IN28Minutes Course Guide

PROGRAMMING MADE EASY

25 Courses
2 Million views
50,000 students
2000 5-STAR Reviews
10+ Free Courses

www.in28minutes.com

http://www.in28minutes.com/

Tola Adesanya
Updated 3 months ago

Le 8.4 &

This is one of the best instructors on Udemy. He is a subject master expertise and very clear with
the steps and makes it easy to understand and follow. Hope we have more instructors like him.
Great works!

Alexander Borisov
Updated a month ago

L 2 4 8 4

[

A lot of teachers claim that their lectures follow 20/80 principle, but only few of them really fulfill
the promise... In28Minutes successfully implements this teaching concept: you need to know just
20% of J2EE to be able to resolve 80% of issues. The tricky question is: which exactly 20% of
programming language you need to know? The simple answer is: you'll take this course to get
exactly what is required. So 5 stars rating :)

|eff Homere
Updated 3 months ago

o o i o W

This was a great coursel!! The instructor worked at a good pace and organized the topics very well.
At no point during this course did i get lost. The instructor does a good job at reiterating important
topics and explaining to the students what's happening and why. This course is packed with
enough information to get you into the world of Spring. I'm interested in seeing a follow up course
with building REST services. Would definitely recommend.

OFFERS ON UDEMY COURSES

Java EE Design Patterns SPECIAL OFFER
Spring MVC in 25 Steps SPECIAL OFFER

JSP Servlets — 25 Steps SPECIAL OFFER
Java Interview Guide SEEE A EEEER

Java OOPS Concepts SPECIAL OFFER
Mockito — with 25 JUnit Examples SPECIAL OFFER

Maven SPECIALORFER

https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2
https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1

Java Interview Guide : 200+ Interview Questions and
Answers

A Beginners Guide to Java Interview with 200+ Java Interview Questions
% & % & W 4.5 (147 ratings) * 3,293 students enrolled
Instructed by in28Minutes Official IT & Software / Other

Black Friday Deal '

$10 $60 83% off

Take This Course

N
’ Add to Cart

Redeem a Coupon

Start Free Preview

More Options v

Lectures 53

Length 6 hours

https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1

& Mirko Cukich
' . 0.8 & ¢

Great material. The instructor is very clear and easy to understand. He knows the material very well. A++

Alvin Malate

' 8. 8.8 & ¢

i learned something new even if ive been using java for a long time already

Navaneeth Kumar

1 8. 8.6 8

Excellent course.. Feeling very confident for attending Java interviews.. :)

GETIT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1

Java EE Made Easy - Patterns, Architecture and Frameworks

Beginners Guide to Demystifying Architecture, Patterns and Technologies used in Java EE. Get the Big Picture of Java EE.

% % & % % 4.3 (180 ratings) * 3,992 students enrolled

Instructed by in28Minutes Official IT & Software / Other

Black Friday Deal '

$10 s40 75% off

Take This Course

Add to Cart

Redeem a Coupon
Start Free Preview

More Options v

Lectures 32

Length 2 hours

https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1

Kevin O'Reilly
Posted a month ago

LA & &

Java EE -- The Big Picture! So much more is clear now about how all the pieces fit together. Thanks!

Kim Homer
Updated 32 months ago

TR dwrw
Excellent course! | am a web developer and was interested in updating my skills. This course has

helped me to achieve that and more... Delivery is clear and material is very relevant. Thanks for a
great value in online training!

Rahul 5
Posted 3 months ago

2. 8 & &
This is an Excellent introduction to JavaEE. This helped me in learning a log of concepts in the was

javakE space. This a must course for every java web developer. All the concepts are explained in
simple and very easy to understand terms. Thanks a lot for creating this unique course.

GETIT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1

Spring MVC For Beginners : Build Java Web App in 25 Steps

Spring MVC Tutorial for Beginners with a Hands-on Step by Step Approach - 25 Steps
% % % % W 4.5 (443 ratings) + 2,552 students enrolled /| Bestselling = in Spring

Instructed by in28Minutes Official IT & Software / Other

Black Friday Deal |4

$10 s75 87% off

Take This Course

Add to Cart

Redeem a Coupon
Start Free Preview

More Options ~

Lectures 50

Length 6.5 hours

https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1

Mark Taylor
Updated 8 days ago

o A i

Very clear and well paced. Starting from a traditional EE app and moving it to Spring was great way
to show Spring's power and ease. Each step was fully explained.

Juan Christopher
Updated 3 months ago

L b 8.8 &

Excellent course. The step by step approach makes my learning quicker, easier and more intuitive.

|eff Homere
Updated 3 months ago

1 8 8. & & 4

This was a great course!! The instructor worked at a good pace and organized the topics very well.
At no point during this course did i get lost. The instructor does a good job at reiterating important
topics and explaining to the students what's happening and why. This course is packed with
enough information to get you into the world of Spring. I'm interested in seeing a follow up course
with building REST services. Would definitely recommend.

GET IT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1

Java Servlets and JSP - Build Java EE(JEE) app in 25 Steps

Servlets and JSP Tutorial for Beginners

Wk k& 46(111ratings) * 1,904 students enrolled

| "‘ in JavaServer Pages

Instructed by in28Minutes Official IT & Software / Other

Black Friday Deal |4

$10 340 75% off

Take This Course

’ Add to Cart ’

Redeem a Coupon
Start Free Preview

More Options v

Lectures 35
Length 3.5 hours

https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1

Alexander Borisov
Updated a month ago

L 8. 8.8

A lot of teachers claim that their lectures follow 20/80 principle, but only few of them really fulfill
the promise... In28Minutes successfully implements this teaching concept: you need to know just
20% of |2EE to be able to resolve 80% of issues. The tricky question is: which exactly 20% of
programming language you need to know? The simple answer is: you'll take this course to get
exactly what is required. 50 5 stars rating :)

Akshay lyer i~
Updated 3 months ago

LA 8 & & ¢

If your learning J5P and Servlets this is by far the best tutorial you can come across. It will teach you
at a beginner level but you do get to learn a lot from it and can continue to learn more by yourself. |
really liked the stepwise teaching in this course. Everything is systematic.

GET IT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1

Maven Tutorial - Manage Java Dependencies in 20 Steps

A Maven Tutorial for Beginners with Real World Project Examples.

% % % & % 43(113ratings) + 2,382 students enrolled

Instructed by in28Minutes Official IT & Software / Other

| Black Friday Deal 4
$10 s40 75% off

Take This Course

Add to Cart ’

Redeem a Coupon

Start Free Preview

More Options

Lectures 25
Length 2 hours

Sr. Bruno Militzer i~
Posted 3 months ago

LA & & ¢

Great course, teacher has very good knowledge and knows how to pass on his knowledge to the
students.

https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1

“ Deepak -
Updated 5 months ago
i

I am still less than half way to completion but I've already feel my investment of time, effort &
money spent paid off. it's very well composed, explained and structured. Highly recommended!

GET IT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1

Java OOPS (Object Oriented Programming) Concepts

Learn Object Oriented Programming Concepts with Java

' & & & 3.9(613 ratings) * 9,317 students enrolled

Instructed by in28Minutes Official IT & Software / Other

$10 s20 50% off

Take This Course

Add to Cart

Redeem a Coupon

Start Free Preview

More Options =

Lectures 9

Length 1 hour

Skill Level Intermediate Level
Languages English

Includes Lifetime access

30 day money back guarantee!
Available on i0OS and Android
Certificate of Completion

https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2

e David Waddell Jr
' & 6 & 6.4

Clear, concise, and straight forward examples. A great refresher for someone who has seen these concepts before, but have not
applied or had to discuss them in some time.

Marc-Andre Morissette

1 8. 8.8 & ¢

Exactly what | was looking for : abstract and interface example and way to use case

GET IT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2
https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2
https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2
https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2

Mockito Tutorial : Learn mocking with 25 Junit Examples

Learn unit testing and mocking with 25 Junit Examples
% % % & & 46(90ratings) * 2,599 students enrolled
Instructed by in28Minutes Official IT & Software / Other

$19 3540 52% off

Take This Course

Add to Cart

11
1

Redeem a Coupon

Start Free Preview

g- =
R 4 =

More Options ~

Lectures 36
Length 4.5 hours
Skill Level All Levels

Languages English

Includes Lifetime access
30 day money back guarantee!
Available on iOS and Android
Certificate of Completion

https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF_2

e Jose Castellano

' 8. 8.8 & ¢

The explanations are very clear, the examples to the point and the material chosen very relevant.

Manvendra Verma

' 8. 8.8 6 ¢

Presenter is well aware of the functional details of the framework, and taught with a engaging pace and examples

GETIT NOW! $10 DISCOUNT COUPON

https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF_2
https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF_2
https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF_2
https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF_2

FREE COURSES

Eclipse Tutorial For A Beginner's Guide to
Beginners : Learn Java IDE in Design Patterns

in28Minutes Official, Architect, in28Minutes Official, Architect,
Programmer and Trainer Programmer and Trainer
ThhkhWw 317 R RN (149

Free Free

LINK LINK

https://www.udemy.com/eclipse-java-tutorial-for-beginners/
https://www.udemy.com/eclipse-java-tutorial-for-beginners/
https://www.udemy.com/learn-design-patterns-using-java/
https://www.udemy.com/learn-design-patterns-using-java/

JUnit Tutorial for Beginners -
Learn Java Unit Testing

in28Minutes Official, Architect,
Programmer and Trainer

R RKW (1,365

Free

LINK

Spring Framework Tutorial
For Beginners

in28Minutes Official, Architect,
Programmer and Trainer

' & & & & S

Free

https://www.udemy.com/junit-tutorial-for-beginners-with-java-examples/
https://www.udemy.com/junit-tutorial-for-beginners-with-java-examples/
https://www.udemy.com/spring-tutorial-for-beginners/
https://www.udemy.com/spring-tutorial-for-beginners/

JavaScript
Tutorial
For Begin

Transaction
Management

Java Tutorial
For
Beginne

FREE YOUTUBE COURSES

JavaScript Tutorial For Beginners .

Feb 3,2015 11:20 AM

Edit -

Introduction To Transaction
Management HD

Mar 18,2015 10:05 PM

Edit -

Java Tutorial for Beginners
Jun 25,2012 11:02 PM

Edit -

o 9 m

30,214 views iy 146
5
LINK
0 ® m
29,255 views e 125
9 s
LINK

O & m s
23,695 views e 40

’
LINK

https://www.youtube.com/watch?v=6TZdD-FR6CY
https://www.youtube.com/watch?v=6TZdD-FR6CY
https://www.youtube.com/watch?v=HcjHJLEbtRs
https://www.youtube.com/watch?v=HcjHJLEbtRs
https://www.youtube.com/watch?v=Y4ftqcYVh5I
https://www.youtube.com/watch?v=Y4ftqcYVh5I

Test Driven Development - Java e & m

In2 §Minutes
{ Example 1

‘Test.Driven | 2. 2019 950 1 21,894 views e 183
i Bty U 5 :
Developm 35 ;o 7
o REAL s | <
LINK
Java Collection Framework 1 : e &
Introduction to Collection Inteface ...
20,065 views e 57
Mar 20,2014 1:22 PM
1
Edit - ” 0

LINK

https://www.youtube.com/watch?v=45T32_ImO2c
https://www.youtube.com/watch?v=45T32_ImO2c
https://www.youtube.com/watch?v=mz-el-2ouAg
https://www.youtube.com/watch?v=mz-el-2ouAg

Couple of courses in my Mother
Toungue - Telugu

C Tutorial
In

Telugu

https://www.youtube.com/watch2v=0Asyny8Wito4&list=PLASEQOAD777C0B9827

]
Java in
Telugu

I

https://www.youtube.com/watch2v=xbxHQn1LjaM&list=PL5260E16312C8A27D

https://www.youtube.com/watch?v=0Asyny8Wto4&list=PLA8E0AD777C0B9827
https://www.youtube.com/watch?v=xbxHQn1LjaM&list=PL5260E16312C8A27D

Java Interview Questions

Core Java

If you are an Experienced Programmer, Designer or Architect, we
recommend to directly skip to the section on Advanced Java or
Exception Handling or Threads and Synchronization or directly to the
Frameworks (Spring, SpringMVC,Struts or Hibernate).

Following are the important topics that are important from interview perspective for
core java.

llllllllllllllllll -

i W cl i T o I
E rapper Llasses \".II / _%"'-M{Jm |

trI ng

u

Object class and its Arravs
methods e ‘

Following videos cover these topics in great detail. In addition to following this
guide, we recommend that you watch the videos as well.

Java Interview : A Freshers Guide - Part 1:
https://www.youtube.com/watch?v=ni{Z48YVkei0.

https://www.youtube.com/watch?v=njZ48YVkei0

Java Interview : A Freshers Guide - Part 2; https://www.youtube.com/watch?v=xyXuoQy-
xoU

Two main reasons for popularity of Java are

1. Platform Independence
2. Object Oriented Language

We will look at these in detail in later sections.

https://www.youtube.com/watch?v=xyXuo0y-xoU
https://www.youtube.com/watch?v=xyXuo0y-xoU

What is Platform Independence?

Frest Clags Jova

L4

A

FivstClass.class
Y'rscabe

r(& l: UA
1 T :wm iUJNv:ﬁ l Ls’?i’.‘.-

Encit 05 HAS DIFFERENT IYM'S

ALL TVMS UNDGRSTAND t%ecovf.
C.C\“S . J‘f ;\\Q)

This video (https://www.youtube.com/watch?v=ILgcgviHyAw) explains

Platform
Independence in great detail. Refer to it for more detailed answer.

Platform Independence is also called build once, run anywhere. Java is one of the
most popular platform independent languages. Once we compile a java program

https://www.youtube.com/watch?v=lLgcgvIHyAw

and build a jar, we can run the jar (compiled java program) in any Operating System
- where a JVM is installed.

Java achieves Platform Independence in a beautiful way. On compiling a java file
the output is a class file - which contains an internal java representation called
bytecode. JVM converts bytecode to executable instructions. The executable
instructions are different in different operating systems. So, there are different JVYM's
for different operating systems. A JVM for windows is different from a JVM for mac.
However, both the JVM's understand the bytecode and convert it to the executable
code for the respective operating system.

1. Java is platform independent. C++ is not platform independent.

2. Java is a pure Object Oriented Language (except for primitive variables). In
C++, one can write structural programs without using objects.

3. C++ has pointers (access to internal memory). Java has no concept called
pointers.

4. In C++, programmer has to handle memory management. A programmer has
to write code to remove an object from memory. In Java, JVM takes care of
removing objects from memory using a process called Garbage Collection.

5. C++ supports Multiple Inheritance. Java does not support Multiple Inheritance.

A Java program is made up of a number of custom classes (written by programmers
like us) and core classes (which come pre-packaged with Java). When a program is
executed, JVM needs to load the content of all the needed class. JVM uses @
ClassLoader to find the classes.

Three Class Loaders are shown in the picture

e System Class Loader - Loads all classes from CLASSPATH
e Extension Class Loader - Loads all classes from extension directory
e Bootstrap Class Loader - Loads all the Java core files

Core Do

ROOTSTRAP |S1A59%S
CLASS LOADER

1 Exiension
Myectories

[EXTENS \ON
| (dve| b |ewt)

aLass WoADER

SYSTE
CLACS LOADER

CLALSPATH
(A AR CAD)

When JVM needs to find a class, it starts with System Class Loader. If it is not found, it
checks with Extension Class Loader. If it not found, it goes to the Bootstrap Class
Loader. If a class is still not found, a ClassNotFoundException is thrown.

What are wrapper classes?

This video(https://www.youtube.com/watchev=YQbZRw2yIBk) covers the topic in
greo’r detail. A brief description is provided below.

https://www.youtube.com/watch?v=YQbZRw2yIBk
http://1.bp.blogspot.com/-rz7m0uVSTu0/VT5Wx29AO_I/AAAAAAAAAFQ/HoE2z-XKtrA/s1600/Core-Java-Class-Loader.png

Doolean Byte |

: Character
Short s
Intoger

Long Double

Flost

A primitive wrapper class in the Java programming language is one of eight classes
provided in the java.lang package to provide object methods for the eight primitive
types. All of the primitive wrapper classes in Java are immutable.

Wrapper: Boolean,Byte,Character,Double,Float,Integer,Long,Short
Primitive: boolean,byte,char ,double, float, int , long,short

Wrapper classes are final and immutable. Examples of creating wrapper classes are
listed below.

Integer number = new Integer(55);//int
Integer number2 = new Integer("55");//String

Float number3
Float number4
Float number5

new Float(55.0);//double argument
new Float(55.0f);//float argument
new Float("55.0f");//String

Character cl1 = new Character('C');//Only char constructor
//Character c2 = new Character(124);//COMPILER ERROR

Boolean b = new Boolean(true);

//"true”™ "True" "tRUe" - all String Values give True
//Anything else gives false

Boolean bl = new Boolean("true");//value stored - true
Boolean b2 = new Boolean("True");//value stored - true
Boolean b3 = new Boolean("False");//value stored - false
Boolean b4 = new Boolean("SomeString");//value stored - false
b = false;

What are the different utility methods present in wrapper classes?
A number of utility methods are defined in wrapper classes to create and convert
them from primitives.

valueOf Methods
Provide another way of creating a Wrapper Object

Integer seven =
Integer.valueOf("111", 2);//binary 111 is converted to 7

Integer hundred =
Integer.valueOf("100");//100 is stored in variable

xxxValue methods
xxxValue methods help in creating primitives

Integer integer = Integer.valueOf(57);
int primitive = seven.intValue();//57
float primitiveFloat = seven.floatValue();//57.0f

Float floatWrapper = Float.valueOf(57.0f);
int floatToInt = floatWrapper.intValue();//57
float floatToFloat = floatWrapper.floatValue();//57.0f

parseXxx methods
parseXxx methods are similar to valueOf but they return primitive values

int sevenPrimitive =
Integer.parseInt("111", 2);//binary 111 is converted to 7

int hundredPrimitive =
Integer.parseInt("100");//100 is stored in variable

static toString method

Look at the example of the toString static method below.

Integer wrapperEight = new Integer(8);

System.out.println(Integer.
toString(wrapperkight));//String Output: 8

Overloaded static toString method
2nd parameter: radix
System.out.println(Integer

.toString(wrapperEight, 2));//String Output: 1000

Xxx can be Hex,Binary,Octal

System.out.println(Integer
.toHexString(wrapperEight));//String Output:8

System.out.println(Integer
.toBinaryString(wrapperEight));//String Output:1000

System.out.println(Integer
.toOctalString(wrapperEight));//String Output:10

Autoboxing is the automatic conversion that the Java compiler makes between the
primitive types and their corresponding object wrapper classes. For example,
converting an int to an Integer, a double to a Double, and so on. If the conversion
goes the other way, this is called unboxing.

Integer ten = new Integer(10);
ten++;//allowed. Java does had work behind the screen for us

Auto Boxing helps in saving memory by reusing already created Wrapper objects.
However wrapper classes created using new are not reused.

Two wrapper objects created using new are not same object.

Integer nineA = new Integer(9);

Integer nineB = new Integer(9);
System.out.println(nineA == nineB);//false
System.out.println(nineA.equals(nineB));//true

Two wrapper objects created using boxing are same object.

Integer nineC = 9;

Integer nineD = 9;

System.out.println(nineC == nineD);//true
System.out.println(nineC.equals(nineD));//true

This video (https://www.youtube.com/watch?v=wh6L8z0O Hr4) covers all the topics
related to String’s in great detail. Refer to it for more details.

Value of a String Object once created cannot be modified. Any modification on a@
String object creates a new String object.

String str3 = "valuel";
str3.concat("value2");
System.out.println(str3); //valuel

Note that the value of str3 is not modified in the above example. The result should
be assigned to a new reference variable (or same variable can be reused).

String concat = str3.concat("value2");
System.out.println(concat); //valuelvalue2

All strings literals are stored in "String constant pool”. If compiler finds a String literal, it
checks if it exists in the pool. If it exists, it is reused.

https://www.youtube.com/watch?v=wh6L8zO_Hr4

Following statement creates 1 string object (created on the pool) and 1 reference
variable.

String strl = "value";

However, if new operator is used to create string object, the new object is created
on the heap.

Following piece of code create 2 objects.

//1. String Literal "value" - created in the "String constant pool"
//2. String Object - created on the heap
String str2 = new String("value");

Can you give examples of different utility methods in String class?
String class defines a number of methods to get information about the string content.

String str = "abcdefghijk";

Get information from String

Following methods help to get information from a String.
//char charAt(int paramInt)
System.out.println(str.charAt(2)); //prints a char - ¢
System.out.println("ABCDEFGH".length());//8
System.out.println("abcdefghij".toString()); //abcdefghij
System.out.println("ABC".equalsIgnoreCase("abc"));//true

//Get All characters from index paramInt
//String substring(int paramInt)
System.out.println("abcdefghij".substring(3)); //cdefghij

//All characters from index 3 to 6
System.out.println("abcdefghij".substring(3,7)); //defg

This video (https://www.youtube.com/watch?v=k02nM5ukV7w) covers toString in great
detail. toString method is used to print the content of an Object. If the toString
method is not overridden in a class, the default toString method from Object class is
invoked. This would print some hashcode as shown in the example below. However,
if toString method is overridden, the content returned by the toString method is
printed.

Consider the class given below:

class Animal {

public Animal(String name, String type) {
this.name name;
this.type = type;

}

String name;
String type;

Run this piece of code:

Animal animal = new Animal("Tommy", "Dog");
System.out.println(animal);//com.rithus.Animal@f7e6a96

https://www.youtube.com/watch?v=k02nM5ukV7w

Output does NOT show the content of animal (what namee and what type?). To
show the content of the animal object, we can override the default implementation
of toString method provided by Object class.

class Animal {

public Animal(String name, String type) {
this.name = name;
this.type = type;

}

String name;
String type;

public String toString() {

return "Animal [name=" + name + ", type=" + type
+ II]II;

Run this piece of code:

Animal animal = new Animal("Tommy","Dog");
System.out.println(animal);//Animal [name=Tommy, type=Dog]

Output now shows the content of the animal object.

Equals method is used when we compare two objects. Default implementation of
equals method is defined in Object class. The implementation is similar to ==
operator. Two object references are equal only if they are pointing to the same
object.

We need to override equals method, if we would want to compare the contents of
an object.

Consider the example Client class provided below.

class Client {
private int id;

public Client(int id) {
this.id = id;
}
}

== comparison operator checks if the object references are pointing to the same
object. It does NOT look at the content of the object.

Client clientl
Client client2
Client client3

new Client(25);
new Client(25);
clientl;

//clientl and client2 are pointing to different client objects.
System.out.println(clientl == client2);//false

//client3 and clientl refer to the same client objects.
System.out.println(clientl == client3);//true

//similar output to ==
System.out.println(clientl.equals(client2));//false
System.out.println(clientl.equals(client3));//true

We can override the equals method in the Client class to check the content of the
objects. Consider the example below: The implementation of equals method checks
if the id's of both objects are equal. If so, it returns true. Note that this is a basic
implementation of equals and more needs to be done to make it fool-proof.

class Client {
private int id;

public Client(int id) {
this.id = id;
}

@Override
public boolean equals(Object obj) {
Client other = (Client) obj;
if (id !'= other.id)
return false;
return true;

}

Consider running the code below:

Client clientl
Client client2

new Client(25);
new Client(25);

Client

//both
System

//both
System

client3 = clientl;

id's are 25

.out.println(clientl.equals(client2));//true

id's are 25

.out.println(clientl.equals(client3));//true

Above code compares the values (id's) of the objects.

ANy

Let's

equals implementation should satisfy these properties:

Reflexive. For any reference value x, x.equals(x) returns true.

Symmetric. For any reference values x and vy, x.equals(y) should return true if
and only if y.equals(x) returns true.

Transitive. For any reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns frue, then x.equals(z) must return true.

Consistent. For any reference values x and y, multiple invocations of x.equals(y)
consistently return tfrue or consistently return false, if no information used in
equals is modified.

For any non-null reference value x, x.equals(null) should return false.

now provide an implementation of equals which satisfy these properties:

/IClient class
@Override

public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Client other = (Client) obj;
if (id != other.id)
return false;
return true;

HashCode's are used in hashing to decide which group (or bucket) an object should
be placed into. A group of object's might share the same hashcode.

The implementation of hash code decides effectiveness of Hashing. A good hashing
function evenly distributes object's into different groups (or buckets).

A good hashCode method should have the following properties

e If objl.equals(obj2) is true, then objl.hashCode() should be equal to
obj2.hashCode()

e oObj.hashCode() should return the same value when run multiple times, if values
of obj used in equals() have not changed.

e If objl.equals(obj2) is false, it is NOT required that objl.hashCode() is not equal
to obj2.hashCode(). Two unequal objects MIGHT have the same hashCode.

A sample hashcode implementation of Client class which meets above constraints is
given below:

/[Client class
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + id;
return result;

Casting is used when we want to convert on data type to another.
There are two types of Casting

e Implicit Casting
e Explicit Casting

Implicit Casting is done by the compiler. Good examples of implicit casting are all
the automatic widening conversions i.e. storing smaller values in larger variable

types.

int value = 100;
long number = value; //Implicit Casting
float f = 100; //Implicit Casting

Explicit Casting is done through code. Good examples of explicit casting are the
narrowing conversions. Storing larger values into smaller variable types;

long numberl = 25678;

int number2 = (int)numberl;//Explicit Casting
//int x = 35.35;//COMPILER ERROR

int x = (int)35.35;//Explicit Casting

Explicit casting would cause truncation of value if the value stored is greater than

the size of the variable.
int bigValue = 280;

byte small = (byte) bigValue;
System.out.println(small);//output 24. Only 8 bits remain.

Member and Static variables are alway initialized with default values. Default values
for numeric types is 0, floating point types is 0.0, boolean is false, char is "\u0000' and
object reference variable is null.

Local/block variables are NOT initialized by compiler.

If local variables are used before initialization, it would result in a compilation error.

package com.rithus.variables;

public class VariableInitialization {
public static void main(String[] args) {

Player player = new Player();

//score is an int member variable - default ©
System.out.println(player.score);//0 - RULE1

//name is a member reference variable - default null
System.out.println(player.name);//null - RULE1

int local; //not initialized
//System.out.println(local);//COMPILER ERROR! RULE3

String valuel;//not initialized
//System.out.println(valuel);//COMPILER ERROR! RULE3

String value2 = null;//initialized
System.out.println(value2);//null - NO PROBLEM.

}

What is a nested if else? Can you explain with an example?
Look at the example below. The code in first if condition which is true is executed. If
none of the if conditions are true, then code in else is executed.

int z = 15;
if(z==10){
System.out.println("z is 10");//NOT executed
} else if(z==12){
System.out.println("z is 12");//NOT executed
} else if(z==15){
System.out.println("Z is 15");//executed. Rest of the if else are skipped.
} else {
System.out.println("Z is Something Else.");//NOT executed
}

z = 18;
if(z==10){

System.out.println("Zz

} else if(z==12){

System.out.println("Zz

} else if(z==15){

System.out.println("z

} else {

}

System.out.println("Zz

is

is

is

is

10");//NOT executed
12");//NOT executed
15");//NOT executed

Something Else.");//executed

Refer to this video(https://www.youtube.com/watch?v=8bVysCXT-io) for exhaustive
coverage of all the interview questions about arrays.

Let’s first discuss about how to declare an array. All below ways are legal. However,
using the third format of declaration is recommended.

int marks[]; //Not Readable
int[] runs; //Not Readable
int[] temperatures;//Recommended

Declaration of an Array should not include size.

//int values[5];//Compilation Error!

Declaring 2D Array Examples:

int[][] matrixl; //Recommended
int[] matrix2[]; //Legal but not readable. Avoid.

Lets now look at how to create an array (define a size and allocate memory).

marks = new int[5]; // 5 is size of array

Declaring and creating an array in same line.

int marks2[] = new int[5];

https://www.youtube.com/watch?v=8bVysCXT-io

Can the size of an array be changed dynamically?
Once An Array is created, its size cannot be changed.

Can you create an array without defining size of an array?
Size of an array is mandatory to create an array.

//marks = new int[];//COMPILER ERROR

What are the default values in an array?
New Arrays are always inifialized with default values.

int marks2[] = new int[5];
System.out.println(marks2[@]);//@

Default Values
byte,short,intlong 0
float,double 0.0
boolean false
object null

How do you loop around an array using enhanced for loop?
Name of the variable is mark and the array we want to loop around is marks.

for (int mark: marks) {
System.out.println(mark);

}

How do you print the content of an array?
Let’s look at different methods in java to print the content of an array.

Printing a 1D Array

int marks5[] = { 25, 30, 50, 10, 5 };

System.out.println(marks5); //[I@6db3f829

System.out.println(
Arrays.toString(marks5));//[25, 30, 50, 10, 5]

Printing a 2D Array

int[][] matrix3 = { {1, 2, 3}, {4, 5, 6 } };
System.out.println(matrix3); //[[I@1d52a0305
System.out.println(

Arrays.toString(matrix3));
//[[I@6db3¥829, [I@42698403]
System.out.println(

Arrays.deepToString(matrix3));
P o e

matrix3[0] is a 1D Array

System.out.println(matrix3[0]);//[I@86c347
System.out.println(
Arrays.toString(matrix3[0]));//[1, 2, 3]

Arrays can be compared using static method equals defined in Arrays class. Two
arrays are equal only if they have the same numbers in all positions and have the
same size.

3}
6 };

B

int[] numbersl = { 1, 2,
int[] numbers2 = { 4, 5

I

System.out.println(Arrays
.equals(numbersl, numbers2)); //false

int[] numbers3 = { 1, 2, 3 };
System.out.println(Arrays
.equals(numbersl, numbers3)); //true

Array’s can be sorted using static utility method sort defined in Arrays class.

int rollNos[] = { 12, 5, 7, 9 };

Arrays.sort(rollNos);

System.out.println(
Arrays.toString(rollNos));//[5, 7, 9, 12]

Enum
Refer to this video (https://www.youtube.com/watch?v=64Y7EP8-Ark) for exhaustive
coverage of all the interview questions about Enum.

What is an Enum?
Enum allows specifying a list of values for a Type. Consider the example below. It
declares an enum Season with 4 possible values.

enum Season {
WINTER, SPRING, SUMMER, FALL

}s
How do you create an enum from a String value?

Function valueOf(String) is used to convert a string to enum.
//Converting String to Enum
Season season = Season.valueOf("FALL");

Function name() is used to find String value of an enum.

//Converting Enum to String
System.out.println(season.name());//FALL

What is an Enum Ordinal?
Java assigns default ordinals to an enum in order. However, it is not recommended

to use ordinals to perform logic.

//Default ordinals of enum

// By default java assigns ordinals in order
System.out.println(Season.WINTER.ordinal());//@
System.out.println(Season.SPRING.ordinal());//1

https://www.youtube.com/watch?v=64Y7EP8-Ark

System.out.println(Season.SUMMER.ordinal());//2
System.out.println(Season.FALL.ordinal());//3

How do you compare two Enums?
Values of Enum’s can be compared using == or the equals function.

//Comparing two Enums

Season seasonl = Season.FALL;

Season season2 = Season.FALL;
System.out.println(seasonl == season2);//true
System.out.println(seasonl.equals(season2));//true

Can you use a Switch Statement around an Enum?
Example below shows how we can use a switch around an enum.

//Using switch statement on an enum
public int getExpectedMaxTemperature() {
switch (this) {
case WINTER:
return 5;
case SPRING:
case FALL:
return 10;
case SUMMER:
return 20;

}

return -1;// Dummy since Java does not recognize this is possible

OOPS

Following picture show the topics we would cover in this article.

|

Abstract Class |~ 8 | Encapsulation
— — II| III T
Inheritance |~ \\. \ ',.f/ {Enheslon
W i
\
Inner Classes |— “-\l I 1 Coupling
Interfaces l l___ { Abstraction
| r
/ .'I ||"'-\\ ,| Polymorphism
Access Modifiers 'm___,,/a ll__ /| Inheritance

pill

/I
/1 |

What is the super class of every class in Java?

Every class in java is a sub class of the class Object. When we create a class we inherit all the methods and properties of Object class. Let’s look at
a simple example:

String str = "Testing";
System.out.println(str.toString());
System.out.println(str.hashCode());
System.out.println(str.clone());

if(str instanceof Object){
System.out.println("I extend Object");//Will be printed

}

In the above example, toString, hashCode and clone methods for String class are
inherited from Object class and overridden.

Yes. Look at the example below:

Actor reference variables actorl, actor2 hold the reference of objects of sub classes
of Animal, Comedian and Hero.

Since object is super class of all classes, an Object reference variable can also hold
an instance of any class.

//0Object is super class of all java classes
Object object = new Hero();

public class Actor {
public void act(){
System.out.println("Act");
}s5
}

//IS-A relationship. Hero is-a Actor
public class Hero extends Actor {
public void fight(){
System.out.println("fight");

i

}

//IS-A relationship. Comedian is-a Actor
public class Comedian extends Actor {
public void performComedy(){
System.out.println("Comedy");

}s

Actor actorl
Actor actor2

new Comedian();
new Hero();

Is Multiple Inheritance allowed in Java?

Multiple Inheritance results in a number of complexities. Java does not support Multiple Inheritance.

class Dog extends Animal, Pet { //COMPILER ERROR
}

However, we can create an Inheritance Chain
class Pet extends Animal {

}

class Dog extends Pet {
}

What is Polymorphism?
Refer to this video(https://www.youtube.com/watch?v=t8PTatUXtpl) for a clear
explanation of polymorphism.

Polymorphism is defined as “Same Code" giving “Different Behavior”. Let's look at an
example.

https://www.youtube.com/watch?v=t8PTatUXtpI

Let's define an Animal class with a method shout.

public class Animal {
public String shout() {
return "Don't Know!";

}
}

Let’s create two new sub classes of Animal overriding the existing shout method in
Animal.

class Cat extends Animal {
public String shout() {
return "Meow Meow";
}
i

class Dog extends Animal {
public String shout() {
return "BOW BOW";

}

public void run(){

}
}

Look at the code below. An instance of Animal class is created. shout method is
called.

Animal animall = new Animal();
System.out.println(
animall.shout()); //Don't Know!

Look at the code below. An instance of Dog class is created and store in a
reference variable of type Animal.

Animal animal2 = new Dog();
//Reference variable type => Animal
//0Object referred to => Dog

//Dog's bark method is called.

System.out.println(
animal2.shout()); //BOW BOW

When shout method is called on animal2, it invokes the shout method in Dog class
(type of the object pointed to by reference variable animal2).

Even though dog has a method run, it cannot be invoked using super class
reference variable.

//animal2.run();//COMPILE ERROR

instanceof operator checks if an object is of a particular type. Let us consider the
following class and interface declarations:

class SuperClass {

}s

class SubClass extends SuperClass {

}s

interface Interface {

};

class SuperClassImplementingInteface implements Interface {

}s

class SubClass2 extends SuperClassImplementingInteface {

}s

class SomeOtherClass {

s

Let's consider the code below. We create a few instances of the classes declared
above.

SubClass subClass = new SubClass();
Object subClassObj = new SubClass();

SubClass2 subClass2 = new SubClass2();
SomeOtherClass someOtherClass = new SomeOtherClass();

Let’s now run instanceof operator on the different instances created earlier.

System.out.println(subClass instanceof SubClass);//true
System.out.println(subClass instanceof SuperClass);//true
System.out.println(subClassObj instanceof SuperClass);//true

System.out.println(subClass2
instanceof SuperClassImplementingInteface);//true

instanceof can be used with interfaces as well. Since Super Class implements the
interface, below code prints true.

System.out.println(subClass2
instanceof Interface);//true

If the type compared is unrelated to the object, a compilation error occurs.

//System.out.println(subClass
/5 instanceof SomeOtherClass);//Compiler Error

Object referred by subClassObj(SubClass)- NOT of type SomeOtherClass

System.out.println(subClassObj instanceof SomeOtherClass);//false

An abstract class (Video Link - https://www.youtube.com/watch?v=j3GLUcdlzlw) is a
class that cannot be instantiated, but must be inherited from. An abstract class may
be fully implemented, but is more usually partially implemented or not implemented
at all, thereby encapsulating common functionality for inherited classes.

In code below “AbstractClassExample ex = new AbstractClassExample();” gives a
compilation error because AbstractClassExample is declared with keyword abstract.

public abstract class AbstractClassExample {
public static void main(String[] args) {
//An abstract class cannot be instantiated
//Below line gives compilation error if uncommented
//AbstractClassExample ex = new AbstractClassExample();

https://www.youtube.com/watch?v=j3GLUcdlz1w

An Abstract method does not contain body. An abstract method does not have any
implementation. The implementation of an abstract method should be provided in
an over-riding method in a sub class.

//Abstract Class can contain © or more abstract methods
//Abstract method does not have a body

abstract void abstractMethodl();

abstract void abstractMethod2();

Abstract method can be declared only in Abstract Class. In the example below,
abstractMethod() gives a compiler error because NormalClass is not abstract.

class NormalClass{
abstract void abstractMethod();//COMPILER ERROR

I

Coupling is a measure of how much a class is dependent on other classes. There
should minimal dependencies between classes. So, we should always aim for low
coupling between classes.

Consider the example below:

class ShoppingCartEntry {
public float price;
public int quantity;

}

class ShoppingCart {
public ShoppingCartEntry[] items;

}

class Order {
private ShoppingCart cart;
private float salesTax;

public Order(ShoppingCart cart, float salesTax) {
this.cart = cart;
this.salesTax = salesTax;

}

// This method know the internal details of ShoppingCartEntry and
// ShoppingCart classes. If there is any change in any of those
// classes, this method also needs to change.
public float orderTotalPrice() {

float cartTotalPrice = 9;

for (int i = @; i < cart.items.length; i++) {

cartTotalPrice += cart.items[i].price
* cart.items[i].quantity;

}

cartTotalPrice += cartTotalPrice * salesTax;

return cartTotalPrice;

}

Method orderTotalPrice in Order class is coupled heavily with ShoppingCartEntry
and ShoppingCart classes. It uses different properties (items, price, quantity) from
these classes. If any of these properties change, orderTotalPrice will also change. This
is not good for Maintenance.

Consider a better implementation with lesser coupling between classes below: In this
implementation, changes in ShoppingCartentry or CartContents might not affect
Order class at all.

class ShoppingCartEntry
{

float price;
int quantity;

public float getTotalPrice()
{

}

return price * quantity;

}

class CartContents

{
ShoppingCartEntry[] items;

public float getTotalPrice()

{
float totalPrice = 9;

for (ShoppingCartEntry item:items)
{

}

return totalPrice;

totalPrice += item.getTotalPrice();

}

class Order

{

private CartContents cart;
private float salesTax;

public Order(CartContents cart, float salesTax)
{

this.cart = cart;
this.salesTax = salesTax;

i

public float totalPrice()
{

}

return cart.getTotalPrice() * (1.0f + salesTax);

Cohesion (Video Link - https://www.youtube.com/watch?v=BkcQWo0F5124) is a measure
of how related the responsibilities of a class are. A class must be highly cohesive i.e.
its responsibilities (methods) should be highly related to one another.

Example class below is downloading from internet, parsing data and storing data to
database. The responsibilities of this class are not really related. This is not cohesive
class.

class DownloadAndStore{
void downloadFromInternet(){

Y

void parseData(){
}

https://www.youtube.com/watch?v=BkcQWoF5124

void storelntoDatabase(){

}

void doEverything(){
downloadFromInternet();
parseData();
storeIntoDatabase();

This is a better way of approaching the problem. Different classes have their own
responsibilities.

class InternetDownloader {
public void downloadFromInternet() {
}

}

class DataParser {
public void parseData() {
}

}

class DatabaseStorer {
public void storeIntoDatabase() {
}

}

class DownloadAndStore {
void doEverything() {
new InternetDownloader().downloadFromInternet();
new DataParser().parseData();
new DatabaseStorer().storeIntoDatabase();

Encapsulation is “hiding the implementation of a Class behind a well defined
interface”. Encapsulation helps us to change implementation of a class without
breaking other code.

In this approach we create a public variable score. The main method directly
accesses the score variable, updates if.

public class CricketScorer {
public int score;

i

Let’s use the CricketScorer class.

public static void main(String[] args) {
CricketScorer scorer = new CricketScorer();
scorer.score = scorer.score + 4;

In this approach, we make score as private and access value through get and set
methods. However, the logic of adding 4 to the score is performed in the main
method.

public class CricketScorer {
private int score;

public int getScore() {
return score;

}

public void setScore(int score) {
this.score = score;

}
}

Let’s use the CricketScorer class.

public static void main(String[] args) {
CricketScorer scorer = new CricketScorer();

int score = scorer.getScore();
scorer.setScore(score + 4);

In this approach - For better encapsulation, the logic of doing the four operation also
is moved to the CricketScorer class.

public class CricketScorer {
private int score;

public void four() {
score += 4;

}
}

Let’s use the CricketScorer class.

public static void main(String[] args) {
CricketScorer scorer = new CricketScorer();
scorer.four();

In terms of encapsulation Approach 3 > Approach 2 > Approach 1. In Approach 3,
the user of scorer class does not even know that there is a variable called score.
Implementation of Scorer can change without changing other classes using Scorer.

A method having the same name as another method (in same class or a sub class)
but having different parameters is called an Overloaded Method.

dolt method is overloaded in the below example:

class Foo{
public void doIt(int number){

}
public void doIt(String string){

}

Overloading can also be done from a sub class.

class Bar extends Foo{
public void doIt(float number){

Creating a Sub Class Method with same signature as that of a method in SuperClass
is called Method Overriding.

Let's define an Animal class with a method shout.

public class Animal {
public String bark() {
return "Don't Know!";

}
}

Let’'s create a sub class of Animal — Cat - overriding the existing shout method in
Animal.

class Cat extends Animal {
public String bark() {
return "Meow Meow";
}
}

bark method in Cat class is overriding the bark method in Animal class.

Inner Classes are classes which are declared inside other classes. Consider the
following example:

class OuterClass {

public class InnerClass {

}

public static class StaticNestedClass {
}

A class declared directly inside another class and declared as static. In the example
above, class name StaticNestedClass is a static inner class.

Yes. An inner class can be declared directly inside a method. In the example below,
Class NAME methodiocalinnerciass IS A Method inner class.

class OuterClass {

public void exampleMethod() {
class MethodlLocalInnerClass {

};

Constructor (Youtube Video link - https://www.youtube.com/watch?v=XrdxGT2s9tc) is
invoked whenever we create an instance(object) of a Class. We cannot create an
object without a constructor. If we do not provide a constructor, compiler provides a
default no-argument constructor.

Default Constructor is the constructor that is provided by the compiler. It has no
arguments. In the example below, there are no Constructors defined in the Animal
class. Compiler provides us with a default constructor, which helps us create an
instance of animal class.

public class Animal {
String name;

public static void main(String[] args) {
// Compiler provides this class with a default no-argument constructor.
// This allows us to create an instance of Animal class.
Animal animal = new Animal();

I

A constructor can call the constructor of a super class using the super() method call.
Only constraint is that it should be the first statement.

https://www.youtube.com/watch?v=XrdxGT2s9tc

Both example constructors below can replaces the no argument "public Animal() "
constructor in Example 3.

public Animal() {
super();
this.name = "Default Name";

}

Can a constructor be called directly from a method?
A constructor cannot be explicitly called from any method except another
constructor.

class Animal {
String name;

public Animal() {
}

public method() {

Animal();// Compiler error
}

}

Is a super class constructor called even when there is no explicit call from a sub
class constructor?
If a super class constructor is not explicitly called from a sub class constructor, super
class (ho argument) constructor is automatically invoked (as first line) from a sub
class constructor.

Consider the example below:

class Animal {
public Animal() {
System.out.println("Animal Constructor");
}
}

class Dog extends Animal {
public Dog() {
System.out.println("Dog Constructor");
}
}

class Labrador extends Dog {
public Labrador() {
System.out.println("Labrador Constructor");
}
}

public class ConstructorExamples {
public static void main(String[] args) {
Labrador labrador = new Labrador();

}
}

Program Output

Animal Constructor
Dog Constructor
Labrador Constructor

Interface

What is an Interface?

An interface (YouTube video link - https://WWW.voutube.com/watch?v:VanqB-sVqu) defines a contract for
responsibilities (methods) of a class.

How do you define an Interface?

An interface is declared by using the keyword interface. Look at the example below:
Flyable is an interface.

//public abstract are not necessary

public abstract interface Flyable {
//public abstract are not necessary
public abstract void fly();

}

How do you implement an interface?

We can define a class implementing the interface by using the implements keyword.
Let us look at a couple of examples:

Example 1
Class Aeroplane implements Flyable and implements the abstract method fly().

public class Aeroplane implements Flyable{
@Override
public void fly() {
System.out.println("Aeroplane is flying");
o

https://www.youtube.com/watch?v=VangB-sVNgg

}

Example 2

public class Bird implements Flyable{
@Override
public void fly() {
System.out.println("Bird is flying");
}
i

Can you tell a little bit more about interfaces?
Variables in an interface are always public, static, final. Variables in an interface
cannot be declared private.

interface ExampleInterfacel {
//By default - public static final. No other modifier allowed
//valuel,value2,value3,value4 all are - public static final
int valuel = 10;
public int value2 = 15;
public static int value3 = 20;
public static final int value4 = 25;
//private int value5 = 10;//COMPILER ERROR

A

Interface methods are by default public and abstract. A concrete method (fully
defined method) cannot be created in an interface. Consider the example below:

interface ExampleInterfacel {
//By default - public abstract. No other modifier allowed
void methodl();//methodl is public and abstract
//private void method6();//COMPILER ERROR!

/*//Interface cannot have body (definition) of a method

//This method, uncommented, gives COMPILER ERROR!
void method5() {
System.out.println("Method5");

}
7/
}
Can you extend an interface?

An interface can extend another interface. Consider the example below:

interface SubInterfacel extends ExamplelInterfacel{
void method3();
}

Class implementing Sublnterfacel should implement both methods - method3 and
method] (from Examplelnterfacel)

An interface cannot extend a class.

/* //COMPILE ERROR IF UnCommented
//Interface cannot extend a Class
interface SubInterface2 extends Integer{

void method3();

}

e/

Can a class extend multiple interfaces?

A class can implement multiple interfaces. It should implement all the method

declared in all Interfaces being implemented.

interface ExampleInterface2 {
void method2();

}

class SampleImpl implements ExampleInterfacel,ExampleInterface2{

/* A class should implement all the methods in an interface.
If either of methodl or method2 is commented, it would
result in compilation error.

*/

public void method2() {
System.out.println("Sample Implementation for Method2");

}

public void methodl() {
System.out.println("Sample Implementation for Methodl");
}

Access Modifiers

What is default class modifier?
e A classis called a Default Class is when there is no access modifier specified on
a class.
e Default classes are visible inside the same package only.
e Default access is also called Package access.

Example

package com.rithus.classmodifiers.defaultaccess.a;

/* No public before class. So this class has default access*/
class DefaultAccessClass {
//Default access is also called package access

}

Another Class in Same Package: Has access to default class

package com.rithus.classmodifiers.defaultaccess.a;

public class AnotherClassInSamePackage {
//DefaultAccessClass and AnotherClassInSamePackage
//are in same package.
//So, DefaultAccessClass is visible.
//An instance of the class can be created.
DefaultAccessClass defaultAccess;

}
Class in Different Package: NO access to default class

package com.rithus.classmodifiers.defaultaccess.b;

public class ClassInDifferentPackage {
//Class DefaultAccessClass and Class ClassInDifferentPackage
//are in different packages (*.a and *.b)
//So, DefaultAccessClass is not visible to ClassInDifferentPackage

//Below line of code will cause compilation error if uncommented
//DefaultAccessClass defaultAccess; //COMPILE ERROR!!

}
What are the different method access modifiers?
Let’s discuss about access modifiers in order of increasing access.

private
a. Private variables and methods can be accessed only in the class they are
declared.

b. Private variables and methods from SuperClass are NOT available in SubClass.

default or package
a. Default variables and methods can be accessed in the same package Classes.

b. Default variables and methods from SuperClass are available only to SubClasses in
same package.

protected
a. Protected variables and methods can be accessed in the same package Classes.

b. Protected variables and methods from SuperClass are available to SubClass in
any package

a. Public variables and methods can be accessed from every other Java classes.

b. Public variables and methods from SuperClass are all available directly in the
SubClass

Final class cannot be extended. Example of Final class in Java is the String class. Final is used very rarely as it prevents re-
use of the class.Consider the class below which is declared as final.

final public class FinalClass {

}
Below class will not compile if uncommented. FinalClass cannot be extended.

/*
class ExtendingFinalClass extends FinalClass{ //COMPILER ERROR

}
i

What is the use of a final modifier on a method?
Final methods cannot be overridden. Consider the class
FinaIMemberModifiersExample with method finalIMethod which is declared as final.

public class FinalMemberModifiersExample {
final void finalMethod(){
i

}

Any SubClass extending above class cannot override the finalIMethod().

class SubClass extends FinalMemberModifiersExample {
//final method cannot be over-riddent
//Below method, uncommented, causes compilation Error

/*
final void finalMethod(){

}
Y
}

What is a Final variable?
Once initialized, the value of a final variable cannot be changed.

final int finalValue = 5;
//finalvalue = 10; //COMPILER ERROR

What is a final argument?
Final arguments value cannot be modified. Consider the example below:

void testMethod(final int finalArgument){
//final argument cannot be modified
//Below line, uncommented, causes compilation Error
//finalArgument = 5;//COMPILER ERROR

e Volatile can only be applied to instance variables.

e A volafile variable is one whose value is always written to and read from "main
memory". Each thread has its own cache in Java. The volatile variable will not
be stored on a Thread cache.

Static variables and methods are class level variables and methods. There is only
one copy of the stafic variable for the entire Class. Each instance of the Class
(object) will NOT have a unique copy of a stafic variable. Let’s start with a real world
example of a Class with static variable and methods.

count variable in Cricketer class is static. The method to get the count value
getCount() is also a static method.

public class Cricketer {
private static int count;

public Cricketer() {

count++;

i

static int getCount() {
return count;

}

public static void main(String[] args) {

Cricketer cricketerl
Cricketer cricketer2
Cricketer cricketer3
Cricketer cricketer4

new Cricketer();
new Cricketer();
new Cricketer();
new Cricketer();

System.out.println(Cricketer.getCount());//4

}

4 instances of the Cricketer class are created. Variable count is incremented with
every instance created in the constructor.

Advanced Java

List |\

) (o]
. Y

\

= e

ArrayLisl ""F__
\ —\ |
\ | l/_ e Asnwrln

|III
HashSet | — ‘_\. i |||I,lIIII o
[] ' | Variable A ts
Implementations x_j |':f/ { o aHmen]

_/
- i
enerics [
/'l ﬁ\ —
M-H"'\-\.
Garbage Collection
/‘ Exception Handling ~_ / I'\ — -"{ 9]

/ 'II I" \ - Scanner

Threads and \
Synchronization . /

@DE

TreeMa

=

What are Variable Arguments or varargs?

Variable Arguments allow calling a method with different number of parameters.
Consider the example method sum below. This sum method can be called with 1 int
parameter or 2 int parameters or more int parameters.

//int(type) followed ... (three dot's) is syntax of a variable argument.
public int sum(int... numbers) {
//inside the method a variable argument is similar to an array.
//number can be treated as if it is declared as int[] numbers;
int sum = 9;
for (int number: numbers) {
sum += number;

}

return sum;

}

public static void main(String[] args) {
VariableArgumentExamples example = new VariableArgumentExamples();
//3 Arguments
System.out.println(example.sum(1, 4, 5));//10
//4 Arguments
System.out.println(example.sum(1, 4, 5, 20));//30
//© Arguments
System.out.println(example.sum());//0
}

What are Asserts used for?

Assertions are infroduced in Java 1.4. They enable you to validate assumptions. If an
assert fails (i.e. returns false), AssertionError is thrown (if assertions are enabled). Basic
assert is shown in the example below

private int computerSimpleInterest(int principal,float interest,int years){
assert(principal»>0);
return 100;

Assertions should not be used to validate input data to a public method or
command line argument. lllegalArgumentException would be a better option. In
public method, only use assertions to check for cases which are never supposed to
happen.

Garbage Collection is a name given to automatic memory management in Java.
Aim of Garbage Collection is to Keep as much of heap available (free) for the
program as possible. JVM removes objects on the heap which no longer have
references from the heap.

Let’s say the below method is called from a function.

void method(){
Calendar calendar = new GregorianCalendar(2000,10,30);
System.out.println(calendar);

}

An object of the class GregorianCalendar is created on the heap by the first line of
the function with one reference variable calendar.

After the function ends execution, the reference variable calendar is no longer valid.
Hence, there are no references to the object created in the method.

JVM recognizes this and removes the object from the heap. This is called Garbage
Collection.

Garbage Collection runs at the whims and fancies of the JVM (it isn't as bad as that).
Possible situations when Garbage Collection might run are

e when available memory on the heap is low
e when cpu is free

Programmatically, we can request (remember it's just a request - Not an order) JVM
to run Garbage Collection by calling System.gc() method.

JVM might throw an OutOfMemoryException when memory is full and no objects on
the heap are eligible for garbage collection.

finalize() method on the objected is run before the object is removed from the heap
from the garbage collector. We recommend not to write any code in finalize();

Initialization Blocks - Code which runs when an object is created or a class is loaded
There are two types of Initialization Blocks

o Static Initializer: Code that runs when a class is loaded.
¢ Instance Initializer: Code that runs when a new object is created.

Look at the example below:

public class InitializerExamples {
static int count;
int i;

static{
//This is a static initializers. Run only when Class is first loaded.
//0nly static variables can be accessed
System.out.println("Static Initializer");
//i = 6;//COMPILER ERROR
System.out.println("Count when Static Initializer is run is " + count);

}

public static void main(String[] args) {
InitializerExamples example = new InitializerExamples();
InitializerExamples example2 new InitializerExamples();
InitializerExamples example3 new InitializerExamples();

}

Code within static{ and } is called a stafic initializer. This is run only when class is first
loaded. Only static variables can be accessed in a static initializer.

Example Output

Static Initializer
Count when Static Initializer is run 1is ©

Even though three instances are created static initializer is run only once.

What is an Instance Initializer Block?
Let’s look at an example

public class InitializerExamples {

static int count;

int i;

{
//This is an instance initializers. Run every time an object is created.
//static and instance variables can be accessed
System.out.println("Instance Initializer");
i=6;
count = count + 1;
System.out.println("Count when Instance Initializer is run is " + count);

i

public static void main(String[] args) {
InitializerExamples example = new InitializerExamples();
InitializerExamples examplel new InitializerExamples();
InitializerExamples example2 new InitializerExamples();

Code within instance initializer is run every time an instance of the class is created.

Instance Initializer
Count when Instance Initializer 1is run is 1
Instance Initializer
Count when Instance Initializer is run is 2
Instance Initializer
Count when Instance Initializer is run is 3

Regular Expressions make parsing, scanning and splitting a string very easy. We will
first look at how you can evaluate a regular expressions in Java — using Patter,
Matcher and Scanner classes. We will then look info how to write a regular
expression.

Tokenizing means splitting a string intfo several sub strings based on delimiters. For
example, delimiter ; splits the string ac;bd;def;e into four sub strings ac, bd, def and
e.

Delimiter can in itself be any of the regular expression(s) we looked at earlier.

String.split(regex) function takes regex as an argument.

Can you give an example of Tokenizing?

private static void tokenize(String string,String regex) {
String[] tokens = string.split(regex);
System.out.println(Arrays.toString(tokens));

}

Example:
tokenize("ac;bd;def;e",";");//[ac, bd, def, e]

How can you Tokenize using Scanner Class?

private static void tokenizeUsingScanner(String string,String regex) {
Scanner scanner = new Scanner(string);
scanner.useDelimiter(regex);
List<String> matches = new ArrayList<String>();
while(scanner.hasNext()){
matches.add(scanner.next());

o
System.out.println(matches);
}
Example:

tokenizeUsingScanner("ac;bd;def;e",";");//[ac, bd, def, e]

How do you add hours to a date object?

For more details about Date, refer to this youtube video. LETS NOW loOk at adding a few hours
to a date object. All date manipulation to date needs to be done by adding
milliseconds to the date. For example, if we want to add 6 hour, we convert 6 hours
into millseconds. 6 hours = 6 * 60 * 60 * 1000 milliseconds. Below examples shows
specific code.

https://www.youtube.com/watch?v=L-dwfxSU_aA

Date date = new Date();

//Increase time by 6 hrs
date.setTime(date.getTime() + 6 * 60 * 60 * 1000);
System.out.println(date);

//Decrease time by 6 hrs

date = new Date();

date.setTime(date.getTime() - 6 * 60 * 60 * 1000);
System.out.println(date);

How do you format Date Objects?
Formatting Dates is done by using DateFormat class. Let’s look at a few examples.

//Formatting Dates
System.out.println(DateFormat.getInstance().format(
date));//10/16/12 5:18 AM

Formatting Dates with a locale

System.out.println(DateFormat.getDateInstance(
DateFormat.FULL, new Locale("it", "IT"))
.format(date));//marted”“ 16 ottobre 2012

System.out.println(DateFormat.getDateInstance(
DateFormat.FULL, Locale.ITALIAN)
.format(date));//marted”“ 16 ottobre 2012

//This uses default locale US
System.out.println(DateFormat.getDateInstance(
DateFormat.FULL).format(date));//Tuesday, October 16, 2012

System.out.println(DateFormat.getDateInstance()
.format(date));//0ct 16, 2012
System.out.println(DateFormat.getDateInstance(

DateFormat.SHORT) .format(date));//10/16/12
System.out.println(DateFormat.getDateInstance(
DateFormat.MEDIUM).format(date));//Oct 16, 2012

System.out.println(DateFormat.getDateInstance(
DateFormat.LONG).format(date));//October 16, 2012

What is the use of Calendar class in Java?

Calendar class (Youtube video link - https://www.youtube.com/watch?v=hvnlYbtlveO) is
used in Java to manipulate Dates. Calendar class provides easy ways to add or
reduce days, months or years from a date. It also provide lot of details about a date
(which day of the year?2 Which week of the yeare etc.)

How do you get an instance of Calendar class in Java?
Calendar class cannot be created by using new Calendar. The best way to get an
instance of Calendar class is by using getlnstance() static method in Calendar.

//Calendar calendar = new Calendar(); //COMPILER ERROR
Calendar calendar = Calendar.getInstance();

Can you explain some of the important methods in Calendar class?
Setting day, month or year on a calendar object is simple. Call the set method with
appropriate Constant for Day, Month or Year. Next parameter is the value.

calendar.set(Calendar.DATE, 24);
calendar.set(Calendar.MONTH, 8);//8 - September
calendar.set(Calendar.YEAR, 2010);

https://www.youtube.com/watch?v=hvnlYbt1ve0

Let’s get information about a particular date - 24th September 2010. We use the
calendar get method. The parameter passed indicates what value we would want
to get from the calendar — day or month or year or .. Few examples of the values
you can obtain from a calendar are listed below.

System.out.

System.out

System.out.
System.out.
System.out.
System.out.
System.out.

println(calendar.
.println(calendar.
println(calendar.
println(calendar.
println(calendar.
println(calendar.
println(calendar.

get(Calendar.YEAR));//2010
get(Calendar.MONTH));//8
get(Calendar.DATE));//24
get(Calendar.WEEK_OF _MONTH));//4
get(Calendar.WEEK_OF _YEAR));//39
get(Calendar.DAY OF YEAR));//267
getFirstDayOfWeek());//1 -> Calendar.SUNDAY

Number format is used to format a numlber to different locales and different formats.

System.out.println(NumberFormat.getInstance().format(321.24f));//321.24

Formatting a number using Netherlands locale

System.out.println(NumberFormat.getInstance(new Locale("nl")).format(4032.3f));//4.032,3

Formatting a number using Germany locale

System.out.println(NumberFormat.getInstance(Locale.GERMANY).format(4032.3f));//4.032,3

Formatting a Currency using Default locale
System.out.println(NumberFormat.getCurrencyInstance().format(40324.31f));//$40,324.31

Format currency using locale
Formatting a Currency using Netherlands locale

System.out.println(NumberFormat.getCurrencyInstance(new Locale("nl")).format(40324.31f));//? 40.324,31

We will discuss about different collection interfaces along with their purpose. Refer to
this youtube videos (https://www.youtube.com/watchev=GnR4hCVvEIJQ &
hitps://www.youtube.com/watch?2v=6dKGpOKAQQgs) for more details.

Arrays are not dynamic. Once an array of a particular size is declared, the size
cannot be modified. To add a new element to the array, a new array has to be
created with bigger size and all the elements from the old array copied to new
array.

Collections are used in situations where data is dynamic. Collections allow adding
an element, deleting an element and host of other operations. There are a number
of Collections in Java allowing to choose the right Collection for the right context.

Most important methods declared in the collection interface are the methods to
add and remove an element. add method dadllows adding an element to a
collection and delete method allows deleting an element from a collection.

https://www.youtube.com/watch?v=GnR4hCvEIJQ
https://www.youtube.com/watch?v=6dKGpOKAQqs

size() methods returns number of elements in the collection. Other important
methods defined as part of collection interface are shown below.

interface Collection<E> extends Iterable<E>

{
boolean add(E paramE);
boolean remove(Object paramObject);
int size();
boolean isEmpty();
void clear();

boolean contains(Object paramObject);
boolean containsAll(Collection<?> paramCollection);

boolean addAll(Collection<? extends E> paramCollection);
boolean removeAll(Collection<?> paramCollection);
boolean retainAll(Collection<?> paramCollection);

Iterator<E> iterator();

//A NUMBER OF OTHER METHODS AS WELL..

List interface extends Collection interface. So, it contains all methods defined in the
Collection interface. In addition, List interface allows operation specifying the
position of the element in the Collection.

Most important thing to remember about a List interface - any implementation of the
List inferface would maintain the insertion order. When an element A is inserted into

a List (without specifying position) and then another element B is inserted, A is stored
before B in the List.

When a new element is inserted without specifying a position, it is inserted at the end
of the list of elements.

However, We can also use the void add(int position, E paramEk); method to insert an
element at a specific position.

Listed below are some of the important methods in the List intferface (other than
those inherited from Collection interface):

interface List<E> extends Collection<E>

{

boolean addAll(int paramInt, Collection<? extends E> paramCollection);

E get(int paramlnt);
E set(int paramInt, E paramE);

void add(int paramInt, E paramE);
E remove(int paramInt);

int indexOf(Object paramObject);
int lastIndexOf(Object paramObject);

ListIterator<E> listIterator();
ListIterator<E> listIterator(int paramlnt);
List<E> subList(int paramIntl, int paramInt2);

First and foremost, Map interface does not extend Collection interface. So, it does
not inherit any of the methods from the Collection interface.

A Map interface supports Collections that use a key value pair. A key-value pair is a set
of linked data items: a key, which is a unique identifier for some item of data, and the value, which is
either the data or a pointer to the data. Key-value pairs are used in lookup tables, hash tables and
configuration files. A key value pair in a Map interface is called an Entry.

Put method allows to add a key, value pair to the Map.

V put(K paramK, V paramV);

Get method allows to get a value from the Map based on the key.

V get(Object paramObject);

Other important methods in Map Inteface are shown below:

interface Map<K, V>

{
int size();
boolean isEmpty();

boolean containsKey(Object paramObject);
boolean containsValue(Object paramObject);

V get(Object paramObject);
V put(K paramK, V paramV);

V remove(Object paramObject);

void putAll(Map<? extends K, ? extends V> paramMap);
void clear();

Set<K> keySet();
Collection<V> values();
Set<Entry<K, V>> entrySet();

boolean equals(Object paramObject);
int hashCode();

public static abstract interface Entry<K, V>
£

K getKey();

V getValue();

V setValue(V paramV);

boolean equals(Object paramObject);
int hashCode();

SortedSet Interface extends the Set Interface. Both Set and SortedSet do not allow
duplicate elements.

Main difference between Set and SortedSet is - an implementation of SortedSet
interface maintains its elements in a sorted order. Set interface does not guarantee
any Order. For example, If elements 4,5,3 are inserted into an implementation of Set
interface, it might store the elements in any order. However, if we use SortedSet, the
elements are sorted. The SortedSet implementation would give an output 3,4,5.

Important Operations in the SortedSet interface which are not present in the Set
Interface are listed below:

public interface SortedSet<E> extends Set<E> {
SortedSet<E> subSet(E fromElement, E toElement);
SortedSet<E> headSet(E toElement);
SortedSet<E> tailSet(E fromElement);

E first();
E last();

Comparator<? super E> comparator();
¥

SortedMap interface extends the Map interface. In addition, an implementation of
SortedMap interface maintains keys in a sorted order.

Methods are available in the interface to get a ranges of values based on their keys.

public interface SortedMap<K, V> extends Map<K, V> {
Comparator<? super K> comparator();

SortedMap<K, V> subMap(K fromKey, K toKey);
SortedMap<K, V> headMap(K toKey);
SortedMap<K, V> tailMap(K fromKey);

K firstKey();

K lastKey();

Queue Interface extends Collection interface. Queue Interface is typically used for implementation holding elements in
order for some processing.

Quevue interface offers methods peek() and poll() which get the element at head of the queue. The difference is that poll()
method removes the head from queue also. peek() would keep head of the queue unchanged.

interface Queue<E> extends Collection<E>

{

boolean offer(E paramkE);
E remove();

E poll();

E element();

E peek();

lterator interface enables us to iterate (loop around) a collection. All collections
define a method iterator() that gets an iterator of the collection.

hasNext() checks if there is another element in the collection being iterated. nexi()
gets the next element.

public interface Iterator<E> {
boolean hasNext();

E next();

Refer to this video - htips://www.youtube.com/waichev= JTIYhnLemA for more
details about Arraylist. Let us look at a few important interview questions.

ArrayList implements the list interface. So, Arraylist stores the elements in insertion
order (by default). Element’s can be inserted into and removed from Arraylist based
on their position.

Let’s look at how to instantiate an ArraylList of integers.

List<Integer> integers = new ArrayList<Integer>();

Code like below is permitted because of auto boxing. 5 is auto boxed into Integer
object and stored in ArrayList.

integers.add(5);//new Integer(5)

Add method (by default) adds the element at the end of the list.

Arraylist can have duplicates (since List can have duplicates).

List<String> arraylist = new ArrayList<String>();

//adds at the end of list
arraylist.add("Sachin");//[Sachin]

//adds at the end of list

https://www.youtube.com/watch?v=_JTIYhnLemA

arraylist.add("Dravid");//[Sachin, Dravid]

//adds at the index ©
arraylist.add(®, "Ganguly");//[Ganguly, Sachin, Dravid]

//List allows duplicates - Sachin is present in the list twice
arraylist.add("Sachin");//[Ganguly, Sachin, Dravid, Sachin]

System.out.println(arraylist.size());//4
System.out.println(arraylist.contains("Dravid"));//true

How do you iterate around an Arraylist using lterator?
Example below shows how to iterate around an ArraylList.

Iterator<String> arraylistIterator = arraylist
.iterator();
while (arraylistIterator.hasNext()) {
String str = arraylistIterator.next();
System.out.println(str);//Prints the 4 names in the list on separate lines.

}

How do you sort an Arraylist?
Example below shows how to sort an ArraylList. It uses the Collections.sort method.

List<String> numbers = new ArraylList<String>();
numbers.add("one");

numbers.add("two");

numbers.add("three");

numbers.add("four");
System.out.println(numbers);//[one, two, three, four]

//Strings - By Default - are sorted alphabetically
Collections.sort(numbers);

System.out.println(numbers);//[four, one, three, two]

How do you sort elements in an Arraylist using Comparable interface?
Consider the following class Cricketer.

class Cricketer implements Comparable<Cricketer> {
int runs;
String name;

public Cricketer(String name, int runs) {

super();
this.name = name;
this.runs = runs;
}
@Override
public String toString() {
return name + " " + runs;
}
@Override

public int compareTo(Cricketer that) {
if (this.runs > that.runs) {
return 1;
}
if (this.runs < that.runs) {
return -1;

}

return 0;

)

Let’s now try to sort a list containing objects of Cricketer class.

List<Cricketer> cricketers = new ArraylList<Cricketer>();
cricketers.add(new Cricketer("Bradman", 9996));
cricketers.add(new Cricketer("Sachin", 14000));
cricketers.add(new Cricketer("Dravid", 12000));

cricketers.add(new Cricketer("Ponting", 11000));
System.out.println(cricketers);
//[Bradman 9996, Sachin 14000, Dravid 12000, Ponting 11000]

Now let’s try to sort the cricketers.

Collections.sort(cricketers);
System.out.println(cricketers);
//[Bradman 9996, Ponting 11000, Dravid 12000, Sachin 14000]

How do you sort elements in an Arraylist using Comparator interface?

Other option to sort collections is by creating a separate class which implements
Comparator interface.
Example below:

class DescendingSorter implements Comparator<Cricketer> {

//compareTo returns -1 if cricketerl < cricketer2
ol 1 if cricketerl > cricketer2
// @ if cricketerl = cricketer2

//Since we want to sort in descending order,
//we should return -1 when runs are more
@Override
public int compare(Cricketer cricketerl,
Cricketer cricketer2) {
if (cricketerl.runs > cricketer2.runs) {

return -1;

}

if (cricketerl.runs < cricketer2.runs) {
return 1;

B

return 0;

}

Let’s now try to sort the previous defined collection:

Collections
.sort(cricketers, new DescendingSorter());

System.out.println(cricketers);
//[Sachin 14000, Dravid 12000, Ponting 11000, Bradman 9996]

There are two ways. First is to use toArray(String) function. Example below. This
creates an array of String's

List<String> numbersl = new ArrayList<String>();
numbersl.add("one");

numbersl.add("two");

numbersl.add("three");

numbersl.add("four");

String[] numberslArray = new String[numbersl.size()];
numberslArray = numbersl.toArray(numberslArray);
System.out.println(Arrays.toString(numbersilArray));
//prints [one, two, three, four]

Other is to use toArray() function. Example below. This creates an array of Objects.

Object[] numbersiObjArray = numbersl.toArray();

System.out.println(Arrays
.toString(numbers10bjArray));

//[one, two, three, four]

String values[] = { "valuel", "value2", "value3" };
List<String> valuesList = Arrays.asList(values);
System.out.println(valuesList);//[valuel, value2, value3]

Following set of videos deal with collections interview questions in great detail
Videol, Video?2 & Videod

Vector has the same operations as an Arraylist. However, all methods in Vector are
synchronized. So, we can use Vector if we share a list between two threads and we
would want to them synchronized.

Linked List extends List and Queue.Other than operations exposed by the Queue
interface, LinkedList has the same operations as an ArraylList. However, the
underlying implementation of Linked List is different from that of an ArrayList.

Arraylist uses an Array kind of structure to store elements. So, inserting and deleting
from an Arraylist are expensive operations. However, search of an Arraylist is faster
than LinkedList.

https://www.youtube.com/watch?v=_JTIYhnLemA
https://www.youtube.com/watch?v=ZNhT_Z8_q9s
https://www.youtube.com/watch?v=W5c8uXi4qTw

LinkedList uses a linked representation. Each object holds a link to the next element.
Hence, inserfion and deletion are faster than Arraylist. But searching is slower.

HashSet, LinkedHashSet and TreeSet implement the Set interface. These classes are
described in great detail in the video -
hitps://www.youtube.com/watchev=W5c8uXi4gTw.

HashSet implements set interface. So, HashSet does not allow duplicates. However,
HashSet does not support ordering. The order in which elements are inserted is not
maintained.

Set<String> hashset = new HashSet<String>();

hashset.add("Sachin");
System.out.println(hashset);//[Sachin]

hashset.add("Dravid");
System.out.println(hashset);//[Sachin, Dravid]

Let’s try to add Sachin to the Set now. Sachin is Duplicate. So will not be added.
returns false.

hashset.add("Sachin");//returns false since element is not added
System.out.println(hashset);//[Sachin, Dravid]

https://www.youtube.com/watch?v=W5c8uXi4qTw

What is a LinkedHashSet? How is different from a HashSet?

LinkedHashSet implements set interface and exposes similar operations to a HashSet.
Difference is that LinkedHashSet maintains insertion order. When we iterate a
LinkedHashSet, we would get the elements back in the order in which they were
inserted.

What is a TreeSet? How is different from a HashSet?
TreeSet implements Set, SortedSet and NavigableSet interfaces.TreeSet is similar o
HashSet except that it stores element’s in Sorted Order.

Set<String> treeSet = new TreeSet<String>();

treeSet.add("Sachin");
System.out.println(treeSet);//[Sachin]

Notice that the list is sorted after inserting Dravid.

//Alphabetical order
treeSet.add("Dravid");
System.out.println(treeSet);//[Dravid, Sachin]

Notice that the list is sorted after inserting Ganguly.

treeSet.add("Ganguly");
System.out.println(treeSet);//[Dravid, Ganguly, Sachin]

//Sachin is Duplicate. So will not be added. returns false.
treeSet.add("Sachin");//returns false since element is not added
System.out.println(treeSet);//[Dravid, Ganguly, Sachin]

TreeSet implements this interface. Let's look at an example with TreeSet. Note that
elements in TreeSet are sorted.

TreeSet<Integer> numbersTreeSet = new TreeSet<Integer>();
numbersTreeSet.add(55);
numbersTreeSet.add(25);
numbersTreeSet.add(35);
numbersTreeSet.add(5);
numbersTreeSet.add(45);

NavigableSet interface has following methods.

Lower method finds the highest element lower than specified element. Floor method
finds the highest element lower than or equal to specified element. Corresponding
methods for finding lowest humber higher than specified element are higher and
ceiling. A few examples using the Set created earlier below.

//Find the highest number which is lower than 25
System.out.println(numbersTreeSet.lower(25));//5

//Find the highest number which is lower than or equal to 25
System.out.println(numbersTreeSet.floor(25));//25

//Find the lowest number higher than 25
System.out.println(numbersTreeSet.higher(25));//35

//Find the lowest number higher than or equal to 25
System.out.println(numbersTreeSet.ceiling(25));//25

What are the different implementations of a Map Interface?
HashMap and TreeMap. These classes are explained in detail in this video -
hitps://www.youtube.com/watchg2v=/ZNhT 78 g%s.

What is a HashMap?
HashMap implements Map interface — there by supporting key value pairs. Let’s look
at an example.

HashMap Example
Map<String, Cricketer> hashmap = new HashMap<String, Cricketer>();
hashmap.put("sachin",
new Cricketer("Sachin", 14000));
hashmap.put("dravid",
new Cricketer("Dravid", 12000));
hashmap.put("ponting"”, new Cricketer("Ponting",
11500));
hashmap.put("bradman"”, new Cricketer("Bradman",
9996));

What are the different methods in a Hash Map?
get method gets the value of the matching key.

System.out.println(hashmap.get("ponting"));//Ponting 11500

//if key is not found, returns null.
System.out.println(hashmap.get("lara"));//null

If existing key is reused, it would replace existing value with the new value passed in.

https://www.youtube.com/watch?v=ZNhT_Z8_q9s

//In the example below, an entry with key "ponting" is already present.
//Runs are updated to 11800.
hashmap.put("ponting"”, new Cricketer("Ponting",

11800));

//gets the recently updated value
System.out.println(hashmap.get("ponting"));//Ponting 11800

TreeMap is similar to HashMap except that it stores keys in sorted order. It implements
NavigableMap interface and SortedMap interfaces along with the Map interface.

Map<String, Cricketer> treemap = new TreeMap<String, Cricketer>();
treemap.put("sachin”,

new Cricketer("Sachin", 14000));
System.out.println(treemap);
//{sachin=Sachin 14000}

We will now insert a Cricketer with key dravid. In sorted order,dravid comes before
sachin. So, the value with key dravid is inserted at the start of the Map.

treemap.put("dravid”,

new Cricketer("Dravid", 12000));
System.out.println(treemap);
//{dravid=Dravid 12000, sachin=Sachin 14000}

We will now insert a Cricketer with key ponting. In sorted order, ponting fits in
between dravid and sachin.

treemap.put("ponting”, new Cricketer("Ponting",
11500));
System.out.println(treemap);

//{dravid=Dravid 12000, ponting=Ponting 11500, sachin=Sachin 14000}

treemap.put("bradman”, new Cricketer("Bradman",
9996));
System.out.println(treemap);
//{bradman=Bradman 9996, dravid=Dravid 12000, ponting=Ponting 11500, sachin=Sachin 14000}

Can you give an example of implementation of NavigableMap Interface?

TreeMap is a good example of a NavigableMap interface implementation. Note
that keys in TreeMap are sorted.

TreeMap<Integer, Cricketer> numbersTreeMap = new TreeMap<Integer, Cricketer>();
numbersTreeMap.put(55, new Cricketer("Sachin",
14000));
numbersTreeMap.put (25, new Cricketer("Dravid",
12000));
numbersTreeMap.put(35, new Cricketer("Ponting",
12000));
numbersTreeMap.put(5,
new Cricketer("Bradman", 9996));
numbersTreeMap
.put(45, new Cricketer("Lara", 10000));

lowerKey method finds the highest key lower than specified key. floorKey method
finds the highest key lower than or equal to specified key. Corresponding methods
for finding lowest key higher than specified key are higher and ceiling. A few
examples using the Map created earlier below.

//Find the highest key which is lower than 25
System.out.println(numbersTreeMap.lowerKey(25));//5

//Find the highest key which is lower than or equal to 25

System.out.println(numbersTreeMap.floorKey(25));//25

//Find the lowest key higher than 25
System.out.println(numbersTreeMap.higherKey(25));//35

//Find the lowest key higher than or equal to 25
System.out.println(numbersTreeMap.ceilingKey(25));//25

What is a PriorityQueue?
PriorityQueue implements the Queue interface.

//Using default constructor - uses natural ordering of numbers
//Smaller numbers have higher priority
PriorityQueue<Integer> priorityQueue = new PriorityQueue<Integer>();

Adding an element into priority queue - offer method

priorityQueue.offer(24);
priorityQueue.offer(15);
priorityQueue.offer(9);

priorityQueue.offer(45);

System.out.println(priorityQueue);//[9, 24, 15, 45]

Peek method examples

//peek method get the element with highest priority.
System.out.println(priorityQueue.peek());//9

//peek method does not change the queue
System.out.println(priorityQueue);//[9, 24, 15, 45]

//poll method gets the element with highest priority.
System.out.println(priorityQueue.poll());//9

//peek method removes the highest priority element from the queue.
System.out.println(priorityQueue);//[24, 15, 45]

//This comparator gives high priority to the biggest number.

Comparator reverseComparator = new Comparator<Integer>() {
public int compare(Integer paramT1,
Integer paramT2) {
return paramT2 - paramTl;

}s

e static int binarySearch(List, key)
o Can be used only on sorted list
e static int binarySearch(List, key, Comparator)
e static void reverse(List)
o Reverse the order of elements in a List.
e static Comparator reverseOrder();
o Return a Comparator that sorts the reverse of the collection current sort
sequence.
e static void sort(List)
e static void sort(List, Comparator)

Synchronized collections are implemented using synchronized methods and
synchronized blocks. Only one thread can executing any of the synchronized code
at a given point in time. This places severe restrictions on the concurrency of threads
— thereby affecting performance of the application. All the pre Java 5 synchronized
collections (HashTable & Vector, for example) use this approach.

Post Java 5, collections using new approaches to synchronization are available in
Java. These are called concurrent collections. More details below.

Post Java 5, collections using new approaches to synchronization are available in
Java. These are called concurrent collections. Examples of new approaches are :

e Copy on Write
e Compare and Swap
e Locks

These new approaches to concurrency provide better performance in specific
context’s. We would discuss each of these approaches in detail below.

Important points about Copy on Write approach

e All values in collection are stored in an internal immutable (not-changeable)
array. A new array is created if there is any modification to the collection.
e Read operations are not synchronized. Only write operations are synchronized.

Copy on Write approach is used in scenarios where reads greatly out number write's
on a collection. CopyOnWriteArraylList & CopyOnWriteArraySet are implementations
of this approach. Copy on Write collections are typically used in Subject — Observer
scenarios, where the observers very rarely change. Most frequent operations would
be iterating around the observers and notifying them.

Compare and Swap is one of the new approaches (Java 5) introduced in java to
handle synchronization. In traditional approach, a method which modifies a
member variable used by multiple threads is completely synchronized - to prevent
other threads accessing stale value.

In compare and swap approach, instead of synchronizing entire method, the value
of the member variable before calculation is cached. After the calculation, the
cached value is compared with the current value of member variable. If the value is

not modified, the calculated result is stored into the member variable. If another
thread has modified the value, then the calculation can be performed again. Or
skipped — as the need might be.

ConcurrentlLinkedQueue uses this approach.

When 10 methods are declared as synchronized, only one of them is executed by
any of the threads at any point in time. This has severe performance impact.

Another new approach introduced in Java 5 is to use lock and unlock methods.
Lock and unlock methods are used to divide methods into different blocks and help
enhance concurrency. The 10 methods can be divided into different blocks, which
can be synchronized based on different variables.

Extract from the reference ;
http://docs.oracle.com/javase/é/docs/api/java/util/HashMap.html. An instance of
HashMap has two parameters that affect its performance: initial capacity and load
factor. The capacity is the number of buckets in the hash table, and the initial
capacity is simply the capacity at the time the hash table is created. The load factor

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html

is a measure of how full the hash table is allowed to get before its capacity is
automatically increased.

When the number of entries in the hash table exceeds the product of the load factor
and the current capacity, the hash table is rehashed (that is, infernal data structures
are rebuilt) so that the hash table has approximately twice the number of buckets.

As a general rule, the default load factor (.75) offers a good tradeoff between fime
and space costs. Higher values decrease the space overhead but increase the
lookup cost (reflected in most of the operations of the HashMap class, including get
and put).

The expected number of entries in the map and its load factor should be taken into
account when setting its initial capacity, so as to minimize the number of rehash
operations.

Refer answer to Initial Capacity above.

All Java Collections extend Collection interface. So, they have to implement all the
methods in the Collection interface. However, certain Java collections are

optimized to be used in specific conditions and do not support all the Collection
operations (methods). When an unsupported operation is called on a Collection,
the Collection Implementation would throw an UnsupportedOperationException.

Arrays.aslist returns a fixed-size list backed by the specified array. When an attempt
is made to add or remove from this collection an UnsupportedOperationException is
thrown. Below code throws UnsupportedOperationException.

List<String> list=Arrays.aslList(new String[]{"ac","bddefe"});

list.remove();//throws UnsupportedOperationException

Fail Fast Iterators throw a ConcurrentModificationException if there is a modification
to the underlying collection is modified. This was the default behavior of the
synchronized collections of pre Java 5 age.

Fail Safe lterators do not throw exceptions even when there are changes in the
collection. This is the default behavior of the concurrent collections, introduced since
Java 5.

Streams are infroduced in Java 8. In combination with Lambda expressions, they
attempt to bring some of the important functional programming concepts to Java.

A stream is a sequence of elements supporting sequential and parallel aggregate
operations. Consider the example code below. Following steps are done:

e Step | :Creafing an array as a stream

Step Il : Use Lambda Expression to create a filter
Step Il : Use map function to invoke a String function
Step IV : Use sorted function to sort the array

Step V : Print the array using forEach

Arrays.stream(new String[] {
"Ramisr FRobent! s Rahidm"

%
. BivliFerifs —w >%s sstamtsWith ("Ro'))
.map (String: :toLowerCase)
.sorted ()

forEach(System.out::printin);

Stneams
e ————

e ——? oy

Convert ¢allectien
Source \ te Stlyeam
g

\
\

3_‘ \‘l‘(f PC“-"A-‘ ‘\.gc"'\'w glLeedm

ctekdun] oap Tekeyenediaie
shadtpuk g Sorted _@_%;_ﬂ__

l_

Pacsible 1o have muitipe
LATey Mme Adice ‘Jr"l"*-'““'“

e AL &t Team

SCE L)) ” Conso
WA Tewxrmnal
WRE Ope_’c‘f.\""‘?"‘
—

In general any use of streams involves

e Source - Creation or use of existing stream : Step | above

e Intermediate Operations - Step I, I and IV above. Intermediate Operations
return a new stream

e Terminal Operation — Step V. Consume the stream. Print it fo output or produce
a result (sum,min,max etc).

e Stateful : Elements need to be compared against one another (sort, distinct
etc)

e Stateless : No need for comparing with other elements (map, filter etc)

Atomic Access Java Tutorial states “In programming, an atomic action is one that
effectively happens all at once. An atomic action cannot stop in the middle: it either
happens completely, or it doesn't happen at all. No side effects of an atomic action
are visible until the action is complete™.

Let’'s assume we are writing a multi threaded program. Let's create an int variable i.
Even a small operation, like i++ (increment), is not thread safe. i++ operation involves
three steps.

1. Read the value which is currently stored in i
2. Add one to it (atomic operation).
3. Store itini

In a multi-threaded environment, there can be unexpected results. For example, if
thread1 is reading the value (step 1) and immediately after thread?2 stores the value
(step 3).

To prevent these, Java provides atomic operations. Atomic operations are
performed as a single unit without interference from other threads ensuring data
consistency.

A good example is Atomiclnteger. To increment a value of Afomicinteger, we use
the incrementAndGet() method. Java ensures this operation is Atomic.

BlockedQueue interface is infroduced in Java specifically to address specific needs
of some Producer Consumer scenarios. BlockedQueue allows the consumer to wait
(for a specified time or infinitely) for an element to become available.

Generics

What are Generics?
Generics are used to create Generic Classes and Generic methods which can work
with different Types(Classes).

Why do we need Generics? Can you give an example of how Generics make a
program more flexible?
Consider the class below:

class MylList {
private List<String> values;

void add(String value) {
values.add(value);

i

void remove(String value) {
values.remove(value);
}
}

MyList can be used to store a list of Strings only.

MyList myList = new MyList();
myList.add("Value 1");
myList.add("Value 2");

To store integers, we need to create a new class. This is problem that Generics solve.
Instead of hard-coding String class as the only type the class can work with, we
make the class type a parameter to the class.

Let’s replace String with T and create a new class. Now the MyListGeneric class can
be used to create a list of Integers or a list of Strings

class MylListGeneric<T> {
private List<T> values;

void add(T value) {
values.add(value);

}

void remove(T value) {
values.remove(value);
}

T get(int index) {
return values.get(index);
}

}

MyListGeneric<String> myListString = new MyListGeneric<String>();
myListString.add("Value 1");
myListString.add("Value 2");

MyListGeneric<Integer> myListInteger = new MyListGeneric<Integer>();
myListInteger.add(1);
myListInteger.add(2);

Notfe the declaration of class:

class MyListGeneric<T>

Instead of T, We can use any valid identifier

If a generic is declared as part of class declaration, it can be used any where a type
can be used in a class - method (return type or argument), member variable etc. For
Example: See how T is used as a parameter and return type in the class
MyListGeneric.

In MyListGeneric, Type T is defined as part of class declaration. Any Java Type can
be used a type for this class. If we would want to restrict the types allowed for @
Generic Type, we can use a Generic Restrictions. Consider the example class below:
In declaration of the class, we specified a constraint "T extends Number'. We can use
the class MyListRestricted with any class extending (any sub class of) Number - Float,
Integer, Double etc.

class MyListRestricted<T extends Number> {
private List<T> values;

void add(T value) {

values.add(value);

i

void remove(T value) {
values.remove(value);

}

T get(int index) {
return values.get(index);

}
}

MyListRestricted<Integer> restrictedListInteger = new MyListRestricted<Integer>();

restrictedListInteger.add(1);
restrictedListInteger.add(2);

String not valid substitute for constraint "T extends Number".

//MyListRestricted<String> restrictedStringlist =
// new MyListRestricted<String>();//COMPILER ERROR

In MyListGeneric, Type T is defined as part of class declaration. Any Java Type can
be used a type for this class. If we would want to restrict the types allowed for @
Generic Type, we can use a Generic Restrictions. In declaration of the class, we
specified a constraint "T super Number'. We can use the class MyListRestricted with
any class that is a super class of Number class.

A generic type can be declared as part of method declaration as well. Then the
generic type can be used anywhere in the method (return type, parameter type,
local or block variable type).

Consider the method below:

static <X extends Number> X doSomething(X number){
X result = number;
//do something with result
return result;

The method can now be called with any Class type extend Number.

5.

Integer i :
doSomething(i);

Integer k

Exception Handling
Explain about Exception Handling with an example.

Exception Handling helps us to recover from an unexpected situations — File not
found or network connection is down. The important part in exception handling is
the try — catch block. Look at the example below.

public static void main(String[] args) {
method1();
System.out.println("Line after Exception - Main");

}

private static void methodl() {
method2();
System.out.println("Line after Exception - Method 1");

}

private static void method2() {
try {
String str = null;
str.toString();
System.out.println("Line after Exception - Method 2");
} catch (Exception e) {
// NOT PRINTING EXCEPTION TRACE- BAD PRACTICE
System.out.println("Exception Handled - Method 2");

Program Output

Exception Handled - Method 2

Line after Exception - Method 1
Line after Exception - Main

When exception is handled in a method, the calling methods will not need worry
about that exception. Since Exception Handling is added in the method method?2,
the exception did not propogate to methodl i.e. method1 does not know about the
exception in method?2.

Few important things to remember from this example.

e If exceptionis handled, it does not propogate further.
e In a fry block, the lines after the line throwing the exception are not executed.

When an exception happens, the code after the line throwing exception is not
executed. If code for things like closing a connection is present in these lines of
code, it is not executed. This leads to connection and other resource leaks.

Code written in finally block is executed even when there is an exception.

Consider the example below. This is code without a finally block . We have
Connection class with open and close methods. An exception happens in the main
method. The connection is not closed because there is no finally block.

class Connection {
void open() {
System.out.println("Connection Opened");

}

void close() {
System.out.println("Connection Closed");

}
}

public class ExceptionHandlingExamplel {

public static void main(String[] args) {

try {
Connection connection = new Connection();

connection.open();

// LOGIC
String str = null;
str.toString();

connection.close();
} catch (Exception e) {

// NOT PRINTING EXCEPTION TRACE- BAD PRACTICE
System.out.println("Exception Handled - Main");

}

Output
Connection Opened
Exception Handled - Main

Connection that is opened is not closed. This
connection.

results in

a dangling (un-closed)

Finally block is used when code needs to be executed irrespective of whether an
exception is thrown. Let us now move connection.close(); into a finally block. Also
connection declaration is moved out of the try block to make it visible in the finally

plock.

public static void main(String[] args) {
Connection connection = new Connection();
connection.open();
try {
// LOGIC
String str = null;
str.toString();

} catch (Exception e) {
// NOT PRINTING EXCEPTION TRACE - BAD PRACTICE
System.out.println("Exception Handled - Main");
} finally {
connection.close();
}
}

Output
Connection Opened

Exception Handled - Main
Connection Closed

Connection is closed even when exception s
connection.close() is called in the finally block.

thrown.

This

IS

because

Finally block is always executed (even when an exception is thrown). So, if we want
some code to be always executed we can move it to finally block.

In what kind of scenarios, a finally block is not executed?

Code in finally is NOT executed only in two situations.

e If exception is thrown in finally.
e If JVM Crashes in between (for example, System.exit()).

Is a finally block executed even when there is a return statement in the try block?
private static void method2() {

Connection connection = new Connection();
connection.open();
try {
// LOGIC
String str = null;
str.toString();
return;
} catch (Exception e) {
// NOT PRINTING EXCEPTION TRACE - BAD PRACTICE
System.out.println("Exception Handled - Method 2");
return;
} finally {
connection.close();
}
}

Is a try block without corresponding catch block allowed?
Yes. fry without a catch is allowed. Example below.

private static void method?2() {

Connection connection = new Connection();
connection.open();
try {
// LOGIC
String str = null;
str.toString();
} finally {
connection.close();
}
i

However a try block without both catch and finally is NOT allowed.

Below method would give a Compilation Errorl! (End of try block]

private static void method2() {
Connection connection = new Connection();
connection.open();
try {
// LOGIC
String str = null;
str.toString();
}//COMPILER ERROR!!

}

Throwable is the highest level of Error Handling classes.

Below class definitions show the pre-defined exception hierarchy in Java.

//Pre-defined Java Classes

class Error extends Throwable{}

class Exception extends Throwable{}

class RuntimeException extends Exception{}

Below class definitions show creation of a programmer defined exception in Java.
//Programmer defined classes

class CheckedExceptionl extends Exception{}

class CheckedException2 extends CheckedExceptionl{}

class UnCheckedException extends RuntimeException{}
class UnCheckedException2 extends UnCheckedException{}

Error is used in situations when there is nothing a programmer can do about an error.
Ex: StackOverflowError, OutOfMemoryError. Exception is used when a programmer
can handle the exception.

RuntimeException and classes that extend RuntimeException are called unchecked
exceptions. For Example:
RuntimeException,UnCheckedException,UnCheckedException2 are unchecked or
RunTime Exceptions. There are subclasses of RuntimeException (which means they
are subclasses of Exception also.)

Other Exception Classes (which don’t fit the earlier definition). These are also called
Checked Exceptions. Exception, CheckedExceptionl,CheckedException?2 are
checked exceptions. They are subclasses of Exception which are not subclasses of
RuntimeException.

Consider the example below. The method addAmounts throws a new Exception.
However, it gives us a compilation error because Exception is a Checked Exception.

All classes that are not RuntimeException or subclasses of RuntimeExcepftion but
extend Exception are called CheckedExceptions. The rule for CheckedExceptions is
that they should be handled or thrown. Handled means it should be completed
handled - i.e. not throw out of the method. Thrown means the method should
declare that it throws the exception

class AmountAdder {
static Amount addAmounts(Amount amountl, Amount amount2) {
if (lamountl.currency.equals(amount2.currency)) {
throw new Exception("Currencies don't match");// COMPILER ERROR! // Unhandled exception type
Exception

)

return new Amount(amountl.currency, amountl.amount + amount2.amount);

Let's look at how to declare throwing an exception from a method.

Look at the line "static Amount addAmounts(Amount amountl, Amount amount2)
throws Exception”. This is how we declare that a method throws Exception.

class AmountAdder {
static Amount addAmounts(Amount amountl, Amount amount2) throws Exception {
if (!amountl.currency.equals(amount2.currency)) {
throw new Exception("Currencies don't match");

}

return new Amount(amountl.currency, amountl.amount + amount2.amount);

We can create a custom exception by extending Exception class or
RuntimeException class. If we extend Exception class, it will be a checked exception
class. If we extend RuntimeException class, then we create an unchecked
exception class.

class CurrenciesDoNotMatchException extends Exception{

}

Let’'s now create some sample code to use CurrenciesDoNotMatchException. Since it is
a checked exception we need do two things a. throw new
CurrenciesDoNotMatchException(); b. throws CurrenciesDoNotMatchException (in
method declaration).

class AmountAdder {
static Amount addAmounts(Amount amountl, Amount amount2)
throws CurrenciesDoNotMatchException {
if (!amountl.currency.equals(amount2.currency)) {
throw new CurrenciesDoNotMatchException();

}

return new Amount(amountl.currency, amountl.amount + amount2.amount);

Specific Exception catch blocks should be before the catch block for a Generic
Exception. For example, CurrenciesDoNotMatchException should be before
Exception. Below code gives a compilation error.

public static void main(String[] args) {

TEVER

AmountAdder.addAmounts (new Amount("RUPEE", 5), new Amount("DOLLAR",
5));

} catch (Exception e) { // COMPILER ERROR!!
System.out.println("Handled Exception");

} catch (CurrenciesDoNotMatchException e) {
System.out.println("Handled CurrenciesDoNotMatchException");

}

Never Completely Hide Exceptions. At the least log them. printStactTrace method
prints the entire stack trace when an exception occurs. If you handle an exception,
it is always a good practice to log the trace.

public static void main(String[] args) {

try {

AmountAdder.addAmounts (new Amount("RUPEE", 5), new Amount("RUPEE",
5));

String string = null;
string.toString();

} catch (CurrenciesDoNotMatchException e) {
System.out.println("Handled CurrenciesDoNotMatchException");
e.printStackTrace();

Files

What are the basic methods in File class?
Create a File Object

File file = new File("FileName.txt");

Check if the file exisfts.

System.out.println(file.exists());

If file does not exist creates it and returns true. If file exists, returns false.

System.out.println(file.createNewFile());

Getftting full path of file.
System.out.println(file.getAbsolutePath());

System.out.println(file.isFile());//true
System.out.println(file.isDirectory());//false

Renaming a file

File fileWithNewName = new File("NewFileName.txt");
file.renameTo(fileWithNewName);
//There is no method file.renameTo("NewFileName.txt");

How do you handle directories in Java?
A File class in Java represents a file and directory.

File directory = new File("src/com/rithus");

Print full directory path

System.out.println(directory.getAbsolutePath());
System.out.println(directory.isDirectory());//true

This does not create the actual file.

File fileInDir = new File(directory, "NewFileInDirectory.txt");

Actual file is created when we invoke createNewrFile method.

System.out.println(fileInDir.createNewFile()); //true - First Time

Print the files and directories present in the folder.

System.out.println(Arrays.toString(directory.list()));

Creating a directory

File newDirectory = new File("newfolder");
System.out.println(newDirectory.mkdir());//true - First Time

Creating a file in a new directory

File notExistingDirectory = new File("notexisting");
File newFile = new File(notExistingDirectory, "newFile");

//Will throw Exception if uncommented: No such file or directory
//newFile.createNewFile();

System.out.println(newDirectory.mkdir());//true - First Time

How do you write to a file using FileWriter class?
We can write 1o a file using FileWriter class.

Write a string to a file using FileWriter

//FileWriter helps to write stuff into the file

FileWriter fileWriter = new FileWriter(file);
fileWriter.write("How are you doing?");

//Always flush before close. Writing to file uses Buffering.
fileWriter.flush();

fileWriter.close();

FileWriter Constructors
FileWriter Constructors can accept file(File) or the path to file (String) as argument.
When a writer object is created, it creates the file - if it does not exist.

FileWriter fileWriter2 = new FileWriter("FileName.txt");
fileWriter2.write("How are you doing Buddy?");

//Always flush before close. Writing to file uses Buffering.
fileWriter2.flush();

fileWriter2.close();

How do you read from a file using FileReader class?
File Reader can be used to read entire content from a file at one go.

Read from file using FileReader

FileReader fileReader = new FileReader(file);
char[] temp = new char[25];

//fileReader reads entire file and stores it into temp
System.out.println(fileReader.read(temp));//18 - No of characters Read from file

System.out.println(Arrays.toString(temp));//output below
//[H) O) w)) a) r‘) e)) y) o) u)) d) o) i) n) g) ?))) 3 J J]

fileReader.close();//Always close anything you opened:)

FileReader constructors can accept file(File) or the path to file (String) as argument.

FileReader fileReader2 = new FileReader("FileName.txt");
System.out.println(fileReader2.read(temp));//24
System.out.println(Arrays.toString(temp));//output below

BufferedWriter and BufferedReader provide better buffering in addition to basic file
writing and reading operations. For example, instead of reading the entire file, we
can read a file line by line. Let's write an example to write and read from a file using
FileReader and FileWriter.

BufferedWriter class helps writing to a class with beftter buffering than FileWriter.
BufferedWriter Constructors only accept another Writer as argument.

FileWriter fileWriter3 = new FileWriter("BufferedFileName.txt");
BufferedWriter bufferedWriter = new BufferedWriter(fileWriter3);
bufferediWriter.write("How are you doing Buddy?");
bufferediWriter.newLine();

bufferediWriter.write("I'm Doing Fine");

//Always flush before close. Writing to file uses Buffering.
bufferedWriter.flush();

bufferediWriter.close();
fileWriter3.close();

BufferedReader helps to read the file line by line. BufferedReader Constructors only
accept another Reader as argument.

FileReader fileReader3 = new FileReader("BufferedFileName.txt");
BufferedReader bufferedReader = new BufferedReader(fileReader3);

String line;

//readlLine returns null when reading the file is completed.

while((line=bufferedReader.readLine()) != null){
System.out.println(line);

i

PrintWriter provides advanced methods to write formatted ftext to the file. It supports

printf function. PrintWriter constructors supports varied kinds of arguments — rile, string
(File Path) and Writer.

PrintWriter printWriter = new PrintWriter("PrintWriterFileName.txt");

Other than write function you can use format, printf, print, printin functions to write to
PrintWriter file.

//writes " My Name" to the file
printWriter.format("%15s", "My Name");

printWriter.println(); //New Line
printWriter.println("Some Text");

//writes "Formatted Number: 4.50000" to the file
printWriter.printf("Formatted Number: %5.5f", 4.5);
printWriter.flush();//Always flush a writer
printWriter.close();

Serialization helps us to save and retrieve the state of an object.

e Serialization => Convert object state to some internal object representation.
e De-Serialization => The reverse. Convert internal representation to object.

Two important methods

e ObjectOutputStream.writeObject() // serialize and write to file
e ObjectinputStream.readObject() // read from file and deserialize

To serialize an object it should implement Serializable interface. In the example
below, Rectangle class implements Serializable interface. Note that Serializable
interface does not declare any methods to be implemented.

Below example shows how an instance of an object can be serialized. We are
creating a new Rectangle object and serializing it to a file Rectangle.ser.

class Rectangle implements Serializable {
public Rectangle(int length, int breadth) {
this.length = length;

this.breadth = breadth;
area = length * breadth;

}

int length;
int breadth;
int area;

}

FileOutputStream fileStream = new FileOutputStream("Rectangle.ser");
ObjectOutputStream objectStream = new ObjectOutputStream(fileStream);
objectStream.writeObject(new Rectangle(5, 6));

objectStream.close();

Below example show how a object can be deserialized from a serialized file. A
rectangle object is deserialized from the file Rectangle.ser

FileInputStream fileInputStream = new FileInputStream("Rectangle.ser");

ObjectInputStream objectInputStream = new ObjectInputStream(
fileInputStream);

Rectangle rectangle = (Rectangle) objectInputStream.readObject();

objectInputStream.close();

System.out.println(rectangle.length);// 5

System.out.println(rectangle.breadth);// 6

System.out.println(rectangle.area);// 30

We mark all the properties of the object which should not be serialized as transient.
Transient attributes in an object are not serialized. Area in the previous example is a
calculated value. It is unnecessary to serialize and deserialize. We can calculate it

when needed. In this situation, we can make the variable transient. Transient
variables are not serialized. (transient int area;)

/IModified Rectangle class

class Rectangle implements Serializable {
public Rectangle(int length, int breadth) {
this.length = length;
this.breadth = breadth;
area = length * breadth;

}

int length;
int breadth;
transient int area;

}

If you run the program again, you would get following output

System.out.println(rectangle.length);// 5
System.out.println(rectangle.breadth);// 6
System.out.println(rectangle.area);// ©

Note that the value of rectangle.area is set to 0. Variable area is marked transient.
So, it is not stored into the serialized file. And when de-serialization happens area
value is set to default value i.e. 0.

Objects of one class might contain objects of other classes. When serializing and de-
serializing, we might need to serialize and de-serialize entire object chain. All classes

that need to be serialized have to implement the Serializable interface. Otherwise,
an exception is thrown. Look at the class below. An object of class House contains
an object of class Wall.

class House implements Serializable {
public House(int number) {
super();
this.number = number;

h

Wall wall;
int number;

}

class Wall{
int length;
int breadth;
int color;

i

House implements Serializable. However, Wall doesn't implement Serializable. When
we try to serialize an instance of House class, we get the following exception.

Output:

Exception in thread "main" java.io.NotSerializableException: com.rithus.serialization.Wall
at java.io.ObjectOutputStream.writeObject@(Unknown Source)
at java.io.ObjectOutputStream.defaultWriteFields(Unknown Source)

This is because Wall is not serializable. Two solutions are possible.

e Make Wall transient. Wall object will not be serialized. This causes the wall object
state to be lost.

e Make Wall implement Serializable. Wall object will also be serialized and the
state of wall object along with the house will be stored.

class House implements Serializable {
public House(int number) {
super();
this.number = number;

}

transient Wall wall;
int number;

}

class Wall implements Serializable {
int length;
int breadth;
int color;

}

With both these programs, earlier main method would run without throwing an
exception.

If you try de-serializing, In Example2, state of wall object is retained whereas in
Examplel, state of wall object is lost.

Are the constructors in an object invoked when it is de-serialized?
No. When a class is De-serialized, initialization (constructor’s, initializer’'s) does not
take place. The state of the object is retained as it is.

Are the values of static variables stored when an object is serialized?
Static Variables are not part of the object. They are not serialized.

Threads allow Java code to run in parallel. Let’s look at an example to understand
what we can do with Threads.

We are creating a Cricket Statistics Application. Let's say the steps involved in the
application are

e STEP I: Download and Store Bowling Statistics => 60 Minutes

e STEP Il: Download and Store Batting Statistics => 60 Minutes

e STEP lll: Download and Store Fielding Statistics => 15 Minutes
e STEP IV: Merge and Analyze => 25 Minutes

Steps I, I and Il are independent and can be run in parallel to each other. Run
individually this program takes 160 minutes. We would want to run this program in
lesser time. Threads can be a solution to this problem. Threads allow us to run STEP |, |I
and lll in parallel and run Step IV when all Steps |, Il and lll are completed.

Below example shows the way we would write code usually — without using Threads.

ThreadExamples example = new ThreadExamples();

example.downloadAndStoreBattingStatistics();
example.downloadAndStoreBowlingStatistics();
example.downloadAndStoreFieldingStatistics();

example.mergeAndAnalyze();

downloadAndStoreBowlingStatistics starts only after
downloadAndStoreBattingStatistics completes execution.
downloadAndStoreFieldingStatistics starts only after

downloadAndStoreBowlingStatistics completes execution. What if | want to run them
in parallel without waiting for the others to complete?

This is where Threads come into picture. Using Multi-Threading we can run each of
the above steps in parallel and synchronize when needed. We will understand more
about synchronization later.

Creating a Thread class in Java can be done in two ways. Extending Thread class
and implementing Runnable interface. Let's create the BattingStatisticsThread
extending Thread class and BowlingStatisticsThread implementing Runnable
interface.

Thread class can be created by extending Thread class and implementing the
public void run() method.

Look at the example below: A dummy implementation for BattingStatistics is
provided which counts from 1 to 1000.

class BattingStatisticsThread extends Thread {
//run method without parameters
public void run() {
for (int i = @; i < 1000; i++)
System.out
.println("Running Batting Statistics Thread "
+1i);

Thread class can also be created by implementing Runnable interface and
implementing the method declared in Runnable interface “public void run()”.
Example below shows the Batting Statistics Thread implemented by implementing
Runnable interface.

class BowlingStatisticsThread implements Runnable {
//run method without parameters
public void run() {
for (int 1 = 0; i < 1000; i++)
System.out
.println("Running Bowling Statistics Thread "

+ 1);

Running a Thread in Java is slightly different based on the approach used to create
the thread.

When using inheritance, An object of the thread needs be created and start()
method on the thread needs to be called. Remember that the method that needs
to be called is not run() but it is start().

BattingStatisticsThread battingThreadl = new BattingStatisticsThread();
battingThreadl.start();

Three steps involved.

e Create an object of the BowlingStatisticsThread(class implementing Runnable).
e Create a Thread object with the earlier object as constructor argument.
e Call the start method on the thread.

BowlingStatisticsThread battingInterfaceImpl = new BowlingStatisticsThread();
Thread battingThread2 = new Thread(

battingInterfacelmpl);
battingThread2.start();

Different states that a thread can be in are defined the class State.

o NEW;

e RUNNABLE;

e RUNNING;

o BLOCKED/WAITING;
e TERMINATED/DEAD;

Let’s consider the example that we discussed earlier.

LINE 1: BattingStatisticsThread battingThreadl = new BattingStatisticsThread();
LINE 2: battingThreadl.start();

LINE 3: BowlingStatisticsThread battingInterfaceImpl = new BowlingStatisticsThread();

LINE 4: Thread battingThread2 = new Thread(battingInterfaceImpl);
LINE 5:battingThread2.start();

A thread is in NEW state when an object of the thread is created but the start
method is not yet called. At the end of line 1, battingThread1 is in NEw state.

A thread is in RUNNABLE state when it is eligible to run, but not running yet. (A
number of Threads can be in RUNNABLE state. Scheduler selects which Thread to

move to RUNNING state). In the above example, sometimes the Batting Statistics
thread is running and at other time, the Bowling Statistics Thread is running. When
Batting Statistics thread is Running, the Bowling Statistics thread is ready to run. It's just
that the scheduler picked Batting Statistics thread to run at that instance and vice-
versa. When Batting Statistics thread is Running, the Bowling Statistics Thread is in
Runnable state (Note that the Bowling Statistics Thread is not waiting for anything
except for the Scheduler to pick it up and run it).

A thread is RUNNING state when it's the one that is currently , what else to say,
Running.

A thread is in BLOCKED/WAITING/SLEEPING state when it is not eligible to be run by
the Scheduler. Thread is alive but is waiting for something. An example can be a
Synchronized block. If Threadl enters synchronized block, it blocks all the other
threads from entering synchronized code on the same instance or class. All other
threads are said to be in Blocked state.

A thread is in DEAD/TERMINATED state when it has completed its execution. Once a
thread enters dead state, it cannot be made active again.

Scheduler can be requested to allot more CPU to a thread by increasing the threads
priority. Each thread in Java is assigned a default Priority 5. This priority can be
increased or decreased (Range 1 to 10).

If two threads are waiting, the scheduler picks the thread with highest priority to be
run. If all threads have equal priority, the scheduler then picks one of them randomly.
Design programs so that they don't depend on priority.

Consider the thread example declared below:

class ThreadExample extends Thread {

public void run() {

for (int i = 0; i < 1000; i++)
System.out
.println(this.getName() + " Running "
+ 1);

}

}

Priority of thread can be changed by invoking setPriority method on the thread.

ThreadExample threadl = new ThreadExample();
threadl.setPriority(8);

Java also provides predefined constants Thread.MAX_PRIORITY(10),
Thread.MIN_PRIORITY(1), Thread.NORM_PRIORITY(5) which can be used to assign
priority to a thread.

Since Threads run in parallel, a new problem arises. What if threadl modifies data
which is being accessed by thread2e How do we ensure that different threads don’t
leave the system in an inconsistent state¢ This problem is usually called
synchronization problem.

Let’s first look at an example where this problem can occur. Consider the code in
the setAndGetSum method.

int setandGetSum(int al, int a2, int a3) {

celll = al;

sleepForSomeTime();

celll e =23

sleepForSomeTime();

GellRl'Si==a 31

sleepForSomeTime();

return celll + cell2 + cell3;

}

If following method is running in two different threads, funny things can happen.
After setting the value to each cell, there is a call for the Thread to sleep for some
time. After Thread 1 sets the value of celll, it goes to Sleep. So, Thread?2 starts
executing. If Thread 2 is executing “return celll + cell2 + cell3;”, it uses celll value set
by Thread 1 and cell2 and cell3 values set by Thread 2. This results in the unexpected

results that we see when the method is run in parallel. What is explained is one
possible scenario. There are several such scenarios possible.

The way you can prevent multiple threads from executing the same method is by
using the synchronized keyword on the method. If a method is marked synchronized,
a different thread gets access to the method only when there is no other thread
currently executing the method.

Let’s mark the method as synchronized:

synchronized int setandGetSum(int al, int a2, int a3) {

celll = al;

sleepForSomeTime();

cell2 = a2;

sleepForSomeTime();

cell3 = a3;

sleepForSomeTime();

return celll + cell2 + cell3;

All code which goes into the block is synchronized on the current object.

void synchronizedExample2() {
synchronized (this){
//All code goes here..

}

Yes. Consider the example below.

synchronized static int getCount(){
return count;

}

Static methods and block are synchronized on the class. Instance methods and
blocks are synchronized on the instance of the class i.e. an object of the class. Static
synchronized methods and instance synchronized methods don't affect each other.
This is because they are synchronized on two different things.

static int getCount2(){
synchronized (SynchronizedSyntaxExample.class) {
return count;
}

}

Join method is an instance method on the Thread class. Let's see a small example to
understand what join method does.

Let’'s consider the thread's declared below: thread?2, thread3, thread4

ThreadExample thread2
ThreadExample thread3
ThreadExample thread4

new ThreadExample();
new ThreadExample();
new ThreadExample();

Let’'s say we would want to run thread2 and thread3 in parallel but thread4 can only
run when threadgd is finished. This can be achieved using join method.

Look at the example code below:

thread3.start();

thread2.start();

thread3.join();//wait for thread 3 to complete
System.out.println("Thread3 is completed.");
thread4.start();

thread3.join() method call force the execution of main method to stop until thread3
completes execution. After that, thread4.start() method is invoked, putting thread4
into a Runnable State.

Join method also has an overloaded method accepting time in milliseconds as a
parameter.

thread4.join(2000);

In above example, main method thread would wait for 2000 ms or the end of
execution of thread4, whichever is minimum.

Yield is a static method in the Thread class. It is like a thread saying " | have enough
time in the limelight. Can some other thread run nexte".

A call to yield method changes the state of thread from RUNNING to RUNNABLE.
However, the scheduler might pick up the same thread to run again, especially if it is
the thread with highest priority.

Summary is yield method is a request from a thread to go to Runnable state.
However, the scheduler can immediately put the thread back to RUNNING state.

sleep is a stafic method in Thread class. sleep method can throw @
InterruptedException. sleep method causes the thread in execution to go to sleep
for specified number of milliseconds.

Let’'s consider a situation where thread1 is waiting for thread2 (threadl needs an
object whose synchronized code is being executed by threadl) and thread? is

waiting for thread1. This situation is called a Deadlock. In a Deadlock situation, both
these threads would wait for one another for ever.

Important methods are wait, notify and notifyAll.

Below snippet shows how wait is used. wait method is defined in the Object class.
This causes the thread to wait until it is noftified.

synchronized(thread){
thread.start();
thread.wait();

i

Below snippet shows how notify is used. notify method is defined in the Object class.
This causes the object to notify other waiting threads.

synchronized (this) {
calculateSumUptoMillion();
notify();

}

If more than one thread is waiting for an object, we can notify all the threads by
using notifyAll method.

thread.notifyAll();

Can you write a synchronized program with wait and notify methods?

package com.rithus.threads;

class Calculator extends Thread {
long sumUptoMillion;
long sumUptoTenMillion;

public void run() {
synchronized (this) {
calculateSumUptoMillion();
notify();
]
calculateSumUptoTenMillion();

}

private void calculateSumUptoMillion() {
for (int i = @; i < 1000000; i++) {
sumUptoMillion += i;
}
System.out.println("Million done");

}

private void calculateSumUptoTenMillion() {
for (int 1 = @; i < 10000000; i++) {
sumUptoTenMillion += i;

}

System.out.println("Ten Million done");

}

public class ThreadWaitAndNotify {
public static void main(String[] args) throws InterruptedException {
Calculator thread = new Calculator();
synchronized(thread){

thread.start();
thread.wait();

}
System.out.println(thread.sumUptoMillion);

Million done
499999500000
Ten Million done

Web Applications and MVC

p
Spring |
p

— Spring MVC |

How do traditional web applications work?
Traditional web applications are based on HTTP Request and HTTP Response cycle.
Following are the steps:

When user initiates an action in the browser, A HTTP Request is created by the
browser.

Web Server creates a HTTPServletRequest based on the content of HTIP
Request.

The web application (based on the framework used) handles the
HTTPServietRequest. (Controllers, Business Layer, database calls and external
interfaces)

A HTTPServletResponse is returned. This is converted to HTTP Response.

The HTTP Response is rendered by the browser

WEB 56 &6?"‘,41
N (\4\(p)(|v'(\
(F- “” (\C &t‘ k
\ — V"’
| |
o) rxa
< ‘ l}\t('\ oY v \ell‘

e | ®) [Acce .> - ,
' ', . ! Respo _! Li(’f— r,’ Extevrnal
L% ' T T Dater faces

I eveud|
@ G’\ ek Servic
|lavalnterview in DTx?a\:qu

What is MVC Pattern?
MVC stands for Model, View and Controller. It is a software architectural pattern for

implementing user interfaces.

e Controller : Controls the flow. Sends commands to the model to update the
model's state. Sends commands to view to change the view's presentation of

the model.
e Model : Represents the state of the application. Sometimes - notifies associated

views and conftrollers when there is a change in its state.

e View . Visual representation of the model for the user.

Model

» Encapsulates apphication state

*Besponds to s1ate queries

»* EXpOses application
functionalty

s Notilies views of changes

View controller

* Renders the models * Defines application bahaviot

* Reques fos from models

&t 1o controllef

olferto select view Useor Gostures

» Solocts viow 1or responso
*Onefor sach functionality

Method Invocations
L 1] | Events

For answers to all questions in this Section in a Video Format - buy our
Complete Interview Guide - 24 Videos & 400+ Questions — 50% Discount

Now available at 50% Discount - Rs 799 / S 12.99 only. Visit
http://www.in28minutes.com/p/buy-our-java-interview-quide.html

http://www.in28minutes.com/p/buy-our-java-interview-guide.html

Design

As an programmer, what are design principles you focus on?

J./'“ 4 Principles of Simple
R Design
- |

[UMLJ Y
gronmmmsmesmsasssansanniany - v _"""----[suun principlesJ
¥ High Level B —
Understanding [Design Pnﬂernsj '. - /
: 3 { Object Oriented] [Low Coupling]

Principles

\ [High Cuhesionj

| start off with the 4 Principles of Simple Design. Following playlist explains the four
principles of simple design in detail
https://www.youtube.com/watchev=0wS8ydVTx1c&list=PLO66F8F24976D837C

e Runs all tests
e Minimize Duplication
e Maximize Clarity

https://www.youtube.com/watch?v=OwS8ydVTx1c&list=PL066F8F24976D837C

e Keep it Small

Next important design principles would be those related to Object Oriented
Programming. Have good object, which have well-defined responsibilities. Following
are the important concepts you need to have a good overview of. These are
covered in various parts in the video
hitps://www.youtube.com/watchev=0xcgzUdTOSM. Also, look up the specific videos
for each topic.

e Coupling
Cohesion : https//www.youtube.com/watch2v=BkcQWoF5124&ist=PLBBog2réuMCTJ5JLyOySaOTrYdpWa48vK &index=9

e Encapsulation

e Polymorphism
https://www.youtube.com/watchev=t8PTatUXtpl&list= PL9]AF2D4024AA59AF&|n
dex=5

e SOLID Principles

UML is next even though, formal use of UML is on the way down with Agile. However,
| think UML is a great tool in the arsenal for a white board discussion on design. A
picture is worth thousand words. | recommend having a good overview of the UML
basics. Focus on these four before you move on to others.

https://www.youtube.com/watch?v=0xcgzUdTO5M
https://www.youtube.com/watch?v=BkcQWoF5124&list=PLBBog2r6uMCTJ5JLyOySaOTrYdpWq48vK&index=9

Class diagrams
Sequence diagrams
Component diagrams
Deployment diagrams

Last and also the least important is Design Patterns. Following video covers all the
major design patterns. https://www.youtube.com/watchev=0jiNI;XcYmAU. My
personal view : Design Patterns are good to know. Have a good idea on what each
one of them does. But, that where it ends. I'm not a big fan of understanding the
intricate details of each Design Pattern. You can look it up if you have a good
overall idea about Design Patterns.

What are the modern programming practices which lead to very good applications?

[Emtinuuus Integratiun] — _ N [TDDJ [3 Laws of TDDJ

[Automation Testing] LInitTests&Mncking’

https://www.youtube.com/watch?v=0jjNjXcYmAU

First of all : Unit Testing and Mocking. We are in the age of continuous integration
and delivery, and the basic thing that enables those is having a good set of unit test
in place. (Don't confuse unit testing with screen testing done manually to check if
the screen flow is right. What | mean by unit testing is JUnit test's checking the
business logic/screen flow in a java method (or) set of methods). Understand JUnit.
Here IS a good start
hitps://www.youtube.com/watch2v=AN4NCnc4eZg&list=PL83C%241BBOD27 A6AF. Also
understand the concept of Mocking. When should we mock? And when we should
note Complicated question indeed. Understand atleast one mocking framework
Mockito is the most popular one. Easymock is a good mocking framework as well.

Second in line is Automated Integration Tests. Automated Integration Tests is the
second important bullet in enabling confinuous delivery. Understand Fithesse,
Cucumber and Protractor.

Third is TDD (actually | wanted to put it first). Understand what TDD is. If you have
never used TDD, then be ready for a rude shock. Its not easy to change a routine
you developed during decades (or years) of programming. Once you are used to
TDD you never go back. | promise. This list of videos is a good start to understanding
TDD. https://www.youtube.com/watchev=xubiP8WoT4E&list=PLBD6D61COAPF6/1F6.
Have fun.

https://www.youtube.com/watch?v=AN4NCnc4eZg&list=PL83C941BB0D27A6AF
https://www.youtube.com/watch?v=xubiP8WoT4E&list=PLBD6D61C0A9F671F6

Next comes BDD. In my experience, | found BDD a great tool to enable
communication between the ready team (Business Analysts, Product Owner) and
the done team (Developers, Testers, Operations). When User Stories are nothing but
a set of scenarios specified is GWT (Given When Then) format, it is easy for the done
team to chew at the user story scenario by scenario. With tools like Cucumber &
Fitnesse, tooling is not far behind too. Do check BDD out.

Next in line is Refactoring. IUnderstand refactoring. Understand the role of
automation tests in refactoring.

Last (but not the least) in the line is Confinuous Integration. Every project today has
continuous integration. But, the real question is “What is under Continuous
Integratione”. Compilation, unit tests and code quality gate(s) is the bare minimum.
If you have integration and chain tests, wonderful. But make sure the build does not
take long. Immediate feedback is important. If needed, create a separate build
scheduled less frequently for slower tests (integration and chain tests). Jenkins is the
most popular Continuous Integration tool foday.

Listed below are some of the important considerations

Should | have a Service layer acting as a facade to the Business Layer?

How do | implement Transaction Management? JTA or Spring based
Transactions or Container Managed Transactionse What would mark the
boundary of fransactions. Would it be service facade method call?

Can (Should) | separate any of the Business Logic into seperate component or
servicee

Do | use a Domain Object Model?

Do | need caching? If so, at what level?

Does service layer need to handle all exceptionsg Or shall we leave it to the
web layere

Are there any Operations specific logging or auditing that is needed2Can we
implement it as a cross cutting concern using AOP?

Do we need to validate the data that is coming into the Business Layerg Or is
the validation done by the web layer sufficient?

Do we want to use a JPA based object mapping framework (Hibernate) or
query based mapping framework (iBatis) or simple Spring DO<

How do we communicate with external systemse Web services or JMS?¢ If web
services, then how do we handle object xml mapping? JAXB or XMLBeans?

How do you handle connections to Database? These days, its an easy answer
leave it to the application server configuration of Data Source.

What are the kinds of exceptions that you want to throw to Business Layer?
Should they be checked exceptions or unchecked exceptionse

Ensure that Performance and Scalability is taken care of in all the decisions you
make.

First question is do we want to use a modern front end javascript framework like
AngularlSe If the answer is yes, most of this discussion does not apply. If the
answer is no, then proceed?

Should we use a MVC framework like Spring MVC,Struts or should we go for a
Java based framework like Wicket or Vaading

What should be the view technology? JSP, JSF or Template Based (Velocity,
Freemarker)?

Do you want AJAX functionality?

How do you map view objects to business objects and vice-versae Do you want
to have View Assemblers and Business Assemblers?

e What kind of data is allowed to be put in user sessiong Do we need additional
control mechanisms to ensure session size is small as possible?e

e How do we Authenticate and Authorize users¢ Do we need to integrated
external frameworks like Spring Securitye

e DO we need to expose external web servicese

Go through this youtube playlist. It takes you through all the important features of
Eclipse:

https://www.youtube.com/watchev=nbyR MOL-vg&list=PLBBog2r6uMCSmMPLIJMkXXaO0IgMFwGScAP8&index=1

Use archetypes as much as possible. Archetypes are good start for generating
projects (lookup : mvn archetype:.generate) based on Spring, Spring MVC, Struts,
Hibernate and a wide variety of other projects. Also, it is a good practice to create
maven archetype for the components we create repeatedly (access components,
consuming/exposing web services).

Some of the Maven Best Practices are

e Proper Dependency Mgmt . Version for one dependency at one place -
preferably in the parent pom.

https://www.youtube.com/watch?v=nbyR_M0L-vg&list=PLBBog2r6uMCSmPLJMkXXa0lgMFwGScAP8&index=1

Group related dependencies.

Exclude test dependencies from final ear.
Have a parent pom.

Use Profiles as needed.

Architect

What are the important responsibilities of Architect?

Communication i TN 7 - _'_""'{Sound Princlples]

\ / -\{Clean nrchitecture] [Welldeﬂnedinleﬂaces]

[I:ode Fleviewj T,

\ [/ \
\ [
[Guvemancej — If ____.__.{Well defined components]
[Design Fleviewj _— * —
.-'/ """"[Deploymentj

(ro0) |

—r Best Engineering { Productive Teams]
Practices p— S —

~— (m)

- /-f

[Continuous Inlegratlon]

\ _,......[Automaﬂon Testi ng]

Below is a high level summary

e Creating a clean architecture based on sound principles. Architecture covering

all Non Functional Requirements.
e Having good governance in place. Good review processes in place for

Architecture, Design and Code.

e Ensuring teams are as productive as they can be. Right tools.

e Ensuring teams are following the best engineering practices.

e Ensuring clear communication about architecture with business and technical
teams.

How should an ideal architect be like?

| Super Diagnostic suius] - -----...___|"|mpmcable cmihiliw‘]

/— II I.._."
o) R |

- Excellent ")
s S X ey ., | Proactive
- Communication — —

Most important qualities | look for in an Architect are

e Impeccable Credibility : Somebody the team looks up to and aspires to be.

e Super diagnostic skills : The ability to do a deep dive on a technology issue.
When developers are struggling with a problem (having fried different things),
Can he/she provide a fresh pair of eyes to look at the same problem®@

e Forward Thinker and Proactive : Never satisfied with where we are. Ildentifies

opportunities to add value fast.
e Great Communication : Communication in the widest sense. Communicating
the technical aspects to the stakeholders, project management, software

developers, testers, etc.

What are the modern programming practices an architect should be aware of?

[Emtinuous Integrationj — _\ / _--"""-{TDDJ [3 Laws of TDDJ

[Autnmatlon Testing] ,, I\H_. Unit Tests & Mocking ’

For more details refer to design interview questions.

=

[Retactoring

How do you ensure that the Code Quality is maintained?

~ - arrimuoe |

Peer Reviews | e

- - |:Slatic Analysisxl |'fSnnar\‘|

Unit tests are given high
priority

|||||||||||||||||||

- - Pair Programming ’

More than everything else, code quality is an attitude. Either, the team has it or not.
The attitude to refactor when something is wrong. The attitude to be a boy scout. As
an architect, it is important to create an environment where such an attitude is
appreciated. (There are always bad sheep, who take the code quality to such
depth that it is not fun anymore, but | like them more than developers who keep
churning out bad code).

Have a good static analysis tool(and is part of Continuous Integration). Sonar is the
best bet today. Understand the limits of Static Analysis. Static Analysis is not a magic

wand. For me, results from Static Analysis are a signal: It helps me decide where |
should look during peer or architect reviews?

Have good peer review practices in place. Every user story has to be peer reviewed.
Put more focus on peer reviews when there is a new developer or there is a new
technical change being done. Make best use of Pair Programming. The debate is
ongoing : Is pair programming more productive or not¢ | would rather stay out of it.
You make your choice. However, these two scenarios are bare minimum:

e Onboarding a new programmer. Makes him comfortable with all the new things
he has to encounter.
e IMmplementing a complex functionality.

Next question is how to approach a Code Review. Difficult to cover everything. |
would make a start. When doing a code review, | start with static analysis results (for
example, sonar). | spend 10 minutes getting an overview of components and/or
layers (focusing on size and dependencies). Next | would pick up a unit test for a
complex functionality. | feel unit tests are the best place to discover the
dependencies and naming practices (I believe good names = 50% of maintainable
code). If a programmer can write a simple and understandable unit test, he can

definitely write good code. Next, | look for 4 principles of Simple Design. After this,
there are 100 other things we can look for - You decide.

First of all I'm a great believer that agile and architecture go hand in hand. | do not
believe agile means no architecture. | think agile brings in the need to separate
architecture and design. For me architecture is about things which are difficult to
change : fechnology choices, framework choices, communication between systems
etc. It would be great if a big chunk of architectural decisions are made before the
done team starts. There would always be things which are uncertain. Inputs to these
can come from spikes that are done as part of the Done Scrum Team.But these
should be planned ahead.

Architecture choices should be well thought out. Its good to spend some time to
think (Sprint Zero) before you make a architectural choice.

| think most important part of Agile Architecture is Automation Testing. Change is
confinuous only when the team is sure nothing is broken. And automation test suites
play a great role in providing immediate feedback.

Important principles for me are test early, fail fast and automate.

| ask the following questions:

e How oftenis code committede

e How oftenis code releasede

e How often do builds break? Are they immediately fixede

e How oftenis code deployed?

e What steps are part of confinuous integrafion builde Is deployment and
automation suite part of ite

e Does the team develop vertical slices when implementing a new functionality 2

More questions are covered in the section on Design Interview Questions.

Java New Features

Generics
Enhanced for Loop B —
e ‘i Diamond Operator

Copy on Write Autoboxing/Unboxing -
Compare and Swap Typesafe Enums Javas | 5'*\ |
Locks Varargs N I."
Static Import \ | /.| Using strings in switch
Concurrent Collections ".I || a'(statements
| (

I Automatic resource
B management

Numeric literals with

[This release saw fewer W
underscores

APl changes than 5.0

Improved exception
handling

\“-_) /{ File change nntil'lcatiuns]

What are new features in Java 5?
New featfures in Java 5 are :

e Generics
e Enhanced for Loop

e Autoboxing/Unboxing
e Typesafe Enums

e Varargs

e Static Import

e Concurrent Collections
e Copy on Write

e Compare and Swap

e Locks

For more details about these new features, refer Core and Advanced Java Interview
Questions.

Java 6 has very few important changes in terms of api's. There are a few
performance improvements but none significant enough to deserve a mention.

New features in Java 7 are

e Diamond Operator. Example : Map<String, List<Trade>> frades = new TreeMap
<> ();

e Using String in switch statements

e Automatic resource management : try(resources_to_be_cleant){ // your code }

e Numeric literals with underscores

e Improved exception handling : Multiple catches in same block-
catch(ExceptionOne | ExceptionTwo | ExceptionThree e)

e File change nofifications

New features in Java 8 are :

e Lamda Expressions. Example : Runnable java8Runner = () -=> { sop('| am
running"); };

e Nashorn : javascript engine that enables us to run javascript to run on a jvm

e String.join() function

e Streams

Design Patterns

ldea behind this article is to give an overview of Design Patterns and not really
explain all the implementation details related to them. For me, understanding the
basics of a design pattern is important. The implementation details are secondary.
Implementation details can easily be looked up when needed if | understand the
context in which a design pattern applies.

o | Creational J

There are three different types of Design Patterns

e Creational Patterns : Concerned with creation of Objects. Prototype, Singleton,
Builder efc.

e Structural Patterns : Concerned with structure of Objects and the relationships
between them. Decorator, Facade, Adapter etc.

e Behavioural Patterns . Concerned with interaction between objects. Strategy,
Template Method eftc.

Creational Patterns deal with creation of objects.

| Prototype |'

|.Builder-:|

Creational |

| Singleton |

Prototype is defined as “A fully inifialized instance to be copied or cloned”. Let’s
consider a Chess Game. At the start of the game, the way the pieces are arranged
on a board is the same. Following strategy can be used in a chess program to setup
a hew game:

Create a fully initialized instance of a chess game with the correct positions for all
pieces.This is the prototype.

Whenever there is a need to create a new chess game, clone or copy the initial
chess game prototype.

Builder pattern is usually used to hide the complexity of an object construction.
Certain objects might have complex internal structure. Every time an instance is
created, the entire structure needs to be created. It is a good practice to hide this
complexity from the dependant objects. And that's where the Builder pattern comes
in.

Builder pattern is defined as “Separates object construction from its representation”.

Example : Consider a fast-food restaurant offering a Vegetarian Meal and a Non
Vegetarian Meal. A typical meal is a burger and a cold drink. Depending on the
type of the meal, the burger is a vegetarian burger or a chicken burger. The drink is
either an orange juice or a pineapple juice. The below Builder class can be used to
create meal objects.

public class MealBuilder {
public Meal buildVegMeal (){
Meal meal = new Meal();
meal.addltem(new VegetarianBurger());

meal.addltem(new OrangelJuice());
return meal;

}

public Meal buildNonVegMeal (){
Meal meal = new Meal();
meal.addltem(new ChickenBurger());
meal.addltem(new Pineappleluice());
return meal;

}
}

Singleton is defined as “A class of which only a single instance can exist (in a jvm). A
good example of Singleton class in Java is java.lang.System.

If you are a Java guys, then these things might be useful:

e Best way to implement Singleton is using a Enum. Refer “Effective Java” by
Joshua Bloch.

e JEE7 has inbuilt @Singleton annotation with @Startup, @PostConstruct and
@DependsOn('other beans") options

e Singletons make code difficult to unit test.

e In Spring, all beans are singletons by default (in the scope of application
context).

Structural patterns deal with the structure of objects and their relationships.

|..Prnx1_.r..

Structural ;
. _ | Facade |

| Decorator |
Ny .

Adapter

U

Proxy is defined as “An object representing another object”.

A good example of a proxy is a Debit Card. It represents the bank account but is
really not the bank account itself. It acts as a proxy to our Bank Account.

EJB’'s typically have two interfaces - Remote and Home. Home interface is a good
example of a proxy.

Decorator is defined as “Add responsibilities to objects dynamically”.

Let’'s take an example of a Pizza shop offering 10 types of Pizzas. Currently these are
defined using an inheritance chain. All these 10 pizza types extend AbstractPizza
class. Now, there is a new functionality requested - we would want to allow 3
different types of toppings for each of the pizza type. We have two options

e Create 3 classes for each of the 10 pizza types resulting in a total of 30 classes.
e Use a topping decorator on top of AbstractPizza class.

Usually the preference would be to use a decorator.

Good example for decorator is the Java 1O Class Structure. To create a
LineNumberlinputStream we do something like
LineNumberlnputStream (BufferedinputStream (FilelnputStream))).

BufferedinputStream is a decorator for FilelInputStream. LineNumberlnputStream is a
decorator for BufferedlnputStream.

Disadvantage of Decorator is the resulting complexity in creating objects.

Facade is defined as “A single class that represents an entire subsystem™.

A good example of facade in real life is an event manager. We approach an event
manager to organize an event and they would take care of arranging everything
related to the event - Decoration, Food, Invitations, Music Band etc.

Let’s consider an application taking online orders for books. Following steps are
involved.

e Check if there is stock and reserve the book.
e Make payment.

e Update stock

e Generate invoice

Its preferred to create a facade called OrderService which takes care of all these
steps. Facade also become a good place to implement transaction management.

Advantages of a Facade:

e Reduced network calls
e Reduced coupling
e Helps in establishing tfransaction boundary

Defined as “Match interfaces of different classes”. All the translators that we create
to map one type of object to another type are good examples.

A good real life example would be Power Adapters.

Behavioural

| Chain of Responsibility ' N\

Template Method |} A |
[' — |
il

.'I
."ll |

Memento [}/ :."
Mediator ' B /

Chain of Responsibility
Defined as “A way of passing a request between a chain of objects”.

A good real time example is the Loan or Leave Approval Process. When a loan
approval is needed, it first goes to the clerk. If he cannot handle it (large amount), it
goes to his manager and so on until it is approved or rejected.

Another good example is Exception Handling in most programming languages.
When an exception is thrown from a method with no exception handling, it is thrown
to the calling method. If there is no exception handling in that method too, it is
further thrown up to its calling method and so on. This happens unftil an appropriate
exception handler is found.

Defined as “Sequentially access the elements of a collection”.

Different objects might have different internal representations. Ilterator defines one
way of looping through the objects in a list or a collection or a map, so that the
internal complexities are hidden.

Defined as “Encapsulates an algorithm inside a class”.

Typically used to decouple the algorithm or strategy used from the implementation
of the class so that the algorithm can be changed independent of the class.

A good example in Java is the Comparator interface.
java.uti.Comparator#compare()

Defined as “A way of notifying change to a number of classes”.

A good example is Online Bidding. Different people can register as observers. They
all are notified when there is a new bid.

If you are a Java programmer, Observer design pattern is already built for you. Look
up the Observer interface and Observable class.

Defined as “Defer the exact steps of an algorithm to a subclass”.

Good example is a House Plan. A high level floor plan is provided first. Within a floor
plan, the foundation, framing, plumbing, and wiring will be identical for each house.
Variations for each house can be added in later - additional wing, wooden
flooring/carpet, which color to paint.

Another example for Template Method is implementation of Spring
AbstractController. The fotal flow is implemented by handleRequest method.

However, subclasses can control the details by implementing the abstract method
handleRequestinternal. (example simplified to focus only on necessary details)

@QOverride
public ModelAndView handleRequest(***) throws Exception {
// Delegate to WebContentGenerator for checking and preparing.

checkAndPrepare(request, response);

HttpSession session = request.getSession(false);

if (session = null) {
Object mutex = WebUtils.getSessionMutex(session);

return handleRequestinternal(request, response);

return handleRequestinternal(request, response);

protected abstract ModelAndView handleRequestinternal(HttpServietRequest
request, HttpServletResponse response)
throws Exception;

Defined as “Capture and restore an object's internal state”.

In a number of games, we have the feature to do an intermediate save and return
to it at a later point. Implementing this needs using the Memeto pattern. We save
the state of the game at the intermediate point so that we can return back to it.

Another good example is the Undo / Redo Operations in fext or image editing
software. Software saves the intermediate state at various points so that we can
easily return back to that state.

Defined as "Defines simplified communication between classes”.

A good example of Mediator is an Enterprise Service Bus. Instead of allowing
applications to directly communicate with each other, they go through an ESB.

A good real life example is Air Traffic Controller. All the flights talk o ATC to decide
the route to take. Imagine the chaos if each flight has to talk to all other flights to
decide the route.

e First and Foremost - NO premature optimizations. Any optfimization decision
should be based on numbers or past experience. In Donald Knuth's paper
"Structured Programming With GoTo Statements”, he wrote: "Programmers waste
enormous amounts of time thinking about, or worrying about, the speed of non
critical parts of their programs, and these attempts at efficiency actually have a
sfrong negative impact when debugging and maintenance are considered.
We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our opportunities in
that critical 3%."

e Minimise number of objects created:

o Avoid String Concatenation : Use StringBuffer.
o Avoid creating objects in Loops.
o Consider patterns like Flyweight.
e Use correct data structures:
o Use the right collection for a situation.
o Use a proper domain model.

e Reduce web application overhead:
o Small session size.
o Use Caching where appropriate.
o Close connections and Streams.
e Tune you database:
o Have indexes.
o Tune your queries.
o If you are using hibernate, understand the internals of hibernate. Avoid N+1
Selects Problem.
o Enable statistics on Databases.

Following are the best practices in terms of load and performance testing.

e Have clear performance objectives. That's the single most important objective.
Decide Peak Load, Expected Response Time, Availability Required before hand.

e An application does not work on its own. It connects with a number of external
interfaces. Establish clear performance expectations with the Interface Services

e The next important thing is to ensure that you mirror your production
environment. A load testing environment should be the same as your

production environment. We will discuss the exact factors involved later in this
article.

Validate early : Do performance testing as early as possible.

Make it a regular practice to use profilers in development environment.
ex:JProfiler

Make sure team is not making premature optimizations. Any optimization
decision should be based on numbers or past experience. In Donald Knuth's
paper "Structured Programming With GoTo Statements”, he wrote: "Programmers
waste enormous amounts of time thinking about, or worrying about, the speed
of non critical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are
considered. We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%."

Have Clear Strategy on How to Handle expected load. What would be the
inifial seftings on the application servere Do you plan to use a clustered
environmente Do you heed a load balancer?

A Load test environment should mirror production environment as much as possible:

o Application Configuration

o Application Server Configuration : Datasource properties (connections etc),
JVM Memory settings, etc.

e Test Scenarios should mirror production usage. Load on different screens should
mirror the usage in production.

e Ensure that the user think fime is taken into consideration in the load test script.

e Consider the delays in interacting with other interfaces. If you are using stubs for
interfaces, include the delay in.

e All parts of the planned production environment (like Load Balancer) should be
included.

e Have same amount of data in the database as you have in production
environment,

JProfiler is a good profiling tool. The main result we expect to find from profiling is to
identify the parts of the application where most request time is spente Focus on the
parts of the request which consume more than 5-10% of request time.

Waiting for connection?

Waiting for response from External Interfacee
Running a query on the database?

Some loop on the application servere

Important features are

e Memory profiling

e Heap Walker : See what are the objects in the Heap.

e CPU profiling : Call free ,HotSpofts - most time consuming methods list & Method
statistics

e Thread profiling : Thread dumps

e Monitor profiling : all waiting and blocking situations in the JVM

e Telemelry views i.e. Graphs : Heap,Throughput, GC activity, CPU load &
Database

e Low overhead (even in production environment)
e Captures: garbage collection pauses, memory and CPU usage, heap statistics

What are the important components in having a clear sirategy to handle expected
load?
e Clear Deployment Topology
¢ Initial Caching Strategy
e Application Server : Max Memory and Min Memory Settings - Have a clear
strategy on how to play around with these?
e Database Connections - Statement Cache Size, Max Connections

What are the actions to reduce bottlenecks in an application?

Reduce demand
e Introduce Caching.
e Tuning Java Code.
e Tuning Database. (Indexing, Optimizing Queries, Optimize Hibernate settings)
e Tuning Application Server Configuration and Settings (Connection, Memory, GC
etc).

Increase available resources
e Horizontal or Vertical Scaling
e More Memory
e Better CPU

e More effective collections
e More effective locking.

Thread and Monitor Dump Analyzer for Java

e Analyzing Java core files.
e Finds Hangs, Deadlocks, Resource contention & Bottlenecks.

Garbage Collection and Memory Visualizer

e Analyzing and visualizing verbose GC logs.

e Flag possible memory leaks, Size the Java heap correctly, Select the best
garbage collection policy.

HeapAnalyzer
e Analyse Heap Dumps to find memory leaks.
PMI (Performance Monitoring Infrastructure)

e Can be switched in the websphere admin console.

e Results can be viewed in Tivoli Performance Viewer (TPV)(WAS admin console)
e Monitors JDBC Connection Pools, JVM Runtime. HeapSize, Request Count,
Average fime taken by servlet etc

Continuous Integration can be defined as “Building software and taking it through as
many tests as possible with every change”.

Two important reasons:

e Defects found early cost less to fix : When a defect is found immediately after a
developer codes it, it takes 10x times less fime to fix it compared to finding the
defect a month later.

e Reduced Time to Market : Software is always tested. So, it is always ready to
move to further environments.

Different tools for supporting Continuous Integration are Hudson, Jenkins and
Bamboo. Jenkins is the most popular one currently. They provide integration with
various version control systems and build tools.

Implementing the tools for Continuous Integration is the easy part. Making best use
of Confinuous Integration is the complex bit. Are you making the best use of your
confinuous integration setup?¢ Here are the things you would need to consider.

e How often is code committed?e If code is committed once a day or week, the
Cl setup is under utilised. Defeats the purpose of ClI.
e How is a failure treated? Is immediate action takene Does failures promote fun
in the team®e
e What steps are in continuous integration? More steps in confinuous integration
means more stability.
o Compilation
Unit Tests
Code Quality Gates
Integration Tests
Deployment
o Chain Tests
e More steps in continuous integration might make it take more time but results in
more stable application. A trade-off needs to be made.
o Run Steps a,b,c on a commit.

o Run Steps d & e once every 3 hours.
e How long does a Continuous Integration build run fore
o One option to reduce time taken and ensure we have immediate
feedback is to split the long running tests into a separate build which runs
less often.

Security

What are the different things to consider regarding security of a web application?
Security related consideration can be split into these parts

e User Authentication and Authorization
e Web Related Issues

e External Interfaces

e Infrastructure Related Security

What are the important things to consider regarding user authentication and
authorization?
Following are the important considerations:

e Proper separatfion of authenticated and unauthenticated resources. These can
be split intfo separate deployable units if possible.

e Proper use of filters to ensure that the configuration for authenticated resources
is centralized.

e Use a proper framework like Spring Security to implement authorization.

OWASP (Open Web Application Security Project) is normally a great starting point.
Important factors to consider are

Validaton of user data : Ensure they are validated also in Business Layer.

SQL Injection : Never build sgl queries using string concatenation. Use a
Prepared Statement. Even better, use Spring JDBCTemplate or frameworks like
Hibernate, iBatis o handle communication with database.

XSS - Cross Site Scripting : Ensure you check against a white list of input
characters.

Avoid using Old versions of software

Security for web services (over JMS or HTTP) has to be handled at two levels :
Transport level and Application level.

For HTTP based services, SSL is used to exchange certificates (HTTPS) to ensure
transport level security. This ensures that the server (service producer) and client

(service consumer) are mutually authenticated. It is possible to use one way SSL
authentication as well.

For JMS based services, transport level security is implemented by conftrolling access
to the Queues.

At the application level (for both JMS and HTTP based services), security is
implemented by transferring encrypted information (digital signatures, for example)
in the message header (SOAP Header). This helps the server to authenticate the
client and be confident that the message has not been tampered with.

Best practices are:

e Threat Modelling : Do threat modelling and understand the various security
threats posed to the application

e Static Security Analysis : Use a static security analysis tool like Fortify.

e Educate Developers and Testers : Most important part. Developers and Testers
should be aware of the latest security threats.

e Dynamic Security Tests : Dynamic security tests done by a professional security
testing feam should be an important part of the release cycle. It is preferable to
do this as early as possible.

OFFERS ON UDEMY COURSES

Java EE Design Patterns SPECIAL OFFER
Spring MVC in 25 Steps SPECIAL OFFER

JSP Servlets — 25 Steps SPECIAL OFFER
Java Interview Guide SPECIAL OFFER

Java OOPS Concepts SPECIAL OFFER
Mockito — with 25 JUnit Examples SPECIAL OFFER

Maven SEREGCIAL'OFREER

https://www.udemy.com/java-ee-design-patterns-architecture-and-frameworks/?couponCode=EEPATTERNS-PDF1
https://www.udemy.com/spring-mvc-tutorial-for-beginners-step-by-step/?couponCode=SPRNGMVC-PDF-1
https://www.udemy.com/learn-java-servlets-and-jsp-web-application-in-25-steps/?couponCode=JSPSRVLT-PDF-1
https://www.udemy.com/java-interview-questions-and-answers/?couponCode=JAVA_INTER_PDF1
https://www.udemy.com/learn-object-oriented-programming-in-java/?couponCode=OOPS-PDF-2
https://www.udemy.com/mockito-tutorial-with-junit-examples/?couponCode=MOCKITO_PDF1
https://www.udemy.com/learn-maven-java-dependency-management-in-20-steps/?couponCode=MAVEN-PDF-1

About in28Minutes

At in28Minutes, we ask ourselves one question everyday. How do we help you
learn effectively - that is more quickly and retain more of what you have learnte
We use Problem-Solution based Step-By-Step Hands-on Approach With
Practical, Real World Application Examples.

Our success on Udemy and Youtube (2 Million Views & 12K Subscribers) speaks
volumes about the success of our approach.

While our primary expertise is on Development, Design & Architecture Java &
Related Frameworks (Spring, Struts, Hibernate) we are expanding into the front-
end world (Bootstrap, JQuery, Angular JS).

Our Beliefs

Best Courses are interactive and fun.
Foundations for building high quality applications are best laid down while
learning.

Our Approach

Problem Solution based Step by Step Hands-on Learning

Practical, Real World Application Examples.

We use 80-20 Rule. We discuss 20% things used 80% of time in depth. We touch
upon other things briefly equipping you with enough knowledge to find out
more on your own.

We will be developing a demo application in the course, which could be
reused in your projects, saving hours of your effort.

We love open source and therefore, All our code is open source too and
available on Github https://github.com/in28minutesetab=repositories.

A preview of all our courses is on YouTube. Check out our Most Watched
YouTube-Videos
https://www.youtube.com/playlist2list=PLBBog2r6tuMCQhZaQ9vUT5zJWXzz-f49k1 .

https://github.com/in28minutes?tab=repositories
https://www.youtube.com/playlist?list=PLBBog2r6uMCQhZaQ9vUT5zJWXzz-f49k1

Visit our website

hittp://www.in28minutes.com

for more

http://www.in28minutes.com/

