
C++ Hackers Guide Steve Oualline

C++ Hacker's Guide

by Steve Oualline

Page 1 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Copyright 2008, Steve Oualline. This work is licensed under the Creative
Commons License which appears in Appendix F. You are free:

● to Share — to copy, distribute, display, and perform the work

● to Remix — to make derivative works

Under the following conditions:

● Attribution: You must attribute the work by identifying those portions
of the book you use as “Used by permission of Steve Oualline
(http://www.oualline.com) under the the Creative Commons License.”
(The attribution should not in any way that suggests that Steve
Oualilne endorses you or your use of the work).

● For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link to
the web page: http://creativecommons.org/licenses/by/3.0/us/.

● Any of the above conditions can be waived if you get permission
from Steve Oualline.

● Apart from the remix rights granted under this license, nothing in
this license impairs or restricts the author's moral rights.

Page 2 Copyright 2008, Steve Oualline

http://www.oualline.com/
http://www.oualline.com/
http://www.oualline.com/

C++ Hackers Guide Steve Oualline

Table of Contents
Real World Hacks..9
Hack 1: Make Code Disappear..10
Hack 2: Let Someone Else Write It...12
Hack 3: Use the const Keyword Frequently For Maximum Protection.............12
Hack 4: Turn large parameter lists into structures..14
Hack 5: Defining Bits...16
Hack 6: Use Bit fields Carefully..18
Hack 7: Documenting bitmapped variables..19
Hack 8: Creating a class which can not be copied..21
Hack 9: Creating Self-registering Classes...22
Hack 10: Decouple the Interface and the Implementation...............................25
Hack 11: Learning From The Linux Kernel List Functions...............................27
Hack 12: Eliminate Side Effects..29
Hack 13: Don't Put Assignment Statements Inside Any Other Statements......30
Hack 14: Use const Instead of #define When Possible.....................................31
Hack 15: If You Must Use #define Put Parenthesis Around The Value.............32
Hack 16: Use inline Functions Instead of Parameterized Macros Whenever

Possible..33
Hack 17: If You Must Use Parameterized Macros Put Parenthesis Around The

arguments..34
Hack 18: Don't Write Ambiguous Code...34
Hack 19: Don't Be Clever With the Precedence Rules......................................35
Hack 20: Include Your Own Header File...36
Hack 21: Synchronize Header and Code File Names.......................................37
Hack 22: Never Trust User Input..38
Hack 23: Don't use gets...40
Hack 24: Flush Debugging..41
Hack 25: Protect array accesses with assert..42
Hack 26: Use a Template to Create Safe Arrays...45
Hack 27: When Doing Nothing, Be Obvious About It..46
Hack 28: End Every Case with break or /* Fall Through */...............................47
Hack 29: A Simple assert Statements For Impossible Conditions....................47
Hack 30: Always Check for The Impossible Cases In switches.........................48
Hack 31: Create Opaque Types (Handles) Which can be Checked at Compile

Time...49
Hack 32: Using sizeof When Zeroing Out Arrays..51
Hack 33: Use sizeof(var) Instead of sizeof(type) in memset Calls....................51
Hack 34: Zero Out Pointers to Avoid Reuse..53
Hack 35: Use strncpy Instead of strcpy To Avoid Buffer Overflows.................54
Hack 36: Use strncat instead of strcat for safety..55

Page 3 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 37: Use snprintf To Create Strings..56
Hack 38: Don't Design in Artificial Limits...57
Hack 39: Always Check for Self Assignment...58
Hack 40: Use Sentinels to Protect the Integrity of Your Classes......................60
Hack 41: Solve Memory Problems with valgrind..61
Hack 42: Finding Uninitialized Variables..63
Hack 29: Valgrind Pronunciation...65
Hack 43: Locating Pointer problems ElectricFence..65
Hack 44: Dealing with Complex Function and Pointer Declarations................65
Hack 45: Create Text Files Instead of Binary Ones Whenever Feasible...........67
Hack 46: Use Magic Strings to Identify File Types...69
Hack 47: Use Magic Numbers for Binary Files...69
Hack 48: Automatic Byte Ordering Through Magic Numbers..........................70
Hack 49: Writing Portable Binary Files...71
Hack 50: Make You Binary Files Extensible..72
Hack 51: Use magic numbers to protect binary file records............................74
Hack 52: Know When to Use _exit..76
Hack 53: Mark temporary debugging messages with a special set of

characters..78
Hack 54: Use the Editor to Analyze Log Output...78
Hack 55: Flexible Logging...79
Hack 56: Turn Debugging On and Off With a Signal..81
Hack 57: Use a Signal File to Turn On and Off Debugging..............................82
Hack 58: Starting the Debugger Automatically Upon Error.............................82
Hack 59: Making assert Failures Start the Debugger.......................................88
Hack 60: Stopping the Program at the Right Place..90
Hack 61: Creating Headings within Comment..92
Hack 62: Emphasizing words within a paragraph..93
Hack 63: Putting Drawings In Comments...93
Hack 64: Providing User Documentation..94
Hack 65: Documenting the API...96
Hack 66: Use the Linux Cross Reference to Navigate Large Coding Projects. 99
Hack 67: Using the Pre-processor to Generate Name Lists............................103
Hack 68: Creating Word Lists Automatically..104
Hack 69: Preventing Double Inclusion of Header Files..................................105
Hack 70: Enclose Multiple Line Macros In do/while.......................................105
Hack 71: Use #if 0 to Remove Code...107
Hack 72: Use #ifndef QQQ to Identify Temporary Code.................................107
Hack 73: Use #ifdef on the Function Not on the Function Call to Eliminate

Excess #ifdefs..108
Hack 74: Create Code to Help Eliminate #ifdef Statements From Function

Bodies..109
Hack 75: Don't Use any “Well Known” Speedups Without Verification..........112
Hack 76: Use gmake -j to speed up compilation on dual processor machines

Page 4 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

...115
Hack 77: Avoid Recompiling by Using ccache..117
Hack 78: Using ccache Without Changing All Your Makefiles........................118
Hack 79: Distribute the Workload With distcc..119
Hack 80: Don't Optimize Unless You Really Need to120
Hack 81: Use the Profiler to Locate Places to Optimize120
Hack 82: Avoid the Formatted Output Functions..122
Hack 83: Use ++x Instead of x++ Because It's Faster...................................123
Hack 84: Optimize I/O by Using the C I/O API Instead of the C++ One........124
Hack 85: Use a Local Cache to Avoid Recomputing the Same Result............126
Hack 86: Use a Custom new/delete to Speed Dynamic Storage Allocation....128
Anti-Hack 87: Creating a Customized new / delete Unnecessarily.................129
Anti-Hack 88: Using shift to multiple or divide by powers of 2......................130
Hack 89: Use static inline Instead of inline To Save Space............................131
Hack 90: Use double Instead of Float Faster Operations When You Don't Have

A Floating Point Processor...132
Hack 91: Tell the Compiler to Break the Standard and Force it To Treat float as

float When Doing Arithmetic...133
Hack 92: Fixed point arithmetic..134
Hack 93: Verify Optimized Code Against the Unoptimized Version................138
Case Study: Optimizing bits_to_bytes...139
Hack 94: Designated Structure Initializers..144
Hack 95: Checking printf style Arguments Lists...145
Hack 96: Packing structures...146
Hack 97: Creating Functions Who's Return Shouldn't Be Ignored.................146
Hack 98: Creating Functions Which Never Return...147
Hack 99: Using the GCC Heap Memory Checking Functions to Locate Errors

...149
Hack 100: Tracing Memory Usage..150
Hack 101: Generating a Backtrace...152
Anti-Hack 102: Using “#define extern” for Variable Declarations.................156
Anti-Hack 103: Use , (comma) to join statements...158
Anti-Hack 104: if (strcmp(a,b)) ...159
Anti-Hack 105: if (ptr) ..161
Anti-Hack 106: The “while ((ch = getch()) != EOF)” Hack.............................161
Anti-Hack 107: Using #define to Augment the C++ Syntax..........................163
Anti-Hack 108: Using BEGIN and END Instead of { and }.............................163
Anti-Hack 109: Variable Argument Lists...164
Anti-Hack 110: Opaque Handles...166
Anti-Hack 111: Microsoft (Hungarian) Notation...166
Hack 112: Always Verify the Hardware Specification.....................................170
Hack 113: Use Portable Types Which Specify Exactly How Wide Your Integers

Are..171
Hack 114: Verify Structure Sizes..172

Page 5 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 115: Verify Offsets When Defining the Hardware Interface..................174
Hack 116: Pack Structures To Eliminate Hidden Padding..............................174
Hack 117: Understand What the Keyword volatile Does and How to Use It.. 175
Hack 118: Understand What the Optimizer Can Do To You............................177
Hack 119: In Embedded Programs, Try To Handle Errors Without Stopping 180
Hack 120: Detecting Starvation..182
Hack 121: Turning on Syntax Coloring...185
Hack 122: Using Vim's internal make system...185
Hack 123: Automatically Indenting Code..188
Hack 124: Indenting Existing Blocks of Code...188
Hack 125: Use tags to Navigate the Code..190
Hack 126: You Need to Find the Location of Procedure for Which You Only

Know Part of the Name..194
Hack 127: Use :vimgrep to Search for Variables or Functions.......................196
Hack 128: Viewing the Logic of Large Functions...197
Hack 129: View Logfiles with Vim...199
Hack 130: Flipping a Variable Between 1 and 2...201
Hack 131: Swapping Two Numbers Without a Temporary.............................202
Hack 132: Reversing the Words In a String Without a Temporary.................204
Hack 133: Implementing a Double Linked List with a Single Pointer............206
Hack 134: Accessing Shared Memory Without a Lock...................................207
Hack 135: Answering the Object Oriented Challenge....................................209

Appendix A: Hacker Quotes..211
Grace Hopper..211
Linux Torvals...212

Appendix B: You Know You're a Hacker If...214

Appendix C: Hacking Sins...216
Using the letters O, l, I as variable names..216
Not Sharing Your Work..216
No Comments..216
IncOnsisTencY...216
Duplicating Code (Programming by Cut and Paste)..217

Appendix D: Open Source Tools For Hackers...218
ctags – Function Indexing System...218
doxygen...218
FlawFinder..218
gcc – The GNU C and C++ compiler suite..218
lxr 218
Perl (for perldoc and related tools) – Documentation System........................219
valgrind (memory checking tools)...219
Vim (Vi Improved)..219

Page 6 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix E: Safe Design Patterns...220

Appendix F: Creative Commons License...225
License...225
Creative Commons Notice...230

Page 7 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Preface

Originally term hacker meant someone who did the impossible with very
little resources and much skill. The basic definition is “someone who makes fine
furniture with an axe”. Hackers were the people who knew the computer inside
and out and who could perform cool, clever, and impossible feats with their
computers. Now days the term has been corrupted to mean someone who
breaks into computers, but in this book we use hacker in its original honorable
form.

My first introduction to true hackers was when I joined the Midnight
Computer Club when I went to college. This wasn't an official club, just a group
of people who hung out in the PDP-8 lab after midnight to program and discuss
computers.

I remember one fellow who had taken $10 of parts from Radio Shack and
created a little black box which he could use with an oscilloscope to align
DECTape drives. DEC at the time needed a $35,000 custom built machine to do
the same thing.

There were also some people there who enjoyed programming the PDP-8 to
play music. This was kind of hard to do since the machine didn't have a sound
card. But someone discovered that if you put a radio near the machine the
interference could be heard on the speaker. After playing around with the
system for a while people discovered how to generate tones using the
interference and thus MUSIC-8 programming system was born. So that the
system didn't have a sound card didn't stop hackers from getting sound out of it.
This illustrates one of the attributes of great hacks, doing the “impossible” with
totally inadequate resources.

My first real hack occurred when some friends of mine were taking
assembly language. Their job was to write a function to do a matrix multiply. I
showed them how to use the PDP-10's ability to do double indirect indexed
addressing1 which cut down the amount of work needed to access an element of
the matrix from one multiply per element to one multiply per matrix.

The professor who taught the assembly class felt that the only reason you'd
ever want to program in assembly is for speed, so he timed the homework and
compared the results against his “optimal” solution. Every once in a while he'd
find a program that was slightly faster, but he was a good programmer so people
rarely beat him.

1 The only machines I know of with this strange addressing mode were the PDP-10 and PDP-20.
The closest you can come this hack on today's machines involves vectorizing the matrix.

Page 8 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Except when it came to my friends' matrix multiply assignment. The
slowest came in at ten times faster than his “optimal” solution. The fastest was
so fast that it broke the timing tools he was using. He had to admit it was a neat
hack. (After seeing this very strange code, he did something very unusual for a
professor: he called my friends to the front of the class, gave them the chalk and
had them teach him.)

What makes a good hack? It involves go over, around, or through the
limitations imposed by the machine, the compiler, management, security2 or any
thing else.

True hackers develop tricks and techniques designed to overcome the
obstacles in front of them and to improve the quality of the systems they work
with. These are the true hacks.

This book contains a collection of hacks born out of over forty years of
programming experience. Here you'll find all sorts of hacks to make your
programs more reliable, more readable, and easier to debug. In the true hacker
tradition, this is the result of observing what works and how it works, improving
the system, and then passing the information on.

Real World Hacks

I am a real world programmer so this book deals with real world programs.
For example, there is a bit of discussion on the care and feeding of C style strings
(char*). This has angered some of the C++ purist who believe that you should
only use only C++ strings (std::string) in your programs. That may be true,
but in the real world there are lots of C++ programs which use C style strings.
Any working hacker has to deal with them.

Idealism is nice, but I work for a living and this book is based on real
world, working programs, not the ones you find in the ideal world. So to all the
real world hackers out there, I dedicate this book.

2 True hackers only break security to discover weaknesses in the system or to make
improvements that the current security policy doesn't allow them to do. They don't break into
so they can steal, copy protected information, or spy on other people.

Page 9 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 1: General Programming Hacks

C++ is not a perfect language. As such sometimes you must program
around the limits imposed on you by the language. In this chapter we present
some of the simple, common hacks which you can use to make your programs
simpler and more readable.

Hack 1: Make Code Disappear

The Problem: Writing code takes time and introduces risk.

The Hack: Don't write code. After all the code that you don't write is the
easiest to produce, debug, and maintain. A zero line program is the only one you
can be sure has no bugs.

A good hacker knows how to write good code. An excellent hacker figures
out how to not write code at all.

When you are faced with a problem, sit down and think about it. Some
large and complex problems, are really just small, simple problems hidden by
confused users and ambitious requirements. Your job is to find the small simple
solution and to not write code to handle the large confusing one.

Let me give you an example: I was asked to write a license manager which
allowed users who had a license key to run the program. There were two types
of licenses, those that expired on a certain date and those that never expired.

Normally someone would design the code with some extra logic to handle
the two types of licenses. I rewrote the requirements and dropped the
requirement for licenses that never expired. Instead we would give our
evaluation customers a license that expired in 60-90 days and give customers
who purchased the program a license that expired in 20383.

Thus our two types of licenses became one. All the code for permanent
license disappeared and was never written.

In another case I had to write a new reporting system for a company. Their
existing system was written in a scripting language that was just to slow and
limited. At the time they had 37 types of reports. With 37 pieces of code to
generate these 37 reports.

3 The UNIX time_t type runs out of bits in this year.

Page 10 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

My job was to translate these 37 pieces of code from one language to
another. Instead of just doing what I was told, I sat down and studied what was
being done. When my boss asked why I wasn't coding, I told him that I was
thinking, a step I did not consider optional.

It turns out that I was able to distill the 37 different reports into just 3
report types. All 37 reports could be generated using these three types and
some parameters. As a result the amount of code needed to do the work was cut
down by at least a factor of 10.

Remember the code that you never write is the quickest to produces and
the most bug free code you'll ever make. Hacking something out of existence is
one of the highest forms of hacking.

Producing Lines of Code

I was once tasked with updating a large web based
reporting system written in Perl. At this time
management decided to measure lines of code written to
see how productive its programmers were.

Because of the “design” of the Perl syntax, the difference
between bad programmers and good one is amplified.
The first week, I cleaned up the obvious inefficiencies
and removed a lot of redundant and useless code. My
score for that week was about —1,700 lines produced.
So the program got smaller even though I added lots of
comments and a couple of new features.

For next few weeks I continued to reduce the size of the
program. The big change came when I took out the old
style, “call function, check for error, pass error up the
call change” logic and replaced it with exception based
error handling4. That change lost us 5,000 lines.

My manager asked me why they should be paying me the
big bucks since my #lines produced / week was negative.
I told them that that was precisely why they were paying
me the big bucks. Because it takes a really excellent
programmer to produce new features in negative lines of
code.

4 The perl module Error implements exceptions.

Page 11 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 2: Let Someone Else Write It

The Problem: Writing code is slow. Write good code is slower, and even if
you write good code, you need to spend time debugging it.

The Hack: Build on the work that has proceeded you.

Next to don't do it at all, let someone else do it is the easiest way of
programming. There are thousands of tools, programs, and other software out
there. One of these might do your job for you. If not, it might almost do the job
so all you have to do is download fix it up a little and use it.

One good source for Open Source software is http://www.freshmeat.net. It
is a web based database containing a entry for most software project.

Now if you do use Open Source software as a base for your work, you have
an obligation to contribute back to the community any enhancements you've
created. This lets other people use your work as a base for their programs.

It should be pointed out that some people who are not familiar with how
Open Source works are a little frightened by it. They tends to be business men
who can't understand how someone would make money writing open source
code. The secret is that Open Source is not written by people who want money
but by people who want software that works.

And if you want a program that just works, one of the easiest ways of
“creating” it is to use other peoples' work as a starting point. That's the hacker
spirit: You don't just copy what someone else has done, you push the state of the
art forward.

Hack 3: Use the const Keyword Frequently For Maximum
Protection

The Problem: You pass a string (char*) into a function and the code gets
confused because someone accidentally modified the pointer.

The Hack: Tell the compiler that the pointer is not to be changed.

This hack makes use of one of the more difficult to understand concepts of
the C++ language, that of const and pointers.

We'll start with the declaration:

const char* ptr_a;

Page 12 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The question is “What does the const modify?” Does it affect the pointer
or does it affect the data pointed to by the pointer?

In this case the const tells the compiler that the character data is
constant. The pointer itself can be reassigned.

const char* ptr_a;

That means that we can reassign the pointer:

ptr_a = “A New Value”;

But you can't modify the data pointed to by the pointer:

*ptr_a = 'x'; // ILLEGAL

Now let's consider another declaration:

char* const ptr_b;

In this case the pointer is affected by the const. The data pointed to is not.

So we can change the data being pointed to:

*ptr_b = 'x'; // Legal

But we can not change the pointer:

ptr_b = “A new string”; // ILLEGAL

And of course there's the obvious declaration in which both the pointer and
the data are constant:

const char* const ptr_c;

Now let's go back to our function call. If we are expecting constant data,
then let's specify it in the function parameters:

void display_string(const char* const the_string);

Now any attempt to modify the string will result in a compile time error.
And compile time errors are much easier to locate and fix than run time errors.

The const Memory Hack

It's not obvious from the syntax where a const keyword
affects the pointer or the character. But there is a simple
mnemonic trick that may help you remember which is
which.

Page 13 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The const modifies the element it's nearest. For
example:

 const char* ptr_s;

In this case const is nearer to char than it is to *, so
the data (char) is constant.

In the other case:

 char* const ptr_t;

the const is nearer to the * than it is to the char, so the
pointer is constant, not the data (char).

Hack 4: Turn large parameter lists into structures

The Problem: Functions that take a large number of parameters are
difficult to deal with. Parameters can easily get mixed up.

Although there's no limit on the number of parameter you can pass to a
function, in practice more than about six tend to make function calls difficult to
use. Consider the following function call to draw a rectangle:

draw_rectangle(
 x1, y1, x2, y2, // The corners of the rectangle
 width, // Width of the line for the rectangle
 COLOR_BLUE, // Line color
 COLOR_PINK, // Fill color
 SOLID_FILL, // Fill type
 ABOVE_ALL // Stacking order
 "Times", // Font for label
 10, // Point size for label
 "Start" // Label
);

This code is an accident waiting to happen. Forget a parameter and the
code won't compile. Worse, reverse two parameters and your code may compile
but draw the wrong thing.

The Hack: Use a structure to pass a bunch of parameters.

Let's see how that would work for our rectangle function.

Page 14 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

// Define how to draw the rectangle
struct draw_params my_draw_style;

my_rect.width = width;
my_rect.line_color = COLOR_BLUE;
my_rect.fill_color = COLOR_PINK;
my_rect.fill = SOLID_FILL;
my_rect.stack = ABOVE_ALL;
my_rect.label_font = "Times";
my_rect.label_size = 10;
my_rect.label = "Start";

draw_rectangle(x1, y1, x2, y2, &my_draw_style);

Now instead of passing parameters by position they are passed by name.
This makes the code more reliable. For example, you no longer have to
remember if the line color comes first or the fill color comes first. When you
write it as:

my_rect.line_color = COLOR_BLUE;
my_rect.fill_color = COLOR_PINK;

it's clear which is the line color and which is the fill.

Hacking the Hack: The draw_params structure can be used not only for
drawing a rectangle but for drawing other shapes as well. For example:

draw_rectangle(x1, y1, x2, y2, &my_rect);
draw_circle(x3, y3, radius, &my_rect);

It is a good idea to make the default value for any parameter zero. That
way, you can set everything to the default using the statement:

memset(&my_rect, '\0', sizeof(my_rect));

The frees you from having to set values for every item in the structure. For
example, to draw a red rectangle using the default width, fill, and label
parameters, use the following code:

memset(&my_rect, '\0', sizeof(my_rect));
my_rect.line_color = COLOR_RED;
draw_rectangle(x1, y1, x2, y2, &my_rect);

If you are using C++, the draw_params structure can be made a class.
The class can provide internal consistency checking to the user. ("Setting the
label to 'foo' with a point size of 0 makes no sense to me.")

Page 15 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 5: Defining Bits

The Problem: You need to define a constant for "bit 5"

Frequently programmers are required to access various bits from a byte.
Here's a diagram from a hardware manual for a DLT tape drive:

You need to define constants to access the various bits in the option byte
(Byte 2). One way of doing this to define a hexadecimal constant for each
component.

// Bad Code
const int LOG_FLAG_DU = 0x80; // Disable update
const int LOG_FLAG_DS = 0x40; // Disable save
const int LOG_FLAG_TSD = 0x20; // Target save disabled
const int LOG_FLAG_ETC = 0x10; // Enable thres. comp.

The problem is that the relationship between 0x40 and bit 6 is not obvious.
It's easy to get the bits confused.

// Good code
const int LOG_FLAG_DU = 1 << 7; // Disable update
const int LOG_FLAG_DS = 1 << 6; // Disable save
const int LOG_FLAG_TSD = 1 << 5; // Target save disabled
const int LOG_FLAG_ETC = 1 << 4; // Enable thres. comp.

Now it's easy to see that (1<<4) is bit 4.

Warning: Make sure you know which end is which. In the previous
example bit zero is the least significant bit (rightmost bit).

Page 16 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But some people label bit 0 as the most significant bit (leftmost bit). For
example the Internet Specification RFC 791 defines the “Type of Service” field as
(spelling errors in the original):

 Bits 0-2: Precedence.
 Bit 3: 0 = Normal Delay, 1 = Low Delay.
 Bits 4: 0 = Normal Throughput, 1 = High Throughput.
 Bits 5: 0 = Normal Relibility, 1 = High Relibility.
 Bit 6-7: Reserved for Future Use.

 0 1 2 3 4 5 6 7
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | | | | | | |
 | PRECEDENCE | D | T | R | 0 | 0 |
 | | | | | | |
 | | | | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

[Spelling errors in the original.]

We can still use our shift hack to define bits in this way. Only we start with
the constant 0x80 and shift to the right.

For example:

// Good code
// Delay flag
const unsigned int IPTOS_LOWDELAY = 0x80 >> 3;

// Throughput flag
const unsigned int IPTOS_THROUGHPUT = 0x80 >> 4;

// Reliability flag
const unsigned int IPTOS_RELIABILITY = 0x80 >> 5;

Warning: Make sure that you use unsigned int instead of [signed]
int when defining the constants. Signed integers will cause the sign bit to be
replicated in the data yielding unexpected results.

Trivia: The following is the definitions as defined in the Linux standard
header file /usr/include/netinet/ip.h:

#define IPTOS_LOWDELAY 0x10
#define IPTOS_THROUGHPUT 0x08
#define IPTOS_RELIABILITY 0x04

You may have noticed that they don't use this hack. Without looking at the
previous page can you tell which bit is represented by IPTOS_LOWDELAY?

Page 17 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 6: Use Bit fields Carefully

The Problem: You want to use bit fields so that you don't have to test, set,
and clear bits the hard way. For example:

struct timestamp {
 unsigned int flags:4;
 unsigned int overflow:4;
};

The Hack: A good hacker treats bit fields with care. There are a number
of problems with their use. These include:

1. Order is not guaranteed.

2. Packing is not guaranteed.

3. You really know what can and can't be put in a field. This is
especially true when dealing with a bitfield one bit wide as we shall see
below.

The C++ standard makes no guarantee where the bits of bit field will end
up. In the previous example, the compiler may:

1. Assign the field flags to the high bits and overflow to the low
bits.

2. Assign the field overflow to the high bits and flags to the low bits.

3. Ignore the bitfield specification and assign overflow and flags to
different bytes.

The Linux operating systems assumes that you are using the GCC compiler
which does pack multiple fields into a single byte. But the ordering of these
fields depends on the endianness of the machine.

Page 18 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This results in some strangeness in the header files:

struct timestamp {
#if __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int flags:4;
 unsigned int overflow:4;
#elif __BYTE_ORDER == __BIG_ENDIAN
 unsigned int overflow:4;
 unsigned int flags:4;
#else
error "Please fix <bits/endian.h>"
#endif
};

There's one other gotcha you have to be concerned about with bit fields.
Take a look at the following code:

struct flag_set {
 int big:1;
 int bigger:1;
 int biggest:1;
};
// ...
flag_set the_set;
the_set.big = 1;

std::cout << “big flag is “ << the_set.big << std::endl;

The output of this program is not “big flag is 1”. What is going on?

The problem is that we have a one bit signed integer. In a signed integer
the first bit is the sign bit. If the first bit the number is negative.

So a single bit signed number can only take two values, 0 and -1.

So the statement:

the_set.big = 1;

sets the sign bit to 1 making the number negative, setting the field to -1.

Hack 7: Documenting bitmapped variables

The Problem: Bitmapped data is quite common but complex and difficult
to use. Such data declarations should really be commented, but unfortunately
there's no way for a programmer to draw figures or tables inside a program. It is
possible to document things using an external document, but the problem with
external documents is that they get out of date easily or get lost.

Page 19 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Ideally the documentation should be embedded in the program as
comments. After all, it's difficult to loose ½ a program file.

However, all the nice word processor drawing functions you're used to
having when you write a document are missing when you are writing a program.
Instead you have to get creative with the mono spaced single font used for
writing programs.

Here's one example which uses ASCII art to draw lines from the bits to
their description:

/*
 * LOG_SELECT parameters byte
 *
 * +---------- DU (Disable Update)
 * |+--------- DS (Disable Save)
 * ||+-------- TSD (Target Save Disable)
 * |||+------- ETC (Enable Threshold Compression)
 * ||||++----- TMC (Threshold Met Criteria)
 * ||||||+---- Rsvd (Reserved)
 * |||||||+--- LP (List Parameter)
 * 76543210
 */

The other method is to use the that they use in the RFC documents. Here's
a comment made from an excerpt from RFC 791:

/*
 * Bits 0-2: Precedence.
 * Bit 3: 0 = Normal Delay, 1 = Low Delay.
 * Bits 4: 0 = Normal Throughput, 1 = High Throughput.
 * Bits 5: 0 = Normal Relibility, 1 = High Relibility.
 * Bit 6-7: Reserved for Future Use.
 *
 * 0 1 2 3 4 5 6 7
 * +-----+-----+-----+-----+-----+-----+-----+-----+
 * | | | | | | |
 * | PRECEDENCE | D | T | R | 0 | 0 |
 * | | | | | | |
 * +-----+-----+-----+-----+-----+-----+-----+-----+
 */

[Spelling errors in the original.]

Page 20 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Copying from a standard like this has the added advantage of faithfully
reproducing the information in the standard, thus producing good
documentation. And since all you did was copy and past the amount of work
required was minor.

The only drawback to copy and paste is that any flaws in the original, such
as the spelling error above are also reproduced.

Hack 8: Creating a class which can not be copied

The Problem: You've created a complex class but don't want to create a
copy constructor or assignment operator for the class. Besides nobody should be
copying any instances of this class anyway.

One solution is to create a copy constructor which aborts the program if
it's called:

// Works, but not optimal
class no_copy {
 // ...
 public:
 no_copy(const no_copy&) {
 std::cerr <<
 "ERROR: no_copy(no_copy) called" <<
 std::endl;
 abort();
 }
};

This works but you'd rather detect the problem at compile time than run
time.

The Hack: Declare the copy constructor and assignment operator private.

class no_copy {
 // ...
 private:
 no_copy(const no_copy&);
 no_copy& operator = (no_copy&);
};

Now let's see what happens when you try and use the copy constructor:

no_copy a_var;

// This will result in a compile error
no_copy b_var(a_var);

Page 21 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The result is the error message:

no_copy.cc:5: error: `no_copy::no_copy(const no_copy&)' is private
no_copy.cc:10: error: within this context

Now in actual practice your call to the copy constructor may not be so
obvious. What will probably happen is that you'll accidentally call the copy
constructor through parameter passing or some other hidden code. But the nice
thing is that now when you do call it, you'll discover the problem at compile and
not run time.

Hack 9: Creating Self-registering Classes

The Problem: You are writing a program like a image editor that has
hundreds of commands. How do you build a master command list.

The Hack: Self registering classes.

The solution is to make each instance of the class register itself. For this
example we will define a cmd class which defines a named command for our
editor. A derived class will be created using this as a base for each command.
The derived class is responsible for defining a do_it function which performs
the actual work.

When a command is created the cmd class will register it.

 cmd(const char* const i_name):name(i_name) {
 do_register();
 }

Naturally we have to unregister it when it's destroyed:

 virtual ~cmd() {
 unregister();
 }

Remember this is a base class, so we must make the destructor virtual.

As hackers we wish to hide as much information as possible from the users.
In this case we're going to keep the list of commands and the do_register
and unregister functions entirely within the class.

First the list of commands is declared as a static member variable:

 private:
 static std::set<class cmd*> cmd_set;

Page 22 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

A lot of people don't understand what it means to declare a member
variable static. A instance of a normal member variable is created when a new
instance of a class is created. In other words a_var.member is a distinct and
different variable than b_var.member.

But static members are different. For static member variable only one
instance of the variable is created period. It is shared among instances of the
class. So in other words x_cmd.cmd_set is the same as y_cmd.cmd_set.
You can also refer to the variable without an instance of the class at all:
cmd::cmd_set. (Well you could if we didn't declare it private.)

Now let's take a look at our do_register function:

 void do_register() {
 cmd_set.insert(this);
 }

This simply insert a pointer to the current class into the list.

The unregister function is just as simple:

 void unregister() {
 cmd_set.erase(this);
 }

Now comes the fun one, the function we call to execute a command. It is
declared as a static member function so that we may call it without having a
cmd variable around.

 static void do_cmd(const char* const cmd_name) {

Because it is static we can call it with a statement like:

 cmd::do_cmd(“copy”);

Note: static member functions can only access static member variables
and global variables.

The body of the function is pretty straight forward. Just loop through the
set of commands until you find one that matches, then call the do_it member
function.

 static void do_cmd(const char* const cmd_name) {
 std::set<class cmd*>::iterator cur_cmd;

 for (cur_cmd = cmd_set.begin();
 cur_cmd != cmd_set.end();
 ++cur_cmd) {

Page 23 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 if (strcmp((*cur_cmd)->name,
 cmd_name) == 0) {
 (*cur_cmd)->do_it();
 return;
 }
 }
 throw(unknown_cmd(cmd_name));
 }

One of the more interesting things about this system is what happens when
you use class cmd to declare a global variable. In that case the command is
registered before main in called.

In other words C++ goes through the program looking for global variables
and calling their constructors before starting each program. You have to be
careful when doing this though. There is no guarantee concerning the order in
which the classes are initialized.

Basically you don't want to create any global variables who's constructor
depends on a command being registered.

The complete class is listed below:

#include <set>

class cmd {
 private:
 static std::set<class cmd*> cmd_set;

 const char* const name;

 private:
 void do_register() {
 cmd_set.insert(this);
 }
 void unregister() {
 cmd_set.erase(this);
 }

 virtual void do_it(void) = 0;
 public:
 cmd(const char* const i_name):name(i_name) {
 do_register();
 }
 virtual ~cmd() {
 unregister();

Page 24 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 }

 public:
 static void do_cmd(const char* const cmd_name) {
 std::set<class cmd*>::iterator cur_cmd;

 for (cur_cmd = cmd_set.begin();
 cur_cmd != cmd_set.end();
 ++cur_cmd) {
 if (strcmp((*cur_cmd)->name,
 cmd_name) == 0) {
 (*cur_cmd)->do_it();
 return;
 }
 }
 throw(unknown_cmd(cmd_name));
 }
};

A smart hacker might note that we could have used a std::map to hold
our command list. After all a std::map takes a key and value pair and would
eliminate our lookup loop in do_cmd.

But the extra syntax needed to make a std::map work would get in the
way of the point of this hack. So while the class is not as efficient code wise, it is
very efficient book wise.

Hack 10: Decouple the Interface and the Implementation

The Problem: C++ forces you to expose the implementation details when
you define a class.

Let's take a look at a typical class definition for a dictionary class. This
class lets you define a list of word pairs called the key and the value. It then lets
you use the key to lookup the value.

Page 25 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

class dictionary {
 private:
 // Lots of stuff that the user doesn't need to
 // worry about.
 // (And this is the problem)
 public:
 // ... usual constructor / destructor stuff
 void add_pair(const std::string& key,
 const std::string& value);
 const std::string& lookup(const std::string& key);
};

The problem is that this gives anyone who uses this class access to some of
the private implementation details of the class.

The Hack: Hide the implementation details through the use of an
implementation class.

class dictionary {
 private:
 dictionary_implementation* implementation;
 public:

Since we don't have to define dictionary_implementation in the
header file this effectively hides the implementation and separates the interface
and the implementation.

Hacking the Hack: There are several ways of implementing a dictionary.
For example, if we are dealing with about 10-100 words, we could implement the
dictionary using an array.

For 100-100,000 entries we could use a dynamic list. For over 100,000 the
code can make use of an external database.

But what's nice about defining a dictionary in this way is that the class can
change the implementation on the fly as conditions change. For example, the
class can start with an array. When the number of entries grows to more than
100 it can switch to a list based implementation:

Page 26 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

void dictionary:: add_pair(const std::string& key,
 const std::string& value) {
 if ((implementation->type() == ARRAY_IMPLEMENTATION)&&
 (implementation->size() >= MAX_ARRAY)) {
 dictionary_implementation* new_implementation =
 new dictionary_as_list(implementation)
 delete implementation;
 implementation = new_implementation;
 }

 // ... same thing for list -> database

 implementation->add_pair(key, value);

Thus we've not only hidden the dictionary implementation, but we've made
it able to dynamically reconfigure itself depending on data load.

Hack 11: Learning From The Linux Kernel List Functions

The Problem: There are lots of ways of creating a linked list. There are
only a few good ones.

The Hack: The Linux kernel's linked list implementation. (See the file
/usr/include/linux/list.h in any kernel source tree.)

There a large number of things we can learn from this simple module.

First since linked lists are a simple and common data structure it makes
sense to create a linked list module to handle them. After all things can get
confused if everyone implements his own linked list. Especially if all the
implementations are slightly different.

Lesson 1: Code Reuse.

The way the linked list is implemented is very efficient and flexible. You
can actually have items that are put on multiple lists.

Lesson 2: Flexible design.

The list functions are well documented. The header files contains
extensive comments using the Doxygen documentation convention (See Hack
65).

Lesson 3: Share your work. Document it so others can use it.

Page 27 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

There's there's a mechanism in place to help persuade people to use this
implementation and to avoid writing their own. If you submit a kernel patch
containing a new linked list implementation you will be “politely”5 told to use the
standard implementation. Also your code won't get in the kernel until you do.

Lesson 4: Enforcement of standard policy. Mostly through peer pressure.

So by looking at this implementation of a simple linked list we can learn
something. Which leaves us with our final lesson:

Lesson 5: A good hacker learns by reading code written by someone who
knows more about this type of programming that you do.

5 The term “polite” has a different meaning when dealing with people who frequent the kernel
mailing lists.

Page 28 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 2: Safety Hacks

Some programmers code first and think about safety later. These are the
people who spend the first six months of the career writing code and the next
five years creating security patches.

Let's suppose you are standing at the top of a very tall cliff. You need to
get to the bottom. Would you

1. Start moving immediately and jump off the cliff because that's the
fastest way to get to the bottom. (You'll worry about safety after you start
your jump.)

2. Analyze the terrain to discover the best method of getting you to the
bottom in one piece.

If you answered #1, then you code like most of the programming drudges
out there out there. It's the fastest answer you can give if you have absolutely
no regard for safety at all.6

A true hacker's answer is “I'd think for moment and figure out the fastest
safe route. Then I'd mark it as I went down to help those who follow me.”

C was never designed for safety. C++ builds on this foundation to create a
more complex and unsafe language. Yet there are hacks which can use to make
your programs safer. In other words your program will crash less, and even if
they do crash, the problem will be easier to find.

Hack 12: Eliminate Side Effects

The Problem: C++ let's you use operators like ++ and -- to make your
code very compact. It also can be used to create code that generates ambiguous
results, as well as being unreadable.

The Hack: Write statements that perform one operation only. Don't use
++ and -- except as standalone statements.

6 If you think that no programmer would really program this way, just look at the design
decisions made by a certain major commercial operation system. These people have to issue
weekly security patches to keep up with the safety problems that they themselves introduced
because they decided to code and think in that order.

Page 29 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

For example, is the result of the following code:

i = 0;
// Bad code
array[i++] = i;

There are two sub-expressions involving i. These are:

1. i++

2. i

The compiler is free to execute them in any order it wants to. So what
compiler you are using and even what compilation flags are used can affect the
result.

There is no reason for trying to keep everything on one line. You computer
has lots of storage and a few extra lines won't hurt things. A simple, working
program is always better than a short, compact, and broken one.

So avoid side effects and put ++ and -- on lines by themselves. If we
rewrite the previous example as:

i++;
array[i] = i;

The order of the operations is clear not only to the compiler but to anyone
reading the code.

Hack 13: Don't Put Assignment Statements Inside Any Other
Statements

The Problem: It's a classic mistake: using = instead of ==.

Code like:

 if (i = getch()) {
 // Do something
 }

The Hack: Never include an assignment statement inside any other
statement. (Actually never include any statement inside any other statement,
but this one is so common it deserves its own hack.)

The reason for this is simple: You want to do two simple things right one at
a time. Doing two things at once in a complex, and unworkable statement is not
a good idea.

Page 30 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This hack flies in the face of some common design patterns. For example:

// Don't code like this
while ((ch = getch()) != EOF) {
 putchar(ch);
}

Following this safety rule, our code looks like:

// Code like this
while (true) {
 ch = getch();
 if (ch == EOF)
 break;
 putchar(ch);
}

Now a lot of people will point out that the first version is a lot more
compact. So what? Do you want compact code or safe code? Do you want
compact code or understandable code? Do you want compact code or working
code?

If we take off the requirement that the code works, I can make the code
much more compact. Because most people value things like code that is safe and
working, it is a good idea to use multiple simple statements instead of a single
compact one.

This hack is designed to keep things simple and constant. As a hacker we
know you are a clever programmer. But it takes a very clever programmer to
know when not to be clever.

Hack 14: Use const Instead of #define When Possible

The Problem: The #define directive defines a literal replacement. The
pre-processor is its own language and does not follow the normal C++ rules.
That can lead to some surprises.

For example:

// Code has lots of problems (don't code like this)
#define WIDTH 8 – 1 // Width of page – margin

void print_info() {
 // Width in points
 int points = WIDTH * 72;

 std::cout << “Width in points is “ <<

Page 31 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 points << std::endl;

Question: What's WIDTH? If you answered 7 you got it wrong. The pre-
processor is a very literal program. The value of WIDTH is literally 8 – 1.

But everyone knows that 8 – 1 is 7 right? Not everyone. C++ does not.
Especially when used in a expression. The line:

 int points = WIDTH * 72;

is translated by the pre-processor into:

 int points = 8 - 1 * 72;

As a result, the value of points is not what the programmer intended.

The Hack: Use const instead of #define whenever possible.

If we had defined width as:

static const int WIDTH = 8 – 1; // Width of page – margin

then our calculations would be correct. That's because we are now defining
WIDTH using C++ syntax, not pre-processor syntax.

Using const has another benefit. If you make a mistake in the #define
statement, the problem may not show up until you actually use the constant. The
C++ compiler performs syntax checking on const statements. Any syntax
problems with these statements show up immediately and you don't have to
guess where the problem occurred.

Hack 15: If You Must Use #define Put Parenthesis Around The
Value

The Problem: There are some times that you just can't use const. How
do you avoid problems like the one shown in the previous hack?

You might ask why can't we just use const? The answer is that sometimes
you need to create a header file that's shared with a program in another
language. For example the h2ph program that comes with Perl understands
#define, but not const.

The Hack: Always enclose #define values in ().

For example:

#define WIDTH (8 – 1) // Width of page – margin

Now when you use this in a statement like:

Page 32 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 int points = WIDTH * 72;

you get the correct value.

Hack 16: Use inline Functions Instead of Parameterized
Macros Whenever Possible

The Problem: Parameterized macros can cause unexpected things to
happen.

Consider the following case:

#define SQUARE(x) ((x) * (x))

int i = 5;
int j = SQUARE(i++);

What's the value of j? The answer is that it's compiler dependent. And
the value of i is definitely not 6. Why? Just look at the code after the macro is
expanded:

int j = ((i++) * (i++));

From this we can see that i is increment twice. Also since the order of the
operations is not specified by the C++ standard, the actual value of j is
compiler dependent.

Note: We violated Hack 12 in this example. This is another example of why
that hack is important.

The Hack: Use inline functions instead of #define whenever possible.

Let's see how our code would look with an inline function:

static inline int square(int x) {
 return (x * x);
}

Now when this function is called two things happen: j gets the correct
value and i is incremented once. In other words, the code behaves just like it is
written. And having something look and act the same way is a beautiful hack.

Note: Someone I'm sure is going to point out that the macro works for any
type and the inline function only works for integers. This problem is easily
solved by making the inline version a function template.

Page 33 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 17: If You Must Use Parameterized Macros Put
Parenthesis Around The arguments

The Problem: The way the pre-processor handles parameterized macros
can sometimes lead to incorrect code. For example:

// Don't code like this
#define SQUARE(x) (x * x)

So what's the value of i in the following statement:

int i = square(1 + 2);

Should be 9. But the statement expands to:

int i = (1 + 2 * 1 + 2);

which gives us 5 not 9.

The Hack: Put parenthesis around every place you use a parameter in a
parameterized macro. For example:

#define SQUARE(x) ((x) * (x))

Now our expanded assignment statement looks like:

int i = ((1 + 2) * (1 + 2));

and we'll get the right answer.

Note: This does not solve the increment problems shown in Hack 16. This
hack should be only used if you absolutely must use parameterized macros and
can't use inline functions. (See also Hack 12 for help avoiding the increment
problem.)

Hack 18: Don't Write Ambiguous Code

The Problem: Consider the following code:

if (a)
 if (b)
 do_something();
 else // Indentation off
 do_something_else();

Which if does the else go with?

1. It goes with the first if.

2. It goes with the second if.

Page 34 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

3. If you don't write code like this you don't have to worry about stupid
questions.

The Hack: The hacker's answer is obvious the third one. Hackers know
how to avoid trouble before it starts. So if we never get near nasty code we don't
have to worry about how it works. (Unless we have to deal with legacy code
written by non-hackers.)

Always include {} when there's any ambiguity in your code. The previous
example should be written as:

if (a) {
 if (b) {
 do_something();
 } else {
 do_something_else();
 }
}

From this code it's clear which if the else belongs to.

Being obvious is an important part of coding safely. There's enough
confusion and chaos in programming already without having someone add to it
by exploiting obscure elements of the C++ syntax.

A good hacker knows how to keep things simple, obvious, and working.

Hack 19: Don't Be Clever With the Precedence Rules

The Problem: What's the value of the following expression?

i = 1 | 3 & 5 << 2;

Most people would answer “I don't know.” Hackers would answer “I don't
know,” then write a short test program to find out the answer. (And I'm not
going to spoil your fun by putting the answer in here.)

But the problem is unless you are really into the C++ standard and have
memorized the 17 operator precedence rules you can't tell what this code is
doing.

The Hack: Limit yourself to two precedence rules:

1. Multiple and Divide come before addition and subtraction.

2. Slap parenthesis around everything else.

Page 35 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Consistency and simplicity are key to safe programming. The less you have
to think and make decisions the less you can make the wrong decision. A good
hacker will produce a set of rules and procedures so he can do things
consistently and right. Another way of saying this is a good hacker does a great
deal of thinking about things so he doesn't have to do a great deal of thinking.

The simplified precedence rules are one example of this. Almost no one
remembers the official 17, but remembering the simplified two is simple.

Applying our hack it's easy to figure out the result of the following
expression:

i = (1 | 3) & (5 << 2);

(I know it's not the same result, but this is what the programmer intended
in the first place.)

Hack 20: Include Your Own Header File

The Problem: It is possible for a function to be defined one way in a
header file and the other in the code.

For example:

square.h

extern long int square(int value);

square.cpp

int square(int value) {
 return (value * value);
}

Note: C++ is only partially type safe. The parameters to a function are
checked across modules, the return values are not.

So what happens when this function is called? The square function
computes a number and returns the result, a 32 bit integer7. The caller knows
that the function returns a 64 bit integer.

Since 32 bit return values and 64 bit return values are returned in different
registers, the calling program gets garbage. What's worse the poor maintenance
programmer is let wondering how a function like square which is to simple to
fail, is actually failing.

7 We assume we are on a machine where an int is 32 bits.

Page 36 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Hack: Make sure each module includes it's own header file. If the
square.cpp file began with:

#include “square.h”

the compiler would notice the problem and prevent you from compiling the code.

And professional programmers know that it's 10,000 times easer to catch
an obvious problem at compile time than it is to locate a random value error in a
running program.

Hack 21: Synchronize Header and Code File Names

The Problem: The previous hack tells us that each module should include
it's own header file. How can we make that as simple as possible.

The Hack: Always use the same name for both the header file and and the
code file. So if the header is square.h the code file will be square.cpp. When you
have a rule like this you don't have to think and avoiding extraneous decision
making will help make your code more reliable.

But now let's suppose we have three files square.cpp, round.cpp, and
triangle.cpp. These will be compiled and combined to form a library libshape.a.
Ideally we would like to supply the user with a single header file so he doesn't
have to know or understand our module structure. What do we do?

If we supply him with a shape.h file we fulfill our simplicity requirements,
but we violate our naming rules.

The answer is that we can do both, provide a single interface file to the
user and follow our naming rules. We start by creating three header files for our
three modules: square.h, round.h, and triangle.h. Next we create an interface
file for the user, shape.h which contains:

#include <shape-internal/square.h>
#include <shape-internal/round.h>
#include <shape-internal/triangle.h>

The nice thing about this system is that our header files mirror our object
files. We assemble a bunch of object files into a library and our group header
shape.h assembles a bunch of header files into a master header for the user.

One of the best forms of hacking is to simplify things. A good hacker does
a lot of thinking and design so he doesn't have to do a lot of thinking or design.

Page 37 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 22: Never Trust User Input

The Problem: Users type in bad things.

Most users type in bad things because they don't understand the software
or understand it's limitation. They can look at a prompt like:

Enter a user name (5 characters only):
Do not type in more than 5 characters. It won't work.
Five character is the limit no more.
Absolutely no more than 5 characters please.
User name:

and see an open invitation to type in fifty-five characters.

Stupid users enter bad data. Smart users who think they know more than
the computer enter bad data. Average users mistype things and enter bad data.
I think we can set the pattern here.

What's worse is the malicious user who enter bad data in an effort to crash
the system or bypass security. Two classic attack vectors are the stack smashing
attack and the SQL injection technique.

In stack smashing attack the user attempts to overflow the input buffer. If
he inputs enough data he can overwrite the return address in the stack and trick
the computer in executing arbitrary code.

To protect against stack smashing attack always check the length of user
input to make sure that the limit is obeyed. If you are using C style I/O this
means using fgets instead of gets. (See Hack 23 below.)

SQL Injection attacks involve the user submitting badly formed data in
hope that it's executed in an SQL query. For example, the following SQL code
updates a user E-Mail address:

UPDATE user_info SET email = 'fred@whatever.com'
 WHERE user = 'Fred';

Things go just fine if the user tells you his name is “Fred”. But a
malicious user can play games with the user name. For example, let's suppose
he gives us a user name of “F';SELECT user, password FROM
user_info;” Now our SQL command is:

UPDATE user_info SET email = 'fred@whatever.com'
 WHERE user = 'F';SELECT user, password FROM user_info;

Better written as:

Page 38 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

UPDATE user_info SET email = 'fred@whatever.com'
 WHERE user = 'F';
SELECT user, password FROM user_info;

The SELECT statement will return to the user all the user names and
passwords in the database.

Good DB Security Practices

The database schema in this example illustrates a poor
database design. You never should sort sensitive
information (password, social security number, credit
card numbers) in any database accessible directly from
the Internet.

Such information should be kept in a dedicated secure
computer which allows very limited access from your
own computers and no access from any else. It should
be locked up tight. Also the data itself should be
encrypted with a key that must be entered on the
console of the machine at boot time. Only under
extremely limited circumstances should unencrypted
data be transmitted.

The client / server connection should also be locked
down as well. The client should never be able to ask the
database for the password. The only thing it should be
able to do is to ask “Is this password correct?” And that
question should be transmitted over an encrypted link
for added security.

Looking up this data this way is not foolproof, but it does
keep out most of the bad guys.

And by the way storing sensitive data on a laptop or
portable drive, especially credit card numbers and social
security numbers is really, really stupid. Do not store
sensitive information on portable devices and don't leave
such devices in places like a hotel room where they are
easy to steal.

Also any sensitive data on your laptop should be
protected by a good encryption system.

To prevent SQL injection attacks you should validate all the characters
supplied by the user. Here's an example of how not to do it:

Page 39 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

// Bad code
bool validate_name(const char* const name) {
 for (int i = 0; name[0] != '\0'; ++i) {
 if (name[i] == '\'')
 return (false);
 }
 return (true);
}

Why is this code bad? Because it only checks for a bad character. Actually
in SQL there are more bad characters out there. You shouldn't check to make
sure that the input does not contain bad character, you should make sure that
everything is good.

// Good code
bool validate_name(const char* const name) {
 for (int i = 0; name[0] != '\0'; ++i) {
 if (! isalnum(name[i]))
 return (false);
 }
 return (true);
}

It is much more secure to only good stuff than to exclude bad stuff. That's
because if you make a mistake and make your “good stuff” definition too
restrictive you don't cause a security hole in the program. If you make a mistake
in a “bad stuff” definition, bad things could get through.

Remember, just because you're paranoid, it doesn't mean they aren't out to
get you.

Hack 23: Don't use gets

By now almost everyone knows the all the security and reliability problems
that can occur with gets. But it's included here for historical reasons as well
because it's a very good example of bad programming.

Let's look at all the problems with the code:

// Really bad code
char line[100];
gets(line);

Because gets does not do bounds checking a string longer than 100
characters will overwrite memory. If you're lucky the program will just crash.
Or it might exhibit strange behavior.

Page 40 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But this code is also a security problem. A attacker can create a carefully
constructed string which overwrites the stack and let's the bad guy execute any
code he wants to.

The gets function is so bad that the GNU gcc linker issues a warning
whenever it's used.

/tmp/ccI5WJ5m.o(.text+0x24): In function `main':
: warning: the `gets' function is dangerous and should not be used.

The Hack: Use fgets instead

// Good code
char line[100];
fgets(line, sizeof(line), stdin);

The fgets call will not get more data than the variable can hold. This
prevents attackers from executing a stack smashing attack.

Hack 24: Flush Debugging

The Problem: Buffering of output can lead to unexpected results

For example:

std::cout << “Doing unrelated stuff” << std::endl;
do_stuff();

std::cout << “Doing divide ... “;
i = 1/0; // Divide by zero
std::cout << “complete\n”;

When runs this program prints (on some systems):

Doing unrelated stuff
Floating point exception8

From this output we can see that the problem is “obviously” in the
do_stuff function. What's going on?

The problem is that output is being buffered. So the string
“Doing divide ...” goes into the buffer, then the program crashes with a
divide by zero error, and the output is never displayed. This is where the
confusion comes from.

8 Why an integer divide by zero causes a floating point exception is a question that this book
does not deal with.

Page 41 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Hack: Make sure that when debugging that the buffer is flushed after
every output.

There are several ways of doing this. The first is to explicitly flush every
statement:

std::cout << “Doing divide ... “ << std::flush;

This works, but you have to remember to do the flush for every statement.

The other way is to set the unitbuf flag which tells C++ to flush after
every output operation. This only has to be done once at the top of your
program.

std::cout << std::unitbuf;
// From now on everything is automatically flushed

In C the same thing can be accomplished by setting the _IONBV flag using
the setvbuf function:

static char buf[512]; // Buffer for standard out
setvbuf(stdout, buf, _IONBV, sizeof(buf));

Being aware of what's going inside the program is very useful to a hacker.
Sometimes the compiler, library or the machine will do strange things to you.
But knowing the internals is only half the battle. Knowing how to get around the
internal limitations of the system is the mark of a good hacker.

Hack 25: Protect array accesses with assert

The Problem: C++ does not do bounds checking.

For example the following code with compile and execute just fine. It will
also corrupt memory:

// Bad code
int data[10];
// ...
int i = 11;
data[i] = 5; // Memory corruption

The Hack: Use assert to check all array accesses.

For example:

// Better code
#include <cassert>

Page 42 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

int data[10];
// ...
int i = 11;
assert((i >= 0) && (i < 10)); // Good example
 // Rotten implementation
data[i] = 5;

This works but there is a problem with. We've used the constant 10 in two
places. (The declaration and the assert.) It would be easy for someone to
change one and not the other.

One solution to this is to use named constants.

// Better code
#include <cassert>
const int DATA_SIZE = 10;
int data[DATA_SIZE];
// ...
int i = 11;
assert((i >= 0) && (i < DATA_SIZE)); // Better,
 // but not best
data[i] = 5;

Ideally we don't want to have to use even named constants if we can help
it. It is possible to create a bounds checking assert using the data variable
alone:

assert((i >= 0) && (i < sizeof(data) / sizeof(data[0])));

So what is going on here? The expression sizeof(data) returns the
number of bytes in the array data. But we need the number of elements in the
variable, not the number of bytes.

The solution is to divide the number of bytes in the array by the number of
bytes in the first element. The result is an expression which gives us the number
of elements.

sizeof(data) / sizeof(data[0])

Now being true hackers, we don't want to have to write the same
expression over and over again, so let's create a macro to make our life easier.

/*
 * assert_bounds(var, index) – Make sure an index is in
 * bounds.
 *
 * Warning: This only works is var is a array variable and
 * not a pointer.

Page 43 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 */
#define assert_bounds(var, index) \
 assert((index >= 0) &&
 (index < (sizeof(var) / sizeof(var[0]))));

Because we're such nice programmers we've documented our macro and
even included a warning describing its limitations.

Array overflows are one of the most common programming errors and are
extremely frustrating to try and locate. This code doesn't eliminate them, but it
does cause buggy code to abort early in a way that makes the problem
tremendously easier to find.

Warning: The assert statement is not guaranteed to abort your program.
For example, consider the statement:

assert(false);

This statement “obviously” will cause the program to abort because the assert is
always false. If the program is compiled with NDEBUG defined, all the asserts are
compiled out. In other words, if NDEBUG is defined the previous statement does
nothing.

A Real System Crash

You should only use assert in programs where aborting
is an acceptable behavior. In most cases when a
program crashes it is an annoyance for the user but not a
disaster. That is not always the case.

In 1996 some people started running a program on an
upgraded hardware platform. As a result of the
hardware upgrade the program ran longer than expected
and one of the counters overflowed. Since this was ADA
code, it triggered an exception.

The exception was not caught so the system executed the
default exception handler and halted the processor. This
was not a good thing to do.

The hardware platform that had been upgraded was the
Ariane 4 rocket to the Ariane 5 rocket. The computer in
question was tasked with keeping the rocket pointed into
the air.

Page 44 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Technically the rocket didn't crash. The launch director
blew it up when it started to head for the ground.

The cost of that bug was estimated to be about
$500,000,000 (US).

Hack 26: Use a Template to Create Safe Arrays

The Problem: You don't want to have to add asserts every time you access
an array.

The Hack: Hide the code inside a template. Then the work is done for you
automatically:

#include <cassert>

template<typename array_type,
 unsigned int size> class array {
 private:
 static const unsigned int ARRAY_SIZE = size;
 array_type data[ARRAY_SIZE];
 public:
 array(void) {};
 array(const array& other_array) {
 memcopy(data, other_array.data, sizeof(data));
 };
 ~array() {};
 array& operator = (const array& other_array) {
 memcopy(data, other_array.data, sizeof(data));
 return (*this);
 };
 public:
 array_type& operator[](int index) {
 assert(index >= 0);
 assert(index < ARRAY_SIZE);
 return (&data[index]);
 }
};

This class has several nice features. The first is that the copy constructor
and the assignment operator are implement in a way that allows for copying the
array.

But the big advantage of the code is the function which handles the access
to an element in the array. It includes assert statements which prevent you
from overflowing the array:

Page 45 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 array_type& operator[](int index) {
 assert(index >= 0);
 assert(index < ARRAY_SIZE);
 return (&data[index]);
 }

Another feature of this template is that it doesn't provide a way of
converting an array into a pointer. It is up to you whether or not you consider
this a feature or a bug.

Hack 27: When Doing Nothing, Be Obvious About It

The Problem: The following code is confusing.

// Very bad coding style
int i;
for (i = 0; foo[i] != '\0'; ++i);
std::cout << “Result “ << i << std::endl;

At first glance it seems that someone failed to indent the program properly.
The std::cout line should be indented as it is part of the for statements.

But on close inspection you can see that the program is indented correctly.
There a tiny semicolon at the end of the for loop:

for (i = 0; foo[i] != '\0'; ++i);

This semicolon is almost completely invisible. It would be nice to make it
more visible.

The Hack: Do nothing quietly. Always put something in to say that you're
doing nothing.

// Almost adequate coding style
for (i = 0; foo[i] != '\0'; ++i)
 /* Do nothing */;

This is better, but we can improve on it. The continue keyword tells C++
to start the loop over again. It can be placed inside our empty loop to provide a
more meaty statement for our eyes:

// Good coding style
for (i = 0; foo[i] != '\0'; ++i)
 continue;

Page 46 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 28: End Every Case with break or /* Fall Through */

The Problem: In the following code did the programmer intend for the
STATE_ALPHA case to fall through or did he make a mistake? In other words is
that fact that STATE_ALPHA calls do_alpha and do_beta intentional or an
error?

// Rotten code
switch (state) {
 case STATE_ALPHA:
 do_alpha();
 case STATE_BETA:
 do_beta();
 break;
//

From this code it's impossible to tell what the programmer intended.

The Hack: Be obvious about what you do. If you intend for one case to fall
through to another indicate it with a comment like // Fall Through.

// Decent code
switch (state) {
 case STATE_ALPHA:
 do_alpha();
 // Fall through
 case STATE_BETA:
 do_beta();
 break;
//

After all being a hacker means that you have to be clever, not that you have
to be sneaky.

Hack 29: A Simple assert Statements For Impossible
Conditions

The Problem: What do you do when you detect an internal error.

You could do an assert(false); but that doesn't give you much
information when the program dies.

The Hack: Put a message in your assert statements. For example:

if (this_is_not_possible) {
 assert(“INTERNAL ERROR: Impossible condition” == 0);

Page 47 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 abort();
}

The code “string” == 0 compares the address of the string against 0.
They should not be zero and the assert fails. Since a failing assert prints the
condition that failed, now when your program dies, you will get a nice error
message telling you what happens.

But if the program dies when the assert statement fails, why put in the
abort? because it's possible to use compile time switched (-DNDEBUG) to
compile out the assert statements.

So what this code really says, is die with a nice error message. And if
you're still alive, just die.

Hack 30: Always Check for The Impossible Cases In switches

The Problem: A variable can only contain vowels. What do you do if it has
the value 'q'?

Lousy Riddle Time

Q: What time is it when you clock strikes 13?

A: Time to get a new clock.

In our example here, a value of 'q' indicates an internal error. After all its
“impossible” for us to get a value of 'q'. But that doesn't stop us from getting
one.

Someone upstream blew it. There are two major rules of programming
safety:

1. Never trust data created by code you didn't write.

2. Never trust data created by code you did write.

A good dose of paranoia is very healthily when it comes to creating safe
program. After all just because your paranoid, doesn't mean that the system
isn't out to get you.

The Hack: Make the switch statement take care of everything - even the
stuff that can't exist.

Page 48 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Switches if something can have only have a limited number of values, you
should always add a default clause to catch things that fall out of range:

switch (vowel) {
 case 'e':
 ++e_count;
 break;
 case 'i':
 ++i_count;
 break;
 case 'a':
 case 'o':
 case 'u':
 // Ignore these values
 break;
 default:
 assert(“INTERNAL ERROR: Vowel not legal” == 0);
 abort();
}

One thing to notice about this code, we clearly indicate what vowels are to
be ignored by the statement:

 // Ignore these values

After all, the idea is to not only be safe but to be clear and obvious as well.

Hack 31: Create Opaque Types (Handles) Which can be
Checked at Compile Time

The Problem: You are creating an API which uses a lot of handles. For
example, font handles, graphics handles, window handles, color handles, and so
forth.

One solution is to create a “different” type for each handle:

// Dangerous code
typedef short int font_handle;
typedef short int graphic_handle
typedef short int window_handle;
typedef short int color_handle;

The following code shows these types in operation:

font_handle the_font = find_font(“Times”, 10, “Bold”);
color_handle the_color = find_color(“Light Red”);

draw_text(the_font, the_color);

Page 49 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But there is a problem with doing things this way. Both font_handle and
color_handle have the same basic type. So the compiler will not complain if
you do the following:

// Parameters backwards
draw_text(the_color, the_font);

Ideally we would like a solution where the compiler will complaint if we
mix the handles. The other requirement we have is that the handle take up as
little space as possible, preferable two bytes.

The Hack: Use a small structure to hold the handles.

Let's take a look at the following handle declarations:

// Safe code
typedef struct {
 short int handle;
} font_handle;

typedef struct {
 short int handle;
} graphic_handle

typedef struct {
 short int handle;
} window_handle;

typedef struct {
 short int handle;
} color_handle;

So we've replaced a two byte integer with a two byte structure. What's the
big deal? The big deal is type checking. Now the handles have a different
structure and no common base type.

As a result, the compiler will do type checking. In other words the
following is legal:

draw_text(the_font, the_color); // Correct and legal

and the following is not:

draw_text(the_color, the_font); // Incorrect and illegal

Note all the advantages of the handle system are still in places. Handles
are still small opaque entities, but now they are type checked as well. Thus we
we have a hack that gets around C++'s week types and turns them into stronger
ones.

Page 50 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 32: Using sizeof When Zeroing Out Arrays

The Problem: Using named constants in memset calls will fail if the
constants get out of sync.

For example:

// Bad code
const int CONNECTION_INFO_SIZE = 100;
char connection_info[CONNECTION_INFO_SIZE];

const int SIMPLE_CONNECTION_INFO_SIZE = 30;
char secure_connection_info[SIMPLE_CONNECTION_INFO_SIZE];

//...
// Zero all connection information
memset(connection_info, '\0',
 CONNECTION_INFO_SIZE);

// Mistake
memset(secure_connection_info, '\0',
 CONNECTION_INFO_SIZE);

The last statement uses the wrong constant and zeros out the the entire
array and then some corrupting memory. Memory corruption is one of the most
difficult problems to debug because it can cause strange failures in parts of the
code far from the initial problem.

The Hack: Always use sizeof() to determine the size of a structure

So the proper way of handling doing a memset calls is:

memset(array, '\0', sizeof(array));

No matter how you change the size and base type of the array the
sizeof() operator will return the correct size and the memset call will do the
right thing.

Hack 33: Use sizeof(var) Instead of sizeof(type) in memset
Calls

The Problem: Using sizeof(type) in a memset call is unsafe.

Page 51 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Some programmers consider the following good programming practice:

//Not a good idea
struct data_struct {
 int i1, i2;
};

data_struct* data_ptr;
data_ptr = new data_struct;
//....
//Bad code
memset(data_ptr, '\0', sizeof(data_struct));

A problem can occur if you modify the code to and modify what data_ptr
is pointing to.

// This code contains a mistake
struct data_struct {
 int i1, i2;
};
struct data_struct_improved {
 int i1, i2;
 int extra_data;
};

data_struct_improved* data_ptr;
data_ptr = new data_struct_improved;
//....
// Mistake
memset(data_ptr, '\0', sizeof(data_struct));

In the real world, there's going to be a lot of code between the declaration
of data_ptr and the line clearing it:

memset(data_ptr, '\0', sizeof(data_struct));

So the programmer can be forgiven if he didn't see this line when he
changed the type of the variable data_ptr. But and error has still been
introduced and this is not good.

The Hack: Use sizeof(*ptr) to determine the size of dynamic data

No matter how you change the type of data_ptr, the expression
sizeof(*data_ptr) will always contain the right number of bytes.

So this code always works:

Page 52 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

memset(data_ptr, '\0', sizeof(*data_ptr));

Hack 34: Zero Out Pointers to Avoid Reuse

The Problem: Reusing pointers can corrupt memory

After a pointer is deleted (or freed) it should not longer be used. That
doesn't prevent bad code from using it though. Sometimes this results in a
random corruption of memory, one of the toughest problems to debug.

Here's an example of what were talking about:

int* data;

data = new int[10];
data[0] = 0;
// ... lots more work with data ...

delete[] data;

// ... a few thousand lines of code ...
data[2] = 2; // Memory corruption

The Hack: Set the pointer to NULL after deleting it

For example:

delete[] data;
data = NULL;

The result is that on most systems if you try and use the pointer, the system
will crash:

// ... a few thousand lines of code ...
data[2] = 2; // System crashes

This hack does not prevent errors, but it does change them. Accessing a
memory pointer after it is deleted can result in data corruption or heap
corruption. The results of this error may not show up for a long time and will
probably happen when you are executing a totally unrelated piece of code.

On the other hand, if the pointer has been set to NULL, then an attempt to
use will usually result in a system crash as the point of use.

So by resetting pointers after each use you change a hard to find, random
error, into one that repeatable and easy to figure out.

Page 53 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 35: Use strncpy Instead of strcpy To Avoid Buffer
Overflows

The Problem: The function strcpy is unsafe.

The following code overflows an array and corrupts memory.

// Bad code
char name[10];
strcpy(name, "Steve Oualline");

The Hack: Use strncpy

The function strncpy copies a string, but only a limited number of
characters. If we add to this the sizeof() operator we can be assured that we
will never copy more data than the destination can hold.

So a safer string copying method is:

// Partial solution
strncpy(name, "Steve Oualline", sizeof(name));

But there's a catch. Reading the documentation for strncpy we find the
following paragraph:

The strncpy() function is similar [to strcpy], except that not more than n bytes
of
src are copied. Thus, if there is no null byte among the first n bytes
of src, the result will not be null-terminated.

We want the result to always be null terminated, so we explicitly handle the
exception case and make sure that our string is null terminated. Again, we use
the sizeof() operator to make sure we get the right size.

name[sizeof(name)-1] = '\0';

Putting this all together we get the code:

// Good code
char name[10];
strncpy(name, sizeof(name), "Steve Oualline");
name[sizeof(name)-1] = '\0';

Warning: The sizeof(name) only works if name is declared as an array.
If it is declared as a pointer, then sizeof(name_ptr) returns the size of the
pointer, not the data that it is pointing to.

Page 54 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Note: It is possible to avoid all C style string related memory problems by
using C++ std:::string strings. But a lot of code still uses the old
style strings and there are performance issues with C++ strings.

Note: A new function called strlcpy has been introduced in some C/C++
libraries which allows for safe string copies. However, it's not standard,
it's not in all libraries, and Solaris and OpenBSD have implemented it
differently. But if you have it, by all means use it.

Hack 36: Use strncat instead of strcat for safety

The Problem: strcat is unsafe

The following code overflows the array name and corrupts memory.

// Bad code
char name[10];

strncpy(name, "Oualline", sizeof(name));
name[sizeof(name)-1] = '\0';

strcat(name, ", ");
strcat(name, "Oualline);
// Memory is now corrupt

Note: Defining an array using a numeric constant (10) instead of a named
constant (NAME_SIZE) is bad programming practice. But it does make the
example simpler, so it's good writing practice when explaining a hack.

The Hack: Always use strncat

Let's rewrite the previous example using safe programming hacks. First
we safely copy “Oualline” into the name variable.

Next we use strncat to add on the <comma>, <space> characters. The
question is how many characters can we put in the array? The variable name
will hold up to 10 characters. But to be safe we spell 10 as sizeof(name).

We've already used up strlen(name) characters, so the free space in the
variable is denoted by the expression:

sizeof(name) – strlen(name) // Incomplete

We need one byte for the end of string character. So let's add it to our
expression:

Page 55 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

sizeof(name) – strlen(name) -1

Putting it all together we get this safe version of the program:

// Good code
char name[10];

strncpy(name, "Oualline", sizeof(name));
name[sizeof(name)-1] = '\0';

// Concatenation example
strncat(name, ", ", sizeof(name) – strlen(name) -1);
name[sizeof(name)-1] = '\0'; // This is required

strncat(name, "Oualline, sizeof(name) – strlen(name) -1);
name[sizeof(name)-1] = '\0';

Note: A new function called strlcat has been introduced in some C/C++
libraries which allows for safe string catenation. However, it's not
standard, it's not in all libraries, and Solaris and OpenBSD have
implemented it differently. But if you have it, by all means use it.

Hack 37: Use snprintf To Create Strings

The Problem: When using sprintf it's possible to write data to the
string that's longer than the string. For example:

char file[10];

sprintf(file, “/var/tmp/prog/session/%d”, pid);

The Hack: Use snprintf instead.

The second parameter to snprintf is the size of the string. In keeping
with our other safety hacks, we use sizeof(string) in this parameter
whenever possible. Since snprintf knows the size of the string, it is smart
enough not to overflow it.

So the following code will not mess up memory. The file name will be a
little short, but at least you won't have to deal with memory corruption.

char file[10];

snprintf(file, sizeof(file),
 “/var/tmp/prog/session/%d”, pid);

Page 56 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 38: Don't Design in Artificial Limits

The Problem: Any time you design code with an artificial limit someone
will exceed it. For example, consider the code:

void err(const char* const fmt, int a = 0, int b = 0,
 int c = 0, int d = 0, int e = 0)
{
 fprintf(stderr, "Fatal Error:\n");
 fprintf(stderr, fmt, a, b, c, d, e);
 fprintf(stderr, "\n");
 abort();
}

Now this works if you wish to write simple messages:

err(“Size parameter (%d) out of range”, size);

But what happens when we wish to a slightly more complex call?

err(“Point (%d,%d) outside of box (%d,%d), (%d,%d)”,
 point.x, point.y, box.x1, box.y1, box.x2, box.y2);

Our function can take a format and up to five parameters. We just gave it
six. It's not going to work.

Now we could fix the err function to add another parameter, but that
would only work until we needed seven parameter. Another change would be
needed at eight and so on.

The Hack: When writing general functions don't design yourself into a
corner. If you really know the C++ language then you know how to design an
err function that takes any number that takes any number of parameters:

#include <cstdarg>

void err(const char* const fmt, ...)
{
 va_list args;

 va_start(args, fmt);
 fprintf(stderr, "Fatal Error:\n");
 vfprintf(stderr, fmt, args);
 fprintf(stderr, "\n");
 abort();
}

This is not the only place where artificial limits can cause trouble. Any
time you design limits into the system, sooner or later someone will exceed them.

Page 57 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

One classic example of an arbitrary limitation was the 640K limitation. A
quote attributed to Bill Gates9 states “640K ought to be enough memory for
anyone.” But it was only a short while after the original PC came out that people
started inventing add-on cards with special drivers designed to get around the
640K limitation.

Another example is the ls command. The initial version used single
characters for options (-l, -R, etc.). Do a man ls now and you'll find that almost
all the single letters (upper and lower case) are being used by this command.
Fifty two (26*2) options were just not enough. By limiting options to a single
character the designers of ls limited their expandability. Someone had to devise
a new option syntax (--long-options) to get around this problem.

The Senior Citizen Truant

One state's citizen tracking system limited a person's age
to two digits. So when one of its citizens reached 100
her age was reset to 0. This wasn't too big a problem.

The real trouble came when she reached 107 and the
state sent a truant officer out to her house to find out
why her parents had not enrolled her in the first grade.

Hack 39: Always Check for Self Assignment

The Problem: It is possible to create code that performs the following
operation on a class:

x = x;

In real life self assignment is probably not going to be as obvious as this.
Instead it will probably be hidden by a couple or more layers of function calls.

But when this does occur the results can be catastrophic. Consider the
following assignment operator pseudo code:

a_class& opeator = (const a_class& other_one) {
 1. Delete my data
 2. Allocate a new structure the same size as
 other_one's data
 3. Copy over the data

The code for this class is:

class a_class {

9 Mr. Gates has denied saying this.

Page 58 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 private:
 unsigned int size;

 char* data;
 public:
 a_class(unsigned int i_size) {
 size = i_size;
 data = new char[size]);
 }

 // Here's the problem code
 a_class operator = (const& a_class other) {
 delete[] data;
 data = NULL;
 size = other.size;
 data = new char[size];
 memcpy(data, other.data, size);
 }
}

Now consider what happens when a variable is assigned to itself. The first
step:

 1. Delete my data

deletes the data for the destination variable (*this). However, the destination
variable is also the source variable (other_one), the data for this is deleted as
well. In fact the only copy of the data is deleted.

The program will fail when we get to the step:

 2. Allocate a new structure the same size as
 other_one's data

because there is no data in other_one, we deleted it in step 1.

The Hack: Program defensively and check for self assignment explicitly.

Every non-trivial class should have the following at the beginning of each
assignment operator function:

a_class& opeator = (const a_class& other_one) {
 if (this == &other_one)
 return (*this); // Self assignment detected
//

This little bit of insurance can prevent a really nasty problem from
occurring.

Page 59 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 40: Use Sentinels to Protect the Integrity of Your Classes

The Problem: Strange things are happening to one of your classes. Data
is getting corrupted somehow. You suspect someone is writing over random
memory, but how do you prove it:

The Hack: Put sentential at the beginning and end of your class and check
them often.

For example:

class no_stomp {
 private:
 enum {START_MAGIC = 0x12345678,
 END_MAGIC = 0x87654321};
 // This must be the first constant or variable
 // declared. It protects the class against
 // nasty code overwriting it.
 const long unsigned int start_sentinel;
//
 public:
 no_stomp(): start_sentinel(START_MAGIC),
 end_sentinel(END_MAGIC)
 {}
//
 // Every member function should call this
 // to make sure that everything is still OK.
 check_sentinels() {
 assert(start_sentinel == START_MAGIC);
 assert(end_sentinel == END_MAGIC);
 }
//
 private:
 // This must be the last declaration
 const long unsigned int end_sentinel;
};

This class defines two constants which are declared at each end of the
class. The term “constant” is slightly incorrect. They are really variables which
are initialized when the class is created and can not be modified during the
lifetime of the class.

But they can be overwritten if some buggy code overflows an array, uses a
bad memory pointer, or does something else crazy. If that happens the next call
to check_sentinels will cause an assertion failure crashing the program.

Page 60 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

So what we are actually doing is reducing a difficult to solve problem
(random overwrites of memory cause random results) to one that's easier to
solve (as soon as the memory goes bad, the program crashes).

This type of code helped me locate a rather unusual problem with some C
code what had been upgraded to C++. In this case the first call to
check_sentinels crashed the program. Analyzing the program I discovered
that the problem was caused somewhere between when the constructor was
called and the first sentential verification call.

So I put a breakpoint in the constructor and was planning to single step
through the code until I found the problem. The program crashed before the
constructor was called. So I was left with a puzzle “How can a program call a
member function before it calls the constructor?”

The answer was surprisingly simple. The class was being created with
malloc. I told you it was once C. Turns out that it was not quite fully ported
from C to C++. Replacing malloc with new solved the problem.

Hack 41: Solve Memory Problems with valgrind

The Problems: Bad pointers, writing of the end of allocated memory,
memory leaks.

C++ gives you lots of flexibility when it comes to memory management.
You are allowed to allocate and deallocate memory and directly manipulate
pointers.

Flexibility comes with a cost. Because the language allows you to allocate
memory, you can screw up the allocations. Similarly you can screw up the
deallocation and use of pointers.

Since there are no built-in safety checks in C++ what do you do to protect
your code?

The Hack: Use valgrind.

The valgrind program runs your program in a sort of virtual machine.
Memory accesses undergo extra checking. That makes it possible to detect
certain types of pointer errors. These include:

1. Using freed memory.

2. Writing past the end of a allocated block.

Page 61 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

3. Writing past the beginning of an allocated block.

4. Memory Leaks

Let's take a look at a small example:

 1 #include <iostream>
 2
 3 int main()
 4 {
 5 int* ptr = new int[10];
 6 int* ptr_b = new int[10];
 7
 8 *(ptr+11) = 5;
 9 ptr_b = NULL;
 10 exit(0);
 11 }

Note: You may have noticed that we violated our own safety rules by not
putting assert statements before each pointer access. But the purpose of this
code is to cause problems, not catch them, so we disabled the safety's.

What are the problems with this code? On line 8 we access element 11 of a
10 element array. On line 9 we zero out the only pointer to the memory we
allocated in line 6 thus causing a memory leak.

Let's look at what valgrind does when this program is run.

$ valgrind --leak-check=full ./bad_mem
==31755== Memcheck, a memory error detector.
==31755== Copyright (C) 2002-2006, and GNU GPL'd, by Julian Seward et al.
==31755== Using LibVEX rev 1658, a library for dynamic binary translation.
==31755== Copyright (C) 2004-2006, and GNU GPL'd, by OpenWorks LLP.
==31755== Using valgrind-3.2.1, a dynamic binary instrumentation framework.
==31755== Copyright (C) 2000-2006, and GNU GPL'd, by Julian Seward et al.
==31755== For more details, rerun with: -v
==31755==
==31755== Invalid write of size 4
==31755== at 0x8048712: main (bad_mem.cpp:8)
==31755== Address 0x4253054 is 4 bytes after a block of size 40 alloc'd
==31755== at 0x4019D55: operator new[](unsigned) (vg_replace_malloc.c:195)
==31755== by 0x80486F5: main (bad_mem.cpp:5)
==31755==
==31755== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 21 from 1)
==31755== malloc/free: in use at exit: 80 bytes in 2 blocks.
==31755== malloc/free: 2 allocs, 0 frees, 80 bytes allocated.
==31755== For counts of detected errors, rerun with: -v
==31755== searching for pointers to 2 not-freed blocks.
==31755== checked 104,796 bytes.
==31755==

Page 62 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

==31755==
==31755== 40 bytes in 1 blocks are definitely lost in loss record 1 of 2
==31755== at 0x4019D55: operator new[](unsigned) (vg_replace_malloc.c:195)
==31755== by 0x8048705: main (bad_mem.cpp:6)
==31755==
==31755== LEAK SUMMARY:
==31755== definitely lost: 40 bytes in 1 blocks.
==31755== possibly lost: 0 bytes in 0 blocks.
==31755== still reachable: 40 bytes in 1 blocks.
==31755== suppressed: 0 bytes in 0 blocks.
==31755== Reachable blocks (those to which a pointer was found) are not shown.
==31755== To see them, rerun with: --show-reachable=yes

After some chatter, the program catches the first thing the tool notices is
the write to an illegal memory location:

==31755== Invalid write of size 4
==31755== at 0x8048712: main (bad_mem.cpp:8)
==31755== Address 0x4253054 is 4 bytes after a block of size 40 alloc'd
==31755== at 0x4019D55: operator new[](unsigned) (vg_replace_malloc.c:195)
==31755== by 0x80486F5: main (bad_mem.cpp:5)

After the program finishes, valgrind checks the heap to see if any memory
was lost. In this case it find that we allocated some memory at line 6 and lost it.

==31755== 40 bytes in 1 blocks are definitely lost in loss record 1 of 2
==31755== at 0x4019D55: operator new[](unsigned) (vg_replace_malloc.c:195)
==31755== by 0x8048705: main (bad_mem.cpp:6)

The tool is smart. It didn't report the memory we allocated on line 5 as lost
even through we allocated it and never freed it. That's because at the time the
program exited there was a pointer to this block of memory. In other words
someone was using it at exit time, so it was not lost.

The valgrind tool is not perfect can not find problems with local or global
arrays, only allocated memory. But still it does a very good job of finding a large
number of difficult to locate problems.

Hack 42: Finding Uninitialized Variables

The Problem: Your program does strange things at random times. You
suspect an initialized variable.

Page 63 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Consider the following example:

 1 #include <iostream>
 2
 3 static void print_state()
 4 {
 5 int state;
 6
 7 if (state) {
 8 std::cout << "State alpha" << std::endl;
 9 } else {
10 std::cout << "State beta" << std::endl;
11 }
12 }

At line 7 we use the value of state to decide if we do the alpha or beta
parts. There's just one problem, we never bother to give state a value.

So which state will be executed? That depends on what the previous
function left on the stack. In other words, state will be set to some random
number.

How do you detect such things? It's difficult using the debugger. If you
print the value of state and get 38120349, how do you know if that is correct or
incorrect?

The Hack: valgrind to the rescue

The valgrind program also checks to see if you use any uninitialized data.
It's actually rather clever about this. If you assign one uninitialized variable to
another, it won't complain. (This actually happens a lot when doing memcpy and
other similar operations.)

But if you try to use uninitialized data to make a decision (inside an if
statement for example) it will complain loudly.

For example when we run the previous program under valgrind we get:

... chatter ...
==26488== Conditional jump or move depends on uninitialised value(s)
==26488== at 0x80487DA: print_state() (uinit.cpp:7)
==26488== by 0x804884C: main (uinit.cpp:16)
State alpha
... more chatter ...

This clearly shows us that line 7 has a problem with uninitialized data.

Page 64 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 29: Valgrind Pronunciation

The Problem: How do you pronounce “Valgrind”?

The Hack: We hackers. We don't care how it's pronounced as long as it
works.

Hack 43: Locating Pointer problems ElectricFence

The Problem: You need to find memory allocation errors.

The Hack: Don't use ElectricFence it's stagnant. Even its successor,
DUMA is obsolete. Use valgrind instead.

Hack 44: Dealing with Complex Function and Pointer
Declarations

The Problem: You need to create a pointer to a function which takes a
integer argument and returns an array of pointers to functions which take one
argument, a string, and return an integer.

Whew! That's a specification you have to read at least three times to
figure out that you can't understand it.

How do you deal with such complexity.

The Hack: Redesign the code so you don't need this type of function. Let's
assume that the world is insane and we can't do that. Then we need to break the
declaration down into pieces and use lots of typedef statements to make things
simpler. Hacking does not mean that you do the most complex thing in the most
complex way. A good hacker does the most complex thing in a simple way.

Let's start by parsing the sentence and look for the bottom most element in
this specification change. The base item is a function which takes one argument,
a string, and returns an integer. It's easier said in C++:

typedef int base_function(const char* const arg);

Now we are going to return an array of pointers to this type of function.
First we define a type for the pointer:

typedef base_function* base_function_ptr;

Next we define an array of pointers:

typedef base_function_ptr base_array[];

Page 65 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Now we need a function which returns a pointer to this array:

typedef base_array* big_fun(int value);

Finally we declare a pointer to this item:

big_fun* the_pointer;

Now you may have noticed that we used four typedef statements to define
this one pointer. We could have done this in one statement.

But the goal of this hack was to define the pointer with a minimum of
effort, not a minimum of code. Clarity is one quality highly valued by good
hackers and by breaking down this problem into multiple, small typedef
statement we can use many small clear statements in place of one large complex
and impossible to understand C++ declaration.

The full code (including comments) follows:

// Type definition for a function which takes
// a character argument and returns an integer
typedef int base_function(const char* const arg);

// Pointer to a base function
typedef base_function* base_function_ptr;

// An array of pointers to our base function
typedef base_function_ptr base_array[];

// Function which returns an array of function
// pointers
typedef base_array* big_fun(int value);

// Finally a pointer to the thing we wished
// to point to
big_fun* the_pointer;

As hackers we are expected to think out of the box and look beyond the
initial problem. One question that we haven't dealt with is “Why would you ever
need such a pointer?”

In the real world, a good hacker would not design a better way to declare
the pointer, he would design code so that a pointer like this was never needed in
the first place. Elimination of needless complexity is one of the attributes of a
truly great hacker.

Page 66 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 3: File Hacks

Hacking is not just about writing programs. Programs transform and
process data. But the data itself can also be subject to hacking.

Designing a good file format is one key part of creating a good program.
The files should be easy to use, robust, and expandable. The hacks contained in
this chapter are designed to help you achieve all these goals.

The key to good file design is to make things as simple as possible, but no
simpler, and as flexible as possible without getting silly. It also helps to be as
transparent as possible so any problems with the file can easily be located.

As hackers we want our programs used as much as possible. This means
designing file formats that are so good that people want to use them. XML is one
example of a simple, yet robust file format. Simple enough so that anyone can
read it (sort of) yet complex enough so you can specify just about anything.

Good programmer create good files. Good hackers create great ones.

Hack 45: Create Text Files Instead of Binary Ones Whenever
Feasible

The Problem: You need save the configuration data (or other data) from
your program. Do you use a binary file or and text file?

The Hack: Use text. It almost always make things easier.

UNIX is an excellent example of hacker design. One of the key design
features that make the system work as well as it does is that almost all the
configuration files are text.

There are numerous advantages to text files. The first is that they are
human readable. When your program write a text file, the contents of the file
can be examined by simpling looking at it. You don't have to create some fancy
data dumper to look at the file.

This illustrates one of the major advantages of text files: transparency. You
can see what's going on in a text file. Also you change change it easily using an
editor. This means that if you program needs a configuration file and that file is
in text format, then a text editor can be used to edit the configuration. (I didn't
say it would be easy or pretty, but it can be done.)

Page 67 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Also if the configuration information text based, other people can easily
write tools which edit the configuration file. On Linux you'll find literally
hundreds of programs which configure network settings. That's because the
network configuration is stored in a text file and easily accessible to everyone.

Again, one of your goals as a hacker is to make things a simple and easy to
play with as possible. Text files let you do this.

Binary files are only useful when you are processing huge amount of data
(video, graphics, databases, etc.) When you are dealing with 100,000,000
records or more, then the overhead associated with text files can make your
program slow down tremendously. In that case binary files are better.

But for simple things like configuration files, settings files, and basic data
text files are best. Performance is not an issue. Who cares if it takes 0.003
seconds to start your program instead of 0.001. But people do care about clarity,
correctness, and interoperability and that where text files are best.

How Not to Design a Configuration System

The consequences of a bad design are worth study too.
Let's look at one very common system for storing
configuration settings.

First of all, all the configuration information for every
program on the entire system is stored in one location.
There are several problems with this:

1. A single wild program can accidentally totally destroy
all the settings. (The solution to this problem: Don't
redesign, the configuration system, provide a elaborate
backup system so when destruction does occur you can
recover – sort of.)

2. Make the file binary so no one can easily read it
except with an API that you supply.

3. Keep the format secret and only the user edit the
configuration data using the tool you provide. By
keeping things secret you absolutely prevent anyone
from writing a better program.

4. Because all settings are stored in one location, you've
made it impossible to create several configuration files to
be used for different situations. You limit everyone on
the machine to one configuration period.

Page 68 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

5. Finally because configuration data can only be stored
on the local machine in a single location, configuration
sharing is impossible.

The system I've been describing is the Microsoft
Windows Registry. It is fascinating from a design point
of view because it gives good designers some many
opportunities to ask “What were they thinking when they
did this?”

Hack 46: Use Magic Strings to Identify File Types

The Problem: Your program needs the user to specify a configuration file
and a settings files. But the users can easily get the two mixed up causing havoc
with your program.

The Hack: Use a magic string

Simply use a known string at the beginning of each type of file to identify
it. For example, a typical configuration file might look like:

TGP Configuration File
solve = true
features = novice
....

The key things to notice about the magic string are that it identifies the
program it belongs to as well as the file type. So files that begin with this string
and only files that begin with this string are configuration files.

Thus you prevent errors by forcing the user to give you a configuration file
when a configuration file is needed.

Hack 47: Use Magic Numbers for Binary Files

The Problem: Our program uses binary files as input. How can we be
sure we get the right binary files?

The Hack: Put a magic number at the beginning of the file.

Now the question is how do you decide on the magic number. The short
answer is that you make it up.

Page 69 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

There are many different ways of doing this. The method I prefer is to
think up a word that describes the program I'm creating. For example “HACKS”.
Taking the first 4 letters and seeing what the ASCII numbers for them I get:

H 48

A 41

C 43

K 4B

Putting these together gives us the number 0x4841434B. The problem
with this number is that because it is four ASCII characters and the file can
easily be confused with a text file.

So we add 0x80808080 to the number giving us a 0xC8C1C3CB. The
result is our magic number:

// The magic number at the beginning of each hack file
const long unsigned int HACK_MAGIC = 0xC8C1C3CBL;

The final step is to write out a file with our new magic number in it and see
if the Linux file command can identify it as an existing number.

XML Files

The XML file format has been designed to solve a great
many of the problems with file formats. It's structured
so that you can design quite complex things, it human
readable (sort of), and you can easily validate it.

Hack 48: Automatic Byte Ordering Through Magic Numbers

The Problem: Binary files are not portable. Files written on a Sparc
machine can not be read on a x86 machine.

The Hack: Use the magic number to detect file written with a different
byte order and correct it.

Page 70 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

For example:

// The magic number at the beginning of each hack file
const long unsigned int HACK_MAGIC = 0xC8C1C3CBL;

// The magic number on a machine with a different byte
// order
const long unsigned int HACK_MAGIC_SWITCH = 0xCBC3C1C8L;

//
long unsigned int magic;
in_file.read(&magic, sizeof(magic));

if (magic == HACK_MAGIC) {
 process_file();
} else if (magic == HACK_MAGIC_SWITCH) {
 process_file_after_flipping_bytes();
} else {
 throw(file_type_exception(
 “File is not a hack data file “));
}

The idea is simple, first check to see if we have a normal file and process it.

if (magic == HACK_MAGIC) {
 process_file();

We notice that a normal magic number is 0xC8C1C3CBL. On a machine
with a different byte order the magic number is 0xCBC3C1C8L. If we detect a
magic number that matches this value, we know we have a byte flipped file and
process it:

const long unsigned int HACK_MAGIC_SWITCH = 0xCBC3C1C8L;
//
} else if (magic == HACK_MAGIC_SWITCH) {
 process_file_after_flipping_bytes();

Note: Although this system works, you do have to maintain two version of
the file reading program. This can be a significant maintainable and risk
problem. You may want to consider using the next hack instead.

Hack 49: Writing Portable Binary Files

The Problem: You need to create and read binary files which can be used
on multiple machines.

The Hack: Always write out the data using “Network Byte Order”.

Page 71 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

In order to make data transmission platform independent a standard byte
order called “Network Byte Order” was created. A number of functions were
added to the C library to convert items to and from network byte order.

The include:

Function Meaning
htonl Convert a long in host format to network format.
htons Convert a short in host format to network format.
ntohl Convert a long in network format to host format.
ntohs Convert a long in network format to host format.

Let's see how this might be used when writing a file:

// The magic number at the beginning of each hack file
const long unsigned int HACK_MAGIC = 0xC8C1C3CBL;

short int item_count = 15; // Number of items in the file
short int field_length = 11; // Length of next field

// ...
long unsigned int magic = htonl(HACK_MAGIC);
out_file.write(&magic, sizeof(magic));

short int write_item_count = htons(item_count);
out_file.write(&write_item_count,
 sizeof(write_item_count));

short int write_field_length = htons(field_length);
out_file.write(&write_field_length,
 sizeof(write_field_length));

Similar code is used on the read side to make things portable.

Hack 50: Make You Binary Files Extensible

The Problem: People keep wanting to extend programs by adding more
features. If the program deals with binary files the file format must
accommodate this.

The Hack: When designing files leave room for expansion. Use a file
format which includes a record size in each record.

Here's a simple file format specification:

1. Record type (4 byte integer)

Page 72 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

2. Record length (4 byte integer)

3. Record data (length – 8 bytes of data)

This is a deceptively simple format. Although simple, it leaves lots of room
for expansion.

Let's start with the code used to read the records. It must read the first 8
bytes, get the length, then read the rest of the data. The entire record is then
returned to the reader for processor. Very simple. A good hack.

All the program has to do is to look a the record type to determine what
type of data is in the record. Then it can process the record.

Now what happens when we need to expand and enhance our data stream.
All we have to do is to add a new record type. The reader doesn't have to be
changed. It can still process the record because it doesn't have to know the
type.

All we have to do is add a new record handler to the main program. For
example:

struct record {
 int type; // Record type
 int length; // Length of record
 uint8 data[0]; // Data (variable length);
};

//
switch (record_var.type) {
 case REC_START:
 do_start(record_var);
 break;
 case REC_STOP:
 do_stop(record_var);
 break;
 case REC_PAUSE:
 do_pause(record_var);
 break;
 default:
 std::cout << “WARNING: Unknown record type “ <<
 record_var.type << “ Ignored” << std::endl;
 break;
}

With code like this it's easy to add a handler for a new record. New
handlers easily fit into the schema.

Page 73 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Also this code will work for both past and future version of the file. It
works with future versions because it skips records it does not know about. So if
we add a new record type such as REC_SKIP, the program will still run. It won't
process records it doesn't know about, but it won't crash either.

This built-in resilience is the hallmark of a really good hack.

Hack 51: Use magic numbers to protect binary file records

The Problem: Files can become corrupt. How do we protect ourselves
against that.

The Hack: Put magic numbers at the beginning and end of each record.
For example:

struct record_start {
 uint32 magic_start;
 uint32 type;
 uint32 size;
};

struct record_end {
 unit32 magic_end;
}

Somewhere in the recording code we have the statements:

if (record_stream.start.magic_start != START_MAGIC)
 throw(file_corruption(“Starting magic number wrong”);

//
if (record_stream.end.magic_end != END_MAGIC)
 throw(file_corruption(“Ending magic number wrong”);

Now when anyone monkeys with the file we notice. It should be pointed
out that this protects against almost all simple data corruption caused by
hardware errors or program bugs.

Also it only protects the ends of the data. If someone messes up the middle
it won't be spotted. If you want to spot that you'll need to include a checksum of
some sort in the data itself. But that's a level of paranoia that's rarely needed.

Page 74 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This hack has proved useful to myself in a number of occasions. The first
was a file system problem. It seemed that when the computer was shutdown and
there were files being written to the disk, the operating system would pad the
unwritten sectors with blocks containing all zeros. Fortunately the magic
numbers were there and the program realized that it had read something that
was half a good record and half something else and discarded the data.

The other problem caught by this system was a really nasty data corruption
bug. The problem was eventually traced to code in an entirely different module
which sent out E-Mail alerts when an error condition occurred.

Here's the code. Let's see if you can spot the problem:

pid_t child_pid = fork();

if (child_pid == 0) {
 // We are the child
 system(“send_email_alert”);
 exit(0);
}

If you didn't spot the bug I can understand. It took me about a week of
testing to pinpoint this code and locate the problem.

The problem is very hard to see. After all this entire module shares no
code with the record writing module. In particular the output file handle does
not exist at all outside the record writer.

Also the code in question does no I/O. It doesn't even manipulate memory
so it couldn't be memory corruption. So what is going on?

There are two parts to this problem. The first is the call:

pid_t child_pid = fork();

This creates a duplicate of the main process. All file handles are now
shared between the two processes. So where before there was one process with
the output file open, now there are two.

The fork call also duplicates the memory of the parent process. This
includes all the I/O buffers for all the files. This includes the output file.

Next we come to the line:

 exit(0);

All this does is exit the program, right? Not exactly. Let's take a look at
the documentation for this function:

Page 75 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The exit() function causes normal program
termination and the the value of status & 0377 is
returned to the parent (see wait(2)). All
functions registered with atexit() and on_exit()
are called in the reverse order of their
registration, and all open streams are flushed
and closed. Files created by tmpfile() are
removed.

The exit function actually does quite a lot. In particular it flushes the
write buffers for any files open for writing. Since we inherited a set of open files
and their buffers from the parent, they will be flushed. Thus this call writes
some data to the file. The main program will also write some data to the file
when it's buffers get full. Since these two writes are not coordinated the data is
corrupted.

This was a nasty problem to find. But the fact that the code was written
with record protection in it, catching the problem was much easier. Early on it
was obvious that turning on alerts cause the program to complain about record
corruption. The only hard part was looking at the code and trying to figure out
the problem.

What made this nasty is that the logs were getting corrupted, but only if
alerts were turned on. But these modules had nothing in common. The shared
no functions, logic, or memory. It took quite some time to find out that the
problem was that they did share something: I/O buffers, but that sharing was
very well hidden.

Hack 52: Know When to Use _exit

The Problem: You are forking off a process and do some work and then
exit, without doing anything to the I/O buffers in the process. You can't use the
exit function because of the problems described in Hack 51.

The Hack: Use _exit.

The _exit function stops your program. That's all it does, stop the
program. It does not pass go, it does not collect $200. But more importantly it
does not flush any I/O buffers. All that happens when you call _exit is that
your process goes away.

Page 76 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This is very useful when you've forked of a process that has done it's work
and needs to stop. Remember exit flushes things and can cause all sorts of
trouble with shared files. The _exit call avoids this problem.

Page 77 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 4: Debugging Hacks

I have written two programs which had no bugs. One was three machine
instructions long and the other was four. All the others had bugs.

The writing of a program takes only a short time. Debugging goes on
forever. The debugging hacks presented here are designed to make debugging
faster and more efficient.

Hack 53: Mark temporary debugging messages with a special
set of characters.

The Problem: Debugging by adding print statements is still a very
powerful debugging technique. But how do you identify print statements
designed to output information for a specific problem vs. the print statements
that should be there.

The Hack: Begin all temporary debugging output with the characters
“##”. For example:

i = find_index();
std::cout << “## find_index returned “ << i << std::endl;

The “##” serves several purposes. First, it identifies the statement as a
temporary debug statement. Next when you do find the problem it's easy to
remove them. All you have to do is go through and find each line containing a
“##” and delete it.

Hack 54: Use the Editor to Analyze Log Output

The Problem: When you turn on verbose logging you get 50,000 lines
scrolling past my screen and I can't find what I'm looking for.

The Hack: Save the log output to a file and use a text editor to browse the
output.

The problem with log files is that they give you too little information or too
much. Too little is easily dealt with – all you have to do is turn up the verbosity
level until you get too much or put in ## lines. (See previous hack.)

Dealing with too much is another problem. How do you find that nugget of
information which tells you just want you need to know?

Page 78 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Well on most systems there's a tool designed for the searching and
manipulation of large text files. It's called your system editor. Let's see how this
works in action.

First let's suppose you've done an exhaustive test of your system and
logged the results. Out of 5,000 tests, three fail with an error. Simple start up
your editor and search for the string “ERROR”. You'll locate the line of the first
error.

Want to see what happened just before the error, scroll up and take a look.

The editor not only lets you look at the data but annotate it as well. You
can add comments and annotations to the log as you figure out what is going on.
And unlike paper notes, edits in the file can be inserted into an E-Mail in case
you have to use the Internet for help.

Log files are a great source of information and the text editor is a great
way to exploit this information.

(See Hack 127 for information on how to Vim to examine log files.)

Hack 55: Flexible Logging

The Problem: When your dealing with small programs it's OK to log
everything. If you have a larger program you need to be more selective.

The Hack: Use letter based logging selection.

We wish to create a command line parameter -v<letters> which will
enable debugging for only those sections specified by <letters>. For example
a typical set of letters might be:

m Log memory allocation and frees.

d Log dictionary entries

f Print function definitions

r Print regular expression debugging information

x Display calls to the execute function

... and so on.

This system is surprising easy to implement. First we define an array to
hold our debug options:

Page 79 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

static bool verbose_letters[256] = {0};

Next we create a loop to process the command line arguments. In this
example we're are using the GNU getopt function to scan the arguments. We
use the argument specification “v::” to indicate the only option is -v and that
it can be followed by options parameters. (This is indicated by the “::” after the
“v”.)

while (1) {
 int opt = getopt(argc, argv, "v::");

Now we process the options. There are two possible ways of specifying -v.
The first is just -v alone. In that case we turn on all debugging information with
the line:

 memset(verbose_letters, -1,
 sizeof(verbose_letters));

But if the options has arguments then we only set the letters of the given
options:

 for (unsigned int i = 0; optarg[i] != '\0'; ++i)
 verbose_letters[
 static_cast<int>(optarg[i])] = true;

Putting it all together we get the following code for parsing the verbose
option:

switch (opt) {
 case 'v':
 if (optarg == 0) {
 memset(verbose_letters, -1,
 sizeof(verbose_letters));
 } else {
 for (unsigned int i = 0; optarg[i] != '\0'; ++i)
 verbose_letters[static_cast<int>(optarg[i])] =
 true;
 }
 break;
// ... process other options

Checking to see need to issue a debugging message is simple. For example
to check for malloc logging we use the code:

if (verbose_letters['m']) {
 std::cerr << “Doing a malloc of “ << size << bytes;
}
ptr = malloc(size);

Page 80 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

In actual practice we would define a constant for 'm', but for this short
example we'll excuse the bad programming practice.

This way of specifying what to log allows us to use all the lower case
letters, all the upper case letters, and all the digits to select what to log. And if
that's not enough there are lost of punctuation characters we can use as well.

(And if that's not enough, your program is probably too big to ever be
debugged anyway.)

Two attributes make this a good hack. First it is simple. Second it is
extremely flexible. In other words it a simple solution to a complex problem, and
simple solutions are always good.

Hack 56: Turn Debugging On and Off With a Signal

The Problem: You want debugging output some of the time but not all of
the time.

The Hack: Use a signal to turn on and off debugging.

The first step is to define a signal hander that toggles the debug flag:

static void toggle_debug(int) {
 debug = ! debug;
}

Next we connect it to a signal, in this case SIGUSR1.

 signal(SIGUSR1, toggle_debug);

Now all we have to do is make the logging conditional on the debug flag.

static void log_msg(const char* const msg) {
 if (debug) {
 std::cout << msg << std::endl;
 }
}

Now all we have to do to turn on debugging is use the command:

$ kill -USR1 pid

Turning it off is the same thing.

This hack is useful when you must turn on debugging output at a specific
time. Normally it's easier to just turn it on when you first start the program and
then leave it on.

Page 81 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But sometimes you need to instrument the main loop of a program that
mysteriously hangs after four days of operations. Since you don't have a couple
of terabytes of free disk space for the log files, you need to turn on debugging
after the program hangs in order to find out what is going on that is making
things nuts. That's where this hack is most useful.

Hack 57: Use a Signal File to Turn On and Off Debugging

The Problem: You need to turn on and off debugging and signals are just
not practical.

The Hack: Use a special file to trigger debugging.

For example:

static void log_msg(const char* const msg) {
 if (access(“/tmp/prog.debug.on”, F_OK) != 0) {
 std::cout << msg << std::endl;
 }
}

Now all you have to do to turn on debugging is to create the file
/tmp/prog.debug.on. To turn it off simply remove the file.

This hack should be only used when you absolutely need to turn debugging
on and off while the program is running and you can use signals (Hack 56). The
access system call is expensive and will slow your program down if used
frequently. So although this hack is useful, be aware of its limitations.

Hack 58: Starting the Debugger Automatically Upon Error

The Problem: Your program has detected an internal problem that needs
debugging. But the program is not being debugged. How do you let the
programmer at the problem?

The Hack: Define a function which starts the debugger on a running
program.

Note: The following code is Linux specific. If you are running on a UNIX
like system it should be easy to port it to that system. If you are running
Microsoft Windows, you're on your own.

Page 82 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The basic idea of the program is that when a debug_me function call
occurs that the program should start the debug (gdb) and attach it to the
running process. Sounds simple, but there are a few details to work out.

First let's see what we need to tell gdb start the debugging process. The
initial gdb commands are:

1. attach <pid> – Attach the debugger to the program being
debugged.

2. echo “Debugger gdb started\n” – Let the user know what
has happened.

3. symbol /proc/<pid>/exe – Tell gdb where to find the symbol
table for the process.

4. break gdb_stop – Stop at a nice stopping point.

5. shell touch <flag-file> – Tell the program that gdb is
attached. (More on this later)

6. continue – Continue execution and stop at the correct location.

The first gdb command:

attach <pid>

attaches the debugger to the program. (<pid> is replaced by the process id of
the program to be debugged.) The debugger is now in control of the program.
Actually if we were in a minimalist frame of mind, we would stop here.

But the debug session is in a sorry state. The symbol table has not been
loaded and don't know if we stopped in the correct thread or at a know location.
So we execute a few more commands to make things a little nicer.

The next command:

echo “Debugger gdb started\n”

outputs a greeting message. That way the user that we've started the debugging
process.

Next we load the symbol table. For that we need the name of the program
file. One way of finding this is to talk look at the program name and do a PATH
search for the executable file. But Linux is nice to provide a symbolic link from
/proc/<pid>/exe to the executable, so we just exploit this feature to load our
symbol table.

Page 83 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

symbol /proc/<pid>/exe

Now we tell gdb to stop at a good place. In fact we've defined a good place
to stop called gdb_stop, so we'll set a breakpoint there.

break gdb_stop

When the debugger is attached to a program, the program stops. The
problem is we don't know where the program is stopped. It could be 80 levels
deep into some function called by debug_me. What worse, we could be dealing
with a threaded program. In that case we many not even be stopped in the
thread that caused the error.

The solution to this problem is to set a stop in a know location (gdb_stop)
and tell the debugger to continue. When we stop at gdb_stop we know where
we are and we are sure to be in the correct thread.

After debug_me starts gdb it waits around for the debugger to start. This
is done using the loop:

96: while (access(flag_file, F_OK) != 0)
97: {
98: sleep (1);
99: }

This loop waits around for a flag file to be created. As soon as it shows, the
program knows that the debugger is running and it can continue.

In order to create the flag file, we issue the following command to gdb:

touch <flag_file>

Finally we tell gdb to continue. At this point the execution of the program
continues for a short while until the program reaches gdb_stop.

The code to do all this work is listed in the full debug_me.c module at the
end of this hack. Mostly it's a matter string processing to get the commands into
the command file.

Now let's talk about the actual invocation of the gdb command. Ideally we
should be able to just use a system call to execute the command:

gdb --command=<command-file>

In this example <command-file> will be replace by a temporary file
containing the commands we listed above. But it's not as simple as that. It
never is.

Page 84 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

What is our program is a daemon running in background. It has no
standard in and standard out. If we started gdb there would be no terminal in
which to type commands.

A solution to this problem is to start our own terminal window. This done
with the command:

xterm -bg red -e gdb –command=<command-file>

This starts a new xterm program in which our debugger will run. We set
the background to red using the options -bg red. Red is used because it gets
our attention. Besides the red screen of death sounds better than the blue
screen of death.

Finally we tell xterm to execute the gdb command through the use of the
-e option.

Now that we've done all this let's see how this function might be used in a
program. Here's some code that handles a variable that it either black or white
(at least under normal, sane circumstances):

#include “debug_me.h”
//
switch (black_or_white) {
 case BLACK:
 do_black();
 break;
 case WHITE:
 do_white();
 break;
 default:
 std::cerr << “INTERNAL ERROR: Impossible color” <<
 std::endl;
 debug_me();
 break;
}

In this case the variable black_or_white undergoes a sanity test. If
things are insane we start the debugger.

Note: This only works for programs which are used internally. If you are
giving a program to a customer without source code, this system is not that
useful.

The full source code for the debug_me.c file follows.

Page 85 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 1: /**
 2: * debug_me -- A module to start the debugger *
 3: * from a running program. *
 4: * *
 5: * Warning: This code is Linux specific. *
 6: **/
 7: #include <stdio.h>
 8: #include <unistd.h>
 9: #include <sys/param.h>
10: #include <stdlib.h>
11:
12: #include "debug_me.h"
13:
14: static int in_gdb = 0; // True if gdb started
15:
16: /**
17: * gdb_stop -- A place to stop the debugger *
18: * *
19: * Note: This is not static so that the *
20: * debugger can easily find it. *
21: **/
22: void gdb_stop(void)
23: {
24: printf("Gdb stop\n");fflush(stdout);
25: }
26:
27: /**
28: * start_debugger -- Actually start *
29: * the debugger *
30: **/
31: static void start_debugger(void)
32: {
33: int pid = getpid(); // Our PID
34:
35: // The name of the gdb file
36: char gdb_file_name[MAXPATHLEN];
37:
38: // File that's used as a flag
39: // to signal that gdb is running
40: char flag_file[MAXPATHLEN];
41:
42: // The file with the gdb information in it
43: FILE *gdb_file;
44:
45: // Command to start xterm

Page 86 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

46: char cmd[MAXPATHLEN+100];
47:
48: if (in_gdb)
49: return; /* Prevent double debugs */
50:
51: /*
52: * Create a command file that contains
53: * attach <pid> # Attaches to the process
54: * echo # Echos a welcome message
55: * symbol /proc/<pid>/exe
56: * # Loads the symbol table
57: * break gdb_stop # Set a breakpoint in
58: * shell touch /tmp/gdb.flag.<pid>
59: * # Create a file that tells us
60: * # that the debugger is running
61: * continue # Continue the program
62: */
63: sprintf(gdb_file_name, "/tmp/gdb.%d", pid);
64: gdb_file = fopen(gdb_file_name, "w");
65: if (gdb_file == NULL)
66: {
67: fprintf(stderr,
68: "ERROR: Unable to open %s\n",
69: gdb_file_name);
70: abort();
71: }
72: sprintf(flag_file, "/tmp/gdb.flag.%d", pid);
73: fprintf(gdb_file, "attach %d\n", pid);
74: fprintf(gdb_file, "echo "
75: "\”Debugger gdb started\\n\"\n");
76:
77: fprintf(gdb_file, "symbol /proc/%d/exe\n",
78: pid);
79:
80: fprintf(gdb_file, "break gdb_stop\n");
81:
82: fprintf(gdb_file, "shell touch %s\n",
83: flag_file);
84:
85: fprintf(gdb_file, "continue\n");
86: fclose(gdb_file);
87: /* Start a xterm window with the
88: * debugger in it */
89: sprintf(cmd, "xterm -fg red "
90: "-e gdb --command=%s &",

Page 87 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

91: gdb_file_name);
92: system(cmd);
93:
94: /* Now sleep until the debugger starts and
95: * creates the flag file */
96: while (access(flag_file, F_OK) != 0)
97: {
98: sleep (1);
99: }
100: in_gdb = 1;
101: gdb_stop();
102: }
103:
104: /**
105: * debug_me -- Start the debugger *
106: **/
107: void debug_me(void)
108: {
109: start_debugger();
110: gdb_stop();
111: }

Hack 59: Making assert Failures Start the Debugger

The Problem: A failed assert normally just prints a message and aborts
the program. This is not very useful when it comes to finding problems. It
would be much better if a failed assert could start the debugger.

The Hack: Marry assertion failure with debug_me.

The first thing we need to do is to determine the name of the function
that's called if an assertion fails. This varies from system to system.

To find out how assert works, we create a small test program:

#include <cassert>

assert(“We are failing” != 0);

Next we run the program through the preprocessor and take a look at the
output. Here's a example using the gcc -E command. The interesting lines are:

2 "assert.cpp" 2

Page 88 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

(static_cast<void> (__builtin_expect (!!("We are
failing" != 0), 1) ? 0 : (__assert_fail ("\"We are
failing\" != 0", "assert.cpp", 3, __PRETTY_FUNCTION__),
0)));

From this we can see that the function __assert_fail is called when an
assertion is triggered. Earlier in the output the compiler is even nice enough to
provide us with a prototype:

extern “C” {
 extern void __assert_fail (
 __const char *__assertion,
 __const char *__file,
 unsigned int __line,
 __const char *__function)
 throw () __attribute__ ((__noreturn__));
}

Now all we have to do is supply our own version of __assert_fail
which calls debug_me.

/**
 * __assert_fail -- Called when an assert fails. *
 * Starts the debugger. *
 * *
 * Note: gcc specific. Different compilers use *
 * different internal routines to handle bad *
 * asserts. *
 **/
void __assert_fail(
 const char *const what,
 const char *const file,
 const int line,
 const char *const funct
)
{
 printf("Assert failed: %s\n", what);
 printf("FAILURE at: %s:%d\n", file, line);
 printf("Function is %s\n", funct);

 debug_me();
 abort();
}

One thing to notice about this function is that it calls abort after
debug_me. That's to prevent a careless programmer from typing continue in a
debugging session and attempting to continue a obviously failed program.

Page 89 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The History of debug_me

The debug_me function was originally written to debug
a mobile phone simulation program. The program had
been abandon for a long time because it was extremely
buggy. When I got it the program was extremely buggy
and extremely out of date.

The program made extensive use of threads and
frequently a thread would crash. Finding out which
thread had cause the problem was extremely difficult as
the gdb thread related commands didn't work too well on
this system. So I invented debug_me to help solve this
problem.

One interesting aspect of this program was its unusual
failure modes. Quite frequently a thread would trigger
an assertion failure and start the debugger. While the
debugger was staring, another thread would fail and
attempt to start the debugger.

Any programmer can write code that causes an assertion
to fail and abort the program. It takes a real hacker to
get multiple assertions to fail in a single run.

Hack 60: Stopping the Program at the Right Place

The Problem: You know that the program fails during the 487 iteration of
the loop. If you put in a breakpoint you'll have to type continue 486 times before
you get to the problem.

The Hack: Create a debugging point.

Some debuggers make it difficult to stop the program when you want to,
like the 487th pass through a loop. So how get you get around this limtiation?

By putting in some temporary code just for the debugger. For example:

#ifndef QQQ
void debug_stop() {
 // The debugger can stop here
}
#endif /* QQQ */

// ...

Page 90 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

for (i = 0; i < 5000; ++i) {
#ifndef QQQ
 if (i == 487) debug_stop();
#endif /* QQQ */
 // Problem code follows

Now all we have to do is to start our debugger and put a breakpoint in
debug_stop. Right before the problem occurs this procedure will be called
throwing us into the debugger. We can then single step through the program
until we find the error.

There are a couple of things to note about this code. First debug_stop is a
global function. The reason for this is that some debuggers have a hard time
finding static functions.

The reason we use #ifdef QQQ for our debugging code is described in
Hack 72. Basically it's an easy to way to identify temporary code.

Page 91 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 5: Commenting and Navigation Hacks

When I studying computer science at the university, the next great thing
that was coming was the technology to typeset programs and break out of the
monospaced font that we then used for programming. That was thirty years ago.

Today we still program using monspaced ASCII characters. No
typesetting, no graphics – nothing that wasn't available thirty years ago. (With
the possible exception of syntax highlighting.)

However hackers have never let inadequate technology stand in our way.
In this chapter we present some of the hacks that let us get around the
limitations of our programming environment.

Hack 61: Creating Headings within Comment

The Problem: The file format doesn't support headings, so how do you set
your headings apart.

The Hacks: There are a number of tricks that you can play with your
comments. First headings can be underlined or double underlined.

/*
 * A Important Heading
 * --------------------
 *
 * Here we put a paragraph discussing the stuff we've
 * headlined above.
 *
 * A Very Important Heading
 * =========================
 *
 * Headings like the one above can be used to denote
 * very important sections.
 *
 * +-------------------------+
 * | This is almost shouting |
 * +-------------------------+
 *
 * Now here's something that really stands out.

There are other ways of indicating a major section break. For example you
can make a heading that spans the entire line:

/*

Page 92 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 * <<<<<<<<<<<<<<<<< I/O Section Follows >>>>>>>>>>>>>>>>>
 */

And finally we have a really important section header:

/**
 ********************** WARNING *************************
 ********************** WARNING *************************
 ********************** WARNING *************************
 **/
/*
 * Do not attempt to drive heavy equipment while reading
 * this book.
 */

Hack 62: Emphasizing words within a paragraph

The Problem: The above works for headings, but what do you do when
you want to typeset words within a paragraph.

The Hack: Creative use of “*” and other characters can help emphasize
words.

For example:

/*
 * Some people consider all capitals to be SHOUTING!
 *
 * But there are other ways to **emphasize** a word.
 * More that <<one>> in fact. After all there are a
 * number of ==fun== characters you can play around with.
 */

Hack 63: Putting Drawings In Comments

The Problem: There are no drawing functions in program editors.

It's impossible to put figures and graphs inside comments.

The Hack: Use ASCII art.

Primitive figures can be drawn using just the ASCII characters.10 For
example, the following comment documents the layout of a GUI:

10Actually some very sophisticated ASCII art can be produced. Just not by programmers.

Page 93 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

/*
 * +--+
 * | Name: ____________________ |
 * | Address: ____________________ |
 * | City: ____________________ |
 * +--+
 * |<- NAME_SIZE ->| |
 * |<--- BLANK_SIZE ---->|
 */

In this example we've not only created a figure but at the same time
documented the constants we used for the dimension constants NAME_SIZE and
BLANK_SIZE.

Hack 64: Providing User Documentation

The Problem: You need to provide user documentation for your program.

Oualline's law of documentation states: 90% of the time the documentation
is lost. Out of the remaining 10%, 9% of the time it will be so out of data as to be
totally useless. The remaining %1 of the time you have the correct
documentation and the correct revision of the documentation it will be written in
Japanese.11

The Hack: Use Perl's POD documentation system.

POD (Plain Old Documentation) format is a simple, yet fairly robust way of
embedding documentation in a program. You can easily put a POD
documentation section at the beginning of your program.

For example:

/*
 * The following is the documentation for the program.
 * Use the
=pod

=head1 NAME

solve_it - Solve the worlds problems

=head1 SYNOPSIS

11The first I told this joke to a colleague he laughed for about three minutes then handed me his
copy of Hitachi Fortran Volume II. (Volume I was at the translator's.)

Page 94 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 solve_it [-u] problem

=head1 DESCRIPTION

The I<solve_it> program solves all the worlds problem.
Just input the problem on the
command line and the solution will be output.

=head1 OPTIONS

The I<solve_it> takes the following options:

=over 4

=item B<-u>

Solve the problem for the universe, not just the world.

=back

=head1 LIMITATIONS

Currently totally unimplemented.

=head1 AUTHOR

Steve Oualline, E<lt>oualline@www.oualline.comE<gt>.

=head1 COPYRIGHT

Copyright 2007 Steve Oualline.
This program is distributed under the GPL.

=cut
*/

Now you can run your source code through one of the POD converters such
as pod2text and get a formatted version of your documentation:

NAME
 solve_it - Solve the worlds problems

SYNOPSIS
 solve_it [-u] problem

Page 95 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

DESCRIPTION
 The *solve_it* program solves all the worlds problem. Just input the
 problem on the command line and the solution will be output.

OPTIONS
 The *solve_it* takes the following options:

 -u Solve the problem for the universe, not just the world.

LIMITATIONS
 Currently totally unimplemented.

AUTHOR
 Steve Oualline, <oualline@www.oualline.com>.

COPYRIGHT
 Copyright 2007 Steve Oualline. This program is distributed under the
 GPL.

Other converters include pod2html, pod2man, as well as others.

Hack 65: Documenting the API

The Problem: How do you document the API to a library you've written in
a nice way.

Oualline's Law of Documentation applies to API documentation as well as
the user manual.

The Hack: Use doxygen to automatically generate documentation from
special comments in the code.

Page 96 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This tool allows you to use specially formatted comments to in-line
documentation inside your code. Here's a short example:

/**
 * \brief The basic report specification
 *
 * This class completely describes all the parameters
 * needed to produce a report
 */
class ReportSpec {
 /** Name of the report */
 public:
 const char* const name;

 /**
 * Add a new report parameter
 *
 * \param name Name of the parameter
 * \param value Value of the parameter
 */
 void add_param(
 const char* const name,
 const char* const value
);
};

When run through Doxygen this produces set of HTML documentation
pages which can be viewed in any browser:

Page 97 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 1: Doxygen documentation as HTML

Page 98 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This system does provide an excellent system for documenting your
programs if you're willing to follow the conventions and write the comments
correctly. On the other hand if you're dealing with a lot of code that didn't do
this, check out the next hack.

Hack 66: Use the Linux Cross Reference to Navigate Large
Coding Projects

The Problem: You're dealing with a poorly designed 5,000,000 line project
and you're getting lost.

The Hack: Use the Linux Cross Reference to generate a cross referenced
version of your code.

The Linux Cross Reference (lxr)12 is a program which produces a hyper-text
based markup of your code. You can get a copy from http://lxr.linux.no/.

It has a number of nice features such as the ability to locate any identifier
in the code and show every place that it is used. Figure 2 shows the system
being used to browse a file.

12Don't let the name fool you. It will cross reference things other than Linux.

Page 99 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 2: Linux Cross Reference (File View)

On line 44 there is a function that uses the audit_entry structure. We
would like to know what an audit_entry is. Clicking on the identify takes to a
page which lists every place that the identifier is used. (See Figure 3.)

Page 100 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 3: Identifier Use Page

This shows use that the identifier is defined in the file kernel/audit.h (line
75) and used in the file kernel/auditfilter.c in lots of places. Clicking on the first
entry gives us the definition as shown in Figure 4

Page 101 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 4: Definition of audit_entry.

LXR is a very powerful cross referencing tool. But it is also somewhat
difficult to setup and get running. You'll need a working web server for the data
generated. Also you'll need a good working knowledge of Perl in order to adapt
the code for your system. (For your Perl hackers out there LXR contains some of
the most complex, advanced regular expressions out there.)

But if you are dealing with a huge amounts of code this tool can be a
lifesaver.

Page 102 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 6: Pre-processor hacks

C++ is actually two languages, a macro preprocessor language and a
compiled language. So what you can't hack is the base language you can
attempt to hack in the pre-processor.

Hack 67: Using the Pre-processor to Generate Name Lists

The problem: C++ does not have a way of getting the text form of a
enum.

For example:

enum state {STATE_GOOD, STATE_BAD, STATE_UNKNOWN};

// Doesn't work right
std::cout << "Good is " << STATE_GOOD << std::endl;

The result is

Good is 0

What we want is

Good is STATE_GOOD

The Hack: Use the pre-processor to define a list of items in different
formats

First we define a macro that contains the list of items we wish to use:

#define STATE_LIST \
 D(STATE_GOOD), \
 D(STATE_BAD), \
 D(STATE_UNKNOWN)

The macro D (which we haven't defined yet) enclosed item. We will now
use the D macro to define the list in a variety of ways:

#define D(x) x
enum state { STATE_LIST}
#undef D

Notice that we immediately undefine the D macro after it's use. This
prevents this temporary macro from being accidentally reused later on in the
code.

Now let's define a list of names.

Page 103 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

#define D(x) #x
const char* const state_name = { STATE_LIST };
#undef D

We can now output the name of a state using a statement like:

std::cout << "The good state is " <<
 state_name[STATE_GOOD] << std::endl;

Limitations: This only works for enum lists where the things are in
numerical order. If you assign values to items this will not work.

For example:

enum error_code {BAD=44, VERY_BAD=55, TERRIBLE = 999};

The next hack solves this problem.

Hack 68: Creating Word Lists Automatically

The Problem: You need to create a enum list with specific values.

For example: START is 5, PAUSE is 7 and ABORT is 25.

The Hack: A clever pre-processor hack can easily handle this.

Let's start by defining our list:

#define COMMAND_LIST \
 C(COMMAND_START, 5), \
 C(COMMAND_PAUSE, 7), \
 C(COMMAND_ABORT, 25)

Now let's create a macro to define the enum declaration:

#define C(x,y) x = y
enum COMMANDS { COMMAND_LIST };
#undef C

The next step is to define the name to id number mapping:

#define C(x,y) {y, #x}

struct cmd_number_to_name {
 int cmd_number,
 char* cmd_name;
} cmd_number_to_name[] = {
 COMMAND_LIST
 , {-1, NULL}

Page 104 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

};
#undef C

The use of nested macros like this is extremely useful when it comes
dealing with data that must be expressed more than one way. Our hacks have
concentrated on enum definitions, but this hack has other uses beyond these
simple programming examples.

Hack 69: Preventing Double Inclusion of Header Files

The Problem: All header files should include any other headers they need.
This can easily result in a single file being included multiple times. But defining
the same thing multiple times can cause lots of problems.

The Hack: Add “double include” protection to your header files. For
example:

// File define.h
#ifndef __DEFINE_H__
#define __DEFINE_H__
// ... rest of the header file
#endif /* __DEFINE_H__ */

Hack 70: Enclose Multiple Line Macros In do/while

The Problem: How do you create a macro that performs two statements.

For example we wish to create a cleanup macro:

#define CLEAN_RETURN \
 close(in_fd);close(out_fd); return;

But this code doesn't work if we put it in an if statement:

if (done)
 CLEAN_RETURN;

Expanding this we get:

if (done)
 close(in_fd);close(out_fd); return;

Let's add a little whitespace for clarity:

if (done)
 close(in_fd);
close(out_fd);
return;

Page 105 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This is not what we intended. One “solution” is to enclose the statements
in {}.

#define CLEAN_RETURN \
 { close(in_fd);close(out_fd); return; }

Now our if statement expands to:

if (done)
 { close(in_fd);close(out_fd); return; };

This works. Sort of. The problem is if we try an if / else statement:

if (done)
 CLEAN_RETURN;
else
 not_done_yet();

This gives us a syntax error when we try and compile it. Why?

Let's look at the expanded code:

if (done)
 { close(in_fd);close(out_fd); return; };
else
 not_done_yet();

There's an extra semicolon on the line. This didn't bother us when there
was no else, but now that there is one, the compiler gets confused.

So how do we define a multi-statement macro that can be used like a
statement?

The Hack: Use the do / while trick.

Define the macro so the statements are inside a do / while loop:

#define CLEAN_RETURN \
 do { \
 close(in_fd); \
 close(out_fd); \
 return; \
 } while (0)

Notice that there is no semicolon at after the while (0).

Enclosing multiple statements in a do / while loop makes them a single
statement. Thus they can be used anywhere a single statement can be used.

Page 106 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Note: This is probably the only place you legitimately want to use a do /
while. In all other cases a while loop is probably simpler and easier to
understand than a do / while.

Hack 71: Use #if 0 to Remove Code

The Problem: You need to make code disappear. Commenting it is one
option, but that won't work if your compiler doesn't allow nested comments.

The Hack: Enclose the code in a #if 0 / #endif block.

For example:

 do_it();
#if 0
 double_check_it();
#endif
 finish_up();

This hack takes the code out of your program. But the question remains,
why not just delete the code. After all if you really want it to go away, delete it.
Don't leave it in the program.

I've seen this hack used a number of times an each time I could see no
reason for leaving the dead code in the program. But if you ever do have a
reason for putting such code in a program file, this hack will keep it out of the
program.

Hack 72: Use #ifndef QQQ to Identify Temporary Code

The Problem: Sometimes you just need to keep adding diagnostics to the
code until you find the problem. Of course you don't want these temporary
hacks showing in production code so it would be nice if you could remove them
quickly.

The Hack: Put the code in a #ifndef QQQ / #endif block.

For example:

 read_account();
#ifndef QQQ
 save_backup(“debug.1.save”);
 std::cout << “Starting sort “ << std::endl;
#endif /* QQQ */
 balance();
#ifndef QQQ

Page 107 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 save_backup(“debug.2.save”);
#endif /* QQQ */

The symbol QQQ was chosen because it's easy to type and no one defines it.
(No one sane anyway.) Besides it's shorter than
MARKER_INDICATING_CODE_I_AM_TAKING_OUT_AS_SOON_AS_THIS_WORKS.

The symbol makes the temporary code stand out like a sore thumb and it
makes it easy to take the code out when you're done. Just search for QQQ and
delete all the conditional code blocks associated with it.

Hack 73: Use #ifdef on the Function Not on the Function Call
to Eliminate Excess #ifdefs

The Problem: You want to add some logging but only for the debug relase
of the software. So throughout your code you have lots of stuff like this:

#ifdef DEBUG
 debug_msg(“Entering function sixth_level_of_hell”);
#endif /* DEBUG */

This is ugly and annoying. There must be a better way.

The Hack: If you define debug_msg right you can get rid of all those
#ifdef statements and make our code clean. For example:

#ifdef DEBUG
extern void debug_msg(const char* const msg);
#else /* DEBUG */
static inline void debug_msg(const char* const) {}
#endif /* DEBUG */

Now in the body of the code all we have to just call the function:

 debug_msg(“Entering function sixth_level_of_hell”);

If DEBUG is defined, the real function is called. If it's not then the dummy
debug_msg is called. Since it is an inline function, the optimizer will remove
the code.

The nice thing about this is that you don't clutter up your code with useless
#ifdef statements.

Page 108 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 74: Create Code to Help Eliminate #ifdef Statements
From Function Bodies

The Problem: You're writing a program for multiple platforms. As a result
you have a lot of #ifdef statements sprinkled through out the code. So many in
fact that they are make things look ugly and the code is hard to read.

For example:

void send_cmd(void)
{
 send_cmd_start();

#ifdef FE_TEXTURE
 send_texture();
#endif /* FE_TEXTURE */

#ifdef FE_COLOR
 send_background();
 if (foreground != TRANSPARENT)
 send_foreground();
#endif /* FE_COLOR */

#ifdef FE_SIZE
 if (size != 0)
 send_size();
#endif /* FE_SIZE */

#ifdef FE_REPLAY
 if (prev_cmd == '\0') {
 prev_cmd = cur_cmd;
 prev_param = cur_param;
 }
#endif /* FE_REPLAY */

 send_cmd_end();
}

This code is very difficult to read. The #ifdef directives breakup the
logic of the code.

The Hack: Use #ifdef to define out entire procedures only.

For example, let's take a look at the code:

Page 109 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

#ifdef FE_TEXTURE
 send_texture();
#endif /* FE_TEXTURE */

This can be much simpler. First we use #ifdef to control the definition
of the function send_texture:

#ifdef FE_TEXTURE
static void send_texture() {
 // body of the function
}
#else
inline static void send_texture() { }
#endif /* FE_TEXTURE */

Now for the body of the code we just put in a call to send_texture
without any #ifdef.

void send_cmd(void)
{
 send_cmd_start();
 send_texture();

We can do the same thing with set_background and set_foreground.
The calls to these functions look like:

 send_background();
 if (foreground != TRANSPARENT)
 send_foreground();

But doesn't this cause extra code to be put in our procedure? What about
the statement?

 if (foreground != TRANSPARENT)

Actually if the body of send_foreground is defined out, the optimizer will
remove this statement.

Now let's look at the code.

#ifdef FE_REPLAY
 if (prev_cmd == '\0') {
 prev_cmd = cur_cmd;
 prev_param = cur_param;
 }
#endif /* FE_REPLAY */

Page 110 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

To get rid of this #ifdef we first put the code in a procedure:

#ifdef FE_REPLAY
static inline void do_replay() {
 if (prev_cmd == '\0') {
 prev_cmd = cur_cmd;
 prev_param = cur_param;
 }
}
#else /* FE_REPLAY */
static inline void do_replay() {
 // Do nothing
}
#endif /* FE_REPLAY */

Now we can just put a function call in our code:

 do_replay();

The key to this hack is using #ifdef to change the definition of entire
functions. Since functions are a simple, logical unit of code, we are defining
things in or out at the unit level.

The old way changed the program at the statement level and was much
more confusing. Take a look at how much simpler the body of our function is
when we use this hack:

void send_cmd(void)
{
 send_cmd_start();
 send_texture();

 send_background();
 if (foreground != TRANSPARENT)
 send_foreground();

 if (size != 0)
 send_size();

 do_replay();
 send_cmd_end();
}

Page 111 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 7: Building Hacks

The size and complexity of programs is rising exponentially. As a result the
build process is also growing in complexity and the time to produce builds is
growing. The Linux kernel has over 13,000 files in it containing over 6.5 million
lines of code. And to some people this is considered a small program.

Yet the basic build tools are still the make command and a compiler. But
some hacks that let you get around the limits of this system and produce code
quickly and sanely.

Hack 75: Don't Use any “Well Known” Speedups Without
Verification

The Problem: There's no shortage of people who have a great idea about
how to speed up the build. They have all sorts of reasons why their pet idea will
let you complete a five day build in 3.8 seconds.

For example, the gcc compiler has the -pipe option. Normally the
compiler will run the first pass of the compiler and write the output to a
temporary file. Then pass 2 will read this file and write a second temporary. And
so on for however many passes are needed.

With the -pipe option every pass is run at the same time the output of one
connected to the input of the next through a pipe. The theory is that by doing
this you eliminate the temporary file, the disk I/O for the temporary file and do
everything in memory.

So the -pipe option must make things faster. And if we needed more
convincing we can take a look at the kernel Makefiles and find that the option is
used there and if the Linux kernel uses it, then it must be good.

The Hack: A good hacker tests the “obvious” because sometimes the
“obvious” isn't obvious.

Let's take the case of the -pipe option. Compiling a kernel without the
-pipe option takes 57:04. With the -pipe it takes 57:19. Wait a second, it took
longer with -pipe. Let's do a few more tests:

Page 112 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

No Pipe Pipe

57:04 57:19

57:04 56:18

56:58 56:19

56:55 56:17

56:54 56:21

From this we can see that -pipe does not make things faster. If anything it
makes them slower.

Now there could be a number of reasons for these results. First of all disk
I/O is buffered and Linux uses lots of buffers. It could be that the temporary files
exist entirely in memory and never make it to the disk. Also there could be
different logic in the compiler passes for pipe / non-pipe input streams.

But ultimately as hackers all we're concerned with is results and the
results do not support the theory.

There are lots of cases in programming where theory and reality do not
match. Lots of people know where the slow parts of their code is. Hackers test
by using a profiler.

A database manuals says that inserting records, then adding an index is
faster than inserting indexed records. A hacker tests. Sometimes you find out
that the manual is wrong.

After all one of the marks of a true hacker is someone who knows
programming and computers frontwards and backwards. They not only know
what the manual says with work, but also know if the manual is right or not.

The Congreve Clock

I am into horology13 and one of my favorite types of
clocks was designed by Sir William Congreve (1772 –
1828).

Sir William is best knows for his contribution to the Star
Spangled Banner. If you remember the line “and the
rockets red glare,” he invented the rockets.

13It's a perfectly clean word – look it up.

Page 113 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

During the time that he lived one of the great
engineering challenges was making a accurate clock. Sir
William was a prolific inventor and turned his genius to
the problem of creating a highly accurate clock.

Ticking is one of the major sources of instability and
inaccuracy in a clock. The movement of gears is a
problem and the less they move the better. One way to
solve this problem is by using a very long pendulum. In
fact the longer the better.

Congreve came up with another solution. The result was
the Congreve Clock or the Extreme Detached
Escapement Clock as he called it. A ball is dropped on
an inclined plane and allowed to roll down a track.
When it reaches the end it trips a lever and the plane
tilts the other way the the ball rolls down to the other
end. This process can take 15 to 30 seconds depending
on the clock.

Congreve calculated that his clock design was the
equivalent or a conventional clock with a sixty foot
pendulum. As a result his clock should be accurate to
within a second a month.

Now William Congreve was a major inventor, engineer,
and scientist. He had a great deal of logic and
calculations to back up his claim. The design was
perfect and the engineering impeccable. Extensive
though and design went into creating the super accurate
Congreve Clock.

Except it didn't work. Turns out that while a pendulums
has a natural frequency a ball rolling down a path does
not. Every speck of dust, every temperature change
caused inaccuracy in the clock. And I won't even go into
the other problems with his design. The goal was for a
clock with an error rate of less than a second a month.
But in fact a good Congreve Clock is only accurate to
about twenty minutes a day.

Page 114 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 5: A Congreve Clock

Hack 76: Use gmake -j to speed up compilation on dual
processor machines

The Problem: Compiling big programs takes a long time. We need some
way to make things faster. We have a dual processor machine. Is there any way
to make the build faster other than to start two makes at the same time.

The Hack: Use the -j flag of gmake to make full use of a dual processor
system.

Many modern computers today have more than one processor. Not only
can you purchase high end motherboards which support 2 or 4 CPUs, but the
both Intel and AMD produce dual core microprocessors which have the
equivalent of two CPUs on a single chip.

Page 115 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The GNU make command (installed as gmake on most systems) has an
option to help make optimal use of multiple processor systems. The -j2 flag tell
the make program to try and do two compiles at the same time. Ideally this
should result in cutting the compile time in two.

There are some limitations to this system. First of all it's possible for
compilation errors to appear out of order. For example, normally if out compile
the files alpah.cpp and beta.cpp you might see:

alpha.cpp:3: Syntax error
alpha.cpp:7: Another syntax error
beta.cpp:3: Syntax error
beta.cpp:7: Screwed up again

With -j2 you might see:

alpha.cpp:3: Syntax error
beta.cpp:3: Syntax error
alpha.cpp:7: Another syntax error
beta.cpp:7: Screwed up again

The other problem is that badly formed Makefiles may when you use -j2
(or higher).

But is -j2 really effective or is it just another -pipe? Tests show that on
a dual processor system -j2 actually does work. Here's the results:

No -j -j2 -j4

56:19 29:47 29:38

56:18 29:43 29:45

56:19 29:48 29:43

56:17 29:42 29:42

56:21 29:44 29:45

Now just because it works on my system doesn't mean it will work on
yours. But with a little experimentation you should be able to find the optimal
make settings.

Extreme Parallel Processing

Hackers always want to know how the system behaves in
extreme conditions. The -j2 and -j4 switches are
rather mild. They will only start two or four jobs. What
happens if we increase the number.

Page 116 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

If no number is supplied and you just -j alone, gmake
will start as many jobs as possible at the same time. I
tried this once on a major piece of software. It was the
only time I ever saw the load average go above 1,00014.
I'm not sure how much higher the load average went
because at that point the system monitoring tools started
to hang. (They couldn't get any CPU cycles.)

The system was obviously paging like crazy and really
beating up the disk. Obviously trashing15 was going on
and killing the system, so at this point I rebooted.
(Couldn't kill the processes because the shell couldn't
get enough CPU to make a difference.)

Hack 77: Avoid Recompiling by Using ccache

The Problem: Repeated compilation results in a lot of needless work.

We all know the drill. To create a clean build you need to execute the
following commands:

make clean
make
make install

The reason you need a make clean is that sometimes some will chang e the
Makefile and change something like flags or similar items. These changes are
not tracked by the make command. As a result only sure way to get a good build
is to recompile everything.

But most of your files have probably not changed since the last build. So
you're basically reproducing the same file that you did the last time you
compiled. This duplication of effort takes time and makes the build longer.

The Hack: Use the ccache program.

The ccache program caches compiled output and if you try to compile the
same source again, gets the object file from the cache. The result is
tremendously faster complication speeds at the expense of disk space. But given
the cost of disk space today it's well worth the effort.

14For the non-Linux types out there, the load average is a measure of how many jobs the system
is trying to run at once. A load average of 0.1 to 3.0 is typical. Anything over 10 is considered
extreme. A load average of 1,000+ is an indicator of both extreme load and extreme stupidity
on the part of the user.

15Thrashing is where the system spends more time switching resources around (disk, memory,
etc.) than it does getting work done.

Page 117 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

To use the ccache program simply insert the ccache command before each
complication program in your Makefiles. For example:

hello.o: hello.cc
 ccache gcc -g -c hello.cc

When this program is executed ccache will perform the following
operations:

1. Run the file hello.cc through the pre-processor.

2. Check the md5sum of the result against any stored checksum found
in the cache directory.

3. If a match is found, the object is supplied from the cache.

4. Otherwise the compiler is run and the results stored in the cache for
future use.

There are a huge number of details that have been glossed over, but that's
the basic idea. The ccache program is a simple and very effective way of
speeding up repeated builds.

The ccache program is available from http://ccache.samba.org.

Hack 78: Using ccache Without Changing All Your Makefiles

The Problem: You've got a legacy application with exiting Makefiles. You
wish to use ccache but you don't want to edit every one of the 500 Makefiles to
get the job done.

The Hack: Use the symbolic link feature of ccache.

The hackers who created ccache anticipated this program. If you create a
symbolic link from the ccache program to the compiler. For example, if you use
gcc you can enable ccache by executing the following commands:

$ ln -s /usr/local/bin/ccache /home/me/bin/gcc
$ PATH=/home/me/bin:$PATH ; export PATH

The first command creates a link between ccache and a gcc command in
the local directory.

The second command makes sure that /home/me/bin/gcc is the first gcc in
the path. So when the Makefile executes gcc the command /home/me/bin/gcc is
run. This really ccache which is smart enough to know that it is being run
through a symbolic link.

Page 118 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

It then performs the normal operations just as if you and edited the
Makefile and added a ccache command to each compilation rule.

Note: You probably want to add the PATH commands to your .profile or
.bashrc so they are executed each time you start a new shell.

Hack 79: Distribute the Workload With distcc

The Problem: You have to compile a really big project and ccache is just
not fast enough.

The Hack: If you have access to a lot of build machines you can use distcc.

The distcc program is available from http://distcc.samba.org/.

The tool is designed to work with the multiple job option of gmake. For
example when you execute the command gmake -j4 the gmake program will try
and start four compilation jobs at once. With distcc in place each of these four
jobs will be sent to a different machine.

The distcc program operates much like ccache. You activate it by putting
distcc in front of your compilation commands. For example:

foo.o: foo.cpp
 distcc g++ -c -Wall foo.cpp

You'll also need to configure the system by supplying distcc with a list of
machine it can use for building and installing distcc as a server on the build
machines.

The distcc and ccache tools are designed to work together. So if you're
faced with having to do repeated large builds, these tools can make your build
much faster.

Page 119 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 8: Optimization Hacks

Hack 80: Don't Optimize Unless You Really Need to

The Problem: Premature Optimization

You have a program that works just fine. The program does not really use
up a lot of CPU and gets the job done in a reasonable time. But if you optimize it
you're sure you can shave a few seconds off the run time.

What do you do?

The Hack: Do nothing.

One of the hardest things for a programmer to do is to not program. But
unless there is a compelling need for optimization, don't do it!

Simple working code always executes faster than optimized non-working
code. Also simple working code is easier to maintain and enhance than clever,
optimized code.

After all who cares if it takes 5 seconds instead of 3 to start your program.
In most cases you program is probably not CPU bound anyway.

If you are doing large scale data manipulation such as video processing,
creating virtual worlds, or large scale data compression then optimization makes
sense. But most programs do not fall into these categories.

Leave working code alone. One of the surest ways of introducing a bug is
to try and optimize something that doesn't need it.

Doing nothing is one of the best programming systems out there. It takes
no time to write nothing, and nothing code is also the only code guaranteed to
have zero bugs in it.

So the best advice on optimization is don't do it unless you really have to.

Hack 81: Use the Profiler to Locate Places to Optimize

The Problem: Where you think the slow spots in your code are located
and where they really are located may be two different things.

Page 120 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Let's assume that you didn't take the advice in the previous hack and have
decided that you must optimize. Now you must decide what part of your
program you're going to try and make faster.

In most programs there are one or two functions which consume about
90% of the CPU. Many times a programmer will have a good feel for where his
program is getting stuck. But more often than not it will turn out that his feeling
does not agree with realist. As a result if he goes with his feelings he will wind
up optimizing the wrong code and not speeding up his program.

The Hack: Use the Profiler

The profiler tells you which functions are taking up the most time.

In my experience a typical profiling session goes like this: I'm informed
that the file save function is taking too long. I have an idea that the logic that
converts the parameters to text for saving may be the program. After all the
code was not designed to be efficient and it certainly fulfilled that design
criteria.

So I start up my trusty profiler and try and locate the problem in the save
logic. But something funny happens along the way. Turns out that save is taking
only 1/10 of the time. The other 90% is in the sorting function.

Turns out that in order to get things ready for the save we sort the
parameters. Just to make sure that they are sorted, every level of the code sorts
them before calling the next lower level. In all there are twenty-five sorts done
on the same data. The first sort puts things in order and the other twenty-four
just waste time.

My choice at this point is sort less often or make sort more efficient. I
decide to add a flag which tells me if the parameter list is sorted or not. The sort
function checks that flag and does nothing if the list is in order. Problem solved.

Notice that the problem was not where I expected it to be. It was in some
other code, which I didn't write by the way, which was terribly inefficient. Had I
gone with my instinct and optimized the save code, I would not have made the
program any faster.

The moral of this store is use the profiler. It tells you where the code really
is slow rather than where you think it's slow.

Page 121 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 82: Avoid the Formatted Output Functions

The Problem: C's formatted output functions are slow. C++'s formatted
output functions are even slower.

Consider the following simple code fragment:

for (int i=0; i < 20; ++i) {
 printf(“I is %d\n”, i);
}

C and C++ are compiled languages and so are much faster than
interpreted languages. But you've just added an interpreted language to your
code. The interpreter is the printf call which must interpret the format string
“I is %d\n” and send the result to the screen.

So what must printf do to print the result:

1. Read the string. Anything that's not a % goes to the output.

2. If a % is encountered, interpret the % specification.

a. Check for any numbers after the % indicating the size of the
string.

b. Find the format character (in this case d)

3. Determine how many characters are needed to print the number.

4. If the number of characters needed to print the number is less than
the number in the specification, then output leading spaces.

5. Output the number.

This is the simplified version. If you want to see the full code download a
copy of the GCC standard library and look at the code yourself.

C++ formatted output is even worse. The library had a great deal of
flexibility and lots of bells and whistles. All this general purpose baggage slows
the library down greatly.

The Hack: Custom output routines

Page 122 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

static void two_digits(const int i)
{
 if (i >= 10) {
 putc((i / 10) + '0');
 }
 putc((i % 10) + '0');
}

for (int i = 0; i < 20; ++i) {
 puts(“I is “);
 two_digits(i);
 putc('\0');
}

It should be noted that the second, optimized, version is much longer and
more complex than the first one. What we've done is replace slow general
purpose code with special purpose code designed for this specific task.

It's faster, but it's more complex and more likely to contain bugs. Again
only optimize if you must. (See Hack 80 above.)

Hack 83: Use ++x Instead of x++ Because It's Faster

The Problem: You need to increment a variable in the fastest possible
way.

The Hack: Use the prefix increment (++x) instead of the postfix (x++)
because it's faster.

Now a lot of you are probably saying to yourselves “You've got to be
kidding”. No matter which version I use to increment an integer the compiler is
going to generate exactly code.

For example in the following code, the generated code is exactly the same
for the two increments:

int i = 1;
++i;
i++;

For integers that is true. But it's not true for user defined classes.

Let's take a look at the steps needed to be performed for each operation.

The prefix (++x) increment must perform the following steps:

Page 123 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

1. Increment the variable

2. Return the incremented result.

The postfix version (x++) performs the following:

1. Save a copy of the original value.

2. Increment the variable.

3. Return the unincremented copy you saved in step 1.

So for the postfix (x++) version you have to make a copy of the variable.
This can be a costly operation.

Let's take a look at how a typical class might implement these two
operations:

class fixed_point {
 // Usual stuff

 // Prefix (++x) operator
 fixed_point operator ++() {
 value += FIXED_NUMBER_ONE;
 return (*this);
 }

 // Postfix (x++) operator
 fixed_point operator ++(int) {
 // Extra work needed
 fixed_point result(this);
 value += FIXED_NUMBER_ONE;
 return (result);
 }

For this reason always use the prefix version of the increment and
decrement operators to make your program more efficient.

Hack 84: Optimize I/O by Using the C I/O API Instead of the
C++ One

It should be noted that this optimization is compiler dependent. However,
every compiler I've used exhibits this behavior.

The Problem: The C++ I/O stream is more flexible and less error prone
than it's C counterpart. But for most systems, it's also slower.

Page 124 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Consider a program designed to read a file line by line and write it to
standard out.

The C++ version is:

#include <iostream>

int main()
{
 char line[5000];

 while (1) {
 if (! std::cin.getline(line, sizeof(line)))
 break;
 std::cout << line << std::endl;
 }
 return(0);
}

The C version is:

#include <stdio.h>

int main()
{
 char line[5000];

 while (1) {
 if (fgets(line, sizeof(line), stdin) == NULL)
 break;
 fputs(line, stdout);
 }
 return (0);
}

It takes 98 seconds for the C++ program to copy a bunch of files to
/dev/null while it takes the C program only 11 seconds to do the same
thing.16

The Hack: Use C I/O in a C++ program when I/O speed is an issue

This hack does speed up I/O bound programs, but it should be used with
caution. First you do loose the advantages of the C++ I/O system. This includes
the increased safety that comes from this system.

16On a Linux system using GCC Version 3.4,3, But you're a hacker – run your own tests.

Page 125 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Also the timing tests presented here come from one compiler on one
computer system. You should perform similar tests using your programming
environment. Who knows your compiler may be better.

Hack 85: Use a Local Cache to Avoid Recomputing the Same
Result

The Problem: You have a function that is called repeatedly to compute the
same values. This function is taking a long time to do its job. How can you make
things faster?

Let's take a look at an example. Below is a rectangle class. The
function compute_serial returns a unique serial string which is used for
sorting the shapes classes.

class rectangle {
 private:
 int color;
 int width;
 int height;
 rectangle(int i_color, int i_width, int i_height):
 color(i_color), width(i_width), height(i_height)
 {}

 void set_color(int the_color) {
 color = the_color;
 }

 char serial_string[100]; // Unique ID string

 char* get_serial() {
 snprintf(serial_string, sizeof(serial_string),
 “rect-%d x %d / %d”, width, height, color);
 return (serial_string);
 }

Examination of this class shows that it uses the snprintf to compute the
serial string. This is an extremely costly function to use. We need optimize out
this function if at all possible.

The Hack: Use a local cache.

A small local cache can be very useful when it comes to avoid the problem
of computing the same thing over and over again.

Page 126 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

For our rectangle class this is accomplished with some simple changes
to get_serial function:

 char* get_serial() {
 if (dirty) {
 snprintf(serial_string, sizeof(serial_string),
 “rect-%d x %d / %d”,
 width, height, color);
 dirty = false;
 }
 return (serial_string);
 }

Now all we have to do is make sure that dirty is set any time the data
used to compute the serial_string is changed. This includes the constructor:

 rectangle(int i_color, int i_width, int i_height):
 color(i_color), width(i_width), height(i_height),
 dirty(true)
 {}

Any function which changes any of the key members must be changed as
well:

 void set_color(int the_color) {
 color = the_color;
 dirty = true;
 }

This hack trades complexity for speed. By making the class more complex,
we can make it faster.

So this hack should be used with care. You should only use it after you've
run your program through a profiler and made sure that this class is one of the
bottlenecks. Far too often people who think they are hackers optimize a program
where they think there's a speed problem only to find out that they are not real
hackers and don't have a speed problem where they think they do. Profilers
identify real speed problems, that's why they are used frequently by real
hackers.

There is a price to be paid for using this hack. A real hackers knows when
the price is worth it.

Page 127 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 86: Use a Custom new/delete to Speed Dynamic Storage
Allocation

The Problem: You have a small class that is frequently allocated and
deallocated from the heap. The dynamic memory allocation calls are really
slowing down your program. How can you speed things up?

The Hack: Make a custom new / delete for your class.

I should point that this hack is tricky and not easy to implement. You
should only use it if you're sure you know what you're doing and you're sure that
new and delete are a problem for this class. Implementing this wrong can
corrupt memory or cause lots of other problems, so make sure you've read hacks
Hack 80 and Hack 81 before you start.

To create your own new for a class all you have to do is to declare it as a
local operator function. Here's an example:

// A very small class (good for local new / delete)
class symbol {
 private:
 char symbol_name[8];
 // .. usual member functions
 void* operator new (unsigned int size) {
 if (size == sizeof(symbol)) {
 void* ptr = local_allocate(size);
 if (ptr != NULL) {
 return (ptr);
 }
 }
 return (::new char[size]);
 }

Let's go through this step by step. First we have the function declaration:

 void* operator new (unsigned int size) {

This defines a operator new that overrides the one built-in to C++. It
takes one parameter, the size of the item to be allocated.

One mistake people make is that they assume that the when you create a
object who's type is class symbol that the size of the object is going to be
sizeof(class symbol). It's not. If if symbol is the base class in a derived
class definition (say class extended_symbol) then when a
extended_symbol is allocated, the operator new of symbol is called with
the size of extended_symbol.

Page 128 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

If you do not understand exactly what I just said, the don't do this
optimization until you do. I suggest you perform some experiments with custom
new / delete operator using both base and derived classes. Do not try this hack
in production code unless you fully understand what is going on!

We are going to assume that program allocates mostly variables of type
symbol and that's what we want to optimize. But just in case someone decided to
extend our class, we check the size.

 if (size == sizeof(symbol)) {

If the size is not right, we'll fall through to the bottom of the program and
use the system new to allocate the memory.

 return (::new char[size]);

If the correct size is given to use, that means we are allocating a new
symbol so we can use the optimized memory allocation:

 if (size == sizeof(symbol)) {
 void* ptr = local_allocate(size);

We'll leave the implementation of local_allocate to you. It should be
simple and fast. (If it's big a slow, what's the point of using it?) For example, the
allocator could use a fixed memory array to hold the data. Since you have a fixed
size item and know something about the expected allocate / free usage you
should be able to make a very efficient memory manager.

Whenever we do a custom new we need to do a custom delete as well:

 static void delete(void* const ptr) {
 if (local_delete(ptr))
 return;
 ::delete ptr
 }

One final note, read the next anti-hack before proceeding.

Anti-Hack 87: Creating a Customized new / delete
Unnecessarily

The Problem: The programmer thinks his program is slow and feels that a
local new / delete will speed things up.

The Anti-Hack: Optimize your program by putting in your own new /
delete.

Page 129 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Most of the time if you add in an optimization without running the program
through a profiler and carefully analyzing it, you will optimize in the wrong
place. The new / delete hack is tricky and dangerous. You don't want to add it
unless you know that it will speed up your program. That means you have to do
your homework.

Far too often a person who thinks he's a hacker, but isn't will perform the
local new / delete. A predictable series of results generally follows.

First the code breaks. That's because getting local new / delete operators
to function right is tricky. (See the previous hack for details.) Because the
programmer has implemented new / delete wrong his program fails in
mysterious ways. Tracking these down takes time. Eventually he will give up or
finally get a working local new / delete. Of course the project will fall behind
schedule during this process.

After he finally gets the new memory management system debugged, he
will discover that because he didn't do his homework and run a profiler, he just
sped up class that not part of the time critical program flow. Thus the result is
that the program is not any faster than when he started.

So the only thing he has to show for his effort is a skipped schedule. But
what did he gain? He learned a important lesson in premature optimization. A
lesson you don't have to learn the hard way because you read this anti-hack.

Anti-Hack 88: Using shift to multiple or divide by powers of 2

The Problem: Some people use left shift to multiple by 2, 4, and other
powers of 2. They use right shift to divide by the same numbers.

For example the following two lines do the same thing:

i = j << 3;
i = j * 8;

The Anti-Hack: Use shift to speed up calculations.

Real hackers multiply by 8 when they want to multiply by 8.

Back in the days when compilers were stupid and machines slow, if you
multiplied by 8 the compiler generated multiply instructions. This could be quite
slow as some machines didn't have a multiply instruction, so in order to perform
this operation, a subroutine call was used.

Page 130 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

People quickly discovered that you could use shift instead of multiply (or
divide) when using a power of 2 (2,4,8,16....). The resulting code was much
faster.

But machines have improved and so has compiler technology. If you need
to do a multiply, do a multiply. The compiler will generate the fastest code
possible to accomplish this operation.

All you do when using a shift instead of a multiply or divide is making your
code more obscure. We've got way too much obscure code now, be clear and
simple. Use multiple to multiply and divide to divide.

Hack 89: Use static inline Instead of inline To Save Space

The Problem: You need to save a few bytes.

We'll ignore the question as to way these few bytes would make a
difference given the current memory memory sizes and prices. Let's just say you
need to make memory usage as small as possible.

The Hack: Always declare inline functions static.

The inline directive tells the compiler to generate the code for the function
in-line. That works fine for functions calls inside the file where the function is
declared.

But what happens in the following case:

File sub.cpp
inline int twice(int i)
{
 return (i*2);
}

File body.cpp
extern int twice(int i);

int j = twice(5);

In this case it's perfectly legal for the file body.cpp to contain a call to
twice. But body.cpp does not know that the twice is an inline function. It's
going to call it just like a normal extern function.

Page 131 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

So the compiler is forced to not only generate all the in-line instances of
twice, but also generate standard function code just in case someone from
outside tries to call it.

Declaring the function static tells the compiler that no one from the
outside is going to call this function and let's it safely eliminate the standard
function code. Thus saving a few bytes.

Hack 90: Use double Instead of Float Faster Operations When
You Don't Have A Floating Point Processor

The Problem: You are writing code for an embedded system and you have
to use real numbers. Is there a simple way of speeding things up?

The Hack: Use double instead of float. It's faster.

At first glance this advice seems silly. Everyone knows that double
contains more bits than float therefore it is “obvious” that using double is going
to take longer than float. Unfortunately the words “obvious” and “programing”
frequently incompatible.

The C and C++ standard states that all real arithmetic is to be done in
double. Let's take a look at what goes on under the hood of the following code:

 float a,b,c;
 a = 1.0; b = 2.0;

 c = a + b;

The steps needed by the addition are:

1. Covert a to double.

2. Covert b to double.

3. Add the double version of a to the double version of b.

4. Convert the result to float.

5. Store the result in c.

Conversion from float to double and double to float are not cheap and all
the conversions take time.

Now let's look at what goes on when we change the variables to double.

Page 132 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

1. Add a to b.

2. Store result in c.

Three float / double conversions have been removed. Since a floating
point conversion operation is expensive, the result is that the code using double
is much faster than float version.

Be warned, this hack will not work on all machines. In particular it will not
work on PCs and other machine which have a floating point processor. (That's
why we said we were doing an embedded program when we described the
problem.)

Hardware floating point units almost always convert any numbers to an
internal format before doing the arithmetic no matter format is used. (Some
compilers use the long double type to represent this format.)

Smaller, embedded processors don't have the luxury of floating point units
so they use a software library for their floating point. If this is the case for the
system you're working on, this hack will probably work.

You should always test this hack before trying it. Floating point operations
have a life of their own and can do strange things to unsuspecting code.

Hack 91: Tell the Compiler to Break the Standard and Force it
To Treat float as float When Doing Arithmetic

The Problem: You have to use floating point on an embedded system and
can afford the extra storage needed to store all the values a double. How can
you speed things up?

The Hack: Tell the compiler to break the standard.

Read your compiler documentation. Most compilers have an option that
lets you generate single precision arithmetic even though the standard calls for
double precision.

For the gnu gcc compiler this option is -fallow-single-precision.
When this option is enabled then adding two single precision numbers is done by
adding the two numbers. Not converting, adding, and converting back.

Turning this on makes your program execute much faster with very little
loss of precision.

Page 133 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Again, as we've discussed in the last hack, this only works when you are
not using a machine with a floating point processor. When hardware is used, the
hardware does it's own thing concerning conversions, so the compiler option has
no effect.

Hack 92: Fixed point arithmetic

The Problem: You are coding a graphics filter that process each of an
image through a filter. Each pixel is defined a triplet of real numbers (R,G,B)
each of which is between 0 and 255.

The filtering algorithms need to work on real numbers in order to do their
job. But examining the program you discover that they only need two digits of
accuracy. Any additional digits is just overkill.

The Hack: Fixed point arithmetic.

Fixed point arithmetic lets you do calculations with real numbers just like
floating point. The difference is that you can't move the decimal point. It's fixed
at two digits.

The advantage is that you can implement fixed point arithmetic using
integers. Integer arithmetic is much much faster than floating point.

In this example we only need the values 0.00 to 255.00 so we can store the
data in a short int.

 private:
 // The value of the number
 short int value;

To assign our fixed point number a floating point value, all we have to do is
multiply by a conversion factor. This converts the real value to an integer
suitable for the integer we are using to represent the number.

fixed.value = real_number * 100;
/* 100 because 2 decimal places */

To add and subtract a fixed point number all we have to do is add or
subtract the internal value. Multiply is a little more tricky. We need to apply a
conversion factor to move the implied decimal point back to the right place:

f_result = f1 * f2 / 100;

For division the conversion factor is multiplied.

f_result = (f1 / f2) * 100

Page 134 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The math is actually fairly simple. Unfortunately because of C++ rich
operator set, you have to define a lot of operators. The code at the end of this
hack contains a limited implementation of a simple fixed point class.

One final note, in this example, we use a fixed decimal point two places to
the left. The system would be a lot faster if we used a fixed binary point 7 places
to the left. In other words, a conversion factor of 128 is much faster than 100. It
gives us the same precision at slightly better speed.

#include <ostream>

class fixed_point {
 private:
 // Factor that determines where
 // the fixed point is
 static const unsigned int FIXED_FACTOR = 100;

 // Define the data type we are using for
 // the implementation
 typedef short int fixed_implementation;

 private:
 // The value of the number
 fixed_implementation value;

 public:
 // Default value is 0 when
 // constructed with no default
 fixed_point() : value(0)
 {}
 // Copy constructor
 fixed_point(const fixed_point& other) :
 value(other.value)
 {}
 // Let the user supply us a double as well
 fixed_point(double d_value) :
 value(
 static_cast<fixed_implementation>(
 d_value /
 static_cast<double>(FIXED_FACTOR))
)
 {}

 // Let the user initialized with an integer
 fixed_point(int i_value) :
 value(i_value * FIXED_FACTOR)

Page 135 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 {}

 fixed_point(long int i_value) :
 value(i_value * FIXED_FACTOR)
 {}

 // All the usual assignment operators
 fixed_point& operator =
 (const fixed_point& other) {
 value= other.value;
 return *this;
 }

 fixed_point& operator = (float other) {
 value = fixed_point(other).value;
 return *this;
 }

 fixed_point& operator = (double other) {
 value= fixed_point(other).value;
 return *this;
 }

 fixed_point& operator = (int other) {
 value= fixed_point(other).value;
 return *this;
 }

 fixed_point& operator = (long other) {
 value = fixed_point(other).value;
 return *this;
 }

 // Conversion operators
 operator double() const {
 return static_cast<double>(value) /
 static_cast<double>(FIXED_FACTOR);
 }
 operator short int() const {
 return value / FIXED_FACTOR;
 }
 operator int() const {
 return value / FIXED_FACTOR;
 }
 operator long() const {

Page 136 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 return value / FIXED_FACTOR;
 }

 // Unary operators
 fixed_point operator +() const {
 return *this;
 }
 fixed_point operator -() const {
 fixed_point result(*this);
 result.value = -result.value;
 return result;
 }

 // Binary operators
 fixed_point operator + (
 const fixed_point& other) const {
 fixed_point result(*this);
 result.value += value;
 return (*this);
 }
 fixed_point operator - (
 const fixed_point& other) const {
 fixed_point result(*this);
 result.value -= value;
 return (*this);
 }
 fixed_point operator * (
 const fixed_point& other) const {
 fixed_point result(*this);
 result.value *= value;
 result.value /= FIXED_FACTOR;
 return (*this);
 }

 fixed_point operator / (
 const fixed_point& other) const {
 fixed_point result(*this);
 result.value *= FIXED_FACTOR;
 result.value /= value;
 return (*this);
 }

 // Comparison operators
 bool operator == (
 const fixed_point& other) const {

Page 137 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 return value == other.value;
 }
 bool operator != (
 const fixed_point& other) const {
 return value != other.value;
 }
 bool operator <= (
 const fixed_point& other) const {
 return value <= other.value;
 }
 bool operator >= (
 const fixed_point& other) const {
 return value >= other.value;
 }
 bool operator < (
 const fixed_point& other) const {
 return value < other.value;
 }
 bool operator > (
 const fixed_point& other) const {
 return value > other.value;
 }

 friend std::ostream& operator << (
 std::ostream& out,
 const fixed_point& number);

};

// Quick and dirty output operator.
std::ostream& operator << (
 std::ostream& out,
 const fixed_point& number) {
 out << static_cast<const double>(number);
 return (out);
}

Hack 93: Verify Optimized Code Against the Unoptimized
Version

The Problem: We've decided that Hack 92 works for us. But how can we
tell if we've implemented the class correctly?

The Hack: When replacing one system with another, test twice and
compare results.

Page 138 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

In this Hack 92 we started with pixels represented by float and replaced it
with a fixed_point implementation. Both versions should produce the same
result.

But as hackers we know that there's a vast difference between “should”
and “is”. That's where testing comes in.

A good test to see if the optimization was correct is to run the unoptimized
program and save the results. Then run the optimized version and check to see
that we get the same results.

In real life Hack 92 was used to speed up a sophisticated dithering
algorithm for a color inkjet printer. When a binary comparison was done on the
output the result were different. So in spite of what our high powered numerical
analysis expert said, two digits were not enough to generate identical results.

However when the test images were printed, the optimized results looked
just as good to the Print Committee as the unoptimized versions. So the
computer could tell the difference between the two algorithms but the Print
Committee could not. In the inkjet business, the Print Committee rules so we
kept the newer, faster algorithm.

There's a moral to this story and as soon an I figure out what it is I'll put it
in this book.

Case Study: Optimizing bits_to_bytes

Let's take a look how a hacker would optimize a simple function. The job
of this function is to figure out how many bytes it takes to store a given number
of bits. Here's the function as it first appeared:

short int bits_to_bytes(short int bits)
{
 short int bytes = bits / 8;

 if ((bytes % 8) != 0) {
 bits++;
 }
 return (bytes);
}

The first thing we notice about this function is that the code is pretty bad.
As hackers we are frequently faced with horrible code.

Page 139 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

I once optimized a program that was taking 20 hours per run down to the
point where it was taking about 8 seconds per run. Now I'm a good hacker, but
I'm not that good. The original program was very badly written. In defense of
the original programmer, it was the first program he had ever written and he did
a remarkably job of implementing a sophisticated cryptographic algorithm
despite not knowing many basic features of the C language.

The bits_to_bytes function was targeted for a cell phone (ARM
processor). Running the code through the compiler and taking a look at the
assembly code we find some interesting things going on. For example the
implementation of the line:

 short int bytes = bits / 8;

The generated code looks like:

 movw r1, bits ; r1 (bytes) = bits
 asr r1, 3 ; r1 = r2 >> 3 (aka r1 = r1/8)
 lsl r1, 16 ; r1 = r1 << 16 (?)
 asr r1, 16 ; r1 = r1 >> 16 (?)

What's going on with the two funny instructions that shift the result left by
16 then right by 16? At first glance this is a rather useless piece of code.

The processor uses 32 bit arithmetic. On this machine a short int is 16
bits. When the system does the divide by 8 a 32 bit result is generated. So the
compiler generates two instruction designed to convert a 32 bit value into a 16
bit one.

This occurs after the divide and after the increment. This gives us a total
of 4 useless instructions.

Changing the function to use int instead of short int eliminates these
instructions and makes our code faster.

The next step is to see if we can write a better algorithm and eliminate that
conditional:

int bits_to_bytes(int bits)
{
 return (bits + 7) / 8;
}

This completely eliminates all the conditional logic an saves us a few more
instructions. Now the actual body of the function is just a hand full of
instructions. Can we cut it down even more?

Page 140 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

How about cutting it down to 0 instructions? It's possible. All we have to
is to add the inline keyword:

inline int bits_to_bytes(int bits)
{
 return (bits + 7) / 8;
}

Now when the optimizer sees a line like:

 store_size = bits_to_bytes(41);

it will optimize it down to;

 store_size = 6;

The function is not even called. All the computations are being done at
compile time.

But we're not done optimizing. There's a difference between a function
declared inline and one declared static inline. When a function is declared
inline the compiler will inline all the function calls it sees, then generate a
regular non-inline function body in case someone from the outside wants to call
this function.

To counter this we declare our function static inline and stick it in a
header file. Thus saving us a couple of dozen bytes in this example – total – in a
3.5MB program.

Now as hackers there's one more thing we need to consider. What
happens when things go wrong. After all we never trust the caller to do things
right and the we can be called with a negative number. We need to answer the
question “How much storage does -87 bits take up?”

The easiest thing to do is to assume that this will never happen and just
ignore it. But if we do this we need to document the fact in the program.

/*
 * bits_to_bytes – Given a number of bits, return the
 * number of bytes needed to store them.
 *
 * WARNING: This function does no error checking so
 * if you give it a very wrong value you get a very wrong
 * result.
 */

Assuming something bad will never happen is not really a good idea. As
hackers we know that lots of things that can “never happen” actually do.
Checking for the “impossible” usually a good idea.

Page 141 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

For example, we could insert an assert statement:

static inline int bits_to_bytes(int bits)
{
 assert(bits >= 0);
 return (bits + 7) / 8;
}

The problem with assert statements is that they cause the program to
abort. In real life this code lived in a mobile phone and a failed assert would
cause the phone to reset. This was not good because when this happened the
phone reset it would play the “welcome sound”. End users were wondering why
their phone would restart for “no reason at all”.

The phone maker's “solution” to this problem was simple. They changed
the code so that a a failed assert restarted the phone silently. The code was
still very buggy, but the bugs became less visible (audible?) to the end users.

Also you should remember that assertions can be compiled out, so this
code provides no protection at all.

Since this is C++ throwing an exception is one way of handling the error:

static inline int bits_to_bytes(int bits)
{
 if (bits < 0) throw(memory_error(“bits_to_bytes”);
 return (bits + 7) / 8;
}

These error checking options are expensive. One inexpensive thing we can
do is to make sure that error can never happen. How do we do that? All we
have to is make the argument (and the return value) unsigned.

static inline unsigned int
 bits_to_bytes(unsigned int bits)
{
 return (bits + 7) / 8;
}

Finally there's one more way of dealing with this error. Just change the
function to silently ignore it and return a default value:

static inline int bits_to_bytes(int bits)
{
 if (bits < 0) return (0);
 return (bits + 7) / 8;
}

Page 142 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This is usually not a good idea since such code tends to hide errors in other
pieces of code. In general you don't want to silently fix things. Maybe output a
log message:

static inline int bits_to_bytes(int bits)
{
 if (bits < 0) {

 log_error(
 “Illegal parameter in bits_to_bytes(%d)”,
 bits);

 log_error(“Standard fixup taken”);
 return (0);
 }
 return (bits + 7) / 8;
}

In examining bits_to_bytes we can see that it is actually a very short
function. But it does illustrate some of the things good hackers consider when
working with code. These include:

● Dealing with lousy code

● Knowing how the compiler generates code and designing your code
to make optimal use of this information.

● Making maximum use of the language features such as inline and
static inline.

● Being paranoid17. Deciding what to do with bad data.

There's a lot to be learned from this little program. As hackers we're
always learning. We study, research, experiment, and play all to gain a better
understanding of the programming process.

17Just because you're paranoid doesn't mean they aren't out to get you.

Page 143 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 9: g++ Hacks

The GNU gcc package is one of the most C and C++ compilers out there.
Two things lead to its popularity. First it's a high quality compiler. The second is
that it's free.

The GNU compiler has extended the C and C++ languages in some useful
ways (and some useless ones too). If you are willing to sacrifice portability the
non-standard language can be very useful.

Hack 94: Designated Structure Initializers

The Problem: You have a structure with 2,000 elements in it18. To
initialize the structure you need to specify 2,000 items in exact order. It's easy
to make a mistake.

For example:

struct very_large {
 int size;
 int color;
 int font;
 // 1,997 more items
};
// Now create a instance of item
very_large something_big = {
 SIZE_BIG,
 FONT_TIMES,
 COLOR_BLACK,
 // 1,997 more items;
};

If you spotted the mistake in the previous example, congratulations. If not,
then you know why this hack is so needed.

The Hack: Use the gcc designated structure initializer syntax.

18For the humor impaired, I'm exaggerating. A real hacker would split up something this big
into multiple smaller and more manageable structures.

Page 144 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The gcc compiler has a non-standard extension that lets you name the
fields in an initialization statements. For example:

very_large something_big = {
 .size = SIZE_BIG,
 .font = FONT_TIMES,
 .color = COLOR_BLACK,
 // 1,997 more items;
};

By naming things we decrease the risk of getting something in the wrong
order. The problem is that we have created a non-standard program. But unless
your dealing with a very unusual platform, there is a gcc compiler for your
system.

But there is one problem with this system. It is possible to omit a field. If
you do it gets a default value (0). But what happens if you accidentally omit a
value. It gets assigned a default and without warning unless you tell gcc to warn
you. The option -Wmissing-field-initializers tells gcc that you want to
specify every field when you initialize. If you don't a warning will be issued.

Hack 95: Checking printf style Arguments Lists

The Problem: You've written a function called log_error which uses
printf style arguments. How can you tell gcc to check the arguments just like
it does for printf?

The Hack: Use the __attribute__ keyword to tell gcc what to check.
For example:

void log_error(const int level,
 const char* const format,
 ...) __attribute__((format(printf, 2, 3)))

(Yes the double parenthesis are needed.)

The __attribute__(format...) syntax tells gcc to treat the
arguments to log_error just like printf. In this case the function is like printf,
the format string is the second (2) argument to the function and the parameters
start with position 3.

If you have warnings turned on, gcc will now check the parameter lists of
any call to log_error to see if the parameters match the format.

Note: You may wish to put the following lines in your code if you wish to
compile using both gcc and non-gcc compilers.

Page 145 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

#ifndef GCC
#define __attribute__(x) /* Nothing */
#endif /* GCC */

Hack 96: Packing structures

See Hack 116.

Hack 97: Creating Functions Who's Return Shouldn't Be
Ignored

The Problem: Some functions return a value that never should be ignored.
For example, there is no reason that anyone would want to call malloc and
ignore the results. Is there any way to force people to use the return value of a
function?

The Hack: Hackers don't try to force people to do things. Instead they use
persuasion. Peer pressure can be a great motivator when it comes to getting
people to do things right.

In this case we can make things easier by making use of the g++
compiler's __attribute__ feature. Setting the warn_unused_result
attribute causes the compiler to issue a warning when the return value of the
function is ignored.

Here's a short example:

#include <malloc.h>
#include <cassert>

void* my_malloc(size_t size)
 __attribute__((warn_unused_result));

void* my_malloc(size_t size) {
 void* ptr = malloc(size);
 assert(ptr != NULL);
 return (ptr);
}

Now let's use this function. Of course we'll use it wrong and just throw the
result away creating a memory leak. Normally this would be a problem:

int main()
{
 // Memory leak
 my_malloc(55);

Page 146 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 return (0);
}

But since we used __attribute__((warn_unused_result)) the
compiler will complain about this code:

result.cpp: In function `int main()':
result.cpp:16: warning: ignoring return value of `void*
my_malloc(size_t)', declared with attribute
warn_unused_result

Hack 98: Creating Functions Which Never Return

The Problem: We've created a function called die which prints an error
message and aborts the program. Yet when we use it the compiler keeps giving
us warnings.

For example:

#include <iostream>

void die(const char* const msg)
{
 std::cerr << "DIE: " << msg << std::endl;
 exit(8);
}

int compute_area(int width, int height) {
 int area = width * height;

 if (area >= 0) return (area);

 die("Impossible area");
}

The problem is that the compiler keeps complaining about this code:

die.cpp: In function `int compute_area(int, int)':
die.cpp:15: warning: control reaches end of non-void
function

The Hack: Use the g++ noreturn attribute.

For example:

void die(const char* const msg)
 __attribute__((noreturn));

Page 147 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

void die(const char* const msg) {
// ... function body

This tells g++ that the function never returns. The functions abort and
exit have this option set. Since we've told g++ that die will never return, the
compiler will no longer fuss when compiling the previous example.

If we turn on the unreachable code warning (-Wunreachable-code) the
compiler will fuss if we try and put code after the die call as it should. For
example:

#include <iostream>

void die(const char* const msg)
 __attribute__((noreturn));

void die(const char* const msg)
{
 std::cerr << "DIE: " << msg << std::endl;
 exit(8);
}

int compute_area(int width, int height) {
 int area = width * height;

 if (area >= 0) return (area);

 die("Impossible area");
 return (0); // Return a default value
}

When compiled we get the error:

g++ -Wunreachable-code -Wall -c die.cpp
die.cpp: In function `int compute_area(int, int)':
die.cpp:18: warning: will never be executed

This should give the programmer who added the default return value an
idea that maybe his code is not going to do what he expected. It's always good
when the compiler warns you about strange code and as hackers we want to use
the compilers code checking to maximum advantage. The __attribute__
hacks let us do just that.

Page 148 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 99: Using the GCC Heap Memory Checking Functions to
Locate Errors

The Problem: Memory corruption. I'm not going to go into details. If
you're an experienced programmer, you've gone through your share of horrible
memory problems.

The Solution: Use the GNU C library (glibc) memory checking functions
to help locate problems.

To turn on the memory checking functions you need to put the following
code in your program:

#include <mcheck.h>

//

int main()
{
 mcheck_pedantic(NULL);

The memcheck_pedantic call must occur before any allocations are done
in order to turn on memory checking. The argument is a pointer to a function
which is called when an error is detected. If this parameter is NULL then the a
default function is used. This function prints an error and aborts the program.

The memcheck_pedantic function causes the memory allocation
functions to put sentential at the start and end of each allocated block. Ever
time you call malloc, free, or other memory allocation function all these
sentential will be checked.

When a problem is detected the program will abort.

For example:

#include <malloc.h>
#include <mcheck.h>

int main()
{
 mcheck_pedantic(NULL);
 char* ptr = (char*)malloc(10);

 ptr[10] = 'X';
 free(ptr);
 return(0);

Page 149 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

}

When run this program prints:

memory clobbered past end of allocated block

The mcheck_pedantic performs a consistency check every time memory
is allocated or freed. Every memory block is checked. As a result your program
will run slower than normal.

There is a faster memory check function, mcheck. It turns on pointer
checking only for the pointer being allocated, reallocated, or freed. You can
force the system to check all the memory pointers by calling
mcheck_check_all.

A single pointer can be checked by the mprobe function.

Almost all of these functions are documented in the glibc documentation.
(Use the command info glibc on most Linux distributions.) The one exception is
mcheck_pedantic. It's not mentioned in the documentation at all.

However it is mentioned in the header file (mcheck.h). So another lesson
we can learn from this hack is to always take a look at the header files to see if
we can find hidden treasure.

Hack 100: Tracing Memory Usage

The Problem: Memory leaks. (And it's not feasible to use valgrind – See
Hack 41.)

The Solution: Use the mtrace function to trace all memory allocations
and deallocations.

In order to start memory allocation logging you must call the mtrace
function. You must call the muntrace function to finish memory tracing. The
trace information will be placed in a file specified by the MALLOC_TRACE
environment variable.

Here's a small program to test out this system:

#include <malloc.h>
#include <mcheck.h>
int main()
{
 mtrace();

Page 150 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 char* data[10];

 for (int i = 0; i < 10; ++i) {
 data[i] = (char*)malloc(10);
 }
 for (int i = 1; i < 9; ++i) {
 free(data[i]);
 }
 muntrace();
 return (0);
}

This program is run with the command:

$ export MALLOC_TRACE=mtrace.log
$./leak

The result is a file giving us a history of our heap allocations and frees:

= Start
@ leak:[0x809b07c] + 0x80bb3b0 0xa
@ leak:[0x809b07c] + 0x80bb3c0 0xa
@ leak:[0x809b07c] + 0x80bb3d0 0xa
@ leak:[0x809b07c] + 0x80bb3e0 0xa
@ leak:[0x809b07c] + 0x80bb3f0 0xa
@ leak:[0x809b07c] + 0x80bb400 0xa
@ leak:[0x809b07c] + 0x80bb410 0xa
@ leak:[0x809b07c] + 0x80bb420 0xa
@ leak:[0x809b07c] + 0x80bb430 0xa
@ leak:[0x809b07c] + 0x80bb440 0xa
@ leak:[0x809b0a6] - 0x80bb3c0
@ leak:[0x809b0a6] - 0x80bb3d0
@ leak:[0x809b0a6] - 0x80bb3e0
@ leak:[0x809b0a6] - 0x80bb3f0
@ leak:[0x809b0a6] - 0x80bb400
@ leak:[0x809b0a6] - 0x80bb410
@ leak:[0x809b0a6] - 0x80bb420
@ leak:[0x809b0a6] - 0x80bb430
= End

Now all we have to do is to match up the malloc calls (denoted by the +
lines) and the free calls (denoted by the – lines). Any malloc without a
matching free is a memory leak.

Fortunately we don't have to hand match. The program mtrace
(distributed with glibc) will do the work for you. All you have to do is feed it the
name of your executable and log file:

$ mtrace leak mtrace.log

Memory not freed:

Page 151 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 Address Size Caller
0x080bb3b0 0xa at /hack/leak.cpp:10
0x080bb440 0xa at /hack/leak.cpp:10

There is one limitation on the mtrace function. It doesn't work well for
new and delete. (You get a beautiful trace showing every malloc and free
being generated by the standard C++ library.) So be aware of it's limitations.

The memory tracking and consistency checking functions are not the only
memory debugging facilities built into the glibc library. There are many ways to
hook up diagnostic code with the memory functions. You can read the
documentation for details.

However the ones presented in the last few hacks with find most of the
common errors you are likely to find.

Hack 101: Generating a Backtrace

The Problem: The default abort function used by mcheck_pedantic is
somewhat minimal. It prints an error message telling you that you are hosed but
that's all. Basically you know that something went wrong, now guess where.

The Hack: Define your own memory error handling function and then use
backtrace to get a call stack so you know where you came from.

First we need to tell mcheck_pedantic that we want to handle the error
ourselves:

 mcheck_pedantic(bad_mem);

Now when a memory problem is found, the bad_mem function will be
called. Of course we need to define the function:

static void bad_mem(enum mcheck_status status)

The backtrace function returns the call stack as an array of pointers. In
order to use this function we must first allocate an array to hold this data then
call the function:

 void* buffer[MAX_TRACE];

 int stack_size = backtrace(buffer,
 sizeof(buffer)/sizeof(buffer[0]));

Page 152 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

This gives us a set of pointers, which is not useful when it comes to finding
out where we are. It would be nice to turn this list into something printable with
symbols. Fortunately there's a function to do that called backtrace_symbols.
It returns a array of character pointers containing human readable (mostly)
version of our pointers with some symbolic information.

 char** stack_sym = backtrace_symbols(
 buffer, stack_size);

Now all we have to do is print the results:

 std::cout << "Stack trace " << std::endl;

 for (int i = 0; i < stack_size; ++i) {
 std::cout << stack_sym[i] << std::endl;
 }

There's one more thing we have to do and that is abort the program. (With
memory corrupt there's not a whole lot we can do at this point.) So the last line
of our function is:

 abort();

The abort call was chosen because it creates a core dump we can analyze
later.

A typical run of this program produces the results:

Stack trace
trace [0x809b458]
/lib/tls/libc.so.6 [0x401928f3]
trace(__libc_free+0x17) [0x804e817]
trace [0x809b510]
trace [0x809b521]
trace [0x809b52f]
trace [0x809b563]
trace(__libc_start_main+0x14c) [0x804c8dc]
trace(__gxx_personality_v0+0x51) [0x804c701]
Aborted (core dumped)

Unfortunately the backtrace_symbols call can't seem to find the
symbols in our program. (We compiled with the debug option so they should
show up.)

There are number of ways around this problem. The simplest is to run the
debugger on the executable and the core file and use it to display the stack
trace. This gives us the ability not only to look at the stack trace, but also the
source code and the value of the variables at the time of the core dump.

Page 153 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

$ gdb trace core.31957
GNU gdb 6.3-3.1.102mdk (Mandrakelinux)
... usual startup chatter ...

Core was generated by `./trace'.
Program terminated with signal 6, Aborted.

#0 0xffffe410 in ?? ()
(gdb) where
#0 0xffffe410 in ?? ()
#1 0xbffff08c in ?? ()
#2 0x00000006 in ?? ()
#3 0x00007cd5 in ?? ()
#4 0x0808118e in raise (sig=6) at ..linux/raise.c:67
#5 0x08057ca7 in abort () at abort.c:88
#6 0x0809b4e5 in bad_mem (status=MCHECK_TAIL) at
trace.cpp:28
#7 0x401928f3 in mcheck_check_all () from
/lib/tls/libc.so.6
#8 0x0804e817 in __libc_free (mem=0x6) at malloc.c:3505
#9 0x0809b510 in mem_problem () at trace.cpp:36
#10 0x0809b521 in do_part1 () at trace.cpp:40
#11 0x0809b52f in do_all () at trace.cpp:43
#12 0x0809b563 in main () at trace.cpp:49
(gdb)

Now we can use the normal gdb commands to examine the program. For
example, let's take a look at the function where the error was discovered.

(gdb) list trace.cpp:36
31 void mem_problem()
32 {
33 char* ptr = (char*)malloc(10);
34
35 ptr[10] = 'X';
36 free(ptr);
37 }
38
39 void do_part1() {
40 mem_problem();
(gdb)

In this case the error is blindingly obvious and we require no further
investigation. In the real world, things might no be so simple and we might have
to spend more than five seconds to find the problem. But at least we have to
tools in place to detect the problem early and analyze what the program is doing.

Page 154 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Another way of finding out where things are in the program is the
addr2line command (part of the glibc package). It translates an address into a
line number in the program. For example:

$ addr2line -C -f -e trace 0x809b510
mem_problem()
/home/sdo/hack/trace.cpp:36

The -C flag tells addr2line to demangle C++ symbols. The -f option
causes the function name as well as the line to be listed. The program file is
specified with the -e option and finally we have the address to be decoded.

This function is useful when it's impractical to use gdb for example when
problems happen in the field and the customer doesn't want to send you a big
core file, but is willing to send you the backtrace output.

Hackers know that there's more than one way to solve a problem.
Sometimes we have to use the all in order to find the one what works, but fixing
things in a poor working environment, with bad tools, incomplete information,
and lots of pressure is something hackers do every day.

Page 155 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 10: Anti-Hacks

There are smart people and there are stupid people. And then there are
stupid people who think they are smart. It is this type of people who can do
some real damage, especially when they think they are hackers.

One of my early encounters with one of these people occurred when I had
to take over from one of them and enhance a configuration program. He had
designed this think with a very clever top level UI based on a very clever second
abstract UI based on another clever layer of something, and so on for about eight
levels of complexity. All undocumented of course.

I had a rather interesting conversation with the boss where I told him that
it would take me ten weeks to modify the program, but only three weeks to write
a new program that did everything the old one did and included the
enhancements he waited. The new program would lack the eight level of
abstraction, but it would get the job done.

A good hack is clear and easy to understand. Simple is always better
unless you're Rube Goldberg and make a living off of doing things the hard way.

This chapter is devoted to the hacks that are not really hacks. By using
these techniques the people who produced them show us that they know enough
not to be clever, but to be really, really stupid.

Anti-Hack 102: Using “#define extern” for Variable
Declarations

The Problem: In order to define a global variable you have to create an
extern declaration in the header file and a real declaration in the module.

For example, a typical header (debug.h):

extern int debug_level;

and a code file (debug.cpp):

int debug_level;

Similar declarations have to be put in two places. Is there a way to
eliminate this duplication?

The Anti-Hack: Through clever use of the pre-processor you can make
one header file do both declarations.

Page 156 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

You start by creating a debug.h file that contains the variable declarations.
Any program which uses the debug module should include the header file using
the statement:

// Normal program file such as main.cpp
// ...
#include “debug.h”

The module debug.cpp however uses a clever pre-processor trick:

// File debug.cpp
// ...
#define extern /* */
#include “debug.h”
#undef extern

// -- DO NOT PROGRAM LIKE THIS !!! --

The #define statement make the extern keyword disappear. So now the
line:

extern int debug_level;

becomes:

/* */ int debug_level;

thus you've made one file do double duty saving a lot of typing.

There are a few major problems with this code.

First you've redefined a standard C++ keyword. Now when someone looks
at a file they must decide if the extern keyword really means extern or does it
mean something else. C++ is bad enough when coming to you unedited.
Making keywords mean one thing at one point in the program and another thing
later on makes the program ten times harder to debug.

Now suppose an unsuspecting programmer comes across the debug.h file
and decided that he wants to add a function to it which uses I/O streams. For
example:

extern void set_output_file(std::ostream& out_file);

Our debug.h file now looks like:

// debug.h (incomplete)
extern int debug_level;
extern void set_output_file(std::ostream& out_file);

Page 157 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Because we are good programmers we want to follow the rules that every
header file should bring any header file that it needs to do its work. In this case
we reference std::ostream so we need the fstream header file:

// debug.h
#include <fstream>
extern int debug_level;
extern void set_output_file(std::ostream& out_file);

Guess what. All the extern declarations in fstream have been edited and
their extern removed. The program is now broken. So this hack prevents the
programmer from following good coding guidelines and making a header file self
sufficient.

It gets worse. A good programmer would look at debug.h and see that

#include <fstream>

is missing. Of course being a good programmer he wants to make things right so
he adds this line. (Not knowing of course that the debug.cpp contains the
extern anti-hack.) Now when this occurs the good programmer by following
good programming practices had just broken the program in strange and
mysterious ways. Suddenly when he links in the debug module he gets duplicate
defined symbols for thing in the fstream module.

A close inspection of the source code will not find the program. The
fstream header file is a system file. It's supposed to be correct. Besides if there
is a problem in it, the problem will show up in lots of programs. So it's “obvious”
that the problem is not fstream. But it is, sort of. Because the #define
redefined the C++ language itself, fstream has been rewritten and now contains
errors.

This anti-hack breaks working code in a way that is difficult to
locate. Do not use it.

There are a number of other problems with this hack: it doesn't allow you
to locate variable definitions near the code that uses them, it doesn't let you
initialize global variables, and it greatly limits what you can put in a header file.
But there are minor when compared to the damage it does because it redefines
the C++ language.

Anti-Hack 103: Use , (comma) to join statements

The Problem: You want your code to be as compact as possible and curly
braces use too many characters. There must be a way of making your code more
compact.

Page 158 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Anti-Hack: Use , (comma) to join statements. For example, instead of
writing:

if (flag) {
 do_part_a();
 a_done = true;
}

you can do the same thing without the curly braces:

if (flag)
 do_part_a(), a_done = true;

This saves us two lines and gets rid of two character (the curly braces).

You can get even more creative with for loops:

for (cur_ptr = first, count = 0; cur_ptr != NULL;
 cur_ptr = cur_ptr->next, ++count);

The for loop we've just defined counts the number of items in a linked list
and through creative use of the , (comma) operator we've eliminated any
code before the for and inside the body of the for.

As you can see the , (comma) operator is a very powerful tool for making
your code very compact. But why would you ever want to do such a thing?
Compact code may have been useful in the first days of computing when
storage cost several dollars a byte, but today you can pick up a 128M USB
Thumb drive at a convenience store.

Making the code more compact obscures the logic and make the program
more difficult to read. Thus such code is more prone to errors and the
errors are more difficult to find when they occur.

When you use this hack you do not show how clever a programmer you are.
Experienced hackers already know about this trick. They are just mature
enough not to use it.

Anti-Hack 104: if (strcmp(a,b))

The Problem: You don't want to put “unnecessary” operators in your code,
especially when using strcmp.

The Anti-hack: Use the return value of strcmp bare. For example:

if (strcmp(name, key_name)) {
 do_special_stuff();
}

Page 159 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The logic of this code is simple and easy to understand – and extremely
misleading.

Question: Is the function do_special_stuff executed when name is a
key_name or non-key people? Remember strcmp returns 0 when the strings
are equal. So you're only special if you are not the key person.

The code is misleading because most similar functions will return a true /
false value, the true being the positive case. In other words a if strcmp
followed the rules, it would return true of equal and false for not equal.

The following code is OK:

if (strings_are_same(name, key_name)) {
 do_key_stuff();
}

In this case the logic of the program and the inititation of the programmer
reading the code will match and confusion is avoided. But with

if (strcmp(name, key_name)) {

the logic of the computer clash with what anyone reading the code expects and
you get confusion.

One of the goals of a good hacker should be clarity. After all how can you
show the world how good a hacker you are if no one understands you work. The
strcmp code can be better written as:

// strcmp return value for equal strings.
static const int STRCMP_SAME = 0;

// Check for average (non-key) users and process
// their special requests.
if (strcmp(name, key_name) != STRCMP_SAME) {
 do_special_stuff();
}

What makes this code good? It is easy to see from the statement:

if (strcmp(name, key_name) != STRCMP_SAME) {

that the strings are not the same. But just to make sure people reading this code
understand what is going a comment has been added telling the reader in
English what is going on.19

19The comment could be more precise and explicit except this is a made up example and I left a
great deal of design to the imagination.

Page 160 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Anti-Hack 105: if (ptr)

The Problem: Lots of functions return a pointer when returning a good
value and NULL on error. We a quick way of testing for NULL.

The Anti-Hack: Use if (ptr) to test to see if a pointer is NULL or not.

For example:

char* ptr = strdup(name);
if (ptr) {
 process_ptr();
} else {
 throw(out_memory_error);
}

Again we have a program technique that leads to extremely compact,
terse, and confusing code.

The main problem with code like this is that the pointer is not a boolean.
As such using it bare in an if statement is meaningless.

Our goal as hackers is to create wonderful and understandable code.
Leave out short limit understand. (Leaving words out leads to short sentences,
but limits but makes it difficult to understand the sentence.)

Typing

 if (ptr != NULL)

instead of

 if (ptr)

takes a fraction of a second longer, yet can save hours or days of debugging time
because it makes it easier to read your program.

As hackers we want people to understand our code, marvel at it, and then
extend it. Cryptic code does not help us achieve this goal.

Anti-Hack 106: The “while ((ch = getch()) != EOF)” Hack

The Problem: You need to read in a steam of characters or perform some
other similar operation.

The Anti-Hack: Use a common C++ design pattern:

Page 161 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

// Don't code like this
while (ch = getch() != EOF) {
 // ... do something
}

There are several things wrong with this code. The first is that it that you
have to be careful can make sure that the variable ch is not a char variable. It
must be an int for the comparison to work.

The second problem is that this code does multiple operations in a single
statement. As a result the code is confusing and compact. It is much better to
have code verbose and clear than confusing and compact.

Finally the line:

while (ch = getch() != EOF) {

is confusing. Do you know if the assignment operator (=) has higher precedence
than not equal (!=)?

For example, which of these two statement is the equivalent of our while
loop:

while ((ch = getch()) != EOF) {
while (ch = (getch() != EOF)) {

This is one example where Hack 19 comes in handy.

This is a common, compact way of writing a while loop. But just because
it's common does not mean it's good. A more verbose, and easier to understand
way of doing the same thing is:

// Please code like this
while (true) {
 int ch = getch();

 if (ch == EOF)
 break;

 // .. do something
}

Now there are people who will tell you that this hack is useful. They point
out that is is very common and because it's common people recognize and
understand it. And because it's so common and understandable people write it
in new code making it more common and forcing more people to recognize it and
understand it.

Page 162 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But ultimately it's sloppy pattern and leads to other sloppy coding patterns.
For that reason it should be avoided.

Anti-Hack 107: Using #define to Augment the C++ Syntax

The Problem: The C++ syntax is not as rich as it could be. For example,
there's no single statement to iterate through the items of a linked list.

The Anti-Hack: Augment the C++ language by using the pre-processor to
define new language elements. For example:

#define FOR_EACH_ITEM(list) \
 for (list_ptr cur_item = list.first; \
 cur_item =! NULL; \
 cur_item = cur_item->next)

The problem with these syntax additions is that you've now change the
C++ language to the C++++ language. What's worse it's you're own version of
the C++++ language.

It's difficult enough for someone to master C++. Adding new and
undocumented features to the language makes things worse. Even if someone
takes the trouble to document them the people maintaining the program have to
learn a new and unique language.

Another problem is that macros like this tend to hide errors. For example
the following will result in an infinite loop or a core dump:

FOR_EACH_ITEM(name_list)
 std::cout << cur_item->name << std::endl;

It's difficult to spot the error because the mistake is hidden inside the
FOR_EACH_ITEM macro. For readers of this book the mistake is somewhat easy
to spot because all you have to do to find the macro definition is to look back to
the previous code example. In real life things are much worse. The macro
definition is usually hidden in a header file and you have to go hunting for it.

In general it's better to write code who's syntax is visible and standard.
That let's the people who come after you understand your work so that they can
improve and enhance it.

Anti-Hack 108: Using BEGIN and END Instead of { and }

The Problem: The curly braces { and } are terse and cryptic. Besides
they look nothing like what you see in ALGOL programming.

Page 163 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Anti-Hack: Use #define to define a set of macros that allow you to
make C code look like ALOGL-68.

Here's a small sample:

#define BEGIN {
#define END }

#define IF if (
#define THEN) {
#define ELSE } else {
#define ENDIF }

The code looks like:

WHILE (system_ready())
 BEGIN
 int success = process_cmd();
 IF success THEN
 good();
 ELSE
 bad();
 ENDIF
 END

This makes things simple and easy to understand if you're an ALGOL-68
programmer, it makes things next to impossible if you're a C programmer.

Most programmers when faced with this sort of code, curse, then use the
pre-processor to remove the macros and get back to the underlying C code.

This hack is of historical interest because the original Borne shell was
written this way. Fortunately it was quickly replaced by a C version much to the
relief of all the people who had to maintain this program.

Anti-Hack 109: Variable Argument Lists

The Problem: You have function which takes a lot of different
parameters. Specifying them as traditional arguments is impractical. So what
do you do?

The Anti-Hack: Use the variable argument list feature of C++ to pass in a
variety of aguements.

For example, let's suppose we are drawing a box. We can specify a width,
height, line width, color, and other items. All of these are optional, if we don't
specify one a default is used.

Page 164 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Here's a typical call to our draw_box function:

 draw_box(BOX_WIDTH, 5, BOX_HEIGHT, 3, NULL);

In this case the NULL is used to indicate the end of the argument list.

This concept can be expanded even further. Suppose this box contains a
list of words. Now we can do the following:

 draw_box(BOX_WIDTH, 5,
 BOX_WORDS, “alpha”, “beta”, NULL,
 BOX_HEIGHT, 3, NULL);

So the word list (BOX_WORDS) now takes a variable list of words as it's
parameter. So we have variable parameter lists in variable parameter lists. This
is extremely clever!

This is also extremely dangerous and stupid. First of all this completely
defeats the C++ type checking mechanism. In this example, BOX_WIDTH is
supposed to be followed by an int. But what if we follow it with a string.

 draw_box(BOX_WIDTH, “large”,
 //

The compiler has no way of knowing that the wrong type has been
supplied. The runtime has no way of telling a pointer from an integer. On most
systems a pointer looks like a very large pointer. So the result of this code is a
very large box and a very confused programmer.

But that's not the worst. What happens if you leave out a NULL? If you
leave out the terminating NULL, the function has no way of telling where the end
of the argument list is. What will happen is that it will go through the arguments
and look for a NULL to stop on. Not finding one it will continue on using
whatever is store on the stack are arguments, until by accident it finds a NULL.
Or crashes, or something else evil happens.

In any case the result is unexpected and difficult to diagnose. Because this
system defeats so many of the C++ safety checks it should be avoided.

There are lots of other ways of passing in large number of arguments
which provide both flexibility and safety. (For example see Hack 4.) Use one
them instead.

Page 165 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Anti-Hack 110: Opaque Handles

The Problem: You don't want to reveal your implementation to the user.
After all he doesn't need to know what's going on inside your code, only how to
call it.

The Anti-Hack: Give the user opaque handles to work with. In other
words cast implementation dependent information into something like a void*
or short int that the user can't play with.

For example:

typedef short int font_handle;
typedef short int window_handle;

font_handle the_font = CreateFont(“Courier”, 10);
window_handle the_window = CreateWindow(100, 300);

DrawText(the_font, the_window, “Hello World”, 30, 30);

Now some people might ask “What's wrong with this?” After all the user
doesn't need to know the details of what makes up a font or a window. By giving
him an opaque type we hide all this information from him.

The problem is that the information is also hidden from the compiler.
There is absolutely no way that the compiler can tell the different between a font
handle and a window handle.

In our example the DrawText function takes a window handle and font
handle as its first two arguments. In that order! In the same sample code above
the order is switched and there is nothing the compiler can do to discover the
error.

It is possible to create type checked opaque handles which which hide the
implementation from the user and still allow for compile time checking. These
are described in Hack 31.

Anti-Hack 111: Microsoft (Hungarian) Notation

The Problem: It's impossible to tell the type of a variable just from looking
at the name. For example is box_size a floating point number, an integer, or a
structure?

The Anti-Hack: Microsoft Notation.

Page 166 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Microsoft Notation (also known as Hungarian Notation20) is a naming
system where each variable is prefixed with type information. For example
integers begin with “i” and floating point variables begin with “f”. Short
integers begin “si” as in siSize. Unless the short integer is a handle to
something, then the “h” notation kicks in. For example, hfCurrentFont is a
font handle. Of course some people believe that “h” is too cryptic so they use
“hndl” as hndlCurrentFont, but this can lead to confusion as the same prefix
can be used for font handles, window handles, and all the other many other
handles you have to deal with in Microsoft windows.

There are a number of problems with this system. The first is that the
whole idea of having a compiler and a high level language is to hide the details of
the implementation from you. Putting this barf on the beginning of each variable
gives you information that you really don't care about.

The compiler needs to know detailed type information on every variable,
you do not.

The second problem is that there is no standard list of prefix characters.
Many people invent their own leaving you to guess what the difference between
pszName and szName is. The answer is that the first is a pointer to a string
ending in a zero character (implemented by char*) and the second is a string
ending in a zero character (implemented by char*). In other words, there is no
difference.

Finally there is the problem of flexibility and program updates. Suppose
you have implemented an address book and address is stored in a structure
(stAddress). You improve the program and replace the structure with a class
(cAddress). Are you going to go through your entire program and update the
prefix of every address variable in it? If you do it's a lot of work. (Not good.) If
you don't you now have variables which use an incorrect prefix. (Very not good.)

This is a loose and loose worse situation.

You should write variable names using as clear as English (or whatever
your native language is) as possible. Leave type information to the compiler.
Don't mess up good words with random barf. Programs are obscure enough
without using notation systems which obscure them more while adding no value
to the program.

20The Hungarians are nice people and should be associated with such a bad hack. So that's why
the term Microsoft Notation is used here even though the term Hungarian Notation is more
commonly used.

Page 167 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Microsoft Notation for English

Over the years C and C++ programmers have devised
many ways of making their writing clearer. As a result
program are much more readable than ever before. I've
often wondered if the lessons learned by programming
could be applied to English as well.

Take Microsoft notation (aka. Hungarian notation) for
example. It puts a prefix on each variable name telling
us what the type of the variable. Wouldn't English be
much clearer if we identified each verb with "v", each
noun with "n" and so on.

pAfter avAll aMany nEnglish nWords vCan vHave aMore
cThan nOne nMeaning. pFor nExample "mall" vIs prBoth
aA nVerb cAnd aA nNoun. pWith pnOur aNew nNotation
pYou vCan vWrite nSomething aLike, "aThere vWas
aSuch aA nCrowd pAt arThe nMall aThat pnWe vWere
vMalled" cAnd nPeople vCan aEasily vUnderstand pYou.

Page 168 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 11: Embedded Programming Hacks

The number of computers is exploding. The are now in phones, washing
machines, televisions, toasters, and watches.21 Programming for these non-
standard platforms can be a real challenge.

I got my first programming job while I was in high school. The boss told,
“You are creating the embedded software for the Camsco Waterjet I cutter.”

“Great,” I said. “Where's the machine?”

“You see these boxes,” he replied pointing around the room. Indeed there
was a moderately large stack of boxes against one one. “They contain the parts
we're going to build it out of.”

“Great,” I said, “Where's the hardware documentation.”

“We're still in the process of designing the hardware. As soon as we get
the prototype done, we'll start writing the documentation.”

“What about the I/O controller documentation?”

“Some of them are off the shelf, and I can get you documentation for those.
But there are a couple that we are making ourselves and they are still being
designed. You'll have to wait for information on those the design is not solid
yet.”

The job turned out to be a very interesting challenge for all involved. For
my part I learned how to write very flexible code that could be easily configured
to work with a specific hardware specification. That was mostly self defense as
getting the hardware specification was difficult, getting it on schedule was even
more difficult, and getting correct information – impossible. (See the first hack
below.)

Testing The WaterJet

Testing the first WaterJet was a challenge for all
involved. It was the first production water jet cutter ever
made so everything was new to all of us. In order to get
things right we tested and tuned the machine for over a
year.

21There is actually a watch on which you can run Linux!

Page 169 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

We had a deal with the shoemaker who was buying the
machine. He would supply us with raw material for
testing and we would give him back any pieces cut out
during the test process so he could make tennis shoes
out of them – or so we thought.

In order to get consistent timing results we did all our
benchmarking using a single size – 9 right. So for about
5-7 months we did nothing but cut out a batch of 9
rights, tune the machine, and ship the cut pieces to the
shoemaker. This was a very large company with many
people who turn out hundreds of thousands of shows
each year.

After finally getting the machine tuned and working
really well, we started the process of breaking it down
for boxing and shipping to the customer.

It was then that we got a call from the factory foreman.
“Are you the people who keep shipping us these 9
rights?”

We told him we were.

“Finally I tracked you people down. Purchasing had no
idea who you were because we never ordered any 9
rights from anyone. I never thought to look at our
capitol equipment acquisition group until now.”

“Is there some problem with our cut pieces?” We were a
little worried at this point.

“Not exactly, but do you realize that you sent us 10,000
nine-rights and no lefts!”22

Hack 112: Always Verify the Hardware Specification

The Problem: Hardware specifications are frequently incomplete,
incoherent, incomprehensible, out of date, or missing.

While I was working on the Camsco WaterJet, I had to program a status
panel. This device contained 10 warning lights. I got the handwritten
specification from the hardware guy and decide to test things.

22His existing process used a die to cut out a left and right at the same time and he had on way
of cutting out just 9 left.

Page 170 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Light 1 was supposed to be “Oil Pressure Low” and it was “Ram failure”.
Light 2 was supposed to be “Water Supply Failure” and it was “Positioner Error.”
Light 3, “DC Power Failure” turned out to be “Compressor Failure”.

So I wrote up a nice document describing where how the system was really
wired and I handed this to the hardware guide telling him “Woody, the lights are
all mixed up.” I handed him the paper, “Here's how they are currently wired up.”

He took the paper from my hand and went straight to the copy machine
and made a copy. He then handed me the copy (not the original) and said,
“Here's the new specification.”

The Hack: Test early, test often.

The first thing you should do when faced with any new piece of hardware is
to create a short diagnostic program that tests out it's basic functionality. It is
this program which lets you discover things like:

● Commands that don't function as documented.

● Byte order problems (which of course are not documented).

● Document that contains non-standard bit order notation. (I've
actually read one hardware manual that put the least signification bit on
the left and the most significant on the right.)

● Other omissions, errors, ambiguities, and problems with the
documentation.

Dealing with new hardware for the first time is a difficult and challenging
operation. Far too many hardware people don't speak software and don't know
how to write decent documentation. (A lot of software people are just as bad
when it comes to writing things down.)

By testing early you can find out how the hardware really works instead of
how it's supposed to work. That way you can write a program that really does
the job instead of one that supposed to do the job.

Hack 113: Use Portable Types Which Specify Exactly How Wide
Your Integers Are

The Problem: The C++ does not define how many bits are in the int type.
(Or any other type for that matter.) In embedded systems we need to know the
exact number of bits in order to talk to the hardware.

Page 171 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Hack: Define portable types or use the portable types already defined
for you.

The header file <sys/types.h> contains a set of type definitions provide
exact definitions for integer values. The include:

int8_t int16_t int32_t int64_t

u_int8_t u_int16_t u_int32_t u_int64_t

By using these types you are guaranteed that the integers you define have
the exact number of bits you expect.

If your system doesn't have these types in a header file somewhere, then
define your own. (And of course verify them before you publish them.)

Hack 114: Verify Structure Sizes

The Problem: The compiler's idea of the size of a structure may be
different from your idea.

Here's a structure definition for the old RIO MP3 player. Because the
structure must exactly match the hardware specification, the offset of each field
is included in the comments. The other thing to note is that this block must be
exactly 512 bytes long (again, this number came from the hardware
specification.)

// directory header
struct rio_dir_header
{
 u_int16_t entry_count; //[0] Number of entries
 u_int16_t blocks_available; //[2] Blocks available
 u_int16_t Count32KBlockUsed; //[4] Blocks used
 u_int16_t block_remaining; //[6] Blocks remaining?
 u_int16_t Count32KBlockBad; //[8] Bad blocks
 int32_t TimeLastUpdate; //[10] Last time updated
 u_int16_t check_sum1; //[14] Checksum part 1
 u_int16_t check_sum2; //[16] Checksum part 2
 char not_used_1[2]; //[18] Junk
 u_int16_t Version; //[20] Version number
 char not_used_2[512 - 22]; //[22] Not used
};

Page 172 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

When music was loaded into the RIO player some problems were observed.
First each time you started to play a song, you got a short blast of noise followed
by the song. Secondly if you pressed the fast forward button, the player would
jump to the next song.

So what is going on here? This problem is especially difficult to debug
because there's no official documentation on the RIO's interface and there's
absolutely no way of telling what's going inside the device.

However, you may have noticed that we only included the header definition
in this book, so that may give you some idea. The actual problem concerns the
way that the compiler lays out structures.

We can discover through testing what the real offsets of each field are.
The results are slightly different from the ones we hand computed and put in the
comments:

 u_int16_t block_remaining; //[6] Blocks remaining?
 u_int16_t Count32KBlockBad; //[8] Bad blocks
 int32_t TimeLastUpdate; //[10// 12] Last time updated
 u_int16_t check_sum1; //[14// 16] Checksum part 1

So how come the two byte Count32KBlockBad takes up four bytes? The
answer is that the compiler wants to align 32 bit values (TimeLastUpdate) on
a 4 byte boundary. The offset 10 is not on a 4 byte boundary, so the compiler
puts in a couple of padding bytes to move the field to the next four byte
boundary.

So the real structure layout is:

 u_int16_t block_remaining; //[6] Blocks remaining?
 u_int16_t Count32KBlockBad; //[8] Bad blocks
 u_char hidden_pad[2]; //[10] Added by compiler
 int32 TimeLastUpdate; //[10// 12] Last time updated
 u_int16_t check_sum1; //[14// 16] Checksum part 1

So our 512 byte structure is really 514 bytes and some of the fields are in
the wrong place.

(Some of you might ask the question “If check_sum1 and check_sum2
are in the wrong place, why doesn't the RIO detect that the checksums are
incorrect and display an error message? Good question, but as a software
hacker you should know better than to expect consistency, sanity, or common
sense from a hardware designer.)

Now that we know what caused this problem what can we do to prevent
things like this from occurring in the future?

Page 173 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Hack: Verify the computed size of structure against the actual size.

Simply put, our program needs the following line:

assert(sizeof(struct rio_dir_header) == 512);

This should be done for every data structure shared by the software and
the hardware. As we have seen the software's idea of what goes on in a
structure can be different from the hardware's.

A possible cure for this problem can be found in Hack 116.

Hack 115: Verify Offsets When Defining the Hardware
Interface

The Problem: The compiler can not only pad structures but also move
fields around.

The Hack: Verify the offset of every field in a structure using the offsetof
operator.

Back to our previous example, let's verify not only the size of the structure
but the location of each field as well:

assert(sizeof(struct rio_dir_header) == 512);

assert(offsetof(struct rio_dir_header,
 entry_count) == 0);

assert(offsetof(struct rio_dir_header,
 blocks_available) = 2);

// ...

Hack 116: Pack Structures To Eliminate Hidden Padding

The Problem: The compiler pads things without our permission. This
screws things when we are dealing with hardware.

The Hack: Use the gcc packed attribute to tell gcc to make the structure
as compact as possible.

Page 174 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

For example:

struct rio_dir_header
{
 u_int16_t entry_count; //[0] Number of entries
//
} __attribute__((packed)); // Hack 41

This is an example of the hacker using the features provided by the
compiler to the fullest. If you are not using gcc read your compiler's
documentation. Chances are they have something similar to the packed
attribute.

If your compiler doesn't support packing of any type, you'll have to split the
long field TimeLastUpdate into smaller two u_int16_t fields that the compiler
will pack.

When encountering a problem like this a good hacker will find some way of
going over, under, or through roadblocks put up by the compiler.

Hack 117: Understand What the Keyword volatile Does and
How to Use It.

The Problem: A good compiler will remove useless code. In embedded
programming some code is not as useless as it appears.

Let's suppose we are dealing with a serial I/O controller. In order to clear
the device we need to unload the three character input buffer. The code for this
is:

// Won't work

// The device is a memory mapped I/O device
// Initialize the pointer to the input register
char* serial_char_in = DEVICE_PTR_SERIAL_IN;

// ...
char junk_ch; // A junk character
junk_ch = *serial_char_in; // Read one useless character
junk_ch = *serial_char_in; // Clear second useless char
junk_ch = *serial_char_in; // Third character gone
 // buffer now clear

So what does this code really do? It assigns junk_ch the top character
from the device. This is repeated three times so clear the three character buffer.

Page 175 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But the compiler is smart. It looks at this code and says, “That first
assignment is useless. We compute the value of junk_ch only to throw it
away. I can eliminate that line and the program will act the same.”

So the optimizer rewrites the code to look like:

char junk_ch; // A junk character
junk_ch = *serial_char_in; // Read one useless character///
junk_ch = *serial_char_in; // Clear second useless char
junk_ch = *serial_char_in; // Third character gone

Now it looks at the second line. It too can be eliminated.

The third line can only be eliminated if junk_ch is not used somewhere
later in the program. In this example, it's not so it too is eliminated. The
resulting code is very nicely optimized:

char junk_ch; // A junk character
junk_ch = *serial_char_in; // Read one useless character///
junk_ch = *serial_char_in; // Clear second useless char//
junk_ch = *serial_char_in; // Third character gone///

And since junk_ch is now never used, the compiler can make the
variable disappear and save the stack space it would use.

So the optimizer had saved us time by cutting out useless instructions and
memory by eliminating a useless variable. What's wrong what that?

The answer is that the program no longer functions. The device is no
longer getting cleared. This is one problem with embedded programming, the
compiler does not know about the strange side effects that can occur when
dealing with memory mapped I/O.

The Hack: Use the volatile keyword to identify memory mapped device
and other volatile data.

The volatile keyword tells C++ that a variable may be changed at any
time by forces outside the control of the normal programming environment.
More specifically it tells the compiler that optimizer is not allowed to change the
number or order of any access to this variable.

volatile char* serial_char_in = DEVICE_PTR_SERIAL_IN;

Now we we execute:

Page 176 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

junk_ch = *serial_char_in; // Read one useless character
junk_ch = *serial_char_in; // Clear second useless char
junk_ch = *serial_char_in; // Third character gone

the I/O device will be accessed three times and we will clear the device.

Alert readers may notice that we violated Hack 3 and didn't use const
where we should have. Since we don't what to change the pointer, it should be
made const giving us:

volatile char* const serial_char_in =
 DEVICE_PTR_SERIAL_IN;

Now we have enough advanced keywords in a single variable declaration
to identify us as a real hacker.

Hack 118: Understand What the Optimizer Can Do To You

The Problem: Early in my career I had to work with a slow and poorly
designed disk controller. One of the things it did wrong as to generate an
interrupt in the following manner:

1. Trigger the interrupt line

2. Set the interrupt bit in the status registering telling the system why
the interrupt occurred.

There was a problem with this system. I was working on a fast processor
this was a slow disk controller. As such the entire interrupt service routine could
complete it's work between the time that the controller performed step #1 and
step #2.

Until I figured this out my code was constantly complaining of spurious
interrupts and lost interrupts.

The problem would start the interrupt, I would read the register (nothing
set – log a spurious interrupt), the interrupt routine would finish, then the
controller would set the status bit indicating what I/O was available. (Of course
by this time I'd dismissed the interrupt, so the interrupt for that I/O was lost.)

The “solution” to this problem was to add a delay loop to the code at the
beginning of the interrupt service routine to give the I/O controller time to get
caught up with events.

/*
 * WARNING: This is highly processor dependent
 */

Page 177 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

const int DELAY_COUNT = 100; // Loop this many times

int result;

for (int i = 0; i < DELAY_COUNT; ++i) {
 result = 12 * 34;
}

But there are some surprises in this code. First of all how many times is
the executed:

a) Zero times

b) One time

c) 100 times

If you guessed “a” you're right – sometimes. But “b” and “c” are also right
– sometimes.

The problem is that the optimizer may play all sorts of games with this
code. The optimizer may look at the code and determine that all this code is
waste time so it can be eliminated. So the loop will execute zero times.

If result is used later in the code, then one trip through the loop is
enough and the optimizer can drop the other 99.

The GNU C++ compiler is smart. Its optimizer says “This code looks like
the useless code you're find in a delay loop, so I'll generate the code to go
through the loop 100 times.”

The second question is “How many times is the multiply done?” Even
without the optimizer the answer to this question zero. Any modern compiler
knows how to do constant folding and will evaluate constant expressions at
compile time so they don't have to be computed at run time.

The Hacks: Actually there are two hacks in play here. The first is to
periodically look at the assembly code to see what the compiler is doing to you.
The second is to use the volatile modifier to force the compiler to not optimize
your code.

Let's take a look at what the GNU compiler does with our original delay
loop:

movl $99, %eax
.L5:

decl %eax

Page 178 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

jns .L5

So we have the loop part, but not the multiple part. This will generate
some delay but not enough.

So let's rewrite the loop using volatile variable. The volatile keyword
tells the compiler that this variable is special and to make no assumptions about
the saneness of this variable.

Here's the new, improved loop:

 volatile int result;
 volatile int f1 = 12, f2 = 34;

 for (int i = 0; i < 100; ++i) {
 result = f1 * f2;
 }

Now from the assembly code we can see that the multiply is actually
happing and our delay loop is causing a delay.

movl $99, %ecx
movl $12, -8(%ebp)
movl $34, -12(%ebp)

.L5:
movl -8(%ebp), %eax
movl -12(%ebp), %edx
imull %edx, %eax
decl %ecx
movl %eax, -4(%ebp)
jns .L5

Finally a good hacker would design a short test program to test the length
of this delay loop. Delay loops are extremely difficult to get right and the
processor might have some surprises in store for you as well.

It should be pointed out that hackers avoid writing delay loops like this as
much as possible. Such loops are dangerous to code, non-portable, and a waste
of CPU resources. They should only be created if there is there is no other way
of getting the program to function. But now at least if we're forced to use them,
we can get them right.

Page 179 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 119: In Embedded Programs, Try To Handle Errors
Without Stopping

The Problem: Embedded programs run in their own environment. Often
it's difficult if not impossible for the user to start and stop services. Errors which
cause a program to stop or crash can easily take down the entire device.

If you need a reminder about how much damage bad error handling can
damage a system see the sidebar A Real System Crash on page 44.

The Hack: Never stop. And even if you do stop, start right back up again.

Let's take a typical programming example where a client must connect to a
server:

ConnectionType *the_connect =
 new ConnectionType(CONNECTION_PARAMETERS);

The question is what happens when the server is not running? In the case
of a typical non-embedded application, you bail out with an error message.
Basically you tell the user “You've got a problem, fix it and then run me again.”

// Typical non-embedded code
the_connection->connect_to_server();
if (the_connection.bad()) {
 std::cerr <<
 “FATAL ERROR: Could not connect to server “ <<
 std::endl;
 abort();
}

Note: In this example, the ConnectionType class sets an error flag
instead of throwing an exception. Programming wise exceptions are a cleaner
way of doing things. But they clutter up an example with extra statements, so
writing wise flags are clearer. But you should use exceptions in real
programming.

Now in embedded programming the user can't stop and start programs.
So if a vital program dies, the machine becomes useless to him. There's even a
term for this, verb: “brick” as in “When he tried to use the wireless function he
bricked the machine.”

Since we don't want our systems to dies like this, we need to modify our
programming methodology and if possible, never stop. Here's how an embedded
hacker would deal with connecting to the server:

Page 180 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

// Good embedded code
while (1) {
 the_connection->connect_to_server();

 if (! (the_connection.bad())
 break;

 log_warning(
 “Unable connect. Will retry in %d seconds”,
 CONNECT_DELAY);
 sleep(CONNECT_DELAY);
}

So what happens if the server is not ready? In this case we log an error (to
tell someone we had a problem), then wait a few seconds (no need to pound the
server), and try again.

So even if it takes a while for the server to come up, we will eventually
connect to it. If the server never comes up, the we never come up, but that is
not our problem. It is up to whoever is handling the server to figure out a way
for it to come up, and when it does we're ready.

So the basic rule is that the program will keep trying until it succeeds. It
never stops because it's almost impossible to start it again. (In badly
programmed systems, the only way to restart dead processes is to power cycle
the machine.)

But what happens if your program encounters a problem where retrying is
not an option. For example:

try {
 char *buffer_we_must_have = new char[BUFFER_SIZE];
 //
}
catch (std::bad_alloc e) {
 // ?? What do we do now?
}

There is no way we can keep retrying the new operation until we get
enough memory. After all do we expect the user to solve the problem by going
out, buying a memory chip and installing it while our program keeps running?

No, in this case we must abort. The program can no longer function. But
in embedded programming we should keep things running whenever possible.
So one hack around the abort problem is to make sure that if a program does
abort, we start it right up again.

Page 181 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

So we create a small executive program which monitors our main program:

while (1) {
 system(“main_program”);
 log_warning(“main_program stopped. Will restart.”);
 sleep(SETTLE_TIME);
}

As hackers we always know that there is some way around “impossible”
restrictions. In embedded systems, we can't stop, and if we do stop, we don't
stop for long. No matter what happens, the system must run.

Hack 120: Detecting Starvation

The Problem: In an embedded system it's possible for a high priority
process to get stuck and starve all the lower priority processes of CPU power.
How do we detect such a problem.

The Hack: Use the combination of a watchdog and a low priority process
to keep the system running.

A watchdog is a device designed to help keep a system running. After you
set it up it sits there and waits for you to ping it every so often. If for some
reason you don't contact it in a specified time period it will reset your system.

Through the use of a watchdog and a low priority task to tickle the
watchdog you can make sure that if you system has a problem and locks up, that
it will then reset and continue.

Here's a typical program designed to service a watchdog timer:

// If we don't do anything for 5 minutes, reboot
const int WATCHDOG_TIME = 60 * 5;

// Tickle the watchdog every 1/2 minute
const int SLEEP_TIME = 30;

int main()
{
 init_watchdog();
 set_my_priority(LOWEST_POSSIBLE_PRIORITY);

 while (true) {
 tickle_watchdog();
 sleep(SLEEP_TIME);
 }

Page 182 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

}

The idea is that watchdog expects to have someone tickle it every five
minutes. If it doesn't it will get angry and reboot the system.

We are going to tickle is every thirty seconds. (That's much less that five
minutes) so we should be safe.

If for some reason the system gets really busy, so busy it can't give our
poor tickle process any CPU in five minutes, then the program will fail to tickle
the watchdog, the watchdog will get upset and we'll reboot.

There are a number of hardware based watchdog boards available as well
as a software only kernel driver. These are all documented in the kernel source
in the directory /usr/src/linux/Documentation/watchdog.

It should be noted that this hack is a solution of last resort. It should only
be used where the choices are to let the system be permanently hung up or reset
the system. Hopefully the other protections you've got built into the system will
prevent you from ever having to let the watchdog do its job. But it a good
failsafe against the worst happening.

Page 183 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 12: Vim editing hacks

Vim is a high powered editor based on the old UNIX Vi program. However,
it has tremendously extended features beyond the Vi command set.

Because Vim was made by programmers for programmers. As such it
contains a lot of commands designed to make a programmer's life easier. This
chapter discusses the major ones which include:

● Syntax Coloring

● Using Vim's built-in make system.

● Automatic Indentation

● Source code exploration

● Viewing the Logic of Large Functions

● Log file viewing

Even if you are programming on Microsoft Windows you can use Vim.
Although programming environments like Visual C++ provide you with an editor,
the Vim is far superior at editing that their internal editor.

Note: This chapter assumes that you have turned on Vim extended
features. On UNIX and Linux systems this is done by creating a ~/.vimrc file.
On Microsoft Windows this is done by default.

What is Vim

Vim is a high quality text editor who's one job is to edit
text fast. It is designed for people, like programmers,
who have to edit a lot of text.

One of the problems with Vim is its steep learning curve.
The main cursor movement keys are h, j, k, and l. If you
look on a keyboard you'll see that these keys are the
“home” type positions on the right hand. In other words,
they are the fastest and easiest keys for most people to
type.

Page 184 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

But they are totally non-mnemonic. (For example, right
is l (lower case L).) Learning Vim takes time, but one
you do learn them you can edit quicker than almost any
other editor.23

Hack 121: Turning on Syntax Coloring

The Problem: Text editing using a simple monospaced font with no color.

The Hack: Turn on Vim's syntax coloring.

To turn on syntax coloring in Vim simply execute the command:

:syntax on

Now things such as keywords, strings, comments, and other syntax
elements will have different colors. (If you have a black-and-white terminal, they
will have different attributes such as bold, underline, blink, and so on.)

Actually you usually don't execute this command manually. Instead it's put
in your $HOME/.vimrc file so that it is automatically executed each time Vim is
started.

Hack 122: Using Vim's internal make system

The Problem: You have to exit Vim to build a program, then go back into
Vim to fix the problems.

The Hack: Use Vim's :make command to perform the builds.

The Vim :make command builds the program by running the make
program. (On Windows the nmake command is used.) To start the build process
execute the command:

:make [arguments]

If errors were generated, they are captured and the editor positions you
where the first error occurred.

Take a look at a typical :make session. (Typical :make sessions generate
far more errors and fewer stupid ones.) Figure 6 shows the results. From this
you can see that you have errors in two files, main.c and sub.c.

23Emacs users will probably challenge this statement as well as people with other favorite
editors. If you are one of these people you can easily skip this chapter.

Page 185 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

:!make | & tee /tmp/vim215953.err
gcc -g -Wall -o prog main.c sub.c
main.c: In function `main':
main.c:6: too many arguments to function `do_sub'
main.c: At top level:
main.c:10: parse error before `]'
sub.c: In function `sub':
sub.c:3: `j' undeclared (first use in this function)
sub.c:3: (Each undeclared identifier is reported only once
sub.c:3: for each function it appears in.)
sub.c:4: parse error before `]'
sub.c:4: warning: control reaches end of non-void function
make: *** [prog] Error 1
2 returned
"main.c" 11L, 111C
(3 of 12): too many arguments to function `do_sub'
Press RETURN or enter command to continue

Figure 6: :make output.

When you press Enter (what Vim calls Return), you see the results shown
in Figure 7.

int main()
{
 int i=3
 do_sub("foo");
 ++i;
 return (0);
}
}
~
(3 of 12): too many arguments to function do_sub

Figure 7: The first error.

The editor has moved you to the first error. This is line 6 of main.c. You
did not need to specify the file or the line number, Vim knew where to go
automatically. The following command goes to where the next error occurs (see
Figure 8):

:cnext

Page 186 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

int main()
{
 int 1=3
 do_sub("foo");
 ++i;
 return (0);
}
}
~
(5 of 12): parse error before `}´

Figure 8: :cnext.

The command :cprevious or :cNext goes to the previous error.
Similarly, the command :clast goes to the last error and :crewind goes to
the first. The :cnfile goes to first error message for the next file (see Figure
9).

int sub(int i)
{
 return (i * j)
}
~
~
~
~
~
~
(7 of 12): `j' undeclared (first use in this function)

Figure 9: :cnfile command

If you forget what the current error is, you can display it using the
following command:

:cc

If you have already run make and generated your own error file, you can
tell Vim about it by using the :cfile error-file command. Where error-
file is the name of the output of the make command or compiler. If the error-
file is not specified, the file specified by the 'errorfile' option is used.

Another command which may be of use to you is the :copen command. It
opens a new window containing a list of errors and lets you select the error you
want to examine by moving to it and pressing <enter>.

Page 187 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Finally the :help command can be used to get documentation on all the
commands presented here.

Hack 123: Automatically Indenting Code

The Problem: Indenting C++ programs is a chore.

The Hack: Let Vim do it automatically.

The Vim editor contains a very smart indentation system. To access it all
you have to do is turn it on with the command:

:set cindent

By default the indentation size is 8 spaces. If you wish something different,
like for example an indentation size of 4, you need to execute this command:

:set shiftwidth=4

Again, these commands are frequently put in the $HOME/.vimrc file so
they are executed every time Vim starts.

Now when you type code as you press enter, the program will be indented
automatically. Figure 10 illustrates how 'cindent' works.

if (flag)
 do_the_work();

if (other_flag) {
 do_file () ;
 process_file();
}

Figure 10: cindent.

Note: You may not want to turn on 'cindent' for all types of files. It
would really mess up a text file. The following commands, when put in a .vimrc
file will turn on 'cindent' for C and C++ files only.

:filetype on
:autocmd FileType c,cpp :set cindent

Hack 124: Indenting Existing Blocks of Code

The Problem: You are give a legacy program which has been edited so
many times so as to make the indentation useless.

Page 188 Copyright 2008, Steve Oualline

Automatic indent

Automatic Unindent
Automatic Indent

Automatic Unindent

C++ Hackers Guide Steve Oualline

The Hack: Use Vim's internal indentation functionality to do the work for
you.

To indent a block of text using Vim execute the following commands:

1. Position the cursor on the first line to be indented.

2. Execute the V (upper case “v”) command to start “VISUAL LINE”
mode.

3. Move to the last line to be indented using any of the Vim movement
commands. The block to be indented will be highlighted. (See Figure 11.)

4. Execute the Vim command = to indent the highlighted text.

Page 189 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

// Code intentionally indented wrong
int do_it()
{
 if (today)
 do_today();
 do_now();
 do_required();
do_finish();
}

int main()
{
 do_it();
 return(0);
}

Press =. Result:

// Code intentionally indented wrong
int do_it()
{
 if (today)
 do_today();
 do_now();
 do_required();
 do_finish();
}

int main()
{
 do_it();
 return(0);
}

Figure 11: Indenting Code.

Hack 125: Use tags to Navigate the Code

The Problem: You've working on a bunch of code you're not familiar with
and wish to go through the code step by step. You've come to a call to
do_the_funny_bird and you want to see what this function does, but you
don't know where it's defined. How do navigate through the code effective in
such cases.

Page 190 Copyright 2008, Steve Oualline

Start here

Press V
Move to
here.

C++ Hackers Guide Steve Oualline

The Hack: Use the ctags24 command to generate a location file (called
tags) which Vim can use to locate function definitions.

You need to generate the tags file before you start editing. This is done
with the command

$ ctags *.cpp *.h

Now when you are in Vim and you want to go to a function definition, you
can jump to it by using the following command:

:tag do_the_funny_bird

This command will find the function even if it is another file. The CTRL-]
command jumps to the tag of the word that is under the cursor. This makes it
easy to explore a tangle of C++ code.

Suppose, for example, that you are in the function write_block. You can
see that it calls write_line. But what does write_line do? By putting the
cursor on the call to write_line and typing CTRL-], you jump to the definition
of this function (see Figure 12). The write_line function calls write_char. You
need to figure out what it does. So you position the cursor over the call to
write_char and press CTRL-]. Now you are at the definition of write_char
(see Figure 13).

24Make sure you get the extended version from http://ctags.sourceforge.net/

Page 191 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

void write_block(char line_set[])
{
 int i;
 for (i = 0; i < N_LINES; ++i)
 write_line(line_set[i]);
}

CTRL-] goes to the definition of write_line (switching files if needed).

The command :tag write_line does the same thing

void write_line(char line[]) CT
{ of w
 int i; if n
 for (i = 0; line[0] != '\0')
 write_char(line[i]);
}
~
"write_line.c" 6L,

Figure 12: Tag jumping with CTRL-].

void write_char(char ch)
{
 write_raw(ch);
}
~
"write_char.c" 4L, 48C

Figure 13: Jumping to the write_char tag.

The :tags command shows the list of the tags that you have traversed
through (see Figure 14).

Page 192 Copyright 2008, Steve Oualline

CTRL-] with cursor on
write_char gets us here

C++ Hackers Guide Steve Oualline

~
:tags
 # TO tag FROM line in file/text
 1 1 write_block 1 write_block.c
 2 1 write_line 5 write_block.c
 3 1 write_char 5 write_line.c
>
Press RETURN or enter command to continue

Figure 14: The :tags command.

Now to go back. The CTRL-T command goes the preceding tag. This
command takes a count argument that indicates how many tags to jump back.

So, you have gone forward, and now back. Let's go forward again. The
following command goes to the tag on the list:

:tag

You can prefix it with a count and jump forward that many tags. For
example:

:3tag

Figure 15 illustrates the various types of tag navigation.

Page 193 Copyright 2008, Steve Oualline

:tag write_block

CTRL-] (on write_line)
CTRL-] (on write_char)

write_block write_line write_char

CTRL-T

:tag2CTRL-T
:2tag

C++ Hackers Guide Steve Oualline

Figure 15: Tag navigation.

Hack 126: You Need to Find the Location of Procedure for
Which You Only Know Part of the Name

The Problem: You "sort of " know the name of the procedure you want to
find? This is a common problem for Microsoft Windows programmers because of
the extremely inconsistent naming convention of the procedures in the Windows
API. UNIX programmers fare no better. Only the inconsistency in naming
conversions is consistent; the only problem is that UNIX likes to leave letters out
of system call names (for example, creat).

The Hack: Use the :tag command to search for procedures using a
regular expression.

If a procedure name begins with /, the :tag command assumes that the
name is a regular expression. If you want to find a procedure named "something
write something," for example, you can use the following command:

:tag /write

This finds all the procedures with the word write in their names and
positions the cursor on the first one. If you want to find all procedures that
begin with read, you need to use the following command:

:tag /^read

If you are not sure whether the procedure is DoFile, do_file, or Do_File,
you can use this command:

:tag /DoFile\|do_file\|Do_File

or

:tag /[Dd]o_\=[Ff]ile

These commands can return multiple matches. You can get a list of the
tags with the following command:

:tselect name

Figure 16 shows the results of a typical :tselect command.

Page 194 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

~
 # pri kind tag file
> 1 F C f write_char write_char.c
 void write_char(char ch)
 2 F f write_block write_block.c
 void write_block(char line_set[])
 3 F f write_line write_line.c
 void write_line(char line[])
 4 F f write_raw write_raw.c
 void write_raw(char ch)
Enter nr of choice (<CR> to abort):

Figure 16: :tselect command.

The first column is the number of the tag. The second column is the
Priority column. This contains a combination of three letters.

F Full match (if missing, a case-ignored match)

S Static tag (if missing, a global tag)

F Tag in the current file

The last line of the :tselect command gives you a prompt that enables
you to enter the number of the tag you want. Or you can just press Enter (<CR>
in Vim terminology) to leave things alone.

The g] command does a :tselect on the identifier under the cursor.
The :tjump command works just like the :tselect command, except if the
selection results in only one item, it is automatically selected. The gCTRL-]
command does a :tjump on the word under the cursor. A number of other
related commands relate to this tag selection set, including the following:

:count tnext Go to the next tag

:count tprevious Go to the previous tag

:count tNext Go to the next tag

:count trewind Go to the first tag

:count tlast Go to the last tag

Figure 17 shows how to use these commands to navigate between
matching tags of a :tag or :tselect command.

Page 195 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Figure 17: Tag navigation.

Hack 127: Use :vimgrep to Search for Variables or Functions

The Problem: You want to discover every place that a variable is used.

The Hack: Use Vim's internal :vimgrep command to do the searching for
you.

The :vimgrep command acts much like :make. It runs the external
program grep and captures the output. To find all occurrences of the variable
ground_point, for example, you use this command:

:vimgrep /\<ground_point\>/ **/*.cpp

The \<...\> tells Vim to look for full words only. ground_point is the
string you are looking for. Finally, there is the list of files to search through is all
directories (**) and all C++ files (*.cpp). Figure 18 shows the results.

Page 196 Copyright 2008, Steve Oualline

:tag /write

:tnext

write_block write_line write_char

:tlast
:trewind

:tnext

:tprevious

:tnext

C++ Hackers Guide Steve Oualline

 ++i;
 return (0);
}
}

main.cpp:5: int i=3;
main.cpp:7: ++i;
sub.cpp:1:int sub(int i)
sub.cpp:3: return (i * j)
(1 of 4): : int i=3;
Press RETURN or enter command to continue

Figure 18: :vimgrep output.

Note: The grep program knows nothing about C++ syntax, so it will find
ground_point even it occurs inside a string or comment.

You can use the :cnext, :cprevious, and :cc commands to page
through the list of matches. Also :crewind goes to the first match and :clast
to the last. Finally, the following command goes to the first match in the next file:

:cnfile

Hack 128: Viewing the Logic of Large Functions

The Problem: You've got legacy code that looks like:

if (flag) {
 start_of_long_code();
 // 1,834 more lines of code
 end_of_long_code();
} else {
 return (error_code);
}

How do you figure out the “logic” of such a function?

The Hack: Use the Vim fold feature.

Start by putting the cursor on the first line of the confusing code.

if (flag) {
 start_of_long_code();
 // 1,834 more lines of code
 end_of_long_code();
} else {
 return (error_code);

Page 197 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

}

Press V to start visual line mode. The line will be highlighted.

if (flag) {
 start_of_long_code();
 // 1,834 more lines of code
 end_of_long_code();
} else {
 return (error_code);
}

Go to the end of the long code. You can do several ways:

1. Move the cursor using the normal cursor movement commands such
as j (down) or / (search).

2. Go up to the curly bracket and press % (find matching bracket), then
move up a line.

3. Enter the operator pending command iB to select the text inside the
{}.

When you finish moving the cursor the lines inside the {} will be
highlighted.

if (flag) {
 start_of_long_code();
 // 1,834 more lines of code
 end_of_long_code();
} else {
 return (error_code);
}

Now enter the command zf to “fold” the highlighted text. The 1,836 lines
of code are now replaced by a single line telling you that a fold has been
placed here.

if (flag) {
+--- 1836 lines: start_of_long_code(); ------------------+
} else {
 return (error_code);
}

The editor nows gives you an idea what the logic of the function looks like.

If you want to see the text again, position the cursor on the fold line and
type zo.

Page 198 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

There is a lot going on here, so you may wish to browse the help text. To
get help on the commands documented execute the following commands:

Help Command Topic

:help V Visual Mode (the highlighting)

:help % Match {} (and other things)

:help v_iB Select inner braces (text between {})

zf Create fold

zo Remove (open) fold

Hack 129: View Logfiles with Vim

The Problem: You've got a log file, but it's 18,373 lines too long. How do
you cut it down to size.

The Hack: Use your text editor. It's an ideal tool for text manipulation and
browsing.

Let's take a look at some of the things you can do with the Vim editor.
We'll assume you're already familiar with the simple commands like search and
cut.

But there are other commands we can use. For example, let's suppose we
are only interested in lines containing the string “Frame Header”. We can tell
Vim to delete all lines except the ones containing “Frame Header” with the
following commands:

1. Go to the first line in the code (1G)

2. Start a operation to pipe the text through a filter command. The
portion of the text to be filtered that runs from the current cursor location
to the end of the file (!G). <Exclamation Point><Letter G>

3. Enter the filter command. In this case we are using grep to search
for lines so our filter command is: grep 'Frame Header'<enter>.

As one string this command is:

 1G!Ggrep 'Frame Header'<enter>

The result is a log file with just the information we are interested in, and if
we are lucky just the right amount of information to find the bug.

Page 199 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

There are lots of ways of manipulating text in Vim. Far too many to list
here.

The combination of extensive logs and a good text editor makes it easy to
locate and view the information we want. This non-standard use of a text editor
is one way a good hacker can think “out of the box” and make full use of the tools
available to him.

Page 200 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Chapter 13: Clever but Useless

Not all hacks have a practical use. Some hackers invent very clever ways
of doing things just to show off some very clever code so they can have bragging
rights. Not that this is an entirely useless endeavor. Figuring how to say
exchange the value of two variables without using a temporary requires you to
know a lot about some of the more obscure aspects of the computer and of
programming. And experimenting and learning these skills is one of the true
attributes of a good hacker.

Hack 130: Flipping a Variable Between 1 and 2

The Problem: A variable flag can have the value 1 or 2. If it is 1 change
it to 2 and if it is 2 change it to 1.

Now the most straight forward way of doing this is:

if (flag == 1) {
 flag = 2;
} else {
 flag = 1;
}

The paranoid hacker would use a switch and check for out of range values:

// This is the best and safest solution if we don't
// care about speed
switch (flag) {
 case 1:
 flag = 2;
 break;
 case 2:
 flag = 1;
 break;
 default:
 assert(“flag is not 1 or 2” == 0);
 abort(); // Make sure we stop
}

The previous bit of code is the preferred solution if we don't care about
speed and we wish to be both clear and paranoid.

But in this case our goal is to demonstrate how clever we are and produce
a very clever hack.

Page 201 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The Hack: The variable can be toggled between the two values with one
simple subtraction statement:

flag = 3 – flag;

You can now take a few seconds to verify the correctness of this statement.

This code functions however it is incomplete. If you must include clever
code in your program like this, please please include comments telling the
people that come after you what you've done.

// This clever piece of code flips the flag variable
// between the values of 1 and 2.
flag = 3 – flag;

This is almost the perfect hack. It is clever, it is small, it is extremely fast,
and it is clear (after the addition of the comment). Now if we could just find
some program we could use it in.

Hack 131: Swapping Two Numbers Without a Temporary

The Problem: How do you swap two variables without using a temporary.

The Hack: Use the following code:

void swap(int& a, int& b) {
 a ^= b;
 b ^= a;
 a ^= b;
}

This is the classic CS201 answer. But as hackers we are never content to
leave things alone. Because I'm a hacker I wanted to see how things operate in
the real world.

And I discovered another way of swapping variables without using a
temporary:

static void inline swap(int& a, int& b) {
 int tmp = a;
 a = b;
 b = a;
}

Now you might wonder how I can claim that this doesn't use a temporary
when I declare a temporary variable on the second line of the function. The trick
is that I declared this function inline and turned on optimization. This left the
compiler free to figure out the best way of swapping the two variables.

Page 202 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Let's take a look at what the optimizer did for us. The first test code looks
like:

int main()
{
 int a = 1;
 int b = 2;

 print(a,b);
 swap(a,b);
 print(a,b);
 return(0);
}

Running this through the compiler and taking a look at the assembly code
generated we can see that the compiler rewrote our main function:

 print(a,b);
 print(b,a);

The swap call was eliminated completely. So not only did the compiler
eliminate the temporary, it also eliminated all the code as well. You can't get
more optimized that that.

If we change our test to force the actual swapping of the variables we get
the following code:

 mov reg1, a
 mov reg2, b
 mov a, reg2
 mov b, reg1

Now registers don't count as temporary variables (at least if I'm doing the
counting) so again we have a case where we are swapping the variables without
a temporary.

This question lets us illustrate several attributes of a true hacker. The first
is a willingness to think outside the box. Anyone can look up the standard
answer on the Internet. But only a good hacker will ask the question “Hey, what
will happen if” and then perform a bunch of experiments answering that
question. If the hacker is really good you find yourself with an answer that is
surprising and much better than the “standard” answer.

Page 203 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 132: Reversing the Words In a String Without a
Temporary

The Problem: How do you reverse the word in a string without using a
temporary string.

The Solution: Reverse the string, then go through the string reversing the
words.

For example start with the string:

Now is the time

Reverse the entire string:

emit eht si woN

Then reverse the individual words:

time eht si woN
time the is woN
time the is Now

Turns out that moving a word from one end of a string to another is a
difficult operation. Reversing a string is simple. So instead of moving words to
their proper place, we reverse them in, then reverse the word to make it come
out the right way round.

The code is below:

#include <iostream>
#include <ctype.h>

// Given two character pointers, reverse
// the string between them
static void rev_chars(
 char* ptr1,
 char* ptr2
)
{
 char tmp;

 while (ptr1 < ptr2) {
 tmp = *ptr1;
 *ptr1 = *ptr2;
 *ptr2 = tmp;
 ptr1++;
 ptr2--;

Page 204 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 }
}
// Reverse the words in a string
// (Without a temporary)
void reverse(char* const str)
{
 // Reverse the entire string
 rev_chars(str, str + strlen(str)-1);

 // Pointer to the first character of a word
 // to reverse
 char* first_ptr = str;

 // Keep looping until we run out of string
 while (*first_ptr != '\0') {
 // Move up to the first letter of the word
 while (! isalpha(*first_ptr)) {
 if (*first_ptr == '\0')
 return;
 first_ptr++;
 }
 char* last_ptr; // The last letter of the word + 1

 // Find last letter
 for (last_ptr = first_ptr+1;
 isalpha(*last_ptr); ++last_ptr)
 continue;

 // Reverse word
 rev_chars(first_ptr, last_ptr-1);
 // Move to next
 first_ptr = last_ptr +1;
 }
}

Good hackers will look beyond the immediate problem and ask the
question “Why are you doing such a thing?” It may be that the words are being
consumed by some sort of command parser which needs them in reverse. If
that's true, then there's no reason to reverse the words, then break them apart in
the command parse. Just modify the command parser to break a string apart
into words in reverse order.

Great hackers not only are able to solve the problem before them, but look
beyond it and provide solutions that affect the bigger picture.

Page 205 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Government – The Anti-Hacker

A group of hackers were working for a government
contractor translating a bunch of code from one version
of JOVAL to another when they came across this very
badly written function.

The figured that they could rewrite it to be both cleaner
and more efficient. In order to make sure that their new
design worked with the existing code, they searched the
code to find every place where the function was called.

They found none. Nothing. The function was never
called.

So they went to the boss and said, “This function is never
used, we can get rid of it.”

The boss told them that he knew the function was never
used. It hadn't been called for at least three releases.
But because this was a government program, the cost of
doing the paperwork far exceeded the cost of paying
someone to update it.

Hack 133: Implementing a Double Linked List with a Single
Pointer

The Problem: How can you implement a doubly linked list using only a
single pointer for each link?

(This question was originally asked when memory cost $$$ instead of ¢ so
at the time it made sense.)

The Hack: Exclusive or (XOR) the forward and backward links and store
that value in the pointer:

node.link = next_ptr ^ prev_ptr;

When going through the list in a forward direction, you can reconstruct the
pointer to the next node using the pointer to the previous one.

cur_ptr = first_ptr;
prev_ptr = NULL;

while (cur_node != NULL) {
 // Do something with the current node

Page 206 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

 next_ptr = cur_ptr->link ^ prev_ptr;
 prev_ptr = cur_ptr;
 cur_ptr = next_ptr;
}

A similar system can be used to go through the list in reverse.

There are a few casts and a lot of details omitted from this code. Also I'm
going to let the reader figure out to insert and remove noted.

However these days, memory is cheap, programmers are expensive, and
it's far more cost effective to implement a double linked list as a double linked
list, so this is just an academic exercise.

Hack 134: Accessing Shared Memory Without a Lock

The Problem: How do you synchronize two processes which share
memory without using a test and set or lock instruction.

The Hack: There are several algorithms to do this. One of them is listed
below.

This algorithm uses the following code to enter the critical section and
access the shared resource:

1. Set a flag indicating that this process is now attempting to enter
the critical section.

2. Set the turn variable to indicate that this process wants in. The
turn variable will hold the ID of the last process to attempt entry.

3. If the other process wants the critical section and we were the last
one to access the turn variable, wait. (A CPU consuming spin wait is used
in this example.)

4. Do the critical stuff.

5. Set the flag to indicate that we are no longer in the critical section.

// Index for flag and turn variables
enum process {PROCESS_1 = 0, PROCESS_2 = 1};

// If true, I'm trying to go critical
volatile bool flag[2] = {false, false};

// Who's turn is it now

Page 207 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

volatile int turn = PROCESS_1;

void process_1()
{
 flag[PROCESS_1] = true;
 turn = PROCESS_1;
 while (flag[PROCESS_2] && (turn == PROCESS_1))
 continue; // do nothing

 do_critical();
 flag[PROCESS_1] = false;
}

void process_2()
{
 flag[PROCESS_2] = true;
 turn = PROCESS_2;
 while (flag[PROCESS_1] && (turn == PROCESS_2))
 continue; // do nothing

 do_critical();
 flag[PROCESS_2] = false;
}

As hackers we tend to think beyond the boundaries of the problem. In this
example we careful to use the volatile keyword to make sure that the memory
was actually changed and that the optimizer didn't play games with our code.

But hardware can play tricks on us too. Let's suppose these processes are
running on different CPUs. If the processors have caches, the changes to flag
and turn could be made in a local cache only and not copied to the shared
memory. If this is the case we need to add some cache flush instructions to this
system.

There are other questions to ask as well, such as why we don't have a some
sort of hardware locking mechanism, or at least a test and set instruction. There
are a lot of unanswered questions to think about.

But this problem is a good exercise when it comes to figuring out all the
funny things that can happen in multiple process programming. You have to be
aware that any process can run at any time and any shared variable can change
at any time to be really effective when it comes to this type of programming.

Page 208 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Hack 135: Answering the Object Oriented Challenge

The Problem: Some people are fanatical about their programming
methodology and refuse to acknowledge that any other system may be better.

A lot of people think that object oriented programming is the only way to
go and if everybody used object oriented design, all the world's programming
problems would be solved. As a long time hacker, I've lived through a number of
fads, including expert programming, artificial intelligence, extreme
programming, structured design, and many other. All of them promised to end
the world's programming problems. None of them ever did.

One object oriented proponent once issued a challenge. “There is not one
program that can not be made better through the use of objects,” he said. The
challenge, find such a program.

The Hack: The true command.

In order to be fair, I choose as an example a real program that does real
useful work. It's actually part of the Linux and UNIX standard command set.
The command is true.

It's job is to return a status of true to the operating system for use in
scripting. The following is a small example of shell scripting which uses this
command:

if [true]; then
 echo “It is true”
fi

Now here is the C++ which I wrote without using object oriented design:

int main()
{
 return (0);
}

I'm looking forward to seeing how the object oriented guru can make this
program better through the user of object.

Now some people might say I'm stretching the rules a bit. I am, but that's
what hackers are supposed to do. We test the limits of the world we live in and
sometimes we wind up making new limits.

We also don't lock ourselves into one technology just because someone
says it's good. It has to actually be good for us to use it. As hackers the only
thing we fanatical about is good code and will use anything to create it.

Page 209 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

There are some other things to note about this program. First the C
version of this code is exactly the same as the C++ one.

On UNIX this was originally implemented as a shell script containing 0
lines.

On my Solaris box, it is a shell script which has in it nothing but five
copyright notices, a warning telling me that the contents are unpublished
prosperity code, and a version number: 1.6. No commands.

The version number is most interesting, since the script contains no code.
What did they get wrong in versions 1.0 through 1.5 that got fixed in 1.6?

The version of the command that ships with Linux contains options. One
prints out the version number of the command, the other prints out a help text
that tells you that the only option is the one to print out the version number.
Incidentally the version number on my system is 5.2.1. Again one has to wonder
what was wrong with the previous versions?

So the true command serves two purposes. One it shows how absolute
statements such as “I can make it better with objects” aren't always true. And it
also shows how managers, copyright lawyers, and other forces can add needless
complexity to a program that the closest thing to a nothing program that I know
of.

Page 210 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix A: Hacker Quotes

The speed of a non-working program is irrelevant. -- Unknown.

Profanity is the one language all programmers know best. --
Unknown.

Don't believe the requirements, management, or the users. Program
as if they they don't know what they really want. Usually they don't. --
Steve Oualline

The purpose of a schedule is to tell you how late you really are. --
Unknown

Oualline's law of documentation: 90% of the time the documentation
will be lost. Out of the remaining 10%, 9% of the time it will be the
wrong version. The one time you have the correct documentation and
the correct version of the documentation, it will be written in Chinese.

O'Shea's law: Murphy was an optimist.

Its not possible for a program to meet requirements unless the
requirements have actually been defined. -- Steve Oualline

Its not possible to meet schedule unless you have one. -- Steve
Oualline

Why is there never enough time to do it right, but always enough time
to do it over. -- Unknown

The first 90% of your program will take 90% of your allocated time to
create. So will the last 10%. -- Steve Oualline

"To be or not to be, --that is the question.” Shakespeare on boolean
algebra. Hamlet, Act III, Scene 1.

“Bloody Instructions, which being taught, return to plague the
inventor,” Shakespeare on maintenance programming. Macbeth Act
1, Scene 6.

Grace Hopper

Inventor of the first compiler (COBOL) and well known for finding a moth
beaten to death by the contacts of a relay based computer. (This incident has
given rise to the legend (incorrect) that this was the first computer bug)

Page 211 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The wonderful thing about standards is that there are so many of
them to choose from.

"The most damaging phrase in the language is: We've always done it
this way."

If it's a good idea, go ahead and do it. It's much easier to apologize
than it is to get permission.

Linus Torvalds

Author of Linux.

Any program is only as good as it is useful.

I'm generally a very pragmatic person: that which works, works.

In many cases, the user interface to a program is the most important
part for a commercial company: whether the programs works
correctly or not seems to be secondary.

Linux tends to have fewer rules than other developments, and
anybody can chip in doing whatever they want.

Microsoft isn't evil, they just make really crappy operating systems.

The cyberspace earnings I get from Linux come in the format of
having a Network of people that know me and trust me, and that I can
depend on in return.

The memory management on the PowerPC can be used to frighten
small children.

See, you not only have to be a good coder to create a system like
Linux, you have to be a sneaky bastard too.

If you need more than 3 levels of indentation, you're screwed anyway,
and should fix your program.

You know you're brilliant, but maybe you'd like to understand what
you did 2 weeks from now.

Talk is cheap. Show me the code.

Really, I'm not out to destroy Microsoft. That will just be a completely
unintentional side effect.

Page 212 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

The fact that ACPI was designed by a group of monkeys high on LSD,
and is some of the worst designs in the industry obviously makes
running it at any point pretty damn ugly.

Given enough eyeballs, all bugs are shallow.

I will, in fact, claim that the difference between a bad programmer
and a good one is whether he considers his code or his data
structures more important. Bad programmers worry about the code.
Good programmers worry about data structures and their
relationships.

Page 213 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix B: You Know You're a Hacker If...

You know you're a hacker if...

your house has more computers in it than TVs.

you know at least seven people by their e-mail address, but have forgotten
their names.

you've watched a movie of two people making love on a computer desk and
tried to figure out what kind of computer was in the background.

you have memorized the number of at least one pizza place which will
deliver to the computer lab after midnight,

you've lived on ramen noodles for more than a week.

you've disassembled a program to see why it ticked

you've gone up to a complete stranger and asked them what sort of laptop
they are using,

everyone in your family comes to you with their computer problems

you taken off the covers of all your computers at least once.

you named your daughter after Grace Hopper

Page 214 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Grace Oualline (Age 3)

you've ever use the term TCP/IP during a date.

your wife has stood naked next to the computer and asked you "Do you
want to work on the computer or make love?" and you had to think about the
answer.

you thought about the answer then decided to fix just one more bug.

you've edited a program on a laptop you brought to Disneyland.

played computer games for less than an hour before trying to disassemble
the thing to figure out how it worked.

once you figured out how the game worked, decided to improve it.

wired a household appliance to a computer.

ever said “I now know the difference between & and &&” to someone who
understood exactly what you meant. (& is pronounced “and”.)

Page 215 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix C: Hacking Sins

Using the letters O, l, I as variable names

In case you didn't notice we are talking about the upper case letter “O”,
the upper case letter “I” and the lower case letter (l) (Lower case L).

The fact that I have to include the previous sentence in this book should
tell you how easily it is to mistake these variable for something else. For
example, can you tell the difference between the letter 0 and the number O. If
you can, then you know I got them backwards in the previous sentence.

Not Sharing Your Work

A big part of being a hacker is helping other people become hackers, or at
least help them make more effective use of their computers. The GPL is all abort
sharing. You can use the work of others as long as you share your work with
them.

No Comments

I've heard that the next great programming language is going to be so easy
to write in that you won't need comments. Unfortunately I heard that 30 years
ago and the language in question was FORTRAN II. They also said it about
COBOL. They were wrong.

English is still one of the best ways of communicating with people. Not
using it to explain what you do means that you've created a cryptic mess which
can't be shared by other people.

IncOnsisTen c Y

When you program consistently you create patterns which allow other
people to easily understand and augment your code. Inconsistency creates
confusion and disrupts the work process.

(Inconsistency is book writing means that you have to explain to copy
editor why your strange formatting is really just an attempt to humor. They keep
missing the joke and trying to fix it.)

Page 216 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Duplicating Code (Programming by Cut and Paste)

There is a type of programmer out there who when faced with a problem,
will simply use his text editor to copy some code that does something similar,
make a few changes, and release his solution. 95% of his “new” code is copied
and 5% is original work (if that much). This type of programmer is called a hack.
(In spite of the similarities in the names, “hack” and “hacker” are complete
opposites.)

A hacker modifies the existing function to make it more general and more
useful to a large audience.

Cut and paste programming is one way of creating large programs which
are impossible to maintain. Hackers like small, well crafted, well designed code,
instead of quickly constructed large messes.

Page 217 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix D: Open Source Tools For Hackers

ctags – Function Indexing System

The original UNIX ctags was rather limited, so Exuberant Ctags was
created. It has many extended features beyond the basic ctags functionality.

Written by Darren Hiebert it can be found at http://ctags.sourceforge.net/.

doxygen

A system for embedding documentation inside a C or C++ program (as
well as some other languages.) When used on a whole system this is a very
effective tool for generating code documentation.

Available from http://www.doxygen.org

FlawFinder

Analyzes code for potential security problems.

Available from http://www.dwheeler.com/flawfinder/

gcc – The GNU C and C++ compiler suite

This is a high quality with lots of extensions which make programming
easier and more reliable. It was written by hackers for hackers and it shows.

Available at http://www.gnu.org.

lxr

Linux cross reference. Actually this tool will cross reference any program
and produce a set of hyper-linked files which make it easy to navigate through
large programs.

The program can obtained at: http://lxr.linux.no/.

Page 218 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Perl (for perldoc and related tools) – Documentation System

Perl contains tools for manipulating documents in POD (Plain Old
Documentation) format. This format is the standard way of documenting Perl
code, but it works for C and C++ as well.

You can get perl from http://www.perl.org.

valgrind (memory checking tools)

A tool which checks for memory corruption and as well as the use of
uninitialized memory.

You can download the program from: http://www.valgrind.org.

Vim (Vi Improved)

A text editor. Having said that, it does its job very very well and contains
lots of features designed to make programming easier. Unlike integrated
development environments (IDEs) which try do multiple jobs, Vim edits text and
that's it. True it does have interfaces to compilers and other tools, but its main
job is text editing.

The learning curve is a little steep for Vim but once you learn how to use it
you can edit files quicker than any other editor.25

Vim can be downloaded from http://www.vim.org.

25People who love the EMACS editor and others may dispute this claim.

Page 219 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix E: Safe Design Patterns

1. Eliminate side effect. Put ++ and -- on lines by themselves.

++i; // Good
--i; // Good

i++; // Good but inefficient (See ###)

a = i++; // Bad
a[i] = i++; // VERY bad

2. Don't put assignment statements inside other statements

// Bad and probably wrong
if (x = 5) ...

// Good
x = 5;
if (x != 0) ...

3. Defining Constants

Use const if possible:

const int WIDTH = 50;

If you must use #define put the value in ():

#define AREA (50 * 10)

4. Use inline functions instead of parameterized macros

inline int square(int i) { return (i*i); }

If you must use parameterized macros, put parentheses () around each
argument.

#define SQUARE(i) ((i) * (i))

Page 220 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

5. Use {} to eliminate ambiguous code

// Very bad
if (a) if (b) do_alpha() else do_beta();

// Good and indented too
if (a) {
 if (b) {
 do_alpha();
 } else {
 do_beta();
 }
}

Some people (especially Perl programmers) say you should always include
the curly braces.

6. Be obvious about everything you do, even nothing

for (i = 0; buffer[i] != 'x'; ++i)
 continue;

switch (state) {
 case 1:
 do_stage_1();
 // Fall throught
 case 2:
 do_stage_2();
 break;
 default:
 // Should never happen
 assert(“Impossible state” == 0);
 abort();
}

7. Always check for the default case in a switch

See above.

8. Precedence Rules

1 Multiply (*) and divide (/) come before addition (+) and subtraction (-).

Page 221 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

2 Put parentheses () around everything else.

9. Header Files

Always include your own header file.

/* File: report.c */
...
#include “report.h”

Protect against double inclusion:

/* File report.h */
#ifndef __REPORT_H__
#define __REPORT_H__
//
#endif /* __REPORT_H__ */

10. Check User Input

When checking user input always check for what's permitted, never check
for what's excluded. That way if you make a mistake you may accidentally
prevent the inclusion of some good data, but you don't let bad data through.

11. Array Access

assert((index >= 0) &&
 (index < (sizeof(array) / sizeof(array[0])));
value = array[index]; // or
array[index] = value;

12. Copying A String

strncpy(dest, source, sizeof(dest));

13. String Concatenation

strncat(dest, source, sizeof(dest) – strlen(dest));
dest[sizeof(dest)-1] = '\0';

14. Copying Memory

memcpy(dest, source, sizeof(dest));

15. Zeroing memory

memset(dest, '\0', sizeof(dest));

Page 222 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

16. Finding the Number of Elements in an Array

n_elements = sizeof(array) / sizeof(array[0]);

17. Using gets

Don't use gets. There is no way to make it safe. Use fgets instead.

18. Using fgets

fgets(string, sizeof(string), in_file);

19. When creating opaque types, make them checkable by the
compiler

struct font_handle {
 int handle;
};

struct window_handle {
 int handle;
}

struct memory_handle {
 int handle;
}

20. Zero pointers after delete/free to avoid reuse

delete ptr;
ptr = NULL;

free(b_ptr);
b_ptr = NULL;

21. Always check for self assignment

class a_class {
 public:
 a_class& operator = (a_class& other) {
 if (&other == this) return (other);
 }

22. Use snprintf to create string

snprintf(buffer, sizeof(buffer), “file.%d”, sequence);

Page 223 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Page 224 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

Appendix F: Creative Commons License

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF
THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE
WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY
USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU
ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO
THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE
LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue,
anthology or encyclopedia, in which the Work in its entirety in unmodified
form, along with one or more other contributions, constituting separate
and independent works in themselves, are assembled into a collective
whole. A work that constitutes a Collective Work will not be considered a
Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the
Work and other pre-existing works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture version, sound
recording, art reproduction, abridgment, condensation, or any other form
in which the Work may be recast, transformed, or adapted, except that a
work that constitutes a Collective Work will not be considered a Derivative
Work for the purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the synchronization of
the Work in timed-relation with a moving image ("synching") will be
considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual, individuals, entity or entities that
offers the Work under the terms of this License.

d. "Original Author" means the individual, individuals, entity or
entities who created the Work.

e. "Work" means the copyrightable work of authorship offered under
the terms of this License.

Page 225 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

f. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this License with
respect to the Work, or who has received express permission from the
Licensor to exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or
restrict any rights arising from fair use, first sale or other limitations on the
exclusive rights of the copyright owner under copyright law or other applicable
laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual
(for the duration of the applicable copyright) license to exercise the rights in the
Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more
Collective Works, and to reproduce the Work as incorporated in the
Collective Works;

b. to create and reproduce Derivative Works provided that any such
Derivative Work, including any translation in any medium, takes reasonable
steps to clearly label, demarcate or otherwise identify that changes were
made to the original Work. For example, a translation could be marked
"The original work was translated from English to Spanish," or a
modification could indicate "The original work has been modified.";;

c. to distribute copies or phonorecords of, display publicly, perform
publicly, and perform publicly by means of a digital audio transmission the
Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform
publicly, and perform publicly by means of a digital audio transmission
Derivative Works.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor
waives the exclusive right to collect, whether individually or, in the
event that Licensor is a member of a performance rights society (e.g.
ASCAP, BMI, SESAC), via that society, royalties for the public
performance or public digital performance (e.g. webcast) of the
Work.

Page 226 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

ii. Mechanical Rights and Statutory Royalties. Licensor
waives the exclusive right to collect, whether individually or via a
music rights agency or designated agent (e.g. Harry Fox Agency),
royalties for any phonorecord You create from the Work ("cover
version") and distribute, subject to the compulsory license created by
17 USC Section 115 of the US Copyright Act (or the equivalent in
other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of
doubt, where the Work is a sound recording, Licensor waives the exclusive
right to collect, whether individually or via a performance-rights society
(e.g. SoundExchange), royalties for the public digital performance (e.g.
webcast) of the Work, subject to the compulsory license created by 17 USC
Section 114 of the US Copyright Act (or the equivalent in other
jurisdictions).

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make such
modifications as are technically necessary to exercise the rights in other media
and formats. All rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made
subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly
digitally perform the Work only under the terms of this License, and You
must include a copy of, or the Uniform Resource Identifier for, this License
with every copy or phonorecord of the Work You distribute, publicly display,
publicly perform, or publicly digitally perform. You may not offer or impose
any terms on the Work that restrict the terms of this License or the ability
of a recipient of the Work to exercise the rights granted to that recipient
under the terms of the License. You may not sublicense the Work. You must
keep intact all notices that refer to this License and to the disclaimer of
warranties. When You distribute, publicly display, publicly perform, or
publicly digitally perform the Work, You may not impose any technological
measures on the Work that restrict the ability of a recipient of the Work
from You to exercise the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work apart from
the Work itself to be made subject to the terms of this License. If You
create a Collective Work, upon notice from any Licensor You must, to the
extent practicable, remove from the Collective Work any credit as required
by Section 4(b), as requested. If You create a Derivative Work, upon notice
from any Licensor You must, to the extent practicable, remove from the
Derivative Work any credit as required by Section 4(b), as requested.

Page 227 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

b. If You distribute, publicly display, publicly perform, or publicly
digitally perform the Work (as defined in Section 1 above) or any Derivative
Works (as defined in Section 1 above) or Collective Works (as defined in
Section 1 above), You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and provide,
reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the
Original Author and/or Licensor designate another party or parties (e.g. a
sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work
if supplied; to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with the Work,
unless such URI does not refer to the copyright notice or licensing
information for the Work; and, consistent with Section 3(b) in the case of a
Derivative Work, a credit identifying the use of the Work in the Derivative
Work (e.g., "French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). The credit
required by this Section 4(b) may be implemented in any reasonable
manner; provided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear, if a credit for all
contributing authors of the Derivative Work or Collective Work appears,
then as part of these credits and in a manner at least as prominent as the
credits for the other contributing authors. For the avoidance of doubt, You
may only use the credit required by this Section for the purpose of
attribution in the manner set out above and, by exercising Your rights
under this License, You may not implicitly or explicitly assert or imply any
connection with, sponsorship or endorsement by the Original Author,
Licensor and/or Attribution Parties, as appropriate, of You or Your use of
the Work, without the separate, express prior written permission of the
Original Author, Licensor and/or Attribution Parties.

5. Representations, Warranties and Disclaimer

Page 228 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN
WRITING, LICENSOR OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT
OF ANY RIGHTS HELD IN THE LICENSED WORK BY THE LICENSOR. THE
LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE,
MARKETABILITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR
NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR
THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Derivative Works (as defined in
Section 1 above) or Collective Works (as defined in Section 1 above) from
You under this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this
License.

b. Subject to the above terms and conditions, the license granted here
is perpetual (for the duration of the applicable copyright in the Work).
Notwithstanding the above, Licensor reserves the right to release the Work
under different license terms or to stop distributing the Work at any time;
provided, however that any such election will not serve to withdraw this
License (or any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

Page 229 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

a. Each time You distribute or publicly digitally perform the Work (as
defined in Section 1 above) or a Collective Work (as defined in Section 1
above), the Licensor offers to the recipient a license to the Work on the
same terms and conditions as the license granted to You under this
License.

b. Each time You distribute or publicly digitally perform a Derivative
Work, Licensor offers to the recipient a license to the original Work on the
same terms and conditions as the license granted to You under this
License.

c. If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action by the
parties to this agreement, such provision shall be reformed to the minimum
extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing and
signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified here.
Licensor shall not be bound by any additional provisions that may appear in
any communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Commons
will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work
is licensed under the CCPL, Creative Commons does not authorize the
use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,

Page 230 Copyright 2008, Steve Oualline

C++ Hackers Guide Steve Oualline

this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

Page 231 Copyright 2008, Steve Oualline

http://creativecommons.org/
http://creativecommons.org/
http://creativecommons.org/

	Real World Hacks
	Hack 1: Make Code Disappear
	Hack 2: Let Someone Else Write It
	Hack 3: Use the const Keyword Frequently For Maximum Protection
	Hack 4: Turn large parameter lists into structures
	Hack 5: Defining Bits
	Hack 6: Use Bit fields Carefully
	Hack 7: Documenting bitmapped variables
	Hack 8: Creating a class which can not be copied
	Hack 9: Creating Self-registering Classes
	Hack 10: Decouple the Interface and the Implementation
	Hack 11: Learning From The Linux Kernel List Functions
	Hack 12: Eliminate Side Effects
	Hack 13: Don't Put Assignment Statements Inside Any Other Statements
	Hack 14: Use const Instead of #define When Possible
	Hack 15: If You Must Use #define Put Parenthesis Around The Value
	Hack 16: Use inline Functions Instead of Parameterized Macros Whenever Possible
	Hack 17: If You Must Use Parameterized Macros Put Parenthesis Around The arguments
	Hack 18: Don't Write Ambiguous Code
	Hack 19: Don't Be Clever With the Precedence Rules
	Hack 20: Include Your Own Header File
	Hack 21: Synchronize Header and Code File Names
	Hack 22: Never Trust User Input
	Hack 23: Don't use gets
	Hack 24: Flush Debugging
	Hack 25: Protect array accesses with assert
	Hack 26: Use a Template to Create Safe Arrays
	Hack 27: When Doing Nothing, Be Obvious About It
	Hack 28: End Every Case with break or /* Fall Through */
	Hack 29: A Simple assert Statements For Impossible Conditions
	Hack 30: Always Check for The Impossible Cases In switches
	Hack 31: Create Opaque Types (Handles) Which can be Checked at Compile Time
	Hack 32: Using sizeof When Zeroing Out Arrays
	Hack 33: Use sizeof(var) Instead of sizeof(type) in memset Calls
	Hack 34: Zero Out Pointers to Avoid Reuse
	Hack 35: Use strncpy Instead of strcpy To Avoid Buffer Overflows
	Hack 36: Use strncat instead of strcat for safety
	Hack 37: Use snprintf To Create Strings
	Hack 38: Don't Design in Artificial Limits
	Hack 39: Always Check for Self Assignment
	Hack 40: Use Sentinels to Protect the Integrity of Your Classes
	Hack 41: Solve Memory Problems with valgrind
	Hack 42: Finding Uninitialized Variables
	Hack 29: Valgrind Pronunciation
	Hack 43: Locating Pointer problems ElectricFence
	Hack 44: Dealing with Complex Function and Pointer Declarations
	Hack 45: Create Text Files Instead of Binary Ones Whenever Feasible
	Hack 46: Use Magic Strings to Identify File Types
	Hack 47: Use Magic Numbers for Binary Files
	Hack 48: Automatic Byte Ordering Through Magic Numbers
	Hack 49: Writing Portable Binary Files
	Hack 50: Make You Binary Files Extensible
	Hack 51: Use magic numbers to protect binary file records
	Hack 52: Know When to Use _exit
	Hack 53: Mark temporary debugging messages with a special set of characters.
	Hack 54: Use the Editor to Analyze Log Output
	Hack 55: Flexible Logging
	Hack 56: Turn Debugging On and Off With a Signal
	Hack 57: Use a Signal File to Turn On and Off Debugging
	Hack 58: Starting the Debugger Automatically Upon Error
	Hack 59: Making assert Failures Start the Debugger
	Hack 60: Stopping the Program at the Right Place
	Hack 61: Creating Headings within Comment
	Hack 62: Emphasizing words within a paragraph
	Hack 63: Putting Drawings In Comments
	Hack 64: Providing User Documentation
	Hack 65: Documenting the API
	Hack 66: Use the Linux Cross Reference to Navigate Large Coding Projects
	Hack 67: Using the Pre-processor to Generate Name Lists
	Hack 68: Creating Word Lists Automatically
	Hack 69: Preventing Double Inclusion of Header Files
	Hack 70: Enclose Multiple Line Macros In do/while
	Hack 71: Use #if 0 to Remove Code
	Hack 72: Use #ifndef QQQ to Identify Temporary Code
	Hack 73: Use #ifdef on the Function Not on the Function Call to Eliminate Excess #ifdefs
	Hack 74: Create Code to Help Eliminate #ifdef Statements From Function Bodies
	Hack 75: Don't Use any “Well Known” Speedups Without Verification
	Hack 76: Use gmake -j to speed up compilation on dual processor machines
	Hack 77: Avoid Recompiling by Using ccache
	Hack 78: Using ccache Without Changing All Your Makefiles
	Hack 79: Distribute the Workload With distcc
	Hack 80: Don't Optimize Unless You Really Need to
	Hack 81: Use the Profiler to Locate Places to Optimize
	Hack 82: Avoid the Formatted Output Functions
	Hack 83: Use ++x Instead of x++ Because It's Faster
	Hack 84: Optimize I/O by Using the C I/O API Instead of the C++ One
	Hack 85: Use a Local Cache to Avoid Recomputing the Same Result
	Hack 86: Use a Custom new/delete to Speed Dynamic Storage Allocation
	Anti-Hack 87: Creating a Customized new / delete Unnecessarily
	Anti-Hack 88: Using shift to multiple or divide by powers of 2
	Hack 89: Use static inline Instead of inline To Save Space
	Hack 90: Use double Instead of Float Faster Operations When You Don't Have A Floating Point Processor
	Hack 91: Tell the Compiler to Break the Standard and Force it To Treat float as float When Doing Arithmetic
	Hack 92: Fixed point arithmetic
	Hack 93: Verify Optimized Code Against the Unoptimized Version
	Case Study: Optimizing bits_to_bytes
	Hack 94: Designated Structure Initializers
	Hack 95: Checking printf style Arguments Lists
	Hack 96: Packing structures
	Hack 97: Creating Functions Who's Return Shouldn't Be Ignored
	Hack 98: Creating Functions Which Never Return
	Hack 99: Using the GCC Heap Memory Checking Functions to Locate Errors
	Hack 100: Tracing Memory Usage
	Hack 101: Generating a Backtrace
	Anti-Hack 102: Using “#define extern” for Variable Declarations
	Anti-Hack 103: Use , (comma) to join statements
	Anti-Hack 104: if (strcmp(a,b))
	Anti-Hack 105: if (ptr)
	Anti-Hack 106: The “while ((ch = getch()) != EOF)” Hack
	Anti-Hack 107: Using #define to Augment the C++ Syntax
	Anti-Hack 108: Using BEGIN and END Instead of { and }
	Anti-Hack 109: Variable Argument Lists
	Anti-Hack 110: Opaque Handles
	Anti-Hack 111: Microsoft (Hungarian) Notation
	Hack 112: Always Verify the Hardware Specification
	Hack 113: Use Portable Types Which Specify Exactly How Wide Your Integers Are
	Hack 114: Verify Structure Sizes
	Hack 115: Verify Offsets When Defining the Hardware Interface
	Hack 116: Pack Structures To Eliminate Hidden Padding
	Hack 117: Understand What the Keyword volatile Does and How to Use It.
	Hack 118: Understand What the Optimizer Can Do To You
	Hack 119: In Embedded Programs, Try To Handle Errors Without Stopping
	Hack 120: Detecting Starvation
	Hack 121: Turning on Syntax Coloring
	Hack 122: Using Vim's internal make system
	Hack 123: Automatically Indenting Code
	Hack 124: Indenting Existing Blocks of Code
	Hack 125: Use tags to Navigate the Code
	Hack 126: You Need to Find the Location of Procedure for Which You Only Know Part of the Name
	Hack 127: Use :vimgrep to Search for Variables or Functions
	Hack 128: Viewing the Logic of Large Functions
	Hack 129: View Logfiles with Vim
	Hack 130: Flipping a Variable Between 1 and 2
	Hack 131: Swapping Two Numbers Without a Temporary
	Hack 132: Reversing the Words In a String Without a Temporary
	Hack 133: Implementing a Double Linked List with a Single Pointer
	Hack 134: Accessing Shared Memory Without a Lock
	Hack 135: Answering the Object Oriented Challenge
	Grace Hopper
	Linus Torvalds
	Using the letters O, l, I as variable names
	Not Sharing Your Work
	No Comments
	IncOnsisTencY
	Duplicating Code (Programming by Cut and Paste)
	ctags – Function Indexing System
	doxygen
	FlawFinder
	gcc – The GNU C and C++ compiler suite
	lxr
	Perl (for perldoc and related tools) – Documentation System
	valgrind (memory checking tools)
	Vim (Vi Improved)
	License
	Creative Commons Notice

