
Libft
Your first own library

Pedago pedago@42.fr

Summary: The aim of this project is to code a C library regrouping usual functions that
you’ll be allowed to use in all your other projects.

pedago@42.fr

Contents
I Foreword 2

II Introduction 3

III Objectives 4

IV General Instructions 5

V Mandatory part 7
V.1 Technical considerations . 7
V.2 Part 1 - Libc functions . 8
V.3 Part 2 - Additional functions . 10

VI Bonus part 15

VII Submission and peer correction 18

1

Chapter I

Foreword

This first project marks the beginning of your training to become de software engineer.

To accompany you during this project, here is a list of oustanding music groups. It’s
highly probable that you won’t like any of those. This will mean that you have poor
music taste. I’m sure that you have some other qualities such as being able to hold your
breath for more than 3 minutes or maybe you know by heart the names of the 206 United
Nations’ signatory states. The groups aren’t listed in any particular order and the list
does not need to be exhaustive. Click on the links to find out more.

• Linkin Park

• Atreyu

• Infected Mushroom

• Nightwish

• Nightwish is great even if they change main singer every now and then

• Caliban

• Papa Roach

• Koan

• Staind

• Dream Theater

• Sphrongle

2

https://www.youtube.com/watch?v=0xyxtzD54rM
https://www.youtube.com/watch?v=PqCt54Wx2e0
https://www.youtube.com/watch?v=uloBD9xxwZ0
https://www.youtube.com/watch?v=kIBdpFJyFkc
https://www.youtube.com/watch?v=GdZn7k5rZLQ
https://www.youtube.com/watch?v=RD4ko5B-Jr0
https://www.youtube.com/watch?v=-rdmG0k8S8k
https://www.youtube.com/watch?v=44DwIEQgBFo
https://www.youtube.com/watch?v=3exGGeeVJcU
https://www.youtube.com/watch?v=Uk9WTBYuVUI
https://www.youtube.com/watch?v=GWpSbTdNMjk

Chapter II

Introduction

The libft project builds on the concepts you learned during Day-06 of the bootcamp
ie code a library of useful functions that you will be allowed to reuse in most of your C
projects this year. This will save you a lot of precious time. The following assignments
will have you write lines of code you already wrote during the bootcamp. See the libft
project as a Bootcamp reminder and use it wisely to assess your level and progress.

Figure II.1: A possible representation of your Libft (artist’s view)

3

Chapter III

Objectives

C programming can be very tedious when one doesn’t have access to those highly useful
standard functions. This project makes you to take the time to re-write those functions,
understand them, and learn to use them. This library will help you for all your future C
projects.

Through this project, we also give you the opportunity to expand the list of functions
with your own. Take the time to expand your libft throughout the year.

4

Chapter IV

General Instructions

• You must create the following functions in the order you believe makes most sense.
We encourage you to use the functions you have already coded to write the next
ones. The difficulty level does not increase by assignment and the project has not
been structured in any specific way. It is similar to a video game, where you can
complete quests in the order of your choosing and use the loot from the previous
quests to solve the next ones.

• Your project must be written in accordance with the Norm.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the defence.

• All heap allocated memory space must be properly freed when necessary.

• You must submit a file named author containing your username followed by a ’\n’
at the root of your repository,
$>cat -e author
xlogin$

• You must submit a C file for each function you create, as well as a libft.h file,
which will contain all the necessary prototypes as well as macros and typedefs you
might need. All those files must be at the root of your repository.

• You must submit a Makefile which will compile your source files to a static library
libft.a.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean et re
in the order that you will see fit.

• Your Makefile must compile your work with the flags -Wall, -Wextra and -Werror.

5

Libft Your first own library

• Only the following libc functions are allowed : malloc(3), free(3) and write(2),
and their usage is restricted. See below.

• You must include the necessary include system files to use one or more of the three
authorized functions in your .c files. The only additional system include file you
are allowed to use is string.h to have access to the constant NULL and to the type
size_t. Everything else if forbidden.

• We encourage you to create test programs for your library even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are correcting.

6

Chapter V

Mandatory part

V.1 Technical considerations
• Your libft.h file can contain macros and typedefs if needed.

• A string must ALWAYS end with a ’\0’, even if it is not included in the function’s
description, unless explicitly stated otherwise.

• It is forbidden to use global variables.

• If you need sub-functions to write a complex function, you must define these sub-
functions as static as stipulated in the Norm.

Check out this link to find out more about static functions:
http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html

• You must pay attention to your types and wisely use the casts when needed, es-
pecially when a void* type is involved. Generally speaking, avoid implicit casts.
Example:

char *str;

str = malloc(42 * sizeof(*str)); /* Wrong ! Malloc returns a void * (implicit cast) */
str = (char *) malloc(42 * sizeof(*str)); /* Right ! (explicit cast) */

7

http://codingfreak.blogspot.com/2010/06/static-functions-in-c.html

Libft Your first own library

V.2 Part 1 - Libc functions
In this first part, you must re-code a set of the libc functions, as defined in their
man. Your functions will need to present the same prototype and behaviors as the orig-
inals. Your functions’ names must be prefixed by “ft_”. For instance strlen becomes
ft_strlen.

Some of the functions’ prototypes you have to re-code use the
"restrict" qualifier. This keyword is part of the c99 standard.
It is therefore forbidden to include it in your prototypes and to
compile it with the flag -std=c99.

You must re-code the following functions:

• memset

• bzero

• memcpy

• memccpy

• memmove

• memchr

• memcmp

• strlen

• strdup

• strcpy

• strncpy

• strcat

• strncat

• strlcat

• strchr

• strrchr

• strstr

• strnstr

• strcmp

• strncmp

• atoi

• isalpha

8

Libft Your first own library

• isdigit

• isalnum

• isascii

• isprint

• toupper

• tolower

9

Libft Your first own library

V.3 Part 2 - Additional functions
In this second part, you must code a set of functions that are either not included in the
libc, or included in a different form. Some of these functions can be useful to write Part
1’s functions.

•

ft_memalloc
Prototype void * ft_memalloc(size_t size);
Description Allocates (with malloc(3)) and returns a “fresh” memory

area. The memory allocated is initialized to 0. If the alloca-
tion fails, the function returns NULL.

Param. #1 The size of the memory that needs to be allocated.
Return value The allocated memory area.
Libc functions malloc(3)

•

ft_memdel
Prototype void ft_memdel(void **ap);
Description Takes as a parameter the address of a memory area that needs

to be freed with free(3), then puts the pointer to NULL.
Param. #1 A pointer’s address that needs its memory freed and set to

NULL.
Return value None.
Libc functions free(3).

•

ft_strnew
Prototype char * ft_strnew(size_t size);
Description Allocates (with malloc(3)) and returns a “fresh” string end-

ing with ’\0’. Each character of the string is initialized at
’\0’. If the allocation fails the function returns NULL.

Param. #1 The size of the string to be allocated.
Return value The string allocated and initialized to 0.
Libc functions malloc(3)

•

ft_strdel
Prototype void ft_strdel(char **as);
Description Takes as a parameter the address of a string that need to be

freed with free(3), then sets its pointer to NULL.
Param. #1 The string’s address that needs to be freed and its pointer set

to NULL.
Return value None.
Libc functions Free(3).

•

ft_strclr
Prototype void ft_strclr(char *s);
Description Sets every character of the string to the value ’\0’.
Param. #1 The string that needs to be cleared.
Return value None.
Libc functions None.

10

Libft Your first own library

•

ft_striter
Prototype void ft_striter(char *s, void (*f)(char *));
Description Applies the function f to each character of the string passed

as argument. Each character is passed by address to f to be
modified if necessary.

Param. #1 The string to iterate.
Param. #2 The function to apply to each character of s.
Return value None.
Libc functions None.

•

ft_striteri
Prototype void ft_striteri(char *s, void (*f)(unsigned int,

char *));
Description Applies the function f to each character of the string passed

as argument, and passing its index as first argument. Each
character is passed by address to f to be modified if necessary.

Param. #1 The string to iterate.
Param. #2 The function to apply to each character of s and its index.
Return value None.
Libc functions None.

•

ft_strmap
Prototype char * ft_strmap(char const *s, char (*f)(char));
Description Applies the function f to each character of the string given

as argument to create a “fresh” new string (with malloc(3))
resulting from the successive applications of f.

Param. #1 The string to map.
Param. #2 The function to apply to each character of s.
Return value The “fresh” string created from the successive applications of

f.
Libc functions malloc(3)

•

ft_strmapi
Prototype char * ft_strmapi(char const *s, char

(*f)(unsigned int, char));
Description Applies the function f to each character of the string passed

as argument by giving its index as first argument to create a
“fresh” new string (with malloc(3)) resulting from the suc-
cessive applications of f.

Param. #1 The string to map.
Param. #2 The function to apply to each character of s and its index.
Return value The “fresh” string created from the successive applications of

f.
Libc functions malloc(3)

11

Libft Your first own library

•

ft_strequ
Prototype int ft_strequ(char const *s1, char const *s2);
Description Lexicographical comparison between s1 and s2. If the 2

strings are identical the function returns 1, or 0 otherwise.
Param. #1 The first string to be compared.
Param. #2 The second string to be compared.
Return value 1 or 0 according to if the 2 strings are identical or not.
Libc functions None.

•

ft_strnequ
Prototype int ft_strnequ(char const *s1, char const *s2,

size_t n);
Description Lexicographical comparison between s1 and s2 up to n char-

acters or until a ’\0’ is reached. If the 2 strings are identical,
the function returns 1, or 0 otherwise.

Param. #1 The first string to be compared.
Param. #2 The second string to be compared.
Param. #3 The maximum number of characters to be compared.
Return value 1 or 0 according to if the 2 strings are identical or not.
Libc functions None.

•

ft_strsub
Prototype char * ft_strsub(char const *s, unsigned int

start, size_t len);
Description Allocates (with malloc(3)) and returns a “fresh” substring

from the string given as argument. The substring begins at
indexstart and is of size len. If start and len aren’t refer-
ing to a valid substring, the behavior is undefined. If the
allocation fails, the function returns NULL.

Param. #1 The string from which create the substring.
Param. #2 The start index of the substring.
Param. #3 The size of the substring.
Return value The substring.
Libc functions malloc(3)

•

ft_strjoin
Prototype char * ft_strjoin(char const *s1, char const

*s2);
Description Allocates (with malloc(3)) and returns a “fresh” string end-

ing with ’\0’, result of the concatenation of s1 and s2. If
the allocation fails the function returns NULL.

Param. #1 The prefix string.
Param. #2 The suffix string.
Return value The “fresh” string result of the concatenation of the 2 strings.
Libc functions malloc(3)

12

Libft Your first own library

•

ft_strtrim
Prototype char * ft_strtrim(char const *s);
Description Allocates (with malloc(3)) and returns a copy of the string

given as argument without whitespaces at the beginning or at
the end of the string. Will be considered as whitespaces the
following characters ’ ’, ’\n’ and ’\t’. If s has no whites-
paces at the beginning or at the end, the function returns a
copy of s. If the allocation fails the function returns NULL.

Param. #1 The string to be trimed.
Return value The “fresh” trimmed string or a copy of s.
Libc functions malloc(3)

•

ft_strsplit
Prototype char ** ft_strsplit(char const *s, char c);
Description Allocates (with malloc(3)) and returns an array of “fresh”

strings (all ending with ’\0’, including the array itself) ob-
tained by spliting s using the character c as a delimiter.
If the allocation fails the function returns NULL. Example
: ft_strsplit("*hello*fellow***students*", ’*’) re-
turns the array ["hello", "fellow", "students"].

Param. #1 The string to split.
Param. #2 The delimiter character.
Return value The array of “fresh” strings result of the split.
Libc functions malloc(3), free(3)

•

ft_itoa
Prototype char * ft_itoa(int n);
Description Allocate (with malloc(3)) and returns a “fresh” string end-

ing with ’\0’ representing the integer n given as argument.
Negative numbers must be supported. If the allocation fails,
the function returns NULL.

Param. #1 The integer to be transformed into a string.
Return value The string representing the integer passed as argument.
Libc functions malloc(3)

•

ft_putchar
Prototype void ft_putchar(char c);
Description Outputs the character c to the standard output.
Param. #1 The character to output.
Return value None.
Libc functions write(2).

•

ft_putstr
Prototype void ft_putstr(char const *s);
Description Outputs the string s to the standard output.
Param. #1 The string to output.
Return value None.
Libc functions write(2).

13

Libft Your first own library

•

ft_putendl
Prototype void ft_putendl(char const *s);
Description Outputs the string s to the standard output followed by a

’\n’.
Param. #1 The string to output.
Return value None.
Libc functions write(2).

•

ft_putnbr
Prototype void ft_putnbr(int n);
Description Outputs the integer n to the standard output.
Param. #1 The integer to output.
Return value None.
Libc functions write(2).

•

ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Description Outputs the char c to the file descriptor fd.
Param. #1 The character to output.
Param. #2 The file descriptor.
Return value None.
Libc functions write(2).

•

ft_putstr_fd
Prototype void ft_putstr_fd(char const *s, int fd);
Description Outputs the string s to the file descriptor fd.
Param. #1 The string to output.
Param. #2 The file descriptor.
Return value None.
Libc functions write(2).

•

ft_putendl_fd
Prototype void ft_putendl_fd(char const *s, int fd);
Description Outputs the string s to the file descriptor fd followed by a

’\n’.
Param. #1 The string to output.
Param. #2 The file descriptor.
Return value None.
Libc functions write(2).

•

ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Description Outputs the integer n to the file descriptor fd.
Param. #1 The integer to print.
Param. #2 The file descriptor.
Return value None.
Libc functions write(2).

14

Chapter VI

Bonus part

If you successfully completed the mandatory part, you’ll enjoy taking it further. You can
see this last section as Bonus Points.

Having functions to manipulate memory and strings is very useful, but you’ll soon
discover that having functions to manipulate lists is even more useful.

You’ll use the following structure to represent the links of your list. This structure
must be added to your libft.h file.

typedef struct s_list
{

void *content;
size_t content_size;
struct s_list *next;

} t_list;

Here is a description of the fields of the t_list struct:

• content : The data contained in the link. The void * allows to store any kind of
data.

• content_size : The size of the data stored. The void * type doesn’t allow you to
know the size of the pointed data, as a consequence, it is necessary to save its size.
For instance, the size of the string "42" is 3 bytes and the 32bits integer 42 has a
size of 4 bytes.

• next : The next link’s address or NULL if it’s the last link.

15

Libft Your first own library

The following functions will allow you to manipulate your lists more easilly.

•

ft_lstnew
Prototype t_list * ft_lstnew(void const *content, size_t

content_size);
Description Allocates (with malloc(3)) and returns a “fresh” link. The

variables content and content_size of the new link are ini-
tialized by copy of the parameters of the function. If the pa-
rameter content is nul, the variable content is initialized to
NULL and the variable content_size is initialized to 0 even
if the parameter content_size isn’t. The variable next is
initialized to NULL. If the allocation fails, the function returns
NULL.

Param. #1 The content to put in the new link.
Param. #2 The size of the content of the new link.
Return value The new link.
Libc functions malloc(3), free(3)

•

ft_lstdelone
Prototype void ft_lstdelone(t_list **alst, void (*del)(void

*, size_t));
Description Takes as a parameter a link’s pointer address and frees the

memory of the link’s content using the function del given as
a parameter, then frees the link’s memory using free(3). The
memory of next musnt not be freed under any circumstance.
Finally, the pointer to the link that was just freed must be
set to NULL (quite similar to the function ft_memdel in the
mandatory part).

Param. #1 The adress of a pointer to a link that needs to be freed.
Return value None.
Libc functions free(3)

•

ft_lstdel
Prototype void ft_lstdel(t_list **alst, void (*del)(void *,

size_t));
Description Takes as a parameter the adress of a pointer to a link and

frees the memory of this link and every successors of that link
using the functions del and free(3). Finally the pointer to
the link that was just freed must be set to NULL (quite similar
to the function ft_memdel from the mandatory part).

Param. #1 The address of a pointer to the first link of a list that needs
to be freed.

Return value None.
Libc functions free(3)

16

Libft Your first own library

•

ft_lstadd
Prototype void ft_lstadd(t_list **alst, t_list *new);
Description Adds the element new at the beginnning of the list.
Param. #1 The address of a pointer to the first link of a list.
Param. #2 The link to add at the beginning of the list.
Return value None.
Libc functions None.

•

ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(t_list

*elem));
Description Iterates the list lst and applies the function f to each link.
Param. #1 A pointer to the first link of a list.
Param. #2 The address of a function to apply to each link of a list.
Return value None.
Libc functions None.

•

ft_lstmap
Prototype t_list * ft_lstmap(t_list *lst, t_list *

(*f)(t_list *elem));
Description Iterates a list lst and applies the function f to each link to

create a “fresh” list (using malloc(3)) resulting from the suc-
cessive applications of f. If the allocation fails, the function
returns NULL.

Param. #1 A pointer’s to the first link of a list.
Param. #2 The address of a function to apply to each link of a list.
Return value The new list.
Libc functions malloc(3), free(3).

If you successfully completed both the mandatory and bonus sections of this project,
we encourage you to add other functions that you believe could be useful to expand your
library. For instance, a version of ft_strsplit that returns a list instead of an array,
the function ft_lstfold similar to the function reduce in Python and the function
List.fold_left in OCaml (beware of the memory leak !). You can add functions to
manipulate arrays, stacks, files, maps, hashtables, etc. The limit is your imagination.

17

Chapter VII

Submission and peer correction

Submit your work on your GiT repository as usual. Only the work on your repository
will be graded.

Once your have completed your defences, Deepthought (the “moulinette”) will grade
your work. Your final grade will be calculated taking into account your peer-correction
grades and Deepthought’s grade.

Deepthought will grade your assignments in the order of the subject : Part 1, Part 2
and Bonus. One error in one of the sections will automatically stop the grading.

Good luck to you and don’t forget your author file !

18

	Foreword
	Introduction
	Objectives
	General Instructions
	Mandatory part
	Technical considerations
	Part 1 - Libc functions
	Part 2 - Additional functions

	Bonus part
	Submission and peer correction

