

HTML5 Games Development by
Example
Beginner's Guide

Create six fun games using the latest HTML5, Canvas, CSS,
and JavaScript techniques

Makzan

BIRMINGHAM - MUMBAI

HTML5 Games Development by Example
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011

Production Reference: 1180811

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-849691-26-0

www.packtpub.com

Cover Image by Girish Suryawanshi (girish.suryawanshi@gmail.com)

Credits

Author

Makzan

Reviewers

Matteo Ferretti

Henk Jurriens

William Malone

Acquisition Editor

David Barnes

Development Editor

Neha Mallik

Technical Editors

Pallavi Kachare

Azharuddin Sheikh

Copy Editor

Neha Shetty

Project Coordinator

Zainab Bagasrawala

Proofreader

Joanna McMahon

Indexer

Rekha Nair

Graphics

Geetanjali Sawant

Production Coordinators

Melwyn D'sa

Adline Swetha Jesuthas

Cover Work

Melwyn D'sa

About the Author

Makzan is the founder of 42games Limited. He has been designing games since he was
a child. He likes to see how the well-designed interactions in his games can trigger the
emotions and influence the player. He believes that games should let a player share joyful
times with friends. Therefore, his favorite game type is multiplayer casual games.

Makzan also wrote a book named Flash Multiplayer Virtual World. It is about developing
a virtual world to play with friends in real time with Adobe Flash and socket server.

I would like to thank the entire team from Packt Publishing. The book
would not have been possible without the help from all the editors and
proofreaders. I thank all the reviewers for providing useful comments
from which I have learned a lot. I thank my family for giving me support
during the book writing process.

About the Reviewers

Matteo Ferretti is a software engineer, an amateur comic-book artist, and an
occasional graphic designer, who was drawn into software development since he
played his first video game.

He fell in love with JavaScript at the end of the 20th century, and he still loves it with the
same passion.

Currently he is working for Mozilla, after more than two years in TomTom as a Senior
Software Engineer and Tech Leader.

I wish to thank my love, Elisa, for her patience and understanding. I also
want to thank my parents, for their continuous support throughout my
whole life.

Henk Jurriens is a software developer and developer evangelist, experienced with Java,
Groovy and Grails, and HTML5. Henk is passionate about new technologies and loves to
talk about it, and so gives different presentations about HTML5, Linked Data, and Groovy
and Grails.

In addition, Henk founded an HTML5 User Group to promote and share knowledge about
HTML5. During the year, different meetups are organized. Together with the Google
Technology User Group, he organized for example, a HTML5 Hackathon.

Last year, Henk also helped with a HTML5 Game Jam and there he saw the potential of
HTML5 Games and this was the reason for him to review this book. With the help of this
book, great HTML5 games can be built!

William Malone is a software developer specializing in dialects of ECMAScript
(ActionScript and JavaScript). He has written many articles about Flash and HTML5
which are available at http://www.williammalone.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Table of Contents
Preface 1

Chapter 1: Introducing HTML5 Games 7
Discovering new features in HTML5 8

Canvas 8
Audio 8
GeoLocation 8
WebGL 9
WebSocket 10
Local Storage 10
Offline application 11

Discovering new features in CSS3 11
CSS3 transition 12
CSS3 transform 13
CSS3 animation 14

Learning more detail of new HTML5 and CSS3 features 15
The benefit of creating HTML5 games 15

No third-party plugin required 16
Supporting iOS devices without plugin 16
Breaking the boundary of usual browser games 16
Building HTML5 games 18

What others are playing with HTML5 18
Matching game 18
Sinuous 19
Asteroid-styled bookmarklet 19
Quake 2 20
RumpeTroll 21
Scrabb.ly 21
Aves Engine 22

Table of Contents

[ii]

Browsing more HTML5 games 22
What we are going to create in this book 23
Summary 24

Chapter 2: Getting Started with DOM-based Game Development 25
Preparing the development environment 26
Preparing the HTML documents for a DOM-based game 26
Time for action – Installing the jQuery library 27

New HTML5 doctype 28
Header and footer 29
Best practice to place the JavaScript code 29
Running our code after the page is ready 29

Setting up the Ping Pong game elements 30
Time for action – Placing Ping Pong game elements in DOM 30

Introducing jQuery 32
Understanding basic jQuery selectors 33
Understanding the jQuery CSS function 34
Benefits of using jQuery 35
Manipulating game elements in DOM with jQuery 35

Time for action – Changing position of elements with jQuery 35
Understanding the behavior of absolute position 36

Getting a keyboard input from players 37
Time for action – Moving DOM objects by a keyboard input 38

Understanding a key code 39
Making constants more readable 40
Converting strings to numbers with parseInt function 40
Executing JavaScript expressions directly in the Console panel 42
Checking the console window 42

Supporting multiple keyboard input from players 43
Time for action – Listening to keyboard input with another approach 43

Declaring global variables in a better way 45
Creating a JavaScript timer with setInterval function 46
Understanding Game Loop 46

Moving a DOM object with JavaScript Interval 47
Time for action – Moving the ball with JavaScript Interval 47
Beginning collision detection 49
Time for action – Hitting the ball with the paddles 50
Showing text dynamically in HTML 53
Time for action – Showing the score of both players 53
Summary 56

Table of Contents

[iii]

Chapter 3: Building a Memory Matching Game in CSS3 57
Moving game objects with CSS3 transition 57
Time for action – Moving a playing card around 58

2D transforms functions 61
3D transforms functions 61

Tweening the styles by using CSS3 transition 62
Creating a card-flipping effect 64
Time for action – Flipping a card with CSS3 64

Toggling class with jQuery toggleClass function 66
Controlling the visibility of overlapped elements by z-index 67
Introducing CSS perspective property 68
Introducing backface-visibility 69

Creating a card matching memory game 70
Downloading the sprites sheet of playing cards 70
Setting up the game environment 71

Time for action – Preparing the card matching game 71
Cloning DOM elements with jQuery 77
Selecting the first child of an element in jQuery by using child filters 77
Vertically aligning a DOM element 77
Using CSS sprite with a background position 78

Adding game logic to the matching game 79
Time for action – Adding game logic to the matching game 80

Executing code after CSS transition ended 83
Delaying code execution on flipping cards 83
Randomizing an array in JavaScript 83
Storing internal custom data with an HTML5 custom data attribute 84
Accessing custom data attribute with jQuery 85
Making other playing card games 87

Embedding web fonts into our game 87
Time for action – Embedding a font from Google Font Directory 88

Choosing different font delivery services 90
Summary 91

Chapter 4: Building the Untangle Game with Canvas and Drawing API 93
Introducing the HTML5 Canvas Element 94
Drawing a circle in canvas 95
Time for action – Drawing color circles on canvas 95

Putting fallback content when the web browser does not support canvas 97
Drawing circles and shapes with canvas arc function 98
Converting degree to radians 98

Time for action – Drawing different arcs with arc function 99
Executing the path drawing in canvas 102

Table of Contents

[iv]

Beginning a path for each style 102
Closing a path 103
Wrapping the circle drawing in function 104

Time for action – Putting the circle drawing code into a function 104
Generating random numbers in JavaScript 105
Saving the circle position 106

Time for action – Saving the circle position 107
Defining a basic class definition in JavaScript 108

Drawing lines in canvas 108
Time for action – Drawing straight lines between each circle 109

Introducing the line drawing API 111
Interacting with drawn objects in canvas with mouse events 112
Time for action – Dragging the circles in canvas 112

Getting the mouse position in the canvas element 116
Detecting mouse events on circles in canvas 116
Game loop 117
Clearing the canvas 118

Detecting line intersection in canvas 119
Time for action – Distinguishing the intersected lines 119

Determining whether two line segments intersect 123
Making the untangle puzzle game 124
Time for action – Making the untangle puzzle game in canvas 125

Defining the leveling data 129
Determining level-up 130
Displaying current level and completeness progress 131

Summary 131

Chapter 5: Building a Canvas Games Masterclass 133
Filling shapes with gradient color 134
Time for action – Drawing a gradient color background to the Untangle game 134

Adding color stops in the gradient color 135
Filling radial gradient color 136

Time for action – Filling the circles with radial gradient color 136
Drawing text in canvas 139
Time for action – Displaying the progress level text inside the canvas element 139

Using embedded web font inside canvas 142
Time for action – Embedding Google Web Font into the 143
canvas element 143
Drawing images in canvas 144
Time for action – Adding graphics to the game 144

Using the drawImage function 147

Table of Contents

[v]

Decorating the canvas-based game 149
Time for action – Adding CSS styles and images decoration to the game 149
Animating a sprite sheet in canvas 152
Time for action – Making a game guide animation 152
Creating a multi-layers canvas game 156
Time for action – Dividing the game into four layers 156

Mixing CSS technique with Canvas drawing 162
Summary 163

Chapter 6: Adding Sound Effects to your Games 165
Adding a sound effect to the play button 166
Time for action – Adding sound effects to the play button 166

Defining an audio element 169
Playing a sound 171
Pausing a sound 171
Adjusting the sound volume 172
Using the jQuery hover event 172
Creating the Ogg format audio to support Mozilla Firefox 172

Time for action – Converting an MP3 sound to Ogg format with Audacity 173
Supporting different web browsers with different audio formats 174

Building a mini piano musical game 174
Time for action – Creating a basic background to the 174
music game 174

Creating scenes in HTML5 games 177
Visualizing the music play back 178

Time for action – Creating the playback visualization in the music game 179
Choosing the right song for the music game 183
Storing and extracting the song level data 183
Getting the elapsed time of the game 184
Creating music dots 185
Moving the music dots 186

Linking the play button to the music game scene 187
Time for action – Animating the scene transition 187

Creating a slide-in effect in CSS3 189
Creating a keyboard-driven mini piano musical game 190
Time for action – Creating a mini piano musical game 190

Hitting the three music lines by key down 192
Determining music dot hits on key down 193
Removing an element in an array with the given index 194

Time for action – Removing music dots with the splice function 194

Table of Contents

[vi]

Adding additional features to the mini piano game 195
Adjusting the music volume according to the player 196

Time for action – Removing missed melody notes 196
Removing dots from the game 198
Storing the success count in the last five results 198
Recording music notes as level data 199

Time for action – Adding functionality to record the music level data 199
Handling the audio event on playback completes 202
Time for action – Indicating a game over event in the console 202

Handling audio events 203
Summary 204

Chapter 7: Using Local Storage to Store Game Data 205
Storing data by using HTML5 local storage 206

Creating a game over dialog 206
Time for action – Creating a game over dialog with the elapsed played time 207

Saving scores in the browser 210
Time for action – Saving the game score 210

Storing and loading data with local storage 211
The local storage saves the string value 212
Treating the local storage object as an associated array 213

Saving objects in the local storage 213
Time for action – Saving the time alongside the score 214

Getting the current date and time in JavaScript 217
Using the native JSON to encode an object into a string 218
Loading a stored object from a JSON string 218
Inspecting the local storage in a console window 219

Notifying players of breaking a new record with a nice ribbon effect 220
Time for action – Creating a ribbon in CSS3 221
Saving the entire game progress 224

Saving the game progress 224
Time for action – Saving all essential game data in the local storage 224

Removing a record from the local storage 227
Cloning an array in JavaScript 227
Resuming the game progress 228

Time for action – Resuming a game from the local storage 228
Summary 231

Chapter 8: Building a Multiplayer Draw-and-Guess Game with WebSockets 233
Trying an existing WebSockets web application 234
Time for action – Trying the multiuser sketchpad 235

Table of Contents

[vii]

Installing a WebSocket server 236
Installing the Node.JS WebSocket server 236

Time for action – Installing Node.JS 236
Creating a WebSockets server to broadcast the connection count 238

Time for action – Creating a WebSocket server that sends the total
count of connections 238

Initializing the WebSockets server 239
Listening to the connection event on the server side 240
Getting a count of connected clients on the server side 240
Broadcasting a message to all connected browsers 240
Creating a client that connects to a WebSocket server and getting the total
connections count 241

Time for action – Showing the connection count in a WebSocket application 241
Establishing a WebSocket connection 243
WebSockets client events 243

Building a chatting application with WebSockets 243
Sending a message to the server 243

Time for action – Sending a message to the server through WebSockets 244
Sending a message from the client to the server 246
Receiving a message on the server side 246

Broadcasting every received message on the server side to create a chat room 247
Time for action – Broadcasting the messages to all connected browsers 247

Comparing between WebSockets and polling approaches 248
Making a shared drawing whiteboard with Canvas and WebSockets 250

Building a local drawing sketchpad 250
Time for action – Making a local drawing whiteboard with the Canvas 251

Drawing on the canvas 254

Broadcasting the drawing to all connected browsers 254
Time for action – Sending the drawing through WebSockets 254

Defining a data object to communicate between the client and the server 258
Packing the drawing lines data into JSON for broadcasting 259
Recreating the drawing lines after receiving them from other clients 259

Building a multiplayer draw-and-guess game 259
Time for action – Building the draw-and-guess game 260

Controlling the game flow of a multiplayer game 265
Enumerating connected clients on the serverside 266
Sending a message to a specific connection on the server side 267
Improving the game 267

Storing drawn lines on each game 268
Improving the answer checking mechanism 268

Decorating the draw-and-guess game with CSS 268

Time for action – Decorating the game 268
Summary 271

Chapter 9: Building a Physics Car Game with Box2D and Canvas 273
Installing the Box2D JavaScript library 274
Time for action – Installing the Box2D physics library 275

Using b2World to create a new world 277
Using b2AABB to define a bounding area 278
Setting the gravity of the world 278
Setting the Box2D to ignore the slept object 278

Creating a static ground body in the physics world 279
Time for action – Creating a ground in the world 279

Creating a shape 280
Creating a body 280

Drawing the physics world in the canvas 281
Time for action – Drawing the physics world into the canvas 281
Creating a dynamic box in the physics world 284
Time for action – Putting a dynamic box in the world 284

Setting the bouncing effect with the restitution property 285
Advancing the world time 286
Time for action – Setting up the world step loop 286
Adding wheels to the game 287
Time for action – Putting two circles in the world 287
Creating a physical car 288
Time for action – Connecting the box and two circles with revolute joint 289

Using a revolute joint to create an anchor point between two bodies 290
Adding force to the car with a keyboard input 291
Time for action – Adding force to the car 291

Applying force to a body 292
Understanding the difference between ApplyForce and ApplyImpulse 293
Adding ramps to our game environment 293

Time for action – Creating the world with ramps 293
Checking collisions in the Box2D world 295
Time for action – Checking a collision between the car and the destination body 295

Getting the collision contact list 296
Restarting the game 297
Time for action – Restarting the game while pressing the R key 297
Adding a level support to our car game 299
Time for action – Loading game with levels data 299
Replacing the Box2D outline drawing with graphics 303
Time for action – Adding a flag graphic and a car graphic to the game 303

Table of Contents

[ix]

Using userData in shape and body 306
Drawing graphics every frame according to the state of its physics body 307
Rotating and translating an image in the canvas 308

Adding a final touch to make the game fun to play 308
Time for action – Decorating the game and adding a fuel 309
limitation 309

Adding fuel to add a constraint when applying force 314
Presenting the remaining fuel in a CSS3 progress bar 315

Summary 316
HTML5 game engines 316
Game sprites, and textures 317
Sound effects 317

Appendix: Pop Quiz Answers 319
Chapter 2: Getting Started with DOM-based Game Development 319

Running our code after the page is ready 319
Understanding the behavior of absolution position 319

Chapter 3: Building Memory Match Game in CSS3 319
Storing internal custom data with HTML5 custom data attribute 319
Accessing custom data attribute with jQuery 319

Chapter 4: Building Untangle Game with Canvas and Drawing API 320
Using startAngle and endAngle 320
Using closePath with fill command only 320
Accessing shapes in canvas 320
Clearing drawn shapes in canvas 320

Chapter 5: Building Canvas Games Masterclass 320
Drawing text in canvas 320
Styling canvas background 320

Chapter 6: Adding Sound Effects to your Games 321
Using the audio tag 321

Chapter 7: Using Local Storage to Store Game Data 321
Using local storage 321

Chapter 8: Building Multiplayer Draw-and-Guess Game with WebSockets 321

Index 237

Preface
HTML5 promises to be the hot new platform for online games. HTML5 games work on
computers, smartphones, and tablets, including iPhones and iPads. Be one of the first
developers to build HTML5 games today and be ready for tomorrow!

This book will show you how to use the latest HTML5 and CSS3 web standards to build card
games, drawing games, physics games, and even multiplayer games over the network. With
this book, you will build six example games with clear systematic tutorials.

HTML5, CSS3, and the related JavaScript API are the latest hot topics in web. These standards
bring us the new game market, HTML5 Games. With the new power from them, we can
design games with HTML5 elements, CSS3 properties, and JavaScript to play in browsers.

This book is divided into nine chapters with each one focusing on one topic. We will create
six games and specifically learn how we draw game objects, animate them, add audio,
connect players, and build a physics game with a Box2D physics engine.

What this book covers
Chapter 1, Introducing HTML5 Games, introduces the new features from HTML5, CSS3, and
related JavaScript API. It also demonstrates what games we can make with these features
and its benefits.

Chapter 2, Getting Started with DOM-based Game Development, kick-starts the game
development journey by creating a traditional Ping Pong game in DOM and jQuery.

Chapter 3, Building Memory Matching Game in CSS3, walks through the new features from
CSS3 and discusses how we can create a memory card matching game in DOM and CSS3.

Chapter 4, Building Untangle Game with Canvas and Drawing API, introduces a new way
to draw games and interact with them in a web page with the new Canvas element. It also
demonstrates how to build a puzzle solving game with Canvas.

Preface

[�]

Chapter 5, Building a Canvas Game Masterclass, extends the untangle game to show how we
can draw gradients and images using Canvas. It also discusses sprite sheet animations and
multi-layer management.

Chapter 6, Adding Sounds Effects to Your Games, adds sound effects and background music
to the game by using the Audio element. It discusses the audio format capability among
web browsers and creates a keyboard-driven music game by the end of the chapter.

Chapter 7, Using Local Storage to Store Game Data, extends the CSS3 memory matching
game to demonstrate how we can use the new Local Storage API to store and resume game
progress and best records.

Chapter 8, Building a Multiplayer Draw-and-Guess Game with WebSockets, discusses the
new WebSockets API which allows browsers to establish a persistent connection with the
socket server. This allows multiple players to play the game together in real time. A draw-
and-guess game is created at the end of chapter.

Chapter 9, Building a Physics Car Game with Box2D and Canvas, teaches how to integrate
a famous physics engine, Box2D, into our Canvas games. It discusses how to create physics
bodies, apply force, connect them together, associate graphics with the physics, and finally
create a platform card game.

What you need for this book
You need the latest modern web browsers, a good text editor, and a basic HTML, CSS, and
JavaScript knowledge.

Who this book is for
This book is for game designers who have a basic understanding of HTML, CSS, and JavaScript
and want to create Canvas or DOM-based games that run on browsers.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Preface

[�]

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We will start our HTML5 game developmentpment
journey from index.html."

A block of code is set as follows:

// starting game
var date = new Date();
audiogame.startingTime = date.getTime();

// some time later
var date = new Date();
var elapsedTime = (date.getTime() - audiogame.startingTime)/1000;

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function setupLevelData()
{
 var notes = audiogame.leveldata.split(";");

 // store the total number of dots
 audiogame.totalDotsCount = notes.length;

 for(var i in notes)
 {
 var note = notes[i].split(",");
 var time = parseFloat(note[0]);
 var line = parseInt(note[1]);
 var musicNote = new MusicNote(time,line);
 audiogame.musicNotes.push(musicNote);
 }
}

Any command-line input or output is written as follows:

$./configure

$ sudo make install

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "You will get an introduction
page of the multiuser sketchpad. Right click on the Launch Experiment option and choose
Open link in new window".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introducing HTML5 Games

Hyper-Text Markup Language, HTML, has been shaping the Internet in the
last few decades. It defines how content is structured in web and the linkage
between related pages. HTML keeps evolving from version 2 to HTML 4.1,
and later XHTML 1.1. Thanks to those web applications and social network
applications, HTML is now on the way to HTML5.

Cascading Style Sheet (CSS) defines how web pages are presented visually. It
styles all HTML elements and the styles of their states, such as hover and active.

JavaScript is the logic controller of the web page. It makes the web page
dynamic and provides client-side interaction between the page and users. It
accesses the HTML through Document Object Model (DOM). It re-styles the
HTML elements by applying different CSS styles.

These three receipts bring us the new game market, HTML5 Games. With the new power
from them, we can design games with HTML5 elements, CSS3 properties, and JavaScript to
play in the browsers.

In this chapter, we shall:

Discover new features in HTML5

Discuss what makes us so excited around HTML5 and CSS3

Take a look at what others are playing with HTML5 on game designing

Preview what games we are going to build in later chapters

So let's get started.

Introducing HTML5 Games

[�][�]

Discovering new features in HTML5
There are many new things introduced in HTML5 and CSS3. Before getting our hands dirty in
creating the games, let's take an overview of the new features and see how we can use them
to create games.

Canvas
Canvas is an HTML5 element that provides drawing shapes and bitmap manipulation
functions in low level. We can imagine the Canvas element as a dynamic image tag. The
traditional tag shows a static image. Whether the image is dynamically generated or
statically loaded from the server, the image is static and will not be changed. We can change
the tag to another image source or apply styles to the image, but we cannot modify
the image bitmap context itself.

On the other hand, Canvas is like a client-side dynamic tag. We can load images inside
it, draw shapes there, and interact with it by JavaScript.

Canvas plays an important role in HTML5 game development. It is one of our main focuses in
this book.

Audio
Background music and sound effects are often an essential element in game design. HTML5
comes with native audio support by the audio tag. Thanks to this feature, we do not require
the proprietary Flash Player to play sound effects in our HTML5 games. We will discuss the
usage of the audio tag in Chapter 6, Building Music Games with HTML5 Audio Elements.

GeoLocation
GeoLocation lets the web page retrieve the latitude and longitude of the user's computer.
This feature may not have been so useful years ago when everyone was using the Internet
with their desktop PC. There are not many things that we need the road level location
accuracy of the user. We can get the rough location by analyzing the IP address.

These days, more and more users are going on the Internet with their powerful
smartphones. Webkit and other modern mobile browsers are in everyone's pocket.
GeoLocation lets us design mobile applications and games to play with the location.

Location-based services have been used in several social networking applications such
as foursquare (http://foursquare.com) and Gowalla (http://gowalla.com). The
success of this type of location-based social community creates a trend of using location
services with our smartphone.

Chapter 1

[�][�]

WebGL
WebGL extends the Canvas element by providing a set of 3D graphics API in the web
browser. The API follows the standard of OpenGL ES 2.0. The WebGL provides a real 3D
rendering place for 3D HTML5 games. However, not all browsers natively support the WebGL
yet at the time of writing this book. Currently only Mozilla Firefox 4, Google Chrome, and a
nightly build of WebKit browser support it natively.

The technique of creating games for WebGL is quite different from usual HTML5 game
developments. Creating games in WebGL requires handing the 3D models and use of API
similar to the OpenGL. Therefore, we will not discuss the WebGL game development in
this book.

The following screenshot from Google Body (http://bodybrowser.googlelabs.com)
demonstrates how they use WebGL to show a 3D human body that responds to the
user's input:

The LearningWebGL (http://learnwebgl.com) provides a collection of
tutorials on getting started with WebGL. It is a good starting point if you want
to learn more on using it.

Introducing HTML5 Games

[10][10]

WebSocket
WebSocket is part of the HTML5 spec for connecting the web page to a socket server. It
provides us with an event-driven connection between the browser and server. That means
the client does not need to poll the server for new data every short period. The server will
push updates to the browsers whenever there is any data to update. One benefit of this
feature is that the game players can interact with each other almost in real time. When one
player does something and sends data to the server, the server will broadcast an event to
every other connected browser to acknowledge what the player just did. This creates the
possibility of creating multiplayer HTML5 games.

Due to a security issue, WebSocket is now temporary disabled by Mozilla
Firefox and Opera. Safari and Chrome may also drop the support on
WebSocket until the issue is fixed. You can learn more on this issue by
visiting the following link: http://hacks.mozilla.org/2010/12/
websockets-disabled-in-firefox-4/.

Local Storage
HTML5 provides a persistent data storage solution to web browsers.

Local Storage stores key-value paired data persistently. The data is still there after the
browser terminates. Moreover, the data is not limited to be accessible only to the browsers
that created it. It is available to all browser instances with the same domain. Thanks to Local
Storage, we can easily save game status, such as progress and earn achievements, locally in
web browsers.

HTML5 also provides Web SQL Database. It is a client-side relational database and is
currently supported by Safari, Chrome, and Opera. With the database storage, we can
not only store key-value paired data but also complicated relational structures that support
SQL queries.

Local Storage and Web SQL Database are useful for us to save game state locally when
creating games.

Besides Local Storage, some other storage approaches are now being supported by web
browsers. These include Web SQL Database and IndexedDB. These approaches support
querying the stored data with condition and thus are more powerful for supporting a
complicated data structure.

You can find more information on using the Web SQL Database and IndexedDB in the
following link from Mozilla: http://hacks.mozilla.org/2010/06/comparing-
indexeddb-and-webdatabase/.

Chapter 1

[11][11]

Offline application
Normally we need an Internet connection to browse web pages. Sometimes we can browse
cached offline web pages. These cached offline web pages usually expire quickly. With the
next offline application introduced by HTML5, we can declare our cache manifest. It is a list
of files that will be stored for later access without an Internet connection.

With the cache manifest, we can store all the game graphics, game control JavaScript
files, CSS stylesheets, and the HTML files locally. We can pack our HTML5 games as an
offline game on the desktop or the mobile device. Players can play the games even in
airplane mode.

The following screenshot from the Pie Guy game (http://mrgan.com/pieguy) shows
an HTML5 game in iPhone without an Internet connection. Note the little airplane symbol
indicating the offline status:

Discovering new features in CSS3
CSS is the presentation layer as HTML is the content layer. It defines how the HTML looks. We
cannot miss the CSS when creating games with HTML5, especially for DOM-based games. We
may purely use JavaScript to create and style the games with a Canvas element. But we need
CSS when creating DOM-based HTML5 games. Therefore, let's take a look at what is new in
CSS3 and how we can use the new properties to create games.

Introducing HTML5 Games

[12][12]

Instead of directly drawing and interacting on the Canvas drawing board, new CSS3
properties let us animate the DOM in different ways. This makes it possible to make
more complicated DOM-based browser games.

CSS3 transition
Traditionally, the style changes immediately when we apply a new style to an element.
CSS3 transition applies tweening during the style changes of the target elements.

For example, we have a blue box here and want to change it to red when we do a
mouseover. We will use the following code snippets:

HTML:

CSS:

a.box {
 display:block;
 width: 100px;
 height: 100px;
 background: #00f; /* blue */
 border: 1px solid #000;
}
a.box:hover {
 background: #f00;
}

The box changes to red immediately when we do a mouseover. With CSS3 transition applied,
we can tween the styles with a specific duration and the easing value:

a.box {
 -webkit-transition: all 5s linear;
}

Downloading the example code for this book

You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[13][13]

The following screenshot shows the box hover effect with the transition applied:

Since the CSS3 spec is still in draft and not yet fixed, the implementation from
different browser vendors may have some minor differences to the W3C spec.
Therefore, browser vendors tend to implement their CSS3 properties with a
vendor prefix to prevent conflict.

Safari and Chrome use the -webkit- prefix. Opera uses the -o- prefix.
Firefox uses the -moz- prefix and IE uses the -ms- prefix. It is a little
complex now to declare a CSS3 property, such as box-shadow, with several
lines of the same rule for several browsers. We can expect the prefix to be
eliminated after that property spec is fixed.

I will just use the -webkit- prefix in most examples to prevent putting so
many similar lines in the book. It is more important to get the concept instead
of reading the same rules with different vendors prefixed here.

CSS3 transform
CSS3 transform lets us scale the elements, rotate the elements, and translate their position.
CSS3 transform is divided into 2D and 3D.

We can reposition an element with translate:

-webkit-transform: translate(x,y);

or scale the element with scale transformation:

-webkit-transform: scale(1.1);

We can also scale and rotate the elements with CSS3 transform and combine other
transformations:

a.box {
 -webkit-transition: all 0.5s linear;
 -webkit-transform: translate(100px,50px);
}
a.box:hover {
 -webkit-transform: translate(100px,50px) scale(1.1) rotate(30deg);
}

Introducing HTML5 Games

[14][14]

The following screenshots show the CSS3 transform effect when we do a mouseover:

CSS3 transform 3D further extends the spaces into three axes and it currently works only
on Safari and Mobile Safari. The following screenshot from WebKit.org shows a 3D card
flipping effect when we do a mouseover:

CSS3 animation
CSS3 transition is one type of animation. It declares the tweening animation between two
styles of the elements.

CSS3 animation is one step further. We can define key frames of an animation. Each key
frame contains a set of properties that should change at that moment. It is like a set of CSS3
transitions applied in sequence to the target element.

Chapter 1

[15][15]

The AT-AT Walker (http://anthonycalzadilla.com/css3-ATAT/index-bones.html)
shows a nice demo on creating a skeleton bone animation with CSS3 animation key frames,
transform, and transition:

Learning more detail of new HTML5 and CSS3 features
HTML5Rocks (http://html5rocks.com) from Google provides a solid quick start guide on
new HTML5 elements and CSS3 properties.

Apple also showcases how appealing it can be by using HTML5 in the WebKit-based browser
in their homepage (http://apple.com/html5).

CSS3 Info (http://www.css3.info) is a blog with the latest CSS3 news. It is a good place
to get the latest CSS3 spec status, compatible list, and basic CSS3 codes.

The benefit of creating HTML5 games
We explored several key new features from HTML5 and CSS3. With these features, we can
create HTML5 games on browsers. But why do we need to do that? What is the benefit of
creating HTML5 games?

Introducing HTML5 Games

[16][16]

No third-party plugin required
With the native support of all those features in modern browsers, we do not require the
users to pre-install any third-party plugin in order to play. These plugins are not standard.
They are proprietary and usually require an extra plugin installation that we may not be able
to install.

Supporting iOS devices without plugin
Millions of Apple iOS devices around the world do not support third-party plugins such as
Flash Player. Despite whatever reason Apple does not allow Flash Player running on their
Mobile Safaris, HTML5 and related web standard is what they get in their browsers. We can
reach this user base by creating HTML5 games that optimize for mobiles.

Breaking the boundary of usual browser games
In traditional game designing, we build games within a boundary box. We play video games
on a television. We play Flash games in web browsers with a rectangle boundary.

With creativity, we are not bound in a rectangle game stage any more. We can have fun
with all the page elements and we can even use many browser windows to compose
a game. Furthermore, we can even just use the URL bar to create a game (http://
probablyinteractive.com/url-hunter). It may sound confusing, but it is because not
many web pages have done this yet.

Photojojo (http://photojojo.com/store/awesomeness/cell-phone-lenses), an
online photography store, provides a fun Easter egg feature on their store page. There is a
switch button on the page with a caption Do not pull. When the user clicks on it, an orange
arm appears from the top with frame-by-frame animation. It holds the web page like a
holding cloth and pulls the whole page up to create a funny scroll-down effect. This is not a
game, but it is fun enough to demonstrate how we can break the boundary.

Chapter 1

[17][17]

Here is another example named Twitch (http://reas.com/twitch/) from Chrome
Experiments. It is a collection of mini games where the player has to carry the ball from
the starting point to the end point. The fun part is that each mini game is a small browser
window. When the ball reaches the destination point of that mini game, it is transferred into
the newly created mini game browser to continue the journey. The following screenshot
shows the whole map of Twitch with the individual web browser:

Introducing HTML5 Games

[1�][1�]

Building HTML5 games
Thanks to the new features from HTML5 and CSS3, we can now create an entire game
in the browser. We can control every element in the DOM. We can animate each
document object with CSS3. We have Canvas to dynamically draw things and interact
with them. We have an audio element to handle the background music and sound effects.
We also have Local Storage to save game data and WebSocket to create a real time
multiplayers game. Most modern browsers are already supporting these features. It is
now time to build HTML5 games.

What others are playing with HTML5
It is a good chance to study how different HTML5 games perform by watching other HTML5
games made with different techniques.

Matching game
The Match game (http://10k.aneventapart.com/Uploads/300/) demonstrates a
beautiful matching game with CSS3 animation and other visual enhancements. The game
starts when you press the 3D-like CSS button. The cards present at the back and the front
side are flipped using 3D rotation. The front side patterns are fetched dynamically from an
online gallery.

Chapter 1

[1�][1�]

Sinuous
Sinuous (http://10k.aneventapart.com/Uploads/83/), winner of the 10K Apart,
shows us how a simple game idea with proper implementation can get people addicted to
it. The player controls the big dots in the space with the mouse. The aim is to move the dots
to avoid the flying comets. It sounds easy and simple, but it is definitely addictive and a just-
one-more-try game. The game is created with a Canvas tag. Players can also play this game
with their webkit-enabled mobile devices, such as iPhone, iPad, and Android.

Asteroid-styled bookmarklet
Erik, a web designer from Sweden, created an interesting bookmarklet. It is an
asteroid-styled game for any web page. Yes, any web page. It shows an abnormal way
to interact with any web page. It creates a plane on the website you are reading from.
You can then fly the plane using arrow keys and fire bullets using the space bar. The fun
part is that the bullets will destroy the HTML elements on the page. Your goal is to destroy
all the things on the web page you choose. This bookmarklet is another example of breaking
the boundary of usual browser games. It tells us that we can think outside the box while
designing HTML5 games.

The bookmarklet is available for installation at http://erkie.github.com/.

Introducing HTML5 Games

[20][20]

The following screenshot shows the plane destroying the content on the web page:

Quake 2
Google demonstrates a WebGL HTML5 port of the first person shooter game, Quake 2.
Players move around using the WSAD key and shoot enemies with their mouse. Players
can even play with each other in real time by using WebSocket. According to Google, the
frame-per-seconds of the HTML5 Quake 2 can be up to 60 fps.

The Quake 2 port is available on Google Code at http://code.google.com/p/quake2-
gwt-port/.

Chapter 1

[21][21]

RumpeTroll
RumpeTroll (http://rumpetroll.com/) is an experiment of the HTML5 community
where everyone gets connected via WebSocket. We can give our creatures names and move
around through mouse clicks. We can also type anything to start a chat. Moreover, we can
see what others are doing in real time, thanks to the WebSocketInsert.

Scrabb.ly
Scrabb.ly (http://scrabb.ly) is a multiplayer crossword board game which won the
popularity prize in the Node.js Knockout contest. It connects users together with HTML5
WebSocket. This online board game is DOM-based and driven by JavaScript.

Introducing HTML5 Games

[22][22]

Node.js (http://nodejs.orgp://nodejs.org) is an event-driven server-side JavaScript.
It can be used as a server connecting concurrent WebSocket clients.

Aves Engine
Aves Engine is an HTML5 game development framework developed by dextrose. It provides
tools and API for game developers building their own isometric browser game world with the
map editor. The following screenshot captured from the official demonstration video shows
how it creates an isometric world:

The engine also takes care of the 2.5 dimension isometric coordinate system, collision
detection, and other basic virtual world features. This game engine even works well on
mobile devices such as iPad and iPhone. The Aves Engine has gained a lot of attention since
its debut and is now acquired by Zynga Game Network Inc, a big social game company.

The video demonstration of the Aves Engine is available on YouTube at the following link:

http://tinyurl.com/dextrose-aves-engine-sneak

Browsing more HTML5 games
These examples are just a selected few. The following sites provide updates on HTML5 games
created by others:

Canvas Demo (http://canvasdemo.com) collects a set of applications and games
using the HTML5 Canvas tag. It also provides a bunch of Canvas tutorial resources. It
is a good place to start learning Canvas.

Chapter 1

[23][23]

HTML5 games (http://html5games.com) collect many HTML5 games and
organizes them into categories.

Mozilla Labs hosted a HTML5 game design contest in early 2011 and many great
games were submitted to the contest. The contest is now over and the list of all the
entries is at the following link: https://gaming.mozillalabs.com/games/.

The HTML5 Game Jam (http://www.html5gamejam.com/games) is an
HTML5 event and the website lists a collection of fun HTML5 games and also
some useful resources.

What we are going to create in this book
In the following chapters, we are going to build six games. We are going to first create a
DOM-based Ping Pong game that can be played by two players in the same machine. Then
we will create a memory matching game with CSS3 animation. Later, we will use Canvas to
create an untangle puzzle game. Next, we will build a music game with audio elements. Then
we will create a multiplayer draw and guess game with WebSocket. Lastly, we will use the
Box2D JavaScript port to create a prototype of a physics car game. The following screenshot
is of the memory matching game that we will build in Chapter 3, Building a Memory
Matching Game in CSS3

Introducing HTML5 Games

[24][24]

Summary
We learned a lot in this chapter about basic information of HTML5 games.

Specifically, we covered:

New features from HTML5 and CSS3. We had a glimpse of what techniques we will
use to create our games in later chapters. Canvas, audio, CSS animation, and more
new features were introduced. We will have many new features to play with.

The benefit of creating HTML5 games. We discussed why we want to create HTML5
games. We want to meet the web standard, meet the mobile devices, and break the
boundary of a game.

HTML5 games that others are playing. We listed several existing HTML5 games that
were created with different techniques that we will use. We can test those games
before creating our own.

We also previewed the games that we are going to build throughout the book.

Now that we've learned about some background information of HTML5 games, we're ready
to create our first DOM-based JavaScript-driven game in the next chapter.

2
Getting Started with DOM-based

Game Development

We have had an idea about what we are going to learn in the whole book in
Chapter 1, Introducing HTML5 Games. From this chapter, we will go through a
lot of learning-by-doing sections and we will focus on one topic in each section.
Before digging deeply into the cutting edge CSS3 animations and HTML5
Canvas game, let's start with traditional DOM-based game development.
We will warm up with some basic techniques in this chapter.

In this chapter, we will be:

Preparing the development tools

Setting up our first game—Ping Pong

Learning basic positioning with the jQuery JavaScript library

Getting keyboard inputs

Creating the Ping Pong game with scoring

Getting Started with DOM-based Game Development

[26][26]

The following screenshot shows the game we will get after this chapter. It is a Ping Pong
game played by two players with one keyboard simultaneously:

So, let's get on with making our Ping Pong.

Preparing the development environment
The environment for developing HTML5 games is similar to designing websites. We need
web browsers with the required plugin and a good text editor. Which text editor is good is a
never-ending debate. Each text editor comes with its own strength, so just pick your favorite
one. For the browser, we will need a modern browser that supports the latest HTML5, CSS3
spec, and provides us with handy tools for debugging.

There are several modern browser choices on the Internet now. They are Apple Safari
(http://apple.com/safari/), Google Chrome (http://www.google.com/chrome/),
Mozilla Firefox (http://mozilla.com/firefox/), and Opera (http://opera.com).
These browsers support most features we discuss in the examples in the whole book. We
will use Google Chrome to demonstrate most examples in the book because it runs fast and
smooth with CSS3 transition and Canvas.

Preparing the HTML documents for a DOM-based game
Every website, web page, and HTML5 game starts with a default HTML document. Moreover,
the document starts with a basic HTML code. We will start our HTML5 game development
journey from index.html.

Chapter 2

[27][27]

Time for action – Installing the jQuery library
We will create our HTML5 Ping Pong game from scratch. It may sound as if we are going
to be preparing all the things ourselves. Luckily, at least we can use a JavaScript library to
help us. jQuery is the JavaScript library we will be using in the whole book. It will help us in
simplifying our JavaScript logic:

1.	 Create a new folder named pingpong.

2.	 Create a new folder named js inside the pingpong directory.

3.	 Now it's time to download the jQuery library. Go to http://jquery.com/.

4.	 Select Production and click on Download jQuery.

5.	 Save jquery-1.4.4.min.js in the js folder we created in step 2.

6.	 Create a new document named index.html and save it in the first game folder.

7.	 Open index.html in text editor and insert an empty HTML template:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Ping Pong</title>
</head>
<body>
 <header>
 <h1>Ping Pong</h1>
 </header>
 <footer>
 This is an example of creating a Ping Pong Game.
 </footer>
</body>
</html>

8.	 Include the jQuery JavaScript file by adding the following line before the closing of
the body tag:

<script src="js/jquery-1.4.4.min.js"></script>

Getting Started with DOM-based Game Development

[2�][2�]

9.	 Finally, we have to ensure that jQuery is loaded successfully. We place the following
code before the close of the body tag and after the jQuery:

<script>
$(function(){
 alert("Welcome to the Ping Pong battle.");
});
</script>

10.	Save the index.html and open it in the browser. We should see the following alert
window showing our text. This means our jQuery is correctly set up:

What just happened?
We just created a basic HTML5 page with jQuery and ensured that the jQuery is
loaded correctly.

New HTML5 doctype
The DOCTYPE and meta tags are simplified in HTML5.

In HTML4.01, we declare doctype as the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">

It is a long line of code, right? While in HTML5, the doctype declaration cannot be simpler:

<!DOCTYPE html>

We even do not have the HTML version in the declaration. This implies that HTML5 will
support all existing content of previous HTML versions. Future HTML versions will also
support the existing content of HTML5.

The simplification also comes to meta tag. We define the charset of the HTML by using
the following short line now:

<meta charset=utf-8>

Chapter 2

[2�][2�]

Header and footer
HTML5 comes with many new features and improvements, one of them is semantics. HTML5
adds new elements to improve the semantics. We just used two, header and footer.
Header gives a heading introduction to the section or the entire page. Therefore, we put
the h1 title inside header. Footer, same as its name, contains the footer information of the
section or the page.

A semantic HTML means that the markup itself provides meaningful
information to the content instead of only defining the visual
outlook.

Best practice to place the JavaScript code
We put the JavaScript code right before the closing </body> tag and after all the content
in the page. There is a reason for putting the code there instead of putting it inside the
<head></head> section.

Normally, browsers load content and render them from top to bottom. If the JavaScript
code is put in the head section, then the content of document will not be loaded until all
JavaScript code is loaded. Actually, all rendering and loading will be blocked if the browsers
load a JavaScript code in the middle of the page. This is the reason why we want to put the
JavaScript code at the bottom when possible. In this way, we can deliver the content with
higher performance.

At the time of writing this book, the latest jQuery version is 1.4.4. That is why the jQuery
file in our code examples is named jquery-1.4.4.min.js. This version number will be
different, but the usage should be the same unless there is a big change in jQuery without
backward compatibility.

Running our code after the page is ready
We need to ensure that the page is ready before our JavaScript code is executed. Otherwise,
we may get an error when we try to access an element that is not yet loaded. jQuery
provides us with a way to execute the code after the page is ready. It is the following code:

jQuery(document).ready(function(){
 // code here.
});

Actually, what we just used is the following codes:

$(function(){
 // code here.
});

Getting Started with DOM-based Game Development

[30][30]

The $ sign is a shortcut for jQuery. When we are calling $(something), we are actually
calling jQuery(something).

$(function_callback) is another shortcut for the ready event.

It is identical to the following:

$(document).ready(function_callback);

Also, identical to:

jQuery(document).ready(function_callback);

Pop quiz
1. Which is the best place to put JavaScript code?

a. Before the <head> tag

b. Inside the <head></head> elements

c. Right after the <body> tag

d. Right before the </body> tag

Setting up the Ping Pong game elements
We have the preparation ready and it is time to set up the Ping Pong game.

Time for action – Placing Ping Pong game elements in DOM
1.	 We will continue from our jQuery installation example. Open the index.html in a

text editor.

2.	 Then, create the following playground and game objects with DIV nodes in the
body. There are two paddles and one ball inside the playground. Moreover, the
playground is inside the game:

<div id="game">
 <div id="playground">
 <div id="paddleA" class="paddle"></div>
 <div id="paddleB" class="paddle"></div>
 <div id="ball"></div>
 </div>
</div>

Chapter 2

[31][31]

3.	 We now have the game objects' structure ready and it is time to apply styles to
them. Put the following styles inside the head element:

<style>

 #playground{

 background: #e0ffe0;

 width: 400px;

 height: 200px;

 position: relative;

 overflow: hidden;

 }

 #ball {

 background: #fbb;

 position: absolute;

 width: 20px;

 height: 20px;

 left: 150px;

 top: 100px;

 border-radius: 10px;

 }

 .paddle {

 background: #bbf;

 left: 50px;

 top: 70px;

 position: absolute;

 width: 30px;

 height: 70px;

 }

 #paddleB {

 left: 320px;

 }

</style>

4.	 In the last section, we put our JavaScript logic right after the jQuery inclusion. We
will put it in a separate file as our code is getting large. Therefore, create a file
named html5games.pingpong.js inside the js folder.

Getting Started with DOM-based Game Development

[32][32]

5.	 We prepared the JavaScript file. Now it is time to link them to our HTML file. Put the
following code in index.html before the </body> tag:

<script src="js/jquery-1.4.4.js"></script>
<script src="js/html5games.pingpong.js"></script>

6.	 We will place the game logic inside the html5games.pingpong.js. Our only logic
now is the following paddle's initialization code:

// code inside $(function(){} will run after the DOM is loaded and
ready
$(function(){
 $("#paddleB").css("top", "20px");
 $("#paddleA").css("top", "60px");

});

7.	 We will test the setup in a browser. Open the index.html file in a browser and we
should see a screen similar to the one shown in the following screenshot:

What just happened?
We have put two paddles and a ball in the Ping Pong game. We also used jQuery to initialize
the position of the two paddles.

Introducing jQuery
jQuery is a JavaScript library that is designed for easily navigating the DOM elements,
manipulating them, handling events, and creating an asynchronies remote call.

It contains two major parts: selection and modification. Selection uses CSS selector syntax
to select all matched elements in the web page. Modification actions modify the selected

Chapter 2

[33][33]

elements, such as add, remove children, or style. Using jQuery often means chaining
selection and modifications actions together.

For example, the following code selects all elements with box class and sets the
CSS properties:

$(".box").css({"top":"100px","left":"200px"});

Understanding basic jQuery selectors
jQuery is about selecting elements and performing actions on them. We need a method to
select our required elements in the entire DOM tree. jQuery borrows the selectors from CSS.
The selector provides a set of patterns to match elements. The following table lists the most
common and useful selectors that we will use in this book:

Selector pattern Meaning Examples

$("Element") Selects all elements with
the given tag name

$("p") selects all the p tags.

$("body") selects the body tag.

$("#id") Selects the element with
the given ID of the attribute

Provides the following code:

<div id="box1"></div>

<div id="box2"></div>

$("#box1") selects the highlighted
element.

$(".className") Selects all elements with
the given class attribute

Provides the following code:

<div class="apple"></div>

<div class="apple"></div>

<div class="orange"></div>
<div class="banana"></div>

$(".apple") selects the highlighted
elements with class set to apple.

$("selector1,
selector2,
selectorN")

Selects all elements that
match the given selector

Provides the following code:

<div class="apple"></div>

<div class="apple"></div>

<div class="orange"></div>

<div class="banana"></div>

$(".apple, .orange") selects the
highlighted elements that class is set to,
either apple or orange.

Getting Started with DOM-based Game Development

[34][34]

Understanding the jQuery CSS function
The jQuery css is a function to get and set the CSS properties of the selected elements.

Here is a general definition of how to use the css function:

.css(propertyName)

.css(propertyName, value)

.css(map)

The css function accepts several types of arguments as listed in the following table:

Function type Arguments definitions Discussion

.css(propertyName) propertyName is a
CSS property

The function returns the value of the given
CSS property of the selected element.

For example, the following code returns
the value of the background-color
property of the body element:

$("body").css("background-
color")

It will only read the value and not modify
the property value.

.css(propertyName,
value)

propertyName is a
CSS property,

value is a value to
set for the property

The function modifies the given CSS
property to the given value.

For example, the following code sets the
background color to red of all elements
with box class:

$(".box").css("background-
color","#ff0000")

.css(map) map is a set of
property-value pairs to
update

This function is useful for setting multiple
CSS properties to the same selected
elements at the same time.

For example, the following code sets both
left and top CSS properties to the selected
element with ID box1:

$("#box1").css({

 "left" : "40px",

 "top" : "100px"

})

Chapter 2

[35][35]

Benefits of using jQuery
There are several advantages of using jQuery over pure JavaScript, which are as follows:

Using jQuery requires shorter code to select DOM nodes and modify them

Shorter code results in more clear code for reading, it is important in game
development that usually contains a lot of code

Writing shorter code increases the development speed

Using the jQuery library enables the code to support all major browsers without
extra tweaks; jQuery wraps the pure JavaScript code and deals with cross browser
capability by itself

Manipulating game elements in DOM with jQuery
We initialized the paddles game elements with jQuery. We will do an experiment on how we
use jQuery to place the game elements.

Time for action – Changing position of elements with jQuery
Let's inspect our Ping Pong game element with a grid background:

1.	 We will continue with our Ping Pong example.

2.	 I have prepared a grid image. Download the pixel_grid.jpg image from the
following URL:

http://gamedesign.cc/html5games/pixel_grid.jpg

3.	 Create a folder named images in the example directory.

4.	 Place the pixel_grid.jpg into the images folder. This image helps us inspect the
pixel displacement later.

5.	 Next, open the index.html file in a text editor.

6.	 Modify the background property of the playground DIV to include the pixel grid
image like the following:

#playground{
 background: #e0ffe0 url(images/pixel_grid.jpg);
 width: 400px;
 height: 200px;
 position: relative;
 overflow: hidden;
}

Getting Started with DOM-based Game Development

[36][36]

7.	 Now on opening the index.html in web browser we should have the following
screenshot. The game elements are overlaid on top of a grid image so we can see
where the elements are placed:

What just happened?
We began the example by placing an image called pixel_grid.jpg. This is an image I
created for easy debugging purposes. The image is divided into small grids. Every 10 x 10 grid
forms a big block with 100 x 100 pixels. By placing this image as background of the DIV, we
put a ruler that enables us to measure the position of its children DIVs on the screen.

Understanding the behavior of absolute position
When a DOM node is set to be the absolute position, the left and top properties can be
treated as a coordinate. We can treat the left/top properties into X/Y coordinates with Y
positive pointing down. The following graphs show the relationship. The left side is the
actual CSS value and the right side is the coordinate system in our mind when programming
the game:

Chapter 2

[37][37]

By default, the left and top properties refer to the top left edge of the web page. This
reference point is different when any parent of this DOM node has a position style set
explicitly. The reference point of the left and top properties becomes the top left edge of
that parent.

This is why we need to set the playground with relative position and all game elements
inside with absolute position. The following code snippet from our example shows their
position values:

#playground{
 position: relative;
}
#ball {
 position: absolute;
}
.paddle {
 position: absolute;
}

Pop quiz
1. Which jQuery selector is to be used if you want to select all header elements?

a. $("#header")

b. $(".header")

c. $("header")

d. $(header)

Getting a keyboard input from players
This book is about game development. We can think about game development as the
following loop:

1. A game state is visually displayed.

2. Players input their commands.

3. The game runs according to the players' input under the designed game mechanics.

4. Loop the process again from step 1.

We learned how to display game objects with CSS and jQuery in previous sections. The next
thing we need to create in the game is getting input from the players. We will discuss the
keyboard input in this chapter.

Getting Started with DOM-based Game Development

[3�][3�]

Time for action – Moving DOM objects by a keyboard input
We are going to create a traditional ping pong game. There are two paddles on the left and
right side. A ball is placed in the middle of the playground. Players can control the left paddle
and move it up and down by using w and s keys, and use arrow-up and down keys for the
right paddle. We will focus on the keyboard input and leave the ball movement for the
later section:

1.	 Let's continue with our pingpong directory.

2.	 Open the html5games.pingpong.js file which will contain our game logic.
Our only logic now is to listen to the key down event and move the corresponding
paddles up or down. Replace the content in the file with the following code:

var KEY = {
 UP: 38,
 DOWN: 40,
 W: 87,
 S: 83
}

$(function(){
 // listen to the key down event
 $(document).keydown(function(e){
 switch(e.which){
 case KEY.UP: // arrow-up
 // get the current paddle B's top value in Int type
 var top = parseInt($("#paddleB").css("top"));
 // move the paddle B up 5 pixels
 $("#paddleB").css("top",top-5);
 break;
 case KEY.DOWN: // arrow-down
 var top = parseInt($("#paddleB").css("top"));
 // move the paddle B down 5 pixels
 $("#paddleB").css("top",top+5);
 break;
 case KEY.W: // w
 var top = parseInt($("#paddleA").css("top"));
 // move the paddle A up 5 pixels
 $("#paddleA").css("top",top-5);
 break;
 case KEY.S: // s
 var top = parseInt($("#paddleA").css("top"));
 // move the paddle A drown 5 pixels
 $("#paddleA").css("top",top+5);

Chapter 2

[3�][3�]

 break;
 }
 });
});

3.	 Let's test the paddle control of the game. Open the index.html in Google Chrome.
Try pressing the w key, the s key, and arrow-up and down. The two paddles should
be able to move up or down according to the input, but they cannot move at the
same time now.

What just happened?
Let's take a look at the HTML code we just used. The HTML page contains header, footer
information, and a DIV with ID game. The game node contains a child named playground.
The playground contains three children, two paddles, and the ball.

We often start the HTML5 game development by preparing a well-structured HTML
hierarchy. The HTML hierarchy helps us group similar game objects (which are some DIVs)
together. It is a little like grouping assets into a movie clip in Adobe Flash if you have ever
made animations with it. We may also consider it as layers of game objects for us to select
and style them easily.

Understanding a key code
Every key on the keyboard is assigned a number. By getting that number, we can find out
which key is pressed. We listen to the jQuery keydown event listener. The event fires with
the event object containing the key code. We can obtain the key code by calling the which
function to the key down event object.

Getting Started with DOM-based Game Development

[40][40]

You can try adding a console log function inside the keydown event listener and observe the
representing integer of each key:

$(document).keydown(function(e){
 console.log(e.which);
});

Making constants more readable
In our example, we use the key code to check whether the player hits the keys we are
interested in. Take the arrow-up key as an example. Its key code is 38. We can simply
compare the key code with the number directly, as follows:

$(document).keydown(function(e){
 switch(e.which){
 case 38:
 // do something when pressed arrow-up
 }
}

However, this is not a recommended practice because it makes the game code more difficult
to maintain. Imagine later if we want to map the action from the arrow-up key to another
key. We may not be sure whether 38 means the arrow-up. Instead, we can give the constant
a meaningful name with the following code:

var KEY = {
 UP: 38,
 DOWN: 40,
 W: 87,
 S: 83
}

// listen to the key down event
$(document).keydown(function(e){
switch(e.which){
 case KEY.UP:
 // do something when pressed arrow-up
 }
}

By giving 38 a name KEY.UP, we can be sure that the block of code is mapped to the
arrow-up key and so we can modify it without doubt when maintaining the game.

Converting strings to numbers with parseInt function
In most cases, we apply the left and top CSS styles to DOM elements by using the format
such as 100px. We specify the unit when setting the property. It is the same when we get
the value of the property. When we call $("#paddleA").css("top"), we get the value

Chapter 2

[41][41]

of 100px instead of 100. This gives us a problem when we want to perform an arithmetic
operation on the value.

In the example, we want to move up the paddle by setting the paddle top property to its
current position minus five pixels. Let us assume paddle A has the top property set to 100px
now. If we use the following expression to add five pixels, it fails and returns 100px5:

$("#paddleA").css("top") + 5

It is because JavaScript executes the css function and gets "100px". Then it appends "5" to
the "100px" string.

We need a method to convert the "100px" string before doing any mathematical operation.

JavaScript provides us with the parseInt function.

Here is a general definition of how to use the parseInt function:

parseInt(string, radix)

The parseInt function takes one required argument and one option:

Argument Definition Discussion

String The string to be parsed The function parses the first number of the
string. It will return NaN, Not a Number, if
the given string cannot be converted into a
number.

It will parse the string starting with "0x" in
hexadecimal by default.

Take the following code as examples:

parseInt("100px") returns 100.

parseInt("5cm") returns 5.

parseInt("0xF") returns 15.

Radix Optional. A number to
indicate which number system
to be used

The second argument forces the parseInt
function to parse the string in a given
number system.

For example:

parseInt("0x10") returns 16

parseInt("0x10",10) returns 0

parseInt("FF",16) returns 255

Getting Started with DOM-based Game Development

[42][42]

Executing JavaScript expressions directly in the Console panel
You should also know that you can execute JavaScript expressions by directly typing it
into the console window. The console window is a tool from the Developer Tool in Google
Chrome. (There are also other similar tools in other web browsers). We can open the console
by clicking on Wrench Icon | Tools | Developer tools | Console.

It is a handy way to quickly test a simple expression when you are not sure whether
it works during development. The following screenshot tests the return value of the
two parseInt expressions:

Have a go hero
Converting strings to integers can be tricky sometimes. Do you know what is the parseInt
result of 10 seconds 20? How about 10x10 and $20.5?

It is time to open the console panel and try converting some strings into numbers.

Checking the console window
We are writing more complicated logic code now. It is good practice to keep an eye on the
console of the Developers Tools. If the code contains any error or warning, the error message
will appear there. It reports any error found and the line of code that contains the error.
It is very useful and important to have the console window open when testing the HTML5
games. I have seen many times that people get stuck and have no idea as to why the code is
not working. The reason is that they have a typo or syntax error and they did not check the
console window until fighting with the code for hours.

Chapter 2

[43][43]

The following screenshot shows that there is an error in line 25 of the html5games.
pingpong.js file. The error message is Invalid left-hand side in assignment. After
inspecting the code, I found that I wrongly used an equal sign (=) when setting the
CSS top property in jQuery:

$("#paddleA").css("top"=top+5);

// instead of the correct code:
// $("#paddleA").css("top", top+5);

Supporting multiple keyboard input from players
The previous input method only allows one input at a time. The keyboard input is also not so
smooth. Imagine now that two players are playing the Ping Pong game together. They cannot
control the paddle well because their inputs interrupt the others. In this section, we are
going to modify our code to make it support multiple keyboard inputs.

Time for action – Listening to keyboard input with
another approach

We will use another approach to handle the key down event. This approach will be a lot
smoother and supports multiple inputs at the same time:

1.	 Open the html5games.pingpong.js we used in the last section.

2.	 Delete all the code we coded there. It is simpler to start from scratch.

Getting Started with DOM-based Game Development

[44][44]

3.	 We will need a global variable of array to store the key pressed status. Enter the
following code in the opened JavaScript file:

var pingpong = {}
pingpong.pressedKeys = [];

4.	 The next thing is the code is executed once the page is loaded and ready. It will
listen and mark the pressed key. Put the following code in the JavaScript file after
the two lines we just coded there:

$(function(){
 // set interval to call gameloop every 30 milliseconds
 pingpong.timer = setInterval(gameloop,30);

 // mark down what key is down and up into an array called
"pressedKeys"
 $(document).keydown(function(e){
 pingpong.pressedKeys[e.which] = true;
 });
 $(document).keyup(function(e){
 pingpong.pressedKeys[e.which] = false;
 });
});

5.	 We have stored the key which is pressed. What we are missing is actually moving
the paddles. We set a timer to continuously call a function to move the paddles.
Paste the following code in the html5games.pingpong.js file:

function gameloop() {
 movePaddles();
}

function movePaddles() {
 // use our custom timer to continuously check if a key is
pressed.
 if (pingpong.pressedKeys[KEY.UP]) { // arrow-up
 // move the paddle B up 5 pixels
 var top = parseInt($("#paddleB").css("top"));
 $("#paddleB").css("top",top-5);
 }
 if (pingpong.pressedKeys[KEY.DOWN]) { // arrow-down
 // move the paddle B down 5 pixels
 var top = parseInt($("#paddleB").css("top"));
 $("#paddleB").css("top",top+5);
 }

Chapter 2

[45][45]

 if (pingpong.pressedKeys[KEY.W]) { // w
 // move the paddle A up 5 pixels
 var top = parseInt($("#paddleA").css("top"));
 $("#paddleA").css("top",top-5);
 }
 if (pingpong.pressedKeys[KEY.S]) { // s
 // move the paddle A down 5 pixels
 var top = parseInt($("#paddleA").css("top"));
 $("#paddleA").css("top",top+5);
 }
}

6.	 Let's test what we just coded. Save all the files and open index.html in the
web browser.

7.	 Try pressing the keys to control both paddles. The two paddles should move
smoothly and respond at the same time without interruption.

What just happened?
We have used another approach to capture the keyboard input. Instead of doing the action
once after the key press is detected, we store which keys are pressed and which are not.
Afterwards, we use a JavaScript interval to check the pressed keys every 30 milliseconds.
This approach enables us to know all the keys pressed at the time and so we can move both
paddles at the same time.

Declaring global variables in a better way
Global variables are variables that can be accessed globally in the entire document.
Any variable that is declared outside any function is a global variable. For instance, in
the following example code snippets, a and b are global variables while c is a local variable
that only exists inside the function:

var a = 0;
var b = "xyz";
function something(){
 var c = 1;
}

Since global variables are available in the entire document, it may increase the change of
variable name conflicts if we integrate different JavaScript libraries into the web page. As
good practice, we should put all global variables we use into an object.

Getting Started with DOM-based Game Development

[46][46]

In the Time for action section, we have a global array to store all pressed keys. Instead of just
putting this array in global scope, we created a global object named pingpong and put the
array inside it:

var pingpong = {}
pingpong.pressedKeys = [];

In the future, we may need more global variables and we will put them all inside the
pingpong object. This reduces the chance of name confliction to only one name,
pingpong.

Creating a JavaScript timer with setInterval function
The pressed keys are stored in the array and we have a timer to loop and check the array
periodically. This can be done by the setInterval function in JavaScript.

Here is the general definition of the setInterval function:

setInterval(expression, milliseconds)

The setInterval takes two required arguments:

Argument Definition Discussion

expression The function call back
or code expression to
be executed

The expression can be a reference of function call back
or an inline code expression. The inline code expression
is quoted and reference of function call back is not.

For example, the following code calls the hello
function 100 milliseconds:

setInterval(hello,100);

The following code calls the hi function with
parameters every 100 milliseconds:

setInterval("hi('Makzan')",100);

milliseconds The duration between
every execution of
the expression, in
milliseconds

The unit of the interval is in milliseconds. Therefore,
setting it to 1000 means running the expression every
second.

Understanding Game Loop
We have a timer to execute some game-related code every 30 milliseconds, so this code is
executed 33.3 times per second. In game development, this is called Game Loop.

Chapter 2

[47][47]

There are several common things we will execute inside a game loop:

Processing user input, which we just did

Updating game objects' status, including position and appearance

Checking game over

What is actually executing in the game loop differs in different types of games but the
purpose is the same. The game loop is executed periodically to help run the game smoothly.

Moving a DOM object with JavaScript Interval
Imagine now we can make the little red ball move around in the playground. The ball will
bounce away when it hits the paddles. The player will lose a score when the ball passes the
paddle and hits the playground edge behind the paddle. All these actions are manipulating
the position of the DIVs inside the HTML page by jQuery. To complete this Ping Pong game,
our next step is to move the ball.

Time for action – Moving the ball with JavaScript Interval
We just learnt and used the setInterval function to create a timer. We will use the timer
to move the ball a little bit every 30 milliseconds. We are going to also change the direction
of the ball movement once it hits the playground edge. Let's make the ball move now:

1.	 We will use our last example, listening to multiple keyboard inputs, as the
starting point.

2.	 Open the html5games.pingpong.js file in the text editor.

3.	 We are now moving the ball and we need to store the ball status globally. We will
put the ball-related variable inside the pingpong object:

pingpong.ball = {
 speed: 5,
 x: 150,
 y: 100,
 directionX: 1,
 directionY: 1
}

Getting Started with DOM-based Game Development

[4�][4�]

4.	 In every game loop, we used to move the paddles. Now we will move the ball as
well. Add a moveBall function call to the gameloop function:

function gameloop() {
 moveBall();
 movePaddles();
}

5.	 It is time to define the moveBall function. The function is divided into four parts, it
gets the current ball position, checks the boundaries of the playground, changes the
direction of the ball when hitting the boundaries and actually moves the ball after
all these calculations. Let's put the following moveBall function definition in the
JavaScript file:

function moveBall() {
 // reference useful variables
 var playgroundHeight = parseInt($("#playground").height());
 var playgroundWidth = parseInt($("#playground").width());
 var ball = pingpong.ball;

 // check playground boundary
 // check bottom edge
 if (ball.y + ball.speed*ball.directionY > playgroundHeight)
 {
 ball.directionY = -1;
 }
 // check top edge
 if (ball.y + ball.speed*ball.directionY < 0)
 {
 ball.directionY = 1;
 }
 // check right edge
 if (ball.x + ball.speed*ball.directionX > playgroundWidth)
 {
 ball.directionX = -1;
 }
 // check left edge
 if (ball.x + ball.speed*ball.directionX < 0)
 {
 ball.directionX = 1;
 }
 ball.x += ball.speed * ball.directionX;
 ball.y += ball.speed * ball.directionY;

 // check moving paddle here, later.

Chapter 2

[4�][4�]

 // actually move the ball with speed and direction
 $("#ball").css({
 "left" : ball.x,
 "top" : ball.y
 });
}

6.	 We have prepared the code to move the ball every 30 milliseconds. Save all files and
open index.html in Google Chrome to test it.

7.	 The paddles work just as in the last example and the ball should be moving around
the playground.

What just happened?
We just successfully made the ball move around the playground. We have a loop to run
routine game logic every 30 milliseconds. Inside that game loop, we move the ball five
pixels at a time.

There are three properties of the ball, speed, and direction X/Y. The speed defines how many
pixels the ball moves in each step. The direction X/Y is either 1 or -1. We move the ball with
the following equation:

new_ball_x = ball_x_position + speed * direction_x
new_ball_y = ball_y_position + speed * direction_y

The direction value is multiplied by the movement. When the direction is 1, the ball moves
to the positive direction of the axis. When the direction is -1, the ball moves to the negative
direction. By toggling the X and Y directions, we can move the ball in four directions.

We compare the ball's X and Y with the four edges of the playground DIV element. This
checks whether the ball's next position is beyond the boundary and then we toggle the
direction between 1 and -1 to create the bouncing effect.

Beginning collision detection
We have checked the boundary of the playground when moving the ball in the previous
section. Now we can control the paddles with the keyboard and watch the ball moving
around the playground. What is missing now? We cannot interact with the ball. We control
the paddles but the ball just passes through them as if they are not there. It is because we
missed the collision detection between the paddles and the moving ball.

Getting Started with DOM-based Game Development

[50][50]

Time for action – Hitting the ball with the paddles
We will use a similar approach of checking the boundary to check the collision:

1.	 Open the html5games.pingpong.js file we used in the previous section.

2.	 In the moveball function, we have already reserved the place to put the collision
detection code there. Find the line with // check moving paddle here.

3.	 Let's put the following code there. The code checks whether the ball is overlapping
with either paddle and bounces the ball away when they overlap:

// check left paddle
var paddleAX = parseInt($("#paddleA").css("left"))+parseInt($("#pa
ddleA").css("width"));
var paddleAYBottom = parseInt($("#paddleA").css("top"))+parseInt($
("#paddleA").css("height"));
var paddleAYTop = parseInt($("#paddleA").css("top"));
if (ball.x + ball.speed*ball.directionX < paddleAX)
{
 if (ball.y + ball.speed*ball.directionY <= paddleAYBottom &&
 ball.y + ball.speed*ball.directionY >= paddleAYTop)
 {
 ball.directionX = 1;
 }
}

// check right paddle
var paddleBX = parseInt($("#paddleB").css("left"));
var paddleBYBottom = parseInt($("#paddleB").css("top"))+parseInt($
("#paddleB").css("height"));
var paddleBYTop = parseInt($("#paddleB").css("top"));
if (ball.x + ball.speed*ball.directionX >= paddleBX)
{
 if (ball.y + ball.speed*ball.directionY <= paddleBYBottom &&
 ball.y + ball.speed*ball.directionY >= paddleBYTop)
 {
 ball.directionX = -1;
 }
}

4.	 We will also need to reset the ball in the middle area after the ball hits the left or
right edge of the playground. Remove the bouncing ball code in the check right
and check left code section and paste the following code there:

// check right edge

Chapter 2

[51][51]

if (ball.x +ball.speed*ball.directionX > playgroundWidth)
{
 // player B lost.
 // reset the ball;
 ball.x = 250;
 ball.y = 100;
 $("#ball").css({
 "left": ball.x,
 "top" : ball.y
 });
 ball.directionX = -1;
}
// check left edge
if (ball.x + ball.speed*ball.directionX < 0)
{
 // player A lost.
 // reset the ball;
 ball.x = 150;
 ball.y = 100;
 $("#ball").css({
 "left": ball.x,
 "top" : ball.y
 });
 ball.directionX = 1;
}

5.	 Test the game in a browser and the ball will now bounce away after hitting the left
or right paddle. It will also reset to the center of the playground when hitting the left
or right edge.

Getting Started with DOM-based Game Development

[52][52]

What just happened?
We have modified the ball checking to make it bounce away when overlapping with the
paddles. Moreover, we reposition the ball in the center of the playground when hitting the
left and right edge.

Let's see how we check the collision between the ball and the left paddle.

At first, we check whether the ball's X position is less than the left paddle's right edge.
The right edge is the left value plus the width of the paddle.

Then we check whether the ball's Y position is between the top edge and bottom edge of the
paddle. The top edge is the top value and the bottom edge is the top value plus the height
of the paddle.

We bounce the ball away if the ball's position passes both checks. This is how we check it
and it is just a basic collision detection.

We determine that the two objects are overlapped by checking their position and width/
height. This type of collision detection works well in rectangle objects but is not good for
circles and other shapes. The following screenshot illustrates the issue. The collision areas
shown in the following graph are false positive. Their bounding box collides but the actual
shapes do not overlap each other.

Chapter 2

[53][53]

For special shapes, we will need more advanced collision detection techniques that we will
discuss later.

Have a go hero
We check three edges of the paddles to determine whether the ball overlaps with them. If
you play the game and observe the ball bouncing carefully, you will find that it is not perfect
now. The ball may bounce while behind the paddles. Think about the reason and modify the
code to make a better collision detection with the ball and the paddles.

Showing text dynamically in HTML
We have the basic game mechanics implemented in the previous sections. Our Ping Pong
game is missing a scoring board now showing both players' scores. We discussed how to use
jQuery to modify the CSS styles of the selected elements. Can we also alter the content of
the selected elements with jQuery? Yes, we can.

Time for action – Showing the score of both players
We are going to create a text-based scoreboard and update the scores when either player
scores a goal:

1.	 We are making improvements on our existing game so we use the last example as
the starting point.

2.	 Open the index.html in the text editor. We are going to add the scoreboard
DOM elements.

Getting Started with DOM-based Game Development

[54][54]

3.	 Add the following HTML code before the game DIV inside index.html:

<div id="scoreboard">
 <div class="score">Player A : 0</div>
 <div class="score">Player B : 0</div>
</div>

4.	 Let's move onto the JavaScript part. Open the html5games.pingpong.js file.

5.	 We need two more global variables to store the players' scores. Add their score
variables inside the pingpong global object:

var pingpong = {
 scoreA : 0, // score for player A
 scoreB : 0 // score for player B
}

6.	 We had a place to check if player B lost. We incremented the player A's score there
and updated the scoreboard with the following code:

// player B lost.
pingpong.scoreA++;
$("#scoreA").html(pingpong.scoreA);

7.	 We have similar code as in step 6 to update player B's score when player A lost:

// player A lost.
pingpong.scoreB++;
$("#scoreB").html(pingpong.scoreB);

8.	 It is time to test our latest code. Open the index.html in a web browser. Try
playing by controlling both paddles and lose some points. The scoreboard should be
counting the scores correctly:

Chapter 2

[55][55]

What just happened?
We just used another common jQuery function: html() to alter the content of the game on
the fly.

The html() function gets or updates the HTML content of the selected element. Here is a
general definition of the html() function:

.html()

.html(htmlString)

When we use the html () function without an argument, it returns the HTML content of
the first match element. When we use it with an argument, it sets the HTML content to all
matched elements with the given HTML string.

For example, provide the following HTML structure:

<p>My name is Makzan.</p>
<p>My pet's name is

Both the following jQuery calls return Makzan:

$("#myname").html(); // returns Makzan
$(".name").html(); // returns Makzan

However, in the following jQuery call, it sets all matched elements to the given HTML
content:

$(".name").html("<small>Mr. Mystery</small>")

Executing the jQuery command makes the following HTML result:

<p>My name is <small>Mr. Mystery</
small></p>
<p>My pet's name is <small>Mr. Mystery</
small></p>

Have a go hero – Winning the game
We have the scoring now. See whether you can modify the game to make it stop after any
player gets 10 points. Then show a win message.

You might also want to try styling the game to make it more appealing. How about giving
the scoreboard and playground some image backgrounds? Replacing the paddles with two
goalkeeper characters?

Getting Started with DOM-based Game Development

[56][56]

Summary
We learned a lot in this chapter about basic techniques of creating a simple Ping Pong game
with HTML5 and JavaScript.

Specifically, we covered:

Creating our first HTML5 game—Ping Pong

Using jQuery to manipulate DOM objects

Getting keyboard inputs with multiple keys down support

Detecting collisions with the bounding box

We also discussed how to create a game loop and move the ball and paddles.

Now that we've warmed up by creating a simple DOM-based game, we are ready to create
more advanced DOM-based games with new features from CSS3. In the next chapter, we will
create games with CSS3 animation, transition, and transformation.

3
Building a Memory Matching Game

in CSS3

CSS3 introduces many exciting features. In this chapter, we will explore and
use some of them to create a matching memory game. The CSS3 styles how
the game objects look and animate while the jQuery library helps us define the
game logic.

In this chapter, we will:

Transform a playing card with animation

Flip a playing card with new CSS3 properties

Create the whole memory matching game

And embed a custom web font to our game

So let's get on with it.

Moving game objects with CSS3 transition
We had a glimpse of the CSS3 transition module and transformation module in Chapter 1,
Introducing HTML5 Games, when we were overviewing the new CSS3 features. We often
want to animate the game objects by easing the properties. Transition is the CSS property
designed for this purpose. Imagine we have a playing card on the web page and want to
move it to another position in five seconds. We had to use JavaScript and setup timer and
write our own function to change the position every several milliseconds. By using the
transition property, we just need to specify the start and end styles and the duration.
The browser does all the easing and in-between animations, magically.

Building a Memory Matching Game in CSS3

[5�][5�]

Let's take a look at some examples to understand it.

Time for action – Moving a playing card around
In this example, we will place two playing cards on the web page and transform them
to a different position, scale, and rotation. We will tween the transformation by setting
the transition:

1.	 Create a new folder with three files in the following hierarchy. The css3transition.
css and index.html is empty now and we will add the code later. The jquery-
1.6.min.js is the jQuery library that we have used in the previous chapter.

2.	 We are using two playing card graphic images in this example. The images
are available in the code bundle or you can download them from http://
gamedesign.cc/html5games/css3-basic-transition/images/AK.png
and http://gamedesign.cc/html5games/css3-basic-transition/
images/AQ.png.

3.	 Create a new folder named images and place the two card images inside.

4.	 The next thing is to code the HTML with two card DIV elements. We will apply
CSS transition style to these two cards elements when the page is loaded:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Getting Familiar with CSS3 Transition</title>
 <link rel="stylesheet" href="css/css3transition.css" />
</head>
<body>
 <header>

Chapter 3

[5�][5�]

 <h1>Getting Familiar with CSS3 Transition</h1>
 </header>

 <section id="game">
 <div id="cards">
 <div id="card1" class="card cardAK"></div>
 <div id="card2" class="card cardAQ"></div>
 </div> <!-- #cards -->
 </section> <!-- #game -->
 <footer>
 <p>This is an example of transitioning cards.</p>
 </footer>
<script src="js/jquery-1.6.min.js"></script>
<script>
$(function(){
 $("#card1").addClass("moveAndScale");
 $("#card2").addClass("rotateRight");
});
</script>
</body>
</html>

5.	 It is time to define the visual styles of the playing cards via CSS. It contains basic CSS
2.1 properties and CSS3 new properties. The new CSS3 properties are highlighted:

body {
 background: #aaa;
}

/* defines styles for each card */
.card {
 width: 80px;
 height: 120px;
 margin: 20px;
 background: #efefef;
 position: absolute;
 -webkit-transition: all 1s linear;
}

/* set the card to corresponding playing card graphics */
.cardAK {
 background: url(../images/AK.png);
}
.cardAQ {
 background: url(../images/AQ.png);
}

Building a Memory Matching Game in CSS3

[60][60]

/* rotate the applied DOM element 90 degree */
.rotateRight {
 -webkit-transform: rotate3d(0,0,1,90deg);
}

/* move and scale up the applied DOM element */
.moveAndScale {
 -webkit-transform: translate3d(150px,150px,0) scale3d(1.5, 1.5,
1);
}

6.	 Let's save all the files and open the index.html in the browser. The two cards
should animate as shown in the following screenshot:

What just happened?
We just created two animation effects by using the CSS3 transition to tween the
transform property.

Please note that the new CSS3 transition and transform properties are not
yet finalized. Web browsers support these drafted but stable properties
with a vendor prefix. In our example to support Chrome and Safari, we
used the -webkit- prefix. We can use other prefixes in the code to
support other browsers, such as -moz- for Mozilla and -o- for Opera.

Chapter 3

[61][61]

Here is the usage of CSS transform:

transform: transform-function1 transform-function2;

The arguments of the transform property are functions. There are two sets of functions,
2D transform function and 3D. CSS transform functions are designed to move, scale,
rotate, and skew the target DOM elements. The following shows the usage of the
transforms functions.

2D transforms functions
The 2D rotate function rotates the element clockwise on a given positive argument and
counter-clockwise on the given negative argument:

rotate(angle)

The translate function moves the element by the given X and Y displacement:

translate (tx, ty)

We can translate the X or Y-axis independently by calling the translateX and translateY
function as follows:

translateX(number)
translateY(number)

The scale function scales the element by the given sx, sy vector. If we only pass the first
argument, then sy will be of the same value as sx:

scale(sx, sy)

In addition, we can independently scale the X and Y-axis as follows:

scaleX(number)
scaleY(number)

3D transforms functions
The 3D rotation function rotates the element in 3D space by the given [x, y, z] unit vector.
For example, we can rotate the Y-axis 60 degrees by using rotate3d(0, 1, 0, 60deg):

rotate3d(x, y, z, angle)

We can also rotate one axis only by calling the following handy functions:

rotateX(angle)
rotateY(angle)
rotateZ(angle)

Building a Memory Matching Game in CSS3

[62][62]

Similar to the 2D translate function, translate3d allows us to move the element in all
three axes:

translate3d(tx, ty, tz)
translateX(tx)
translateY(ty)
translateZ(tz)

Also, the scale3d scales the element in the 3D spaces:

scale3d(sx, sy, sz)
scaleX(sx)
scaleY(sy)
scaleZ(sz)

The transform functions we just discussed are those that are common and we will use
them many times. There are several other transform functions not discussed. They are
matrix, skew, and perspective.

If you want to find the latest CSS transforms working spec, you can visit the W3C website
with the following addresses. CSS 2D Transforms Modules (http://dev.w3.org/csswg/
css3-3d-transforms/) and the 3D Transforms Modules (http://www.w3.org/TR/
css3-2d-transforms/).

Tweening the styles by using CSS3 transition
There are tons of new features in CSS3. Transition module is one among them that affects us
most in game designing.

What is CSS3 transition? W3C explains it in one sentence.:

CSS transitions allows property changes in CSS values to occur smoothly over a
specified duration.

Normally, when we change any properties of the element, the properties are updated to
the new value immediately. Transition slows down the changing process. It creates smooth
in-between easing from the old value towards the new value in the given duration.

Here is the usage of the transition property:

transition: property_name duration timing_function delay.

Chapter 3

[63][63]

Argument Definition

property_name The name of the property where the transition applies. It can be
set to all.

Duration The duration the transition takes.

Timing_function The timing function defines the interpolation between the
start and end value. The default value is ease. Normally we will
use ease, ease-in, ease-out, and linear.

Delay The delay argument delays the start of the transition by the
given seconds.

We can put several transition properties in one line. For example, the following code
transits the opacity in 0.3 seconds and background color in 0.5 seconds:

transition: opacity 0.3s, background-color 0.5s

We can also define each transition property individually by using the following properties:

transition-property, transition-duration, transition-timing-function and
transition-delay.

Modules of CSS3

According to W3C, CSS3 is unlike CSS 2.1 in that there is only one CSS 2.1 spec.
CSS3 is divided into different modules. Each module is reviewed individually. For
example, there is transition module, 2D/3D transforms module, and flexible box
layout module.

The reason of dividing the spec into modules is because the working progress
pace of each part of the CSS3 is not the same. Some CSS3 features are rather
stable, such as border radius, while some have not yet settled down. By dividing
the whole spec into different parts, it allows the browser vendor to support
modules that are stable. In this scenario, slow pace features will not slow down
the whole spec. The aim of the CSS3 spec is to standardize the most common
visual usage in web designing and this module fits this aim.

Have a go hero
We have translated, scaled, and rotated the playing cards. How about we try changing
different values in the example? There are three axes in the rotate3d function. What will
happen if we rotate the other axis? Experiment with the code yourselves to get familiar with
the transform and transition modules.

Building a Memory Matching Game in CSS3

[64][64]

Creating a card-flipping effect
Imagine now we are not just moving the playing card around, but we also want to flip the
card element, just like we flip a real playing card. By using the rotation transform
function, it is now possible to create the card-flipping effect.

Time for action – Flipping a card with CSS3
We are going to start a new project and create a card-flipping effect when we click on the
playing card.:

1.	 Let's continue on our previous code example.

2.	 The card now contains two faces, a front face and a back face. Replace the following
code into the body tag in the HTML:

<section id="game">
 <div id="cards">
 <div class="card">
 <div class="face front"></div>
 <div class="face back cardAK"></div>
 </div> <!-- .card -->
 <div class="card">
 <div class="face front"></div>
 <div class="face back cardAQ"></div>
 </div> <!-- .card -->
 </div> <!-- #cards -->
</section> <!-- #game -->
<script src="js/jquery-1.6.min.js"></script>

3.	 Then change the CSS external link to the css3flip.css file:

<link rel="stylesheet" href="css/css3flip.css" />

4.	 Now let's add the styles to the css3flip.css:

#game {
 background: #9c9;
 padding: 5px;
}
/* Define the 3D perspective view and dimension of each card. */
.card {
 -webkit-perspective: 600;
 width: 80px;
 height: 120px;
}

Chapter 3

[65][65]

5.	 There are two faces on each card. We are going to rotate the face late. Therefore,
we define how the face transits by CSS3 transition property. We also hide the
back face visibility. We will look at the detail of this property later:

.face {
 border-radius: 10px;
 width: 100%;
 height: 100%;
 position: absolute;
 -webkit-transition: all .3s;
 -webkit-backface-visibility: hidden;
}

6.	 Now it is time to style each individual face. The front face has a higher z-index than
the back face:

.front {
 background: #966;
 z-index: 10;
}
.back {
 background: #eaa;
 -webkit-transform: rotate3d(0,1,0,-180deg);
 z-index: 8;
}

7.	 When we flip the card, we rotate the front face to back and back face to front.
We also swap the z-index of the front and back face:

.card-flipped .front {
 -webkit-transform: rotate3d(0,1,0,180deg);
 z-index: 8;
}
.card-flipped .back {
 -webkit-transform: rotate3d(0,1,0,0deg);
 z-index: 10;
}
.cardAK {
 background: url(../images/AK.png);
}
.cardAQ {
 background: url(../images/AQ.png);
}

Building a Memory Matching Game in CSS3

[66][66]

8.	 Next, we will add logic after loading the jQuery library to toggle the card-flipped
status when clicking on the card:

<script>
$(function(){
 $("#cards").children().each(function(index) {
 // listen the click event on each card DIV element.
 $(this).click(function() {
 // add the class "card-flipped".
 // the browser will animate the styles between current state
 and card-flipped state.
 $(this).toggleClass("card-flipped");
 });
 });
});
</script>

9.	 The styles and the scripts are now ready. Let's save all the files and preview it in our
web browser. Click the playing card to flip it over and click again to flip back.

What just happened?
We have created a card-flipping effect toggled by a mouse click. The example made use of
several CSS transforms properties and JavaScript for handling the mouse click event.

Toggling class with jQuery toggleClass function
We apply the class card-flipped to the card element when the mouse is clicked on the
card. On the second click, we want to remove the applied card-flipped style so the card flips
back again. This is called toggling a class style.

jQuery provides us with a handy function named toggleClass to add or remove classes
automatically, depending on whether the class is applied or not.

To use the function, we simply pass the classes that we want to toggle as an argument.

Chapter 3

[67][67]

For example, the following code adds or removes the card-flipped class to an element
with ID card1:

$("#card1").toggleClass("card-flipped");

The toggleClass function accepts toggle from more than one class at the sample time.
We can pass in several class names and separate them by using space. Here is an example
of toggling two classes at the same time:

$("#card1").toggleClass("card-flipped scale-up");

Controlling the visibility of overlapped elements by z-index
Normally, all elements in a web page are distributed and presented without overlapping.
Designing a game is a different story. We always need to deal with overlapped elements and
hide them (or part of them) on purpose. Z-index, a CSS 2.1 property, helps us to control the
visibility behaviors when more than one element is overlapped.

In this example, we have two faces for each card, the front and the back face. The two faces
are placed in the exact position. They overlap each other. The Z-index property defines which
element is on top and which is behind. The elements with a higher z-index go in front of
elements with a lower z-index. When they overlap, the one with the higher z-index will cover
the one with the lower z-index. The following screenshot demonstrates the z-index behavior:

In the card-flipping example, we swapped the z-index of both faces to ensure the
corresponding face is on top of the other in both the normal state and the flipped
state. The following code shows the swapping.

When in a normal state, the front face has a higher z-index:

.front {
 z-index: 10;
}
.back {
 z-index: 8;
}

Building a Memory Matching Game in CSS3

[6�][6�]

While in a flipped state, the front face changes to a lower z-index than the back face.
The back face now covers the front face:

.card-flipped .front {
 z-index: 8;
}
.card-flipped .back {
 z-index: 10;
}

Introducing CSS perspective property
CSS3 lets us present elements in 3D. We have been able to transform the elements in 3D
space. The perspective property defines how the 3D perspective view looks. You can treat
the value as far as you are looking at the object. The closer you are, the more perspective
distortion there is on the viewing object.

While writing this book, only Safari supported the 3D perspective
feature. Chrome supports 3D transform while not supporting the
perspective property. Therefore, we will have the best effect in
Safari and an acceptable effect in Chrome.

The following two 3D cubes demonstrate how different perspective values change the
perspective view of the element:

Chapter 3

[6�][6�]

You can view this experiment by going to the following address in Safari:

http://gamedesign.cc/html5games/perspective-cube/

Have a go hero
The cube is created by putting six faces together with 3D transforms applied to each face.
It used the techniques we've discussed. Try to create a cube and experiment with the
perspective property.

The following web page gives a comprehensive explanation on creating the CSS3 cube, and
also discusses controlling the rotation of the cube through the keyboard:

http://www.paulrhayes.com/2009-07/animated-css3-cube-interface-using-
3d-transforms/

Introducing backface-visibility
Before the backface-visibility is introduced, all elements on the page present their front face
to the visitor. Actually, there was no concept of the front face or back face of the element
because it was the only choice. While CSS3 introduces the rotation in three axes, we can
rotate an element so that its face is on the back. Try looking at your palm and rotating your
wrist, your palm turns and you see the back of your palm. This happens to the rotated
elements too.

CSS3 introduces a property named backface-visibility to define whether we can
see the back face of the element or not. By default, it is visible. The following screenshots
demonstrate the two different behaviors of the backface-visibility property.

At the time of writing this book, only Apple Safari supported the
backface-visibility property.

Building a Memory Matching Game in CSS3

[70][70]

You can read more detailed information about different properties and
functions in CSS 3D transforms on the official Webkit blog: http://webkit.
org/blog/386/3d-transforms/.

Creating a card matching memory game
We have gong through some CSS basic techniques. Let's make a game with the techniques.
We are going to make a card game. The card game makes use of transform to flip the card,
transition to move the card, JavaScript to hold the logic, and a new HTML5 feature called
custom data attribute. Don't worry, we will discuss each component step by step.

Downloading the sprites sheet of playing cards
In the card-flipping example, we were using two different playing card graphics. Now we
prepare the whole deck of playing card graphics. Although we only use six playing cards in
the matching game, we prepare the whole deck so we can reuse these graphics in other
playing card games that we may create.

There are 52 playing cards in a deck and we have one more graphic for the backside. Instead
of using 53 separated files, it is good practice to put separated graphics into one big sprite
sheet file. The term sprite sheet was from an old computer graphics technique that loaded
one graphics texture into memory and displayed part of the graphics.

One benefit of using a big sprite sheet instead of separated image files is that we can
reduce the amount of HTTP requests. When the browser loads the web page, it creates a
new HTTP request to load each external resource, including JavaScript files, CSS files, and
images. It takes quite a lot of time to establish a new HTTP request for each separated small
file. Combining the graphics into one file, largely reduces the amount of requests and thus
improves the responsiveness of the game when loading in the browser.

Another benefit for placing graphics into one file is to avoid the overhead of the file format
header. The size of a 53 images sprite sheet is less than the sum of 53 different images with
the file header in each file.

The following deck of playing cards graphics is drawn and aligned in Adobe Illustrator. You
can download it from http://gamedesign.cc/html5games/css3-matching-game/
images/deck.png.

Chapter 3

[71][71]

The following article explains in detail why and how we can create and use the
CSS sprite sheet:

http://css-tricks.com/css-sprites/

Setting up the game environment
The graphics are ready, we will then need to set up a static page with the game objects
prepared and placed on the game area. It is easier for adding game logic and interaction later:

Time for action – Preparing the card matching game
Before adding the complicated game logic to our matching game, let's prepare the HTML
game structure and prepare all the CSS styles:

1.	 Let's continue on our code. Replace the index.html file with the following HTML:

<!DOCTYPE html>
<html lang=en>
<head>
 <meta charset=utf-8>
 <title>CSS3 Matching Game</title>
 <link rel="stylesheet" href="css/matchgame.css" />
</head>
<body>

Building a Memory Matching Game in CSS3

[72][72]

 <header>
 <h1>CSS3 Matching Game</h1>
 </header>

 <section id="game">
 <div id="cards">
 <div class="card">
 <div class="face front"></div>
 <div class="face back"></div>
 </div> <!-- .card -->
 </div> <!-- #cards -->
 </section> <!-- #game -->

 <footer>
 <p>This is an example of creating a matching game with CSS3.</
p>
 </footer>

<script src="js/jquery-1.6.min.js"></script>
<script src="js/html5games.matchgame.js"></script>
</body>
</html>

2.	 In order to make the game more appealing, I prepared background images for the
game table and the page. These graphic assets can be found in the code example
bundle. The background images are optional and they will not affect the gameplay
and the logic of the matching game.

3.	 We will also place the deck sprite sheet graphics into the images folder. Download
the deck.png file from http://gamedesign.cc/html5games/css3-
matching-game/images/deck.png and save it into the images folder.

4.	 Let's add style to the matching game before writing any logic. Open matchgame.
css and add the following body styles:

body {
 text-align: center;
 background: #a46740 url(../images/bg.jpg);
}

5.	 Continue to add the styles to the game element. It will be the main area
of the game:

#game {
 border-radius: 10px;
 border: 1px solid #666;
 background: #232 url(../images/table.jpg);
 width: 500px;

Chapter 3

[73][73]

 height: 460px;
 margin: 0 auto;
 display: box;
 box-pack: center;
 box-align: center;
}

6.	 We will put all card elements into a parent DOM named cards. By doing this, we
can easily center all cards to the game area:

#cards {
 position: relative;
 width: 380px;
 height: 400px;
}

7.	 For each card, we define a perspective property to give it a visual depth effect:

.card {
 -webkit-perspective: 600;
 width: 80px;
 height: 120px;
 position: absolute;
 -moz-transition: all .3s;
 -webkit-transition: all .3s;
 transition: all .3s;
}

8.	 There are two faces on each card. The face will be rotated later and we will define
the transition properties to animate the style changes. We also want to make sure
the back face is hidden:

.face {
 border-radius: 10px;
 width: 100%;
 height: 100%;
 position: absolute;
 -webkit-transition-property: opacity, transform, box-shadow;
 -webkit-transition-duration: .3s;

 -webkit-backface-visibility: hidden;
}

Building a Memory Matching Game in CSS3

[74][74]

9.	 Then we set the front and back face styles. They are almost the same as the
flipping card example, except that we are now giving them background images
and box shadows:

.front {
 background: #999 url(../images/deck.png) 0 -480px;
 z-index: 10;
}
.back {
 background: #efefef url(../images/deck.png);
 -webkit-transform: rotate3d(0,1,0,-180deg);
 z-index: 8;
}
.card:hover .face, .card-flipped .face {
 -webkit-box-shadow: 0 0 10px #aaa;
}
.card-flipped .front {
 -webkit-transform: rotate3d(0,1,0,180deg);
 z-index: 8;
}
.card-flipped .back {
 -webkit-transform: rotate3d(0,1,0,0deg);
 z-index: 10;
}

10.	When any card is removed, we want to fade it out. Therefore, we declare a
card-removed class with 0 opacity:

.card-removed {
 opacity: 0;
}

11.	 In order to show different playing card graphics from the sprite sheet of the card
deck, we clip the background of the card into different background positions:

.cardAQ {background-position: -880px 0;}

.cardAK {background-position: -960px 0;}

.cardBQ {background-position: -880px -120px;}

.cardBK {background-position: -960px -120px;}

.cardCQ {background-position: -880px -240px;}

.cardCK {background-position: -960px -240px;}

.cardDQ {background-position: -880px -360px;}

.cardDK {background-position: -960px -360px;}

12.	We have defined a lot of CSS styles. It is now time for the JavaScript logic.
Open the html5games.matchgame.js file and put the following code inside:

$(function(){
 // clone 12 copies of the card
 for(var i=0;i<11;i++){

Chapter 3

[75][75]

 $(".card:first-child").clone().appendTo("#cards");
 }
 // initialize each card's position
 $("#cards").children().each(function(index) {
 // align the cards to be 4x3 ourselves.
 $(this).css({
 "left" : ($(this).width() + 20) * (index % 4),
 "top" : ($(this).height() + 20) * Math.floor(index / 4)
 });
 });
});

13.	Now save all files and preview the game in the browser. The game should be well
styled and 12 cards should appear in the center. However, we cannot click on the
cards yet because we have not set any interaction logic to the cards.

Building a Memory Matching Game in CSS3

[76][76]

What just happened?
We created the game structure in HTML and applied styles to the HTML elements. We also
used jQuery to create 12 cards on the game area once the web was loaded and ready. The
styles of flipping and removing of the cards are also prepared and can be applied to the card
by using the game logic later.

Since we are using absolute positioning for each card, we need to align the cards into 4x3
tiles ourselves. In the JavaScript logic, we loop through each card and align it by calculating
the position with the looping index:

$("#cards").children().each(function(index) {
 // align the cards to be 4x3 ourselves.
 $(this).css({
 "left" : ($(this).width() + 20) * (index % 4),
 "top" : ($(this).height() + 20) * Math.floor(index / 4)
 });
});

The "%" in JavaScript is the modulus operator that returns the remainder left after division.
The remainder is used to get the column count when looping the cards. The following
diagram shows the row/column relationship with the index number:

The division, on the other hand, is used to get the row count so we can position the card
on that corresponding row.

Take index 3 as an example, 3 % 4 is 3. So the card at index 3 is on the third column.
And 3 / 4 is 0, so it is on the first row.

Let's pick another number to see how the formula works. Let's see index 8. 8 % 4 is 0
and it is on the first column. 8 / 4 is 2 so it is on the third row.

Chapter 3

[77][77]

Cloning DOM elements with jQuery
In our HTML structure, we only have one card and in the result, we have 12 cards there. It is
because we used the clone function in jQuery to clone the card element. After cloning the
target element, we called the appendTo function to append the cloned card element as a
child in the cards element:

$(".card:first-child").clone().appendTo("#cards");

Selecting the first child of an element in jQuery by using
child filters
When we selected the card element and cloned it, we used the following selector:

$(".card:first-child")

The :first-child is a child filter that selects the first child of the given parent element.

Besides :first-child, we can also select the last child by using :last-child.

You can also check other child-related selectors on the jQuery document:

http://api.jquery.com/category/selectors/child-filter-
selectors/

Vertically aligning a DOM element
We put the cards DIV in the center of the game element. CSS3 flexible box layout module
introduces an easy method to achieve the vertical center alignment. As this module is still in
progress, we need to apply a browser vendor prefix. We will use Webkit as an example here:

display: -webkit-box;
-webkit-box-pack: center;
-webkit-box-align: center;

The flexible box module defines the alignment of the element when there are extra spaces in
their container. We can set the element to behaviors as a flexible box container by using the
display, a CSS2 property, with the value box, a new CSS3 property value.

box-pack and box-align are two properties for defining how it aligns and uses the extra
free space horizontally and vertically. We can center the element by setting both properties
to center.

Building a Memory Matching Game in CSS3

[7�][7�]

Vertical alignment is just a small part of the flexible box layout module. It is very powerful
when making layout in web design. You may find further information on the W3C page of
the module (http://www.w3.org/TR/css3-flexbox/) or the CSS3 Info website
(http://www.css3.info/introducing-the-flexible-box-layout-module/).

Using CSS sprite with a background position
The CSS sprite sheet is a big image that contains many individual graphics. The big sprite
sheet image is applied as background image for the elements. We can clip each graphic out
by moving the background position on a fixed width and height element.

Our deck image contains a total of 53 graphics. In order to demonstrate the background
position easily, let's assume we have an image that contains three card images, such as the
following screenshot:

In the CSS style, we set the card element to 80px width and 120px height, with the
background image set to the big deck image. If we want the top left graphic, we apply both
the X and Y of the background position to 0. If we want the second graphic, we move the
background image to left 80px. That means setting the X position to -80px and Y to 0. Since
we have a fixed width and height, only the clipped 80x120 area shows the background
image. The rectangle in the following screenshot shows the viewable area:

Chapter 3

[7�][7�]

Adding game logic to the matching game
Let's now imagine holding a real deck in our hand and setting up the matching game.

We first shuffle the cards in our hand and then we put each card on the table with the back
facing up. For easier game play, we align the cards into a 4x3 array. Now the game is set up.

Now we are going to play the game. We pick up one card and flip it to make it face up. We
pick another one and face it upwards. Afterwards, we have two possible actions. We take
away those two cards if they are in the same pattern. Otherwise, we put it back facing down
again, as if we have not touched them. The game continues until we pair all cards and take
them all.

The code flow will be much more clear after we have the step-by-step scenario in our mind.
Actually, the code in this example is exactly the same as the procedure we play with a real
deck. We just need to replace the human language into the JavaScript code.

Building a Memory Matching Game in CSS3

[�0][�0]

Time for action – Adding game logic to the matching game
We have prepared the game environment in the last example and decided the game logic to
be the same as playing a real deck. It is time to code the JavaScript logic now:

1.	 Let's begin from our last matching game example. We have styled the CSS and now
it is time to add the game logic in the html5games.matchgame.js file.

2.	 The game is to match pairs of playing cards. We have 12 cards now so we need six
pairs of playing cards. The following global array declares six pairs of card patterns:

var matchingGame = {};
matchingGame.deck = [
 'cardAK', 'cardAK',
 'cardAQ', 'cardAQ',
 'cardAJ', 'cardAJ',
 'cardBK', 'cardBK',
 'cardBQ', 'cardBQ',
 'cardBJ', 'cardBJ',
];

3.	 We aligned the cards in the jQuery ready function in the previous chapter. Now we
need to prepare and initialize more codes in the ready function. Change the ready
function to the following code. The changed code is highlighted:

$(function(){
 matchingGame.deck.sort(shuffle);

 for(var i=0;i<11;i++){
 $(".card:first-child").clone().appendTo("#cards");
 }

 $("#cards").children().each(function(index) {
 $(this).css({
 "left" : ($(this).width() + 20) * (index % 4),
 "top" : ($(this).height() + 20) * Math.floor(index / 4)
 });

 // get a pattern from the shuffled deck
 var pattern = matchingGame.deck.pop();

 // visually apply the pattern on the card's back side.
 $(this).find(".back").addClass(pattern);

 // embed the pattern data into the DOM element.
 $(this).attr("data-pattern",pattern);

 // listen the click event on each card DIV element.

Chapter 3

[�1][�1]

 $(this).click(selectCard);
 });
});

4.	 Similar to playing a real deck, the first thing we want to do is shuffle the deck. Add
the following shuffle function to the JavaScript file:

function shuffle() {
 return 0.5 - Math.random();
}

5.	 When we click on the card, we flip it and schedule the checking function.
Append the following codes to the JavaScript file:

function selectCard() {
 // we do nothing if there are already two card flipped.
 if ($(".card-flipped").size() > 1) {
 return;
 }
 $(this).addClass("card-flipped");
 // check the pattern of both flipped card 0.7s later.
 if ($(".card-flipped").size() == 2) {
 setTimeout(checkPattern,700);
 }
}

6.	 When two cards are opened, the following function executes. It controls whether
we remove the card or flip the card back:

function checkPattern() {
 if (isMatchPattern()) {
 $(".card-flipped").removeClass("card-flipped").addClass
 ("card-removed");
 $(".card-removed").bind("webkitTransitionEnd",
 removeTookCards);
 } else {
 $(".card-flipped").removeClass("card-flipped");
 }
}

7.	 It is time for the pattern checking function. The following function accesses the
custom pattern attribute of the opened cards and compares whether they are in the
same pattern:

function isMatchPattern() {
 var cards = $(".card-flipped");
 var pattern = $(cards[0]).data("pattern");
 var anotherPattern = $(cards[1]).data("pattern");

Building a Memory Matching Game in CSS3

[�2][�2]

 return (pattern == anotherPattern);
}

8.	 After the matched cards fade out, we execute the following function to remove the
cards:

function removeTookCards() {
 $(".card-removed").remove();
}

9.	 The game logic is ready now. Let's open the game HTML in a browser and play.
Remember to check the console window in Developer Tools if there is any error.

Chapter 3

[�3][�3]

What just happened?
We coded the game logic of the CSS3 matching game. The logic adds the mouse click
interaction to the playing cards and it controls the flow of the pattern checking.

Executing code after CSS transition ended
We remove the pair cards after playing the fade out transition. We can schedule a function to
be executed after the transition is ended by using the TransitionEnd event. The following
code snippet from our code example adds a card-removed class to the pair card to start
the transition. Then, it binds the TransitionEnd event to remove the card complete in
DOM afterwards. Also, please note the webkit vendor prefix for the event because it is not
yet finalized:

$(".card-flipped").removeClass("card-flipped").addClass("card-
removed");
$(".card-removed").bind("webkitTransitionEnd", removeTookCards);

Delaying code execution on flipping cards
The game logic flow is designed in the same way as playing a real deck. One big difference is
that we used several setTimeout functions to delay the execution of the code. When the
second card is clicked, we schedule the checkPattern function to be executed 0.7 seconds
later in the following code example snippet:

if ($(".card-flipped").size() == 2) {
 setTimeout(checkPattern,700);
}

The reason we delay the function call is to give time to the player to memorize the card
pattern. That's why we delayed it by 0.7 seconds before checking the card patterns.

Randomizing an array in JavaScript
There is no built-in array randomize function in JavaScript. We have to write our own. Luckily,
we can get help from the built-in array sorting function.

Here is the usage of the sort function:

sort(compare_function);

The sort function takes one optional argument.

Building a Memory Matching Game in CSS3

[�4][�4]

Argument Definition Discussion

compare_function A function that defines the
sort order of the array. The
compare_function
requires two arguments

The sort function compares two
elements in the array by using the
compare function. Therefore, the
compare function requires two
arguments.

When the compare function
returns any value that is bigger
than 0, it puts the first argument
at the lower index than the second
argument.

When the return value is smaller
than 0, it puts the second argument
at a lower index than the first
argument.

The trick here is that we used the compare function that returns a random number between
-0.5 and 0.5:

anArray.sort(shuffle);
function shuffle(a, b) {
 return 0.5 - Math.random();
}

By returning a random number in the compare function, the sort function sorts the same
array in an inconsistent way. In another words, we are shuffling the array.

The following link from the Mozilla Developer Network provides a detailed
explanation on using the sort function with example:

https://developer.mozilla.org/en/JavaScript/Reference/
Global_Objects/Array/sort

Storing internal custom data with an HTML5 custom data attribute
We can store custom data inside the DOM element by using the custom data attribute.
We can create a custom attribute name with data- prefix and assign a value to it.

For instance, we can embed custom data to the list elements in the following code:

<ul id="games">
 <li data-chapter="2" data-difficulty="easy">Ping-Pong
 <li data-chapter="3" data-difficulty="medium">Matching Game

Chapter 3

[�5][�5]

This is a new feature proposed in the HTML5 spec. According to the W3C, the custom data
attributes are intended to store custom data private to the page or application, for which
there are no more appropriate attributes or elements.

W3C also stated that this custom data attribute is "intended for use by the site's own
script and not a generic extension mechanism for publicly-usable metadata."

We are coding our matching game and embedding our own data to the card elements,
therefore, custom data attribute fits our usage.

We used the custom attribute to store the card pattern inside each card so we can check
whether the two flipped cards match in JavaScript by comparing the pattern value. Also,
the pattern is used to style the playing cards into corresponding graphics as well:

$(this).find(".back").addClass(pattern);
$(this).attr("data-pattern",pattern);

Pop quiz
1. According to W3C's guideline about the custom data attribute, which of the

following statements is true?

a. We may create a data-href attribute to store the link of the a tag.

b. We may want to access the custom data attribute in a third party game
portal website.

c. We may want to store a data-score attribute in each player's DOM element
to sort the ranking in our web page.

d. We may create a ranking attribute in each player's DOM element to
store the ranking data.

Accessing custom data attribute with jQuery
In the matching game example, we used the attr function from the jQuery library to
access our custom data:

pattern = $(this).attr("data-pattern");

The attr function returns the value of the given attribute name. For example, we can get
the links in all a tags by calling the following code:

$("a").attr("href");

For the HTML5 custom data attribute, jQuery provides us with another function to access the
HTML5 custom data attribute. It is the data function.

Building a Memory Matching Game in CSS3

[�6][�6]

Data function was designed to embed custom data into the jQuery object of the HTML
elements. It was designed before the HTML5 custom data attribute.

Here is the usage of the data function:

.data(key)

.data(key,value)

The data function accepts two types of functions:

Function type Arguments definition Discussion

.data(key) key is a string naming the entry
of the data

When there is only the key
given, the data function reads
the data associated with the
jQuery object and returns the
corresponding value.

In the recent jQuery update,
this function is extended to
support the HTML5 custom data
attribute.

.data(key, value) key is a a string naming the
entry of the data

value is the data to be
associated to the jQuery object

When both key and value
arguments are given, the data
function sets a new data entry
to the jQuery object.

The value can be any JavaScript
type, including array and object.

In order to support the HTML5 custom data attribute, jQuery extends the data function to
let it access the custom data defined in the HTML code.

The following code explains how we use the data function.

Given the following HTML code:

<div id="target" data-custom-name="HTML5 Games"></div>

We can access the data-custom-name attribute by calling the data function in jQuery:

$("#target").data("customName")

It will return "HTML5 Games".

Chapter 3

[�7][�7]

Pop quiz
1. Given the following HTML code:

<div id="game" data-score="100"></div>

which two of these jQuery statements reads the custom score data and returns 100?

a. $("#game").attr("data-score");

b. $("#game").attr("score");

c. $("#game").data("data-score");

d. $("#game").data("score");

Have a go hero
We have created the CSS3 matching game. What is missing here? The game logic does not
check whether the game is over. Try adding a You won text when the game is over. You can
also animate the text by using the techniques we discussed in this chapter.

Making other playing card games
This CSS3 playing card approach is suitable for creating card games. There are two sides in a
card that fit the flipping. The transition is suitable for moving the cards. With both moving
and flipping, we can just define the playing rule and make the most of the card games.

Have a go hero
Can you use the playing card graphics and flipping techniques to create another game?
How about poker?

Embedding web fonts into our game
Over the years, we have been using limited fonts to design web pages. We could not use
whatever fonts we wanted because the browser loaded the font from the visitor's local
machine. We cannot control and ensure that visitors have our desired fonts.

Although we can embed web fonts back to Internet Explorer 5 with limited type format,
we have to wait until browser vendors support embedding the most common TrueType
font format.

Imagine that we can control the mood of the game by embedding different styles of web
fonts. We can design the games with our desired fonts and have more control over the
appeal of game. Let's try embedding a web font to our matching memory game.

Building a Memory Matching Game in CSS3

[��][��]

Time for action – Embedding a font from Google Font Directory
Google Font Directory is a web font service that lists free-to-use web fonts. We will embed a
web font chosen from the Google Font Directory:

1.	 Go to the Google Font Directory site: http://code.google.com/webfonts.

2.	 In the font directory, there is a list of web fonts that is under an open source license
and can be used freely.

3.	 Choose one of them and click on the font name to proceed to the next step. In this
example, I used Droid Serif.

4.	 After clicking on a font, the font directory displays detailed information about that
font. There are several actions we can carry out there, such as preview the fonts,
choose from variants, and most importantly get the font embedding code.

5.	 Click on the Get the code tab and you will see the following screenshot. It shows a
guide on how to embed this font to our web page:

Chapter 3

[��][��]

6.	 Copy the link tag provided by Google and paste it into the HTML code. It should be
placed before any other style definition:

<link href='http://fonts.googleapis.com/css?family=Droid+Serif:
regular,bold&subset=latin' rel='stylesheet' type='text/css'>

7.	 Now we can use the font to style our text. Set the body's font family property to the
following code:

body {
 font-family: 'Droid Serif', arial, serif;
}

8.	 Save all the files and open the index.html file. The browser will download the font
from the Google server and embed it into the web page. Keep an eye on the fonts,
they should be loaded and rendered as our selected Google font.

What just happened?
We have just styled our game with a non-common web font. The font is hosted and delivered
through the Google Font Directory.

Building a Memory Matching Game in CSS3

[�0][�0]

Besides using the font directory, we can embed our font file by using the @
font face. The following link provides a bulletproof approach to embed a font
ourselves:

http://www.fontspring.com/blog/the-new-bulletproof-
font-face-syntax

Check the font license before embedding

Normally the font licenses do not cover the usage on web pages. Be sure to
check the license before embedding the font. All the fonts listed in the Google
Font Directory are licensed under open source license and can be used on any
website.

Choosing different font delivery services
Google Font Directory is just one of those font delivery services. Typekit (http://typekit.
com) and Fontdeck (http://fontdeck.com) are two other font services providing
hundreds of high quality fonts via yearly subscription plans.

Chapter 3

[�1][�1]

Summary
In this chapter we learned about using different CSS3 new properties to create games.

Specifically, we covered:

Transforming and animating the game object by transition module

Flipping a card back and forth with perspective depth illusion

Creating a matching memory game based on CSS3 styles and animation and game
logic by jQuery

Choosing and embedding web fonts from an online font delivery service

Now that we've learned about creating DOM-based HTML5 games with the help of CSS3
features, we are going to explore another approach of creating HTML5 games in the next
chapter, which is using the new Canvas tag and the drawing API.

4
Building the Untangle Game with

Canvas and Drawing API
One new highlighted feature in HTML5 is the Canvas element. We can treat the
canvas element as a dynamic area that we can draw graphics and shapes on
with scripts.

Images in websites have been static for years. There is animation gif but it
cannot interact with its visitors. Canvas is dynamic. We draw and modify the
context in canvas dynamically through JavaScript drawing API. We can also add
interaction to the canvas and thus make games.

In the past two chapters, we have discussed DOM-based game development with CSS3 and
few HTML5 features. In the coming two chapters, we will focus on using new HTML5 features
to create games. In this chapter, we will take a look at a core feature, canvas, and some basic
drawing techniques.

In this chapter, we shall cover the following topics:

Introducing the HTML5 canvas element

Drawing a circle in canvas

Drawing lines in the canvas element

Interacting with drawn objects in canvas with mouse events

Detecting line intersection

Building the Untangle puzzle game with canvas

Building the Untangle Game with Canvas and Drawing API

[�4]

The Untangle puzzle game is a game where players are given circles with some lines
connecting them. The lines may intersect the others and the players need to drag the
circles so that no line intersects anymore.

The following screenshot previews the game that we are going to achieve through
this chapter:

So let's start making our canvas game from scratch.

Introducing the HTML5 Canvas Element
W3C community states that the canvas element and the drawing functions are:

A resolution-dependent bitmap canvas, which can be used for rendering graphs,
game graphics, or other visual images on the fly.

The canvas element contains context for drawing and the actual graphics and shapes are
drawn by the JavaScript drawing API.

Chapter 4

[�5]

Drawing a circle in canvas
Let's start our drawing on canvas from the basic shape—circle.

Time for action – Drawing color circles on canvas
1.	 First, let's set up the new environment for the example. That is an HTML file that will

contain the canvas element, a jQuery library to help us on JavaScript, a JavaScript file
containing the actually drawing logic, and a style sheet.

2.	 Put the following HTML code into the index.html. It is a basic HTML document
containing the canvas element:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Drawing Circles in Canvas</title>
 <link rel="stylesheet" href="css/untangle.css" />
</head>
<body>
 <header>
 <h1>Drawing in Canvas</h1>
 </header>

 <canvas id="game" width="768" height="400">
 Sorry, your web browser does not support Canvas content.
 </canvas>

<script src="js/jquery-1.6.min.js"></script>
<script src="js/html5games.untangle.js"></script>
</body>
</html>

Building the Untangle Game with Canvas and Drawing API

[�6]

3.	 Use CSS to set the background color of the canvas inside untangle.css:

canvas {
 background: #333;

}

4.	 In the html5games.untangle.js JavaScript file, we put a jQuery ready function
and draw a color circle inside it:

$(function(){
 var canvas = document.getElementById("game");
 var ctx = canvas.getContext("2d");
 ctx.fillStyle = "rgba(200, 200, 100, .6)";
 ctx.beginPath();
 ctx.arc(100, 100, 50 , 0, Math.PI*2, true);
 ctx.closePath();
 ctx.fill();

});

5.	 Open the index.html file in a web browser and we will get the
following screenshot:

Chapter 4

[�7]

What just happened?
We have just created a simple canvas context with circles on it.

There are not many settings for the canvas element itself. We set the width and height of the
canvas, same as we have a fixed the dimensions of a real drawing paper. Also, we assign an
ID attribute to the canvas for easier reference again in JavaScript:

<canvas id="game" width="768" height="400">
 Sorry, your web browser does not support Canvas content.
</canvas>

Putting fallback content when the web browser does not
support canvas
Not every web browser supports the canvas element. Especially, those aged old version
ones. The Canvas element provides an easy way to provide fallback content if the canvas
element is not supported. Anything inside the canvas open and close tag is the fallback
content. This content is hidden if the web browser supports the element. Browsers that
don't support canvas will instead display that fallback content. It is good practice to provide
useful information in the fallback content. For instance, if the canvas purpose is a dynamic
picture, we may consider placing a alternative there. Or we may also provide some
links to modern web browsers for the visitor to upgrade their browser easily.

In this example, we provided a sentence inside the canvas element. This sentence is hidden
from any browsers that support the canvas element. It will show to the visitor if their
browsers do not support the new HTML5 canvas feature. The following screenshot shows
the old version of Internet Explorer displaying the fallback content instead of drawing the
canvas element:

Building the Untangle Game with Canvas and Drawing API

[��]

Drawing circles and shapes with canvas arc function
There is no circle function to draw a circle. Canvas drawing API provides a function to draw
different arcs, including the circle. The Arc function accepts following arguments

Arguments Discussion

X The center point of the arc in x axis.

Y The center point of the arc in y axis.

radius The radius is the distance between the center point and the arc perimeter.
When drawing a circle, a larger radius means a larger circle.

startAngle The starting point is an angle in radian. It defines where to start drawing the
arc on the perimeter.

endAngle The ending point is an angle in radian. The arc is drawn from the position of
the starting angle to this end angle.

counter-
clockwise

This is a Boolean indicating the arc from startingAngle to
endingAngle drawn in a clockwise or counter-clockwise direction.

This is an optional argument with the default value false.

Converting degree to radians
The angle arguments used in the arc function are in radian instead of degree. If you
are familiar with the degrees angle, you may need to convert the degree into radians
before putting the value into the arc function. We can convert the angle unit by using
the following formula:

radians = π/180 x degrees

The following graph contains some common angle values in both degree and radian units.
The graph also indicates the position of the angle value for us to easily pick the starting angle
and ending angle argument when drawing arc in canvas.

Chapter 4

[��]

In order to be clearer on drawing different arcs with the starting angle and ending angle,
let's draw some arcs.

Time for action – Drawing different arcs with arc function
Let's do some experiments on using the arc function by giving different starting and
ending angles:

1.	 Open the html5games.untangle.js file we just used to draw the circle.

2.	 Replace the circle drawing code by using the following arcs drawing codes:

$(function(){
 var canvas = document.getElementById('game');
 var ctx = canvas.getContext('2d');
 ctx.fillStyle = "rgba(200, 200, 100, .6)";

 // draw bottom half circle
 ctx.beginPath();
 ctx.arc(100, 110, 50 , 0, Math.PI);
 ctx.closePath();
 ctx.fill();

 // draw top half circle
 ctx.beginPath();

Building the Untangle Game with Canvas and Drawing API

[100]

 ctx.arc(100, 90, 50 , 0, Math.PI, true);
 ctx.closePath();
 ctx.fill();

 // draw left half circle
 ctx.beginPath();
 ctx.arc(230, 100, 50 , Math.PI/2, Math.PI*3/2);
 ctx.closePath();
 ctx.fill();

 // draw right half circle
 ctx.beginPath();
 ctx.arc(250, 100, 50 , Math.PI*3/2, Math.PI/2);
 ctx.closePath();
 ctx.fill();

 // draw a shape that is almost a circle
 ctx.beginPath();
 ctx.arc(180, 240, 50 , Math.PI*7/6, Math.PI*2/3);
 ctx.closePath();
 ctx.fill();

 // draw a small arc
 ctx.beginPath();
 ctx.arc(150, 250, 50 , Math.PI*7/6, Math.PI*2/3, true);
 ctx.closePath();
 ctx.fill();

});

3.	 It is time to test it in a web browser. There should be six different half circles and
arcs on the canvas as shown in the following screenshot:

Chapter 4

[101]

What just happened?
We have used different startAngle and endAngle arguments in the arc function to draw
six different arc shapes. These arc shapes demonstrate how the arc function works.

Let's recall the degrees and radians relationship circle and take a look at the top half
circle. The top half circle begins at angle 0 and ends at angle π, and the arc is drawn in an
counter-clockwise direction. If we take a look at the circle, it looks like the following graph:

And if we start at angle 210 degrees and end at angle 120 degrees, in a clockwise direction,
we will get the following arc:

Building the Untangle Game with Canvas and Drawing API

[102]

Pop quiz
1. Which arc command we can use to draw the following arc?

a. ctx.arc(300, 250, 50 , Math.PI*3/2, Math.PI/2, true);

b. ctx.arc(300, 250, 50 , Math.PI*3/2, Math.PI/2);

c. ctx.arc(300, 250, 50 , Math.PI*3/2, 0, true);

d. ctx.arc(300, 250, 50 , Math.PI*3/2, 0);

Executing the path drawing in canvas
When we are calling the arc function or other path drawing functions, we are not drawing
the path immediately on the canvas. Instead, we are adding it into a list of the paths. These
paths will not be drawn until we execute the drawing command.

There are two drawing executing commands. One command for filling the paths and the
other for drawing the stroke.

We fill the paths by calling the fill function and draw the stroke of the paths by calling the
stroke function, which we will use later when drawing lines:

ctx.fill();

Beginning a path for each style
The fill and stroke function fills and draws the paths on canvas but it does not clear the
list of paths. Take the following code snippet as an example. After filling our circle with red
color, we add other circles and fill it with green. What happens to the code is both the circles
are filled with green color, instead of only the new circle being filled by green color:

Chapter 4

[103]

var canvas = document.getElementById('game');
var ctx = canvas.getContext('2d');
ctx.fillStyle = "red";
ctx.arc(100, 100, 50 , 0, Math.PI*2, true);
ctx.fill();

ctx.arc(210, 100, 50, 0, Math.PI*2, true);
ctx.fillStyle = "green";
ctx.fill();

It is because when calling the second fill command, the list of paths in the canvas contain
both circles. Therefore, the fill command fills both circles with green and overrides the red
color circle.

In order to fix this issue, we want to ensure we call beginPath before drawing a new shape
every time.

beginPath empties the list of paths so next time we call the fill and stroke command,
it will only apply to all paths after the last beginPath.

Have a go hero
We have just discussed a code snippet where we intend to draw two circles with one in red
color and the other in green. The code turns out drawing both circles in green color. How can
we add a beginPath command to the code so that it draws one red circle and one green
circle correctly?

Closing a path
The closePath function will draw a straight line from the last point of the latest path to the
first point of the path. That is closing the path. If we are only going to fill the path and not
going to draw the stroke outline, the closePath function does not affect the result. The
following screenshot compares the result on a half circle with one calling closePath and
the other not calling closePath:

Building the Untangle Game with Canvas and Drawing API

[104]

Pop quiz
1. Do we need to use the closePath function on the shape we are drawing if we just

want to fill the color and not draw the outline stroke?

a. Yes, we need the closePath function.

b. No, it does not care if we have the closePath function.

Wrapping the circle drawing in function
Drawing a circle is a common function that we will use a lot. It is better to create a function
for drawing a circle instead of entering several code lines now.

Time for action – Putting the circle drawing code into a function
Let's make a function for the circle drawing and draw some circles on the canvas:

1.	 Open the html5games.untangle.js file.

2.	 Replace the original code in the JavaScript file with the following code. It basically
puts the circle drawing code we just used into a function and uses a for-loop to
randomly place five circles on the canvas:

var untangleGame = {};

function drawCircle(ctx, x, y, radius) {
 ctx.fillStyle = "rgba(200, 200, 100, .9)";
 ctx.beginPath();
 ctx.arc(x, y, radius, 0, Math.PI*2, true);
 ctx.closePath();
 ctx.fill();
}
$(function(){
 var canvas = document.getElementById('game');
 var ctx = canvas.getContext('2d');

 var circleRadius = 10;

 var width = canvas.width;
 var height = canvas.height;

 // random 5 circles
 var circlesCount = 5;
 for (var i=0;i<circlesCount;i++) {
 var x = Math.random()*width;

Chapter 4

[105]

 var y = Math.random()*height;
 drawCircle(ctx, x, y, circleRadius);
 }

});

3.	 Open the HTML file in the web browser to see the result.

What just happened?
The code of drawing circles is executed after the page is loaded and ready. We used a loop
to draw several circles in random places on the canvas.

Generating random numbers in JavaScript
In game development, we often use random functions. We may want to randomly summon
a monster for the player to fight, we may want to randomly drop a reward price when the
player makes progress, and we may want a random number to be the result of rolling a dice.
In this code, we place the circles randomly in the canvas.

To generate a random number in JavaScript, we use the Math.random() function.

Building the Untangle Game with Canvas and Drawing API

[106]

There is no argument in the random function. It always returns a floating number between 0
and 1. The number is equal or bigger than 0 and smaller than 1.

There are two common ways to use the random function. One way is to generate random
numbers within a given range. The other way is generating a true or false value

Usage Code Discussion

Getting a random
integer between A
and B

Math.floor(Math.random()*B)+A Math.floor() function cuts the
decimal point of the given number.

Take Math.floor(Math.
random()*10)+5 as an example.

Math.random() returns a decimal
number between 0 to 0.9999….

Math.random()*10 is a decimal
number between 0 to 9.9999….

Math.floor(Math.
random()*10) is an integer
between 0 to 9.

Finally, Math.floor(Math.
random()*10) + 5 is an integer
between 5 to 14.

Getting a random
Boolean

(Math.random() > 0.495) (Math.random() > 0.495)
means there is 50 percent false and 50
percent true.

We can further adjust the true/false
ratio.

(Math.random() > 0.7) means
there is almost 70 percent false and 30
percent true.

Saving the circle position
When we are developing a DOM-based game, such as the games we built in previous
chapters, we often put the game objects into DIV elements and access them later in
code logic. It is a different story in canvas-based game development.

In order to access our game objects after they are drawn on the canvas, we need to
remember their states ourselves. Lets say now we want to know how many circles are
drawn and where they are, and we will need an array to store their position.

Chapter 4

[107]

Time for action – Saving the circle position
1.	 Open the html5games.untangle.js file in the text editor.

2.	 Add the following circle object definition code at the top of the JavaScript file:

function Circle(x,y,radius){
 this.x = x;
 this.y = y;
 this.radius = radius;

}

3.	 Now we need an array to store the circles position. Add a new array to the
untangleGame object:

var untangleGame = {
 circles: []
};

4.	 After drawing every circle on the canvas, we save the position of the circle into the
circles array. Add the highlighted line after calling the drawCircle function:

$(function(){
 var canvas = document.getElementById('game');
 var ctx = canvas.getContext('2d');
 var circleRadius = 10;

 var width = canvas.width;
 var height = canvas.height;

 // random 5 circles
 var circlesCount = 5;
 for (var i=0;i<circlesCount;i++) {
 var x = Math.random()*width;
 var y = Math.random()*height;

 drawCircle(ctx, x, y, circleRadius);
 untangleGame.circles.push(new Circle(x,y,circleRadius));

 }
});

Building the Untangle Game with Canvas and Drawing API

[10�]

5.	 Now we can test the code in the web browser. There is no visual difference
between this code and the last example when drawing random circles on canvas.
It is because we are saving the circles but have not changed any code that affects
the appearance.

What just happened?
We saved the position and color of each circle. This is because we cannot directly access the
drawn object in canvas. All lines and shapes are drawn on the canvas and we cannot access
the lines or shapes as individual objects. The drawn items are drawn on a canvas. We cannot
just move a house in an oil painting, the same way we cannot directly manipulate any drawn
items in the canvas element.

Defining a basic class definition in JavaScript
JavaScript is object-oriented programming language. We can define some object structure
for our use. The Circle object provides a data structure for us to easily store a collection of
x and y positions and the radii.

After defining the Circle object, we can create a new Circle instance with an x, y, and
radius value by the following code:

var circle1 = new Circle(100, 200, 10);

For more detail usage on object-oriented programming JavaScript, please
read the Mozilla Developer Center in the following link:

https://developer.mozilla.org/en/Introduction_to_
Object-Oriented_JavaScript

Have a go hero
We have drawn several circles randomly on the canvas. They are in the same style and same
size. How about we randomly draw the size of the circles? And fill the circles with different
colors? Try modifying the code and play with the drawing API.

Drawing lines in canvas
Now we have several circles here, how about connecting them with lines? Let's draw a
straight line between each circle.

Chapter 4

[10�]

Time for action – Drawing straight lines between each circle
1.	 Open the index.html we have just used in the circle drawing example.

2.	 Change the wordings drawing circles in Canvas to drawing lines in Canvas.

3.	 Open the html5games.untangle.js JavaScript file.

4.	 We are going to add the line drawing code on top of our existing circles drawing
code. Replace the original code with the following. The modified code is highlighted:

function Circle(x,y,radius){
 this.x = x;
 this.y = y;
 this.radius = radius;
}

function Line(startPoint,endpoint, thickness) {

 this.startPoint = startPoint;

 this.endPoint = endPoint;

 this.thickness = thickness;

}

var untangleGame = {
 circles: [],
 thinLineThickness: 1,

 lines: []

};

function drawLine(ctx, x1, y1, x2, y2, thickness) {

 ctx.beginPath();

 ctx.moveTo(x1,y1);

 ctx.lineTo(x2,y2);

 ctx.lineWidth = thickness;

 ctx.strokeStyle = "#cfc";

 ctx.stroke();

}

function drawCircle(ctx, x, y, radius) {
 ctx.fillStyle = "rgba(200, 200, 100, .9)";
 ctx.beginPath();
 ctx.arc(x, y, radius, 0, Math.PI*2, true);
 ctx.closePath();

Building the Untangle Game with Canvas and Drawing API

[110]

 ctx.fill();
}

$(function(){
 var canvas = document.getElementById('game');
 var ctx = canvas.getContext('2d');

 var circleRadius = 10;

 var width = canvas.width;
 var height = canvas.height;

 // random 5 circles
 var circlesCount = 5;
 for (var i=0;i<circlesCount;i++) {
 var x = Math.random()*width;
 var y = Math.random()*height;
 drawCircle(ctx, x, y, circleRadius);
 untangleGame.circles.push(new Circle(x,y,radius));
 }

 for (var i=0;i< untangleGame.circles.length;i++) {

 var startPoint = untangleGame.circles[i];

 for(var j=0;j<i;j++) {

 var endPoint = untangleGame.circles[j];

 drawLine(ctx, startPoint.x, startPoint.y, endPoint.x,
 endPoint.y, 1);

 untangleGame.lines.push(new Line(startPoint, endpoint,
 untangleGame.thinLineThickness));

 }

 }

});

5.	 Test the code in the web browser. We should see there are lines connected with
each randomly placed circle.

Chapter 4

[111]

What just happened?
Similar to the way we saved the circles position, we have an array to save every line segment
we draw. We declare a line class definition to store some essential information of a line
segment. That is, we save the start and end point and the thickness of the line.

Introducing the line drawing API
There are some drawing APIs for us to draw and style the line stroke

Line drawing functions Discussion

MoveTo The Moveto function is like holding the pen in our hand and moving
it on top of the paper without touching it with the pen.

LineTo This function is like putting the pen down on the paper and drawing a
straight line to the destination point.

lineWidth LineWidth sets the thickness of the strokes we draw afterwards.

Stroke stroke is the function to execute the drawing. We set up a collection
of moveTo, lineTo, or styling functions and finally call the stroke
function to execute it on canvas.

Building the Untangle Game with Canvas and Drawing API

[112]

We usually draw lines by using the moveTo and lineTo pairs. Just like in the real world,
we move our pen on top of the paper to the starting point of a line and put down the pen
to draw a line. Then, keep on drawing another line or move to the other position before
drawing. This is exactly the flow in which we draw lines on canvas.

We just demonstrated drawing a simple line. We can set different line styles
to lines in canvas. For more line styling detail, please read the styling guide in
W3C (http://dev.w3.org/html5/2dcontext/#line-styles)
and Mozilla Developer Center (https://developer.mozilla.org/
En/Canvas_tutorial/Applying_styles_and_colors).

Interacting with drawn objects in canvas with
mouse events
So far, we have shown that we can draw shapes in canvas dynamically based on our logic.
There is one part missing in the game development that is, input.

Imagine now we can drag the circles around on the canvas, the connected lines will follow the
circles. In this section, we will add mouse events to the canvas to make our circles draggable.

Time for action – Dragging the circles in canvas
1.	 Let's continue with our previous code. Open the html5games.untangle.js file.

2.	 We will need a function to clear all the drawing in the canvas. Add the following
function to the end of the JavaScript file:

function clear(ctx) {
 ctx.clearRect(0,0,ctx.canvas.width,ctx.canvas.height);

}

3.	 Remove the line drawing code in the jQuery ready function. We are going to
separate it into two parts, the line data and the drawing.

4.	 Add the following function that assigns lines to connect each circle. These lines will
be drawn later:

function connectCircles()
{
 // connect the circles to each other with lines
 untangleGame.lines.length = 0;
 for (var i=0;i< untangleGame.circles.length;i++) {
 var startPoint = untangleGame.circles[i];

Chapter 4

[113]

 for(var j=0;j<i;j++) {
 var endPoint = untangleGame.circles[j];
 untangleGame.lines.push(new Line(startPoint, endPoint,
 untangleGame.thinLineThickness));
 }
 }

}

5.	 Add the mouse event listener code to the jQuery ready function. The following code
is how the function looks now. The highlighted code is the mouse event handlers:

$(function(){
 // get the reference of canvas element.
 var canvas = document.getElementById("game");
 var ctx = canvas.getContext("2d");

 var circleRadius = 10;

 var width = canvas.width;
 var height = canvas.height;

 // random 5 circles
 var circlesCount = 5;
 for (var i=0;i<circlesCount;i++) {
 var x = Math.random()*width;
 var y = Math.random()*height;
 drawCircle(ctx, x, y, circleRadius);
 untangleGame.circles.push(new Circle(x,y,circleRadius));
 }
 connectCircles();

 // Add Mouse Event Listener to canvas

 // we find if the mouse down position is on any circle

 // and set that circle as target dragging circle.

 $("#game").mousedown(function(e) {

 var canvasPosition = $(this).offset();

 var mouseX = e.layerX || 0;

 var mouseY = e.layerY || 0;

 for(var i=0;i<untangleGame.circles.length;i++)

 {

 var circleX = untangleGame.circles[i].x;

 var circleY = untangleGame.circles[i].y;

 var radius = untangleGame.circles[i].radius;

Building the Untangle Game with Canvas and Drawing API

[114]

 if (Math.pow(mouseX-circleX,2) + Math.pow(mouseY-circleY,2) <
 Math.pow(radius,2))

 {

 untangleGame.targetCircle = i;

 break;

 }

 }

 });

 // we move the target dragging circle when the mouse is moving

 $("#game").mousemove(function(e) {

 if (untangleGame.targetCircle != undefined)

 {

 var canvasPosition = $(this).offset();

 var mouseX = e.layerX || 0;

 var mouseY = e.layerY || 0;

 var radius = untangleGame.circles[untangleGame.targetCircle].
 radius;

 untangleGame.circles[untangleGame.targetCircle] = new
 Circle(mouseX, mouseY,radius);

 }

 connectCircles();

 });

 // We clear the dragging circle data when mouse is up

 $("#game").mouseup(function(e) {

 untangleGame.targetCircle = undefined;

 });

 // setup an interval to loop the game loop

 setInterval(gameloop, 30);

});

6.	 Then we add the gameloop function that is responded to draw the updated circles
and lines:

function gameloop() {
 // get the reference of the canvas element and the drawing
 context.
 var canvas = document.getElementById('game');
 var ctx = canvas.getContext('2d');

Chapter 4

[115]

 // clear the canvas before re-drawing.
 clear(ctx);

 // draw all remembered line
 for(var i=0;i<untangleGame.lines.length;i++) {
 var line = untangleGame.lines[i];
 var startPoint = line.startPoint;
 var endPoint = line.endPoint;
 var thickness = line.thickness;
 drawLine(ctx, startPoint.x, startPoint.y, endPoint.x,
 endPoint.y, thickness);
 }

 // draw all remembered circles
 for(var i=0;i<untangleGame.circles.length;i++) {
 var circle = untangleGame.circles[i];
 drawCircle(ctx, point.x, point.y, circle.radius);
 }

}

7.	 Open index.html in a web browser. There should be five circles with lines
connecting them. Try dragging the circles. The dragged circle will follow the
mouse cursor and the connected lines will follow too.

What just happened?
We have set up three mouse event listeners in the jQuery ready function. They are the
mouse down, move, and up events.

Building the Untangle Game with Canvas and Drawing API

[116]

Getting the mouse position in the canvas element
We can get the mouse cursor position relative to the element in the mouse event from the
layerX and layerY property. The following shows the code snippet we used in our code
example. The || 0 is to make the result 0 when the layerX or layerY is undefined:

var mouseX = e.layerX || 0;
var mouseY = e.layerY || 0;

Please note that we need to explicitly set the position property of the element in order to
get the correct layerX and layerY property.

Detecting mouse events on circles in canvas
After discussing the difference between DOM-based development and Canvas-based
development, we cannot directly listen to the mouse events of any drawn shapes in the
canvas. There is no such thing. We cannot monitor the event on any drawn shapes in the
canvas. We can only get the mouse event of the canvas element and calculate the relative
position of the canvas. Then we change the states of the game objects according to the
mouse position and finally redraw it on canvas.

How do we know we are clicking on a circle?

We can use the point-in-circle formula. That is to check the distance between the center
point of the circle and the mouse position. The mouse clicks on the circle when the distance
is less than the circle radius.

We use the following formula to get the distance between two points:

Distance = (x2-x1)2 + (y2-y1)2

The following graph shows that when the distance between the center point and the mouse
cursor is smaller than the radius, the cursor is in the circle:

Chapter 4

[117]

The following code we used explains how we can apply the distance checking to know
whether the mouse cursor is inside the circle in the mouse down event handler:

if (Math.pow(mouseX-circleX,2) + Math.pow(mouseY-circleY,2) < Math.
pow(untangleGame.circleRadius,2))
{
 untangleGame.targetCircle = i;
 break;
}

When we know that the mouse cursor is pressing the circle in canvas, we mark it as the
targeted circle to be dragged on the mouse move event. During the mouse move event
handler, we update the target dragged circle's position to the latest cursor position. When
the mouse is up, we clear the target circle's reference.

Pop quiz
1. Can we directly access an already drawn shape in the canvas?

a. Yes

b. No

2. Which method can we use to check whether a point is inside a circle?

a. The coordinate of the point is smaller than the coordinate of the center
of the circle.

b. The distance between the point and the center of the circle is smaller than the
circle radius.

c. The x coordinate of the point is smaller than the circle radius.

d. The distance between the point and the center of the circle is bigger than the
circle radius.

Game loop
In Chapter 2, Getting Started with DOM-based Game Development, we discussed the game
loop approach. In the Ping Pong game in Chapter 2, the game loop manipulates the keyboard
input and updates the position of the DOM-based game objects.

Here, the game loop is used to redraw the canvas to present the later game states. If we
do not redraw the canvas after changing the states, say the position of the circles, we will
not see it.

It is like refreshing the image on television. The TV refreshes the screen 12 times per second.
We also redraw the canvas scene several times a second. In each redraw, we draw the game
state on canvas based on the current circle position.

Building the Untangle Game with Canvas and Drawing API

[11�]

Clearing the canvas
When we drag the circle, we redraw the canvas. The problem is the already drawn shapes
on canvas won't disappear automatically. We will keep adding new paths to the canvas and
finally mess up everything on the canvas. The following screenshot is what will happen if we
keep dragging the circles without clearing the canvas on every redraw:

Since we have saved all game statuses in the JavaScript, we can safely clear the entire canvas
and draw the updated lines and circles with the latest game status. To clear the canvas, we
use the clearRect function provided by canvas drawing API. The clearRect function
clears a rectangle area by providing a rectangle clipping region. It accepts the following
arguments as the clipping region:

Chapter 4

[11�]

ctx.clearRect(x,context.clearRect(x, y, width, height)

Argument Definition

x The top left point of the rectangle clipping region, in x-axis.

y The top left point of the rectangle clipping region, in y-axis.

width The width of the rectangle region.

height The height of the rectangle region.

The x and y set the top left position of the region to be cleared. The width and height
defines how much area is to be cleared. To clear the entire canvas, we can provide (0,0)
as the top left position and the width and height of the canvas to the clearRect function.
The following code clears all drawn things on the entire canvas:

ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

Pop quiz
1. Can we clear a portion of the canvas by using the clearRect function?

a. Yes

b. No

2. Does the following code clear things on the drawn canvas?

ctx.clearRect(0, 0, ctx.canvas.width, 0);

a. Yes

b. No

Detecting line intersection in canvas
We have draggable circles and connected lines on the canvas. Some lines intersect others
and some do not. Imagine now we want to distinguish the intersected lines. We need some
mathematics formula to check them and bold those intersected lines.

Time for action – Distinguishing the intersected lines
Let's increase the thickness of those intersected lines so we can distinguish them
in the canvas:

1.	 Open the html5games.untangle.js file in the text editor.

Building the Untangle Game with Canvas and Drawing API

[120]

2.	 We have the thinLineThickness setting as the default line thickness. We add the
following code to define a thickness for bold lines:

var untangleGame = {
 circles: [],
 thinLineThickness: 1,

 boldLineThickness: 5,

 lines: []

};

3.	 In order to make the code more reusable and readable, we want to isolate the
line intersection logic from the game logic. We create a function to check whether
the given two lines intersect. Add the following functions to the end of the
JavaScript file:

function isIntersect(line1, line2)
{
 // convert line1 to general form of line: Ax+By = C
 var a1 = line1.endPoint.y - line1.point1.y;
 var b1 = line1.point1.x - line1.endPoint.x;
 var c1 = a1 * line1.point1.x + b1 * line1.point1.y;

 // convert line2 to general form of line: Ax+By = C
 var a2 = line2.endPoint.y - line2.point1.y;
 var b2 = line2.point1.x - line2.endPoint.x;
 var c2 = a2 * line2.startPoint.x + b2 * line2.startPoint.y;

 // calculate the intersection point
 var d = a1*b2 - a2*b1;

 // parallel when d is 0
 if (d == 0) {
 return false;
 }else {
 var x = (b2*c1 - b1*c2) / d;
 var y = (a1*c2 - a2*c1) / d;

 // check if the interception point is on both line segments
 if ((isInBetween(line1.startPoint.x, x, line1.endPoint.x) ||
 isInBetween(line1.startPoint.y, y, line1.endPoint.y)) &&
 (isInBetween(line2.startPoint.x, x, line2.endPoint.x) ||
 isInBetween(line2.startPoint.y, y, line2.endPoint.y)))
 {
 return true;
 }

Chapter 4

[121]

 }

 return false;
}

// return true if b is between a and c,
// we exclude the result when a==b or b==c
function isInBetween(a, b, c) {
 // return false if b is almost equal to a or c.
 // this is to eliminate some floating point when
 // two value is equal to each other but different with
0.00000...0001
 if (Math.abs(a-b) < 0.000001 || Math.abs(b-c) < 0.000001) {
 return false;
 }

 // true when b is in between a and c
 return (a < b && b < c) || (c < b && b < a);

}

4.	 Next, we have a function to check whether our lines intersect and mark that line in
bold. Add the following new function to the code:

function updateLineIntersection()
{
 // checking lines intersection and bold those lines.
 for (var i=0;i<untangleGame.lines.length;i++) {
 for(var j=0;j<i;j++) {
 var line1 = untangleGame.lines[i];
 var line2 = untangleGame.lines[j];

 // we check if two lines are intersected,
 // and bold the line if they are.
 if (isIntersect(line1, line2)) {
 line1.thickness = untangleGame.boldLineThickness;
 line2.thickness = untangleGame.boldLineThickness;
 }
 }
 }

}

Building the Untangle Game with Canvas and Drawing API

[122]

5.	 Finally we update the line intersection by adding the following function call in
two places. One after connecting our circles and the other in the mouse move
event handler:

updateLineIntersection();

6.	 It is time to test the intersection in the web browser. When viewing the circles and
lines in canvas the lines with intersection should be thicker than those without
intersection. Try dragging the circles to change the intersection relationship and the
lines will become thin or thick.

What just happened?
We have just added line intersection checking code to our existing circle dragging example.
The line intersection code involves some mathematical formula to get the intersection point
of two lines and checks whether the point is inside the line segment we provide. Let's look at
the mathematics part and see how it works.

Chapter 4

[123]

Determining whether two line segments intersect
According to the intersection equation we learnt from geometry, with two given lines in
general form, we can get the intersection point.

What is general form? In our code, we have the starting point and ending point of a line in
x and y coordinates. This is a line segment because it is just a segment part of the line in
mathematics. A general form of a line is represented by Ax + By = C.

The following graph explains the line segment on a line in general form:

We can transform the line segment with point 1 in x1, y1 and point 2 in x2, y2 into general
form by the following equation:

A = y2-y1
B = x1-x2
C = A * x1 + B * y2

Now we have a line equation AX+BY = C where A, B, C are known and X and Y are
unknown.

We are checking two lines intersecting. We can transform both lines into general form and
get two line equations:

Line 1: A1X+B1Y = C1
Line 2: A2X+B2Y = C2

By putting the two general form equations together, X and Y are two variables that are
unknown. We can then solve these two equations and get the intersection point of X and Y.

If A1 * B2 - A2 * B1 is zero, then two lines are parallel and there is no intersection
point. Otherwise we get the interception point by using the following equation:

X = (B2 * C1 – B1 * C2) / (A1 * B2 – A2 * B1)
Y = (A1 * C2 – A2 * C1) / (A1 * B2 – A2 * B1)

Building the Untangle Game with Canvas and Drawing API

[124]

The intersection point of the general forms only provides that the two lines are not parallel
to each other and will intersect each other at some point. It does not guarantee the
intersection point is on both line segments.

The following graphs show two possible results of the intersection point and the given line
segments. The intersection point is not in between both line segments in the left graph, in
this case, the two line segments are not intersected to each other. In the right-hand side
graph, the point is in between both line segments so these two line segments intersect to
each other:

Therefore, we need another function named isInBetween to determine if a provided
value is in between the beginning and ending value. Then we use this function to check
whether the intersection point from the equation is in between both line segments that
we are checking.

After getting the result of the lines intersection, we draw the thick line to indicate those
intersected lines.

Making the untangle puzzle game
Now that we have created an interaction canvas we can drag the circles and the lines
connecting the circles intersecting with other lines. How about we make it a game? There are
some pre-defined circles and lines and our aim is to drag the circles so that there are no lines
intersecting with others. This is called an untangle puzzle game.

Chapter 4

[125]

Time for action – Making the untangle puzzle game in canvas
Let's add the game logic to our line intersection code:

1.	 Open the index.html file in text editor.

2.	 First, let's set the title as the following:

<header>
 <h1>Untangle Puzzle Game in Canvas</h1>
</header>

3.	 We also need to display the current level and the progress to the player. Add the
following code after the canvas element:

<p>Puzzle 0, Completeness:
0%</p>

4.	 Open the html5games.untangle.js JavaScript file to add the game logic.

5.	 Add the variable info, the untangleGame. It stores the current level of the game:

var untangleGame = {
 circles: [],
 thinLineThickness: 1,
 boldLineThickness: 5,
 lines: [],
 currentLevel: 0

};

6.	 We need some pre-defined level data for the players to play. It is a collection of data
defining where the circles are placed and how they connect to each other initially.
Add the following level data code to the untangleGame object:

untangleGame.levels =
[
 {
 "level" : 0,
 "circles" : [{"x" : 400, "y" : 156},
 {"x" : 381, "y" : 241},
 {"x" : 84, "y" : 233},
 {"x" : 88, "y" : 73}],
 "relationship" : {
 "0" : {"connectedPoints" : [1,2]},
 "1" : {"connectedPoints" : [0,3]},
 "2" : {"connectedPoints" : [0,3]},
 "3" : {"connectedPoints" : [1,2]}

Building the Untangle Game with Canvas and Drawing API

[126]

 }
 },
 {
 "level" : 1,
 "circles" : [{"x" : 401, "y" : 73},
 {"x" : 400, "y" : 240},
 {"x" : 88, "y" : 241},
 {"x" : 84, "y" : 72}],
 "relationship" : {
 "0" : {"connectedPoints" : [1,2,3]},
 "1" : {"connectedPoints" : [0,2,3]},
 "2" : {"connectedPoints" : [0,1,3]},
 "3" : {"connectedPoints" : [0,1,2]}
 }
 },
 {
 "level" : 2,
 "circles" : [{"x" : 92, "y" : 85},
 {"x" : 253, "y" : 13},
 {"x" : 393, "y" : 86},
 {"x" : 390, "y" : 214},
 {"x" : 248, "y" : 275},
 {"x" : 95, "y" : 216}],
 "relationship" : {
 "0" : {"connectedPoints" : [2,3,4]},
 "1" : {"connectedPoints" : [3,5]},
 "2" : {"connectedPoints" : [0,4,5]},
 "3" : {"connectedPoints" : [0,1,5]},
 "4" : {"connectedPoints" : [0,2]},
 "5" : {"connectedPoints" : [1,2,3]}
 }
 }

];

7.	 When starting on each level, we need to set up the initial level data. To help make
the code more readable, we create a function. Add the following code to the end of
the JavaScript file:

function setupCurrentLevel() {
 untangleGame.circles = [];
 var level = untangleGame.levels[untangleGame.currentLevel];
 for (var i=0; i<level.circles.length; i++) {
 untangleGame.circles.push(new Point(level.circles[i].x, level.
 circles[i].y, 10));
 }

Chapter 4

[127]

 // setup line data after setup the circles.
 connectCircles();
 updateLineIntersection();

}

8.	 This is a game with several levels. We need to check whether the player solves the
puzzle in the current level and jumps to the next puzzle. Add the following function
to the end of the file:

function checkLevelCompleteness() {
 if ($("#progress").html() == "100") {
 if (untangleGame.currentLevel+1 < untangleGame.levels.length)
 untangleGame.currentLevel++;
 setupCurrentLevel();
 }

}

9.	 We update the original mouse up event handler to check whether the player
completes the level:

$("#game").mouseup(function(e) {
 untangleGame.targetCircle = undefined;

 // on every mouse up, check if the untangle puzzle is solved.

 checkLevelCompleteness();

});

10.	 We are going to draw the circles based on the level data instead of drawing them
randomly. Therefore, we delete the circle drawing code in the jQuery ready function.

11.	On the place we deleted the circle drawing code in the jQuery ready function, we
add the following code to set up the circles level data for game loop to use:

setupCurrentLevel();

12.	Next, we update the connectCircles function to connect circles based on the
level data:

function connectCircles()
{

 // setup all lines based on the circles relationship

 var level = untangleGame.levels[untangleGame.currentLevel];

 untangleGame.lines.length = 0;

 for (var i in level.relationship) {

 var connectedPoints = level.relationship[i].connectedPoints;

Building the Untangle Game with Canvas and Drawing API

[12�]

 var startPoint = untangleGame.circles[i];
 for (var j in connectedPoints) {
 var endPoint = untangleGame.circles[connectedPoints[j]];
 untangleGame.lines.push(new Line(startPoint, endPoint));
 }
 }

}

13.	We need another function to update the game progress. Add the following function
to the code:

function updateLevelProgress()
{
 // check the untangle progress of the level
 var progress = 0;
 for (var i=0;i<untangleGame.lines.length;i++) {
 if (untangleGame.lines[i].thickness == untangleGame.
 thinLineThickness) {
 progress++;
 }
 }
 var progressPercentage = Math.floor(progress/untangleGame.lines.
 length*100);
 $("#progress").html(progressPercentage);

 // display the current level
 $("#level").html(untangleGame.currentLevel);
}

14.	Finally, we need to update the level progress in the following mouse move
event handler.

$("#game").mousemove(function(e) {
 …

 connectCircles();
 updateLineIntersection();

 updateLevelProgress();
 …
});

15.	Save all files and test the game in the browser. We can drag the circles and the
line thickness will indicate if it is intersected with other lines. During the mouse
dragging, the level completeness percentage should change when more or less
line intersections are detected. If we solve the puzzle, that is no lines are
intersected, the game will jump to the next level. When the game reaches the last
level, it will keep showing the last level again. It is because we have not yet added
the game over screen.

Chapter 4

[12�]

What just happened?
We have added the game logic to our canvas so that we can play our circle dragging code
that was created throughout the chapter.

Let's recall the variables we added to the untangleGame object. The following table lists the
description and usage of these:

Variable Description

circleRadius The radius setting of all drawing circles.

thinLineThickness The line thickness when drawing thin lines.

boldLineThickness The line thickness when drawing bold lines.

circles An array to store all drawn circles in the canvas.

lines An array to store all drawn lines in the canvas.

targetCircle Keeping track of the circle that we are dragging.

levels Stores all initial data of each level in the JSON format.

currentLevel A number to remember the current level.

Defining the leveling data
In each level, we have an initial position of the circles for the untangle puzzle. The level data
is designed as an array of objects. Each object contains every level data. Inside every level
data, there are three properties: level number, circles, and lines connecting the circles. The
following table shows the properties in each level data:

Building the Untangle Game with Canvas and Drawing API

[130]

Level property Definition Discussion

level The level number of the object. This is a number in each level object to
let us easily know which level we are in.

circles An array of circles' position in
the level.

This defines how the circles are placed
initially when the level is set up.

relationships An array of relationships
defining which circles connect
to each other.

There are some lines connecting the
circles in each level. We design the line
connections so that there is a solution in
each level. The line relationship defines
which circle connects to which circle.
For example, the following code means
circle 1 is connected to circle 2:

{"connectedPoints" :
[1,2]}

After every level data is defined well with our custom structure

Determining level-up
The level is complete when there are no lines intersecting with each other. We loop
through each line and see how many lines are thin. Thin lines mean they are not
intersected with others. We can use the thin lines to all line ratios to get the percentage
of the level of completeness:

var progress = 0;
for (var i in untangleGame.lines) {
 if (untangleGame.lines[i].thickness == untangleGame.
 thinLineThickness) {
 progress++;
 }
}
var progressPercentage = Math.floor(progress/untangleGame.lines.
length * 100);

We can then simply determine the level has been completed when the progress
is 100 percent:

if ($("#progress").html() == "100") {
 // level complete, level up code
}

Chapter 4

[131]

Displaying current level and completeness progress
We have a sentence below the canvas game describing the current level status and progress.
It is used for displaying the game status to the players so they know that they are making
progress in the game:

<p>Puzzle 0, Completeness:
0%</p>

We use the jQuery HTML function that we discussed in Chapter 2, Getting Started with DOM-
based Game development, to update the completeness progress:

$("#progress").html(progressPercentage);

Have a go hero
We have only defined three levels in the example untangle puzzle game. It is not fun
enough to play with three levels. How about adding more levels to the game? If you
cannot come up a level, try searching similar untangle games on the Internet and get
some inspiration on the leveling.

Summary
We learned a lot in this chapter about drawing shapes and creating interaction with the new
HTML5 canvas element and the drawing API.

Specifically, we covered:

Drawing different paths and shapes in canvas, including circles, arcs, and lines.

Adding mouse events and interaction with the drawn paths in the canvas.

Dragging drawn paths in the canvas.

Checking line intersection with the help of mathematics formulas.

Creating an untangle puzzle game in which players need to drag the circles so the
connecting lines are not intersected by each other.

Now that we've learned about basic drawing functions in the canvas and drawing API,
use them to create a puzzle solving game in canvas. We're ready to learn some advanced
drawing techniques in canvas. In the next chapter, we will enhance our untangle puzzle
game with more canvas drawing APIs, such as drawing text, drawing images, and
drawing gradients.

5
Building a Canvas Games

Masterclass

In the previous chapter, we explored some basic canvas context drawing APIs
and created a game named Untangle. In this chapter, we are going to enhance
the game by using some other context drawing APIs.

In this chapter we shall:

Fill our game objects with gradient color
Fill text in the canvas with custom webfont
Draw images in Canvas
Animate a sprite sheet image
And build multiple canvas layers

The following screenshot is a preview to the final result that we are going to build through
this chapter. It is a canvas-based Untangle game with an animated game guideline and
several subtle details:

Building a Canvas Games Masterclass

[134][134]

So let's get on with it...

Filling shapes with gradient color
We covered filling solid color in the last chapter. Canvas can do far more when filling shapes.
We can fill the shape with both linear and radial gradient.

Time for action – Drawing a gradient color background
to the Untangle game

Let's improve the black solid background we have now. How about drawing a gradient from
top to bottom?

1.	 We will use the Untangle game we created in the last chapter as a starting point.
Open the html5games.untangle.js JavaScript file in the text editor.

2.	 Add the following code in the gameloop function after clearing the canvas to draw
the gradient background:

var bg_gradient = ctx.createLinearGradient(0,0,0,ctx.canvas.
height);
bg_gradient.addColorStop(0, "#000000");
bg_gradient.addColorStop(1, "#555555");
ctx.fillStyle = bg_gradient;
ctx.fillRect(0,0,ctx.canvas.width,ctx.canvas.height);

3.	 Save the files and preview the index.html in the browser. The background should
be a linear gradient with black on top which gradually becomes grey at the bottom.

Chapter 5

[135][135]

What just happened?
We just filled a rectangle with a linear gradient color. To fill linear gradient color, all we need
to do is set the starting point and ending point of the gradient. Then we add several color
stops between them.

Here is how we use the linear gradient function:

createLinearGradient(x1, y1, x2, y2);

Argument Definition

x1 The starting point of the gradient.

y1

x2 The ending point of the gradient.

y2

Adding color stops in the gradient color
It is not enough to just have the starting and ending point. We also need to define what color
we use and how it is applied to the gradient. It is called a color stop in gradient. We can add
a color stop to the gradient by using the following gradient function:

addColorStop(position, color);

Argument Definition Discussion

position A floating number between 0
and 1.

Position 0 means the color
stops at the starting point and
1 means it stops at the ending
point. Any number between
0 and 1 means it stops in
between the starting and
ending point.

For example, 0.5 means a half
and 0.33 means 30 percent
away from the starting point.

color The color style of that color
stop.

The color style shares the
same syntax from the CSS
color styling. We may use
the HEX expression, such
as #FFDDAA. Or other color
styles such as RGBA color
name.

Building a Canvas Games Masterclass

[136][136]

The follow screenshot shows a side-by-side comparison between a linear gradient setting
and the result drawing. The starting point and ending point defines the scope and the angle
of the gradient. The color stops define how the color mixes between the gradient scopes:

Adding color stop with opacity

We can set an opacity value to the color stop by using the RGBA function.
The following code tells the gradient to start by using red color with half
opacity:

gradient.addColorStop(0, "rgba(255, 0, 0, 0.5)");

Filling radial gradient color
There are two types of gradients in the Canvas drawing API. The one we just used is called
linear gradient. The other one is radial gradient. The radial gradient fills the gradient from
one circle to another circle.

Time for action – Filling the circles with radial gradient color
Imagine that we now fill our dragging circles to radial gradient. We will change the solid
yellow circles to white-yellow gradient:

1.	 Open the html5game.untangle.js JavaScript file. We are going to modify the
code we used to draw the circle in the game.

2.	 After we draw the circle path with the arc function and before we fill it we replace
the original solid color style setting to the following radial gradient color:

Chapter 5

[137][137]

function drawCircle(ctx, x, y) {
 // prepare the radial gradients fill style

 var circle_gradient = ctx.createRadialGradient(x-3,y-
 3,1,x,y,untangleGame.circleRadius);

 circle_gradient.addColorStop(0, "#fff");

 circle_gradient.addColorStop(1, "#cc0");

 ctx.fillStyle = circle_gradient;

 // draw the path
 ctx.beginPath();
 ctx.arc(x, y, untangleGame.circleRadius, 0, Math.PI*2, true);
 ctx.closePath();

 // actually fill the circle path
 ctx.fill();
}

3.	 Save the modified file and preview the index.html in a web browser. The circles
are now filled with radial gradient color.

In the following screenshot I've scaled up the drawing to 200 percent to better demonstrate
the radial gradient in the circle:

Building a Canvas Games Masterclass

[13�][13�]

What just happened?
We just made the dragging circles look more realistic by filling a radial gradient.

Here is how we create a radial gradient:

createRadialGradient(x1, y1, r1, x2, y2, r2);

Argument Definition

x1, y1 The center of the starting circle in x and y in the canvas coordinate.

r1 The radius of the starting circle.

x2, y2 The center of the ending circle in x and y in the canvas coordinate.

r2 The radius of the ending circle.

The following screenshot shows a side-by-side comparison between a radial gradient setting
and the final result drawing in canvas:

The radial gradient blends the color from the starting circle to the ending circle. In this
gradient circle, the starting circle is a small circle in the center and the ending circle is the
outermost circle. There are three color stops. A white color stops at both the starting and
ending circle; another dark color stops 90 percent away from the starting circle.

Chapter 5

[13�][13�]

Have a go hero – Filling gradients
We add color stops to the gradients to define how the colors blend. What happens if we
forget to add any color stops to the gradient and fill a rectangle? What if we only define one
color stop? Try experimenting with the color stop settings.

In the radial gradient example, the small starting circle is inside the bigger ending circle.
What happens if the starting circle is bigger than the ending one? How about if the starting
circle is not inside the ending circle? That is, what happens if the two circles do not overlap?

Drawing text in canvas
Imagine now we want to show the progress level directly inside the canvas. Canvas provides
us with methods to draw text inside canvas.

Time for action – Displaying the progress level text
inside the canvas element

1.	 We will continue using our Untangle game. Open the html5games.untangle.js
JavaScript file in text editor.

2.	 First, let's make the level progress percentage a global variable so we can use it in
different places:

var untangleGame = {
 circles: [],
 thinLineThickness: 1,
 boldLineThickness: 5,
 lines: [],
 currentLevel: 0,

 progressPercentage: 0

};

3.	 Add the following code after the canvas drawing code in the gameloop function:

// draw the title text
ctx.font = "26px Arial";
ctx.textAlign = "center";
ctx.fillStyle = "#ffffff";
ctx.fillText("Untangle Game",ctx.canvas.width/2,50);

// draw the level progress text
ctx.textAlign = "left";
ctx.textBaseline = "bottom";

Building a Canvas Games Masterclass

[140][140]

ctx.fillText("Puzzle "+untangleGame.currentLevel+", Completeness:
" + untangleGame.progressPercentage + "%", 20,ctx.canvas.height-
5);

4.	 Save the file and preview the index.html in a web browser. We will see that the
text is now drawn inside the canvas.

What just happened?
We have just drawn the title and the level progress text in our canvas-based game.
We draw text in canvas by using the fillText function. The following table shows how
we use the function:

fillText(string, x, y);

Argument Definition

string The text that we are going to draw.

x The x coordinate that the text draws.

y The y coordinate that the text draws.

This is the basic setting to draw a text. There are several more drawing context properties to
set up the text drawing.

Chapter 5

[141][141]

Context properties Definition Discussion

context.font The font style of the
text.

It shares the same syntax we used to
declare font style in CSS. For example, the
following code sets the font style to 20
pixels bold with Arial typeface:

ctx.font = "bold 20px
Arial";

context.textAlign The text alignment. The alignment defines how the text aligns.
It can be one of the following values:

start
end
left
right
center

For instance, if we are going to place
a text on the right edge of the canvas.
Using left alignment means we need to
calculate text width in order to know the x
coordinate of the text.

When using right alignment in this case, all
we need to do is set the x position directly
to the canvas width. The text will then
automatically be placed on the right edge
of the canvas.

context.textBaseline The text baseline. The following lists the common value of a
textBaseline:

top
middle
bottom
alphabet

Similar to the text alignment, the bottom
baseline is useful when we want to place
our text at the bottom of the canvas. The
y position of the fillText function is
based on the bottom baseline of the text
instead of the top.

The alphabet baseline aligns the y
position based on the lower case alphabet.
The following screenshot shows our text
drawing with alphabet baseline.

Building a Canvas Games Masterclass

[142][142]

Please beware that the text drawing in canvas is treated as bitmap image
data. That means visitors cannot select the text; search engines cannot index
the text; we cannot search them. For this reason, we should think carefully
whether we want to draw the text inside a canvas or just place them directly in
the DOM.

Pop quiz – Drawing text in canvas
1. If we are going to draw a text close to the bottom rightcorner of the canvas which

alignment and baseline setting is better?

a. Left alignment, bottom baseline.

b. Center alignment, alphabet baseline.

c. Right alignment, bottom baseline.

d. Center alignment, middle baseline.

2. We are going to make a realistic book with a flipping effect with the latest open web
standard. Which of the following settings is better?

a. Draw the realistic book in canvas, including all the text and the flipping effect.

b. Put all text and content in DOM and draw the realistic page-flipping effect
in canvas.

Using embedded web font inside canvas
We used custom font in our memory matching game in the previous chapter. The custom
font embedding also worked in the canvas. Let's conduct an experiment on drawing a custom
font in our Untangle game in canvas.

Chapter 5

[143][143]

Time for action – Embedding Google Web Font into the
canvas element

Let's draw the canvas texts with a handwriting style font:

1.	 First, go to the Google Font Directory and choose a handwriting style font. I used the
font Rock Salt and you can get it from the following URL:

http://code.google.com/webfonts/family?family=Rock+Salt&subset=
latin#code.

2.	 The Google font directory provides a CSS link code that we can add to our game in
order to embed the font. Add the following CSS link to the head of index.html:

<link href='http://fonts.googleapis.com/css?family=Rock+Salt'
rel='stylesheet' type='text/css'>

3.	 The next thing is to use the font. We open the html5games.untangle.js
JavaScript file and modify the context font property to the following:

ctx.font = "26px 'Rock Salt'";

4.	 It is time to open our game in the web browser to test the result. The text drawn in
the canvas now is using the font we choose in the Google font directory.

Building a Canvas Games Masterclass

[144][144]

What just happened?
We just chose a web font and embedded it into the canvas when drawing text. It shows that
we can style the font family of the filled text in canvas just like other DOM elements.

Sometimes the width of the text varies in different font families although
they have the same word count. In this case, we can use the measureText
function to get the width of the text we draw. The following link to the Mozilla
Developer Network explains how we can use the function:

https://developer.mozilla.org/en/Drawing_text_using_
a_canvas#measureText()

Drawing images in canvas
We have drawn some text inside canvas. What about drawing an image? Yes. Drawing
images and image manipulation is one big feature that canvas has.

Time for action – Adding graphics to the game
We are going to draw a blackboard background to the game:

1.	 Download the graphic files from the code example bundle or the following URL.
The graphics files include all graphics that we need in this chapter:

http://gamedesign.cc/html5games/1260_05_example_graphics.zip

2.	 Put the newly downloaded graphics files into a folder named images.

3.	 We will load an image and loading means it may take a while until the image is
loaded. Ideally, we should not start the game until all game assets are loaded. In this
case, we can prepare a splash screen with loading words to let the player know the
game is going to start later. Add the following code in the jQuery ready function
after clearing the canvas context:

// draw a splash screen when loading the game background
// draw gradients background
var bg_gradient = ctx.createLinearGradient(0,0,0,ctx.canvas.
height);
bg_gradient.addColorStop(0, "#cccccc");
bg_gradient.addColorStop(1, "#efefef");
ctx.fillStyle = bg_gradient;
ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);

Chapter 5

[145][145]

// draw the loading text
ctx.font = "34px 'Rock Salt'";
ctx.textAlign = "center";
ctx.fillStyle = "#333333";
ctx.fillText("loading...",ctx.canvas.width/2,canvas.height/2);

4.	 Then it is time to really load the image. There is a board.png in the graphics
file we just downloaded. It is a blackboard graphics we will draw to the canvas
as background. Add the following code after the code we just added in the
previous step:

// load the background image
untangleGame.background = new Image();
untangleGame.background.onload = function() {
 // setup an interval to loop the game loop
 setInterval(gameloop, 30);
}
untangleGame.background.onerror = function() {
 console.log("Error loading the image.");
}
untangleGame.background.src = "images/board.png";

5.	 In the gameloop function, we draw the image into the canvas after clearing the
context and before drawing anything else. Since the image loading takes time, we
also need to ensure it is loaded before drawing it:

// draw the image background
ctx.drawImage(untangleGame.background, 0, 0);

6.	 We had set up a levels array to store the level data including the initial circles
position. Some circles are now overlapped with the border of the background image
so we may want to alter the circles position. Update the circles array of level 2 with
the following new values:

"circles" : [{"x" : 192, "y" : 155},
{"x" : 353, "y" : 109},
{"x" : 493, "y" : 156},
{"x" : 490, "y" : 236},
{"x" : 348, "y" : 276},
{"x" : 195, "y" : 228}],

7.	 Also we need to adjust the position of the level progress text. Modify the fill
text function calling as the following code with a different position value:

ctx.fillText("Puzzle "+untangleGame.currentLevel+", Completeness:
" + untangleGame.progressPercentage + "%", 60, ctx.canvas.height-
80);

Building a Canvas Games Masterclass

[146][146]

8.	 Next, we do not want a background color set to the canvas now because we have
a PNG background with a transparent border. Open the untangle.css file and
remove the background property in canvas.

9.	 Now save all files and open the index.html in the web browser. The background
should be there and the handwritten fonts should match our blackboard theme.

What just happened?
We just drew an image inside the canvas element.

There are two common ways to draw an image on canvas. We can either reference an
existing img tag or load the image on the fly in JavaScript.

Here is how we reference the existing image tag in canvas.

Assuming that we have the following img tag in HTML:

Chapter 5

[147][147]

We can draw the image in canvas by using the following JavaScript code:

var img = document.getElementById('board');
context.drawImage(img, x, y);

Here is another code snippet to load the image without attaching the img tag into DOM.
If we load the image inside JavaScript, we need to make sure the image is loaded before
drawing it on canvas. Therefore, we draw the image after the onload event of the image:

var board = new Image();
board.onload = function() {
 context.drawImage(board, x, y);
}
board.src = "images/board.png";

The order meters when setting the onload event handler and assigning
the image src

When we assign the src property to the image and if the image is cached
by the browser, some browsers fire the onload event immediately. If we
place the onload event handler after assigning the src property, we may
miss it because it is fired before we set the event handler.

In our example, we used the latter approach. We create an Image object and load the
background. When the image is loaded, we start the game loop and thus start the game.

Another event that we should handle when loading the image is the onerror event. It is
especially useful when we are accessing extra network data. We have the following code
snippet to check the error in our example:

untangleGame.background.onerror = function() {
 console.log("Error loading the image.");
}

Have a go hero
The error loading now only displays a message in the console. The console is normally not
viewed by players. How about designing an alert dialog or some other approaches to tell
players that the game failed to load the game assets?

Using the drawImage function
There are three behaviors to draw an image in the canvas. We can draw the image without
any modification on a given coordinate, we can also draw the image with a scaling factor on
a given coordinate, or we can even crop the image and draw only the clipping region.

Building a Canvas Games Masterclass

[14�][14�]

The drawImage function accepts several arguments:

drawImage(image, x, y);

Argument Definition Discussion

image The image reference that we
are going to draw.

We either get the image reference by getting
an existing img element or creating a
JavaScript Image object.

x The x position to place the
image in canvas coordinate.

The x and y coordinate is where we place the
image with respect to its top-left corner.

y The y position to place the
image in canvas coordinate.

drawImage(image, x, y, width, height);

Argument Definition Discussion

image The image reference that we
are going to draw.

We either get the image reference by
getting an existing img element or creating
a JavaScript Image object.

x The x position to place the
image in canvas coordinate.

The x and y coordinate is where we place
the image with respect to its top-left corner.

y The y position to place the
image in canvas coordinate.

width The width of the final drawn
image.

We are applying scale to the image if the
width and height is not the same as the
original image.height The height of the final drawn

image.

drawImage(image, sx, sy, sWidth, sHeight, dx, dy, width, height);

Argument Definition Discussion

image The image reference that we
are going to draw.

We either get the image reference by getting
an existing img element or creating a
JavaScript Image object.

sx The x coordinate of the top-left
corner of the clipping region.

The clipping x, y, width, height together
defines a rectangular clipping area. The
given image is clipped by this rectangle.sy The y coordinate of the top-left

corner of the clipping region.

sWidth The width of the clipping region.

sHeight The height of the clipping
region.

Chapter 5

[14�][14�]

Argument Definition Discussion

dx The x position to place the
image in canvas coordinate.

The x and y coordinate is where we place
the image with respect to its top-left corner.

dy The y position to place the
image in canvas coordinate.

width The width of the final drawn
image.

We are applying scale to the clipped image if
the width and height is not the same as the
clipping dimension.height The height of the final drawn

image.

Have a go hero – Optimizing the background image
In the example, we draw the blackboard image as background in every call of the gameloop
function. Since our background is static and does not change along the time, clearing it
and redrawing it again and again is wasting CPU resources. How can we optimize this
performance issue?

Decorating the canvas-based game
We have enhanced the canvas game with gradients and images. Before moving forward, let's
decorate the web page of our canvas game.

Time for action – Adding CSS styles and images
decoration to the game

We are going to build a center-aligned layout with a game title:

1.	 We embed another font from the Google font directory to style the normal body
text. Add the following CSS link within the head in index.html:

<link href='http://fonts.googleapis.com/css?family=Josefin+Sans:60
0' rel='stylesheet' type='text/css'>

2.	 It is easier for us to style the layout with one grouping DOM element. We put all the
elements inside the body into a section with id page:

<section id="page">
 ...
</section>

3.	 Let's apply CSS to the page layout. Replace existing content in the untangle.css
file with the following code:

html, body {

Building a Canvas Games Masterclass

[150][150]

 background: url(../images/title_bg.png) 50% 0 no-repeat, url(../
 images/bg_repeat.png) 50% 0 repeat-y #889ba7;
 margin: 0;
 font-family: 'Josefin Sans', arial, serif;
 color: #111;
}

#game{
 position:relative;
}

#page {
 width: 821px;
 min-height: 800px;
 margin: 0 auto;
 padding: 0;
 text-align: center;
 text-shadow: 0 1px 5px rgba(60,60,60,.6);
}

header {
 height: 88px;
 padding-top: 36px;
 margin-bottom: 50px;
 font-family: "Rock Salt", Arial, sans-serif;
 font-size: 14px;
 text-shadow: 0 1px 0 rgba(200,200,200,.5);
 color: #121;
}

4.	 Now we have the header text in the ribbon. Showing the title again in canvas seems
redundant. Let's remove the following line of code which draws the title:

ctx.fillText("Untangle Game",ctx.canvas.width/2,50);

5.	 It is time to save all the files and preview it in the web browser. We should see a
title ribbon and a well-styled layout that is center-aligned. The following screenshot
shows the result:

Chapter 5

[151][151]

What just happened?
We just decorated the web page that contains our canvas-based game. Although our game
is based on canvas drawing, it does not restrict us from decorating the whole web page with
graphics and CSS styles.

Default background of the canvas element

The default background of the canvas element is transparent. If we do not set
any background CSS style of the canvas, it will be transparent. It is useful when
our drawing is not a rectangle. In this example, the textured layout background
shows within the canvas region.

Pop quiz – Styling a canvas background
1. How can we set the canvas background to be transparent?

a. Set the background color to #ffffff.

b. Do nothing. It is transparent by default.

Building a Canvas Games Masterclass

[152][152]

Animating a sprite sheet in canvas
We first used sprite sheet images in Chapter 3, Building a Memory Matching Game in CSS3,
when displaying a deck of playing cards.

Time for action – Making a game guide animation
There is a graphics file named guide_sprite.png in the images folder. It is a game
guideline graphic that contains each step of the animation.

Let's draw this guide into our game with animations:

1.	 Open the html5games.untangle.js JavaScript file in the text editor.

2.	 In the jQuery ready function add the following code:

// load the guide sprite image
untangleGame.guide = new Image();
untangleGame.guide.onload = function() {
 untangleGame.guideReady = true;

 // setup timer to switch the display frame of the guide sprite
 untangleGame.guideFrame = 0;
 setInterval(guideNextFrame, 500);
}
untangleGame.guide.src = "images/guide_sprite.png";

3.	 We add the following function to move the current frame to the next frame every
500 meters:

function guideNextFrame()
{
 untangleGame.guideFrame++;
 // there are only 6 frames (0-5) in the guide animation.
 // we loop back the frame number to frame 0 after frame 5.
 if (untangleGame.guideFrame > 5)
 {
 untangleGame.guideFrame = 0;
 }
}

4.	 In the gameloop function, we draw the guide animation according to the
current frame.

Chapter 5

[153][153]

// draw the guide animation
if (untangleGame.currentLevel == 0 && untangleGame.guideReady)
{
 // the dimension of each frame is 80x130.
 var nextFrameX = untangleGame.guideFrame * 80;
 ctx.drawImage(untangleGame.guide, nextFrameX, 0, 80, 130, 325,
 130, 80, 130);
}

5.	 Let's watch the animation in the web browser by opening the index.html. The
following screenshot demonstrates the animation of the game guideline. The
guideline animation will play and loop until the player levels up:

What just happened?
We can draw only a region of an image when using the drawImage context function.

The following screenshot demonstrates the process of the animation step by step. The
rectangle is the clipping region. We used a variable named guideFrame to control which
frame to show. The width of each frame is 80. Therefore, we get the x position of the clipping
region by multiplying the width and the current frame number:

var nextFrameX = untangleGame.guideFrame * 80;
ctx.drawImage(untangleGame.guide, nextFrameX, 0, 80, 130, 325, 130,
80, 130);

Building a Canvas Games Masterclass

[154][154]

The guideFrame variable is updated every 500 meters by the following guideNextFrame
function:

function guideNextFrame()
{
 untangleGame.guideFrame++;
 // there are only 6 frames (0-5) in the guide animation.
 // we loop back the frame number to frame 0 after frame 5.
 if (untangleGame.guideFrame > 5)
 {
 untangleGame.guideFrame = 0;
 }
}

Animating a sprite is a commonly used technique when developing games. There are some
benefits of using sprite animation when developing games in traditional video games. The
reasons may not apply to the web game development but we have other benefits of using
sprite sheet animation:

Chapter 5

[155][155]

All frames are loaded as one file so the whole animation is ready once the sprite file
is loaded.

Putting all frames into one file means we can reduce the HTTP request from the
web browser to the server. If each frame is a file, the browser requests the file many
times while now it just requests one file and uses one HTTP request.

Putting different images into one file also helps reduce the duplicate file's header,
footer, and meta data.

Putting all frames into one image means we can easily clip the image to display any
frame without the complex code to change the image source.

It is usually used in character animation. The following screenshot is a sprite animation of
an angry cat that I used in an HTML5 game named Neighbours (http://gamedesign.cc/
html5games/neighbours/):

We built the sprite sheet animation by clipping the frame and setting up the timer ourselves
in this example. When working with a lot of animations, we may want to use some third
party sprite animation plugin or create our own canvas sprite animation to better reuse and
manage the logic code.

Building a Canvas Games Masterclass

[156][156]

Sprite animation is an important topic in HTML5 games development and
there are many online resources discussing this topic. The following links are
some of them:

The sprite animation tutorial (http://codeutopia.net/
blog/2009/08/21/using-canvas-to-do-bitmap-sprite-
animation-in-javascript/) from CodeUtopia discusses how we can
make a sprite object from scratch and use it to animate a sprite.

The sprite animation demo (http://www.johnegraham2.com/web-
technology/html-5-canvas-tag-sprite-animation-demo/)
by John Graham provides another sprite object to animate a sprite in canvas.

The Spritely (http://www.spritely.net/), on the other hand, provides
sprite animation over the DOM element with CSS. It is useful when we want to
animate a sprite without using canvas.

Creating a multi-layers canvas game
Now all things are drawn into the context and it has no other state to distinguish the drawn
items. We may split the canvas game into different layers and code the logic to control and
draw each layer at a time.

Time for action – Dividing the game into four layers
We are going to separate our Untangle game into four layers:

1.	 In index.htm, we changed the canvas HTML to the following code. It contains
several canvases within a section:

<section id="layers">
 <canvas id="bg" width="768" height="440">
 Sorry, your web browser does not support canvas content.
 </canvas>
 <canvas id="guide" width="768" height="440"></canvas>
 <canvas id="game" width="768" height="440"></canvas>
 <canvas id="ui" width="768" height="440"></canvas>
</section>

2.	 We also need to apply some styles to the canvas so they overlap with each other to
create the multiple layers effect. Also we have to prepare a fadeout class and dim
class to make the target transparent. Add the following code into the untangle.
css file:

#layers {

Chapter 5

[157][157]

 height: 440px;
 position: relative;
 margin: 0 auto;
 width:768px;
 height: 440px;
}
#layers canvas{
 left: 50%;
 margin-left: -384px;
 position: absolute;
}
#guide {
 opacity: .7;
}
#guide.fadeout {
 opacity: 0;
 -webkit-transition: opacity .5s linear;
 transition: opacity .5s linear;
}
#ui {
 -webkit-transition: opacity .3s linear;
 transition: opacity .3s linear;
}
#ui.dim {
 opacity: .3;
}

3.	 In the html5games.untangle.js JavaScript file, we modify the code to
support the layers feature. First, we add an array to store the context reference
of each canvas:

untangleGame.layers = new Array();

4.	 Then, we get the context reference and store them in the array:

// prepare layer 0 (bg)
var canvas_bg = document.getElementById("bg");
untangleGame.layers[0] = canvas_bg.getContext("2d");

// prepare layer 1 (guide)
var canvas_guide = document.getElementById("guide");
untangleGame.layers[1] = canvas_guide.getContext("2d");

// prepare layer 2 (game)
var canvas = document.getElementById("game");
var ctx = canvas.getContext("2d");

Building a Canvas Games Masterclass

[15�][15�]

untangleGame.layers[2] = ctx;

// prepare layer 3 (ui)
var canvas_ui = document.getElementById("ui");
untangleGame.layers[3] = canvas_ui.getContext("2d");

5.	 Since now the game canvas are overlapped together, the mouse event listener we
had in the game canvas does not fire anymore. We can listen to the event from the
parent layers DIV which has the same position and dimension of the canvas:

$("#layers").mousedown(function(e)
$("#layers").mousemove(function(e)
$("#layers").mouseup(function(e)

6.	 We are going to separate the drawing part into different functions for different
layers. In the following drawLayerBG function, it is only in charge of drawing
the background:

function drawLayerBG()
{
 var ctx = untangleGame.layers[0];

 clear(ctx);
 // draw the image background
 ctx.drawImage(untangleGame.background, 0, 0);
}

7.	 We draw the background layer when the background image is loaded. Add the
following highlighted code into the onload event of the background:

untangleGame.background.onload = function() {
 drawLayerBG();

 // setup an interval to loop the game loop
 setInterval(gameloop, 30);
}

8.	 We divide the game loop into three different functions for the specified layer:

function gameloop() {
 drawLayerGuide();
 drawLayerGame();
 drawLayerUI();
}

Chapter 5

[15�][15�]

9.	 We put the guideline animation into a dedicated canvas now so we can easily apply
CSS style to fade out the guideline later:

function drawLayerGuide()
{
 var ctx = untangleGame.layers[1];

 clear(ctx);

 // draw the guide animation
 if (untangleGame.guideReady)
 {
 // the dimension of each frame is 80x130.
 var nextFrameX = untangleGame.guideFrame * 80;
 ctx.drawImage(untangleGame.guide, nextFrameX, 0, 80, 130, 325,
 130, 80, 130);
 }

 // fade out the guideline after level 0
 if (untangleGame.currentLevel == 1)
 {
 $("#guide").addClass('fadeout');
 }
}

10.	The following drawLayerGame keeps all the drawing code we used in the gameplay.
Most of the code is from the original gameloop function:

function drawLayerGame()
{
 // get the reference of the canvas element and the drawing
 context.
 var ctx = untangleGame.layers[2];

 // draw the game state visually
 // clear the canvas before drawing.
 clear(ctx);

 // draw all remembered line
 for(var i=0;i<untangleGame.lines.length;i++) {
 var line = untangleGame.lines[i];
 var startPoint = line.startPoint;
 var endPoint = line.endPoint;
 var thickness = line.thickness;
 drawLine(ctx, startPoint.x, startPoint.y, endPoint.x,
 endPoint.y, thickness);

Building a Canvas Games Masterclass

[160][160]

 }

 // draw all remembered circles
 for(var i=0;i<untangleGame.circles.length;i++) {
 var circle = untangleGame.circles[i];
 drawCircle(ctx, circle.x, circle.y, circle.radius);
 }

}

11.	The level progress text is now placed in the UI layer and drawn by the drawLayerUI
function. It uses a dedicated layer so we can easily dim the opacity when the text is
overlapped with the game objects, such as circles:

function drawLayerUI()
{
 var ctx = untangleGame.layers[3];

 clear(ctx);

 // draw the level progress text
 ctx.font = "26px 'Rock Salt'";
 ctx.fillStyle = "#dddddd";
 ctx.textAlign = "left";
 ctx.textBaseline = "bottom";
 ctx.fillText("Puzzle "+untangleGame.currentLevel+",
 Completeness: ", 60,ctx.canvas.height-80);
 ctx.fillText(untangleGame.progressPercentage+"%",450,
 ctx.canvas.height-80);

 // get all circles, check if the ui overlap with the game
 objects
 var isOverlappedWithCircle = false;
 for(var i in untangleGame.circles) {
 var point = untangleGame.circles[i];
 if (point.y > 310)
 {
 isOverlappedWithCircle = true;
 }
 }
 if (isOverlappedWithCircle)
 {
 $("#ui").addClass('dim');
 }
 else

Chapter 5

[161][161]

 {
 $("#ui").removeClass('dim');
 }
}

12.	Save all the files and check our big code changes in the web browser. The game
should be displayed as if we haven't changed anything. Try dragging the circle down
close to the bottom edge of the blackboard. The level progress text should dim to
a low opacity. When you finish the first level, the guideline animation will fade out
gracefully. The following screenshot shows the level progress in half opacity:

What just happened?
There are four canvases in total now. Each canvas is in charge of one layer. The layers are
divided into background, game guideline, game itself, and the user interface showing the
level progress.

By default, the canvases, like other elements, are placed one after the other. In order
to overlap all canvases to construct the layer effect, we applied the absolute position
to them.

Building a Canvas Games Masterclass

[162][162]

The following screenshots show the four layers setting now in our game. By default, the
later added DOM is on top of the one added before. Therefore, bg canvas is at the bottom
and ui is on the top:

Mixing CSS technique with Canvas drawing
We are creating a canvas-based game but we are not restricted to use only a canvas drawing
API. The level progress information is now in another canvas with ID ui. In this example,
we mixed the CSS technique we discussed in Chapter 3, Building a Memory Matching Game
in CSS3.

When we drag the circles around the canvas, they may overlap the level information. When
drawing the UI canvas layer, we check whether any circle's coordinate is too low and is
overlapping the text. We then fade the UI canvas CSS opacity so it does not distract the
player from the circles.

We also fade out the guideline animation after the player levels up. This is done by fading
out the whole guide canvas with CSS transition easing to 0 opacity. Since the guide canvas
is only in charge of that animation, hiding that canvas does not affect other elements:

if (untangleGame.currentLevel == 1)
{
 $("#guide").addClass('fadeout');
}

Chapter 5

[163][163]

Clearing only the changed region to boost canvas performance

We can use the clear function to only clear part of the canvas context. This
will give the performance some boost because it avoids redrawing the entire
canvas context every time. This is achieved by marking the 'dirty' region of the
context which has changed state since last drawn.

In the guide canvas layer in our example, we may consider clearing only the
region of the sprite sheet image drawing instead of the whole canvas.

We may not see significant differences in simple canvas examples but it helps
boost the performance when we have a complex canvas game that includes
many sprite images animations and complex shape drawings.

Have a go hero
We fade out the guide when the players advance to level 2. How about we fade out the
guide animation once the player drags any circles? How can we do that?

Summary
We learned a lot in this chapter about drawing gradients, text, and images in canvas.

Specifically, we covered:

Filling shapes with either linear or radial gradient

Filling text in canvas with font-face embedding and other text styles

Drawing images into canvas

Animating a sprite sheet by the clipping function when drawing images

Dividing the game into several layers by stacking several canvas elements

Mixing the CSS transition animation in a canvas-based game

One thing we haven't mentioned in this book is the bitmap manipulation in canvas. Canvas
context is a bitmap data where we can apply an operation on each pixel. For instance, we
may draw an image in the canvas and apply Photoshop-like filters to the image. We will not
cover that in the book because image manipulation is an advanced topic and the application
may not relate to game development.

Building a Canvas Games Masterclass

[164][164]

There are some good canvas games examples on the Internet. The Canvas Demo
(http://www.canvasdemos.com/type/games/) links the latest canvas games from other
websites. The Game On 2010 gallery (https://gaming.mozillalabs.com/games/)
from Mozilla lists a bundle of game entries for their gaming development competition. Some
of them are made in canvas.

Now that we've learned about building games in canvas and making animation for game
objects, such as game character, we are ready to add audio components and sound effects
to our games in the next chapter.

We will get back to canvas-based games in Chapter 9, Building a Physics Car Game with
Box2D and Canvas.

6
Adding Sound Effects to your Games

We have discussed several techniques of drawing game objects visually. In this
chapter, we will focus on using the audio tag that is introduced in the HTML5
specification. We can add sound effects, background music, and control the
audio through the JavaScript API. In addition, we will build a music game in this
chapter. It is a game that requires players to hit the correct string at the right
time to produce the music.

In this chapter, we will learn the following topics:

Adding a sound effect to the play button

Building a mini piano musical game

Linking the music game and the play button

Adding keyboard-driven to the game

Creating a keyboard-driven music game

Completing the musical game with level data recording and the game over event

Adding Sound Effects to your Games

[166][166]

The following screenshot shows the final result we will create through this chapter:

So, let's get on with it.

Adding a sound effect to the play button
We had several mouse interactions in the Untangle game examples in previous chapters.
Now imagine that we want to have sound effects with the mouse interaction. This requires
us to instruct the game about the audio file to be used. We will use the audio tag to create
a sound effect on a button.

Time for action – Adding sound effects to the play button
We will start with the code example available in the code bundle. We will have the folder
structure similar to the one shown in the following screenshot:

Chapter 6

[167][167]

1.	 The index.htm file contains the basic structure of the HTML. Now let's add the
following code to the body section of the index.htm file:

 <div id="game">
 <section id="menu-scene" class="scene">
 Play
 </section>
 </div>
 <audio id="buttonover">
 <source src="media/button_over.wav" />
 <source src="media/button_over.ogg" />
 </audio>
 <audio id="buttonactive">
 <source src="media/button_active.mp3" />
 <source src="media/button_active.ogg" />
 </audio>

2.	 The HTML file accomplishes with a stylesheet. The file can be found in the code
bundle named audiogame.css.

3.	 Next, we will add a sound effect to the button in the JavaScript file. Add the
following JavaScript in the html5games.audio.js file:

//a global object variable to store all game scope variable.
var audiogame = {};

// init function when the DOM is ready
$(function(){

Adding Sound Effects to your Games

[16�][16�]

 // get the references of the audio element.
 audiogame.buttonOverSound =
 document.getElementById("buttonover");
 audiogame.buttonOverSound.volume = 0.3;
 audiogame.buttonActiveSound =
 document.getElementById("buttonactive");
 audiogame.buttonActiveSound.volume = 0.3;

 // listen the button event that links to #game
 $("a[href='#game']")
 .hover(function(){
 audiogame.buttonOverSound.currentTime = 0;
 audiogame.buttonOverSound.play();
 },function(){
 audiogame.buttonOverSound.pause();
 });
 .click(function(){
 audiogame.buttonActiveSound.currentTime = 0;
 audiogame.buttonActiveSound.play();

 return false;
 });
});

4.	 Open the index.htm file in a browser. There, you should see a PLAY button on a
yellow background, as shown in the following screenshot. Try to move the mouse on
the button and click on it. You should be able to hear a sound when you hover over
the button and another sound when you click on it:

Chapter 6

[16�][16�]

What just happened?
We just created a basic HTML5 game layout with a play button placed in the middle of
the page. The JavaScript file handles the mouse hover and clicks of the button and plays
corresponding sound effects.

Defining an audio element
The easiest way to use the audio tag is by providing a source file. The following code snippet
shows how we can define an audio element:

<audio>
 <source src="media/button_active.mp3" />
 <source src="media/button_active.ogg" />
 <!-- Any code for browser that does not support audio tag -->
</audio>

Showing the fallback content in the audio tag

The audio tag is newly introduced in the HTML5 specification. We can put
the fallback content inside the audio tag, such as Flash movie to play the
audio. The following link from HTML5 Rocks shows a quick guide on using the
audio tag with Flash fallback:

http://www.html5rocks.com/tutorials/audio/quick/

Besides setting the source file of the audio tag, we can have additional controls by using
several attributes. The following table shows the attributes we can set to the audio element:

Arguments Definition Explanation

src Defines the source file of
the audio element

When we use the src attribute in the
audio tag, it specifies one source file of
the audio file. For example, we load a sound
effect Ogg file in the following code:

<audio src='sound.ogg'>

If we want to specify multiple files with
different formats, then we use the source
tag inside the audio element. The following
code specifies the audio tag with different
formats to support different web browsers:

<audio>
 <source src='sound.ogg'>
 <source src='sound.mp3'>
 <source src='sound.wav'>
</audio>

Adding Sound Effects to your Games

[170][170]

Arguments Definition Explanation

autoplay Specifies that the audio
plays automatically once it
is loaded

Autoplay is used as a standalone attribute.
This means that there is no difference in the
following two lines of code:

<audio src='file.ogg'
 autoplay>
<audio src='file.ogg
 autoplay="autoplay">

loop Specifies that the audio
plays from beginning again
after playback finishes

This is also used as a standalone attribute.

preload Specifies that the audio
source is loaded once the
page is loaded

The preload attribute takes either of the
following values:

preload="auto"

preload="metadata"

preload="none"

When the preload is used as a standalone
attribute, it acts as setting it to auto and the
browser will preload the audio.

When it is set as metadata, the browser
will not preload the content of the audio.
However, it will load the meta data of the
audio such as the duration and size.

When it is set to none, the browser will not
preload the audio at all. The content and
metadata is loaded once it is played.

controls Shows the playback
control of the audio

The controls attribute is a standalone
attribute. It instructs the browser to show a
playback control in the audio position.

The following screenshot shows the Chrome displaying controls:

Chapter 6

[171][171]

Playing a sound
We can get the reference of the audio element by calling the getElementById
function. Then, we play it by calling the play function. The following code plays
the buttonactive audio:

<audio id="buttonactive">
 <source src="media/button_active.mp3" />
 <source src="media/button_active.ogg" />
</audio>
<script>
 document.getElementById("buttonactive").play();
</script>

The play function plays the audio from the elapsed time, which is stored in the
currentTime property. The default value of currentTime is zero. The following
code plays the audio from 3.5 seconds:

<script>
 document.getElementById("buttonactive").currentTime = 3.5;
 document.getElementById("buttonactive").play();
</script>

Pausing a sound
Similar to the play button, we can also pause the playback of an audio element by using
the pause function. The following code pauses the buttonactive audio element:

<script>
 document.getElementById("buttonactive").pause();
</script>

There is no stop function to stop the audio element. Instead, we can pause
the audio and reset the currentTime property of the element to zero. The
following code shows how we can stop an audio element:

<script>

document.getElementById("buttonactive").pause();

document.getElementById("buttonactive").currentTime =
0;

</script>

Adding Sound Effects to your Games

[172][172]

Adjusting the sound volume
We can also set the volume of the audio element. The volume must range between 0 and
1. We can set the volume to 0 to mute it, and set it to 1 for the maximum volume. The
following code snippet sets the volume of the buttonactive audio to 30%:

<script>
 document.getElementById("buttonactive").volume = 0.3;
</script>

Using the jQuery hover event
jQuery provides a hover function to define the behavior when we mouse over and mouse
out a DOM element. Here is how we use the hover function:

.hover(function1, function2);

Arguments Discussion

function1 The function is executed when the mouse moves in.

function2 This is optional. The function is executed when the mouse moves
out. When this function is not provided, the move out behavior is
the same as function1.

In the following code, we play the mouse over sound effect when moving the mouse in and
pause the sound during mouse out:

$("a[href='#game']").hover(function(){
 audiogame.buttonOverSound.currentTime = 0;
 audiogame.buttonOverSound.play();
},function(){
 audiogame.buttonOverSound.pause();
});

Creating the Ogg format audio to support Mozilla Firefox
We use an MP3 format and the Ogg format file when we define the source of the audio
element. The Ogg is a free and open source media container format which is supported in
Mozilla Firefox. We will use a free audio convertor to convert our MP3 files into an Ogg file.

Wikipedia contains a detailed explanation on the Ogg format at the following URL:

http://en.wikipedia.org/wiki/Ogg

Chapter 6

[173][173]

Time for action – Converting an MP3 sound to Ogg
format with Audacity

Ogg is an open source standard that is free to use. There are many music players and
convertors supporting it. We will use free software named Audacity to convert our MP3 files
to the Ogg format:

1.	 Go to the following URL to download Audacity:

http://audacity.sourceforge.net/download/

2.	 Install Audacity by following the instructions of the installer.

3.	 Open button_over.mp3 in Audacity. The following screenshot shows Audacity
with the MP3 file opened, waiting for us to start the conversion:

4.	 Click on File | Export As Ogg Vorbis to open the export dialog.

At the time of writing this book, Audacity 1.3 beta was released and
the export layout changed. Click on File | Export … and choose the Ogg
format in the export dialog.

Adding Sound Effects to your Games

[174][174]

5.	 Save the Ogg format file in the working directory.

What just happened?
We just converted an MP3 format sound effect into the Ogg format in order to make the
audio work in browsers that do not support an MP3 format.

Supporting different web browsers with different audio formats
The following table shows the audio formats supported by the latest popular web browsers
at the time of writing this book:

Browser Ogg MP3 WAV

Firefox 3.6+ Yes - Yes

Safari 5+ - Yes Yes

Chrome Yes Yes -

Opera 10.5+ Yes - Yes

Internet Explorer 9 - Yes Yes

Pop quiz – Using the audio tag
1. How can we stop an audio element playing?

a. Use the stop function

b. Use the pause function and reset the currentTime to 0

c. Reset the currentTime to 0

2. How can we put fallback content to display in browsers that do not support
audio tags?

Building a mini piano musical game
Imagine now we are not only playing a sound effect, but also playing a full song with the
audio tag. Along with the song playing, there are some music dots moving downwards
as a visualization of the music.

Time for action – Creating a basic background to the
music game

First, we will draw a few paths in canvas as the background of the music playback.

Chapter 6

[175][175]

1.	 We will continue working with our example and draw the background. Open the
index.htm file in a text editor and add the following highlighted code that defines
the game scene with two canvases set up:

<div id="game">
 <section id="menu-scene" class="scene">
 Play
 </section>

 <section id="game-scene" class="scene">
 <canvas id="game-background-canvas" width="768" height="440">
 Sorry, your web browser does not support canvas content.
 </canvas>
 <canvas id="game-canvas" width="768" height="440"></canvas>
 </section>
</div>

2.	 We added a game scene in the HTML file. We want to make it on top of the menu
scene, so we style the game scene to have absolute position by adding the
following to audiogame.css:

#game-scene {
 background: #efefef url(../images/game_bg.jpg);
}
#game-canvas, #game-background-canvas {
 position: absolute;
}

3.	 It is time for the background drawing code. Open the html5games.audio.js
JavaScript file.

4.	 In the jQuery ready function, we call a drawBackground function to draw the
background as follows:

drawBackground();

5.	 Add the following drawBackground function to the end of the JavaScript file. The
code draws three black lines and one grey line in the game-background-canvas
canvas:

function drawBackground()
{
 // get the reference of the canvas and the context.
 var game = document.getElementById("game-background-canvas");
 var ctx = game.getContext('2d');

 // set the line style of the three vertical lines.

Adding Sound Effects to your Games

[176][176]

 ctx.lineWidth = 10;
 ctx.strokeStyle = "#000";

 var center = game.width/2;

 // draw the three lines
 // the left line is placed 100 pixels on the left of center.
 ctx.beginPath();
 ctx.moveTo(center-100, 50);
 ctx.lineTo(center-100, ctx.canvas.height - 50);
 ctx.stroke();

 // the middle line is placed at the center
 ctx.beginPath();
 ctx.moveTo(center, 50);
 ctx.lineTo(center, ctx.canvas.height - 50);
 ctx.stroke();

 // the right line is placed 100 pixels on the right of center.
 ctx.beginPath();
 ctx.moveTo(center+100, 50);
 ctx.lineTo(center+100, ctx.canvas.height - 50);
 ctx.stroke();

 // draw the horizontal line
 ctx.beginPath();
 ctx.moveTo(center-150, ctx.canvas.height - 80);
 ctx.lineTo(center+150, ctx.canvas.height - 80);
 // reset the line style to 1px width and grey before actually
 drawing the horizontal line.
 ctx.lineWidth = 1;
 ctx.strokeStyle = "rgba(50,50,50,.8)";
 ctx.stroke();
}

6.	 When we open the index.htm file in a browser, we will see four lines with a
background, as shown in the following screenshot. Do not worry that the play
button is hidden for now, we will show it again later:

Chapter 6

[177][177]

What just happened?
We have created a canvas where we draw the music game background. In this music game
example, we introduced the basic scene management in HTML5 games.

Creating scenes in HTML5 games
Creating scenes in HTML5 is similar to creating layers like we did in the last chapter. It is
a DOM element that contains several children. All the children elements are positioned
in absolute. We have two scenes in our example now. The following code snippet shows
a possible scene structure in an entire game with a game over scene, credit scene, and
leaderboard scene included:

<div id="game">
 <section id="menu-scene" class="scene"></section>
 <section id="game-scene" class="scene"></section>
<section id="gameover-scene" class="scene"></section>
<section id="credit-scene" class="scene"></section>
<section id="leaderboard-scene" class="scene"></section>
</div>

Adding Sound Effects to your Games

[17�][17�]

The following screenshot shows that the scenes are placed at the same place in a web page.
It is very similar to the layers structure. The difference is that we will control the scene by
showing and hiding each scene:

Visualizing the music play back
If you have ever played the Dance Dance Revolution, Guitar Hero, or the Tap Tap Revenge
game, then you may be familiar with the music dots moving downwards or upwards and
the player hitting the music dots when it moves to the right place. The following screenshot
demonstrates the Tap Tap Revenge game:

Chapter 6

[17�][17�]

We will play a song in the audio tag with similar music visualization in the canvas.

Time for action – Creating the playback visualization
in the music game

Carry out the following steps:

1.	 We need a song with both a melody part and a base part. Copy the minuet_in_
g.ogg, minuet_in_g.mp3, minuet_in_g_melody.ogg, and minuet_in_g_
melody.mp3 files from the downloaded files or from the code bundle in the
media folder.

2.	 Then, add the audio tag with the song as a source file. Open the index.htm file
and add the following code:

<audio id="melody">
 <source src="media/minuet_in_g_melody.mp3" />
 <source src="media/minuet_in_g_melody.ogg" />
</audio>

<audio id="base">
 <source src="media/minuet_in_g.mp3" />
 <source src="media/minuet_in_g.ogg" />
</audio>

3.	 The music visualization is mainly done in JavaScript. Open the html5games.
audio.js JavaScript file in a text editor.

4.	 Add a MusicNote object type to represent the music data and a Dot object type to
represent the visual dot of the music note in the canvas as follows:

function MusicNote(time,line){
 this.time = time;
 this.line = line;
}
function Dot(distance, line) {
 this.distance = distance;
 this.line = line;
 this.missed = false;
}

5.	 Then, we need several game variables to store the MusicNote instances, the
Dot instance, and other information. The level data is a sequence of time and the
appearing line that is separated by a semi-colon. The level data represents the time
and line at which the music note should appear:

// an array to store all music notes data.

Adding Sound Effects to your Games

[1�0][1�0]

audiogame.musicNotes = [];
audiogame.leveldata = "1.592,3;1.984,2;2.466,1;2.949,2;4.022,3;";
// the visual dots drawn on the canvas.
audiogame.dots = [];
// for storing the starting time
audiogame.startingTime = 0;
// reference of the dot image
audiogame.dotImage = new Image();

6.	 The level data is stored in a string format. We have the following function to extract
the string in the MusicNote object instances and store in an array:

function setupLevelData()
{
 var notes = audiogame.leveldata.split(";");
 for(var i in notes)
 {
 var note = notes[i].split(",");
 var time = parseFloat(note[0]);
 var line = parseInt(note[1]);
 var musicNote = new MusicNote(time,line);
 audiogame.musicNotes.push(musicNote);
 }
}

7.	 Add the following code in the starting of the jQuery ready function. It references
the melody and base audio tags and loads the dot image for later use:

audiogame.melody = document.getElementById("melody");
audiogame.base = document.getElementById("base");
// load the dot image
audiogame.dotImage.src = "images/dot.png";

8.	 Then, add the following code in the end of the jQuery ready function:

setupLevelData();
setInterval(gameloop, 30);
startGame();

9.	 Add the following two functions in the JavaScript file. The startGame function sets
the starting time and executes the playMusic function with a delay. The latter
function plays both the melody and base audios:

function startGame()
{
 // starting game
 var date = new Date();

Chapter 6

[1�1][1�1]

 audiogame.startingTime = date.getTime();
 setTimeout(playMusic, 3550);
}
function playMusic()
{
 // play both the melody and base
 audiogame.melody.play();
 audiogame.base.play();
}

10.	Add the following gameloop function to JavaScript. The gameloop function creates
new dots at the top of the game and moves the existing notes down:

// logic that run every 30ms.
function gameloop()
{
 var game = document.getElementById("game-canvas");
 var ctx = game.getContext('2d');

 // show new dots
 // if the game is started
 if (audiogame.startingTime != 0)
 {
 for(var i in audiogame.musicNotes)
 {
 // get the elapsed time from beginning of the melody
 var date = new Date();
 var elapsedTime = (date.getTime() -
 audiogame.startingTime)/1000;
 var note = audiogame.musicNotes[i];

 // check if the dot appear time is as same as
 the elapsed time
 var timeDiff = note.time - elapsedTime;
 if (timeDiff >= 0 && timeDiff <= .03)
 {
 // create the dot when the appear time is within
 one frame of the elapsed time
 var dot = new Dot(ctx.canvas.height-150, note.line);
 audiogame.dots.push(dot);
 }
 }
 }

 // move the dots

Adding Sound Effects to your Games

[1�2][1�2]

 for(var i in audiogame.dots)
 {
 audiogame.dots[i].distance -= 2.5;
 }

 // only clear the dirty area, that is the middle area
 ctx.clearRect(ctx.canvas.width/2-200, 0, 400,
 ctx.canvas.height);

 // draw the music note dots
 for(var i in audiogame.dots)
 {
 // prepare the radial gradients fill style
 var circle_gradient = ctx.createRadialGradient
 (-3,-3,1,0,0,20);
 circle_gradient.addColorStop(0, "#fff");
 circle_gradient.addColorStop(1, "#cc0");
 ctx.fillStyle = circle_gradient;

 // prepare the dot position to draw
 ctx.save();
 var center = game.width/2;
 var dot = audiogame.dots[i];
 var x = center-100
 if (dot.line == 2)
 {
 x = center;
 }
 else if (dot.line == 3)
 {
 x = center+100;
 }

 // draw the dot at position according to the line and distance
 ctx.translate(x, ctx.canvas.height-80-
 audiogame.dots[i].distance);
 ctx.drawImage(audiogame.dotImage, -audiogame.dotImage.width/2,
 -audiogame.dotImage.height/2);
 ctx.restore();
 }
}

Chapter 6

[1�3][1�3]

11.	Save all files and open the index.htm file in web a browser. The following
screenshot shows the music playing with the music dots appearing on the top
and moving downwards:

What just happened?
We just built a fully functional music game and this is the basic playback function. It plays the
song with both the melody and the base part with some music dots moving downwards.

Choosing the right song for the music game
We have to be careful of the copyright issue when choosing a song for the music game.
It usually requires paying a usage fee or making an agreement with the song copyright
owner to use a song with copyright. It is fine if you are building a commercial music game
that is going to be a hit in the game industry and the earnings can overcome the copyright
usage expense. However, as a book example here, we are going to use a copyright-free song.
That is why we use the classical song Minute in G which is free public domain.

Storing and extracting the song level data
The level data shown in the Time for action section is just a portion of the entire level data.
It is a very long string storing music note information, including the time and the line. It is
stored in the following format:

music_current_time, line; music_current_time, line; …

Adding Sound Effects to your Games

[1�4][1�4]

Each music dot data contains the time to show up and which line it shows. This data is
separated by a comma. Every piece of music dot data is separated by a semi-colon. The
following code extracts the level string into a MusicNote object by splitting the semi-colon
and the comma:

audiogame.musicNotes = [];
audiogame.leveldata = "1.592,3;1.984,2;2.466,1;2.949,2;4.022,3;";
function setupLevelData()
{
 var notes = audiogame.leveldata.split(";");
 for(var i in notes)
 {
 var note = notes[i].split(",");
 var time = parseFloat(note[0]);
 var line = parseInt(note[1]);
 var musicNote = new MusicNote(time,line);
 audiogame.musicNotes.push(musicNote);
 }
}

The level data string is recorded by the keyboard and we are going to discuss the recording
later in this chapter.

The level data contains only several music notes here. In the code
bundle, there is the whole level data of the complete song.

There is an optional second parameter for the JavaScript
parseInt function. It defines the radix of the number to
parse. By default, it uses decimal but parseInt will parse the
string as octal when the string begins with zero. For example,
parseInt("010") return result 8 instead of 10. If we want the
decimal number, then we can use parseInt("010",10) to
specify the radix.

Getting the elapsed time of the game
Although we know the elapsed time of an audio element by accessing the currentTime
property, we want to get the time from the starting of the game.

We can get the elapsed time by storing the current computer time when starting the
game and subtracting the current time value to get the elapsed time.

Chapter 6

[1�5][1�5]

We get the current computer time by using the Date object. The following code snippet
shows how we use startingTime to get the elapsed time:

// starting game
var date = new Date();
audiogame.startingTime = date.getTime();

// some time later
var date = new Date();
var elapsedTime = (date.getTime() - audiogame.startingTime)/1000;

The following screenshot shows the preceding code snippet running in console:

Creating music dots
In the gameloop function, we check all the MusicNote instances and see whether it is time
to create the visual dot of that music note. The following code shows the logic we used to
create the visual music dot. Basically, we get the elapsed time of the game and compare it
with the current time of each music note. If the time difference between the note's current
time and elapsed time is within 30 ms, then we create the visual dot instance and let the
gameloop function draw it:

if (audiogame.startingTime != 0)
{
 for(var i in audiogame.musicNotes)
 {
 // get the elapsed time from beginning of the melody
 var date = new Date();
 var elapsedTime = (date.getTime() -
 audiogame.startingTime)/1000;
 var note = audiogame.musicNotes[i];

Adding Sound Effects to your Games

[1�6][1�6]

 // check if the dot appear time is as same as the elapsed time
 var timeDiff = note.time - elapsedTime;
 if (timeDiff >= 0 && timeDiff <= .03)
 {
 // create the dot when the appear time is within one frame
 of the elapsed time
 var dot = new Dot(ctx.canvas.height-150, note.line);
 audiogame.dots.push(dot);
 }
 }
}

Moving the music dots
There is a time difference between the game start and music start. The game starts several
seconds before the song starts playing. It is because we need to show the music dots and
move it down before the music starts.

The music dots should match the song when the dots are in the grey line. The music dots
appear from the top of the game and move down towards the grey line. We delay the music
play to wait as the dots move from top to bottom. It is around 3.55 seconds in this example,
so we delay the music playing by 3.55 seconds.

When the dot is created, it is placed at a given distance. We decrease all dots' distance by
2.5 every time the gameloop function executes. The distance is stored in each dot object
representing how far away it is from the grey line:

for(var i in audiogame.dots)
{
 audiogame.dots[i].distance -= 2.5;
}

The y position of the dot is calculated by the grey line subtracting the distance as follows:

// draw the dot
ctx.save();
var x = ctx.canvas.width/2-100
if (audiogame.dots[i].line == 2)
{
 x = ctx.canvas.width/2;
}
else if (audiogame.dots[i].line == 3)
{
 x = ctx.canvas.width/2+100;
}
ctx.translate(x, ctx.canvas.height-80-audiogame.dots[i].distance);

Chapter 6

[1�7][1�7]

ctx.drawImage(audiogame.dotImage, -audiogame.dotImage.width/2, -
 audiogame.dotImage.height/2);

The following screenshot shows the distance between the grey line and each dot. When the
distance is zero, it is exactly on the grey line:

dot2

dot2.distance

dot1

dot1.distance

the grey line

Linking the play button to the music game scene
We have a game scene now playing our song. However, it covers the menu scene we
made with a play button inside. Imagine now we open the game with the play button
being displayed, then we click on the button and the game scene slides in and starts
playing the music.

Time for action – Animating the scene transition
We will hide the game scene by default and show it after the play button is clicked:

1.	 First, we have to modify the stylesheet. Open the audiogame.css file.

2.	 Add the following highlighted overflow property to #game. It helps to clip the game
into a 768x440px mask:

#game {
 position: relative;
 width: 768px;
 height: 440px;
 overflow: hidden;
}

Adding Sound Effects to your Games

[1��][1��]

3.	 Next, we add the following highlighted code to style the game scene:

#game-scene {
 background: #efefef url(../images/game_bg.jpg);
 top: -440px;
}

#game-scene.show-scene {
 top: 0;
 -webkit-transition: top .3s linear;
 -moz-transition: top .3s linear;
 transition: top .3s linear;
}

4.	 Then, we will move on to the JavaScript part. Open the html5games.audio.js
JavaScript file.

5.	 Delete the startGame function calling in the jQuery ready function. We will call it
when the play button is clicked.

6.	 In the play button click handler, we add the following highlighted code:

$("a[href='#game']").click(function(){
 audiogame.buttonActiveSound.currentTime = 0;
 audiogame.buttonActiveSound.play();

 $("#game-scene").addClass('show-scene');
 startGame();

 return false;
});

Save all files and open the index.htm in a browser. There should be a slide-in animation to
show the music playback scene when we click on the play button. The following screenshot
sequence shows the slide-in animation:

Chapter 6

[1��][1��]

What just happened?
We just created a transition between the menu scene and the game scene.

Creating a slide-in effect in CSS3
The game scene slides in from the top when the play button is clicked. This scene transition
effect is done by moving the game scene by CSS3 transition. The game scene position is
initially placed with a negative top value. We then change the top position from negative
value to zero with a transition, so it animates from the top to the correct position.

Another important thing to make the sliding effect work is to set the overflow of the parent
DIV of the scenes to hidden. Without the hidden overflow, the game scene is visible even
with a negative top position. Therefore, it is important to set the parent DIV of the scenes to
the hidden overflow.

Adding Sound Effects to your Games

[1�0][1�0]

The following screenshot illustrates the slide-in transition of the game scene. The #game
DIV is the parent of both menu scene and game scene. The game scene moves from the top
when we add the .show-scene class which sets the top value to 0 with transition:

#game-scene.show-scene#menu-scene

#game
#menu-scene

#game-scene

#game #game

#game-scene.show-scene

Have a go hero – Creating different scene transition effects
We made a slide-in effect to the scene transition when showing the game. By using
JavaScript and CSS3, we can make many different scene transition effects creatively.
Try making your own transition effect to the game, such as fading in, pushing in from
the right, or even flipping with a 3D rotation.

Creating a keyboard-driven mini piano musical game
Now we can click on the play button. The music game slides in and plays the song with music
notes dropping down. Our next step is adding interaction to the music notes. Therefore, we
will add keyboard events to control the three lines to hit the music notes.

Time for action – Creating a mini piano musical game
Carry out the following steps:

1.	 We want to show an indication when pressing the keyboard. Open the index.htm
file and add the following highlighted HTML:

<section id="game-scene" class="scene">
 <canvas id="game-background-canvas" width="768" height="440">
 Sorry, your web browser does not support canvas content.

Chapter 6

[1�1][1�1]

 </canvas>
 <canvas id="game-canvas" width="768" height="440">
 Sorry, your web browser does not support canvas content.
 </canvas>
 <div id="hit-line-1" class="hit-line hide"></div>
 <div id="hit-line-2" class="hit-line hide"></div>
 <div id="hit-line-3" class="hit-line hide"></div>
</section>

2.	 Then, we may want to inform visitors that they can play the game by pressing the J,
K, and L keys. Modify the footer content as follows:

<footer>
 <p>This is an example of making audio game in HTML5.
 Press J, K, L to play.
 </p>
</footer>

3.	 Now, we will move on to the stylesheet. The stylesheet is included in the code
bundle with a folder named audio_game_scene_transition.

4.	 Next, we will add the keyboard event in the JavaScript part. Open the html5games.
audio.js JavaScript file and add the following code inside the jQuery ready
function:

// keydown
$(document).keydown(function(e){
 var line = e.which-73;
 $('#hit-line-'+line).removeClass('hide');
 $('#hit-line-'+line).addClass('show');

 // our target is J(74), K(75), L(76)
 var hitLine = e.which-73;

 // check if hit a music note dot
 for(var i in audiogame.dots)
 {
 if (hitLine == audiogame.dots[i].line &&
 Math.abs(audiogame.dots[i].distance) < 20)
 {
 // remove the hit dot from the dots array
 audiogame.dots.splice(i, 1);
 }
 }
});
$(document).keyup(function(e){

Adding Sound Effects to your Games

[1�2][1�2]

 var line = e.which-73;
 $('#hit-line-'+line).removeClass('show');
 $('#hit-line-'+line).addClass('hide');
});

5.	 Now save all files and open the game in a browser. Try pressing the J, K, and L keys.
The three hit line indicator should appear and fade out when the key is pressed. If
the music dot passes by the grey line when hitting the right key, then it disappears:

What just happened?
We just added keyboard interaction to our music game. There is a glow animation
when hitting the keys. The music dot will disappear when the right key is pressed
at the right moment.

Hitting the three music lines by key down
We use the J, K, and L keys to hit the three music lines in the game. The J key controls the left
line, the K key controls the middle line, and the L key controls the right one.

There is also an indication showing that we just hit the music line. This is done by placing the
following image at the intersection of the grey line and music lines:

Chapter 6

[1�3][1�3]

Then, we can control the showing and hiding of the hit indication graphics with the following
jQuery code:

$(document).keydown(function(e){
 var line = e.which-73;
 $('#hit-line-'+line).removeClass('hide');
 $('#hit-line-'+line).addClass('show');
});
$(document).keyup(function(e){
 var line = e.which-73;
 $('#hit-line-'+line).removeClass('show');
 $('#hit-line-'+line).addClass('hide');
});

J, K, and L keys control the music line 1 to 3. As J, K, and L have the key code 74, 75, and 76
respectively, we know which line number it is by subtracting the key code by 73.

Determining music dot hits on key down
The distance is close to zero if the dot is almost on the grey horizontal line. This helps us in
determining if the dots hit the grey line. By checking both the key down event and the dot
distance, we can determine if we successfully hit a music dot. The following code snippet
shows that we consider the dot is hit when the distance is within 20 pixels:

$(document).keydown(function(e){
 var line = e.which-73;
 $('#hit-line-'+line).removeClass('hide');
 $('#hit-line-'+line).addClass('show');

 // our target is J(74), K(75), L(76)
 var hitLine = e.which-73;

 // check if hit a music note dot
 for(var i in audiogame.dots)
 {
 if (hitLine == audiogame.dots[i].line &&
 Math.abs(audiogame.dots[i].distance) < 20)
 {
 // remove the hit dot from the dots array
 audiogame.dots.splice(i, 1);
 }
 }
});

Adding Sound Effects to your Games

[1�4][1�4]

With determination, we remove the music dots when we hit them. The missed dots will still
pass through the grey line and move towards the bottom. This creates a basic game play
where the player has to eliminate all the music dots by hitting them correctly at the right
moment when the song is playing.

Removing an element in an array with the given index
We remove the music dot data from an array when it is hit (and thus it will not be drawn
anymore). To remove an element in an array, we use the splice function. The following
line of code removes one element from an array at the given index:

array.splice(index, 1);

The splice function is a little tricky to use. This is because it allows us to add or remove
elements in an array. Then, it returns removed elements as another array. It sounds
complicated. Therefore, we will perform some experiments.

Time for action – Removing music dots with the splice function
We will open the JavaScript console in a web browser to perform a few tests on the
splice function:

1.	 Open the JavaScript console.

2.	 Input the following commands to the console line by line. That is, pressing Enter on
each command line. These commands create an array and manipulate it with the
splice function.

3.	 We should get a result similar to the one shown in the following screenshot:

Chapter 6

[1�5][1�5]

What just happened?
We just created an array and tried adding and removing elements by using the splice
function. Please note that the splice array returns another array with the removed elements.

Here is how we use the splice function:

array.splice(index, length, element1, element2, …, elementN);

The following table shows how we use the arguments:

Argument Definition Discussion

index Specifies the index of an
element to be added or
removed in the array

The index starts from 0. 0 means
the first element, 1 means the
second one, and so on. We
can also use negative indexes,
such as -1 which means the last
element, -2 which means the
second last element, and so on.

length Specifies how many elements
we want to remove

Putting 0 means we do not
remove any element.

element1, element2 …
elementN

The new elements to be added
into the array; this is optional

This is optional. Putting a list of
elements here means we add
the elements at the given index.

The following Mozilla Developer Network link discusses different usages of the
splice function:

https://developer.mozilla.org/en/JavaScript/Reference/
Global_Objects/Array/splice

Have a go hero
In similar commercial music games, there are some words showing when the player hits or
misses a music dot. How can we add this feature to our game?

Adding additional features to the mini piano game
We have created basic interaction to the game. We can go further to make the game better,
by adding melody volume feedback to make the performance playing realistic, and counting
the success rate of the performance.

Adding Sound Effects to your Games

[1�6][1�6]

Adjusting the music volume according to the player
Imagine now we are in a performance playing the music. We hit the music dots to play the
melody. If we miss any of them, then we fail to perform it well and the melody disappears.

Time for action – Removing missed melody notes
We will store some gameplay statistics and use it to adjust the melody volume. We will
continue with our JavaScript file:

1.	 First, add the following variables in the variable declaration region:

audiogame.totalDotsCount = 0;
audiogame.totalSuccessCount = 0;

// storing the success count of last 5 results.
audiogame.successCount = 5;

2.	 In the setupLevelData function, we get the total amount of dots with the
highlighted code:

function setupLevelData()
{
 var notes = audiogame.leveldata.split(";");

 // store the total number of dots
 audiogame.totalDotsCount = notes.length;

 for(var i in notes)
 {
 var note = notes[i].split(",");
 var time = parseFloat(note[0]);
 var line = parseInt(note[1]);
 var musicNote = new MusicNote(time,line);
 audiogame.musicNotes.push(musicNote);
 }
}

3.	 We want to not only remove a dot but also keep track of the result when we hit it by
using a keyboard. Add the following code inside the keyboard handler in the jQuery
ready function:

// check if hit a music note dot
for(var i in audiogame.dots)
{
 if (hitLine == audiogame.dots[i].line &&

Chapter 6

[1�7][1�7]

 Math.abs(audiogame.dots[i].distance) < 20)
 {
 // remove the hit dot from the dots array
 audiogame.dots.splice(i, 1);

 // increase the success count
 audiogame.successCount++;

 // keep only 5 success count max.
 audiogame.successCount = Math.min
 (5, audiogame.successCount);

 // increase the total success count
 audiogame.totalSuccessCount ++;
 }
}

4.	 In the gameloop function, we calculate all missed dots and store the result. Then,
we can use these statistics to get the successful rate of the game. Add the following
code to the gameloop function:

// check missed dots
for(var i in audiogame.dots)
{
 if (!audiogame.dots[i].missed &&
 audiogame.dots[i].distance < -10)
 {
 // mark the dot as missed if it is not mark before
 audiogame.dots[i].missed = true;

 // reduce the success count
 audiogame.successCount--;

 // reset the success count to 0 if it is lower than 0.
 audiogame.successCount = Math.max
 (0, audiogame.successCount);
 }

 // remove missed dots after moved to the bottom
 if (audiogame.dots[i].distance < -100)
 {
 audiogame.dots.splice(i, 1);
 }
}

Adding Sound Effects to your Games

[1��][1��]

// calculate the percentage of the success in last 5 music dots
var successPercent = audiogame.successCount / 5;

// prevent the successPercent to exceed range(fail safe)
successPercent = Math.max(0, Math.min(1, successPercent));

5.	 At last, we adjust the melody volume by using the successful rate. Put the following
code after the code we just added in the gameloop function:

audiogame.melody.volume = successPercent;

6.	 Save all files and test our game in a browser. When the player continues to play the
game well, the melody keeps playing. When the player misses several music dots,
the melody disappears and only the base plays.

What just happened?
We just used the player performance as a feedback on the melody volume. It gives a feeling
that we are really performing the music. When we perform poorly, the melody volume is low
and the song sounds poor too.

Removing dots from the game
We want to remove the dots either after it drops under the bottom bound or when they are
being hit by the player. The game loop displays all the dots in the dot list on the game canvas.
We can remove the dot graphic by removing its data from the array of dots.

We use the following splice function to remove an entry in the array at the target index:

audiogame.dots.splice(index, 1);

Storing the success count in the last five results
In our game, we need to store the success count in the last five results to calculate the
success rate. We can do this by using a counter representing this. When a dot is successfully
hit, the counter increases by one, but when the player fails on hitting a dot, the counter
decreases by 1.

The counter is then representing the successful counts within the last several results if we
limit the counter to have a range, such as 0 to 5 in our example.

Chapter 6

[1��][1��]

Have a go hero
We discussed how to display the game progress in the Untangle game in the last chapter. Can
we apply a similar technique in the music game? We have the player's success percentage
during game play. How about displaying it as a percentage bar on the top of the game?

Recording music notes as level data
The game relies on the level data to play. The playback visualization will not work if there is
no level data. We also cannot play it if the playback visualization is not working. So how can
we record that level data?

Imagine now the music is playing without any music dots appearing in the game. We listen to
the music carefully and press the J, K, L keys when the music plays. After the music ends, we
print out all the keys and time we pressed. This data will then be used back in the playback
visualization of the music.

Time for action – Adding functionality to record the
music level data

Carry out the following steps:

1.	 First, we create a variable to toggle between the recording mode and normal playing
mode. Open the html5games.audio.js file and add the code as follows:

audiogame.isRecordMode = true;

2.	 Next, we add the following highlighted code in the keydown event handler. This
code stores all our pressed keys in an array and prints them out to the console when
the semi-colon key is pressed:

$(document).keydown(function(e){
 var line = e.which-73;
 $('#hit-line-'+line).removeClass('hide');
 $('#hit-line-'+line).addClass('show');

 if (audiogame.isRecordMode)
 {
 // print the stored music notes data when press ";" (186)
 if (e.which == 186)
 {
 var musicNotesString = "";
 for(var i in audiogame.musicNotes)
 {
 musicNotesString += audiogame.musicNotes[i].time+",

Adding Sound Effects to your Games

[200][200]

 "+audiogame.musicNotes[i].line+";";
 }
 console.log(musicNotesString);
 }

 var currentTime = parseInt
 (audiogame.melody.currentTime * 1000)/1000;
 var note = new MusicNote(currentTime, e.which-73);
 audiogame.musicNotes.push(note);
 }
 else
 {
 // our target is J(74), K(75), L(76)
 var hitLine = e.which-73;

 // check if hit a music note dot
 …
 }
});

3.	 Finally, we want to make sure that the setupLevelData and the gameloop
functions are not executed during the recording mode. These functions are for
playing mode only:

if (!audiogame.isRecordMode) {
 setupLevelData();
 setInterval(gameloop, 30);
}

4.	 Now open the index.htm in a browser. After clicking on the play button, the game
starts and the music plays without the music notes. Try pressing the J, K, and L keys
following the music beat. After finishing the music, press the semi-colon to print the
level data in the console. The following screenshot shows the console displaying the
level data string:

Chapter 6

[201][201]

What just happened?
We just added a recording feature to our game. We can now record our music notes. We
can toggle the record mode and playing mode by setting the audiogame.isRecordMode
variable to true and false.

On every key press, we get the elapsed time of the melody and create a MusicNote instance
with the time and line number. The following code shows how we record the pressed keys.
The currentTime is cut to two decimal digits before saving:

var currentTime = audiogame.melody.currentTime.toFixed(3);
var note = new MusicNote(currentTime, e.which-73);
audiogame.musicNotes.push(note);

We also capture the semi-colon key to print out all the recorded MusicNote data into a
string. The string follows the time,line;time,line; format, so we can directly copy the
printed string and paste it as level data to play.

The toFixed function formats the number with the given number of
trailing decimals. In our example, we used it to get the current time with 3
trailing decimals.

Adding Sound Effects to your Games

[202][202]

Handling the audio event on playback completes
We can play the game now, but there is no indication on game over. Imagine now, we want
to know how well we played when the game completes. We will capture the melody-ending
signal and display the successful rate of the game.

Time for action – Indicating a game over event in the console
Carry out the following steps:

1.	 Open the html5games.audio.js JavaScript file.

2.	 Add the following code in the jQuery ready function:

$(audiogame.melody).bind('ended', onMelodyEnded);

3.	 Add the following event handler function to the end of the file:

// show game over scene on melody ended.
function onMelodyEnded()
{
 console.log('song ended');
 console.log('success percent: ',audiogame.totalSuccessCount /
 audiogame.totalDotsCount * 100 + '%');
}

4.	 It is time to save all files and play the game in a web browser. When the game is
over, we should see that the successful rate is printed in the console as shown in the
following screenshot:

Chapter 6

[203][203]

What just happened?
We just listened to the ended event of the audio element and handled it with
a handler function.

Handling audio events
There are many other events in the audio element. The following table lists a few commonly
used audio events:

Event Discussion

ended Sent when the audio element finishes a playback

play Sent when the audio element plays or resumes

pause Sent when the audio element pauses

progress Sent periodically when the audio element is downloading

timeupdate Sent when the currentTime property changes

Here we just listed a few commonly used events; you can reference the complete audio
event list in the Mozilla Developer Center at the following URL:

https://developer.mozilla.org/En/Using_audio_and_video_in_
Firefox#Media_events

Have a go hero
In our music game, we print out the successful rate in the console when the game is over.
How about adding a game over scene to our game and showing it at the end of the game?
It would be good to use animation transition when showing a game over scene too.

Adding Sound Effects to your Games

[204][204]

Summary
We learned a lot in this chapter about using the HTML5 audio element and built
a music game.

Specifically, we covered the following topics:

Adding the audio tag to the HTML. There are different attributes we can set to
define how the audio tag behaves and loads different format sources.

Controlling the audio playback and volume by using the JavaScript API.

Adding sound effects on mouse hover and active with the help of jQuery.

Creating a music game in canvas with keyboard inputs.

Handling audio events; the audio element sends several events when
its state changes.

We also discussed managing scenes and animating the transition.

We have learned about adding music and sound effects in our HTML5 games. Now we are
ready to build a more complete game by adding a leaderboard to store game scores in the
next chapter.

7
Using Local Storage to Store

Game Data
Local storage is a new specification from HTML5. It allows a website to store
information in the browser locally and access the stored data later. This is a
useful feature in game development because we can use it as a memory slot to
save any game data locally in a web browser.

We are going to add game data storing in the CSS3 memory matching game we built in
Chapter 3, Building a Memory Matching Game in CSS3. Besides storing and loading the
game data, we will also notify the player for breaking a record with a nice 3D ribbon with
pure CSS3 styling.

In this chapter, we will cover the following topics:

Storing data by using HTML5 local storage

Saving the object in the local storage

Notifying players for breaking a new record with a nice ribbon effect

Saving the entire game progress

Using Local Storage to Store Game Data

[206][206][206]

The following screenshot shows the final result we will create through this chapter. So, let's
get on with it:

Storing data by using HTML5 local storage
Remember the CSS3 memory matching game we made in Chapter 3? Imagine now we have
published our game and players are trying their best to perform well in the game.

We want to show the players whether they played better or worse than the last time. We
will save the latest score and inform players whether they are better or not this time by
comparing the scores.

They may feel proud when performing better. This may make them addicted and they may
keep trying to get higher scores.

Creating a game over dialog
Before actually saving anything in the local storage, we need a game over screen. We have
made a few games in previous chapters. We made a Ping Pong game, memory matching
game, Untangle puzzle game, and a music game. In these games, we did not create any game
over screen. Imagine now we are playing the CSS3 memory matching game that we built in
Chapter 3. We successfully match and remove all cards. Once we finish, a game over screen
pops up and shows the time we utilized to complete the game.

Chapter 7

[207][207][207]

Time for action – Creating a game over dialog with the
elapsed played time

We will continue with the code from the memory matching game we made in Chapter 3.
Carry out the following steps:

1.	 Open the CSS3 matching game folder as our working directory.

2.	 Download a background image from the following URL (we will use it as the
background of the pop up):

http://gamedesign.cc/html5games/popup_bg.jpg

3.	 Place the image in the images folder.

4.	 Open index.html into any text editor.

5.	 We will need a font for the game over pop up. Add the following font embedding
CSS into the head section:

<link href="http://fonts.googleapis.com/css?family=Orbitron:400,70
0" rel="stylesheet" type="text/css" >

6.	 Before the game section, we add a div named timer to show the elapsed playing
time. In addition, we add a new popup section containing the HTML markup of the
pop-up dialog:

<div id="timer">
 Elapsed time: 00:00
</div>
<section id="game">
 <div id="cards">
 <div class="card">
 <div class="face front"></div>
 <div class="face back"></div>
 </div> <!-- .card -->
 </div> <!-- #cards -->
</section> <!-- #game -->

<section id="popup" class="hide">
 <div id="popup-bg">
 </div>
 <div id="popup-box">
 <div id="popup-box-content">
 <h1>You Won!</h1>
 <p>Your Score:</p>
 <p>13</p>

Using Local Storage to Store Game Data

[20�][20�][20�]

 </div>
 </div>
</section>

7.	 We will now move on to the style sheet. As it is just for styling and not related to
our logic yet, we can simply copy the matchgame.css file from matching_game_
with_game_over in the code example bundle.

8.	 It is time to edit the game logic part. Open the html5games.matchgame.js file in
an editor.

9.	 In the jQuery ready function, we need a variable to store the elapsed time of the
game. Then, we create a timer to count the game every second as follows:

$(function(){
 ...
// reset the elapsed time to 0.
matchingGame.elapsedTime = 0;

// start the timer
 matchingGame.timer = setInterval(countTimer, 1000);
}

10.	Next, add a countTimer function which will be executed every second. It displays
the elapsed seconds in the minute and second format:

function countTimer()
{
 matchingGame.elapsedTime++;

 // calculate the minutes and seconds from elapsed time
 var minute = Math.floor(matchingGame.elapsedTime / 60);
 var second = matchingGame.elapsedTime % 60;

 // add padding 0 if minute and second is less then 10
 if (minute < 10) minute = "0" + minute;
 if (second < 10) second = "0" + second;

 // display the elapsed time
 $("#elapsed-time").html(minute+":"+second);
}

11.	 In the removeTookCards function which we wrote earlier, add the following
highlighted code that executes the game over logic after removing all cards:

function removeTookCards()
{

Chapter 7

[20�][20�][20�]

 $(".card-removed").remove();

 // check if all cards are removed and show game over
 if ($(".card").length == 0)
 {
 gameover();
 }
}

12.	At last, we create the following gameover function. It stops the counting timer,
displays the elapsed time in the game over pop up, and finally shows the pop up:

function gameover()
{
 // stop the timer
 clearInterval(matchingGame.timer);

 // set the score in the game over popup
 $(".score").html($("#elapsed-time").html());

 // show the game over popup
 $("#popup").removeClass("hide");
}

13.	Now, save all files and open the game in a browser. Try finishing the
memory matching game and the game over screen will pop up, as shown
in the following screenshot:

Using Local Storage to Store Game Data

[210][210][210]

What just happened?
We have used the CSS3 transition animation to show the game over pop up. We benchmark
the score by using the time a player utilized to finish the game.

Saving scores in the browser
Imagine now we are going to display how well the player played the last time. The game over
screen includes the elapsed time as the last score alongside the current game score. Players
can then see how well they do this time compared to last time.

Time for action – Saving the game score
1.	 First, we need to add a few markups in the popup section to display the last score.

Add the following HTML in the popup section in index.html:

<p>
 <small>Last Score: 20
 </small>
</p>

2.	 Then, we open the html5games.matchgame.js to modify some game logic in the
gameover function.

3.	 Add the following highlighted code in the gameover function. It loads the saved
score from local storage and displays it as the score last time. Then, save the current
score in the local storage:

function gameover()
{
 // stop the timer
 clearInterval(matchingGame.timer);

 // display the elapsed time in the game over popup
 $(".score").html($("#elapsed-time"));

 // load the saved last score from local storage
 var lastElapsedTime = localStorage.getItem
 ("last-elapsed-time");

 // convert the elapsed seconds into minute:second format
 // calculate the minutes and seconds from elapsed time
 var minute = Math.floor(lastElapsedTime / 60);
 var second = lastElapsedTime % 60;

Chapter 7

[211][211][211]

 // add padding 0 if minute and second is less then 10
 if (minute < 10) minute = "0" + minute;
 if (second < 10) second = "0" + second;

 // display the last elapsed time in game over popup
 $(".last-score").html(minute+":"+second);

 // save the score into local storage
 localStorage.setItem
 ("last-elapsed-time", matchingGame.elapsedTime);

 // show the game over popup
 $("#popup").removeClass("hide");
}

4.	 It is now time to save all files and test the game in the browser. When you finish the
game for the first time, the last score should be 00:00. Then, try to finish the game
for the second time. The game over pop up will show the elapsed time you played
the last time. The following screenshot shows the game over screen with the current
and last score:

What just happened?
We just built a basic scoring system that compares a player's score with his/her last score.

Storing and loading data with local storage
We can store data by using the setItem function from the localStorage object. The
following table shows the usage of the function:

localStorage.setItem(key, value);

Using Local Storage to Store Game Data

[212][212][212]

Argument Definition Description

key The key is the name of the
record that we used to identify
an entry.

The key is a string and each
record has a unique key. Writing
a new value to an existing key
overwrites the old value.

value The value is any data which will
be stored.

It can be any data, but the final
storage is in a string. We will
discuss this shortly.

In our example, we save the game elapsed time as the score with the following code by using
the key last-elapsed-item:

localStorage.setItem("last-elapsed-time", matchingGame.elapsedTime);

Complementary to setItem, we get the stored data by using the getItem function in the
following way:

localStorage.getItem(key);

The function returns the stored value of the given key. It returns null when trying to get a
non-existent key. This can be used to check whether we have stored any data for a specific key.

The local storage saves the string value
The local storage stores data in a key-value pair. The key and value are both strings. If we
save numbers, Boolean, or any type other than string, then it will convert the value into a
string while saving.

Usually, problems occur when we load a saved value from the local storage. The loaded value
is a string regardless of the type we are saving. We need to explicitly parse the value into the
correct type before using it.

For example, if we save a floating number into the local storage, we need to use the
parseFloat function when loading it. The following code snippet shows how we can use
parseFloat to retrieve a stored floating number:

var score = 13.234;

localStorage.setItem("game-score",score);
// result: stored "13.234".

var gameScore = localStorage.getItem("game-score");
// result: get "13.234" into gameScore;

gameScore = parseFloat(gameScore);
// result: 13.234 floating value

Chapter 7

[213][213][213]

In the preceding code snippet, the manipulation may be incorrect if we forget to convert the
gameScore from string to float. For instance, if we add the gameScore by 1 without the
parseFloat function, the result will be 13.2341 instead of 14.234. So, be sure to convert
the value from local storage to its correct type.

Size limitation of local storage

There is a size limitation on the data stored through localStorage
for each domain. This size limitation may be slightly different in different
browsers. Normally, the size limitation is 5 MB. If the limit is exceeded, then
the browser throws a QUOTA_EXCEEDED_ERR exception when setting a
key-value into localStorage.

Treating the local storage object as an associated array
Besides using the setItem and getItem functions, we can treat the localStorage object
as an associated array and access the stored entries by using square brackets.

For instance, we can replace the following code with the latter version:

Using the setItem and getItem:

localStorage.setItem("last-elapsed-time", elapsedTime);
var lastElapsedTime = localStorage.getItem("last-elapsed-time");

Access localStorage as an array as follows:

localStorage["last-elapsed-time"] = elapsedTime;
var lastElapsedTime = localStorage["last-elapsed-time"];

Saving objects in the local storage
Now, imagine that we are saving not only the score, but also the date and time when the
ranking is created. We can either save two separate keys for the score and date time of
playing, or pack the two values into one object and store it in the local storage.

We will pack all the game data into one object and store it.

Using Local Storage to Store Game Data

[214][214][214]

Time for action – Saving the time alongside the score
Carry out the following steps:

1.	 First, open the index.html file from our CSS3 memory matching game.

2.	 Replace the HTML markup with the last score by the following HTML (it shows both
scores and the date time in the game over pop up):

<p>
 <small>Last Score: 20

 Saved on: 13/4/2011 3:14pm
 </small>
</p>

3.	 The HTML markup is now ready. We will move on to the game logic. Open the
html5games.matchgame.js file in a text editor.

4.	 We will modify the gameover function. Add the following highlighted code to the
gameover function. It gets the current date time when the game ends and packs a
formatted date time with elapsed time together into local storage:

function gameover()
{
 // stop the timer
 clearInterval(matchingGame.timer);

 // display the elapsed time in the game over popup
 $(".score").html($("#elapsed-time"));

 // load the saved last score and save time from local storage
 var lastScore = localStorage.getItem("last-score");

 // check if there is no any saved record
 lastScoreObj = JSON.parse(lastScore);
 if (lastScoreObj == null)
 {
 // create an empty record if there is no any saved record
 lastScoreObj = {"savedTime": "no record", "score": 0};
 }
 var lastElapsedTime = lastScoreObj.score;

 // convert the elapsed seconds into minute:second format
 // calculate the minutes and seconds from elapsed time
 var minute = Math.floor(lastElapsedTime / 60);
 var second = lastElapsedTime % 60;

Chapter 7

[215][215][215]

 // add padding 0 if minute and second is less then 10
 if (minute < 10) minute = "0" + minute;
 if (second < 10) second = "0" + second;

 // display the last elapsed time in game over popup
 $(".last-score").html(minute+":"+second);

 // display the saved time of last score
 var savedTime = lastScoreObj.savedTime;
 $(".saved-time").html(savedTime);

 // get the current datetime
 var currentTime = new Date();
 var month = currentTime.getMonth() + 1;
 var day = currentTime.getDate();
 var year = currentTime.getFullYear();
 var hours = currentTime.getHours();
 var minutes = currentTime.getMinutes();
 // add padding 0 to minutes
 if (minutes < 10) minutes = "0" + minutes;
 var seconds = currentTime.getSeconds();
 // add padding 0 to seconds
 if (seconds < 10) seconds = "0" + seconds;

 var now = day+"/"+month+"/"+year+"
 "+hours+":"+minutes+":"+seconds;

 //construct the object of datetime and game score
 var obj = { "savedTime": now, "score":
 matchingGame.elapsedTime};

 // save the score into local storage
 localStorage.setItem("last-score", JSON.stringify(obj));

 // show the game over popup
 $("#popup").removeClass("hide");
}

5.	 We will save the files and open the game in a web browser.

Using Local Storage to Store Game Data

[216][216][216]

6.	 When we finish the game for the first time, we will get a screen similar to the
following screenshot which will show our game score and state that there are no
previous records:

7.	 Now try reloading the page and play the game again. When we finish the game for
the second time, the game over dialog will show our saved record. The following
screenshot shows how it should look:

What just happened?
We have just used a Date object in JavaScript to get the current date and time when the
game is over. In addition, we packed the game over date and time and the game elapsed
time in one object and saved it into the local storage. The saved object is encoded in a JSON
string. It will also load the last saved date and time and the game elapsed time from the
storage and parse it back to the JavaScript object from a string.

Chapter 7

[217][217][217]

Getting the current date and time in JavaScript
The Date object in JavaScript is used to working with date and time. When we create an
instance from the Date object, by default it stores the current date and time. Therefore, we
can easily get the current date and time information by using the following code snippet:

var currentTime = new Date();
var month = currentTime.getMonth() + 1;
var day = currentTime.getDate();
var year = currentTime.getFullYear();
var hours = currentTime.getHours();
var minutes = currentTime.getMinutes();
var seconds = currentTime.getSeconds();

As we display the date and time in a human-friendly format, we also need to add zero
padding to minutes and seconds when they are less than 10. We do this as follows:

if (minutes < 10) minutes = "0" + minutes;
if (seconds < 10) seconds = "0" + seconds;

var now = day+"/"+month+"/"+year+" "+hours+":"+minutes+":"+seconds;

The following table lists some useful functions in the Date object to get the date and time:

Function Description

getFullYear Returns the year in four digits

getMonth Returns the month in integer, starting from 0 (Jan is 0 and Dec
is 11)

getDate Returns the day of the month, starting from 1

getDay Returns the day of the week, starting from 0 (Sunday is 0 and
Saturday is 6)

getHours Returns the hour, starting from 0 to 23

getMinutes Returns the minutes

getSeconds Returns the seconds

getMilliseconds Returns the milliseconds in 3 digits

getTime Returns the number of milliseconds since 1 Jan, 1970 00:00

Using Local Storage to Store Game Data

[21�][21�][21�]

The Mozilla Developer Network provides a detailed reference for using the Date
object at the following URL:

https://developer.mozilla.org/en/JavaScript/Reference/
Global_Objects/Date

Using the native JSON to encode an object into a string
We used JSON to represent the game level data in Chapter 4, Building an Untangle Game
with Canvas and Drawing API.

JSON is an object notation format that is friendly for machines to parse and generate.
In this example, we packed the final elapsed time and the date and time into an object.
Then, we encoded the object into JSON. Modern web browsers come with a native JSON
support. We can easily encode any JavaScript object into JSON by using the stringify
function as follows:

JSON.stringify(anyObject);

Normally, we only use the first parameter for the stringify function. It is the object that
we are going to encode as a string. The following code snippet demonstrates the result of an
encoded JavaScript object:

var jsObj = {};
jsObj.testArray = [1,2,3,4,5];
jsObj.name = 'CSS3 Matching Game';
jsObj.date = '8 May, 2011';
JSON.stringify(jsObj);
// result: {"testArray":[1,2,3,4,5],"name":"CSS3 Matching
Game","date":"8 May, 2011"}

The stringify method can parse objects with data structure into a string
well. However, it cannot convert anything from an object into a string. For
instance, it will return an error if we try to pass a DOM element into it. It will
return the string representing the date if we pass a Date object. Alternatively,
it will drop all methods definition of the parsing object.

Loading a stored object from a JSON string
The complete form of JSON is JavaScript Object Notation. From the name, we know that it
uses the syntax from JavaScript to represent an object. Therefore, it is very easy to parse a
JSON formatted string back to a JavaScript object.

Chapter 7

[21�][21�][21�]

The following code snippet shows how we can use the parse function in the JSON object:

JSON.parse(jsonFormattedString);

We can open the console in the Web Inspector to test the JSON JavaScript functions. The
following screenshot shows the running result of the code snippets we just discussed when
encoding an object and parsing them:

Inspecting the local storage in a console window
After we have saved something in the local storage, we may want to know what is exactly
saved before we write the loading part. We can inspect what we have saved by using the
storage panel in the Web Inspector. It lists all the saved key-value pairs under the same
domain. The following screenshot shows that we have the last-score saved with value
{"savedTime":"23/2/2011 19:27:02","score":23}.

Using Local Storage to Store Game Data

[220][220][220]

The value is the result of the JSON.stringify function we used to encode the object into
JSON. You may also try saving an object directly into local storage:

Besides localStorage, there are other storage approaches that were
not discussed. These approaches include the Web SQL Database (http://
www.w3.org/TR/webdatabase/), which uses SQLite to store data, and
IndexedDB (https://developer.mozilla.org/en/IndexedDB).

Notifying players of breaking a new record with a nice
ribbon effect
Imagine that we want to encourage players by informing them that they broke a new record
compared to the last score. We want to show a ribbon with New Record text on it. Thanks to
the new CSS3 properties, we can create a ribbon effect completely in CSS.

Chapter 7

[221][221][221]

Time for action – Creating a ribbon in CSS3
We will create a new record ribbon and display it when a player breaks his/her last score. So,
carry out the following steps:

1.	 First, open index.html where we will add the ribbon HTML markup.

2.	 Add the following highlighted HTML right after popup-box and before popup-box-
content:

<div id="popup-box">
 <div class="ribbon hide">
 <div class="ribbon-body">
 New Record
 </div>
 <div class="triangle"></div>
 </div>
 <div id="popup-box-content">
 …

3.	 Next, we need to focus on the style sheet. The entire ribbon effect is done in CSS.
Open the matchgame.css file in a text editor.

4.	 In the popup-box styling, we need to add a relative position to it. We do this
as follows:

#popup-box {
 position: relative;
 ...
}

5.	 Then, we need to add the following styles that create the ribbon effect to the
CSS file:

.ribbon.hide {
 display: none;
}
.ribbon {
 float: left;
 position: absolute;
 left: -7px;
 top: 165px;
 z-index: 0;

 font-size: .5em;
 text-transform: uppercase;
 text-align: right;

Using Local Storage to Store Game Data

[222][222][222]

}

.ribbon-body {
 height: 14px;
 background: #ca3d33;
 padding: 6px;
 z-index: 100;
 -webkit-box-shadow: 2px 2px 0 rgba(150,120,70,.4);
 border-radius: 0 5px 5px 0;

 color: #fff;
 text-shadow: 0px 1px 1px rgba(0,0,0,.3);
}

.triangle{
 position: relative;
 height: 0px;
 width: 0;
 left: -5px;
 top: -32px;
 border-style: solid;
 border-width: 6px;
 border-color: transparent #882011 transparent transparent;
 z-index: -1;
}

6.	 Lastly, we need to modify the game over logic a little bit. Open the html5games.
matchgame.js file and locate the gameover function.

7.	 Add the following code to the gameover function which compares the current score
with the last score to determine the new record:

if (lastElapsedTime == 0 || matchingGame.elapsedTime <
lastElapsedTime)
{
 $(".ribbon").removeClass("hide");
}

8.	 We will test the game in a web browser. Try finishing a game slowly and then finish
another game fast. When you break the last score, the game over pop up shows a
nice NEW RECORD ribbon, as shown in the following screenshot:

Chapter 7

[223][223][223]

What just happened?
We have just created a ribbon effect in a pure CSS3 style with some help from JavaScript
to show and hide it. The ribbon is composited by a little triangle overlaid by a rectangle, as
shown in the following screenshot:

=+

Now, how can we create a triangle in CSS? We can create a triangle by setting both width
and height to 0 and drawing only one border. The size of the triangle is then decided by the
border width. The following code is for the triangle CSS we used in our new record ribbon:

.triangle{
 position: relative;
 height: 0px;
 width: 0;
 left: -5px;
 top: -32px;
 border-style: solid;
 border-width: 6px;
 border-color: transparent #882011 transparent transparent;
 z-index: -1;
}

Using Local Storage to Store Game Data

[224][224][224]

The following PVM Garage website provides a detailed explanation on pure
CSS3 ribbon usage:

http://www.pvmgarage.com/2010/01/how-to-create-depth-
and-nice-3d-ribbons-only-using-css3/

Have a go hero – Saving and comparing only to the fastest time
Each time the game finishes, it compares the last score with the current score. Then, it saves
the current score.

How about changing the code to save the highest score and show the new record ribbon
when breaking the highest score?

Saving the entire game progress
We have enhanced our CSS3 memory matching game by adding a game over screen and
storing the game record. Imagine now that a player is in the mid game and accidentally
closes the web browser. Once the player opens the game again, the game starts from the
beginning and the game that the player was playing is lost. With the local storage, we can
encode the entire game data into JSON and store them. In this way, players can resume
their game later.

Saving the game progress
We are going to pack the game data into one object and save it into the local storage
every second.

Time for action – Saving all essential game data in the
local storage

We will continue work with our CSS3 memory matching game:

1.	 Open the html5games.matchgame.js JavaScript file.

2.	 Add the following code at the top of the JavaScript file after declaring the
matchingGame variable. This code creates an object named savingObject
to save the array of deck and removed cards and the current elapsed time:

matchingGame.savingObject = {};

matchingGame.savingObject.deck = [];

Chapter 7

[225][225][225]

// an array to store which card is removed by storing their index.
matchingGame.savingObject.removedCards = [];

// store the counting elapsed time.
matchingGame.savingObject.currentElapsedTime = 0;

3.	 In the jQuery function, add the following highlighted code. It clones the order of the
deck to the savingObject. In addition, it assigns an index to each card in the DOM
data attribute:

$(function(){

 // shuffling the deck
 matchingGame.deck.sort(shuffle);

 // copying the deck into saving object.
 matchingGame.savingObject.deck = matchingGame.deck.slice();

 // clone 12 copies of the card DOM
 for(var i=0;i<11;i++){
 $(".card:first-child").clone().appendTo("#cards");
 }
 ...

// embed the pattern data into the DOM element.
$(this).attr("data-pattern",pattern);

// save the index into the DOM element, so we know which is the
next card.
$(this).attr("data-card-index",index);
...

4.	 We have a countTimer function that executes every second. We add the following
highlighted code in the countTimer function. It saves the current elapsed time in
the savingObject and also saves the object in the local storage:

function countTimer()
{
 matchingGame.elapsedTime++;

 // save the current elapsed time into savingObject.
 matchingGame.savingObject.currentElapsedTime =
 matchingGame.elapsedTime;
 ...
 // save the game progress

Using Local Storage to Store Game Data

[226][226][226]

 saveSavingObject();
}

5.	 The game removes cards when the player finds a matching pair. We replace the
original $(".card-removed").remove(); code with the following highlighted
code in the removeTookCards function. It remembers which cards are removed in
the savingObject:

function removeTookCards()
{
 // add each removed card into the array which store which cards
 are removed
 $(".card-removed").each(function(){
 matchingGame.savingObject.removedCards.push
 ($(this).data("card-index"));
 $(this).remove();
 });

 // check if all cards are removed and show game over
 if ($(".card").length == 0)
 {
 gameover();
 }
}

6.	 We have to remove the saved game data in the local storage when the game is over.
Add the following code in the gameover function:

function gameover()
{

 //at last, we clear the saved savingObject
 localStorage.removeItem("savingObject");
}

7.	 At last, we have a function to save the savingObject in the local storage:

function saveSavingObject()
{
 // save the encoded saving object into local storage
 localStorage["savingObject"] =
 JSON.stringify(matchingGame.savingObject);
}

Chapter 7

[227][227][227]

8.	 We have modified the code a lot and it is now time to test the game in a web
browser. After the game runs, try clearing several matching cards. Then, open
the storage panel in the Web Inspector. The local storage should contain an entry
similar to the one shown in the following screenshot. It is a record with a key
savingObject and a value with a long string in a JSON format. The JSON string
contains the shuffled deck, removed cards, and the current elapsed time:

What just happened?
We have just entered all essential game data into an object named savingObject. This
savingObject contains all information that we need to recreate the game later. It includes
the order of cards, removed cards, and the current elapsed time.

Lastly, we saved savingObject in localStorage on each second. The object is encoded
into JSON using the stringify function we used earlier in this chapter. Then, we recreated
the game by parsing the JSON string from the local storage.

Removing a record from the local storage
We need to remove the saved record when the game is over. Otherwise, the new game will
not start. Local storage provides a remoteItem function to remove a specific record.

Here is how we use the function to remove the record with the given key:

localStorage.removeItem(key);

If you want to remove all stored records, then you can use
the localStorage.clear() function.

Cloning an array in JavaScript
We cloned the shuffled deck in savingObject, so that we could use the order of the deck
to recreate the cards when we resumed the game. However, we cannot copy an array by
assigning the array to another variable. The following code fails to copy an array A to array B:

var a = [1,2,3,4,5];
var b = a;
a.pop();
// result:
// a: [1,2,3,4]
// b: [1,2,3,4]

Using Local Storage to Store Game Data

[22�][22�][22�]

The slice function provides an easy way to clone an array with only primitive types of
elements. We can clone an array with the slice function as long as it does not contain
another array or object as an element. The following code successfully clones an array A to B:

var a = [1,2,3,4,5];
var b = a.slice();
a.pop();
// result:
// a: [1,2,3,4]
// b: [1,2,3,4,5]

The slice function is normally used to create a new array by selecting a range of elements
from an existing array. When using the slice function without any arguments, it clones
the entire array. The Mozilla Developer Network provides a detailed usage on the slice
function at the following URL:

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/
Array/slice

Resuming the game progress
We have saved the game progress, but have not yet written the logic for resuming the game.
So, let's move on to the resuming part.

Time for action – Resuming a game from the local storage
Carry out the following steps:

1.	 Open the html5games.matchgame.js JavaScript file.

2.	 In the jQuery ready function, we used the saved order of deck in the previous game
instead of shuffling a new deck. Add the following highlighted code into the ready
function:

$(function(){

 // shuffling the deck
 matchingGame.deck.sort(shuffle);

 // re-create the saved deck
 var savedObject = savedSavingObject();
 if (savedObject != undefined)
 {
 matchingGame.deck = savedObject.deck;
 }
 ...

Chapter 7

[22�][22�][22�]

3.	 After initializing the cards in the ready function, we remove cards which were
removed in the previous game. We also restore the saved elapsed time from the
saved value. Add the following highlighted code in the jQuery ready function:

// removed cards that were removed in savedObject.
if (savedObject != undefined)
{
 matchingGame.savingObject.removedCards =
 savedObject.removedCards;
 // find those cards and remove them.
 for(var i in matchingGame.savingObject.removedCards)
 {
 $(".card[data-card-index="+matchingGame.savingObject.
 removedCards[i]+"]").remove();
 }
}

// reset the elapsed time to 0.
matchingGame.elapsedTime = 0;

// restore the saved elapsed time
if (savedObject != undefined)
{
 matchingGame.elapsedTime = savedObject.currentElapsedTime;
 matchingGame.savingObject.currentElapsedTime = savedObject.
 currentElapsedTime;
}

4.	 Finally, we create the following function to retrieve savingObject from the
local storage:

// Returns the saved savingObject from the local storage.
function savedSavingObject()
{
 // returns the saved saving object from local storage
 var savingObject = localStorage["savingObject"];
 if (savingObject != undefined)
 {
 savingObject = JSON.parse(savingObject);
 }
 return savingObject;
}

Using Local Storage to Store Game Data

[230][230][230]

5.	 Save all files and open the game in web a browser. Try playing the game by removing
several matching cards. Then, close the browser window and open the game again.
The game should resume from the state where we closed the window, as shown in
the following screenshot:

What just happened?
We just finished the game loading part by parsing the saved JSON string of the entire
game status.

Then, we restored the elapsed time and order of deck from the loaded savingObject.
Restoring these two properties is simply variable assigning. The tricky part is recreating
the card removing. In the game saving section, we assigned an index to each card DOM by
custom data attribute data-card-index. We stored the index of each removed card when
saving the game, so we can know which cards are removed when loading the game. Then,
we can remove those cards when the game sets up. The following code removes the cards
in a jQuery game ready function:

if (savedObject != undefined)
{
 matchingGame.savingObject.removedCards = savedObject.removedCards;
 // find those cards and remove them.

Chapter 7

[231][231][231]

 for(var i in matchingGame.savingObject.removedCards)
 {
 $(".card[data-card-index="+matchingGame.savingObject.
 removedCards[i]+"]").remove();
 }
}

Tracking the storage changes with the storage event

Sometimes, we may want to listen to the changes of the localStorage.
We can do that by listening to the storage event. It is fired when anything
is changed in the localStorage. The following link from Dive into HTML5
provides a detailed discussion on how we can use the event:

http://diveintohtml5.org/storage.html#storage-event

Pop quiz – Using local storage
Consider whether each of the following statements is true or not:

1. We can save an integer or object directly in the local storage.

2. We can save the data of an object into the local storage by encoding them
into a string.

3. We can use localStorage["hello"] = "world" to save the value "world" with
key "hello" in the local storage.

Summary
We learned a lot in this chapter about using the local storage to save the game data
in a web browser.

Specifically, we covered:

Saving and retrieving basic data into the key-value pair local storage

Encoding an object into the JSON formatted string and parsing the string back to a
JavaScript object

Saving the entire game progress, so the game can resume even if left mid way

We also created a nice 3D ribbon as a new record badge in pure CSS3 styling.

Now that we have learned about improving our previous games by using the local storage,
we are ready to move on to an advanced feature named WebSocket which connects players
together in a real time interaction.

�
Building a Multiplayer

Draw-and-Guess Game
with WebSockets

We built several local single player games in previous chapters. In this chapter,
we will build a multiplayer game with the help of WebSockets. WebSockets
enable us to create event-based server-client architecture. The messages
passed between all connected browsers become instant. We will combine the
canvas drawing, JSON data packing, and several techniques learned in previous
chapters to build the draw-and-guess game.

In this chapter, we will learn the following topics:

Trying an existing multiuser sketchpad which shows drawings from different
connected users through WebSockets

Installing a WebSockets server which is implemented by node.js

Connecting the server from a browser

Creating an instant chat room with WebSocket API

Creating a multiuser drawing pad in Canvas

Building a draw-and-guess game by integrating the chat room and drawing with
game logic

Building a Multiplayer Draw-and-Guess Game with WebSockets

[234][234]

The following screenshot shows the draw-and-guess game that we will create in
this chapter:

So, let's get on with it.

Trying an existing WebSockets web application
Before we start to build our WebSockets example, we will take a look at an existing multiuser
sketchpad example. This example lets us know how the data is sent between browsers by
using the WebSockets server instantly.

Chapter 8

[235][235]

A browser's capability of using WebSockets

At the time of writing this book, only Apple Safari and Google Chrome
supported the WebSockets API. Mozilla Firefox and Opera dropped support
on WebSockets because of a potential security issue on the protocol. Google
Chrome is also planning to drop WebSockets until the security hole is fixed.

The following link from Mozilla explains why they disabled WebSockets:

http://hacks.mozilla.org/2010/12/websockets-disabled-
in-firefox-4/

Time for action – Trying the multiuser sketchpad
Carry out the following steps:

1.	 Open the following link in a web browser:

http://www.chromeexperiments.com/detail/multiuser-sketchpad/

2.	 You will get an introduction page of the multiuser sketchpad. Right click on the
Launch Experiment option and choose Open link in new window.

3.	 The browser prompts a new window with the sketchpad application. Then, we
repeat the preceding step again to open another instance of the sketchpad.

4.	 Put the two browsers side by side on the desktop.

5.	 Try to draw something on either sketchpad. The drawing should appear on both
sketchpads. In addition, the sketchpad is shared with everyone who is connecting.
You may also see drawings from other users.

6.	 The following screenshot shows a cup drawn on the sketchpad by two users:

Building a Multiplayer Draw-and-Guess Game with WebSockets

[236][236]

What just happened?
We have just seen how browsers can be connected together in real time. We draw
something on the sketchpad and all other connected users can view the drawings. In
addition, we can see what others are drawing too.

The example is made by using the HTML5 WebSockets feature with a backend server to
broadcast drawing data to all connected browsers.

The drawing part is built on a canvas which we already covered in Chapter 4, Building the
Untangle Game with Canvas and Drawing API. The WebSocket API enables browsers to
establish a persistent connection with the server. The backend is an event-based server
named node.js which we will install and use in this chapter.

Installing a WebSocket server
The HTML5, WebSockets provides a client-side API to connect a browser to a backend server.
This server has to support WebSockets protocol in order to keep the connection persistent.

Installing the Node.JS WebSocket server
In this section, we will download and install a server named Node.JS on which we can
install a WebSockets module.

Time for action – Installing Node.JS
Carry out the following steps:

1.	 Go to the following URL which contains the source code of the Node.JS server:

https://github.com/joyent/node

2.	 Click on the Downloads button on the page. It prompts a dialog asking which format
to download. Just select the ZIP format.

3.	 Unzip the ZIP file in a working directory.

4.	 In Linux or Mac OSX, use Terminal and change the directory to where the node.js
file is located.

Chapter 8

[237][237]

Node.JS works out of the box in Linux and Mac. The following link provides
an installer for installing it on Windows:

http://node-js.prcn.co.cc/

5.	 Run the following command:

$./configure
$ sudo make install

The sudo make install command installs Node.JS with root ownership
and also installs the required third party libraries with root access. The
following link discusses how we can install the Node.JS without using sudo:

http://increaseyourgeek.wordpress.com/2010/08/18/
install-node-js-without-using-sudo/

6.	 The sudo make install command requires typing the password of the user in a
system who has admin privileges. Type the password to continue the installation.

7.	 After the installation, we can check whether the node.js is installed by checking its
version with the following command:

$ node --version

8.	 The preceding command should print a version number of the node.js. In my case,
it is version 0.5 pre:

v0.5.0-pre

9.	 Next, we will install the WebSockets library for the Node.JS server. Go to the
following URL in a browser:

https://github.com/miksago/node-websocket-server

10.	Click on the Downloads button on the page and download the ZIP file.

11.	Unzip the ZIP file in a directory. We will need the lib directory in this package later.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[23�][23�]

What just happened?
We just downloaded and installed the Node.JS server. We also downloaded the WebSockets
library for the node.js server. We will build server logic on top of this server and the
WebSockets library through the examples in this chapter.

Node.js server installation runs well on Unix or Linux operating systems.
However, it requires a few more steps to install and run the node.js server
on Windows. The following link shows how we can install the node.js
server on Windows:

https://github.com/joyent/node/wiki/Building-node.
js-on-Cygwin-(Windows)

Creating a WebSockets server to broadcast the connection
count
We just installed the node.js server with the WebSockets library. Now, we will build
something to test the WebSockets. Imagine now we want a server that accepts connections
from browsers and then broadcasts the connection count to all users.

Time for action – Creating a WebSocket server that sends
the total count of connections

Carry out the following steps:

1.	 Create a new directory named server.

2.	 Copy the entire lib folder in the node-websocket-server package in the
server directory.

3.	 Create a new file named server.js under the server directory with the following
content:

var ws = require(__dirname + '/lib/ws/server');
var server = ws.createServer();

server.addListener("connection", function(conn){
 // init stuff on connection
 console.log("A connection established with id",conn.id);
 var message = "Welcome "+conn.id+" joining the party.
 Total connection:"+server.manager.length;
 server.broadcast(message);

Chapter 8

[23�][23�]

});

server.listen(8000);

console.log("WebSocket server is running.");
console.log("Listening to port 8000.");

4.	 Open the terminal and change to the server directory.

5.	 Type the following command to execute the server:

node server.js

6.	 We should get the following result if it works:

$ node server.js
WebSocket server is running.
Listening to port 8000.

What just happened?
We just created a simple server logic that initialized the WebSockets library and listened to
the connection event.

Initializing the WebSockets server
In Node.JS, different functions are packed into modules. When we need a functionality in
a specific module, we use require to load it. We load the WebSockets module and then
initialize the server using the following code in the server logic:

var ws = require(__dirname + '/lib/ws/server');
var server = ws.createServer();

__dirname represents the current directory of the server JavaScript file that is being
executed. We placed the lib folder under the same folder of our server logic file. Therefore,
the WebSockets server is in current directory | lib | ws | server.

At last, we need to assign a port for the server to listen to by the following code:

server.listen(8000);

In the preceding code snippet, 8000 is the port number with which a client connects to this
server. We may choose a different port number, but we have to ensure that the chosen port
number is not overlapped by other common server services.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[240][240]

In order to get more information about the global scope objects and variables
from the node.js server, please visit their official document at the following link:

http://nodejs.org/docs/v0.4.3/api/globals.html

Listening to the connection event on the server side
The node.js server is event-based. This means that most logic is executed when a certain
event is fired. The following code we used in the example listens to the connection event
and handles it:

server.addListener("connection", function(conn){
 console.log("A connection established with id",conn.id);
…
});

The connection event comes with a connection argument. We have an id property in the
connection instance that we can use to distinguish each connected client.

The following table lists two commonly used server events:

Server-side event for WebSockets
node.js

Description

connection Event fires when there is a new connection established by
the client

close Event fires when a connection closes

Getting a count of connected clients on the server side
We can get the count of connected clients in the WebSockets node.js server by accessing
the server manager. We can get the count by using the following code:

var totalConnectedClients = server.manager.length;

Broadcasting a message to all connected browsers
Once the server gets a new connection event, we broadcast the updated count of the
connection to all clients. Broadcasting a message to clients is easy. We just need to call the
broadcast function in the server instance with a string argument as the message.

The following code snippet broadcasts a server message to all connected browsers:

var message = "a message from server";
server.broadcast(message);

Chapter 8

[241][241]

Creating a client that connects to a WebSocket server and
getting the total connections count
We built the server in the last example and now we will build a client that connects to our
WebSocket server and receives messages from the server. The message will contain the total
connection count from the server.

Time for action – Showing the connection count in a
WebSocket application

Carry out the following steps:

1.	 Create a new directory named client.

2.	 Create an HTML file named index.htm in the client folder.

3.	 We will add a few markups in our HTML file. Put the following code in the index.
htm file:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>WebSockets demo for HTML5 Games Development: A
 Beginner's Guide</title>
 <meta name="description" content="This is a WebSockets demo
 for the book HTML5 Games Development: A Beginner's Guide
 by Makzan">
 <meta name="author" content="Makzan">

</head>
<body>

<script src="js/jquery-1.6.min.js"></script>
<script src="js/html5games.websocket.js"></script>
</body>
</html>

4.	 Create a directory named js and put the jQuery JavaScript file inside.

5.	 Create a new file named html5games.websockets.js as follows:

var websocketGame = {
}
// init script when the DOM is ready.
$(function(){

Building a Multiplayer Draw-and-Guess Game with WebSockets

[242][242]

 // check if existence of WebSockets in browser
 if (window["WebSocket"]) {

 // create connection
 websocketGame.socket = new WebSocket("ws://127.0.0.1:8000");

 // on open event
 websocketGame.socket.onopen = function(e) {
 console.log('WebSocket connection established.');
 };

 // on message event
 websocketGame.socket.onmessage = function(e) {
 console.log(e.data);
 };

 // on close event
 websocketGame.socket.onclose = function(e) {
 console.log('WebSocket connection closed.');
 };
 }
});

6.	 We will test the code. First, we need to run the node server with our server.js
code by node server.js.

7.	 Next, open the index.htm file in a client directory in a web browser twice.

8.	 Inspect the server terminal. There should be log messages similar to the following
indicating the connection information and total connection count:

$ node server.js
WebSocket server is running.
Listening to port 8000.
A connection established with id 3863522640
A connection established with id 3863522651

9.	 Then, we inspect the console panel in a browser. We get the total connection count
once we have loaded the page. The following screenshot shows the result on the
client side:

Chapter 8

[243][243]

What just happened?
We just built a client that established a WebSockets connection to the server we built in
the last section. The client then prints any message received from the server to the console
panel in the Inspector.

Establishing a WebSocket connection
In any browser that supports WebSockets, we can establish a connection by creating a new
WebSocket instance with the following code:

var socket = new WebSocket(url);

The url argument is a string with the WebSockets URL. In our example, we are running our
server locally. Therefore, the URL we have used is ws://127.0.0.1:8000, where 8000
represents the port number of the server to which we are connecting. It is 8000 because the
server is listening to the port 8000 when we built the server-side logic.

WebSockets client events
Similar to the server, we have several WebSockets events on the client side. The following
table lists the events we will use to deal with WebSockets:

Event name Description

onopen Fired when a connection to the server is established

onmessage Fired when any message from the server is received

onclose Fired when the server closes the connection

onerror Fired when there is any error in the connection

Building a chatting application with WebSockets
We now know how many browsers are connected. Suppose we want to build a chat room
where users can type a message in their respective browsers and broadcast the message to
all the connected users instantly.

Sending a message to the server
We will let the user input a message and then send the message to the node.js server. The
server will then forward the message to all connected browsers. Once the browser receives
the messages, it displays it in the chat area. In this case, the users are connected to the
instant chat room once they load the web page.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[244][244]

Time for action – Sending a message to the server
through WebSockets

Carry out the following steps:

1.	 First, code the server logic.

2.	 Open server.js and add the following highlighted code:

server.addListener("connection", function(conn){
 // init stuff on connection
 console.log("A connection established with id",conn.id);
 var message = "Welcome "+conn.id+" joining the party.
 Total connection:"+server.manager.length;
 server.broadcast(message);

 // listen to the message
 conn.addListener("message", function(message){
 console.log("Got data '"+message+"' from
 connection "+conn.id);
 });
});

3.	 Now move on to the client folder.

4.	 Open the index.htm file and add the following markup in the body section. It
provides inputs for the user to type and send messages to the server:

<input type='text' id="chat-input">
<input type='button' value="Send" id="send">

5.	 Then, add the following code to the html5games.websocket.js JavaScript file. It
sends the message to the server when the user clicks on the send button or presses
the Enter key:

$("#send").click(sendMessage);

$("#chat-input").keypress(function(event) {
 if (event.keyCode == '13') {
 sendMessage();
 }
});

function sendMessage()
{
 var message = $("#chat-input").val();
 websocketGame.socket.send(message);

http://conn.id/

Chapter 8

[245][245]

 $("#chat-input").val("");
}

6.	 Before testing our code, check the server terminal and see whether the node
server is still running. Press Ctrl+C to terminate it and run it again by using the node
server.js command.

7.	 Open index.htm in a web browser. You should see an input text field with a Send
button as shown in the following screenshot:

8.	 Try to type something in the input text field and then click on the Send button or
press Enter. The input text is cleared.

9.	 Now, switch to the server terminal and we will see the server printing the text we
just sent. You can also put the browser and server terminal side by side to see how
instantly the message is sent from the client to the server. The following screenshot
shows the server terminal with messages from two connected browsers:

Building a Multiplayer Draw-and-Guess Game with WebSockets

[246][246]

What just happened?
We just extended our connection example by adding an input text field for the users to type
some text there and send it out. The text is sent as a message to the WebSockets server. The
server will then print the received message in the terminal.

Sending a message from the client to the server
In order to send a message from the client to the server, we call the following send method
in the WebSocket instance:

websocketGame.socket.send(message);

In the following code snippet from our example, we get the message from the input text field
and send it to the server:

var message = $("#chat-input").val();
websocketGame.socket.send(message);

Receiving a message on the server side
On the server side, we need to handle the message we just sent from the client. We have
an event named message in the connection instance in the WebSocket node.js library.
We can listen to the connection message event to receive a message from each client
connection.

The following code snippet shows how we use the message event listener to print the
message and the unique connection ID on the server terminal:

conn.addListener("message", function(message){
 console.log("Got data '"+message+"' from connection "+conn.id);
});

Only string is accepted when sending and receiving messages between the
server and the client. We cannot directly send objects. However, we can
convert the data into a JSON-formatted string before transmitting. We will
show an example of sending data objects later in this chapter.

Chapter 8

[247][247]

Broadcasting every received message on the server side
to create a chat room
In the last example, the server could receive messages sent from browsers. However, the
server does nothing except print the received messages in the terminal. Therefore, we will
add some logic to the server to broadcast the messages out.

Time for action – Broadcasting the messages to all connected
browsers

Carry out the following steps:

1.	 Open the server.js file for the server-side logic.

2.	 Add the following highlighted code to the message event listener handler:

conn.addListener("message", function(message){
 console.log("Got data '"+message+"' from connection "+conn.id);
 var displayMessage = conn.id + " says: "+message;
 server.broadcast(displayMessage);
});

3.	 That is it for the server side. Move on to the client folder and open the index.
htm file.

4.	 We want to display the chat messages in the chat history area. Add the following
code to the HTML file:

<ul id="chat-history">

5.	 Next, we need the client-side JavaScript to handle the received message from the
server. We used it to print it out into the console panel, replace the console.log
code by the following highlighted code in the onmessage event handler:

socket.onmessage = function(e) {
 $("#chat-history").append(""+e.data+"");
};

6.	 Let's test our code. Terminate any running node server by Ctrl + C. Then run the
server again.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[24�][24�]

7.	 Open the index.htm file twice and put them side by side. Type something in
the text field and press Enter. The message will appear on both opened browsers.
If you open many instances of the HTML file, the message should appear on all
browsers. The following screenshot shows two browsers displaying the chat history
side by side:

What just happened?
This is an extension of our previous examples. We discussed how a server broadcasts the
connection count to all connected clients. We also discussed how the client sends a message
to the server. In this example, we combine these two techniques to let the server broadcast
the received messages to all connected users.

Comparing between WebSockets and polling approaches
If you have ever built a web page chat room by using a server-side language and a database,
then you may wonder what is the difference between the WebSocket implementation and
the traditional one.

The traditional chat room method is often implemented by using a polling approach. The
client asks the server for an update periodically. The server responds to the client with either
no update or updated data. However, the traditional approach has several problems. The
client does not get new data updated from the server until the next time it asks the server.
This means that the data update is delayed with the periodic time and the response is not
instant enough. If we want to improve this issue by shortening the polling duration, then
more bandwidth is utilized because clients need to keep sending requests to the server.

The following graph shows requests between the client and the server. It shows that many
useless requests are sent, but the server responds to the client without any new data:

Chapter 8

[24�][24�]

any updates? any updates?no update. Send
message

hi” and
any update?

“

no update. any
updates?

Yes,
message

hello”

any
updates?

no update.

“

server

requests

client

time

There is a better polling approach named long polling. The client sends a request to the
server and waits for the response. Instead of the traditional polling approach where the
server responds with "no update", the server does not respond at all until there is something
that needs to be pushed to the server. In this approach, the server can push something to
clients whenever there is an update. Once the client receives a response from the server, it
creates another request and waits for the next server notification. The following graph shows
the long polling approach where clients ask for updates and the server responds only when
there is an update:

received
message hello”“

server

requests

client

time

any updates?

Send
message

hi” and
any update?

“
any updates?

Building a Multiplayer Draw-and-Guess Game with WebSockets

[250][250]

In the WebSockets approach, the number of requests are way less than the polling approach.
It is because the connection between the client and server is persistent. Once the connection
is established, a request from either the client side or the server side is sent only when there
is any update. For instance, a client sends a message to the server when it wants to update
something to the server. The server also sends messages to clients only when it needs to
notify the clients of a data update. No other useless requests are sent during the connection.
Therefore, less bandwidth is utilized. The following graph shows the WebSockets approach:

Send
message hi”“

Received
message hello”“

server

requests

client

time

connection
established

Pop quiz – The benefit of WebSockets verses the polling approach
What are the benefits of using an event-based WebSockets approach to implement the
multiuser chat room? How do these benefits make the message-passing so instant?

Making a shared drawing whiteboard with Canvas and
WebSockets
Suppose we want a shared sketchpad. Anyone can draw something on the sketchpad and
all others can view it, just like the sketchpad example we played at the beginning of this
chapter. We learned how messages are communicated between clients and servers. We will
go further and send drawing data.

Building a local drawing sketchpad
Before we deal with the data sending and the server handling, let's focus on making a
drawing whiteboard. We will use the canvas to build a local drawing sketchpad.

Chapter 8

[251][251]

Time for action – Making a local drawing whiteboard with
the Canvas

Carry out the following steps:

1.	 We will focus only on the client side in this section. Open the index.htm file and
add the following canvas markup:

<canvas id='drawing-pad' width='500' height='400'>
</canvas>

2.	 We will draw something on the canvas and we will need the mouse position relative
to the canvas. We did this in Chapter 4, Building an Untangle Game with Canvas and
Drawing API. Add the following style to the canvas:

<style>
 canvas{position:relative;}
</style>

3.	 Then, we open the html5games.websocket.js JavaScript file to add the
drawing logic.

4.	 Replace the websocketGame global object with the following variable at the top of
the JavaScript file:

var websocketGame = {
 // indicates if it is drawing now.
 isDrawing : false,

 // the starting point of next line drawing.
 startX : 0,
 startY : 0,
}

// canvas context
var canvas = document.getElementById('drawing-pad');
var ctx = canvas.getContext('2d');

5.	 In the jQuery ready function, we add the following mouse event handler code. The
code handles the mouse down, move, and up events:

// the logic of drawing on canvas
$("#drawing-pad").mousedown(function(e) {
 // get the mouse x and y relative to the canvas top-left point.
 var mouseX = e.layerX || 0;
 var mouseY = e.layerY || 0;

Building a Multiplayer Draw-and-Guess Game with WebSockets

[252][252]

 startX = mouseX;
 startY = mouseY;

 isDrawing = true;
});

$("#drawing-pad").mousemove(function(e) {
 // draw lines when is drawing
 if (websocketGame.isDrawing) {
 // get the mouse x and y relative to the canvas
 top-left point.
 var mouseX = e.layerX || 0;
 var mouseY = e.layerY || 0;

 if (!(mouseX == websocketGame.startX &&
 mouseY == websocketGame.startY)) {
 drawLine(ctx, websocketGame.startX,
 websocketGame.startY,mouseX,mouseY,1);

 websocketGame.startX = mouseX;
 websocketGame.startY = mouseY;
 }
 }
});

$("#drawing-pad").mouseup(function(e) {
 websocketGame.isDrawing = false;
});

6.	 At last, we have the following function to draw a line on the canvas with the given
starting and ending point:

function drawLine(ctx, x1, y1, x2, y2, thickness) {
 ctx.beginPath();
 ctx.moveTo(x1,y1);
 ctx.lineTo(x2,y2);
 ctx.lineWidth = thickness;
 ctx.strokeStyle = "#444";
 ctx.stroke();
}

Chapter 8

[253][253]

7.	 Save all files and open the index.htm file. We should see an empty space where
we can draw something by using the mouse. The drawings are not sent to the server
yet, so others cannot view our drawings:

What just happened?
We just created a local drawing pad. This is like a whiteboard where the player can draw on
the canvas by dragging the mouse. However, the drawing data is not sent to the server yet;
all drawings are only displayed locally.

The drawing line function is the same that we used in Chapter 4. We also used the same
code to get the mouse position relative to the canvas element. However, the logic of the
mouse events is different from Chapter 4.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[254][254]

Drawing on the canvas
When we draw something on the computer, it often means that we click on the canvas and
drag the mouse (or pen). The line is drawn until the mouse button is up. Then, the user clicks
on another place and drags again to draw lines.

In our example, we have a Boolean flag named isDrawing to indicate if the user is drawing.
The isDrawing flag is false by default. When the mouse button is down, we turn the flag to
true. When the mouse is moving, we draw a line between the moved point and the last point
when the mouse button is down. Then, we set the isDrawing flag to false again when the
mouse button is up.

This is how the drawing logic works.

Have a go hero – Drawing with colors
Can we modify the drawing sketchpad by adding color support? How about adding five
buttons with red, blue, green, black, and white color? The player can choose the color
when drawing.

Broadcasting the drawing to all connected browsers
We will go further by sending our drawing data to the server and let the server broadcast the
drawing to all connected browsers.

Time for action – Sending the drawing through WebSockets
Carry out the following steps:

1.	 First, we need to modify the server logic. Open the server.js file and replace the
following code. It uses a JSON-formatted string for broadcasting, so we can send and
receive data object:

// Constants
var LINE_SEGMENT = 0;
var CHAT_MESSAGE = 1;

var ws = require(__dirname + '/lib/ws/server');
var server = ws.createServer();

server.addListener("connection", function(conn){
 // init stuff on connection
 console.log("A connection established with id",conn.id);
 var message = "Welcome "+conn.id+" joining the party.
 Total connection:"+server.manager.length;

Chapter 8

[255][255]

 var data = {};
 data.dataType = CHAT_MESSAGE;
 data.sender = "Server";
 data.message = message;

 server.broadcast(JSON.stringify(data));

 // listen to the message
 conn.addListener("message", function(message){
 console.log("Got data '"+message+"' from connection
 "+conn.id);
 var data = JSON.parse(message);
 if (data.dataType == CHAT_MESSAGE) {
 // add the sender information into the message
 data object
 data.sender = conn.id;
 }
 server.broadcast(JSON.stringify(data));
 });
});

server.listen(8000);

console.log("WebSocket server is running.");
console.log("Listening to port 8000.");

2.	 On the client side, we need the logic to respond to the server with the same data
object definition. Open the html5games.websocket.js JavaScript file in the
client | js directory.

3.	 Add the following constants to the websocketGame global variable. The same
constants with the same values are also defined in the server side logic.

// Contants
LINE_SEGMENT : 0,
CHAT_MESSAGE : 1,

4.	 When handling the message event on the client-side, we convert the JSON
formatted string back to the data object. If the data is a chat message, then we
display it as chat history, otherwise we draw it on the canvas as a line segment.
Replace the onmessage event handler with the following code:

socket.onmessage = function(e) {
 // check if the received data is chat message or line segment
 console.log("onmessage event:",e.data);
 var data = JSON.parse(e.data);

Building a Multiplayer Draw-and-Guess Game with WebSockets

[256][256]

 if (data.dataType == websocketGame.CHAT_MESSAGE) {
 $("#chat-history").append(""+data.sender+"
 said: "+data.message+"");
 }
 else if (data.dataType == websocketGame.LINE_SEGMENT) {
 drawLine(ctx, data.startX, data.startY,
 data.endX, data.endY, 1);
 }

};

5.	 When the mouse is moving, we not only draw the line on the canvas but also send
the line data to the server. Add the following highlighted code to the mouse move
event handler:

$("#drawing-pad").mousemove(function(e) {
 // draw lines when is drawing
 if (websocketGame.isDrawing) {
 // get the mouse x and y relative to the canvas
 top-left point.
 var mouseX = e.layerX || 0;
 var mouseY = e.layerY || 0;

 if (!(mouseX == websocketGame.startX &&
 mouseY == websocketGame.startY)) {
 drawLine(ctx,startX,startY,mouseX,mouseY,1);

 // send the line segment to server
 var data = {};
 data.dataType = websocketGame.LINE_SEGMENT;
 data.startX = startX;
 data.startY = startY;
 data.endX = mouseX;
 data.endY = mouseY;
 websocketGame.socket.send(JSON.stringify(data));

 websocketGame.startX = mouseX;
 websocketGame.startY = mouseY;
 }

 }
});

Chapter 8

[257][257]

6.	 Lastly, we need to modify the send message logic. We now pack the message
in an object and format it as JSON when sending it to the server. Change the
sendMessage function to the following code:

function sendMessage() {
 var message = $("#chat-input").val();

 // pack the message into an object.
 var data = {};
 data.dataType = websocketGame.CHAT_MESSAGE;
 data.message = message;

 websocketGame.socket.send(JSON.stringify(data));
 $("#chat-input").val("");
}

7.	 Save all files and re-launch the server.

8.	 Open the index.htm file in two browser instances.

9.	 First, try the chat room feature by typing some messages and sending them.
Then, try drawing something on the canvas. Both browsers should display the
same drawing as shown in the following screenshot:

Building a Multiplayer Draw-and-Guess Game with WebSockets

[25�][25�]

What just happened?
We have just built a multiuser sketchpad. This is similar to the sketchpad we tried at the
beginning of this chapter. We extended what we learned when building a chat room by
sending a complex data object as a message.

Defining a data object to communicate between the client and
the server
In order to communicate correctly between the server and clients with several data packed
into one message, we have to define a data object that both client and server understand.

There are several properties in the data object. The following table lists the properties with
why we need them:

Property name Why we need this property

dataType This is an important property that helps us to understand about
the entire data. The data is either a chat message or a drawing line
segment data.

sender If the data is a chat message, the client needs to know who sent the
message.

message When the data type is a chat message, we surely need to include the
message content itself into the data object.

startX When the data type is a drawing line segment, we include the x/y
coordinate of the starting point of the line.startY

endX When the data type is a drawing line segment, we include the x/y
coordinate of the ending point of the line.endY

In addition, we have the following constants defined on both the client side and the server
side. These constants are for the dataType property:

// Contants
LINE_SEGMENT : 0,
CHAT_MESSAGE : 1,

With these constants, we can compare the dataType by the following readable code
instead of using the meaningless integer:

if (data.dataType == websocketGame.CHAT_MESSAGE) {…}

Chapter 8

[25�][25�]

Packing the drawing lines data into JSON for broadcasting
We used the JSON.stringify function in the last chapter when storing a JavaScript object
into a JSON-formatted string in the local storage. Now, we need to send the data in a string
format between the server and the client. We used the same method to pack the drawing
lines data into an object and send it as a JSON string.

The following code snippet shows how we pack the line segment data on the client side and
send it to the server with a JSON-formatted string:

// send the line segment to server
var data = {};
data.dataType = websocketGame.LINE_SEGMENT;
data.startX = startX;
data.startY = startY;
data.endX = mouseX;
data.endY = mouseY;
websocketGame.socket.send(JSON.stringify(data));

Recreating the drawing lines after receiving them from
other clients
The JSON parsing often comes as a pair of stringify. When we receive a message from
the server, we have to parse it to the JavaScript object. The following code on the client side
parses the data and either updates the chat history or draws a line based on the data:

var data = JSON.parse(e.data);
if (data.dataType == websocketGame.CHAT_MESSAGE) {
 $("#chat-history").append(""+data.sender+" said:
 "+data.message+"");
}
else if (data.dataType == websocketGame.LINE_SEGMENT) {
 drawLine(ctx, data.startX, data.startY, data.endX, data.endY, 1);
}

Building a multiplayer draw-and-guess game
We built an instant chat room earlier in this chapter. Moreover, we just built a multiuser
sketchpad. How about combining these two techniques and building a draw-and-guess
game? A draw-and-guess game is a game in which one player is given a word to draw. All
other players do not know the word and guess the word according to the drawing. The one
who draws and who correctly guesses the word earn points.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[260][260]

Time for action – Building the draw-and-guess game
We will implement the game flow of the draw-and-guess game as follows:

1.	 First, we will add the game logic on the client side.

2.	 Open the index.htm file in the client directory. Add the following restart button
right after the send button:

<input type='button' value="Restart" id="restart">

3.	 Open the html5games.websocket.js JavaScript.

4.	 We need a few more constants to determine different states during the game play.
Add the following highlighted code to the top of the file:

// Constants
LINE_SEGMENT : 0,
CHAT_MESSAGE : 1,
GAME_LOGIC : 2,

// Constant for game logic state
WAITING_TO_START : 0,
GAME_START : 1,
GAME_OVER : 2,
GAME_RESTART : 3,

5.	 In addition, we want a flag to indicate this player to in charge of drawing. Add the
following Boolean global variable to the code:

isTurnToDraw : false,

6.	 When the client receives a message from the server, it parses it and checks whether
it is a chat message of line drawing. We have another type of message now for
handling the game logic named GAME_LOGIC. The game logic message contains
different data for different game states. Add the following code to the onmessage
event handler:

else if (data.dataType == websocketGame.GAME_LOGIC) {
 if (data.gameState == websocketGame.GAME_OVER) {
 websocketGame.isTurnToDraw = false;
 $("#chat-history").append(""+data.winner+" wins!
 The answer is '"+data.answer+"'.");
 $("#restart").show();
 }
 if (data.gameState == websocketGame.GAME_START) {
 // clear the canvas.

Chapter 8

[261][261]

 canvas.width = canvas.width;

 // hide the restart button.
 $("#restart").hide();

 // clear the chat history
 $("#chat-history").html("");

 if (data.isPlayerTurn) {
 isTurnToDraw = true;
 $("#chat-history").append("Your turn to draw.
 Please draw '"+data.answer+"'.");
 }
 else {
 $("#chat-history").append("Game Started. Get Ready.
 You have one minute to guess.");
 }
 }
}

7.	 We have added the game logic to the client side. There is some minor code on the
client side containing the restart logic and preventing the non-drawing player to
draw on the canvas. These codes can be found in the code bundle.

8.	 It is time to move on to the server side.

9.	 In the previous example, the server side is just in charge of broadcasting any
incoming message to all connected browsers. This is not enough for a multiplayer
game. The server will act as the game master that controls the game flow and
winning determination. Therefore, delete the existing code in server.js and use
the following code. The changes are highlighted:

// Constants
var LINE_SEGMENT = 0;
var CHAT_MESSAGE = 1;
var GAME_LOGIC = 2;

// Constant for game logic state
var WAITING_TO_START = 0;
var GAME_START = 1;
var GAME_OVER = 2;
var GAME_RESTART = 3;

var ws = require(__dirname + '/lib/ws/server');
var server = ws.createServer();

Building a Multiplayer Draw-and-Guess Game with WebSockets

[262][262]

// the current turn of player index.
var playerTurn = 0;

var wordsList = ['apple','idea','wisdom','angry'];
var currentAnswer = undefined;

var currentGameState = WAITING_TO_START;

var gameOverTimeout;

server.addListener("connection", function(conn){
 // init stuff on connection
 console.log("A connection established with id",conn.id);
 var message = "Welcome "+conn.id+" joining the party.
 Total connection:"+server.manager.length;
 var data = {};
 data.dataType = CHAT_MESSAGE;
 data.sender = "Server";
 data.message = message;
 server.broadcast(JSON.stringify(data));

 // send the game state to all players.
 var gameLogicData = {};
 gameLogicData.dataType = GAME_LOGIC;
 gameLogicData.gameState = WAITING_TO_START;
 server.broadcast(JSON.stringify(gameLogicData));

 // start the game if there are 2 or more connections
 if (currentGameState == WAITING_TO_START &&
 server.manager.length >= 2)
 {
 startGame();
 }

 // listen to the message
 conn.addListener("message", function(message){
 console.log("Got data '"+message+"' from connection
 "+conn.id);
 var data = JSON.parse(message);
 if (data.dataType == CHAT_MESSAGE)
 {
 // add the sender information into the message data object.
 data.sender = conn.id;
 }

Chapter 8

[263][263]

 server.broadcast(JSON.stringify(data));

 // check if the message is guessing right or wrong
 if (data.dataType == CHAT_MESSAGE)
 {
 if (currentGameState == GAME_START && data.message ==
 currentAnswer)
 {
 var gameLogicData = {};
 gameLogicData.dataType = GAME_LOGIC;
 gameLogicData.gameState = GAME_OVER;
 gameLogicData.winner = conn.id;
 gameLogicData.answer = currentAnswer;
 server.broadcast(JSON.stringify(gameLogicData));

 currentGameState = WAITING_TO_START;

 // clear the game over timeout
 clearTimeout(gameOverTimeout);
 }
 }

 if (data.dataType == GAME_LOGIC && data.gameState ==
 GAME_RESTART)
 {
 startGame();
 }
 });
});

function startGame()
{
 // pick a player to draw
 playerTurn = (playerTurn+1) % server.manager.length;

 // pick an answer
 var answerIndex = Math.floor(Math.random() * wordsList.length);
 currentAnswer = wordsList[answerIndex];

 // game start for all players
 var gameLogicData1 = {};
 gameLogicData1.dataType = GAME_LOGIC;
 gameLogicData1.gameState = GAME_START;

Building a Multiplayer Draw-and-Guess Game with WebSockets

[264][264]

 gameLogicData1.isPlayerTurn = false;
 server.broadcast(JSON.stringify(gameLogicData1));

 // game start with answer to the player in turn
 var index = 0;
 server.manager.forEach(function(connection){
 if (index == playerTurn)
 {
 var gameLogicData2 = {};
 gameLogicData2.dataType = GAME_LOGIC;
 gameLogicData2.gameState = GAME_START;
 gameLogicData2.answer = currentAnswer;
 gameLogicData2.isPlayerTurn = true;
 server.send(connection.id, JSON.stringify(gameLogicData2));
 }
 index++;
 });

 // game over the game after 1 minute.
 gameOverTimeout = setTimeout(function(){
 var gameLogicData = {};
 gameLogicData.dataType = GAME_LOGIC;
 gameLogicData.gameState = GAME_OVER;
 gameLogicData.winner = "No one";
 gameLogicData.answer = currentAnswer;
 server.broadcast(JSON.stringify(gameLogicData));

 currentGameState = WAITING_TO_START;
 },60*1000);

 currentGameState = GAME_START;
}

server.listen(8000);

console.log("WebSocket server is running.");
console.log("Listening to port 8000.");

10.	We will save all files and re-launch the server. Then, launch the index.htm file in
two browser instances. One browser gets a message from the server informing the
player to draw something. The other browser, on the other hand, informs the player
to guess what the other is drawing within one minute.

Chapter 8

[265][265]

11.	The player who is told to draw something can draw on the canvas. The drawings are
broadcasted to other connected players. The players who are told to guess cannot
draw anything on the canvas. Instead, players type what they guess in the text field
and send to the server. If the guessing is correct, then the game ends. Otherwise,
the game continues until the one-minute countdown finishes.

What just happened?
We just created a multiplayer draw-and-guess game in WebSockets and Canvas. The main
difference between the game and the multiuser sketchpad is that the server now controls
the game flow instead of letting all users draw.

Controlling the game flow of a multiplayer game
Controlling the game flow of a multiplayer game is much more difficult than a single game.
We can simply use a few variables to control the game flow of a single game, but we have to
use message passing to inform each player of specific updated game flow.

First, we require the following highlighted constant GAME_LOGIC for dataType. We use this
dataType to send and receive a message which is related to the game logic control:

// Constants
var LINE_SEGMENT = 0;

Building a Multiplayer Draw-and-Guess Game with WebSockets

[266][266]

var CHAT_MESSAGE = 1;
var GAME_LOGIC = 2;

There are several states in the game flow. Before the game starts, the connected players are
waiting for the game to start. Once there are enough connections for the multiplayer game,
the server sends a game logic message to all players to inform them to start the game.

When the game is over, the server sends a game over state to all players. Then, the game
finishes and the game logic halts until any player clicks on the restart button. Once the
restart button is clicked, the client sends a game restart state to the server instructing the
server to prepare a new game. Then, the game starts again.

We declare the four game states as the following constants in both client and server, so they
understand them:

// Constant for game logic state
var WAITING_TO_START = 0;
var GAME_START = 1;
var GAME_OVER = 2;
var GAME_RESTART = 3;

The following code on the server side holds an index to indicate which player is in turn now:

var playerTurn = 0;

The data which is sent to the player (whose turn it is) is different from the data that is sent to
other players. The other players receive the following data with only a game start signal:

var gameLogicData1 = {};
gameLogicData1.dataType = GAME_LOGIC;
gameLogicData1.gameState = GAME_START;
gameLogicData1.isPlayerTurn = false;

On the other hand, the player (who is in turn to draw) receives the following data with the
word information:

var gameLogicData2 = {};
gameLogicData2.dataType = GAME_LOGIC;
gameLogicData2.gameState = GAME_START;
gameLogicData2.answer = currentAnswer;
gameLogicData2.isPlayerTurn = true;

Enumerating connected clients on the serverside
We can enumerate all connected clients by using the forEach method in the server
manager class. The following code shows the usage. It loops through each connection and
calls the given callback function as follows:

Chapter 8

[267][267]

server.manager.forEach(function);

For example, the following code snippet prints all connections ID on the server terminal:

server.manager.forEach(function(connection){
 console.log("This is connection",connection.id);
}

}

Sending a message to a specific connection on the server side
We used broadcast in our previous examples to send a message to all connected clients.
Besides sending the message to everyone, we can send it to a specific connection by using
the send method as follows:

server.send(connectionID, message);

The send method requires two arguments. The connectionID is the unique ID of the
target connection and message is the string that we want to send.

In the following code extracted from our draw-and-guess game, we send special data to the
player's browser who now has to draw something. We use the forEach function to loop
through the connections and check whether the connection is in turn to draw. Then, we pack
the answer and send this data to this target connection as follows:

server.manager.forEach(function(connection){
 if (index == playerTurn)
 {
 var gameLogicData2 = {};
 gameLogicData2.dataType = GAME_LOGIC;
 gameLogicData2.gameState = GAME_START;
 gameLogicData2.answer = currentAnswer;
 gameLogicData2.isPlayerTurn = true;
 server.send(connection.id, JSON.stringify(gameLogicData2));
 }
 index++;
});

Improving the game
We just created a multiplayer game which is playable. However, there is still lots to improve.
In the following sections, we list two possible improvements in the game.

Building a Multiplayer Draw-and-Guess Game with WebSockets

[26�][26�]

Storing drawn lines on each game
In the game, the drawer draws lines and other players guess the drawing. Now, imagine that
two players are playing and the third player joins. As there is no storage for the drawn lines
anywhere, the third player cannot see what the drawer has drawn. This means that the third
player has to wait until the game ends to play.

Have a go hero
How can we let a player who has joined late continue the game without losing those drawn
lines? How can we reconstruct the drawing for a newly connected player? How about storing
all drawing data of the current game on the server?

Improving the answer checking mechanism
The answer checking on the server side compares the message with the currentAnswer
variable to determine whether a player guessed correctly. The answer is treated as incorrect
if the case does not match. It looks strange when the answer is "apples" and the player is
told wrong when guessing "apple".

Have a go hero
How can we improve the answer checking mechanism? How about improving the
answer checking logic to treat the answer as correct when using a different case or even
similar words?

Decorating the draw-and-guess game with CSS
The game logic is basically finished and the game is playable already. However, we forgot to
decorate the game to make it look appealing. We will use CSS styles to decorate our draw-
and-guess game.

Time for action – Decorating the game
Carry out the following steps:

1.	 The decoration only applies to the client side. Open the index.htm file.

2.	 Add the following CSS style link in the head:

<link href='http://fonts.googleapis.com/css?family=Cabin+Sketch:
 bold' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" media="all"
 href="css/drawguess.css">

Chapter 8

[26�][26�]

3.	 We put all markups in the body inside section with id=game. Also, we add an h1
title for the game as follows:

<section id="game">
 <h1>Draw & Guess</h1>
 ...
</section>

4.	 Add a wording Chat or Guess: in front of the text field input, so the player knows
where to type their guessing words.

5.	 Next, create a directory named css inside the client folder.

6.	 Create a new file named drawguess.css and save it in the css directory.

7.	 Put the following styles in the CSS file:

body {
 background: #ccd6e1;
 font-family: 'Cabin Sketch', arial, serif;
}

#game {
 width: 500px;
 margin: 0 auto;
}

#game h1 {
 text-align: center;
 margin-bottom: 5px;
 text-shadow: 0px 1px 0px #fff;
}

#drawing-pad {
 border: 10px solid #fffeff;
 background: #f1f3ef;
 box-shadow:0px 3px 5px #333;
}

#chat-history {
 list-style: none;
 padding: 0;
}

#chat-history li {
 border-bottom: 1px dashed rgba(20,20,20,.2);
 margin: 10px 0;
}

Building a Multiplayer Draw-and-Guess Game with WebSockets

[270][270]

8.	 Save all files and open the index.htm file again in two browsers to play the game.
As we only changed the decoration code, the game should look better now as shown
in the following screenshot:

What just happened?
We just applied styles to our game and embedded a font from the Google Font Directory
that looks like sketching text. The canvas is now styled to look more like a canvas with a thick
border and subtle shadow.

Chapter 8

[271][271]

Summary
We learned a lot in this chapter about connecting browsers to WebSockets. The messages
and events from one browser are broadcasted to another browser in almost real time.

Specifically, we:

Learned how WebSockets provide real-time events by drawing on an existing
multiplayer sketchpad. It shows drawings from other users who are connected.

Installed a Node.js server with the WebSocket library. By using this server, we can
easily build an event-based server to handle WebSocket requests from browsers.

Discussed the relationship between the server and a client.

Built an instant chat room application. We learned how to implement a server script
to broadcast incoming messages to other connected browsers. We also learned how
to display a received message from the server on the client side.

Built a multiuser drawing board. We learned how to pack data in the JSON format to
pass a message between the server and browsers.

Built a draw-and-guess game by integrating the chatting and drawing pad. We also
learned how to create the game logic in a multiplayer game.

Now that we have learned to build a multiplayer game, we are ready to build physics games
with the help of the physics engine in the next chapter.

�
Building a Physics Car Game with

Box2D and Canvas

2D Physics Engine is a hot topic in game development. With the help of a
physics engine, we can easily create a playable game by just defining an
environment and a simple rule. Taking existing games as examples, players in
the Angry Birds game fly birds to destruct the enemy's castle. In Cut the Rope,
candy drops into the monster's mouth to progress to the next level.

In this chapter, we will learn the following topics:

Installing the Box2D JavaScript library

Creating a static ground body in the physics world

Drawing the physics world on the Canvas

Creating a dynamic box in the physics world

Advancing the world time

Adding wheels to the game

Creating the physics car

Adding force to the car with a keyboard input

Checking a collision in the Box2D world

Restarting the game

Adding a level support to our car game

Replacing the Box2D outline drawing with graphics

Adding a final touch to make the game fun to play

Building a Physics Car Game with Box2D and Canvas

[274][274]

The following screenshot shows what we will get by the end of this chapter. It is a car game
in which a player moves the car towards the destination point:

So, let's get on with it.

Installing the Box2D JavaScript library
Now, suppose that we want to create a car game. We apply force to the car to make it move
forward. The car moves on a ramp and then flies through the air. Afterwards, the car falls
on the destination ramp and the game finishes. Every collision in every part of the physics
world counts on this movement. If we have to make this game from scratch, then we have
to calculate at least the velocity and angle of each part. Luckily, the physics library helps us
to handle all these physical problems. All we have to do is to create the physics model and
present it in the canvas.

Chapter 9

[275][275]

Time for action – Installing the Box2D physics library
Carry out the following steps:

1.	 We will get the Box2D JavaScript library. The original Box2D JavaScript library is
based on the prototype JavaScript library. The prototype library provides similar
functions from jQuery but with a little different API. Thanks to KJ (http://kjam.
org/post/105) who ported it into the jQuery capable version, we can use the
jQuery library on which we have based our whole book. The Box2D library with the
starting code can be found from the code bundle named box2d_game.

2.	 Now, we should have the following setup:

We have already imported the essential JavaScript files. It is worth
remembering that if you want to later use this base to create another physics
game, Box2D JS recommends copying the JavaScript import codes in exactly
the same order because there are dependencies between files.

3.	 Now, we will create an empty world to test our Box2D library installation. Open the
html5games.box2dcargame.js JavaScript file and put the following code in the
file to create the world:

// the global object that contains the variable needed for the car
game.

Building a Physics Car Game with Box2D and Canvas

[276][276]

var carGame = {
}

var canvas;
var ctx;
var canvasWidth;
var canvasHeight;

$(function() {

 carGame.world = createWorld();

 console.log("The world is created. ",carGame.world);

 // get the reference of the context
 canvas = document.getElementById('game');
 ctx = canvas.getContext('2d');
 canvasWidth = parseInt(canvas.width);
 canvasHeight = parseInt(canvas.height);
});

function createWorld() {

 // set the size of the world
 var worldAABB = new b2AABB();
 worldAABB.minVertex.Set(-4000, -4000);
 worldAABB.maxVertex.Set(4000, 4000);

 // Define the gravity
 var gravity = new b2Vec2(0, 300);

 // set to ignore sleeping object
 var doSleep = false;

 // finally create the world with the size, gravity,
 and sleep object parameter.
 var world = new b2World(worldAABB, gravity, doSleep);

 return world;
}

Chapter 9

[277][277]

4.	 Open the index.html file in a web browser. We should see a grey canvas with
nothing there.

We have not presented the physics world in the canvas yet. That is why we only see a blank
canvas on the page. However, we have printed the newly created world in the console log.
The following screenshot shows the console tracing the world object with many properties
beginning with m_. These are the physical states of the world:

What just happened?
We have just installed the Box2D JavaScript library and created an empty world to
test the installation.

Using b2World to create a new world
The b2World is a core class in the Box2D environment. All our physics bodies, including the
ground and car, are created in this world. The following code shows how to create a world:

var world = new b2World(worldAABB, gravity, doSleep);

Building a Physics Car Game with Box2D and Canvas

[27�][27�]

The b2World class takes three arguments to initialize, which are listed in the following table
with their description:

Arguments Type Discussion
worldAABB b2AABB Represents the bounding area of the world

gravity b2Vec2 Represents the gravity of the world
doSleep Bool Defines whether the world ignores slept objects or not

Using b2AABB to define a bounding area
In the physics world, we need a lot of bounding area. The first bounding we need is for
the world. All things within the world bounding will be calculated and things outside the
bounding area will be destroyed.

We can treat b2AABB as a rectangle with the lowest bounding point and highest bounding
point. The following code snippet shows how to use the b2AABB class. The minVertex is
the top left-most point of the bound while maxVertex is the bottom right-most point. The
following world defines a world with 8000x8000:

var worldAABB = new b2AABB();
worldAABB.minVertex.Set(-4000, -4000);
worldAABB.maxVertex.Set(4000, 4000);

The unit in the Box2D mathematics model is different from what we commonly
use in the computer world. The length unit is in meters instead of pixels.
Moreover, the rotation unit is in radians.

Setting the gravity of the world
We have to define the gravity of the world. The gravity is defined by b2Vec2. The b2Vec2
is a vector with a 1x2 matrix. We can treat it as a vector of X and Y-axis. Therefore, the
following code defines the gravity with 300 units downwards:

var gravity = new b2Vec2(0, 300);

Setting the Box2D to ignore the slept object
A slept body is a dynamic body that does not move or change states anymore.

The physics library calculates the mathematical data and collision of all bodies in the world.
The performance will slow down when there are more bodies in the world to get calculated
in every frame. When creating the physics world, we need to set the library to either ignore
slept bodies or calculate all of them.

Chapter 9

[27�][27�]

In our game, there are only a few bodies, so the performance is not yet a problem.
Moreover, if later our created bodies get into an idle or sleep state, we cannot interact
with them anymore. Therefore, we set this flag to false in this example.

At the time of writing this book, only Google Chrome runs the Box2D
JavaScript library in canvas smoothly. Therefore, it is suggested to test the
game in Google Chrome until other web browsers can run it smoothly.

Creating a static ground body in the physics world
The world is empty now. If we are going to place objects there, those objects will fall and
finally leave our sight. Now suppose that we want to create a static ground body in the
world, so that objects can stand there. We can do this in Box2D.

Time for action – Creating a ground in the world
Carry out the following steps:

1.	 Open the html5games.box2dcargame.js JavaScript file.

2.	 Add the following function to the end of the JavaScript file. It creates a fixed body
as the playground:

function createGround() {
 // box shape definition
 var groundSd = new b2BoxDef();
 groundSd.extents.Set(250, 25);
 groundSd.restitution = 0.4;

 // body definition with the given shape we just created.
 var groundBd = new b2BodyDef();
 groundBd.AddShape(groundSd);
 groundBd.position.Set(250, 370);
 var body = carGame.world.CreateBody(groundBd);

 return body;
}

3.	 Call the createGround function after creating the world as follows:

createGround();

Building a Physics Car Game with Box2D and Canvas

[2�0][2�0]

4.	 As we are still defining the logic and have not yet presented the physics world
visually, we will see nothing if we open the browser. However, it is a good habit to
try it and inspect the console window for an error message if there is any.

What just happened?
We have created a ground body with the shape and body definitions. This is a common
process we will use a lot to create different kinds of physical bodies in the world. So, let's get
into details on how we made it.

Creating a shape
A shape defines the geometrical data. In the JavaScript port of Box2D, a shape also defines
material properties such as density, friction, and restitution. The shape can be a circle,
rectangle, or a polygon. The following code that we used in the preceding example defines
a box shape definition. In the box shape, we have to define the size of the box by setting the
extents property. The extents property takes two arguments: half width and half height.
It is a half value, so the final area of the shape is four times the value:

// box shape definition
var groundSd = new b2BoxDef();
groundSd.extents.Set(250, 25);
groundSd.restitution = 0.4;

Creating a body
After defining the shape, we can then create a body definition with the given shape
definition. Then, we set the initial position of the body and finally ask the world instance to
create a body from our body definition. The following code shows how we create a body in
the world with the given shape definition:

var groundBd = new b2BodyDef();
groundBd.AddShape(groundSd);
groundBd.position.Set(250, 370);
var body = carGame.world.CreateBody(groundBd);

A body set without a mass is considered as a static body, or fixed body. These bodies are
immovable and will not have collisions with other static bodies. Therefore, these bodies
can be used as a ground or walls to become the level environment. On the other hand, a
dynamic body will move following the gravity and collision with other bodies. We will create
a dynamic box body later.

Chapter 9

[2�1][2�1]

Drawing the physics world in the canvas
We have created a ground but it is only in the mathematics model. We do not see anything
in the canvas because we have not drawn anything on it yet. In order to show what the
physics looks like, we have to draw something according to the physics world.

Time for action – Drawing the physics world into the canvas
Carry out the following steps:

1.	 First, open the html5games.box2dcargame.js JavaScript file.

2.	 Add a drawWorld function call to the page loaded event handler as the following
code:

$(function() {

 // create the world
 carGame.world = createWorld();

 // create the ground
 createGround();

 // get the reference of the context
 canvas = document.getElementById('game');
 ctx = canvas.getContext('2d');
 canvasWidth = parseInt(canvas.width);
 canvasHeight = parseInt(canvas.height);

 // draw the world
 drawWorld(carGame.world, ctx);
});

3.	 Next, open the draw_world.js JavaScript file from the Box2D JavaScript example
code. There are two functions named drawWorld and drawShapes. Copy the
entire file, which is shown in the following code, to the end of our JavaScript file:

// drawing functions
function drawWorld(world, context) {
 for (var b = world.m_bodyList; b != null; b = b.m_next) {
 for (var s = b.GetShapeList(); s != null; s = s.GetNext()) {
 drawShape(s, context);
 }
 }
}

Building a Physics Car Game with Box2D and Canvas

[2�2][2�2]

// drawShape function directly copy from draw_world.js in Box2dJS
library
function drawShape(shape, context) {
 context.strokeStyle = '#003300';
 context.beginPath();
 switch (shape.m_type) {
 case b2Shape.e_circleShape:
 var circle = shape;
 var pos = circle.m_position;
 var r = circle.m_radius;
 var segments = 16.0;
 var theta = 0.0;
 var dtheta = 2.0 * Math.PI / segments;
 // draw circle
 context.moveTo(pos.x + r, pos.y);
 for (var i = 0; i < segments; i++) {
 var d = new b2Vec2(r * Math.cos(theta),
 r * Math.sin(theta));
 var v = b2Math.AddVV(pos, d);
 context.lineTo(v.x, v.y);
 theta += dtheta;
 }
 context.lineTo(pos.x + r, pos.y);

 // draw radius
 context.moveTo(pos.x, pos.y);
 var ax = circle.m_R.col1;
 var pos2 = new b2Vec2(pos.x + r * ax.x, pos.y + r * ax.y);
 context.lineTo(pos2.x, pos2.y);
 break;
 case b2Shape.e_polyShape:
 var poly = shape;
 var tV = b2Math.AddVV(poly.m_position,
 b2Math.b2MulMV(poly.m_R, poly.m_vertices[0]));
 context.moveTo(tV.x, tV.y);
 for (var i = 0; i < poly.m_vertexCount; i++) {
 var v = b2Math.AddVV(poly.m_position,
 b2Math.b2MulMV(poly.m_R, poly.m_vertices[i]));
 context.lineTo(v.x, v.y);
 }
 context.lineTo(tV.x, tV.y);
 break;
 }
 context.stroke();
}

Chapter 9

[2�3][2�3]

4.	 Now re-open the game in a browser and we should see the outline of the ground
body in the canvas, as shown in the following screenshot:

What just happened?
We have just created a function to draw every shape in the world as a box with a dark
green outline.

The following code shows how we loop through each shape in the world to draw it:

function drawWorld(world, context) {
 for (var b = world.m_bodyList; b != null; b = b.m_next) {
 for (var s = b.GetShapeList(); s != null; s = s.GetNext()) {
 drawShape(s, context);
 }
 }
}

There is the drawJoint function and related code from the Box2D JS
library too. This joint drawing function is optional for our example. Adding
the joint drawing function can let us see the invisible joint connected
between two bodies.

Building a Physics Car Game with Box2D and Canvas

[2�4][2�4]

Now we will take a look at the drawShape function.

On every shape, we want to draw the outline of the object in the canvas to present it. We set
the line style to dark green before drawing anything. Then, we check whether the shape is
a circle, rectangle box, or a polygon. If it is a circle, then we use the pole coordinate to draw
the circle with the given radius of the shape. If it is a polygon, then we draw each side of the
polygon as follows:

function drawShape(shape, context) {
 context.strokeStyle = '#003300';
 context.beginPath();
 switch (shape.m_type) {
 case b2Shape.e_circleShape:
 // Draw the circle in canvas bases on the physics object shape
 break;
 case b2Shape.e_polyShape:
 // Draw the polygon in canvas bases on the physics object shape
 break;
 }
 context.stroke();
}

Creating a dynamic box in the physics world
Imagine now we drop a box into the world. The box falls from the air and finally hits the
ground. The box bounces up a little and finally stops on the ground. This is different from
what we created in the last section. In the last section, we created a static ground which is
immovable and will not be affected by gravity. Now we will create a dynamic box.

Time for action – Putting a dynamic box in the world
Carry out the following steps:

1.	 Open our JavaScript logic file and add the following box creation code to the page
loaded event handler. Place the code after the createGround function:

// create a box
var boxSd = new b2BoxDef();
boxSd.density = 1.0;
boxSd.friction = 1.5;
boxSd.restitution = .4;
boxSd.extents.Set(40, 20);

var boxBd = new b2BodyDef();

Chapter 9

[2�5][2�5]

boxBd.AddShape(boxSd);
boxBd.position.Set(50,210);
carGame.world.CreateBody(boxBd);

2.	 Now we will test the physics world in a browser. We should see that a box is created
at the given initial position. However, the box is not falling down; it is because we
still have something to do to make it fall:

What just happened?
We have just created a dynamic body in the world. In contrast to the ground body that is
immovable, this box is affected by the gravity and the velocity changes during a collision.
When a body contains a shape with any mass or density, it is a dynamic body. Otherwise, it
is static. Therefore, we define a density to our box. Box2D will make it dynamic and calculate
the mass according to the density and the size of the body automatically.

Setting the bouncing effect with the restitution property
The restitution value is between 0 and 1. In our case, the box is falling down on the ground.
When the restitution value is 0 on both the ground and the box, the box does not bounce at
all. When either the box or ground has restitution value 1, the collision is perfectly elastic.

When two bodies collide, the restitution value of that collision is the maximum
value between both restitution values of the bodies. Therefore, if a box with
a restitution of 0.4 drops on the ground with restitution 0.6, this collision uses
0.6 to calculate the bouncing velocity.

Building a Physics Car Game with Box2D and Canvas

[2�6][2�6]

Advancing the world time
The box is dynamic but it does not fall down. Are we doing anything wrong here? The
answer is no. We have setup the box correctly, but we forget to advance the time in the
physics world.

In the Box2D physics world, all calculations are done in a systematic iteration. The world
calculates the physical transformation of all things according to the current step. When we
move the step to the next level, the world calculates again as the new state.

Time for action – Setting up the world step loop
We will make the world time advance by carrying out the following steps:

1.	 In order to advance the world step, we have to call the step function in the world
instance periodically. We used setTimeout to keep calling the step function. Put
the following function in our JavaScript logic file:

function step() {
 world.Step(1.0/60, 1);
 ctx.clearRect(0, 0, canvasWidth, canvasHeight);

 drawWorld(carGame.world, ctx);

 setTimeout(step, 10);
}

2.	 Next, we will kick-start the world by calling the first step function in the
document ready event handler. Add the following highlighted code to the
loaded handler function:

$(function() {
 …

 // start advancing the step
 step();
});

3.	 We will again simulate the world in a browser. The box is created at the initialized
position and falls on the ground correctly. The following screenshot shows the
sequence of a box dropping on the ground:

Chapter 9

[2�7][2�7]

What just happened?
We have advanced the time of the world. Now the physics library simulates the world every
10 milliseconds.

The step function is similar to our gameloop function in Chapter 2, Getting Started
with DOM-based Game Development. It executes periodically to calculate the new state
of the game.

Adding wheels to the game
Now we have a box in the game. Imagine now we create two circular shaped bodies as the
wheels. Then, we will have the basic component of a car, the body, and the wheels.

Time for action – Putting two circles in the world
We will add two circles to the world by carrying out the following steps:

1.	 Open the html5games.box2dcargame.js JavaScript file to add the wheel bodies.

2.	 Add the following code after the box creation code. It calls the createWheel
function which we will write to create a circular shaped body:

// create two wheels in the world
createWheel(carGame.world, 25, 230);
createWheel(carGame.world, 75, 230);

3.	 Now let's work on the createWheel function. We design this function to create a
circle shaped body in the given world at the given x and y coordinates in the world.
Put the following function in our JavaScript logic file:

function createWheel(world, x, y) {
 // wheel circle definition
 var ballSd = new b2CircleDef();
 ballSd.density = 1.0;
 ballSd.radius = 10;
 ballSd.restitution = 0.1;
 ballSd.friction = 4.3;

Building a Physics Car Game with Box2D and Canvas

[2��][2��]

 // body definition
 var ballBd = new b2BodyDef();
 ballBd.AddShape(ballSd);
 ballBd.position.Set(x,y);
 return world.CreateBody(ballBd);
}

4.	 We will now reload the physics world in a web browser. This time, we should see
the result similar to the one shown in the following screenshot with a box and two
wheels falling down from the air. These bodies collide with others and bounce away
when they hit the wall:

What just happened?
When simulating the physics world, both the box and wheels drop and collide with each
other and the ground.

Creating a circular body is similar to creating a box body. The only difference is that we use a
CircleDef class instead of the box shape definition. In the circle definition, we define the
circle size by using the radius property instead of the extents property.

Creating a physical car
We have prepared the car box body and two wheel bodies. We are just one step away from
making a car. Imagine now we have a glue to glue the wheels to the car body. Then, the car
and wheels will not separate anymore and we will have a car. We can use joint to achieve
that. In this section, we will use joint to stick the wheels and the car body together.

Chapter 9

[2��][2��]

Time for action – Connecting the box and two circles
with revolute joint

Carry out the following steps:

1.	 We are still working only on the logic part. Open our JavaScript logic file in
a text editor.

2.	 Add the following global variable at the top of the document to reference the
car body:

var car;

3.	 Create a function named createCarAt which takes the coordinate as arguments.
Then, we move the body and the wheel creation code in this function. Afterwards,
add the following highlighted Joint creation code. At last, return the car body:

function createCarAt(x, y) {
 // the car box definition
 var boxSd = new b2BoxDef();
 boxSd.density = 1.0;
 boxSd.friction = 1.5;
 boxSd.restitution = .4;
 boxSd.extents.Set(40, 20);

 // the car body definition
 var boxBd = new b2BodyDef();
 boxBd.AddShape(boxSd);
 boxBd.position.Set(x,y);
 var carBody = carGame.world.CreateBody(boxBd);

 // creating the wheels
 var wheelBody1 = createWheel(carGame.world, x-25, y+20);
 var wheelBody2 = createWheel(carGame.world, x+25, y+20);

 // create a joint to connect left wheel with the car body
 var jointDef = new b2RevoluteJointDef();
 jointDef.anchorPoint.Set(x-25, y+20);
 jointDef.body1 = carBody;
 jointDef.body2 = wheelBody1;
 carGame.world.CreateJoint(jointDef);

 // create a joint to connect right wheel with the car body
 var jointDef = new b2RevoluteJointDef();
 jointDef.anchorPoint.Set(x+25, y+20);

Building a Physics Car Game with Box2D and Canvas

[2�0][2�0]

 jointDef.body1 = carBody;
 jointDef.body2 = wheelBody2;
 carGame.world.CreateJoint(jointDef);

 return carBody;

}

4.	 Then, all we need to do is to create a car with the initial position. Add the following
code to the page loaded event handler after the world creation:

// create a car
car = createCarAt(50, 210);

5.	 It is time to save the file and run the physics world in a browser. At this time, the
wheels and the car body are not separate pieces. They glue together as a car and
drop on the ground correctly, as shown in the following screenshot:

What just happened?
Joint is useful to add constraint between two bodies (or between a body and the world).
There are many kinds of joints and what we used in this example is called revolute joint.

Using a revolute joint to create an anchor point between
two bodies
The revolute joint sticks two bodies together with a common anchor point. The two
bodies are then glued together and are only allowed to rotate based on the common
anchor point. The left hand side of the following screenshot shows that two bodies are
connected with an anchor. In our code example, we set the anchor point to be exactly the
center point of the wheel. The right hand side of the following screenshot shows how we set
the joint. The wheel rotates as a wheel because the rotation origin is at the center. This setup
makes the car and wheels look real:

Chapter 9

[2�1][2�1]

There are other types of joints which are useful in different ways. Joints are useful in creating
a game environment and as there are several types of joints, each joint type is worth a
try and you should think how to use them. The following link is the Box2D manual which
explains each type of joint and how we can use them on different environment setups:

http://www.box2d.org/manual.html#_Toc258082974

Adding force to the car with a keyboard input
We have the car ready now. Let's move it with our keyboard.

Time for action – Adding force to the car
Carry out the following steps:

1.	 Open the html5games.box2dcargame.js JavaScript file in a text editor.

2.	 In the page loaded event handler, we add the following keydown event handler to
the beginning. It listens to the X key and Z key to apply force in different directions:

// Keyboard event
$(document).keydown(function(e) {
 switch(e.keyCode) {
 case 88: // x key to apply force towards right
 var force = new b2Vec2(10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 break;
 case 90: // z key to apply force towards left
 var force = new b2Vec2(-10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 break;

Building a Physics Car Game with Box2D and Canvas

[2�2][2�2]

 }
});

3.	 That is all. Save the files and run our game in the browser. When you press the X or
Z key, the car starts moving. If you keep pressing the key, the world will keep adding
force to the car and make it fly away:

What just happened?
We just created an interaction with our car body. We can move the car left and right by
pressing the Z and X keys. It seems like the game is getting interesting now.

Applying force to a body
We can apply force to any body by calling the ApplyForce function in that body.
The following code shows the usage of the function:

body.ApplyForce(force, point);

This function takes two arguments, which are listed in the following table:

Arguments Type Discussion
force b2Vec2 The force vector to apply to the body
point b2Vec2 The point where the force applies

Chapter 9

[2�3][2�3]

Understanding the difference between ApplyForce and
ApplyImpulse
Besides the ApplyForce function, we can also move any body by using the ApplyImpulse
function. Both functions move the body, but they move them in a different approach. If we
want to change the instance velocity of a body, then we use ApplyImpulse once on the
body to change velocity to our target value. On the other hand, we need to constituently
apply force to a body to increase the speed.

For example, we want to increase the velocity of the car like stepping on the pedal. In this
case, we apply force to the car. If we are creating a ball game that needs to kick-start the ball,
we may use the ApplyImpulse function to add an instance impulse to the ball body.

Have a go hero
Can you think about a different situation where we will need to apply force or impulse
to the body?

Adding ramps to our game environment
Now we can move the car. However, the environment is not interesting enough to play.
Imagine now there are some ramps for the car to jump, and there is a gap between two
platforms that a player has to fly the car over. It will become more interesting to play with
different ramp setups.

Time for action – Creating the world with ramps
Carry out the following steps:

1.	 We will open the game logic JavaScript file.

2.	 Move the current ground creation code into a new function named createGround.
Then, change the code to use the four given arguments as follows:

function createGround(x, y, width, height, rotation) {
 // box shape definition
 var groundSd = new b2BoxDef();
 groundSd.extents.Set(width, height);
 groundSd.restitution = 0.4;

 // body definition with the given shape we just created.
 var groundBd = new b2BodyDef();
 groundBd.AddShape(groundSd);
 groundBd.position.Set(x, y);

Building a Physics Car Game with Box2D and Canvas

[2�4][2�4]

 groundBd.rotation = rotation * Math.PI / 180;
 var body = carGame.world.CreateBody(groundBd);

 return body;
}

3.	 Now we have a function to create the ground body. We will now replace the ground
creation code in the page loaded handler function with the following code:

// create the ground
createGround(250, 270, 250, 25, 0);
// create a ramp
createGround(500, 250, 65, 15, -10);
createGround(600, 225, 80, 15, -20);
createGround(1100, 250, 100, 15, 0);

4.	 Save the file and preview the game in a browser. We should see a ramp now and a
destination platform as shown in the following screenshot. Try to control the car,
jump over the ramp, and reach the destination without falling down. Refresh the
page to restart the game if you fail:

What just happened?
We just wrapped the ground box creating code into a function, so that we can easily
create a combination of ground bodies. These ground bodies composite the level
environment of the game.

In addition, this is the first time we are rotating a body. We set the rotation of the body by
using the rotation property which takes a value in radian. Most people may get used to
the degree unit; we can get the radian value from degree by using the following formula:

groundBd.rotation = degree * Math.PI / 180;

By setting the rotation of a box, we can have a ramp of varying slope setup in our game.

Chapter 9

[2�5][2�5]

Have a go hero – Creating different environments with different joints
We have a ramp setup now and we can play with the car within the environment. How
about using different kinds of joints to setup the playground? For example, how about a
pulley joint to act as a lift? On the other hand, how about including a dynamic board with
a joint at the center?

Checking collisions in the Box2D world
The Box2D physics library calculates all collisions automatically. Imagine now we setup a
ground body as the destination. Players win when they successfully move the car to hit the
destination. As Box2D already calculates all collisions, all we have to do is get the detected
collision list and determine whether our car has hit the destination ground.

Time for action – Checking a collision between the car and the
destination body

Carry out the following steps:

1.	 Again, we start from our game logic. Open the html5games.box2dcargame.js
JavaScript file in a text editor.

2.	 We setup a destination ground in the ground creation code and assign it to our
gamewinWall reference inside the carGame global object instance as follows:

carGame.gamewinWall = createGround(1200, 215, 15, 25, 0);

3.	 Next, we move on to the step function. In each step, we get the complete contact
list from the world and check whether any two colliding objects are car and the
destination ground:

function step() {
 carGame.world.Step(1.0/60, 1);
 ctx.clearRect(0, 0, canvasWidth, canvasHeight);
 drawWorld(carGame.world, ctx);
 setTimeout(step, 10);

 //loop all contact list to check if the car hits the
 winning wall
 for (var cn = carGame.world.GetContactList(); cn != null;
 cn = cn.GetNext()) {
 var body1 = cn.GetShape1().GetBody();
 var body2 = cn.GetShape2().GetBody();
 if ((body1 == carGame.car && body2 == carGame.gamewinWall) ||

Building a Physics Car Game with Box2D and Canvas

[2�6][2�6]

 (body2 == carGame.car && body1 == carGame.gamewinWall))
 {
 console.log("Level Passed!");
 }
 }
}

4.	 We will now save the code and open the game in a browser again. This time, we
have to open the console window to track if we get the Level Passed! output when
the car hits that wall. Try to finish the game and we should see the output in the
console once the car hits the destination:

What just happened?
We just created the game winning logic by checking the collision contacts. The player wins
when the car successfully reaches the destination ground object.

Getting the collision contact list
In each step, Box2D calculates all collisions and puts them into a contact list in the world
instance. We can get the contact list by using the carGame.world.GetContactList()
function. The returned contact list is a link list. We can travel through the entire link list by
using the following for-loop:

for (var cn = carGame.world.GetContactList(); cn != null; cn =
cn.GetNext()) {
 // We have shape 1 and shape 2 of each contact node.
 // cn.GetShape1();
 // cn.GetShape2();
}

Chapter 9

[2�7][2�7]

When we get the collided shapes, we check whether the body of that shape is a car or the
destination body. As the car shape may be in shape 1 or shape 2, and the same applies to the
gamewinWall, we use the following code to check both combinations:

var body1 = cn.GetShape1().GetBody();
var body2 = cn.GetShape2().GetBody();
if ((body1 == carGame.car && body2 == carGame.gamewinWall) ||
 (body2 == carGame.car && body1 == carGame.gamewinWall))
{
 console.log("Level Passed!");
}

Have a go hero
We created a game over dialog in Chapter 7, Using Local Storage to Store Game Data. How
about using that technique here to create a dialog showing the player passed the level when
hitting the winning wall? It will also be useful as level transition later when we add different
level setups to the game.

Restarting the game
You may have already tried refreshing the page several times in the last example to make the
car successfully jump to the destination. Imagine now we can press a key to re-initialize the
world. Then, we can follow the trial-and-error method until success.

Time for action – Restarting the game while pressing the R key
We will assign the R key as the restart key for our game:

1.	 Again, we only need to change the JavaScript file. Open the html5games.
box2dcargame.js JavaScript file in a text editor.

2.	 We move the create world, ramp, and the car code into a function named
restartGame. They were originally in the page loaded handler function:

function restartGame() {
 // create the world
 carGame.world = createWorld();

 // create the ground
 createGround(250, 270, 250, 25, 0);

 // create a ramp
 createGround(500, 250, 65, 15, -10);

Building a Physics Car Game with Box2D and Canvas

[2��][2��]

 createGround(600, 225, 80, 15, -20);
 createGround(1100, 250, 100, 15, 0);

 // create a destination ground
 carGame.gamewinWall = createGround(1200, 215, 15, 25, 0);

 // create a car
 carGame.car = createCarAt(50, 210);
}

3.	 Then, in the page loaded event handler, we call the restartGame function to
initialize the game as follows:

restartGame();

4.	 Finally, we add the following highlighted code to the keydown handler to restart the
game when the R key is pressed:

$(document).keydown(function(e) {
 switch(e.keyCode) {
 case 88: // x key to apply force towards right
 var force = new b2Vec2(10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 break;
 case 90: // z key to apply force towards left
 var force = new b2Vec2(-10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 break;
 case 82: // r key to restart the game
 restartGame();
 break;
 }
});

5.	 How about restarting the game when the player passes the level? Add the following
highlighted code to the game win logic:

if ((cn.GetShape1().GetBody() == carGame.car &&
 cn.GetShape2().GetBody() == carGame.gamewinWall) ||
 (cn.GetShape2().GetBody() == carGame.car &&
 cn.GetShape1().GetBody() == carGame.gamewinWall))
{
 console.log("Level Passed!");
 restartGame();
}

Chapter 9

[2��][2��]

6.	 It is time to test the game in a browser. Try playing the game and press the R key to
restart the game.

What just happened?
We refractor our code to create a restartGame function. The world is destroyed and
initialized again each time we call this function. We can destroy the existing world and
create a new empty one by creating a new world instance of our world variable as follows:

carGame.world = createWorld();

Have a go hero – Creating the game over wall
Now the only way to restart the game is by pressing the restart key. How about creating a
ground at the bottom of the world that checks any falling car? When the car drops and hits
the bottom ground, we know that the player has failed and then restart the game.

Adding a level support to our car game
Imagine now we can level up to the next environment setup when finishing each game.
We will need several environment setups for each level.

Time for action – Loading game with levels data
We will refractor our code to support loading the static ground bodies from a levels data
structure. Let's work on it by carrying out the following steps:

1.	 Open the html5games.box2dcargame.js JavaScript file in a text editor.

2.	 We will need each ground setup on each level. Put the following code at the top of
the JavaScript file. It is an array of levels. Each level is another array of objects with
the position, dimension, and rotation of the static ground body:

carGame.levels = new Array();
carGame.levels[0] = [{"type":"car","x":50,"y":210,"fuel":20},
{"type":"box","x":250, "y":270, "width":250,
 "height":25, "rotation":0},
{"type":"box","x":500,"y":250,"width":65,"height":15,
 "rotation":-10},
{"type":"box","x":600,"y":225,"width":80,"height":15,
 "rotation":-20},
{"type":"box","x":950,"y":225,"width":80,"height":15,
 "rotation":20},
{"type":"box","x":1100,"y":250,"width":100,"height":15,

Building a Physics Car Game with Box2D and Canvas

[300][300]

 "rotation":0},
{"type":"win","x":1200,"y":215,"width":15,"height":25,
 "rotation":0}];

carGame.levels[1] = [{"type":"car","x":50,"y":210,"fuel":20},
{"type":"box","x":100, "y":270, "width":190,
 "height":15, "rotation":20},
{"type":"box","x":380, "y":320, "width":100, "height":15,
 "rotation":-10},
{"type":"box","x":666,"y":285,"width":80,"height":15,
 "rotation":-32},
{"type":"box","x":950,"y":295,"width":80,"height":15,
 "rotation":20},
{"type":"box","x":1100,"y":310,"width":100,"height":15,
 "rotation":0},
{"type":"win","x":1200,"y":275,"width":15,"height":25,
 "rotation":0}];

carGame.levels[2] = [{"type":"car","x":50,"y":210,"fuel":20},
{"type":"box","x":100, "y":270, "width":190,
 "height":15, "rotation":20},
{"type":"box","x":380, "y":320, "width":100,
 "height":15, "rotation":-10},
{"type":"box","x":686,"y":285,"width":80,"height":15,
 "rotation":-32},
{"type":"box","x":250,"y":495,"width":80,"height":15,
 "rotation":40},
{"type":"box","x":500,"y":540,"width":200,"height":15,
 "rotation":0},
{"type":"win","x":220,"y":425,"width":15,"height":25,
 "rotation":23}];

3.	 Then, we use the following variable in the carGame object instance to store the
current level:

var carGame = {
 currentLevel: 0
}

Chapter 9

[301][301]

4.	 Replace the restartGame function with the following code. It changes the function
to accept a level argument. Then, create the ground or car by the level data:

function restartGame(level) {
 carGame.currentLevel = level;

 // create the world
 carGame.world = createWorld();

 // create a ground in our newly created world
 // load the ground info from level data
 for(var i=0;i<carGame.levels[level].length;i++) {
 var obj = carGame.levels[level][i];

 // create car
 if (obj.type == "car") {
 carGame.car = createCarAt(obj.x,obj.y);
 continue;
 }

 var groundBody = createGround(obj.x, obj.y,
 obj.width, obj.height, obj.rotation);

 if (obj.type == "win") {
 carGame.gamewinWall = groundBody;
 }
 }
}

5.	 In the page loaded handler function, we change the restartGame function calling
by providing currentLevel as follows:

restartGame(carGame.currentLevel);

6.	 We also need to provide the currentLevel value in the restart key handler:

case 82: // r key to restart the game
 restartGame(carGame.currentLevel);
 break;

7.	 Lastly, we change the following highlighted code in the game win logic. We level up
the game when the car hits the destination:

if ((body1 == carGame.car && body2 == carGame.gamewinWall) ||
 (body2 == carGame.car && body1 == carGame.gamewinWall))
{
 console.log("Level Passed!");

Building a Physics Car Game with Box2D and Canvas

[302][302]

 restartGame(carGame.currentLevel+1);
}

8.	 We will now run the game in the web browser. Finish the level and the game should
restart at the next level:

What just happened?
We just created a data structure to store the levels. Then, we created the game with the
given level number and constructed the world with the level data.

Each level data is an array of objects. Each object contains properties of each ground body
in the world. This includes basic properties such as position, size, and rotation. There is also
a property named type. It defines whether the body is a normal box body, car data, or the
destination winning ground:

carGame.levels[0] = [{"type":"car","x":50,"y":210,"fuel":20},
{"type":"box","x":250, "y":270, "width":250, "height":25,
"rotation":0},
{"type":"box","x":500,"y":250,"width":65,"height":15,"rotation":-10},
{"type":"box","x":600,"y":225,"width":80,"height":15,"rotation":-20},
{"type":"box","x":950,"y":225,"width":80,"height":15,"rotation":20},
{"type":"box","x":1100,"y":250,"width":100,"height":15,"rotation":0},
{"type":"win","x":1200,"y":215,"width":15,"height":25,"rotation":0}];

When creating the world, we use the following code to loop through all objects in the level
array. We then create the car and ground bodies and reference the game winning ground
according to the type:

for(var i=0;i<carGame.levels[level].length;i++) {

Chapter 9

[303][303]

 var obj = carGame.levels[level][i];

 // create car
 if (obj.type == "car") {
 carGame.car = createCarAt(obj.x,obj.y);
 continue;
 }

 var groundBody = createGround(obj.x, obj.y, obj.width,
 obj.height, obj.rotation);

 if (obj.type == "win") {
 carGame.gamewinWall = groundBody;
 }
}

Have a go hero – Creating more levels
Now we have several levels setup for our game. How about duplicating the level data to
create more interesting levels to play? Create your own levels and play with them. It is just as
if a kid builds blocks and plays with them.

Replacing the Box2D outline drawing with graphics
We have created the game that is at least playable with several levels. However, they are just
some outline boxes. We cannot even distinguish between the destination body and other
ground bodies in the game. Imagine now the destination is a racing flag and there is a car
graphic to represent it. It will make the game purpose clearer.

Time for action – Adding a flag graphic and a car graphic
to the game

Carry out the following steps:

1.	 We will first download the graphics we need for this example. Go to the following
link to download the graphics:

http://gamedesign.cc/html5games/1260_09_example_graphics.zip

2.	 Extract the ZIP file in the images folder.

Building a Physics Car Game with Box2D and Canvas

[304][304]

3.	 Now it is time to edit the index.htm file. Add the following HTML markup
to the body:

<div id="asset">

</div>

4.	 We want to hide the asset DIV that contains our img tags. Open the cargame.css
file and add the following CSS rule to keep the asset DIV out of our sight:

#asset {
 position: absolute;
 top: -99999px;
}

5.	 We will now move on to the logic part. Open the html5games.box2dcargame.js
JavaScript file.

6.	 In the createGround function, we add a new argument named type to pass in the
type. Then, we add the highlighted code to assign the reference of the flag image
to the ground shape user data if it is a winning destination ground:

function createGround(x, y, width, height, rotation, type) {
 // box shape definition
 var groundSd = new b2BoxDef();
 groundSd.extents.Set(width, height);
 groundSd.restitution = 0.4;
 if (type == "win") {
 groundSd.userData = document.getElementById('flag');
 }

 …
}

7.	 When creating the ground, we need to pass the type property now. Replace the
ground creation code with the following one:

var groundBody = createGround(obj.x, obj.y, obj.width,
 obj.height, obj.rotation, obj.type);

8.	 Next, we assign the reference of the bus image tag to the user data in the car shape.
Add the following highlighted code to the car box definition creation:

// the car box definition
var boxSd = new b2BoxDef();

Chapter 9

[305][305]

boxSd.density = 1.0;
boxSd.friction = 1.5;
boxSd.restitution = .4;
boxSd.extents.Set(40, 20);
boxSd.userData = document.getElementById('bus');

We used to get the reference of an element by the jQuery $(selector)
method. The jQuery selector returns an array of the element objects
with additional jQuery data wrapped. If we want to get the original
document element reference, then we can either use the document.
getElementById method or $(selector).get(0). As
$(selector) returns an array, get(0) gives the first original document
element in the list

9.	 Then, we need to handle the wheels. We assign the wheel image tag to the
wheel body's userData property. Add the following highlighted code to the
createWheel function:

function createWheel(world, x, y) {
 // wheel circle definition
 var ballSd = new b2CircleDef();
 ballSd.density = 1.0;
 ballSd.radius = 10;
 ballSd.restitution = 0.1;
 ballSd.friction = 4.3;
 ballSd.userData = document.getElementById('wheel');

 …
}

10.	Finally, we have to draw the images in the canvas. Replace the drawWorld function
with the following code. The highlighted code is the changed part:

function drawWorld(world, context) {
 for (var b = world.m_bodyList; b != null; b = b.m_next) {
 for (var s = b.GetShapeList(); s != null; s = s.GetNext()) {
 if (s.GetUserData() != undefined) {
 // the user data contains the reference to the image
 var img = s.GetUserData();

 // the x and y of the image.
 // We have to substract the half width/height
 var x = s.GetPosition().x;
 var y = s.GetPosition().y;
 var topleftX = - $(img).width()/2;
 var topleftY = - $(img).height()/2;

 context.save();
 context.translate(x,y);

Building a Physics Car Game with Box2D and Canvas

[306][306]

 context.rotate(s.GetBody().GetRotation());
 context.drawImage(img, topleftX, topleftY);

 context.restore();
 } else {
 drawShape(s, context);
 }
 }
 }
}

11.	Finally, save all files and run the game in a web browser. We should see a yellow bus
graphic, two wheels, and a flag as the destination. Play the game now and the game
should move on to the next level when the bus hits the flag:

What just happened?
We are now presenting our game with minimal graphics. At least, players can easily know
what they are controlling and where they should go.

The Box2D library uses a canvas to render the physics world. Therefore, all techniques that
we learned about a canvas can be applied here. In Chapter 5, Building a Canvas Games
Masterclass, we learned the use of the drawImage function to display an image in the
canvas. We used this technique to draw the flag graphic in the canvas of the physics world.

Using userData in shape and body
How do we know which physics body needs to be displayed as the flag image? There is a
property named userData in every Box2D shape and body. This property is used to store
any custom data related to that shape or body. For example, we may store the filename of
the graphic file or we just directly store the reference to the image tag.

Chapter 9

[307][307]

We have a list of image tags referencing the graphic assets that we need in the game.
However, we do not want to display the image tags, they are just for the purpose of loading
and referencing. We hide those asset image tags by setting their position out of the HTML
bound with the following CSS style. We do not use display:none because we cannot get
the width and height of the element that is not displayed at all. We need the width and
height to position graphics correctly in the physics world:

#asset {
 position: absolute;
 top: -99999px;
}

Drawing graphics every frame according to the state of its
physics body
The drawing from Box2D is just for development use before we replace it with our graphics.

The following code checks whether the shape has a user data assigned. In our example, the
user data is used for referencing the image tag of that graphics asset. We get the image tag
and pass it to the canvas context drawImage function to draw.

All box and circle shapes in Box2D have the origin point at the center. However, the image
drawing in the canvas needs the top-left point. Therefore, we have both x/y coordinates and
offset of top-left x/y points which is a negative half width and height of the image:

if (s.GetUserData() != undefined) {
 // the user data contains the reference to the image
 var img = s.GetUserData();

 // the x and y of the image.
 // We have to substract the half width/height
 var x = s.GetPosition().x;
 var y = s.GetPosition().y;
 var topleftX = - $(img).width()/2;
 var topleftY = - $(img).height()/2;

 context.save();
 context.translate(x,y);
 context.rotate(s.GetBody().GetRotation());
 context.drawImage(img, topleftX, topleftY);
 context.restore();
}

Building a Physics Car Game with Box2D and Canvas

[30�][30�]

Rotating and translating an image in the canvas
We used the drawImage function to draw an image directly with the coordinate. However,
the situation is different here. We need to rotate the drawn image. This is done by rotating
the context before drawing and then restoring the rotation afterwards. We can do this by
saving the context state, translating it, rotating it, and then calling the restore function.
The following code shows how we draw an image at a given position and rotation. The
topleftX and topleftY are the offset distances from the image center origin to the top
left point:

context.save();
context.translate(x,y);
context.rotate(s.GetBody().GetRotation());
context.drawImage(img, topleftX, topleftY);
context.restore();

We do not need to make the physics body area exactly the same as its
graphics. For example, if we have a round circle chicken, we can represent
it in the physics world by just a ball body. Using a simple physics body can
improve the performance a lot.

Have a go hero – Applying the previously learned technique
to the car game

We have learned using CSS3 transition to animate a scoreboard. How about applying
it to this car game? Moreover, how about adding some engine sounds to the car?
Just try applying what we have learned through this book to give players a complete
game experience.

Adding a final touch to make the game fun to play
Imagine now we want to publish the game. The game logic is basically here, but it looks quite
ugly with the black and white environment. In this section, we will add some final touches to
the game so it is much more attractive. We will also apply some constraints to limit the time
of ApplyForce. This constraint makes the game more fun because it requires a player to think
before he applies too much force to the car.

Chapter 9

[30�][30�]

Time for action – Decorating the game and adding a fuel
limitation

Carry out the following steps:

1.	 First, we need some background images for the starting screen, game winning
screen, and environment backgrounds for each level. These graphics can be found
from the code bundle named box2d_final_game. The following screenshot shows
the graphics we need in this section:

2.	 Open the index.htm file and replace the canvas element with the following
markup. It creates two more game components named current level and fuel
remaining, and groups the game components into a game-container DIV:

<section id="game-container">

 <canvas id="game" width='1300' height='600'
 class="startscreen"></canvas>

Building a Physics Car Game with Box2D and Canvas

[310][310]

 <div id="fuel" class="progressbar">
 <div class="fuel-value" style="width: 100%;"></div>
 </div>

 <div id="level"></div>
</section>

3.	 Next, we will copy the cargame.css file from the code bundle. It contains several
class style definitions for the game. The game should look similar to the one shown
in the following screenshot when we have applied the new stylesheet:

4.	 Now we will move on to the JavaScript part. Open the html5games.
box2dcargame.js file.

5.	 Update the carGame object declaration with the following additional variable:

var carGame = {
 // game state constant
 STATE_STARTING_SCREEN : 1,
 STATE_PLAYING : 2,
 STATE_GAMEOVER_SCREEN : 3,

 state : 0,

 fuel: 0,
 fuelMax: 0,

 currentLevel: 0
}

Chapter 9

[311][311]

6.	 Now we have the starting screen. Instead of starting the game once, the page is
loaded. We show the starting screen and wait for the player to click on the game
canvas. Add the following logic to the page ready function:

// set the game state as "starting screen"
carGame.state = carGame.STATE_STARTING_SCREEN;

// start the game when clicking anywhere in starting screen
$('#game').click(function(){
 if (carGame.state == carGame.STATE_STARTING_SCREEN)
 {
 // change the state to playing.
 carGame.state = carGame.STATE_PLAYING;

 // start new game
 restartGame(carGame.currentLevel);

 // start advancing the step
 step();
 }
});

7.	 We need to remove the original step() function calling at the end of the page
ready function because we are calling it on a mouse click.

8.	 Next, we need to handle the game winning screen when the player passes all levels.
In the winning flag collision checking logic, we replace the original restartGame
function calling with the following logic which checks whether we show the next
level or the ending screen:

if (currentLevel < 4)
{
 restartGame(currentLevel+1);
}
else
{
 // show game over screen
 $('#game').removeClass().addClass('gamebg_won');

 // clear the physics world
 world = createWorld();

}

Building a Physics Car Game with Box2D and Canvas

[312][312]

9.	 Then, we will handle the game playing background. We prepared each game
background for each level setting. We will switch the background in the
restartGame function which responds to reconstruct the world:

$("#level").html("Level " + (level+1));

// change the background image to fit the level
$('#game').removeClass().addClass('gamebg_level'+level);

10.	With the game graphics now, we do not need the physics object outline
drawing any more. We can remove the drawShape(s, context); code
in the drawWorld function.

11.	Finally, let's add some constraints. Remember that in our level data, we include
a mystery fuel data to the car. It is an indicator indicating how much fuel the car
contains. We will use this fuel to limit the player's input. The fuel reduces each time
a force is applied to the car. The player cannot apply any additional force once the
fuel runs out. This limitation makes the game more fun to play:

12.	Update the x and z keydown function with the following logic:

case 88: // x key to apply force towards right
 if (carGame.fuel > 0)
 {
 var force = new b2Vec2(10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 carGame.fuel--;
 $(".fuel-value").width(carGame.fuel/carGame.fuelMax *
 100 +'%');
 }
 break;
case 90: // z key to apply force towards left
 if (carGame.fuel > 0)
 {
 var force = new b2Vec2(-10000000, 0);
 carGame.car.ApplyForce
 (force, carGame.car.GetCenterPosition());
 carGame.fuel--;
 $(".fuel-value").width(carGame.fuel/carGame.fuelMax *
 100 +'%');
 }
 break;

Chapter 9

[313][313]

13.	 In addition, in the car creating logic in the restart game function, we initialize the
fuel as follows:

// create car
if (obj.type == "car")
{
 carGame.car = createCarAt(obj.x,obj.y);
 carGame.fuel = obj.fuel;
 carGame.fuelMax = obj.fuel;
 $(".fuel-value").width('100%');
 continue;
}

14.	Now, run the game in a browser. We should get five graphic levels. The following
screenshot shows how the last four levels look:

15.	After passing all levels, we get the following winning screen:

Building a Physics Car Game with Box2D and Canvas

[314][314]

What just happened?
We just decorated our game with more graphics. We also draw each level environment a
background image. The following screenshot illustrates how the visual ground represents
the logical physics boxes. Unlike the car and the winning flag, the ground graphics are not
associated with the physics ground. It is just a background image with the graphics in their
respective positions. We can use this approach because those boxes will never move:

We can then prepare several CSS styles for each level with the level number in the class
name, such as .gamebg_level_1 and .gamebg_level_2. With each class linked with
each level background, we can change the background when switching a level in the
following code:

$('#game').removeClass().addClass('gamebg_level'+level);

Adding fuel to add a constraint when applying force
Now we limit the player's input by providing limited fuel to use. The fuel decreases when
players apply force to the car. We used the following keydown logic to decrease the fuel
and prevent additional force when running out of fuel:

case 88: // x key to apply force towards right
 if (carGame.fuel > 0)
 {
 var force = new b2Vec2(10000000, 0);
 carGame.car.ApplyForce(force, carGame.car.GetCenterPosition());
 carGame.fuel--;
 $(".fuel-value").width(carGame.fuel/carGame.fuelMax * 100 +'%');
 }

Chapter 9

[315][315]

Presenting the remaining fuel in a CSS3 progress bar
In our game, we present the remaining fuel as a progress bar. The progress bar is actually a
DIV inside another DIV. The following markup shows the structure of the progress bar. The
outer DIV defines the maximum value and the inner DIV shows the actual value:

<div id="fuel" class="progressbar">
 <div class="fuel-value" style="width: 100%;"></div>
</div>

The following screenshot illustrates the structure of the progress bar:

With this structure, we can show a specific progress by setting the width as a percentage
value. We use the following code to update the progress bar according to the percentage
of the fuel:

$(".fuel-value").width(carGame.fuel/carGame.fuelMax * 100 +'%');

This is the basic logic to setup a progress bar and control it with the width style.
Furthermore, we give the progress bar's background a nice gradient as shown in the
following screenshot:

It is done in the stylesheet with the following CSS3 gradient background definition:

.progressbar {
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0%,#8C906F), color-stop(48%,#8C906F),
 color-stop(51%,#323721), color-stop(54%,#55624F),
 color-stop(100%,#55624F));
}

.progressbar .fuel-value {
 background: -webkit-gradient(linear, left top, left bottom,
 color-stop(0%,#A8D751), color-stop(48%,#A8D751),
 color-stop(51%,#275606), color-stop(54%,#4A8A49),
 color-stop(100%,#4A8A49));
}

Building a Physics Car Game with Box2D and Canvas

[316][316]

Summary
We learned a lot in this chapter about using the Box2D physics engine to create a car
adventure game in canvas.

Specifically, we covered the following topics:

Installing the JavaScript ported physics engine

Creating static and dynamic bodies in the physics world

Setting up the car by using joints to constrain bodies and wheels

Getting a keyboard input with the prototype library

Interacting with the car by adding force to it

Checking collisions in the physics world as the level destination

Drawing an image to replace the outline of our physical game objects

We also discussed adding a fuel bar to limit the player's input to give some constraint
and add more fun to the game play.

We have now learned about using the Box2D physics library to create a canvas-based
physics game.

We discussed different aspects of making HTML5 games with CSS3 and JavaScript through
all nine chapters. We learned building a traditional Ping Pong game in DOM, we built a card
matching game in CSS3, and an Untangle puzzle game with the canvas. Then, we explored
adding sounds to the game and created a mini piano musical game around it. Next, we
discussed saving and loading game statuses by using the local storage. Moreover, we tried
building a draw-and-guess real-time multiplayer game with WebSockets. Finally, we created
a car game with a physics engine in this chapter.

Throughout the book, we built different types of games and learned some essential
techniques that we need to make HTML5 games. The next step is to go on and deploy
your own games. To help develop your own games, there are some resources that can
help. The following list gives some useful links for HTML5 games development:

HTML5 game engines
Impact (http://impactjs.com/)

Rocket Engine (http://rocketpack.fi/engine/)

LimeJS (http://www.limejs.com/)

Chapter 9

[317][317]

Game sprites, and textures
Lost Garden (http://lunar.lostgarden.com/labels/
free%20game%20graphics.html)

Some free sprites from The_Protagonist's Domain (http://www.freewebs.com/
teh_pro/sprites.htm)

HasGraphics sprites, textures, and tilesets (http://hasgraphics.com/
category/sprites/)

CG Textures (http://cgtextures.com/)

Sound effects
PacDV (http://www.pacdv.com/sounds/)

FlashKit Sound Effects (http://www.flashkit.com/soundfx/)

FlashKit Sound Loops (http://www.flashkit.com/loops/)

Pop Quiz Answers

Chapter 2: Getting Started with DOM-based Game
Development

Running our code after the page is ready

1 d

Understanding the behavior of absolution position

1 c

Chapter 3: Building Memory Match Game in CSS3

Storing internal custom data with HTML5 custom data attribute

1 c or d

Accessing custom data attribute with jQuery

1 a and d

Appendix

[320]

Chapter 4: Building Untangle Game with Canvas and
Drawing API

Using startAngle and endAngle

1 c

Using closePath with fill command only

1 b

Accessing shapes in canvas

1 b

2 d

Clearing drawn shapes in canvas

1 a

2 b

Chapter 5: Building Canvas Games Masterclass

Drawing text in canvas

1 c

2 b

Styling canvas background

1 b

Pop Quiz Answers

[321]

Chapter 6: Adding Sound Effects to your Games

Using the audio tag

1 b

2 Please the fallback content
between <canvas> and </
canvas>

Chapter 7: Using Local Storage to Store Game Data

Using local storage

1 False

2 True

3 True

Chapter �: Building Multiplayer Draw-and-Guess Game
with WebSockets

1 Referring to the content related to Web
Sockets section

In the WebSockets approach, the amount
of requests is much less than the polling
approach. It is because the connection
between the client and server is persistence.
Once the connection is established, a request
from either client-side or server-side is only
sent when there is any update. For instance,
a client sends a message to server when it
wants to update something to server. The
server also sends messages to clients only
when it needs to notify the clients for data
update. No other useless requests are sent
during the connection. Therefore much
less bandwidth is used. The following graph
shows the WebSockets approach.

Index
Symbols
-ms- prefix 13
-o- prefix 13
-webkit- prefix 13
.css(map) function type 34
.css(propertyName, value) function type 34
.css(propertyName) function type 34
.data(key), data function 86
.data(key, value), data function 86
.show-scene class 190
 tag 8
2D Physics Engine 273

A
alignment 141
appendTo function 77
Apple

homepage 15
Apple Safari

URL 26
ApplyImpulse function 293
Arc function

Arc function Arcs, drawing 99
AT-AT Walker 15
attr function 85
audio event

about 202
game over event, indicating 202, 203
handling 203

audio tag
using 174

autoplay attribute 170
Aves Engine, HTML5 games 22

B
b2World class 278
backface-visibility property 69
background property 35
beginPath command 103
benefits, HTML5 games

browser game boundary, breaking 16
iOS devices without plugin, supporting 16
third-party plug-in, avoiding 16

boldLineThickness variable 129
Box2D JavaScript library

installing 274
Box2D world

collision contact list, obtaining 296, 297
collisions, checking 295, 296
final touches, adding 308-314
fuel, adding 314
outline drawings, replacing with graphics 303
progress bar structure, presenting 315

broadcast function 240

C
canvas

basic class definition, in JavaScript 108
circle, drawing 104, 105
circle drawing, Arc function used 98
circle position, saving 106, 107
circles, dragging 112-115

[���]

circles, drawing in 95-97
clearing 118, 119
degree conversion, to radians 98
fall back content, providing 97
lines, drawing 108
mouse events, adding 112
mouse position, obtaining 116
path, closing 103, 104
path, initiating for each style 102
path drawing, executing 102
random number, generating 105, 106

canvas-based game
CSS styles, adding 149-151
image decoration, adding 149-151

Canvas Demo, HTML5 games 22
canvas games masterclass, building

images in canvas, drawing 144
multi-layers canvas game, creating 156
shape filling, gradient color used 134
sprite sheet, animating 152
text in canvas, drawing 139

card-flipped class 67
card flipping effect

backface-visibility 69
creating, CSS used 64, 66
CSS perspective property 68, 69
overlapped element visibility control, z-index

used 67
toggling a class style 66

card matching memory game
about 70
CSS sprite, using with background position 78
DOM element, aligning vertically 77
DOM elements cloning, jQuery used 77
first-child selecting, child filter used 77
game environment, setting up 71-76
paying card sprites sheet, downloading 70, 71

car game
levels data, loading 299-303
more levels, creating 303

carGame.world.GetContactList() function 296
Cascading Style Sheet. See CSS
CG Textures

URL 317
chatting application building, WebSockets used

message, receiving on server side 246

message from client to server, sending 246
message to server, sending 243-246

checkPattern function 83
child filter 77
CircleDef class 288
circleRadius variable 129
circles property 130
circles variable 129
clearRect function 119
close event 240
closePath function 103, 104
collision detection

about 49
boundary, checking 50-53
player score, displaying 53, 55

color stop
with opacity, adding 136

compare_function 84
connectCircles function 127
connection event 240
contact list 296
context.font property 141
context.textAlign property 141
context.textBaseline property 141
controls attribute 170
createGround function 279, 284, 304
createWheel function 305
CSS 7
CSS3

animation 14, 15
card flipping effect, creating 64
card matching memory game, creating 70
features 11
game logic, adding to matching game 79
modules 63
playing card, moving 58-60
transform 13
transition 12
transition module, using 57
web fonts, embedding into game 87

CSS3 flexible box layout module 77
CSS3 Info 15
CSS3 transition module

2D transforms functions 61
3D transforms functions 61
playing card, moving 58-60
styles, tweening 62

[���]

CSS sprite sheet 78
CSS transform functions 61
currentLevel variable 129
currentTime property 171
custom data attribute 84

D
data-custom-name attribute 86
data-href attribute 85
data-score attribute 85
data storage

HTML5 local storage, using 206
data storage, HTML5 local storage used

game over dialog, creating 206-209
game scores, saving 210, 211
local storage, benefits 212
local storage, limitations 213
local storage, treating as associated array 213
setItem function, using 211

dataType property 258
development environment

preparing 26
dim class 156
document.getElementById method 305
Document Object Model. See DOM
DOM 7
DOM-based game development

collision detection, beginning 49
DOM object moving, JavaScript Interval used

47
HTML documents, preparing 26
keyboard input, getting from player 37
manipulating, jQuery used 35
multiple keyboard input, supporting 43
Ping Pong game elements, setting 30
text in HTML, displaying 53

DOM object moving, JavaScript Interval used
dball, moving 47- 49
collision detection, starting 49

draw-and-guess game
about 234
chatting application building, WebSockets used

243
decorating, CSS used 268-270
message broadcasting 247
multiplayer game building 259

shared drawing whiteboard, making 250
WebSocket server, installing 236
WebSockets web application, trying 234

drawBackground function 175
drawCricle function 107
drawImage function 148, 149, 308
drawJoint function 283
drawLayerBG function 158
drawLayerUI function 160
drawWorld function 281, 312

E
endX property 258
endY property 258
event

audio 203
ended 203
pause 203
play 203
progress 203
timeupdate 203
TransitionEnd 83

existing WebSockets web application
about 234
multiuser sketchpad, trying 235, 236

F
fadeout class 156
features, CSS3

about 11
animation 14, 15
transform 13, 14
transition 12, 13

features, HTML5
audio 8
canvas 8
GeoLocation 8
local storage 10
offline application 11
WebGL 9
WebSocket 10

fill command 103
fill function 102
fillText function 141

[���]

FlashKit Sound Effects
URL 317

FlashKit Sound Loops
URL 317

Fontdeck 90
forEach function 267

G
game logic, adding to matching game

code, executing 83
code execution, delaying on flip cards 83
custom data attribute access, jQuery used 85,

86
internal custom data storage, HTML5 custom

data attribute used 84
JavaScript array, randomizing 83, 84
playing card games, creating 87
steps 79-83

game loop
using 117

gameloop function 48, 134, 200
gameover function 209
getDate function, date object 217
getDay function, date object 217
getElementById function 171
getFullYear function, date object 217
getHours function, date object 217
getMilliseconds function, date object 217
getMinutes function, date object 217
getMonth function, date object 217
getSeconds function, date object 217
getTime function, date object 217
Google Body

screenshot for WebGL 9
Google Chrome

URL 26
Google Font Directory

site 88
guideFrame variable 154

H
HTML 7
html() function 55
HTML5

Asteroid-styled bookmarklet 19

Aves Engine 22
features 8
HTML5Rocks 15
Match game 18
other technique games 18-22
Quake 2 20
RumpeTroll 21
Scrabb.ly 21, 22
Sinuous 19
WebSocket 10

HTML5 Canvas Element 94
HTML5 game engines

LimeJS 316
HTML5 Game Jam, HTML5 games 23
HTML5 games

benefits 15
building 18
Canvas Demo 22
HTML5 Game Jam 23

HTML5 local storage
data, storing 206

HTML5Rocks 15
HTML documents, preparing for DOM-based

game
about 26
code, running 29
DOCTYPE 28
footer 29
header 29
JavaScript code placing, best practices 29
jQuery library, installing 27, 28

HTTP requests 70
Hyper-Text Markup Language. See HTML

I
images, inside canvas

background image, optimizing 149
canvas-based game, decorating 149
drawImage function, using 147-149
drawing 146, 147
graphics, adding to game 144-146

index.html file 89
IndexedDB

URL 220
installation, Box2D JavaScript library

about 274

[��7]

b2AABB, using 278
b2World, using 277
Box2d, setting 278, 279
gravity of the world, setting 278
steps 275, 277

installation, WebSocket server. See WebSockets
server installation

intersection point 122

J
JavaScript Object Notation. See JSON
J key 192
jQuery

about 32
benefits 35
modification 32
selection 32
selector patterns 33
using, for game element manipulation 35

jQuery CSS function
.css(map) 34
.css(propertyName) 34
.css(propertyName, value) 34

JSON 219
JSON.stringify function 220, 259

K
keyboard driven mini piano musical game

creating 190, 192
element in array, removing 194
J key 192
K key 193
L key 193
music dot hits, determining 193, 194
music dot removal, splice function used 194,

195
keyboard input

console window, checking 42
constants 40
DOM objects, moving 38, 39
JavaScript expression, executing in Console

panel 42
key code 39, 40
strings to numbers conversion, parseInt

function used 41

keydown event handler 199
keydown event listener 40
K key 193

L
layerX property 116
layerY property 116
LearningWebGL

URL 9
level property 130
levels variable 129
linear gradient color

using 135
line intersection

determining, in canvas 119-122
of two line segments 123, 124

lines, in canvas
drawing 108
drawing APIs 111
straight lines, drawing 109-111

lines, variable 129
line segment 123
LineTo function 111
lineWidth function 111
link list 296
link tag 89
L key 193
local drawing sketchpad

building, canvas used 251-253
canvas, drawing on 254

local storage
current date in JavaScript, obtaining 217, 218
current time in JavaScript, obtaining 217, 218
inspecting, in console window 219, 220
object, saving 213-216
object encoding, native JSON used 218
stored object, loading from JSON string 218,

219
local variable 45
location-based service

foursquare 8
Gowalla 8

long polling 249
loop attribute 170
Lost Garden

URL 317

[��8]

M
Match game, HTML5 games 18
Math.floor() function 106
Math.random() function 105
measureText function 144
message broadcasting

to all connected browsers 247, 248
WebSockets and polling approaches, comparing

248, 250
message property 258
method

document.getElementById 305
mini piano game

about 174
additional features, adding 195-199
basic background, creating 174-177
game dots, removing 198
music level data recording, functionality adding

199-201
music notes, recording as level data 199
music play back, visualizing 178
music volume, adding accordingly 196
scenes creation, in HTML5 177, 178
success count, storing 198

modulus operator 76
mouse events

adding 112
detecting, on circles 116, 117

moveBall function 48
Moveto function 111
Mozilla Firefox

Opera 26
URL 26

multi-layers canvas game
creating 156
CSS technique- canvas drawing integration 162,

163
four layers, dividing into 156-162

multiplayer draw-and-guess game
building 260-265
connected clients, enumerating, on server-side

266, 267
game, improving 267
game flow, controlling 265
message, sending to specific server 267

multiplayer draw-and-guess game, improving
answer checking mechanism, improving 268
drew lines, storing 268

multiple keyboard input support
another approach, using 43-45
Game Loop 46
global variables, declaring 45, 46
JavaScript timer creating, setInterval function

used 46
music game scene

play button, linking to 187
music play back visualization

creating, steps 179-183
game elapsed time, obtaining 184
music dots, creating 185, 186
music dots, moving 186, 187
proper song, selecting 183
song level data, extracting 183
song level data, storing 183

music volume, adding accordingly
missed melody notes, removing 196-198

N
Node.js 22
node server.js command 245

O
object-oriented programming language 108
Ogg format audio

for Mozilla Firefox, creating 172
MP3 sound, converting to 173

onerror event 147
onload event 158
onmessage event handler 247
outline drawings, Box2D world

canvas image, rotating 308
canvas image, translating 308
car graphic, adding 303-306
flag graphic, adding 303-306
graphics, drawing 307
replacing with graphics 303
userData in body, using 306
userData in shape, using 306

[��9]

P
PacDV

URL 317
parseFloat function 212
parseInt function 41
pause function 171
Photojojo

URL 16
physical car

about 288
anchor point creating, revolute joint used 290,

291
ApplyForce function 293
ApplyImpulse function 293
box and two circles, connecting with revolute

joint 289, 290
creating 289, 290
force, applying to 292
moving, keyboard used 291, 292
ramps, adding to environment 293, 294

physics world
bouncing effect setting, restitution property

used 285
drawing, in canvas 281-284
dynamic box, creating 284, 285
game over wall, creating 299
restarting 297
R key, for restarting 297, 299
static ground body, creating 279
wheels, adding 287, 288

Pie Guy game
about 11

Ping Pong game elements
absolution position behavior 36, 37
placing, in DOM 30, 32
position, changing 35, 36

play button, linking to music game scene
scene transition, animating 187, 188
scene transition effects, creating 190
sound effect, adding 166
slide-in effect in CSS3, creating 189, 190

play function 171
point-in-circle formula 116
polling approach 248
preload attribute 170

Q
Quake 2 port , HTML5 games 20

R
radial gradient color

circles, filling with 136, 138
creating 138
filling 135, 136

radius property 288
random function 106
ranking attribute 85
ready event 30
ready function 311
relationships property 130
removeTookCards function 208
restartGame function 301, 312
restore function 308
rotate3d function 63
rotate function 61
rotation property 294
RumpeTroll, HTML5 games 21

S
scale function 61
Scrabb.ly, HTML5 games 21, 22
selector pattern, jQuery

$(“. className”) 133
$(“#id”) 133
$(“Element”) 133
$(“selector1, selector2, selectorN”) 133

sender property 258
send method 267
server manager class 266
setInterval function 47
setItem function 211
setTimeout functions 83
setupLevelData function 196
shape filling

color stops, adding in gradient color 135, 136
gradient color, using 134-136
radial gradient color, filling 136

shared drawing whiteboard
connected browsers drawings, broadcasting

254- 258

[��0]

data object, defining 258
drawing lines, recreating 259
drawing lines data into JSON, broadcasting 259
local drawing sketchpad, building 250

sound effect
adding, to Play button 166
audio event, adding 202
mini piano game, building 174

sound effect, adding to Play button
audio element, defining 169
different web browser support 174
fallback content, displaying in audio tag 169,

170
jQuery hover event, using 172
Ogg format audio, creating 172
sound, pausing 171
sound, playing 171
steps 166-169
volume, adjusting 172

sound effects
FlashKit Sound Effects 317
FlashKit Sound Loops 317
PacDV 317

splice function 198
sprite animation 156
sprite sheet, in canvas

game guide animation, creating 152-155
src attribute 169
src property 147
startGame function 180, 188
startX property 258
startY property 258
static ground body creating, physics world

body, creating 280
shape, creating 280
steps 279, 280

step() function 311
stringify function 218
stringify method 218
stroke command 103
Stroke function 111
sudo make install command 237

T
targetCircle variable 129
text, inside canvas

drawing 139-142
embedded web font, using 142-144

textBaseline 141
thinLineThickness variable 129
toFixed function 201
toggleClass function 67
toggling a class style 66
top property 41
TransitionEnd event 83
translateX function 61
translateY function 61
Twitch

URL 17
Typekit 90

U
untangle puzzle game

about 94
building, with canvas 95, 108
completeness progress, displaying 131
creating 124-129
current level, displaying 131
drawn objects in canvas, interacting with 112
HTML5 Canvas Element 94
level-up, determining 130
levelling data, defining 129
line intersection in canvas 119

userData property 305

V
vertical center alignment 77

W
web fonts

about 87
embedding, from Google Font Directory 88, 89
font delivery services, choosing 90

WebGL 9
Webkit

blog 70
WebSockets approach

graph 250
WebSockets server

installing 236

[��1]

WebSockets server installation
client events 243
connected clients count, determining 240
connection, establishing 243
connection client, creating 241, 242
connection event listening, on server side 240
initializing 239
message, broadcasting 240
Node.JS WebSocket server, installing 236
WebSockets server, creating for connection

count broadcast 238
Web SQL Database

URL 220
which function 39

world time
about 286
world step loop, setting 286

X
x keydown function 312

Z
Z-index property 67
z keydown function 312

Thank you for buying
HTML5 Games Development by Example
Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.PacktPub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Flash Game Development by Example
ISBN: 978-1-84969-090-4 Paperback:328 pages

Build 10 classic Flash games and learn game development
along the way

1. Build 10 classic games in Flash. Learn the
essential skills for Flash game development.

2. Start developing games straight away. Build your
first game in the first chapter.

3. Fun and fast paced. Ideal for readers with no
Flash or game programming experience.Topic

4. The most popular games in the world are built in
Flash.

Flash Development for Android
Cookbook
ISBN: 978-1-84969-142-0 Paperback: 372 pages

Over 90 recipes to build exciting Android applications with
Flash, Flex, and AIR

1. The quickest way to solve your problems with
building Flash applications for Android

2. Contains a variety of recipes to demonstrate mobile
Android concepts and provide a solid foundation for
your ideas to grow

3. Learn from a practical set of examples how to
take advantage of multitouch, geolocation, the
accelerometer, and more

Please check www.PacktPub.com for information on our titles

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-84969-104-8 Paperback:288 pages

Recipes for practical, real-world HTML5 multimedia driven
development.

1. Use HTML5 to enhance JavaScript functionality.
Display videos dynamically and create movable
ads using JQuery.

2. Set up the canvas environment, process shapes
dynamically and create interactive visualizations.

3. Enhance accessibility by testing browser support,
providing alternative site views and displaying
alternate content for non supported browsers

XNA 4.0 Game Development by
Example: Beginner's Guide
ISBN: 978-1-84969-066-9 Paperback: 428 pages

Create your own exciting games with Microsoft XNA 4.0

1. Dive headfirst into game creation with XNA

2. Four different styles of games comprising a puzzler,
a space shooter, a multi-axis shoot 'em up, and a
jump-and-run platformer

3. Games that gradually increase in complexity
to cover a wide variety of game development
techniques

4. Focuses entirely on developing games with the free
version of XNA

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing HTML5 Games
	Discovering new features in HTML5
	Canvas
	Audio
	GeoLocation
	WebGL
	WebSocket
	Local Storage
	Offline application

	Discovering new features in CSS3
	CSS3 transition
	CSS3 transform
	CSS3 animation

	Learning more detail of new HTML5 and CSS3 features
	The benefit of creating HTML5 games
	No third-party plugin required
	Supporting iOS devices without plugin
	Breaking the boundary of usual browser games
	Building HTML5 games

	What others are playing with HTML5
	Matching game
	Sinuous
	Asteroid-styled bookmarklet
	Quake 2
	RumpeTroll
	Scrabb.ly
	Aves Engine

	Browsing more HTML5 games
	What we are going to create in this book
	Summary

	Chapter 2: Getting Started with DOM-based Game Development
	Preparing the development environment
	Preparing the HTML documents for a DOM-based game
	Time for action – Installing the jQuery library
	New HTML5 doctype
	Header and footer
	Best practice to place the JavaScript code
	Running our code after the page is ready

	Setting up the Ping Pong game elements
	Time for action – Placing Ping Pong game elements in DOM
	Introducing jQuery
	Understanding basic jQuery selectors
	Understanding the jQuery CSS function
	Benefits of using jQuery
	Manipulating game elements in DOM with jQuery

	Time for action – Changing position of elements with jQuery
	Understanding the behavior of absolute position

	Getting keyboard input from players
	Time for action – Moving DOM objects by keyboard input
	Understanding key code
	Making constants more readable
	Converting strings to numbers with parseInt function
	Executing JavaScript expressions directly in the Console panel
	Checking the console window

	Supporting multiple keyboard input from players
	Time for action – Listening to keyboard input with
	another approach
	Declaring global variables in a better way
	Creating a JavaScript timer with setInterval function
	Understanding Game Loop

	Moving a DOM object with JavaScript Interval
	Time for action – Moving the ball with JavaScript Interval
	Beginning collision detection
	Time for action – Hitting the ball with the paddles
	Showing text dynamically in HTML
	Time for action – Showing the score of both players
	Summary

	Chapter 3: Building a Memory Matching Game in CSS3
	Moving game objects with CSS3 transition
	Time for action – Moving a playing card around
	2D transforms functions
	3D transforms functions

	Tweening the styles by using CSS3 transition

	Creating a card-flipping effect
	Time for action – Flipping a card with CSS3
	Toggling class with jQuery toggleClass function
	Controlling the visibility of overlapped elements by z-index
	Introducing CSS perspective property
	Introducing backface-visibility

	Creating a card matching memory game
	Downloading the sprites sheet of playing cards
	Setting up the game environment

	Time for action – Preparing the card matching game
	Cloning DOM elements with jQuery
	Selecting the first child of an element in jQuery by using child filters
	Vertically aligning a DOM element
	Using CSS sprite with a background position

	Adding game logic to the matching game
	Time for action – Adding game logic to the matching game
	Executing code after CSS transition ended
	Delaying code execution on flipping cards
	Randomizing an array in JavaScript
	Storing internal custom data with an HTML5 custom data attribute
	Accessing custom data attribute with jQuery
	Making other playing card games

	Embedding web fonts into our game
	Time for action – Embedding a font from Google Font Directory
	Choosing different font delivery services

	Summary

	Chapter 4: Building the Untangle Game with Canvas and Drawing API
	Introducing the HTML5 Canvas Element
	Drawing a circle in canvas
	Time for action – Drawing color circles on canvas
	Putting fallback content when the web browser does not support canvas
	Drawing circles and shapes with canvas arc function
	Converting degree to radians

	Time for action – Drawing different arcs with arc function
	Executing the path drawing in canvas
	Beginning a path for each style
	Closing a path
	Wrapping the circle drawing in function

	Time for action – Putting the circle drawing code into a function
	Generating random numbers in JavaScript
	Saving the circle position

	Time for action – Saving the circle position
	Defining a basic class definition in JavaScript

	Drawing lines in canvas
	Time for action – Drawing straight lines between each circle
	Introducing the line drawing API

	Interacting with drawn objects in canvas with mouse events
	Time for action – Dragging the circles in canvas
	Getting the mouse position in the canvas element
	Detecting mouse events on circles in canvas
	Game loop
	Clearing the canvas

	Detecting line intersection in canvas
	Time for action – Distinguishing the intersected lines
	Determining whether two line segments intersect

	Making the untangle puzzle game
	Time for action – Making the untangle puzzle game in canvas
	Defining the leveling data
	Determining level-up
	Displaying current level and completeness progress

	Summary

	Chapter 5: Building a Canvas Games Masterclass
	Filling shapes with gradient color
	Time for action – Drawing a gradient color background
	to the Untangle game
	Adding color stops in the gradient color
	Filling radial gradient color

	Time for action – Filling the circles with radial gradient color
	Drawing text in canvas
	Time for action – Displaying the progress level text
	inside the canvas element
	Using embedded web font inside canvas

	Time for action – Embedding Google Web Font into the
	canvas element
	Drawing images in canvas
	Time for action – Adding graphics to the game
	Using the drawImage function
	Decorating the canvas-based game

	Time for action – Adding CSS styles and images
	decoration to the game
	Animating a sprite sheet in canvas
	Time for action – Making a game guide animation
	Creating a multi-layers canvas game
	Time for action – Dividing the game into four layers
	Mixing CSS technique with Canvas drawing

	Summary

	Chapter 6: Adding Sound Effects to your Games
	Adding a sound effect to the play button
	Time for action – Adding sound effects to the play button
	Defining an audio element
	Playing a sound
	Pausing a sound
	Adjusting the sound volume
	Using the jQuery hover event
	Creating the Ogg format audio to support Mozilla Firefox

	Time for action – Converting an MP3 sound to Ogg
	format with Audacity
	Supporting different web browsers with different audio formats

	Building a mini piano musical game
	Time for action – Creating a basic background to the
	music game
	Creating scenes in HTML5 games
	Visualizing the music play back

	Time for action – Creating the playback visualization
	in the music game
	Choosing the right song for the music game
	Storing and extracting the song level data
	Getting the elapsed time of the game
	Creating music dots
	Moving the music dots

	Linking the play button to the music game scene
	Time for action – Animating the scene transition
	Creating a slide-in effect in CSS3

	Creating a keyboard-driven mini piano musical game
	Time for action – Creating a mini piano musical game
	Hitting the three music lines by key down
	Determining music dot hits on key down
	Removing an element in an array with the given index

	Time for action – Removing music dots with the splice function
	Adding additional features to the mini piano game
	Adjusting the music volume according to the player

	Time for action – Removing missed melody notes
	Removing dots from the game
	Storing the success count in the last five results
	Recording music notes as level data

	Time for action – Adding functionality to record the
	music level data
	Handling the audio event on playback completes
	Time for action – Indicating a game over event in the console
	Handling audio events

	Summary

	Chapter 7: Using Local Storage to Store Game Data
	Storing data by using HTML5 local storage
	Creating a game over dialog

	Time for action – Creating a game over dialog with the
	elapsed played time
	Saving scores in the browser

	Time for action – Saving the game score
	Storing and loading data with local storage
	The local storage saves the string value
	Treating the local storage object as an associated array

	Saving objects in the local storage
	Time for action – Saving the time alongside the score
	Getting the current date and time in JavaScript
	Using the native JSON to encode an object into a string
	Loading a stored object from a JSON string
	Inspecting the local storage in a console window

	Notifying players of breaking a new record with a nice ribbon effect
	Time for action – Creating a ribbon in CSS3
	Saving the entire game progress
	Saving the game progress

	Time for action – Saving all essential game data in the
	local storage
	Removing a record from the local storage
	Cloning an array in JavaScript
	Resuming the game progress

	Time for action – Resuming a game from the local storage
	Summary

	Chapter 8: Building a Multiplayer Draw-and-Guess Game with WebSockets
	Trying an existing WebSockets web application
	Time for action – Trying the multiuser sketchpad
	Installing a WebSocket server
	Installing the Node.JS WebSocket server

	Time for action – Installing Node.JS
	Creating a WebSockets server to broadcast the connection count

	Time for action – Creating a WebSocket server that sends
	the total count of connections
	Initializing the WebSockets server
	Listening to the connection event on the server side
	Getting a count of connected clients on the server side
	Broadcasting a message to all connected browsers
	Creating a client that connects to a WebSocket server and getting the total connections count

	Time for action – Showing the connection count in a
	WebSocket application
	Establishing a WebSocket connection
	WebSockets client events

	Building a chatting application with WebSockets
	Sending a message to the server

	Time for action – Sending a message to the server
	through WebSockets
	Sending a message from the client to the server
	Receiving a message on the server side

	Broadcasting every received message on the server side to create a chat room
	Time for action – Broadcasting the messages to all connected
	browsers
	Comparing between WebSockets and polling approaches

	Making a shared drawing whiteboard with Canvas and WebSockets
	Building a local drawing sketchpad

	Time for action – Making a local drawing whiteboard with
	the Canvas
	Drawing on the canvas
	Broadcasting the drawing to all connected browsers

	Time for action – Sending the drawing through WebSockets
	Defining a data object to communicate between the client and the server
	Packing the drawing lines data into JSON for broadcasting
	Recreating the drawing lines after receiving them from other clients

	Building a multiplayer draw-and-guess game
	Time for action – Building the draw-and-guess game
	Controlling the game flow of a multiplayer game
	Enumerating connected clients on the serverside
	Sending a message to a specific connection on the server side
	Improving the game
	Storing drawn lines on each game
	Improving the answer checking mechanism

	Decorating the draw-and-guess game with CSS
	Time for action – Decorating the game
	Summary

	Chapter 9: Building a Physics Car Game with Box2D and Canvas
	Installing the Box2D JavaScript library
	Time for action – Installing the Box2D physics library
	Using b2World to create a new world
	Using b2AABB to define a bounding area
	Setting the gravity of the world
	Setting the Box2D to ignore the slept object

	Creating a static ground body in the physics world
	Time for action – Creating a ground in the world
	Creating a shape
	Creating a body

	Drawing the physics world in the canvas
	Time for action – Drawing the physics world into the canvas
	Creating a dynamic box in the physics world
	Time for action – Putting a dynamic box in the world
	Setting the bouncing effect with the restitution property

	Advancing the world time
	Time for action – Setting up the world step loop
	Adding wheels to the game
	Time for action – Putting two circles in the world
	Creating a physical car
	Time for action – Connecting the box and two circles
	with revolute joint
	Using a revolute joint to create an anchor point between two bodies

	Adding force to the car with a keyboard input
	Time for action – Adding force to the car
	Applying force to a body
	Understanding the difference between ApplyForce and ApplyImpulse
	Adding ramps to our game environment

	Time for action – Creating the world with ramps
	Checking collisions in the Box2D world
	Time for action – Checking a collision between the car and the
	destination body
	Getting the collision contact list

	Restarting the game
	Time for action – Restarting the game while pressing the R key
	Adding a level support to our car game
	Time for action – Loading game with levels data
	Replacing the Box2D outline drawing with graphics
	Time for action – Adding a flag graphic and a car graphic
	to the game
	Using userData in shape and body
	Drawing graphics every frame according to the state of its physics body
	Rotating and translating an image in the canvas

	Adding a final touch to make the game fun to play
	Time for action – Decorating the game and adding a fuel
	limitation
	Adding fuel to add a constraint when applying force
	Presenting the remaining fuel in a CSS3 progress bar

	Summary
	HTML5 game engines
	Game sprites, and textures
	Sound effects

	Appendix: Pop Quiz Answers
	Chapter 2: Getting Started with DOM-based Game Development
	Running our code after the page is ready
	Understanding the behavior of absolution position

	Chapter 3: Building Memory Match Game in CSS3
	Storing internal custom data with HTML5 custom data attribute
	Accessing custom data attribute with jQuery

	Chapter 4: Building Untangle Game with Canvas and Drawing API
	Using startAngle and endAngle
	Using closePath with fill command only
	Accessing shapes in canvas
	Clearing drawn shapes in canvas

	Chapter 5: Building Canvas Games Masterclass
	Drawing text in canvas
	Styling canvas background

	Chapter 6: Adding Sound Effects to your Games
	Using the audio tag

	Chapter 7: Using Local Storage to Store Game Data
	Using local storage

	Chapter 8: Building Multiplayer Draw-and-Guess Game with WebSockets

	Index

