

Intel[®] Software Guard Extensions SSL (Intel[®] SGX SSL) Library

Linux Developer Guide

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting <u>www.intel.com/design/literature.htm</u>.

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

Table of Contents

Legal Information	2
1. Package Content	4
2. Using Intel® SGX SSL Library	5
3. Supported APIs	6
4. Appendix A: Supported APIs	9

1. Package Content

Intel[®] SGX SSL library is released as a component of the Intel[®] Software Guard Extensions (Intel[®] SGX) SDK. Private release package can be provided by request for evaluation purposes.

The release package contains relevant include files (both header and edl files), libraries and relevant documentation.

The following table lists the libraries provided in the release package:

Library Name	Description
libsgx_tsgxssl_crypto.a	Intel® SGX SSL* cryptographic library, built based on OpenSSL 1.1.0 crypto library
libsgx_tsgxssl.a	Trusted library, providing implementation for missing system APIs required by Intel® SGX SSL cryptographic library
libsgx_usgxssl.a	Untrusted library, providing implementation for system calls outside an enclave required to resolve external dependencies of Intel® SGX SSL* cryptographic and TLS libraries.

All the libraries are built for Linux* configurations.

Intel[®] SGX SSL* cryptographic library is OpenSSL libraries built with a few changes needed to work inside an enclave.

2. Using Intel[®] Software Guard Extensions SSL Library

If you already have a basic application and an enclave project, to use the Intel® SGX SSL library in an Intel® Software Guard Extensions (Intel® SGX) application project, follow the listed steps:

- Use following steps to set up generating proper interface between trusted and untrusted components
 - 1. In your EDL file add: from "sgx_tsgxssl.edl" import *;
 - 2. To the sgx_edger8r command running on your enclave EDL file for generating either trusted or untrusted proxy and bridge routines, add the path to the sgx_tsgxssl.edl with the --search path option
- In the Enclave project, use the following steps to set up the environment for the Intel® SGX SSL
 - 1. Use -L flag to provide the linker with the path to the trusted Intel® SGX SSL libraries
 libsgx_tsgxssl_crypto.a and libsgx_tsgxssl.a, with
 -L\$(SGXSSL_TRUSTED_LIB_PATH)
 - 2. Use -Wl, --whole-archive -lsgx tsgxssl -Wl, --no-whole-archive -lsgx_tsgxssl_crypto -lsgx_tsetjmp to provide the linker with the names of Intel® SGX SSL trusted libraries and the setjmp library which is also needed (comes with Intel® SGX SDK)
 - 3. Use -I compilation flag to specify the path to the Intel® SGX SSL header files, like -I\$ (SGXSSL_INCLUDE_PATH)
 - 4. The Intel[®] SGX SSL include path also includes a reduced "pthread.h" file which only have 3 definitions, it is included from openssl/crypto.h. Make sure it is not in the path of your regular application as it may cause compilation errors
 - 5. Include tsgxsslio.h file to avoid error on undeclared FILE symbol. You can do it either directly from your source files, or by using -include "tsgxsslio.h" compiler flag
 - 6. Initialize OpenSSL crypto library by calling OPENSSL_init_crypto(0, NULL). Make sure to initialize before the first call to OpenSSL APIs.
- In the **Application** project, use the following steps to set up the environment for the Intel[®] SGX SSL library:
 - 1. Use -L flag to provide the linker with the path to the untrusted Intel® SGX SSL library libsgx_usgxssl.a, with -L\$ (SGXSSL_UNTRUSTED_LIB_PATH)
 - 2. Use <code>-lsgx_usgxssl</code> to provide the linker with the names of Intel[®] SGX SSL untrusted libraries
- **NOTE:** In the current Intel® SGX SDK, the release mode does not generate the enclave.signed.so, but rather prepare a signing material because it should be signed in a secure machine that protects the private key. Enclaves signed with single-step signing method using ISV's test private key can only be launched in debug or prerelease modes.

3. Supported APIs

The Intel[®] SGX SSL Library exposes two different set of APIs:

• Supported OpenSSL APIs - representing a subset of the OpenSSL APIs supported by the Intel[®] SGX SSL library. They are fully compliant with unmodified OpenSSL APIs. Other APIs are neither validated, not filtered out. All supported OpenSSL APIs are listed in Appendix A.

API	Description
SGXSSLSetPrintToStdoutStderrCB	Set callback function to intercept printouts sent by Intel® SGX SSL cryptographic and TLS libraries to stdout/stderr. If not used, the printouts will be silently omitted.
SGXSSLGetSgxSSLVersion	Get the Intel® SGX SSL library version.
SGXSSLSetUnreachableCodePolicy	Set unreachable code policy. Unreachable code consists of functions and flows that under our implementation should never be reached. That is why, by default, reaching unreachable code will cause an enclave to be aborted.

• Manageability APIs are exposed by our trusted library to provide following services:

SGXSSLSetPrintToStdoutStderrCB

The SGXSSLSetPrintToStdoutStderrCB function sets callback function to intercept Intel® SGX SSL cryptographic and TLS libraries printouts sent to stdout/stderr. If not used, the printouts will be silently omitted.

Syntax

```
void SGXSSLSetPrintToStdoutStderrCB(
PRINT_TO_STDOUT_STDERR_CB cb
);
```

Parameters

cb [in]

Callback function to intercept OpenSSL printouts to stdout/stderr.

Return value

This function does not return a value.

Description

The SGXSSLSetPrintToStdoutStderrCB function registers a callback function to intercept Intel[®] SGX SSL cryptographic and TLS printouts sent to stdout/stderr.

If not used, the printouts will be silently omitted.

Requirements

Header	tSgxSSL_api.h
Library	sgx_tsgxssl.lib

SGXSSLGetSgxSSLVersion

The SGXSSLGetSgxSSLVersion function returns the Intel® SGX SSL libraries version.

Syntax

```
const char* SGXSSLGetSgxSSLVersion(
void
);
```

Parameters

None

Return value

This function returns the Intel® SGX SSL libraries version string.

Description

The SGXSSLGetSgxSSLVersion function returns the Intel® SGX SSL libraries version string.

Requirements

Header	tSgxSSL_api.h
Library	sgx_tsgxssl.lib

SGXSSLSetUnreachableCodePolicy

The SGXSSLSetUnreachableCodePolicy function sets unreachable code policy.

If not used, reaching unreachable code will cause an enclave to be aborted.

Syntax

```
void SGXSSLSetUnreachableCopdePolicy(
UnreachableCopdePolicy_t policy
);
```

Parameters

policy [in]

The valid value is unreach code abort enclave or unreach code report err and continue.

- UNREACH_CODE_ABORT_ENCLAVE value means that reaching unreachable code will cause an enclave to be aborted. This is the default policy, applied by Intel[®] SGX SSL library.
- UNREACH_CODE_REPORT_ERR_AND_CONTNUE value means that reaching unreachable code will cause reporting an error through return value and/or setting last error/errno.

Return value

None.

Description

The SGXSSLSetUnreachableCodePolicy function sets unreachable code policy. Unreachable code consists of functions and flows that under our implementation should never be reached. Reaching them may indicate that severe error/memory corruption happened. That is why, by default, reaching unreachable code will cause an enclave to be aborted.

For customers, which in any case prefer to continue execution, additional mode, reporting an error through return value and/or setting last error/errno, is supported.

Requirements

Header	tSgxSSL_api.h
Library	sgx_tsgxssl.lib

4. Appendix A: Supported APIs

Intel®	SGX	SSL	library	sup	ports	the	following	APIs:

Purpose	Туре	OpenSSL APIs
Digest	MD5 SHA-1 SHA-2 (224, 256, 384, 512)	EVP_MD_CTX_new EVP_MD_CTX_free EVP_DigestInit_ex EVP_DigestUpdate EVP_DigestFinal_ex EVP_md5 EVP_sha1 EVP_sha224, EVP_sha256, EVP_sha384, EVP_sha512
Keyed Hash	НМАС	HMAC_CTX_init HMAC_CTX_cleanup HMAC_Init_ex HMAC_Update HMAC_Final
Public Key Cryptography	RSA 1024, 2048, 4096 ECDSA NIST P-256, P-384, P-521 ECDH NIST P-256, P-384, P-521	EC_KEY_new_by_curve_name EC_KEY_set_asn1_flag EC_KEY_generate_key EC_KEY_free RSA_new RSA_free RSA_generate_key_ex RSA_generate_key_ex RSA_private_decrypt EVP_PKEY_new EVP_PKEY_assign_EC_KEY EVP_PKEY_assign_RSA EVP_PKEY_free EVP_MD_CTX_create EVP_MD_CTX_create EVP_MD_CTX_destroy EVP_SignInit_ex EVP_SignUpdate EVP_SignFinal EVP_VerifyUpdate EVP_VerifyUpdate EVP_VerifyUpdate

Symmetric	AES-GCM 128, 256	EVP_CIPHER_CTX_init
Encryption		EVP_CIPHER_CTX_ctrl
		EVP_CIPHER_CTX_cleanup
		EVP_CipherInit_ex
		EVP_CipherUpdate
		EVP_CipherFinal_ex
		EVP_aes_128_gcm
		EVP_aes_256_gcm
Other	Public key cryptography: RSA, EC	BN_new
		BN_set_word
		OBJ_txt2nid
		i2d_PublicKey
		I2d_PrivateKey
		RAND_add
		RAND_seed