
Program 4 – CS 344

Overview
In this assignment, you will be creating five small programs that encrypt and decrypt information
using a one-time pad-like system. I believe that you will find the topic quite fascinating: one of your
challenges will be to pull yourself away from the stories of real-world espionage and tradecraft that
have used the techniques you will be implementing.

These programs serve as a capstone to what you have been learning in this course, and will
combine the multi-processing code you have been learning with socket-based inter-process
communication. Your programs will also accessible from the command line using standard UNIX
features like input/output redirection, and job control. Finally, you will write a short compilation script.

Specifications
All execution, compiling, and testing of this program should ONLY be done in the bash prompt
on our class server!

Use the following link as your primary reference on One-Time Pads (OTP):

http://en.wikipedia.org/wiki/One-time_pad (Links to an external site.)Links to an external site.

The following definitions will be important:

Plaintext is the term for the information that you wish to encrypt and protect. It is human readable.

Ciphertext is the term for the plaintext after it has been encrypted by your programs. Ciphertext is
not human-readable, and in fact cannot be cracked, if the OTP system is used correctly.

A Key is the random sequence of characters that will be used to convert Plaintext to Ciphertext, and
back again. It must not be re-used, or else the encryption is in danger of being broken.

The following excerpt from this Wikipedia article was captured on 2/21/2015:

“Suppose Alice wishes to send the message "HELLO" to Bob. Assume two pads of paper containing
identical random sequences of letters were somehow previously produced and securely issued to
both. Alice chooses the appropriate unused page from the pad. The way to do this is normally
arranged for in advance, as for instance 'use the 12th sheet on 1 May', or 'use the next available
sheet for the next message'.

The material on the selected sheet is the key for this message. Each letter from the pad will be
combined in a predetermined way with one letter of the message. (It is common, but not required, to
assign each letter a numerical value, e.g., "A" is 0, "B" is 1, and so on.)

In this example, the technique is to combine the key and the message using modular addition. The
numerical values of corresponding message and key letters are added together, modulo 26. So, if
key material begins with "XMCKL" and the message is "HELLO", then the coding would be done as
follows:

 H E L L O message

 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) message

http://en.wikipedia.org/wiki/One-time_pad

+ 23 (X) 12 (M) 2 (C) 10 (K) 11 (L) key

= 30 16 13 21 25 message + key

= 4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z) message + key (mod 26)

 E Q N V Z → ciphertext

If a number is larger than 26, then the remainder, after subtraction of 26, is taken [as the result]. This
simply means that if the computations "go past" Z, the sequence starts again at A.

The ciphertext to be sent to Bob is thus "EQNVZ". Bob uses the matching key page and the same
process, but in reverse, to obtain the plaintext. Here the key is subtracted from the ciphertext, again
using modular arithmetic:

 E Q N V Z ciphertext

 4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z) ciphertext

- 23 (X) 12 (M) 2 (C) 10 (K) 11 (L) key

= -19 4 11 11 14 ciphertext – key

= 7 (H) 4 (E) 11 (L) 11 (L) 14 (O) ciphertext – key (mod 26)

 H E L L O → message

Similar to the above, if a number is negative then 26 is added to make the number zero or higher.

Thus Bob recovers Alice's plaintext, the message "HELLO". Both Alice and Bob destroy the key
sheet immediately after use, thus preventing reuse and an attack against the cipher.”

Your program will encrypt and decrypt plaintext into ciphertext, using a key, in exactly the same
fashion as above, except it will be using modulo 27 operations: your 27 characters are the 26 capital
letters, and the space character (). All 27 characters will be encrypted and decrypted as above.

To do this, you will be creating five small programs in C. Two of these will function like “daemons”
(but aren't actually daemons), and will be accessed using network sockets. Two will use the
daemons to perform work, and the last is a standalone utility.

Here are the specifications of the five programs:

otp_enc_d: This program will run in the background as a daemon. Upon

execution, otp_enc_d must output an error if it cannot be run due to a network error, such as the

ports being unavailable. Its function is to perform the actual encoding, as described above in the
Wikipedia quote (note that the C operator "%" won't perform the modulus you want - you'll have to
write your own). This program will listen on a particular port/socket, assigned when it is first ran (see

syntax below). When a connection is made, otp_enc_d must call accept() to generate the socket

used for actual communication, and then use a separate process to handle the rest of the
transaction (see below), which will occur on the newly accepted socket.

In the child process of otp_enc_d, it must first check to make sure it is communicating

with otp_enc (see otp_enc, below). After verifying that the connection to otp_enc_d is coming

from otp_enc, then this child receives from otp_enc plaintext and a key via the communication

socket (not the original listen socket). The otp_enc_d child will then write back the ciphertext to

the otp_enc process that it is connected to via the same communication socket. Note that the key

passed in must be at least as big as the plaintext.

Your version of otp_enc_d must support up to five concurrent socket connections. Again, only in

the child process will the actual encryption take place, and the ciphertext be written back.

In terms of creating that child process as described above, you may either create

with fork() a new process every time a connection is made, or set up a pool of five processes at

the beginning of the program, before connections are allowed, to handle your encryption tasks. Your
system must be able to do five separate encryptions at once, using either method you choose.

Use this syntax for otp_enc_d:

otp_enc_d listening_port

listening_port is the port that otp_enc_d should listen on. You will always start otp_enc_d in the

background, as follows (the port 57171 is just an example; yours should be able to use any port):

$ otp_enc_d 57171 &

In all error situations, this program must output errors as appropriate (see grading script below for
details), but should not crash or otherwise exit, unless the errors happen when the program is
starting up (i.e. are part of the networking start up protocols like bind()). That is, if given bad input,

once running, otp_enc_d should recognize the bad input, report an error to the screen, and

continue to run. All error text must be output to stderr.

This program, and the other 3 network programs, should use "localhost" as the target IP
address/host. This makes them use the actual computer they all share as the target for the
networking connections.

otp_enc: This program connects to otp_enc_d, and asks it to perform a one-time pad style

encryption as detailed above. By itself, otp_enc doesn’t do the encryption - otp_end_d does. The

syntax of otp_enc is as follows:

otp_enc plaintext key port

In this syntax, plaintext is the name of a file in the current directory that contains the plaintext you

wish to encrypt. Similarly, keycontains the encryption key you wish to use to encrypt the text.

Finally, port is the port that otp_enc should attempt to connect to otp_enc_d on.

When otp_enc receives the ciphertext back from otp_enc_d, it should output it to stdout.

Thus, otp_enc can be launched in any of the following methods, and should send its output

appropriately:

$ otp_enc myplaintext mykey 57171

$ otp_enc myplaintext mykey 57171 > myciphertext

$ otp_enc myplaintext mykey 57171 > myciphertext &

If otp_enc receives key or plaintext files with bad characters in them, or the key file is shorter than

the plaintext, it should exit with an error, and set the exit value to 1. This character validation can

happen in either otp_enc or otp_enc_d, your choice. If otp_enc cannot find the port given, it

should report this error to the screen (not into the plaintext or ciphertext files) with the bad port, and

set the exit value to 2. Otherwise, on successfully running, otp_enc should set the exit value to 0.

otp_enc should NOT be able to connect to otp_dec_d, even if it tries to connect on the correct

port - you'll need to have the programs reject each other. If this happens, otp_enc should report the

rejection and then terminate itself.

All error text must be output to stderr.

otp_dec_d: This program performs exactly like otp_enc_d, in syntax and usage. In this case,

however, otp_dec_d will decrypt ciphertext it is given, using the passed-in ciphertext and key.

Thus, it returns plaintext again to otp_dec.

otp_dec: Similarly, this program will connect to otp_dec_d and will ask it to decrypt ciphertext

using a passed-in ciphertext and key, and otherwise performs exactly like otp_enc, and must be

runnable in the same three ways. otp_dec should NOT be able to connect to otp_enc_d, even if it

tries to connect on the correct port - you'll need to have the programs reject each other, as described

in otp_enc.

keygen: This program creates a key file of specified length. The characters in the file generated

will be any of the 27 allowed characters, generated using the standard UNIX randomization
methods. Do not create spaces every five characters, as has been historically done. Note that you
specifically do not have to do any fancy random number generation: we’re not looking for

cryptographically secure random number generation! rand() is just fine. The last character keygen

outputs should be a newline. All error text must be output to stderr, if any.

The syntax for keygen is as follows:

keygen keylength

Where keylength is the length of the key file in characters. keygen outputs to stdout. Here is an

example run, which redirects stdout to a key file of 256 characters called “mykey” (note that mykey is
257 characters long because of the newline):

$ keygen 256 > mykey

Files and Scripts

You are provided with 5 plaintext files to use (one , two , three , four , five). The grading will use
these specific files; do not feel like you have to create others.

You are also provided with a grading script ("p4gradingscript ") that you can run to test your
software. If it passes the tests in the script, and has sufficient commenting, it will receive full points
(see below). EVERY TIME you run this script, change the port numbers you use! Otherwise,
because UNIX may not let go of your ports immediately, your successive runs may fail!

Finally, you will be required to write a compilation script (see below) that compiles all five of your
programs, allowing you to use whatever C code and methods you desire. This will ease grading.
Note that only C will be allowed, no C++ or any other language (Python, Perl, awk, etc.).

Example

Here is an example of usage, if you were testing your code from the command line:

$ cat plaintext1

https://oregonstate.instructure.com/courses/1602409/files/65791921/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791922/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791923/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791924/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791925/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65232167/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791921/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791922/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791923/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791924/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65791925/download?wrap=1
https://oregonstate.instructure.com/courses/1602409/files/65232167/download?wrap=1

THE RED GOOSE FLIES AT MIDNIGHT

$ otp_enc_d 57171 &

$ otp_dec_d 57172 &

$ keygen 10 > myshortkey

$ otp_enc plaintext1 myshortkey 57171 > ciphertext1

Error: key ‘myshortkey’ is too short

$ echo $?

1

$ keygen 1024 > mykey

$ otp_enc plaintext1 mykey 57171 > ciphertext1

$ cat ciphertext1

GU WIRGEWOMGRIFOENBYIWUG T WOFL

$ keygen 1024 > mykey2

$ otp_dec ciphertext1 mykey 57172 > plaintext1_a

$ otp_dec ciphertext1 mykey2 57172 > plaintext1_b

$ cat plaintext1_a

THE RED GOOSE FLIES AT MIDNIGHT

$ cat plaintext1_b

WVIOWBTUEIOBC FVTROIROUXA JBWE

$ cmp plaintext1 plaintext1_a

$ echo $?

0

$ cmp plaintext1 plaintext1_b

plaintext1 plaintext1_b differ: byte 1, line 1

$ echo $?

1

$ otp_enc plaintext5 mykey 57171

otp_enc_d error: input contains bad characters

$ otp_enc plaintext3 mykey 57172

Error: could not contact otp_enc_d on port 57172

$ echo $?

2

$

Compilation Script

You must also write a short bash shell script called “compileall” that merely compiles your five
programs. For example, the first two lines might be:

#!/bin/bash

gcc -o otp_enc_d otp_enc_d.c

…

This script will be used to compile your software, and must successfully run on our class server. The
compilation must create all five programs, in the same directory as “compileall”, for immediate use by
the grading script, which is named “p4gradingscript”.

What to Submit
Please submit a single zip file of your program code, which may be in as many different files as you
want. Inside that zip file, include the following files:

1. All of your program code

2. The compilation script named “compileall”

3. All five plaintext# files, numbered 1 through 5

4. A copy of the grading script named “p4gradingscript”

