
 Intel® Software Guard Extensions

https://software.intel.com/sgx

Intel® Software Guard Extensions (Intel® SGX)
Protected Code Loader (PCL) for Linux*

User Guide

09 May 2018

Revision 1.0.3

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 2 of 22

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice. Contact your Intel representative to
obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 3 of 22

Contents
1 Introduction .. 5

1.1 General ... 5
1.2 Terminology ... 5
1.3 References ... 6
1.4 Legal considerations ... 6
1.5 Package Content .. 6

2 Architecture Overview .. 7

2.1 Introduction ... 7
2.2 Build Time ... 7
2.3 Run Time ... 8

2.3.1 ISV Sealing Enclave .. 8
2.3.2 ISV IP Enclave .. 8

2.4 Comparison with Standard Flow ... 9
2.5 Security Considerations ... 10

2.5.1 Sections that are Not Encrypted .. 10
2.5.2 Cryptography ... 10

3 Integration with Intel® SGX PCL ... 11

3.1 Prerequisites .. 11
3.1.1 git ... 12
3.1.2 Intel® SGX PSW and Intel® SGX SDK .. 12
3.1.3 OpenSSL1.1.0g ... 12

3.2 Apply modifications to Intel® SGX PSW and Intel® SGX SDK 13
3.3 Rebuild and reinstall Intel® SGX PSW and Intel® SGX SDK 13
3.4 Set Environment Variables ... 13
3.5 Modifications to IP Enclave ... 14
3.6 Modifications to Enclave Application .. 15
3.7 Sealing Enclave .. 16

3.7.1 Decryption key provisioning ... 16
3.7.2 Sealing the key ... 17
3.7.3 Interaction with the Enclave Application ... 17

4 Distribution to Customers’ Platforms ... 18

5 Release Notes .. 19

5.1 Supported compilation/linker options .. 19
5.2 Release code structure .. 19
5.3 Building the Intel® SGX PCL Tool and Static Library 20
5.4 Building and running the Intel® SGX PCL Sample Code 21

Tables
Table 1: Terminology .. 5
Table 2: References .. 6
Table 3: Intel® SGX PCL add-on package content.. 6

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 4 of 22

Table 4: Comparison of enclave load flows .. 9
Table 5: Sections that are Not Encrypted .. 10

Figures
Figure 1: Intel® SGX PCL Build Flow .. 7
Figure 2: ISV Sealing Enclave Flow ... 8
Figure 3: ISV IP Enclave Loading Flow .. 9

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 5 of 22

1 Introduction

1.1 General
The Intel® Software Guard Extensions (Intel® SGX) Protected Code Loader (PCL) is intended
to protect Intellectual Property (IP) within the code for Intel® SGX enclave applications
running on the Linux* OS.

Problem: Intel® SGX provides integrity of code and confidentiality and integrity of data at
run-time. However, it does NOT provide confidentiality of code offline as a binary file on
disk. Adversaries can reverse engineer the binary enclave shared object.

Solution: The enclave shared object (.so) is encrypted at build time. It is decrypted at
enclave load time.

1.2 Terminology
Table 1: Terminology

Term Description

Intel® SGX Intel® Software Guard Extensions

Intel® SGX PCL Protected Code Loader

Enclave Application Ring 3 application that utilizes one or more Intel® SGX enclaves

IP Intellectual Property

IP Binary IP code or data in the enclave binary image

Non IP Binary Code or data in the enclave image which are not IP

ELF Executable Linkable Format. Linux executable application.

Section ELF format binary file section.

IP Section Section which includes IP binary

Non IP Section Section which does not include IP binary

ISV Independent Software Vendor

so Linux Shared Object file

IP Enclave Also referred to as ‘Encrypted Enclave’.
Main/product ISV enclave. Contains the ISV’s encrypted IP.

Sealing enclave Also known as ‘Decryption-Key Provisioning-Enclave’.
Auxiliary ISV enclave. Provisions the decryption-key to the platform and seals it.

CentOS CentOS 7.3.1611 64bit

Ubuntu Ubuntu* Desktop -16.04-LTS 64bit

RHEL Red Hat Enterprise Linux Server release 7.3 64bit

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 6 of 22

1.3 References
Table 2: References

Title Description

1 Intel® Software Guard Extensions Remote Attestation
End-to-End Example

Article describes Intel® SGX Remote Attestation
flow in detail through an example end-to-end
application that was developed at Intel.

2 Intel® Software Guard Extensions Developer Guide Intel® SGX SDK developer guide provides
guidance on how to develop robust application
enclaves based on Intel® Software Guard
Extensions technology.

3 Intel® Software Guard Extensions Developer Reference Intel® SGX developer reference covers tutorials,
tools, and API references, as well as sample code.

1.4 Legal considerations
Intel® SGX PCL uses code snippets from OpenSSL1.1.0g and from the Intel® SGX PSW and
Intel® SGX SDK.

1.5 Package Content
The Intel® SGX PCL is integrated into Intel® SGX SDK starting branch sgx_2.1.3. It is a
separate add-on to Intel® SGX SDK branches sgx_2.0, sgx_2.1, sgx_2.1.1, sgx_2.1.2.
It contains the components listed/summarized in Table 3.

Table 3: Intel® SGX PCL add-on package content

Component Name Description

libsgx_pcl.a /
libsgx_pclsim.a

Trusted libraries to be added to the enclave at link time for HW or simulation modes,
respectively.

sgx_encrypt A tool that encrypts the ISV’s enclave. ISVs integrate it into their build flow such that it
runs between the link and sign phases.

sgx_pcl_guid.h Include file used by the Sealing Enclave to create the sealed key blob and by the
encryption tool to update the encrypted IP enclave.

SampleEnclave A sample project showing how Intel® SGX PCL can be integrated into existing
SampleEnclave.

Source code Open source code of all tools and libraries.

Note: All the libraries/executables are built for Linux X64 configuration.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 7 of 22

2 Architecture Overview

2.1 Introduction
This section introduces the Intel® SGX PCL for Linux. The following topics are covered:

 Build time
 Run time
 Comparison with standard flow
 Security considerations

2.2 Build Time
Figure 1 shows the Intel® SGX PCL build flow.

Figure 1: Intel® SGX PCL Build Flow

1. The Intel® SGX PCL library is linked into the ISV Intel® SGX IP Enclave.
2. Before the ISV’s IP Enclave is signed, the linked shared object is modified such that ELF

sections that contain IP are encrypted. The green key designates the symmetric
encryption/decryption key.

Notes:

 The Intel® SGX PCL encryption tool treats all sections as IP, except for sections that
are required by either the signing tool, the Intel® SGX PSW Enclave Loader, or the
Intel® SGX PCL decryption flow. For a detailed list, see ‘Sections that are Not
Encrypted’ below.

 Encryption/decryption key management is the ISV’s responsibility and is out of
scope for this document.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 8 of 22

2.3 Run Time

2.3.1 ISV Sealing Enclave

To load an IP Enclave, the ISV must first transport a decryption AES key to the user local
machine, seal it on that user local machine, and use it as an input for the Intel® SGX PCL.
For this, the ISV must devise a second enclave, the ‘Sealing Enclave’. Figure 2 shows this
flow.

Figure 2: ISV Sealing Enclave Flow

The ISV’s Sealing Enclave performs the following:

1. Uses existing standard Intel® SGX SDK Remote Attestation to generate a secure
session with the ISV server. Details at “Remote Attestation” below. (Light blue key
illustrates session keys)

2. Receives the decryption key from the ISV server in a secured way.
Details at “Decryption Key Provisioning” below. (Green key illustrates decryption key)

3. Uses existing standard Intel® SGX SDK Sealing example to generate the sealed key
and store it locally.

Notes:
 In order for the Sealing Enclave and IP Enclave to be able to seal and unseal the

decryption key, both enclaves must be signed with the same Intel® SGX ISV’s signing
key and have the same ProdID.

 Once the sealed key is generated it can be stored in nonvolatile memory on the platform.
This decrease the number of times remote-attestation is required to run.

2.3.2 ISV IP Enclave

Figure 3 shows the enclave loading flow.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 9 of 22

Figure 3: ISV IP Enclave Loading Flow

The ISV’s IP Enclave performs the following:

1. Receives the Sealed Key Blob as input.
2. Unseals the blob to receive the decryption key.
3. Uses the decryption key to decrypt the IP content.

2.4 Comparison with Standard Flow
Table 4 summarizes the differences (in blue) between IP Enclave load flows with and
without the Intel® SGX PCL:

Table 4: Comparison of enclave load flows

Step
Standard Flow

(no Intel® SGX PCL)
Intel® SGX PCL Flow

Build
Time

1. Link: ISV’s archives and objs are
linked into Enclave.so

2. Sign: Enclave.so is signed to

generate Enclave.signed.so

1. Link: ISV’s archives, objs, and libsgx_pcl.a
are linked into IPEnclave.so

2. Encrypt IPEnclave.so IPEnclave.so.enc
3. Sign: IPEnclave.so.enc is signed to

generate IPEnclave.signed.so

Enclave
Load

1. Enclave application loads the
enclave using sgx_create_enclave

2. sgx_create_enclave performs an
implicit ecall.

3. First ecall initiates enclave runtime
initialization flow.

1. Enclave application gets the
sealed decryption key

2. Enclave application loads the enclave using
sgx_create_encrypted_enclave, providing
the sealed decryption key

3. sgx_create_encrypted_enclave performs an
implicit ecall.

4. First ecall invokes Intel® SGX PCL flow

5. Intel® SGX PCL unseals the sealed blob to
get the decryption key.

6. Intel® SGX PCL decrypts the decrypted IP
sections and returns the enclave to its
functional state.

7. Continue with enclave runtime initialization
flow.

Note: In simulation mode, link libsgx_pclsim.a and not libsgx_pcl.a

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 10 of 22

2.5 Security Considerations

2.5.1 Sections that are Not Encrypted

The ISV must verify the ELF sections in Table 5 do not contain the ISV’s IP. The encryption
tool will NOT encrypt these sections.

Table 5: Sections that are Not Encrypted

Section name Description

.shstrtab Sections' names string table. Pointed by e_shstrndx

.note.sgxmeta Used by the Intel® SGX SDK

.bss and .tbss Zero initialized data

.dynamic Section is required to construct dyn_info by function
parse_dyn at elfparser.cpp

.dynsym, .dynstr, .rela.dyn Sections hold the content pointed by entries with index
DT_SYMTAB, DT_STRTAB and DT_REL in dyn_info

.plctbl, .nipx, .nipd, .niprod Sections which contain Intel® SGX PCL code and data
(nip stands for Non IP)

Debug only:

.comment, .debug_abbrev, .debug_aranges,

.debug_info, .debug_line, .debug_loc, .debug_ragnes,

.debug_str, .symtab, .strtab, .gnu_version_d

These sections remain plain text to enable / ease
debugging.

2.5.2 Cryptography

2.5.2.1 Standards

At build time, the encryption tool uses:

 SHA256 to compute the hash of the symmetric encryption/decryption key and embeds it
into the IP enclave binary.

 AES-GCM-128 to encrypt-in-place the IP sections.

 RDRAND to generate the per-section random IVs.

At run time the Intel® SGX PCL uses:

 SHA256 to compute the hash of the unsealed symmetric encryption/decryption key. The
Intel® SGX PCL verifies the integrity of the symmetric encryption/decryption key by
comparing its hash with the one embedded in the IP enclave binary at build time.

 AES-GCM-128 to decrypt-in-place the IP sections.

2.5.2.2 Crypto Code Snippets from OpenSSL

Intel® SGX PCL library includes code snippets from openssl1.1.0g (with slight modifications
to enable running with Intel® SGX PCL). Those snippets are now part of the ISV’s IP
enclave’s TCB. If in the future, an identified vulnerability in OpenSSL1.1.0g requires
modification to a file from which these snippets originate, ISV must update the snippets
accordingly.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 11 of 22

3 Integration with Intel® SGX PCL

Note: Steps 1 – 4 are NOT required when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

Integrating an ISV’s enclave with Intel® SGX PCL on older branches (2.1.2 or older) requires
the ISV to apply steps 1 – 4 on the ISV’s development platform:

1. Prerequisites (including Intel® SGX PSW and Intel® SGX SDK).
2. Apply modifications to the Intel® SGX SDK and Intel® SGX PSW source files.
3. Build and install the modified Intel® SGX SDK and Intel® SGX PSW.
4. Set environment variables.

Modifications to the ISV’s solution:
5. Apply modifications to the IP enclave.
6. Apply modifications to the enclave application that loads the enclave(s).
7. Create an additional enclave, the Sealing Enclave.

Note: Steps 5 – 7 above have already been applied to the sample code in the Intel® SGX
PCL release package (see SampleCode\SampleEnclavePCL). See Building the Intel® SGX
PCL Tool and Static Library below for instructions to build the encryption tool and decryption
static library. See Building and running the Intel® SGX PCL Sample Code for instructions to
build and run the sample code. Comparing it with the original SampleCode\SampleEnclave
which comes as part of the Intel® SGX SDK code samples illustrates how steps 5 – 7 should
be applied.

Disclaimer: Code in document is pseudo code / abstract. It is not secure, is not complete,
and will not compile. For complete code, see the source files at the git repository.

3.1 Prerequisites

Note: These prerequisites are NOT required when using Intel® SGX PSW and SDK branch
2.1.3. Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated
into the Intel® SGX PSW and SDK.

HW: all build flavors, except for simulation and pcl_simulation, require the platform to be
Intel® SGX enabled (CPU and BIOS).

SW:

 git
 Intel® SGX PSW, Intel® SGX SDK and Intel® SGX Driver
 OpenSSL1.1.0g

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 12 of 22

3.1.1 git

Note: This is NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3. Starting
Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the Intel® SGX
PSW and SDK.

git is used to apply a patch file to the Intel® SGX PSW and Intel® SGX SDK

3.1.1.1 Ubuntu

$ sudo apt-get update
$ sudo apt-get install git

3.1.1.2 CentOS & RHEL

$sudo yum install git

3.1.2 Intel® SGX PSW and Intel® SGX SDK

Note: This step is NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

Follow instructions at linux-sgx-sdk to build and install the Intel® SGX SDK, branch sgx_2.0,
sgx_2.1, sgx_2.1.1, sgx_2.1.2.

On platforms that support Intel® SGX HW, you may also follow the instructions to install Intel®
SGX PSW.

Note: Current version of the Intel® SGX PCL supports branches sgx_2.0, sgx_2.1,
sgx_2.1.1, sgx_2.1.2 and sgx_2.1.3 of Intel® SGX PSW and Intel® SGX SDK.

Note: ISV must verify that the Intel® SGX SDK SampleCode/SampleEnclave successfully
builds and runs on the ISV’s platform in both simulation mode and HW mode (if HW supports
Intel® SGX) before the modifications required for Intel® SGX PCL are applied. This will
decrease the number of failures wrongly associated with Intel® SGX PCL.

3.1.3 OpenSSL1.1.0g

Note: This is NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3. Starting
Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the Intel® SGX
PSW and SDK.

The build time encryption tool does not use the default OpenSSL version. It uses a newer
version (1.1.0g), which must be downloaded and built.

Download OpenSSL1.1.0g from: https://www.openssl.org/source/

Build instructions: (https://wiki.openssl.org/index.php/Compilation_and_Installation)

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 13 of 22

$./config
$ make

Note: Intel® SGX PCL does not require installing OpenSSL 1.1.0g (which could possibly
result in overriding the distro’s default). Intel® SGX PCL only uses the headers and
generated shared objects.

3.2 Apply modifications to Intel® SGX PSW and Intel® SGX SDK

Note: This step is NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

Apply the required modifications to Intel® SGX PSW and Intel® SGX SDK source files using
the supplied git patch:

$ cd <linux-sgx>

where <linux-sgx> is the Linux Intel® SGX PSW and Intel® SGX SDK home directory.

$ git apply <path_to_pcl_dir>/Tools/sgx.psw.sdk.2.1.2.git.diff

where <path_to_pcl_dir> is path to Intel® SGX PCL base directory (either full or relative).

Note: a git patch file can only be applied to a specific branch of the Intel® SGX PSW and
Intel® SGX SDK. When using Intel® SGX SDK branch sgx_2.0 use sgx.psw.sdk.2.0.git.diff.
When using branches sgx_2.1 or sgx_2.1.1 use sgx.psw.sdk.2.1.git.diff. When using Intel®
SGX SDK branch sgx_2.1.2 use sgx.psw.sdk.2.1.2.git.diff.

3.3 Rebuild and reinstall Intel® SGX PSW and Intel® SGX SDK

Note: This step is NOT required when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

Follow instructions at: linux-sgx-sdk to uninstall and clean, then build and install the Intel®
SGX PSW and Intel® SGX SDK.

3.4 Set Environment Variables

Note: Steps 1-3 are NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 14 of 22

1. Set the Linux Intel® SGX PSW and Intel® SGX SDK home directory:

$ export SGX_SDK_SRCS=< sgx_psw_sdk_sources_home_dir >

where < sgx_psw_sdk_sources_home_dir > is the base directory of the Intel® SGX
PSW and Intel® SGX SDK sources (that is, where the sdk and psw are located)

2. Set the OpenSSL 1.1.0g shared object directory:

$ export OPENSSL_ROOT=< openssl_crypto_libraries_dir >

where < openssl_crypto_libraries_dir > is full path to the directory where
OpenSSL 1.1.0g libcrypto.so (or libcrypto.so.1.1 etc.) is located.

3. When separately building the encryption tool, Intel® SGX PCL trusted runtime library or
sample enclave, set the Intel® SGX PCL root folder.

$ export PCL_DIR=< path_to_pcl_dir >

where < path_to_pcl_dir > is the full path to the main directory of Intel® SGX PCL
(folder which includes the subfolder Include, Common, Tools etc.).

3.5 Modifications to IP Enclave

Note: Steps 3.5 – 3.7 have already been applied on the Intel® SGX PCL sample (see
SampleCode\SampleEnclavePCL). The sample code can be built and run upon completion
of steps 3.1 – 3.4 above. See Building and Running the Intel® SGX PCL Sample Code below
for instructions to build and run the sample code. Comparing the attached sample code with
the original SampleCode\SampleEnclave which comes as part of the Intel® SGX SDK code
samples illustrates how steps 3.5 – 3.7 should be applied.

Note: See sample source code at SampleCode\SampleEnclavePCL

1. Add the following to the IP Enclave link flags:

-Wl,--whole-archive -l<pcl_archive_name> -Wl,--no-whole-archive

where <pcl_archive_name> is sgx_pcl and sgx_pclsim for HW and simulation
modes, respectively.

2. Add the following stage to the build flow
ifneq ($(SGX_IPLDR),)
PCL_ENCRYPTION_TOOL := sgx_encrypt
PCL_KEY := key.bin

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 15 of 22

ifeq ($(SGX_DEBUG),1)
ENCRYPTION_TOOL_FLAGS := -d
Endif
$(ENCRYPTED_ENCLAVE_NAME): $(ENCLAVE_NAME) $(PCL_ENCRYPTION_TOOL)

$(PCL_ENCRYPTION_TOOL) -i $< -o $@ -k $(PCL_KEY)
$(ENCRYPTION_TOOL_FLAGS)
endif

o The ‘-d’ option is added in debug mode. It informs the encryption tool not to encrypt
or zero sections that must remain plain text to enable / ease debugging.

3. Modify the build flow such that sealed enclave is generated from the encrypted enclave.
4. No modifications are required to the IP Enclave source code.

3.6 Modifications to Enclave Application

Note: See sample source code at SampleCode\SampleEnclavePCL\App

Required steps:

1. Get the sealed blob:
 If file containing the sealed blob exists (for example, from previous runs) read it.
 Else:

o Create the Sealing Enclave.
o Use the Sealing Enclave to provision the decryption key onto the platform and

seal it.
o Save the sealed key to a file on the platform for future use.

2. Load the encrypted enclave using sgx_create_encrypted_enclave and provide it with
the sealed blob.

Pseudo code:

#define SEALED_KEY_FILE_NAME "SealedKey.bin"
#define IP_ENCLAVE_FILE_NAME "IPEnclave.signed.so"
#define SEALING_ENCLAVE_FILE_NAME "SealingEnclave.signed.so"

uint8_t* sealed_key;
size_t sealed_key_size;

if(file_exists(SEALED_KEY_FILE_NAME))
{
 // Sealed key file exists, read it into buffer:
 ReadFromFile(SEALED_KEY_FILE_NAME, sealed_key);
}
else
{
 /*
 * Sealed key file does not exist. Create it:
 * 1. Create the Sealing Enclave

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 16 of 22

 * 2. Use the Sealing Enclave to provision the decryption key
 * onto the platform and seal it.
 * 3. Save the sealed key to a file for future uses
 */

 // 1. create the sealing enclave
 sgx_create_enclave(
 SEALING_ENCLAVE_FILE_NAME,
 debug,
 &token,
 &updated,
 &seal_enclave_id,
 NULL);
 /*
 * 2. Use the Sealing Enclave to provision the decryption key
 * onto the platform and seal it:
 */
 ecall_get_sealed_key_size(seal_enclave_id, &sealed_key_size);
 sealed_key = (uint8_t*)malloc(sealed_key_size);
 ecall_get_sealed_key(seal_enclave_id, sealed_key, sealed_key_size);
 // 3. Save the sealed key to a file for future uses
 WriteToFile(SEALED_KEY_FILE_NAME, sealed_key);
}

// Load the encrypted enclave, providing the sealed key:
sgx_create_encrypted_enclave(
 IP_ENCLAVE_FILE_NAME,
 debug,
 &token,
 &updated,
 ip_enclave_id,
 NULL,
 sealed_key);

3.7 Sealing Enclave

Note: See sample source code at SampleCode\SampleEnclavePCL\Seal

3.7.1 Decryption key provisioning

This section describes methods for the ISV to create and use the ISV’s Sealing Enclave. The
ISV Sealing enclave is responsible to provision the decryption key to the user local machine
and seal it.

To securely transport the decryption AES key to the user local machine, the ISV Sealing
enclave needs to attest to the ISV server, generate a secure session, and use it to provision
the decryption key.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 17 of 22

3.7.1.1 Remote Attestation

The Intel® SGX SDK Remote Attestation sample illustrates and describes in details how to
initiate a remote attestation session with an ISV server.

3.7.1.2 Sending the Key from ISV Server to Local Platform

The last message of remote attestation (msg4) includes an optional secret payload to the
client (in our case, the Sealing Enclave).

Quote from [1]:
“Remote Attestation utilizes a modified Sigma protocol to facilitate a Diffie-Hellman Key
Exchange (DHKE) between the client and the server. The shared key obtained from this
exchange can be used by the Service Provider to encrypt secrets to be provisioned to
the client. The client enclave would then be able to retrieve the same key and use it to
decrypt the secret.
…
After receiving the attestation status from the IAS, the Service Provider generates msg4
to the client in response to msg3. The payload of msg4 contains the attestation status
and some optional values, such as the secret, which can be encrypted using the shared
key derived during the DHKE.”

The ISV can use any one of the following two alternatives:

 Provision the decryption key directly as the payload of that last message.
 Use the payload of that last message to provision a primary secret. Then use the

primary secret to generate a secure session (for example, using TLS) between the ISV
server and the Sealing enclave. Then use the secure session to securely provision the
decryption key.

3.7.2 Sealing the key

The Intel® SGX SDK Sealing sample illustrates how to seal a secret. As default, the Intel®
SGX SDK seals the secret using MRSIGNER.

3.7.3 Interaction with the Enclave Application

In the pseudo code above, the ISV’s Sealing Enclave provides the Enclave Application with
sealed decryption key by implementing the enclave calls ecall_get_sealed_key_size and
ecall_get_sealed_key. This is not an architectural requirement and ISVs can choose to
use their own design.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 18 of 22

4 Distribution to Customers’ Platforms

Note: This section is NOT relevant when using Intel® SGX PSW and SDK branch 2.1.3.
Starting Intel® SGX PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the
Intel® SGX PSW and SDK.

At runtime, the ISV’s application must use the slightly modified libsgx_urts.so.
(Generated on the ISV’s development platform as described at ‘Apply modifications to Intel®
SGX PSW and Intel® SGX SDK’ and ‘Rebuild and reinstall the Intel® SGX PSW and Intel® SGX
SDK’ above).
If ISV does not control the Intel® SGX SW stack on the customers’ platforms then ISV can
use the following deployment methodology:
1. Add the Intel® SGX PCL libsgx_urts.so to the release package.

2. Add the path to the Intel® SGX PCL libsgx_urts.so to LD_LIBRARY_PATH

$ export LD_LIBRARY_PATH=<path_to_urts_so_file>:$LD_LIBRARY_PATH

where <path_to_urts_so_file> is the full path to the Intel® SGX PCL version of
libsgx_urts.so file.

The Intel® SGX PSW installer inserts the original libsgx_urts.so (without the
modifications required for Intel® SGX PCL) into /usr/lib/. At application load time, the
dynamic linker searches for libsgx_urts.so in the path defined by LD_LIBRARY_PATH
environment variable before it searches for it at /usr/lib/.

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 19 of 22

5 Release Notes

5.1 Supported compilation/linker options

Note: This is NOT relevant to Intel® SGX PSW and SDK branch 2.1.3. Starting Intel® SGX
PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the Intel® SGX PSW and
SDK.

As a rule of thumb, Intel® SGX PCL infrastructure supports all linkers / compilers that are
supported by the Intel® SGX PSW and Intel® SGX SDK.

Both default gcc linker and ld-gold are supported.

5.2 Release code structure

Note: This is NOT relevant to Intel® SGX PSW and SDK branch 2.1.3. Starting Intel® SGX
PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the Intel® SGX PSW and
SDK.

1. bin/x64 holds the generated executable tool sgx_encrypt

2. Common/pcl_common.h includes content used by files in both Intel® SGX PCL lib and
encryption tool

3. Include/sgx_pcl_guid.h shall be used by the ISVs Sealing Enclave. It also used by the
Intel® SGX PCL signing tool.

4. lib64 holds the generated static libraries libsgx_pcl.a and libsgx_pclsim.a

5. Tools/Encryptip holds the sources of the encryption tool (sgx_encrypt) which
performs the encryption at build time

6. Tools/sgx.psw.sdk.2.0.git.diff, Tools/sgx.psw.sdk.2.1.git.diff and
Tools/sgx.psw.sdk.2.1.2.git.diff are the git patches files describing the
modifications required to enable the solution to run properly. Patch
sgx.psw.sdk.2.0.git.diff needs to be applied to Linux Intel® SGX PSW and Intel®
SGX SDK branch sgx_2.0. Patch sgx.psw.sdk.2.1.git.diff needs to be applied to
Linux Intel® SGX PSW and Intel® SGX SDK branches sgx_2.1 or sgx_2.1.1. Patch
sgx.psw.sdk.2.1.2.git.diff needs to be applied to Linux Intel® SGX PSW and Intel®
SGX SDK branch sgx_2.1.2.

7. SampleCode

 key.bin is a binary file holding the dummy symmetric encryption/decryption key.
ISVs must replace this with the ISVs’ key.
Key management is out of scope.

 SampleEnclave illustrates how ISV can port existing code to use the Intel® SGX PCL.
ISVs are encouraged to compare these to the originals App and Enclave folders at
<sgx_sdk_dir>/SampleCode/SampleEnclave. where <sgx_sdk_dir> is home
directory for the Intel® SGX SDK, for example, /opt/intel

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 20 of 22

i. App and Enclave demonstrate the modifications to enclave makefile and enclave
application required to use Intel® SGX PCL.

ii. Seal folder includes the sample Sealing Enclave.
8. Source holds sources for the static library that is linked to the enclave and performs the

decryption at run time
 crypto:

i. pcl_cmac.c, pcl_gcm128.c, pcl_md32_common.h, pcl_modes_lcl.h,
pcl_sha256.c
Files from openssl1.1.0g with modifications to enable running with Intel® SGX
PCL.

iii. pcl_crypto.cpp: cryptography code, calls the other functions
iv. pcl_crypto_internal.h: content used by files in crypto folder

v. pcl_vpaes-x86_64.s: output of vpaes-x86_64.pl after building openssl1.1.0g.
Symbols are renamed to enable running in parallel to Intel® SGX SSL.

 pcl_entry.cpp: Intel® SGX PCL entry point
 pcl_mem.cpp: memory functionalities

 pcl_internal.h: content used by multiple files in Intel® SGX PCL lib
 unseal

i. pcl_unseal_internal.h: content used by files in unseal folder
ii. pcl_sgx_get_key.cpp, pcl_tSeal.cpp, pcl_tSeal_internal.cpp,

pcl_tSeal_util.cpp
Files from Intel® SGX SDK with modifications to enable running with Intel® SGX
PCL

iii. sim
1) pcl_derive.cpp, pcl_t_instructions.cpp

Files from Intel® SGX SDK with modifications to enable running with Intel®
SGX PCL. Content is only applicable to simulation mode.

5.3 Building the Intel® SGX PCL Tool and Static Library

Note: This is NOT relevant to Intel® SGX PSW and SDK branch 2.1.3. Starting Intel® SGX
PSW and SDK branch 2.1.3 the Intel® SGX PCL is integrated into the Intel® SGX PSW and
SDK.

The following steps describe how to build the Intel® SGX PCL build time encryption tool and
static library. ISVs can build the project according to the ISV’s requirements.

Note: ISV must complete steps 3.1-3.4 above before the Intel® SGX PCL tool and static library
can be built.

To build both Intel® SGX PCL encryption tool (sgx_encrypt) and Intel® SGX PCL statically
linked library with default configuration, enter the following command:

$ cd <path_to_pcl_dir>

where <path_to_pcl_dir> is path to Intel® SGX PCL base directory

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 21 of 22

$ make

The tool sgx_encrypt is generated at bin/x64 directory.

The static libraries libsgx_pcl.a and libsgx_pclsim.a are generated at lib64 directory.

To build Intel® SGX PCL with debug information, enter the following command:

 $ make DEBUG=1

To clean the files generated by previous `make` command, enter the following command:

 $ make clean

Note: It is also possible to enter either the Sources or Tools\Encryptip folders and use the
make command to separately build the Intel® SGX PCL static library or build time encryption tool,
respectively.

Note: make clean must be run when switching between configurations. For example
when switching between building with and without debug information.

5.4 Building and running the Intel® SGX PCL Sample Code

Note: ISV must build the Intel® SGX PCL (see above) before the Intel® SGX sample code can be
built.

To compile and run the sample

$ cd <path_to_pcl_dir>/SampleCode/SampleEnclave

where <path_to_pcl_dir> is path to Intel® SGX PCL base directory

$ make
$./app

Intel Software Services Group
Intel® SGX PCL for Linux* User Guide

Rev. 1.0.3

 Page 22 of 22

Note: See linux-sgx-sdk for instructions on building with debug information and / or building in
simulation mode.

Note: ISVs are encouraged to compare SampleCode\SampleEnclave to
SampleCode\SampleEnclavePCL as a demonstration of how the Intel® SGX PCL should be
integrated into the ISV’s project.

