
IEEE Guide to Software
Requirements Specifications

ANSI/IEEE Std 830-1984

SH08714

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

THIS PAGE WAS
BLANK IN THE ORIGINAL

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

ANSI/IEEE
Std 830-1984

A n American National Standard

IEEE Guide to Software
Requirements Specifications

Sponsor
Software Engineering Technical Committee

of the
IEEE Computer Society

Approved September 30,1983

IEEE: Standards Board

Approved July 20, 1984

American National Standards Institute

@ Copyright 1984 by

The Institute of Electiiical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA
N o part of this publictrtion may be reproduced in any form,

in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the Technical Com-
mittees of the IEEE Societiies and the Standards Coordinating Commit-
tees of the IEEE Standards Board. Members of the committees serve
voluntarily and without compensation. They are not necessarily mem-
bers of the Institute. The standards developed within IEEE represent
a consensus of the broad expertise on the subject within the Institute
as well as those activities outside of IEEE which have expressed an in-
terest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an
IEEE Standard does not imply that there are no other ways to pro-
duce, test, measure, purchase, market, or provide other goods and ser-
vices related to the scope of the IEEE Standard. Furthermore, the view-
point expressed at the time a standard is approved and issued is subject
to change brought about through developments in the state of the art
and comments received from users of the standard. Every IEEE Stan-
dard is subjected to review at least once every five years for revision
or reaffirmation. When a document is more than five years old, and has
not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of
the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any
interested party, regardless of membership affiliation with IEEE. Sug-
gestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the mean-
ing of portions of standards ,as they relate to specific applications. When
the need for interpretations is brought to the attention of IEEE, the
Institute will initiate artion to prepare appropriate responses. Since
IEEE Standards represent a consensus of ail concerned interests, it is
important to ensure that any interpretation has also received the con-
currence of a balance of interests. For this reason IEEE and the mem-
bers of its technical committees are not able to provide an instant re-
sponse to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments on standards and requests for interpretations should be ad-
dressed to:

Secretary, IEEE Standards Board
345 East 47th Street
New York, NY 10017
USA

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

Foreword

(This Foreword is not a part of IEEE Std 830-19(94, IEEE Guide to Software Requirements Specifications.)

This guide describes alternate approaches to good practice in the specification of software require-
ments. The requirements may be explicitly stated by the user or they may be allocated to computer
software (that is, programs) by the system requirements analysis process. This guide does not sug-
gest that a hierarchy of software requirements specifications exists, of which each, in turn, defines a
smaller subset of requirements.

As a guide, this document should help:
(1) Software customers to accurately describe what they wish to obtain.
(2) Software suppliers to understand exactly what the customer wants.
(3) Individuals to accomplish the following goals:

(a) Develop standard software requirements specifications (SRS) outline for their own organiza-

(b) Define the form and content of their specific software requirements specifications.
(c) Develop additional local supporting items such as an SRS quality checklist, or an SRS writer’s

handbook.
To the customers, suppliers and other individuals, a good SRS provides several specific benefits. It

will accomplish the following goals:
(1) Establish the basis for agreement between the customers and the suppliers on what the soft-

ware product is to do. The complete description of the functions t o be performed by the software
specified in the SRS will assist the potential user, to determine if the software specified meets their
needs or how the software must be modified to meet their needs.

(2) Reduce the development effort. The preparation of the SRS forces the various concerned
groups in the customer’s organization to consider rigorously all of the requirements before design
begins and reduces later redesign, recoding, and retesting. Careful review of the requirements in the
SRS can reveal omissions, misunderstandings, and inconsistencies early in the development cycle
when these problems are easier to correct.

(3) Provide a basis for estimating costs and schedules. The description of the product to be
developed as given in the SRS is a realistic basis for estimating project costs and can be used to
obtain approval for bids or price estimates. ‘The SRS also provides a clear description of the required
software and makes it easier to estimate and plan the necessary resources. The requirements which,
together with a development plan, can be used to measure progress.
(4) Provide a baseline for validation and verification. Organizations can develop their validation

and verification plans much more productively from a good SRS. As a part of the development con-
tract, the SRS provides a baseline against -which compliance can be measured. (However, that the
converse is not true; a standard legal contract cannot be used as an SRS. Such documents rarely
contain the detail required and are often incomplete.)

(5) Facilitate transfer. The SRS makes it easier to transfer the software product to new users or
new machines. Customers thus find it easier t o transfer the software to other parts of their organiza-
tion, and suppliers find it easier to transfer it to new customers.

(6) Serves as a basis for enhancement. Because the SRS discusses the product but not the project
that developed it, the SRS serves as a basis for later enhancement of the finished product. The SRS
may need to be altered, but it does provide a solid foundation for continued production evolution.

This guide is based on a model in which the result of the software requirements specification
process is an unambiguous and complete specification document. In principle, the SRS can be
mechanically translated into the specified software program directly. As such, the resulting SRS
document itself is the specified software, and the supplier’s only duty (after completing the SRS)
would be the mechanical compilation of the SRS into machine code for the target computer. The
present state of the art does not support such a compiler with an optimizer of such efficiency to
make it practical but this limitation need not, and should not, restrict the intermediate objective of
an unambiguous SRS.

tions.

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

This guide is consistent with IEEE Std 729-1983, IEEE Standard Glossary of Software Engineer-
ing Terminology; ANSI/IEEE Std 730-1981, IEEE Standard for Software Quality Assurance Plans;
and IEEE Std 829-1983, IEEE Standard for Software Test Documentation. This guide may be used
in conjunction with those standards or separately.

This guide was prepared by the Software Requirements Working Group of the Software Engineer-
ing Standards Subcommittee of the Technical Committee on Software Engineering of the IEEE
Computer Society.

At the time the guide was approved, the Software Requirements Working Group had the follow-
ing membership:

A. h5. Davis, Chairperson

M. Bariff
H. Berlack
F. Buckley
E. Byrne
F. Calm
K. Foster
S . Frankel
T. L. Hannan
P. W. Kendra
T. M. Kurinara

R. A. C. Lane
R. Lechner
E. Levinson
P. Lindemann
S. Mroczek
A. J. Neumann
W. Newson
D. Paster
B. Pope
P. B. Powell

G. R. Niedhart
J. Russell
A. Salwin
N. B. Schneidewind
D. Schultz
R. W. Szczech
A. Weigel
P. Willis
H. Willman
A. W. Yonda

At the time that it approved this guide, the Software Engineering Standards Subcommittee had
the following membership:

F. J. Buckley, Chairperson

R. J. Abbott
A. F. Ackerman
L. Beltracchi
D. W. Bragg
D. W. Burt
E. R. Byrne
H. Carney
J. W. Center
A. M. Cicu
G. G. Cooke
A. J. Cote, Jr
P. W. Daggett
G. Darling
B. Dasarathy
A. M. Davis
P. A. Denny
J. A. Dobbins
M. L. Eads
J. D. Earls
L. G. Egan, J r
D. W. Fife
J. Flournoy
J. J. Forman
F. K. Gardner
D. Gelperin
E. L. Gibbs
G. Gladden
S. A. GlossSoler
J. W. Grigsby
R. M. Gross
D. A. Gustafson
R. T. Gustin
T. L. Hannan
H. Hecht

IL. R. Heselton, I11
S. Horvitz
1’. Howley
It. N. Hurwitz
S. Hwang
.J. H. Ingram
cJ. P. Kalasky
IX. Kessler
‘l’. M. Kurinara
ID. V. LaRosa
13. A. C. Lane
(7. R. Lewis
17. C. Lim
(3 . S . Lindsay
IM. Lipow
W. M. Lively
IM. Lubofsky
13. Lindquist
,4. K. Manhindru
1’. C. Marriott
C. F. Martiny
IN. McCollough
13. Menkus
13. Meyer
13. F. Miller, Jr
(3. S . Morris
(3. T. Morun
W. G. Murch
*J. Nebb
(3. R. Niedhart
IM. A. Neighbors
*J. 0. Neilson
ID. J. Ostrom

D. J. Pfeiffer
R. M. Poston
P. B. Powell
J. W. Radatz
J. C. Rault
S. T. Redwine
L. K. Reed
W. E. Riddle
C. W. Rutter, I11
P. E. Schilling
N. F. Schniedewind
A. D. Schuman
L. W. Seagren
R. L. Skelton
W. Smith
H. M. Sneed
K. C. Tai
B. J. Taute
R. H. Thayer
G. D. Tice, J r
T. L. Tillmans
W. S . Turner, I11
E. A. Ulbrich, J r
D. Usechak
U. Voges
R. Wachter
J. P. Walter
D. Webdale
A. H. Weigel
N. P. Wilburn
W. M. Wong
T. Workman
A. W. Yonda
P. F. Zoll

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

Special representatives to the software engineering standards subcommittee were:
J. Milandin: ANSI 21
W. G. Perry: Data Processing Manufa'c turers Association
R. Pritchett: EDP Auditors Association
T. L. Regulinski: IEEE Reliability Society
N. C. Fan: Nuclear Power Engineering Committee, IEEE Power Engineering Society

Suggestions for improvement of this guide are welcome. They should be provided to:
The Secretary
IEEE Standards Board
345 East 47th St
New York, New York 10017

At the time the IEEE Standards Board approved this standard on September 20,1983 it had the
following members:

James H. Beall, Chairman Edward Chelotti, Vice Chairman

J. J. Archambault
John T. Boettger
J. V. Bonucchi
Rene Castenschiold
Edward J. Cohen
Len S. Corey
Donald C. Fleckenstein
Jay Forster

Sava I. Sherr, Secretary

Donald H. Heirman
Irvin N. Howell
Joseph L. Koepfinger*
Irving Kolodny
George Konomos
John E. May
Donald T. Michael*

John P. Riganati
Frank L. Rose
Robert W. Seelbach
Jay A. Stewart
Clifford 0. Swanson
Robert E. Weiler
W. B. Wilkens
Charles J. Wylie

*Member emeritus

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

THIS PAGE WAS
BLANK IN THE ORIGINAL

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

Contents

SECTION PAGE

. 1 ScopeandOrganization 9
1.1 Scope . 9
1.2 Organization .. 9

2 . References . 9

3 . Definitions . 10

4 . Background Information for Writing a Good SRS 10
4.1 TheSRS . 10
4.2 Environment of the SRS ... 10
4.3 Characteristics of a Good SRS .. 11

4.3.1 Unambiguous . 11
4.3.1.1 Natural Language Pitfalls 11

4.3.2 Complete . 11
4.3.3 Verifiable . 12
4.3.4 Consistent . 12
4.3.5 Modifiable . 12
4.3.6 Traceable . 13
4.3.7 Useable During The Operation and Maintenance Phase 13

4.4 Joint Preparation of the SRS . 13
4.5 SRSEvolution . 1 3
4.6 Tools for Developing an SRS ... 14

4.6.1 Formal Specification Methcodologies 14
4.6.2 Production Tools ... 14
4.6.3 Representation Tools .. 14

5 . SoftwareRequirements . 14
5.1 Methods Used to Express Software Requirements 14

5.1.1 Input/Output Specifications . 1 4
5.1.1.1 Approaches . 1 5
5.1.1.2 Difficulties . 1 5

5.1.2 Representative Examples ... 1 5
5.1.3 Models . 15

5.1.3.1 Mathematical Models 1 5
5.1.3.2 Functional Models ... 1 5
5.1.3.3 TimingModels .. 15
5.1.3.4 OtherModels ... 16
5.1.3.5 Cautions ... 16

5.2 Annotation of the Software Requirements 16
5.2.1 Stability .. 17
5.2.2 Degree of Necessity ... 17
5.2.3 Annotation Caution . 17

5.3.1 Embedding Design in the SRS 17
5.3.2 Embedding Project Requirements in the SRS 17

6 . An SRS Prototype Outline . 18
6.1 Introduction (Section 1 of the SRS) .. 18

6.1.1 Purpose (1.1 of the SRS) ... 18
6.1.2 Scope (1.2 of the SRS) .. 18
6.1.3 Definitions, Acronyms. and Abbreviations (1.3 of the SRS) 18

4.3.1.2 Formal Requiremlents Specifications Languages . . : 11

5.3 Common Pitfalls Encountered in Expressing Requirements 17

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

SECTION PAGE

6.1.4 References (1.4 of the SIES) . 18
6.1.5 Overview (1.5 of the SRS) . 18

6.2 The General Description (Section 2 of the SRS) . 18
6.2.1 Product Perspective (2.1 of the SRS) . 19
6.2.2 Product Functions (2.2 o f the SRS) . 19
6.2.3 User Characteristics (2.3 of the SRS) 19
6.2.4 General Constraints (2.4 of the SRS) . 19
6.2.5 Assumptions and Dependencies (2.5 of the SRS) 20

6.3.1
6.3 The Specific Requirements (Section 3 of the SRS) 20

Information Required as Part of the Specific Requirements 20
6.3.1.1 Functional Requirements 20
6.3.1.2 Performance Requirements . 2 1
6.3.1.3 Design Constraints . 21
6.3.1.4 Attributes . 21
6.3.1.5 External Interface Requirements . 22
6.3.1.6 Other Requirements .. 22

6.3.2 Organizing the Specific Requirements . 23
6.4 Supporting Information . 24

FIGURES

Fig 1 A Functional Model Specifying Any Sequence of Alternating 0’s and 1’s 16

TABLES

Table 1 Prototype SRS Outline . 18
Table 2 Prototype Outline 1 for SRS Section 3 . 23
Table 3 Prototype Outline 2 for SRS Section 3 . 23
Table 4 Prototype Outline 3 for SRS Se’ction 3 . 24
Table 5 Prototype Outline 4 for SRS Se’ction 3 . 24

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE Guide to Software
Requirements Specifications

1. Scope and Organization

1.1 Scope. This is a guide for writing software
requirements specifications. I t describer; the
necessary content and qualities of a good Soft-
ware Requirements Specification (SRS) and
presents a prototype SRS outline.

This guide does not specify industry,-wide
SRS standards nor state mandatory SRS re-
quirements. This guide is written undeir the
premise that the current state of the art does
not warrant or support such a formal standards
document.

This guide is applicable to in-house and com-
mercial software products. Special care, how-
ever, should be used in its application beca.use:

(1) This guide is aimed at specifying require-
ments of software to be developed. Application
of this material to alreadydeveloped software
is counter-productive.

(2) This guide does not cover the specification
of requirements for software being develloped
using the techniques of rapid prototyping.

1.2 Organization. The remainder of this guide
is organized as follows:

(1) Section 2 provides the references used
throughout the guide.

(2) Section 3 provides definitions of specific
terms used throughout the guide.

(3) Section 4 provides background informa-
tion for writing a good SRS.
(4) Section 5 provides specific guidance for

expressing software requirements.
(5) Section 6 discusses each of the essential

parts of an SRS and provides alternate proto-
type outlines.

2. References

[l] ANSI/IEEE Std 100-1977, IEEE Standard
Dictionary of Electrical and Electronics Terms.

[2] ANSI/IEEE Std 730-1981, IEEE Standard
for Software Quality Assurance Plans.

[3] ANSI/IEEE Std 729-1983, IEEE Standard
Glossary of Software Engineering Terminology.

[4] BRUSAW, C. T., ALRED, G. and OLIU, W.,
Handbook of Technical Writing, New York, St.
Martin's Press, 1976.

[5] DASARATNY, B., Timing Constraints of
Real-Time Systems: Constructs for Expressing
Them, IEEE Real-Time Systems Symposium,
Dec 1982.

[6] DAVIS, A., The Design of a Family of Ap-
plications-Oriented Requirements Languages,
ZEEE Computer, 15 ,5 May 1982, pp 21-28.

[7] FREEDMAN, D. and WEINBERG, G.,
Handbook of Walkthroughs, Inspections and
Technical Reviews, 3rd Ed, Little and Brown
Publishers, New York.

[8] KAIN, R., Automata Theory: Machines
and Languages, McGraw Hill, New York, 1972.

[9] KOHAVI, Z. , Switching and Finite Auto-
mata Theory, McGraw Hill, New York, 1970.

[101 KRAMER, J., Editor, Application Ori-
ented Specifications Glossary of Terms, Euro-
pean Workshop o n Industrial Computer Systems
(E WICS), Imperial College, London, England,
May 6,1981.'

'Copies of this document are available from EWICS,
c / o G. R. Koch, BIOMATIKGmbh, Carl-MezStr 81-83,
D-7800 Freiburg, Federal Republic of Germany.

9

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

[ll] MILLS, G., and WALTER, J., Technical
Writing, New York, Holt, Rinehart and Win-
ston, 4th Ed, 1978.

[121 PETERSON, J., Petri Nets, ACM Comput-
ing Surveys, 9 , 4 , Dec 1977, pp 223-252.

[13] RAMAMOORHY, C. and SO, H. H., Sof t -
ware Requirements and Specifications: Status
and Perspectives, Tutorial: Software Method-
ology, RAMAMOORTHY, C. and YEH, R. T.,
Editors. IEEE Catalog no EH0 142-0, 1978,

[14] TAGGART, W. M. Jr, and THARP, M.O.,
A Survey of Information Requirements Analysis
Techniques, ACM Computing Surveys, 9, 4,
Dec 1977, pp 273-290.

[151 TEICHROEW, D., A Survey o f Languages
for Stating Requirements for Computer-Based
Information Systems, 1972 Fall Joint Cornputer
Conference, 1972, pp 1203-1224.

pp 43-164.

3. Definitions

Except for the definitions listed below, the
definitions of all terms used in this guidle con-
form to the definitions provided in IEEE Std
729-1983 [312, for example, the terms require-
ment, requirements specification. If EL term
used in this guide does not appear in that
Standard, then ANSI/IEEE Std 100-1977 [11,
applies.

The terms listed in this section have been
adopted from Section 2, [101.

contract. A legally binding document agreed
upon by the customer and supplier. This in-
cludes the technical, organizational, cost and
schedule requirements of a product.

customer. The person, or persons, who pay for
the product and usually (but not necessarily)
decides the requirements. In the context of this
document the customer and the supplier may
be members of the same organization.

language. A means of communication, with
syntax and semantics, consisting of a set of
representations, conventions and associated
rules used to convey information.

partitioning. Decomposition; the separation of
the whole into its parts.

2Numbers in brackets correspond t o those of the
references in Section 2.

supplier. The person, or persons, who produce
a product for a customer. In the context of this
document, the customer and the supplier may
be members of the same organization.

user. The person, or persons, who operate or
interact directly with the system. The user(s)
and the customer(s) are often not the same
person(s) .

4. Background Information for
Writing a Good SRS

This section provides background information
necessary for writing an SRS. This includes:

(1) Examination of the nature of the SRS
(2) Environmental considerations surround-

(3) Characteristics required for a good SRS
(4) Recommendations for joint preparation

(5) Evolutionary aspects of the SRS
(6) The use of automated tools to develop an

SRS

4.1 The SRS. The SRS is a specification for a
particular software product, program, or set of
programs that does certain things. See ANSI/

The description places two basic requirements
on the SRS:

(1) I t must say certain things. For example,
software developed from an SRS that fails to
specify that error messages will be provided,
will probably fail to satisfy the customer.

(2) It must say those things in certain ways.
For example, software developed from an SRS
that fails t o specify the format and content of
error messages and instead is developed from a
vague and nonquantifiable requirement such as
All error messages will be helpful, will probably
be unsatisfactory. What is helpful for one per-
son can be a severe aggravation to another
person.

For recommended contents of an SRS see
Section 6.

4.2 Environment of the SRS. It is important to
consider the part that the SRS plays in the
total software project. The provisions in ANSI/
IEEE Std 730-1981 [2] , define the minimum
required documents for a software project. See
[2], 3.4.2.

ANSI/IEEE Std 730-1981 [21 also identifies
the other useful documents. See [21 ,3.4.3.

ing the SRS

of an SRS

IEEE Std 730-1981 [2] , 3.4.2.1.

10

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS

Since the SRS has a definite role to play in this
documentation scheme, SRS writers shoulld be
careful not to go beyond the bounds of that
role. This means the following requirements
should be met:

(1) The SRS must correctly define all of the
software requirements, but no more.

(2) The SRS should not describe any design,
verification, or project management details,
except for required design constraints.

Such a properly written SRS limits the range
of valid solutions but does not specify any
particular design and thus provides the supplier
with maximum flexibility.

4.3 Characteristics of A Good SRS. The previ-
ous sections describe the types of inform a t' ion
that should be contained in an SRS. The follow-
ing concepts deal with particular characteristics.
A good SRS is:

(1) Unambiguous
(2) Complete
(3) Verifiable
(4) Consistent
(5) Modifiable
(6) Traceable
(7) Usable during the Operation and Mainte-

nance Phase

4.3.1 Unambiguous. An SRS is unambiguous
if - and only if - every requirement stated
therein has only one interpretation.

(1) As a minimum, this requires that each
characteristic of the final product be described
using a single unique term.

(2) In cases where a term used in a particular
context could have multiple meanings., the
term must be included in a glossary where its
meaning is made more specific.

4.3.1.1 Natural Language Pitfalls. Require-
ments are often written in a natural language
(for example, English). SRS writers who 'use a
natural language must be especially careful t o
review their requirements for ambiguity. The
following examples are taken from Section 2,

(1) The specification The data set will con-

(a) There will be one and only one erid of

(b) Some character will be designated as an

(c) There will be at least one end of file

[71.

tain an end of file character, might be read as:

file character

end of file character

character

11

IEEE
Std 830-1984

(2) The specification The control total is

(a) The control total is taken from the

(b)The control total is taken from the

(c) The control total is taken from the

(3) The specification All customers have the

(a) All customers have the same value in

(b) All customer control fields have the

(c) One control field is issued for all

(4) The specification All files are controlled

(a) One control block controls the entire

(b) Each file has its own block
(c) Each file is controlled by a control

block, but one control block might control
more than one file

4.3.1.2 Formal Requirements Specifications
Languages. One way to avoid the ambiguity in-
herent in natural language is to write the SRS in
a formal requirements specification language?

(1) One major advantage in the use of such
languages is the reduction of ambiguity. This
occurs, in part, because the formal language
processors automatically detect many lexical,
syntactic, and semantic errors.

(2) One major disadvantage in the use of such
languages is the length of time required t o learn
them.

4.3.2 Complete. An SRS is complete if it
possesses the following qualities:

(1) Inclusion of all significant requirements,
whether relating to functionality, performance,
design constraints, attributes or external inter-
faces.

(2) Definition of the responses of the soft-
ware to all realizable classes of input data in all
realizable classes of situations. Note that it is
important to specify the responses t o valid and
invalid input values.

(3) Conformity to any SRS standard that
applies to it. If a particular section of the
standard is not applicable, the SRS should

taken from the last record, might be read as:

record at the end of the file

latest record

previous record

same control field, might be read as:

their control field

same format

customers

by a file control block, might be read as:

set of files

3F0r detailed discussion on this topic, suggested read-
ingsare [6] , [13] , [14] , and [15] .

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

include the section number and an explanation
of why it is not applicable.
(4) Full labeling and referencing of all figures,

tables, and diagrams in the SRS and definition
of all terms and units of measure.

4.3.2.1 Use of TBDs. Any SRS tha.t uses
the phrase t o be determined (TBD) is not a
complete SRS.

(1) The TBD is, however, occasionally neces-
sary and should be accompanied by:

(a) A description of the conditions causing
the TBD (for example, why an answer is not
known) so that the situation can be resolved.

(b) A description of what must be done to
eliminate the TBD.

(2) Any project documents that are based on
an SRS that contains TBDs, should:

(a) Identify the version or state the specific
release number of the SRS associated with that
particular document.

(b) Exclude any commitments dependent
upon the sections of the SRS that are still
identified as TBDs.
4.3.3 Verifiable. An SRS is verifiable if and

only if every requirement stated therein is veri-
fiable. A requirement is verifiable if and only if
there exists some finite cost-effective process
with which a person or machine can check that
the software product meets the requirement.

(1) Examples of nonverifiable requirements
include statements such as:

(a) The product should work well, or The
product should have a good human interface.
These requirements cannot be verified bt, .cause
it is impossible to define the terms good or
well.

(b) The program shall never enter an infinite
loop. This requirement is non-verifiable bc >cause
the testing of this quality is theoretica1:ly im-
possible.

(c) The output o f the program shall usually
be given within 10 s. This requirement is non-
verifiable because the term usually cannot be
measured.

(2) An example of a verifiable statement is
The output o f the program shall be given with-
in 20 s of event X, 60% of the time; ana' shall
be given within 30 s of event X, 100% of the
time. This statement can be verified because it
uses concrete terms and measurable quant,ities.

(3) If a method cannot be devised to deter-
mine whether the software meets a part,icular
requirement, then that requirement should be
removed or revised.

(4) If a requirement is not expressible in veri-
fiable terms at the time the SRS is prepared,
then a point in the development cycle (review,
test plan issue, etc) should be identified at
which the requirement must be put into a
verifiable form.
4.3.4 Consistent. An SRS is consistent if and

only if no set of individual requirements
described in it conflict. There are three types
of likely conflicts in an SRS:

(1) Two or more requirements might describe
the same real world object but use different
terms for that object. For example, a program's
request for a user input might be called a
prompt in one requirement and a cue in
another.

(2) The specified characteristics of real world
objects might conflict. For example:

(a) The format of an output report might
be described in one requirement as tabular but
in another as textual.

(b) One requirement might state that all
lights shall be green while another states that
all lights shall be blue.

(3) There might be a logical or temporal con-
flict between two specified actions. For ex-
ample:

(a) One requirement might specify that the
program will add two inputs and another specify
that the program will multiply them.

(b) One requirement might state that A
must always follow B, while another requires
that A and B occur simultaneously.
4.3.5 Modifiable. An SRS is modifiable if its

structure and style are such that any necessary
changes to the requirements can be made easily,
completely , and consistently. Modifiability
generally requires an SRS to:

(1) Have a coherent and easy-to-use organiza-
tion, with a table of contents, an index,, and
explicit cross-referencing.

(2)Not be redundant; that is, the same re-
quirement should not appear in more than one
place in the SRS.

(a) Redundancy itself is not an error, but it
can easily lead to errors. Redundancy can occa-
sionally help to make an SRS more readable,
but a problem can arise when the redundant
document is updated. Assume, for instance,
that a certain requirement is stated in two
places. At some later time, it is determined that
the requirement should be altered, but the
change is made in only one of the two loca-
tions. The SRS then becomes inconsistent.

12

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

(b) Whenever redundancy is necessary, the
SRS should include explicit cross-references to
make it modifiable.

4.3.6 Traceable. An SRS is traceable if the
origin of each of its requirements is clear and if
it facilitates the referencing of each :require-
ment in future development or enhancement
documentation. Two types of traceability are
recommended:

(1) Backward traceability (that is, to previous
stages of development) depends upoln each
requirement explicitly referencing its source in
previous documents.

(2) Forward traceability (that is, to all docu-
ments spawned by the SRS) depends upon
each requirement in the SRS having a unique
name or reference number.

When a requirement in the SRS represents an
apportionment or a derivative of another re-
quirement, both forward and backward trace-
ability should be provided. Examples include:

4.3.6.1 The allocation of response time to a
data base function from the overall user re-
sponse time requirement.

4.3.6.2 The identification of a report for-
mat with certain functional and user interface
requirements.

4.3.6.3 A software product that supports
legislative or administrative needs (for example,
tax computations, reporting of an overhead
ratio). In this case, the exact legislative or ad-
ministrative document that is being supported
should be identified.

The forward traceability of the SRS is espe-
cially important when the software product
enters the operation and maintenance phase.
As code and design documents are modlified, it
is essential to be able to ascertain the complete
set of requirements that may be affected by
those modifications.

4.3.7 Usable During the Operation and Main-
tenance Phase. The SRS must address thle needs
of the operation and maintenance phLase, in-
cluding the eventual replacement of the soft-
ware.

(1) Maintenance is frequently carried out by
personnel not associated with the original
development. Local changes (corrections) can
be implemented by means of a well-commented
code. For changes of wider scope, however, the
design and requirements documentation is es-
sential. This implies two actions

(a) The SRS should be modifiable as indi-
cated in 4.3.5.

(b) The SRS should contain a record of all
special provisions that apply to individual com-
ponents such as:

(i) Their criticality (for example, where
failure could impact safety or cause large finan-
cial or social losses).

(ii) Their relation t o only temporary
needs (for example, t o support a display that
may be retired soon).

(iii) Their origin (for example, function X
is to be copied from an existing software
product in its entirety).

(2) Knowledge of this type is taken for
granted in the developing organization but is
frequently missing in the maintenance organi-
zation. If the reason for or origin of a function
is not understood, it is frequently impossible to
perform adequate software maintenance on it.

4.4 Joint Preparation of the SRS. The software
development process begins with supplier and
customer agreement on what the completed
software must do. This agreement, in the form
of an SRS, should be jointly prepared. This is
important because usually neither the customer
nor the supplier is qualified to write a good
SRS by himself.

(1) Customers usually do not understand the
software design and development process well
enough to write a usable SRS.

(2) Suppliers usually do not understand the
customer’s problem and field of endeavor well
enough t o specify requirements for a satisfac-
tory system.

The customer and the supplier need to work
together to produce a well written and com-
pletely understood SRS.4

4.5 SRS Evolution. The SRS may need to evolve
as the development of the software product
progresses.

(1) It may be impossible to specify some
details at the time the project is initiated. For
example, it may be impossible to define during
the Requirements Phase, all of the screen for-
mats for an interactive program in a manner
that guarantees that they will not be altered
later.

(2) Additional changes may ensue as deficien-

4This guide does not specifically discuss style, lan-
guage usage, or techniques of good writing. It is quite
important, however, that an SRS be well written; for
guidance, please refer to general technical writing guides
such as [l] and [l l] .

13

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

cies, shortcomings, and inaccuracies are dis-
covered in the SRS, as the product evolves.

Two major considerations in this process are:
4.5.1 The requirements should be specified as

completely and thoroughly as possible, even if
evolutionary revisions can be forseen as inevit-
able. For example, the desired screen formats
should be specified as well as possible in the
SRS as a basis for later design.
4.5.2 A formal change process should be

initiated to identify, control, track, and report
projected changes, as soon as they are initially
identified. Approved changes in requirements
should be incorporated in the SRS in such a
way as to:

(1) Provide an accurate and complete audit
trail of changes.

(2) Permit the review of current and super-
seded portions of the SRS.

4.6 Tools for Developing an SRS. The most
obvious way to create an SRS is t o write it in a
natural language (for example, English). But be-
cause natural languages are rich, although im-
precise, a number of more formal methods
have been devised to assist SRS writers.
4.6.1 Formal Specification Methodologies.

The degree to which such formal methodologies
may be useful in preparing an SRS depends
upon a number of factors:
(1) The size and complexity of the program
(2) Whether a customer contract requires it
(3) Whether the SRS is a vehicle for contracts

or merely an internal document
(4) Whether the SRS document will become

the top level of the design document
(5) What computer facilities are available to

support such a methodology
No attempt is made here to describe or en-

dorse any particular tool?
4.6.2 Production Tools. A computer-based

word processor is a most useful production aid.
Usually, an SRS will have several authors, will
undergo several revisions, and will have several
reorganizations. A word processor that manages
the text as a computer file facilitates this pro-
cess.

Almost all computer systems have a word
processor and often a document preparation
package is associated with it. This automates
paragraphing and referencing, the printing of

5For detailed discussion on this topic, see, for ex-
ample, [6] , [1 3] , [14] ,and [15].

headings and subheadings, the compilation of
tables of contents and indexes, etc, all of which
help in the production of a more readable SRS.
4.6.3 Representation Tools. Some words in

the SRS, especially nouns and verbs, refer
specifically to entities and actions in the sys-
tem. There are several advantages to identify-
ing them as such.

(1) It is possible to verify that an entity or
action always has the same name everywhere in
the SRS. Thus calculate trajectory would not
co-exist with determine flight path,

(2) It is possible to identify every place in the
specification where a particular entity or action
is described.

In addition, it may be desirable to formalize
the English structure in some way t o allow
automated processing of the content of the
SRS. With such constraints it becomes possible
to:

4.6.3.1 Display the requirements in some
tabular or graphical way.

4.6.3.2 Automatically check the SRS re-
quirements in hierarchical layers of detail,
where each layer is complete in itself but may
also be expanded upon in a lower hierarchical
layer or be a constituent of an upper hierar-
chical layer.

4.6.3.3 Automatically check that the SRS
possesses some or all of the characteristics
described in 4.3.

5 . Software Requirements

Each software requirement in an SRS is a
statement of some essential capability of the
software to be developed. The following sub-
sections describe:

(1) Methods used to express software require-
ments

(2) Annotation of the software requirements
(3) Common pitfalls encountered in the pro-

cess

5.1 Methods Used To Express Software Re-
quirements. Requirements can be expressed in
a number of ways:

(1) Through input/output specifications
(2) By use of a set of representative examples
(3) By the specification of models
5.1.1 Input/Output Specifications. I t is often

effective to specify the required behavior of a
software product as a sequence of inputs and
outputs.

14

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

5.1.1.1 Approaches. There are at least three
different approaches based on the nature of the
software being specified:

(1) Some software products (such a:; report-
ing systems) are best specified by focusing on
required outputs. In general, output -focused
systems operate primarily on data files. User in-
put usually serves to provide control informa-
tion and trigger data file processing.

(2) Others are best specified by focusing on
input/output behavior. Input/output,-focused
systems operate primarily on the current input.
They are required to generate the niatching
output (as with data conversion routines or a
package of mathematical functions).

(3) Some systems (such as process control
systems) are required to remember their be-
havior so that they can respond to a m input
based on that input and past inputs; that is,
behave like a finite state machine. In this case
the focus is on both input/output pairs and
sequences of such pairs.

5.1.1.2 Difficulties. Most software products
can receive an infinite number of sequences as
input. Thus, to completely specify the behavior
of the product through input/output sequences
would require that the SRS contain an infinitely
long set of sequences of inputs and required
outputs. With this approach, therefore, it may
be impossible to completely specify every con-
ceivable behavior that is required of the soft-
ware.

5.1.2 Representative Examples. One alterna-
tive is to indicate what behavior is required by
using representative examples of that behavior.
Suppose, for example, that the system is re-
quired to respond with a “1” every time it
receives a “0” . Clearly, a list of all possible
sequences of inputs and outputs would be
impossible. However, by using representative
sequences one might be able to fully understand
the system’s behavior. This system’s behavior
might be described by using this representative
set of four dialogues:

0101
010101010101
01
010101
These dialogues provide a good idea of the

required inputs and outputs but they do not
specify the system’s behavior completely.

5.1.3 Models. Another approach is to express
the requirements in the form of a model? This
can be an accurate and efficient way to express
complex requirements.

At least three generalized types of models are
in common usage:

(1) Mathematical
(2) Functional
(3) Timing
Care should be taken to distinguish between

the model for the application; that is, a linear
programming model (with a set of linear in-
equalities and an objective function) and the
model for the software which is required to
implement the application model. See 5.1.3.5.

5.1.3.1 Mathematical Models. A mathemat-
ical model is a model that uses mathematical
relations to describe the software’s behavior.
Mathematical models are especially useful for
particular application areas, including naviga-
tion, linear programming, econometrics, signal
processing and weather analysis.

A mathematical model might specify the
response discussed in 5.1.2 like this:

where * means that the parenthesized character
string is repeated one or more times.

5.1.3.2 Functional Models. A functional
model is a model that provides a mapping from
inputs to outputs. Functional models, for ex-
ample, finite state machines or Petri nets can
help identify and define various features of the
software or can demonstrate the intended oper-
ation of the system.

A functional model might specify the re-
sponse, i?reviously described by the rnathemat-
ical model, in the form of a finite state machine
as shown in Fig 1. In this figure, the incoming
arrow points to the starting state. The double
lined box represents the accepting state. The
notation X/Y on the lines indicates that when
X is accepted as an input, Y is produced as an
output .

5.1.3.3 Timing Models. A timing model is a
model that has been augmented with timing
constraints. Timing models are quite useful for
specifying the form and details of the software’s
behavior, particularly for real-time systems or
for human factors of any system.

(01)*

6Each of the four sample dialogues given :here (one
per line) represents a sequence of one-character user ‘For details on using modeling techniques, see [51,
inputs and one-character system outputs. P I , [g l , and [121.

15

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

I -”

Fig 1
A Functional Model Specifying Any Sequence of Alternating Os and Is

A timing model might add these constraints
t o the model shown in Fig 1.

(1) The stimulus 0 will occur within 30 13 of
the arrival in state S1

(2) The response 1 will occur within 2 si of
the arrival in state S2

5.1.3.4 Other Models. In addition to the
aforementioned, specific applications hiave
particularly helpful models. For example, a
compiler specification might employ attribute
grammars, or a payroll system might use tables.
I t is t o be noted that the use of a formal re-
quirements language for an SRS usually implies
a need for the use of a particular model.

5.1.3.5 Cautions. Whatever type of model
is used:

(1) It must be rigorously defined, either in
the SRS or in a document referenced in the
SRS. This definition should specify

(a) The required ranges of the model’s
param et ers

(b) The values of constraints it uses
(c) The required accuracy of results
(d) The load capacity
(e) The required execution time
(f) Default or failure response

(2) Care must be taken to keep a model clefi-
nition within the domain of requirements.

Whenever an SRS uses a model:
(a) It means that the model provided an

especially efficient and accurate way to specify
the requirements

(b) I t does not mean that the implementa-
tion of the software product must be based on
that model.

A model that works effectively for explaining
requirements in a written document may not
be optimal for the actual software implementa-
tion.

5.2 Annotation of the Software Requirements.
Typically, all of the requirements that relate to
a software product are not equally important.
Some requirements may be essential, especially
for lifecritical applications, while others may
be just nice to have.

(1) Each requirement in the SRS should be
annotated to make these differences in relative
importance clear and explicit.

(2) Annotating the requirements in this man-
ner, helps:

(a) Customers to give more careful consid-
eration to each requirement, which often clari-
fies any hidden assumptions they may have.

(b) Developers to make correct design
decisions and devote appropriate levels of

16

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

effort to the different parts of the software
product.

5.2.1 Stability. One method of annotating re-
quirements uses the dimension of stability. A
requirement may be considered stable when it
is thought that the needs which it addresses
will not change during the expected life of the
software, or it may be considered volatile and
subject to change.

5.2.2 Degree of Necessity. Another way to
annotate is to distinguish classes of require-
ments as mandatory, desirable, and optional.

(1) Mandatory implies that the software will
not be acceptable unless these requirements are
provided in an agreed manner.

(2) Desirable implies that these are require-
ments that would enhance the software product,
but would not make it unacceptable if ithey are
absent.

(3) Optional implies a class of functions that
may or may not be worthwhile, which gives the
supplier the opportunity to propose soinething
which exceeds the SRS.

5.2.3 Annotation Caution. Prior to annotating
the requirements, a thorough understanding of
the contractual implications of such annota-
tions, should be obtained.

5.3 Common Pitfalls Encountered in Expressing
Requirements. An essential point about the
SRS is that it should specify the results that
must be achieved by the software, not the
means of obtaining those results.

(1) The basic issues that the requirements
writer must address are these:

(a) Functionality - what the software is
supposed to do

(b) Performance - the speed, availability,
response time, recovery time of various soft-
ware functions, etc

(c) Design Constraints Imposed o n an Im-
plementation -any required standards in effect,
implementation language, policies for d<ata base
integrity, resource limits, operating environ-
ment(s), etc

(d) Attributes - considerations of portabil-
ity, correctness, maintainability, security, etc

(e) External Interfaces - interactiolns with
people, hardware, other software and other
hardware

(2) The requirements writer should avoid
placing either design or project requirements in
the SRS. The requirements writer should clearly
distinguish between identifying required design
constraints and projecting a design.

5.3.1 Embedding Design in the SRS. Embed-
ding design specifications in the SRS unduly
constrains the software designs and artificially
places potentially dangerous requirements in
the SRS.

(1) The SRS must specify what functions are
to be performed on what data to produce what
results at what location for whom. The SRS
should focus on the services to be performed.
The SRS should not normally specify design
items such as

(a) Partitioning the software into modules
(b) Allocating functions to the modules
(c) Describing the flow of information or

(d) Choosing data structures
control between modules

(2) It is not always practical to consider the
design as being completely isolated from the
SRS. Security or safety considerations may
impose requirements that reflect directly into
design constraints; for example, the need to

(a) Keep certain functions in separate
modules

(b) Permit only limited communication
between some areas of the program

(c) Compute check sums for critical quan-
tities

In general, it must be considered that the se-
lection of an appropriate high-level design for
the software may require vast amounts of re-
sources (perhaps as much as 10% to 20% of the
total product development cost). There are two
alternatives :

(1) Ignore the warning in this guide and
specify the design in the SRS. This will mean
that either a potentially inadequate design is
stated as a requirement (because insufficient
time was spent in arriving at it), or an exorbitant
amount of time is spent during the requirements
phase (because an entire design analysis is per-
formed before SRS completion).

(2) Use the advice in 5.1.3 of this guide. State
the requirements using a model design used
solely to assist in the description of the require-
ments and not intended to serve as the actual
design.

5.3.2 Embedding Project Requirements in
the SRS. The SRS should address the software
product, not the process of producing the soft-
ware product.

(1) Project requirements represent an under-
standing between a customer and a supplier
about the contractual matters pertaining to the
production of software (and thus should not be

17

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984

included in the SRS). These normally include
such items as:

(a) Cost
(b) Delivery schedules
(c) Reporting procedures
(d) Software development methods
(e) Quality assurance
(f) Validation and verification criteria
(g) Acceptance procedures

(2) Project requirements are specified in other
documents, typically in a computer program
development plan or a statement of work. The
requirements for only the software product
itself are given in the SRS.

6. An SRS Prototype Outline

This section discusses each of the essential
parts of the SRS. These parts are arranged in
Table 1 in an outline that can serve as a prloto-
type for any SRS.

Software suppliers and customers should
tailor the content requirements of this guide
based on the particular package being speci-
fied, and individual companies might base their
own SRS standards upon it. Remember that
while an SRS does not have to follow this 'out-
line or use the names for its parts, any good
SRS must include all of the information dis-
cussed here.

6.1 Introduction (Section 1 of the SRS). The
following subsections of the SRS should pro-
vide an overview of the entire SRS.

Table 1
Prototype SRS Outline

Table of Contents
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Overview

2. General Description
2.1 Product Perspective
2 .2 Product Functions
2.3 User Characteristics
2 .4 General Constraints
2.5 Assumptions and Dependencies

(See 6 .3 .2 of this guide for alternate organiza-
tions of this section of the SRS.)

3. Specific Requirements

Appendixes
Index

18

IEEE GUIDE TO SOFTWARE

6.1.1 Purpose (1.1 of the SRS). This subsec-
tion should accomplish the following:

(1) Delineate the purpose of the particular
SRS

(2) Specify the intended audience for the
SRS

6.1.2 Scope (1.2 of the SRS). This subsection
should:

(1) Identify the software product(s) to be
produced by name; for example, Host DBMS,
Report Generator, etc

(2) Explain what the software product(s) will,
and, if necessary, will not do

(3) Describe the application of the software
being specified. As a portion of this, it should:

(a) Describe all relevant benefits, objectives,
and goals as precisely as possible. For example,
t o say that one goal is to provide effect ive
reporting capabilities is not as good as saying
parameter-driven, user-definable reports with a
2 h turnaround and on-line entry of user
parameters.

(b) Be consistent with similar statements in
higher-level specifications (for example, the
System Requirement Specification) , if they
exist.

6.1.3 Definitions, Acronyms, and Abbrevia-
tions (1.3 of the SRS). This subsection should
provide the definitions of all terms, acronyms,
and abbreviations required to properly interpret
the SRS. This information may be provided by
reference to one or more appendixes in the
SRS or by reference to other documents.

6.1.4 References (1.4 of the SRS). This sub-
section should:

(1) Provide a complete list of all documents
referenced elsewhere in the SRS, or in a separate,
specified document.

(2) Identify each document by title, report
number - if applicable - date, and publishing
organization.

(3) Specify the sources from which the refer-
ences can be obtained.

This information may be provided by refer-
ence to an appendix or to another document.

6.1.5 Overview (1.5 of the SRS). This subsec-
tion should:

(1) Describe what the rest of the SRS con-
tains

(2) Explain how the SRS is organized

6.2 The General Description (Section 2 of the
SRS). This section of the SRS should describe
the general factors that affect 'the product and
its requirements.

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

This section usually consists of five subsec-

(1) Product Perspective
(2) Product Functions
(3) User Characteristics
(4) General Constraints
(5) Assumptions and Dependencies
It should be made clear that this section does

not state specific requirements; it only makes
those requirements easier to understand.
6.2.1 Product Perspective (2.1 of the! SRS).

This subsection of the SRS puts the product
into perspective with other related products or
projects.

(1) If the product is independent and totally
self-contained, it should be stated here.

(2) If the SRS defines a product that is a
component of a larger system or project - as
frequently occurs - then this subsection
should:

(a) Describe the functions of each compo-
nent of the larger system or project, and identify
interfaces

(b) Identify the principal external inter-
faces of this software product.
NOTE: This is not a detailed description of these inter-
faces; the detailed description is provided elsewhere in
the SRS.

tions, as follows:

(c) Describe the computer hardware and
peripheral equipment to be used.
NOTE: This is an overview description only.

A block diagram showing the major compo-
nents of the larger system or project, intercon-
nections, and external interfaces can be very
helpful.

This subsection should not be used to impose
a specific design solution or specific design con-
straints on the solution. This subsection should
provide the reasons why certain design con-
straints are later specified as part of the Specific
Requirements Section of the SRS.
6.2.2 Product Functions (2.2 of the SRS).

This subsection of the SRS should prolvide a
summary of the functions that the software
will perform. For example, an SRS for an
accounting program might use this part to ad-
dress customer account maintenance, customer
statement and invoice preparation without
mentioning the vast amount of detail thah each
of those functions requires.

Sometimes the function summary that is
necessary for this part can be taken directly
from the section of the higher-level specifica-

tion (if one exists) that allocates particular
functions t o the software product. Note that,
for the sake of clarity:

(1) The functions should be organized in a
way that makes the list of functions under-
standable to the customer or to anyone else
reading the document for the first time.
(2) Block diagrams showing the different

functions and their relationships can be help-
ful. Remember, however, that such a diagram is
not a requirement on the design of a product
itself; it is simply an effective explanatory tool.

This subsection should not be used to state
specific requirements. This subsection should
provide the reasons why certain specific require-
ments are later specified as part of the Specific
Requirements Section(s) of the SRS.
6.2.3 User Characteristics (2.3 of the SRS).

This subsection of the SRS should describe
those general characteristics of the eventual
users of the product that will affect the specific
requirements.

Many people interact with a system during
the operation and maintenance phase of the
software life cycle. Some of these people are
users, operators, and maintenance and systems
personnel. Certain characteristics of these
people, such as educational level, experience,
and technical expertise impose important con-
straints on the system’s operating environment.

If most users of the system are occasional
users, a resulting specific requirement might be
that the system contains reminders of how to
perform essential functions rather than assuming
that the user will remember these details from
the last session or from reading the user’s guide.

This subsection should not be used to state
specific requirements or to impose specific
design constraints on the solution. This subsec-
tion should provide the reasons why certain
specific requirements or design constraints are
later specified as part of the Specific Require-
ments Section(s) of the SRS.
6.2.4 General Constraints (2.4 of the SRS).

This subsection of the SRS should provide a
general description of any other items that will
limit the developer’s options for designing the
system. These can include:

(1) Regulatory policies
(2) Hardware limitations; for example,

signal timing requirements
(3) Interfaces t o other applications
(4) Parallel operation
(5) Audit functions

19

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

(6) Control functions
(7) Higherader language requirements
(8) Signal handshake protocols; for example,

(9) Criticality of the application
XON -XOFF, ACK - NACK.

(10) Safety and security considerations
This subsection should not be used to impose

specific requirements or specific design con-
straints on the solution. This subsection should
provide the reasons why certain specific require-
ments or design constraints are later specified
as part of the Specific Requirements Section of
the SRS.

6.2.5 Assumptions and Dependencies (2.!5 of
the SRS). This subsection of the SRS should
list each of the factors that affect the require-
ments stated in the SRS. These factors are not
design constraints on the software but are,
rather, any changes to them that can affect the
requirements in the SRS. For example, an. as-
sumption might be that a specific operating
system will be available on the hardware desig-
nated for the software product. If, in fact, the
operating system is not available, the SRS
would then have to change accordingly.

6.3 The Specific Requirements (Section 51 of
the SRS). This section of the SRS should con-
tain all the details the software developer needs
to create a design. This is typically the larlgest
and most important part of the SRS.

(1) The details within it should be defineld as
individual specific requirements, following the
guidelines described in Section 3 of this guide
(verifiable, unambiguous, etc)

(2) Background should be provided by cross-
referencing each specific requirement to any
related discussion in the Introduction, General
Description, and Appendixes portions of the
SRS, whenever possible.

(3) One way to classify the specific require-
ments is as follows:

(a) Functional Requirements
(b) Performance Requirements
(c) Design Constraints
(d) Attributes
(e) External Interface Requirements

The important points to be recognized are
that:

(1) Specific requirements should be organized
in a logical and readable fashion.

(2) Each requirement should be stated such
that its achievement can be objectively verified
by a prescribed method.

6.3.1 Information Required as Part of the
Specific Requirements

6.3.1.1 Functional Requirements. This sub-
section of the SRS should specify how the
inputs to the software product should be trans-
formed into outputs. I t describes the funda-
mental actions that must take place in the
software.

For each class of function or sometimes for
each individual function, it is necessary to
specify requirements on inputs, processing, and
outputs. These are usually organized with these
four subparagraphs:

(1) Introduction. This subparagraph should
provide a description of the purpose of the
function and the approaches and techniques
employed. It should contain any introductory
or background material which might clarify the
intent of the function.

(2) Inputs. This subparagraph should contain:
(a) A detailed description of all data input

t o this function to include:
(i) The sources of the inputs
(ii) Quantities
(iii) Units of measure
(iv) Timing
(v) The ranges of the valid inputs to in-

clude accuracies and tolerances.
(b) The details of operator control require-

ments should include names and descriptions
of operator actions, and console or operator
positions. For example, this might include
required operator activities such as form align-
ment - when printing checks.

(c) References to interface specifications or
interface control documents where appropriate.

(3) Processing. This subparagraph should de-
fine all of the operations to be performed on
the input data and intermediate parameters to
obtain the output. It includes specification of:

(a) Validity checks on the input data
(b) The exact sequence of operations to in-

(c) Responses to abnormal situations, for
clude timing of events

example:
(i) Overflow
(ii) Communication failure
(iii) Error handling

(d) Parameters affected by the operations
(e) Requirements for degraded operation
(f) Any methods (for example, equations,

mathematical algorithms, and logical opera-
tions) which must be used to transform the sys-
tem inputs into corresponding outputs. For

20

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

example, this might specify:

holding tax in a payroll package

for a plotting package

for a weather forecasting package

(i) The formula for computing the with-

(ii) A least squares curve fitting technique

(iii) A meteorological model t o be used

(g) Validity checks on the output data
(4) Outputs. This subparagraph should con-

(a) A detailed description of all data out-
tain :

put from this function to include:
(i) Destinations of the outputs
(ii) Quantities
(iii) Units of measure
(iv) Timing
(v) The range of the valid outputs is to

(vi) Disposition of illegal values
(vii) Error messages

include accuracies and tolerances

(b) References to interface specifications or
interface control documents where appropriate

In addition, for those systems whose require-
ments focus on input/output behavior, the SRS
should specify all of the significant input/out-
put pairs and sequences of pairs. Sequences will
be needed when a system is required to remem-
ber its behavior so that it can respond to an in-
put based on that input and past behavior; that
is, behave like a finite state machine.

6.3.1.2 Performance Requirement:;. This
subsection should specify both the static and
the dynamic numerical requirements placed on
the software or on human interaction with the
software, as a whole.

(1) Static numerical requirements may in-
clude:

(a) The number of terminals to be supported
(b) The number of simultaneous users to be

(c) Number of files and records to be

(d) Sizes of tables and files

supported

handled

Static numerical requirements are sometimes
identified under a separate section entitled
capacity .

(2) Dynamic numerical requirements may in-
clude, for example, the numbers of transactions
and tasks and the amount of data to 'be pro-
cessed within certain time periods for both
normal and peak workload conditions.

All of these requirements should be dated in
measurable terms, for example, 95% of the
transactions shall be processed in less than 1 s,

rather than, operator shall not have to wait for
the transaction t o complete.

NOTE: Numerical limits applied to one specific func-
tion are normally specified as part of the processing
subparagraph description of that function.

6.3.1.3 Design Constraints. Design con-
straints can be imposed by other standards,
hardware limitations, etc.

6.3.1.3.1 Standards Compliance. This
subsection should specify the requirements
derived from existing standards or regulations.
They might include:

(1) Report format
(2) Data naming
(3) Accounting procedures
(4) Audit Tracing. For example, this could

specify the requirement for software to trace
processing activity. Such traces are needed for
some applications to meet minimum govern-
ment or financial standards. An audit trace
requirement might, for example, state that all
changes to a payroll data base must be recorded
in a trace file with before and after values.

6.3.1.3.2 Hardware Limitations. This
subsection could include requirements for the
software t o operate inside various hardware
constraints. For example, these could include:

(1) Hardware configuration characteristics
(number of ports, instruction sets, etc)

(2) Limits on primary and secondary memory
6.3.1.4 Attributes. There are a number of

attributes that can place specific requirements
on the software. Some of these are indicated
below. These should not be interpreted to be a
complete list.

6.3.1.4.1 Availability. This could specify
the factors required to guarantee a defined
availability level for the entire system such as
checkpoint, recovery and restart.

6.3.1.4.2 Security. This could specify the
factors that would protect the software from
accidental or malicious access, use, modifica-
tion, destruction, or disclosure. Specific require-
ments in this area could include the need to:

(1) Utilize certain cryptographical techniques
(2) Keep specific log or history data sets
(3) Assign certain functions to different

(4) Restrict communications between some

(5) Compute checksums for critical quantities
6.3.1.4.3 Maintainability. This could

specify the requirements to ensure that the

modules

areas of a program

21

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984 IEEE GUIDE TO SOFTWARE

software could be maintained. For example, as
a part of this,

(1) Specific coupling metrics for the software
modules could be required

(2) Specific data/program partitioning re-
quirements could be specified for microdevices

6.3.1.4.4 Transferability/Conversion. This
could specify the user procedures, user irker-
face compatibility constraints (if any) etc, re-
quired to transport the software from one
environment to another.

6.3.1.4.5 Caution. It is important that
required attributes be specified so that their
achievement can be objectively verified by a
prescribed method.

6.3.1.5 External Interface Requirements
6.3.1.5.1 User Interfaces. This should

specify:
(1) The characteristics that the software must

support for each human interface to the soft-
ware product. For example, if the user of the
system operates through a display terminal, the
following should be specified:

(a) Required screen formats
(b) Page layout and content of any reports

(c) Relative timing of inputs and outputs
(d) Availability of some form of program-

mable function keys
(2) All the aspects of optimizing the inter€ace

with the person who must use the system. This
may simply comprise a list of do’s and don’ts
on how the system will appear to the user. One
example might be a requirement for the option
of long or short error messages. Like all othlers,
these requirements should be verifiable and for
example, a clerk typist grade 4 can do function
X in 2 min after 1 h of training rather than a
typist can d o function X . (This might also be
specified in the Attributes section under a
section titled Ease of Use.)

6.3.1.5.2 Hardware 1nterfaces.Thi.s should
specify the logical characteristics of each inter-
face between the software product and the
hardware components of the system. It also
covers such matters as what devices are to be
supported, how they are to be supported, and
protocols. For example, terminal support
might specify full screen support as opposed to
line by line.

6.3.1.5.3 Software Interfaces. This should
specify the use of other required software
products (for example, a data management
system, an operating system, or a mathematical
package), and interfaces with other application

or menus

systems (for example, the linkage between an
accounts receivable system and a general ledger
system).

For each required software product, the fol-
lowing should be provided:

(1) Name
(2) Mnemonic
(3) Specification number
(4) Version number
(5) Source
For each interface, this part should:
(1) Discuss the purpose of the interfacing

software as related to this software product.
(2) Define the interface in terms of message

content and format. I t is not necessary to detail
any welldocumented interface, but a reference
t o the document defining the interface is
required.

6.3.1.5.4 Communications Interfaces.
This should specify the various interfaces to
communications such as local network proto-
cols, etc.

6.3.1.6 Other Requirements. Certain re-
quirements may, due to the nature of the soft-
ware, the user organization, etc, be placed in
separate categories as indicated below.

6.3.1.6.1 Data Base. This could specify
the requirements for any data base that is to be
developed as part of the product. This might
include:

(1) The types of information identified in
6.3.1.1

(2) Frequency of use
(3) Accessing capabilities
(4) Data element and file descriptors
(5) Relationship of data elements, records

(6) Static and dynamic organization
(7) Retention requirements for data

and files

NOTE: If an existing data base package is to be used,
this package should be named under Interfaces t o S o f t -
ware and details of using it specified there.

6.3.1.6.2 Operations. This could specify
the normal and special operations required by
the user such as:

(1)The various modes of operations in the
user organization; for example, user-initiated
operations

(2) Periods of interactive operations and
periods of unattended operations

(3) Data processing support functions
(4) Backup and recovery operations

NOTE: This is sometimes specified as part of the User
Interfaces section.

22

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

REQUIREMENTS SPECIFICATIONS
IEEE

Std 830-1984

6.3.1.6.3 Site Adaptation Requirements.
This could:

(1) Define the requirements for any data or
initialization sequences that are specific t o a
given site, mission, or operational mode, for
example, grid values, safety limits, etc.

(2) Specify the site or mission-related features
that should be modified to adapt the sclftware
to a particular installation.

6.3.2 Organizing The Specific Requirements.
This subsection is often the largest and most
complex of all the parts of the SRS.

(1) It may be necessary to organize this sec-
tion into subdivisions according to the primary
classes of functions to be performed by the
software. For example, consider a large inter-
active accounting system. This may be broken
down at the top level into operational software
(which supports near-real-time transactions),
support software (logging functions, disk back-
up, loading tapes, etc), and diagnostic software
(primarily hardware and communications sup-
port), and at the next level into accounts re-
ceivable, accounts payable, etc.

(2) It should be remembered, however, that
the purpose of this subdivided organization is
t o improve the readability of the SRS, not to
define the high level design of the software
being specified.

The best organization for Section 3 , Specific
Requirements, in an SRS, depends on the
application area and the nature of the so€tware
product being specified. Tables 2 through 4
show four possible organizations.

(1) In Prototype Outline 1 (Table 2), a11 the
Functional Requirements are specified, then
the four types of interface requirements are
specified, and then the rest of the requirements
are specified.

(2) Prototype Outline 2 (Table 3) shows the
four classes of interface requirements alpplied
to each individual Functional Requirement.
This is followed by the specification of the
rest of the requirements.

(3) In Prototype Outline 3 (Table 4), all of
the issues addressed by the Functional Require-
ments are specified, then the other requirements
that apply to them are specified. This patitern is
then repeated for each of the External Inter-
face Requirement Classifications.

Table 2
Prototype Outline 1 for SRS Section 3

3. Specific Requirements
3.1 Functional Requirements

3.1.1 Functional Requirement 1
3.1.1.1 Introduction
3.1.1.2 Inputs
3.1.1.3 Processing
3.1.1.4 Outputs

3.1.2 Functional Requirement 2

3.1.n Functional Requirement n
3.2 External Interface Requirements

3.2.1 User Interfaces
3.2.2 Hardware Interfaces
3.2.3 Software Interfaces
3.2.4 Communications Interfaces

3.3 Performance Requirements
3.4 Design Constraints

. . . .

3.4.1 Standards Compliance
3.4.2 Hardware Limitations

3.5 Attributes
3.5.1 Security
3.5.2 Maintainability
. . . .

3.6 Other Requirements
3.6.1 Data Base
3.6.2 Operations
3.6.3 Site Adaptation
. . . .

Table 3
Prototype Outline 2 for SRS Section 3

3.1 Functional Requirements
3. Specific Requirements

3.1.1 Functional Requirement 1
3.1.1.1 Specification

3.1.1.1.1 Introduction
3.1.1.1.2 Inputs
3.1.1.1.3 Processing
3.1.1.1.4 Outputs

3.1.1.2 External Interfaces
3.1.1.2.1 User Interfaces
3.1.1.2.2 Hardware

Interfaces
3.1.1.2.3 Software

Interfaces
3.1.1.2.4 Communication

Interfaces
3.1.2 Functional Requirement 2

3.l.n Functional Requirement n
3.2 Performance Requirements
3.3 Design Constraints
3.4 Attributes

3.4.1 Security
3.4.2 Maintainability

3.5 Other Requirements
3.5.1 Data Base
3.5.2 Operations
3.5.3 Site Adaption

23

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 830-1984

Table 4
Prototype Outline 3 for SRS Section 3

-
3. Specific Requirements

3.1 Functional Requirements
3.1.1 Functional Requirement 1

3.1.1.1 Introduction
3.1.1.2 Inputs
3.1.1.3 Processing
3.1.1.4 Outputs
3.1.1.5 Performance Requirements
3.1.1.6 Design Constraints

3.1.1.4.1 Standards

3.1.1.4.2 Hardware
Compliance

Limitations
3.1.1.7 Attributes

3.1.1.7.1 Security
3.1.1.7.2 Maintainabi1it.y

3.1.1.8 Other Requirements
3.1.1.8.1 Data Base
3.1.1.8.2 Operations
3.1.1.8.3 Site Adaption

3.1.2 Functional Requirement 2

3. l .n Functional Requirement n

3.2.1 User Interfaces

. . . .

3.2 External Interface Requirements

3.2.1.1 Performance Requirements
3.2.1.2 Design Constraints

3.2.1.2.1 Standards

3.2.1.2.2 Hardware
Compliance

Limitations
3.2.1.3 Attributes

3.2.1.3.1 Security
3.2.1.3.2 Maintainability

3.2.1.4 Other Requirements
3.2.1.4.1 Data Base
3.2.1.4.2 Operations
3.2.1.4.3 Site Adaption
. . . .

3.2.2 Hardware Interfaces
3.2.3 Software Interfaces
3.2.4 Communications Interfaces

~

(4) In Prototype Outline 4 (Table 5), the
interface requirements and the rest of the re-
quirements are specified as they pertain to e,ach
Functional Requirement.

The organization of the Specific Require-
ments Section of the SRS should be chosen
with the goal of properly specifying the re-
quirements in the most readable manner.

6.4 Supporting Information. The support,ing
information; that is, the Table of Contents, the
Appendixes, and the Index, make the SRS

Table 5
Prototype Outline 4 for SRS Section 3

3. Specific Requirements
3.1 Functional Requirement 1

3.1.1 Introduction
3.1.2 Inputs
3.1.3 Processing
3.1.4 Outputs
3.1.5 External Interfaces

3.1.5.1 User Interfaces
3.1.5.2 Hardware Interfaces
3.1.5.3 Software Interfaces
3.1.5.4 Communication Interfaces

3.1.6 Performance Requirements
3.1.7 Design Constraints
3.1.8 Attributes

3.1.8.1 Security
3.1.8.2 Maintainability
. . . .

3.1.9 Other Requirements
3.1.9.1 Data Base
3.1.9.2 Operations
3.1.9.3 Site Adaption
. . . .

3.2 Functional Requirement 2

3.n Functional Requirement n
. . . .

important and should follow the generally
accepted rules for good documentation prac-
tices.8

(2) The Appendixes are not always consid-
ered part of the actual requirements specifica-
tion and are not always necessary. They might
include:

(a) Sample 1 / 0 formats, descriptions of
cost analysis studies, or results of user surveys.

(b) Supporting or background information
that can help the readers of the SRS.

(c) A description of the problems to be
solved by the software.

(d) The history, background, experience
and operational characteristics of the organiza-
tion to be supported.

(e) A cross-reference list, arranged by mile-
stone, of those incomplete software require-
ments that are to be completed by specified
milestones. (See 4.3.2 and 4.3.3 (4).)

(f) Special packaging instructions for the
code and the media to meet security, export,
initial loading, or other requirements.
(3) When Appendixes are included, the SRS

should explicitly state whether or not the
Appendixes are to be considered part of the
requirements.

easier to use.
(1) The Table of Contents and Index are quite *See, for example: [4 J and [11]

24

Authorized licensed use limited to: Indian Institute of Technology Indore. Downloaded on January 23,2018 at 03:24:05 UTC from IEEE Xplore. Restrictions apply.

	1 ScopeandOrganization
	1.1 Scope
	1.2 Organization

	2 References
	3 Definitions
	Background Information for Writing a Good SRS
	4.1 TheSRS
	4.2 Environment of the SRS
	4.3 Characteristics of a Good SRS
	4.3.1 Unambiguous
	4.3.1.1 Natural Language Pitfalls
	4.3.1.2 Formal Requiremlents Specifications Languages :

	4.3.2 Complete
	4.3.3 Verifiable
	4.3.4 Consistent
	4.3.5 Modifiable
	4.3.6 Traceable
	4.3.7 Useable During The Operation and Maintenance Phase

	4.4 Joint Preparation of the SRS
	4.5 SRSEvolution
	4.6 Tools for Developing an SRS
	Formal Specification Methcodologies
	4.6.2 Production Tools
	4.6.3 Representation Tools

	5 SoftwareRequirements
	5.1 Methods Used to Express Software Requirements
	5.1.1 Input/Output Specifications
	5.1.1.1 Approaches
	5.1.1.2 Difficulties

	5.1.2 Representative Examples
	5.1.3 Models
	5.1.3.1 Mathematical Models
	5.1.3.2 Functional Models
	5.1.3.3 TimingModels
	5.1.3.4 OtherModels
	5.1.3.5 Cautions

	Annotation of the Software Requirements
	5.2.1 Stability
	Degree of Necessity
	5.2.3 Annotation Caution

	Common Pitfalls Encountered in Expressing Requirements
	Embedding Design in the SRS
	5.3.2 Embedding Project Requirements in the SRS

	An SRS Prototype Outline
	Introduction (Section 1 of the SRS)
	Purpose 1.1 of the SRS)
	6.1.2 Scope 1.2 of the SRS)
	Definitions Acronyms and Abbreviations 1.3 of the SRS)
	References 1.4 of the SIES)
	Overview 1.5 of the SRS)

	The General Description (Section 2 of the SRS)
	Product Perspective 2.1 of the SRS)
	Product Functions 2.2 of the SRS)
	User Characteristics 2.3 of the SRS)
	General Constraints 2.4 of the SRS)
	Assumptions and Dependencies 2.5 of the SRS)

	The Specific Requirements (Section 3 of the SRS)
	Information Required as Part of the Specific Requirements
	6.3.1.1 Functional Requirements
	6.3.1.2 Performance Requirements
	6.3.1.3 Design Constraints
	6.3.1.4 Attributes
	External Interface Requirements
	6.3.1.6 Other Requirements

	Organizing the Specific Requirements

	6.4 Supporting Information

	A Functional Model Specifying Any Sequence of Alternating 0™s and
	Prototype SRS Outline
	Prototype Outline 1 for SRS Section 3
	Prototype Outline 2 for SRS Section 3
	Prototype Outline 3 for SRS Se™ction 3
	Prototype Outline 4 for SRS Se™ction 3

