IBM InfoSphere DataStage and QualityStage
Version 11 Release 3

Connectivity Guide for Oracle
Databases

<||I

IBM InfoSphere DataStage and QualityStage
Version 11 Release 3

Connectivity Guide for Oracle
Databases

..ll

Note
Before using this information and the product that it supports, read the information in ['Notices and trademarks” on page]

© Copyright IBM Corporation 2008, 2014.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Connector Migration Tool 1
Migrating jobs to use connectors. .1
Using the user interface to migrate]obs .2
Using the command line to migrate jobs . .3
Deprecated stages . 6
Chapter 2. Configuring access to Oracle
database . -9
Configuring access to Oracle databases 9
Testing database connections by using the ISA the
tool . . . 10
Setting the hbrary path env1ronment varlable . . 10
Setting the library path environment variable in
the dsenv file. .11
Setting the library path env1ronment vanable in
Windows . .12
Chapter 3. Oracle connector . 13
Setting required user privileges. . . .13
Designing jobs that use the Oracle Connector . . 14
Importing Oracle metadata . .15
Defining a job that includes the Oracle connector 15
Defining a connection to an Oracle database . 16
Reading data from an Oracle database .17
Writing data to an Oracle database . 20
Looking up data in an Oracle database . . 26
Generating SQL statements in the connector at
design time . . .30
Validating SQL statements in the Connector at
design time . .31
Troubleshooting the Oracle Connector .32
Oracle environment logging . .32
Debug and trace messages . .32
Oracle connector runs in sequential mode when a
reject link has a constraint violation reject
condition . . 33
Reference . . . 34
Runtime mapplngs between InfoSphere
DataStage columns and SQL statement
parameters . . 34
Data type mapping and Oracle data types . . 36
Properties for the Oracle connector . 46
Runtime column propagation . 62
Partitioned read methods. . 63
Oracle connector partition type. . 69
Supported write methods. .71
Reject conditions .72
White space characters, NULL values, and empty
string values . o . 74
Dictionary views .74
Exceptions table . . 76
Environment variables that the Oracle Connector
uses . .77

© Copyright IBM Corp. 2008, 2014

Chapter 4. Oracle Enterprise stage.
Accessing Oracle databases . .
Handling special characters (# and $)
Loading tables
Data type conversion for wrltlng to Oracle
Data type conversion for reading from Oracle .
Examples . .
Looking up an Oracle table .
Updating an Oracle table .
Must Do's .
Updating an Oracle database .
Deleting rows from an Oracle database .
Loading an Oracle database .
Reading data from an Oracle database
Performing a direct lookup on an Oracle
database table
Performing an in-memory lookup on an Oracle

. 79
. 80
.81
. 82
. 82
. 84
. 85
. 85
. 87
. 87
. 88
. 88
. 89
. 89

. 90

database table . 90
Stage page. . . .91
Advanced tab .91
NLS Map tab. .91
Inputs page .o .92
Input Link Propertles tab .92
Partitioning tab . .99
Outputs page .o . 101
Output Link Propertles tab . 101
Chapter 5. Oracle OCI stage . . 105
Functionality of the Oracle OCI stage . . 106

Configuration requirements of the Oracle OCI
stage . . 107
Oracle OCI stage edltor . . 108
Defining the Oracle connection . 108
Connecting to an Oracle database . 108
Defining character set mapping . 109
Defining input data . 109
The input page. . 109
Reject row handling . . 115
Writing data to Oracle . . . 115
SQL statements and the Oracle OCI stage . . 115
Accessing the SQL builder from a server stage 116
Writing data with generated SQL statements . . 116
Writing data with user-defined SQL statements 117
Defining output data . . 117
The output page . 118
Reading data from Oracle . . 120
Using generated queries. . 121
Example of an SQL SELECT statement . 121
Using user-defined queries . . 121
DATE data type considerations . 122
Oracle data type support 122
Character data types . 122
Numeric data types . . . 123
Additional numeric data types for Oracle . . 123
Date data types. . 125
iii

Miscellaneous data types
Handling $ and # characters

Chapter 6. Oracle OCI Load stage

Functionality of the Oracle OCI Load stage
Configuration requirements of the Oracle OCI
Load stage

Operating system requlrement

Oracle Enterprise Manager .
Load modes . .

Automatic load mode

Manual load mode
Loading an Oracle database
Properties

Chapter 7. Building SQL statements
Starting SQL builder from a stage editor
Starting SQL builder . S
Building SELECT statements
Building INSERT statements
Building UPDATE statements .
Building DELETE statements .
The SQL builder interface .

Toolbar

Tree panel

Table selection canvas
Selection page .

Column selection grld

Filter panel .

Filter expression panel
Group page .

Grouping grid .

Filter panel .

Filter Expression panel .
Insert page .

Insert Columns gnd
Update page .

Update Column grld

Filter panel .

Filter expression panel
Delete page .

Filter panel .

Filter expression panel
SQL page.

Resolve columns gr1d
Expression editor . .

Main expression editor .

Calculation, function, and case expressmn edltor
. 151
. 152
. 154
. 154
. 155
. 155
. 155
. 156

Expression editor menus
Joining tables

Specifying joins. .

Join Properties window .

Alternate Relation window .
Properties windows .

Table Properties window

SQL Properties window .

iv Connectivity Guide for Oracle Databases

. 126
. 127

. 129
. 129

. 129
. 130
. 130
. 130
. 130
. 130
. 131
. 131

135

. 135
. 135
. 136
. 136
. 137
. 138
. 138
. 138
. 139
. 139
. 140
. 140
. 141
. 141
. 141
. 142
. 143
. 143
. 143
. 143
. 144
. 144
. 144
. 144
. 145
. 145
. 145
. 145
. 145
. 146

. 146
150

Chapter 8. Environment variables:
Oracle connector.
CC_GUARDIUM_EVENTS. :
CC_IGNORE_TIME_LENGTH_AND_SCALE.
CC_ORA_BIND_DATETIME_AS_CHAR
CC_ORA_BIND_FOR_NCHARS .
CC_ORA_BIND_KEYWORD .
CC_ORA_CHECK_CONVERSION
CC_ORACLECONNECTOR_DEFAULT_
CONNECTION_VERSION .
CC_ORA_DEFAULT_DATETIME_TIME
CC_ORA_DEFAULT_DATETIME_DATE

. 157
. 157
. 157
. 157
. 158
. 158
. 158

. 158
. 159

. 159

CC_ORA_DROP_UNMATCHED_FIELDS _ DEFAULT159

CC_ORA_INDEX_MAINT_SINGLE_ROW.
CC_ORA_INVALID_DATETIME_ACTION
CC_ORA_LOB_LOCATOR_COLUMNS.
CC_ORA_MAX_ERRORS_REPORT .
CC_MSG_LEVEL . .
CC_ORA_NLS_LANG_ENV
CC_ORA_NODE_PLACEHOLDER _ NAME
CC_ORA_NODE_USE_PLACEHOLDER
CC_ORA_NULL_CHAR_ACTION
CC_ORA_OPTIMIZE_CONNECTIONS.
CC_ORA_PRESERVE_DATE_TYPE NAME
CC_ORA_ROWS_REJECTED_MSG_INFO .
CC_ORA_UNBOUNDED_BINARY_LENGTH
CC_ORA_UNBOUNDED_STRING_LENGTH.
CC_ORA_XMLTYPE_CSID_BLOB
CC_SE_TIMESTAMP_FF. . .
CC_TRUNCATE_STRING_WITH_ NULL .
CC_TRUNCATE_NSTRING_WITH_NULL

. 159
. 160
. 160
. 160
. 160
. 161
. 161
. 161
. 161
. 162
. 162
. 162
. 162
. 163
. 163
. 163
. 164
. 164

CC_USE_EXTERNAL_SCHEMA_ON_MISMATCH 164

Appendix A. Product accessibility

Appendix B. Reading command-line
syntax

Appendix C. How to read syntax
diagrams

Appendix D. Contacting IBM .

Appendix E. Accessing the product
documentation.

Appendix F. Providing feedback on
the product documentation

Notices and trademarks .

Index .

. 165

. 167

. 169

.17

. 173

. 175

. 177

. 183

Chapter 1. Connector Migration Tool

To take advantage of the additional functionality that connectors offer, use the
Connector Migration Tool to migrate jobs to use connectors instead of plug-in and
operator stages.

The following table lists the stages that can be migrated to connectors and the
corresponding connectors that they are migrated to:

Table 1. List of stages and corresponding connectors

Stage Connector stage

DB2Z stage DB2 Connector
DB2 UDB API stage
DB2 UDB Enterprise stage
DB2 UDB Load stage

DRS Stage DRS Connector

Java Client stage Java Integration stage
Java Transformer stage

Netezza Enterprise stage Netezza Connector
ODBC Enterprise stage ODBC Connector

ODBC (Server) stage
SQLServer Enterprise stage

Oracle OCI stage Oracle Connector
Oracle OCI Load stage
Oracle Enterprise stage

Teradata API stage Teradata Connector
Teradata Enterprise stage
Teradata Load stage

Teradata Multiload stage

WebSphere® MQ stage WebSphere MQ Connector

Migrating jobs to use connectors

To migrate jobs to use the connectors, you need to run the Connector Migration
Tool.

To run the Connector Migration Tool, start it from the Microsoft Windows
Programs menu or from the command line. If you start the tool from the command
line, additional options that are not provided in the user interface are available.

The user interface leads you through the process of evaluating which jobs, shared
containers, and stages to migrate. You select the jobs that you want to migrate, and
beside each job name, the tool displays an icon that indicates whether or not the
job can be fully migrated, partially migrated, or not migrated at all. To refine the
list of jobs to evaluate, you can specify that only jobs that contain specific plug-in
and operator stages be listed. The tool gives you a chance to make a backup of a
job before you migrate it. You can make a backup copy of the job and then migrate
the backup, or you can make a backup copy of the job and then migrate the
original job. Either way, your original job is never lost. The job is migrated and

© Copyright IBM Corp. 2008, 2014 1

placed in the same folder as the original job, and the log file CCMigration.Tog,
which records the results of the migration, is created in the current directory.

The Connector Migration Tool command line options provide the same
functionality as the user interface, as well as a few additional options. Using the
command line, you can perform these additional tasks:

* Specify a list of job names to be considered for migration.
* Specify a list of shared container names to be considered for migration

* Specify a list of stage type names to limit the jobs that are considered for
migration.

* Run a practice migration, where the actual migration does not take place but the
possible results of the migration are placed in the log file. You can review the
results and then refine the migration as necessary before you run the actual
migration.

e Produce a report of jobs and their stages and stage types

Note:

¢ The Connector Migration Tool does not read environment variables at the
operating system level. Environment variables are read only if they are defined
within InfoSphere DataStage at the Project level or at the Job level. Project level
environment variables are read first, then overwritten by Job environment
variables. Environment variables with blank default values are ignored by the
Connector Migration Tool. The default values of the environment variables are
migrated, but the run-time values are not migrated.

* Throughout this documentation, the term "job" refers to parallel shared
containers and server shared containers, as well as IBM® InfoSphere® DataStage®
jobs.

Using the user interface to migrate jobs

Use the Connector Migration Tool to view which jobs and stages are eligible for
migration and then migrate them to use connectors rather than plug-in and
operator stages.

About this task

You use the same project connection details to connect to the Connector Migration
Tool as you use to connect to the InfoSphere DataStage and QualityStage® Designer
or InfoSphere DataStage and QualityStage Director Client. You must have sufficient
user privileges to create and modify the jobs that you are migrating.

Procedure

1. Choose Start > Programs > IBM InfoSphere Information Server > Connector
Migration Tool.

2. In the Log on window, complete these fields:

a. In the Host field, enter the host name of the services tier. You can specify an
optional port by separating it from the host name with a colon. The host
name that you specify here is the same one that you specify when you start
the Designer client, for example, mymachine:9080).

b. In the User name field, enter your InfoSphere DataStage user name.
c. In the Password field, enter your InfoSphere DataStage password.

d. In the Project field, enter the name of the project. To access an InfoSphere
DataStage server that is remote from the domain server, specify the project

2 Connectivity Guide for Oracle Databases

name in full as server:[port]/project. As an alternative, you can press the
button adjacent to the Project field to display a dialog box from which you
can select the fully-qualified project name.

e. Click OK. An icon indicates the status of each job. A gray icon indicates that
the job cannot be migrated. A gray icon with a question mark indicates that
the job might be successfully migrated.

3. Display the jobs and stages to consider for migration:

* Choose View > View all jobs to display all of the jobs in the project. This is
the default view.

¢ Choose View > View all migratable jobs to display all of the jobs that are in
the project and that can be migrated to use connectors. Jobs that do not
contain any stages that can be migrated are excluded from the job list.

¢ Choose View > View jobs by stage types to open the Filter by stage type
window.

4. Perform the following steps to analyze jobs:
a. Highlight the job in the job list.
b. Expand the job in the job list to view the stages in the job.
C. Select one or more jobs, and click Analyze.

After analysis, the color of the job, stage, or property icon indicates whether or
not it can be migrated. A green icon indicates that the job, stage, or property
can be migrated. An red icon indicates that the job or stage cannot be migrated.
An orange icon indicates that a job or stage can be partially migrated and that
a property in a stage has no equivalent in a connector. A gray icon indicates
that the job or stage is not eligible for migration.

Note: The Connector Migration Tool displays internal property names, rather
than the names that the stages display. To view a table that contains the
internal name and the corresponding display name for each property, from the
IBM InfoSphere DataStage and QualityStage Designer client, open the Stage
Types folder in the repository tree. Double-click the stage icon, and then click
the Properties tab to view the stage properties.

5. Click Preferences and choose how to migrate the job:

¢ Choose Clone and migrate cloned job to make a copy of the job and then
migrate the copy. The original job remains intact.

¢ Choose Back up job and migrate original job to make a copy of the job and
then migrate the original job.

¢ Choose Migrate original job to migrate the job without making a backup.
6. Select the jobs and stages to migrate, and then click Migrate.

The jobs and stages are migrated and are placed in the same folder as the
original job. If logging is enabled, a log file that contains a report of the
migration task is created. After a job is successfully migrated, a green
checkmark displays beside the job name in the Jobs list to indicate that the job
has been migrated.

Using the command line to migrate jobs

Run the Connector Migration Tool from the command line to use additional
options that are not available in the user interface.

Chapter 1. Connector Migration Tool 3

About this task

To run the Connector Migration Tool from the command line, you specify the
command CCMigration, followed by a series of required and optional parameters.
If the Connector Migration Tool is started from the command line, its user interface
will be displayed if none of the options -C, -M or -B are specified. If any one of
these options is specified, then the migration will proceed without any further
interaction with the user. The command line options described below can therefore
be used whether or not the user interface is displayed.

After a job is successfully migrated, a green checkmark displays beside the job
name in the Jobs list to indicate that the job has been migrated.

Procedure

1. From the IBM InfoSphere DataStage client command line, go to the
<InformationServer>\Clients\CCMigrationTool directory.

2. Enter the command CCMigration, followed by the following required
parameters:

-h host:port, where host:port is the host name and port of the InfoSphere
DataStage server. If you do not specify a port, the port is 9080 by default.

-u user name, where user name is the name of the InfoSphere DataStage user.
-p password, where password is the password of the InfoSphere DataStage user

-P project, where project is the name of the project to connect to. To specify an
InfoSphere DataStage server that is remote from the domain server, specify
the fully qualified project name by using the format server:[port]/project.

One of the following:

— -MIf you specify this parameter, the original jobs are migrated, and
backup jobs are not created.

— -B job name extension, where job name extension is a set of alphanumeric
characters and underscores. If you specify this parameter, the Connector
Migration Tool creates backup jobs, names the backup jobs source job
name+job name extension, and then migrates the original jobs. The backup
jobs are saved in the same location in the repository as the source jobs.

— - C job name extension, where job name extension is a set of alphanumeric
characters and underscores. If you specify this parameter, the Connector
Migration Tool clones the source jobs, names the cloned jobs source job
name+job name extension, and then migrates the cloned jobs. The cloned
jobs are saved in the same location in the repository as the source jobs.

If you specify one of these options, the migration proceeds without requiring
any additional user input. If you do not specify -M, -B, or - C, the user interface
is displayed so that you can make additional choices for how to migrate the
jobs.

3. Optional: Enter any of the following optional parameters:

* -L log file, where log file is the file name and path for the log file that records

the results of the migration.

-S stage types, where stage types is a comma-separated list of stage types. By
default, the Connector Migration Tool migrates all stage types. Use this
parameter to migrate only jobs that contain the specified stage types. If you
specify both the -S and -J parameters, only the specified stage types within
the specified jobs are migrated. If you specify the -S parameter and do not
specify the -C, -M or -B parameter, only jobs that contain the specified stage

4 Connectivity Guide for Oracle Databases

types appear in the job list that is displayed in the user interface. Limiting
the jobs that are displayed can significantly reduce the startup time of the
Connector Migration Tool.

-J job names, where job names is a comma-separated list of jobs. By default,
the Connector Migration Tool migrates all eligible jobs in the project. Use this
parameter to migrate only specific jobs. If you specify the -J parameter and
do not specify the -C, -M or -B parameter, only the specified jobs appear in
the job list that is displayed in the user interface. Limiting the jobs that are
displayed can significantly reduce the startup time of the Connector
Migration Tool.

-c shared container names, where shared container names is a comma-separated
list of shared containers. By default, the Connector Migration Tool migrates
all eligible shared containers in the project. Use this parameter to migrate
only specific shared containers. If you specify the -¢ parameter and do not
specify the -C, -M, or -B parameter, only the specified shared containers
appear in the job list that displays in the user interface. Limiting the shared
containers that display might significantly reduce the startup time of the
Connector Migration Tool.

-R If you specify this parameter, the Connector Migration Tool reports the
details of the migration that would occur if the specified jobs were migrated,
but does not perform an actual migration. The details are reported in the log
file that is specified by using the -L parameter.

-a auth file, where auth file is the file name that records the user name and
password.

-A If you specify this parameter, the Connector Migration Tool adds an
annotation to the job design. The annotation describes the stages that were
migrated, the job from which the stages were migrated, and the date of the
migration.

-djob dump file, where job dump file is the file name and path for a file where
a list of jobs, shared containers, and stages is written. Using a job dump file
is helpful when you want to determine which jobs are suitable for migration.
You can use the -d parameter with the -J, -¢, and -S parameters to list
particular jobs, shared containers, and stage types, respectively.

-V If you specify this parameter, the Connector Migration Tool specifies the
target connector variant for migrated stages. The format of the list is a
comma-separated list containing {StageTypeName=Variant|.

-v If you specify this parameter with the -d command, the values of stage
properties will be included in the report. If omitted, the report only contains
stage names and types, but not the stage properties. This option is useful to
identify jobs that have stages with certain property values. If this option is
specified, then $ is ignored.

-T If you specify this parameter, the Connector Migration Tool enables the
variant migration mode. All connector stages found in jobs and containers
whose stage type matches those listed by the -V command are modified.

-U If you specify this parameter, the Connector Migration Tool enables the
property upgrade migration mode. All connector stages found in jobs and
containers whose properties match the conditions specified in the
StageUpgrade.xml file are upgraded.

-b stage type, where stage type is the built-in stage type to be migrated. This
parameter is supported only on the command line, not on the user interface.
Currently, only UniData 6 stages are supported. To migrate UniData 6 stages
to UniData stages, specify -b CUDT6Stage.

Chapter 1. Connector Migration Tool 5

Example

The following command starts the Connector Migration Tool, connects to the
project billsproject on the server dsserver as user billg, and migrates the jobs
db2write and db2upsert:

CCMigration -h dsserver:9080 -u billg -p paddOck
-P billsproject -J db2write,db2upsert -M

Deprecated stages

Connectors, which offer better functionality and performance, replace some stages,
which were deprecated and removed from the palette. However, you can still use
the deprecated stages in jobs and add them back to the palette.

The following stage types were removed from palette for the parallel job canvas:
* DB2Z

+ DB2° UDB API

» DB2 UDB Load

* DRS

* Dynamic RDBMS

e Java Client

* Java Transformer

* Netezza Enterprise
* ODBC Enterprise

* Oracle 7 Load

* Oracle OCI Load

* Oracle Enterprise

* Teradata API

* Teradata Enterprise
* Teradata Load

» Teradata Multiload
* WebSphere MQ

The following stage type was removed from the palette for the server job canvas:
* Dynamic RDBMS

When you create new jobs, consider using connectors instead of the deprecated
stages. The following table describes the connector to use in place of the
deprecated stages:

Table 2. Stages and corresponding connectors

Deprecated stage Connector stage
DB2Z DB2 Connector
DB2 UDB API

DB2 UDB Enterprise
DB2 UDB Load

DRS DRS Connector

Dynamic RDBMS DB2 Connector
Oracle Connector
ODBC Connector

6 Connectivity Guide for Oracle Databases

Table 2. Stages and corresponding connectors (continued)

Deprecated stage

Connector stage

Java Client
Java Transformer

Java Integration stage

Netezza Enterprise

Netezza Connector

ODBC Enterprise

ODBC Connector

Oracle 7 Load
Oracle OCI Load
Oracle Enterprise

Oracle Connector

Teradata API
Teradata Enterprise
Teradata Load
Teradata Multiload

Teradata Connector

WebSphere MQ

WebSphere MQ Connector

To use any of the deprecated stage types in new jobs, drag the stage type from the
repository tree to the canvas or to the palette. From the repository tree, expand
Stage Types. Under Stage Types, expand Parallel or Serverdepending on the stage
that you want to use. Drag the stage type to the job canvas or to the palette.

Chapter 1. Connector Migration Tool

7

8 Connectivity Guide for Oracle Databases

Chapter 2. Configuring access to Oracle database

To configure access to an Oracle database, you must install database client libraries
and include the path to these installed libraries in the library path environment
variable. For more information, see the topic about setting environment variables.

Procedure
1. Install database client libraries.

2. Configure access to Oracle database.

Configuring access to Oracle databases

You can configure access to an Oracle database from the Oracle client system by
setting environment variables and by updating Oracle configuration files such as
tnsnames.ora and sqlnet.ora. For more information, see the Oracle product
documentation.

Before you begin
* Install client libraries.

* Ensure that your system meets the system requirements and that you have a
supported version of the Oracle client and Oracle server. For system requirement
information, see |http:/ /www.ibm.com/software /data/infosphere/info-server /|
|overview / I

e Ensure that the Oracle client can access the Oracle database. To test the

connectivity between the Oracle client and Oracle database server, you can use
the Oracle SQL*Plus utility.

About this task

You can use the dsenv script to update the environment variables that are used to
configure access to Oracle databases. If you use the script, you must restart the
server engine and the ASB Agent after you update the environment variables.

Procedure

1. Set either the ORACLE_HOME or the TNS_ADMIN environment variable so that the
Oracle connector is able to access the Oracle configuration file, tnsnames.ora.

* If the ORACLE_HOME environment variable is specified, then the tnsnames.ora
file must be in the $ORACLE_HOME /network/admin directory.

e If the TNS_ADMIN environment variable is specified, then the tnsnames.ora file
must be in the $TNS_ADMIN directory.

¢ If both environment variables are specified, then the TNS_ADMIN environment
variable takes precedence.

* Setting these environment variables is not mandatory. However, if one or
both environment variables are not specified, then you cannot select a
connect descriptor name to define the connection to the Oracle database.
Instead, when you define the connection, you must provide the complete
connect descriptor definition or specify an Oracle Easy Connect string.

Note: If you use the Oracle Basic Instant Client or the Basic Lite Instant Client,
the tnsnames.ora file is not automatically created for you. You must manually

© Copyright IBM Corp. 2008, 2014 9

http://www.ibm.com/software/data/infosphere/info-server/overview/
http://www.ibm.com/software/data/infosphere/info-server/overview/

create the file and save it to a directory. Then specify the location of the file in
the TNS_ADMIN environment variable. For information about creating the
tnsnames.ora file manually, see the Oracle documentation.

2. Optional: Set the library path environment variable to include the directory
where the Oracle client libraries are located. The default location for client
libraries are as follows:

* On Windows, C:\app\username\product\11.2.0\c1ient_1\BIN, where
username represents a local operating system user name. If the complete
Oracle database product is installed on the InfoSphere Information Server
engine computer instead of just the Oracle client product, then the path
would be C:\app\username\product\11.2.0\dbhome I1\BIN.

* On Linux or UNIX, u01/app/oracle/product/11.2.0/client_1

3. Set the NLS_LANG environment variable to a value that is compatible with the
NLS map name that is specified for the job. The default value for the NLS_LANG
environment variable is AMERICAN_AMERICA.US7ASCII.

The Oracle client assumes that the data that is exchanged with the stage is
encoded according to the NLS_LANG setting. However, the data might be
encoded according to the NLS map name setting. If the NLS_LANG setting and
the NLS map name setting are not compatible, data might be corrupted, and
invalid values might be stored in the database or retrieved from the database.
Ensure that you synchronize the NLS_LANG environment variable and NLS map
name values that are used for the job.

On Microsoft Windows installations, if the NLS_LANG environment variable is
not set, the Oracle client uses the value from the Windows registry.

Testing database connections by using the ISA Lite tool

After you establish connection to the databases, test the database connection by
running the IBM Support Assistant (ISA) Lite for InfoSphere Information Server
tool.

For more information about the ISA Lite tool, see the topic about installation
verification and troubleshooting.

Setting the library path environment variable

To apply an environment variable to all jobs in a project, define the environment
variable in the InfoSphere DataStage and QualityStage Administrator. The values
that are specified for the library path and path environment variables at the project
or job level are appended to the existing system values for these variables.

About this task

For example, suppose that directory /opt/branded_odbc/11b is specified as the
value for the library path environment variable at the project level. Directory
/opt/IBM/InformationServer/Server/branded_odbc/1ib, which contains the same
libraries but in a different location is already in the library path that is defined at
the operating system level or the dsenv script. In this case, the libraries from
directory /opt/IBM/InformationServer/Server/branded_odbc/1ib are loaded when
the job runs because this directory appears before directory /opt/branded_odbc/1ib
in the values that are defined for the library path environment variable.

The name of the library path environment variable depends on your operating
system.

10 Connectivity Guide for Oracle Databases

Operating system Library path environment variable

Microsoft Windows PATH
HP-UX SHLIB_PATH
IBM AIX® LIBPATH

Other supported Linux and UNIX operating | LD_LIBRARY_PATH
systems, and HP-TA

On Linux or UNIX operating systems, the environment variables can be specified
in the dsenv script. InfoSphere Information Server installations on Windows
operating system do not include the dsenv script.

Setting the library path environment variable in the dsenv file

On Linux or UNIX operating systems, you can specify the library path
environment variables in the dsenv script. When environment variables are
specified in the dsenv script, they apply to all InfoSphere DataStage projects that
run under the InfoSphere Information Server engine.

Before you begin
Install the client libraries.

Procedure

1. Log in as the DataStage administrator user (dsadm if you installed with the
default name).

2. Back up the IS install_path/Server/DSEngine/dsenv script. IS_install_path is
the InfoSphere Information Server installation directory (/opt/IBM/
InformationServer if you installed with the default path).

3. Open the dsenv script.

4. Add the path to the directory that contains the client libraries to the library
path environment variable.

5. Set up your environment with the updated dsenv file.
. ./dsenv

6. Restart the InfoSphere Information Server engine by entering the following
commands:

bin/uv —admin —stop
bin/uv —admin —start

7. Assume root user privileges, directly with the su command or through the sudo
command if the DataStage administrator user is part of the sudoers list.

sudo su - root

8. Change to the ASB Agent home directory by entering the following commands:
cd Install _directory/ASBNode/bin

9. Restart the ASB Agent processes by entering the following commands:

./NodeAgents.sh stopAgent
./NodeAgents.sh start

Results

After you restart the ASB Agent process, the InfoSphere Information Server
services take approximately a minute to register the event.

Chapter 2. Configuring access to Oracle database 11

Setting the library path environment variable in Windows

On the Windows operating system, both the library path and PATH environment
variables are represented by the PATH system environment variable. For InfoSphere
Information Server engine and ASB Agent processes to detect changes in the
environment variables, the changes must be made at the system level and the
InfoSphere Information Server engine must be restarted.

Before you begin

Install the client libraries.

Procedure

1.

A A

To edit the PATH system environment variable, click Environment Variable in
Advance System Settings, and then select PATH.

Click Edit, then specify the path to the directory containing the client libraries.
Click OK.

Restart the InfoSphere Information Server engine.

Restart the ASB Agent processes.

12 Connectivity Guide for Oracle Databases

Chapter 3. Oracle connector

Use the Oracle connector to access Oracle database systems and perform various
read, write, and load functions.

Setting required user privileges

To run a job that uses the Oracle connector, the user name that the connector uses
to connect to the Oracle database must have SELECT access to a set of Oracle
dictionary views. The user name must also have access to the Oracle database
objects that are required for the operation that the Oracle connector is configured
to complete.

Before you begin

* |Configure access to Oracle databases|

About this task

The database objects that the user name must have access to and the type of access
that is required depend on the operation that the connector is configured to
complete. For example, if the connector is configured to insert rows into the
TABLEL1 table, the user name that the connector uses to connect to the Oracle
database must have INSERT access to the TABLEL1 table. To grant access to a
database object, use the GRANT command.

To complete some operations, the Oracle connector accesses Oracle dictionary
views. All but one of these views are in the ALL_ or USR_ category, which users
have access to by default. Therefore, the user name that the connector uses to
connect to the database typically has access to those views. However, you must
grant access to the DBA_EXTENTS dictionary view explicitly.

Access to the DBA_EXTENTS dictionary view is required for the rowid range
partitioned read method. Rowid range is the default partitioned read method,
which the connector uses if you do not select a different partitioned read method.
If access to the DBA_EXTENTS dictionary view is not granted to the user name
that the connector uses to connect to the database, the connector switches the
partitioned read method from rowid range to rowid hash automatically.

Procedure

To grant SELECT access to a dictionary view or other database object, use one of
the following methods:

* To grant SELECT access to a single database object, issue the following
statement:
GRANT SELECT ON database_object TO user_name

where database_object is the name of the object and user_name is the user name
with which the connector connects to the database.

* To use a role to grant a user SELECT access to multiple dictionary views or
database objects, issue statements that are similar to the following sample
statements. These sample statements show how to create a role, grant access to
two dictionary views, and then assign the role to a user. To use these sample

© Copyright IBM Corp. 2008, 2014 13

statements, replace role_name, dictionary_view, and user_name with the names for
your configuration, and issue one GRANT SELECT ON statement for each
database object.

CREATE ROLE role_name

GRANT SELECT ON dictionary_viewl TO role_name

GRANT SELECT ON dictionary_view2 TO role name
GRANT role_name TO user_name

For example, to create the DSXE role, grant access to the DBA_EXTENTS and
DUAL dictionary views, and assign the DSXE role to the USER1 user, issue the
following statements:

CREATE ROLE DSXE

GRANT SELECT ON SYS.DBA_EXTENTS TO DSXE

GRANT SELECT ON SYS.DUAL TO DSXE
GRANT DSXE TO USER1

Designing jobs that use the Oracle connector

You can use the Oracle connector to develop jobs that read, write, and load data.

Before you begin

+ |Configure access to Oracle databases]|

* |Set required user privileges|

* Verify that the user name for connecting to the Oracle database has the authority
and privileges to complete the actions that your job requires.

Procedure

1. [Import metadatal from an Oracle source.

. |Define a job that contains the Oracle Connector stage]

2
3. |Define a connection to an Oracle database]
4

To set up the Oracle Connector stage to read data from an Oracle database,
complete the following steps:

a. [Set up column definitions

b. [Configure the Oracle connector as a source of data|
c. Optional: [Read partitioned data]

5. To set up the Oracle Connector stage to write data to an Oracle database,
complete the following steps:

. [Set up column definitions|

. |Configure the Oracle connector as a target of datal

Optional: [Configure the bulk loading of data]
Optional: [Write partitioned datal

a
b
c. Optional: [Create a reject link to manage rejected datal
d
e

6. To set up the Oracle Connector stage to look up data in an Oracle database,
complete the following steps:

a. [Set up column definitions,

b. [Configure the Oracle connector as a source of data]

c. [Configure normal lookup operations or [configure sparse lookup operations|
7. Compile and run the job.

14 Connectivity Guide for Oracle Databases

Importing Oracle metadata

Before you use the Oracle connector to read, write, or look up data, you can use
InfoSphere Metadata Asset Manager to import the metadata that represents tables
and views in a Oracle database. The imported metadata is then saved in the
metadata repository.

Before you begin
+ |Configure access to Oracle databases|

Configure access to Oracle databases. For more information about accessing
Oracle databases, see [‘Configuring access to Oracle databases” on page 9 in the
InfoSphere Information Server Configuration Guide.

* Ensure that the Oracle connector has access to the Oracle [‘Dictionary views” on|

that are required to import metadata.

* Ensure that the Oracle user that is associated with the data connection that you
plan to use in InfoSphere Metadata Asset Manager has access to the assets that
you want to import. Only assets that the user has access to are shown in
InfoSphere Metadata Asset Manager and available to import.

About this task

By using the Oracle connector, you can import metadata about the following types
of assets:

¢ The host computer that contains the Oracle database.
* The database.
 Database schemas.

¢ Database tables and views. All imported tables are stored in the metadata
repository as database tables.

e Column definitions for a table or view.
Procedure

Import metadata by using InfoSphere Metadata Asset Manager. For more
information about importing metadata by using InfoSphere Metadata Asset
Manager, see the online product documentation in IBM Knowledge Center or the
IBM InfoSphere Information Server Guide to Managing Common Metadata.

Defining a job that includes the Oracle connector

To read, write, or look up data in an Oracle database, you can create a job that
includes the Oracle connector. Then, you add any additional stages that are
required and create the necessary links.

Procedure

1. In the InfoSphere DataStage and QualityStage Designer client, select File >
New from the menu.

2. In the New window, select the Parallel Job or Server Job icon, and then click
OK.

3. Add the Oracle connector to the job:
a. In the palette, select the Database category.

b. Locate Oracle in the list of available databases, and click the down arrow to
display the available stages.

c. Drag the Oracle Connector stage to the canvas.

Chapter 3. Oracle connector 15

d. Optional: Rename the Oracle Connector stage. Choose a name that indicates
the role of the stage in the job.

4. Create the necessary links and add additional stages for the job:

* For a job that reads Oracle data, create the next stage in the job, and then
create an output link from the Oracle connector to the next stage.

* For a job that writes Oracle data, create one or more input links from the
previous stage in the job to the Oracle connector. If you use multiple input
links, you can specify the link for the input data and the order for the record
processing. If you want to manage rejected records, add a stage to hold the
rejected records, and then add a reject link from the Oracle connector to that
stage.

 For a job that looks up Oracle data, create a job that includes a Lookup stage,
and then create a reference link from the Oracle connector to the Lookup
stage.

5. Save the job.

Defining a connection to an Oracle database

To access data in an Oracle database, you must define a connection that specifies
the server, user name, and password.

Before you begin

* Verify that the user name that connects to the Oracle database has the authority
and privileges to perform the actions of the job.

* Depending on how you choose to define the connection to the Oracle database,
confirm that these Oracle environment variables are set correctly: TNS_ADMIN,
ORACLE_HOME, ORACLE_SID, TWO_TASK, and LOCAL.

Procedure

1. In the job design canvas, double-click the connector stage icon to open the
connector properties.

2. On the Properties page, in the Server field, complete one of the following steps:

* Click Select to display a list of Oracle services, and then select the Oracle
service to connect to. If the list is empty, the connector cannot locate the
Oracle tnsnames.ora file. The connector tries to locate the file by checking the
TNS_ADMIN and ORACLE_HOME environment variables.

* Enter the complete content of the connect descriptor in the format that is
used in the Oracle tnsnames.ora file.

* Use the following syntax to enter an Oracle Easy Connect string:
host[:port][/service_name]

* To connect to the default local Oracle service, leave the property blank. The
ORACLE_SID environment variable defines the default local service. The
TWO_TASK environment variable on Linux or UNIX and the LOCAL
environment variable on Microsoft Windows define the default remote
service. Selecting an Oracle service is preferable to using the THO_TASK or
LOCAL environment variables.

3. In the Username and Password fields, specify the user name and password to
use to authenticate with the Oracle service. By default, the connector is
configured for Oracle database authentication. This form of authentication
requires that the name and password that you specify match the credentials
that are configured for the user in the Oracle database.

4. Optional: Select the Use external authentication check box. This form of
authentication requires that the user be registered in Oracle and identified as a

16 Connectivity Guide for Oracle Databases

user who is authenticated by the operating system. For information about
enabling external authentication to your Oracle server, see the Oracle
documentation.

5. Optional: Set the CC_ORACLECONNECTOR_DEFAULT_CONNECTION_VERSION
environment variable by using the Administrator client for the InfoSphere
DataStage project. For example,
CC_ORACLECONNECTOR_DEFAULT_CONNECTION_VERSION=11g. The value that is set for
the environment variable, for example 11g, is used to populate the Oracle
client version property when the connector stage is opened for the first time.

Reading data from an Oracle database

You can configure the Oracle connector to connect to an Oracle database and read
data from it.

Before you begin

¢ Import metadata from an Oracle source.

* Define a job that contains the Oracle Connector stage.
* Define a connection to an Oracle database.

About this task

The following figure shows an example of using the Oracle connector to read data.
In this example, the Oracle connector reads data from an Oracle database and
passes the rows to a Transformer stage, which transforms the data and then sends
the data to the ODBC connector. When you configure the Oracle connector to read
data, you create only one output link, which in this example transfers rows to the
Transformer stage.

M m >

oracle_rows target_db_rowes

Oracle_Connector Tranzformer ODBC_Connector

Figure 1. Example of reading data from an Oracle database

Setting up column definitions on a link
Column definitions, which you set on a link, specify the format of the data records
that the connector reads from a database or writes to a database.

Procedure
1. From the job design canvas, double-click the connector icon.
2. Use one of the following methods to set up the column definitions:

* Drag a table definition from the repository view to the link on the job
canvas. Then, use the arrow buttons to move the columns between the
Available columns and Selected columns lists.

* On the Columns page, click Load and select a table definition from the
metadata repository. Then, to choose which columns from the table definition
apply to the link, move the columns from the Available columns list to the
Selected columns list.

Chapter 3. Oracle connector 17

3. Configure the properties for the columns:
a. Right-click within the columns grid, and select Properties from the menu.

b. Select the properties to display, specify the order in which to display them,
and then click OK.

4. Optional: Modify the column definitions. You can change the column names,
data types, and other attributes. In addition, you can add, insert, or remove
columns.

5. Optional: Save the new table definition in the metadata repository:
a. On the Columns page, click Save, and then click OK to display the
repository view.
b. Navigate to an existing folder, or create a new folder in which to save the
table definition.

c. Select the folder, and then click Save.

Configuring the Oracle connector as a source for reading data
To configure the connector to read rows in an Oracle table or view, you must

specify the source table or view or define a complete SELECT statement or
PL/SQL block.

About this task

If you specify a SELECT statement, the connector runs the statement only once and
sends all of the rows that are returned for that statement to the output link.

If you specify a PL/SQL block, the connector runs the PL/SQL block only once
and returns the output bind variables that are specified in the block. A single
record is sent to the output link. A PL/SQL block is useful for running a stored
procedure that takes no input parameters but that returns values through one or
more output parameters.

Procedure
1. From the job design canvas, double-click the Oracle Connector stage.

2. Select the output link to edit. When you edit the output link, you set up the
Oracle Connector stage to be the source.

3. Set Read mode to Select or PL/SQL.

4. If you set Read mode to Select, use one of these methods to specify the source
of the data:

* Set Generate SQL at runtime to Yes, and then enter the name of the table or
view in the Table name property. Use the syntax schema_name.table_name,
where schema_name is the owner of the table. If you do not specify
schema_name, the connector uses the schema that belongs to the user who is
currently connected.

* Set Generate SQL at runtime to No, and then specify the SELECT statement
in the Select statement property.

* Set Generate SQL at runtime to No, and then enter the fully qualified file
name of the file that contains the SQL statement in the Select statement
property. If you enter a file name, you must also set Read select statement
from file to Yes.

* Click the Select statement property, and then next to the property, click
Build to start the SQL Builder. To construct the SQL statement, drag table
and column definitions that are stored in the repository and choose options
for configuring clauses in the SQL statement.

18 Connectivity Guide for Oracle Databases

5. If you set Read mode to PL/SQL, use one of these methods to specify the
source of the data:

* Enter the PL/SQL block manually in the PL/SQL block property.

* Enter the fully qualified file name of the file that contains the PL/SQL block
in the PL/SQL block property. If you enter a file name, you must also set
Read PL/SQL block from file to Yes.

The PL/SQL block that you specify must begin with the keyword DECLARE or
BEGIN and must end with the keyword END, and you must enter a semicolon
after the END keyword.

6. Click OK, and then save the job.

Reading partitioned data
In a job that uses multiple nodes, each node that is specified for the stage reads a
distinct subset of data from the source table.

Before you begin

To use the default rowid range partitioned read method, the user whose
credentials are used to connect to the Oracle database must have SELECT access to
the DBA_EXTENTS dictionary view.

About this task

If the connector is configured to run in parallel mode to read data, the connector
runs a slightly modified SELECT statement on each node. The combined set of
rows from all of the queries is the same set of rows that would be returned if the
unmodified user-defined SELECT statement were run once on one node.

Procedure

1. On the job design canvas, double-click the Oracle Connector stage, and then
click the Stage tab.

2. On the Advanced page, set Execution mode to Parallel, and then click the
Output tab.

3. Set Enable partitioned reads to Yes.

4. Set Read mode to Select, and then define the SELECT statement that the
connector uses at run time:

* Set Generate SQL at runtime to Yes, and then enter the name of the table in
the Table name field. Use the syntax schema_name.table_name, where
schema_name is the owner of the table. If you do not specify schema_name, the
connector uses the schema that belongs to the currently connected user. The
connector automatically generates and runs the SELECT statement.

To read data from a particular partition of a partitioned table, set the Table
scope property to Single partition, and specify the name of the partition in
the Partition name property. The connector then automatically adds a
PARTITION (partition_name) clause to the SELECT statement that is generated.
To read data from a particular subpartition of the composite partitioned
table, set the Table scope property to Single subpartition and specify the
name of the subpartition in the Subpartition name property. The connector
then automatically adds a SUBPARTITION (subpartition_name) clause to the
generated SELECT statement.

* Set Generate SQL at runtime to No, and then specify the SELECT statement
in the Select statement property. You can enter the SQL statement or enter

Chapter 3. Oracle connector 19

the fully qualified file name of the file that contains the SQL statement. If
you enter a file name, you must also set Read select statement from file to
Yes.

5. Set the Partitioned reads method property to the partitioning method that you
want to use. The default partitioning method is Rowid range.

6. Specify the input values that the partitioned read method uses:

a. In the Table name for partitioned reads property, specify the name of the
table that the partitioned read method uses to define the subsets of data
that each node reads from the source table.

If you do not specify a table name, the connector uses the value of the
Generate SQL at runtime property to determine the table name. If
Generate SQL at runtime is set to Yes, the connector uses the table name
that is specified in the Table name property. If Generate SQL at runtime is
set to No, the connector looks at the SELECT statement that is specified in
the Select statement property and uses the first table name that is specified
in the FROM clause.

b. If you choose the Rowid range or the Minimum and maximum range
partitioned read method, in the Partition or subpartition name for
partitioned reads property, specify the name of the partition or subpartition
that the partitioned read methods uses.

Note: If you do not specify a value for the Partition or subpartition name
for partitioned reads property, the connector uses the entire table as input
for the partitioned read method. When the connector is configured to read
data from a single partition or subpartition, you typically specify the name
of the partition or subpartition in the Partition or subpartition name for
partitioned reads property. Then the connector analyzes only the data that
belongs to that partition or subpartition. This process typically results in a
more even distribution of data and a more efficient use of nodes.

c. If you choose the Modulus or the Minimum and maximum range
partitioned read method, in the Column name for partitioned reads, enter
the name of the column from the source table to use for the method. The
column must be an existing column in the table, must be of NUMBER(p)
data type, where p is the number precision, and must have a scale of zero.

7. Click OK, and then save the job.

Writing data to an Oracle database

You can configure the Oracle connector to connect to an Oracle database and write
data to it.

Before you begin

¢ Import metadata from an Oracle source.

* Define a job that contains the Oracle Connector stage.
* Define a connection to an Oracle database.

About this task

The following figure shows an example of using the Oracle connector to write
data. In this example, the ODBC connector reads data from a database and
transfers that data to a Transformer stage, which transforms the data and transfers
the data to the Oracle connector. The Oracle connector writes the data to an Oracle
database. Because this job includes an optional reject link, the Oracle connector
transfers rejected records to a stage that stores them. In this example, a Sequential

20 Connectivity Guide for Oracle Databases

File stage stores the rejected records.

[
E

QDBC_Connector Tranzformer_1 Oracle_Connectaor Sequential_File

* M

source_db_data oracle_data rejects

Figure 2. Example of writing data and using a reject link.

Setting up column definitions on a link
Column definitions, which you set on a link, specify the format of the data records
that the connector reads from a database or writes to a database.

Procedure
1. From the job design canvas, double-click the connector icon.
2. Use one of the following methods to set up the column definitions:

* Drag a table definition from the repository view to the link on the job
canvas. Then, use the arrow buttons to move the columns between the
Available columns and Selected columns lists.

* On the Columns page, click Load and select a table definition from the
metadata repository. Then, to choose which columns from the table definition
apply to the link, move the columns from the Available columns list to the
Selected columns list.

3. Configure the properties for the columns:
a. Right-click within the columns grid, and select Properties from the menu.

b. Select the properties to display, specify the order in which to display them,
and then click OK.

4. Optional: Modify the column definitions. You can change the column names,
data types, and other attributes. In addition, you can add, insert, or remove
columns.

5. Optional: Save the new table definition in the metadata repository:

a. On the Columns page, click Save, and then click OK to display the
repository view.

b. Navigate to an existing folder, or create a new folder in which to save the
table definition.

c. Select the folder, and then click Save.

Configuring the Oracle connector as a target
To configure the connector to write rows to an Oracle table or writable view, you

must specify the target table or view or define the SQL statements or PL/SQL
block.

Procedure
1. On the job design canvas, double-click the Oracle Connector stage.
2. Select the input link to edit.

3. Specify how the Oracle connector writes data to an Oracle table or writable
view. The following table shows the ways that you can configure the connector
to write data.

Chapter 3. Oracle connector 21

Table 3. Methods for writing data to an Oracle table or writable view

Method

Procedure

Automatically generate the SQL at run time

1.
2.

Set Generate SQL at runtime to Yes.

Set Write mode to Insert, Insert new
rows only, Update, Delete, Insert then
update, Update then insert, or Delete
then insert.

Enter the name of the target table in the
Table name field.

Enter the SQL manually

. Set Generate SQL at runtime to No.

Set Write mode to Insert, Insert new
rows only, Update, Delete, Insert then
update, Update then insert, or Delete
then insert.

Enter SQL statements in the fields that
correspond to the write mode that you
selected. Alternatively, click Tools beside
each field to view options for generating
and validating SQL statements.

Read the SQL statement from a file

—_

. Set Generate SQL at runtime to No.

Enter the fully qualified name of the file
that contains the SQL statement in the
Insert statement, Update statement,
Delete statement, or PL/SQL block field.

Set Read insert statement from file,
Read update statement from file, Read
delete statement from file, or Read
PL/SQL block from file to Yes.

Specify a PL/SQL block

. Set the Write mode to PL/SQL.

Enter the PL/SQL block in the PL/SQL
block field.

Note: The PL/SQL block must begin
with the keyword DECLARE or BEGIN
and end with the keyword END. You
must include a semicolon character after
the END keyword.

Bulk load the data

. Set Write mode to Bulk load.

Enter the name of the table in the Table
name field. Use the syntax
schema_name.table_name, where
schema_name is the owner of the table. If
you do not specify schema_name, the
connector uses the schema that belongs
to the currently connected user.

4. Click OK, and then save the job.

Rejecting records that contain errors
When the Oracle connector includes a reject link, records that meet specified
criteria are automatically routed to the target stage on the reject link. Processing

continues for the remaining records.

22 Connectivity Guide for Oracle Databases

About this task

When you configure a reject link, you select one or more conditions that control
when to reject a record and send it to the target stage that receives the rejected
records. You can also choose to include the Oracle error code and error message
that is generated when a record fails. If you do not define a reject link or if you
define a reject link but a failed record does not match any of the specified reject
conditions, the connector reports an error and stops the job.

After you run the job, you can evaluate the rejected records and adjust the job and

the data accordingly.

Procedure

1. On the job design canvas, add and configure a target stage to receive the
rejected records.

2. Right-click the Oracle connector and drag to create a link from the Oracle
connector to the target stage.

3. If the link is the first link for the Oracle connector, right-click the link and

choose Convert to reject. If the Oracle connector already has an input link, the

new link automatically displays as a reject link.
4. Double-click the connector to open the stage editor.

5. On the Output page, select the link to the target stage for rejected records
from the Output name list.

6. Click the Reject tab.

7. From the Reject rows based on selected conditions list, select one or more
conditions to use to reject records.

8. Use one of the methods in the following table to specify when to stop a job
because of too many rejected rows.

Method Procedure

Stop a job based on the percentage of rows
that fail.

—_

2. In the Abort after (%) field, enter the
percentage of rejected rows that will
cause the job to stop.

3. In the Start count after (rows) field,
specify the number of input rows to

of rejected rows.

From the Abort when list, select Percent.

process before calculating the percentage

that fail. 2. In the Abort after (rows) field, specify

allow before the job stops.

Stop a job based on the number of rows 1. From the Abort when list, select Rows.

the maximum number of rejected rows to

9. Optional: From the Add to reject row list, select ERRORCODE,

ERRORMESSAGE, or both. When a record fails, the rejected record includes

the Oracle error code and the corresponding message that describes the
failure. For a complete list of the Oracle error codes and messages, see the
Oracle documentation.

10. Click OK, and then save the job.

Chapter 3. Oracle connector

23

Configuring bulk loading of data

When you use the Oracle connector to bulk load data to an Oracle database, you
can enable or disable constraints and triggers. You can also configure the date
cache, manage indexes, set options for bulk record loading, and enable manual
mode.

Before you begin
Choose the bulk load write method and specify the table to write to.

About this task

In the Oracle Connector stage, you can set properties that apply only when you
use the connector to bulk load data. The values for these properties can affect the
load performance and prevent issues that might occur during the bulk load.

For example, during a bulk load, enforcing table constraints and triggers might
result in additional I/O overhead and prevent a successful load operation. To
avoid these issues, disable Oracle constraints and triggers before a bulk load.

To improve load performance, you can configure the Oracle date cache.

If you do not want the stage to load data directly to the Oracle database, you can
enable manual mode. When manual mode is enabled, the connector creates control
and data files that can be used to load data to the database by using the Oracle
SQL*Loader utility.

Procedure

1. Configure the connector to disable constraints before it bulk loads data and
enable constraints after it bulk loads data:

a. Set Perform operations before bulk load to Yes.
Set Disable constraints to Yes.

Set Perform operations after bulk load to Yes.
Set Enable constraints to Yes.

®aoo

In the Exceptions table name field, enter the name of the exceptions table.
If the exceptions table does not exist, the connector creates it. If the
exceptions table already exists, the connector deletes any data that is in the
table and then uses it.

f. Set Process exception rows to Yes. When Process exception rows is set to
Yes, the connector deletes from the target table the rows that fail the
constraint checks. If you defined a reject link for the connector and enabled
the SQL error - constraint check reject condition, the connector sends the
deleted rows to the reject link. If Process exception rows is set to No and
rows fail a constraint check, the job stops.

2. Configure the connector to disable triggers before it bulk loads data and enable
triggers after it bulk loads data:

a. Set Perform operations before bulk load to Yes.
b. Set Disable triggers to Yes.

C. Set Perform operations after bulk load to Yes.
d. Set Enable triggers to Yes.

3. To control how to handle table indexes during a bulk load, set the Index
maintenance option property.

24 Connectivity Guide for Oracle Databases

4. To rebuild indexes after a bulk load:

a.
b.
c.

Set Perform operations after bulk load to Yes.
Set Rebuild indexes to Yes.

Optional: To enable or disable parallelism and logging to the redo log when
the index is rebuilt, specify nondefault values for the Parallel clause and
Logging clause properties. By default, parallel and logging clauses are not
included in the ALTER INDEX statement.

Optional: To stop the job if an index rebuild statement fails, set Fail on
error for index rebuilding to Yes. If an index rebuild fails, the connector
logs a fatal error.

5. If you plan to bulk load data into tables that contain DATE or TIMESTAMP
columns, enable and configure the date cache:

a.
b.

Set Use Oracle date cache to Yes.

Optional: In the Cache size property, enter the maximum number of entries
that the cache stores. The default is 1,000.

Optional: Set Disable cache when full to Yes. When the number of entries
in the cache reaches the number that is specified in the Cache size property
and the next lookup in the cache results in a miss, the cache is disabled.

6. Set options to control bulk record loading:

a.
b.

Set Array size to a value 1 - 999,999,999. The default is 2,000.

Set Buffer size to a value 4 - 100,240, which represents the buffer size in
KB. The default is 1,024.

Set the Allow concurrent load sessions property depending on your
requirement.

7. To enable manual mode:

a.
b.

Set Manual mode to Yes.

Optional: In the Directory for data and control files property, specify a
directory to save the control and data files to.

Optional: In the Control file name property, specify a name for the control
file. If you do not specify a value for the control file name, the connector
generates the name in the servername_tablename.ctl format, where servername
is the value that specified for the Server property and tablename is the value
specified in the Table name property.

In the Data file name property, specify the name of the data file. If you do
not specify a value for the data file name, the connector generates the name
in the servername_tablename.dat format.

In the Load options property, specify the bulk load options to include in the
control file that the connector generates. The value contains parameters that
are passed to the Oracle SQL*Loader utility when the utility is invoked to
process the control and data files. The default value is
OPTIONS(DIRECT=FALSE,PARALLEL=TRUE).

The DIRECT=FALSE parameter tells the Oracle SQL*Loader to use the
conventional path load instead of the direct path load. The
PARALLEL=TRUE parameter tells the utility that the data can be loaded in
parallel from multiple concurrent sessions. For more information about
these options and other load options, see the Oracle product documentation.

The word OPTIONS and the parentheses must be included in the value that
is specified for the property. The connector saves this property value to the
control file that is generated and does not check the syntax of the value.

Chapter 3. Oracle connector 25

Writing partitioned data

In a job that uses multiple nodes, records that arrive on the input link of the
connector are distributed across multiple nodes. Then, the records are written in
parallel from all of the nodes to the target database.

About this task

The default partition type is Auto, which selects the partition type based on the
various settings for the stages in the job. In general, instead of using Auto, it is
better to select a partition type based on your knowledge about the actual data and
the target table that the connector writes to at run time. In particular, if the target
table is range-partitioned or list-partitioned, select Oracle connector. When the
Oracle connector partition type is selected, the connector partitions the input
records so that each node writes rows to the partition that is associated with that
node.

Procedure

1. On the job design canvas, double-click the Oracle Connector stage.
2. On the Input page, select the input link.

3. On the Partitioning page, select a partition type.

Looking up data in an Oracle database

You can configure the connector to complete a normal lookup or a sparse lookup
on an Oracle database.

Before you begin

* Import metadata from an Oracle source.

* Define a job that contains the Oracle Connector stage.
* Define a connection to an Oracle database.

About this task

In the following figure, a Lookup stage extracts data from an Oracle database
based on the input parameter values that the Lookup stage provides. Although the
reference link appears to go from the Oracle connector to the Lookup stage, the
link transfers data both to and from the Oracle connector. Input parameters are
transferred from the input link on the Lookup stage to the reference link, and
output values that the Oracle connector provides are transferred from the Oracle
connector to the Lookup stage. The output values are routed to the columns on the
output link of the Lookup stage according to the column mappings that are
defined for the Lookup stage.

26 Connectivity Guide for Oracle Databases

Figure 3. Example of using the Oracle connector with a Lookup stage.

Setting up column definitions on a link
Column definitions, which you set on a link, specify the format of the data records
that the connector reads from a database or writes to a database.

Procedure
1. From the job design canvas, double-click the connector icon.
2. Use one of the following methods to set up the column definitions:

* Drag a table definition from the repository view to the link on the job
canvas. Then, use the arrow buttons to move the columns between the
Available columns and Selected columns lists.

* On the Columns page, click Load and select a table definition from the
metadata repository. Then, to choose which columns from the table definition
apply to the link, move the columns from the Available columns list to the
Selected columns list.

3. Configure the properties for the columns:
a. Right-click within the columns grid, and select Properties from the menu.

b. Select the properties to display, specify the order in which to display them,
and then click OK.

4. Optional: Modify the column definitions. You can change the column names,
data types, and other attributes. In addition, you can add, insert, or remove
columns.

5. Optional: Save the new table definition in the metadata repository:

a. On the Columns page, click Save, and then click OK to display the
repository view.

b. Navigate to an existing folder, or create a new folder in which to save the
table definition.

c. Select the folder, and then click Save.

Configuring the Oracle connector as a source for looking up
data
To configure the connector to look up rows in an Oracle table or view, you must

specify the source table or view or define a complete SELECT statement or
PL/SQL block.

Chapter 3. Oracle connector 27

About this task

If you define a PL/SQL block for a normal lookup operation, when you run the
job, the connector runs the specified PL/SQL block only once and returns a single
record to the Lookup stage. For each record on the input link to the Lookup stage,
the Lookup stage completes a lookup operation on the single record that is
returned by the connector.

If you define a PL/SQL block for a sparse lookup operation, the connector runs the
specified PL/SQL block one time for each record on the input link to the Lookup
stage.

Procedure
1. From the job design canvas, double-click the Oracle Connector stage.

2. Select the output link to edit. When you edit the output link, you set up the
Oracle Connector stage to be the source.

3. Set Read mode to Select or PL/SQL.

4. If you set Read mode to Select, use one of these methods to specify the source
of the data:

* Set Generate SQL at runtime to Yes, and then enter the name of the table or
view in the Table name property. Use the syntax schema_name.table_name,
where schema_name is the owner of the table. If you do not specify
schema_name, the connector uses the schema that belongs to the user who is
currently connected.

* Set Generate SQL at runtime to No, and then specify the SELECT statement
in the Select statement property.

* Set Generate SQL at runtime to No, and then enter the fully qualified file
name of the file that contains the SQL statement in the Select statement
property. If you enter a file name, you must also set Read select statement
from file to Yes.

* Click the Select statement property, and then next to the property, click
Build to start the SQL Builder. To construct the SQL statement, drag table
and column definitions that are stored in the repository and choose options
for configuring clauses in the SQL statement.

5. If you set Read mode to PL/SQL, use one of these methods to specify the
source of the data:

 Enter the PL/SQL block manually in the PL/SQL block property.

* Enter the fully qualified file name of the file that contains the PL/SQL block
in the PL/SQL block property. If you enter a file name, you must also set
Read PL/SQL block from file to Yes.

The PL/SQL block that you specify must begin with the keyword DECLARE or
BEGIN and must end with the keyword END, and you must enter a semicolon
after the END keyword.

6. Click OK, and then save the job.

Configuring normal lookup operations
You configure the Oracle connector to perform a normal lookup on an Oracle
database.

Before you begin

* To specify the format of the data records that the Oracle connector reads from an
Oracle database, set up column definitions on a link.

28 Connectivity Guide for Oracle Databases

* Configure the Oracle connector as a source for the reference data.
About this task

In a normal lookup, the connector runs the specified SELECT statement or PL/SQL
block only one time; therefore, the SELECT statement or PL/SQL block cannot
include any input parameters. The Lookup stage searches the result set data that is
retrieved and looks for matches for the parameter sets that arrive in the form of
records on the input link to the Lookup stage. A normal lookup is also known as
an in-memory lookup because the lookup is performed on the cached data in
memory.

Typically you use a normal lookup when the target table is small enough that all
of the rows in the table can fit in memory.

Procedure

1. Add a Lookup stage to the job design canvas, and then create a reference link
from the Oracle Connector stage to the Lookup stage.

Double-click the Oracle Connector stage.
From the Lookup Type list, select Normal.
To save the changes, click OK.
Double-click the Lookup stage.

SIS RN

To specify the key columns, drag the required columns from the input link to
the reference link. The columns from the input link contain values that are used
as input values for the lookup operation.

7. Map the input link and reference link columns to the output link columns and
specify conditions for a lookup failure:

a. Drag or copy the columns from the input link and reference link to your
output link.

b. To define conditions for a lookup failure, click the Constraints icon in the
menu.

c. In the Lookup Failure column, select a value, and then click OK. If you
select Reject, you must have a reject link from the Lookup stage and a
target stage in your job configuration to capture the rejected records.

d. Click OK.
8. Save, compile, and run the job.

Configuring sparse lookup operations
You configure the Oracle connector to perform a sparse lookup on an Oracle
database.

Before you begin

* To specify the format of the data records that the Oracle connector reads from an
Oracle database, set up column definitions on a link.

* Configure the Oracle connector as a source for the reference data.
About this task

In a sparse lookup, the connector runs the specified SELECT statement or PL/SQL
block one time for each parameter set that arrives in the form of a record on the
input link to the Lookup stage. The specified input parameters in the statement
must have corresponding columns defined on the reference link. Each input record
includes a set of parameter values that are represented by key columns. The Oracle

Chapter 3. Oracle connector 29

connector sets the parameter values on the bind variables in the SELECT statement
or PL/SQL block, and then the Oracle connector runs the statement or block. The
result of the lookup is routed as one or more records through the reference link
from the Oracle connector back to the Lookup stage and from the Lookup stage to
the output link of the Lookup stage. A sparse lookup is also known as a direct
lookup because the lookup is performed directly on the database.

Typically, you use a sparse lookup when the target table is too large to fit in
memory. You can also use the sparse lookup method for real-time jobs.

You can use the sparse lookup method only in parallel jobs.

Procedure

1.

9.

Add a Lookup stage to the job design canvas, and then create a reference link
from the Oracle Connector stage to the Lookup stage.

Double-click the Oracle Connector stage.
From the Lookup Type list, select Sparse.
Specify the key columns:

a. If you set Generate SQL to Yes when you configured the connector as a
source, specify the table name, and then specify the key columns on the
Columns page.

b. If you set Generate SQL to No when you configured the connector as a
source, specify a value for the Select statement property. In the select part
of the SELECT statement, list the columns to return to the Lookup stage.
Ensure that this list matches the columns on the Columns page.

On the Properties page, specify a table name, and then specify a WHERE clause
for the lookup. Key columns that follow the WHERE clause must have the
word ORCHESTRATE and a period added to the beginning of the column
name. ORCHESTRATE can be all uppercase or all lowercase letters, such as
ORCHESTRATE.Fiel1d001. The following SELECT statement is an example of the
correct syntax of the WHERE clause: select Field002,Field003 from MY_TABLE
where Field001 = ORCHESTRATE.Fie1d001. The column names that follow the
word ORCHESTRATE must match the column names on the Columns page.

To save the changes, click OK.
Double-click the Lookup stage.

Map the input link and reference link columns to the output link columns and

specify conditions for a lookup failure:

a. Drag or copy the columns from the input link and reference link to your
output link.

b. To define conditions for a lookup failure, click the Constraints icon in the
menu.

C. In the Lookup Failure column, select a value, and then click OK. If you
select Reject, you must have a reject link from the Lookup stage and a
target stage in your job configuration to capture the rejected records.

d. Click OK.

Save, compile, and run the job.

Generating SQL statements in the connector at design time

You can configure the connector to generate SQL statements at design time in their
statement properties.

30 Connectivity Guide for Oracle Databases

Before you begin

Create a job that includes a connector as a source or target.
About this task

You can generate the SQL statement text only for those statement properties that
have the Generate SQL statement option in the Build list.

Note: Under some circumstances, the connector requires a connection to generate
SQL statements. When a user name and password are not supplied and a
connection is required, a connection is made by using the user who is running the
ASB Agent service.

Procedure
1. Double-click the connector on the job canvas to open the stage editor.

2. In the navigator, click the output or input link, depending on the type of job
that you create.

3. Set Generate SQL at runtime to No.

4. In the Table name property, type the name of the table for the SQL statement.

5. For jobs in target context (input links), select the type of statement you want to
generate in the Write mode property.

6. On the Columns page, define the columns to use in the SQL statement.

7. Click the Properties tab.

8. Click the Build button that is associated with the statement property, and select
Generate SQL statement from the list.

Note: The Generate SQL statement option will only be available for statements
which that connector supports generating at design time. In some cases a
connector may only support generating the SQL at runtime during job
execution.

9. Click OK to save the job.

Validating SQL statements in the connector at design time

After you generate or write a SQL statement, you can validate the statement
during job design.

About this task

You can validate the SQL statement text only for those statement properties that
have the Validate SQL option in the Build list.

Note: Under some circumstances, the connector requires a connection to validate
SQL statements. When a user name and password are not supplied and a
connection is required, a connection is made by using the user who is running the
ASB Agent service.

Procedure
1. Save the job.

2. Click the Build button that is associated with the statement property, and select
Validate SQL. The Validate SQL option is enabled only if the statement
property contains a value and this option will only be available for statements
which the target RDBMS supports validating.

Chapter 3. Oracle connector 31

Results

The connector validates the SQL statement by preparing the statement with the
RDBMS it supports. If the SQL contains error, an error message is shown.

Troubleshooting the Oracle connector

You can use the troubleshooting and support information to isolate and resolve
problems with the Oracle connector.

Oracle environment logging

The Oracle connector can log debug messages that contain information about the
current Oracle environment settings. These messages are useful for diagnosing
problems.

By default, debug messages are not displayed in the log file. To view debug
messages in the log file, set the CC_MSG_LEVEL environment variable to 2.

The Oracle connector logs the following environment information:

Oracle client version and Oracle server version
The Oracle connector uses the following syntax to log the current version:
A.B.C.D.E, where A is the major version, B is the minor version, C is the
update number, D is the patch number, and E is the port update number.
The Oracle client version is logged from the conductor node and from all
processing nodes. The Oracle server version is logged only from the
conductor node.

NLS session parameters
The connector logs a message that contains the name and value of each
NLS session parameter. The values are logged from the conductor node
and from all processing nodes.

NLS database parameters
The Oracle connector logs a message that contains the name and value of
each NLS database parameter. The values are logged only from the
conductor node.

NLS_LANG
The Oracle connector logs a message that contains the value of the
NLS_LANG environment variable, as seen by the Oracle client library. This
value might not match the value of the NLS_LANG environment variable that
you specify or configure in the Microsoft Windows registry because Oracle
replaces or adds to incorrect or missing parts of the value with default
values for the current client environment, if necessary. The connector logs
the NLS_LANG value from the conductor node and from all processing
nodes.

Debug and trace messages

Debug and trace messages provide detailed information that you can use to
troubleshoot problems.

Debug messages

The Oracle connector has only one generic debug message, which has up to four
arguments. IIS-CONN-ORA-005001 has the message text CCORA DEBUG:
{0}{1}{2}{3}{4}. The content of the debug message is useful for troubleshooting a job.

32 Connectivity Guide for Oracle Databases

Trace messages

The Oracle connector has two trace messages. One specifies that a method was
entered, and the other specifies that a method was exited. Both messages include
the name of the class that defines the method, if applicable, and the name of the
method.

Table 4. Trace message numbers and the corresponding message text

Message number Message text
IIS-CONN-ORA-006001 ->{0}::{1}
IIS-CONN-ORA-006002 <-{0}::{1}

Oracle connector runs in sequential mode when a reject link
has a constraint violation reject condition

When an Oracle Connector stage is configured to bulk load data and has a reject
link where the SQL error - constraint violation reject condition is selected, the
connector runs in sequential mode.

Symptoms
When you run the job that contains the Oracle Connector stage, you get the
following message:

[IIS-CONN-ORA-003004] The connector was configured to Toad data in parallel
but the reject condition for checking constraints was selected for the
reject link. This combination is not supported. The connector will run in
sequential mode.

Causes
When the following conditions are met, the Oracle connector must run in
sequential mode:

* The connector is configured to write data in bulk load mode
* A reject link is defined for the stage

¢ The SQL error - constraint violation reject condition is specified for the reject
link

Suppose that a stage is configured to reject rows that violate the constraints, to
disable constraints before the load, and to enable them after the load. The
following steps occur:

1. The connector disables the constraints before the load and then loads the data.

2. The ROWID values of the rows that violated the constraints are stored in the
exceptions table on the Oracle database.

3. The connector sends the rows that failed the constraints to the reject link.

4. The connector deletes the rows that failed the constraints from the target table
and enables the constraints.

All rows that violate the constraints are rejected. For example, suppose that two
rows that have the same primary key value are loaded. Because this condition
violates the primary key constraint, both rows are rejected.

In this scenario, the Oracle connector must run in sequential mode because of the
way that parallel jobs that contain the Oracle connector work. A parallel job uses

one conductor process and one or more player processes for each stage. When the

Chapter 3. Oracle connector 33

Oracle connector uses player processes, the processes are independent of each
other and cannot detect when other player processes start or end. Only the
conductor process can detect when the player processes are complete, and rows
cannot be rejected until all the player processes are complete. However, only player
processes can access the reject link for a stage. As a result, the connector must run
in sequential mode and use only one player process to load the data.

Resolving the problem
Complete one of the following tasks:

* If constraints are not defined for the target table, clear the SQL error - constraint
violation reject condition for the reject link. The job can then run in parallel
mode.

* Use the insert write mode instead of the bulk load write mode. When the
connector uses the insert write mode, constraints remain enabled while the
player processes insert data to the table. Constraint violations are reported
immediately to the player processes, and the player processes can send rows
that violate constraints to the reject link.

* Enforce constraints after data is bulk loaded to the target table. Instead of
configuring the stage to reject rows that violate the constraints automatically,
complete the following steps:

1. Disable the constraints on the table.
2. To bulk load data to the table, run the job.

3. Process the exceptions table and enable the constraints manually, or specify a
PL/SQL block in the After SQL property of the stage.

* On the Advanced page for the stage, set the Execution mode property to
Sequential. The stage runs in sequential mode, and message
IIS-CONN-ORA-003004 is not logged if the SQL error - constraint violation
reject condition is selected on a reject link.

Reference

To use the Oracle connector successfully, you might need detailed information,
such as information about data type mappings, stage properties, and supported
read and write methods.

Runtime mappings between InfoSphere DataStage columns
and SQL statement parameters

When the connector exchanges data with an Oracle database, the connector
assumes that the data for each column conforms with the data type definition that
is specified for that column on the link.

The data type definition includes the SQL type, length, scale, nullable, and
extended attributes. If data type conversion is required, the connector relies on the
Oracle database to accept or reject the conversion. If the conversion is rejected
because of data type incompatibility, data truncation, or some other issue, the
Oracle database reports an error and the connector acts based on how it was
configured.

For example, suppose that when the connector inserts records into the database,
the database reports an error for the data type conversion of a field in a record.
Depending on how the connector is configured, the connector might reject records
that fail data type conversion or log an error and stop the job.

34 Connectivity Guide for Oracle Databases

When the Read mode property is set to Select or PL/SQL and the connector is
configured to read Oracle data and provide the data on an output link, the
connector tries to match the names of the result set columns with the output link
columns. The order of the columns on the link and in the Oracle database is
irrelevant.

If the Read mode property is set to PL/SQL and the Lookup type is set to Sparse,
the connector matches by name the reference link columns with the parameters in
the PL/SQL block. The connector maps the columns that are marked as key
columns to PL/SQL input/output parameters and maps the remaining columns to
the PL/SQL output parameters. If the connector cannot match the names, the
connector attempts to use the column order to associate link columns and
parameters. Therefore, the connector associates the first column on the link with
the first parameter, associates the second column on the link with the second
parameter, and so on.

When the Write mode property is set to Insert, Update, Delete, or PL/SQL, the
connector maps the columns on the input link to the input parameters that are
specified in the SQL or PL/SQL statement.

Two formats are available for specifying parameters in the statement: InfoSphere
DataStage syntax and Oracle syntax. The following list describes how the
connector maps the columns, based on the format that you use to specify the
parameters:

InfoSphere DataStage syntax
The InfoSphere DataStage syntax is ORCHESTRATE.parameter_name. If you
use InfoSphere DataStage syntax to specify parameters, the connector uses
name matching. Therefore, every parameter in the statement must match a
column on the link, and the parameter and the column must have the
same name. If the connector cannot locate a matching column for a
parameter, an error message is logged and the operation stops.

Oracle syntax
The Oracle syntax is name, where name is the parameter name or parameter
number. If you use the Oracle syntax to specify parameters, the connector
first tries name matching. If name matching fails because some or all of the
names do not match, the connector checks whether the name values are
integers. If all of the name values are integers, the connector uses these
integers as 1-based ordinals for the columns on the link. If all of the name
values are integers but some or all of the integer values are invalid,
meaning smaller than 1 or larger than the total number of columns on the
link, an error message is logged and the operation stops. If some or all of
the name values are not integers, the connector maps columns based on
column order.

After completing the mapping, the connector removes any output link columns
that were not mapped. If the job later references one of the unmapped columns, a
runtime error occurs. For example, if the statement SELECT COL1, COL2 FROM
TABLEL is specified for the stage and the output link defines the columns COL1,
COL2, and COLS3, the connector completes the following tasks:

1. Binds column COL1 from the statement to column COL1 on the link.

2. Binds column COL2 from the statement to column COL2 on the link.

3. Removes column COL3 from the link at run time because the COL3 column is
unmapped.

Chapter 3. Oracle connector 35

Data type mapping and Oracle data types

When the Oracle connector imports a table definition, the connector converts
Oracle data types to IBM InfoSphere DataStage data types. When the Oracle
connector creates a table by issuing an SQL statement that is specified in the
Create table statement property, the connector converts InfoSphere DataStage data
types to Oracle data types.

Oracle datetime data types

The Oracle connector can read from and write to columns that use the Oracle
datetime data types DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
TIMESTAMP WITH LOCAL TIME ZONE.

The way that the connector handles Oracle datetime data types depends on
whether the design-time schema specifies datetime columns or text columns. In a
job, columns of DATE, TIME, and TIMESTAMP data types are datetime columns,
while columns of CHAR, VARCHAR, LONGVARCHAR, NCHAR, NVARCHAR,
and LONGNVARCHAR are text columns.

When the table definition on a link specifies a column in a text data type, the text
values that the connector writes must match the format that is specified in the
Oracle NLS session parameters. In Oracle, the following session parameters control
the format of dates and time stamps:

* NLS_CALENDAR

¢ NLS_DATE_FORMAT

* NLS_DATE_LANGUAGE

* NLS_TIME_FORMAT

¢ NLS_TIME_TZ_FORMAT

* NLS_TIMESTAMP_FORMAT

e NLS_TIMESTAMP_TZ_FORMAT

You can specify the session parameters in one of the following ways:

* Alter the current session by including ALTER SESSION SET parameter = value
statements in the Before SQL statement (node) property. This method is
preferred.

e Set the environment variables that have the same names as the session
parameters. If you use this method, you must also define the NLS_LANG
environment variable.

When the Oracle connector forwards datetime values to the Oracle client as text,
the Oracle client assumes that the values match the format that the NLS session
parameters specify. If the format does not match, the Oracle client returns an error
for the values, and the connector logs a message. For example, if the
NLS_DATE_FORMAT session parameter is set to MM/DD/YYYY, then the text values
that the connector writes to a column of DATE data type must adhere to that
format. In this case, the value 12/03/2008 is acceptable, but the value 03-DEC-2008
is not.

When the design-time schema specifies a column in a datetime data type, the
Oracle connector ignores the Oracle NLS settings and converts the values into the

Oracle datetime data type.

You can configure the Oracle connector to log debug messages that contain
information about the current settings for the Oracle NLS session parameters, NLS

36 Connectivity Guide for Oracle Databases

database parameters, and the NLS_LANG environment variable. By default, debug
messages are not shown in the log file. To view debug messages in the log file, set
the CC_MSG_LEVEL environment variable to 2.

When the table definition on the output link specifies a column in a text data type,
the values that the connector provides on the output link automatically match the
format that the Oracle NLS session parameters specify. This matching occurs
because Oracle automatically converts datetime values to text values in the
specified format. When the table definition on the output link specifies a column in
a datetime data type, the Oracle connector performs the conversion between the
two datetime data types and ignores the Oracle NLS settings.

Oracle LOB and XMLType data types
The Oracle connector supports reading and writing the XMLType data type and
the Oracle LOB data types BFILE, BLOB, CLOB, NCLOB, LONG RAW, RAW.

When you configure the Oracle connector to read data from a database table that
contains LOB columns, you specify how to produce the LOB field values on the
output link. The choices are inline or by reference.

When you use the inline form for LOB field values, the connector produces the
actual values. Because the actual values are transferred on the link, use the inline
form when the LOB values are relatively small, typically not more than a few
hundred KB. To configure the connector to use the inline form, set Enable LOB
references to No.

Use the reference form to transfer LOB values that are relatively large, typically
more than 1 MB, from the source stage to the target stage. However, when you use
the reference form, interim stages cannot process the actual values. For example, if
you add a Transformer stage to a job, the Transformer stage cannot perform
operations on the actual LOB values because only the reference strings, not the
actual values, are transferred through the job.

To configure the Oracle connector to use the reference form, set Enable LOB
references to Yes. Then, in the Columns for LOB references property, select the
columns to pass by reference. Only link columns of LongVarChar, LongNVarChar
and LongVarBinary data types are available for selection.

When a downstream LOB-aware stage receives the reference string on its input
link, the stage engages the Oracle connector to retrieve the actual value that the
reference string represents. The stage then processes that actual value. The
connector outputs these reference strings as the values of the fields. When a
downstream LOB-aware stage requires the values, the connector uses the
information in the reference strings to retrieve the actual values and then passes
them to the downstream stage, which loads the values into the target table. The
LOB-aware stages include the DB2 connector, WebSphere MQ connector, ODBC
connector, Teradata connector, and Oracle connector. If you specify a target stage
that is not LOB-aware, the target stage cannot recognize the reference string as a
special locator value and treats the reference string as ordinary data.

Consider these potential issues when you configure the connector to read and
write LOB data:

¢ The connector supports both the inline and reference form to transfer BFILE,
BLOB, CLOB, NCLOB, and XMLIType columns.

Chapter 3. Oracle connector 37

* The connector supports only the inline form to transfer LONG and LONG RAW
columns. The length attribute for the column on the link must be set to the
maximum expected length for the actual data at run time.

 If at run time Oracle connector dynamically adds a column to the link that has
the Runtime Column Propagation setting enabled and the link column
corresponds to a LONG or LONG RAW table column in the database, the
connector sets the link column length to the maximum value that meets both of
the following conditions:

— The value does not exceed 999999.

— When the value is multiplied by the value that is specified in the Array size
property for the stage, the product does not exceed 10485760 (the number of
bytes in 10 MB).

* When you configure the Oracle connector to read data from a BFILE column,
you can transfer the actual file contents, or you can transfer only a reference to
the file location. If you transfer the file contents of a BFILE, set the Transfer
BFILE contents property to Yes. By default, Transfer BFILE contents is set to
No, and the connector transfers only the reference to the file location.

* When you configure the connector to read XMLType data and manually create
the SELECT statement, you must use an alias to reference the table. Also, the
XMLIype column must use the Oracle GETCLOBVAL() or GETBLOBVAL()
member function to get the actual XML content as BLOB or CLOB. If the column
on the output link is defined as LongVarChar or LongNVarChar and passed
inline, use the Oracle GETCLOBVAL() member function. If the column is defined
as LongVarBinary and passed inline, use the GETBLOBVAL() member function.
Do not use the GETCLOBVAL() and GETBLOBVAL() member functions when
you pass XMLType columns as LOB references. To read from an XMLType object
table or object view, use the OBJECT_VALUE pseudonym for the column name.

* When you configure the connector to write XMLType data, if the column on the
input link is defined as Binary, VarBinary, or LongVarBinary, you must use the
Oracle SYS.XMLTYPE.CREATEXML() member function in the SQL statement to
create the XML content.

Example: Writing to an XMLType column

The following statement is the table definition:

CREATE TABLE TABLE1 (COL1 NUMBER(10), COL2 XMLTYPE) XMLTYPE COL2 STORE
AS BINARY XML;

To write the binary XML value to the XMLType column, enter this INSERT
statement in the Insert statement property in the connector:

INSERT INTO TABLEl (COL1, COL2) VALUES (ORCHESTRATE.COL1,
SYS.XMLTYPE.CREATEXML (ORCHESTRATE.COL2, 1, NULL, 1, 1));

In this example, the second parameter of the SYSXMLTYPE.CREATEXML function
specifies the character set ID for the US7ASCII character set in Oracle. The third
parameter is an optional schema URL that forces the input to conform to the
specified schema. The fourth parameter is a flag that indicates that the instance is
valid according to the specified XML schema. The fifth parameter is a flag that
indicates that the input is well formed.

Example: Reading XMLType data from a standard table or view

The following statement is the table definition:

38 Connectivity Guide for Oracle Databases

CREATE TABLE TABLE1 (COL1 NUMBER(10), COL2 XMLTYPE)
XMLTYPE COL2 STORE AS CLOB;

To retrieve the XML value as a CLOB value, enter this SELECT statement in the
Select statement property in the connector:

SELECT COL1, T.COL2.GETCLOBVAL() FROM TABLEl T;

To retrieve the XML value as a BLOB value that uses the character encoding
AL32UTES, enter this SELECT statement in the Select statement property in the
connector:

SELECT COL1, T.COL2.GETBLOBVAL(893) FROM TABLEL T;

The number 893 is the character set ID for the AL32UTFS8 character set in Oracle.
Oracle defines a character set ID for each character encoding that it supports. For
information about the supported character encodings and IDs, see the Oracle
documentation.

Example: Reading XMLType data from an object table

The following statement is the table definition:

CREATE TABLE TABLE1 OF XMLTYPE XMLTYPE
STORE AS BINARY XML;

To retrieve the XML value as a CLOB value, enter this SELECT statement in the
Select statement property in the connector:

SELECT T.0BJECT_VALUE.GETCLOBVAL() FROM TABLEL T;

To retrieve the XML value as a BLOB value that uses the US7ASCII character
encoding, enter this SELECT statement in the Select statement property in the
connector:

SELECT T.0BJECT_VALUE.GETBLOBVAL(1) FROM TABLEL T;
The number 1 is the character set ID for the US7ASCII character set in Oracle.
Example: Reading XMLType data from an object view

This example uses the TABLE1 table, which was defined in the previous example.
The following statement is the view definition:

CREATE VIEW VIEW1 AS SELECT = FROM TABLE1;

To retrieve the XML value from the VIEW1 view as a CLOB value, enter this
SELECT statement in the Select statement property in the connector:

SELECT V.0OBJECT_VALUE.GETCLOBVAL() FROM VIEWL V;

Data type mappings from Oracle to InfoSphere DataStage
When importing metadata, the Oracle connector converts Oracle data types to
InfoSphere DataStage data types.

The following table shows the mapping between Oracle data types and InfoSphere
DataStage data types. In the table, the following abbreviations are used:

* n-—size
* p — precision
* fsp — precision for fractions of a second

* yp — year precision

Chapter 3. Oracle connector 39

* dp — day precision
* sp — second precision

Single-byte and multibyte character sets are specified in the table. For a single-byte

character set, the NLS_CHARACTERSET database parameter is set to a single-byte
character set such as WESMSWIN1252. For a multibyte character set, the

NLS_CHARACTERSET database parameter is set to a multibyte character set such as

AL32UTES.
Table 5. Oracle data types and corresponding InfoSphere DataStage data types
InfoSphere InfoSphere | InfoSphere
DataStage DataStage |DataStage

Oracle data type InfoSphere DataStage SQL type length scale extended
CHAR(n BYTE) CHAR n unset unset
CHAR(n CHAR) CHAR n unset unset
single-byte
CHAR(n CHAR) NCHAR n unset unset
multibyte
CHAR single-byte If the NLS_LENGTH_SEMANTICS

database parameter is set to CHAR,

then see CHAR(n CHAR)

single-byte. Otherwise, see CHAR(n

BYTE). In both cases, assume that n

=1.
CHAR multibyte If the NLS_LENGTH_SEMANTICS

database parameter is set to CHAR,

then see CHAR(n CHAR)

multibyte. Otherwise, see CHAR(n

BYTE). In both cases, assume that n

=1
VARCHAR2(n BYTE) VARCHAR n unset unset
VARCHAR2(n CHAR) VARCHAR n unset unset
single-byte
VARCHAR2(n CHAR) NVARCHAR n unset unset
multibyte
CLOB single-byte LONGVARCHAR unset unset unset
CLOB multibyte LONGNVARCHAR unset unset unset
LONG single-byte LONGVARCHAR unset unset unset
LONG multibyte LONGNVARCHAR unset unset unset
NCHAR(n) NCHAR n unset unset
NCHAR See NCHAR(n) and assume n = 1.
NVARCHAR?2(n) NVARCHAR n unset unset
NCLOB LONGNVARCHAR unset unset unset
NUMBER DOUBLE unset unset unset
NUMBER (p, s) {p>=s} DECIMAL p s unset
{s>=0}
NUMBER(p, s) {p<s} DECIMAL s s unset
{s>=0}
NUMBER(p, s) {s<0} DECIMAL p-s unset unset
FLOAT(p) {1 <=p <=63} FLOAT unset unset unset

40 Connectivity Guide for Oracle Databases

Table 5. Oracle data types and corresponding InfoSphere DataStage data types (continued)

InfoSphere InfoSphere | InfoSphere
DataStage DataStage |DataStage

Oracle data type InfoSphere DataStage SQL type length scale extended
FLOAT(p) {64 <=p <= 126} | DOUBLE unset unset unset
BINARY_FLOAT FLOAT unset unset unset
BINARY_DOUBLE DOUBLE unset unset unset
LONG RAW LONGVARBINARY unset unset unset
RAW(n) VARBINARY n unset unset
BLOB LONGVARBINARY unset unset unset
BFILE VARCHAR 285 unset unset
DATE TIMESTAMP unset unset unset
TIMESTAMP(fsp) TIMESTAMP unset fsp Microseconds
TIMESTAMP(fsp) WITH | TIMESTAMP unset fsp Microseconds
TIME ZONE
TIMESTAMP(fsp) WITH | TIMESTAMP unset fsp Microseconds
LOCAL TIME ZONE
TIMESTAMP See TIMESTAMP(fsp) and assume

fsp=6.
TIMESTAMP WITH TIME | See TIMESTAMP(fsp) WITH TIME
ZONE ZONE and assume fsp=6.
TIMESTAMP WITH See TIMESTAMP(fsp) WITH
LOCAL TIME ZONE LOCAL TIME ZONE and assume

fsp=6.
INTERVAL YEAR (yp) TO | VARCHAR yp+4 unset unset
MONTH
INTERVAL DAY TO VARCHAR sp+13 unset unset
SECOND (sp)
INTERVAL DAY (dp) TO |VARCHAR dp+17 unset unset
SECOND
INTERVAL DAY (dp) TO |VARCHAR dp+sp+11 unset unset
SECOND (sp)
INTERVAL YEAR TO See INTERVAL YEAR (yp) TO
MONTH MONTH and assume yp=2.
INTERVAL DAY TO See INTERVAL DAY (dp) TO
SECOND SECOND (sp) and assume dp=2 and

sp=6.
ROWID CHAR 18 18 unset
UROWID(n) VARCHAR n unset unset
UROWID See UROWID(n1) and assume

n=4000.

XMLTIype stored as
CLOB or OBJECT_
RELATIONAL
single-byte

See CLOB single-byte.

XMLType stored as
CLOB or OBJECT_
RELATIONAL
multibyte

See CLOB multibyte.

Chapter 3. Oracle connector

41

Table 5. Oracle data types and corresponding InfoSphere DataStage data types (continued)

InfoSphere InfoSphere | InfoSphere
DataStage DataStage |DataStage
Oracle data type InfoSphere DataStage SQL type length scale extended
XMLType stored as See BLOB.
BINARY XML
Other UNKNOWN unset unset

Data type mappings for creating a table
When you use the Table action property to create a table, the connector maps
InfoSphere DataStage column definitions to Oracle column definitions.

The following table lists the mappings and uses these abbreviations:

* n—size

* p — precision

* sp — second precision
* 5 —scale

Table 6. InfoSphere DataStage column definitions and corresponding Oracle column

definitions

InfoSphere DataStage column definition

Oracle column definition

Data type: Bit

Length: any

Scale: any

Extended: not applicable

NUMBER(5,0)

Data type: Char
Length: unset
Scale: any
Extended: unset

CHAR(2000)

Data type: Char
Length: n
Scale: any
Extended: unset

CHAR(n)

Data type: VarChar
Length: unset
Scale: any
Extended: unset

VARCHAR2(4000)

Data type: VarChar
Length: n

Scale: any
Extended: unset

VARCHAR2(n)

Data type: LongVarChar
Length: any

Scale: any

Extended: unset

CLOB

Data type: Char
Length: unset
Scale: any
Extended: Unicode

NCHAR(1000)

42 Connectivity Guide for Oracle Databases

Table 6. InfoSphere DataStage column definitions and corresponding Oracle column

definitions (continued)

InfoSphere DataStage column definition

Oracle column definition

Data type: Char
Length: n

Scale: any
Extended: Unicode

NCHAR(n)

Data type: VarChar
Length: unset
Scale: any
Extended: Unicode

NVARCHAR2(2000)

Data type: VarChar
Length: n
Scale: any
Extended: Unicode

NVARCHAR2(n)

Data type: LongVarChar
Length: n

Scale: any

Extended: Unicode

NCLOB

Data type: NChar
Length: unset

Scale: any

Extended: not applicable

NCHAR(1000)

Data type: NChar
Length: n

Scale: any

Extended: not applicable

NCHAR(n)

Data type: NVarChar
Length: unset

Scale: any

Extended: not applicable

NVARCHAR2(2000)

Data type: NVarChar
Length: n

Scale: any

Extended: not applicable

NVARCHAR2(n)

Data type: LongNVarChar
Length: any

Scale: any

Extended: not applicable

NCLOB

Data type: Binary
Length: unset

Scale: any

Extended: not applicable

RAW(2000)

Data type: Binary
Length: n

Scale: any

Extended: not applicable

RAW((n)

Data type: VarBinary
Length: unset

Scale: any

Extended: not applicable

RAW(2000)

Chapter 3. Oracle connector

43

Table 6. InfoSphere DataStage column definitions and corresponding Oracle column

definitions (continued)

InfoSphere DataStage column definition

Oracle column definition

Data type: VarBinary
Length: n

Scale: any

Extended: not applicable

RAW(n)

Data type: LongVarBinary
Length: any

Scale: any

Extended: not applicable

BLOB

Data type: Decimal
Length: p

Scale: unset

Extended: not applicable

NUMBER(p)

Data type: Decimal
Length: p

Scale: s

Extended: not applicable

NUMBER(p,s)

Data type: Double
Length: any

Scale: any

Extended: not applicable

BINARY_DOUBLE

Data type: Float

Length: any

Scale: any

Extended: not applicable

BINARY_FLOAT

Data type: Real

Length: any

Scale: any

Extended: not applicable

BINARY_FLOAT

Data type: TinyInt
Length: any
Scale: any
Extended: unset

NUMBER(3,0)

Data type: Smalllnt
Length: any

Scale: any
Extended: unset

NUMBER(5,0)

Data type: Integer
Length: any
Scale: any
Extended: unset

NUMBER(10,0)

Data type: Biglnt
Length: any
Scale: any
Extended: unset

NUMBER(19,0)

Data type: TinyInt
Length: any

Scale: any
Extended: unsigned

NUMBER(3,0)

44 Connectivity Guide for Oracle Databases

Table 6. InfoSphere DataStage column definitions and corresponding Oracle column

definitions (continued)

InfoSphere DataStage column definition

Oracle column definition

Data type: Smalllnt
Length: any

Scale: any
Extended: unsigned

NUMBER(5,0)

Data type: Integer
Length: any

Scale: any
Extended: unsigned

NUMBER(10,0)

Data type: Biglnt
Length: any

Scale: any
Extended: unsigned

NUMBER(20,0)

Data type: Numeric
Length: p

Scale: unset

Extended: not applicable

NUMBER((p)

Data type: Numeric
Length: p

Scale: s

Extended: not applicable

NUMBER(p,s)

Data type: Date

Length: any

Scale: any

Extended: not applicable

DATE

Data type: Time
Length: any
Scale: unset
Extended: unset

DATE

Data type: Time
Length: any
Scale: sp
Extended: unset

TIMESTAMP(sp)

Data type: Timestamp
Length: any

Scale: unset
Extended: unset

DATE

Data type: Timestamp
Length: any

Scale: sp

Extended: unset

TIMESTAMP(sp)

Data type: Time
Length: any

Scale: unset

Extended: Microseconds

TIMESTAMP(6)

Data type: Time
Length: any

Scale: sp

Extended: Microseconds

TIMESTAMP(sp)

Chapter 3. Oracle connector

45

Table 6. InfoSphere DataStage column definitions and corresponding Oracle column
definitions (continued)

InfoSphere DataStage column definition Oracle column definition
Data type: Timestamp TIMESTAMP(6)
Length: any

Scale: unset
Extended: Microseconds

Data type: Timestamp TIMESTAMP(sp)
Length: any

Scale: sp

Extended: Microseconds

Data type: Unknown NCLOB
Length: any
Scale: any
Extended: any

Properties for the Oracle connector

Use these options to modify how the connector reads and writes data.

Enable quoted identifiers property

To maintain the case-sensitivity of Oracle schema object names, you can manually
enter double quotation marks around each name or set the Enable quoted
identifiers property to Yes.

Usage

The Oracle connector automatically generates and runs SQL statements when
either of these properties are set:

* Generate SQL at runtime is set to Yes.
* Table action is set to Create, Replace, or Truncate.

In these cases, the generated SQL statements contain the names of the columns and
the name of the table on which to perform the operation. The column names in the
database table match the column names that are specified on the link for the stage.
The table name matches the table that is specified in the Table name property.

By default, the Oracle database converts all object names to uppercase before it
matches the names against the Oracle schema object names in the database. If the
Oracle schema object names all use uppercase, then how you specify the names in
the connector properties, by using uppercase, lowercase, or mixed case, has no
effect on schema matching. The names will match. However, if the Oracle schema
object names use all lowercase or mixed case, you must specify the names exactly
as they appear in the Oracle schema. In this case, you must manually enter double
quotation marks around each name or set the Enable quoted identifiers property
to Yes.

Examples

For example, assume that the Enable quoted identifiers property is set to No and
that you want to create a table that contains one column and use a SELECT
statement that references the column. The statement CREATE TABLE Table2b (Coll
VARCHAR2(100)) creates the table TABLE2B, which contains one column, COL1. The
statement SELECT Coll FROM tABLEZB runs successfully because the Oracle database

46 Connectivity Guide for Oracle Databases

automatically changes the Coll and tABLE2B names in the statement to the
uppercase versions COL1 and TABLE2B and matches these names with the actual
schema object name and column name in the database.

Now assume that you use the statement CREATE TABLE "Table2b" ("Coll"
VARCHAR2(100)) to create the table Table2b, which contains one column, Coll.
Case-sensitivity is preserved because you enclosed the table and column names in
double quotation marks. Now the statement SELECT Coll FROM tABLE2B fails
because the Oracle database automatically changes Coll and Table2b to the
uppercase versions COL1 and TABLE2B, and these names do not match the actual
names, Coll and Table2b, in the database. However, the statement SELECT "Co11"
FROM "Table2b" runs successfully.

Now consider an example that illustrates the effect of the Enable quoted
identifiers property on table and column creation. Assume that the Table name
property is set to john.test. The input link contains the columns Coll, Col2, and
Col3, all of which are of VarChar(10) data type. The Table action property is set to
Create. If the Enable quoted identifiers property is set to No, the connector
generates and runs these SQL statements at runtime and creates the table
JOHN.TEST with the columns COL1, COL2, and COL3:

CREATE TABLE john.test(Coll VARCHAR2(10),Col2 VARCHAR2(10),Co13 VARCHAR2(10));

However, if the Enable quoted identifiers property is set to Yes, the connector
generates and runs this SQL statement at runtime and creates the table john.test
with the columns Coll, Col2, and Col3:

CREATE TABLE "john"."test"("Coll" VARCHAR2(10),"Col2" VARCHAR2(10),
"Co13" VARCHAR2(10));

Isolation level property
Use the Isolation level property to configure how the connector manages
statements in transactions.

Usage

As soon as the connector establishes a connection to the Oracle database and issues
the first transactional statement, the connector implicitly starts a transaction that
uses the specified isolation level. All of the operations that the connector performs
on the database are part of the current transaction. When the transaction ends,
either through a commit or a rollback, and the connector issues the next
transactional statement, the connector again implicitly starts a new transaction on
the connection.

Oracle cannot roll back some database operations, even if the transaction to which
they belong is rolled back. For example, DDL operations cannot be rolled back.

The following table describes the different options for the Isolation level property.
Table 7. Options for the isolation level property

Option Description

Read committed Each SELECT statement that runs in the
transaction sees the rows that were
committed when the current statement
started.

Chapter 3. Oracle connector 47

Table 7. Options for the isolation level property (continued)

Option Description

Serializable Each SELECT statement that runs in the
transaction sees only the rows that were
committed when the transaction started.

Read only Each SELECT statement that runs in the
transaction sees only the rows that were
committed when the transaction started.
However, the DML statements INSERT,
UPDATE, DELETE and MERGE are not
allowed in the transaction. This isolation
level prevents the PL/SQL block from
running DML statements. However, if the
PL/SQL block overrides the isolation level,
the block can run DML statements, even if
you set the isolation level to Read only.

Array size, buffer size, and record count properties
Use the array size, buffer size, and record count properties to control the number
of records to read from a database or write to a database at one time.

Usage

You set the Array size and Record count properties together. The array size
specifies the number of records to include in each batch that the read and write
operations on the database process. The record count specifies the number of
records to process in each transaction.

If the value that you specify for the Record count property is not 0 and is not a
multiple of the value that you specify for the Array size property, the connector
automatically chooses an array size so that the record count is a multiple of it.
When the connector chooses the array size, the connector attempts to find a value
that is close to the value that you specified. If the connector cannot find that value,
it chooses the value 1 or the value that matches the record count value, whichever
is closer to the value that you specified. Then, the connector logs an informational
message to inform you that it modified the value of the Array size property.

If you configure row prefetching, when a SELECT statement runs, the connector
fetches the number of rows that is specified by the Array size property. In
addition, the Oracle client fetches the number of rows that is specified by the
Prefetch row count property.

To control when the connector bulk loads buffered records into a target table, set
an array size and a buffer size. When the connector stage is configured to run in
parallel on more than one processing node, each of the processing nodes
establishes a separate Oracle session and loads data to the target table concurrently
with the other processing nodes.

The connector always tries to load data in chunks, where each chunk contains the
number of rows that is specified in the Array size property. The Buffer size
property controls the maximum size of the buffer that holds each chunk of records
in KB.

Based on the types and lengths of the columns that are defined on the input link,
the connector calculates whether the specified array size can always fit into the

48 Connectivity Guide for Oracle Databases

specified buffer size. If the buffer is too small to accommodate the number of
records specified for the array size, the connector automatically resets the array
size to the maximum number of records that fit in the buffer.

The following table shows the values that you can set these properties to.

Table 8. Values for the array size, buffer size, and record count properties

Property Unit Available values Default
Array size Records 1 - 999999999 2000
Buffer size KB 4 - 100240 1024
Record count Records 0 - 999999999 2000

If you enter 0, the
connector processes
all records before it
commits the
transaction.

How waves affect these properties

You can use the Mark end of wave property to specify whether to insert an
end-of-wave marker after the number of records that are specified in the Record
count property are processed. When the end-of-wave marker is inserted, any
records that the Oracle connector buffered are released from the buffer and pushed
into the job flow so that downstream stages can process them.

When an upstream stage provides records to the Oracle connector in the form of
waves, each wave includes an end-of-wave marker. In this case, the array size and
the record count apply to each separate wave of records. If not enough records are
available to fill the buffer to the specified array size value, the connector loads the
incomplete buffer of records as a batch and then processes the next wave of
records. When records do not arrive in waves and instead all arrive in a single
wave, the array size and the record count apply to that single wave.

Properties to run an SQL statement before or after processing
data

Use the Run before and after SQL statements property to configure the connector
to run an SQL statement before or after processing data. You can configure the
connector to run the SQL statements before or after processing any data in a job or
to run an SQL statement once before or after processing the data on each node.

Usage

Running an SQL statement before or after processing data is useful when you need
to perform operations that prepare database objects for data access. For example,
you might use an SQL statement to create a target table and add an index to it.
The SQL statement that you specify is performed once for the whole job, before
any data is processed.

After the connector runs the statement that is specified in the Before SQL
statement property or After SQL statement property, the connector explicitly
commits the current transaction. For example, if you specify a DML statement,
such as INSERT, UPDATE, DELETE, or MERGE, in the Before SQL statement
property, the results of the DML statement are visible to individual nodes.

Chapter 3. Oracle connector 49

To run an SQL statement on each node that the connector is configured to run on,
use the Before SQL (node) statement property or the After SQL (node) statement
property. The connector runs the specified SQL statement once before any data is
processed on each node or once after any data is processed on each node. Then,
the connector explicitly commits the current transaction. For example, to set the
data format to use for the client session on a node, you specify the ALTER
SESSION statement in the Before SQL (node) property.

When you specify the statement to run before or after processing, enter the SQL or
PL/SQL statement, or enter the fully qualified path to the file that contains the
SQL or PL/SQL statement. Do not include input bind variables or output bind
variables in the SQL or PL/SQL statement. If the statement contains these types of
variables, the connector logs a fatal message, and the operation stops. If you
specify a file name, the file must be on the computer where the InfoSphere
Information Server engine tier is installed, and you must set the Read Before SQL
statement from file or Read After SQL statement from file property to Yes.

When the connector is used to write records to the database and is configured to
perform a table action on the target table before writing data, you can use the Run
table action first property to control whether the SQL statement or the table action
is performed first.

Properties that control job failure
You can control whether to stop a job when certain SQL statements do not
successfully complete or when the first warning message is reported.

Stopping a job in the middle of a process is useful when you want to receive
prompt notification that something you expected to work failed. By design, a job
stops when a fatal message is reported. The following list contains the properties
that control job failure:

* Abort when create table statement fails

* Abort when drop table statement fails

* Abort when truncate table statement fails

e Fail on error for Before SQL statement,

* Fail on error for After SQL statement

* Fail on error for Before SQL (node) statement
¢ Fail on error for After SQL (node) statement
* Fail on error for index rebuilding

By default, all of the properties except Fail on error for drop table statement and
Fail on error for index rebuilding are set to Yes. If a property is set to Yes and an
error occurs, the message is reported to the log file, and the job stops. If a property
is set to No and an error occurs, the corresponding message is reported to the log
file, and the job continues.

If you set the property Process warning messages as fatal errors to Yes, the job
stops when the first warning message is issued, and the connector reports the error
in the log. By default, this property is set to No. In this case, when the first
warning message is issued, it is sent to the log and the job continues.

Transparent application failover properties
You can configure the Oracle connector to receive messages that describe when the
Oracle client starts transparent application failover (TAF) and how TAF progresses.

50 Connectivity Guide for Oracle Databases

Usage

When a database connection is enabled for TAF, the application that is connected
to the database is transparently reconnected to an alternative database instance if
the original connection fails. Because the reconnection occurs transparently, the
connector might seem to unexpectedly stop running and hang while the
reconnection occurs. For this reason, you might want to configure the connector to
receive notifications about TAE. You can also specify how long the Oracle client
side of the connection waits for TAF to complete.

To configure the connector for TAF notifications, set these properties:
* Set Manage application failover to Yes.
* Set Number of retries to the number of times to attempt application failover.

¢ Set Time between retries to the number of seconds to wait between subsequent
attempts to failover.

If the RETRIES and DELAY values are specified as part of the FAILOVER_MODE
configuration in the tnsnames.ora file, the connector ignores these values and
instead uses the values that are specified for the Number of retries and Time
between retries properties.

The two types of TAF are SESSION and SELECT. If you want the connector to
continue fetching data for the SELECT statement that is interrupted when failover
occurs, enable the SELECT failover type.

When TAF starts, the connector takes the following steps:

1. The connector logs a warning message that indicates that TAF began. This
message includes the type of TAF that is taking place, either SESSION or
SELECT.

2. Each time that the Oracle client attempts application failover, the connector logs
a warning message to indicate the failover attempt.

3. If the TAF succeeds, the connector logs a warning message to indicate that TAF
completed successfully.

4. If the Before SQL statement property is set to Yes, the connector reruns the
statement that is specified in the Before SQL statement property. If the Replay
Before SQL (node) statement property is set to Yes, the connector reruns the
statement that is specified in the Before SQL (node) statement property once
on each node.

5. If all of the TAF attempts fail or if the Oracle client indicates that TAF cannot
be completed, the connector logs a warning message, and the operation stops
because the connector does not have a valid connection to the database.

Example: Multiple database connections are configured, and
application failover is not enabled

For this example, the connector is configured in the following way:

* The connector is configured to run a SELECT statement that reads 1,000,000
rows from a table.

* The Manage application failover property is set to No.
¢ The connector is configured to connect to an Oracle RAC system.

* The connector specifies ORCL_1 as the connect descriptor to use to connect to
the orcll database instance.

* The tnsnames.ora configuration file contains the following connect descriptors:

Chapter 3. Oracle connector 51

ORCL 1 =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = tcp) (HOST = orcll-server) (PORT = 1521))
(CONNECT_DATA = (SERVICE_NAME = orcl) (INSTANCE_NAME = orcll)
(FAILOVER_MODE = (BACKUP = ORCL_2) (TYPE = select) (METHOD = preconnect))))

ORCL 2 =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = orcl2-server) (PORT = 1521))
(CONNECT_DATA = (SERVICE_NAME = orcl) (INSTANCE_NAME = orcl12)
(FAILOVER_MODE = (BACKUP = ORCL_1)(TYPE = select)(METHOD = preconnect))))

The connection that is established through the ORCL_1 connect descriptor has the
following characteristics:

* The Oracle client connects to the listener on host orclI-server and port 1521 and
attaches to the service orcl and the instance orcl1.

* The FAILOVER_MODE specifies that if the orcl1 instance becomes unavailable
while the application is connected to it, the SELECT type of TAF takes place.

* The BACKUP option specifies the backup connect descriptor that the Oracle
client uses if failover occurs.

* The METHOD option specifies when the Oracle client connects to the backup
instance. The value PRECONNECT specifies that the backup connection be
established at the same time that the primary connection is established. Then, if
the primary connection fails, the failover to the backup connection occurs.

If the connection to the instance orcl1 fails while the connector is fetching data
from a table, the connector stops processing data until the failover to the instance
orcl2 takes place. Because Manage transparent application failover is set to No,
the connector does not receive any notification when failover starts or completes.
Because the connection to the backup instance is established at the same time that
the primary connection is established, the failover occurs quickly and might occur
so quickly that the delay is not noticeable. After the failover completes, the
connector continues fetching data because the failover TYPE is set to SELECT.

Suppose that the connector was configured to write data and was running an
INSERT statement when the connection to the instance failed. After the failover
completed and the connector attempted to insert new data or commit the data that
was inserted just prior to the instance failing, the statement fails. The connector
logs an error message, and the job stops.

Example: A single database connection is configured, and application
failover is enabled

In this example, there is only one database instance, and failover occurs only after
the Oracle administrator restarts the instance. For this example, the Oracle
connector is configured in the following way:

* The connector is configured to run a SELECT statement that reads 1,000,000
rows from a table.

¢ The Manage application failover property is set to Yes.

* The connector is configured to connect to a single database instance.

* The connector specifies ORCL as the connect descriptor to use to connect to the
orcl database instance.

* The tnsnames.ora configuration file contains the following connect descriptor:

ORCL =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = orcl-server) (PORT = 1521))

52 Connectivity Guide for Oracle Databases

(CONNECT_DATA = (SERVICE_NAME = orcl)
(FAILOVER_MODE = (TYPE=select) (METHOD=basic) (RETRIES=20) (DELAY=5)
)
)
)

The connection that is established through the ORCL connect descriptor has the
following characteristics:

* The Oracle client connects to the listener on host orcl-server and port 1521 and
attaches to service orcl, which implements a single instance.

* The FAILOVER_MODE specifies that if the instance becomes unavailable while
the application is connected to it, the SELECT type of TAF takes place.

¢ The METHOD option, which is set to BASIC, specifies that the attempt to
reconnect to the instance happens when the failover occurs.

If the connection to the instance fails while the connector is fetching data from a
table, the connector receives a notification that failover is taking place because
Manage transparent application failover is set to Yes. Each time that the Oracle
client attempts to reestablish the connection, the Oracle client notifies the
connector, and the connector logs a message. The Oracle client ignores the
RETRIES and DELAY options because the Number of retries and Time between
retries properties are configured for the connector.

Suppose that the connector was configured to write data and was running an
INSERT statement when the connection to the instance failed. After failover
completed, the connector can try to recover from the error and continue to write
records to the database. To configure the connector to attempt to resume the write
operation after failover completes, set the Resume write property to Yes.

Properties for managing connections
Use properties to manage how the connector reconnects to an Oracle database after
losing the connection or closing an inactive connection.

Usage

If the connection to the Oracle database is lost, the connector can attempt to
reconnect to the database for a specified number of tries. When the connection is
reestablished, data can be processed from the point where it left off. The connector
attempts to reconnect when the situation is feasible, such as after a session timeout
or a network outage. However, in some cases the connector might not be able to
reconnect.

To preserve connection resources to the database, you can configure the connector
to automatically close the connection to an Oracle database if the connection is
inactive for a specified period. For example, you might want the connector to
disconnect if the job is processing records in transaction waves, and a long interval
between the waves exists. If the connection to the database is closed during that
time, other client applications can connect to the database.

The following table shows the properties for managing connections.

Chapter 3. Oracle connector 53

Table 9. Properties for managing connections

Property Description

Reconnect To reconnect to an Oracle database after
losing the connection, set this property to
Yes. This property applies to all links on the
stage and cannot be configured separately
for individual links.

Number of retries Enter the number of times to try to establish
a connection after a connection is lost.

Interval between retries Enter the time in seconds to wait between
retries to establish a connection.

Disconnect To close an inactive connection, set this
property to Period of inactivity.

Inactivity period Enter the time in seconds after which an idle
connection must be closed.

Read properties
Use these properties to modify how the connector reads data.

Prefetch properties:

Use the Prefetch row count and Prefetch buffer size properties to enable
prefetching for SELECT statements. If row prefetching is enabled, the connector
fetches the number of rows that is specified by the Array size property. In
addition, the Oracle client fetches a number of rows that is based on the values of
the Prefetch row count and Prefetch buffer size properties.

Usage

You can set the Prefetch row count property, the Prefetch buffer size property, or
set both properties. If you set both properties to a value that is greater than 0, the
Oracle client tries to prefetch the number of rows that is specified for the Prefetch
row count property. If the number of rows cannot fit in the memory size that is
specified for the Prefetch buffer size property, the Oracle client prefetches as many
rows as can fit into the buffer.

When you set the Prefetch row count or Prefetch buffer size property to 0, the
type of row prefetching that is controlled by that property is disabled.

The Oracle client immediately provides the rows that are fetched based on the
value of the Array size property to the connector. The Oracle client caches the
rows that are fetched based on the values of the Prefetch row count and Prefetch
buffer size properties. As the connector continues to request data for the currently
running SELECT statement, the fetch requests are optimized because the
prefetched rows are cached.

The following table shows the values that you can set these properties to.

Table 10. Values for the prefetch row count and prefetch buffer size properties

Property Available values Default
Prefetch row count 0 - 999999999 1

54 Connectivity Guide for Oracle Databases

Table 10. Values for the prefetch row count and prefetch buffer size properties (continued)

Property

Available values

Default

Prefetch buffer size (KB) 0 - 100240

0

By default, row prefetching
based on buffer size is
disabled.

Write properties

Use these properties to modify how the connector writes data.

Table action property:

Use the Table action property to configure the connector to complete create,
replace, and truncate actions on a table at run time. These actions are completed

before any data is written to the table.

Usage

You can set the Table action property to the values that are listed in the following

table.

Table 11. Values of the Table action property

Value Description

Append No action is completed on the table. This
option is the default.

Create Create a table at run time.

Use one of these methods to specify the
CREATE TABLE statement:

Set Generate create table statement at
runtime to Yes and enter the name of the
table to create in the Table name property.
In this case, the connector automatically
generates the CREATE TABLE statement
from the column definitions on the input
link. The column names in the new table
match the column names on the link. The
data types of columns in the new table are
mapped to the column definitions on the
link.

Set Generate create table statement at
runtime to No, and enter the CREATE
TABLE statement in the Create table
statement property.

Chapter 3. Oracle connector 55

Table 11. Values of the Table action property (continued)

Value

Description

Replace

Replace a table at run time.

Use one of these methods to specify the
DROP TABLE statement:

Set Generate drop table statement at
runtime to Yes, and enter the name of the
table to drop in the Table name property.
Set Generate drop table statement at
runtime to No, and enter the DROP
TABLE statement in the Drop table
statement property.

Use one of these methods to specify the
CREATE TABLE statement:

Set Generate create table statement at
runtime to Yes, and enter the name of the
table to create in the Table name property.
Set Generate create table statement at
runtime to No, and enter the CREATE
TABLE statement in the Create table
statement property.

Truncate

Truncate a table at run time.

Use one of these methods to specify the
TRUNCATE TABLE statement:

Set Generate truncate table statement at
runtime to Yes, and enter the name of the
table to truncate in the Table name
property.

Set Generate truncate table statement at
runtime to No, and enter the TRUNCATE
TABLE statement in the Truncate table
statement property.

To configure the job to fail when the statement that is specified by the table action
fails, you can set the appropriate property to Yes:

e Abort when create table statement fails

* Abort when drop table statement fails

e Abort when truncate table statement fails

Otherwise, when the statement fails, the connector logs a warning message, and

the job continues.

Drop unmatched fields property:

Use the Drop unmatched fields property to specify how to handle unused

columns on the input link.

56 Connectivity Guide for Oracle Databases

Usage

When you create a job that writes data from the input link to the database, you
can use the Drop unmatched fields property to control how to handle any unused
columns (fields) on the input link. Unused columns on the input link can be the
following types of columns:

* Columns that the connector did not pair with any parameter in the target SQL
or PL/SQL statement

* If Bulk load is specified as the write mode, columns that the connector did not
pair with any target table column

You can set the Drop unmatched fields property to the values that are listed in the
following table.

Table 12. Values of the Drop unmatched fields property

Value Description

Yes The connector drops any unused columns
on the input link. For each dropped column,
the connector writes an informational
message in the job log to indicate that the
column and its associated values were
ignored.

No When the connector encounters an unused
column on the input link, the connector logs
an error message and stops the job.

You use the Enable quoted identifiers property to specify whether the name
matching between the input link columns and target SQL statement parameters or
table columns is case sensitive.

Example

For example, consider the following job:
* The connector stage is configured to use bulk load as the write mode.

* The target table in the database contains these columns: FIRSTNAME,
LASTNAME and DATEOFBIRTH.

¢ The input link of the connector contains these columns: FirstName, LastName,
Address, DateofBirth, Phone, and Email.

The following table shows how the values of the Drop unmatched fields and
Enable quoted identifiers properties affect the results of the job.

Table 13. How the values of the Drop unmatched fields and Enable quoted identifiers
properties affect the results of the job

Drop unmatched fields Enable quoted identifiers Result

No No The connector logs an error
message to indicate that the
Address column from the
input link is not used, and
the job stops.

Chapter 3. Oracle connector 57

Table 13. How the values of the Drop unmatched fields and Enable quoted identifiers
properties affect the results of the job (continued)

Drop unmatched fields Enable quoted identifiers Result

No Yes The connector logs an error
message to indicate that the
FirstName column from the
input link is not used, and
the job stops.

Yes No The connector logs
informational messages to
indicate that the Address,
Phone, and Email columns
from the input link are not
used. The connector loads
only the data that is
provided for the FirstName,
LastName and DateofBirth
input link columns.

Yes Yes All columns are dropped.
Because the Oracle database
requires a minimum of one
column in the records that
are written to the database,
the job fails and the
connector logs an error
message.

Preserve trailing blanks property:

Use the Preserve trailing blanks property to specify whether the stage preserves
trailing white space characters in the text field values of the records that it passes
to the database.

Usage

This property is available for all modes that are available in the Write mode
property, including the bulk load mode. The property applies to the input link
columns and key columns on the reference link that have the character data types,
such as VarChar or NVarChar.

You can set the Preserve trailing blanks property to the values that are listed in
the following table.

Table 14. Values of the Preserve trailing blanks property

Value Description

Yes The trailing white space characters are
treated the same as any other characters.
They are preserved along with the other
characters, and the data is passed to the
database in its original form. This behavior
is the default for the connector.

58 Connectivity Guide for Oracle Databases

Table 14. Values of the Preserve trailing blanks property (continued)

Value Description

No The stage removes trailing white space
characters from the text field values. The
trimmed values are passed to the database.
Any leading white space characters in the
values are preserved.

Fail on row error property:

Use the Fail on row error property to log an error message and stop the job when
an error occurs while writing a record to the database.

Usage
This property is not available if the Write mode property is set to Bulk load.

You can set the Fail on row error property to the values that are listed in the
following table.

Table 15. Values of the Fail on row error property

Value Description

Yes When a record is not written to the
database, the connector logs an
unrecoverable error, and the job stops.

No When a record is not written to the
database, the connector logs a warning
message and continues to process the
remaining input records.

The default value for the property depends on the type of job in which the
connector stage is running. For parallel jobs, the default value is Yes. If a reject link
is defined for the stage, this property is not available and automatically defaults to
Yes.

For server jobs, the default value is No. By default, if an error occurs when writing
a record to the database, a warning message is logged, and the job continues. If the
input link comes from a Transformer stage that is configured to reject rows that the
Oracle Connector stage could not write to the database, the Fail on row errors
property must be set to No. The Transformer stage can send the rows that the
Oracle Connector stage cannot write to the database to the reject link.

Logging properties:

Use the logging properties to specify how the Oracle connector logs the values that
are in each column when an SQL statement fails to insert, update, or delete a row.

Usage
Each node that fails to insert, update, or delete rows prints the first row that failed
on that node. The logging properties are not available when the Write mode

property is set to Bulk load.

The following table shows the logging properties.

Chapter 3. Oracle connector 59

Table 16. Logging properties

Property Values Description
Log column values on first |, vyeg If you choose Yes, the
row error . No connector logs column values

for the first row that failed
on each node. Also, the Log
key values only and
Column delimiter properties
are enabled. The default
value is No.

Log key values only e Yes If you choose Yes, the
connector logs the values of

" No key columns only. The
default value is No.
Column delimiter * Space Specify the delimiter that is
. used between column values
* Newline in the log
e Tab
* Comma

Allow concurrent load sessions property:

Use the Allow concurrent load sessions property to specify whether multiple
applications, such as multiple processing nodes of the Oracle Connector stage, can
load data to the table, partition, or subpartition segments concurrently.

Usage

You can set the Allow concurrent load sessions property when the Oracle
Connector stage is configured to load data to a table, partition, or subpartition
segment from a single processing node. If you set the property to No, other
applications cannot load data to the same segment while the connector loads data.
Other applications might include external applications or other InfoSphere
DataStage jobs.

If the Oracle Connector stage is configured to run in parallel on more than one
processing node, each of the processing nodes establishes a separate Oracle session
and loads data to the target table concurrently. In this scenario, if the Allow
concurrent load sessions property is set to No, multiple processing nodes cannot
load data concurrently to the same segment in the database. This situation might
lead to the Oracle error ORA-00054, where the processing nodes try to load data to
a segment while another processing node is loading data to the same segment. To
avoid this situation, set the Allow concurrent load sessions property to Yes.

Sometimes, the Oracle Connector stage is configured to load data from multiple
processing nodes to a partitioned Oracle table, and the stage is configured to
partition the input data. If the table supports the specified partitioning type, each
processing node loads data to its assigned partition segment or a set of
subpartition segments, and the processing nodes do not compete for access to the
segment. In this scenario, setting Allow concurrent load sessions property to No
does not prevent the Oracle Connector stage from loading data in parallel from
multiple processing nodes. However, the setting prevents other applications from
concurrently loading data to the segments that are accessed by this Oracle
Connector stage.

60 Connectivity Guide for Oracle Databases

Index maintenance option property:

Set the Index maintenance option property to control how to handle table indexes

during a bulk load.

Usage

The following table shows the values for the Index maintenance option property.

Value

Description

Do not skip unusable

When the connector loads rows into the
table, the connector tries to maintain
indexes. If an index on the table is unusable,
the bulk load fails.

Skip unusable

The connector skips indexes that are
unusable and maintains indexes that are
usable.

If the property is set to this value when the
connector bulk loads into a partitioned table
that has a global index defined, the bulk
load fails.

Skip all

The connector skips all indexes. Any index
that is usable before the load is marked
unusable after the load.

Lookup properties

Use these properties to modify how the connector looks up data.

Log multiple matches property:

When the Oracle Connector stage runs in a parallel job and in lookup, it is
connected with a reference link to the Lookup stage, and the Lookup stage
provides support for handling multiple lookup matches. Use the Log multiple
matches property when the Oracle Connector stage runs in a server job and in the
lookup mode of operation. You can use the property to log a message when a
lookup statement returns multiple matching records for the input key record.

Usage

In this mode, one or more reference links connect the Oracle Connector stage with
a Transformer stage. Each input record is checked separately. Even if the lookup
statement in the connector returns multiple rows, only the first row is provided by
the connector on the reference link. This property controls whether to log a

message if such a situation occurs.

The following table shows the values for the Log multiple matches property.

Value Description

None The connector does not log a message for
multiple matches.

Informational The connector logs a message of
informational severity.

Warning The connector logs a message of warning
severity.

Chapter 3. Oracle connector 61

Value Description

Fatal The connector logs a message of fatal
severity and stops the job.

Runtime column propagation

Use runtime column propagation to have the connector automatically add missing
columns to the link schema when the job runs.

Usage

Before you can enable runtime column propagation in a stage, runtime column
propagation must be enabled for parallel jobs at the project level from the
InfoSphere DataStage Administrator client. To enable runtime column propagation
for the output link of the stage, select the Runtime column propagation check box
on the Columns page.

When runtime column propagation is enabled, the connector inspects at run time
the columns in the result set of the query statement that it ran on the database.
The connector compares those columns to the columns that are defined on the
output link. Columns that are in the result set but not on the output link are added
to the link. Columns that are on the output link but not in the query result set are
removed from the link.

When the Oracle connector dynamically adds a column to the link at run time in a
job that has runtime column propagation enabled and the link column corresponds
to a LONG or LONG RAW table column in the database, the connector sets the
link column length to the maximum possible value that meets both of these
conditions:

¢ The value does not exceed 999999.
* When the value is multiplied by the value that is specified in the Array size

property for the stage, the product does not exceed 10485760 (the number of
bytes in 10 MB).

When runtime column propagation is enabled, a SELECT statement contains an
SQL expression for a column name, and no alias is specified for the column, the
connector automatically adds a new column to the link and specifies a column
name that matches the SQL expression.

The following rules explain how the column name is derived from the SQL
expression:

* Non-alphanumeric characters and underscores (_) are replaced with a pair of
underscore characters.

* The dollar sign ($) is replaced with _ 036__.
¢ The number sign (#) is replaced with _ 035__.
* White space characters are removed.

* If any character replacement is performed, the prefix CC_N_ is appended to the
column name, where N is the index of the SQL expression column in the
SELECT statement list. The first column in the SELECT statement list has index
1, the second column has index 2, and so on.

62 Connectivity Guide for Oracle Databases

Example

The following example illustrates how runtime column propagation works.
Assume that runtime column propagation is enabled for the stage, that the
statement SELECT COL1, RPAD (COL2, 20, 'x') FROM TABLE1 is specified in the
stage, and that the output link defines two columns, COL1 and COL2. Because
runtime column propagation is enabled, the connector tries to match columns only
by name, not by position. The COL1 column from the SELECT statement is
mapped to the COL1 column on the output link, but the SQL expression RPAD
(COL2, 20, *') is not mapped to any column on the output link. Therefore, the
connector adds the following column to the link: CC_2_RPAD_COL2__20 .In
the new column name, the number 2 is used in the column name prefix because
the SQL expression appears as the second column in the SELECT statement list.
Each non-alphanumeric character (, ' *) is replaced by two underscore characters.
The white spaces in the SQL expression are removed. Finally, the connector
removes the COL2 column from the output link because that column is unmapped.

If runtime column propagation is not enabled, the connector performs matching by
position. Consequently, the COL1 and COL2 columns remain on the link, and
COL2 on the link represents the values of the SQL expression from the SELECT
statement. If the column alias COL2 is used for the SQL expression and runtime
column propagation is enabled, the mapping by name is successful, and the two
existing link columns, COL1 and COL2, are used. The SELECT statement in this
case is SELECT COL1, RPAD(COL2, 20, '*') COL2 FROM TABLEIL.

Partitioned read methods

The Oracle connector supports these partitioned read methods: rowid range, rowid
round robin, rowid hash, modulus, minimum and maximum range, and Oracle
partitions.

For all partitioned read methods except the Oracle partitions method, the
connector modifies the WHERE clause in the specified SELECT statement. If the
WHERE clause is not included in the specified SELECT statement, the connector
adds a WHERE clause.

For the Oracle partitions method, the connector modifies the specified SELECT
statement by adding a PARTITON(partition_name) clause. When the specified
SELECT statement contains subqueries, the connector modifies the first
SELECT...FROM subquery in the SELECT statement.

Rowid range partitioned read method

The rowid range partitioned read method uses values from the ROWID
pseudo-column to determine the rows to read. The ROWID pseudo-column, which
is included in every Oracle table, contains a rowid value that uniquely identifies
each row in the table.

When you use the rowid range method, the connector completes these steps:

1. The connector queries the DBA_EXTENTS dictionary view to obtain storage
information about the source table.

2. The connector uses the information from the DBA_EXTENTS dictionary view to
define a range of rowid values for each node.

3. At run time, each node runs the specified SELECT statement with a slightly
modified WHERE clause. The modified WHERE clause ensures that the node

Chapter 3. Oracle connector 63

reads only the rows that have rowid values in its assigned range. If the
specified SELECT statement does not have a WHERE clause, the connector
adds it.

The connector does not support the rowid range method in these cases:

e SELECT access is not granted on the DBA_EXTENTS dictionary view for the
currently connected user.

¢ The connector reads from an index-organized table.
* The connector reads from a view.

In these cases, the connector logs a warning message and uses the rowid hash
method, which does not have these restrictions.

These are the advantages of using the rowid range method instead of using the
rowid round robin method:

* The SELECT statement for each node is less complex because it does not require
as many SQL functions.

* The rowid range method provides a better distribution of rows across the nodes
because the distribution is based on the physical collocation of the rows.

Example of using the rowid range partitioned read method

For this example, the Oracle connector is configured in the following way:

* The Select statement property is set to SELECT « FROM TABLE1 WHERE COL1 > 10.
* The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on four nodes.

* The Partitioned reads method property is set to Rowid range.

In this example, the connector calculates the rowid range for each processing node
and runs a SELECT statement on each node. For each node, the SELECT statement

specifies the rowid range that is assigned to that node. The SELECT statements are
similar to the following statements, but the actual rowid range values will vary:

Node 1

SELECT * FROM TABLE1l WHERE TABLE1.ROWID BETWEEN 'AAARvrAAEAAAAVpPAAA' AND
'AAARVIrAAEAAAAVUH//' AND (COL1 > 10)

Node 2

SELECT * FROM TABLE1l WHERE TABLE1.ROWID BETWEEN 'AAARvrAAEAAAAVVAAA' AND
'AAARVIAAEAAAAVOH//' AND (COL1 > 10)

Node 3

SELECT * FROM TABLE1 WHERE TABLE1.ROWID BETWEEN 'AAARvrAAEAAAAVIAAA' AND
'AAARVIrAAEAAAAVGH//' AND (COL1 > 10)

Node 4

SELECT * FROM TABLE1l WHERE TABLE1.ROWID BETWEEN 'AAARvrAAEAAAAV7AAA' AND
' AAARVrAAEAAAAWAH//' AND (COL1 > 10)

Rowid round robin partitioned read method

The rowid round robin method uses the ROWID_ROW_NUMBER function from
the DBMS_ROWID package to obtain the row number of the row within the table
block where the row resides. The method uses the MOD function on the row
number to distribute rows evenly among the nodes.

64 Connectivity Guide for Oracle Databases

These are the advantages of using the rowid round robin method instead of using
the rowid range method:

* The currently connected user does not require SELECT access on the
DBA_EXTENTS dictionary view.

* The rowid round robin method supports reading data from an index-organized
table.

¢ The rowid round robin method supports reading data from a view. The rows in
the view must correspond to the physical rows of the table. The rowid round
robin method cannot read rows from a view that is derived from a join
operation on two or more tables.

Example of using the rowid round robin partitioned read method

For this example, the Oracle connector is configured in the following way:

* The Select statement property is set to SELECT = FROM TABLE1 WHERE COL1 > 10.
* The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on four nodes.

* The Partitioned reads method property is set to Rowid round robin.

The connector runs these SELECT statements on the nodes:

Node 1

SELECT * FROM TABLE1 WHERE MOD(DBMS_ROWID.ROWID ROW_NUMBER(TABLE1.ROWID), 4)
(coL1 > 10)

0 AND

Node 2

SELECT * FROM TABLE1 WHERE MOD(DBMS_ROWID.ROWID ROW_NUMBER(TABLE1.ROWID), 4)
(coL1l > 10)

1 AND

Node 3

SELECT * FROM TABLE1 WHERE MOD(DBMS_ROWID.ROWID ROW_NUMBER(TABLE1.ROWID), 4)
(coL1 > 10)

2 AND

Node 4

SELECT * FROM TABLE1 WHERE MOD(DBMS_ROWID.ROWID ROW_NUMBER(TABLE1.ROWID), 4)
(coL1 > 10)

3 AND

Rowid hash partitioned read method

The rowid hash method is similar to the rowid round robin method. However,
instead of using the ROWID_ROW_NUMBER function to obtain the row number,
the rowid hash method uses the ORA_HASH function to obtain a hash value for
the rowid value of each row. Then, the rowid hash method applies the MOD
function on the row number to distribute rows evenly among the nodes.

Example of using the rowid hash partitioned read method

For this example, the Oracle connector is configured in the following way:

* The Select statement property is set to SELECT = FROM TABLE1 WHERE COL1 > 10.
¢ The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on four nodes.

* The Partitioned reads method property is set to Rowid hash.

The connector runs these SELECT statements on the nodes:

Chapter 3. Oracle connector 65

Node 1
SELECT * FROM TABLE1 WHERE MOD(ORA_HASH(TABLEI.RONID), 4) = 0 AND (COL1 > 10)

Node 2
SELECT * FROM TABLE1 WHERE MOD(ORA_HASH(TABLEI.RONID), 4) =1 AND (COL1 > 10)
Node 3
SELECT * FROM TABLE1 WHERE MOD(ORA_HASH(TABLEI.RONID), 4) =2 AND (COL1 > 10)

Node 4
SELECT * FROM TABLE1 WHERE MOD(ORA_HASH(TABLEI.RONID), 4) = 3 AND (COL1 > 10)

Modulus partitioned read method

When this method is selected, for each node, the connector reads the rows that
satisfy the following condition: MOD(column_name, number_of_nodes) =
node_number. In this condition, MOD is the modulus function, column_name is the
name of the column that is specified in the Column name for partitioned reads
property, number_of_nodes is the total number of nodes on which the stage runs,
and node_number is the index of the current node.

The indexes are zero-based. Therefore, the first node has index 0, the second node
has index 1, and so on.

To use this method, you must specify a column name from the input table in the
Column name for partitioned reads property. The column that you specify must
be of the data type NUMBER(p), where p is a value in the range 1 - 38. The
specified column must exist in the table that is specified in the Table name for
partitioned reads property, the Table name property, or the Select statement
property. The value for the Select statement property is used only if you do not
explicitly specify the table name in one of the other two properties.

Example of using the modulus partitioned read method

For this example, the Oracle connector is configured in the following way:

* The Select statement property is set to SELECT = FROM TABLE1 WHERE COL1 > 10.

¢ The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on four nodes.

¢ The Partitioned reads method property is set to Modulus.

* The Column name for partitioned reads property is set to COL2, and COL2 is
defined as NUMBER(5) in TABLEL.

The connector runs the following SELECT statements on the nodes:

Node 1
SELECT * FROM TABLE1 WHERE MOD(TABLE1.COL2, 4)

0 AND (COL1

\%

10)

Node 2
SELECT * FROM TABLE1 WHERE MOD(TABLE1.COL2, 4) = 1 AND (COL1 > 10)

Node 3
SELECT * FROM TABLE1 WHERE MOD(TABLE1.COL2, 4) = 2 AND (COL1 > 10)
Node 4
SELECT * FROM TABLE1 WHERE MOD(TABLE1.COL2, 4) = 3 AND (COL1 > 10)

66 Connectivity Guide for Oracle Databases

Minimum and maximum range partitioned read method

When this method is specified, the connector calculates the minimum and
maximum value for the specified column and then divides the calculated range
into subranges. Each subrange is then assigned to a node; the number of subranges
equals the number of nodes that are configured for the stage. On each node, the
connector runs a SELECT statement that returns the rows where the value in the
specified column is in the subrange that was assigned to that node.

To use this method, you must specify a column name from the input table in the
Column name for partitioned reads property. The column that you specify must
be of the data type NUMBER(p), where p is a value in the range 1 - 38. The
specified column must exist in the table that is specified in the Table name for
partitioned reads property, the Table name property, or the Select statement
property. The value for the Select statement property is used only if you do not
explicitly specify the table name in one of the other two properties.

Example of using the minimum and maximum range partitioned read
method

For this example, the Oracle connector is configured in the following way:

* The Select statement property is set to SELECT = FROM TABLE1 WHERE COL1 > 10.
¢ The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on four nodes.

* The Partitioned reads method property is set to Minimum and maximum
range.

¢ The Column name for partitioned reads property is set to COL2, and COL2 is
defined as NUMBER(5) in TABLEL.

The connector determines the minimum and maximum value for column COL2. If
the minimum value is -20 and maximum value is 135, the connector runs the
following SELECT statements on the nodes:

Node 1
SELECT * FROM TABLE1 WHERE TABLE1.COL2 <= 18 AND (COL1 > 10)

Node 2
SELECT * FROM TABLE1l WHERE TABLE1.COL2 BETWEEN 19 AND 57 AND (COL1 > 10)

Node 3
SELECT * FROM TABLE1 WHERE TABLE1.COL2 BETWEEN 58 AND 96 AND (COL1 > 10)

Node 4
SELECT * FROM TABLE1 WHERE TABLE1.COL2 >= 97 AND (COL1 > 10)

Oracle partitions partitioned read method

When this method is specified, the connector determines the number of partitions
in the table and dynamically configures the number of nodes to match the number
of table partitions. The connector associates each node with one table partition. For
each node, the connector reads the rows that belong to the partition that is
associated with that node.

To perform this operation, the connector adds the PARTITION (partition_name)
clause to the SELECT statement where partition_name is the name of the partition

Chapter 3. Oracle connector 67

that is associated with the current node. Consequently, when you specify a value
for the Select statement property, do not include a PARTITION or SUBPARTITION
clause.

The connector can dynamically adjust the number of nodes on which it runs.
However, for this process to work, do not use the Advanced page of the Stage
window to constrain the node configuration at design time. If the node
configuration is constrained at design time and the resulting number of nodes does
not match the number of partitions in the table, the connector returns an error and
the job fails.

Example of using the Oracle partitions partitioned read method

For this example, the Oracle connector is configured in the following way:

e The Select statement property is set to SELECT * FROM TABLE1 WHERE COL1 > 10.
* The Table name for partitioned reads property is set to TABLEL.

* The connector is configured to run in parallel mode on five nodes.

¢ The Partitioned reads method property is set to Oracle partitions.

* TABLEI1 has four partitions:

CREATE TABLE TABLE1

(
COL1 NUMBER(10),
COL2 DATE

)

PARTITION BY RANGE (COL2)

(
PARTITION PART1 VALUES LESS THAN (TO_DATE('01-JAN-2006','DD-MON-YYYY')),
PARTITION PART2 VALUES LESS THAN (TO_DATE('01-JAN-2007','DD-MON-YYYY')),
PARTITION PART3 VALUES LESS THAN (TO_DATE('01-JAN-2008','DD-MON-YYYY')),
PARTITION PART4 VALUES LESS THAN (MAXVALUE)

)s

The connector determines that TABLE1 has four partitions: PART1, PART2, PART3,
and PART4. The connector concludes that the stage must run on four processing
nodes. Because the stage was configured to run on five nodes, the connector
removes the fifth node from the list of nodes and logs an informational message to
indicate that the list of nodes was adjusted and that the stage will run on four
nodes.

The connector runs the following SELECT statements on the nodes:

Node 1
SELECT * FROM TABLE1 PARTITION(PART1) WHERE COL1 > 10

Node 2
SELECT * FROM TABLE1 PARTITION(PART2) WHERE COL1 > 10
Node 3
SELECT * FROM TABLE1 PARTITION(PART3) WHERE COL1 > 10

Node 4
SELECT * FROM TABLE1 PARTITION(PART4) WHERE COL1 > 10

68 Connectivity Guide for Oracle Databases

Oracle connector partition type

For writes to a range-partitioned, list-partitioned or interval-partitioned table, the
Oracle connector partition type ensures that the distribution of input records
matches the organization of the partitions in the table.

When the Oracle connector partition type is selected, the connector first gets the
partitioning information for the table. In most cases, the connector uses the
partitioning information from the table to which the connector writes the data; the
name of this table is usually specified in the Table name property or is implicitly
specified in the INSERT, UPDATE, or DELETE SQL statement. To configure the
connector to use the partitioning information from one table but write the data to a
different table, you specify the table name in the Table name for partitioned
writes property.

After the connector determines the table name for the partitioned write, the
connector determines the set of nodes on which to run. The connector determines
the number of partitions that are on the table and associates one node with each
partition. The number of partitions must match the number of nodes. A mismatch
between the number of nodes and the number of partitions can occur in the
following situations:

¢ The configuration of the parallel processing nodes specifies a resource
constraint. If the configuration specifies a constraint, the connector cannot
dynamically modify the set of processing nodes. As a result, the connector
reports an error and stops the operation.

* The list of nodes that are configured for the stage contains more nodes than the
number of partitions in the table. In this case, the connector removes the excess
nodes from the end of the list.

* The list of nodes that are configured for the stage contains fewer nodes than the
number of partitions in the table. In this case, the connector adds nodes to the
end of the list. The definition for each node that is added matches the definition
of the last node in the original list.

Next, the connector determines the node to send each input record to. For each
incoming record, the connector inspects the data in the fields that correspond to
the table columns that constitute the partition key for the table. The connector
compares those values to the boundary values that are specified for the individual
partitions of the table and determines the partition that will store the records.
Because the number of nodes matches the number of partitions and each partition
has only one node assigned to it, the connector routes the records to the node that
is associated with each partition, and the node writes the records into the database.

For the connector to determine both the number of partitions in a table and the
partitioning type that was used to partition the table, the table must exist in the
database before you run the job. The only exception to this rule is when the Table
action property is set to Create or Replace and the Create statement property
specifies a CREATE TABLE statement. In this case, the connector analyzes the
CREATE TABLE statement to determine the number of partitions and the partition
type that the table will have when it is created at run time. The connector uses this
information to determine the number of nodes that the stage will run on.

Conditions that cause the stage to run in sequential mode,
report errors, or both

If the table uses a supported partition type but the partition key in the table
includes a virtual column, the connector does not force sequential execution.

Chapter 3. Oracle connector 69

Instead, the connector runs on the number of nodes that is equal to the number of
table partitions. However, because only one node processes the data, the connector
effectively runs in sequential mode.

If the Table action property is set to Create or Replace and the Generate create
statement at runtime property is set to Yes, the connector does not create the table
as a partitioned table. Therefore, the connector cannot associate the table partitions
with the nodes. In this case, the connector logs a warning and runs the stage in
sequential mode.

If the table does not exist and the Before SQL statement property or the Before
SQL (node) statement property specifies the CREATE TABLE statement, the
connector reports an error. The error is reported because the connector tries to
determine the number of partitions and the partition type before it runs the before
SQL statement that creates the table.

When the Table scope property is set to Single partition or Single subpartition,
the connector runs the stage in sequential mode and logs a warning. In this case,
the connector is explicitly configured to write data to only one partition or
subpartition; therefore, only one node is assigned to that partition or subpartition.

Support for standard Oracle partition types

When you use the Oracle connector partition type in the Oracle Connector stage,
you can write to range-partitioned, list-partitioned, or interval-partitioned tables on
Oracle databases.

The following table shows the standard Oracle partition types that are supported
by the Oracle connector partition type. The table also describes the actions that the
Oracle connector takes when the Oracle connector partition type is selected and the
connector writes data to tables that are partitioned in each way.

Table 17. Oracle partition types that are supported and unsupported when you use the
Oracle connector partition type in the Oracle Connector stage

Actions that the connector
Oracle partition type Support takes

Supported The connector inspects the
values of the record fields

that correspond to the

* Composite range-list partition key columns,

* Composite range-hash determines the partition to
which the record belongs,

and redirects the record to
the node that is associated
with that table partition.

* Range

* Composite range-range

o List Supported The connector inspects the
value of the record that
corresponds to the partition
+ Composite list-list key column, determines the
* Composite list-hash partition to which the record
belongs, and redirects the
record to the node that is
associated with that table
partition.

* Composite list-range

Hash Unsupported The connector runs the stage
in sequential mode and logs
a warning message.

70 Connectivity Guide for Oracle Databases

Table 17. Oracle partition types that are supported and unsupported when you use the
Oracle connector partition type in the Oracle Connector stage (continued)

Oracle partition type

Support

Actions that the connector
takes

* Interval
* Composite interval-range
* Composite interval-list

* Composite interval-hash

Supported

The connector inspects the
value of the record that
corresponds to the partition
key column and determines
the partition to which the
record belongs. If the record
belongs to one of the
partitions that existed when
the job started, the connector
redirects the record to the
node that is associated with
that table partition.
Otherwise, the connector
redirects the record to a
special node that is reserved
for loading records into
partitions that are new and
were created dynamically.

Reference

Unsupported

The connector runs the stage
in sequential mode and logs
a warning message.

Virtual

Unsupported

The connector runs the stage
in sequential mode and logs
a warning message.

System

Unsupported

The connector runs the stage
in sequential mode and logs
a warning message.

Supported write methods

When you configure the Oracle connector as a target, you can use the supported
write methods to write rows to an Oracle table or writable view.

The following table lists the write modes and describes the operations that the
connector completes on the target table for each write mode.

Table 18. Write modes and descriptions

Write mode

Description

Insert The connector attempts to insert records
from the input link as rows into the target
table.

Update The connector attempts to update rows in

the target table that correspond to the
records that arrive on the input link.
Matching records are identified by the
values that correspond to link columns that
are marked as key columns.

Chapter 3. Oracle connector 71

Table 18. Write modes and descriptions (continued)

Write mode

Description

Delete

The connector attempts to delete rows in the
target table that correspond to the records
that arrive on the input link. Matching
records are identified by the values that
correspond to link columns that are marked
as key columns.

Insert new rows only

The behaviour of this write mode is very
similar to the Insert write mode. However,
when this write mode is selected, records
that cannot be written to the database
because of a primary key or unique
constraint are ignored, and the connector
processes the remaining records. When any
error other than a primary key or unique
constraint violation occurs, the connector
still logs a fatal error and stops the job.

Insert then update

For each input record, the connector first
tries to insert the record as a new row in the
target table. If the insert operation fails
because of a primary key or unique
constraint, the connector updates the
existing row in the target table with the new
values from the input record.

Update then insert

For each input record, the connector first
tries to locate the matching rows in the
target table and to update them with the
new values from the input record. If the
rows cannot be located, the connector inserts
the record as a new row in the target table.

Delete then insert

For each input record, the connector first
tries to delete the matching rows in the
target table. Regardless of whether rows
were actually deleted or not, the connector
then runs the insert statement to insert the
record as a new row in the target table.

PL/SQL block

For each input record, the connector runs
the specified PL/SQL block.

Bulk load

The connector uses the Oracle direct path
load method to bulk load data.

Reject conditions

When you use the Oracle connector as a target in a job, you can add a reject link
and send rejected records to a target stage. Reject conditions determine when a

record is rejected.

You can set the following reject conditions:

Row not updated - update mode

The connector checks for this condition only when the Write mode
property is set to Update. The connector attempts to update a row in the
target table and the operation succeeds, but the database reports that zero

72 Connectivity Guide for Oracle Databases

rows were updated. For example, if key field values in the input record do
not match key column values of any row in the target table, this reject
condition is satisfied.

This condition does not have a corresponding Oracle error code and error
message.

Row not updated - insert then update mode
The connector checks for this condition only when the Write mode
property is set to Insert then Update. The connector attempts to update a
row in the target table and the operation succeeds, but the database reports
that zero rows were updated.

For example, the following situation results in a row not being updated.
Suppose that the key field values in the input record do not match the key
column values of any row in the target table. However, field values for one
or more of the remaining fields violate the unique or primary key
constraint in the table. In this case, the INSERT statement fails because of
the constraint violation. Also, the UPDATE statement does not update any
rows because no matching rows in the table meet the condition that is
specified in the WHERE clause of the UPDATE statement.

This condition does not have a corresponding Oracle error code and error
message.

Row not deleted
The connector checks for this condition only when the Write mode
property is set to Delete. The connector attempts to delete a row in the
target table and the operation succeeds, but the database reports that no
data was deleted. This situation can occur when the key field values in the
input record do not match the key column values of any row in the target
table.

This condition does not have a corresponding Oracle error code and error
message.

SQL error — constraint check
This condition occurs when an operation cannot be completed because of a
constraint check. In some situations, this SQL error does not result in a
record being sent to the reject link. For example, when the Write mode
property is set to Insert then update and the insert operation fails because
of a primary key constraint, the connector attempts to update the row,
rather than send the record to the reject link. However, if the update
operation fails for one of the selected reject conditions, the connector sends
the input record to the reject link.

SQL error — type mismatch
This condition occurs when a data value in the record is not compatible
with the data type of the corresponding column in the target table. In this
case, Oracle cannot convert the data and returns an error.

SQL error — data truncation
This condition occurs when the data types of the columns on the link are
compatible with the column data types in the target table, but data is lost
because of a size mismatch.

SQL error — character set conversion
This condition occurs when the record contains Unicode data in one or
more of NChar, NVarChar or LongNVarChar columns and conversion
errors happen when that data is converted to the database character set
that is specified by the NLS_CHARACTERSET database parameter.

Chapter 3. Oracle connector 73

SQL error — partitioning
This condition occurs when the connector tries to write a record to a
particular partition in the partitioned table, but the specified partition is
not the partition to which the record belongs.

SQL error — XML processing
This condition occurs when a record that contains an XML data document
cannot be inserted into an XMLIype column in a table because the XML
data contains errors. For example, if the specified XML document is not
well-formed or if the document is invalid in relation to its XML schema,
this error condition occurs.

SQL error — other
This condition covers all SQL errors that are not covered explicitly by one
of the other reject conditions.

White space characters, NULL values, and empty string values

When the Oracle connector reads data from a database or writes data to a
database, the connector always preserves white space characters such as SPACE,
TAB, CR (carriage return), and LF (line feed). In addition, the connector does not
trim leading or trailing white space characters from text values unless the Preserve
trailing blanks property is set to No.

The Oracle database does not support empty string values in text columns. Instead,
the Oracle database treats these values as NULL values.

Before writing values into fixed-size text columns, the Oracle database pads all
non-empty values with space characters.

For example, assume that you use the following statement to create a target table
named TABLE1 and configure the connector to insert or bulk load data into this
table:

CREATE TABLE TABLE1 (COL1 VARCHAR2(10) NULL, COL2 CHAR(3) NULL);

The following table shows the input data for the COL1 and COL2 columns and the
corresponding values that are stored in TABLEL. In the table, an en dash (-)
represents a space character.

Table 19. Example input column values and corresponding table values that are stored in
the database

Column values Table values
"VAL1-1-", "V1-" "VAL1-1-", "V1-"
Y-, - "V2--", -

"3", NULL "3", NULL
NULL, "4" NULL, "4--"
"o NULL, NULL
NULL, NULL NULL, NULL

Dictionary views

To complete specific tasks, the Oracle connector requires access to a set of Oracle
dictionary views.

74 Connectivity Guide for Oracle Databases

The following table describes how the Oracle connector uses each dictionary view.

Table 20. How the Oracle connector uses Oracle dictionary views

Dictionary view

Use

Required for these tasks

ALL_CONSTRAINTS

Obtain the list of constraints
for a table

* Importing a table
definition

* Enabling and disabling
constraints

ALL_INDEXES

Obtain the list of indexes for
a table

¢ Importing a table
definition

¢ Determining the list of
indexes to rebuild

¢ Determining how a table
is organized, either as a
heap table or by index

ALL_OBJECTS

Obtain additional metadata,
such as table names and
view names, for the objects
that you specify

Depends on the objects that
you specify. For example, for
a parallel read that is based
on Oracle partitions, the
connector accesses this view
to determine the object type,
either table or view, and the
partitions and subpartitions.

ALL_PART_COL_
STATISTICS

Determine the boundary
(high) value for each
partition in a table

Writing to a partitioned table

ALL_PART_KEY_COLUMNS

Determine the list of
columns that are in the
partition key for a table

Writing to a partitioned table

ALL_PART_TABLES

Determine the partitioning
method that the table uses.
When the Oracle connector
partition type is selected, the
Oracle connector uses the
information from this view
to determine the partition to
which each record belongs
and then to direct each
record to the node that is
associated with that
partition.

Writing to a partitioned table

ALL_TAB_COLS

¢ Determine column
metadata such as data
type, length, precision, and
scale to determine if a
column is a virtual column

* Determine if a column
exists and if it is of the
correct data type when the
Modulus or the Minimum
and Maximum range
partitioned read method is
specified

Completing actions on a
partitioned table

75

Chapter 3. Oracle connector

Table 20. How the Oracle connector uses Oracle dictionary views (continued)

Dictionary view

Use

Required for these tasks

ALL_TAB_PARTITIONS

Determine the number and
names of the partitions in a
partitioned table

Completing actions on a
partitioned table

ALL_TAB_SUBPARTITIONS

Determine the number and
names of all subpartitions in
a composite-partitioned table

Completing actions on a
partitioned table

ALL_TABLES

Determine the list of tables
that are accessible by the
current user

* Importing a table
definition

* Identifying the users that
have tables with the
SYSTEM or SYSAUX table
space as the default table
space for the user

* Determining if a specified
table is partitioned

ALL_VIEWS

Determine the views that are
accessible by the current user

Identifying the views that
you can import

ALL_XML_TAB_COLS

Determine the XML storage
option that was specified in
the column definitions

Importing metadata for
tables that contain XMLType
columns

ALL_XML_TABLES

Determine the XML storage
option that was specified in
the table definitions

Importing metadata for
tables that contain XMLType
columns

DBA_EXTENTS

Gather information about the
table storage organization

Reading from partitioned
tables by using the rowid
range partitioned read
method. If select access is not
granted to this view, the
connector automatically
switches to the rowid hash
partitioned read method.

DUAL

Obtain and calculate various
intermediate values that the
connector needs for its
operation

Completing actions on a
table

USER_TAB_PRIVS

Determine if the current user
was granted select privilege
on a particular dictionary
view such as the
DBA_EXTENTS view. If the
current user was not granted
select privilege, the connector
takes corrective action.

Accessing a dictionary view

Exceptions table

If you configure the connector to enable constraints after bulk loading data, the
connector stores the ROWID values for any rows that violate the constraints in an

exceptions table.

The format of the exceptions table is specified in the utlexcpt.sql and
utlexcptl.sql scripts, which are in the Oracle installation directory. For example,

76 Connectivity Guide for Oracle Databases

for installations on Microsoft Windows, the scripts are in the %0RACLE_HOME%\RDBMS\
ADMIN directory. The utTexcpt.sql script defines the format for exceptions tables
that accept the physical ROWID values that conventional tables use. The
utlexcptl.sql script defines the format for exceptions tables that accept the
universal ROWID (UROWID) values that both conventional and index-organized
tables use.

When a database already has an exceptions table, the table must use the format
that is specified in the script that corresponds to the type of the target table;
otherwise, the connector reports a fatal error about the table format, and the job
stops.

If you do not specify an exceptions table, the following actions occur:

* The connector tries to enable the constraint. The operation fails if the table
contains rows that violate the constraint.

* The connector cannot be configured to automatically delete the rows that violate
the constraint.

* If you define a reject link and select the SQL Error - constraint violation
condition for the reject link, the job fails, and the message IIS-CONN-ORA-
001058 is written to the job log, indicating that an exceptions table is required.

Environment variables that the Oracle connector uses

In addition to the environment variables that affect how the Oracle connector
operates, the Oracle connector queries and uses Oracle environment variables and
environment variables for the local operating system.

Library path
This variable must include the directory where the Oracle client libraries
are stored. The following table lists the name of the library path variable
for each operating system.

Operating system Name of the library path variable
HP-UX LD_LIBRARY_PATH or SHLIB_PATH
IBM AIX LIBPATH

Linux LD_LIBRARY_PATH

Microsoft Windows PATH

LOCAL

This Oracle environment variable specifies the default remote Oracle
service. When this variable is defined, the connector connects to the
specified database by using an Oracle listener that accepts connection
requests. This variable is for use on Microsoft Windows only. Use the
TWO_TASK environment variable for Linux and UNIX.

ORACLE_HOME
This Oracle environment variable specifies the location of the home
directory of the Oracle client installation. The connector uses the variable
to locate the tnsnames.ora configuration file, which is required to make a
connection to an Oracle database. The connector looks for the tnsnames.ora
file in the ORACLE_HOME/network/admin directory.

ORACLE_SID
This Oracle environment variable specifies the default local Oracle service.
When this variable is defined, the connector connects to the specified

Chapter 3. Oracle connector 77

database and does not use an Oracle listener. On Microsoft Windows, you
can specify this environment variable in the Windows registry.

If both ORACLE_SID and TWO_TASK or LOCAL are defined, TWO_TASK or LOCAL
takes precedence.

TWO_TASK
This Oracle environment variable specifies the default remote Oracle
service. When this variable is defined, the connector connects to the
specified database by using an Oracle listener that accepts connection
requests. This variable is for use on Linux and UNIX only. Use the LOCAL
environment variable for Microsoft Windows.

If both ORACLE_SID and TWO_TASK or LOCAL are defined, TWO_TASK or LOCAL
takes precedence.

TNS_ADMIN
This Oracle environment variable specifies the location of the directory that
contains the tnsnames.ora configuration file. When this variable is
specified, it takes precedence over the value of the ORACLE_HOME
environment variable when the Oracle connector tries to locate the
configuration file. The connector looks for the tnsnames.ora file directly
under the TNS_ADMIN directory.

78 Connectivity Guide for Oracle Databases

Chapter 4. Oracle Enterprise stage

The Oracle Enterprise stage is a database stage that you can use to read data from
and write data to an Oracle database. It can also be used in conjunction with a
Lookup stage to access a lookup table that is hosted by an Oracle database.

When you use IBM InfoSphere DataStage to access Oracle databases, you can
choose from a collection of connectivity options. For most new jobs, use the Oracle
Connector stage, which offers better functionality and performance than the Oracle
Enterprise stage.

If you have jobs that use the Oracle Enterprise stage and want to use the
connector, use the Connector Migration Tool to migrate jobs to use the connector.

The Oracle Enterprise stage can have a single input link and a single reject link, or
a single output link or output reference link.

The stage performs one of the following operations:

* Updates an Oracle table using INSERT or UPDATE or both as appropriate. Data
is assembled into arrays and written using Oracle host-array processing.

¢ Loads an Oracle table (by using Oracle fast loader).
* Reads an Oracle table.

* Deletes rows from an Oracle table.

* Performs a lookup directly on an Oracle table.

* Loads an Oracle table into memory and then performs a lookup on it.

When you use an Oracle stage as a source for lookup data, there are special
considerations about column naming. If you have columns of the same name in
both the source and lookup data sets, note that the source data set column will go
to the output data. If you want this column to be replaced by the column from the
lookup data source, you need to drop the source data column before you perform
the lookup (you can, for example, use a Modify stage to do this).

For more information about performing lookups, see the IBM InfoSphere DataStage
and QualityStage Parallel Job Developer’s Guide.

When you edit a Oracle Enterprise stage, the Oracle Enterprise stage editor
appears.

The stage editor has up to three pages, depending on whether you are reading or

writing a database:

* Stage Page. This is always present and is used to specify general information
about the stage.

* Inputs Page. This is present when you are writing to a Oracle database. This is
where you specify details about the data being written.

* Outputs Page. This is present when you are reading from a Oracle database, or
performing a lookup on an Oracle database. This is where you specify details
about the data being read.

Note: For Oracle direct path load, the client version must be the same as or earlier
than the server version. You should have read and execute permissions to use

© Copyright IBM Corp. 2008, 2014 79

libraries in the $ORACLE_HOME/lib and $ORACLE_HOME /bin directories and
read permissions on all files in the §ORACLE_HOME directory. Otherwise, you
might experience problems using Oracle enterprise stage to connect to Oracle.

Accessing Oracle databases

Before you can use the Oracle Enterprise stage, you must set values for
environment variables and ensure that you have the roles and privileges that are
required.

Before you begin

Install the Oracle standard client. You cannot use the stage if only Oracle Instant
Client is installed.

Procedure

1. Create the user defined environment variable ORACLE_HOME and set this to
the $ORACLE_HOME path (for example, /disk3/oracle10g).

2. Add ORACLE_HOME/bin to your PATH and ORACLE_HOME/lib to your
LIBPATH, LD_LIBRARY_PATH, or SHLIB_PATH.

3. Have login privileges to Oracle using a valid Oracle user name and
corresponding password. These must be recognized by Oracle before you
attempt to access it.

4. Have SELECT privilege on:
* DBA_EXTENTS
* DBA_DATA_FILES
* DBA_TAB_PARTITONS
* DBA_TAB_SUBPARTITONS
+ DBA_OBJECTS
* ALL_PART_INDEXES
¢ ALL_PART_TABLES
* ALL_INDEXES
* SYS.GV_$INSTANCE (Only if Oracle Parallel Server is used)

Note: APT_ORCHHOME/bin must appear before ORACLE_HOME/bin in
your PATH.

You can create a role that has the appropriate SELECT privileges, as follows:

CREATE ROLE DSXE;

GRANT SELECT on sys.dba_extents to DSXE;

GRANT SELECT on sys.dba_data_files to DSXE;
GRANT SELECT on sys.dba_tab_partitions to DSXE;
GRANT SELECT on sys.dba_tab_subpartitions to DSXE;
GRANT SELECT on sys.dba_objects to DSXE;

GRANT SELECT on sys.all_part_indexes to DSXE;
GRANT SELECT on sys.all_part_tables to DSXE;
GRANT SELECT on sys.all_indexes to DSXE;

Once the role is created, grant it to users who will run the IBM InfoSphere
DataStage and QualityStage jobs, as follows:

GRANT DSXE to <oracle userid>;

80 Connectivity Guide for Oracle Databases

Handling special characters (# and $)

The number sign (#) and dollar sign ($) characters are reserved in IBM InfoSphere
DataStage. If you connect to Oracle databases that use these characters in column
names, you must complete steps to ensure that the characters are handled correctly.

About this task

InfoSphere DataStage converts these characters into an internal format, then
converts them back as necessary.

To take advantage of this facility, you need to perform the following task:

* Avoid using the strings _ 035__ and __036__ in your Oracle column names.
__035__ is the internal representation of # and __036__ is the internal
representation of $.

When you use this feature in your job, import metadata by using the Plug-in Meta
Data Import tool, and avoid entering metadata manually.

After the table definition is loaded, the internal column names are displayed rather
than the original Oracle names both in table definitions and in the Data Browser.
They are also used in derivations and expressions. Because the original names are
used in generated SQL statements, however, use them if you enter SQL in the job
manually.

Generally, in the Oracle Enterprise stage, enter external names everywhere except
when you refer to stage column names, where you use names in the form
ORCHESTRATE.internal_name.

When using the Oracle Enterprise stage as a target, enter external names as
follows:

* For Load options, use external names for select list properties.

¢ For Upsert option, for update and insert, use external names when referring to
Oracle table column names, and internal names when referring to the stage
column names. For example:

INSERT INTO tablename (A#, B$#) VALUES
(ORCHESTRATE.A_ 036 A_ 035 , ORCHESTRATE.B_ 035 035 B_ 036)

UPDATE tablename SET B$# = ORCHESTRATE.B_ 035 035 B 036__ WHERE (A# =
ORCHESTRATE.A_ 036_A_ 035)

When you use the Oracle Enterprise stage as a source, enter external names as
follows:

* For Read using the user-defined SQL method, use external names for Oracle
columns for SELECT: For example:
SELECT M#$, D#$ FROM tablename WHERE (M#$ > 5)

* For Read using Table method, use external names in select list and where
properties.

When you use the Oracle Enterprise stage in parallel jobs to look up data, enter
external or internal names as follows:

* For lookups that use the user-defined SQL method, use external names for
Oracle columns for SELECT, and for Oracle columns in any WHERE clause you
might add. Use internal names when referring to the stage column names in the
WHERE clause. For example:

Chapter 4. Oracle Enterprise stage 81

SELECT M$##, D#$ FROM tablename
WHERE (B$# = ORCHESTRATE.B__ 035 B _ 036)

* For lookups that use the Table method, use external names in select list and
where properties.

* Use internal names for the key option on the Inputs page Properties tab of the
Lookup stage to which the Oracle Enterprise stage is attached.

Loading tables

If you use the Load method (which uses the Oracle SQL*Loader utility) to load
tables with indexes, you must specify a value for the Index Mode property.

By default, the stage sets the following options in the Oracle load control file:
» DIRECT=TRUE
* PARALLEL = TRUE

This action causes the load to run using parallel direct load mode. To use the
parallel direct mode load, the table must not have indexes, or you must set the
Index Mode property to Rebuild or Maintenance. If the only index on the table is
from a primary key or unique key constraint, you can instead use the Disable
Constraints property, which disables the primary key or unique key constraint and
enable it again after the load.

If you set the Index Mode property to Rebuild, the following options are set in the
file:

* SKIP_INDEX_MAINTENANCE=YES
* PARALLEL=TRUE

If you set the Index Mode property to Maintenance, the following option is set in
the file:

* PARALLEL=FALSE

You can use the environment variable APT_ORACLE_LOAD_OPTIONS to control the
options that are included in the Oracle load control file. You can load a table with
indexes without using the Index Mode or Disable Constraints properties by
setting the APT_ORACLE_LOAD_OPTIONS environment variable appropriately. You need
to set the Direct option or the PARALLEL option or both to FALSE, for example:

APT_ORACLE_LOAD_OPTIONS='OPTIONS(DIRECT=FALSE,PARALLEL=TRUE)'

In this example, the stage runs in parallel, however, since DIRECT is set to FALSE,
the conventional path mode rather than the direct path mode would be used.

If APT_ORACLE_LOAD_OPTIONS is used to set PARALLEL to FALSE, then you must set
the execution mode of the stage to run sequentially on the Advanced tab of the
Stage page.

If loading index-organized tables (I0Ts), do not set both DIRECT and PARALLEL
to true as direct parallel path load is not allowed for I0Ts.

Data type conversion for writing to Oracle

When the Oracle Enterprise stage writes or loads data, it automatically converts
the IBM InfoSphere DataStage data types to Oracle data types.

The data types are shown in the following table:

82 Connectivity Guide for Oracle Databases

Table 21. Data type conversion for writing data to an Oracle database

InfoSphere DataStage SQL
data type

Underlying data type

Oracle data type

Date date DATE

Time time DATE (does not support
microsecond resolution)

Timestamp timestamp DATE (does not support

microsecond resolution)

Timestamp with
Extended=Microseconds

timestamp[microseconds]

TIMESTAMP (6)

Decimal decimal (p, s) NUMBER (p, s)
Numeric

TinyInt int8 NUMBER (3, 0)
TinyInt with uint8 NUMBER (3, 0)
Extended=Unsigned

Smalllnt intl6 NUMBER (5, 0)
SmallInt with uintl6 NUMBER (5, 0)
Extended=Unsigned

Integer int32 NUMBER (10, 0)
Integer with uint32 NUMBER (10, 0)
Extended=Unsigned

BigInt int64 NUMBER (19)
BigInt with uint64 NUMBER (20)
Extended=Unsigned

Float sfloat BINARY_FLOAT
Real

Double dfloat BINARY_DOUBLE
Binary with Length raw RAW (2000)
undefined

VarBinary with Length raw][] RAW (2000)
undefined

LongVarBinary with Length

undefined

Binary with Length=n raw[n] RAW (n)
VarBinary with Length=n raw[max=n] RAW(n)
LongVarBinary with

Length=n

Char with Extended string CHAR (32)
undefined and Length

undefined

NChar with Length ustring NVARCHAR (32)
undefined

Char with

Extended=Unicode and

Length undefined

Char with Extended string[n] CHAR (n)
undefined and Length=n

NChar with Length=n ustring[n] NCHAR (n)

Char with Extened=Unicode
and Length=n

Chapter 4. Oracle Enterprise stage

83

Table 21. Data type conversion for writing data to an Oracle database (continued)
InfoSphere DataStage SQL

data type Underlying data type Oracle data type
Bit uintl6 NUMBER (5)
Unknown fixed-length string in the NVARCHAR(32)

form string[n] and ustring[n];
length <= 255 bytes

LongVarChar with Extended |string]] VARCHAR? (32)
undefined and Length
undefined

VarChar with Extended
undefined and Length
undefined

NVarChar with Length ustring|] NVARCHAR? (32)
undefined

LongNVarChar with Length
undefined

LongVarChar with
Extended=Unicode and
Length undefined

VarChar with
Extended=Unicode and
Length undefined

LongVarChar with Extended |string[max=n] VARCHAR? (n)
undefined and Length=n
VarChar with Extended

undefined and Length=n

NVarChar with Length=n ustring[max=n] NVARCHAR2 (n)
LongNVarChar with
Length=n
LongVarChar with
Extended=Unicode and
Length=n

VarChar with
Extended=Unicode and
Length=n

The default length of VARCHAR is 32 bytes. That is, 32 bytes are allocated for each
variable-length string field in the input data set. If an input variable-length string
field is longer than 32 bytes, the stage issues a warning.

Data type conversion for reading from Oracle

When the Oracle Enterprise stage reads data, it automatically converts Oracle data
types to the IBM InfoSphere DataStage data types.

The data types are shown in the following table:

84 Connectivity Guide for Oracle Databases

Table 22. Data type conversion for reading data from an Oracle database

InfoSphere DataStage SQL
data type

Underlying data type

Oracle data type

decimal[p, s] if precision (p)
=>11 and scale (s) > 0

Unknown string[n] or ustring[n] CHAR(n)
Char

LongVarChar Fixed length string with

VarChar length = n

NChar

NVarChar

LongNVarChar

Unknown string[max = n] or VARCHAR(n)
Char ustring[max = 1]

LongVarChar

VarChar variable length string with

NChar length = n

NVarChar

LongNVarChar

Timestamp Timestamp DATE
Decimal decimal (38,10) NUMBER
Numeric

Integer int32 if precision (p) <11 and | NUMBER(p, s)
Decimal scale (s) =0

Numeric

not supported

not supported

* LONG
 CLOB
*+ NCLOB
* BLOB

* INTERVAL YEAR TO
MONTH

* INTERVAL MONTH TO
DAY

* BFILE

Examples

These examples describe how the Oracle Enterprise stage looks up data from or
updates data in an Oracle table.

Looking up an Oracle table

In this example, the Oracle Enterprise stage looks up data in an Oracle table. The
stage looks up the interest rate for each customer based on the account type.

Here is the data that arrives on the primary link:

Table 23. Example of Looking up an Oracle table

Customer accountNo accountType balance
Latimer 7125678 plat 7890.76
Ridley 7238892 flexi 234.88

Cranmer 7611236 gold 1288.00

Chapter 4. Oracle Enterprise stage

85

Table 23. Example of Looking up an Oracle table (continued)

Customer accountNo accountType balance
Hooper 7176672 flexi 3456.99
Moore 7146789 gold 424.76
Here is the data in the Oracle lookup table:

Table 24. Example of Looking up an Oracle table

accountType InterestRate

bronze 1.25

silver 1.50

gold 1.75

plat 2.00

flexi 1.88

fixterm 3.00

Here is what the lookup stage will output:

Table 25. Example of Looking up an Oracle table

Customer accountNo accountType balance InterestRate
Latimer 7125678 plat 7890.76 2.00
Ridley 7238892 flexi 234.88 1.88
Cranmer 7611236 gold 1288.00 1.75
Hooper 7176672 flexi 3456.99 1.88
Moore 7146789 gold 424.76 1.75

The job is illustrated in the following figure. The stage editor that you use to edit
this stage is based on the generic stage editor. The Data_set stage provides the
primary input, the Oracle_8 stage provides the lookup data, Lookup_1 performs
the lookup and outputs the resulting data to Data_Set_3. In the Oracle stage,
specify that you are going to look up the data directly in the Oracle database, and
the name of the table you are going to lookup. In the Lookup stage, you specify
the column that you are using as the key for the lookup.

10 j == ”’l_llﬂ
Hf D5Linkd DSLmkE i

Drata_Set ;@ ’ [rata_Set_3

Lookup_1

.

-
- “ look_up

Oracle_g

Figure 4. Example look up job

The properties for the Oracle stage are given in the following table:

86 Connectivity Guide for Oracle Databases

Table 26. Properties for Oracle stage

Property name Setting
Lookup Type Sparse
Read Method Table

Table interest

Updating an Oracle table

In this example, the Oracle Enterprise stage updates an Oracle table with three
new columns.

The database records the horse health records of a large stud. Details of the
worming records are added to the main table and populated with the most recent
data by using the existing column "name" as a key. The metadata for the new
columns is as follows:

Table 27. Column metadata on the Properties tab

Column name | Key |SQL type |Extended Length | Scale |Nullable
name Yes |Char No
wormer_type Char Unicode No
dose_interval Char Unicode No
dose_level Char Unicode No

Specify upsert as the write method and select User-defined Update & Insert as the
upsert mode. The existing name column is not included in the INSERT statement.
The properties (showing the INSERT statement) are shown below. The INSERT
statement is as generated by the IBM InfoSphere DataStage, except the name
column is removed.

INSERT

INTO

horse_health

(wormer_type, dose_interval, dose level)
VALUES

(ORCHESTRATE . name,
ORCHESTRATE.wormer_type,
ORCHESTRATE.dose_interval,
ORCHESTRATE.dose_Tevel)

The UPDATE statement is as automatically generated by the InfoSphere DataStage:

UPDATE

horse_health

SET

wormer_type=0ORCHESTRATE.wormer_type,
dose_interval=0RCHESTRATE.dose_interval,
dose_Tevel=0RCHESTRATE.dose_Tevel

WHERE

(name=0RCHESTRATE.name)

Must Do's

The steps to use an Oracle Enterprise stage in a job depend on the operation that
you want to complete with the stage.

Chapter 4. Oracle Enterprise stage 87

This section specifies the minimum steps to take to get a Oracle Enterprise stage
functioning. The InfoSphere DataStage provides a versatile user interface, and there
are many shortcuts to achieving a particular end, this section describes the basic
method, you will learn where the shortcuts are when you get familiar with the
product.

Updating an Oracle database

To update an Oracle database, you specify and configure an update method and
ensure that column metadata is specified for the update operation.

Procedure

1. In the Input link Properties tab, under the Target category specify the update
method as follows:

a.
b.
c.

f.

Specify a Write Method of Upsert.
Specify the Table you are writing.

Select the Upsert Mode, this allows you to specify whether to insert and
update, or update only, and whether to use a statement automatically
generated by IBM InfoSphere DataStage or specify your own.

If you have chosen an Upsert Mode of User-defined Update and Insert,
specify the Insert SQL statement to use. InfoSphere DataStage provides the
auto-generated statement as a basis, which you can edit as required.

If you have chosen an Upsert Mode of User-defined Update and Insert or
User-defined Update only, specify the Update SQL statement to use.
InfoSphere DataStage provides the auto-generated statement as a basis,
which you can edit as required.

Under the Connection category, you can either manually specify a
connection string, or have InfoSphere DataStage generate one for you by
using a user name and password you supply. Either way you need to
supply a valid user name and password. InfoSphere DataStage encrypts the
password when you use the auto-generate option.

By default, InfoSphere DataStage assumes Oracle resides on the local server,
but you can specify a remote server if required.

Under the Options category:

If you want to send rejected rows down a rejects link, set Output Rejects to
True (it is false by default).

2. Ensure that column metadata is specified for the write operation.

Deleting rows from an Oracle database

To delete rows from an Oracle database, you specify details of the SQL statements
that are used to delete rows from the database.

Procedure

On the Properties page for the input link, configure the properties:
1. Set the Write Method property to Delete Rows.

2. Specify a value for the Delete Rows Mode property. You can use a statement
that is automatically generated by IBM InfoSphere DataStage or specify your
own.

3. If you select a Delete Rows Mode of User-defined delete, specify the Delete
SQL statement to use. InfoSphere DataStage provides the auto-generated
statement, which you can edit as required.

88 Connectivity Guide for Oracle Databases

Loading an Oracle database

To load data to an Oracle database, you configure properties and ensure that
column metadata is defined.

About this task
This method is the default write method.

Procedure

1. In the Input link Properties tab, under the Target category:
a. Specify a Write Method of Load.
b. Specify the Table you are writing.

c. Specify the Write Mode (by default the IBM InfoSphere DataStage appends
to existing tables, you can also decide to create a new table, replace an
existing table, or keep existing table details but replace all the rows).

Under the Connection category, you can either manually specify a
connection string, or have the InfoSphere DataStage generate one for you by
using a user name and password you supply. Either way you need to
supply a valid user name and password. The InfoSphere DataStage encrypts
the password when you use the auto-generate option.

By default, the InfoSphere DataStage assumes Oracle resides on the local
server, but you can specify a remote server if required.

2. Ensure that column metadata is specified for the write operation.

Reading data from an Oracle database

To read data from an Oracle database, you specify properties and ensure that
column metadata is specified for the read operation.

Procedure
1. In the Output link Properties tab:

a. Select a Read Method. This is Table by default, but you can also decide to
read using auto-generated SQL or user-generated SQL. The read operates
sequentially on a single node unless you specify a Partition Table property
(which causes parallel execution on the processing nodes containing a
partition derived from the named table).

b. Specify the table to be read.

c. If using a Read Method of user-generated SQL, specify the SELECT SQL
statement to use. The IBM InfoSphere DataStage provides the
auto-generated statement as a basis, which you can edit as required.

Under the Connection category, you can either manually specify a
connection string, or have the InfoSphere DataStage generate one for you by
using a user name and password you supply. Either way you need to
supply a valid user name and password. the InfoSphere DataStage encrypts
the password when you use the auto-generate option.

By default, the InfoSphere DataStage assumes Oracle resides on the local
server, but you can specify a remote server if required.

2. Ensure that column metadata is specified for the read operation.

Chapter 4. Oracle Enterprise stage 89

Performing a direct lookup on an Oracle database table

To perform a direct lookup on an Oracle database table, you set up the job,
configure lookup properties, and ensure that column metadata is specified for the
lookup operation.

Procedure
1. Connect the Oracle Enterprise stage to a Lookup stage by using a reference
link.

2. In the Output link Properties tab:
a. Set the Lookup Type to Sparse.

b. Select a Read Method. This is Table by default (which reads directly from a
table), but you can also decide to read using auto-generated SQL or
user-generated SQL.

C. Specify the table to be read for the lookup.

d. If using a Read Method of user-generated SQL, specify the SELECT SQL
statement to use. The IBM InfoSphere DataStage provides the
auto-generated statement as a basis, which you can edit as required. You
would use this if, for example, you wanted to perform a non-equality based
lookup.

Under the Connection category, you can either manually specify a
connection string, or have the InfoSphere DataStage generate one for you by
using a user name and password you supply. Either way you need to
supply a valid user name and password. The InfoSphere DataStage encrypts
the password when you use the auto-generate option.

By default, the InfoSphere DataStage assumes Oracle resides on the local
server, but you can specify a remote server if required.

3. Ensure that column metadata is specified for the lookup operation.

Performing an in-memory lookup on an Oracle database table

To perform an in-memory lookup operation on an Oracle database table, you set
up the job, configure lookup properties, and ensure that column metadata is
specified for the lookup operation.

About this task

This method is the default method.

Procedure
1. Connect the Oracle Enterprise stage to a Lookup stage by using a reference
link.

2. In the Output link Properties tab:
a. Set the Lookup Type to Normal.
b. Select a Read Method. This is Table by default (which reads directly from a

table), but you can also decide to read using auto-generated SQL or
user-generated SQL.

C. Specify the table to be read for the lookup.

d. If using a Read Method of user-generated SQL, specify the SELECT SQL
statement to use. The IBM InfoSphere DataStage provides the
auto-generated statement as a basis, which you can edit as required. You

would use this if, for example, you wanted to perform a non-equality based
lookup.

90 Connectivity Guide for Oracle Databases

Under the Connection category, you can either manually specify a
connection string, or have the InfoSphere DataStage generate one for you by
using a user name and password you supply. Either way you need to
supply a valid user name and password. The InfoSphere DataStage encrypts
the password when you use the auto-generate option.

By default, the InfoSphere DataStage assumes Oracle resides on the local
server, but you can specify a remote server if required.

3. Ensure that column metadata is specified for the lookup operation.

Stage page

The Stage page includes the General, Advanced, and NLS Map tabs.

The General tab allows you to specify an optional description of the stage. The
Advanced tab allows you to specify how the stage executes. The NLS Map tab
appears if you have NLS enabled on your system, it allows you to specify a
character set map for the stage.

Advanced tab

On the Advanced tab, you can configure properties that affect the execution mode,
combinability mode, partitioning, node pools, and node maps.

This tab allows you to specify the following values:

¢ Execution Mode. The stage can run in parallel mode or sequential mode. In
parallel mode the data is processed by the available nodes as specified in the
Configuration file, and by any node constraints specified on the Advanced tab.
In Sequential mode the data is processed by the conductor node.

* Combinability mode. This is Auto by default, which allows the IBM InfoSphere
DataStage to combine the operators that underlie parallel stages. Then they run
in the same process if it is sensible for this type of stage.

* Preserve partitioning. You can select Set or Clear. If you select Set read
operations will request that the next stage preserves the partitioning as is (it is
ignored for write operations). Note that this field is only visible if the stage has
output links.

* Node pool and resource constraints. Select this option to constrain parallel
execution to the node pool or pools or the resource pool or pools specified in the
grid. The grid allows you to make choices from drop down lists populated from
the Configuration file.

* Node map constraint. Select this option to constrain parallel execution to the
nodes in a defined node map. You can define a node map by typing node
numbers into the text box or by clicking the browse button to open the
Available Nodes dialog box and selecting nodes from there. You are effectively
defining a new node pool for this stage (in addition to any node pools defined
in the Configuration file).

NLS Map tab

On the NLS Map tab, you can define a character set map for the Oracle Enterprise
stage. You can set character set maps separately for NCHAR and NVARCHAR?2
types and all other data types.

This setting overrides the default character set map set for the project or the job.
You can specify that the map be supplied as a job parameter if required.

Chapter 4. Oracle Enterprise stage 91

Load performance might be improved by specifying an Oracle map instead of an
IBM InfoSphere DataStage map. To do this, add an entry to the file oracle_cs,
located at $APT_ORCHHOME/etc, to associate the InfoSphere DataStage map with
an Oracle map.

The oracle_cs file has the following format:

UTF-8 UTF8
1S0-8859-1 WEBIS08859P1
EUC-JP JA16EUC

The first column contains the InfoSphere DataStage map names and the second
column the Oracle map names they are associated with.

By using the example file shown above, specifying the InfoSphere DataStage map
EUC-JP in the Oracle stage will cause the data to be loaded using the Oracle map
JA16EUC.

Inputs page

On the Inputs page, you can specify details about how the Oracle Enterprise stage
writes data to a Oracle database. The Oracle Enterprise stage can have only one
input link writing to one table.

The General tab allows you to specify an optional description of the input link.
The Properties tab allows you to specify details of exactly what the link does. The
Partitioning tab allows you to specify how incoming data is partitioned before
being written to the database. The Columns tab specifies the column definitions of
incoming data. The Advanced tab allows you to change the default buffering
settings for the input link.

Details about Oracle enterprise stage properties, partitioning, and formatting are
given in the following sections. See the IBM InfoSphere DataStage and QualityStage
Parallel Job Developer’s Guide for a general description of the other tabs.

Input Link Properties tab

On the Properties page, you can specify properties for the input link, which dictate
how and where incoming data is written.

Some of the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by default)
and turn black when you supply a value for them.

The following table gives a quick reference list of the properties and their
attributes. A more detailed description of each property follows.

Table 28. Input link properties and values

Category/
Property Values Default Required? Dependent of
Target/Table string N/A Y (if Write N/A
Method = Load)
Target/Delete Auto-generated | Auto-generated |Y if Write N/A
Rows Mode delete/user- delete method = Delete
defined delete Rows

92 Connectivity Guide for Oracle Databases

Table 28. Input link properties and values (continued)

Category/
Property Values Default Required? Dependent of
Target/Delete String N/A Y if Write N/A
SQL method = Delete
Rows
Target/Upsert Auto-generated | Auto-generated |Y (if Write N/A
mode Update & Update & insert |Method =
insert/Auto- Upsert)
generated
Update
Only/User-
defined Update
&
Insert/User-
defined Update
Only
Target/Upsert Insert then Insert then Y (if Write N/A
Order update/Update |update Method =
then insert Upsert)
Target/Insert string N/A N N/A
SQL
Target/Insert number 500 N Insert SQL
Array Size
Target/Update string N/A Y (if Write N/A
SQL Method =
Upsert)
Target/Write Delete Load Y N/A
Method Rows/Upsert/
Load
Target/Write Append/ Append Y (if Write N/A
Mode Create/ Method = Load)
Replace/
Truncate
Connection/DB | string N/A Y N/A
Options
Connection/DB | Auto-generate/ | Auto-generate Y N/A
Options Mode | User-defined
Connection/ string N/A Y (if DB Options | DB Options
User Mode = Mode
Auto-generate)
Connection/ string N/A Y (if DB Options | DB Options
Password Mode = Mode
Auto-generate)
Connection/ string N/A N DB Options
Additional Mode
Connection
Options
Connection/ string N/A N N/A
Remote Server
Options/Output | True/False False Y (if Write N/A
Reject Records Method =
Upsert)

Chapter 4. Oracle Enterprise stage

93

Table 28. Input link properties and values (continued)

Category/
Property Values Default Required? Dependent of
Options/Silently | True/False False Y (if Write N/A
Drop Columns Method = Load)
Not in Table
Options/Table | Heap/Index Heap Y (if Write N/A
Organization Method = Load

and Write Mode

= Create or

Replace)
Options/ True/False False Y (if Write N/A
Truncate Method = Load)
Column Names
Options/Close | string N/A N N/A
Command
Options/Default | number 32 N N/A
String Length
Options/Index | Maintenance/ N/A N N/A
Mode Rebuild
Options/Add True/False False N Index Mode
NOLOGGING
clause to Index
rebuild
Options/Add True/False False N Index Mode
COMPUTE
STATISTICS
clause to Index
rebuild
Options/Open | string N/A N N/A
Command
Options/Oracle |string N/A N N/A
Partition
Options/Create | True/False False Y (if Write Mode | N/A
Primary Keys = Create or

Replace)
Options/Create |string N/A N N/A
Statement
Options/Disable | True/False False Y (if Write N/A
Constraints Method = Load)
Options/ string N/A N Disable
Exceptions Table Constraints
Options/Table | True/False False N N/A
has
NCHAR/
NVARCHAR

Target category
On the Input Link Properties tab, the Target category includes properties for the

table to write to and how to write to the table.

These are the properties available in the Target category.

94 Connectivity Guide for Oracle Databases

Table

Specify the name of the table to write to. You can specify a job parameter if
required.

Delete Rows Mode

This only appears for the Delete Rows write method. Allows you to specify how

the delete statement is to be derived. Select from:

* Auto-generated Delete. The IBM InfoSphere DataStage generates a delete
statement for you, based on the values you have supplied for table name and
column details. The statement can be viewed by selecting the Delete SQL
property.

* User-defined Delete. Select this to enter your own delete statement. Then select
the Delete SQL property and edit the statement proforma.

Delete SQL

Only appears for the Delete Rows write method. This property allows you to view
an auto-generated Delete statement, or to specify your own (depending on the
setting of the Delete Rows Mode property).

Upsert mode

This only appears for the Upsert write method. Allows you to specify how the
insert and update statements are to be derived. Select from:

* Auto-generated Update & Insert. The InfoSphere DataStage generates update
and insert statements for you, based on the values you have supplied for table
name and on column details. The statements can be viewed by selecting the
Insert SQL or Update SQL properties.

* Auto-generated Update Only. The InfoSphere DataStage generates an update
statement for you, based on the values you have supplied for table name and on
column details. The statement can be viewed by selecting the Update SQL
properties.

* User-defined Update & Insert. Select this to enter your own update and insert
statements. Then select the Insert SQL and Update SQL properties and edit the
statement proformas.

* User-defined Update Only. Select this to enter your own update statement.
Then select the Update SQL property and edit the statement proforma.

Upsert Order

This only appears for the Upsert write method. Allows you to decide between the
following values:

* Insert and, if that fails, update (Insert then update)
e Update and, if that fails, insert (Update then insert)

Insert SQL

Only appears for the Upsert write method. This property allows you to view an
auto-generated Insert statement, or to specify your own (depending on the setting
of the Update Mode property). It has a dependent property:

* Insert Array Size

Chapter 4. Oracle Enterprise stage 95

Specify the size of the insert host array. The default size is 500 records. If you
want each insert statement to be executed individually, specify 1 for this

property.
Update SQL

Only appears for the Upsert write method. This property allows you to view an
auto-generated Update statement, or to specify your own (depending on the
setting of the Upsert Mode property).

Write Method

Select from Delete Rows, Upsert or Load (the default value). Upsert allows you to
provide the insert and update SQL statements and uses Oracle host-array
processing to optimize the performance of inserting records. Load sets up a
connection to Oracle and inserts records into a table, taking a single input data set.
The Write Mode property determines how the records of a data set are inserted
into the table.

Write Mode

This only appears for the Load Write Method. Select from the following values:

* Append. This is the default value. New records are appended to an existing
table.

* Create. Create a new table. If the Oracle table already exists an error occurs and
the job terminates. You must specify this mode if the Oracle table does not exist.

* Replace. The existing table is first dropped and an entirely new table is created
in its place. Oracle uses the default partitioning method for the new table.

e Truncate. The existing table attributes (including schema) and the Oracle
partitioning keys are retained, but any existing records are discarded. New
records are then appended to the table.

Connection category
On the Input Link Properties tab, the Connection category includes properties for
database options and the remote server.

DB Options

Specify a user name and password for connecting to Oracle in the form:
<user=< user >,password=< password >[,arraysize= < num_records >]

The IBM InfoSphere DataStage does not encrypt the password when you use this
option. Arraysize is only relevant to the Upsert Write Method.

DB Options Mode

If you select Auto-generate for this property, the InfoSphere DataStage will create a
DB Options string for you. If you select User-defined, you have to edit the DB
Options property yourself. When Auto-generate is selected, there are three
dependent properties:

* User
The user name to use in the auto-generated DB options string.

¢ Password

96 Connectivity Guide for Oracle Databases

The password to use in the auto-generated DB options string. The InfoSphere
DataStage encrypts the password.

Note: If you have a password with special characters, enclose the password in
quotation marks. For example: "passw#rd".

* Additional Connection Options

Optionally allows you to specify additional options to add to the Oracle
connection string.

Remote Server

This is an optional property. Allows you to specify a remote server name.

Options category
On the Input Link Properties tab, the properties in the Options category depend on
the write method that you choose.

Create Primary Keys

This option is available with a Write Method of Load and Write Mode of Create or
Replace. It is False by default, if you set it True, the columns marked as keys in the
Columns tab will be marked as primary keys. You must set this true if you want
to write index organized tables, and indicate which are the primary keys on the
Columns tab. Note that, if you set it to True, the Index Mode option is not
available.

Create Statement

This is an optional property available with a Write Method of Load and a Write
Mode of Create. Contains an SQL statement to create the table (otherwise the IBM
InfoSphere DataStage will auto-generate one).

Disable Constraints

This is False by default. Set True to disable all enabled constraints on a table when
loading, then attempt to re-enable them at the end of the load. This option is not
available when you select a Table Organization type of Index to use index
organized tables. When set True, it has a dependent property:
* Exceptions Table
This property enables you to specify an exceptions table, which is used to record
ROWID information for rows that violate constraints when the constraints are
re-enabled. The table must already exist.

Output Reject Records

This only appears for the Upsert write method. It is False by default, set to True to
send rejected records to the reject link.

Silently Drop Columns Not in Table
This only appears for the Load Write Method. It is False by default. Set to True to

silently drop all input columns that do not correspond to columns in an existing
Oracle table. Otherwise the stage reports an error and terminates the job.

Chapter 4. Oracle Enterprise stage 97

Table Organization

This appears only for the Load Write Method using the Create or Replace Write
Mode. Allows you to specify Index (for index organized tables) or heap organized
tables (the default value). When you select Index, you must also set Create Primary
Keys to true. In index organized tables (IOTs) the rows of the table are held in the
index created from the primary keys.

Truncate Column Names

This only appears for the Load Write Method. Set this property to True to truncate
column names to 30 characters.

Close Command

This is an optional property and only appears for the Load Write Method. Use it to
specify any command, in single quotes, to be parsed and executed by the Oracle
database on all processing nodes after the stage finishes processing the Oracle
table. You can specify a job parameter if required.

Default String Length

This is an optional property and only appears for the Load Write Method. It is set
to 32 by default. Sets the default string length of variable-length strings written to
a Oracle table. Variable-length strings longer than the set length cause an error.

The maximum length you can set is 2000 bytes. Note that the stage always
allocates the specified number of bytes for a variable-length string. In this case,
setting a value of 2000 allocates 2000 bytes for every string. Therefore, you should
set the expected maximum length of your largest string and no larger.

Index Mode

This is an optional property and only appears for the Load Write Method. Lets you
perform a direct parallel load on an indexed table without first dropping the index.
You can select either Maintenance or Rebuild mode. The Index property only
applies to append and truncate Write Modes.

Rebuild skips index updates during table load and instead rebuilds the indexes
after the load is complete using the Oracle alter index rebuild command. The table
must contain an index, and the indexes on the table must not be partitioned. The
Rebuild option has two dependent properties:

¢ Add NOLOGGING clause to Index rebuild
This is False by default. Set True to add a NOLOGGING clause.
* Add COMPUTE STATISTICS clause to Index rebuild
This is False by default. Set True to add a COMPUTE STATISTICS clause.

Maintenance results in each table partition's being loaded sequentially. Because of
the sequential load, the table index that exists before the table is loaded is
maintained after the table is loaded. The table must contain an index and be
partitioned, and the index on the table must be a local range-partitioned index that
is partitioned according to the same range values that were used to partition the
table. Note that in this case sequential means sequential per partition, that is, the
degree of parallelism is equal to the number of partitions.

98 Connectivity Guide for Oracle Databases

Open Command

This is an optional property and only appears for the Load Write Method. Use it to
specify a command, in single quotes, to be parsed and executed by the Oracle
database on all processing nodes before the Oracle table is opened. You can specify
a job parameter if required.

Oracle Partition

This is an optional property and only appears for the Load Write Method. Name of
the Oracle table partition that records will be written to. The stage assumes that
the data provided is for the partition specified.

Table has NCHAR/NVARCHAR

This option applies to Create or Replace Write Modes. Set it True if the table being
written contains NCHAR and NVARCHARS. The correct columns are created in
the target table.

Partitioning tab

On the Partitioning tab, you can specify details about how the incoming data is
partitioned or collected before it is written to the Oracle database. You can also
specify that the data is sorted before it is written to the database.

By default the stage partitions in Auto mode. This attempts to work out the best
partitioning method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration file.

If the Oracle enterprise stage is operating in sequential mode, it will first collect
the data before writing it to the file by using the default Auto collection method.

The Partitioning tab allows you to override this default behavior. The exact
operation of this tab depends on:

* Whether the Oracle enterprise stage is set to run in parallel or sequential mode.

* Whether the preceding stage in the job is set to run in parallel or sequential
mode.

If the Oracle enterprise stage is set to run in parallel, then you can set a
partitioning method by selecting from the Partition type drop-down list. This will
override any current partitioning.

If the Oracle enterprise stage is set to run in sequential mode, but the preceding
stage is executing in parallel, then you can set a collection method from the
Collector type drop-down list.

The following partitioning methods are available:

* (Auto). The IBM InfoSphere DataStage attempts to work out the best
partitioning method depending on execution modes of current and preceding
stages and how many nodes are specified in the Configuration file. This is the
default partitioning method for the Oracle enterprise stage.

¢ Entire. Each file written to receives the entire data set.

e Hash. The records are hashed into partitions based on the value of a key column
or columns selected from the Available list.

Chapter 4. Oracle Enterprise stage 99

* Modulus. The records are partitioned using a modulus function on the key
column selected from the Available list. This is commonly used to partition on
tag fields.

* Random. The records are partitioned randomly, based on the output of a
random number generator.

* Round Robin. The records are partitioned on a round robin basis as they enter
the stage.

* Same. Preserves the partitioning already in place. This is the default value for
Oracle enterprise stages.

* DB2. Replicates the partitioning method of the specified IBM DB2 table.
Requires extra properties to be set. Access these properties by clicking the
properties button.

* Range. Divides a data set into approximately equal size partitions based on one
or more partitioning keys. Range partitioning is often a preprocessing step to
performing a total sort on a data set. Requires extra properties to be set. Access
these properties by clicking the properties button.

The following Collection methods are available:

* (Auto). This is the default collection method for Oracle enterprise stages.
Normally, when you are using the Auto mode, the InfoSphere DataStage will
eagerly read any row from any input partition as it becomes available.

* Ordered. Reads all records from the first partition, then all records from the
second partition, and continuing on.

* Round Robin. Reads a record from the first input partition, then from the
second partition, and continuing on. After reaching the last partition, the
operator starts over.

* Sort Merge. Reads records in an order based on one or more columns of the
record. This requires you to select a collecting key column from the Available
list.

The Partitioning tab also allows you to specify that data arriving on the input link
should be sorted before being written to the file or files. The sort is always carried
out within data partitions. If the stage is partitioning incoming data the sort occurs
after the partitioning. If the stage is collecting data, the sort occurs before the
collection. The availability of sorting depends on the partitioning or collecting
method chosen (it is not available with the default Auto methods).

Select the check boxes as follows:

* Perform Sort. Select this to specify that data coming in on the link should be
sorted. Select the column or columns to sort on from the Available list.

* Stable. Select this if you want to preserve previously sorted data sets. This is the
default value.

* Unique. Select this to specify that, if multiple records have identical sorting key
values, only one record is retained. If stable sort is also set, the first record is
retained.

If NLS is enabled an additional button opens a dialog box allowing you to select a
locale specifying the collate convention for the sort.

You can also specify sort direction, case sensitivity, whether sorted as ASCII or

EBCDIC, and whether null columns will appear first or last for each column.
Where you are using a keyed partitioning method, you can also specify whether

100 Connectivity Guide for Oracle Databases

the column is used as a key for sorting, for partitioning, or for both. Select the
column in the Selected list and right-click to invoke the pop-up menu.

Outputs page

On the Outputs page, you can specify details about how the Oracle Enterprise
stage reads data from a Oracle database. The Oracle Enterprise stage can have only
one output link.

Alternatively it can have a reference output link, which is used by the Lookup
stage when referring to a Oracle lookup table. It can also have a reject link where
rejected records are routed (used in conjunction with an input link). The Output
Name list allows you to choose whether you are looking at details of the main
output link or the reject link.

The General tab allows you to specify an optional description of the output link.
The Properties tab allows you to specify details of exactly what the link does. The
Columns tab specifies the column definitions of the data. The Advanced tab allows
you to change the default buffering settings for the output link.

Output Link Properties tab

On the Outputs page, the Properties tab includes properties for the output link.
These properties dictate how incoming data is read from a table.

Some of the properties are mandatory, although many have default settings.
Properties without default settings appear in the warning color (red by default)
and turn black when you supply a value for them.

The Build SQL button allows you to instantly open the SQL Builder to help you
construct an SQL query to read data. See the IBM InfoSphere DataStage and
QualityStage Designer Client Guide for guidance on using it.

The following table gives a quick reference list of the properties and their
attributes. A more detailed description of each property follows.

Table 29. Output link properties and values

Category/
Property Values Default Required? Dependent of
Source/Lookup |Normal/ Normal Y (if output is N/A
Type Sparse reference link
connected to
Lookup stage)
Source/Read Auto-generated | SQL builder Y N/A
Method SQL generated SQL
/Table/SQL
builder
generated SQL
/User-defined
SQL
Source/Table string N/A N N/A
Source/Where |string N/A N Table
Source/Select string N/A N Table
List

Chapter 4. Oracle Enterprise stage 101

Table 29. Output link properties and values (continued)

Category/

Property Values Default Required? Dependent of

Source/SQL string N/A N N/A

Query

Source/Partition |string N/A N N/A

Table

Connection/DB | string N/A Y N/A

Options

Connection/ Auto-generate/ | Auto-generate Y N/A

DB Options User-defined

Mode

Connection/ string N/A Y (if DB Options | DB Options

User Mode = Mode
Auto-generate)

Connection/ string N/A Y (if DB Options | DB Options

Password Mode = Mode
Auto-generate)

Connection/ string N/A N DB Options

Additional Mode

Connection

Options

Connection/ string N/A N N/A

Remote Server

Options/Close | string N/A N N/A

Command

Options/Open | string N/A N N/A

Command

Options/Table | True/False False N N/A

has

NCHAR/

NVARCHAR

Source category
On the Output Link Properties tab, the Source category includes properties for the
lookup type, read method, SQL query, table, and partition table.

Lookup Type

Where the Oracle enterprise stage is connected to a Lookup stage using a reference
link, this property specifies whether the Oracle enterprise stage will provide data
for an in-memory look up (Lookup Type = Normal) or whether the lookup will
access the database directly (Lookup Type = Sparse).

Read Method

This property specifies whether you are specifying a table or a query when reading
the Oracle database, and how you are generating the query.

* Select the Table method in order to use the Table property to specify the read.
This will read in parallel.

102 Connectivity Guide for Oracle Databases

* Select Auto-generated SQL to have the IBM InfoSphere DataStage automatically
generate an SQL query based on the columns you have defined and the table
you specify in the Table property.

* Select User-defined SQL to define your own query. By default a user-defined or
auto-generated SQL will read sequentially on one node. Read methods of
Auto-generated SQL and User-defined SQL operate sequentially on a single
node. You can have the User-defined SQL read operate in parallel if you specify
the Partition Table property.

* Select SQL Builder Generated SQL to open the SQL Builder and define the query
using its helpful interface. (See the IBM InfoSphere DataStage and QualityStage
Designer Client Guide.)

By default, Read methods of SQL Builder Generated SQL, Auto-generated SQL,
and User-defined SQL operate sequentially on a single node. You can have the
User-defined SQL read operate in parallel if you specify the Partition Table

property.
SQL Query

Optionally allows you to specify an SQL query to read a table. The query specifies
the table and the processing that you want to perform on the table as it is read by
the stage. This statement can contain joins, views, database links, synonyms, and
other entities.

Table

Specifies the name of the Oracle table. The table must exist and you must have
SELECT privileges on the table. If your Oracle user name does not correspond to
the owner of the specified table, you can prefix it with a table owner in the form:

table_owner.table_name

Table has dependent properties:
* Where
Stream links only. Specifies a WHERE clause of the SELECT statement to specify

the rows of the table to include or exclude from the read operation. If you do
not supply a WHERE clause, all rows are read.

e Select List

Optionally specifies an SQL select list, enclosed in single quotes, that can be
used to determine which columns are read. You must specify the columns in list
in the same order as the columns are defined in the record schema of the input
table.

Partition Table

Specifies execution of the SELECT in parallel on the processing nodes containing a
partition derived from the named table. If you do not specify this, the stage
executes the query sequentially on a single node.

Connection category
On the Output Link Properties tab, the Connection category includes properties
for database options and the remote server.

Chapter 4. Oracle Enterprise stage 103

DB Options

Specify a user name and password for connecting to Oracle in the form:

<user=< user >,password=< password >[,arraysize=< num_records >]

The IBM InfoSphere DataStage does not encrypt the password when you use this
option. Arraysize only applies to stream links. The default arraysize is 1000.

DB Options Mode

If you select Auto-generate for this property, the InfoSphere DataStage will create a
DB Options string for you. If you select User-defined, you have to edit the DB
Options property yourself. When Auto-generate is selected, there are two
dependent properties:

e User
The user name to use in the auto-generated DB options string.
* Password

The password to use in the auto-generated DB options string. The InfoSphere
DataStage encrypts the password

Note: If you have a password with special characters, enclose the password in
quotation marks. For example: "passw#rd".

* Additional Connection Options

Optionally allows you to specify additional options to add to the Oracle
connection string.

Remote Server

This is an optional property. Allows you to specify a remote server name.

Options category

On the Output Link Properties tab, the Options category includes properties for
the close and open commands. It also include a property to use if the table
contains data that has the NCHAR or NVARCHARS data types.

Close Command

This is an optional property and only appears for stream links. Use it to specify
any command to be parsed and executed by the Oracle database on all processing
nodes after the stage finishes processing the Oracle table. You can specify a job
parameter if required.

Open Command

This is an optional property only appears for stream links. Use it to specify any
command to be parsed and executed by the Oracle database on all processing
nodes before the Oracle table is opened. You can specify a job parameter if
required

Table has NCHAR/NVARCHAR

Set this True if the table being read from contains NCHAR and NVARCHARS.

104 Connectivity Guide for Oracle Databases

Chapter 5. Oracle OCI stage

Use the Oracle OCI stage to rapidly and efficiently prepare and load streams of
tabular data from any IBM InfoSphere DataStage stage (for example, the ODBC
stage or the Sequential File stage) to and from tables of the target Oracle database.
The Oracle client on Microsoft Windows or UNIX uses SQL*Net to access an
Oracle server on Windows or UNIX.

When you use IBM InfoSphere DataStage to access Oracle databases, you can
choose from a collection of connectivity options. For most new jobs, use the Oracle
Connector stage, which offers better functionality and performance than the Oracle
OCI stage.

If you have jobs that use the Oracle OCI stage and want to use the connector, use
the Connector Migration Tool to migrate jobs to use the connector.

Each Oracle OCI stage is a passive stage that can have any number of input,
output, and reference output links:

* Input links specify the data you are writing, which is a stream of rows to be
loaded into an Oracle database. You can specify the data on an input link by
using an SQL statement constructed by InfoSphere DataStage or a user-defined
SQL statement.

* Output links specify the data you are extracting, which is a stream of rows to be
read from an Oracle database. You can also specify the data on an output link by
using an SQL statement constructed by InfoSphere DataStage or a user-defined
SQL statement.

* Each reference output link represents a row that is key read from an Oracle
database (that is, it reads the record using the key field in the WHERE clause of
the SQL SELECT statement).

Oracle offers a proprietary call interface for C and C++ programmers that allows
manipulation of data in an Oracle database. The Oracle Call Interface (OCI) stage
can connect and process SQL statements in the native Oracle environment without
needing an external driver or driver manager. To use the Oracle OCI stage, you
need only to install the Oracle client, which uses SQL*Net to access the Oracle
server.

The Oracle OCI stage works with Oracle servers, provided you install the
appropriate Oracle software. For information about exceptions to this, see Oracle
documentation for the appropriate release.

With the Oracle OCI stage, you can:

* Generate your SQL statement.

* Use a file name to contain your SQL statement.

* Clear a table before loading by using a TRUNCATE statement. (Clear table)
* Select how often to commit rows to the database. (Transaction size)

* Input multiple rows of data in one call to the database. (Array size)

* Read multiple rows of data in one call from the database. (Array size)

* Specify transaction isolation levels for concurrency control and transaction
performance tuning. (Transaction Isolation)

© Copyright IBM Corp. 2008, 2014 105

Specify criteria that data must meet before being selected. (WHERE clause)
Specify criteria to sort, summarize, and aggregate data. (Other clauses)
Specify the behavior of parameter marks in SQL statements.

The Oracle OCI stage is dependent on the libclntsh shared library, which is created
during the installation of the Oracle client software. You must include the location
containing this shared library in the shared library search path for InfoSphere
DataStage jobs to run successfully by using this stage.

Functionality of the Oracle OCI stage

The Oracle OCI stage supports features including transaction grouping, reject row
handling, and create and drop table functionality before writing to a table.

Support for transaction grouping to control a group of input links from a
Transformer stage. This lets you write a set of data to a database in one
transaction. Oracle OCI stage opens one database session per transaction group.

Support for reject row handling. Link reject variables tell the Transformer stage
the Oracle DBMS error code when an error occurs in the Oracle OCI stage for
insert, update, and other actions, for control of job execution. The format of the
error is DBMS.CODE=ORA-xxxxx.

Support for create and drop table functionality before writing to a table.

Support for before and after SQL statements to run user-defined SQL statements
before or after the stage writes or reads into a database.

Support of stream input, stream output, and reference output links.

The ability to use the Derivation cell to specify fully-qualified column names
used to construct an SQL SELECT statement for output and reference links.

Note: When you select Enable case sensitive table/column name, it is your
responsibility to use quotation marks for the owner/ table.column name in the
Derivation cell to preserve any lowercase letters.

Performance and scalability benefits by using Oracle OCI stage rather than the
ODBC stage to access Oracle tables.

Prefetching of SELECT statement result set rows when executing a query. This
minimizes server round trips and enhances performance.

Reduction of the number of network round trips (more processing is done on
the client).

Support of new transparent data structures and interfaces.
Elimination of open and close cursor round trips.
Improved error handling.

Use of Oracle OCI stage as a supplement to existing jobs that already use the
ODBC stage, rather than as a replacement for the ODBC stage.

Importing of table definitions. Support of a file name to contain your SQL
statement.

Support for NLS (National Language Support).
Support for foreign key metadata import.
Support for the behavior of parameter marks for SQL statements.

The following functionality is not supported:

Loading stream input links in bulk. Use the Oracle OCI Load stage to bulk load
data into Oracle databases.

Stored procedures.

106 Connectivity Guide for Oracle Databases

* Support of Oracle data types such as BLOB, FILE, LOB, LONG, LONG RAW,
MSLABEL, OBJECT, RAW, REE, ROWID, or a named data type.

* Running on the parallel canvas under either Windows or UNIX.
* SUBSTR2

* SUBSTR4

* NCHAR

* LENGTH2

* LENGTH4

* INSTR2

* INSTR4

+ CAST

* NEW_TIME

* RPAD

* MONTHS_BETWEEN

* Functions having an OVER clause

Configuration requirements of the Oracle OCI stage

To use the Oracle OCI stage, ensure that the configuration requirements are met.

The Oracle OCI stage has the following requirements:

* Install the Oracle standard client on the engine tier. You cannot use the stage if
only Oracle Instant Client is installed.

* Configuration of SQL*Net using a configuration program, for example, SQL*Net
Easy Configuration, to set up and add database aliases.

* The following environment variables on the server in UNIX:
- ORACLE_HOME
- TWO_TASK
- ORACLE_SID
- LD_LIBRARY_PATH

The name of the environment variable LD_LIBRARY_PATH differs depending on
the platform.

Table 30. Platform-specific names for LD_LIBRARY_PATH

PLATFORM NAME OF ENVIRONMENT VARIABLE
AIX LIBPATH

HP_UX SHLIB_PATH

LINUX or Solaris LD_LIBRARY_PATH

For the SHLIB_PATH environment variable, the InfoSphere DataStage library
entries must be referenced before any branded-ODBC library entries at run time.

Note: You should have read and execute permissions to use libraries in the
$ORACLE_HOME/lib and $ORACLE_HOME/bin directories and read permissions
on all files in the $ORACLE_HOME directory. Otherwise, you might experience
problems using Oracle OCI stage to connect to Oracle.

Chapter 5. Oracle OCI stage 107

Oracle OCI stage editor
The editor for the Oracle OCI stage includes the Stage, Input, and Output pages.

This dialog box can have up to three pages (depending on whether there are
inputs to and outputs from the stage):

 Stage. This page displays the name of the stage you are editing. The General tab
defines the Oracle database source and logon information to connect to an
Oracle database.

The NLS tab defines a character set map to be used with the stage. (The NLS
tab appears only if you have installed NLS.)

* Input. This page is displayed only if you have an input link to this stage. It
specifies the SQL table to use and the associated column definitions for each
data input link. This page also specifies the type of update action and
transaction isolation level information for concurrency control and performance
tuning. It also contains the SQL statement used to write the data and lets you
enable case sensitivity for SQL statements.

¢ Output. This page is displayed only if you have an output link to this stage. It
specifies the SQL tables to use and the associated column definitions for each
data output link. This page also specifies the type of query and transaction
isolation level information for concurrency control and performance tuning. It
also contains the SQL SELECT statement used to extract the data, and lets you
enable case sensitivity for SQL statements.

Defining the Oracle connection

You can configure the data and connection for the Oracle OCI stage in the
ORAOCI9 Stage window.

Procedure

1. |Connect to the Oracle database|

2. Optional. [Define a character set map|
3. |Define the data on the input links]

4. [Define the data on the output links.|

Connecting to an Oracle database

To connect to an Oracle database, you set the Oracle connection parameters on the
General tab of the Stage page in the stage editor.

Procedure

1. Enter the name of the Oracle database alias to access in the Database source
name field. (This is the name you created using the Oracle Configuration
Assistant.) Unless the database has a guest account, User ID must be a valid
user in the database, have an alias in the database, or be a system administrator
or system security officer. There is no default value.

2. Enter the user name to use to connect to the Oracle database in the User ID
field. This user must have sufficient privileges to access the specified database
and source and target tables. This field is required except when Use OS level
authentication is selected. There is no default value.

3. Enter the password that is associated with the specified user name to use in the
Password field. This field is required except when Use OS level authentication
is selected. There is no default value.

108 Connectivity Guide for Oracle Databases

4. Select an appropriate transaction isolation level to use from the Transaction
Isolation list on the General tab on the Input page or Output page. This level
provides the necessary consistency and concurrency control between
transactions in the job and other transactions for optimal performance. Because
Oracle does not prevent other transactions from modifying the data read by a
query, that data might be changed by other transactions between two
executions of the query. Thus, a transaction that executes a given query twice
might experience both nonrepeatable reads and phantoms. Use one of the
following transaction isolation levels:

Read Committed
Takes exclusive locks on modified data and sharable locks on all other
data. Read committed is the default ISO level for all transactions.

Serializable
Takes exclusive locks on modified data and sharable locks on all other
data. Serializable transactions see only those changes that were
committed at the time the transaction began.

For more information about using these levels, see your Oracle documentation.
5. Enter an optional description of the Oracle OCI stage in the Description field.

6. Select Use OS level authentication to automatically log on using your
operating system user name and password. The default value is cleared. For
further details on Oracle login information, see your Oracle documentation.

Defining character set mapping

You can define a character set map for a stage on the NLS tab of the Stage page.
The NLS tab appears only if you installed NLS.

Procedure

Specify information using the following fields:

Map name to use with stage
Defines the default character set map for the project or the job. You can
change the map by selecting a map name from the list.

Show all maps
Lists all the maps that are shipped with the IBM InfoSphere DataStage.

Loaded maps only
Lists only the maps that are currently loaded.

Use Job Parameter...
Specifies parameter values for the job. Use the format #Param#, where
Param is the name of the job parameter. The string #Param# is replaced by
the job parameter when the job is run.

Defining input data

When you write data to a table in an Oracle database, the Oracle OCI stage has an
input link. The properties of this link and the column definitions of the data are
defined on the Input page in the ORAOCI Stage editor.

The input page

The Input page has an Input name list; the General, Options, Columns, SQL, and
Transaction Handling tabs; and the Columns and View Data buttons.

Chapter 5. Oracle OCI stage 109

Procedure

1. Choose the name of the input link you want to edit from the Input name list.
This list displays all the input links to the Oracle OCI stage.

2. Click Columns to display a brief list of the columns designated on the input
link. As you enter detailed metadata in the Columns tab, you can leave this list
displayed.

3. Click View Data to invoke the Data Browser. This lets you look at the data
associated with the input link in the database.

General tab of the Input page of the Oracle OCI stage
Use this tab to indicate how the SQL statements are created from an Input link on
the Oracle OCI stage.

This tab is displayed by default. It contains the following fields:
* Query Type. Determines how the SQL statements are created. Options are

— Use SQL Builder tool. Causes the SQL Builder button and the Update action
property to appear. This is the default value for new jobs.

— Generate Update action from Options and Columns tabs. Causes the Update
action property to appear. Uses values from the Options and Columns tabs
and from Update action to generate the SQL.

— Enter custom SQL statement. Writes the data using a user-defined SQL
statement, which overrides the default SQL statement generated by the stage.
If you select this option, you enter the SQL statement on the SQL tab.

— Load SQL from a file at run time. Uses the contents of the specified file to
write the data.

* SQL Builder. Causes SQL Builder to open.

* Update action. Specifies which SQL statements are used to update the target
table. Some update actions require key columns to update or delete rows. There
is no default value. Select the option you want from the list:

— Clear table then insert rows. Deletes the contents of the table and adds the
new rows, with slower performance because of transaction logging. When
you click SQL Button, the Insert page opens.

— Truncate table then insert rows. Truncates the table with no transaction
logging and faster performance. When you click SQL Button, the Insert page
opens.

— Insert rows without clearing. Inserts the new rows in the table.

— Delete existing rows only. Deletes existing rows in the target table that have
identical keys in the source files. When you click SQL Button, the Delete
page opens.

— Replace existing rows completely. Deletes the existing rows, then adds the
new rows to the table. When you click SQL Button, the Delete page opens.
However, you must also complete an Insert page to accomplish the replace.

— Update existing rows only. Updates the existing data rows. Any rows in the
data that do not exist in the table are ignored. When you click SQL Button,
the Update page opens.

— Update existing rows or insert new rows. Updates the existing data rows
before adding new rows. It is faster to update first when you have a large
number of records. When you click SQL Button, the Update page opens.
However, you must also complete an Insert page to accomplish the replace.

— Insert new rows or update existing rows. Inserts the new rows before
updating existing rows. It is faster to insert first if you have only a few

110 Connectivity Guide for Oracle Databases

records. When you click SQL Button, the Insert page opens. However you
must also complete an Update page to accomplish the update.

* Description. Contains an optional description of the input link.

Options tab of the Input page of the Oracle OCI stage
Use the Options tab to create or drop tables and to specify miscellaneous Oracle
link options.

* Table name. Names the target Oracle table to which the data is written. The
table must exist or be created by choosing generate DDL from the Create table
action list. Depending on the operations performed, you must be granted the
appropriate permissions or privileges on the table. There is no default value.

Click ... (Browse button) to browse the Repository to select the table.

* Create table action. Creates the target table in the specified database if Generate
DDL is selected. It uses the column definitions in the Columns tab and the table
name and the TABLESPACE and STORAGE properties for the target table. The
generated Create Table statement includes the TABLESPACE and STORAGE
keywords, which indicate the location where the table is created and the storage
expression for the Oracle storage-clause. You must have CREATE TABLE
privileges on your schema.

You can also specify your own CREATE TABLE SQL statement. You must enter
the storage clause in Oracle format. (Use the User-defined DDL tab on the SQL
tab for a complex statement.)

Select one of the following options to create the table:

— Do not create target table. Specifies that the target table is not created, and
the Drop table action field and the Create Table Properties button on the right
of the dialog are disabled.

— Generate DDL. Specifies that the stage generates the CREATE TABLE
statement using information from Table name, the column definitions grid,
and the values in the Create Table Properties dialog.

— User-defined DDL. Specifies that you enter the appropriate CREATE TABLE
statement.

Click the button to open the Create Table Properties dialog to display the
table space and storage expression values for generating the DDL.

* Drop table action. Drops the target table before it is created by the stage if
Generate DDL is selected. This field is disabled if you decide not to create the
target table. The list displays the same items as the Create table action list
except that they apply to the DROP TABLE statement. You must have DROP
TABLE privileges on your schema.

* Array size. Specifies the number of rows to be transferred in one call between
the IBM InfoSphere DataStage and the Oracle before they are written. Enter a
positive integer to indicate how often Oracle performs writes to the database.
The default value is 1, that is, each row is written in a separate statement.

Larger numbers use more memory on the client to cache the rows. This
minimizes server round trips and maximizes performance by executing fewer
statements. If this number is too large, the client might run out of memory.

Array size has implications for the InfoSphere DataStage's handling of reject
rows.

* Transaction size. This field exists for backward compatibility, but it is ignored
for version 3.0 and later of the stage. The transaction size for new jobs is now
handled by Rows per transaction on the Transaction Handling tab.

Chapter 5. Oracle OCI stage 111

* Transaction Isolation. Provides the necessary concurrency control between
transactions in the job and other transactions. Use one of the following
transaction isolation levels:

— Read committed. Takes exclusive locks on modified data and sharable locks
on all other data. Each query executed by a transaction sees only data that
was committed before the query (not the transaction) began. Oracle queries
never read dirty (uncommitted) data. This is the default value.

— Serializable. Takes exclusive locks on modified data and sharable locks on all
other data. Serializable transactions see only the changes that were committed
at the time the transaction began.

Note: If Enable transaction grouping is selected on the Transaction
Handling tab, only the Transaction Isolation value for the first link is used
for the entire group.

* Treat warning message as fatal error. Determines the behavior of the stage
when an error is encountered while writing data to a table. If the check box is
selected, a warning message is logged as fatal, and the job aborts. The format of
the error message is:

ORA-xxxxx Oracle error text message and row value

If the check box is cleared (the default), three warning messages are logged in
the InfoSphere DataStage Director log file, and the job continues. The format of
the error message is:

value of the row causing the error

ORA-xxxxx Oracle error text message

DBMS . CODE=0RA-XxxxXx

The last warning message is used for Reject Link Variables. If you want to use
the Reject Link Variables functionality, you must clear the check box.

e Enable case sensitive table/column name. Enables the use of case-sensitive table
and column names. Select to enclose table and column names in SQL statements
in double quotation marks (" "). It is cleared by default.

Columns tab of the Input page of the Oracle OCI stage
On the Columns tab, you can view and modify column metadata for the input
link.

Use the Save button to save any modifications that you make in the column
metadata. Use the Load button to load an existing source table. From the Table
Definitions window, select the appropriate table to load and click OK. The Select
Column dialog is displayed. To ensure appropriate conversion of data types, clear
the Ensure all Char columns use Unicode check box.

SQL tab of the Input page of the Oracle OCI stage

The SQL tab contains the Query, Before, After, Generated DDL, and User-defined
DDL tabs. Use these tabs to display the stage-generated SQL statement and the
SQL statement that you can enter.

* Query. This tab is displayed by default. It is similar to the General tab, but it
contains the SQL statements that are used to write data to Oracle. It is based on
the current values of the stage and link properties. You cannot edit these
statements unless Query type is set to Enter custom SQL statement or Load
SQL from a file at run time.

* Before. Contains the SQL statements executed before the stage processes any job
data rows. The parameter on the Before tab corresponds to the Before SQL and
Continue if Before SQL fails grid properties. The Continue if Before SQL fails

112 Connectivity Guide for Oracle Databases

property is represented by the Treat errors as non-fatal check box, and the SQL
statement is entered in a resizable edit box. The Before and After tabs look
alike.

If the property value begins with FILE=, the remaining text is interpreted as a
path name, and the contents of the file supplies the property value.

The Before SQL is the first SQL statement to be run. Depending on your choice,
the job can continue or terminate after failing to execute a Before statement. It
does not affect the transaction grouping scheme. The commit or rollback is
performed on a per-link basis.

Each SQL statement is executed as a separate transaction if the statement
separator is a double semi-colon (;;). All SQL statements are executed in a
single transaction if a semi-colon (;) is the separator.

Treat errors as non-fatal. If selected, errors caused by Before SQL are logged as
warnings, and processing continues with the next command batch. Each separate
execution is treated as a separate transaction. If cleared, errors are treated as
fatal to the job, and result in a transaction rollback. The transaction is committed
only if all statements successfully run.

After. Contains the SQL statements executed after the stage processes the job
data rows. The parameters on this tab correspond to the After SQL and Continue
if After SQL fails grid properties. The Continue if After SQL fails property is
represented by the Treat errors as non-fatal check box, and the SQL statement is
entered in a resizable edit box. The Before and After tabs look alike.

If the property value begins with FILE=, the remaining text is interpreted as a
path name, and the contents of the file supplies the property value.

The After SQL statement is the last SQL statement to be run. Depending on your
choice, the job can continue or terminate after failing to execute an After SQL
statement. It does not affect the transaction grouping scheme. The commit or
rollback is performed on a per-link basis.

Each SQL statement is executed as a separate transaction if the statement
separator is a double semi-colon (;;). All SQL statements are executed in a
single transaction if a semi-colon (;) is the separator.

The behavior of Treat errors as non-fatal is the same as for Before.

Generated DDL. Select Generate DDL or User-defined DDL from the Create
table action field on the Options tab to enable this tab.

The CREATE TABLE statement field displays the CREATE TABLE statement
that is generated from the column metadata definitions and the information
provided on the Create Table Properties dialog box. If you select an option other
than Do not drop target table from the Drop table action list, the DROP
statement field displays the generated DROP TABLE statement for dropping the
target table.

User-defined DDL. Select User-defined DDL from the Create table action or
Drop table action field on the Options tab to enable this tab. The generated
DDL statement is displayed as a starting point to define a CREATE TABLE and
a DROP TABLE statement. If the property value begins with FILE=, the
remaining text is interpreted as a path name, and the contents of the file
supplies the property value.

The DROP TABLE statement field is disabled if User-defined DDL is not
selected from the Drop table action field. If Do not drop target is selected, the
DROP statement field is empty in the Generated DDL and User-defined DDL
tabs.

Note: Once you modify the user-defined DDL statement from the original
generated DDL statement, changes made to other table-related properties do not

Chapter 5. Oracle OCI stage 113

affect the user-defined DDL statement. If, for example, you add a new column in
the column grid after modifying the user-defined DDL statement, the new
column appears in the generated DDL statement but does not appear in the
user-defined DDL statement.

Transaction handling tab

The Oracle OCI stage supports transaction grouping, which is the grouping of
input links that come from a Transformer stage. You can use transaction handling
to control the group of input links for start, commit, or rollback in one transaction
when writing to a single data source.

You can use the On Fail or On Skip values to specify whether the transaction is
committed.

The Transaction Handling tab lets you view the transaction handling features of
the stage as it writes to the data source. You can select an isolation level.

If you have a single link, the Transaction Handling tab contains the following
parameter:

* Rows per transaction. If Enable transaction grouping is cleared, you can set
Rows per transaction to specify the number of rows written before the data is
committed to the table. The default value is 0, that is, all the rows are written
before being committed to the table.

If you are upgrading an existing job that has a value in the Transaction size
field on the General tab page, that value determines the number of rows per
transaction, provided that the Rows per transaction field contains a value of 0.

If the Rows per transaction field contains a value greater than zero, this value
determines the number of rows per transaction, and any value in the
Transaction size field is ignored.

When creating a new job, use the Rows per transaction field to set the number
of rows per transaction. Do not use the Transaction size field.

Note: In previous releases of Oracle OCI, if you manually stopped a job,
pending transactions were written to the database. Now pending transactions,
that is, transactions that have not been committed, are rolled back.

If you have two or more links from a single Transformer stage, the Transaction
Handling tab contains the following parameters:

* Enable transaction grouping. If selected, displays the grid with details of the
transaction group to which the currently selected input link belongs. The check
box is cleared by default.

If Enable transaction grouping is selected, a transaction group can use only a
value of 1 for Rows per transaction.

* Input name. The non-editable name of the input link.

* On Skip. Specifies whether to continue or to roll back the transaction if a link is
skipped because of an unsatisfied constraint on it.

* On Fail. Specifies whether to continue or roll back if the SQL statement fails to
run.

Handling transactions
You can specify transaction control information for a transaction group.

114 Connectivity Guide for Oracle Databases

Procedure
1. Click the Transaction Handling tab.
2. Select Enable transaction grouping.

3. For transaction groups, Rows per transaction is automatically set to 1, and you
cannot change this setting.

4. Supply necessary details about the transaction group in the grid. The grid has a
line for every link in the transaction group. The links are shown in transaction
processing order, which is set in the preceding Transformer stage. Each line
contains the following information:

* Input name. The non-editable name of the input link.

* On Skip. Specifies whether to continue or to roll back the transaction if a
link is skipped because of an unsatisfied constraint on it. Rows arriving at its
link are skipped until the controlling link starts another transaction. Choose
Continue or Rollback from the list.

* On Fail. Specifies whether to continue or rollback if the SQL statement fails
to execute. Choose Continue or Rollback from the list.

Reject row handling

During input link processing, rows of data might be rejected by the database for
various reasons, such as unique constraint violations or data type mismatches. The
Oracle OCI stage writes the row that is rejected to the log for the job.

About this task

For the Oracle message detail, you must use the error messages returned by the
Oracle database.

IBM InfoSphere DataStage provides additional reject row handling.

Procedure
1. Set Array Size to 1.

2. Use a Transformer stage to redirect the rejected rows.
What to do next

You can design your job by selecting an appropriate target for the rejected rows,
such as a Sequential stage. Reuse this target as an input source once you resolve
the issues with the rejected row values.

Writing data to Oracle

You can use generated or user-defined INSERT, DELETE, or UPDATE SQL
statements to write data from IBM InfoSphere DataStage to an Oracle database.

SQL statements and the Oracle OCI stage

You can create SQL statements in the Oracle OCI stage from input and output
links.

From an input link, you can create INSERT statements, UPDATE statements, and
DELETE statements. From an output link, you can create SELECT statements.

You have four options for creating SQL statements:

Chapter 5. Oracle OCI stage 115

Using the SQL builder.

Generating statements based on the values provided to the OCI stage.
Entering user-defined SQL statements.

Loading SQL statements from a file at run time.

Accessing the SQL builder from a server stage
You use the SQL builder to create SQL statements by using a graphical interface.

Procedure

1.

2.

Select Use SQL Builder tool as the Query Type from the General tab of the
input or output link or from the SQL tab.

Click the SQL Builder button. The SQL Builder window opens.

Writing data with generated SQL statements

By default, the IBM InfoSphere DataStage writes data to an Oracle table by using
an INSERT, DELETE, or UPDATE SQLstatement that it constructs. The generated
SQL statement is automatically constructed by using the InfoSphere DataStage
table and column definitions that you specify in the input properties for the stage.
The SQL tab displays the SQL statement used to write the data.

Procedure

1.

I S

Select Generate Update actions from Options and Columns tabs from the
Query Type list.

Specify how you want the data to be written by choosing a suitable option
from the Update action list. Select one of these options for a generated
statement:

* Clear table then insert rows
e Truncate table then insert rows
* Insert rows without clearing
* Delete existing rows only
* Replace existing rows completely
* Update existing rows only
* Update existing rows or insert new rows
* Insert new rows or update existing rows
* User-defined SQL
e User-defined SQL file
See ['Defining Input Data'|for a description of each update action.

Enter an optional description of the input link in the Description field.

Enter a table name in the Table name field on the Options page.

Click the Columns tab on the Input page. The Columns tab appears.

Edit the Columns grid to specify column definitions for the columns you want
to write.

The SQL statement is automatically constructed using your chosen update
action and the columns you have specified.

Click the SQL tab on the Input page, then the Generated tab to view this SQL
statement. You cannot edit the statement here, but you can click this tab at any
time to select and copy parts of the generated statement to paste into the
user-defined SQL statement.

116 Connectivity Guide for Oracle Databases

8. Click OK to close the ORAOCI9 Stage dialog box. Changes are saved when
you save your job design.

Writing data with user-defined SQL statements
Instead of writing data by using a SQL statement that is constructed by IBM
InfoSphere DataStage, you can enter your own INSERT, DELETE, or UPDATE
statement for each ORAOCI input link. Ensure that the SQL statement contains the
table name, the type of update action to perform, and the columns to write to.

Procedure
1. Select Enter custom SQL statement from the Query Type list.
2. Click the User-defined tab on the SQL tab.

3. Enter the SQL statement you want to use to write data to the target Oracle
tables. This statement must contain the table name, the type of update action
you want to perform, and the columns you want to write. Only two SQL
statements are supported for input links.

When writing data, the INSERT statements must contain a VALUES clause with
a colon (:) used as a parameter marker for each stage input column. UPDATE
statements must contain SET clauses with parameter markers for each stage
input column. UPDATE and DELETE statements must contain a WHERE clause
with parameter markers for the primary key columns. The parameter markers
must be in the same order as the associated columns listed in the stage
properties. For example:

insert emp (emp_no, emp_name) values (:1, :2)

If you specify two SQL statements, they are executed as one transaction. Do not
use a trailing semicolon.

You cannot call stored procedures as there is no facility for parsing the row
values as parameters.

Unless you specify a user-defined SQL statement, the stage automatically
generates an SQL statement.

4. Click OK to close the ORAOCI9 Stage dialog box. Changes are saved when
you save your job design.

Defining output data

Output links specify the data that you are reading from an Oracle database. You
can also specify the data on an output link by using an SQL statement that is
constructed by IBM InfoSphere DataStage or a user-defined SQL statement.

These SQL statements can be:

* Fully generated, using Use SQL Builder tool as the Query Type

¢ Column-generated, using Generate SELECT clause from column list; enter
other clauses as the Query Type

* Entered or edited entirely as text, using Enter custom SQL statement as the
Query Type

* Entered from a file, using Load SQL from a file at run time as the Query Type

The SQL Builder option of fully generated SQL statements provides the most
convenient method of generating SQL text. It is activated when you select Use
SQL Builder tool as the Query Type (see). The SQL Builder dialog
box contains all the information necessary to generate the SQL to extract data from
an Oracle database.

Chapter 5. Oracle OCI stage 117

The following sections describe the differences when you use SQL SELECT
statements for generated or user-defined queries that you define on the Output
page in the ORAOCI9 Stage window of the GUL

The output page
The Output page has one field and the General, Options, Columns, and SQL tabs.
* Output name. The name of the output link. Choose the link you want to edit
from the Output name list. This list displays all the output links from the Oracle
OCI stage.
e The Columns... and the View Data... buttons function like those on the Input
page.

General tab of the Output page of the Oracle OCI stage
The General provides the type of query and, where appropriate, a button to open
an associated window.

The General tab contains the following fields:

Query type. Displays the following options.

Use SQL Builder tool. Specifies that the SQL statement is built using the SQL
Builder graphical interface. When this option is selected, the SQL Builder
button appears. If you click SQL Builder, the SQL Builder opens. This is the
default setting.

— Generate SELECT clause from column list; enter other clauses. Specifies that
InfoSphere DataStage generates the SELECT clause based on the columns you
select on the Columns tab. When this option is selected, the SQL Clauses
button appears. If you click SQL Clauses, the SQL Clauses window opens.
Use this window to refine the SQL statement.

— Enter custom SQL statement. Specifies that a custom SQL statement is built
using the SQL tab..

— Load SQL from a file at run time. Specifies that the data is extracted using
the SQL query in the path name of the designated file that exists on the
server. Enter the path name for this file instead of the text for the query. With
this choice, you can edit the SQL statements.

* Description. Lets you enter an optional description of the output link.

SQL Clauses window

Use this window to enter FROM, WHERE, or any other SQL clauses. It contains

the Clauses and SQL tabs.

* Clauses tab. Use this tab to build column-generated SQL queries. It contains
optional SQL clauses for the conditional extraction of data. The Clauses tab is
divided into three panes.

— FROM clause (table name):. Allows you to name the table against which the
SQL statement runs. To access Table Definitions, click ... (ellipsis).

— WHERE clause. Allows you to insert an SQL WHERE clause to specify
criteria that the data must meet before being selected.

— Other clauses. Allows you to insert a GROUP BY, HAVING, or ORDER BY
clause to sort, summarize, and aggregate data.

* SQL Tab. Use this tab to display the SQL statements that read data from Oracle.
You cannot edit these statements, but you can use Copy to copy them to the
Clipboard for use elsewhere.

118 Connectivity Guide for Oracle Databases

Options tab of the Output page of the Oracle OCI stage
Use this tab to specify transaction isolation, array size, prefetch memory size, and
case-sensitivity.

The Options tab contains the following parameters:

Transaction Isolation. Specifies the transaction isolation levels that provide the
necessary consistency and concurrency control between transactions in the job
and other transactions for optimal performance. Because Oracle does not prevent
other transactions from modifying the data read by a query, that data might be
changed by other transactions between two executions of the query. Thus, a
transaction that executes a given query twice might experience both
non-repeatable reads and phantoms. Use one for the following transaction
isolation levels:

— Read Committed. Takes exclusive locks on modified data and sharable locks
on all other data. Each query executed by a transaction sees only data that
was committed before the query (not the transaction) began. Oracle queries
never read dirty, that is, uncommitted data. This is the default value.

— Serializable. Takes exclusive locks on modified data and sharable locks on all
other data. It sees only those changes committed when the transaction began
plus those made by the transaction itself through INSERT, UPDATE, and
DELETE statements. Serializable transactions do not experience
non-repeatable reads or phantoms.

— Read-only. Sees only those changes that were committed when the
transaction began. This level does not allow INSERT, UPDATE, and DELETE
statements.

Array size. Specifies the number of rows read from the database at a time. Enter
a positive integer to indicate the number of rows to prefetch in one call. This
value is used both for prefetching rows and for array fetch. Larger numbers use
more memory on the client to cache the rows. This minimizes server round trips
and maximizes performance by executing fewer statements. If this number is too
large, the client might run out of memory.

Prefetch memory setting. Sets the memory level for top-level rows to be
prefetched. See Oracle documentation for further information. Express® the value
in number of bytes.

Disable array fetch. Enables or disables Oracle array fetch. Array fetch is
enabled by default. The value in Array size is used for array fetch size.

Enable case sensitive table/column name. Enables the use of case-sensitive table
and column names. Select to automatically enclose table and column names in
SQL statements in double quotation marks (" "). It is cleared by default.

Note: If Enable case sensitive table/column name is selected, when qualified
column names are specified in the Derivation cell on the Columns tab, you
must enclose these table and column names in double quotation marks (" ").

Columns tab of the Output page of the Oracle OCI stage
This tab contains the column definitions for the data that is output for the link that
is selected.

The column tab page behaves the same way as the Columns tab in the ODBC
stage, and it specifies which columns are aggregated.

Chapter 5. Oracle OCI stage 119

The column definitions for output links contain a key field. Key fields are used to
join primary and reference inputs to a Transformer stage. For a reference output
link, the Oracle OCI key reads the data by using a WHERE clause in the SQL
SELECT statement.

The Derivation cell on the Columns tab contains fully-qualified column names
when table definitions are loaded from the IBM InfoSphere DataStage Repository.
If the Derivation cell has no value, Oracle OCI uses only the column names to
generate the SELECT statement displayed in the Generated tab of the SQL tab.
Otherwise, it uses the content of the Derivation cell. Depending on the format
used in the Repository, the format is owner.table.name.columnname or
tablename.columnname.

The column definitions for reference links require a key field. Key fields join
reference inputs to a Transformer stage. The Oracle OCI key reads the data by
using a WHERE clause in the SQL SELECT statement.

SQL tab of the Output page of the Oracle OCI stage
Use this tab to build the SQL statements that are used to read data from Oracle. It
contains the Query, Before, and After tabs.

* Query. This tab is read-only if you select Use SQL Builder tool or Generate
SELECT clause from column list; enter other clauses for Query Type. If Query
Type is Enter Custom SQL statement, this tab contains the SQL statements
executed to read data from Oracle. The GUI displays the stage-generated SQL
statement on this tab as a starting point. However, you can enter any valid,
appropriate SQL statement. If Query Type is Load SQL from a file at run time,
enter the path name of the file.

* Before. Contains the SQL statements executed before the stage processes any job
data rows. The Before is the first SQL statement to be executed, and you can
specify whether the job continues or aborts after failing to run a Before SQL
statement. It does not affect the transaction grouping scheme. The
commit/rollback is performed on a per-link basis.

If the property value begins with FILE=, the remaining text is interpreted as a
path name, and the contents of the file supplies the property value.

* After. Contains the After SQL statement executed after the stage processes any
job data rows. It is the last SQL statement to be executed, and you can specify
whether the job continues or aborts after failing to run an After SQL statement.
It does not affect the transaction grouping scheme. The commit/rollback is
performed on a per-link basis.

If the property value begins with FILE=, the remaining text is interpreted as a
path name, and the contents of the file supplies the property value.

Reading data from Oracle

You can use generated queries or user-defined queries to read data from an Oracle
database into IBM InfoSphere DataStage.

The column definitions for reference links must contain a key field. You use key
fields to join primary and reference inputs to a Transformer stage.

Oracle OCI key reads the data by using a WHERE clause in SQL SELECT
statements.

120 Connectivity Guide for Oracle Databases

Using generated queries

The Oracle OCI stage extracts data from an Oracle data source by using a complete
SQL SELECT statement that it generates. The SQL statement is automatically
constructed by using the information that you enter in the stage output properties.

Procedure

1. Select Generate SELECT clause from column list; enter other clauses. Data is
extracted from an Oracle database by using an SQL SELECT statement that is
generated by the Oracle OCI stage. Also, the SQL Clauses button appears.

2. Click SQL Clauses. The SQL Clauses window opens.

SQL SELECT statements have the following syntax:

SELECT clause FROM clause
[WHERE clause]

[GROUP BY clause]

[HAVING clause]

[ORDER BY clause];

Example of an SQL SELECT statement

The SQL SELECT statement includes other appropriate clauses based on your
entries in the FROM clause (table name), WHERE clause, and Other clauses fields
in the SQL Clauses window.

For example, you can specify values to complete the following tasks:

* Select the columns Name, Address, City, State, AreaCode, and Telephone
Number from a table called Tablel

* Specify the value of AreaCode to be 617 in the Where clause text box
* Specify City as the column to order by in the Other clauses text box
The SQL statement displayed on the SQL tab is:

SELECT Name, Address, City, State, AreaCode, Telephone
FROM Tablel WHERE AreaCode = 617 ORDER BY City;

Using user-defined queries

Instead of using the SQL statement that is generated by the Oracle OCI stage, you
can enter your own SQL statement for each Oracle OCI output link.

Procedure

1. Select Enter custom SQL statement from the Query type list on the General
tab on the Output page. The SQL tab is enabled.

2. You can edit or drag the selected columns into your user-defined SQL
statement. Only one SQL statement is supported for an output link. You must
ensure that the table definitions for the output link are correct and represent
the columns that are expected.

3. If your entry begins with {FILE}, the remaining text is interpreted as a path
name, and the contents of the file supplies the text for the query.

4. Click OK to close this window. Changes are saved when you save your job
design.

Chapter 5. Oracle OCI stage 121

DATE data type considerations

An Oracle DATE data type contains date and time information (there is no TIME
data type in Oracle). When you import Oracle metadata that has the DATE data
type, the Oracle OCI stage maps the Oracle DATE data type to a Timestamp data
type by default.

InfoSphere DataStage uses a conversion of YYYY-MM-DD HH24:MI:SS when
reading or writing an Oracle date. If the InfoSphere DataStage data type is
Timestamp, InfoSphere DataStage uses the to_timestamp function for this column
when it generates the INSERT statement to write an Oracle date. If the InfoSphere
DataStage data type is Timestamp or Date, the InfoSphere DataStage uses the
to_char function for this column when it generates the SELECT statement to read
an Oracle date.

The following example creates a table with a DATE data type on an Oracle server.
The imported InfoSphere DataStage data type is Timestamp.

create table dsdate (one date);

The results vary, depending on whether the Oracle OCI stage is used as an input
or an output link:

* Input link. The stage generates the following SQL statement:
insert into dsdate(one) values(TO DATE(:1, 'yyyy-mm-dd hh24:mi:ss'))

¢ Output link. The stage generates the following SQL statement:
select TO_CHAR(one, 'YYYY-MM-DD HH24:MI:SS') FROM dsdate

Oracle data type support

The Oracle OCI stage supports character, numeric, date, and miscellaneous data
types. When you create the IBM InfoSphere DataStage table definitions for an
Oracle table, specify the SQL type, length, and scale attributes that are appropriate
for the data type.

Character data types
The Oracle OCI stage supports the CHAR and VARCHAR?2 Oracle data types.

The following table summarizes character data types for Oracle, their IBM
InfoSphere DataStage SQL type definitions, and the corresponding length attributes
that you need to specify:

Table 31. Oracle character data types and InfoSphere DataStage corresponding data types

InfoSphere
Oracle data type DataStage SQL type |Length Notes®
CHAR (size) Char (size) size Fixed length
character data of
length size.

Fixed for every row
in the table (with
trailing spaces).
Maximum size is 255
bytes per row,
default size is 1 byte
per row.

122 Connectivity Guide for Oracle Databases

Table 31. Oracle character data types and InfoSphere DataStage corresponding data
types (continued)

InfoSphere
Oracle data type DataStage SQL type |Length Notes®
VARCHAR? (size) VarChar (size) size Variable length

character data. A
maximum size must
be specified.

VarChar is variable
for each row, up to
2000 bytes per row.

Numeric data types
The Oracle OCI steage supports the NUMBER Oracle data type.

The following table summarizes the NUMBER data type for Oracle, the IBM
InfoSphere DataStage SQL type definitions, and the corresponding length and scale
attributes that you need to specify:

Table 32. Oracle numeric data types and InfoSphere DataStage corresponding data types

InfoSphere
DataStage SQL
Oracle data type | Ttype Length Scale Notes
NUMBER (p,s) | Decimal Double |p p ss The InfoSphere
Float Numeric DataStage SQL
Integer Real type definition

used depends on
the application
of the column in
the table, that is,
how the column
is used.

Decimal values
have a
maximum
precision of 38
digits. Decimal
and Numeric are
synonyms. The
full range of
Oracle NUMBER
values are
supported
without loss of
precision.

Additional numeric data types for Oracle

The Oracle OCI stage supports the BINARY_DOUBLE and BINARY_FLOAT Oracle
data types.

The following table summarizes the additional numerical data types for Oracle and
their IBM InfoSphere DataStage SQL type definitions:

Chapter 5. Oracle OCI stage 123

Table 33. Additional numeric data types and the corresponding data type in InfoSphere

DataStage

Oracle data type

InfoSphere DataStage SQL
type

Notes

BINARY_DOUBLE

Double

* When a table is read, the
InfoSphere DataStage
converts columns with a
data type of
BINARY_DOUBLE to
SQL_DOUBLE.

* When a table is updated,
InfoSphere DataStage
converts columns with a
data type of
SQL_DOUBLE to
BINARY_DOUBLE.

Note: Perform the following
steps to determine the data
type of the source column.
When importing metadata
definitions, select Import >
Table Definitions > Plug-in
Meta Data Definitions.
Select ORAOCIY. If you
select Include Column
Description, the metadata
import includes the
description column on the
Columns tab.

124 Connectivity Guide for Oracle Databases

Table 33. Additional numeric data types and the corresponding data type in InfoSphere
DataStage (continued)

InfoSphere DataStage SQL
Oracle data type type Notes

BINARY_FLOAT Float * When a table is read,

InfoSphere DataStage
converts columns with a
data type of either
BINARY_FLOAT or
FLOAT to SQL_FLOAT.
Note: Perform the
following steps to
determine the data type of
the source column. When
importing metadata
definitions, select Import >
Table Definitions >
Plug-in Meta Data
Definitions. Select
ORAOCIY. If you select
Include Column
Description, the metadata
import includes the
description column on the
Columns tab.

* When a table is updated,
InfoSphere DataStage
converts SQL_FLOAT to
either BINARY_FLOAT or
FLOAT. To indicate
BINARY_FLOAT, place the
keyword BINARY_FLOAT
anywhere in the column
description field on the
Columns tab. If
BINARY_FLOAT is
present, InfoSphere
DataStage converts
SQL_FLOAT to
BINARY_FLOAT. If
BINARY_FLOAT is not
present, InfoSphere
DataStage converts
SQL_FLOAT to FLOAT
(with precision).

Date data types
The Oracle OCI stage supports the DATE Oracle data type.

The following table summarizes the DATE data type for Oracle and the IBM
InfoSphere DataStage SQL type definition:

Chapter 5. Oracle OCI stage 125

Table 34. Oracle date data types and the InfoSphere DataStage corresponding data types

Oracle data type

InfoSphere DataStage SQL
type

Notes

DATE

Timestamp

The default format for the
default InfoSphere DataStage
data type Timestamp is
YYYY-MM-DD HH24:MI:SS.

If theInfoSphere DataStage
data type is Timestamp,
InfoSphere DataStage uses
the to_date function for this
column when it generates
the INSERT statement to
write an Oracle date.

If the InfoSphere DataStage
data type is Timestamp or
Date, InfoSphere DataStage
uses the to_char function for
this column when it
generates the SELECT
statement to read an Oracle
date.

Miscellaneous data types

The Oracle OCI stage supports the CLOB Oracle data type.

The following table summarizes miscellaneous data types for Oracle and IBM

InfoSphere DataStage:

Table 35. Oracle miscellaneous data types and the InfoSphere DataStage's corresponding

data types

Oracle data type

InfoSphere DataStage SQL
type

Notes

CLOB

SQL_LONGVARCHAR

The Oracle OCI stage
supports the CLOB data type
by mapping the
LONGVARCHAR data type
with a precision greater than
4 KB to Oracle's CLOB data
type. To work with a CLOB
column definition, select the
InfoSphere DataStage
LONGVARCHAR data type
as the column's data type
and provide a Length of
more than 4 KB in the
Columns tab. The maximum
size supported by InfoSphere
DataStage is 2 GB. A column
with a data type of CLOB
cannot be used as a key.

126 Connectivity Guide for Oracle Databases

Handling $ and # characters

In jobs that use the Oracle OCI stage, you can connect to Oracle OCI databases
that use the number sign (#) and dollar sign ($) characters in table names and
column names. InfoSphere DataStage converts these characters into an internal
format and then converts them back as necessary.

About this task

To take advantage of this facility, perform the following tasks:

* In the IBM InfoSphere DataStage and QualityStage Administrator client, open
the Environment Variables dialog box for the project in question, and set the
environment variable DS_ENABLE_RESERVED_CHAR_CONVERT to true (this
can be found in the General\Customize branch).

* Avoid using the strings _ 035__ and __036__ in your Oracle table or column
names. _035__ is the internal representation of # and __036__ is the internal
representation of $.

Import metadata using the stage Meta Data Import tool; avoid hand-editing (this
minimizes the risk of mistakes or confusion).

Once the table definition is loaded, the internal table and column names are
displayed rather than the original Oracle names both in table definitions and in the
Data Browser. They are also used in derivations and expressions. The original
names (that is, those containing the $ or #) are used in generated SQL statements,
however, and you should use them if entering SQL in the job yourself.

When using an Oracle OCI stage in a server job, you should use the external
names when entering SQL statements that contain Oracle columns. The columns
within the stage are represented by :1, ;2, and onward. (parameter markers) and
bound to the Oracle columns by order, so you do not need to worry about entering
names for them. This applies to:

* Query

* Update

e Insert

* Key

* Select

* Where clause

For example, for an update you might enter:
UPDATE tablename SET ##B$ = :1 WHERE §$A# = :2

Particularly note the key in this statement ($A#) is specified using the external
name.

Chapter 5. Oracle OCI stage 127

128 Connectivity Guide for Oracle Databases

Chapter 6. Oracle OCI Load stage

The Oracle OCI Load stage is a passive stage that loads data from external files
into an Oracle table. The Oracle database can reside locally or remotely.

When you use IBM InfoSphere DataStage to access Oracle databases, you can
choose from a collection of connectivity options. For most new jobs, use the Oracle
Connector stage, which offers better functionality and performance than the Oracle
OCI Load stage.

If you have jobs that use the Oracle OCI Load stage and want to use the connector,
use the Connector Migration Tool to migrate jobs to use the connector.

This stage has one stream input link and no output or output reference links. The
input link provides a stream of data rows to load into the Oracle table using
Oracle direct path loading. This input link corresponds to one bulk loading session
in an IBM InfoSphere DataStage job. You have the option to use different loading
modes.

Oracle Call Interface (OCI) supports direct path loading calls that access the direct
block formatter of the Oracle server. These calls perform the functions of the
Oracle SQL*Loader utility. This lets you load data immediately from an external
file into an Oracle database object, which is a table or a partition of a partitioned
table, in automatic mode.

Functionality of the Oracle OCI Load stage

You can use the Oracle OCI Load stage to load data to a target table. The stage
also has national language support.

The Oracle OCI Load stage has the following functionality:

* Bulk loading from a stream input link to provide rows of data into the target
table residing locally or remotely.

* Immediate and delayed loading.

* Load actions to specify how data is loaded to the target table.
e Partition or table loading.

* NLS (National Language Support).

The following functionality is not supported:
* Output or output reference links.
* Importing of table definitions.

* Use of the TIMESTAMP data type with fractions of seconds, for example,
hh:mm:ss:ff. Use the CHAR data type instead.

Configuration requirements of the Oracle OCI Load stage

To use the Oracle OCI Load stage, ensure that the configuration requirements are
met.

See the online readme.txt file for your platform for the latest information about the
IBM InfoSphere DataStage release.

© Copyright IBM Corp. 2008, 2014 129

Before you use the Oracle OCI Load stage, you must install the Oracle standard
client on the engine tier. You cannot use the stage if only Oracle Instant Client is
installed.

Note: For Oracle direct path load, the client version must be the same as or earlier
than the server version. You should have read and execute permissions to use
libraries in the $ORACLE_HOME/lib and $ORACLE_HOME /bin directories and
read permissions on all files in the §ORACLE_HOME directory. Otherwise, you
might experience problems using Oracle OCI Load stage to connect to Oracle.

Operating system requirement

For the Oracle OCI Load stage to run successfully, the Oracle client and server
computers must have the same operating system type, such as UNIX or Windows
2000. For example, if the Oracle client is on a UNIX computer and the Oracle
server is on a Windows 2000 computer, jobs fail.

Oracle Enterprise Manager

If you install Oracle Enterprise Manager on the same workstation as Oracle Client,
the Oracle server home directory must precede the Oracle Enterprise Manager
home directory. You must ensure that the PATH system environment variable has
the correct setting.

For example, the following setting is correct:
d:\ oraclehome \bin;d:\ oraclemanager \bin

oraclehome is the location where your Oracle software is installed.
oraclemanager is the name of the Oracle Enterprise Manager home directory.

Any changes to system environment variables might require a system reboot before
the values of the variables take effect.

The configuration of SQL*Net using a configuration program, for example,
SQL*Net Easy Configuration, to set up and add database aliases is also required.

Load modes

The load mode specifies whether to load the data into the target file in automatic
or manual mode. The Load Mode property specifies whether to populate the
Oracle database immediately or to generate a control file and a data file to
populate the database later.

Automatic load mode

Automatic loading, which is the default load mode, loads the data during the IBM
InfoSphere DataStage job. The stage populates the Oracle database immediately
after reading the source data.

Automatic data loading can occur only when the InfoSphere DataStage server
resides on the same system as the Oracle server or when the Oracle server is
remote and has the same operating system as the InfoSphere DataStage server.

Manual load mode

Use manual loading to modify and move the data file, the control file, or both to a
different system before the actual loading process.

130 Connectivity Guide for Oracle Databases

Use manual mode to delay loading the data, which causes the data and control
files that are required to load the data to be written to an ASCII file. The data and
control files are used to load the data later.

Loading an Oracle database

You can use the Oracle OCI Load stage to load data to an Oracle database.

Procedure

o0k wd =

recompile.

Add an Oracle OCI Load stage to an InfoSphere DataStage job
Link the Oracle OCI Load stage to its data source

Specify column definitions using the Columns tab

Choose the load mode.
On the Stage tab, configure the properties for your job.

Compile the job. If the job does not compile correctly, correct the errors and

7. Run the job in the InfoSphere DataStage and QualityStage Designer client or
run or schedule the job in the InfoSphere DataStage and QualityStage Director

client.

Properties

Use the Properties tab to specify the load operation.

Each stage property is described in the order in which it appears.

Prompt

Type

Default

Description

Service Name

String

The name of the
Oracle service. It is
the logical
representation of the
database, which is
the way the database
is presented to
clients. The service
name is a string that
is the global database
name, a name
consists of the
database name and
domain name, which
is entered during
installation or
database creation.

User Name

String

The user name for
connecting to the
service.

Password

String

The password for
"User Name."

Table Name

String

The name of the
target Oracle table to
load the files into.

Chapter 6. Oracle OCI Load stage 131

Prompt Type Default Description

Schema Name String The name of the
schema where the
table being loaded
resides. If
unspecified, the
schema name is
"User Name."

Partition Name String The name of the
partition or
subpartition that
belongs to the table
to be loaded. If not
specified, the entire
table is loaded. The
name must be a valid
partition or
subpartition name.

Date Format String List DD-MON-YYYY The date format to be
used. Use one of the
following values:

DD.MM.YYYY
YYYY-MM-DD
DD-MON-YYYY

MM/DD/YYYY

Time Format String List hh24:mi:ss The time format to
be used. Use one of
the following values:

hh24:mi:ss

hh:mi:ss am

Max Record Number |Long 100 Specifies the
maximum number of
input records in a
batch. This property
is used only if "Load
Mode" is set to
Automatic.

132 Connectivity Guide for Oracle Databases

Prompt

Type

Default

Description

Load Mode

String List

Automatic

The method used to
load the data into the
target file. This
property specifies
whether to populate
the Oracle database
or generate a control
file and a data file to
populate the
database. Use one of
the following values:

Automatic
(immediate mode).
The stage populates
an Oracle database
immediately after
loading the source
data. Automatic data
loading can occur
only when the IBM
InfoSphere
DataStageserver
resides on the same
system as an Oracle
server.

Manual (delayed
mode). The stage
generates a control
file and a data file
that you can edit and
run on any Oracle
host system. The
stage does not
establish a connection
with the Oracle
server.

Directory Path

String

The path name of the
directory where the
Oracle SQL*Loader
files are generated.
This property is used
only when "Load
Mode" is set to
Manual.

Chapter 6. Oracle OCI Load stage 133

Prompt

Type

Default

Description

Control File Name

String

servicename_
tablename.ctl

The name of the
Oracle SQL*Loader
control file generated
when "Load Mode" is
set to Manual. This
text file contains the
sequence of
commands telling
where to find the
data, how to parse
and interpret the
data, and where to
insert the data. You
can modify and
execute this file on
any Oracle host
system. This file has
a .ctl extension.

Data File Name

String

servicename_
tablename.dat

The name of the
Oracle SQL*Loader
sequential data file
created when "Load
Mode" is set to
Manual. This file has
a .dat extension.

Delimiter

String

, (comma)

The character used to
delimit fields in the
loader input data.

Preserve Blanks

String List

The indicator
specifying whether
SQL*Loader should
preserve blanks in
the data file. If No,
SQL*Loader treats
blanks as nulls.

Column Name
Case-sensitivity

String List

The indicator
specifying whether
both uppercase and
lowercase characters
can be used in
column names. If No,
all column names are
handled as
uppercase. If Yes, a
combination of
uppercase and
lowercase characters
is acceptable.

134 Connectivity Guide for Oracle Databases

Chapter 7. Building SQL statements

Use the graphical interface of SQL builder to construct SQL statements that run
against databases.

You can construct the following types of SQL statements.

Table 36. SQL statement types

SQL statement Description

SELECT Selects rows of data from a database table.
The query can perform joins between
multiple tables and aggregations of values in

columns.
INSERT Inserts rows in a database table.
UPDATE Updates existing rows in a database table.
DELETE Deletes rows from a database table.

You can use the SQL builder from various connectivity stages that IBM InfoSphere
DataStage supports.

Different databases have slightly different SQL syntax (particularly when it comes
to more complex operations such as joins). The exact form of the SQL statements
that the SQL builder produces depends on which stage you invoke it from.

You do not have to be an SQL expert to use the SQL builder, but it helps to have
some familiarity with the basic structure of SQL statements in this documentation.

Avoid using column names that are SQL reserved words as their use might result
in unexpected results when the SQL is built or run.

Starting SQL builder from a stage editor

If a stage supports the SQL builder, you can open the SQL builder by clicking
Build SQL in the stage editor. For some stages, you can use the SQL builder only
for some access methods.

The SQL builder is available to help you build select statements where you are
using a stage to read a database (that is, a stage with an output link).

The SQL builder is available to help you build insert, update, and delete
statements where you are using the stage to write to database (that is, a stage with
an input link).

Starting SQL builder

Use the graphical interface of SQL builder to construct SQL queries that run
against federated databases.

© Copyright IBM Corp. 2008, 2014 135

Procedure

1.

In the Reference Provider pane, click Browse. The Browse Providers dialog box
opens.

In the Select a Reference Provider type list, select Federation Server. In the
Select a Federated Datasource tree, the list of database aliases opens.

Click a database alias. The list of schemas opens as nodes beneath each
database alias.

In the SQL Type list, select the type of SQL query that you want to construct.

Click the SQL builder button. The SQL Builder - DB2 / UDB 8.2 window
opens. In the Select Tables pane, the database alias appears as a node.

Building SELECT statements

Build SELECT statements to query database tables and views.

Procedure

1.
2.

Click the Selection tab.

Drag any tables you want to include in your query from the repository tree to
the canvas. You can drag multiple tables onto the canvas to enable you to
specify complex queries such as joins. You must have previously placed the
table definitions in the IBM InfoSphere DataStage repository. The easiest way to
do this is to import the definitions directly from your relational database.

Specify the columns that you want to select from the table or tables on the
column selection grid.

If you want to refine the selection you are performing, choose a predicate from
the Predicate list in the filter panel. Then use the expression editor to specify
the actual filter (the fields displayed depend on the predicate you choose). For
example, use the Comparison predicate to specify that a column should match
a particular value, or the Between predicate to specify that a column falls
within a particular range. The filter appears as a WHERE clause in the finished
query.

Click the Add button in the filter panel. The filter that you specify appears in
the filter expression panel and is added to the SQL statement that you are
building.

If you are joining multiple tables, and the automatic joins inserted by the SQL
builder are not what is required, manually alter the joins.

If you want to group your results according to the values in certain columns,
select the Group page. Select the Grouping check box in the column grouping
and aggregation grid for the column or columns that you want to group the
results by.

If you want to aggregate the values in the columns, you should also select the
Group page. Select the aggregation that you want to perform on a column from
the Aggregation drop-down list in the column grouping and aggregation grid.

Click on the Sql tab to view the finished query, and to resolve the columns
generated by the SQL statement with the columns loaded on the stage (if
necessary).

Building INSERT statements

Build INSERT statements to insert rows in a database table.

136 Connectivity Guide for Oracle Databases

Procedure

1.
2.

5.

Click the Insert tab.

Drag the table you want to insert rows into from the repository tree to the
canvas. You must have previously placed the table definitions in the IBM
InfoSphere DataStage repository. The easiest way to do this is to import the
definitions directly from your relational database.

Specify the columns that you want to insert on the column selection grid. You
can drag selected columns from the table, double-click a column, or drag all
columns.

For each column in the column selection grid, specify how values are derived.
You can type a value or select a derivation method from the drop-down list.

* Job Parameters. The Parameter dialog box appears. Select from the job
parameters that are defined for this job.

* Lookup Columns. The Lookup Columns dialog box appears. Select a column
from the input columns to the stage that you are using the SQL builder in.

* Expression Editor. The Expression Editor opens. Build an expression that
derives the value.

Click on the Sql tab to view the finished query.

Building UPDATE statements

Build UPDATE statements to update existing rows in a database table.

Procedure

1.
2.

Click the Update tab.

Drag the table whose rows you want to update from the repository tree to the
canvas. You must have previously placed the table definitions in the IBM
InfoSphere DataStage repository. The easiest way to do this is to import the
definitions directly from your relational database.

Specify the columns that you want to update on the column selection grid. You
can drag selected columns from the table, double-click a column, or drag all
columns.

For each column in the column selection grid, specify how values are derived.
You can type a value or select a derivation method from the drop-down list.
Enclose strings in single quotation marks.

* Job Parameters. The Parameter dialog box appears. Select from the job
parameters that are defined for this job.

* Lookup Columns. The Lookup Columns dialog box appears. Select a column
from the input columns to the stage that you are using the SQL builder in.

* Expression Editor. The Expression Editor opens. Build an expression that
derives the value.

If you want to refine the update you are performing, choose a predicate from
the Predicate list in the filter panel. Then use the expression editor to specify
the actual filter (the fields displayed depend on the predicate you choose). For
example, use the Comparison predicate to specify that a column should match
a particular value, or the Between predicate to specify that a column falls
within a particular range. The filter appears as a WHERE clause in the finished
statement.

Click the Add button in the filter panel. The filter that you specify appears in
the filter expression panel and is added to the update statement that you are
building.

Chapter 7. Building SQL statements 137

7. Click on the Sql tab to view the finished query.

Building DELETE statements

Build DELETE statements to delete rows from a database table.

Procedure

1.

Click the Delete tab.

2. Drag the table from which you want to delete rows from the repository tree to

the canvas. You must have previously placed the table definitions in the IBM
InfoSphere DataStage repository. The easiest way to do this is to import the
definitions directly from your relational database.

You must choose an expression which defines the rows to be deleted. Choose a
predicate from the Predicate list in the filter panel. Then use the expression
editor to specify the actual filter (the fields displayed depend on the predicate
you choose). For example, use the Comparison predicate to specify that a
column should match a particular value, or the Between predicate to specify
that a column falls within a particular range. The filter appears as a WHERE
clause in the finished statement.

Click the Add button in the filter panel. The filter that you specify appears in
the filter expression panel and is added to the update statement that you are
building.

5. Click on the Sql tab to view the finished query.

The SQL builder interface

The components in the upper half of the SQL builder are common to all types of
SQL statement that you can build. The pages that are available in the lower half
depend on the type of query that you build.

Toolbar

The toolbar for the SQL builder contains tools for actions such as clearing the
current query, viewing data, and validating the statement.

The SQL builder toolbar contains the following tools.

Clear Query removes the field entries for the current SQL query.

Cut removes items and placed them on the Microsoft Windows clipboard so
they can be pasted elsewhere.

Copy copies items and place them on the Windows clipboard so they can be
pasted elsewhere.

Paste pastes items from the Windows clipboard to certain places in the SQL
builder.

SQL properties opens the Properties dialog box.

Quoting toggles quotation marks in table and column names in the generated
SQL statements.

Validation toggles the validation feature. Validation automatically occurs when
you click OK to exit the SQL builder.

View Data is available when you invoke the SQL builder from stages that
support the viewing of data. It causes the calling stage to run the SQL as
currently built and return the results for you to view.

Refresh refreshes the contents of all the panels on the SQL builder.

138 Connectivity Guide for Oracle Databases

* Window View allows you to select which panels are shown in the SQL builder
window.

* Help opens the online help.

Tree panel

The tree panel shows the table definitions in the IBM InfoSphere DataStage
repository. You can import a table definition from the database that you want to

query.

You can import the table definition by using the Designer client, or you can do it
directly from the shortcut menu in the tree panel. You can also manually define a
table definition from within the SQL builder by selecting New Table... from the
tree panel shortcut menu.

To select a table to query, select it in the tree panel and drag it to the table
selection canvas. A window appears in the canvas representing the table and
listing all its individual columns.

A shortcut menu allows you to:

* Refresh the repository view

* Define a new table definition (the Table Definition dialog box opens)

* Import metadata directly from a data source (a sub menu offers a list of source

types)
* Copy a table definition (you can paste it in the table selection canvas)

* View the properties of the table definition (the Table Definition dialog box
opens)

You can also view the properties of a table definition by double-clicking on it in
the repository tree.

Table selection canvas

The table selection canvas shows a list of columns and column types for the table
that the SQL statement accesses.

You can drag a table from the tree panel to the table selection canvas. If the desired
table does not exist in the repository, you can import it from the database you are
querying by choosing Import Metadata from the tree panel shortcut menu.

The table appears in a window on the canvas, with a list of the columns and their
types. For insert, update, and delete statements you can only place one table on
the canvas. For select queries you can place multiple tables on the canvas.

Wherever you try to place the table on the canvas, the first table you drag will
always be placed in the top left hand corner. If you are building a select query,
subsequent tables can be dragged before or after the initial, or on a new row
underneath. Eligible areas are highlighted on the canvas as you drag the table, and
you can only drop a table in one of the highlighted areas. When you place tables
on the same row, the SQL builder will automatically join the tables (you can alter
the join if it's not what you want).

When you place tables on a separate row, no join is added. An old-style Cartesian

product of the table rows on the different rows is produced: FROM FirstTable,
SecondTable.

Chapter 7. Building SQL statements 139

Click the Select All button underneath the table title bar to select all the columns
in the table. Alternatively you can double-click on or drag individual columns
from the table to the grid in the Select, Insert, or Update page to use just those
columns in your query.

With a table selected in the canvas, a shortcut menu allows you to:

e Add a related table (select queries only). A submenu shows you tables that have
a foreign key relationship with the currently selected one. Select a table to insert
it in the canvas, together with the join expression inferred by the foreign key
relationship.

* Remove the selected table.

¢ Select all the columns in the table (so that you could, for example, drag them all
to the column selection grid).

* Open a Select Table dialog box to allow you to bind an alternative table for the
currently selected table (select queries only).

* Open the Table Properties dialog box for the currently selected table.

With a join selected in the canvas (select queries only), a shortcut menu allows you
to:

* Open the Alternate Relation dialog box to specify that the join should be based
on a different foreign key relationship.

* Open the Join Properties dialog box to modify the type of join and associated
join expression.

From the canvas background, a shortcut menu allows you to:
* Refresh the view of the table selection canvas.
* DPaste a table that you have copied from the tree panel.

* View data - this is available when you invoke the SQL builder from stages that
support the viewing of data. It causes the calling stage to run the SQL as
currently built and return the results for you to view.

* Open the Properties dialog box to view details of the SQL syntax that the SQL
builder is currently building a query for.

Selection page
Use the Selection page to specify details for a SELECT statement.

Column selection grid

Use the column selection grid to specify the columns to include in your query.

You can populate the grid in a number of ways:

¢ Drag columns from the tables in the table selection canvas
* Choose columns from a list in the grid

* Double-click the column name in the table selection canvas
* Copy and paste from the table selection canvas

Column expression
The column expression identifies the columns to include in the SELECT statement.

You can specify the following parts:

140 Connectivity Guide for Oracle Databases

* Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at run
time (the stage you are using the SQL builder from must allow job parameters
for this to appear).

* Expression. An expression editor dialog box appears, allowing you to specify an
expression that represents the value to be used in the query.

 Data flow variable. A dialog box appears offering you a choice of available data
flow variables (the stage you are using the SQL builder from must support data
flow variables for this to appear)

* Lookup Column. You can directly select a column from one of the tables in the
table selection canvas.

Table
This property identifies the table that the column belongs to.

If you populate the column grid by dragging, copying or double-clicking on a
column from the table selection canvas, the table name is filled in automatically.
You can also choose a table from the list.

To specify the table name at run time, choose a job parameter from the list.

Column alias
Use this property to specify an alias for the column.

Output

Select this property to indicate that the column is part of the query output. The
property is selected automatically when you add a column to the grid.

Sort

Choose Ascending or Descending to have the query sort the returned rows by the
value of this column. Selecting to sort adds an ORDER BY clause to the query.

Sort order
You can specify the order in which rows are sorted if you order by more than one
column.

Shortcut menu
Use the shortcut menu to paste a column that you copied from the table selection
canvas, insert or remove a row, and show or hide the filter panel.

Filter panel

In the filter panel, you specify a WHERE clause for the SELECT statement that you
are building. The filter panel includes a predicate list and an expression editor
panel, the contents of which depends on the chosen predicate.

Filter expression panel

The filter expression panel shows the filters that you added to the query. You can
edit a filter that you added by using the filter expression editor or you can enter a
filter manually.

Group page

Use the Group page, which appears when you build SELECT statements, to specify
that the results of the query are grouped by a column or columns.

Chapter 7. Building SQL statements 141

Also, you can use the page to aggregate the results in some of the columns. For
example, you can specify COUNT to count the number of rows that contain a
non-null value in a column.

The Group tab gives access to the toolbar, tree panel, and the table selection
canvas, in exactly the same way as the Selection page.

Grouping grid

In the grouping grid, you can specify the columns to group by or aggregate on.

The grid is populated with the columns that you selected on the Selection page.
You can change the selected columns or select new ones, which will be reflected in
the selection your query makes.

The grid has the following fields:

* Column expression. Identifies the column to be included in the query. You can
modify the selections from the Selection page, or build a column expression.

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression Editor. An expression editor dialog box appears, allowing you to
specify an expression that represents the value to be used in the query.

— Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear).

— Lookup Column. You can directly select a column from one of the tables in
the table selection canvas.

e Column Alias. This allows you to specify an alias for the column. If you select
an aggregation operation for a column, SQL builder will automatically insert an
alias of the form Alison; you can edit this if required.

* Output. This is selected to indicate that the column will be output by the query.
This is automatically selected when you add a column to the grid.

* Distinct. Select this check box if you want to add the DISTINCT qualifier to an
aggregation. For example, a COUNT aggregation with the distinct qualifier will
count the number of rows with distinct values in a field (as opposed to just the
not-null values). For more information about the DISTINCT qualifier, see
[Properties Dialog Box|

» Aggregation. Allows you to select an aggregation function to apply to the
column (note that this is mutually exclusive with the Group By option). See
[Ageregation Functions|for details about the available functions.

* Group By. Select the check box to specify that query results should be grouped
by the results in this column.

Aggregation functions

The aggregation functions that are available depend on the stage that you opened
the SQL builder from. All SQL syntax variants include the AVG, COUNT, MAX,
MIN, STDDEV, and VARIANCE aggregation functions.

The following aggregation functions are supported.

* AVG. Returns the mean average of the values in a column. For example, if you
had six rows with a column containing a price, the six rows would be added
together and divided by six to yield the mean average. If you specify the

142 Connectivity Guide for Oracle Databases

DISTINCT qualifier, only distinct values will be averaged; if the six rows only

contained four distinct prices then these four would be added together and
divided by four to produce a mean average.

¢ COUNT. Counts the number of rows that contain a not-null value in a column.

If you specify the DISTINCT qualifier, only distinct values will be counted.

* MAX. Returns the maximum value that the rows hold in a particular column.

The DISTINCT qualifier can be selected, but has no effect on this function.

* MIN. Returns the minimum value that the rows hold in a particular column.

The DISTINCT qualifier can be selected, but has no effect on this function.
e STDDEV. Returns the standard deviation for a set of numbers.
¢ VARIANCE. Returns the variance for a set of numbers.

Filter panel
In the Filter panel, you can specify a HAVING clause for the SELECT statement.

The Filter panel includes a predicate list and an expression editor panel, the
contents of which depends on the chosen predicate.

Filter Expression panel

The Filter Expression panel shows the filters that you added to the query. You can
edit a filter that you added by using the filter expression editor, or you can enter a

filter manually.

Insert page

Use the Insert page to specify the details of an INSERT statement. The page
includes the insert columns grid.

Insert Columns grid

In the Insert Columns grid, you specify the columns to include in the INSERT
statement and the values that they will take.

Insert column
This property identifies the columns to include in the INSERT statement.

You can populate this in a number of ways:

* Drag columns from the table in the table selection canvas

¢ Choose columns from a list in the grid

* Double-click the column name in the table selection canvas

¢ Copy and paste from the table selection canvas

Insert value

This property identifies the values that you are setting the corresponding column

to. You can enter a value manually or specify a job parameter, expression, data

flow variable, or lookup column.

When you specify a value, you can use the following objects:
* Job parameter. A dialog box appears offering you a choice of available job

parameters. This allows you to specify the value to be used in the query at run
time (the stage you are using the SQL builder from must allow job parameters

for this to appear).

* Expression. An expression editor dialog box appears, allowing you to specify an

expression that represents the value to be used in the query.

Chapter 7. Building SQL statements

143

* Data flow variable. A dialog box appears offering you a choice of available data
flow variables (the stage you are using the SQL builder from must support data
flow variables for this to appear)

* Lookup column. You can directly select a column from one of the tables in the
table selection canvas.

Update page
Use the Update page to specify details of an UPDATE statement.

Update Column grid

In the Update Column grid, you specify the columns to include in the UPDATE
statement and the values that they will take.

Update column
This property identifies the columns to include in the UPDATE statement.

You can populate this in the following ways:

* Drag columns from the table in the table selection canvas.

¢ Choose columns from a list in the grid.

* Double-click the column name in the table selection canvas.

* Copy and paste from the table selection canvas.

Update value

This property identifies the value that you are setting the corresponding column to.
You can enter a value in the field manually, or you can specify a job parameter,
expression, data flow variable, or lookup column.

You can specify the following objects:

* Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at run
time (the stage you are using the SQL builder from must allow job parameters
for this to appear).

* Expression. An expression editor dialog box appears, allowing you to specify an
expression that represents the value to be used in the query.

* Data flow variable. A dialog box appears offering you a choice of available data
flow variables (the stage you are using the SQL builder from must support data
flow variables for this to appear)

* Lookup column. You can directly select a column from one of the tables in the
table selection canvas.

Filter panel

In the filter panel, you can specify a WHERE clause for the UPDATE statement
that you build. The filter panel includes a predicate list and an expression editor
panel, the contents of which depends on the chosen predicate.

Filter expression panel

The filter expression panel shows the filters that you added for the query. You can
edit the filter in the panel or enter a filter manually.

144 Connectivity Guide for Oracle Databases

Delete page
On the Delete page, you specify details for the DELETE statement that you build.

Filter panel

On the filter panel, you can specify a WHERE clause for the DELETE statement
that you build. The filter panel includes a predicate list and an expression editor
panel, the contents of which depend on the chosen predicate.

Filter expression panel

The filter expression panel shows the filters that you add to the query. You can edit
a filter in the panel or enter a filter manually.

SQL page

On the SQL page, you view the SQL statement that you build.

For SELECT queries, if the columns that you defined as output columns for your
stage do not match the columns that the SQL statement is generating, use the
Resolve columns grid to reconcile them. In most cases, the columns match.

Resolve columns grid

If the columns that you loaded in a stage do not match the columns that are
generated by the SQL statement that you built, you can reconcile the differences in
the Resolve columns grid.

Ideally the columns should match (and in normal circumstances usually would). A
mismatch would cause the metadata in your job to become out of step with the
metadata as loaded from your source database (which could cause a problem if
you are performing usage analysis based on that table).

If there is a mismatch, the grid displays a warning message. Click the Auto Match
button to resolve the mismatch. You are offered the choice of matching by name,
by order, or by both. When matching, the SQL builder seeks to alter the columns
generated by the SQL statement to match the columns loaded onto the stage.

If you choose Name matching, and a column of the same name with a compatible
data type is found, the SQL builder:

* Moves the result column to the equivalent position in the grid to the loaded
column (this will change the position of the named column in the SQL).

* Modifies all the attributes of the result column to match those of the loaded
column.

If you choose Order matching, the builder works through comparing each results
column to the loaded column in the equivalent position. If a mismatch is found,
and the data type of the two columns is compatible, the SQL builder:

* Changes the alias name of the result column to match the loaded column
(provided the results set does not already include a column of that name).

* Modifies all the attributes of the result column to match those of the loaded
column.

If you choose Both, the SQL builder applies Name matching and then Order
matching.

Chapter 7. Building SQL statements 145

If auto matching fails to reconcile the columns as described above, any mismatched
results column that represents a single column in a table is overwritten with the
details of the loaded column in the equivalent position.

When you click OK in the Sql tab, the SQL builder checks to see if the results
columns match the loaded columns. If they don't, a warning message is displayed
allowing you to proceed or cancel. Proceeding causes the loaded columns to be
merged with the results columns:

* Any matched columns are not affected.
* Any extra columns in the results columns are added to the loaded columns.
* Any columns in the loaded set that do not appear in the results set are removed.

* For columns that don't match, if data types are compatible the loaded column is
overwritten with the results column. If data types are not compatible, the
existing loaded column is removed and replaced with the results column.

You can also edit the columns in the Results part of the grid in order to reconcile
mismatches manually.

Expression editor

In the expression editor, you can specify a WHERE clause to add to your SQL
statement. If you are joining tables, you can also specify a WHERE or HAVING
clause for a join condition.

A variant of the expression editor allows you to specify a calculation, function, or a
case statement within an expression. The expression editor can be opened from
various places in the SQL builder.

Main expression editor

In the expression editor, you can specify a filter that uses the Between,
Comparison, In, Like, or Null predicates.

To specify an expression:
* Choose the type of filter by choosing a predicate from the list.
¢ Fill in the information required by the Expression Editor fields that appear.

* Click the Add button to add the filter to the query you are building. This clears
the expression editor so that you can add another filter if required.

The contents of the expression editor vary according to which predicate you have
selected. The following predicates are available:

* Between. Allows you to specify that the value in a column should lay within a
certain range.

* Comparison. Allows you to specify that the value in a column should be equal
to, or greater than or less than, a certain value.

* In. Allows you to specify that the value in a column should match one of a list
of values.

* Like. Allows you to specify that the value in a column should contain, start
with, end with, or match a certain value.

* Null. Allows you to specify that a column should be null or should not be null.

146 Connectivity Guide for Oracle Databases

Between predicate

When you specify a Between predicate in the expression editor, you choose a
column, specify a range, and specify whether a value must be in the range or not
in the range.

The expression editor when you have selected the Between predicate contains:

¢ Column. Choose the column on which you are filtering from the drop-down list.
You can also specify:

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression. An expression editor dialog box appears, allowing you to specify
an expression that represents the value to be used in the query.

— Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear)

— Column. You can directly select a column from one of the tables in the table
selection canvas.

* Between/Not Between. Choose Between or Not Between from the drop-down
list to specify whether the value you are testing should be inside or outside your
specified range.

e Start of range. Use this field to specify the start of your range. Click the menu
button to the right of the field and specify details about the argument you are
using to specify the start of the range, then specify the value itself in the field.

* End of range. Use this field to specify the end of your range. Click the menu
button to the right of the field and specify details about the argument you are
using to specify the end of the range, then specify the value itself in the field.

Comparison predicate
When you specify a Comparison predicate in the expression editor, you choose a
column, a comparison operator, and a comparison value.

The expression editor when you have selected the Comparison predicate contains:

* Column. Choose the column on which you are filtering from the drop-down list.
You can specify one of the following in identifying a column:

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression. An expression editor dialog box appears, allowing you to specify
an expression that represents the value to be used in the query.

- Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear)

— Column. You can directly select a column from one of the tables in the table
selection canvas.

* Comparison operator. Choose the comparison operator from the drop-down list.
The available operators are:

- =equals
— <> not equal to
— < less than

Chapter 7. Building SQL statements 147

— <= less than or equal to
— > greater than
— >= greater than or equal to

* Comparison value. Use this field to specify the value you are comparing to.
Click the menu button to the right of the field and choose the data type for the
value from the menu, then specify the value itself in the field.

In predicate

When you specify an In predicate in the expression editor, you choose a column,
select items to include in the query, and specify whether selected values are in the
list or not in the list.

The expression editor when you have selected the In predicate contains:

* Column. Choose the column on which you are filtering from the drop-down list.
You can specify one of the following in identifying a column:

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression. An expression editor dialog box appears, allowing you to specify
an expression that represents the value to be used in the query.

— Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear)

— Column. You can directly select a column from one of the tables in the table
selection canvas.

* In/Not In. Choose IN or NOT IN from the drop-down list to specify whether the
value should be in the specified list or not in it.

* Selection. These fields allows you to specify the list used by the query. Use the
menu button to the right of the single field to specify details about the argument
you are using to specify a list item, then enter a value. Click the double right
arrow to add the value to the list.

To remove an item from the list, select it then click the double left arrow.

Like predicate

When you specify a Like predicate in the expression editor, you choose a column,
an operator, and a value. You then specify whether values are included or
excluded by the comparison.

The expression editor when you have selected the Like predicate is as follows. The
fields it contains are:

* Column. Choose the column on which you are filtering from the drop-down list.
You can specify one of the following in identifying a column:

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression. An expression editor dialog box appears, allowing you to specify
an expression that represents the value to be used in the query.

— Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear)

148 Connectivity Guide for Oracle Databases

— Column. You can directly select a column from one of the tables in the table
selection canvas.

* Like/Not Like. Choose LIKE or NOT LIKE from the drop-down list to specify
whether you are including or excluding a value in your comparison.

* Like Operator. Choose the type of Like or Not Like comparison you want to
perform from the drop-down list. Available operators are:

— Match Exactly. Your query will ask for an exact match to the value you
specity.

— Starts With. Your query will match rows that start with the value you specify.

— Ends With. Your query will match rows that end with the value you specify.

— Contains. Your query will match rows that contain the value you specify
anywhere within them.

¢ Like Value. Specify the value that your LIKE predicate will attempt to match.

Null predicate

When you specify a Null predicate in the expression editor, you choose a column
and specify whether your query must match a NULL or NOT NULL condition in
the column.

The expression editor when you have selected the Null predicate is as follows. The
fields it contains are:

* Column. Choose the column on which you are filtering from the drop-down list.
You can specify one of the following in identifying a column:

— Job parameter. A dialog box appears offering you a choice of available job
parameters. This allows you to specify the value to be used in the query at
run time (the stage you are using the SQL builder from must allow job
parameters for this to appear).

— Expression. An expression editor dialog box appears, allowing you to specify
an expression that represents the value to be used in the query.

— Data flow variable. A dialog box appears offering you a choice of available
data flow variables (the stage you are using the SQL builder from must
support data flow variables for this to appear)

— Column. You can directly select a column from one of the tables in the table
selection canvas.

* Is Null/Is Not Null. Choose whether your query will match a NULL or NOT
NULL condition in the column.

Join predicate
When you specify a Join predicate in the expression editor, you choose the
columns to join and a join type.

This predicate is only available when you are building an Oracle 8i query with an
“old style' join expression. The Expression Editor is as follows.

* Left column. Choose the column to be on the left of your join from the
drop-down list.

* Join type. Choose the type of join from the drop-down list.

¢ Right column. Choose the column to be on the right of your query from the
drop-down list.

Chapter 7. Building SQL statements 149

Calculation, function, and case expression editor

In this version of the expression editor, you can specify an expression in a WHERE
expression, a HAVING expression, or a join condition. The expression editor
windows are numbered to show how deeply they are nested.

Calculation predicate
When you use the Calculation predicate, you specify the left value, right value,
and calculation operator in the expression editor.

The expression editor when you have selected the Calculation predicate contains

these fields:

* Left Value. Enter the argument you want on the left of your calculation. You can
choose the type of argument by clicking the menu button on the right and
choosing a type from the menu.

* Calculation Operator. Choose the operator for your calculation from the
drop-down list.

* Right Value. Enter the argument you want on the right of your calculation. You
can choose the type of argument by clicking the menu button on the right and
choosing a type from the menu.

Functions predicate
When you use the functions predicate, you can specify the function, description,
and function parameters in the expression editor.

The expression editor when you have selected the Functions predicate contains
these fields:

* Function. Choose a function from the drop-down list.

The list of available functions depends on the database you are building the
query for.

* Description. Gives a description of the function you have selected.

* Parameters. Enter the parameters required by the function you have selected.
The parameters that are required vary according to the selected function.

Case predicate
When you use the case predicate, you can include case statements in the SQL that
you build in the expression editor.

The case option on the expression editor enables you to include case statements in
the SQL you are building. You can build case statements with the following syntax.
CASE WHEN condition THEN value

CASE WHEN...
ELSE value

or

CASE subject

WHEN match_value THEN value
WHEN. ..

ELSE value

The expression editor when you have selected the Case predicate contains these
fields:

* Case Expression. This is the subject of the case statement. Specify this if you are
using the second syntax described above (CASE subject WHEN). By default, the
field offers a choice of the columns from the table or tables you have dragged to

150 Connectivity Guide for Oracle Databases

the table selection canvas. To choose an alternative, click the browse button next
to the field. This gives you a choice of data types, or of specifying another
expression, a function, or a job parameter.

When. This allows you to specify a condition or match value for your case
statement. By default, the field offers a choice of the columns from the table or
tables you have dragged to the table selection canvas. To choose an alternative,
click the browse button next to the field. This gives you a choice of data types,
or of specifying another expression, a function, or a job parameter. You can
access the main expression editor by choose case expression editor from the
menu. This allows you to specify expressions such as comparisons. You would
typically use this in the first syntax example. For example, you would specify
grade=3 as the condition in the expression WHEN grade=3 THEN 'first class'.

Then. Use this to specify the value part of the case expression. By default, the
field offers a choice of the columns from the table or tables you have dragged to
the table selection canvas. To choose an alternative, click the browse button next
to the field. This gives you a choice of data types, or of specifying another
expression, a function, or a job parameter.

Add. Click this to add a case expression to the query. This clears the When and
Then fields so that you can specify another case expression.

Else Expression. Use this to specify the value for the optional ELSE part of the
case expression.

Expression editor menus

From the expression editor, you can open a menu where you can specify details
about an argument in the expression.

A button appears to the right of many of the fields in the expression editor and
related dialogs. Where it appears you can click it to open a menu that allows you
to specify more details about an argument being given in an expression.

Bit. Specifies that the argument is of type bit. The argument field offers a choice
of 0 or 1 in a drop-down list.

Column. Specifies that the argument is a column name. The argument field offer
a choice of available columns in a drop-down list.

Date. Specifies that the argument is a date. The SQL builder enters today's date
in the format expected by the database you are building the query for. You can
edit this date as required or click the drop-down button and select from a
calendar.

Date Time. Specifies that the argument is a date time. The SQL builder inserts
the current date and time in the format that the database the query is being built
for expects. You can edit the date time as required.

Plaintext. Allows you to select the default value of an argument (if one is
defined).

Expression Editor. You can specify a function or calculation expression as an
argument of an expression. Selecting this causes the Calculation/Function
version of the expression editor to open.

Function. You can specify a function as an argument to an expression.

Selecting this causes the Functions Form dialog box to open. The functions
available depend on the database that the query you are building is intended
for.

Selecting this causes the Function dialog box to open.

Chapter 7. Building SQL statements 151

* Job Parameter. You can specify that the argument is a job parameter, the value
for which is supplied when you actually run the IBM InfoSphere DataStage job.
Selecting this opens the Parameters dialog box.

* Integer. Choose this to specify that the argument is of integer type.
* String. Select this to specify that the argument is of string type.

* Time. Specifies that the argument is the current local time. You can edit the
value.

* Timestamp. Specifies that the argument is a timestamp. You can edit the value.

The SQL builder inserts the current date and time in the format that the
database that the query is being built for expects.

Functions Form window
In the Functions Form window, you select a function to use in an expression and
specify parameters for the function.

The fields are as follows:
¢ Function. Choose a function from the drop-down list.

The available functions depend on the database that you are building the query
for.

* Format. Gives the format of the selected function as a guide.
* Description. Gives a description of the function you have selected.

* Result. Shows the actual function that will be included in the query as specified
in this dialog box.

* Parameters. Enter the parameters required by the function you have selected.
The parameters that are required vary according to the selected function.

Function window:

In the Function window, you can select a function to use in an expression and
specify parameters for the function.

The fields are as follows:
¢ Function. Choose a function from the drop-down list.

The available functions depend on the database that you are building the query
for.

* Format. Gives the format of the selected function as a guide.

* Description. Gives a description of the function you have selected.

* Result. Shows the actual function that will be included in the query as specified
in this dialog box.

* Parameters. Enter the parameters required by the function you have selected.
The parameters that are required vary according to the selected function.

Parameters window

This window lists the job parameters that are currently defined for the job and the
data type of each parameter. The SQL builder does not check that the type of
parameter that you insert matches the type that is expected by the argument that
you use it for.

Joining tables

When you use the SQL builder to build SELECT statements, you can specify table
joins in a statement.

152 Connectivity Guide for Oracle Databases

When you drag multiple tables onto the table selection canvas, the SQL builder
attempts to create a join between the table added and the one already on the
canvas to its left. If foreign key metadata is available for the tables, the SQL
builder uses it. The join is represented by a line joining the columns the SQL
builder has decided to join on. After the SQL builder automatically inserts a join,
you can amend it.

When you add a table to the canvas, SQL builder determines how to join the table
with tables that are on the canvas. The process depends on whether the added
table is positioned to the right or left of the tables on the canvas.

To construct a join between the added table and the tables to its left:
1. SQL builder starts with the added table.

2. Determine if there is a foreign key between the added table and the subject
table.

* If a foreign key is present, continue to Step 3.
* If a foreign key is not present, skip to Step 4.

3. Choose between alternatives for joining the tables that is based on the
following precedence.

* Relations that apply to the key fields of the added tables
¢ Any other foreign key relation

Construct an INNER JOIN between the two tables with the chosen relationship
dictating the join criteria.

4. Take the subject as the next table to the left, and try again from step 2 until
either a suitable join condition has been found or all tables, to the left, have
been exhausted.

5. If no join condition is found among the tables, construct a default join.

If the SQL grammar does not support a CROSS JOIN, an INNER JOIN is used
with no join condition. Because this produces an invalid statement, you must
set a suitable condition, either through the Join Properties dialog box, or by
dragging columns between tables.

An INNER JOIN is used with no join condition. Because this produces an
invalid statement, you must set a suitable condition, either through the Join
Properties dialog box, or by dragging columns between tables.

To construct a join between the added table and tables to its right:
1. SQL builder starts with the added table.

2. Determine if foreign key information exists between the added table and the
subject table.

* If a foreign key is present, continue to Step 3.
* If a foreign key is not present, skip to Step 4.
3. Choose between alternatives based on the following precedence:
* Relations that apply to the key fields of the added tables
* Any other joins
Construct an INNER JOIN between the two tables with the chosen relationship
dictating the join criteria.
4. Take the subject as the next table to the right and try again from step 2.
5. If no join condition is found among the tables, construct a default join.

Chapter 7. Building SQL statements 153

If the SQL grammar does not support a CROSS JOIN, an INNER JOIN is used
with no join condition. Because this produces an invalid statement, you must
set a suitable condition, either through the Join Properties dialog box, or by
dragging columns between tables.

An INNER JOIN is used with no join condition. Because this produces an
invalid statement, you must set a suitable condition, either through the Join
Properties dialog box, or by dragging columns between tables.

Specifying joins
When you add more than one table to the table selection canvas, the SQL builder
inserts a join automatically. To change the join, you can use the Join Properties
window, use the Alternate Relation window, or drag a column from one table to a
column in another table.

You can change the join in the following ways:

* Using the Join Properties dialog box. Open this by selecting the link in the table
selection canvas, right clicking and choosing Properties from the shortcut menu.
This dialog allows you to choose a different type of join, choose alternative
conditions for the join, or choose a natural join.

* Using the Alternate Relation dialog box. Open this by selecting the link in the
table selection canvas, right clicking and choosing Alternate Relation from the
shortcut menu. This dialog allows you to change foreign key relationships that
have been specified for the joined tables.

* By dragging a column from one table to another column in any table to its right
on the canvas. This replaces the existing automatic join and specifies an equijoin
between the source and target column. If the join being replaced is currently
specified as an inner or outer join, then the type is preserved, otherwise the new
join will be an inner join.

Yet another approach is specify the join using a WHERE clause rather than an
explicit join operation (although this is not recommended where your database
supports explicit join statements). In this case you would:

1. Specify the join as a Cartesian product. (SQL builder does this automatically if
it cannot determine the type of join required).

2. Specify a filter in the Selection tab filter panel. This specifies a WHERE clause
that selects rows from within the Cartesian product.

If you are using the SQL builder to build Oracle 8i, Microsoft SQL Server, IBM
Informix®, or Sybase queries, you can use the Expression Editor to specify a join
condition, which will be implemented as a WHERE statement. Oracle 8i does not
support JOIN statements.

Join Properties window

Use the Join Properties window to change the type of an existing join and modify
or specify the join condition.

The window contains the following fields:

* Cartesian product. The Cartesian product is the result that is returned from two
or more tables that are selected from, but not joined; that is, no join condition is
specified. The output is all possible rows from all the tables selected from. For
example, if you selected from two tables, the database would pair every row in
the first table with every row in the second table. If each table had 6 rows, the
Cartesian product would return 36 rows.

154 Connectivity Guide for Oracle Databases

If the SQL builder cannot insert an explicit join based on available information,
it will default to a Cartesian product that is formed with the CROSS JOIN
syntax in the FROM clause of the resulting SQL statement: FROM FirstTable
CROSS JOIN SecondTable. You can also specify a Cartesian product by selecting
the Cartesian product option in the Join Properties dialog box. The cross join
icon is shown on the join.

* Table join. Select the Table Join option to specify that your query will contain
join condition for the two tables being joined. The Join Condition panel is
enabled, allowing you to specify further details about the join.

* Join Condition panel. This shows the expression that the join condition will
contain. You can enter or edit the expression manually or you can use the menu
button to the right of the panel to specify a natural join, open the Expression
Editor, or open the Alternate relation dialog box.

* Include. These fields allow you to specify that the join should be an outer join,
where the result of the query should include the rows as specified by one of the
following:

— Select All rows from left table name to specify a left outer join
— Select All rows from right table name to specify a right outer join

- Select both All rows from left table name and All rows from right table
name to specify a full outer join

* Join Icon. This tells you the type of join you have specified.

Alternate Relation window

The Alternate Relation window shows the foreign key relationships that are
defined between the target table and tables that appear to the left of it on the table
selection canvas. Select the relationship that you want to appear as the join in your
query so that it appears in the list box, and then click OK.

Properties windows

The Properties windows contain properties for tables, SQL, and joins.

Depending where you are in the SQL builder, choosing Properties from the
shortcut menu opens a dialog box as follows:

* The Table Properties dialog box opens when you select a table in the table
selection canvas and choose Properties from the shortcut menu.

* The SQL Properties dialog box opens when you select the Properties icon in the
toolbox or Properties from the table selection canvas background.

* The Join Properties dialog box opens when you select a join in the table selection
canvas and choose Properties from the shortcut menu.

Table Properties window

In the Table Properties window, you can view the table name and view or edit the
table alias.

The Table Properties dialog box contains the following fields:
¢ Table name. The name of the table whose properties you are viewing.

You can click the menu button and choose Job Parameter to open the Parameter
dialog box. This allows you to specify a job parameter to replace the table name
if required, but note that the SQL builder will always refer to this table using its
alias.

Chapter 7. Building SQL statements 155

* Alias. The alias that the SQL builder uses to refer to this table. You can edit the
alias if required. If the table alias is used in the selection grid or filters, changing
the alias in this dialog box will update the alias there.

SQL Properties window
The SQL Properties window shows the SQL grammar that the SQL builder uses.

The SQL Properties window contains the following fields:
* Description. The name and version of the SQL grammar.
The SQL grammar depends on the stage that you invoke the SQL builder from.
¢ DISTINCT. Specify whether the SQL builder supports the DISTINCT qualifier.
If the stage supports it, the DISTINCT option is selected.

156 Connectivity Guide for Oracle Databases

Chapter 8. Environment variables: Oracle connector

The Oracle Connector stage uses these environment variables.

CC_GUARDIUM_EVENTS

Set this environment variable to specify whether connectors report the InfoSphere
DataStage context information to the InfoSphere Guardium Database Activity
monitor.

When the value of this environment variable is set, the connectors report the
InfoSphere DataStage context information such as host, project, job names, stage
name and node ID that the stage is running on to the InfoSphere Guardium
Database Activity monitor. When this environment variable is defined and set to
any value, the connectors report context information to the Guardium server after
the initial connection is established.

When this environment variable is undefined, the connectors do not attempt to
report context information to Guardium servers. The setting of this environment
variable applies to all database connectors in the job.

CC_IGNORE_TIME_LENGTH_AND_SCALE

Set this environment variable to change the behavior of the connector on the
parallel canvas.

When this environment variable is set to 1, the connector running with the parallel
engine ignores the specified length and scale for the timestamp column. For
example, when the value of this environment variable is not set and if the length
of the timestamp column is 26 and the scale is 6, the connector on the parallel
canvas considers that the timestamp has a microsecond resolution. When the value
of this environment variable is set to 1, the connector on the parallel canvas does
not consider that the timestamp has a microsecond resolution unless the
microseconds extended property is set even if the length of the timestamp column
is 26 and the scale is 6.

CC_ORA_BIND_DATETIME_AS_CHAR

Set this environment variable to specify whether to bind Date and Timestamp
values as character values.

When this environment variable is set to TRUE, the Oracle Connector stage uses

character representation for Date and Timestamp values that are exchanged with

the Oracle database. The stage uses the same date and time formats that are used
by the Dynamic RDBMS stage

Use this environment variable only when the date and time formats that the Oracle

connector uses must be compatible with the Dynamic RDBMS stage. If you use this
environment variable, performance might be affected negatively.

© Copyright IBM Corp. 2008, 2014 157

CC_ORA_BIND_FOR_NCHARS

Set this connector environment variable to specify whether to bind a list of the
character columns as national character columns with the Oracle database.

Set this environment variable to a comma-delimited list of InfoSphere DataStage
column names that are national character columns in the database. When this
environment variable is set, the columns that are defined in the comma-delimited
list are bound as national character columns regardless of their definitions in the
columns grid. In addition, you can set this environment variable to the following
values:

-(none)
Bind no national character columns and bind all character columns as
implicit.

-(all) Bind all national character columns.

When this environment variable is undefined, the connector binds based on the
definitions in the columns grid.

CC_ORA_BIND_KEYWORD

Set this environment variable to specify the identifier that indicates a bind
parameter in a user-defined SQL statement.

The default identifier is ORCHESTRATE. For example, you can use this
environment variable to specify a different identifier when SQL statements require
the use of the literal ORCHESTRATE in the name of a schema, table, or column.

CC_ORA_CHECK_CONVERSION

Set this environment variable to specify whether exceptions are thrown when data
loss occurs because of a conversion from the Unicode character set to the native
character set of the database.

The default value is FALSE. When the value of this variable is TRUE, an exception
is thrown when data loss occurs. The values for this environment variable are not
case sensitive.

CC_ORACLECONNECTOR_DEFAULT_
CONNECTION_VERSION

Set this environment variable to specify the default value for the Oracle client
version property in the Oracle connector stages.

The allowed values for this environment variable are the same as the ones
specified for the Oracle client version property in the stage editor. For example,
set this environment variable to 11g for the default value of the property to be 11g.
The default value will be set for this property when the stage is placed on the job
canvas and is opened for the first time.

158 Connectivity Guide for Oracle Databases

CC_ORA_DEFAULT_DATETIME_TIME

Set this environment variable to specify the values for hours, minutes, and seconds
when the connector writes the InfoSphere DataStage Date type to an Oracle DATE
or TIMESTAMP column.

The format is HH:MI:SS where HH represents hours in 24-hour notation, MI
represents minutes and SS represents seconds. When the environment variable is
set, the stage uses the value that is specified for the default hour, minute and
second portion of the target values.

When the connector writes to Oracle TIMESTAMP, the environment variable does
not provide an option to specify default fractional seconds . To specify fractional
seconds, you must use the InfoSphere DataStage Time or Timestamp column on
the link. When this environment variable is not set, the hour, minute, and second
portions in the target value are set to midnight.

CC_ORA_DEFAULT_DATETIME_DATE

Set this environment variable to specify the default values for the month, day, and
year when the connector writes from a InfoSphere DataStage Time type to an
Oracle DATE or TIMESTAMP column.

The format is YYYY-MM-DD where YYYY represents years, MM represents months
and DD represents days. When the environment variable is set, the stage uses the
value that is specified for the default year, month and day portion of the target
values.

When the environment variable is not set, the month, day, and year to the current
date in most scenarios. If the DRS Connector stage is used and the write mode is
not bulk load, the month, day, and year are shown as 0000-00-00.

CC_ORA_DROP_UNMATCHED_FIELDS_DEFAULT

Set this environment variable to specify the Drop unmatched fields property when
the property is not set correctly in an Oracle Connector job generated by the
connector migration tool.

When this environment variable is set to TRUE, the Oracle connector stages that
do not have the property act as if the property was set to Yes and drop any
unused fields from the design schema. When the environment variable is set to
FALSE or undefined, the connector end the job if any fields from the design
schema are unused and the Drop unmatched fields property does not exist.

CC_ORA_INDEX_MAINT_SINGLE_ROW

Set this environment variable to specify how index rows are inserted during bulk
load.

When this environment variable is set to TRUE, the connector inserts index rows
individually. When this environment variable is set to FALSE or undefined, the
connector uses default bulk load behavior. If you use this environment variable,
performance might be affected negatively.

Chapter 8. Environment variables: Oracle connector 159

CC_ORA_INVALID_DATETIME_ACTION

Set this environment variable to insert a NULL value into the database for invalid
Date, Time or Timestamp fields.

When the value of this environment variable is set to NULL, the connector inserts
a NULL value into the database for invalid Date, Time or Timestamp fields on its
input link. If this environment variable is set to another value or if it is undefined,
the connector stops the job for invalid Date, Time and Timestamp fields and in this
situation and logs a fatal error message. The fatal error message indicates that the
internal variable blnvalidDateTime is set to 1 which means that an invalid date or
time field arrived on the input link of the stage. The values for this environment
variable are not case sensitive.

CC_ORA_LOB_LOCATOR_COLUMNS

Set this environment variable so specify whether the connector uses OCI LOB
locators when the connector writes data into LOB columns.

Set this environment variable to a comma-delimited list of InfoSphere DataStage
LongVarchar, LongNVarchar, and LongVarBinary data types that you want to use
OCI LOB locators to write data into their respective CLOB, NCLOB, or BLOB
columns.

To use OCI LOB locators for all LongVarchar, LongNVarchar, and LongVarBinary
columns, set this environment variable to all. Use this environment variable when
you want to support SDO_GEOMETRY and XMLTYPE columns and functions or
process LONG or LONG RAW columns in the same statement as CLOB, NCLOB,
or BLOB columns.

When this environment variable is set to FALSE or undefined, the connector uses
OCI LOB locators based on the definitions in the columns grid.

CC_ORA_MAX_ERRORS_REPORT

Set this environment variable to specify the maximum number of errors to report
to the log file when an operation writes an array or bulk loads data.

This variable is relevant only when a reject link is not defined. The default value is
-1, which reports all errors.

CC_MSG_LEVEL

Set this environment variable to specify the minimum severity of the messages that
the connector reports in the log file.

At the default value of 3, informational messages and messages of a higher
severity are reported to the log file.

The following list contains the valid values:
* 1 - Trace

e 2 - Debug

* 3 - Informational

* 4 - Warning

160 Connectivity Guide for Oracle Databases

e 5 - Error
* 6 - Fatal

CC_ORA_NLS_LANG_ENV

Set this environment variable to specify whether the NLS_LANG character set is
used when the connector initializes the Oracle client environment.

The default value is FALSE. When the value of this variable is TRUE, the
NLS_LANG character set is used; otherwise, the UTF-16 character set is used. The
values for this environment variable are not case sensitive.

CC_ORA_NODE_PLACEHOLDER_NAME

Set this environment variable to specify the case-sensitive value for the processing
node numbers in SQL statements.

This environment variable is used as a placeholder in the WHERE clause of user
defined SQL statements to enable the user to run a different statement on each
node. The value of this environment variable will be replaced with the node the
statement is currently running on.

CC_ORA_NODE_USE_PLACEHOLDER

Set this environment variable to specify whether the connector replaces the
placeholder for the processing node number with the current processing node
number in SQL statements that run on processing nodes.

When the value of this variable is TRUE, the connector replaces the placeholder.
The values for this environment variable are not case sensitive.

CC_ORA_NULL_CHAR_ACTION

Set this environment variable to define behavior when the input data contains
NULL characters.

This environment variable applies only when the Oracle Connector stage runs on
the parallel canvas, and the variable applies only to fields of Char, VarChar,
LongVarChar, NChar, NVarChar and LongNVarChar InfoSphere DataStage types.

You can set this environment variable to the following values:

TRUNCATE
The connector treats the NULL character as a value terminator in the
character data that is retrieved on the input link. If the truncated value has
a length of zero, NULL is inserted in the target.

FAIL When the connector encounters NULL characters in the input data, the
connector logs a fatal error message and stops the job. The error message
indicates the field that contained the NULL character or characters.

When the value of this environment variable is undefined or set to another value,
the NULL character is treated the same as any other character. The value is passed
to Oracle along with any NULL characters. This behavior is the default behavior
for the connector. When this environment variable is set to TRUNCATE or FAIL, the

Chapter 8. Environment variables: Oracle connector 161

columns with LongVarChar and LongNVarChar data types are treated as columns
with VarChar and NVarChar data types, respectively.

Use the CC_ORA_NULL_CHAR_ACTION environment variable only in jobs that were
migrated from the Oracle Enterprise stage to the Oracle Connector stage to provide
consistent behavior with the Oracle Enterprise stage. Alternatively, you can update
the migrated jobs that rely on this truncation behavior so that they work correctly
with the default connector behavior. The default connector behavior is to pass
character data from the input link to the database, including any NULL characters.
Set this environment variable to FAIL to help detect jobs in which the input data
contains NULL characters.

CC_ORA_OPTIMIZE_CONNECTIONS

Set this environment variable to disconnect the conductor node's SQL sessions
from the Oracle server during the job setup phase after completing any Table
action or Before SQL operations.

At the end of the job, the connector connects to Oracle server again, to complete
any After SQL operation or operation that occurs after a bulk load. When this
environment variable is set to a value other than TRUE, the connector keeps the
Oracle connections connected when the job runs. The values for this environment
variable are not case sensitive.

CC_ORA_PRESERVE_DATE_TYPE_NAME

Set this environment variable to specify whether Oracle DATE data types are
imported as InfoSphere DataStage Date data types.

When this environment variable is set to TRUE, Oracle DATE data types are
imported as Date data types. The default value is FALSE, and Oracle DATE data
types are imported as Timestamp data types.

CC_ORA_ROWS_REJECTED_MSG_INFO

Set this environment variable to specify the severity of the message that reports the
number of records that were sent to a reject link.

When this environment variable is set to TRUE, the Oracle Connector message that
reports the number of rejected records is logged as an informational message.
When this environment is set to FALSE or undefined, the connector logs the
message as a warning.

CC_ORA_UNBOUNDED_BINARY_LENGTH

Set this environment variable to override the default length that the connector uses
for InfoSphere DataStage Binary and VarBinary columns for which a length is not
defined in the design schema.

When this environment variable is set to a positive integer value, the connector
uses that value as the length, in bytes, for Binary and VarBinary columns for which
a length is not defined in the design schema. This environment variable applies to
source, target, and request contexts, and it also applies when the connector
generates DDL statements.

162 Connectivity Guide for Oracle Databases

When the environment variable is not defined, the connector uses the default value
of 4000 bytes as the length. This environment variable is typically used with
migrated jobs, because the legacy Oracle stages used a different default value for
columns when a length was not defined.

CC_ORA_UNBOUNDED_STRING_LENGTH

Set this environment variable to override the default length that the connector uses
for InfoSphere DataStage Char, VarChar, NChar, and NVarChar columns for which
a length is not defined in the design schema.

When this environment variable is set to a positive integer value, the connector
uses that value as the length, in bytes, for Char, VarChar, NChar, and NVarChar
columns for which a length is not defined in the design schema. This environment
variable applies to source, target, and request contexts, and it also applies when
the connector generates DDL statements.

When the environment variable is not defined, the connector uses the default value
of 4000 bytes as the length. This environment variable is typically used with
migrated jobs, because the legacy Oracle stages used a different default value for
columns when a length was not defined.

CC_ORA_XMLTYPE_CSID_BLOB

Set this environment variable to specify the character set ID that is used when
creating XMLIype as BLOB data type and the Enable LOB References property is
set to Yes.

This environment variable should be set to a valid Oracle character set ID. The
default value of this environment variable is the character set that is defined by the
NLS_LANG environment variable.

CC_SE_TIMESTAMP_FF

Set this environment variable to specify whether decimal point and fractional digits
are included in the timestamp values, when the connector runs in server jobs.

When the environment variable is set to a value other than NONE,
MICROSECONDS or SCALE, the behavior is the same as if the environment
variable was not set. The environment variable values are case sensitive. When the
environment variable is not set, the timestamp values that are produced by the job
include a trailing decimal point and six fractional digits.

You can set the environment variable to the following values:

NONE
The trailing decimal point and the fractional digits are both omitted.

MICROSECONDS
The trailing decimal point and six fractional digits are included.

SCALE
The trailing decimal point and S fractional digits are included, where S
represents the value of the Scale attribute in the timestamp column
definition. When the Scale attribute value is not defined for the column,
the Scale attribute value of zero is assumed.

Chapter 8. Environment variables: Oracle connector 163

CC_TRUNCATE_STRING_WITH_NULL

Set this environment variable to truncate string data that includes the string 0x00.

When the value of this environment variable is set and when the input data
contains a null character, the input data is truncated with 0x00 and the rest of the
string is dropped. This environment variable applies to fields of Char, VarChar,
and LongVarChar InfoSphere DataStage types.

CC_TRUNCATE_NSTRING_WITH_NULL

Set this environment variable to truncate string data that includes the string 0x00.

When the value of this environment variable is set and when the input data
contains a null character, the input data is truncated with 0x00 and the rest of the
string is dropped.

CC_USE_EXTERNAL_SCHEMA_ON_MISMATCH

Set this environment variable to use an external schema rather than a design
schema when the schemas do not match.

This schema is used for schema reconciliation. When the value of this environment

variable is set, the behavior remains the same and is not changed from the old
version.

164 Connectivity Guide for Oracle Databases

Appendix A. Product accessibility

You can get information about the accessibility status of IBM products.

The IBM InfoSphere Information Server product modules and user interfaces are
not fully accessible.

For information about the accessibility status of IBM products, see the IBM product

accessibility information at |http: / /www.ibm.com/able/product_accessibility / |

Accessible documentation

Accessible documentation for InfoSphere Information Server products is provided
in an information center. The information center presents the documentation in
XHTML 1.0 format, which is viewable in most web browsers. Because the
information center uses XHTML, you can set display preferences in your browser.
This also allows you to use screen readers and other assistive technologies to
access the documentation.

The documentation that is in the information center is also provided in PDF files,
which are not fully accessible.

IBM and accessibility

See the [BM Human Ability and Accessibility Center| for more information about
the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2008, 2014 165

http://www.ibm.com/able/product_accessibility/index.html
http://www.ibm.com/able/product_accessibility/index.html
http://www.ibm.com/able

166 Connectivity Guide for Oracle Databases

Appendix B. Reading command-line syntax

This documentation uses special characters to define the command-line syntax.

The following special characters define the command-line syntax:

[1] Identifies an optional argument. Arguments that are not enclosed in
brackets are required.

Indicates that you can specify multiple values for the previous argument.

I Indicates mutually exclusive information. You can use the argument to the
left of the separator or the argument to the right of the separator. You
cannot use both arguments in a single use of the command.

{1} Delimits a set of mutually exclusive arguments when one of the arguments
is required. If the arguments are optional, they are enclosed in brackets ([

)2

Note:
* The maximum number of characters in an argument is 256.

* Enclose argument values that have embedded spaces with either single or
double quotation marks.

For example:
wsetsrc[-S server] [-1 label] [-n name] source

The source argument is the only required argument for the wsetsrc command. The
brackets around the other arguments indicate that these arguments are optional.

wisac [- | -f format] [key...] profile

In this example, the -1 and -f format arguments are mutually exclusive and
optional. The profile argument is required. The key argument is optional. The
ellipsis (...) that follows the key argument indicates that you can specify multiple
key names.

wrb -import {rule_pack | rule_set}...

In this example, the rule_pack and rule_set arguments are mutually exclusive, but

one of the arguments must be specified. Also, the ellipsis marks (...) indicate that
you can specify multiple rule packs or rule sets.

© Copyright IBM Corp. 2008, 2014 167

168 Connectivity Guide for Oracle Databases

Appendix C. How to read syntax diagrams

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.

— The ---> symbol indicates that the syntax diagram is continued on the next
line.

— The >--- symbol indicates that a syntax diagram is continued from the
previous line.

— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required_item ><

¢ Optional items appear below the main path.

»>—required_item |_O _| <
ptional_item

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

|—optional_item—|
»>—required_item ><

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

A\
A

»—required_i tem—[required_cho icel
required_choi ce2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

A\
A

ptional_choicel:‘

»>—required_item
i:Zptional_choiceZ

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

|—de fault_choice—
»>—required_item izz >

ptional_choicel—
ptional_choice2—

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

© Copyright IBM Corp. 2008, 2014 169

v

»>—required_item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

»>—required_item repeatable_item ><

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

»—r'equired_item—| fragment-name i ><

Fragment-name:

—required_item |
I—optional_i temJ

Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown.

Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

Footnotes are shown by a number in parentheses, for example (1).

170 Connectivity Guide for Oracle Databases

Appendix D. Contacting IBM

You can contact IBM for customer support, software services, product information,
and general information. You also can provide feedback to IBM about products
and documentation.

The following table lists resources for customer support, software services, training,
and product and solutions information.

Table 37. IBM resources

Resource Description and location

IBM Support Portal You can customize support information by
choosing the products and the topics that
interest you atfwww.ibm.com/support/|
entry /portal /Software /|

Information Management/|
InfoSphere_Information_Server|

Software services You can find information about software, IT,
and business consulting services, on the
solutions site at |www.ibm.com/|
[businesssolutions /|

My IBM You can manage links to IBM Web sites and

information that meet your specific technical
support needs by creating an account on the
My IBM site at [www.ibm.com/account/|

Training and certification You can learn about technical training and
education services designed for individuals,
companies, and public organizations to
acquire, maintain, and optimize their IT
skills at fhttp://www.ibm.com/ training]|

IBM representatives You can contact an IBM representative to
learn about solutions at
[www.ibm.com/connect/ibm /us/en/|

© Copyright IBM Corp. 2008, 2014 171

http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/support/entry/portal/Software/Information_Management/InfoSphere_Information_Server
http://www.ibm.com/businesssolutions/
http://www.ibm.com/businesssolutions/
http://www.ibm.com/account/
http://www.ibm.com/training
http://www.ibm.com/connect/ibm/us/en/

172 Connectivity Guide for Oracle Databases

Appendix E. Accessing the product documentation

Documentation is provided in a variety of formats: in the online IBM Knowledge
Center, in an optional locally installed information center, and as PDF books. You
can access the online or locally installed help directly from the product client
interfaces.

IBM Knowledge Center is the best place to find the most up-to-date information
for InfoSphere Information Server. IBM Knowledge Center contains help for most
of the product interfaces, as well as complete documentation for all the product
modules in the suite. You can open IBM Knowledge Center from the installed
product or from a web browser.

Accessing IBM Knowledge Center

There are various ways to access the online documentation:
* Click the Help link in the upper right of the client interface.

* Press the F1 key. The F1 key typically opens the topic that describes the current
context of the client interface.

Note: The F1 key does not work in web clients.

* Type the address in a web browser, for example, when you are not logged in to
the product.
Enter the following address to access all versions of InfoSphere Information
Server documentation:
http://www.ibm.com/support/knowledgecenter/SSZJIPZ/
If you want to access a particular topic, specify the version number with the
product identifier, the documentation plug-in name, and the topic path in the

URL. For example, the URL for the 11.3 version of this topic is as follows. (The
= symbol indicates a line continuation):

http://www.ibm.com/support/knowledgecenter/SSZJPZ_11.3.0/=
com.ibm.swg.im.iis.common.doc/common/accessingiidoc.html

Tip:

The knowledge center has a short URL as well:
http://ibm.biz/knowctr

To specify a short URL to a specific product page, version, or topic, use a hash
character (#) between the short URL and the product identifier. For example, the
short URL to all the InfoSphere Information Server documentation is the
following URL:

http://ibm.biz/knowctr#SSZJIPZ/

And, the short URL to the topic above to create a slightly shorter URL is the
following URL (The = symbol indicates a line continuation):

http://ibm.biz/knowctr#SSZJPZ_11.3.0/com.ibm.swg.im.iis.common.doc/=
common/accessingiidoc.html

© Copyright IBM Corp. 2008, 2014 173

Changing help links to refer to locally installed documentation

IBM Knowledge Center contains the most up-to-date version of the documentation.
However, you can install a local version of the documentation as an information
center and configure your help links to point to it. A local information center is
useful if your enterprise does not provide access to the internet.

Use the installation instructions that come with the information center installation
package to install it on the computer of your choice. After you install and start the
information center, you can use the iisAdmin command on the services tier
computer to change the documentation location that the product F1 and help links
refer to. (The = symbol indicates a line continuation):

Windows

IS install_path\ASBServer\bin\iisAdmin.bat -set -key =
com.ibm.iis.infocenter.url -value http://<host>:<port>/help/topic/

AIX Linux
IS install_path/ASBServer/bin/iisAdmin.sh -set -key =
com.ibm.iis.infocenter.url -value http://<host>:<port>/help/topic/

Where <host> is the name of the computer where the information center is
installed and <port> is the port number for the information center. The default port
number is 8888. For example, on a computer named serverl.example.com that uses
the default port, the URL value would be http://serverl.example.com:8888/help/
topic/.

Obtaining PDF and hardcopy documentation

* The PDF file books are available online and can be accessed from this support
document: fhttps:/ /www.ibm.com /support/docview.wss?uid=swg27008803]
|&WV:1I

* You can also order IBM publications in hardcopy format online or through your
local IBM representative. To order publications online, go to the IBM
Publications Center at fhttp:/ /www.ibm.com/e-business/linkweb /publications /|
[servlet/pbi.wss|

174 Connectivity Guide for Oracle Databases

https://www.ibm.com/support/docview.wss?uid=swg27008803&wv=1
https://www.ibm.com/support/docview.wss?uid=swg27008803&wv=1
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Appendix F. Providing feedback on the product
documentation

You can provide helpful feedback regarding IBM documentation.

Your feedback helps IBM to provide quality information. You can use any of the
following methods to provide comments:

* To provide a comment about a topic in IBM Knowledge Center that is hosted on
the IBM website, sign in and add a comment by clicking Add Comment button
at the bottom of the topic. Comments submitted this way are viewable by the
public.

* To send a comment about the topic in IBM Knowledge Center to IBM that is not
viewable by anyone else, sign in and click the Feedback link at the bottom of
IBM Knowledge Center.

* Send your comments by using the online readers' comment form at
|www.ibm.com /software/awdtools/rcf/ I

¢ Send your comments by e-mail to comments@us.ibm.com. Include the name of
the product, the version number of the product, and the name and part number
of the information (if applicable). If you are commenting on specific text, include
the location of the text (for example, a title, a table number, or a page number).

© Copyright IBM Corp. 2008, 2014 175

http://www.ibm.com/software/awdtools/rcf/

176 Connectivity Guide for Oracle Databases

Notices and trademarks

This information was developed for products and services offered in the U.S.A.
This material may be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2008, 2014 177

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

J46A /G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

178 Connectivity Guide for Oracle Databases

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session or persistent cookies. If a product or component is not listed, that product
or component does not use cookies.

Table 38. Use of cookies by InfoSphere Information Server products and components

Component or

Type of cookie

Disabling the

Product module | feature that is used Collect this data |Purpose of data |cookies
Any (part of InfoSphere « Session User name « Session Cannot be
InfoSphe.re Information . Persistent management disabled
Information Server web -

* Authentication
Server console
installation)
Any (part of InfoSphere « Session No personally . Session Cannot be
InfoSphe're Metadata Asset . Persistent ¥dent1f1al'31e management disabled
Information Manager information .
S * Authentication

erver

installation) ¢ Enhanced user

usability
* Single sign-on
configuration

Notices and trademarks

179

Table 38. Use of cookies by InfoSphere Information Server products and components (continued)

Component or

Type of cookie

Disabling the

Product module |feature that is used Collect this data |Purpose of data |cookies
InfoSphere Big Data File « Session « User name « Session Cfmnot be
DataStage stage . Persistent - Digital management disabled
signature e Authentication
* Session ID * Single sign-on
configuration
InfoSphere XML stage Session Internal . Session Cannot be
DataStage identifiers management disabled
e Authentication
InfoSphere IBM InfoSphere | Session No personally . Session Cannot be
DataStage DataStage and identifiable management disabled
QualityStage information .
o . e Authentication
perations
Console
InfoSphere Data | InfoSphere « Session User name « Session Cannot be
Click Information . Persistent management disabled
Server web .
¢ Authentication
console
InfoSphere Data Session No personally . Session Cannot be
Quality Console identifiable management disabled
information L
e Authentication
* Single sign-on
configuration
InfoSphere InfoSphere « Session User name . Session Cannot be
QualityStage Information « Persistent management disabled
Standardization Server web L
. e Authentication
Rules Designer console
inﬁoSphere * Session + User name * Session gang?tdbe
i .
CI;IOS/ZITMIS; * Persistent * Internal management 1sable
Catalog identifiers * Authentication
e State of the tree |* Single sign-on
configuration
InfoSphere Data Rules stage |Session Session ID Session Cannot be
Information in the InfoSphere management disabled
Analyzer DataStage and

QualityStage
Designer client

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and

consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at jhttp://www.ibm.com/privacy| and
IBM’s Online Privacy Statement at |http://www.ibm.com/privacy/details| the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at

http:/ /www.ibm.com /software /info /product-privacyl

180 Connectivity Guide for Oracle Databases

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at www.ibm.com/legal /|
lcopytrade.shtml|

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java'" and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

The United States Postal Service owns the following trademarks: CASS, CASS
Certified, DPV, LACSY™ ZIP, ZIP + 4, ZIP Code, Post Office, Postal Service, USPS
and United States Postal Service. IBM Corporation is a non-exclusive DPV and
LACS""* licensee of the United States Postal Service.

Other company, product or service names may be trademarks or service marks of
others.

Notices and trademarks 181

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

182 Connectivity Guide for Oracle Databases

Index
A

accessing Oracle databases 80

adding deprecated stages to palette 6
Advanced tab 91

automatic loading, Oracle OCI Load 130

bulk loading from external files
Oracle OCI Load stage 129
Oracle OCI Load stages 131

C

cannot find on palette 6
CC_ORA_BIND_KEYWORD environment
variable 157
CC_ORA_CHECK_CONVERSION
environment variable 157
CC_ORA_MAX_ERRORS_REPORT
environment variable 157
command-line syntax
conventions 167
commands
syntax 167
Connection category 96, 104
connector
column definitions 17, 21, 27
connector migration tool 1
Connector Migration Tool
command line interface 4
Connector Migration Tool user
interface 2
connectors
migration 1
SQL builder 135
containers 1
migrating to use connectors 2, 4
customer support
contacting 171

D

data type conversion
reading from Oracle 84
writing to Oracle 82
DBA_EXTENTS dictionary view
access 13
Deleting rows from an Oracle
database 88
deprecated stages 6
design time services
generating SQL statements at design
time 31
validating SQL statements at design
time 31
dictionary views
access 13
dsenv script 11

© Copyright IBM Corp. 2008, 2014

E

environment variables
Oracle connector 157

H

handling special characters (# and $) 81

index organized tables (Oracle) 82, 98
Input Link Properties tab 92
Inputs Page 92

J

jobs 1
migrating to use connectors 2, 4

L

legal notices 177

load modes, Oracle OCI Load
stages 130

loading an Oracle database 89

Loading an Oracle Database 89

loading tables 82

LOCAL environment variable

configuration 16
looking up an Oracle table 85

M

migrating to use connectors 1
migration

connectors 1
must do's 88

N

NLS Map 91

NLS session parameters 36
NLS_LANG environment variable 32
not on palette 6

(o)

Options category 97, 104
Oracle connector
bulk load 24
case sensitivity 46
configuration
configuring the Oracle connector
as a source for looking up
data 28
configuring the Oracle connector
as a source for reading data 18

Oracle connector (continued)

configuration (continued)
configuring the Oracle connector
as a target 21
connection management 53
data types
mappings from InfoSphere
DataStage to Oracle 42
mappings from Oracle to
InfoSphere DataStage 39
Oracle datetime 36
Oracle LOB 37
overview 36
XMLIype 37
database connections 16
dictionary views 75
empty strings 74
environment variables
operating system 77
Oracle 77
examples
looking up data 26
reading data 17
writing data 20
exceptions tables 76
isolation level 47
job definition 15
job design 14
job failure 50
log
environment 32
properties 59
lookups
configuration 28
multiple matches 61
normal 28
overview 26
sparse 29
mappings
InfoSphere DataStage to
Oracle 42
Oracle to InfoSphere
DataStage 39

messages
debug 32
trace 32

NLS session parameters 36
NULL values 74
Oracle connector partition type
overview 69
support for standard Oracle
partition types 70
Oracle metadata 15
overview 13
partitioned read methods
minimum and maximum
range 67
modulus 66
Oracle partitions 67
overview 63
rowid hash 65

183

Oracle connector (continued)

partitioned read methods (continued)
rowid range 63
rowid round robin 65
properties
allow concurrent load sessions 60
array size 48
buffer size 48
disconnect 53
drop unmatched fields 57
enable quoted identifiers 46
fail on row error 59
index maintenance option 61
isolation level 47
job failure 50
log multiple matches 61
logging 59
manage application failover 51
prefetch buffer size 54
prefetch row count 54
preserve trailing blanks 58
reconnect 53
record count 48
Run before and after SQL
statements 49
table action 55
reads
configuration 18
overview 17
parallel reads 19
partitioned reads 19
reject records
configuration 23
reject conditions 72
roles 13
runtime column propagation 62
runtime mappings 34
trailing blanks 58
transparent application failover 51
troubleshoot 32
unmatched columns 57
user privileges 13
waves 48
white space characters 74
writes
actions to complete before
writing 55
bulk load 24
concurrent loads 60
configuration 21
index maintenance 61
Oracle connector partition
type 69
overview 20
parallel writes 26
partitioned writes 26
reject conditions 72
reject records 23
supported methods 71

Oracle databases

configuring 9

Oracle enterprise stage 79
Oracle metadata

importing 15

Oracle OCI Load stage

configuration requirements 129
description 129

Oracle OCI Load stage (continued)
functionality 129
introduction 129
Oracle OCI Load stages
automatic loading 130
configuration requirements 130
load modes 130
loading manually 131
properties 131
Oracle OCI stage
configuration requirements 107
functionality 106
input links 105
introduction 105
output links 105
reference links 105
transaction grouping 106
Oracle OCI stages
array size
specifying 111
case-sensitive table or column
names 112
character data types 122
character set mapping 108, 109
clearing tables 110, 116
CLOB data type 126
column-generated SQL queries. See
generated SQL queries. 118
connecting to Oracle databases 108
CREATE TABLE statement 111, 112,
117
creating tables 111, 112, 122
Data Browser 110
data types
character 122
CLOB 126
DATE 122,125
numeric 123
support for 122
DATE data type 122, 125
defining
character set mapping 108, 109
OCI connections 108
OCI input data 109, 115
OCI output data 117, 120
DELETE statement 115, 116, 117
dialog boxes
ORAQOCI9 Stage 108, 117
dollar sign ($) character 127
DROP TABLE statement 111, 112
dropping tables 111
editing an ORAOCI9 stage 108
error handling 112
FROM clause 118, 121
generated SQL queries 118, 120, 121
generated SQL statements
writing data to Oracle 116
generating SQL statements
for reading data 120
for writing data 111, 112, 116
GROUP BY clause 118, 121
handling
errors 112
rejected rows 115
HAVING clause 118, 121
input links 109, 110, 111, 114, 117,
122

184 Connectivity Guide for Oracle Databases

Oracle OCI stages (continued)

Input page 108, 109, 115
General tab 110
table name for 111
update action for 110
INSERT statement 115, 116, 117
numeric data types 123
Oracle database, connecting to 108
ORAQCI9 Stage dialog box 117
ORAOCI9 Stage window 108, 109,
117, 118
ORDER BY clause 118, 121
output links 108, 117, 120, 121, 122
Output page 108, 118, 120
pound (#) character 127
Query Type 110
reading data from Oracle 120, 121
reject row handling 115
Repository 111
SELECT statement 118, 120, 121
special characters 127
SQL 116
SQL builder 116
SQL Builder 110, 117, 118
SQL Clauses window 118, 121
SQL queries
defined at run time 118
generated 118, 120, 121
in file 121
SQL Builder 118
user-defined 118, 121
SQL statements
DELETE 117
examples 117, 121, 122
FROM clause 118, 121
GROUP BY clause 118, 121
HAVING clause 118, 121
INSERT 117
ORDER BY clause 118, 121
SELECT 118, 120, 121
syntax 121
UPDATE 117
WHERE clause 118, 120, 121
SQL, user-defined 111, 117, 118
Stage page 108, 109
table name 111
tables
clearing 110, 116
creating 111, 112, 122
reading from 120, 121
writing to 115, 117
transaction grouping 112, 114
transaction handling 114, 115
update action, input pages 110
UPDATE statement 115, 116, 117
user-defined SQL 111, 117, 118, 121
user-defined SQL statements
writing data to Oracle 117
warning messages 112
WHERE clause 118, 120, 121
windows
ORAOCI9 Stage 109, 117, 118
SQL Clauses 118, 121

Oracle stages 79

input properties 92
output properties 101

ORACLE_SID environment variable
configuration 16

Output Link Properties tab 101

Outputs page 101

P

palette

displaying stages 6
Partitioning tab 99
performing an in memory lookup on an

Oracle database table 90

product accessibility

accessibility 165
product documentation

accessing 173
properties

Oracle stage input 92

Oracle stage output 101

R

reading data from Oracle tables
Oracle OCI stages 117, 122

S

server stages
SQL builder 116
setting environment variables for
databases
setting 10, 11
software services
contacting 171
Source category 102
special characters
in command-line syntax 167
SQL builder 135
server stages 116
SQL Builder
Oracle OCI stages 116
SQL statements
build 135
stage not on palette 6
Stage page 91

stages

adding to palette 6
support

customer 171
syntax

command-line 167

T

Target category 94

tnsnames.ora file
location 16

trademarks
list of 177

TWO_PHASE environment variable
configuration 16

TWO_TASK environment variable
configuration 16

U

updating an Oracle database 88
updating an Oracle table 87

w

web sites
non-IBM 169

writing data to Oracle tables
Oracle OCI stages 109, 117

Index

185

186 Connectivity Guide for Oracle Databases

Printed in USA

SC19-4266-00

saseqejeq ajae.Q 10} aping AjA19auuo?

€ aseajay || UOISIaN

abeisAuenp pue abeiseleq a1sydsojul Ngl

:uoLjewdojul autds

	Contents
	Chapter 1. Connector Migration Tool
	Migrating jobs to use connectors
	Using the user interface to migrate jobs
	Using the command line to migrate jobs

	Deprecated stages

	Chapter 2. Configuring access to Oracle database
	Configuring access to Oracle databases
	Testing database connections by using the ISA Lite tool
	Setting the library path environment variable
	Setting the library path environment variable in the dsenv file
	Setting the library path environment variable in Windows

	Chapter 3. Oracle connector
	Setting required user privileges
	Designing jobs that use the Oracle connector
	Importing Oracle metadata
	Defining a job that includes the Oracle connector
	Defining a connection to an Oracle database
	Reading data from an Oracle database
	Setting up column definitions on a link
	Configuring the Oracle connector as a source for reading data
	Reading partitioned data

	Writing data to an Oracle database
	Setting up column definitions on a link
	Configuring the Oracle connector as a target
	Rejecting records that contain errors
	Configuring bulk loading of data
	Writing partitioned data

	Looking up data in an Oracle database
	Setting up column definitions on a link
	Configuring the Oracle connector as a source for looking up data
	Configuring normal lookup operations
	Configuring sparse lookup operations

	Generating SQL statements in the connector at design time
	Validating SQL statements in the connector at design time

	Troubleshooting the Oracle connector
	Oracle environment logging
	Debug and trace messages
	Oracle connector runs in sequential mode when a reject link has a constraint violation reject condition

	Reference
	Runtime mappings between InfoSphere DataStage columns and SQL statement parameters
	Data type mapping and Oracle data types
	Oracle datetime data types
	Oracle LOB and XMLType data types
	Data type mappings from Oracle to InfoSphere DataStage
	Data type mappings for creating a table

	Properties for the Oracle connector
	Enable quoted identifiers property
	Isolation level property
	Array size, buffer size, and record count properties
	Properties to run an SQL statement before or after processing data
	Properties that control job failure
	Transparent application failover properties
	Properties for managing connections
	Read properties
	Write properties
	Lookup properties

	Runtime column propagation
	Partitioned read methods
	Rowid range partitioned read method
	Rowid round robin partitioned read method
	Rowid hash partitioned read method
	Modulus partitioned read method
	Minimum and maximum range partitioned read method
	Oracle partitions partitioned read method

	Oracle connector partition type
	Support for standard Oracle partition types

	Supported write methods
	Reject conditions
	White space characters, NULL values, and empty string values
	Dictionary views
	Exceptions table
	Environment variables that the Oracle connector uses

	Chapter 4. Oracle Enterprise stage
	Accessing Oracle databases
	Handling special characters (# and $)
	Loading tables
	Data type conversion for writing to Oracle
	Data type conversion for reading from Oracle

	Examples
	Looking up an Oracle table
	Updating an Oracle table

	Must Do's
	Updating an Oracle database
	Deleting rows from an Oracle database
	Loading an Oracle database
	Reading data from an Oracle database
	Performing a direct lookup on an Oracle database table
	Performing an in-memory lookup on an Oracle database table

	Stage page
	Advanced tab
	NLS Map tab

	Inputs page
	Input Link Properties tab
	Target category
	Connection category
	Options category

	Partitioning tab

	Outputs page
	Output Link Properties tab
	Source category
	Connection category
	Options category

	Chapter 5. Oracle OCI stage
	Functionality of the Oracle OCI stage
	Configuration requirements of the Oracle OCI stage
	Oracle OCI stage editor
	Defining the Oracle connection
	Connecting to an Oracle database

	Defining character set mapping
	Defining input data
	The input page
	General tab of the Input page of the Oracle OCI stage
	Options tab of the Input page of the Oracle OCI stage
	Columns tab of the Input page of the Oracle OCI stage
	SQL tab of the Input page of the Oracle OCI stage
	Transaction handling tab
	Handling transactions

	Reject row handling

	Writing data to Oracle
	SQL statements and the Oracle OCI stage
	Accessing the SQL builder from a server stage
	Writing data with generated SQL statements
	Writing data with user-defined SQL statements

	Defining output data
	The output page
	General tab of the Output page of the Oracle OCI stage
	SQL Clauses window
	Options tab of the Output page of the Oracle OCI stage
	Columns tab of the Output page of the Oracle OCI stage
	SQL tab of the Output page of the Oracle OCI stage

	Reading data from Oracle
	Using generated queries
	Example of an SQL SELECT statement
	Using user-defined queries

	DATE data type considerations
	Oracle data type support
	Character data types
	Numeric data types
	Additional numeric data types for Oracle
	Date data types
	Miscellaneous data types

	Handling $ and # characters

	Chapter 6. Oracle OCI Load stage
	Functionality of the Oracle OCI Load stage
	Configuration requirements of the Oracle OCI Load stage
	Operating system requirement
	Oracle Enterprise Manager

	Load modes
	Automatic load mode
	Manual load mode

	Loading an Oracle database
	Properties

	Chapter 7. Building SQL statements
	Starting SQL builder from a stage editor
	Starting SQL builder
	Building SELECT statements
	Building INSERT statements
	Building UPDATE statements
	Building DELETE statements
	The SQL builder interface
	Toolbar
	Tree panel
	Table selection canvas

	Selection page
	Column selection grid
	Column expression
	Table
	Column alias
	Output
	Sort
	Sort order
	Shortcut menu

	Filter panel
	Filter expression panel

	Group page
	Grouping grid
	Aggregation functions

	Filter panel
	Filter Expression panel

	Insert page
	Insert Columns grid
	Insert column
	Insert value

	Update page
	Update Column grid
	Update column
	Update value

	Filter panel
	Filter expression panel

	Delete page
	Filter panel
	Filter expression panel

	SQL page
	Resolve columns grid

	Expression editor
	Main expression editor
	Between predicate
	Comparison predicate
	In predicate
	Like predicate
	Null predicate
	Join predicate

	Calculation, function, and case expression editor
	Calculation predicate
	Functions predicate
	Case predicate

	Expression editor menus
	Functions Form window
	Parameters window

	Joining tables
	Specifying joins
	Join Properties window
	Alternate Relation window

	Properties windows
	Table Properties window
	SQL Properties window

	Chapter 8. Environment variables: Oracle connector
	CC_GUARDIUM_EVENTS
	CC_IGNORE_TIME_LENGTH_AND_SCALE
	CC_ORA_BIND_DATETIME_AS_CHAR
	CC_ORA_BIND_FOR_NCHARS
	CC_ORA_BIND_KEYWORD
	CC_ORA_CHECK_CONVERSION
	CC_ORACLECONNECTOR_DEFAULT_CONNECTION_VERSION
	CC_ORA_DEFAULT_DATETIME_TIME
	CC_ORA_DEFAULT_DATETIME_DATE
	CC_ORA_DROP_UNMATCHED_FIELDS_DEFAULT
	CC_ORA_INDEX_MAINT_SINGLE_ROW
	CC_ORA_INVALID_DATETIME_ACTION
	CC_ORA_LOB_LOCATOR_COLUMNS
	CC_ORA_MAX_ERRORS_REPORT
	CC_MSG_LEVEL
	CC_ORA_NLS_LANG_ENV
	CC_ORA_NODE_PLACEHOLDER_NAME
	CC_ORA_NODE_USE_PLACEHOLDER
	CC_ORA_NULL_CHAR_ACTION
	CC_ORA_OPTIMIZE_CONNECTIONS
	CC_ORA_PRESERVE_DATE_TYPE_NAME
	CC_ORA_ROWS_REJECTED_MSG_INFO
	CC_ORA_UNBOUNDED_BINARY_LENGTH
	CC_ORA_UNBOUNDED_STRING_LENGTH
	CC_ORA_XMLTYPE_CSID_BLOB
	CC_SE_TIMESTAMP_FF
	CC_TRUNCATE_STRING_WITH_NULL
	CC_TRUNCATE_NSTRING_WITH_NULL
	CC_USE_EXTERNAL_SCHEMA_ON_MISMATCH

	Appendix A. Product accessibility
	Appendix B. Reading command-line syntax
	Appendix C. How to read syntax diagrams
	Appendix D. Contacting IBM
	Appendix E. Accessing the product documentation
	Appendix F. Providing feedback on the product documentation
	Notices and trademarks
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

