂ − β)(β̂ − β)′ |X)

= E
(
([X′X]−1X′u)([X′X]−1X′u)′ |X

)
= E

(
[X′X]−1X′uu′X[X′X]−1 |X

)
= [X′X]−1X′E(uu′|X)X[X′X]−1

= [X′X]−1X′Inσ
2
uX[X′X]−1

= [X′X]−1σ2
u.

If we are using Model B, we can obtain the unconditional variance of b using the
standard decomposition of a variance in a joint distribution:

var(β̂) = E
[
var(β̂ |X)

]
+ var

[
E(β̂ |X)

]
.

Now E(β̂ |X) = β for all X, so var[E(β̂ |X)] = var(β) = 0 since β is a constant vector,
so:

var(β̂) = E
(
[X′X]−1σ2

u

)
= σ2

uE
(
[X′X]−1

)
the expectation being taken over the distribution of X.

To estimate var(β̂), we need to estimate σ2
u. An unbiased estimator is provided by

û′û/(n− k). For a proof, see Appendix B.

318



15.9. The Gauss–Markov theorem

15.9 The Gauss–Markov theorem

We will demonstrate that the OLS estimators are the minimum variance unbiased
estimators that are linear in y. For simplicity, we will do this within the framework of
Model A, with the analysis conditional on the given data for X. The analysis generalises
straightforwardly to Model B, where the explanatory variables are stochastic but drawn
from fixed distributions.

Consider the general estimator in this class:

β̂
∗

= Ay

where A is a k by n matrix. Let:

C = A− [X′X]−1X′.

Then:

β̂
∗

=
(
[X′X]−1X′ + C

)
y

=
(
[X′X]−1X′ + C

)
(Xβ + u)

= β + CXβ + [X′X]−1X′u + Cu.

Unbiasedness requires:
CX = 0k

where 0 is a k by k matrix consisting entirely of zeros. Then, with E(β̂
∗
) = β, the

variance-covariance matrix of β̂
∗

is given by:

E
[
(β̂
∗
− β)(β̂

∗
− β)′

]
= E

[(
[X′X]−1X′ + C

)
uu′

(
[X′X]−1X′ + C

)′]
=

(
[X′X]−1X′ + C

)
Inσ

2
u

(
[X′X]−1X′ + C

)′
=

(
[X′X]−1X′ + C

) (
[X′X]−1X′ + C

)′
σ2
u

=
(
[X′X]−1 + CC′

)′
σ2
u.

Now diagonal element i of CC′ is the inner product of row i of C and column i of C′.
These are the same, so it is given by:

k∑
s=1

c2
ik

which is positive unless cis = 0 for all s. Hence minimising the variances of the
estimators of all of the elements of β requires C = 0. This implies that OLS provides
the minimum variance unbiased estimator.

15.10 Consistency of the OLS regression coefficients

Since:
β̂ = β + [X′X]−1X′u
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the probability limit of β̂ is given by:

plim β̂ = β + plim [X′X]−1X′u

= β + plim

([
1

n
X′X

]−1
1

n
X′u

)
.

Now, if we are working with cross-sectional data with the explanatory variables drawn
from fixed (joint) distributions, it can be shown that:

plim

[
1

n
X′X

]−1

has a limiting matrix and that:

plim
1

n
X′u = 0.

Hence we can decompose:

plim

([
1

n
X′X

]−1
1

n
X′u

)
= plim

[
1

n
X′X

]−1

plim
1

n
X′u = 0

and so plim β̂ = β. Note that this is only an outline of the proof. For a proper proof
and a generalisation to less restrictive assumptions, see Greene pp.64–65.

15.11 Frisch–Waugh–Lovell theorem

We will precede the discussion of the Frisch–Waugh–Lovell (FWL) theorem by
introducing the residual-maker matrix. We have seen that, when we fit:

y = Xβ + u

using OLS, the residuals are given by:

û = y − ŷ = y −Xβ̂.

Substituting for β̂, we have:

û = y −X[X′X]−1X′y

=
[
I−X[X′X]−1X′

]
y

= My

where:
M = I−X[X′X]−1X′.

M is known as the ‘residual-maker’ matrix because it converts the values of y into the
residuals of y when regressed on X. Note that M is symmetric, because M′ = M, and
idempotent, meaning that MM = M.

Now suppose that we divide the k variables comprising X into two subsets, the first s
and the last k − s. (For the present purposes, it makes no difference whether there is or
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is not an intercept in the model, and if there is one, whether the vector of ones
responsible for it is in the first or second subset.) We will partition X as:

X = [X1 X2]

where X + 1 comprises the first s columns and X2 comprises the last k − s, and we will
partition β similarly, so that the theoretical model may be written:

y = [X1 X2]

[
β1

β2

]
+ u.

The FWL theorem states that the OLS estimates of the coefficients in β1 are the same
as those that would be obtained by the following procedure: regress y on the variables
in X2 and save the residuals as ûy. Regress each of the variables in X1 on X2 and save
the matrix of residuals as ûX1 . If we regress ûy on ûX1 , we will obtain the same
estimates of the coefficients of β1 as we did in the straightforward multiple regression.
(Why we might want to do this is another matter. We will come to this later.) Applying
the preceding discussion relating to the residual-maker, we have:

ûy = M2y

where:
M2 = I−X2[X2

′X2]−1X2
′

and:
ûX1 = M2X1.

Let the vector of coefficients obtained when we regress ûy on ûX1 be denoted β̂
∗
1 . Then:

β̂
∗
1 = [û′X1

ûX1 ]−1û′X1
ûy

= [X1
′M2

′M2X1]−1X1
′M2

′M2y

= [X1
′M2X1]−1X1M2y.

(Remember that M2 is symmetric and idempotent.) Now we will derive an expression

for β̂1 from the orthodox multiple regression of y on X. For this purpose, it is easiest to
start with the normal equations:

X′Xβ̂ −X′y = 0.

We partition β̂ as

[
β̂1

β̂2

]
. X′ is

[
X1
′

X2
′

]
, and we have the following:

X′X =

[
X1
′X1 X1

′X2

X2
′X1 X2

′X2

]

X′Xβ̂ =

[
X1
′X1 X1

′X2

X2
′X1 X2

′X2

][
β̂1

β̂2

]
=

[
X1
′X1β̂1 + X1

′X2β̂2

X2
′X1β̂1 + X2

′X2β̂2

]

X′y =

[
X1
′y

X2
′y

]
.
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Hence, splitting the normal equations into their upper and lower components, we have:

X1
′X1β̂1 + X1

′X2β̂2 −X1
′y = 0

and:

X2
′X1β̂1 + X2

′X2β̂2 −X2
′y = 0.

From the second we obtain:

X2
′X2β̂2 = X2

′y −X2
′X1β̂1

and so:

β̂2 = [X2
′X2]−1[X2

′y −X2
′X1β̂1].

Substituting for β̂2 in the first normal equation:

X1
′X1β̂1 + X1

′X2[X2
′X2]−1[X2

′y −X2
′X1β̂1]−X1

′y = 0.

Hence:

X1
′X1β̂1 −X1

′X2[X2
′X2]−1X2

′X1β̂1 = X1
′y −X1

′X2[X2
′X2]−1X2

′y

and so:

X1
′ [I−X2[X2

′X2]−1X′2
]
X1β̂1 = X1

′ [I−X2[X2
′X2]−1X2

′]y.
Hence:

X1
′M2X1β̂1 = X1

′M2y

and:

β̂1 = [X1
′M2X1]−1X1

′M2y = β̂
∗
1.

Why should we be interested in this result? The original purpose remains instructive. In
early days, econometricians working with time series data, especially macroeconomic
data, were concerned to avoid the problem of spurious regressions. If two variables both
possessed a time trend, it was very likely that ‘significant’ results would be obtained
when one was regressed on the other, even if there were no genuine relationship between
them. To avoid this, it became the custom to detrend the variables before using them
by regressing each on a time trend and then working with the residuals from these
regressions. Frisch and Waugh (1933) pointed out that this was an unnecessarily
laborious procedure. The same results would be obtained using the original data, if a
time trend was added as an explanatory variable.

Generalising, and this was the contribution of Lovell, we can infer that, in a multiple
regression model, the estimator of the coefficient of any one variable is not influenced by
any of the other variables, irrespective of whether they are or are not correlated with
the variable in question. The result is so general and basic that it should be understood
by all students of econometrics. Of course, it fits neatly with the fact that the multiple
regression coefficients are unbiased, irrespective of any correlations among the variables.

A second reason for being interested in the result is that it allows one to depict
graphically the relationship between the observations on the dependent variable and
those on any single explanatory variable, controlling for the influence of all the other
explanatory variables. This is described in the textbook in Section 3.2.
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Exercise

9. Using the FKL theorem, demonstrate that, if a multiple regression model contains
an intercept, the same slope coefficients could be obtained by subtracting the
means of all of the variables from the data for them and then regressing the model
omitting an intercept.

15.12 Exact multicollinearity

We will assume, as is to be expected, that k, the number of explanatory variables
(including the unit vector, if there is one), is less than n, the number of observations. If
the explanatory variables are independent, the X matrix will have rank k and likewise
X′X will have rank k and will possess an inverse. However, if one or more linear
relationships exist among the explanatory variables, the model will be subject to exact
multicollinearity. The rank of X, and hence of X′X, will then be less than k and X′X
will not possess an inverse.

Suppose we write X as a set of column vectors xj, each corresponding to the
observations on one of the explanatory variables:

X = [x1 · · · xj · · · xk]

where:

xj =


x1j
...
xij
...
xnj

 .

Then:

X′ =


x1
′

...
xj
′

...
xk
′


and the normal equations:

X′Xβ̂ −X′y = 0

may be written: 
x1
′Xβ̂
...

xj
′Xβ̂
...

xk
′Xβ̂

−


x1
′y
...

xj
′y
...

xk
′y

 = 0.
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Now suppose that one of the explanatory variables, say the last, can be written as a
linear combination of the others:

xk =
k−1∑
i=1

λixi.

Then the last of the normal equations is that linear combination of the other k − 1.
Hence it is redundant, and we are left with a set of k − 1 equations for determining the
k unknown regression coefficients. The problem is not that there is no solution. It is the
opposite: there are too many possible solutions, in fact an infinite number. One
coefficient could be chosen arbitrarily, and then the normal equations would provide a
solution for the other k − 1. Some regression applications deal with this situation by
dropping one of the variables from the regression specification, effectively assigning a
value of zero to its coefficient.

Exact multicollinearity is unusual because it mostly occurs as a consequence of a logical
error in the specification of the regression model. The classic example is the dummy
variable trap. This occurs when a set of dummy variables Dj, j = 1, . . . , s are defined
for a qualitative characteristic that has s categories. If all s dummy variables are
included in the specification, in observation i we will have:

s∑
j=1

Dij = 1

since one of the dummy variables must be equal to 1 and the rest are all zero. But this
is the (unchanging) value of the unit vector. Hence the sum of the dummy variables is
equal to the unit vector. As a consequence, if the unit vector and all of the dummy
variables are simultaneously included in the specification, there will be exact
multicollinearity. The solution is to drop one of the dummy variables, making it the
reference category, or, alternatively, to drop the intercept (and hence unit vector),
effectively making the dummy variable coefficient for each category the intercept for
that category. As explained in the textbook, it is illogical to wish to include a complete
set of dummy variables as well as the intercept, for then no interpretation can be given
to the dummy variable coefficients.

15.13 Estimation of a linear combination of
regression coefficients

Suppose that one wishes to estimate a linear combination of the regression parameters:

k∑
j=1

λjβj.

In matrix notation, we may write this as λ′β where:

λ =


λ1
...
λj
...
λk

 .
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The corresponding linear combination of the regression coefficients, λ′β̂, provides an
unbiased estimator of λ′β. However, we will often be interested also in its standard
error, and this is not quite so straightforward. We obtain it via the variance:

var(λ′β̂) = E
[
(λ′β̂ − E(λ′β̂))2

]
= E

[
(λ′β̂ − λ′β)2

]
.

Since (λ′β̂ − λ′β) is a scalar, it is equal to its own transpose, and so (λ′β̂ − λ′β)2 may
be written:

var(λ′β̂) = E
[
λ′(β̂ − β)(β̂ − β)′λ

]
= λ′E

[
(β̂ − β)(β̂ − β)′

]
λ

= λ′[X′X]−1λσ2
u.

The square root of this expression provides the standard error of λ′β̂ after we have
replaced σ2

u by its estimator û′û/(n− k) in the usual way.

15.14 Testing linear restrictions

An obvious application of the foregoing is its use in testing a linear restriction. Suppose
that one has a hypothetical restriction:

k∑
j=1

λjβj = λ0.

We can perform a t test of the restriction using the t statistic:

t =
λ′β̂ − λ0

s.e.(λ′β̂)

where the standard error is obtained via the variance-covariance matrix as just
described. Alternatively, we could reparameterise the regression specification so that
one of the coefficients is λ′β. In practice, this is often more convenient since it avoids
having to work with the variancecovariance matrix. If there are multiple restrictions
that should be tested simultaneously, the appropriate procedure is an F test comparing
RSS for the unrestricted and fully restricted models.

15.15 Weighted least squares and heteroskedasticity

Suppose that the regression model:

y = Xβ + u

satisfies the usual regression model assumptions and suppose that we premultiply the
elements of the model by the n by n matrix A whose diagonal elements are Aii,
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i = 1, . . . , n, and whose off-diagonal elements are all zero:

A =


A11 · · · 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · Aii · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 · · · Ann

 .
The model becomes:

Ay = AXβ + Au.

If we fit it using least squares, the point estimates of the coefficients are given by:

β̂
WLS

= [X′A′AX]−1X′A′Ay

(WLS standing for weighted least squares). This is unbiased but heteroskedastic
because the disturbance term in observation i is Aiiui and has variance A2

iiσ
2
u.

Now suppose that the disturbance term in the original model was heteroskedastic, with
variance σ2

ui
in observation i. If we define the matrix A so that the diagonal elements

are determined by:

Aii =
1√
σ2
ui

the corresponding variance in the weighted regression will be 1 for all observations and
the WLS model will be homoskedastic. The WLS estimator is then:

β̂
WLS

= [X′CX]−1X′Cy

where:

C = A′A =


1
σ2
u1

· · · 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · 1

σ2
ui

· · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 · · · 1

σ2
un

 .
The variance-covariance matrix of the WLS coefficients, conditional on the data for X,
is:

var(β̂
WLS

) = E
[
(β̂

WLS
− E(β̂

WLS
))(β̂

WLS
− E(β̂

WLS
))′
]

= E
[
(β̂

WLS
− β))(β̂

WLS
− β))′

]
= E

[
([X′A′AX]−1X′A′Au)([X′A′AX]−1X′A′Au)′

]
= E

[
[X′A′AX]−1X′A′Auu′A′AX[X′A′AX]−1

]
=

[
[X′A′AX]−1X′A′AE(uu′)A′AX[X′A′AX]−1

]
= [X′A′AX]−1X′A′AX[X′A′AX]−1

= [X′CX]−1X′CX[X′CX]−1σ2
u

= [X′CX]−1σ2
u
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since A has been defined so that:

AE(uu′)A′ = I.

Of course, in practice we seldom know σ2
ui

, but if it is appropriate to hypothesise that
the standard deviation is proportional to some measurable variable Zi, then the WLS
regression will be homoskedastic if we define A to have diagonal element i equal to the
reciprocal of Zi.

15.16 IV estimators and TSLS

Suppose that we wish to fit the model:

y = Xβ + u

where one or more of the explanatory variables is not distributed independently of the
disturbance term. For convenience, we will describe such variables as ‘endogenous’,
irrespective of the reason for the violation of the independence requirement. Given a
sufficient number of suitable instruments, we may consider using the IV estimator:

β̂
IV

= [W′X]−1W′y (4)

where W is the matrix of instruments. In general W will be a mixture of (1) those
original explanatory variables that are distributed independently of the disturbance
term (these are then described as acting as instruments for themselves), and (2) new
variables that are correlated with the endogenous variables but distributed
independently of the disturbance term. If we substitute for y:

β̂
IV

= [W′X]−1W′(Xβ + u) = β + [W′X]−1W′u.

We cannot obtain a closed-form expression for the expectation of the error term, so
instead we take plims:

plim β̂
IV

= β + plim

([
1

n
W′X

]−1
1

n
W′u

)
.

Now if we are using cross-sectional data, it is usually reasonable to suppose that:

plim

([
1

n
W′X

]−1
)

and plim

(
1

n
W′u

)
both exist, in which case we can decompose the plim of the error term:

plim β̂
IV

= β + plim

([
1

n
W′X

]−1
)

plim

(
1

n
W′u

)
.

Further, if the matrix of instruments has been correctly chosen, it can be shown that:

plim

(
1

n
W′u

)
= 0
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and hence the IV estimator is consistent.

It is not possible to derive a closed-form expression for the variance of the IV estimator
in finite samples. The best we can do is to invoke a central limit theorem that gives the
limiting distribution asymptotically and work backwards from that, as an
approximation, for finite samples. A central limit theorem can be used to establish that:

√
n(β̂

IV
− β)

d−→ N

(
0,

{
σ2
u plim

[
1

n
W′X

]−1

plim

[
1

n
W′W

]
plim

[
1

n
X′W

]−1
})

.

From this, we may infer, that as an approximation, for sufficiently large samples:

β̂
IV
∼ N

(
β,

{
σ2
u

n
plim

[
1

n
W′X

]−1

plim

[
1

n
W′W

]
plim

[
1

n
X′W

]−1
})

. (5)

We have implicitly assumed so far that W has the same dimensions as X and hence
that W′X is a square k by k matrix. However, the model may be overidentified, with
the number of columns of W exceeding k. In that case, the appropriate procedure is
two-stage least squares. One regresses each of the variables in X on W and saves the
fitted values. The matrix of fitted values is then used as the instrument matrix in place
of W.

Exercises

10. Using (4) and (5), demonstrate that, for the simple regression model:

Yi = β1 = β2Xi + ui

with Z acting as an instrument for X (and the unit vector acting as an instrument
for itself):

β̂IV
1 = Y − β̂IV

2 X

β̂IV
2 =

∑(
Zi −Z

)(
Yi −Y

)
∑(

Zi −Z
)(

Xi −X
)

and, as an approximation:

var(β̂IV
2 ) =

σ2
u∑(

Xi −X
)2 ×

1

r2
XZ

where Z is the instrument for X and rXZ is the correlation between X and Z.

11. Demonstrate that any variable acting as an instrument for itself is unaffected by
the first stage of two-stage least squares.

12. Demonstrate that TSLS is equivalent to IV if the equation is exactly identified.
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15.17 Generalised least squares

The final topic in this introductory primer is generalised least squares and its
application to autocorrelation (autocorrelated disturbance terms). One of the basic
regression model assumptions is that the disturbance terms in the observations in a
sample are distributed identically and independently of each other. If this is the case,
the variance-covariance matrix of the disturbance terms is the identity matrix of order
n, multiplied by σ2

u. We have encountered one type of violation, heteroskedasticity,
where the values of the disturbance term are independent but not identical. The
consequence was that the off-diagonal elements of the variance-covariance matrix
remained zero, but the diagonal elements differed. Mathematically, autocorrelation is
complementary. It occurs when the values of the disturbance term are not independent
and as a consequence some, or all, of the off-diagonal elements are non-zero. It is usual
in initial treatments to retain the assumption of identical distributions, so that the
diagonal elements of the variance-covariance matrix are the same. Of course, in
principle one could have both types of violation at the same time.

In abstract, it is conventional to denote the variance-covariance matrix of the
disturbance term Ωσ2

u, where Ω is the Greek upper case omega, writing the model:

y = Xβ with E(uu′) = Ωσ2
u. (6)

If the values of the disturbance term are iid, Ω = I. If they are not iid, OLS is in
general inefficient and the standard errors are estimated incorrectly. Then, it is desirable
to transform the model so that the transformed disturbance terms are iid. One possible
way of doing this is to multiply through by some suitably chosen matrix P, fitting:

Py = PXβ + Pu

choosing P so that E(Puu′P′) = Iα where α is some scalar. The solution for
heteroskedasticity was a simple example of this type. We had:

Ω =


σ2
u1
· · · 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · σ2

ui
· · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 · · · σ2

un


and the appropriate choice of P was:

P =



√
1
σ2
u1

· · · 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · ·

√
1
σ2
ui

· · · 0

· · · · · · · · · · · · · · ·
0 · · · 0 · · ·

√
1
σ2
un


.

In the case of heteroskedasticity, the choice of P is obvious, provided, of course, that
one knows the values of the diagonal elements of Ω. The more general theory requires
an understanding of eigenvalues and eigenvectors that will be assumed. Ω is a
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symmetric matrix since cov(ui, uj) is the same as cov(uj, ui). Hence all its eigenvalues
are real. Let Λ be the diagonal matrix with the eigenvalues as the diagonal elements.
Then there exists a matrix of eigenvectors, C, such that:

C′ΩC = Λ. (7)

C has the properties that CC′ = I and C′ = C−1. Since Λ is a diagonal matrix, if its
eigenvalues are all positive (which means that it is what is known as a ‘positive definite’
matrix), it can be factored as Λ = Λ1/2Λ1/2 where Λ1/2 is a diagonal matrix whose
diagonal elements are the square roots of the eigenvalues. It follows that the inverse of
Λ can be factored as Λ−1 = Λ−1/2Λ−1/2. Then, in view of (7):

Λ−1/2[C′ΩC]Λ−1/2 = Λ−1/2ΛΛ−1/2 = Λ−1/2Λ1/2Λ1/2Λ−1/2 = I. (8)

This, if we define P = Λ−1/2C′, (8) becomes:

PΩP′ = I.

As a consequence, if we premultiply (6) through by P, we have:

Py = PXβ + Pu

or:
y∗ = X∗β + u∗

where y∗ = Py, X∗ = PX, and u∗ = Pu, and E(u∗u∗′) = Iσ2
u. An OLS regression of y∗

on X∗ will therefore satisfy the usual regression model assumptions and the estimator of
β will have the usual properties. Of course, the approach usually requires the estimation
of Ω, Ω being positive definite, and there being no problems in extracting the
eigenvalues and determining the eigenvectors.

Exercise

13. Suppose that the disturbance term in a simple regression model (with an intercept)
is subject to AR(1) autocorrelation with |ρ| < 1, and suppose that the sample
consists of just two observations. Determine the variance-covariance matrix of the
disturbance term, find its eigenvalues, and determine its eigenvectors. Hence
determine P and state the transformed model. Verify that the disturbance term in
the transformed model is iid.

15.18 Appendix A: Derivation of the normal equations

We have seen that RSS is given by:

RSS = y′y − 2y′Xβ̂ + β̂
′
X′Xβ̂. (A.1)

The normal equations are:

∂RSS

∂β̂j
= 0 (A.2)
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for j = 1, . . . , k. We will show that they can be written:

X′Xβ̂ −X′y = 0.

The proof is mathematically unchallenging but tedious because one has to keep careful
track of the dimensions of all of the elements in the equations. As far as I know, it is of
no intrinsic interest and once one has seen it there should never be any reason to look
at it again.

First note that the term y′y in (A.1) is not a function of any of the bj and disappears in
(A.2). Accordingly we will restrict our attention to the other two terms on the right side
of (A.1). Suppose that we write the X matrix as a set of column vectors:

X = [x1 · · · xj · · · xk] (A.3)

where:

xj =


X1j

...
Xij

...
Xnj

 .
Then:

y′Xβ̂ = [y′x1 · · · y′xj · · · y′xk]


β̂1
...

β̂j
...

β̂k

 = [y′x1β̂1 + · · ·+ y′xjβ̂j + · · ·+ y′xkβ̂k].

Hence:
∂y′Xβ̂

∂β̂j
= y′xj.

We now consider the β̂
′
X′Xβ̂ term. Using (A.3):

β̂
′
X′Xβ̂ = [x1β̂1 + · · ·+ xjβ̂j + · · ·+ xkβ̂k]

′[x1β̂1 + · · ·+ xjβ̂j + · · ·+ xkβ̂k]

=
k∑
p=1

k∑
q=1

β̂pβ̂qx
′
pxq.

The subset of terms including β̂j is:

k∑
q=1

β̂jβ̂qx
′
jxq +

k∑
p=1

β̂pβ̂jx
′
pxj.

Hence:
∂β̂
′
X′Xβ̂

∂β̂j
=

k∑
q=1

β̂qx
′
jxq +

k∑
p=1

β̂px
′
pxj = 2

k∑
p=1

β̂px
′
pxj.
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Putting these results together:

∂RSS

∂β̂j
=
∂[y′y − 2y′Xβ̂ + β̂

′
X′Xβ̂]

∂β̂j
= −2y′xj + 2

k∑
p=1

β̂px
′
pxj.

Hence the normal equation ∂RSS/∂β̂j = 0 is:

k∑
p=1

β̂px
′
jxp = x′jy.

(Note that x′pxj = x′jxp and y′xj = x′jy) since they are scalars.) Hence:

x′j

[
k∑
p=1

β̂pxp

]
= x′jy.

Hence:
x′jXβ̂ = x′jy

since:

Xβ̂ = [x1 · · · xp · · · xk]


β̂1
...

β̂p
...

β̂k

 =
k∑
p=1

xpβ̂p.

Hence, stacking the k normal equations:
x1
′Xβ̂
...

xj
′Xβ̂
...

xk
′Xβ̂

 =


x1
′y
...

xj
′y
...

xk
′y

 .

Hence: 
x′1
...

x′j
...

x′k

Xβ̂ =


x′1
...

x′j
...

x′k

y.

Hence:
X′Xβ̂ = X′y.

15.19 Appendix B: Demonstration that û′û/(n− k) is
an unbiased estimator of σ2

u

This classic proof is both elegant, in that it is much shorter than any proof not using
matrix algebra, and curious, in that it uses the trace of a matrix, a feature that I have
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never seen used for any other purpose. The trace of a matrix, defined for square
matrices only, is the sum of its diagonal elements. We will first need to demonstrate
that, for any two conformable matrices whose product is square:

tr(AB) = tr(BA).

Let A have n rows and m columns, and let B have m rows and n columns. Diagonal
element i of AB is:

m∑
p=1

aipbpi.

Hence:

tr(AB) =
n∑
i=1

(
m∑
p=1

aipbpi

)
.

Similarly, diagonal element i of BA is:

n∑
p=1

bipapi.

Hence:

tr(BA) =
m∑
i=1

(
n∑
p=1

bipapi

)
.

What we call the symbols used to index the summations makes no difference.
Re-writing p as i and i as p, and noting that the order of the summation makes no
difference, we have tr(BA) = tr(AB).

We also need to note that:

tr(A + B) = tr(A) + tr(B)

where A and B are square matrices of the same dimension. This follows immediately
from the way that we sum conformable matrices.

By definition:
û = y − ŷ = y −Xβ̂.

Using:
β̂ = [X′X]−1X′y

we have:

û = y −X[X′X]−1X′y

= Xβ + u−X[X′X]−1X′(Xβ + u)

= Inu−X[X′X]−1X′u

= Mu

where In is an identity matrix of dimension n and:

M = In −X[X′X]−1X′.
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Hence:
û′û = u′M′Mu.

Now M is symmetric and idempotent: M′ = M and MM = M. Hence:

û′û = u′Mu

û′û is a scalar, and so the expectation of û′û and the expectation of the trace of û′û are
the same. So:

E(û′û) = E(tr(û′û)) = E(tr(u′Mu)) = E(tr(Muu′)) = tr(E(Muu′)).

The penultimate line uses tr(AB) = tr(BA). The last line uses the fact that the
expectation of the sum of the diagonal elements of a matrix is equal to the sum of their
individual expectations. Assuming that X, and hence M, is nonstochastic:

E(û′û) = tr(ME(uu′))

= tr(MInσ
2
u)

= σ2
utr(M)

= σ2
utr(In −X[X′X]−1X′)

= σ2
u(tr(In)− tr(X[X′X]−1X′)).

The last step uses tr((A) + B) = tr(A) + tr(B). The trace of an identity matrix is equal
to its dimension. Hence:

E(û′û) = σ2
u(n−tr(X[X′X]−1X′)) = σ2

u(n−tr(X′X[X′X]−1)) = σ2
u(n−tr(Ik)) = σ2

u(n−k).

Hence û′û/(n− k) is an unbiased estimator of σ2
u.

15.20 Appendix C: Answers to the exercises

1. Given any square matrix C, another matrix D is said to be its inverse if and only if
CD = DC = I. Thus, if B is the inverse of A, AB = BA = I. Now focus on the
matrix B. Since BA = AB = I, A is its inverse. Hence the inverse of an inverse is
the original matrix.

2. Suppose that two different matrices B and C both satisfied the conditions for being
the inverse of A. Then BA = I and AC = I. Consider the matrix BAC. Using
BA = I, BAC = C. However, using AC = I, BAC = B. Hence B = C and it is
not possible for A to have two separate inverses.

3. Aij, and hence A′ji, is the inner product of row i of B and column j of C. If one
writes D = C′B′, Dji is the inner product of row j of C′ and column i of B′, that
is, column j of C and row i of B. Hence Dji = Aij, so D = A′ and C′B′ = (BC)′.

4. Let D be the inverse of A. Then D must satisfy AD = DA = I. Now A = BC, so
D must satisfy BCD = DBC = I. C−1B−1 satisfies both of these conditions, since
BCC−1B−1 = BIB−1 = I and C−1B−1BC = C−1IC = I. Hence C−1B−1 is the
inverse of BC (assuming that B−1 and C−1 exist).
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5. Let B = A−1. Then BA = AB = I. Hence, using the result from Exercise 3,
A′B′ = B′A′ = I′ = I. Hence B′ is the inverse of A′. In other words,
[A−1]′ = [A′]−1.

6. The relationship Y = β1 + β2X + u may be written in linear algebra form as
y = Xβ + u where X = [1 x] and 1 is the unit vector and:

x =


X1
...
Xi
...
Xn

 .

Then:

X′X =

[
1′

x′

]
[1 x] =

[
1′1 1′x
x′1 x′x

]
=

[
n

∑
Xi∑

Xi

∑
X2
i

]
.

The determinant of X′X is:

n
∑

X2
i −

(∑
Xi

)2

= n
∑

X2
i − n2X

2
.

Hence:

[X′X]−1 =
1

n
∑
X2
i − n2X

2

[ ∑
X2
i −nX

−nX n

]
.

We also have:

X′y =

[
1′y
x′y

]
=

[ ∑
Yi∑
XiYi

]
.

So:

β̂ = [X′X]X′y

=
1

n
∑
X2
i − n2X

2

[ ∑
X2
i −nX

−nX n

] [
nY∑
XiYi

]

=
1

n
∑
X2
i − n2X

2

[
nY
∑
X2
i − nX

∑
XiYi

−n2XY + n
∑
XiYi

]

=
1∑(

Xi −X
)2

[
Y
∑
X2
i −X

∑
XiYi∑(

Xi −X
)(

YiY
) ] .

Thus:

β̂2 =

∑(
Xi −X

)(
Yi −Y

)
∑(

Xi −X
)2

and:

β̂1 =
Y
∑
X2
i −X

∑
XiYi∑(

Xi −X
)2 .
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β̂1 may be written in its more usual form as follows:

b1 =
Y
(∑

X2
i − nX

2
)

+YnX
2 −X

∑
XiYi∑(

Xi −X
)2

=

Y

(∑(
Xi −X

)2
)
−X

(∑
XiYi − nXY

)
∑(

Xi −X
)2

= Y −
X
(∑(

Xi −X
)(

Yi −Y
))

∑(
Xi −X

)2

= Y − β̂2X.

7. If Y = β2X + u, y = Xβ + u where:

X = x =


X1
...
Xi
...
Xn

 .
Then:

X′X = x′x =
∑

X2
i .

The inverse of X′X is 1/
∑
X2
i . In this model, X′y = x′y =

∑
XiYi. So:

β̂ = [X′X]−1X′y =

∑
XiYi∑
X2
i

.

8. If Y = β1 + u, y = Xβ+ u where X = 1, the unit vector. Then X′X = 1′1 = n and
its inverse is 1/n.

X′y = 1′y =
∑

Yi = nY.

So:

β̂ = [X′X]−1X′y =
1

n
nY = Y.

9. We will start with Y . If we regress it on the intercept, we are regressing it on 1, the
unit vector, and, as we saw in Exercise 8, the coefficient is Y . Hence the residual in
observation i is Yi −Y . The same is true for each of the X variables when regressed
on the intercept. So when we come to regress the residuals of Y on the residuals of
the X variables, we are in fact using the demeaned data for Y and the demeaned
data for the X variables.

10. The general form of the IV estimator is β̂
IV

= [W′X]−1W′y. In the case of the
simple regression model, with Z acting as an instrument for X and the unit vector
acting as an instrument for itself, W = [1 z] and X = [1 x]. Thus:

W′X =

[
1′

z′

]
[1 x] =

[
1′1 1′x
z′1 z′x

]
=

[
n

∑
Xi∑

Zi
∑
ZiXi

]
.
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The determinant of W′X is:

n
∑

ZiXi −
(∑

Zi

)(∑
Xi

)
= n

∑
ZiXi − n2ZX.

Hence:

[W′X]
−1

=
1

n
∑
ZiXi − n2ZX

=

[ ∑
ZiXi −nX
−nZ n

]
.

We also have:

W′y =

[
1′y
z′y

]
=

[ ∑
Yi∑
ZiYi

]
.

So:

β̂
IV

= [W′X]−1W′y

=
1

n
∑
ZiXi − n2ZX

[ ∑
Z − iXi −nX
−nZ n

] [
nY∑
ZiYi

]

=
1

n
∑
ZiXi − n2ZX

[
nY
∑
ZiXi − nX

∑
ZiYi

−n2ZX+ n
∑
ZiYi

]

=
1∑(

Zi −Z
)(

Xi −X
) [ Y∑ZiXi −X

∑
ZiYi∑(

Zi −Z
)(

Yi −Y
) ] .

Thus:

β̂IV
2 =

∑(
Zi −Z

)(
Yi −Y

)
∑(

Zi −Z
)(

Xi −X
)

and:

β̂IV
1 =

Ȳ
∑
ZiXi −X

∑
ZiYi∑(

Zi −Z
)(

Xi −X
) .

β̂IV
1 may be written in its more usual form as follows:

β̂IV
1 =

Y
(∑

ZiXi − nZX
)

+YnZX−X
∑
ZiYi∑(

Zi −Z
)(

Xi −X
)

=
Y
(∑(

Zi −Z
)(

Xi −X
))
−X

(∑
ZiYi − nZY

)
∑(

Zi −Z
)(

Xi −X
)

= Y −
X
(∑(

Zi −Z
)(

Yi −Y
))

∑(
Zi −Z

)(
Xi −X

)
= Y − β̂IV

2 X.

11. By definition, if one of the variables in X is acting as an instrument for itself, it is
included in the W matrix. If it is regressed on W, a perfect fit is obtained by
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assigning its column in W a coefficient of 1 and assigning zero values to all the
other coefficients. Hence its fitted values are the same as its original values and it is
not affected by the first stage of Two-Stage Least Squares.

12. If the variables in X are regressed on W and the matrix of fitted values of X saved:

X̂ = W[W′W]−1W′X.

If X̂ is used as the matrix of instruments:

β̂
TSLS

= [X̂′X]−1X̂′y

= [X′W[W′W]−1W′X]−1X′W[W′W]−1W′y

= [W′X]−1W′W[X′W]−1X′W[W′W]−1W′y

= [W′X]−1W′y

= β̂
IV
.

Note that, in going from the second line to the third, we have used
[ABC]−1 = C−1B−1A−1, and we have exploited the fact that W′X is square and
possesses an inverse.

13. The variance-covariance matrix of u is:[
1 ρ
ρ 1

]
and hence the characteristic equation for the eigenvalues is:

(1− λ)2 − ρ2 = 0.

The eigenvalues are therefore 1− ρ and 1 + ρ. Since we are told |ρ| < 1, the matrix
is positive definite.

Let:

c =

[
c1

c2

]
.

If λ = 1− ρ, the matrix A− λI is given by:

A− λI =

[
ρ ρ
ρ ρ

]
and hence the equation:

[A− λI]c = 0

yields:

ρc1 + ρc2 = 0.

Hence, also imposing the normalisation:

c′c = c2
1 + c2

2 = 1
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we have c1 = 1/
√

2 and c2 = −1/
√

2, or vice versa. If λ = 1 + ρ:

A− λI =

[
−ρ ρ
ρ −ρ

]
and hence [A− λI]c = 0 yields:

−ρc1 + ρc2 = 0.

Hence, also imposing the normalisation:

c′c = c2
1 + c2

2 = 1

we have c1 = c2 = 1/
√

2. Thus:

C =

[
1√
2

1√
2

− 1√
2

1√
2

]

and:

P = Λ−1/2C′ =

[
1√
1−ρ 0

0 1√
1+ρ

][
1√
2
− 1√

2
1√
2

1√
2

]
=

1√
2

[
1√
1−ρ −

1√
1−ρ

1√
1+ρ

1√
1+ρ

]
.

It may then be verified that PΩP′ = I:

1√
2

[
1√
1−ρ −

1√
1−ρ

1√
1+ρ

1√
1+ρ

] [
1 ρ
ρ 1

]
1√
2

[
1√
1−ρ

1√
1+ρ

− 1√
1−ρ

1√
1+ρ

]

=
1

2

[
1√
1−ρ −

1√
1−ρ

1√
1+ρ

1√
1+ρ

][
1−ρ√
1−ρ

1+ρ√
1+ρ

ρ−1√
1−ρ

1+ρ√
1+ρ

]

=
1

2

[
1√
1−ρ −

1√
1−ρ

1√
1+ρ

1√
1+ρ

] [ √
1− ρ

√
1 + ρ

−
√

1− ρ
√

1 + ρ

]

=
1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
.

The transformed model has:

y∗ =
1√
2

[
1√
1−ρ(y1 − y2)
1√
1+ρ

(y1 + y2)

]

and parallel transformations for the X variables and u. Given that:

u∗ =
1√
2

[
1√
1−ρ(u1 − u2)
1√
1+ρ

(u1 + u2)

]
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none of its elements is the white noise ε in the AR(1) process, but nevertheless its
elements are iid.

var(u∗1) =
1

2

1

1− ρ
(var(u1) + var(u2)− 2cov(u1, u2))

=
1

2

1

1− ρ
(
σ2
u + σ2

u − 2ρσ2
u

)
= σ2

u

var(u∗2) =
1

2

1

1 + ρ
(var(u1) + var(u2) + 2cov(u1, u2))

=
1

2

1

1 + ρ

(
σ2
u + σ2

u + 2ρσ2
u

)
= σ2

u

cov(u∗1, u
∗
2) =

1

2

1√
1− ρ2

cov ((u1 − u2), (u1 + u2))

=
1

2

1√
1− ρ2

(var(u1) + cov(u1, u2)− cov(u2, u1)− var(u2))

= 0.

Hence E(u∗u∗′) = Iσ2
u. Of course, this was the objective of the P transformation.
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Appendix A

Syllabus for the EC2020 Elements of
econometrics examination

This syllabus is intended to provide an explicit list of all the mathematical formulae and
proofs that you are expected to know for the EC2020 Elements of Econometrics
examination. You are warned that the examination is intended to be an opportunity for
you to display your understanding of the material, rather than of your ability to
reproduce standard items.

A.1 Review: Random variables and sampling theory

Probability distribution of a random variable. Expected value of a random variable.
Expected value of a function of a random variable. Population variance of a discrete
random variable and alternative expression for it. Expected value rules. Independence of
two random variables. Population covariance, covariance and variance rules, and
correlation. Sampling and estimators. Unbiasedness. Efficiency. Loss functions and mean
square error. Estimators of variance, covariance and correlation. The normal
distribution. Hypothesis testing. Type II error and the power of a test. t tests.
Confidence intervals. One-sided tests. Convergence in probability and plim rules.
Consistency. Convergence in distribution (asymptotic limiting distributions) and the
role of central limit theorems.

Formulae and proofs : This chapter is concerned with statistics, not econometrics, and is
not examinable. However, you are expected to know the results in this chapter and to
be able to use them.

A.2 Chapter 1 Simple regression analysis

Simple regression model. Derivation of linear regression coefficients. Interpretation of a
regression equation. Goodness of fit.

Formulae and proofs : You are expected to know, and be able to derive, the expressions
for the regression coefficients in a simple regression model, including variations where
either the intercept or the slope coefficient may be assumed to be zero. You are expected
to know the definition of R2 and how it is related to the residual sum of squares. You
are expected to know the relationship between R2 and the correlation between the
actual and fitted values of the dependent variable, but not to be able to prove it.
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A.3 Chapter 2 Properties of the regression
coefficients

Types of data and regression model. Assumptions for Model A. Regression coefficients
as random variables. Unbiasedness of the regression coefficients. Precision of the
regression coefficients. Gauss–Markov theorem. t test of a hypothesis relating to a
regression coefficient. Type I error and Type II error. Confidence intervals. One-sided
tests. F test of goodness of fit.

Formulae and proofs : You are expected to know the regression model assumptions for
Model A. You are expected to know, though not be able to prove, that, in the case of a
simple regression model, an F test on the goodness of fit is equivalent to a two-sided t
test on the slope coefficient. You are expected to know how to make a theoretical
decomposition of an estimator and hence how to investigate whether or not it is biased.
In particular, you are expected to be able to show that the OLS estimator of the slope
coefficient in a simple regression model can be decomposed into the true value plus a
weighted linear combination of the values of the disturbance term in the sample. You
are expected to be able to derive the expression for the variance of the slope coefficient
in a simple regression model. You are expected to know how to estimate the variance of
the disturbance term, given the residuals, but you are not expected to be able to derive
the expression. You are expected to understand the Gauss–Markov theorem, but you
are not expected to be able to prove it.

A.4 Chapter 3 Multiple regression analysis

Multiple regression with two explanatory variables. Graphical representation of a
relationship in a multiple regression model. Properties of the multiple regression
coefficients. Population variance of the regression coefficients. Decomposition of their
standard errors. Multicollinearity. F tests in a multiple regression model. Hedonic
pricing models. Prediction.

Formulae and proofs : You are expected to know how, in principle, the multiple
regression coefficients are derived, but you do not have to remember the expressions,
nor do you have to be able to derive them mathematically. You are expected to know,
but not to be able to derive, the expressions for the population variance of a slope
coefficient and its standard error in a model with two explanatory variables. You are
expected to be able to perform F tests on the goodness of fit of the model as a whole
and for the improvement in fit when a group of explanatory variables is added to the
model. You are expected to be able to demonstrate the properties of predictions within
the context of the classical linear regression model. In particular, you are expected to be
able to demonstrate that the expected value of the prediction error is 0, if the model is
correctly specified and the regression model assumptions are satisfied. You are not
expected to know the population variance of the prediction error.
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A.5 Chapter 4 Transformation of variables

Linearity and nonlinearity. Elasticities and double-logarithmic models. Semilogarithmic
models. The disturbance term in nonlinear models. Box–Cox transformation. Models
with quadratic and interactive variables. Nonlinear regression.

Formulae and proofs : You are expected to know how to perform a Box–Cox
transformation for comparing the goodness of fit of alternative versions of a model with
Y and log Y as the dependent variable.

A.6 Chapter 5 Dummy variables

Dummy variables. Dummy classification with more than two categories. The effects of
changing the reference category. Multiple sets of dummy variables. Slope dummy
variables. Chow test. Relationship between Chow test and dummy group test.

Formulae and proofs : You are expected to be able to perform a Chow test and a test of
the explanatory power of a group of dummy variables, and to understand the
relationship between them.

A.7 Chapter 6 Specification of regression variables

Omitted variable bias. Consequences of the inclusion of an irrelevant variable. Proxy
variables. F test of a linear restriction. Reparameterisation of a regression model (see
the Further material handout). t test of a restriction. Tests of multiple restrictions.
Tests of zero restrictions.

Formulae and proofs : You are expected to be able to derive the expression for omitted
variable bias when the true model has two explanatory variables and the fitted model
omits one of them. You are expected to know how to perform an F test on the validity
of a linear restriction, given appropriate data on the residual sum of squares. You are
expected to understand the logic behind the t test of a linear restriction and to be able
to reparameterise a regression specification to perform such a test in a simple context.
You are expected to be able to perform F tests of multiple linear restrictions.

A.8 Chapter 7 Heteroskedasticity

Meaning of heteroskedasticity. Consequences of heteroskedasticity. Goldfeld–Quandt
and White tests for heteroskedasticity. Elimination of heteroskedasticity using weighted
or logarithmic regressions. Use of heteroskedasticity-consistent standard errors.

Formulae and proofs : You are expected to know how to perform the Goldfeld–Quandt
and White tests for heteroskedasticity.
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A.9 Chapter 8 Stochastic regressors and
measurement errors

Stochastic regressors. Assumptions for models with stochastic regressors. Finite sample
and asymptotic properties of the regression coefficients in models with stochastic
regressors. Measurement error and its consequences. Friedman’s Permanent Income
Hypothesis. Instrumental variables (IV). Asymptotic properties of IV estimators,

including the asymptotic limiting distribution of
√
n(β̂IV

2 − β2). β̂IV
2 is the IV estimator

of β2 in a simple regression model. Use of simulation to investigate the finite-sample
properties of estimators when only asymptotic properties can be determined
analytically. Application of the Durbin–Wu–Hausman test.

Formulae and proofs : You are expected to be able to demonstrate that, in a simple
regression model, the OLS estimator of the slope coefficient is inconsistent when there is
measurement error in the explanatory variable. You should know the expression for the
bias and be able to derive it. You should be able to explain the consequences of
measurement error in the dependent variable. You should know the expression for an
instrumental variable estimator of the slope coefficient in a simple regression model and
be able to demonstrate that it yields consistent estimates, provided that certain
assumptions are satisfied. You should also know the expression for the asymptotic
population variance of an instrumental variable estimator in a simple regression model
and to understand why it provides only an approximation for finite samples. You are
not expected to know the formula for the Durbin–Wu–Hausman test.

A.10 Chapter 9 Simultaneous equations estimation

Definitions of endogenous variables, exogenous variables, structural equations and
reduced form. Inconsistency of OLS. Use of instrumental variables. Exact identification,
underidentification, and overidentification. Two-stage least squares (TSLS). Order
condition for identification. Application of the Durbin–Wu–Hausman test.

Formulae and proofs : You are expected to be able to derive an expression for
simultaneous equations bias in a simple regression equation and to be able to
demonstrate the consistency of an IV estimator in a simple regression equation. You are
expected to be able to explain in general terms why TSLS is used in overidentified
models.

A.11 Chapter 10 Binary choice models and maximum
likelihood estimation

Linear probability model. Logit model. Probit model. Maximum likelihood estimation of
the population mean and variance of a random variable. Maximum likelihood
estimation of regression coefficients. Likelihood ratio tests.

Formulae and proofs : You are expected to know the expression for the probability of an
event occurring in the logit model, and to know the expressions for the marginal
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functions in the logit and probit models. You would not be expected to calculate
marginal effects in an examination, but you should be able to explain how they are
calculated and to comment on calculations of them. You are expected to be able to
derive a maximum likelihood estimator in a simple example. In more complex examples,
you would only be expected to explain how the estimates are obtained, in principle. You
are expected to be able to perform, from first principles, likelihood ratio tests in a
simple context.

A.12 Chapter 11 Models using time series data

Static demand functions fitted using aggregate time series data. Lagged variables and
naive attempts to model dynamics. Autoregressive distributed lag (ADL) models with
applications in the form of the partial adjustment and adaptive expectations models.
Error correction models. Asymptotic properties of OLS estimators of ADL models,
including asymptotic limiting distributions. Use of simulation to investigate the finite
sample properties of parameter estimators for the ADL(1,0) model. Use of
predetermined variables as instruments in simultaneous equations models using time
series data. (Section 11.7 of the textbook, Alternative dynamic representations . . . , is
not in the syllabus.)

Formulae and proofs : You are expected to be able to analyse the short-run and long-run
dynamics inherent in ADL(1,0) models in general and the adaptive expectations and
partial adjustment models in particular. You are expected to be able to explain why the
OLS estimators of the parameters of ADL(1,0) models are subject to finite-sample bias
and, within the context of the model Yt = β1 + β2Yt−1 + ut to be able to demonstrate
that they are consistent.

A.13 Chapter 12 Autocorrelation

Assumptions for regressions with time series data. Assumption of the independence of
the disturbance term and the regressors. Definition of autocorrelation. Consequences of
autocorrelation. Breusch–Godfrey, Lagrange multiplier and Durbin–Watson d tests for
autocorrelation. AR(1) nonlinear regression. Potential advantages and disadvantages of
such estimation, in comparison with OLS. Autocorrelation with a lagged dependent
variable. Common factor test and implications for model selection. Apparent
autocorrelation caused by variable or functional misspecification. General-to-specific
versus specific-to-general model specification.

Formulae and proofs : You are expected to know how to perform the tests for
autocorrelation mentioned above and to know how to perform a common factor test.
You are expected to be able to explain why the properties of estimators obtained by
fitting the AR(1) nonlinear regression specification are not necessarily superior to those
obtained using OLS.
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A.14 Chapter 13 Introduction to nonstationary
processes

Stationary and nonstationary processes. Granger–Newbold experiments with random
walks. Unit root tests. Akaike Information Criterion and Schwarz’s Bayes Information
Criterion. Cointegration. Error correction models.

Formulae and proofs : You are expected to be able to determine whether a simple
random process is stationary or nonstationary. You would not be expected to perform a
unit root test in an examination, but you are expected to understand the test and to be
able to comment on the results of such a test.

346



Comment form
We welcome any comments you may have on the materials which are sent to you as part of your 
study pack. Such feedback from students helps us in our effort to improve the materials produced 
for the International Programmes.
If you have any comments about this guide, either general or specific (including corrections,  
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Date:
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