GRADUATE TEXTS IN COMPUTER SCIENCE < 3

CALCULI

A GUIDE FOR
COMPUTER SCIENTISTS

CHRIS HANKIN

Lambda Calculi

Graduate Texts in Computer Science

Editors
D. M. Gabbay, C. L. Hankin, and T. S. E. Maibaum

GRADUATE TEXTS IN COMPUTER SCIENCE

1. Christopher John Hogger: Essentials of Logic Programming
2. Alan Hutchinson: Algorithmic Learning
3. Chris Hankin:. Lambda Calculi

Lambda Calculi

A guide for computer scientists

CHRIS HANKIN

Department of Computing,
Imperial College of Science, Technology, and Medicine,
London

CLARENDON PRESS - OXFORD
1994

Oxford University Press, Walton Street, Oxford OX2 6DP

Oxford New York

Athens Auckland Bangkok Bombay
Calcutta CapeTown DaresSalaam Delhi
Florence HongKong Istanbul Karachi
KualaLumpur Madras Madrid Melbourne
MexicoCity Nairobi Paris Singapore
Taipei Tokyo Toronto

and associated companies in
Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States by
Oxford University Press Inc., New York

© Chris Hankin, 1994

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or
in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to

the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not,

by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of binding
or cover other than that in which it is published and without a similar
condition including this condition being imposed

on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
(Data available)

ISBNO 19 853841 3 (hbk)
ISBNO 19 853840 5 (pbk)

Typeset by the author
Printed in Great Britain by

Bookcraft (Bath) Litd
Midsomer Norton, Avon

Preface

The A-calculus, alongside Turing machines and Recursive Function The-
ory, is of foundational importance to the theory of computation. While the
A-calculus and Recursive Function Theory promote a programming-based
view of computation, the Turing machine approach is machine-based. Sur-
prisingly, it is the machine-based approach which has been most popular in
undergraduate computability courses. One side effect of the current popu-
larity of functional programming in the undergraduate curriculum is that
most undergraduate computer scientists now receive some introduction to
the A-calculus as well. However, few undergraduate students see more than
the syntax, some consideration of reduction strategies and statements of
the key Church—-Rosser and Standardisation Theorems.

In contrast, anyone embarking on a research career in theoretical com-
puter science is soon faced with a bewildering variety of formal calculi.
Many concepts which appear in their simplest form in the A-calculus recur
again and again. There is thus a pedagogical gap to be filled between the
superficial undergraduate treatment of this material and the more detailed
understanding required as a basis for research. Despite this, a new book
on the type-free A-calculus still requires some justification, since:

e There is already an encyclopaedic book on the topic (Barendregt),
which has become the standard reference text, and there is an excel-
lent textbook (Hindley and Seldin).

e In both the logic and the computer science communities, the main
research interest is now in typed calculi.

Regarding the first point, in contrast to either of the two books men-
tioned above, this book was written by a computer scientist and is specif-
ically targetted at a computer science audience. I strongly believe that
there is a distinct cultural difference between computer science students
and their mathematically trained counterparts. The former have sound
computational intuitions but are generally unfamiliar and uncomfortable
with formalism. While the two books mentioned were written with a math-
ematically mature audience in mind, I have attempted to provide more
computing-oriented motivation. Furthermore, my selection of material for
inclusion in this book has been informed by this desire to communicate
to computer scientists. The material on needed reductions, reduction ma-
chines, abstract interpretation, Hindley—Milner polymorphism, lazy calculi
and concurrent calculi is all distinctive compared to the earlier books. In-

viii Preface

deed, given that the two books mentioned above are, respectively, 10 and
8 years old, much of this new material has been developed since they were
published.

Why not study typed calculi? The pure A-calculus (type-free AK -
calculus) is probably the simplest of the family of A-calculi. While the
emphasis has recently shifted to typed calculi, many of the basic issues
remain the same. In other areas, such as concurrency, the majority of
the calculi proposed and studied are still type-free. The concepts that we
deal with in the following pages recur in many different areas of comput-
ing: programming languages, semantics, concurrency and even databases!
Every graduate computer scientist should have some familiarity with this
material.

In common with any other formal system, there are two major aspects
of the A-calculus; its proof theory and its model theory. 1 have decided to
concentrate on the proof theory. This is a rich theory which has many
connections to practical computing; some of which we investigate in the
sequel. The model theory of the A-calculus, which is abstractly discussed
in Chapter 5, takes us into the realms of domain theory and is properly
treated in a course on denotational semantics or domain theory. There are
already a number of excellent textbooks on this material.

I first taught some of this material in 1983, during a six hour seminar to
first year graduate students. The course later grew to ten hours and then,
finally, to a twenty hour lecture course. In its current form it is taught to
fourth year undergraduate students and students studying on a one year
Masters course.

My intention is that there should be enough material in this book to
allow the instructor to tailor an appropriate course but not too much mate-
rial so that prospective students become intimidated. I have never taught
all of the material to a single cohort of students. I estimate that to do so
would require about thirty hours of lecture time. The shorter courses that
I have taught concentrated on the first three chapters. The basic course
(core material) that I now teach covers most of the first six chapters, the
simply typed A-calculus (the first section of Chapter 7) and some of Chap-
ter 8. The material in Chapters 8 and 9 is more research-oriented; I cover
as much of this as possible.

In writing this book, I have assumed a minimal amount of background
knowledge. Students who have attended a standard Computer Science
Course on discrete mathematics covering logic and set theory should be
well-prepared for the technical material. It would be an advantage if the
reader has also had some exposure to functional programming.

As with any project which has taken so long to reach fruition, many
people have influenced its development. I extend my heartfelt thanks to
them all. The main acknowledgement should go to the students who have

Preface ix

attended (and endured!) my lectures over the last ten years; I, at least,
enjoyed my lectures and learnt something new every time! The last two
years have been the most critical; during that time, David Clark, Roy
Crole, Lindsay Errington, Anthony Mclsaac and Ian Mackie all provided
valuable input. Geoffrey Burn lectured the course during the 1989/90 aca-
demic session and provided the needed stimulus for another evolutionary
step. Thomas Jensen kindly read through an earlier draft and gave me
some valuable comments and much-needed Latex advice. The Theory and
Formal Methods section in the Department of Computing has provided a
fertile and supportive environment for me for the last ten years; Samson
Abramsky, Dov Gabbay and Tom Maibaum have been good friends and
sources of inspiration during that time. Daniel Le Métayer and another,
anonymous, reviewer kindly commented on the penultimate version of the
manuscript; I thank them for their careful reading — of course, the errors
that remain are all mine! Last but not least, I should acknowledge the
support of my long-suffering family: Alison Holtorp, my wife, and Emily
and David.

Chris Hankin
Imperial College, London
May 1994

1

1.1
1.2
1.3
14

2

2.1
2.2
2.3

2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1

5.2

Contents

Introduction

Functions

Formal Systems
Mathematical Induction
Summary

Notation and the Basic Theory

Notation

The theory A

Substitution

2.3.1 Three Approaches

2.3.2 The Substitution Lemma
Extensionality

Consistency and Completeness
Summary

Reduction

Introduction

Notions of Reduction

The Church—Rosser Theorem
Delta Rules

Residuals

Head Normal Forms

The Standardisation Theorem
Summary

Combinatory Logic

Combinatory Logic

Combinatory Logic and the A-calculus
Bases

Summary

Semantics

Models

5.1.1 A-algebras

5.1.2 A-models

5.1.3 Term models
Bohm Trees

5.2.1 Bohm-like Trees

Xii

5.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74

8.1

8.2
8.3
8.4
8.5

9.1

9.2

9.3

94

10

10.1
10.2
10.3
10.4
10.5
10.6

Contents

5.2.2 The Model B
Summary

Computability
Fixed Points
Numeral Systems
A-definability
Decidability
Summary

Types
Typed A-calculus

The Polymorphic A-calculus
Intersection Types
Summary

Practical Issues
Reduction machines
8.1.1 Kirivine’s Machine
8.1.2 An Eager Machine
8.1.3 Correctness
Needed Reductions
Strictness Analysis
Polymorphic Type Inference
Summary

Other Calculi
The Lazy A-calculus
9.1.1 The theory of the lazy A-calculus
The ~y-calculus
9.2.1 The theory of the ~y-calculus
9.2.2 Relating the -calculus to the A-calculus
The Ao-calculus
9.3.1 The basic theory of the Ao-calculus
9.3.2 Relating the Ao-calculus to the A-calculus
9.3.3 Towards an abstract machine
Summary

Further Reading
General
Reduction
Combinatory Logic
Semantics
Computability
Types

75
7

79
79
83
87
90
93

95
95
103
105
107

109
110
112
113
114
115
120
126
134

135
135
136
140
140
145
146
147
148
149
151

153
153
153
153
154
154
154

10.7 Practical Issues
10.8 Other Calculi

10.9 Summary
Bibliography

Index

Contents

xiii

154
154
154

157
159

1

Introduction

Overview

We informally introduce the A-calculus and introduce the reader to a num-
ber of concepts and techniques which will recur throughout the book. We
start with a discussion of the réle of functional abstraction in Computer
Science; this leads naturally to an informal presentation of the A-calculus.
The A-calculus is an example of a formal system; we include a brief intro-
duction to formal systems. Our treatment of the material in this book is
quite rigorous; we include proofs of most of the main results and where we
do not, the reader is encouraged to provide them (in the exercises). The
majority of proofs are inductive; we will introduce the different forms of in-
ductive argument as required but we conclude this chapter with a revision
of mathematical induction.

1.1 Functions

One of the universal notions of programming languages is functional ab-
straction. The SUBROUTINEs and FUNCTIONs of FORTRAN, the PROCEDUREs
of Pascal and the functions defined and used in functional programming
languages are all instances of this general notion. The inspiration for this
form of abstraction mechanism comes from Mathematical Logic; notably
Church’s A(lambda)-calculi and Schonfinkel’s and Curry’s Combinatory
Logic. A proper study of these foundations leads to a better understanding
of some of the fundamental issues in Computer Science. Areas in which
they have had a major influence include:

Programming Language Design: We have already suggested the link
with the notion of functional abstraction in programming languages.
In addition, many of the typing notions found in modern program-
ming languages have been inspired by the typing mechanisms found
in these formal calculi. A notable example of this, to which we shall
return, is the style of polymorphism which is employed in modern
functional programming languages.

Programming Language Semantics: One of the predominant schools
of thought on this topic is denotational semantics. In this approach
a typed A-calculus is used as the meta-language; the meaning of a

2 Introduction

program is expressed by mapping it into a corresponding A-calculus
object. Understanding what such objects are requires that we should
have a model of the calculus; the construction of such models has
been the motivation for the subject of domain theory.

Computability: A classical use of the A-calculus was in the study of com-
putability; the study of the theoretical limitations of formal systems
for describing computations. Indeed the first result in computabil-
ity was a result concerning the relationship between the A-calculus
and Kleene’s Recursive Functions. The (un-)decidability results fa-
miliar from automata theory have their analogues in the theory of
the A-calculus.

As readers study this book, they may well be able to identify other areas
in which the formal systems that we are discussing have had an influence.

Classically, in set theory, a function is represented by its graph. The
graph of a function defines a function by its input/output behaviour; for
example, a unary function is represented by a set of pairs where the first
component of each pair specifies the argument and the second component
specifies the corresponding result. From this perspective, the function on
pairs of natural numbers which adds its two arguments is represented as:

{((0,0),0),((0,1),1),...,((1,0),1),((1,1),2),.. .}
or:
{((m’n)ap) I m,n € Num,p: n +m}

Two functions are equal if they'have the same graph; later this notion of
equality will be referred to as eztensional equality.

From the point of view of Computer Science, this representation is not
very useful. We are usually as interested in how a function computes its
answer as in what it computes. For example, all sorting functions have
the same graph and are thus (extensionally) equal but a large part of the
Computer Science literature has been devoted to the definition and analysis
of different sorting algorithms, so we are clearly missing something. The
casual use of the word “algorithm” in the last sentence is the key; we should
represent a function by a rule, which describes how the result is calculated,
rather than its graph. In this scheme, two functions are equal if they are
both defined by the same (or equivalent) rules; this form of equality is called
intensional equality. The A-calculus® provides a formalism for expressing
functions as rules of correspondence between arguments and results and
will be the main system discussed in this book.

1There is a wide variety of different A-calculi. The calculi differ along many axes:
syntax, typing, rules of inference,.... When we talk of the A-calculus we generally mean
the pure, type-free AK -calculus which is the primary object of study in Barendregt’s
encyclopaedic book.

1.2. Formal Systems 3

The A-calculus consists of a notation for expressing rules, A-notation,
and a set of axioms and rules which tell us how to compute with terms
expressed in the notation. A BNF specification of the A-notation is:

< MAterm> = <variable> |
(A <variable>< A-term>) | (abs)
(< A-term>< A-term>) (app)
<variable> = =z |y | z...

Some \-terms? are:

z (zz) ((zz)(yz)) (Az(Ay(Az((z2)(y2)))))

The intuition is that terms matching (abs) correspond to function defini-
tions, where the variable after the A\ specifies the name of the formal pa-
rameter, and terms matching (app) correspond to function applications.
Thus a first attempt at defining the addition function might be:

(Az(Ay((+z)y)))

but beware! — the symbol + has no intrinsic meaning, according to our
syntax it must be just another variable. In Chapter 3 we show how new
computation rules (called é-rules) can be added to the calculus to give the
expected meaning to +. Alternatively, the operator can be defined in the
pure calculus; this is discussed in Chapter 6, where a more accurate, but
less perspicuous, encoding is presented.

A major limitation of the notation seems to be that we can only define
unary functions; we can only introduce one formal argument at a time.
The fact that this is not a real restriction was first observed by Schoénfinkel.
Given some binary function denoted by an expression in formal arguments
z and y, say f(z,y), then we define:

a = (Ay(Az(f(z,9))))

then a is equivalent to the original function but takes its arguments one at
a time3 .

1.2 Formal Systems

The A-calculus is an example of a formal system. A formal system is a
completely symbolic language built from some alphabet and some rules for
manipulating “terms” of the language. Formal systems are commonplace
in mathematics. Before embarking on our detailed study of the A-calculus,

2If you are confused by all of the parentheses, don’t despair! In the next Chapter we
will introduce some conventions, which allow us to omit most of them.

3A function such as a, which takes its arguments one at a time, is often called a
curried function (in honour of the logician Haskell B. Curry).

4 Introduction

it is instructive to establish some of the terminology and concepts that are
common to all formal systems.

The three main aspects of formal systems that we will be concerned
with are:

Notation: defining the set of terms (or “well-formed formulae” (wff)).
Theories: giving a set of axioms and rules relating terms.

Models: giving a “mathematical” semantics to the system.

The notation is normally specified in two parts; first the alphabet is
presented and then the syntax of terms is presented.

Theories are presented as a set of given theorems, the axioms, and a set
of rules for deriving new theorems. We will usually write:

TFthm

if the theorem thm is provable in the theory T'; i.e. thm is an axiom or
derivable from the axioms using the rules and other derived theorems. We
will usually be interested in theories of equality between terms; in such a
theory, each theorem relates a pair of equal terms. Theories of this form
provide a basis for symbol pushing semantics.

The purpose of a model is to give a “meaning” to the terms. An inter-
pretation is used to define the value that each term denotes. If all of the
theorems are still valid under a particular interpretation, then the inter-
pretation provides a model for the theory. This concept is best illustrated
by example: an interpretation of propositional calculus is a mapping from
propositions to truth values; it is a model if all valid propositions are true.

Examples of formal systems that the reader might be familiar with
include propositional calculus, predicate calculus, CCS,....

1.3 Mathematical Induction

We briefly review mathematical induction which is based on Peano’s fifth
axiom:

(PA V): if S is a subset of N, 0 € S and n € S = succ(n) € S then
S =N*

So when we use mathematical induction to prove some predicate, we
require a basis step which shows that O satisfies the predicate and then,
under the assumption that it is true for some n, we show it is true for
succ(n) and then (PA V) states that it is true for all natural numbers. An
example of the technique is:

4N is the set of natural numbers (including zero) and succ(n) is the successor of n.

1.4. Summary 5

Example 1.1

Proof
Basis (n = 0): left hand side = right hand side = 0

Inductive Hypothesis: assume)_._, %= k(k+1)/2 for some k

i=n(n+1)/2

2=0..n

Inductive Step:

Yizok+1t = 2imo.k b+ (k+1)
=k(k+1)/2+ (k+ 1) by the Inductive Hypothesis (IH)
= (k? + 3k +2)/2
=(k+1)(k+2)/2
a

We will often omit the formal statement of the inductive hypothesis
from such proofs.

Exercise 1.3.1 Prove that for any natural number n, there are ezactly n!
permutations of n objects.

We will introduce other forms of induction as required throughout the
text.

1.4 Summary

We started this chapter by trying to whet the reader’s appetite for the
study of the A-calculus and related formalisms. We then presented the two
contrasting views of functions: the classical mathematical view in which a
function is no more than a graph and the computational view in which a
function is a rule of correspondence. We have argued that the latter is a
more appropriate view for use in Computer Science.

The ideas and terminology used in this chapter will be used again and
again in this book as we study one formal system after another. In the
next chapter we will start our study of the A-calculus and we will progress
through combinatory logic, simply typed A-calculus to the 2nd-order poly-
morphic A-calculus and the AN-calculus.

2

Notation and the Basic Theory

Overview

We now start our study of the A-calculus. First, we return to the question of
notation and present an inductive definition of A-terms and some auxiliary
notions such as free variables and subterms. Next, we present the theory.
Central to the theory is the notion of substitution — the driving force
behind function application — we next discuss a number of alternative
approaches to defining substitution and consider some of the properties of
substitution. The theory is a theory of equality between terms; as indicated
in the last chapter, we are trying to capture intensional equality but we
also show how the theory can be extended to capture extensional equality.
Finally, we consider the consistency and “completeness” of the two theories
presented.

2.1 Notation

We will give an inductive definition of A-terms. This style of definition may
be slightly unfamiliar to Computer Scientists so we start by illustrating the
approach in the context of the (more familiar) propositional calculus.

The well-formed formulae of propositional calculus are constructed from
propositional variables, parentheses and two connectives: unary — and bi-
nary V. Of course, this does not define the class of well-formed formulae;
however, it does define the alphabet which can be used. A wff is a word! and
we must now define which words are wifs. A Computer Science approach
to this problem might be to define a BNF-style syntax for wffs:

<wff> = <variable> |
- <wit> |
(<wif> Vv <wif>)

This is what we did for A-terms in Chapter 1. More usually, the class of
wils is defined inductively.

Definition 2.1 The class, W, of well-formed formulae for the proposi-
tional calculus, is the least class such that:

(1) p € W for each propositional variable p

1 A word is just a string of characters drawn from the alphabet.

8 Notation and the Basic Theory

(2) If A is a formula and A € W then ~A € W
(3) If A and B are formulae and A,B € W then (AV B) e W

By convention, upper case letters will be used to represent arbitrary terms
and lower case letters will be used to represent variables. Notice that
we take the least class which satisfies the three conditions; any class that
contained the wffs and some arbitrary other “terms” would satisfy these
conditions, so we take the least (smallest) class to ensure that we don’t get
the junk!

Some examples of wifs are:

a b -a (—aVvd)

Terms which have the form of the last example, where a and b may be
replaced by arbitrary wif, will be written as a = b in the sequel.

AM-terms: The class of A-terms consists of words constructed from the
following alphabet:

z,v,2,... variables

A
() parentheses
We define terms formally as follows:

Definition 2.2 (A-terms)
The class A of A-terms is the least class satisfying the following:

(1) z € A, z a variable
(2) if M € A then (AzM) € A
(3) if M\,N € A then (MN) € A

Terms constructed by clause 2 are called abstractions; these correspond to
functions/procedures in programming languages. The variable following
the A symbol corresponds to the formal parameter of the abstraction and
M is the body of the abstraction. Thus:

(Azz)
should be compared to:
(LAMBDA (x) (x))
in LISP, or to:

FUNCTION id(x:integer) :integer;
BEGIN id := z END;

2.1. Notation 9

in PASCALZ. To avoid the proliferation of parentheses, we will generally
use an alternative notation for terms constructed according to clause 2 of
the definition:

o .M

and moreover, we will elide internal As and “.”s and assume that abstrac-
tion associates to the right so that the following terms are equivalent:

AZy ... 2 M = AZM = (Az1(...(Az, M) ...))

where Z is our notation for the sequence zi,...,z,. We will generally use
the symbol = to denote syntactic equality between terms.

The symbol X acts as a variable binder in a similar fashion to [...dz in
integral calculus and the quantifiers 3 and V in predicate calculus. The set
of bound variables is defined inductively by the following function, BV :
A = p(Var)3:

BVzx =0

BV (AzM) = (BV M) U {z}

BV (MN) = (BV M)U(BV N)
We will also often need to talk about the set of free variables in a term;
these are defined inductively by the following function, FV : A = p(Var):

FVz =z

FV (AzM) = (FV M) — {z}

FV(MN) =(FVM)U(FV N)
When (F'V M) is the empty set, @, M is said to be closed; closed terms are
sometimes called combinators and the class of all such terms is A°. Notice
that the sets of bound and free variables are not necessarily disjoint; z
occurs both bound and free in:

z(Azy.)

Terms which are defined by clause 3 of the definition correspond to ap-
plications. We adopt the convention that application is left associative.

Consequently:

MN;...N, = MN =(...(MN)...N,)

In the following, we also make use of the notion of subterm. A subterm
of & A\-term is some part of the term which is itself a well-formed A-term;

2The A-terms and the LISP program are type-free. This is in contrast to the PASCAL
procedure which is strongly (monomorphically) typed. Both the A-term and the LISP
program are actually equivalent to a whole set of PASCAL procedures with an element
for every type.

3f: A — B means that f is a function which takes arguments from the “set” A to
results in B. The notation gp(A) constructs the powerset of A.

10 Notation and the Basic Theory

we can generate the set of subterms using the function, Sub : A — p(A),
defined as follows:

Subz = {z}

Sub(AzM) = (Sub M) U {(AzM)}

Sub(MN) = (SubM)U (SubN)U {(MN)}

Notice that the definition of Sub is inductive (recursive) and follows the
definition of the syntax of A-terms. Our definition does not distinguish
between different occurrences of the same subterm; to do so we would need
to construct a multi-set of subterms but we will not require this refinement
in the following.

When we want to prove something about terms we will often use the
technique of structural induction. A proof by structural induction has a
very similar structure to a proof by mathematical induction (see Chapter
1). The basis consists of a demonstration that the predicate holds for each
of the primitive terms and the inductive step includes a separate case for
each type of composite term in the language using a hypothesis which states
that the predicate is true for the immediate subterms of the composite term.
To be more concrete, we give an example of a property of A-terms:

Example 2.3 Every term in A has balanced parentheses

Proof
Basis:
(i) Variables — trivial since variables contain no parentheses

Inductive Step:
Consider the application (M N). By the inductive hypothesis twice, we have
that both M and N are balanced. Then (M N) is also balanced.

Consider the abstraction (Az.M). By the inductive hypothesis we have that
M is balanced. Thus (Az.M) is also balanced. O

We conclude this section by defining the class of A-contexts. Often, we will
need the notion of a partially specified term, that is a term with “holes” in
it. Such a term gives a context into which we can put other terms (to fill the
holes!). The ability to construct contexts will clarify some definitions (for
example the notion of compatibility used in Chapter 3) and generalise some
results (for example see the generalisation of the Substitution Lemma later
in this chapter). We give an inductive definition of contexts for A-terms:

Definition 2.4 (Contexts)
The class C[] of A-contexts is the least class satisfying:
(1) z € C[]

(2) Decl
(3) if C1[}, C2[] € C[] then (C1[IC2[]), (AzC1) € C]]

2.2. The theory X 11

Notice that a hole is represented by [J. An example of a context is:
((Az.[lz) M)
which is equivalent to (omitting redundant brackets):
(Az.[Jz) M

We will often give a name to a context, say C[] for the one above, such
names will always terminate with “[]”. To represent the term generated
by filling the holes in a context with some term, we write the name of the
context with the term that is to fill the hole appearing between the square
brackets. Thus:

ClAy.y]
is the term:
(Az.(Ay.y)z) M

Of course, a context may have many holes but they will all be filled with
the same term; we could generalise this by labelling holes, in which case
different holes could be filled by different terms, but we will not need such
generality in this book.

Notice that variables in F'V (M) might become bound in C[M].

2.2 The theory A

We can construct formulae from the terms; a theory then establishes certain
formulae as axioms and provides rules of inference which enable us to derive
new formulae. The true formulae (either axioms or formulae that can be
derived from the rules) are called theorems.

In the standard theory of propositional calculus, the formulae are wif;
the theory has three axiom schemes and one rule of inference which is called
Modus Ponens. In general, each rule of inference has a set of premises,
P1,---,Pn, and a conclusion, c. We will write rules in the following way:

D1 Dn
C

The meaning of such a rule is that if all of the premises are theorems then
so is the conclusion. The theory of the propositional calculus is thus:

Axiom Schema 1: ((AV A) = A)
Axiom Schema 2: (A = (BV A))

Axiom Schema 3: (A= B)= ((CVvA)=(BVv()))
A A=2B

B
Equipped with the theory, we can now generate some new theorems.

Modus Ponens:

12 Notation and the Basic Theory

Example 2.5 p V —p

Proof

(pVp=p by Axiom Schema 1

(e vV p)=>p)=>

(mpV (pV p)=(p vV -p) by Axiom Schema 3

(-p V (pV p)=(pV -p) byModus Ponens

pV p since-pV (pVp=p=>((pV p
use Axiom Schema 2
and Modus Ponens

We now present a theory of equality (or convertibility) between A-terms.
There are a number of reasonable requirements for such a theory:

(1) An application term should be equal to the result obtained by ap-
plying the function part of the term to the argument. For example,
suspending your knowledge of PASCAL, imagine that PASCAL pro-
cedures can be higher-order (take procedures as arguments and pro-
duce them as results) and that we have defined a higher-order variant
of id. Then:

id(fun)

should surely be the same function as fun (for any appropriate pro-
cedure parameter fun).

(2) Equality should be an equivalence relation.

(3) Equal terms should be equal in any context.

These requirements go some way to motivating the following theory, A:

2.2. The theory X 13

(Az.M)N = M[z := N] (B)

M=M
M=N
N=M

M=N N=L
M=L
M=N
MZ=NZ
M=N
ZM =ZN
M=N

Az.M = Az.N 9

The rule (&) is sometimes called the rule of weak extensionality. The
rule () is the rule which corresponds to function application. The notation
M|z := N] should be read “replace free occurrences of z in M by N” (some
care must be taken — we return to this in the next section). The classical
presentation of the theory also includes an a-rule which allows a change of
bound variable names; see the next section for a discussion of this. Readers
should compare the rule (3) to their intuitive understanding of the meaning
of procedure calls in a familiar programming language.

We write:

AFM=N

to mean that M = N is a theorem of A and read the theorem as “M and
N are convertible”. The notation of the last section and this theory are

variously called the A-calculus (the name that we will use in the following),
the A\B3-calculus, the AK-calculus or the AK 3-calculus.

Note that:
M=N=>M=N
but:
~-(M=N=M=N)
For example:
(Az.z)y =1y

but the two terms are not identical.

14 Notation and the Basic Theory

Finally, we illustrate the use of the theory to prove a fundamental the-
orem, the Fixed Point Theorem:

Theorem 2.6 (The Fixed Point Theorem)

VFeAIX€eEAFX =X

Proof
Let W = Az.F(zz) and X = WW. Then

X =WW = (\z.F(zz))W = F(WW) = FX
O

X is called a fized point of F; if we apply F' to X, the resulting term is
convertible with X. In a more familiar context, for example, 1 is a fixed
point of the squaring function. The Fixed Point Theorem may seem quite
surprising at first sight; it says that all terms have fixed points. For some
terms, such as:

AL.T

which is the identity function, this is obvious (all terms are fixed points of
the identity!) but for others, such as:

ATy.TyY

it is not so clear. However, the proof of the Fixed Point Theorem is con-
structive; it gives a recipe for constructing a fixed point of any term. In
the second case above this leads to the following construction:

W = Az.(Azy.zy)(zz) = Az \y.(22)Yy = Azy.(z2)Y

The required fixed point is thus (Azy.(zz)y)(Azy.(zz)y); we check that this
is indeed a fixed point of the original term:

(Azy.(zz)y)(Azy.(TT)Y)
= My.((Azy.(zz)y) (Azy-(zT)Y))Y
= (Azy.zy)((Azy.(zz)y) (Azy.(TT)Y))

The fixed point constructed for the identity function is:

(Az.zz)(M\z.22)

This term plays a special role in the theory which we shall return to later?.

Fixed points are important in Computer Science. They play a fun-
damental role in the semantics of recursive definitions. For example, the
factorial function:

4For those readers familiar with domain theory, this term plays the same role as L.
It is the least fixed point of the identity function (and many others!).

2.3. Substitution 15

facO =1
fac (succ n) = (succ n) x (facn)

is a fixed point of the term:

Afnif(=n0) 1 (x n (f(pred n)))

(of course we must be careful about reading too much into this term —
0,1, X are just formal symbols, variables, they have no deeper significance
in the A-calculus which we have defined so far). We shall return to this
point later.

2.3 Substitution

We now return to the substitution operation used in the rule (3). A naive
approach to defining this operation leads to the problem of “variable cap-
ture”. This problem occurs when we naively substitute a term containing a
free variable into a scope where the variable becomes bound. For example:

(Azy.yz)y # A\y.yy

The free occurrence of y in the left hand term is analogous to a global
variable in programming, in the right hand side the global variable has
become confused with the bound variable (formal parameter). We will
consider three different approaches to this problem before selecting one for
use in the rest of this book.

2.3.1 Three Approaches
The Classical Approach

The first approach is based on Church’s original treatment of substitution.
We use the following definition:

(1) z[z:=N]=N

(2) y[z := N] = y,if z is not the same as y

(3) (Az.M)[z := N] =Xz M

(4) AWy.M)[z:=N]=Ay.M[z:=N],ifc g FVMoryg FVN

(5) (\-M)[z :== N] = Az.(M[y :=z])[z := N],ifz € FVM and y €

FV N, z a new variable
(6) (M1 M3)[z := N] = (Mi[z := N])(Mz[z := N])

We consider the three rules 3 to 5 in a bit more detail. Rule 3 applies
when the variable being substituted for is bound at the outermost level;
in this case there will be no free occurrences of z in the remainder of the
expression and thus the substitution has no effect. Rule 4 is applicable
when variable capture cannot occur, either z does not occur free in the

16 Notation and the Basic Theory

body (in which case the substitution is a no-operation again) or the variable
that is bound in the outermost level does not occur free in the term being
substituted (no capture); in either case the substitution can be pushed
through the)\ to apply to the body. The final rule, 5, applies when variable
capture could occur, that is when some substitution does take place and
the variable bound at the outermost level does occur free in the term being
substituted; in this case, we first rename the bound variable to a completely
new variable.

Rule 5 is only valid under the assumption that terms which are similar,
having the same free variables and differing only in their bound variables,
are essentially the same. This is reasonable if we think about programming
languages:

FUNCTION id(y:integer) :integer;

BEGIN id := y END;
the above procedure is clearly the same as the earlier one with the same
name; we have only changed the formal parameters. In Church’s original
presentation of the A-calculus there were two additional axioms; (a) for-
malises the above discussion and (n) introduces extensional equality (see
below). The alpha rule is:

Az.M = dy.M[z :=yl,yg FV M (@)

The Variable Convention

For our second definition of the substitution operation, which is introduced
in Barendregt’s book, we start with two definitions:

Definition 2.7 (Change of Bound Variables)

M' is produced from M by a change of bound variables if M = C[\z.N]
and M' = C[My.(N[z := y])] where y does not occur at all in N and CJ] is
a context with one hole.

Definition 2.8 (a-congruence)
M is a-congruent to N, written M =, N, if N results from M by a series
of changes of bound variable.

According to the second definition, we have:

AZ.2Y =4 A2.2Y
but not:
AZ.ZTY =q AY-YY

Notice that the first two terms are also equal by the rule (a) but the
second two are not; indeed the notion of “change of bound variable” is
the compatible closure of (a)(see Chapter 3). Our strategy for defining
substitution is as follows:

2.3. Substitution 17

(1) Identify a-congruent terms

(2) Consider a A-term as a representative of its equivalence class

(3) Interpret M[z := N] as an operation on the equivalence classes, using
representatives according to the following variable convention:

Definition 2.9 (Variable Convention)
If My,...,M, occur in a certain context then in these terms all bound
variables are chosen to be different from free variables®.

With this strategy, we can define substitution as follows:
(1) z[z:=N]=N
(2) ylz:=N]=y,ifzc#y
(3) (\y.-M)[z := N] = \y.(M[z := N])
(4) (M1 My)[z := N] = (M;[z := N])(Mz[z := N])
The variable capture problem has disappeared! — the reason for this is
that for y to appear free in NV in the context:

(Ay.M)[z := N]

would breach the variable convention so we would have to use a different
representative of the a-equivalence class of A\y.M (this is precisely what
rule 5 in the classical approach makes explicit). In the following, we will
adopt this convention and definition of substitution because it is easier to
work with (there are less cases to consider in proofs). An example of its
use is illustrated below:

(Azyz.zzy)(Azz2.2) = Ayz.(Azw.z)zy by the variable convention
= yz.(Aw.2)y
= \yz.z

However, before continuing we consider a third alternative which will
be useful in the definition of abstract machines in Chapter 8.

The de Bruijn Notation

The third approach to defining substitution avoids the problem of variable
capture by banishing free variables. We revise the definition of A-terms so
that parameters occurring in the body of a term are referred to by natural
numbers which uniquely identify the binding A. For example:

A2
is equivalent to:

Azy.x

5We have already implicitly employed this convention in the proof of the Fixed Point
Theorem — consider what happens if = occurs free in the term F.

18 Notation and the Basic Theory

This is the notation invented by de Bruijn and used in the Automath
project, an automated theorem proving system. More formally the terms
in de Bruijn’s notation are defined inductively as the least set such that:

(1) any natural number (greater than zero) is a term
(2) If M and N are terms, then (M N) is a term
(3) If M is a term, (AM) is a term

and (B) is replaced by:
(A\P)Q = P[1 := Q]

where:
n[m := N] =nifn<m
n—1lifn>m
renamen 1(N) if n =m
(M1 M)[m := N] = (M;[m := N])(Mz[m := NJ)
(AM)[m:=N] =AXM[m+1:=N))
and

renamen i(j) =jifj<1
j+m—-1if j>1
renamen ;(N1N2) = renamen, ;(Ny)renamen, ;(N2)
renamen i(AN) = A(renamenm,i+1(N))
The reader should take care to check that this new beta rule has the same
effect as the earlier version. For example:

Example 2.10
A.(AA2)1 = A (A2)[1:=1]

= AA2[2:= 1]
= A.A.renamesz 1(1)
=2

c.f. (Az.(A\yz.y)x)

Notice the réle that rename takes in relabelling variable indices. There is a
simple translation between standard A-terms and de Bruijn terms (notice
that a-congruent terms are equal in the de Bruijn notation):

DBz (z1,...,Zn) =3, if 7 is the minimum such that z = z;
DB (AzM) (z1,...,z2,) = A(DBM (z,z1,-..,Z5))
DB(MN) (z1,...,zn) = (DBM (z1,...,2,))(DBN (z1,--.,Zn))

The de Bruijn notation is not very readable but the beta rule is easy to
implement; indeed it inspired the Categorical Abstract Machine — an ef-
ficient mechanism for the implementation of functional languages; we will
return to this later. However most treatments of the de Bruijn notation
present it formally and then use standard A-terms wherever possible.

2.3. Substitution 19

2.3.2 The Substitution Lemma

From now on, we will assume the variable convention unless otherwise
stated.

We now present a result which allows us to reorder substitutions, The
Substitution Lemma:

Lemma 2.11 (The Substitution Lemma)
If £ and y are distinct variables and x € F'V L then

Mz := N][y := L] = M|y := L][z := N[y := L]]

Proof
(by induction on the structure of M)

(i) If M is a variable there are three cases to consider:
If M = z then both sides = N[y := L] since z is distinct from y
If M = y then both sides = L since z ¢ FV L
If M = z where z is distinct from both z and y, then both sides = 2

(ii) If M = Az.M; then, by the variable convention, z is distinct from z
and y and z € FV NL and:

(Az.M)[z := N][y := L] = M\z.M[z := N][y := L]
by defn. of substitution
= Az.Mi[y := L][z := N[y := L]] by IH
= (Az2.My)[y := L][z := Nly := L]
by defn. of substitution

(111) If M = M, M, then:

(MiMp)[z := N[y := L} = (Mifz := Nly := L)) (Ms[z := Nly := L))
by defn. of substitution
= (Myfy = Ljfo := N[y := L))
(Mafy := Lz := Nfy := L]))
by IH twice
= (My1Mo)[y := L][z := N[y := L]|
by defn. of substitution
O

Exercise 2.3.1 Formulate and prove the substitution lemma for de Bruijn’s
notation

Lemma 2.12 Substitution has a number of other useful properties with
respect to convertibility:

(1) M =M'= M[z:= N} = M'[z:= N]

(2) N=N'= M[z:= N]= M[z := N']

20 Notation and the Basic Theory

(3) M=M',N=N'= M[z:= N]= M'[z := N|

Proof
(1) M = M' = Az.M = A\z.M' by (§)
= (Az.M)N = (\z.M')N
= M|z := N] = M'[z := N] by (B) twice

(2) see exercise

(3) follows directly from (1) and (2):
M=M= M[z:=N]= M'[z:= N] by (1)
N=N'= M'[z:= N]= M'[z := N'] by (2)
Thus M|[z := N] = M'[z := N'] by transitivity of = o

An alternative proof of the first result uses a new proof technique: in-
duction over the length of a proof. The length of a proof is the number of
steps taken to derive a formula; if the formula is an axiom then the length
is zero, otherwise it is 1 plus the lengths of proofs of all of the premises
used in the last step of the proof (which has the formula as its conclusion).
The basis of the proof considers the axioms and the inductive step has a
case for each of the inference rules.

Exercise 2.3.2 a. Construct a proof of (1) by induction over the length of
the proof of M = M' (Hint: you may have to use the Substitution Lemma)
b. Construct a proof of (2) by structural induction.

These properties are useful but care should be taken when applying
them. A major property of functional languages is referential transparency;
the property which allows equals to be substituted by equals. The prop-
erties of substitution appear to be related to this concept but referential
transparency is more. For example, the following inference does not follow
from (1) to (3):

N = N' = Az.z(Ay.N) = Az.z(A\y.N')

This is because we cannot express the two sides of the second equality in
the correct form:

Az.z(\y.N) is not the same as (A\z.z(A\y.z))[z := N]

since N may contain free occurrences of y. The correct formulation of the
property of referential transparency, also referred to as Leibniz’ Law, is:
Lemma 2.13 (Referential Transparency)
Let C[] be a contezt, then

N = N' = C[N] = C[N']

Proof
(by induction on the structure of C[])

2.4. Extensionality 21

Cll =z : then C[N] =z = C[N']
C[l=[: C[N] = N = N'(by the assumption) = C[N’]

CD = Cl[|02[| :
C[N] = G1[N]C,[N]
= C1[N']C2[N] by IH and A
= C1[N']C2[N’] by IH and A
= C[N']
C[] = /\QIC]_D :
C[N] = Az.C1[N]
= Az.C1[N’] by IH and (&)
= C[N']
O
2.4 Extensionality
The convertibility relationship, =, is intensional equality; two terms are

equal if they encode the same algorithm in some sense. This does not equate
some terms which we might naturally think of as equal. For example,
consider a term which has one bound variable and applies some constant
term (i.e. a term that does not contain free occurrences of the bound
variable) to any term bound to the variable:

.Mz

this term should surely be equal to M since if we apply either Az.Mz or
M to some term N, we end up with M N. This is the classical notion of
extensional equality discussed in Chapter 1. The formula:

A Mz=M

is not a theorem of \; there are two ways we can extend A to make the
above formula a theorem. Firstly, we could add a new rule to the theory,
giving the new theory A + ezt :
Mz =Nz
M=N
Alternatively, we can add a new axiom, giving the new theory An (as pro-
posed by Church):

z € (FVMN) (ext)

MMMz=MzxzgFVM (n)
In fact, we have the following result:

Lemma 2.14) + ext and An are equivalent

22 Notation and the Basic Theory

Proof
At extkF Az Mz=M,z € FV M :

Since (Az.Mz)z = Mz by (B) thenif z & FV M, (Axz.Mz) = M by ext
An F ext :

Assume Mz = Nz with £ ¢ FV M N then A2. Mz = Az.Nz by (£) and
hence by (n) twice, we have M = N m]

The calculus based on An or A + ext is alternatively called the An-calculus,
the ABn-calculus, the AKn-calculus or the AK n-calculus. Practically, from
the point of view of functional programming, the An-calculus is not as
important as the AB-calculus since the rule () is not normally implemented
(see Peyton Jones, for example, for a discussion of this point). The term
Az.Mz is a weak head normal form (see Chapters 8 and 9) and is thus
distinguishable from M the former is a “value” the latter may lead to a
non-terminating computation. Even in an eager language, such as Standard
ML, the two terms are distinguished. However, the An-calculus does have
some theoretical significance which we shall return to later.

2.5 Consistency and Completeness

For a theory to be useful, there must be some theorems and not all closed
formulae should be theorems. The former is satisfied provided that the
theory has at least one axiom. The latter is slightly trickier and is quite a
fragile property; a theory which satisfies this constraint is called consistent.
Both of the theories presented here are consistent but it is very easy to lose
consistency as we shall see.

We start by formalising the concept. First, some definitions:

Definition 2.15 An equation is a formula of the form:
M=N
where M, N € A.

Definition 2.16 An equation is closed if M, N € A°.

Definition 2.17 (Consistency)

If T is a theory with equations as formulae then T is consistent, written
Con(T), if it does not prove every closed equation.

If T is a set of equations then A + T is formed by adding the equations of
T as azioms to X\. T is consistent, also written Con(T), if Con(A + T).

Both of the theories that we have dealt with in this Chapter, A and
An are consistent (see Barendregt’s book). The property of consistency is
fairly fragile; it can be disturbed by adding a single equation. We define
the following three terms:

S = Azyz.z2(yz)

2.5. Consistency and Completeness 23

K=Ayz

I=M2
Notice that:
SMNO = MO(NO) by three applications of (53)

KMN=M
IM=M
Now, if we add the equation:
S=K

to either A or An we get an inconsistent theory. This can be proved as
follows (we elide some of the steps):

Example 2.18
S=K = SABC =KABC foradl A,B,C
= AC(BC) = AC
Now consider the case when A = C =1, then since IA = A for all A:
AC(BC)=AC=B(I)=1
Now consider the case when B = KD for some arbitrary D, then:
BI)=I=D=1I
and thus, since D was arbitrary, all terms are equal to the constant term
I

The reader should redo this proof, filling in the missing steps and justifi-
cations.
Consideration of the foregoing motivates the following definition:

Definition 2.19 (Incompatibility)
Let M,N € A, then M and N areincompatible, written M#N, if ~Con(M =
N).

This notion of incompatibility leads to a useful proof technique as ex-
emplified by the following example and exercise. The basic proof technique
is as follows:

e Use weak extensionality to generate a closed equation.

e Apply both sides of the equation to the same distinct, arbitrary terms
(M,N,O...), equal in number to the largest number of outermost \’s
on either side of the equation.

e Perform [-conversions.

24 Notation and the Basic Theory

e Set the arbitrary terms to specific constants (I,K...) and try to
derive an equation:

arbitrary term = constant
This technique is illustrated by the following example:
Example 2.20 zz#zy

Proof
Assume that zz = zy; then:

ATY.TT = Azy.Ty by weak extensionality twice
= (Azy.zz)MN = (Azy.zy)MN for arbitrary M, N
= MM = MN by 8 twice
= I = N choosing M =1
a

Exercise 2.5.1
Show that application is not associative by proving that:

z(yz)#(zy)z

We now turn to the notion of completeness. Yet again, we start by
making some definitions:

Definition 2.21 (Normal Forms) -

If M € A, then M is a -normal form, written B-nf or nf, if M has no
subterms of the form (Az.R)S

If M € A, then M has a B-nf if there exists an N such that N = M and
N is a B-nf.

Some (non-)examples of normal forms:

Az.z is a nf

(Azy.z)(Az.z) has Ayz.z as a nf

(Az.zz)(Az.zx) does not have a nf

By analogy, a 8n-nf is a 3-nf which also does not contain any subterms of
the form:

(\z.Rz) with z € FV R

We now state the following facts about normal forms:
Proposition 2.22

(1) M has a fn-nf & M has a B-nf

2.6. Summary 25

(2) If M and N are distinct 3-nfs then M = N is not a theorem of A(and
similarly for An).

(3) If M and N are distinct Bn-nfs then M#N.

The proof of this proposition requires considerable extra machinery which
goes beyond the scope of this book; the interested reader is referred to
Chapter 2 of Barendregt’s book. The use of Bn-nfs in the last point is
essential; y and Az.yz are distinct B-nfs but not incompatible — they are
n-equivalent.

The completeness of A7 is expressed by the following:

Proposition 2.23 (Completeness)
Suppose M and N have nfs; then either:
MEFM=N
or
An+ (M = N) is inconsistent

2.6 Summary

We have now completed our treatment of A-conversion, the = relation de-
fined by A. The reader is urged to refer to Barendregt’s book for an ency-
clopaedic treatment of this topic.

The convertibility relation, being an equivalence relation, partitions the
class of A\-terms. When dealing with equivalence classes, it is convenient
to use canonical representatives. The obvious representatives to use in our
study of the A-calculus are the normal forms (take care — what about the
terms, such as (Az.zz)(Az.zz), which have no normal form? If we equate
them we get an inconsistent theory (see later)). In the next chapter, we
will study the notion of reduction, in which terms are successively simplified
towards normal form. The computational motivation for this study is that
normal forms equate to “answers” and thus the process of reduction is the
familiar notion of evaluation used in functional programming languages.

3

Reduction

Overview

Convertibility is a symmetric relation and therefore does not correspond
very closely to our intuitions about computing with terms. In this chapter
we study a new relation on terms which better fits our intuitions. Having
introduced the basic concepts, we present the Church—Rosser Theorem; this
is a central theorem in the A-calculus and we study it in some detail. The
other key theorem is the Standardisation Theorem; before presenting this
we require the notion of a residual and a definition of head normal forms.
We also show how constants may be added to the calculus and establish
conditions under which the Church—Rosser property is preserved.

3.1 Introduction

We have suggested that normal forms should be used as canonical repre-
sentatives for the convertibility equivalence classes. A more computational
view results from treating normal forms as the “answers” produced from
A-term “programs”. This view is justified by observing that the evaluation
of the S-normal form of a term involves removing application subterms by
applying the (B) rule; we have already identified this process with function
application in programming languages. We will pursue this view further!.

We illustrate the earlier discussion and motivate the following material
by considering an example in a A-calculus extended with constants. We
consider the following program:

let

fac 0 =1

fac n = n * fac(n-1)
in fac 0

We briefly discussed a variant of this function in the last chapter, where
we saw that it was the fixed point of a certain functional. We consider
that the calculus which we are using is extended with a constant, Y, which
computes the fixed point of a given term; following the construction used

INotice that in lazy functional languages such as Haskell, rather than normal forms,
(weak) head normal forms are considered to be answers — we shall return to this point
later.

28 Reduction

in the proof of the Fixed Point Theorem, it is clear that such a constant
could be defined by the following term:

Af((z.f(zz))(Az. f (22)))

The program may be translated in the following way:

(AffO)(Y(Afnif(=n 0)1(x n (f(- n 1)))))

notice that the let-construct has been translated as an application term.

Consider now the normal form of the program. We can produce the
normal form by repeatedly applying rule (8); in outline, we perform the
following steps?:

(Af-fO)(Y...)=(Y...)0
= (Afnif...)(Y...)0 (A)
= (An.if(=n 0)1(xn((Y...)(— n 1))))0
if(=00)1(x0((Y...)(— 01)))
=if truel...
=1

Throughout this derivation we have used the convertibility relation intro-
duced in the last chapter. Convertibility is symmetrical, indeed it is an
equivalence relation, but we have used it in a non-symmetrical way. We
are happy to consider 1 as the answer of the above computation, the fac-
torial of 0, but it is a little harder to see the original program as the value
of the term “1”. The latter view would associate an infinite set of “val-
ues” with terms such as “1”. In this chapter, we will study some new
relations between A-terms, notably —3 (one step -reduction) and —3 (8-
reduction), the reflexive, transitive closure of 3. We will see that —g is
closely related to = but is not symmetric; each = in the above derivation,
other than the one in step (A), could be replaced by — 3.

In performing reduction, we are faced with a problem of strategy. For
example, at line (A) there are two subterms of the form (Az.R)S — hence-
forth called B-redexes (reducible expression) — as follows:

(Afnif..)(Y...)0
and
(Y..)

that is, the whole term and the subterm involving the fixed point combi-
nator. We chose to reduce the first term but consider what would happen

2We have elided two steps here and used a defining property of fixed point combina-
tors such as Y:

YF:F(YF)

3.2. Notions of Reduction 29

if we consistently chose to reduce the fixed point subterm: we would never
get to the answer, we would merely construct a larger and larger term!
Making the “wrong” choice is not always so catastrophic, for example:

(Azy./(+ z ¥)2)(Az. + 2 1)4)6 =5 (M\y./(+((Az. + 2z 1)4)y)2)6
=5 [(+((Az. + 2z 1)4)6)2
=5 [(+(+ 4 1)6)2
but also:
(Azy./(+ z ¥)2)(Az. + 21)4)6 =5 (Azy./(+ z y)2)(+ 4 1)6

= (Ay./(+(+ 4 1)y)2)6
=3 [(+(+ 4 1)6)2

and so the answer will be the same.

Exercise 3.1.1 There are some other reduction sequences leading from the
above term; write them down. Invent some other terms and write down the
various reduction sequences from the chosen terms.

The above discussion should pose two questions in the reader’s mind:

Question 1: Given a term and a number of reduction sequences from that
term which all terminate in a normal form, is it possible that some
of the sequences might terminate with different normal forms?

Question 2: Given that some choices of reduction strategy appear to be
better than others in some situations (for example the bottomless pit
of (Y ...)) is there a best way of choosing what to do next?

The first question is closely related to the issue of determinacy; computa-
tionally, the question amounts to asking if we can get different answers from
a program depending on how we execute it. A corollary of the Church-
Rosser Theorem, which we will present below, guarantees that the answer
to this question is no. The second question is less precisely formulated; the
Standardisation Theorem, also presented below, addresses the question by
giving a reduction order which is guaranteed to terminate with normal form
if any reduction sequence does (recall (Az.zz)(Az.zz)!) but if “best” is also
meant to be read as “optimal” then the question is more complicated —
see the references for a more detailed discussion of this topic.

3.2 Notions of Reduction

Reduction may be viewed as a special form of relation on A-terms. Why
special? Recall the discussion of the constraints on equality in Chapter 2;
it is reasonable to place some of the same constraints on reduction. For
example, if one term reduces to another, then it should do so in any context.
On the other hand, bearing in mind our earlier discussion, we should not
expect a reduction relation to be an equivalence. We make the following
definitions:

30 Reduction

Definition 3.1 R C A? is compatible if:
(M,M') e R= (C[M],C[M']) e R
for all M, M' € A and all contezts C[| with one hole.

Definition 3.2 R C A2, is an equality (congruence) relation if it is a
compatible equivalence relation.

Definition 3.3 R C A2, is a reduction relation if it is compatible, reflezive
and transitive.

Later, in Chapters 8 and 9, we will see that there are sometimes good
reasons for relaxing the compatibility requirement.

We now turn to describing how a one-step reduction relation, a reduc-
tion relation and an equality relation can be defined from a basic relation.
The basic technique is to take closures of the given set; to make a set satisfy
some property, we add elements, in an appropriate way, until the set does
satisfy the property. For example, consider a subset of A x A for some set
A; to make the subset a reflexive relation on A, for all a € A we add the
pair (a,a) - this generates the reflexive closure of the original subset.

We call an arbitrary binary relation on A, a notion of reduction. For
example, the notion of reduction that we will be particularly interested in
1s:

B={((Az.M)N,M[z := N]) | M,N € A}
Given two notions of reduction, R; and R, we sometimes write R; Ry for
R; U R, (notably in the case that R; is 8 and R» is 7, we write (7).
The one-step reduction relation induced by some notion of reduction

R, written — g, is the compatible closure of R. The closure is explicitly
constructed as follows:

Definition 3.4 (One-step R-reduction)

(M,N)€R
M——)RN

M—)RN
MZ 5z NZ

M——)RN
ZM —-pr ZN

M —R N
Ax.M =g A\z.N

The notation “M — g N” should be read as “M R-reduces to N in one
step” or “N is an R-reduct of M”. We have already seen the relation —g,

3.2. Notions of Reduction 31

in this case we will often say that “M reduces to IV in one step” or “N is
a reduct of M.

The reduction relation, written —» g, is the reflexive, transitive closure
of the one-step reduction relation. While, as its name implies, the one-step
reduction relation allows a single step of reduction, the reduction relation
allows many (including zero! — allowed by reflexivity). The reflexive
transitive closure is defined formally as follows:

Definition 3.5 (R-reduction)

M —r N
M—»grN

M—))RM

M—-»gN N-—»grL
M—grL

For the notation “M—»grN”, read “M R-reduces to N”.

Finally, we consider R-equality (also called R-convertibility), written
=pg. This is the equivalence relation generated by —»g. To generate the
equivalence relation, we must take the symmetric closure of the relation.

But care must be taken; given some reflexive and transitive relation over
{1,2,3}, say:

{(1" 1)’ (2’ 2)’ (3’ 3)’ (1’ 2)’ (1’3)}

the symmetric closure:

{(1’ 1)’ (2’ 2)’ (3’ 3)’ (11 2)’ (1’3)’ (2’ 1)’ (3, 1)}

is no longer transitive, we need to add the following elements to restore
transitivity:

(3,2) and (2,3)

Thus, in general, having taken the symmetric closure, it is necessary to
then take the transitive closure:

Definition 3.6 (R-convertibility)
M—» rN
M=gN

M=pN
N=rM

M= N N=x1L
M=plL

32 Reduction

In the case that “M =g N”, we say “M is R-convertible to N”.
We have the following result for these relations:

Proposition 3.7 —gr, »gr and =g are all compatible.

Proof

For — g, the proof is immediate from the definition.

For —» p and =g the proof is by induction on the definition. Since we have
not seen this form of induction before, we illustrate the proof for —» g:

Basis:
M—gN because M =g N, then since —g is compatible C[M] —gr C[N]
and thus C[M]—»grC[N].

M—»pgN because M = N, then the proof is trivial.

Inductive Step:
M—»gN is a consequence of M—»gL and L—»gN, then C[M]—»gC[L] by
the IH and C[L]—»grC[N] by the IH and thus:

C[M]—+RrC[N]
0

Earlier, we discussed substitution and presented some results which re-
lated = to the substitution operation (notably the Substitution Lemma).
Similar considerations applied to - g and — g help us establish some dif-
ferences between the two.

Lemma 3.8 N—rN' = M[z := N|-»rM|z := N']

Proof

Follows from an induction on the structure of M and the compatibility of
—>R:

Basis:

M = z, z any variable: trivial

Inductive Step:

M=M 1 MQZ

Mz := N] = M|z := N|Mz[z := N]
—»gr Mi[z := N'|M;[z := N] by IH and compatibility of g
—»r M|z := N'|M;[z := N'] by IH and compatibility of —r
= M|z := N

M= \y.M'"

3.2. Notions of Reduction 33

Mz := N] (Ay.M')[z := N]
Ay.M'[z := N]
—»gr Ay.M'[z := N’'] by IH and compatibility of —» g

Mz := N|

O

The same result does not hold for — g, since the substitution may cause
redexes (see below) to be duplicated. For example consider: M = zz,
N = (\y.y)z and N’ = 2, then:

N —R N’
but:

(M\y.y)z((M\y-y)z) AR 22

Definition 3.9 An R-redex is a term M such that (M,N) € R for some
term N; in this case N is called an R-contractum of M. A term M is

called an R-normal form (R-nf) if it does not contain any R-redex. A term
N isan R-nfof M if N is an R-nfand M =g N.

We now present a result which gives some constraints on the form of
terms which are related by the one-step reduction relation:

Proposition 3.10 M g N & M = C[P], N = C[Q] and (P,Q) € R
for some P,Q € A where C[| has one hole.

Proof
(=)
By induction on the definition of — g.

M — g N because (M, N) € R: trivial with C[] =]

M —gr N because M = ZS and N = ZT and S — g T: the IH applies
to the reduction from S to T and thus there is a context C[] such that
S = C[P] and T = C[Q] with (P,Q) € R. Thus we can take the context
ZC]] to complete the proof.

The other cases are similar.
(<)
Follows by the compatibility of — .
O

A corollary of this result gives us some, not unexpected, results relating
reduction and normal forms:

Corollary 3.2.1 Let M be an R-nf, then:

34 Reduction

(i) There is no N such that M —-r N
(ii) M—»prN => M =N

Proof
(i) by the above result and definition of R-nf.

(ii) by (i), since —» g is the reflexive, transitive closure of —p.)

Care should be taken with this result; it is not the case that if:

VN, M—gN=>M=N

then M is an R-nf. To see why, consider the following term with R being

B:
M = (Az.zz)(Az.21)

We are now ready to present the Church—Rosser Theorem.

3.3 The Church—Rosser Theorem
We start by introducing the diamond property:

Definition 3.11 (The Diamond Property) Let > be a binary relation
on A, then D satisfies the diamond property, written > = O, if:

VM, My, Mo[M > My A M > My = 3Ms[M; > Ms A My > Ms]]

If there are two diverging >-steps from some term and b satisfies the
diamond property, then there is always a way to converge again.

Definition 3.12 (Church—Rosser) A notion of reduction R is said to be
Church-Rosser (CR) if »g E <.

We then have the following theorem:

Theorem 3.13 (Church—Rosser Theorem)
Let R be CR, then:

M =g N=3Z[M—+»rZ N N—RrZ]

Proof
By induction on the definition of =g:

(i) M =gr N because M—»gN: Choose Z =N

(i) M =gr N because N =r M: trivial

(ilil) M =gr N because M =g L and L =g N: by IH twice:
AZ,[M—»rZy N L—RrZ,]

and

3.3. The Church—-Rosser Theorem 35

3Z3[L—+»grZ> N N—»RZ5]

and therefore, since:

L—»grZ;
and

L—»pZs
together with the fact that R is CR, there is a Z such that:

Z1—>»RrZ and Zo—»RZ

and thus we have the desired result. O

This theorem has a useful corollary:

Corollary 3.3.1 Let R be CR, then:
(i) if N is an R-nf of M then M—»gN
(i1) a term can have at most one R-nf

Proof

(i) Let M =gr N, where N is a R-nf. Then by the theorem there is a Z
such that M—»grZ and N—»grZ. But since N is an R-nf, we have N = Z.
(ii) Let N; and N; both be R-nfs of M. Then N; =r M =g N, and so
N; =g N, and thus there is a Z to which both normal forms reduce (by
the theorem); therefore

Ni=Z=N-
O

Thus if we can demonstrate that 3 is CR, we will have answered our
first question. In fact the corollary tells us more; not only does it guarantee
unicity of normal forms for terms, it also guarantees that if a term has a
normal form then it will be possible to reduce the term to it.

To demonstrate that § is CR we must show —%5 = . First some
notation; if > is some binary relation on a set X then we write >* for its
transitive closure and we have:

PEO= b*EO

which can be justified by consideration of the following diagram:

1 1 1 1] g
L b ok et R

]])]
-+-+--L-J

))

-t - d

36 Reduction

The axes represent diverging reductions, the side of each small square rep-
resents a single step. The small internal squares, (some of which are) shown
with dashed lines, can all be completed by appealing to the CR property for
B>. So if we could show that the reflexive closure of one-step 3-reduction
satisfies the diamond property, we would have finished. Alas, life is never
that simple! Consider the following term:

(Az.zz)((Az.2)(AT.T))

Then we have the following pair of divergent reductions:

(Az.zz)((Az.2)(Az.Z)) =8 ((Az.2)(A2.2))((AZ.2)(AZ.2))

(Az.zz)(Az.z)(Az.T)) =8 (Az.22)(A\2.T)

But while in the second case there is then only one redex:

(Az.zz)(Az.2) =3 (Az.7)(A2.2)

there is no way of converging to this term by one step in the first case.
So we cannot directly apply the above result to show that 8 is CR. The
approach that we will take involves introducing a new relation which is
“sandwiched” by the reflexive closure of =3 and —g and which has —»g
as its transitive closure.

We define the relation —;. This relation is reflexive and allows multiple
B-reductions in one step. We read “M—»; N” as “M grand reduces to N”.
The intuition is that —; can perform multiple —3 steps in one big step.

Definition 3.14 (Grand Reduction)
—»1 s defined in the following way:

M—»lM

M—))l M’
Az M—») xz. M’

M—»lM, N—»lN’
MN-—-»M'N'

M—» M’ N—» N’
Oz MYN—:1M'[z == N'|

Notice that, since —»; is reflexive, both of the divergent —3 steps are
also —»; steps. There are two additional —»; steps, the first uses reflexivity
and the second results in the term (Az.z)(Az.z) (by using the fourth clause
in the definition). Evidence that —»; is weaker than —»g is furnished by
the fact that:

3.3. The Church—Rosser Theorem 37

(Az.zz)((Az.2)(AZ.Z)) > g AZ.2

but the corresponding grand reduction requires at least two steps.

Exercise 3.3.1
(i) Show that —g is included in —».

(i) Write down the various —»1 reduction sequences that start with the
following term: (A\z.zz)((Az.z)(Az.T))

The following properties of —%; can all be proved by induction on the
definition of the relation:

(1) M» M',N—1N' = M[z := N]-»1 M'[z := N']
(2) \e.M—>»N = N = \z. M’ with M—» M’
(3) M N—»;L implies either:
(a) L= M'N' with M—» M’ and N—» N’
(b) or M = Az.P,L = P'[z := N'] with P—»; P’ and N—» N’
We will show the second and fourth properties.
Lemma 3.15 A\z.M—»1N = N = \z. M’ with M—», M’
Proof
N = A\z.M : trivial
N =X z.M" and M—» M’ : trivial
The other cases of the definition do not apply. a
Lemma 3.16 —; = ¢

Proof

The proof is by induction on the definition of M—»; M;; we show that
for all M5 such that M —»; M>, there is an M3 such that M;—»; M3 and
M2_»1 M3.

M; = M : choose M3 = M.

M = Az.P and M, = Az.P’ and P—»,P’: By the previous lemma M5 must
be of the form Az.P” with P—»,P"”. By IH P’ and P"” have a common
reduct, say P"’; we choose M3 = A\z.P"".

M = PQ, M, = P'Q" and P-» P', Q—»Q’: from the properties listed
above there are two cases to consider.

(i) M2 = P"Q" with P—»;P" and Q—»,Q": then by the IH P’ and P”
(respectively Q' and Q") have a common reduct P"’ (respectively @"’) and
we can take M3 = P"'Q"".

38 Reduction

(ii) M2 = P/'[z := Q"] with P = A\z.P;, P,—»1 P and Q-—»,Q": then
by the previous lemma, P’ = Az.P] with P,—;P]. By the IH applied
to Q',Q" and P|, P’ there is a common reduct of M; and M, which is
Pllll[x — QIII].

M = (\z.P)Q, M; = P'[z := Q'] and P-» P', Q—»,Q’: again there are
two cases depending on whether My = P"[z := Q"] or My = (\z.P")Q";
in both cases the appropriate argumentation is similar to the previous case.

a
Finally, we have the result that we have been waiting for:

Theorem 3.17 —»g is the transitive closure of —»

Proof
Sketch
From Exercise 3.3.1, it is easy to see that the reflexive closure of — 4 is
included in —#;. It is also easy to see that —+3 D —»; and then, since
—» 3 is the transitive closure of the reflexive closure of — g, it is also the
transitive closure of —»;. O

From this result and property 4 of —»; we have that 3 is CR.

Therefore, using the corollary to the theorem that started this section,
we know that (-nfs are unique and that, if a term has a S-nf then it is
possible to reduce it to that nf. This allows us to prove the consistency of
the theory A. First, we need to prove the following:

Proposition 3.18 M =g N & AFM =N

Proof
(=): By induction on the definitions of the relations involved. (Exercise)
(«<): By induction on the length of the proof of M = N. (Exercise) 0O

Consistency follows because:
M=N

is not a theorem for any two distinct normal forms (because by the Church—
Rosser Theorem they would have to have a common contractum for the
equality to hold).

We can also define a notion of reduction which is related to the exten-
sional theory An:

n={(A\z.Mz,M) |z g FV(M)}

We can define one-step n-reduction, n-reduction and n-convertibility in the
standard way. It is then possible to address the question “Is n CR?”;
however, a more interesting question is whether the derived notion 8n (=

3.3. The Church—-Rosser Theorem 39

BUn) is. It turns out that both n and Bn are CR and the interested reader
is referred to Barendregt for more detail.

Newman’s Lemma

An alternative strategy for proving that a notion of reduction is CR uses
Newman’s Lemma. First we make a few more definitions:

Definition 3.19 A binary relation, >, on a set X satisfies the weak dia-
mond property if:

VM, Ml,Mz[M DM, AMPB M= 3M3[M1 > M3z A My bE M3]]
where DX is the reflexive, transitive closure of .

Compare this to the diamond property; here the reductions diverge in
one step but there may be many (or zero) steps for them to re-converge.
The converging reduction sequences need not have the same number of
steps. The reduction relation —3 does satisfy the weak diamond property.

Definition 3.20 R is Weakly Church—Rosser (WCR) if =g satisfies the
weak diamond property.

Definition 3.21 For M € A:
(1) M R-strongly normalises (R-SN(M)) if there is no infinite R-reduction
starting with M.
(2) M is R-infinite (R-oo(M)) if not R-SN(M).
(3) R is Strongly Normalising (SN) if:
VM € A.R-SN(M)

Examples of (1) for g are:

Az.z and (Az.zz)((Az.z)(Az.T))
But:
B-oo((Az.zz)(Az.zz)) and B-oo((Az.y)((Az.zz)(Az.2T)))

The second example is instructive since it shows that terms can be
B-infinite but have normal forms. Because of the existence of these latter
examples, it is clear that 3 is not SN and thus the following is not applicable
(however it will be useful for the simple typed A-calculus). Newman'’s
Lemma is stated as follows:

Lemma 3.22 (Newman’s Lemma)
SNAWCR=CR

The proof of this lemma uses the notion of ambiguity: we say that a
term is ambiguous if it R-reduces to two distinct R-nfs. To show CR, it

40 Reduction

is sufficient to show that every term has a unique normal form, because of
the SN property.

Proof [of Newman’s Lemma]j

By SN every term R-reduces to an R-nf. Suppose a term M is ambiguous,
ie. M—»rM, and M—»grM, with M;, M, distinct R-nfs. Now consider
M’ such that M —r M’, there are two cases:

(i) M -p M'—»grM,;: then there is also a term M" such that M —p
M"—gpMs> and by WCR there is a term M’ such that M'—»zM"’ and
M"—»pM'". From our initial observation, there is a normal form M3 to
which M"” reduces and thus M’'—»rM; and M'—»pMs.

(ii) there is no divergent reduction from M: in this case the ambiguity of
M arises from a divergence after the initial reduction M —p M’.

In either case we have that for every ambiguous term M, there is another
ambiguous term M’ such that M —r M'. This situation is prohibited by
SN — therefore there are no ambiguous terms, i.e. every term has a unique
normal form.

a

Thus the alternative strategy involves showing SN and WCR separately
and then inferring CR.

Reduction Graphs

We close this section by introducing the notion of reduction graphs; a useful
pedagogical tool:

Definition 3.23 The R-reduction graph of a term M, written Gr(M), is
the set:

{NeA|M—»rN}
directed by —p.

If several redexes give rise to My —r M, then that many directed arcs
connect My to M;.

Example 3.24 Gg(WWW) with W = A\zy.zyy is:

WWWwW (Ay.yyy)W

[|

Ay Wyy)W — (Ay.(Az.yzz)y)W

and Gg((Az.zz)(Az.2Z)) is:

3.4. Delta Rules 41

(Az.zz)(Az.zT)

Notice that the fact that M has a 8-nf does not imply that Gg(M) is
finite; just consider the term:

M = (Azy.y)(wsws) with wg = A\z.z22
then M has 3-nf \y.y but:

Exercise 3.3.2 Draw Gg(M).

Neither does the fact that Gg(M) is finite imply that M has a B-nf;
just consider the second graph above. However, we do have the following
result, which relates graphs and the notion of strong normalisation:

Proposition 3.25 3-SN(M) = Gg(M) is finite and M has a B-nf.

Proof Since we are dealing with finite terms, each term contains a finite
number of redexes and thus the reduction graph is finitely branching. Since
we have 3-SN(M), we have that there are no infinite paths through Gg(M).
Thus, by Koénig’s Lemma, Gg(M) is finite. Moreover the absence of infinite
paths implies that the graph is acyclic; thus there must be a terminal node,
the B-nf of M. O

However the converse does not hold; just consider

Gs((Aeyy)(Ae.z2) (Ae.2a)))

3.4 Delta Rules

The pure, type free A-calculus is an extremely powerful formalism. Indeed,
all computable functions are representable as A-terms as we shall see later.
Such representations use clever coding tricks. For example a possible coding
of integers is equivalent to using the data type specification:

num = Zero | Succ num

so that 5 (say) is represented as Succ(Succ(Suce(Succ(Succ Zero)))) and
the arithmetic operations are coded up as recursive functions, for example:

plus(m,Zero) =m
plus(m, Succ(n)) = plus(Succ(m),n)

An alternative to this approach is to add constants to the notation along
with associated reduction rules (so-called 4-rules).

42 Reduction

If 4 is some constant, we write Ad to represent the class of terms con-
structed from the usual alphabet plus §. A d-rule is then of the form3:

M — E(M)
An example, introduced by Church, is:

d¢cMN = \zy.z if M,N € Béc-nf',M =N
dcMN = Azy.y if M,N € Béc-nf’, M # N

where Bdc-nf° are closed 36c normal forms.

Several remarks are in order. First, as we shall see later, Azy.x is
a standard encoding for true and Azy.y is a standard encoding for false.
Thus d¢ is effectively a predicate which determines if two closed 8¢ normal
forms are equivalent. It is important that the é-rules should specify closed
terms to avoid inconsistency:

(Azy.6czy)Il = 6cI1 — Azy.x

but if ¢ can be applied to open terms then we also have:

(Azy.bczy)Il — (Azyzw.w)Il — Azw.w
Now,

AZY.T = Azw.w
= (Azy.z)MN = (Azw.w)MN
=>M=N

for arbitrary M, N. For reasons that we will return to below, it is also
important that ¢ operates on normal forms.

However, caution is required. Even quite innocuous looking rules can
disturb the Church-Rosser property. This is illustrated by the following
example. We consider Acons, head, tail with the rules (collectively called
SP for “surjective pairing”):

head(cons M, M,) — M,
tail(cons My My) — M,
cons(headM)(tailM) - M

Klop shows that BSP is not CR. We will content ourselves with an informal
treatment of the proof since it requires some new theory which is beyond
the scope of the current work. The problem can be illustrated in a simpler
theory involving constants § and € and the rule:

MM — €

We can define A-terms which have the following properties:

3We use the notation F(M) to denote some arbitrary expression involving M.

3.4. Delta Rules 43

Cz — é6z(Cx)

A—>»CA

Both terms make use of fixed point combinators but not the particular one
that we have used in the foregoing. The reader is encouraged to return to
this point after reading Chapter 6. Then:

A—» CA —» §A(CA) —» 6(CA)(CA) — €
but also:
A—»CA—» C(CA) —» C(6A(CA)) —» C(6(CA)(CA)) — Ce

and now it can be shown there is no reduction sequence from Ce which
results in €.

So how can we be sure that we will not disturb the CR property?
Fortunately, there is a theorem, due to Mitschke, which gives conditions
under which CR is preserved and we now present this. We start by defining
what it means for two binary relations to commute:

Definition 3.26 Let >; and o be binary relations on X. >; and D2
commute if:

Vz,z1,22 € X[z D121 A2 Boxze = I3 € X[11 D223 A 22 D>y 73]]

Notice that b = <© if and only if B commutes with itself (which follows
from the definition). An important (useful) lemma which makes use of this
notion of commutativity is due to Hindley and Rosen:

Lemma 3.27 (Hindley—Rosen Lemma)
(i) Let >, and B2 be binary relations on X. Suppose
(1) >1 |-=<> and Do l=<>
(2) >1 commutes with Do
then (B>1 U B2)* | O (where (1 U D2a)* is the transitive closure of the
combined relation).
(ii) Let Ry and Rz be two notions of reduction. Suppose
(1) Ry and Ry are CR
(2)—gr, commutes with —»pg,
then Ry U Ry is CR.

Proof
(i) Consider the following diagram:

44 Reduction

1 2 2
2! 2 21 21
12 2
1 1 1 1!
1y 2 20

...............................

the numbers indicate which relation is used in the step. All of the dotted
squares can be filled appealing to either (1) or (2).
(ii) Follows from (i), since —»g, g, is (—*g, U —>Rg,)* O

We can now state Mitschke’s theorem:

Theorem 3.28 Let § be some constant. Let Ry, ..., R, be n-ary relations
on Ad and let Ny,..., Ny be arbitrary terms in Ad. Introduce the notion
of reduction § by the following rules:

8M — Ny if Ry (M)

6M — Ny, if R (M)

Call this collection of rules dpr. Then By is CR provided that:
(1) The R; are disjoint
(2) The R; are closed under 36 M- -reduction and substitution, that is:

R;(M) = R; (M') if M—»ggMM' or M is a substitution instance of M.

Not surprisingly, the proof of this theorem is quite complex! We will present
a sketch of the main steps:

Proof
Sketch:

Step 1

Show that dps is CR by showing that the reflexive closure of —5,, = <©; this
is a straightforward case analysis (2 cases: disjoint redexes and overlapping
redexes) which uses the fact that the R; are closed under §)s-reduction.

Step 2

Show that 8 and d)s commute by considering the relative positions of the
B and dps redexes. For example, suppose we perform a (3-step first, then:
(1) if the B-redex is inside the dps-redex then, since the R; are closed under
B-reduction, the ds-redex is preserved.

(2) if the ps-redex is in the body of the function subterm of the (-redex
then, since the R; are closed under substitution, the §)s-redex is preserved.

3.5. Residuals 45

(3) if the dpr-redex is a subterm of the argument in the S-redex then it
may be duplicated.

(4) if the redexes are disjoint then the dps-redex is trivially preserved.
Similar considerations for doing the ds-redex first give:

VM, Ml,M2[M —3 Mi ANM —>u My = 3M3[M1—»5MM3 A Mg—))gM3]]

and then commutativity of —#3 and —»;,, follows by a diagram chase.

Step 3
Thus Béy is CR by the lemma of Hindley—Rosen (ii) a

Exercise 3.4.1 Complete this proof.
So how does the rule:
OMM — €

fall foul of the requirements of Mitschke’s theorem? First, notice that we
should more correctly write the rule in the following way:

OMN —weif M=N

Now the predicate is not closed under (dé-reduction; we can do different
amounts of reduction to the two arguments and lose syntactic equality. As
a final note, Church’s rules do pass the test because of the insistence that
M and N are 86c normal forms.

3.5 Residuals

In the following we will often want to trace a redex through a reduction
sequence. Of course the redex, or more generally subterm, may be trans-
formed through the sequence. For example, in the following (contrived)
sequence:

(Azy.(A\zw.zz)y) M N
= (Ay.(Azw.Mz)y)N
=g (Azw.M2z)N

- AMw.MN

the underlined redexes are clearly related though different; notice that there
is no remnant of the redex in the final term (it was reduced in the preceding
line). We formalise this by introducing the notion of descendants of a
subterm; we reserve the name residual for the descendant of a redex. We
follow Klop and Lévy by introducing these notions via a labelled variant
of the A-calculus.

Terms in the labelled A-calculus are words over the usual alphabet plus
a label set, A (for example A might be Z>¢ - the positive integers):

46 Reduction

Definition 3.29
A 4 is the set of labelled \-terms defined inductively by:

(1) z* € As,a € A, = a variable
(2) If M € Ay and a € A then (Az.M)* € Ay
(3) If M,N € Ay and a € A then (MN)* € Ay

For example:
((Az.(z'2?)°)(y°2%)")®

We can develop a theory for this calculus which closely mirrors A; rather
than do that we will just define the rule (3) and associated substitution
operation and leave the reader to fill in the remaining details. Since we can
view labels as colours which are attached to terms and which have no effect
on computation (but are preserved by reduction) the theory is similar to
our earlier development. The new rule () is:

((A\z.A4)°B)® = Az := B]

Notice that A and B are labelled terms and their labels are preserved
but the labels ¢ and b disappear. This is reasonable since a labels the
function part of the redex and b labels the redex; neither of these plays any
further réle in the reduction sequence once the redex has been reduced.
The substitution operation has to respect labels:

Definition 3.30

z%[z := B] =B
y*[z := B] = y°,y distinct from x
(MN)%[z := B] = (M[z:= B|N[z := B])*

(A\y.M)?%[z := B] = (\y.-M[z := B])*

For example, corresponding to the unlabelled term:

(((Az.(Ay-g) ((Az.z7)(Az.22))) (A2.2)Z))

we have the following labelled term and reduction sequence:
(((/\:L'.(/\y.yl)2)3 ((/\:I:.:l:4:1:5)6(/\:l:.:z:7:z:8)9)10)11 ((/\:B.:I:12)13214)15)16
=5 (Oy.yh)2((Az.212)13214)15)16
g (Az.z12)13714)15
-3 214

Definition 3.31 Let M be an unlabelled A-term and A o label set. A
labelling is a function, I, mapping each subterm to a label. We call a
labelling initial if it labels distinct subterms with distinct labels.

For a reduction A, we have the labelled equivalent, A*:

A* : I(M) -2 J(N) for some labellings Z and J

3.6. Head Normal Forms 47

where we have used the superscript on the reduction arrow to indicate the
redex that is being reduced.

Definition 3.32 If Z(S) = J(T) for S € Sub(M) and T € Sub(N) then
T is a descendant of S. As already mentioned, the descendant of a redez
is called a residual and the redez that we contract at each stage has no
residuals.

3.6 Head Normal Forms

We now introduce an alternative form of normal form: head normal form.
Head normal forms play an important rdle in the theory and they are much
closer to the concept of “answer” employed in lazy functional programming
languages, as we shall see.

We start with some formal definitions:

Definition 3.33 M € A is a head normal form (hnf) if M is of the form:

A2y ... ZpnxMy... M, n,m2>0

In this case z is called the head variable.
IfM=Azxy...2,.(Ax.Mo)M,; ... M,, wheren > 0,m > 1 then the subterm
(Az.My)M; is called the head redex of M.

Some examples of head normal forms are:

o M
o \z.x
e \zy.x
e \zy.z((Az.2)y)
o \y.z
If
M -4 N
and A is the head redex of M, then we write:
M-y N

and we also write —»j for the many-step reduction relation.

Definition 3.34 If A and B are two redezes in an expression M and the
first occurrence of A in A is to the left of the first occurrence of A in B then
we say that A is to the left of B. If A is a redez in M and it is to the left
of all of the other redezes then A is the leftmost redex.

Notice that the head redex of a term is always the leftmost but not con-
versely; consider:

Azy.z((Az.2)y)

48 Reduction

this term is an hnf (i.e. it has no head redex!) and so the leftmost redex is
the internal redez:

(Az.2)y

(Note: a redex is internal if it is not a head redex).
Unlike normal forms, a term does not usually have a unique head normal
form. For example:

(Az.z(I1))z where I = A\z.x

has hnf’s
o z(II)
e and zI

However, since any term has only one head redex, every term which has an
hnf has a principal head normal form which is reached by reducing the head
redex at each stage until the head normal form is reached. The principal
head normal form of the example is z(II).

Head normal forms play a crucial réle in the Computability Theory
associated with the A-calculus. There must be some way of coding par-
tial functions — functions which are undefined for some elements in the
domain. Readers familiar with denotational semantics will have already
met this problem; in domain theory, partial functions are made into total
functions by adding an undefined element . (pronounced “bottom”) to
the co-domain. In the A-calculus, the solution is to use a class of terms to
represent the undefined element. The first attempt at solving this problem
involved equating all of the terms without normal form and then using some
canonical representative as the undefined element. However, this leads to
inconsistency because neither:

Az.zKQ where K = Azy.z and Q = (A\z.zz)(\z.2T)
nor:
Az.zSQY where S = Azyz.z2(yz2)
has an nf but it is easy to show that A+ (Az.2KQ = Az.zS?) is inconsistent:

Az.zKQ = Az.2SQ = (Az.2KQ)K = (Az.2SQ)K
= KKQ = KSQ
= K=S

but we saw in Chapter 2 that K#S . Instead, we equate all terms which do
not have a head normal form (this is a proper sub-class of the class of terms
without nf); this leads to no inconsistency, a canonical representative is 2.

3.7. The Standardisation Theorem 49

Practical lazy functional programming systems even stop some way
short of hnf. Most lazy systems evaluate terms to weak head normal form.
A weak head normal form is a term of the form:

zMy... M, wheren>0
or
Ax. M

that is, lazy systems do not evaluate inside As. We will return to this issue
later when we consider the Lazy \-calculus.

3.7 The Standardisation Theorem

Definition 3.35 A reduction sequence:
o My =80 My =81 My »22 .

s a standard reduction if Vi.Vj < i.A; is not a residual of a redex to the
left of Aj relative to the given reduction from M; to M;.

An alternative description of a standard reduction is as follows: after
reduction of each redex R, all of the As to the left of R are marked indelibly;
no redex whose first A\ is marked can be further reduced.

If there is a standard reduction from some term M to some other term
N then we write M—»;N. Notice that any head reduction sequence is a
standard reduction sequence.

We have already defined an internal redex to be any redex which is not
a head redex. We write:

M—;N
if there is a reduction sequence:
M=M,—>% M -8 ... 81 M, =N

such that each of the A,; is an internal reduction in M;. Before we can
prove the Standardisation Theorem, we must state a result which allows
us to factor reductions into a sequence of head reductions followed by a
sequence of internal reductions. The proof of the following result can be
found in Barendregt’s book.

Proposition 3.36 M—»N = 3Z[M—»,Z—»;N]

The details of the proof use some additional theory which is beyond the
scope of this book; it relies on two observations:

o If M —; M'—»,N’, then there is an equivalent reduction sequence
M-—»,N—»;N'.

50 Reduction

e Any reduction sequence M —»N is of the form
M—))hMl—)),;Mg—))hM3—))i oo N

The intuition behind the first observation is the difference between call-
by-value and call-by-name: an internal redex is an argument, so if we
pre-evaluate it we only need do it once, if we don’t pre-evaluate it then it
may be duplicated. Since any reduction is either a head reduction or an
internal reduction, the second observation is straightforward.

We then have the Standardisation Theorem:

Theorem 3.37 (The Standardisation Theorem)

M—->N => M—»,N

Proof
We prove this result by induction on || NV ||, the number of symbols in N.
By the previous result, we have:

3Z[M—»pZ—»;N]
and there are two cases to consider:

Case 1
N is a variable, say z. Then Z = z and so M—»,N and since a head
reduction is standard, we are done.

Case 2

N=MXxg...2,.NogN1...N, withn+m >0

Then Z must be of the form Azg...2n,.Zp ... Zy with Z;—N; for 0 <1 <
m.

By the IH Z;—»,N; and the result follows. a

Thus we are able to answer the second question posed in the Introduc-
tion: since we know from the Corollary to the Church—Rosser Theorem
that if M has a normal form N then M—»N, then by the Standardisa-
tion Theorem we know that a standard reduction sequence will lead to the
normal form.

3.8 Summary

In this chapter we have studied various aspects of reduction. We have
seen how this concept is related to the usual notion of evaluation used in
functional languages. The two key results are the Church—-Rosser theorem
for B8 reduction, which guarantees determinacy of the evaluation process,
and the Standardisation Theorem which identifies a canonical evaluation
order for the reduction process. We have also seen how to extend the
calculus with constants.

4

Combinatory Logic

Overview

The A-calculus was invented in a historical period which was very active
for Mathematical Logic. Inspired by Hilbert, many mathematicians were
trying to capture the notion of effective calculability. Within the space of
ten years the A-calculus, Recursive Function Theory and Turing Machines
were all invented. This chapter presents an equally important calculus from
that era: Combinatory Logic. We start by introducing the notation and
basic theory. All of the theory that we have developed for the A-calculus
could be recast for Combinatory Logic. Rather than do that we briefly
summarise the key results. In the second section we consider the relation-
ship between Combinatory Logic and the A-calculus in more detail. The
final topic in this chapter concerns the notion of a basis: the identification
of a set of (A\-)terms from which all of the terms can be generated using
only application.

4.1 Combinatory Logic

One of the fundamental properties of the A-calculus is combinatory com-
pleteness:

Proposition 4.1 Given an arbitrary A-term containing some free vari-
ables, denoted by M(Z)!, it is possible to construct a new term F with the
property that:

Fi = M(%)

This property is called combinatory completeness. There is an obvious
candidate for F, i.e.:

AZ.M

However, a more remarkable result is that such an F' can be constructed
using the two combinators S and K and application (i.e. there is no need
for abstraction). The theory which develops this latter approach is Com-
binatory Logic.

1This notation should be read as FV (M) is a subset of Z.

52 Combinatory Logic

Combinatory Logic was invented by Schonfinkel in 1924 and indepen-
dently by Curry in 1930. The notation that we use in our presentation of
the theory of combinators is due to Curry. The theory of combinators pre-
dates the earliest work on the A-calculus which was introduced by Church
in 1932. Our emphasis on the A-calculus has been motivated by the fact
that the A-notation is a “higher-level” notation than combinators; combi-
natory terms look like assembly language programs! This last observation
is reflected in the use that Computer Science has made of the two theories:
the A-calculus is often described as the canonical functional programming
language but, while no high-level languages employ a notation based on
the (low-level /fine grain) combinators of Combinatory Logic, many of the
most successful implementations are based on combinator reduction. From
a language implementation point of view, one of the attractions of combi-
nator terms is that there are no bound variables and, consequently, the role
of the environment (cf. Chapter 8) is diminished: this has important impli-
cations for distributed implementations in which access to an environment
can be a major bottleneck.

The class of combinator terms is defined as follows:

Definition 4.2 The class of CL-terms are words over the alphabet:

T,Y,2,... variables
S, K constants
;) parentheses

The class C of CL-terms is the least class satisfying the following:
(1) z € C,z a variable
(2) SecC
(3) KecC
(4) if A,B € C then (AB) €C

Thus example terms in C are:
(SK) SKK S(KS)K

Notice that adopting the convention that application is left associative al-
lows us to omit some parentheses in the second two examples. All variables
appearing in a CL-term are free; consequently:

Plz = Q]

denotes the substitution of Q for all occurrences of z in P. P is closed
if and only if FV(P) = @; C°(= {P € C | P closed}) is the set of closed
terms.

CL-formulae are of the form:

P=Qwith P,QeC

4.1. Combinatory Logic 53

The theory is defined by the following axioms and rules:
KPQ = P

SPQR = PR(QR)

P =P
P=qQ
Q=P
P=Q Q=R
P=R
P=P
PR=PR
P=FP
RP = RP’
Lemma 4.3 CLF SKKA=A
Proof
SKKA=KA(KA)=A
The result follows by the transitivity of =. O

Motivated by this result, we define I = SKK, then I is the identity
combinator. Notice that this choice of definition for I is slightly arbitrary,
since we have the following:

Lemma 4.4 VM,N € C.CL}+ (SKM)N =N

Proof
SKMN =KN(MN)
=N
a
Exercise 4.1.1
1. Define B = S(KS)K. Show that CL+ BMNP = M(NP). B is the

composition operator.]
2. Define C = S(BS(BKS))(KK). Show that CLF CMNP = MPN.

Using these new combinators, we can state and prove a Fixed Point
Theorem for Combinatory Logic:

Theorem 4.5 (The Fixed Point Theorem)
VFeC3XelCFX=X

54 Combinatory Logic

Proof
Let W =BF(SII) and X = WW.
Then:

X=WWwW
BF(SII)W
F(SIIW)
= F(IW(IW))
= F(WW)
=FX

O

We have seen how the definition of the fixed point combinator Y can be
derived from the proof of the Fixed Point Theorem in A; the corresponding
CL-term is:

Y = S(CB(SII))(CB(SII))
Exercise 4.1.2 Verify that the CL-term Y is a fized point combinator,
i.e. YF=F(YF).

The definitions of B, C, I and Y seem to work but how did the author
(or someone else!) decide that they were the appropriate definitions to
use? We will return to this question in the next section, where we will
study the relationship between the A-calculus and Combinatory Logic. In
preparation for this, we introduce a pseudo A-abstraction operator, *:

Mz =1
Mz.P =KP, ifz g FV(P)
A*z.PQ = S(*z.P)(*z.Q)

In the following we will abuse notation and write A*zy=. ... for:
Az.(ANy.(Az....))
It is possible to demonstrate that this is a good definition of abstraction;
we do this by presenting some of the properties of A*:
Lemma 4.6
FV(*z.P) = FV(P) — {z}

So the abstraction operator removes free variables; notice that it does not

bind occurrences of x in quite the same way as A, since x will not occur at
all in *z.P.

Proof
(induction on the structure of P)
P=z: FV(*z.z) = FV(I) =0 = FV(z) — {z}

z ¢ FV(P): FV()*z.P) = FV(KP) = FV(P)

4.1. Combinatory Logic 55

P=MN:
FV(*z.MN) = FV(S(*z.M)(*z.N))
= (FV(M) — {z}) U (FV(N) - {z})
= FV(P) — {z}

Lemma 4.7
CLF (A*z.P)z =P

Abstracting a variable and then applying the abstraction to the variable is
convertible with the original term.

Proof
(induction on the structure of P) a

Exercise 4.1.3 Complete this proof
Lemma 4.8
CLF (A*z.P)Q = P[z := Q]

Compare with the (B-conversion aziom of A.

Proof
(induction on the structure of P)
P=z: (ANz.2)Q =1Q =Q = Pz := Q)]

z € FV(P): (*2.P)Q =KPQ = P = Pz := Q]

P=MN:
(A*z.MN)Q = S(*z.M)(A*z.N)Q
= (AMz.M)Q((A*z.N)Q)
= M|z := Q]N[z := Q] by IH twice
= Plz := Q]
(An alternative proof of this result may be found in Barendregt) O
Lemma 4.9 If x is distinct from y then (A*z.P)[y := Q] = M*z.P[y := Q].
Proof (induction on the structure of P) a

Exercise 4.1.4 Complete this proof

The condition that z and y be distinct in Lemma 4.9 is essential:

(M zy.z)yQ # z[z :=y][y := Q]

This motivates the adoption of a variable convention for CL. The con-
vention is basically the same as that used for the A-calculus but, while
we had to work with equivalence classes of a-congruent terms there, here
a-congruent terms are identical:

96 Combinatory Logic

Lemma 4.10 Ify &€ FV(P) then A*z.P = A*y.P[z := y]

Proof
(induction on the structure of P)
P=z: Nz.z=1= My.z[z :=y]
z & FV(P): A*z.P = KP = A*y.P = *y.P[z := y]
P=MN:
(A*z.MN) = S(A*z.M)(A*z.N)
= S(A\'y.M[z :=y])(*y.N[z := y])
by IH twice
= My.M[z := y|N[z := 9]
= Ny.(MN)[z :=y]
O

The theory CL describes intensional equality between terms (recall the
discussion of this issue for A); to capture extensional equality, we add the
following rule (to get the theory CL + ext):

Pz =Pz
P=P
The addition of this rule gives the theory a number of new (useful) prop-
erties:
(1) CL+ ext+F K = \zy.x
(2) CL+extlt S = Azyz.zz(yz)
(3) CL + ext is closed under the rule:

where z ¢ FV(PP') (ext)

P=Q
A zT.P = Az.Q
(recall the weak extensionality rule, &, of A)
Lemma 4.11
CL+extFK=M\zy.x
Proof

Mzyz =Nz Kz = S(\'z.K)(V\'z.2) = S(KK)I

which is a normal form CL-term distinct from K; however, using ext allows
the formula to be proved, since:

S(KK)Izy = KKz(Iz)y
= K(Iz)y
=1Iz
=z
= Kzy

4.1. Combinatory Logic 57

The second property is proved in a similar way.

Exercise 4.1.5 1. What is the CL-term corresponding to A*zyz.xz(yz)?
2. Verify that CL + ext - S = A*zyz.z2(yz2)

The proof of the third property is as follows:

Lemma 4.12 CL + ext is closed under the rule:

P=Q
A*z.P = A*z.QQ
Proof
Suppose P = Q. From Lemma 4.7 above, P = (A*z.P)z and Q =
(A*z.Q)z.

Therefore (A*z.P)z = (M*z.Q)z but, since z ¢ FV(A*z.P) and =z ¢
FV(A*z.Q) by Lemma 4.6, then by ext:

AN'z.P=)N2z.Q
O

We now turn to reduction in Combinatory Logic. There are two notions
of reduction for Combinatory Logic. The notion of weak reduction, w, is
defined in the expected way:

w = {(KMN,M)| M,N €C}U{(SMNP, MP(NP))| M,N,P € C}

The other notion, strong reduction, has a rather complicated definition and
we will not consider it further except to note that it is equivalent to [n-
reduction in the A-calculus (which has a rather straightforward definition!).
From w we can define —,,, —#,, and =,, as in Chapter 3. —»,, is rightly
called “weak” reduction because it does not go “as far as” B-reduction; for
example SK is a w-nf but the corresponding A-term, (Azyz.zz(yz))(Azy.z),
is not a B-nf. Otherwise, we have results for w which are similar to 3:

o M=, NoCL+-FM=N
e wis CR

The Church-Rosser Theorem for Combinatory Logic is formally stated
as follows:

Theorem 4.13 (Church—Rosser)
(i) If CL+- M =N then3Z € CM—»,,Z and N—,,Z
(ii) f CL+- M = N and N is a w-nf then M—», N

The definition of the weak-reduction graph of a CL-term M, G, (M),
is analogous to the definition of reduction graphs for A-terms.

98 Combinatory Logic

4.2 Combinatory Logic and the A-calculus

We now turn to a more detailed consideration of the relationship between
Combinatory Logic and the A-calculus. We start by providing translations
between CL-terms and A-terms.

Definition 4.14

I W C—A
I =
K = \zy.z
Sa = Azyz.z2(yz)
(MN))x = M)\N,

-CL : A-C
ICL =z
(MN)cL = McLNcL

(A\z.M)cL = Az.Mcy,

Given our earlier remarks about the use of combinators as machine code,
notice that ¢ is a prototype compiler for A-terms. As an example, con-
sider:

Example 4.15

(Azy.zyy)eL = A z.*y.zyy

= Mz.S(A*y.zy)(*y.y)

= *2.S(S(*y.z) (A *y.y))I
2*z.S(S(Kz)II

S(S(KS)(S(S(KS)(S(KK)I)) (KI)))(KI)
Exercise 4.2.1 Fill in the missing steps (...).

The compiler is not very efficient! The size of the combinator code grows
exponentially in the number of arguments of the original term. However,
David Turner has successfully used an optimised and extended version of
—cL to compile Miranda?; his compiler is very sophisticated but there is
quite an improvement just using optimisations based on the following four
equivalences:

1) S(KM)I=M
2) S(KM)(KN) = K(MN)
3) S(KM)N =BMN

(
(
(
(4) SM(KN)=CMN

2Miranda is a trademark of Research Software Ltd.

4.2. Combinatory Logic and the A-calculus 59

Since the left hand sides of these equivalences overlap (for example any
term which matches the second will also match the third and fourth) it is
important that the rules are applied (exhaustively) in order. The rules are
justified because if we replace = by =, then each of the resultant formulae
is a theorem in CL + ext. For example, consider:

S(KM)Iz where z is a new variable (i.e. z € FV(M))
= (KM)z(Iz)

= M(Iz)

= Mz

and therefore:
S(KM)I = M by ext
Exercise 4.2.2 Justify the other three rules in a similar way

We now return to Example 4.15 and “re-compile” it using the optimisations:

2*z.S(S(Kz)I)I = A*z.Szl
= S(A*z.Sz)(A*z.I)
= S(S(A*z.S)(A*z.z))(KI)
= S(S(KS)I)(KI)
= SS(KI)
= CSI

a considerable improvement!

We now have a more rigorous way of generating the definitions for B,
C and Y which were introduced earlier. For example for B (missing a few
steps which the reader should fill in):

(Azyz.z(yz))oL = AN*zyz.z(yz)
= Azy.S(Kz)(S(Ky)I)
= A zy.S(Kz)y
= A*z.S(K(S(Kz)))I
= A*z.S(Kxz)
= S(KS)(S(KK)I)
= S(KS)K

Exercise 4.2.3
(a) use the unoptimised _c1 translation to translate Azyz.zzy
(b) repeat (a) using the first three optimisations from above.

We now return to a more formal treatment of the relationship between the
two theories. First we have the following result:

Proposition 4.16
CLFP=Q=AF P, =0Q\

60 Combinatory Logic

Proof
(induction on the length of the proof of P = Q)
(i) P =SABC and Q = AC(BC):

P,\ = S,\A,\B,\C)‘
= (Mzyz.zz(yz))ArB\C\
= A\Ci(B\C))
= Q)

(ii) P = KAB and Q = A: similar to (i).
(iii) P = Q: trivial
(iv) P = Q because @ = P: trivial

(v) P=Q because P=R and R = Q:
By IH P, = R) and Ry = @ and thus P, = @, by the transitivity of
convertibility.

(vi P=MZ and Q = NZ and P = @ because M = N:
P, = M),Z), = N)Z, by IH and the corresponding rule of A = Q>

(vii) P=ZM and Q = ZN and P = @ because M = N: similar to (vi) O

However the converse is not true: A+ P = @ does not imply CL + Ppy =
Qcr. This is because equality in CL is equivalent to w-convertibility;
terms in w-nf are distinguished whereas the equivalent A-terms may be
(B-)convertible. An example is the formula SK = KI; the formula is a
theorem of the A-calculus but not of Combinatory Logic. Curry showed
that by adding five extra axioms to CL the resulting theory is equivalent
to the A-calculus. Curry’s axioms are:

o K = S(S(KS)(S(KK)K))(K(SKK))

e S =S(S(KS)(S(K(S(KS)))(S(K(S(KK)))S)))(K(K(SKK)))

o S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK)

o S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))

e S(K(S(KS)))(S(KS)(S(KS))) =
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S)))(KS)

We will not attempt to justify these axioms here but encourage the inter-
ested reader to consult Chapter 7 of Barendregt’s book.

Finally, we remark that the translation schemes do not preserve re-
duction or normal forms. For example, define w = SII (which is just
(Az.zz)cr) and define P = S(Kw)(Kw); then P is a w-nf but P, is con-
vertible with Az.Q2 which is reducible and does not even have a normal

4.3. Bases 61

form3. A second example is:

AzII =g Az.d
but:
S(KI)(KI)

does not weak reduce to KI.

4.3 Bases

Definition 4.17 Suppose that X is a subset of A. The set of terms gen-
erated by X, written X, is the least set Y such that:

1) XCY

(2) M,NeY = (MN)eY
Thus X+ contains X and is closed under application.
Definition 4.18 If A is a set of A-terms, then X (also a set of A-terms)
is a basis for A if:

VM eAIN e Xt N=M

X is called a basis if X is a basis for A°.
Proposition 4.19 The A-terms corresponding to K and S form a basis:

Proof
First we note that M¢cr x» = M, we will prove this result (in a slightly
different context) in Chapter 5.

Clearly if P is a closed CL-term, then Py € {K,S}*.

Now suppose that M is a closed A-term. Then M is a closed CL-term
and hence Mcy,» € {K,S}™. O

We can actually make the stronger statement:
VM € A°3N € {K,S}t.N>»M

It is interesting (but maybe not very useful) to note that there is actually
a one element basis consisting of the A-term:

X = Xz.zKSK
This is a basis since we have:
K=XXX
S =X(XX)

In justification of this last statement, we have:

3There is a good correspondence between w-nfs and the weak head normal forms
used in lazy evaluation. Az.2 is a whnf.

62 Combinatory Logic

XXX = XKSKX
= KKSKSKX
= KKSKX
= KKX
=K

Exercise 4.3.1 Give a similar justification for the statement about S.

4.4 Summary

In this chapter, we have presented a new theory CL. Combinatory Logic
was introduced to fulfil the same role as the A-calculus. The notions that
we have studied in the preceding chapters are equally applicable to Com-
binatory Logic; since we have studied these in detail for the A-calculus
we have merely sketched them in this chapter. We have investigated the
relationship between the two theories; as part of this we have seen a proto-
type compiler for functional languages to combinatory code. We have seen
that equality in CL is weaker than (-convertibility. The notion of weak
reduction appears to correspond well with lazy reduction. We concluded
this chapter by introducing the notion of a basis — a generating set for
closed A-terms; remarkably there is a two-element basis which consists of
the two A-terms: Azyz.zz(yz) and Azy.xz — all closed A-terms can be con-
structed from these two terms using application. Even more remarkably,
every closed A-term can be constructed by self-application of the term:

Az.z(Azy.xz)(Azyz.z2(yz))(Azy.T)

S

Semantics

Overview

We now make a brief excursion into the model theory of the A-calculus. We
start by abstracting the common properties of models. A detailed study
would quickly take us into the realms of domain theory and out of the scope
of this book. However, to make the material more concrete, we do consider
two model constructions. The first is the term models. We also introduce
Bo6hm trees and show how a model can be constructed from them.

5.1 Models

The purpose of a model is to give a semantics for terms. The objective
is to identify each term with an element of some mathematical structure,
normally a set or a set with additional structure (e.g. a complete partial
order); the underlying theory of the mathematical structure then becomes
available as a basis for reasoning about the terms of our language and their
inter-relationships.

For the propositional calculus, the “standard” model interprets wif by
truth values. A model is a triple:

M = (V, not, or)

where the first component is a set, and the other two are operations on the
set (not is unary, the other is binary). The intention is, of course, that
these operations will be used to interpret the propositional connectives.

The meanings of wffs are given via an interpretation which maps terms
to elements of the model. Formally the type of an interpretation for the
propositional calculus is given by:

[JM-: W — (Var - V) >V

The second parameter is an enwvironment which maps variables to ob-
jects in the model®. Interpretations are defined inductively according to the
structure of wifs; the reader who is already familiar with denotational se-
mantics will recognise that interpretations are precisely the semantic equa-

1In the programming literature, environments are variously called association lists,
valuations, environments, Barendregt uses “valuations” but we have chosen to main-
tain consistency with the (denotational) semantics literature and use “environments”.

64 Semantics

tions used there. For the propositional calculus (refer to Chapter 2 for the
syntax of the propositional calculus), we have:

[21M e = p(p)
[-A[Mp = not([A]"p)
[(AvB)]*p = ([A]Mp) or ([B]"p)
If we take M as:
)% = {false, true}
not false = true
not true = false
falseor false = false
falseor true = true
trueor false = true
true or true = true

the interpretation gives the expected truth values to wif.

For the type-free A-calculus, we are unable to give a (naive) set-theoretic
model. The problem is that terms serve as both functions and arguments;
in particular, a term can be applied to itself — recall 2 (see Chapter 3).
Consequently, a model of the type-free A-calculus requires a structure which
is isomorphic (has the same structure) as its own function space, i.e. we
have to “solve” the following:

D=D—D

In set theory, the only solutions are trivial (D is a singleton) which follows
from consideration of the cardinalities of the sets involved. Other than
the term models (see below), there were no models of the type-free \-
calculus until the late 1960s. Dana Scott realised that the isomorphism
could be solved by imposing a topology on the sets and then restricting the
function space to continuous functions with respect to the topology. This
fundamental contribution has become known as Scott’s thesis:

Scott’s Thesis: All computable functions are continuous.

which has a similar status in domain theory to the Church—Turing Thesis.
Scott’s original work used complete lattices, his first model was called D,
and later he published the graph model Pw. Later work in this area has
tended to use sub-categories of complete partial orders?.

A detailed treatment of any particular model, other than the term mod-
els, takes us a little far from our main theme; the interested reader is re-
ferred to any of the excellent books on this subject which are cited in the

20ne motivation for this switch is that there is often no good computational inter-
pretation for the Top elements which appear in the complete lattice approach.

5.1. Models 65

bibliography. Instead, we will give an abstract characterisation of a model
and sketch the construction of the Béhm Tree model. We will introduce
two classes of models:
e A-algebras which satisfy all provable equations of the A-calculus
e \-models which satisfy all provable equations of the A-calculus and
the axiom of weak extensionality:

Vz.(M = N) = \z.M = Az.N

5.1.1 \-algebras

We will start with a very simple structure and successively refine it. At the
very minimum, we will require a set of objects and an operation on these
objects which will be used to give a semantics to application:

Definition 5.1 (Applicative Structure)

M = (X, o) is an applicative structure if e is a binary operation on X (i.e.
o: X xX > X). -

M is said to be extensional if, in addition, for a,b € X, one has:

(Vz € X.aez=bez)=>a=1b
We will usually elide the e thus:
ar=aez

The class of terms over an applicative structure 7 (M) are words over the
alphabet:

v9,v1,... variables
Ca,Chby ... constants denoting objects in X
(,) parentheses

Definition 5.2 (Terms)
T (M) is the least class satisfying the following:

(1) v € T(M), v a variable
(2) c,t € TM),ae X
(3) if A,B € T(M) then (AB) € T (M)

Before we can give an interpretation to terms in 7 (M), we need another
definition. Terms can contain free variables and in order to decide what
such a term denotes, we must know the “value” of the free variables. In the
LISP meta-circular interpreter, this problem is solved by maintaining an
association list of (name,value) pairs. In the abstract machines of Chapter
8 the problem is solved by maintaining an environment. Equivalently, we
will use an environment function:

p : vartables - X

66 Semantics

An interpretation of A € T (M) in M under p — written [A]* but we will
omit p and the M-superscript when they are clear from the context — is
defined as follows:

)Y =p(v)

e}t =a
[(4B)1 = LA (1
We will write:
M,pEA=B
read “A = B is true in M under p” if:
[l = [B],"
(We write M = A = B and say “A = B is true in M” if

M,p = A= B for all p)
So much for the basic structure; we will now start to refine it. We make
the following definition:

Definition 5.3 (Combinatory Algebra)
A combinatory algebra is an applicative structure with two distinguished
elements:

M= (X,ek,s)
which satisfy:
kxy=1z
and
szyz = z2(yz)

A structure is non-trivial if its cardinality is greater than 1; a combi-
natory algebra is non-trivial if and only if k£ # s (recall the discussion of
consistency in Chapter 2). As Barendregt remarks, the use of the word “al-
gebra” is slightly misleading since combinatory algebras do not have many
algebraic properties, in particular:
non-trivial combinatory algebras are never commutative:

Define 1+ = skk, which behaves as an identity and suppose that the
algebra is commutative; then ¢k(= k) = k¢ and so:

a=kab=kiab=1b=0>5

for all a,b - this contradicts the non-triviality assumption!

non-trivial combinatory algebras are never associative:
Suppose the algebra is associative, then (ki)i = k(i¢)(= ki) and:

(ki)ia = ia = a and kia =1

5.1. Models 67

Thus a = 7 for all a — contradiction!

non-trivial combinatory algebras are never finite:
Since we can define an infinite sequence of distinct objects:

kh =k

kn+1 = kk,
Lemma 5.4 Foralln,1 <m <n+1 k,ys is incompatible with k..

Proof
Basis: Suppose that kk = k then kkiia = kiia and thus ¢ = a for all
a — contradiction!.

Inductive step: We consider two cases:

(i) m = 1 : Then k;+3 = k implies that k;y3ab = kab and thus
ki+1 = a for all @ — contradiction!

(ii) m > 1 : Then k;y3 = k,, implies k;y3a = kna and thus k1o =
k.n—1. But the latter two terms are incompatible by the ITH.

N a

non-trivial combinatory algebras are never recursive:
The problem of determining the equality of two objects in the algebra
is undecidable (see later).

A simple example of a combinatory algebra is the term model for combi-
natory logic. Recall that the = relation defined on CL-terms by the theory
CL is an equivalence and that it thus partitions C. The term model for
CL, denoted by T, is defined by:

T =<C/=,%[Slc1, [K]cL >
where

[MlcL = {N €C| M = N is a theorem in CL}

C/=={[M]cL | M e}

[M]cL e [N]eL = [MN]ce

Since CL is consistent, in particular S = K is not a theorem, 7 is a
non-trivial model.

Exercise 5.1.1 Prove the following result using structural induction.

For all closed terms M, for all environments p :
[M]7 = [M]ceL

An arbitrary applicative structure is capable of modelling application
of A-terms but we have no obvious way of representing abstraction terms.
In a combinatory algebra, it is possible to simulate abstraction and thus
combinatory algebras are candidate models for the A-calculus. However,

68 Semantics

we shall see later, that in an arbitrary combinatory algebra, some of the
equations we expect to be true fail to hold; this will force us to refine the
structure still further. But first, we remind the reader how to simulate ab-
straction. We start by extending the class of terms with three distinguished
constants, K and S, which denote &k and s respectively and I which denotes
sekek. For A € T(M) and variable z, we define the term A*z.A € T (M)
as in Chapter 4:

Definition 5.5
Nzx =1
AXz.P =KP,if P does not contain x
Az.PQ =S(*z.P)(*z.Q)

We have already seen that A* does capture the main properties of ab-
straction. We extend the class of A-terms, A, to A(M) which consist of the
A-terms built from variables and constants from M. We now define two
maps which establish a relationship between A(M) and the terms over M;
notice that these are similar to the maps defined in Chapter 4 except we
also deal with constants:

Definition 5.6 (_cr and -)

<L AM) = T(M)
IcL =
CcL =cC
(MN)cr = McLNcyL
(/\.’L‘.M)CL = /*:IJ.MCL

2 T(M) - A(M)

T =X

Ca =c

I, = A\r.2

Ky, =)yz

Sa = Azyz.z2(y2)
(AB)x = AxB»

Since we are mainly interested in A-terms, we will abuse notation and
write M when we should write M and use the turnstile, |=, for equality
between \-terms:

M,pE M =N = [Mc])' = [NeLl)!

MEM=N = [Mc]M = [Nor]M for all p

5.1. Models 69

Definition 5.7 (\-algebra)
A combinatory algebra is called a \-algebra if for all A,B € T(M):

/\FAA=BA=>M|=A=B

Not all combinatory algebras are A-algebras; for example in the term
model for combinatory logic:

MESKIDI=I
while:

(S(KDI)» = (A\zyz.z2(y2))((Azy.z)(Az.2))(Az.2)
= (Ayz.((Azy.z)(Az.2))2(y2)) (Az.T)
= Az.((Azy.z)(A\z.2))2((Az.2)2)
= Az.(Ay.(Az.7))z2((A\z.2)2)
= Az.(Az.z)((A\z.1)2)
= Az.(Az.z)2
= \T.Z
=1,

We now give a theorem which gives a slightly more useful characterisation
of A-algebras:

Theorem 5.8 Let M be a combinatory algebra, then M is a A-algebra iff:
VM,N € A(M)

I.AOFM=N=>MEM=N

2. M '= KA,CL =K and M |= SA,CL =S

Proof

(=)

First we prove, by an induction on the structure of M, that for all M €
A(M):

AFMeopr=M
e M a variable or constant, say z:
Tora = (TcL)r =zTr =2
e M an application, (PQ):
(PQ)cr,» = PeraQcr,x = PQcr,x by IH = PQ by IH

e M an abstraction, \z.P:
We require an induction over the body of the abstraction to show that:

(A*z.Pcp)x = Az.Por,a

70 Semantics

and the result follows from the outer IH. There are 3 cases:
(i) P==x

(/*:IJ.:L‘),\ = SAK}\K,\
= (Azyz.z2(y2))(A\zy.z)(Azy.T)
= (Az.(Azy.z)z((Azy.T)2))
= \z.T

(ii) P does not contain x

(KPcp)x = KaPer,» = (Ayz.y)Pcr,x = Az.Porp,»
(iii) P = QR
(S()*.’IJ.QCL)()*:B.RCL)),\ = SA()\:B.QCL,A)()\.’_I:.RCL,A) by IH twice
= Az.Qcr [z = z]ReL [z == 2]

= A2.QcraReora
= Az.(QR)cL,»

Now we return to the main proof:
(1)

AFM =N = AF Mcp,n» = Ncr,» by the above result
= M | M¢cr = Nc¢y since M is a A-algebra
= M | M = N by definition

(2) By the above result, we have that for all A € T(M):
A Axcr = A

and thus, since M is a A-algebra:
MEA cL=4

(<)
We start by proving that:

MEAycL=4
for A € T(M). We use induction over the structure of A:
e A=z or A =c: trivial
e A=K or A=S: follows from (2)

o A= PQ: (PQ))‘,CL = PA,CLQA,CL and the result follows by a double
application of the IH.

Now:

5.1. Models 71

AR Ay =By=> ME AyxcrL = Bxcr by (1)
= M |= A = B by the above result

5.1.2 A-models

Finally, we arrive at the most natural class of models: the A-models. Given
a combinatory algebra, we define:

1 = s(ki)

A good intuition is that 1 is a function application operator — it takes two
arguments and applies the first to the second.

Definition 5.9 (A-model)
A A-model is a A-algebra, M, in which the following axiom, due to Meyer
and Scott, holds:

Va,b,z € M.(az = bz) = la=1b

Below, we will give an alternative characterisation of A-models, but first
we need some results about 1:

Proposition 5.10 Let M be a combinatory algebra, then in M:

(i) 1ab = ab

If, moreover, M is a A-algebra then:

(i) 1 = \zy.zy

(iii) 1(\z.A) = \z.A for all A € T(M)

(iv)11=1

Proof

(i) — (iv) all follow by straightforward manipulation, we illustrate (ii):

1) = (A\zyz.z2(y2))((Azy.z)(A\z.2))
= (Myz.((Azy.z)(\z.2))2(y2))
(Ayz.(Ay.(Az.7))2(y2))

; (Ayz.(Az.z)(yz2))
= ,\yz.yz

Exercise 5.1.2 Complete the above proof.
A X-algebra is weakly extensional if for A, B € T(M):
MEVz.(A=B)= \z.A=)"z.B

We close this section with a theorem which characterises A-models in terms
of weakly extensional \-algebras:

72 Semantics

Theorem 5.11 M is a A-model & M is a w.e. A-algebra

Proof
(=)
Let M be a w.e. \-algebra, then

Vz.ax = bx = Az.ax = \z.bz
= 1a = 1b by (ii) above

(=)
Let M be a A-model, then

Vz.A =B = Vz.(Ax.A)z = (A\z.B)z
= 1(Az.A) = 1(\z.B) by definition

= Az.A = A\z.B by (iii)

5.1.3 Term models

Recall that we introduced the term model for Combinatory Logic earlier.
The basic idea is that the semantics of a term is given to be the equivalence
class of the term under the convertibility relationship.

We define the equivalence class of a term M.

Definition 5.12 [M]|={N €A |AFM = N}

As is usual, the equivalence classes partition the set of terms and we
can define a quotient set:

A/x=A{[M]| M € A}
Finally, we can define a binary operation, e, on equivalence classes:
[M] o [N] = [MN]
We now have the necessary components to enable us to define a model.

Definition 5.13 (Term Models)
The open term model for the type free A-calculus is:

M(A) = (A/x, o, [A\zy.2], [Azy2.22(Y2)])

If it is the closed terms that are of interest, we can consider the closed term
model:

MO(X) = (A%/x, 0, [Azy.z]°, [Azyz.22(y2)]°)

5.2. Bohm Trees 73

We then have the following two facts, which the reader is invited to
verify:
Fact 1: M?()) is a M-algebra
Fact 2: M()) is a A-model

5.2 Bohm Trees
5.2.1 Bohm-like Trees

In this section, we develop a model of the A-calculus based on a tree repre-
sentation. We must first develop a suitable representation for trees. Recall
that a tree is a collection of nodes; one node, the root, is distinguished, each
node other than the root has a unique parent and all nodes are reachable
from the root. Given these facts, it is clear that any tree can be represented
by a set of sequences. Each sequence in the set represents a node in the
tree; the sequence records the (unique) path from the root of the tree to
the node. For our model, we will require labelled trees (each node will be
labelled with a symbol), these are represented by an appropriate (partial)
function:

Definition 5.14 (Partially X-labelled Trees)
A partially X-labelled tree is a partial map:

p:Seq—=> X XN

such that:

(1) (o) is defined and T < 0 = p(7) is defined.
(2) p(o) =<a,n>=Vk > n.p(o*x < k >) is undefined.

where Seq is the set of sequence numbers which represent paths through
the tree® and * is the concatenation operator on sequences; ¥ is a set of
symbols. The intuition behind this definition is that the pair associated
with a sequence by ¢ specifies the symbol associated with the node at the
end of the sequence and the arity of the symbol (number of successors).
The map ¢ is partial because the result is undefined if it is applied to an
invalid sequence number; this case is handled by the second part of the
definition.
We will use a particular set of symbols to label trees:

Definition 5.15 Let ¥, be the set:

{Az1...Zpy | n>0,21,...,Zn,y variables}

3Sequences represent paths through the tree in the following way:
<> is the sequence number of the root,

< 1 > is the first successor of the root,

< 321 > is the first successor of the second successor

of the third successor of the root,

74 Semantics

The Bohm tree of a A\-term M, BT (M), is defined in the following way:

Definition 5.16 (Bohm Trees)
BT (M)(o) is undefined for all o if M has no hnf.
If M has principal hnf Axy ... z,.yMy ... M,,_1, then:

BT(M)(<>) =< Az1...Zp.y,m >
and for all o:

BT(M)(< k > x0) = BT (M)(o) if k <m,
undefined if k > m

So the nodes of a Bohm tree record information about the principal hnf
of a term and its derivatives. In the following we use L to represent the
undefined tree. The information that is recorded at each node is similar to
the KSL triples of Chapter 8.

Example 5.17

(1) BT(S) =
Aabc.a
PN
c b
'
C
(2) BT(Saf?) =
Ac.a

c/_L

Definition 5.18

(i) A Bohm-like tree is a partially X, -labelled tree; B is the set of all B6hm-
like trees.

(i) AB={A € B|3AM € A.BT(M) = A}.

(ii1) A € B is L-free iff Va € A.A(a) is defined.

Definition 5.16 defines how a Béhm tree is associated with a particular
A-term. The last definition defines a general set of trees; we now turn to
the problem of establishing a relationship between these two notions. It
turns out that each finite B6hm-like tree is the Bohm tree of some A-term;
we demonstrate this by the following construction:

Definition 5.19 ,
Let A € B be finite. We define a A\-term M 4 which has A as its B6hm tree;
the definition is by induction over the depth* of A:

4The depth of a tree is equal to the length of the longest path through the tree.

5.2. Bohm Trees 75

(1) A= 1: Take M4 = 1.
(2) A= ML.y: Take M4 = \Z.y.
3) A=
AZ.y
PN
A ... A,
Take MA =)\.’f:'.yMAl ---MAn
Given Bohm-like trees A and B we write:
ACB

if and only if A results from B by cutting off some of B’s subtrees. From
this we can define an ordering between A-terms:

Definition 5.20 Let M, N € A.
(i) M=N iff BT(M) = BT(N)

(i) M 5 N iff BT(M) C BT(N)
It is easy to verify that the ordering satisfies the following:
Fact: M 5 N = C[M] 5 C[N]

Finally, we introduce some notation to represent trees which are uni-
formly “pruned”. The tree A* is the tree that results from A by cutting
off all of the subtrees at depth k:

Definition 5.21
(i) Let A € B. For k € N, we define:

Ak (a) = A(a) if length(a) < k
undefined, otherwise

(ii) BTk(P) = (BT(P))k
(iti) P*¥) = Mpr(p)
(iv) For A,B € B, we write A =, B iff Ak = Bk

5.2.2 The Model B

In this subsection, our aim is to construct a A-model based on Béhm-like
trees. The model, also called B, will satisfy:

Bl M =N & BT(M) = BT(N)

In the construction of the model we will employ the notion of limit of
an increasing chain of trees:

AgC A CAC...
We denote the limit by | | A, and define it as follows:

76 Semantics

| J4~ =4

It can be shown that every Bohm-like tree is the limit of a chain of finite
trees (the trees which result from pruning the tree at successively deeper

levels):
A=| |a"

This notion of limit can be extended to A-terms: if we have an increasing
sequence of terms {M,}, then if A is a Béhm-like tree and M is a term,
we write:

| | M. =Aif | |BT(M,)=4
and:
| |Mn = M if | | BT(M,) = BT (M)

depending on whether we are interested in the B6hm-like tree or a term as
the limit.

Armed with these notions, we can define a number of useful operations
on Bohm-like trees:
Definition 5.22 Let A,B € B. We define:
(i) A-B=AB =||(Ma~Mp-~)
(ii) \x.A = | J(Ax.M =)
(iii) A(z := B) = | |(Man [z := Mpn~])

In order for the above definition to be well-formed, we have to verify
that the collections of terms used on the right hand sides do indeed form

increasing chains (otherwise the limit is not defined). We will verify this
for (i):

Lemma 5.23 Forall A, B € B, the set {Ma~ Mp~} is an increasing chain.

Proof

Clearly A™ C A™*!. Consequently M4~ S M an+1 since BT (M 4») = A™.
The same holds for the B terms. Hence by two uses of the Fact at the end
of the last subsection:

MgnMgn S Mpns1Mpn S M gnsi Mpnss

Exercise 5.2.1 Show that the other chains exist.

We are now ready to define the model. We first spell out the form of an
interpretation; this involves a small subtlety in the case for abstractions.

5.3. Summary 77

Given a valuation p in B, we define the interpretation [.], : A(B) — B in
the following way:

[z, =r(2)
f[cal, =4
[PQ]]p = [P]]pI[Q]]p

|[/\.’II.P]]p = /\x.l[P]]p[z:BT(z)]

where the notation p[z := a] is used to represent an environment that is
everywhere the same as p, except at which it now maps to a, i.e.:

plz :=a](y) = ply), fx Zy
= a, otherwise

Then we have:
Fact: B = (B,-) is a A-model
Exercise 5.2.2 Verify this fact.

Approach 1: Verify that B is a combinatory algebra which is a weakly
extensional A-algebra. This may involve you in proving a large number of
subsidiary properties of the operations that we have introduced.
Approach 2: Refer to Barendregt’s Chapter 18 where an alternative ap-
proach is described.

Finally, we can verify the property that we opened this subsection with:
Theorem 5.24
BEM=N & BT(M)=BT(N)
Proof
(=)

B M =N =Vp.[M], =[N],
= BT (M) = BT(N) taking p(y) = BT (y) for all y

()
BT (M) = BT(N)
= for any substitution for free variables, (_), BT'(M)(-) = BT (N)(-)
= [M], =[N],
=>BEM=N O

5.3 Summary

In this chapter we have considered the semantics of A-terms. We have given
an abstract formulation of the properties that a model should satisfy and
we have given a concrete example of term models for the A-calculus. We

78 Semantics

have developed the notion of Bohm trees and shown the construction of a
model based on them.

§
Computability

Overview

A classical application of the A-calculus was in the study of computabil-
ity. This is the topic of this chapter. Since most computations involve
repetitive execution of “code”, fixed points (for encoding recursion) play
a fundamental role; we start by reviewing the Fixed Point Theorem and
(re-)introducing the concept of a fixed point combinator. Next, rather than
add delta rules for constants (see Chapter 3), we explore how constants can
be handled in the pure calculus. We introduce several ways of encoding nu-
merals and functions on them. In the third section, we introduce the notion
of A-definability - this allows us to relate the A-calculus to other formalisms
such as Kleene’s Recursive Functions and Turing Machines. The final sec-
tion of this chapter discusses the issue of decidability in the A-calculus and
we present some undecidable problems.

6.1 Fixed Points

In order to study the computability aspects of the A-calculus, we will rely
extensively on the ability to make recursive definitions. In this section
we re-introduce the concept of a fized point combinator and consider the
variety of different combinators.

We start by recalling the Fixed Point Theorem from Chapter 2:

Theorem 6.1 (The Fixed Point Theorem)

VFIX.X =FX

Proof
Let W = A\z.F(zz) and X = WW. Then

X =(M\z.F(zz))W > FWW)=FX

The proof inspires us to make the following definition:

Definition 6.2 (A Fixed Point Combinator)

Y = Af.(Az.f(zz))(Az. f(zx))

80 Computability

This is a term which, when applied to another term, is equal to the
fixed point of the given term. Y is sometimes known as Curry’s Paradoxi-
cal Combinator (consider the result of applying Y to a term representing
logical negation). In general, any term M which satisfies the following:

VEMF = F(MF)

is called a fixed point combinator; we shall see shortly that there are in-
finitely many such combinators.

In the preceding paragraph we have used convertibility both in the
statement of the Fixed Point Theorem and the definition of fixed point
combinators. Sometimes it will be desirable to have a fixed point combi-
nator M which satisfies the slightly stronger requirement:

VFEMF—»F(MF)

Notice that Y does not have this property (check this!) but the following
combinator does:

© = AA where A = Azy.y(zzy)
since:
OF = (Azy.y(zzy))AF
= (My.y(AAy))F
— F(AAF)
= F(OF)

The general definition of fixed point combinators is universally quantified
over all terms. The following lemma, which is due to Bohm and van der
Mey, characterises fixed point combinators by their interaction with a single
term:

Lemma 6.3 (Béhm and van der Mey)

Let G = My f.f(yf)(= SI)
Then M € A is a fized point combinator & M =GM

Proof
(=)
If M = GM then:
VFMF =GMF
= (M f.-f(yf)MF
=F(MF)

i.e. M is a fixed point combinator

(=)
Suppose M is a fixed point combinator, then:

VF.MF = F(MF)

6.1. Fixed Points 81

But then by the Church-Rosser Theorem there is a term to which both
MF and F(MF) reduce; any such term must be of the form F(...) since
F is arbitrary. For M F' to be reducible to such a term, M must be an
abstraction, say Af.N for some N. But then:

AMMf=ALONf=Af.N=M

and now notice that:

M=\fMf
= Af.f(M f) since M is a fixed point combinator
=GM

a

We now have the wherewithal to demonstrate that there is an infinite
variety of fixed point combinators. We define a sequence of combinators,
thus:

Y =Y
Yt =Y"G
where G is as defined in the previous lemma,

It is clear that the elements of this sequence are all distinct terms. Fur-
thermore, we have the following result.

Lemma 6.4 All members of the sequence Y°, Y1, ... are fized point com-
binators:

Proof
By induction over n, where the basis is trivial (see earlier).
Now:

GY™! = G(Y"G)

- ‘s{infe Y™ is a fixed point combinator by the IH
= Yynrt!
The result follows by an appeal to the preceding lemma. O
Notice that:
Y0
since:
Y! = YG

= (Az.G(zx))(\z.G(zzx))

~ (\ef.f(zzf))(\.G(z2)
> O fleaf) Ot fleat)

82 Computability

We now introduce a result which we will make implicit use of throughout
the rest of this chapter:

Proposition 6.5 Let C = C(f,Z) be a term (with free variables f and %),
then:

(i) 3FYN.FN = C(F, N)

(i) IFNN.FN-»C(F, N)

Proof
In both cases, we can take F = O(\fZ.C(f,Z)). Notice that we could use
Y instead for (i). !

Example 6.6 As an ezample suppose that:

C = fyzf = C(f,z,y)
then (i) guarantees the existence of a term F such that:
Fzy = FyzF
Just take F = O(\fzy.fyxf) then:

O(Afzy.fyzf)zy
(Afzy.fyzf)(O(Afzy.fyzf))zy
(Afzy-fyzf)Fzy

= FyzF

Fzy

Example 6.7 A more familiar ezamiple is:
C=if n=0then1lelsenx f(n—-1)=C(f,n)

and (i) guarantees the existence of a term, F, which behaves like a factorial
function!, i.e.:

Fn=if n=0 then 1 else n x F(n — 1)
and we just take:
F=Y(Afnif n=0 then 1 else n x f(n — 1))
Finally we recall the definition of the term Q:

! = ww where w = A\z.22
and just note that?:

Q=YI

1Of course we have deviated somewhat from the standard syntax for terms but hope-
fully the message in this example is clear.

2Readers familiar with domain theory should consider what the fixed point of the
identity function is. € is playing the same role as | (recall the discussion of head
normal forms in Chapter 3).

6.2. Numeral Systems 83

6.2 Numeral Systems

In the next section we show the equivalence of the A-calculus and Recursive
Function Theory. To do this, we will need to define A-terms which encode
numerals, booleans, conditionals and various other constructs; we shall
consider various approaches to this problem in this section.

We start with boolean values. We define true and false by terms T and
F:
Definition 6.8 (True and False)

T E/\a:y.:c =K

F = Azyy =KI

These choices are motivated by the simple definition of the conditional
function which follows:

if = Apca.pca
since:

if TMN—-»M
and

if FMN—»N

There are also simple representations for the standard boolean operations,
for example and?:

and = A\zy.zyF

Exercise 6.2.1 Encode some of the other logical operations using this ap-
proach.

We will also need to manipulate pairs of terms or, more generally, tuples.
Definition 6.9 (Pairs)
We define the pairing operation as a distfiz operator, |-, .]:

[M,N]= Az.zMN

The first and second projection functions on a pair are defined as

(Ap.pT)

3This encoding uses a trick that is often used in the code generators of compilers,
which is to encode the logical operations as conditional expressions. For example and
X y is equivalent to:

if x then y else false

84 Computability

and
(Ap-pF)
respectively.
These definitions are sensible since, for example, if M = [P, Q] then:

MT = (A\z.zPQ)T
- TPQ
—» P

Ordered n-tuples can now be defined using pairing?:

Ml=M

[Mo, ..., Mny1] = [Mo,[M,...,[Mn, Mnsa]..]

The generalisation of the projection functions are defined by the following
terms; m; » selects the i-th element from an n + 1 element tuple, 0 < i < n:

Tin = A2.2F*T = Az.zF ... (i occurrences of F)...FT

Tnn = AT.ZF*"
An alternative approach to defining tuples is slightly more direct:

< My,...,Mp, >= Az.z2M,... M,
and then we define the projection functions as follows:
P, =Xx.2U;n
where
Uin=Az0...Z0.Z;

Before, we introduce our first numeral system, we need one further combi-
nator, composition, which is written as an infix operator:

MoN =Ax.M(Nzx)

which is the B combinator of Combinatory Logic.
We now define the numerals as the following terms:

Definition 6.10 (Standard Numerals)

0" =1
fn+17=[F,™n7]

4This may remind the reader of dotted pairs in LISP.

6.2. Numeral Systems 85

So for example:
37 =[F,[F,[F,1]]]

This way of constructing numerals is reminiscent of the following type
construction:

num = Zero | Succnum

in which 3 would be represented as:

Succ(Suce(Succ Zero))
This last consideration motivates the definition of a successor function S+:
St = Az.[F, 1]

The predecessor function, which decrements the numeral by 1, is just the
second projection function:

P =)\z.2F
Notice that:
P (f0OY=P I->IF—-F

We also define a unary predicate, Zero, which returns T if its argument is
0" and F otherwise:

Zero = \z.2T
since:
IT =T
[F,n]T =F

Given this encoding and the two functions and the predicate, we can define
more sophisticated functions such as addition:

+zy = if (Zero z)y(+(P~z)(STy))

(use Proposition 6.5 from the end of the previous section).
This encoding for numerals is by no means the only possibility. Before
introducing another encoding we make some definitions:

Definition 6.11 A numeral system is a sequence:

d=dy,d,...
consisting of closed terms such that there are A-terms, Sc'i" and Zerog such
that:

S;- dn = Gn+1
Zerogdg =T
Zerog dpnyy = F

86 Computability

for all numbers n, i.e. we have codes for all numerals, the successor func-
tion and a test for zero.

Definition 6.12 d is a normal numeral system if each d, has a normal
form.

Definition 6.13 s ="07,"17,... with successor function St is called the
standard numeral system.

It is clear that the numerals in the standard numeral system are all distinct
normal forms; thus the standard numeral system is a normal system.
d is determined by dy and S, so we often write:

d = (dp,S™)
A foretaste of the next section is given by the following definition:
Definition 6.14 Let d be a numeral system, a numeric function:
¢: NP5 N
(where N is the set of natural numbers) is A-definable with respect to d if:
3FNni,...,np € N.Fdy,, ...dn, = dy(n,,....n,)

We say that d is adequate if and only if all recursive functions are A-
definable with respect to d. Alternatively, d is adequate if and only if we
can define a predecessor function for d.

The alternative definition of adequacy is proved to be equivalent to the
first definition at the end of the next section.
An alternative encoding of the numerals is due to Church:

Definition 6.15 (Church Numerals) ¢ = ¢, ¢y, ...
cn = Afz.f*(z)

The successor function is defined by:
ST e, = Aabc.b(abc)

Exercise 6.2.2 Verify that ST is a suitable definition for the successor
function.

We can define translation functions between the standard and Church nu-
merals, H and H™}, such that:

Hnl=¢,
and

H ¢, ="n"

6.3. \-definability 87

These functions are realised in the following way:
Hz =if (Zero z) ¢ ST(H(P~z))
H ¢, =c, ST(T07)

Given these, we can define a test-for-zero:

Zero. = Zeroo H™!

The Church numeral system is also adequate, since we can define a prede-
cessor function:

P =HoP oH™!

The Church numerals are of interest because we can define some of the
more powerful arithmetic functions without recursion.

Exercise 6.2.3 What is x oy for Church numerals x and y?

6.3 A-definability

We can specialise Definition 6.14 to the standard numeral system. In this
case we talk about a numeric function being A-definable (without specifying
a numeral system). Since standard numerals are normal forms, in particu-
lar "¢(n1,...,n,)" is a normal form, we also have, by the Church—-Rosser
theorem, that:

Frni0...™np = Té(ng,...,np)"

Our definition implicitly assumes that the given numeric function is total,
i.e. defined on its whole domain. The results can be extended to partial
functions but we will mainly consider total functions in this section; there
is a brief discussion of partial functions at the end of the section. We
start by defining the class of total recursive functions and then proceed to
demonstrate that the functions in this class are all A-definable.

Definition 6.16 (Initial Functions)
We define the following numeric functions to be the initial functions:

Uip(no,...,np) =n; 0<2<p
S+(n) =n+1
Z(n) =0

i.e. a family of selector functions, a successor function and a constant zero
function.

If P(n) is a numeric relation, we use the notation:
pm[P(m)]

to denote the least number m for which P(m) holds; or to denote undefined
if there is no such m.

88 Computability

Given a class of numeric functions, A, we consider the following closure
operators on the class:

Definition 6.17 A is closed under composition if for all ¢ defined by:

o(i) = H(G1(7),...,Gm (7))
with H,G1,...,Gm € A, one has ¢ € A.

A is closed under primitive recursion if for all ¢ defined by:

¢(0,7) = H(7)
¢(k + 1,7) = G(¢(k,7), k,7)

with H,G € A, one has ¢ € A.
A is closed under minimalisation if for all ¢ defined by:
¢() = pm[H (7i, m) = 0]
with H € A, such that’:
Vii.3m.H(ii,m) =0
one has ¢ € A.

Notice that the primitive recursion construction is similar to the for-
loop construction found in Algol-like languages; it provides iteration for a
predetermined number of steps. It is possible to define most of the basic
arithmetic functions using primitive recursion, for example:

plus(0,y) =1id(y)
plus(k +1,y) = F(plus(k,y), k,y)
where F(z,y,2) = ST (Up 2(z,y, 2))

where id is the identity function. In contrast, the minimalisation con-
struct corresponds to the more general form of iteration represented by
while...do...and repeat...until...loops in Algol-like languages.

The class of recursive functions may now be defined formally as the
least class of numeric functions which contains all of the initial functions
and is closed under composition, primitive recursion and minimalisation.

We will now demonstrate that the initial functions are A-definable and
that the class of A-definable functions is appropriately closed. First, we
define:

Uip = Azo ... Zp.2;
St = A\z.[F, 1]
Z =xz."0"

5This condition ensures that ¢ is total.

6.3. \-definability 89

Now suppose that H,G,...,G. are A-defined by S,T1,...,T,, then:
¢(7) = H(G1(7), - .., Gm(7))
is A-defined by:
F=A2.S(ThZ)...(ThZ
If ¢ is defined by:

¢(0,7) = H(7)
¢(k +1,7) = G(¢(k, 7i), k, 7)

with H and G A-defined by S and T respectively, then ¢ is A-defined by:
F=YM\fzy.(Zero z) (SY) (T(f(P™z)7) (P z)7)

In order to define minimalisation, we first define a function which, given a
predicate A-defined by P, determines the least numeral which satisfies P.
We start by defining:

Hp = O(\hz.(P2)z(h(ST2)))

which just iterates from a given numeral, z, until (Pz) is true and returns
z. The required function, written uP, is defined thus:

pP = Hp"0"
Then suppose that ¢ is defined by:
¢(7i) = pm[H (@i, m) = O]
where H is A-defined by S; then ¢ is A-defined by:
F = A\Z.u[\y.Zero(SZy)]

From the preceding paragraphs, we have that the initial functions are
A-definable and that the three function-forming operations can be encoded
in the A-calculus. Consequently, we can infer that all (total) recursive
functions are A-definable. We also have the following result:

Theorem 6.18 If ¢ is A-defined by F, then Viti,m € N:
d(A)=me F Fpi=m?

Proof

(=) by definition

(<)

Suppose F "n'= "m™ then "¢(77)7 = "m”. Since numerals are distinct

normal forms, it follows from the Church-Rosser theorem that ¢(i7) = m.
O

90 Computability

Putting these two results together, we get the following theorem (due
to Kleene):

Theorem 6.19 The A-definable numeric functions are ezactly the recur-
sive functions.

We now return to the question of adequacy of a numeral system.
Proposition 6.20 d is adequate & AP, .Vn € N.P; dny1 =d,.

Proof
(=) follows from the definition of adequacy since predecessor is a recursive
function.

(«=) if, in addition to successor and test-for-zero, d is equipped with a pre-
decessor function then it can be shown that the class of recursive functions
are A-definable with respect to d by using the foregoing results, replacing
the standard numeral system by d. a

Finally, the definition can be extended to partial functions in the fol-
lowing way:

Defirition 6.21 A partial numeric function, ¢, with p arguments is A-
definable if for some F € A:
Vii € NP,
Frn? ="¢(R)" if () converges (i.e. is defined)
F ™n without hnf otherwise
where T =ny,...,nyp

In this section we have characterised the class of functions which are
A-definable. In general, the link between A-definability and Recursive Func-
tion Theory is:

¢ is A-definable < ¢ is partial recursive
Given another result from Computability Theory:
¢ is partial recursive < ¢ is Turing Computable
we see that A-definability, according to the Church-Turing thesis, can be

claimed to capture the notion of effective calculability.

6.4 Decidability

One of the fundamental theorems of Mathematical Logic is Godel’s Incom-
pleteness Theorem; the details of the theorem are tangential to this book
but the proof of the theorem uses a coding technique which gives an ef-
fective way of associating a unique integer, the Godel number, with each
sentence in some theory. Translating this result to the A-calculus, we have

6.4. Decidability 91

that there is an algorithmic injective map # : A — N such that #M is
the Godel number of M. Using this notion, we can state the Second Fixed
Point Theorem:

Theorem 6.22 (The Second Fixed Point Theorem)

VE3IX.FT#X" =X

Proof
Define:
Ap"#M7("#N7) = "#(MN)™
Numr#n-l — r#(r#nﬂ)-l
Now take W = Az.F(Ap z(Num z)) and X = W"#W7, then:
X = F(Ap™#W ' (Num"™#W"))
= FAp"#W("# " #W™M))
F(T#(Wr#wm)
FT# X" as required

a

Notice how this construction parallels the proof of the Fixed Point The-
orem. Its importance for us is that it allows us to prove Scott’s Theo-
rem (the analogue of Rice’s Theorem — see Hopcroft and Ullman’s book)
and thereby answer some important questions about decidability in the
A-calculus.

First, we need some definitions; in the following we assume that A and
B are subsets of A-terms:

Definition 6.23 A is non-trivial if A # @ and A # A.
Definition 6.24 A is closed under equality if:

VM,Ne AIM e ANM=N = N € 4]

Definition 6.25 A and B are recursively separable iff there is a recursive
set® C such that:

(ACC)A (BNC =0Q)
Scott’s Theorem may be stated thus:

Theorem 6.26 (Scott’s Theorem)

(i) Let A and B, subsets of A, be non-empty sets closed under equality.
Then A and B are not recursively separable.

(ii) Let A, a subset of A, be a non-trivial set closed under equality. Then
A is not recursive.

6By the term “recursive set” we mean a set whose membership predicate is recursive;
i.e. there is a Turing machine which for any potential element either halts with an
indication that the element is a member or halts with a contrary indication,

92 Computability

Proof

(i) Let My € A and M; € B and C be a recursive set which separates A
and B. The characteristic function (i.e. membership predicate) of #C7 is
recursive and defined by F. Hence:

MeC=F#M="0"

MEgC=F#M=r1"
Define:

G = \x.(Zero(Fzx)) M; My
then:

MeC=G #M" =M,

MgC =G #M"= M,
but, by the Second Fixed Point Theorem:

G"#X" = X for some X

and so:

XeEC=>X=G#X"=M;eB=>X¢gC
XgC=a>X=G#X"=MycA=>X€eC

Contradiction!

(ii) If A is a non-trivial set closed under equality, then (i) applies to A and
its complement. Hence A cannot be recursive. O

As a consequence of Scott’s theorem there are two further theorems
that can be proved. The first concerns the undecidability of the question
as to whether an arbitrary term has a normal form — this is equivalent, in
some senses, to the Halting Problem for Turing Machines. The theorem is
formally stated:

Theorem 6.27 {M | M has a nf} is an recursively enumerable® set which
s not recursive.

Proof
The set is r.e. since:

M hasanf< IN.Nisannfand A\FM =N

7If A is a subset of A then:
#A={#M|M € A}

8A set is recursively enumerable if we can construct a Turing machine which, given
a potential element, will stop with the answer YES if the element is in the set but may
not halt otherwise.

6.5. Summary 93

i.e. we can construct a procedure which tests M for equality against a
sequence of normal forms; if the procedure halts, M has a normal form
but, since there are an infinite number of normal forms, the procedure may
not halt.

But M is non-trivial (Az.z € M so M # @ and 2 € M so M # A)
and closed under equality and therefore by Scott’s Theorem (ii) M is not
recursive. O

The second theorem concerns the undecidability of A. First we define
the notion of essential undecidability:

Definition 6.28 A theory T is essentially undecidable iff T is consistent
and has no consistent recursive extension.

The theorem is then:
Theorem 6.29) is essentially undecidable

Proof

Let T be a consistent extension of A, thenlet X = {M | T+ M =1}.

X is not empty because surely 7 +HI=1!

X # A because T is consistent.

X is clearly closed under equality.

Thus, by Scott’s Theorem (ii), X is not recursive and thus 7 is not recur-
sive. O

6.5 Summary

In this chapter we have revisited the concept of fixed point combinators
and have seen that there is an infinite variety of such combinators. We
have the existence of such combinators in the construction of encodings
for numerals and numeric functions, leading to the important concept of
A-definability. Based on this work, we were able to show the equivalence
of A-definable functions and Recursive Functions (and indirectly Turing
computable functions). We closed with Scott’s theorem and two important
decidability results for the A-calculus.

7
Types

Overview

The type-free A-calculus has been presented as a prototypical functional
programming language. While it is true that many of the issues that we
have studied have direct relevance to programming practice, the theory
fails to match the practice in a number of important ways. The majority of
modern functional programming languages are typed. As a consequence,
we can no longer construct certain terms which play a key part in the
foregoing theory. In this chapter we present three typed calculi. First we
consider the simply typed A-calculus; this calculus is derived from the type-
free A-calculus in a fairly direct way but has a rather different character as
a result of the typing. For example S-reduction in the typed A-calculus is
strongly normalising.

Most modern functional languages are typed but allow the definition
of polymorphic functions. We introduce the second-order polymorphic A-
calculus. This provides a theoretical account of a slightly more power-
ful type system than is usually provided for functional languages. The
Hindley—Milner type system, which is the basis for the type systems used
in functional languages, is discussed in Chapter 8.

Finally, we present the notion of intersection types. These were origi-
nally introduced by Barendregt, Coppo and Dezani to construct a A model.
From a practical point of view, intersection types may be used to give an
account of overloading. More recently, intersection types have played a
role in program analysis, for example strictness analysis (an alternative
approach is discussed in Chapter 8).

7.1 Typed A-calculus

We start our study of typed calculi with the simply typed A-calculus; this
calculus has a strong typing discipline similar to that adopted in PASCAL
and other typed imperative languages — each term has a single (monomor-
phic) type associated with it. The simply typed A-calculus is in many ways
simpler than the (type-free) A-calculus; for example self-application, which
has been at the root of many of the problems we have encountered, is out-
lawed and thus all terms are strongly normalising and there are no fixed
point combinators. Once again, in introducing a new calculus, we should

96 Types

address all of the issues that we have considered for the A-calculus (reduc-
tion, models, computability, etc...) but instead we will just present the
highlights.

There are two approaches that can be taken in defining a typed cal-
culus. The first, originated by Curry, is called implicit typing; the terms
are the same as the type-free calculus and each term has a set of possible
types assigned to it. The second approach, originated by Church, is called
ezplicit typing; terms are annotated with type information which uniquely
determines a type for the term. In the following, we will follow Church'’s
approach.

Since terms will have types associated with them, we start by consid-
ering the syntax of types:

Definition 7.1 (Types)
The set of types, Typ, is the least set such that:

(1) 0 Typ
(2) ifo,7 € Typ then (0 = 1) € Typ

The type 0 is a ground type. Notice that we only have a single ground
type; later we will see that it plays the role of a type variable. In a more
realistic language, we might differentiate between type constants and vari-
ables; for example in a programming language context, the type constants
are the “built-in” types such as integers, booleans and characters. However,
since we are considering a pure calculus it is sufficient to restrict ourselves
to a single ground type. Types of the form (¢ — 7) correspond to a func-
tion type; a function of this type takes arguments of type o and returns a
result of type 7. Examples of types are:

0 (0—>0) ((0—=0)— (0—0))

If we adopt the convention that — associates to the right!, we can omit
the majority of the parentheses:

0 0—-0 (0—-0—>0-0
Terms in the typed A-calculus are words over the alphabet:

vg, vy, ... variables, a distinct set for each o € T'yp

A
(,) parentheses

The class of typed A-terms is written A™; when we want to talk about the
class of terms of some specific type, o, we write A,.

1 A moment’s thought should convince the reader that this convention is consistent
with the left associativity of application.

7.1. Typed X-calculus 97

Definition 7.2 (Typed Terms)
The class AT is the class:

U{A- | o € Typ}

and the A, are such that:
(1) v¢ € A,
(2) MeAsr,NeA; = (MN) € A,
(B) MeA,z €Ay = (Az.M) € Ay
Free/bound variables, closed terms and substitution are defined in the ob-

vious way (by analogy to the type-free calculus). Care must be taken to
respect the types; for example:

FV(/\'UO .,UO—>O) — {,UO—»O}

The theories A™ and A\n™2 are defined in the same way as the corresponding
type-free theories but the types of terms have to make sense, for example:

(Az°.M)N = M[z° := N]if N € A,
and formulae are of the form:
M = N with M, N € A, for arbitrary type o

We could equally well embark on a study of typed Combinatory Logic;
there we would need to introduce a class of combinators in place of each of
the type-free combinators S and K:

Kor €Comrao
Sorp € Clomr—p)=((6=m)—0—p)
It is worth considering how the type of S,., is justified:
Recall that SABC = AC(BC)
Suppose that the type of SABC is p
Then AC(BC) € C,

Suppose that C € C, and (BC) € C,
Then A € C;—r-, and B € C,_,, which gives the overall type of

So"rp
Notions of reduction in the typed A-calculus are the obvious analogues of
the notions that we introduced in the type-free case:

B = {(((Az°.M)N),M|[z° :== N]) | M € A, N € A, for some 0,7 € Typ}

n = {((Az°.Mz°),M) | M € Ay_., for some 0,7 € Typ,z° & (FVM)}
By analogy with the type-free case we have that 8(n) is CR.

2In future we will write A(1)™ to stand for either of these theories.

98 Types

Strong Normalisation

An essential difference between the type-free and the typed calculus is that,
in the latter case, 3(n) is strongly normalising (SN), i.e. fn-SN. In this
subsection we present a proof of this result; the proof was discovered by
Tait in 1967 and our account is based on that of Hindley and Seldin.

We start with a definition:

Definition 7.3 (Strong Computability — SC)

(1) VM € A[SC(M) & SN(M)]
(2) VM € Ay.-[SC(M) & VN € A,[SC(N) implies SC(MN)]]

The proof of the strong normalisation result follows in two steps by
firstly showing that every strongly computable term is also strongly normal-
ising and secondly showing that every typed term is strongly computable.
We start with some observations:

e Every type o can be written in a unique way in the form:
0-1 _) c e _> o-n _) 0

o If M € A, is strongly normalising then so is every subterm of M.

The first follows from the definition of types, the second follows because if a
subterm of M is not strongly normalising then the same infinite reduction
is possible for the whole term.

We start by showing that every strongly computable term is strongly
normalising. The proof uses a new form of induction: induction over the
structure of types.

Lemma 7.4 Let o be any type:

(1) Every term (vM;...M,) € A,, where M,,..., M, are all strongly
normalising, is strongly computable.

(2) Every strongly computable term of type o is strongly normalising.
Proof

e o = 0: both properties follow from the definitions.

e o=a—f:
(1) Let N € A, such that SC(N). By the IH(2), SN(N). Then by
IH(1), SC(vM; ... M,N) and thus SC(vM, ... M,) by definition.

(2) Let N € A, such that SC(N) and let v* not occur (at all) in
N. By IH(1), SC(v*) (set n = 0). Hence SC(Nv) and by IH(2)
SN(Nv); but then, by our second observation, we have SIN(N).

7.1. Typed \-calculus 99

To show that all terms are strongly computable, we need an interme-
diate result that if the contractum of a redex and any terms erased by the
redex are strongly computable then the redex is as well.

Lemma 7.5 If SC(M[z* := N]) then, provided that SC(N) if z* is not
free in M, SC((Az*.M)N).

Proof
Suppose M € Arandlet =7 — ... > 7, = 0 and let M; € A, be such
that SC(M;) for 1 < i< n. Then

SN(M[z := N]M; ... M,,)

but then we have
SN((Az.M)NM, ...M,)

since any infinite reduction from the latter term can also be “reached” from
the former. Thus
SC(Az.-M)NM, ... M,)

and SC((Az.M)N). m|

We now prove that every term is strongly computable; since we have
proved that all strongly computable terms are strongly normalisable we
will be done. As is often the case it is easier to prove a slightly stronger
result.

Theorem 7.6 For every term M € A,, for all 7*,...,2%" and N; such

that SC(N;) (1 < i < n), the term M* = M[z, := NM]...[zn := Ny] is
strongly computable.

Proof
(induction over the structure of M)

o M = z;: trivial.

e M a variable, distinct from the z;: follows by Lemma 7.4.

e M = PQ: then M* = P*Q* and by the IH SC(P*) and SC(Q*).
Thus SC(M*) follows from the definition.

¢ M =MAz".P and 0 = (y — 6): then M* = Az.P*. Suppose that N €
A, and SC(N), then M*N — P*[z := N]. Now SC(P*[z := N])
follows from the IH and thus, by Lemma 7.5, SC(M*N). SC(M*)
follows from the definition.

O

If we choose each N; to be z; (which is strongly computable by Lemma
7.4), we get that every term is strongly computable.

100 Types

Exercise 7.1.1 Show that Bn is WCR in An™ and hence deduce that 87 is
CR.

As a consequence of the strong normalisation result, all typed terms have
normal forms; moreover, provable equality in A(n)” is decidable:

Proposition 7.7 A(n)" - M = N implies M and N have the same 3(n)-

nfs.
The nfs can be found effectively by SN.

It should be fairly obvious that many type-free terms can be given a type
(or many types!). For example:

AZ.T

can be typed as:

Az?.2° € Ay forall o € Typ

that is: “o — o is a possible type for Az.x € A”. However, there are many
terms that can not be assigned a type; given our earlier comments and the
structure of the typed terms, it should be clear that any term involving
self-application falls into this category, for example:

e In order to assign a type to Az.zz, we must assign a type to zz.
e In order to assign a type to zz, £ must have type a — (3 and type a.

Suppose M € A, we write | M | (€ A) for the term produced by erasing
all of the type symbols in M; clearly, | M | is typable and a possible type is
o. If o is a type then ¢* is an instance of o if it results from ¢ by replacing
some of the 0’s in o by some other type:

Example 7.8 Some instances of O:

0—0, 0—>0—0, (00—-0—-(0—=0—>0—0)

Some instances of 0 — 0:

(0—>0)—0—0, (0—-0—-0—>0—-0—0
Exercise 7.1.2 Write down some terms with the above types.

Two important results concerning these issues were first discovered by
Roger Hindley; we state them without proof:

Proposition 7.9

(1) The set of typable A-terms is recursive; i.e. there is an algorithm
which will decide whether a given term is typable or not.

7.1. Typed A-calculus 101

(2) If M € A is typable then one can find a unique o € Typ such that
every possible type for M is an instance of o; o is called the principal
type scheme for M.

We will return to this in the next chapter.

Since we cannot have fixed point combinators in the typed A-calculus,
the reader may have wondered about the impact this has on computability.
We can define a notion of A"-definability analogously to A-definability but
there are some problems. The first problem is that we cannot use the
standard numerals:

0™ =1
I'n_,l_ 1—| = [F’I‘n-l]

since the numerals all have different types, for example:

07 =1 has type 0 — 0
17 = Az.2FI has type (00— 0) - (0> 0) > 0) —» 0

As a consequence, the successor function (for example) is untypable! How-
ever, the Church numerals all have the same type:

ch = Afz.f"x

Definition 7.10 The extended polynomials are the least class of numeric
functions containing:

(1) Projections: U; n
(2) Constant functions
(3) The sg function : sg0=0, sg(n+1)=1

and is closed under addition and multiplication.

It turns out that it is exactly this class of functions which is A™-definable on
the Church numerals; the interested reader is referred to the literature for
the proof. Using constant functions, addition and multiplication it is pos-
sible to construct functions which have polynomial expressions as bodies.
The adjective “extended” is used in the definition to indicate that we can
encode conditional functions using the sg function (with multiplication).

We close this section by considering three uses of the typed A-calculus,
the latter two being of more relevance to Computer Science. We briefly
sketch the applications and, once again, encourage the interested reader to
refer to the literature.

102 Types

Consistency of Arithmetic
The first application we identify is in the proof of the consistency of
arithmetic. The proof is due to Godel; he worked with an extended
theory, &, which contains the new constants:

0 €A
R, € Aa—»(a’—»O—»a)—»O—»a’

The final “constant” represents a class of typed recursion operators,
axiomatised in the following way:

R, MNOQO =M
R,MN(S*z) = N(R,MNz)z

There are appropriate notions of 33~ and BnS-reduction on AS which
have been shown to be CR. Notice that the recursion operators ef-
fectively encode primitive recursion and consequently it should not
surprise the reader that fnS-reduction is SN.

There have been a number of extensions to Godel’s . For example,
Spector proved the consistency of analysis by extending & with a new
recursion operator called bar recursion.
Logic of Computable Functions

The phrase Logic of Computable Functions originated with Scott.
The system LCF, developed by Milner, Gordon and Wadsworth, is
a semi-automatic theorem prover which is used to prove properties
of programs. The system has two parts: a meta-language which is
used to describe proof tactics® and an object language, PP), in which
proofs are written. PP is similar to & with the following extensions:

(1) There are more types:

OXT the direct product
allowing the construction of pairs
ochT the disjoint sum

allowing the definition of algebraic data types

(2) For each o, there is a fixed point combinator®:

Y,:(60—20)—>0

Y, M = M(Y,M)

3This is the language ML which has become an extremely successful programming
language. ML has a polymorphic type system — a subject which we shall study in the
next chapter.

4Consequently reduction in PP is not SN.

7.2. The Polymorphic A-calculus 103

(3) The theory is embedded in predicate logic.
Formulae as Types — The Curry—Howard Isomorphism
The astute reader may have noticed that there is a similarity between
the rules for types and the rules for propositional logic. For example,
the rule for application:

a a—f
B

is the rule Modus Ponens; there are similar relationships between x
and conjunction and & and disjunction. Reduction of terms with the
types above the line produces a term with the type below the line;
thus this “program” and its execution constitute a proof of the rule.
This association between proofs and programs is known as the Curry-
Howard isomorphism. The theorem proving system Automath (see
our discussion of de Bruijn notation in Chapter 2) uses this technique.

7.2 'The Polymorphic A-calculus

This calculus was invented independently by Girard (1972 — his interest
was in extending the Curry-Howard isomorphism — see above — to include
quantification) and Reynolds (1974 — his interest was in programming
language theory). Just as the A-calculus and functional programming have
been sloganised by “functions as first class citizens” (Stoy), the 2nd-order
A-calculus can be sloganised by “Types as first class citizens”; types can
be abstracted just as normal values:

Example 7.11 (A polymorphic identity function:)
M=AtAz etz

we can then specialise this term to a particular type by application:
Mint or M[int]
Type schemes in this calculus are constructed in the following way:
ou=al|t|or = o2 |Vao

where « is a type variable and ¢ is a type constant. The last component is
the type scheme associated with A-abstractions.

Definition 7.12 The terms of the 2nd-order polymorphic A-calculus, As,
are the least class such that:

(1) Every variable and constant is in As.

(2) M,N € A2 = (MN) € A,.

(3) M € Ag, z a variable, o a type scheme = (Ax € 0. M) € A,.
(4) M € Ay, o a type scheme = (Mao) € A,.

104 Types

(5) M € Ag, o a type variable = (Aa.M) € As.

Substitution and a-congruence are defined in the obvious way. We have
two (3-conversion axioms:

(BY) (Az € 0.M)N = M|z := N]
(5?) (At.M)o = M|t := o]

Of course it is also possible to define n-conversion. Some basic facts con-
cerning An-reduction are:

e (Bnis CR
e Every A» term has a gn-nf
e Anis SN

We now present a formal system for type inference in the 2nd-order
polymorphic A-calculus. Basic judgements have the following form:

Ale:o

where A is a list of assumptions of the form z : 0. The axioms and rules
are:

Atz:o (z:0in A)

A, U{z:0}F-M:T
AF(Az €oM):0 >

AFrM:0—-17 AFN:o
AF(MN):T

AFM:o

At (At.M):Vto t ¢ FV(A)

AFM :Vio
Ab (MT):[1/t]o

where A, is the same as A except any assumption about z has been re-
moved.

For example, we have:

z:alz:«a
F(Az€az):a—a
F (AaXz € a.z) : (Va.a — @)

Exercise 7.2.1 Construct a proof for the following judgement:

F (AaABXz € ady € B.z) : Va.VB.a = B — a)

7.3. Intersection Types 105

In contrast to the simply typed A-calculus of the last section, it is cur-
rently an open problem whether there is an algorithm for type checking or
type inference in the second-order polymorphic A-calculus.

Reynolds used the second-order polymorphic A-calculus to model vari-
ous programming language concepts such as type definitions, abstract data
types and polymorphism.

The style of polymorphism found in most functional programming lan-
guages (discussed in Chapter 8) is a restricted version of that discussed
above. In particular, the syntax of types in As allows arbitrary nesting of
quantifiers. For example, the following is a valid type in As:

Va.(V.a— B) 2> a = «

The type schemes assigned to terms in functional programming systems
are usually shallow; the quantifiers are usually omitted and are implicitly
at the outermost level. Consequently, the scope of all quantifiers is the
whole scheme (to the right of the quantifier). The pay-off is that we regain
the ability to define an algorithm for type inference.

7.3 Intersection Types

In the polymorphic A-calculus a function can be applied to arguments of
different types but the types of the arguments must have the same “struc-
ture”. This becomes more apparent in the context of programming lan-
guages where we have a richer set of type constructors. For example, the
standard map function found in many functional programming languages
is polymorphic in its second argument but the argument must at least be a
list structure. Most programming languages also allow overloading of oper-
ators, for example + can be applied to a pair of integers or a pair of reals —
the operation performed in each case is very different. In terms involving
overloaded operators functions are applied to arguments with structurally
different types.

An intersection type is like a type in the simply typed calculus except
types can be constructed using the intersection operator N — a term which
is assigned such a type has both types involved in the intersection. An
example of how this is used is in the term Az.zz, which is untypable in the
previous two calculi, but we can show:

(Azzz):(cN(c—=T1) > T

Notice that the argument is given both o and 0 — 7 as types and thus the
self-application in the body can be typed. In this section, we will present
the AN-calculus. In this calculus, it no longer makes sense to have explicit
typing so we present an implicitly typed calculus.

106 Types

The set of types is defined as follows:
Tu=alt|lToT|TNT

Amongst the constants, we include a distinguished type w.

The role of w is as a universal type; any term can be assigned w as a
type. Given w and N it is fairly natural to order the types; we define the
following pre-order:

c<o
o<w wlw=—w

cnNnt<oc oN7t<T

c<77<p o0<TOLYP

c<lp c<TNpP
(c—=2pN(c>1)<0c—=(pNT)

o <o r<T7
(c—>1)<(c! > T)

We write 0 = 7 in the case that ¢ < 7 and 7 < 0. We also adopt the
convention that N has higher precedence than — which allows us to omit
some parentheses.

Exercise 7.3.1 Show that:
(cno' =»71)=((c—=>1)N (0 = 7))

The last rule in the definition of < expresses the fact that — is con-
travariant in its first argument.
The following inference system assigns intersection types to terms.

Taut AFz:0 (z:0)€ A
Top AFM:w
AFM:(c—>7) AFN:o A U(z:0)FM: T
>E —I
AFM N : 7T AF Xz M:0—> T
AFM:(o1Nog) . AFM:0 AFM: T
"B v Mo, N ™M T ArMionr
AFM:0 o<
Sub

AFM: T
Exercise 7.3.2 Infer two different types for Ax.xx using the above system.

7.4. Summary 107

In AN, the following properties hold:

e (Bnis CR.

e SN fails — every term from A is typable, including §2; all terms have
type w.

e it is undecidable whether a term has a particular type.

van Bakel has studied a restricted inference system which does not have
the Top rule; in this system, the following is true:

SN(M)<e JAJdo. AFM:o
Barendregt et al prove that:

M has a normal form & 3JA.30.AF M : 0 and w does not occur in ¢

7.4 Summary

In this chapter we have seen a variety of typed calculi. We have discussed a
simply typed monomorphic calculus and then seen how to introduce poly-
morphic terms. A common feature of the first two typed calculi that we
have studied is that (8n-)reduction is strongly normalising. For the third
system, involving intersection types, SN fails; all terms can be typed and
decidability fails.

3

Practical Issues

Overview

In this chapter we turn to more practical aspects of the A-calculus.

One form of standard reduction sequence (see Chapter 3) is a leftmost
sequence (reduce the leftmost redex at each stage); this is also called normal
order reduction. Lazy evaluation systems use this reduction order (see
later). A redex is outermost if it is not contained in any other redex, it
is innermost if it does not contain any redexes. An alternative reduction
strategy, called applicative order, is leftmost innermost. The features of the
various evaluation strategies have been sloganised by Mycroft in terms of
the way in which parameters are treated:

Normal Order: Evaluate arguments as often as they are used.
Applicative Order: Evaluate arguments once.
Lazy Evaluation: Evaluate arguments at most once.

From a pragmatic point of view applicative order is preferable to lazy
evaluation (or normal order) since there is less run-time overhead and there
is greater potential for parallel evaluation (since we know that the param-
eters will be evaluated we can go ahead and evaluate them in parallel with
the function call). Lazy evaluation gains because if an argument is not
used then it will not be evaluated; thus:

(Azy.y)((Az.zz)(Az.22))2

evaluates to its nf, z, whereas an applicative order reduction repeatedly
tries to evaluate the Q argument (to no avail!). It is usual to associate these
evaluation orders with particular parameter passing mechanisms: call-by-
name, call-by-value and call-by-need respectively. However, these associa-
tions are only approximate in the functional language setting. Normal order
and applicative order both refer to reduction sequences that terminate in
normal form. We have already observed that lazy functional systems stop
some way short of normal forms (i.e. with weak head normal forms) but
even strict functional systems (such as Standard ML) do not evaluate under
As. Strict functional systems compute weak normal forms ; a more detailed
discussion of this point can be found in Reade’s book. The result is that

110 Practical Issues

redexes in abstraction terms may be copied and therefore evaluated more
than once in a strict functional language.

We will start by presenting two abstract machines which perform g
reduction; one implements leftmost evaluation, the second implements ap-
plicative order evaluation.

The ideal situation would be to use a mixed strategy based on lazy
evaluation (and thus avoiding the above problem) but using applicative
order when it is safe to do so. We consider two analyses of A-term programs;
the common objective of both analyses is to provide information about the
strictness of the terms. Such information can be used to optimise the
evaluation of the terms because it allows us to detect when it is safe to use
an innermost strategy.

In the final section we present an algorithm for inferring polymorphic
types for terms.

8.1 Reduction machines

Both machines presented in this section execute a pure calculus; it would
be possible to extend them to handle delta rules but the details are left for
the reader to work out.

The principal problem that has to be addressed in implementing 3
reduction is the correct handling of substitution. A standard way of doing
this is to maintain an environment (called an association list in the LISP
meta-circular interpreter) which records the current values bound to free
variables in an expression. We then have the problem of accessing the
appropriate entry in the environment.

Rather than basing this section on the A-calculus as presented earlier,
we follow Curien in introducing a calculus of closures, Ap, which is an
intermediate level between the A-calculus and the abstract machines. The
Ap-calculus is similar to the Ao-calculus which is studied in more detail in
Chapter 9; here we will just present enough details to make our presentation
of the abstract machines comprehensible.

In contrast to the A-calculus, substitution is an integral part of the Ap-
calculus; we perform computations on closures which are objects consisting
of a term and an environment. The terms use the de Bruijn notation (see
Chapter 2) and consequently an occurrence of a free variable is an explicit
index into the current environment (which is list structured); indexes start
from 1. More formally, we use the following classes:

Definition 8.1 (Terms)

The class of Terms, M, is the least class satisfying:
(1) n € M, the de Bruijn indices.
(2) if M,N € M then (MN) € M.
(3) if M € M then AM € M.

8.1. Reduction machines 111

Definition 8.2 (Closures)
The class of closures, R, is the least class satisfying:

o if M € M and uy,...,un € R (for n finite and n > 0) then we have
Mlus;...;u,) € R.

In the last definition, the environment is the list of closures enclosed in
[...]. Notice that the definition includes the case of an empty environment
(n = 0). In the following we will use - as the prefixing operation on envi-
ronments. As stated earlier, our primary focus will be on computations on
closures; these are specified by the following theory:

M]p] 5 AP V]

Eval
(MN)[p] = P[N[p]- V]
Access nfu;...;Um] = un (n <m)
Erv U] = Vi...Up — Up

Mlug;...;un] = Mvy;...;v,]

The first rule says that if the first term in an application reduces to
an abstraction, then we can reduce the application to a closure consisting
of the body of the abstraction and an environment which is the same as
the abstraction environment with a new element prefixed to represent the
argument closure. The third rule allows arbitrary reductions inside the
environment component of a closure. Since there is no rule which tells how
to reduce abstraction terms; this system will only reduce closures to weak
head normal form.

An example of reduction according to these rules is:

(A11)(A1)[= 11[A.1]
— 1[1[A.1]] since 1[A.1] = A.1]]
— 1[A.1] Access or Env
— Al

It can be shown that this system is Church—Rosser; the interested reader
is referred to the source material for details. As with our earlier presenta-
tion of — g, this system is neutral with respect to reduction strategy. We
can impose a strategy by considering sub-systems which enforce an order-
ing on the sequence of reductions. We will now restrict Ap in two different
ways; the first motivates a lazy abstract machine (originally due to the
French logician, Krivine) and the second leads to an eager machine which
is similar to Curien’s Categorical Abstract Machine (CAM).

112 Practical Issues

8.1.1 Kirivine’s Machine

We consider a leftmost strategy for the calculus of closures. From consid-
eration of the Eval rule it is clear that the environment is used to hold
arguments. The arguments are never in the leftmost position, although
they may become so after reduction, so we must prohibit the Env rule.

Mlp] =1 AP[V]

veval N =1 PINTel- o)

LAccess nfui;... ;'u,m] = Un (n<m)

The system enforces a leftmost reduction strategy which, as with the
earlier system, terminates with whnf. The strategy is implemented by an
abstract machine which has two stacks and a code store. The first stack is
used to represent the environment and the second is used as a temporary
work space. A configuration of the machine is represented by a triple
(p, M, S): an environment, term and stack. We use :: to represent an infix
push operation on the stack. The machine is specified by the following four
rules:

(p,MN,S) = (p,M,N[p] :: S)
(0, AM,u::S) = (u-p,M,S)
(u-p,n+1,5) = (p,n,S)
(M[V]p,]_,S) =>(VaMaS)

The work space stack is used in the first rule to store the argument
closure while the function of an application term is evaluated. The second
rule constructs the term and environment specified by the conclusion of
the LEval rule; notice that the argument is recovered from the work space
stack where it was put by the first rule. The last two rules implement the
LA ccess rule by recursively searching down the environment.

Notice that the terminal states of this machine are either of the form
(p, AM,]) or ([}, n, S). States of the first form correspond to A-terms of the
form:

Arz.M

and states of the second form correspond to A-terms of the form:
M 1.-. Mn

where the tail terms are on the stack. These are precisely the two forms
that a whnf can take.

An example of evaluation on this machine is the following transition
sequence (to avoid overloading the reader with notation, we do not distin-
guish between a singleton list and its only element):

8.1. Reduction machines 113

@, A1), D) = (0, A11,01) =

(A.1,11,]]) = (A1,1,1[A1]) =
(,A1,1A1]) = (11,5 =
(A1,1,[D) = ([,A.1,[)

It is important to realise that this machine is lazy in the sense that
values are evaluated on demand and then only as far as weak head normal
form. In the functional programming literature the term “laziness” im-
plies some form of sharing so that terms are evaluated at most once. The
machine would be more complicated if we wanted to capture such sharing.

8.1.2 An Eager Machine

We can make the evaluation strategy more eager in a number of ways.
The obvious way is to re-introduce the Env rule but this would allow the
evaluation of arguments at arbitrary times. The solution that we adopt is
to evaluate the arguments as part of the Eval rule. The eager strategy is
defined by the following system:

M) S AP] Nlg] 5. u
(MN)[o] . Plu-v]

EEval

EAccess N[U1;...;Um| e Un (n<m)

The first rule now requires that the argument is evaluated, using the
same environment as is used for evaluation of the function, before an ap-
plication is reduced. As a result the environment will only contain values,
not closures. This leads to some complication in the abstract machine be-
cause we now have to evaluate both the function and the argument before
performing the application. We use the same configurations as the Kriv-
ine Machine but the Stack component now has markers, L and R, on it
to record whether the code represents the left or right component of an
application term. The abstract machine is specified by the following 6
rules:

(p, MN,S) = (p,M,L :: N[p] :: S)
(p,AM, S) = ([I,,AM[p] :: 5)
(u-p,n+1,S) =>(p,n,S)

(u-p,1,8) = ([),,u = S)
(),,u::L:N[p]2S) = (o,N,R::u::S)
(,,u:: R AM[p] :: S) = (u-p,M,S)

The third and fourth rules concern environment access and are similar to
the Krivine machine except no further evaluation is needed when the value
is found. The first rule decomposes an application into its constituent parts.
Both the second and the fourth rules leave a weak head normal form at

114 Practical Issues

the top of the work space stack. The last two rules concern configurations
which have a null term and a value at the head of the work space stack; the
marker below the top of stack indicates whether the top is a function value
(L marker — rule 5) or an argument (R marker — rule 6). In the former
case the new configuration initiates the evaluation of the argument. In the
latter case, the body of the function below the R marker becomes the new
term and the environment is appropriately updated.

Exercise 8.1.1 What are the terminal configurations of this machine?

An example of the evaluation of a term using this machine is the fol-
lowing;:

@, A1)A1), D) = ([0, A11,L = A1)
(M,,A11 == L= A1) = ([, \1,R:: A.11)
(M, A1 R A1) = (A1,11,]])
(A1,1,L::1[A1) = ([],,Al=L:=1A1]) =>
(A1,1,R:: A1) = ([J,,Al:R:=:A1l) =
(1 L) = [0\ 1)

Compare this to the earlier transition sequence.

L4y

Exercise 8.1.2

1. Evaluate some examples using the two alternative mechanisms.

2. Investigate ways of adding d-rules to the two machines; in particular
consider the potential difficulties caused by adding conditional and fized
point operations to the eager machine.

8.1.3 Correctness

We briefly consider the correctness of the abstract machines. We will con-
centrate on Krivine’s machine; the correctness of the eager machine follows
in an analogous way. Correctness follows from the following two lemmas.

Lemma 8.3
M 5, N implies ([, M,[]) =* K

where N is a weak head normal form and K is a terminal machine state
which corresponds to N.

Lemma 8.4
(0, M,[]) =* K implies M = N

where K 1is a terminal configuration and N is a weak head normal form
corresponding to K.

The proof of the first lemma involves an induction over the length of the
derivation using the lazy evaluation proof system; the proof of the second
lemma is by induction over the length of the computation sequence.

8.2. Needed Reductions 115

Exercise 8.1.3 Prove these two lemmas.

8.2 Needed Reductions

Consider the following term:

(,\a:y.y)((/\x.xa:)(/\x.x:c))A((,\xy.a:)sz)

The subscripts identify two redexes. Redex A will be contracted in some
reduction sequences to normal form. Redex B will be contracted in all
reduction sequences to normal form. Based on these observations, we say
that redex B is a needed redex. But can we detect such redexes? We start,
as always, with some definitions:

Definition 8.5 Let R € Sub(M) be a redez.

R is needed in M if every reduction sequence of M to nf reduces some
residual of R.

R is head-needed in M if every reduction sequence of M to hnf reduces
some residual of R.

In fact, we will restrict our attention to determining the head-needed
redexes in a term. These are of interest because this concept is closely
related to the concept of strictness in functional languages.

Definition 8.6

A unary function is strict in its argument if, whenever the argument is
undefined (for example because of a non-terminating evaluation), then the
result of the function is also undefined. This is often written:

flL)=41
There is an obvious generalisation to functions of more than one parameter.

The advantage that accrues from being able to identify which arguments
a function is strict in is that those arguments can be evaluated using a more
efficient strategy (any strategy will be normalising). The following result
relates head-neededness and strictness:

Proposition 8.7 For every contert C[] and redez R, the unary function
associated with C[] is strict iff R is head-needed in C[R].

Proof
We note that the unary function associated with C[] is strict if C[Q2] = Q
where Q is a representative of the class of terms without hnf.

Also note that M & N is equivalent to - M & -N.

116 Practical Issues

Now,

C[Q] # @ & C[Q] has a hnf
A =4 C[Q]—»h)\:z;l T TiMy ... M,
& C[R]=»pAzy ... Tz M ... M}, without reducing R
< R is not head-needed in C[R]

a

Unfortunately, it is undecidable whether a redex is (head-)needed or
not; indeed, based on the equivalence of A-definability and Turing com-
putability established in Chapter 6, it can be shown that the problem is
reducible to the Halting Problem for Turing Machines.

Before proceeding with the technical development, we pause for some
examples of the above definitions:

In Azy. Iz(Ky(Iy)):
e Iz is head-needed and needed,
e Ky is needed (but not head-needed),

o (Az.y)(Iy) is created (it is not a residual of any redex) by:

Ky(Iy) = (Az.y)(1y)
it is needed in the created term.

We now present a non-computable “function” for finding head-needed
redexes. The function is defined in terms of the following, which computes
the selection number of a A-term:

Definition 8.8 (Selection Numbers)

Sel(M) =1 (undefined) if M has no hnf
=0 if M has a hnf with a free head variable
=i (0<i<n)if M has a hnf of the form:
A2y ... Zpn.2; My ... M,

This is not an algorithm since it is undecidable whether a term has a
head normal form. Sel(M) is a semi-decidable property; if it converges
then we will know that M has an hnf of the indicated form. We use this
function in the erasing function, < - >: A — AL (where AL is the class
of A-terms constructed from the usual alphabet and the new distinguished
symbol, L1):

Definition 8.9

<z > =z

<M.P>=MX.<P>

<PQ> =<P><Q> ifSel(P)=1
= < P > 1 otherwise

8.2. Needed Reductions 117

The last clause is the important one. The intention is that subterms
which are not needed get deleted; the argument subterm is only preserved
if we know that the function subterm will reduce to an hnf that will force
the argument into the head-redex position. Formalising this, we can make
the following definitions:

Definition 8.10 A redez is visible in < M > if its leading A appears in
<M>.

Definition 8.11 R € Sub(M) is <>-preserved in M if R is visible in
<M>.

Example 8.12 Let:

M, = Mw.(Azy.yAB)((Az.w)C)

M; = Mw.(Azy.zAB)((Az.w)C)

Then:
< M; >=w.(Azyyll)l
since Sel(y) = Sel(yA) =0 and Sel(Azy.yAB) = 2
< Mz > = w.(Azy.zLl1l)((Az.w)l)
since Sel(Azy.zAB) = 1, Sel(z) = Sel(zA) =0 and Sel(Az.w) =0

Clearly, the redex ((Az.w)C) is visible in < Mo > but is not visible in
< M; >.

The main result concerning < _ > is the following;:
Theorem 8.13 R is <>-preserved in M = R is head-needed in M.

Proof
Induction on the structure of M.

M = z, a variable: Then R = z and the result is trivial.

M = Mz.P: < M >= Mz. < P > and the result follows by the IH since
R € Sub(P).

M = PQ: There are three cases:

(1) R = PQ: R is head-needed by definition.
(2) R € Sub(P):
R is <>-preserved = Risvisiblein < P >
= R is head-needed in P, by IH
= R is head-needed in M

(3) R € Sub(Q):

118 Practical Issues

R is <>-preserved = R is visiblein < @ > and Sel(P) =1
= R is head-needed in @ and
P—»h/\xl e .21 My ... M,
= R is head-needed in M

a

So far, so good; but Sel is not computable so we must devise a com-
putable approximation. We define a function, KSL : AL — N3U{(x, *,%)}.
The interpretation of the results of this function is that if

KSL(M) = (k,s,j)
then M has a hnf of the form:
ATy ... Tk TsMy ... M;
and if
KSL(M) = (x,*, x)

then M may not have an hnf. Notice the uncertainty in the second case;
this is the cost of the approximation — sometimes M will have an hnf but
we will be unable to determine its form.

Definition 8.14 (The KSL Algorithm and &)

KSL(L) = (x,*,%)
KSL(z) =(0,0,0)
KSL(\z.P) = KSL(P) + (1,1,0)
ift € FV(KP>) or FV(KP>)=0
= KSL(P) + (1,0,0) otherwise
KSL(PQ) = KSL(P)® KSL(Q)

where we understand + to be defined on tuples component-wise with the
following extension:

T+ *=x+1x =% any number or x

and @ is defined as follows:

(*,%, %) ® (T,9,2) = (%, %, %) (8.1)

(0,0,7) & (z,y,2) = (0,0,7 + 1) (8.2)
(k+1,0,7) ® (z,y,2) = (k,0,7) (8.3)
(k+1,1,7) @ (%, %, %) = (x,*, %) (8.4)
(k+1,1,7) ®(0,0,5") = (k,0,5 + 3") (8.5)
(k+1,n+2,j) @ (z,y,2) = (k,n+1,7) (8.6)

8.2. Needed Reductions 119

(k+1,1,00® (k' +1,0,5') = (k+ k' +1,0,5") (8.7)
(k+1,1,j+1)® (K +1,0,5') = (k+1,1,5) ® (¥',0,5") (8.8)
k+1,1,00@ (kK +1,1,5)=(k+K +1,k+1,5') (89)

(k+1,1,5+1) & (K +1,1,5") = (x,%, %) (8.10)
k+1,1,00@ K +1,n" +2,7)=(k+K +1,
k+n' +2,5) (8.11)
k+1,1,7+)e Kk +1,n" +2,j)=(k+1,1,5) ®
(K',n' +1,3") (8.12)

(the clauses are numbered in the right-hand column for ease of reference).

Rather than give a formal proof of the correctness of these rules, for
which we refer the reader to the source paper by Barendregt et al, we
attempt to provide some motivation. Notice that KSL makes use of the
< - > function and since the new version of < _ > will use KSL, rather than
Sel, they are mutually recursive. By inspection, the parameters involved
in the mutual recursion are decreasing and consequently the recursion will
“bottom out”; thus KSL and < - > are total.

We start our consideration of K'SL with the rule for abstraction. To
understand this clause, we must know something about FV(< P >). The
only free variables appearing in < P > must appear in subterms that will
be head-needed in P, moreover there can only be one free variable and that
will be the head variable of the hnf of P. Suppose that:

KSL(P) = (k,s,7)

then abstracting = will add one extra bound variable and will not add any
extra terms in the “tail” of P. However, if z € FV (< P >) then following
the above discussion, s must be 0 (since z is the head variable and it is
free) and so by abstracting z we expect s to become 1. Alternatively, if
FV (< P >) is empty, then P is either L (in which case it does not matter
what we do!) or the head variable is bound in P, that is 1 < s < k; in this
case adding an extra bound variable should also require s to be increased
by 1. In the case that z & FV(< P >) and FV(< P >) is not empty, then
the head variable is still free and we should just increase k by 1, leaving s
unchanged.

The operator @ is a pseudo-application operator. The rules for @ can
be justified by consideration of the A-terms which are represented by the
K SL triples. We consider just three of the rules:

o (1) (x,%,%) ® (z,v,z) = (%, , *) is justified because LM = L for any
M.

e (2)(0,0,5)®(z,y,2) = (0,0,7+1) is justified because (aM; ... M;)M =
CLMl e MJM

120 Practical Issues

e (10) (k+1,1,j+ 1)@ (K +1,1,5') = (%, %, %):
The right hand side represents the redex:

(/\1131 e .’17k+1..’171M1 ... MJ+1)(Ay1 .. -yk’+1-y1N1 e le)
which reduces in the following way:

— A3 .. -$k+1-(/\y1 . .'ykl+1.y1N1 .. .le)Ml .. .Mj+1
— /\.’L‘2....’L’k+1....M1...

Whatever the respective values of k¥’ and j are, the one thing that
is certain about the last term above is that the term M; will appear
in the head position. But we do not know anything about the term
M, (the given triples tell us nothing about terms which appear in
the tail of the associated terms); consequently, the only “safe” thing
to do is to say that the composite term may not have a hnf (the
term M; might be Q for example). Rule (8.10) is the key rule which
introduces the approximation discussed earlier.

Exercise 8.2.1

(a) Provide justifications for some of the other rules for &.

(b) Rework the earlier examples which used Sel to use KSL.

(c) Identify a term M such that the second component of KSL(M) is not
equal to Sel(M).

8.3 Strictness Analysis

The previous section detects (head-)needed reductions by consideration of
reduction sequences; it is based on the proof theory of the A-calculus. We
can also use non-standard models to detect strictness.

We recall from our discussion of needed reductions that a unary function
is strict in its argument if:

fl=1

where we use the symbol L to represent the undefined value. The above
equation should be read “undefined arguments give undefined results”. Un-
fortunately, as a consequence of the undecidability of the Halting Problem,
we know that there is no algorithm to determine which arguments an arbi-
trary function is strict in. Instead, we have to settle for safe information;
we will develop a technique which, like the KSL algorithm, will identify
some of the arguments a function is strict in.

The interpretations that we presented in Chapter 5 map terms to de-
notations which capture the complete information content of the term.
Abstract Interpretation is a technique which involves mapping terms into
some abstract model such that each term denotes an abstract value that
just captures some property of the term (e.g. strictness). The abstract

8.3. Strictness Analysis 121

models are usually, although not always, finite; as a consequence abstract
interpreters can be incorporated into optimising compilers to give a se-
mantically sound basis for optimisations (in the case the model is infinite,
appropriate approximation techniques have to be employed to ensure that
the interpreter only has to access a finite portion of the model, otherwise
the compiler would not terminate).

A simple example of an abstract interpretation is suggested by arith-
metic. Suppose that we are posed the problem:

What is the sign of: 23 x (—6) x 157
The standard interpretation of integer arithmetic would map the strings of
digits to integers, — to negation and x to multiplication; it would determine
that the above “term” denotes —2070 from which we can answer that the
result is negative. Few readers will have taken this approach to answering
the question; most will have used an abstract interpretation:

+Q+ =+
—®-=+
+®—=-

where each signed integer is mapped to its sign and we have interpreted
multiplication by its rule of signs interpretation. We can thus answer that
the sign of the result is negative since:

+®-®+=-

As long as we only consider multiplication, we get exact answers; but even
for this simple example we can see the need for safety, since if we add
addition to the language, how can we answer questions of the form:

o+ =7

In the more general setting of abstract interpretation there seem to be
three solutions.

First, we could restrict our attention to finite state systems or to prop-
erties which are decidable. In either case we are guaranteed to be able
to develop an algorithm which always produces the right answer. At first
sight, this solution may seem uninteresting — surely programs are usually
infinitary and most properties are undecidable (strictness certainly is!)?
Nevertheless, researchers working on model checking routinely restrict their
attention to finite state systems (albeit with many millions of states!) and
PASCAL type-checking is decidable but useful.

Second, we might seek “user” assistance when the analysis cannot pro-
ceed. This approach has been used successfully in program transformation
systems. Unfortunately, the analysis is typically performed on some inter-
nal representation of the program; it may be difficult to seek assistance in

122 Practical Issues

terms of the source program and, as a result, the use of the analysis will
be restricted to expert programmers.

Third, the analysis can be made fully automatic but we have to be
prepared to accept that the information is inaccurate (but safe!).

We must establish some sort of correctness relationship between the
abstract and standard models. The rule of signs example would give us
incorrect information if we mapped every even number to + and every odd
number to —. The relationship is usually defined by a pair of maps (a,y),
where a (called abstraction) maps from a (set of) standard value(s) to an
abstract value and v (called concretisation) maps from an abstract value
to a set of standard values?.

If we consider a property to be represented by the (standard denotations
of) terms which satisfy the property, then correctness (safety) requires that:

v([Term]*) C Property = [Term]® € Property

(where A is the abstract model and S is the standard one).

We will now turn our attention to strictness analysis. We will consider
strictness analysis for a simple first-order functional language in which all
parameters are integers or booleans:

prog ::= let def in exp
def := f(variable;,...,variabler) < exp
exp == f(expi,...,expk) |
exp; binary-operation exp; |
variable |
number |
if exp; then exp, else exp;

An example program, based on the ubiquitous factorial function, is:
let fac(n) < if n =0 then 1 else n x fac(n — 1) in fac(4)

A standard model for this language would look fairly similar to those of
Chapter 5. The language is based on the A-calculus; it is really just a
syntactic sugaring of a A-calculus with some constants. The standard in-
terpretation will associate the standard denotation with integer constants
and binary operations on them.

In strictness analysis, the booleans and integers denote elements of the
two-point “domain”:

{0,1} with 0 C 1

where:

1 An alternative approach is to use a (logical) relation to establish correctness. While
this latter approach does lead to more perspicuous proofs, since our treatment will be
informal, we will not treat either approach in detail.

8.3. Strictness Analysis 123

e 0 represents the fact that the element is undefined
e 1 represents the fact that the element may be defined

There are meet (A) and join (V) operations defined on this domain, in the
following way:

0A0=0
0A1=0
1A0=0
1A1=1
ovo=0
ovli=1
1vo=1
1vli=1

Since the language is first-order, every expression denotes an object in the
above domain. The strictness analysis abstract interpretation for expres-
sions is as follows:

[f(expy, ..., expi)]#p = p(f)lexpr]¥p ... [ezpe]*p
[ezp: binary-operation ezps]#p = [expi]#p A [exzp2]#p
[variable]#p = p(variable)

[number]#p =1

[if ezp, then ezp, else exps3]#p =
[ezp:]#p A ([exp2]#p V [exps]*p)

Some remarks about the above definition are in order:

(1) We assume that the environment is “initialised” with the denota-
tion of the function, which is accomplished by the semantics of the
definition discussed below.

(2) We assume all binary operations are strict in both arguments; con-
sequently, we can map all such operations to the meet operation of
our domain (which will evaluate to 0 — undefined — if either of the
operands are 0).

(3) Any number is definitely defined so we map it to 1.

(4) The value of a conditional expression is definitely undefined if the
predicate is (thus the meet operation again) but otherwise it may be
as defined as the most-defined of the consequent or the alternative
(hence the join).

Generally, we will be interested in analysing function definitions to de-
termine whether the function is strict in any of its arguments. Since the
function may be recursive we have to represent its semantics as the fixed

124 Practical Issues

point of some functional. The function will be represented by an abstrac-
tion term in the model. The appropriate semantics for definitions is:

[f(variable,,...,variable;) < exp]*ef

fix Ap.p[f := (*vy ... v Jexp]# p[variable; :=v; | 1 <i < k])]

where fix is a fixed point operator.

For the purposes of our presentation we can ignore the rather complex
semantics of definitions and work with abstract recursion equations instead.
Given a function definition:

f(variabley,...,variabley) < exp
the abstract version of the function is just given by:
f#(variable,, ..., variable;) = exp™

exp* is a syntactic term in which:
(1) Every function call has been replaced by a call of f# with abstract
versions of the argument expressions.
(2) Binary operators have been replaced by A.
(3) Variables are left as they are.
(4) Constants are represented by 1.
(5) if e; then e; else e3 is replaced by e; A (e2 V e3)
The abstract version of the factorial function is:

fac*(n)=(m A 1)AQ V (n A fac®(n A 1))

The right hand side of the equation denotes an object in the two point
domain. Using properties of join and meet, we can simplify the recursion
equation to:

fac*(n) =n
The property of being undefined is expressed as the set:
{L}

The concretisation function for our strictness analysis is defined in the
following way:

v(0) = {1}
(1) = D,
where D is the carrier “set” of the standard model

Consequently, the general correctness statement is translated to:

f#1...101...1=0= fo;...vi_1lvig1 ... 0o = L
for any values v;,1 < j<kandj#:

8.3. Strictness Analysis 125

Since fac*(0) = 0, we can safely infer that fac is strict (assuming, which
we will, that the strictness analysis is correct).

The factorial example is fortunate since the simplified form of the ab-
stract recursion equation is non-recursive. We now consider an example
where this is not the case:

let dfac(m,n) < if m = 0 then n else dfac(m — 1,m x n) in dfac(4,1)
The abstract recursion equation corresponding to dfac is:
dfac” (m,n) = (m A 1)A(n V dfac*(m A 1,m A n))
after simplification the right-hand side becomes:
m A (n V dfac®(m,m A n))

and the equation is still recursive! In Chapter 6, we saw how the meaning
of such an equation can be understood as the fixed point of an associated
functional:

Afmn.m A (n V f(m,m A n))

The fixed point in this particular case is a function of type 2x2—2, where
2 is the two point domain, and so there is only a finite number of possi-
bilities. An ad hoc way of finding the fixed point would be to try to solve
the equation for dfac# with each of the possibilities; a problem with this
approach is that more than one of the possibilities may be a solution and
then we will be faced with a choice?. A more methodical approach is an
iterative approach which is inspired by the proof of Kleene’s Fixed Point
Theorem. We start with the assumption that dfac* is everywhere unde-
fined (= Amn.0) and replace all calls to dfac¥ in the right-hand side of the
equation by this:

(Step 1)
dfac*(m,n)=m A (n V (Odmn.0)(m,m A n)))=m A n

On successive steps, we use the approximation to dfac* generated by
the previous step; when two successive steps generate the same approxima-
tion, the process terminates and the current approximation is the required
fixed point:

2The best analysis would choose the least function, where the ordering on functions
is induced from the ordering on 2:

fC g & Vz,y.f(z,y) C 9(z,y)

126 Practical Issues

(Step 2)

dfac*(m,n)=m A (n V (Admn.m A n)(m,m A n)))
=m A (nV (m A n))
=m A n

Consequently, the abstract version of dfac is:
dfac*(m,n) =m A n

and dfac is strict in both arguments.

8.4 Polymorphic Type Inference

Many typed functional languages, although strongly typed, allow the defi-
nition of polymorphic functions. Recall from Chapter 7 that a polymorphic
function is one which takes arguments of many different types but which
behaves in the same way for each different type3. A simple example of a
polymorphic function is:

map : (¥ — xx) — [x] = [¥%]

map f] =]
map f (a:z) = (f a) : (map f)

The symbols * and ** are used as type variables and [] is the list type
constructor. One of the first programming languages to allow polymorphic
functions was ML (see Chapter 7) and in this section we introduce an
algorithm, due to Milner, which given an untyped function will either find
a polymorphic type for it or indicate that it is untypable.

We will consider the following language Exp of expressions:

ex=z|ee |Az.e|letz = eine

Types are constructed from type variables, typical representative a, prim-
itive (ground) types, typical representative ¢, and the function space con-
structor:

Tuo=al|t|T—=T

3The notion of polymorphism was introduced by Christopher Strachey. He distin-
guished two types of polymorphism; the type we have identified here is called parametric
polymorphism, the other is called ad hoc polymorphism. In ad hoc polymorphism the
function is allowed to do different things depending on the type of the argument; in
modern terminology such a function is said to be overloaded. For example, a + oper-
ator which performs addition on integers and reals and concatenation on strings does
very different things in each case and is thus overloaded. The AN-calculus of Chapter
7 supports overloading. The polymorphic types presented here are less general than in
the 2nd order polymorphic A-calculus.

8.4. Polymorphic Type Inference 127

The algorithm will produce the principal type scheme for a term; type
schemes have the following form:

o:=1|Va.o

We will use the shorthand Va; ...a,.0 for Va; ...Va,.o; the a; are called
generic type variables. A monotype is a type containing no type variables.

A substitution is a mapping from type variables to types. For a substi-
tution S, we write:

So

to represent the type scheme obtained from o by replacing each free occur-
rence of any variable in the domain of S by the corresponding element of
the co-domain of S; the resultant type scheme is called an instance of o.
We sometimes write S explicitly as:

[r1/01,-. . Tn/an]

meaning that 7; (1 < ¢ < n) is substituted for a;. Notice that the substitu-
tion operation may lead to variable capture if applied naively — we should
adopt a variable convention.

In contrast to the notion of instance, a type scheme ¢ = Va; ...an.7
has a generic instance o' =V ... Bn. 7" if 7' = [1;/a;]T and the 3; are not
free in o; in this case we write ¢ > ¢'. Notice that instantiation involves
substitution for free variables while generic instantiation acts on bound
variables.

We now present a formal system for type inference. The basic judge-
ments, or assertions, in this system are of the form:

Ale:o
where A is a set of assumptions of the form:

z : ¢’ where z is a variable

The assertion should be read: “Under assumptions A, e has type ¢”. An
assertion is closed if A and o contain no free variables. The axioms and

1-28 Practical Issues

the rules are presented below:

Taut Al z:0 (z:0in A)
Ale:o

Inst m‘ (0’>0’l)
AlFe:o .

Gen Ao Vao (a not free in A)

AFe:7'>1 AFé: 7T
Al (ee):T

Comb

A, U{z:7'}Fe:T

Abs AF (Aze): 17> T

Ate:oc A;U{z:0o}te:7
AF(letx=eine): T

Let

The assumptions A, used in Abs and Let denote the new assumptions
derived from A by removing any assumption about z. The reader should
compare these rules, particularly Comb and Abs, to the definition of \"-
terms in the last chapter. Notice that polymorphism is represented by type
schemes; only the rules Taut, Inst, Gen and Let concern type schemes.
Type inference amounts to a process of theorem proving in this formal
system, for example:

z:alz:a Taut
F(Az.z):a—a Abs
F (Az.z) : Ya.a > a Gen

This (polymorphic) type associated with the identity function is the most
general type for the identity function; all other possible types are generic
instances of Va.a — a — it is the largest type in the >-ordering.

We now present an algorithm for inferring types; the algorithm is Mil-
ner’s W algorithm. The informal type of W is:

Assumptions x Exp — Substitution x Type
and if:
W(A,e) = (S, 1)
then we have:

SAFe:T

8.4. Polymorphic Type Inference 129

where substitutions are extended to assumption lists in the obvious way.
In order to define W, we will need two operations: unification and closure
with respect to some assumptions.

Definition 8.15 A unifier of two terms is a substitution which, when ap-
plied to the two terms, makes the terms equal. We will define an algorithm
U which finds a unifier for two types T and ' or fails. Furthermore:

(1) If U(r,7')=V thenVT=V7
i.e. V unifies 7 and 7’

(2) If S unifies T and 7' thenU(t,7') returns some V and there is another
substitution R such that

S =RV

where composition of substitutions is done in the obvious way. This
requirement amounts to stating that V does the least amount of work
to equate the two terms; V is called the most general unifier.

(3) V only involves variables in T and 7'; no new variables are introduced
during unification.

The algorithm uses the notion of a disagreement set:

D(r,7)=0
ifr=1
= {(n,m)}

if 71,7 are the “first” two subterms at which 7 and 7’ disagree

In the second clause of the definition, we assume a depth-first traversal.
Some examples may clarify this concept:

D(int — int,int — int) = O
Da—-B,a—>8)=0
D(a,a = B) = {(a,a = B)}
D(a — a, (int — int) = B) = {(a,int — int)}
D((int = a) = B, (int — int) = v) = {(a,int)}

We now define U/ in terms of an auxiliary function which iterates with a
substitution and the two types to find the unifier:

130 Practical Issues

U(r, ') = iterate(Id, T, 7")

where

iterate(V,7,7') =if VT = V7'
then V

elsif a is a variable that does not occur in b
then iterate([b/a]V, 7, 7')

elsif b is a variable that does not occur in a
then iterate([a/b]V, T, 7')

else FAIL

where {(a,b)} = D(VT,V7')

The reader should, at least informally, verify that this definition does meet
the earlier specification.

Exercise 8.4.1 Show that

UB =,y —>¢€) =[e/r,7/8]

The closure of a type results in a type where some free variables are
quantified; more formally:

Definition 8.16 The closure of a type T with respect to some assumptions
A involves making any free variables of T which are not free in A into
generic type variables. We write the closure as A(t). Thus:

A(T) =Vay...on.T

where aa,...,an are the type variables occurring free in T but not in A.
We now define W:

W(A,e) = (S,7) where

(i) Ife=zandz:Va;...a,.7' € Athen S =Id and 7 = [3;/a;]7’
with the 3; new.

(ll) Ife= €1éeéq:
let W(A,el) = (Sl,Tl) and
W(S14,e2) = (S2,72)
and U(Sa71,72 = B) =V where 8 is new
then S =V S;S; and 7 = V,B
(iii) If e = Az.ey:
let 3 be a new type variable and W(A, U {z : 8},e1) = (S1,71)
then S=S, and 7= 518—> 7.

(iv)Ife=let z =e; tn eg:
let W(A,e1) = (S1,71) and

8.4. Polymorphic Type Inference 131

W(S1A; U{z : S1A(n1)}, e2) = (S2,T2)
then S = S5S5; and 7 = 7.

(v) Otherwise W fails.
We now state and prove several important properties of this algorithm.

Proposition 8.17 If S is a substitution and A+ e : o holds then SA I
e : So also holds. Moreover if there is a derivation of A+ e : o of height n
then there is also a derivation of SAF e : So of height less than or equal
ton.

Proof by induction on the height n of the derivation of Al e: 0.

Basis: the only derivations of height zero are instances of Taut, i.e. A F
e:o withz:0in A. Then z: So is in SA and we also have SAF e : So.

Induction step: the most difficult case is when the last step of the deriva-
tion involves the use the Gen rule. In this case ¢ is of the form Va.o’. The
antecedent is A - e : ¢’ and « is not free in A. By the inductive hypothesis
SAF e: So' but we can no longer use the Gen rule because a may be free
in SA. Instead we introduce a new type variable a’. Now by the induction
hypothesis:
S[la'/a)AF e: S[a'/a)o’
and since neither a or o’ occur in A:
SAFe: S[a'/a]o’

and now the Gen rule applies and we have the result (modulo renaming
of generic variables).

O

Exercise 8.4.2

1. Prove that for any type schemes o and o' and any substitution S, if
o > o' then So > So’.

2. Complete the proof of the previous proposition.

Theoram 8.18 (Soundness of W)
If

W(A,e) =(S,71)
then
SAke:T
which is just the property that we required in the specification of W.

Proof by induction on e.

132 Practical Issues

We just consider the application e e’. By the induction hypothesis we
have:
S1AFe:n

and
SgSlA F e' ‘T2

From the proposition we have:
VSleA Fe: VSng
and
VS2S]_A [e' : VT2
Now V. S;my is equal to V2 — V3 by the unification algorithm. Thus we
can combine the previous two judgements with the Comb rule to give:
VS:S1Abee : VP
as required. O

Exercise 8.4.3 Complete the above proof.

Given A and e, o, is a principal type scheme of e under A if and only
if:

e Ale:o,

e Any other o for which A e: o is a generic instance of o,.
Soundness states (approximately) that any types inferred by W can be in-
ferred using the inference system. An equally important property is com-
pleteness, which means that any type that can be inferred by the inference
system can be found by W (again approximately). We state two versions

of completeness without proof; see the seminal paper by Damas and Milner
for details.

1. Completeness of W: Given A and e, let A’ be an instance of A and
o a type scheme such that A’ |- e : o then:

e W(A,e) succeeds
o If W(A,e) = (S, 7) then for some substitution R:

A' = RSA

and RSA(T) > o

2. Completeness (no free type variables) of W: If A F e : o, for
some o, then W computes a principal type scheme for e under A.

Property 2 is actually a simple corollary of Property 1.
We give an example of the application of W:

Example 8.19 W({}, A\fz.f(fz))

8.4. Polymorphic Type Inference 133

by (iii) we need to evaluate W({f : a},A\z.f(fz)) where a is a new type
variable.

Thus by (ii1) again, we need to evaluate W({z : 8, f : a}, f(fz)) where 8
s a new variable.

To evaluate W({z : B, f : a}, f(fz)), by (i) we should evaluate W({z :

B, f : a},) which is:
(Id,) by (i) (%)
Then we evaluate W(Id{z : B, f : a}, fz):
W(ld{z:B,f:a},f) (Id,a) by (i)

W(Idld{z : B, : a},z) = (Id, B) by (i
U(a, B —) [B = v/a] where v is new

thus:
WId{z:B,f:a},fz)=(B—v/a],7) (%x)
Next have to unify (*) and (**) as specified in (ii):

U([B— v/a)a,y = €) =U(B — ~v,7 — €) where € is new
= [e/7,7/8]
Thus:

W({z: 8, f:a}, f(fz)) = ([¢/7,7/B,8 = v/al,€) by (ii)
W({f:a},Az.f(fx)) = ([e/7,7/B,8 = v/a),e = €) by (ii)

and finally:

W}, Afz.f(fz)) = ([e/v,7/B,8 = v/a], (e = €) = € = €)
by (i) as expected!
Exercise 8.4.4 Use W to infer the type of Azyz.zz(yz).

We conclude this section by noting the importance of the let-construct
in the language. In a type-free setting:

letz=ein e
is just syntactic sugar for:
(Az.e')e

This is no longer true when we use W to infer types. The let-construct
introduces polymorphic functions; thus:

let f=Xzxzin...ftrue...f1...

can be validly typed because f will be given type Ya.a — a (because of the
closure operator in (iv)) which can then be instantiated to both bool — bool
and int — int. However:

134 Practical Issues

(Af....ftrue...f 1..))(A\z.z)

cannot be validly typed because Az.z is given type a@ — a and a can only
be instantiated to one type.

8.5 Summary

In this chapter we have studied more practical aspects of the A-calculi.
The topics we have presented should have given the reader some idea of
how the theory of the preceding chapters is put to use in the implemen-
tation of (functional) programming languages. The abstract machines are
closely related to the implementation techniques that are used in practical
functional programming systems. The development of efficient methods of
program analysis is state-of-the-art research in advanced compiling tech-
nology. Most of the modern functional languages allow the definition of
polymorphic functions and use type checking algorithms based on the one
presented in the last section.

9
Other Calculi

Overview

In this chapter we present three other calculi which have been proposed in
the last few years. Each addresses a different deficiency of the pure calculus
that has been our main object of study. This chapter is slightly different in
style compared to the earlier chapters; we cover a lot of material with few
examples or exercises. We have chosen to emphasise the proof theory of
the calculi — the interested reader is urged to consult the original source
material for details of models and more motivational examples.
The three calculi are:

Abramsky’s Lazy A-calculus: The standard theory fails to distinguish
between terms which have markedly different behaviours in any lazy
implementation of the calculus. The lazy A-calculus gives a more
faithful account of such implementations.

Boudol’s y-calculus: The classical A-calculus is essentially a calculus for
describing “sequential” programs. The v-calculus is a process-based
calculus which extends the A-calculus with non-deterministic oper-
ators. The result is that we can construct «-terms which denote
computations which are not representable in the A-calculus.

The Ao-calculus: The Ao-calculus has been proposed by Abadi, Cardelli,
Curien and Lévy. In contrast to the classical A-calculus where sub-
stitution is extra-logical (recall Chapter 2), in the Ao-calculus sub-
stitutions are dealt with as an explicit part of the calculus. Since the
main problem in any implementation of the A-calculus is the correct
handling of substitution, this new calculus gives important insights
into abstract machine structures (amongst other things).

9.1 The Lazy A-calculus

The standard models of the A-calculus equate terms which do not have a
head normal form (refer to the discussion in Chapter 3). As a consequence,
for any such model M we have:

M Q=)\z.Q

Lazy evaluation, however, distinguishes between these two terms; 2 leads
to an infinite reduction sequence whereas Az.Q is a well-defined value. This

136 Other Calculi

difference results from the fact that the lazy evaluation of a term stops at
weak head normal form:

Definition 9.1 A term is a weak head normal form (whnf) if:
either (7) it is of the form Ax.M
or (ii) it is of the form x M, ... M,, form >0

Notice that Q has no whnf, whereas Az.Q2 is a whnf. In the lazy A-
calculus, we equate terms which have the same whnf and equate all terms
which do not have a whnf (this last class of terms being used to represent
the “undefined” computations).

Abramsky develops a theory, A¢, and models of the lazy A-calculus.
We will concentrate on the theory; the interested reader is referred to
Abramsky’s papers for details of the models.

9.1.1 The theory of the lazy A-calculus

The terms of the lazy A-calculus are the same as the terms of the untyped
A-calculus, A.
The theory is defined via an auxiliary notion of convergence:

Definition 9.2 (Convergence)
For M,N € A°, M converges to principal whnf N, written M | N, if
M | N is a theorem of the following theory:

Az. My Az M

Myxrxz.P Plz:=N]{Q
MN | Q

We will write M |} and say that M converges if:
INM § N

and we will write M f} (M diverges) if =(M).

Notice that the previous definition is for closed terms only. The whnf
of a closed term is also closed and must therefore be an abstraction term.
Such a whnf does not tell us very much about the behaviour of the term;
the body of the abstraction may involve an arbitrary number of redexes
which is in contrast to the classical situation where we deal with normal
forms. We may gain information about a term by performing a sequence
of ezperiments on the term! — we can “unravel” the whnf step by step by
providing successive arguments and evaluating to whnf. The reader should
compare this process to the construction of the Bohm-like tree of a term
presented in Chapter 5.

1Readers familiar with Milner’s CCS and related process algebras will find the fol-
lowing very familiar.

9.1. The Lazy A\-calculus 137

We establish a sequence of relations, {<x}rewn on A°:
M <y N

M =21 N=
M § Az.M; = 3NLIN U My.N; & VP € A%.[My[z := P] < Ni[y := P]]]

So we always have M <, N; if we don’t perform any experiments, we
cannot differentiate between any terms.
We now define the following relationship between terms:

Definition 9.3
M<BN=VkewM=< N

The relation <B is an applicative bisimulation?.
<B is extended to all terms, A in.the standard way:

M <B N=Vo:Var - A°. Mo <B No

where o is a substitution (of closed terms for variables) and X o represents
a closed term in which all free variables in X have been replaced by closed
terms as specified by o (compare with the notation introduced in Chapter
7). <B satisfies the following:

M<BNs&
M Y Az.P = 3Q.[N § A\z.Q & VL € A°.[P[z := L] <® Q[z := L]|]
We write M ~B N if M <B N and N <B M.

Given our informal description of the < relations and the above we have
the following result:

Proposition 9.4
M<BENosVPCAN . MPy=NPy

An alternative characterisation of applicative bisimulation is given by
the following contextual congruence:

Definition 9.5 For M,N € A°:
M <° N=VC[] € A°.C[M] § = C[N] {

<€ can be extended to all terms in the same way as <B. The equiva_ulence
of the two notions is proved in the following proposition (the proof of which
follows the approach of Ong and Abramsky):

Proposition 9.6 <B = <€

2Compare the definition of <& to that of bisimulation used in CCS — the notion
of applicative bisimulation is really a simulation relation in that setting. This has been
acknowledged by Ong and Abramsky in their later writings. See also the next section.

138 Other Calculi

Proof
We need to show the following:

M<BENeM<°N

(«=)
Use the definition of <€ and Proposition 9.4 with contexts [JP.

(=)
Given M, N € A°, we show that:

M <B N=vVC[e A’.C[M] | = C[N]§

by induction on the number of steps that it takes for C[M] to converge.
The base case is obvious. For the inductive case, we need only consider the
following contexts:

(1) ¢ = (=-PDQDED,

(2) ¢l =[(PNel
These are sufficient to allow us to focus on the first step of leftmost reduc-
tion.

Here, we just consider the first case. Suppose C[M] converges in [+1 steps.
Define:

D[= (P])[z := QIR[

Then it is easy to see that:
C [M] —lm D[M]

where —,, is one-step leftmost reduction and we now have that D[M]
converges in ! steps. Thus by the induction hypothesis we have that D[N] |
which implies C[N] {. O

Exercise 9.1.1 Complete the above proof, L.e. the second case in the in-
duction. You should start with M = (A\z.U)V.

From now on we will write < instead of <B. The following establishes
some basic properties of <:

Proposition 9.7 For all M,N,P € A:

1) MM

2) MXN&G4N<P=>M=<P

(3) M XN = M[z:=P] XNz := P]
(4) M X N = P[z := M] < P[z := N]
(5) Ma.M ~ M y.Mz:=y] y¢&((FVM)
(6) M XN = A\z.M < \z.N

(7) M; < Ni(?: = 1,2) = M M5 < N1 No

9.1. The Lazy A-calculus 139

Proof
We just prove (4), which is equivalent to:

M <¢ N = P[z := M] <€ P[z := N]

Bound variables in P are renamed to avoid clashes with M and N. P is
transformed to a context P[] by replacing instances of the (bound) variable
z by [J; thus

P[z := M] = P[M] and P[z := N] = P[N]
Let C[] € A° and 0 € Var — A° be given. Let Ci[] = C[P[lo]. M <° N
implies:
Ci[Mo]§ = Ci[No] |
which, since (P[z := M])o = (P[Jo)[M o], gives the required result. 0
Exercise 9.1.2 Complete the above proof.
The theory of the lazy A-calculus, A4, has two types of formulae:
MCNand M=N
where:

MFMCECN=M<BN
MFM=N=M~BN

We close this subsection with a proposition which establishes some basic
properties of the theory A\¢:

Proposition 9.8
(1) A is included in AL, in particular:
ME (Az.M)N = Mz := N]

i.e. the rule (B) is satisfied.
(2) Q is the least element for C
(3) (m) is not valid in N, e.g.:

MY Ax.Qzr =0
but we do have the following conditional version of n:
Un) MbElXMz=M (My,z¢gFV(M))

where M |} =Vo € Var — A%.(Mo) |.
(4) YK is the greatest element for C.

Exercise 9.1.3 Prove this proposition.

140 Other Calculi

9.2 The «-calculus

We now consider an extension of the A-calculus for concurrent and com-
municating systems, Boudol’s y-calculus. In the y-calculus terms denote
processes which are able to communicate via named ports. In common
with the previous section, the relationship between terms is established by
a notion of bisimulation. We start by presenting the syntax and basic the-
ory of the y-calculus and close the section by considering the relationship
to the A-calculus.

9.2.1 The theory of the vy-calculus

Since communication between terms is via named ports, it is reasonable
to consider the ports to be binders which play a similar rdle to A in the
A-calculus. The class of binders, B, is defined over the alphabet:

z,Y,... variables

a,f,... port names

() parentheses

€ empty binder

| interleave
sequence

Definition 9.9 The class of binders B is the least class such that:

(1) eeB
(2) ax € B where a is any port name and z is any variable.
(3) If p1, p2 € B then (p1.p2), (p1 | p2) € B

The major innovation is the ability to interleave binders; the intention
of this construction is that the bindings can occur in any order. One
significant use of this is when the binders have the same port names which
enables the encoding of a non-deterministic choice:

<Az | Ay > .z

(Although we have not discussed the syntax of terms, it should be clear
what is intended here: this defines a process which accepts two inputs on
the A port which are non-deterministically bound to z and y; the value
bound to z is returned.)

Certain binders have the same effect; in particular it is reasonable to
expect € to be an identity for both sequencing and interleaving:

(pe) =p=(cp)
(ple)=p=(c|p)

We take = to be the congruence generated by these equations and this
establishes the syntactic equality over binders. We will use this technique

9.2. The y-calculus 141

again later, so we pause to revise precisely what is meant by the last sen-
tence. First, it is possible to define the notion of a binder context, B[] — a
binder with holes; the definition of this is straightforward from the defini-
tion of B. The congruence is then generated from the above equations and
the following rule:

p = p = Blp] = B[]

The purpose of binders is to bind a set of variables; by analogy with the
A-calculus, we can define a function BV which, when applied to a binder,
produces the set of variables bound by the binder:

Definition 9.10 The set of bound variables introduced by a binder is de-
fined inductively via the function BV : B — p(Var) :

BV (¢) =0

BV(az) = {z}

BV (p1.p2) = BV (p1) UBV(p2)
BV (p1 | p2) = BV (p1) U BV (p2)

We now turn to the syntax of terms. Terms are constructed from binders
and expressions, and consequently the alphabet used is the same as for
binders plus:

1 idle

a,p complemented port names
<>

® cooperation

Definition 9.11 The class of y-terms, T, is the least class such that:

(1) z € ', where x is any variable
(2) 1 el
(3) If p,p1,p2 €T and p € B:

(a) apel

(b) <p>.peT

(c) (p1O®p2) €T

(d) (p1|p2) €T

Before we continue with our formal presentation of the y-calculus, some
remarks concerning the intuitive meanings of terms may be in order. 1 is
used to denote the idle process which is incapable of any further interaction.
Terms of the form ap are able to transmit the value of p to a port with name
a. (p| q) represents the arbitrary interleaving of the “evaluation” of p and
g (with no interaction possible). Finally, (p ® g) denotes the cooperation
of p and ¢, which enables p and ¢ to communicate across common ports.

The definition of free variables is straightforward:

142 Other Calculi

FV (1) =0
FV(z) ={a}
FV(ap) = FV(p)

FV(<p>.p)=FV(p)—BV(p)
FV(pogq) =FV(p)UFV(q)
FV(plg) =FV(p)UFV(q)

As with the bindings, we consider the class of terms modulo syntactic
equality, =, which is the congruence generated by:

(pol)=p=(10p)
(p|1)=p=(1]p)
<e>.p=p
<p>.p=<pl>.pif p=p/
<p>p=<plz:=y]>.plz:=y]if z € BV(p) and y € FV(p) U BV (p)
Notice that the last equation corresponds to a-congruence in the A-calculus.

Proposition 9.12 = is substitutive, that is:
P=q=po=qo
for any substitution o.

Proof
(by induction on the definition of =). O

Exercise 9.2.1 Complete the proof of the above proposition.
Definition 9.13 p is terminated or idle, written pt, if p= 1.

We are now ready to define a relationship between terms which is similar
to reduction in A-calculus. We need to take a certain amount of care in
defining this relationship; in the setting of the v-calculus it is reasonable
that any term of the form:

ap

should be able to pass the value of p to @ and then become idle (= 1).
If we define “reduction” as a binary relation on terms, there is no way of
distinguishing any of the output terms: they all reduce to 1 in one step
and are thus “convertible”. To distinguish such terms, we have to observe
the communications as well as the end result. This leads to the idea of
a labelled transition (reduction) relation between terms; a notion that is
commonly used in the semantics of concurrent languages.

We will define a transition relation >: I' x A x I and write p = p’ if

p reduces to p’ in one step via the action a. We consider three types of
action:

9.2. The v-calculus 143

ap receive p on port «
ap send p to port «
T silent action

Formally, the class of actions, A, is
(NxT)u('x N)u{r}

where N is the set of port names and the first component corresponds
to receiving and the second corresponds to sending actions. The T-action
represents an action which is not directly observable because it arises as
the result of (private) cooperation between two terms; readers familiar with
Milner’s CCS or other process algebras will realise that 7-actions play the
same roble there.

Definition 9.14 Two actions a and b are complementary, written a —~ b,
if a = ap and b= o, or vice versa.

Finally, before presenting the relation on terms, we introduce an aux-
iliary labelled transition system for bindings. In this transition system,
labels are of the form: a; ,, meaning that z is bound to p as a result
of a communication on port a. The transition relation is the least one
satisfying:

az e pel

pp
(p-p") = (¢ -")

pie pI _a'>pll

(p-p') = p"

p=p
AVARXVANED

p=p
(0" p) = (p"] p)

The transition relation on terms is defined as the least subset of ' x AXT
defined by:

dpﬁill

144 Other Calculi

xz.q

p=+p
<p>.p°—“$<p’>.p[x:=q]

. Q /
pP=€ p—p
<p>payp

p3p ¢3¢ a~b
(pOg > @O

(7)
T,]

b—p

T, _
ap — ap

T, /
pP—=>Dp
<p>poi<p>p

pop
(poq) 5 (P @q)

g4
(pog) > (oY)

p>3p
(plg) > @ |q)

g q
Plg) > @|q)

p>p gt
(poq) >

b
g—q pt
POQ >¢

The rule labelled () is at the heart of the vy-calculus. If p and ¢ are
capable of complementary actions producing p' and ¢, then the cooperation
of p and ¢ may perform a silent action to become the cooperation of p’ and
q¢’. This rule describes how terms, as processes, may communicate with
one another. The last two rules state that a cooperation may only have

9.2. The ~y-calculus 145

“external” relations (i.e. sending and receiving) if one of the components
has become idle; otherwise the only actions that a cooperation can perform
are silent.

Relationships between terms (and actions) are established via bisimu-
lations. If R C I' x I' is a relation on terms then we extend it to a relation
on actions, R C A X A, in the following way:

aRb&a=b Vv da € N 3p,qpRg& a=cqa, & b=a,
Definition 9.15 RCI' x T is:
(i) a strong simulation if it satisfies:

S1: pRq & po > p' = Ib.aRb ¢ PRY & g0 > ¢

S2: pRq & pt = qf
(ii) a strong bisimulation if it is a symmetric strong simulation.

Proposition 9.16 The congruence = is a strong simulation on I.

Exercise 9.2.2 Provide a proof of the above proposition. You will need to
use the fact that:

If R is a strong simulation then pRq = poRqo for all substitutions o

and proceed by induction on the proof that poc = qo and then induction on
the proof of the transition po — p'.

This allows us to define the transition relation — on I’/ =. Conse-
quently, by an abuse of notation, we can write:

(az.p ® &q) — p[z := q]

which should be beginning to look familiar (compare it with the rule (3)
from the A-calculus).

9.2.2 Relating the vy-calculus to the A-calculus

The ~-calculus is an extension of the A-calculus. To demonstrate this we
define a mapping from A-terms to y-terms:

Definition 9.17 We define the mapping © : A — T as follows:

Or =z
O(A\z. M) =<z > .OM
O(MN) = (M ® A(ON))

We assume that substitution in the two calculi are defined in the same
way and thus:

VM, N € A.O(M|z := N]) = (OM)[z := ON]

The central result relating the two calculi is:

146 Other Calculi

Proposition 9.18 For all M,N € A:
(i) M =g N = 3P = ON such that ©M — P
(1)) M - P=>3IN€AM g N& ON=P

Proof
(i) induction over the definition of —4.
(ii) siructural induction on M. m|

Part (i) of the above proposition states that for each one-step reduction
on A-terms, there is a corresponding transition on the v-terms. Part (ii)
states that starting from the translation of a A-term, each <y-transition is
matched by a corresponding reduction.

Exercise 9.2.3 Complete the proof of the above proposition.

The proposition establishes an equivalence between the A-calculus and
a sub-calculus of the «-calculus. If © was surjective then the two calculi
would be equally powerful; however there are y-terms which cannot be con-
sidered as the translation of any A-term. To see this consider the coding of
disjunction in the two calculi. In Chapter 6, we introduced an encoding for
the truth values and invited the reader to encode various logical operations;
a suitable encoding for or would be:

Azy.(zT)y
the corresponding ~y-term is:
< Az Ay > .(2T)y

(for suitable encoding of T in the v-calculus). Notice that both of these
operators are “sequential”’: no answer is produced until the first argument
has been evaluated to normal form — there is a preferred ordering on the
evaluation of arguments. A fundamental theorem of the A-calculus, due
to Berry, is that all A-terms denote sequential functions. Herein lies the
major difference between the two calculi; an alternative representation of
disjunction in the y-calculus is:

<Az | Ay > .(zT)y

which is sometimes called parallel or.- This alternative disjunction exploits
non-determinism to evaluate to T if either of the arguments does, even if
the other term is not normalising.

9.3 The Ao-calculus

We now return to a calculus which is intended to be equivalent to the
A-calculus. In the classical A-calculus, which has been our main subject
in this book, substitution is an extra-logical feature. In contrast, in the
Ao-calculus the operation of substitution is “built-in” to the calculus in

9.3. The \o-calculus 147

the form of closure terms. There are various versions of the Ao-calculus: a
type-free calculus, a first-order calculus (corresponding to the simple typed
A-calculus) and a second-order calculus (with polymorphic types). We
will concentrate (exclusively) on the type-free calculus; in this setting the
explicit handling of substitution is suggestive of abstract machine structures
to support the calculus as we have already seen for the Ap-calculus in
Chapter 8.

9.3.1 The basic theory of the Ao-calculus

Terms in the Ao-calculus are either A-terms in de Bruijn notation with
indices starting from 1 (see Chapter 2) or closure terms. Consequently
the substitutions apply to de Bruijn indexes. Terms and substitutions are
constructed from the alphabet:

1 the de Bruijn index

A

[,] closure brackets

id the identity substitution
0 shift

. cons

o composition

Definition 9.19 We define A, the class of terms and S, the class of sub-
stitutions, to be the least classes defined by:

(i) 1 € A and id,T€ S.

(i) If a,b€ A and s,t € S:

ab, Aa, a[s] € A

a-s, sotes

A substitution is a mapping Num — A. We will often write the el-
ements of a substitution explicitly in braces ({ and }). id is the identity
substitution {7 := ¢}; 1 is a shift substitution {z := i+ 1}; a - s prefixes the
term a onto s giving the substitution {1 := a,7 + 1 := s(¢)}; s ot is the
composition of two substitutions {i := s(2)[t]}.

Given our discussion of substitutions it should be clear why the syntax
of terms only includes the index 1; any other index (n + 1, say) can be
encoded by:

1[t"]
where the superscript n represents an iterated sequence of fs.
The theory Ao is generated from the following axioms, which define a

notion of reduction (in the sense of Chapter 3). The first axiom is called
Beta and the remaining ten axioms are called o:

148 Other Calculi

(Aa)b = a[b - id]
1[id] =1
1[a - s] =a

(ab)[s] = (a[s])(b[s])
(Aa)[s] = Ala[l- (s o 1))

afs][t] = a[s o]
tdos =3
Toid =1
to(a-s) =s

(a-s)ot =alft]-(sot)
(sosl)osﬂ___so(slos”)

The second group of axioms concern the distribution of substitutions through
terms, the final group concerns the simplification of substitutions.

The theory Ao can be generated from the notion of reduction in the
“usual” way. We will not pursue this here; later we will develop a one-step
reduction relation which represents leftmost reduction to weak head normal
form. For now we turn to the relationship with the A-calculus.

9.3.2 Relating the Ao-calculus to the A-calculus

The normal notion of B-reduction is not included directly in the Ao-calculus:
the rule Beta does not equate to 3 because the right-hand side of Beta is a
closure term involving an explicit substitution whereas the S-rule does the
substitution. The definition of B-reduction in the de Bruijn notation is:

(Aa)b =5 a{b/1,1/2,...,n/n+1,...}

where the meta-level substitution operation {...} is defined by the follow-
ing proof system:

n{a1/1,...,an/n,...} = a,

a{a1/1,...,an/n,...}=d b{a1/1,...,an/n,...} =V
(ab){a1/1,...,an/n,...} =a't

a;{2/1,...,n+1/n,...} =a; a{l/1,a}/2,...,a,/n+1,...}=d
(Aa){a1/1,...,an/n,...} = Ad’
The effect of this operation is to perform the substitution and renaming

required by the definition of substitution in the de Bruijn calculus (see
Chapter 2).

9.3. The \o-calculus 149

The following proposition relates this meta-level substitution operation
to the explicit substitutions:

Proposition 9.20 If there exist m and p such that amyq = p+ q for all
q > 1, and a{a1/1,...,an/n,...} = b is provable in the formal system
above, then the o-normal form of ala; -az - ... - am- 1P} = b.

Proof
By induction on the length of the proof of a{a;/1,...,an/n,...} =b. O

The importance of the above proposition is that it establishes that we
can simulate [-reduction by first performing a Beta step followed by a
series of o-reductions to o-normal form.

Exercise 9.3.1 Prove the above proposition. You may find it helpful to
strengthen the result to argue that all intermediate terms in the derivation
satisfy the hypothesis.

We state (without proof — or exercises!) the following results:

e Betato is CR
e 0 is SN and CR
e (3 is CR on o-normal forms

The last two results, and some of our preceding discussion, require the
notion of o-normal form. So far we have relied on intuition as to the form
that such terms should take. We close this subsection by formalising this
notion. A substitution in normal form is necessarily of the form:

al-(ag-(...(am-U)...))

where U is either id or a shift, 7. A term in normal form is entirely free
from substitutions except in subterms of the form 1[1"] which encode the
de Bruijn indexes.

9.3.3 Towards an abstract machine

In this section we present two variants of a one-step, leftmost outermost
reduction strategy. Both are suggestive of abstract machine studies. The
reader should refer back to Chapter 8 for a related discussion of abstract
machines.

Both of the strategies are weak reduction strategies (compare with com-
binatory logic): they both reduce to whnf.

Definition 9.21 A weak head normal form is a Ao term of the form:
(i) Aa
or

(it) nay . ..am

150 Other Calculi

We start by defining a relation . Recall that in Chapter 3, we gen-
erated the one-step reduction relation from the corresponding notion by
taking the compatible closure. Since we are interested in leftmost reduc-
tion only and are only evaluating to whnf (i.e. not evaluating under As),
we just add:

noo g
a—=a
ab > a'b
We also add two rules for substitutions:
no
s—s
1[s] = 1[s']

o
§—s
tos3tos

and orientate the eleven axioms left-to-right (replacing = by —).
The following proposition relates — to leftmost outermost one-step 3-
reduction.

Proposition 9.22 If a = b then, given a' and b’ the o-nfs of a and b,
either ' =3 b’ ora’ and b’ are identical. The — reduction of a terminates
iff the leftmost outermost [3-reduction of a' terminates.

The second approach, =, involves an optimisation of —3: the rule
((Aa)[s])b = a[b- 5]
replaces the two rules:
(Aa)b 3 a[b-id]
(Aa)[s] = Aa[L - (s o 1)])
This optimisation is justified by the following:
((Aa)[s])b = Ala[1- (s o 1)])b
—a[l- (s o 1)][b-id]
—af[(1-(so1))o(b-id)]
—afl[b-id] - ((s o 1) o (b-2d))]
—afb- (s o1)o(b-id)]
—afb-(so (o (b-1id)))]

— afb- (s oid)]
= a[b- s

The last step above uses the (reasonable) rule:

soid=s

9.4. Summary 151

This rule is not part of —; thus the two strategies are different. Both
are weak strategies in the sense that they do not evaluate under abstrac-
tions but the second strategy doesn’t even pass substitutions into abstrac-
tions. This last observation suggests that = models environment machines,
whereas — is more closely related to combinator reduction machines.

9.4 Summary

We have presented three new calculi: the lazy A-calculus, the v-calculus
and the Ao-calculus. Each extends the classical A-calculus in some way.
We have seen two new techniques:

e the use of bisimulations to establish relationships between terms (as
opposed to convertibility).

¢ a refined notion of compatible closure (see Chapter 3) which allows
us to enforce particular reduction strategies.

The notion of bisimulation was first introduced in the context of process-
based languages. The view taken is that a term is a black boz; properties of
the term can be determined by performing ezperiments on the box. If two
boxes behave in the same way in response to every possible experiment
then they are indistinguishable (with respect to the given bisimulation).
In the lazy A-calculus an experiment takes the form of an application of
the “box” to some term; the response to an experiment is an indication
of convergence or divergence — this is the only property of a term that
is “observable”. In the <v-calculus, experiments are also applications and
convergence also plays a part in the response, but experiments also include
some information about the ports that are used.

10

Further Reading

10.1 General

We have given a Computer Science perspective on the material covered
in this book. Many of the fundamental results have been produced by
logicians. Our inspiration in writing this book has been Barendregt’s en-
cyclopaedic tome [5]. Most of the basic material presented here is treated
in much more detail in [5] and the interested reader is urged to consult it.
The classical presentation of the A-calculi is Church’s 1941 report [10].

One of the earliest textbooks in the field was Hindley, Lercher and
Seldin’s Introduction to Combinatory Logic; while this is no longer avail-
able, [17] is a much-expanded treatment of the same material. The latter is
written from a mathematical logician’s perspective, so it is short on com-
putational intuitions, but it is nonetheless a useful reference, particularly
for material on typed calculi.

A number of functional programming textbooks contain computing-
oriented descriptions of the A-calculus and combinators. For example [16,
21, 22] contain accounts of the main results relating to functional languages
and their implementation.

[23] is a detailed bibliography of work published up until 1982.

The de Bruijn notation, introduced in Chapter 2, is studied in detail in
[11].

10.2 Reduction

A more detailed consideration of evaluation strategies for functional lan-
guages and the relevance of the A-calculus to such languages may be found
in [16]. The basic material of this chapter is drawn from [5]. The material
on labelled reduction and residuals is-based on the approach used by Klop
in [20].

10.3 Combinatory Logic

Combinatory logic is the main focus of [17]. Historically, the main refer-
ences to this work are [13, 14] but these are not for the fainthearted!

154 Further Reading

10.4 Semantics

A comprehensive treatment of semantics may be found in [5] and [17].
Both include detailed discussions of Scott’s models. Barendregt’s book also
includes extensive material on B6hm trees. Stoy’s book [24] is the classical
textbook on denotational semantics and contains a good introduction to
the A-calculus and models. There have been a number of books published
recently which contain some coverage of this material; a good example is
[25].

10.5 Computability

Computability aspects of the Lambda Calculus and Combinatory Logic are
dealt with in [5] and [17]. A more general treatment of this subject (which
does not even mention the various calculi considered here!) may be found,
for example, in [18].

10.6 Types

In [5] the main focus is on type-free calculi; there is a short appendix on the
simple typed A-calculus. For a more detailed and up-to-date treatment of
typed calculi, [7] is recommended. A large part of [17] is devoted to typed
calculi and [19] contains a number of seminal papers on the polymorphic
A-calculus.

10.7 Practical Issues

Abstract machines are considered in [11, 12, 16, 21, 22]; our material is
mainly based on [12]. The analysis to detect needed reductions is intro-
duced in [6]. Abstract interpretation is an extremely active area of research
at present; the collection [2] contains some tutorial material and a detailed
bibliography. [9] emphasises the use of abstract interpretation in the anal-
ysis and compilation of typed functional programming languages. The
material on Milner’s algorithm is based on [15].

10.8 Other Calculi

The lazy lambda calculus was introduced by Abramsky in [3]; our proof of
the equivalence of the bisimulation and contextual congruences is based on

[4].

The <y-calculus is described in [8] and the Ao-calculus is reported in [1].

10.9 Summary

In constructing this “bibliography” we have restricted our attention to
material that is readily accessible; except in a few cases, this has meant
that we have cited books. Many of the most fundamental and exciting

10.9. Summary 155

results have appeared and continue to appear in conference proceedings
and journals. Good starting points are the ACM Principles of Programming
Languages, the proceedings of a conference which is held annually, and the
proceedings of the European Symposium on Programming (ESOP), which
is held every two years.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien and J.-J. Lévy, Explicit
Substitutions, in Proceedings of POPL’90, ACM Press, 1990.

[2] S. Abramsky and C. L. Hankin, Abstract Interpretation of
Declarative Languages, Ellis Horwood, 1987.

[3] S. Abramsky, The Lazy Lambda Calculus, in Research Topics
in Functional Programming, D. Turner (ed), Addison Wesley,
1990.

[4] S. Abramsky and C.-H. L. Ong, Full Abstraction in the Lazy
Lambda Calculus, Technical Report, University of Cambridge,
1991. To appear in Information and Computation.

[5] H. P. Barendregt, The Lambda Calculus: Its Syntaz and Se-
mantics, 2nd edition, North Holland, 1984.

[6] H. P. Barendregt, J. R. Kennaway, J. W. Klop and M. R.
Sleep, Needed Reduction and Spine Strategies for the Lambda
Calculus, Information and Computation 75(3), December 1987.

[7] H. P. Barendregt, Lambda Calculi with Types, in Handbook
of Logic in Computer Science, Volume II, S. Abramsky, D.
Gabbay and T. S. E. Maibaum (eds), Oxford University Press,
1992.

[8] G. Boudol, Towards a Lambda-Calculus for Concurrent and
Communicating Systems, in Proceedings of CAAP’89, Springer
Verlag LNCS 351, 1989.

[9] G. L. Burn, Abstract Interpretation and the Parallel Evaluation
of Functional Languages, Pitman, 1991.

[10] A. Church, The Calculi of Lambda Conversion, Princeton Uni-
versity Press, 1941.

[11] P.-L. Curien, Categorical Combinators, Sequential Algorithms
and Functional Programming, 2nd edition, Birkhauser, 1993.

[12] P.-L. Curien, An Abstract Framework for Environment Ma-
chines, LIENS-CNRS Report, July 1990.

[13] H. B. Curry, R. Feys and W. Craig, Combinatory Logic, Vol-
ume I, North Holland, 1958.

[14] H. B. Curry, J. R. Hindley and J. P. Seldin, Combinatory Logic,
Volume II, North Holland, 1972.

[15] L. Damas and R. Milner, Principal Type Schemes for Func-
tional Programs, in Proceedings of POPL’82, ACM Press,

158 Further Reading

1982.

[16] A. J. Field and P. G. Harrison, Functional Programming, Ad-
dison Wesley, 1988.

[17] J. R. Hindley and J. P. Seldin, Introduction to Combinators
and X\-Calculus, Cambridge University Press, 1986.

[18] J. E. Hopcroft and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison Wesley, 1979.

[19] G. Huet, Logical Foundations of Functional Programming, Ad-
dison Wesley, 1990.

[20] J. W. Klop, Combinatory Reduction Systems, CWI Report,
Amsterdam, 1980.

[21] S. L. Peyton Jones, The Implementation of Functional Pro-
gramming Languages, Prentice Hall International, 1987.

[22] C. Reade, Elements of Functional Programming, Addison Wes-
ley, 1989.

[23] A. Rezus, A Bibliography of Lambda-Calculi, Combinatory Log-
ics and Related Topics, CWI Report, Amsterdam, 1982.

[24] J. E. Stoy, Denotational semantics: the Scott-Strachey ap-
proach to programming language theory, MIT Press, 1977.

[25] G. Winskel, The Formal Semantics of Programming Lan-
guages, MIT Press, 1993.

-, 68

CL, 68
a-congruence, 16
d-rule, 41
v-terms, 141
AK-calculus, 13
MK B-calculus, 13
MK Bn-calculus, 22
AKn-calculus, 22
A, 139
A-algebra, 69
A-definability, 86
A-model, 71
AB-calculus, 13
ABn-calculus, 22
AN-calculus, 105
An-calculus, 22
Ap-calculus, 110
A*, 54, 68

A" -definability, 101
T-action, 143

Q, 82

—»1, 36

—»;, 49

—»s, 49

—p, 47

abstraction map — a, 122

action, 142

action — complementary, 143
applicative bisimulation, 137
applicative structure, 65

association list, 65
axiom — B3, 13
axiom — n, 21

basis, 61

basis — one element, 61

binders, 140

Index

bisimulation, 145
Bohm tree, 74
Bohm-like tree, 74
boolean values, 83
bound variables, 9

change of bound variables, 16

Church—-Rosser — CR property of
a notion of reduction, 34

Church—-Rosser Theorem, 34

Church—Rosser Theorem for com-
binatory logic, 57

closure, 111

closure — Ao, 147

closure of a set, 30

closure of a type, 130

combinator, 9

combinator — composition, 84

combinatory algebra, 66

combinatory completeness, 51

commuting relations, 43

completeness — An, 25

concretisation map — v, 122

conditional, 83

consistency, 22

consistency of A, 38

consistency of arithmetic, 102

context — A-terms, 10

contextual congruence, 137

contractum, 33

contravariance, 106

convergence, 136

convertibility, 12, 31

curried function, 3

Curry’s axioms, 60

Curry—-Howard Isomorphism, 103

de Bruijn notation, 17
descendant, 47

160 Index

diamond property, 34
disagreement set, 129

effective calculability, 90
environment, 63, 65
erasing function — < _ >, 116
essential undecidability, 93
experiment — lazy calculi, 136
explicit types, 96
extended polynomials, 101
extensional equality, 2
extensionality, 21
extensionality — in combinatory
logic, 56

fixed point combinator, 79

fixed point combinator — ©, 80

fixed point combinator — Y, 27,
79

fixed point theorem, 14, 79

fixed point theorem — for combi-
natory logic, 53

fixed points — B6hm and van der
Mey lemma, 80

formulae as types, 103

free variables, 9

Godel number — #, 90
Godel’s §, 102

generalised composition, 88
generic instance, 127
generic type variable, 127
grand reduction, 36

head normal form, 47

head normal form — principal, 48
head redex, 47

head variable, 47

Hindley—Rosen Lemma, 43

implicit types, 96

incompatibility — #, 23

induction — over the length of a
proof, 20

induction on the definition of a
relation, 32

inductive definition, 7

initial functions, 87

instance, 127

intensional equality, 2

interpretation, 63

Kleene Fixed Point Theorem, 125
Krivine’s machine, 112

KSL algorithm, 118

KSL algorithm — @, 118

labelled A-calculus, 45

labelled A-calculus — B-rule, 46

labelled A-calculus — substitution,
46

labelled transition system, 142

labelling — initial, 46

labels, 45

lazy evaluation, 109

Leibniz Law, 20

Logic of Computable Functions,
102

mathematical induction, 4
Milner’s W algorithm, 128
minimalisation, 88
Mitschke’s Theorem, 44
ML, 102

models — B, 77

Modus Ponens, 11
monotype, 127

most general type, 128
most general unifier, 129

Newman’s Lemma, 39
non-trivial set, 91

normal form, 24, 33

normal form — (n-nf, 24
normal form — (-nf, 24
numeral system, 85

numeral system — adequacy, 86

numeral system -— normal, 86
numeral system — standard, 86
numerals — Church, 86
numerals — standard, 84

one step reduction, 30
optimised compilation, 58
overloading, 105, 126

pf, 142

pairs, 83

parallel or, 146

partial numeric function, 90
partially ¥-labelled tree, 73
polymorphic let, 133
polymorphism — ad hoc, 126
polymorphism — parametric, 126
PP), 102

predecessor — P, 85
primitive recursion, 88
principal type scheme, 101
projection functions, 84

recursive functions, 88
recursive separability, 91
redex, 28, 33

redex — < _ >-preserved, 117
redex — created, 116

redex — head, 47

redex — head needed, 115
redex — innermost, 109

redex — internal, 48

redex — leftmost, 47

redex — needed, 115

redex — outermost, 109

redex — visible, 117
reduction, 31

reduction — applicative order, 109
reduction — normal order, 109
reduction — notion of, 30
reduction — standard, 49
reduction — the notion 3, 30
reduction — the notion (7, 38

Index 161

reduction — the notion 7, 38
reduction graph, 40
referential transparency, 20
relation — compatible, 30
relation — equality, 30
relation — reduction, 30
residual, 47

rule — a, 16

rule — &, 13

rule — ext, 21

rule of signs, 121

Scott’s Theorem, 91

Scott’s Thesis, 64

second fixed point theorem, 91

selection number — Sel, 116

simulation, 145

Standardisation Theorem, 50

strict function, 115

strictness analysis, 122

strong computability — SC, 98

strong normalisation — R-00, 39

strong normalisation — R-SN, 39

strong normalisation — SN, 39

strong normalisation — typed cal-
culi, 98

strong reduction, 57

strong typing, 95

structural induction, 10

substitution, 15

substitution — Barendregt, 16

substitution — Church, 15

substitution lemma, 19

successor — ST, 85

surjective pairing — SP, 42

term — A-terms, 8

term — Ap-term, 110

term — CL-term, 52

term — closed, 9

term — over an applicative struc-
ture, 65

term — simply typed, 97

162 Index

term — subterm of a A-term, 9

term model — closed, 72

term model — combinatory logic,
67

term model — open, 72

theory, 11

theory — Ao, 147

theory — consistency, 22

theory — the theory A, 12

theory — the theory A\p, 111

tree — A* 75

type — ground, 96

type inference, 127

type inference — polymorphic A-
calculus, 104

type — monomorphic, 95

type — polymorphic, 126

type scheme, 127

type — shallow, 105

type — substitution, 127

type variable, 126

types — simply typed A-calculus,
96

unicity of normal forms, 35
unifier, 129

valuation, 63

variable convention, 17

variable convention — for combi-
natory logic, 55

W — completeness, 132
W — soundness, 131

Weak Church—Rosser — WCR prop-

erty of a notion of reduc-
tion, 39

weak diamond property, 39

weak extensionality, 13

weak head normal form, 49, 136

weak head normal form — Mo,
149

weak normal form, 109

weak reduction, 57

Zero, 85

OXFORD SCIENCE PUBLICATIONS

The A-calculus lies at the very foundations of computer science. Besides its
historical role in computability theory it has had significant influence on
programming language design and implementation, denotational seman-
tics, and domain theory. The book emphasizes the proof theory for the type-
free A-calculus. The first six chapters concern this calculus and cover the
basic theory, reduction, models, computability, and the relationship be-
tween the A-calculus and combinatory logic. Chapter 7 presents a variety
of typed calculi; first the simply typed A-calculus, then Milner-style
polymorphism and, finally, the polymorphic A-calculus. Chapter 8 con-
cerns three variants of the type-free A-calculus that have recently appeared
in the research literature: the lazy A-calculus, the concurrenty-calculus, and
the Ac-calculus. The final chapter contains references and a guide to further
reading. There are exercises throughout. In contrast to earlier books on
these topics, which were written by logicians, the book is written from a
computer science perspective and emphasizes the practical relevance of
many of the key theoretical ideas. The book is intended as a course text for
final year undergraduates or first year graduate students in computer
science. Research students should find it a useful introduction to more
specialist literature.

GRADUATE TEXTS IN COMPUTER SCIENCE
Editors: D. M. Gabbay, C. L. Hankin, and T. S. E. Maibaum

1. Essentials of logic programming
Christopher John Hogger

2. Algorithmic learning
Alan Hutchinson

ISBN 0-19-853841-3

OXFORD UNIVERSITY PRESS 9"780198"538417

