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Chapter 1
Introduction to R

Don’t call me senor! I'm not a Spanish person. You must call
me Mr. Biggles, or Group Captain Biggles, or Mary Biggles
if I'm dressed as my wife, but never senor.

—Monty Python’s Flying Circus - Episode 33

1.1 Using R

This chapter goes through the basics of using R. It is in your best interest to type
all of the R code yourself, on your own. Moreover, it behooves you to make sure that
you understand every line of code. Example code will be italicized and placed on its own
special line next to a sideways caret, like the following:

> x <- 2

Some of the code will not be evaluated, so you must type it into your own R session to
figure out what it does. Never type the caret (>) into R — it is just to let you know the
contents of a code chunk. Furthermore, sometimes I will present “code” only intended
to diagram certain functions or procedures without the appropriate syntactical concerns.
Any “pseudo-code” or code that I do not indent for you to run as is, I will display as red
and boldface. For instance, the following should not be evaluated in your R session, as it
will return an error.

Code (More Code, And More)

The first thing that you want to do is download and install R, from the following
website (for free on any system):

http://cran.r-project.org/
And download one of the nicer GUIs in which to run R. Either:
1. Tinn-R (Windows only)

http://sourceforge.net/projects/tinn-r/


http://cran.r-project.org/
http://sourceforge.net/projects/tinn-r/
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2. R-Studio (for all platforms)
http://rstudio.org/download/

To configure Tinn-R, go to R/Configure/Permanent in the file headings. Once you have
configured R to work with Tinn-R or R-Studio, opening those programs will automatically
start an R session. You can also click on the R icon itself or (if you are on a Mac or Linux
machine) type R into the command line. Either way, one you start R, you should see a
window with the following:

R version 2.14.2 (2012-02-29)

Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q(0' to quit R.

[R.app GUI 1.50 (6126) x86_64-apple-darwin9.8.0]

[Workspace restored from /Users/stevennydick/.RData]
[History restored from /Users/stevennydick/.Rhistory]

>

That is the window in which you should be typing things (hopefully useful things) for
your data analysis. In this case, if I type the simple expression:

> 2+ 2
(1] 4

you should enter it into that box, and the result will be:


http://rstudio.org/download/
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R version 2.14.2 (2012-02-29)

Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q(0' to quit R.

[R.app GUI 1.50 (6126) x86_64-apple-darwin9.8.0]

[Workspace restored from /Users/stevennydick/.RData]
[History restored from /Users/stevennydick/.Rhistory]

>2+ 2
[1] 4
>

Magic, isn’t it?! I certainly think so.

So, I bet (either by this point in the day or out of sheer frustration) that you want
to know what to do with the command prompt (i.e., >). The first thing that you could
do is write a comment - something that helps you understand the code but which is not
parsed by the machine. Comments always follow the pound (#) sign. Copy the following
code, and you will see that nothing happens:

> # This is the most pointless code ever! Seriously! Evvver!
> # I sometimes do like to use R to talk to myself ... although
> # it usually doesn't really want to talk back. Hmm...

Comments always end at the end of the line. Anything before # (the comment) on a given
line will be parsed by the machine, anything after # will not be parsed, but you need a #
on the next line to continue the comment.

The second thing that you could do is write part of code on one line but screw up
and not finish it. For example, I could try to find the square-root of 4 but push enter
without closing the parentheses.

> sqrt (4
+)
[11 2

Rather than giving me a new command prompt (>), R gives me the continuation command
prompt (+) telling me that whatever I type on that line is going to be evaluated with the
previous code. It’s a ... continuation of the previous line. However, the comment line (#)
and continuation prompt (+) are not really that interesting. There are better uses for R.
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1.2 R as a Calculator

The most straightforward use of R is as a high-powered calculator. Most of the
normal calculator functions work in R:

> 2 + 3 # adds two numbers

(11 5

> 2 - 3 # subtracts one number from the other
[1] -1

> 2 * 3 # multiplies two numbers

[1] 6

> 2/ 3 # divides one number by the other

[11 0.6666667

> 2 ~ 3 # exponentiates one number by the other
(11 8

In general, white space does not matter in R, so that

> 1 + 2 # breathing room
[1] 3

> 1+2  # oh ugh-ness!
(11 3

give the same result.
R abides by the order-of-operations (... hmm ... “please excuse my dear aunt sally”),
so that

>1+2%3"2
[11 19

squares the 3 first, then multiplies that result by 2, and then adds 1, so that the result is
19. If you want to do the arithmetic sequentially, you can include parentheses:

>(@1+2) *x3) "2
[1] 81

which adds 1 to 2, then multiplies that by 3, then squares the whole thing, so that the
result is 81. Notice that after you type one of these commands into R, the first thing on
the next line is [1]. We will get to why the magic [1] appears shortly.

1.3 Function Basics

R is a function-oriented, interpretive programming language. It’s interpretive be-
cause the R machine (or big, bad, hungry R monster) evaluates every line of code immedi-
ately after you press “return.” It is function-oriented because you do everything through
functions. In fact, those simple commands that you typed earlier (+ or - or any other
arithmetic thingy) are really functions that are put into a more convenient form. The
form of most functions is as follows:
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name (argl, arg2, ... )

They start out with a name (the thing you call) followed by a bunch of arguments.
Many familiar things are functions. For instance, the sqrt from before is a function (the
square-root function). There is also:

> sqrt(7) # the square-root of 2

[1] 2.645751

> sin(pi) # the sin = o/h of pi

[1] 1.224647e-16

> exp(1) # the exponent of 1 (i.e. 2.7271)
[1] 2.718282

> log(10) # the natural log of 10

[1] 2.302585

Notice a few things. First, pi is predefined to be 3.14... - one does not have to define it
him/herself. Second, sin(pi) should be 0 but actually shows up as 1.224647e-16 (read
1.22 times 10 to the negative 16 — ugh scientific notation). The reason for this is because
of computer calculation error.

Most functions have extra arguments so that we can change the default behavior.
For instance:

> log(10)
[1] 2.302585

calculates the natural log of 10, which is to the base e (if you remember your algebra). R
allows us to change the base to 2, just by altering the second argument:

> log(10, base = 2)
[1] 3.321928

“Base™-ically, what we are saying is “take the log of 10, but we want the base argument
to be 2.” There are two additional methods of altering the base argument. First, all of
the functions have an order to their arguments, e.g.:

log (x, base)

so the first argument is the thing we want to take the logarithm of, and the second
argument is the base. If we do not use the name of the argument followed by an equal
sign (e.g., base=10), then R will try to assign function values in order. So, for instance, if
we type:

> log(10, 2)
[1] 3.321928

R will think that 10 is the thing we want to evaluate and 2 is the base.
Second, we could use the name of the argument but only the first couple of letters
until the argument is uniquely identified. Because the two arguments are x and base, if
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we type b rather than base, R will know that we mean to modify the base argument.
With this in mind, all of the following should give the same result:

> log(10, 2)

[1] 3.321928

> log(10, base = 2)

[1] 3.321928

> log(10, b = 2)

[1] 3.321928

> log(base = 2, x = 10)
[1] 3.321928

> log(b = 2, x = 10)
[1] 3.321928

Strangely, even things that don’t look like functions in the standard sense (e.g., +)
are really functions. Knowing that a function is defined by a name followed by parentheses
and arguments, the + function is really the following:

> n+u(2’ 3)
[1] 5

which (as you would suppose) adds 2 to 3. But nobody uses the ''+'" function this way —
they added in the standard, calculator sense and let R figure out which function to call.

1.4 Warnings and Errors

Unlike SPSS and other data analysis programs, the user can type something into R
that it does not recognize or cannot work. If you do this R will give you an error. Most
of your time (unfortunately) will be spent trying to avoid getting errors. Yet if your code
works, you probably did the correct thing. Errors could happen for the following reasons:

> # The "try" function tests whether the code inside of it will evaluate.
> try(logarithm(2), silent = TRUE)[1] # a function that does not exist

[1] "Error in try(logarithm(2), silent = TRUE) : \n could not find

> try(log(2, e = 2), silent = TRUE)[1] # an argument that does not exist
[1] "Error in log(2, e = 2) : unused argument(s) (e = 2)\n"

> try(log 2, silent = TRUE)[1] # forgetting the parentheses

[1] "Error: unexpected numeric constant in "try(log 2"

If you get an error, check to make sure that your code is correct and that your arguments
make sense, etc.

Sometimes, R will evaluate code but give you a warning. For instance, if you try to
take the logarithm of —2 (which is not defined), R will tell you that the result is not a
number (NaN) and that you probably meant to do something else.

> log(-2)
[1] NaN
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There are four weird values that you should be wary of if you see them in R. They
could completely screw up subsequent code.

1. NaN (not a number; 0/0, sqrt(-2), log(-2))
2. NA (not applicable)
3. Inf (infinity)
4. -Inf (negative infinity)
All of the above have predefined values, and you can use them in expressions:

> 2 + NaN
[1] NaN

but I cannot figure out any reason you would ever want to do that.

1.5 Assignment

Usually, we need to give a particular value (or any other object that we will talk
about soon) a name. There are four typical ways to assign values to names (as well as the
more general assign function that is a bit beyond the scope of this book) - two of which
make sense (and you should use), and two of which are used only by advanced R people.
The most common assignment operators are the <- (less-than followed by a dash) and =
(equals). The act of assignment does not produce any output. So, if you run:

> x <- 3 # assignment via the arrow
or:
>y =3 # assignment via the equals
R does not tell you that it did anything. But if you type x or y, you will see the value:

> X
(11 3
>y
(11 3

You can also assign via the right arrow and the double arrow.

>3 ->z
>z
[1] 3
> g <<= 5
> g
[1]1 5

Basically -> does the same thing as <- except with the value and name switched (and

looks really weird). The double arrow <<- is much more complicated and only used by

programmers, but effectively means: “I really really really want you to do this assignment.”
The following are rules for how you should name variables:
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1. They must start with a letter or dot (.)
e Never start the names with a dot (.) - they’re reserved for important things.

. They can include letters, dots, underscores (_).
. They cannot include space or mathematical characters (+, -, *, /)

. They are case sensitive (Abc is different from abc).

Tt s W N

. There are certain names reserved for R, which you should not use.

Once we have assigned a value to a name, we can use functions on the name and R
will act as though we used the function on the value. So rather than writing:

> log(10, base = 2) # what we did before
[1] 3.321928

we can write:

> val <- 10
> base <- 2
> log(x = val, base = base) # fancy dancy!
[1] 3.321928

and R will do the same thing. Note that we can call values by names that are arguments
to functions and not affect the functionality of those functions.

1.6 Vectors in R
1.6.1 The Basics of Vectors

So, to review. In R, we can: perform arithmetic, follow the order-of-operations, use
functions on values, assign values to names, and then use functions on those names rather
than the values themselves. However, one might wonder:

How does this help us do statistics? Data are usually more than one number,
and if we always had to type every number in individually, R would not be
very useful.

Luckily we can combine values into vectors of observations. So if we have a variable
(say 1Q scores) that has the values: 100, 125, 143, 165, 172, 110, 95 ... for particular
people, we can combine those values using the concatenate function: c. This is one of the
most important functions you will use in R.

> IQ.scores <- c(100, 125, 143, 165, 172, 110, 95)

Note that the arguments for ¢ are ..., which essentially means that we can enter an
unlimited number of values into ¢ and R will form a vector of all of them.
So, if we look at IQ.scores:

> IQ.scores
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[1] 100 125 143 165 172 110 95

R will print out all of the values in our vector separated by spaces. We can also combine
two vectors into a much bigger vector.

> vl <-c(1, 2, 3, 4, 5) # five happy scores

> v2 <-c(6, 7, 8, 9, 10) # five more happy scores

> vBig <- c(v1l, v2) # combine vl and v2

> vBig # what are those ten scores

[1] 1 2 3 4 5 6 7 8 910

We can make vectors of more than just numbers. There are several major types of
vectors, three of which we will talk about now.

1. We can have vectors of numbers:

> v.numb <- c(1, 2, 3, 4, 5, 6)
> v.numb

[1]1 123456

2. We can have vectors of character strings (which are numbers or words contained in
single or double quotes):

> v.char <- c("terry", "terry", "john", "michael", "graham", "eric")
> v.char

[1] "terry" "terry" "john" "michael" "graham"

[6] "eric"

3. We can have vectors of logicals (true and false):

> v.logi <- c(TRUE, TRUE, FALSE, FALSE, TRUE)
> v.logi

[1] TRUE TRUE FALSE FALSE TRUE

The function mode allows us to figure out whether our vector is a numerical, char-
acter, or logical vector.

> mode (v.numb)
[1] "numeric"
> mode (v.char)
[1] "character"
> mode (v.logi)
[1] "logical"

and if we mix two vectors, R will turn the combined vector into the most general of the
bunch using the following rules:
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Specific: logical --> numeric —--> character :General

So, if we combine a logical vector with a numeric vector, R will turn the trues and falses
into 1s and Os.

> v.what <- c(v.logi, v.numb)
> v.what

[1] 11001123456

and if we combine a numeric vector with a character vector, R will surround the numbers
with quotes.

> v.what2 <- c(v.numb, v.char)

> v.what2

(1] "1 "an "3 "4 "5

[6] "6" "terry" "terry" "john" "michael"
[11] "graham" '"eric"

Warning: Mixing vector of two different types will frequently turn the resul-
tant vector into a character vector, and arithmetic operations will consequently
not work.

If desired, we can also name elements of a vector. It is a little odd how you do this.
The names function is used on the left side of the assignment operator (<-) to assign a
character vector as the names of another vector. But we can also retrieve the names of
the character vector by using the names function by itself. For example:

> # Assign values to v.numb:

> v.numb <- c(1, 2, 3, 4, 5, 6)

> # Assign names to the elements of v.numb:
>

names (v.numb) <- c("terry", "terry", "john", "michael", "graham", "eric")

assigns lovely names to the values 1 — 6. And if we type v.numb, we will see the values (as
always), but we will also see the names above those values (not surrounded by quotes):

> v.numb
terry terry john michael graham eric
1 2 3 4 5 6

and then if we type the following:

> names (v.numb)

[1] "terry" "terry"  "john" "michael" "graham"
[6] "eric"

we retrieve the names as their own character vector:

> mode( names(v.numb) ) # the names are a character vector.
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[1] "character"

Note: We can assign names to character, numeric, and logical vectors. And
when we perform operations on those vectors (in the next section) the names
will not interfere with those operations.

At this point, it might be helpful to reveal the meaning of that silly little [1] sign
is on each line of your R code. A [j] indicates you the vector position (in this case, j) of
the element directly to the right of it. If you only type a few elements, and they do not
spill over to the next line, the vector element directly to the right of the first line is a [1]
(it’s the first element of the vector). But if you type lots of elements, you’ll see that the
row numbers correspond to the particular place of the element lying next to it. Just type
in the following code (without the > and + of course), and count the elements if you do
not trust me.

>c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
+ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
+ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)
[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1.6.2 Operations on Vectors

R has two types of function operations:

1. Functions on the entire vector, and

2. Vectorized functions.

Usefully, R usually knows what you want to do (because logically awesome people pro-
grammed it). Functions on an entire vector take a vector (usually of numbers) and find
useful things about it. For instance, we can calculate the “mean” of a set of numbers by
using the mean function on a number vector.

> IQ.scores <- c(100, 125, 143, 165, 172, 110, 95)
> mean (IQ).scores) # the mean of the I scores
[1] 130

Alternatively, we can use other functions to calculate the mean a slightly more complicated
way:

> length(IQ.scores) # the number of I scores
[1] 7
> sum(IQ.scores) # the sum of the I scores

[1] 910
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> sum(IQ.scores)/length(IQ.scores) # the mean another way!
(1] 130

I will talk about more of these functions in the upcoming chapters. Just note that they
do exist, most are named what you would expect, and they are awesome.

Vectorized functions perform the operation on each value of a particular vector. For
instance, the square-root, logarithm, and exponent functions will not act on the entire
vector (whatever that means) but will act on each element separately.

> log(IQ.scores) # the log of EACH

[1] 4.605170 4.828314 4.962845 5.105945 5.147494 4.700480
[7] 4.553877

> exp(I@.scores) # the exponent of EACH

[1] 2.688117e+43 1.935576e+54 1.270899e+62 4.556061e+71
[6] 4.996327e+74 5.920972e+47 1.811239%e+41

> sqrt(IQ.scores) # the square-root of EACH

[1] 10.000000 11.180340 11.958261 12.845233 13.114877
[6] 10.488088 9.746794

Vectorization becomes really helpful when we want to combine information in two vectors.
So let’s say we have before and after weight scores and we want to calculate the difference
between all of them. Then we only have to subtract the vectors:

> befor <- c(110, 200, 240, 230, 210, 150) # before dieting?
> after <- c(110, 190, 200, 220, 200, 140) # after dieting?
> befor - after # the difference :)

[1] 0 10 40 10 10 10
We can also (element-wise) perform multiplication, division, and powers.

> befor + after # adding the weights together?

[1] 220 390 440 450 410 290

> befor * after # multiplying the weights?

[1] 12100 38000 48000 50600 42000 21000

> befor / after # dividing? this really doesn't make sense, you know.
[1] 1.000000 1.052632 1.200000 1.045455 1.050000 1.071429

> befor ~ after # powers? Steve, you've lost your mind!

[1] 3.574336e+224 Inf Inf Inf
[5] Inf 4.495482e+304

Notice that befor~after resulted in many Inf values, only meaning that the numbers
were too large for the computer to handle. They exploded will evaluating fun!

Vectorization also allows us to add a number to a vector. Wtf?! If we add a number
to a vector, R knows that we want to add that number to every value of the vector and
not just to one of the numbers.

> befor
[1] 110 200 240 230 210 150
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> befor + 2
[1] 112 202 242 232 212 152

Because of vectorization, we can calculate the sample variance with ease.

x <-c(2, 5, 4, 2, 9, 10)

xbar <- mean(x) # the mean of the scores

N <- length(x) # the number of scores

x.dev <- x - xbar # deviation scores

s.dev <- x.dev "~ 2 # squared deviation scores
ss.dev <- sum(s.dev) # sum of squared deviation scores
ss.dev / (N - 1) # the sample variance.

[1] 11.86667

vV VVVVVYV

And we can also combine many of the vectorized functions to calculate the sample variance
in one step.

> sum( ( x - mean(x) )°2 ) / (length(x) - 1)
[1] 11.86667

In the above code chunk, we used a few functions on vectors (sum, mean, and length)
and a few vectorizations (subtracting a number from a vector, squaring a vector). We
will learn more later.

1.6.3 Other Ways to Create Vectors

There are several other ways to create vectors. The first method is the simple scan
command. If you type scan() followed by “return,” every element that you type after
that (separated by spaces) will be attached to the vector. You can complete the vector
by pushing “return” twice.

> x <- scan()
1: 12345
6:

Read 5 items
> x

You can also create so-called “structured” vectors. The most common structured
vectors are repeated values and sequences. You can create integer sequences using the :
command in R.

> 1:10 # a vector of integers from 1 to 10
[1] 1 2 3 4 5 6 7 8 910

The : command also works in reverse.

> 10:1 # a vector of integers from 10 to 1
(1110 9 8 7 6 5 4 3 2 1

Or you can use the rev function on the original vector.
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> rev(1:10) # reverse the order of the 1, 2, 3, ... vector
[1] 10 9 8 7 6 5 4 3 2 1

You can also create sequences (with more options) using the seq function. It has
two forms, either:

seq(from, to, by)

or:

seq(from, to, length.out)

For instance, if you want to create a vector of the odd numbers between 1 and 9, you
would type:

> # Every other number from 1 to 9
> seq(from = 1, to = 9, by = 2)
[11 13579

The by argument makes sure that R only chooses every other number to include in the
vector. You can also use the length.out argument and R will automatically figure out
the step-size needed to create a vector of that size.

> seq(from = 1, to = 9, length.out = 5) # ooh
[11 13579

> seq(from = 9, to = 1, length.out = 3) # ahh
[1] 951

> seq(from = 1, to = 2, length.out = 5) # magic

[1] 1.00 1.25 1.50 1.75 2.00

Another pattern vector that you might want to use is rep, which has one of the
following forms:

rep(x, times)

Or:

rep(x, each)

And R will create a vector of many x’s stacked behind each other. We can repeat scalars:

> rep(1, times = 10)
[1] 1111111111

or numeric vectors:

> rep(1:3, times = 5)
[1] 1 23123123123123

or even character vectors:
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> rep(c("bob", "john", "jim"), times = 2)
[1] "bob" "jOhIl" ujimu "Hhob" "jOhIl" "jim"

And if we use the each argument, rather than the times argument, R will repeat the first
element each times before moving to the second element. For instance

> rep(1:3, each = 5)
[1]111112222233333

now repeats “1” 5 times before starting to repeat “2”.

1.7 Getting Help

Because R has a plethora of functions, arguments, syntax, etc., one might need help
with figuring out the correction function to use and how to use it. There are a couple
ways of getting help. The easiest thing to do is to type your function or question into
google (along with the letter R) and see what pops up. For example, typing:

How do I calculate a mean in R?

will pull up pages, some of which might be useful, some of which might not be useful, and
some of which might be ... umm ... mean, actually.
There are two ways of getting help directly through R.

1. If you know the function you want to use, you can type help followed by the function
surrounded by quotes and parentheses:

> help("mean")
or, equivalently, you can type the function preceded by a question mark:

> ?mean

2. If you do not know the function you want to use, you can help.search followed by
the function surrounded by quotes and parentheses:

> help.search("normal") # what functions work with the normal dist?
> # ugh - there are lots of them!7mean

1.8 In the Following Chapters
The following chapters will discuss much more of the nuts and bolts of R, including;:
1. Building data frames and matrices from vectors.
2. Accessing individual elements of vectors.

3. Putting a specific value in a particular place of an already-existing vector.
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)

e This goes by the phrase: “working with indices.’

Creating logical values by testing vector elements.
Using logical values/vectors to help organize data.
Reading in data from external sources.

Using and installing R packages.

© N ok

Much of statistics.

This probably seems overwhelming at the moment. R knowledge requires quite a bit of
practice -- and there is a lot of material left before you are familiar enough with the
program to do much without ripping your hair out. But the chapters will be written
piece by piece, so that each topic builds on the last and is easily applied to statistical
procedures.
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1.9 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Calculation
+

PN 3

# Assignment

# Basic Functions
sqrt(x)

sin(x)

exp (x)

log(x, base)

# Vectors

c(C...) # the concatenate function - important!
names (x) # assign names OR extract names.

scan() # create a vector by hand.

n:m # integers from n to m (both numbers)
rev(x) # reverse the order of a vector
seq(from, to, by) # create a sequence

seq(from, to, length.out)

rep(x, times) # repeat x some number of times

mode (x) # what type of vector do we have?

# Operations on Vectors

mean(x, na.rm) # don't worry about na.rm yet.
length(x)

sum(x, na.rm) # don't worry about na.rm yet.
# Help

help(topic) # if you know the function
?function # identical to "help"

help.search(keyword) # if you only know a keyword
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Chapter 2

Dataframes and Indices

Well last week, we showed you how to become a gynaecologist.
And this week on ‘How to Do It’ we’re going to show you how
to play the flute, how to split an atom, how to construct a box
girder bridge, how to irrigate the Sahara Desert and make vast
new areas of land cultivatable, but first, here’s Jackie to tell
you all how to rid the world of all known diseases.

—Monty Python’s Flying Circus - Episode 28

2.1 Packages

One of the benefits (and curses) of R is that it is designed with few built in functions
but many (frequently user contributed) external packages. One day you might be able to
write a package and help some sad data analyst in a time of need (*sigh*). Unfortunately,
much of your time will be spent realizing that regular R cannot do something important
and you need to install or load an external package to use a particular function. If
the package is already downloaded (or comes with R) you can load it with the simple
command:

library (pkg)

or ...

require (pkg)

I am not exactly sure the difference between library and require, but I tend to use
library for standard use and require only in personally written functions (which we
will cover much later). Some functions in one package conflict with functions in another
package (i.e., they have the same name but do different things or work with different types
of data), so R loads only the standard packages (e.g., base, which has most of the stuff we
talked about last week, and stats, which includes — not surprisingly — basic statistical
stuff).

The function mvrnorm is in the MASS package, which comes with the standard distri-
bution but is not automatically loaded. We will not worry about details of the function

21



22 Chapter 2. Dataframes and Indices

mvrnorm at the moment, but the main idea is that mvrnorm creates a dataset with vectors
that correlate a specified amount. If you try to run the function mvrnorm or ask for help
(about the function) without loading the MASS package, R will yell at you (very loudly
and possibly even in red) that the object does not exist and there are no help pages:

> mvrnorm
> ?mvrnorm

But if you load the package first, then R will remember that the function exists ... R
sometimes has very poor short term memory.

> library(MASS) # load the package first
> ?mvrnorm # now the help file should show up
> # and the function will work.

You can load any package with or without quotes, whichever you think is easier.
There is a way of getting at the help file of a function without loading its package, by
using help (and not ?), and by adding the name of the package as an argument:

> # function name followed by package name (with or without quotes)
> help("read.spss", package = "foreign")

but it is usually easier (and less taxing on already compromised brain cells) to load the
packages you want to use before trying to do things with their functions. Plus, packages
are people too - and they like to be remembered for their “package-like” nature.

If you know of a package that you have on your computer but either do not know of
functions in that package or do not remember the name of a function you need, you can
do one of two things. The command:

library (help = pkg)

will give you a brief rundown of a package and its functions. For instance, by typing:
> library(help = "base") # the notorious base package - ooh!

you can see that much of what was discussed in the last chapter is located there. However,
the information on functions is minimal, so a better strategy would be to go into the
“Package-Manager” in one of the menus to access the help files directly.

If your computer does not have a function that you need, this function might exist
in a package that you have not downloaded yet (google is your friend). Type what you
want the function to calculate by R into google, and click on some of the pages that pop
up. Many of those pages will be message boards of other people who have had the same
problems, and the advice (if it exists) might be helpful. Yet other pages will be R help
files from packages that you do not have. You will be able to tell R help files by the format
of the page (comparing it to help files you have seen) or the words “R Documentation” on
the far right of the page. On the far left of the page, the help file will display the function
name and then the package in curly braces. If you look at the help file of read.spss
again

> help("read.spss", package = "foreign")
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you can see that it comes from the package foreign.

If you need to install a package that is contained in CRAN (the “Comprehensive R
Archive Network,” where most packages live a long and fruitful life), you can either click
on “Package Installer” in one of the menu items (and then follow the directions), or type:

install.packages (pkg, dependencies = TRUE)

into R where pkg is the package name (in quotes). For instance, let’s say that we found
a function in the package psych that we want to use (which might be useful for our
psych-i-ness). Then, to use that function, type:

> # installing the package onto our machine:

> install.packages("psych", dependencies = TRUE)

> # loading the package, so we can use its functions and data:
> library(psych)

Many of the packages also contain datasets that we can use to do analyses (go into
“Data Manager” in the “Packages & Data” menu if you ever want to feel overwhelmed).
If we want to use a particular dataset (by name) you only need to load the package in
which it is located. Of course, datasets can be pretty big, so loading all of them at once
might take a while and eat up lots of memory.

So, let’s say we want to use the salary dataset in the package alr3 (which you
should not have on your machine). First, you check the package:

> library(alr3)
It does not exist, so you install the package.

> install.packages("alr3", dependencies = TRUE)
Once you finish installing it, you can load the package.

> library(alr3)
and use the salary dataset just by typing its name.

> salary # trying to see what is in the salary dataset
Degree Rank Sex Year YSdeg Salary

1 1 3 0 25 35 36350
2 1 3 0 13 22 35350
3 1 3 0 10 23 28200
4 1 3 1 7 27 26775
5 0 3 0 19 30 33696
6 1 3 0 16 21 28516
7 0 3 1 0 32 24900
8 1 3 0 16 18 31909
9 0 3 0 13 30 31850
10 0 3 0 13 31 32850
11 1 3 0 12 22 27025
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12 1 2 0 15 19 24750
13 1 3 0 9 17 28200
14 0 2 0 9 27 23712
15 1 3 0 9 24 25748
16 1 3 0 7 15 29342
17 1 3 0 13 20 31114
18 0 2 0 11 14 24742
19 0 2 0 10 15 22906
20 0 3 0 6 21 24450
21 0 1 0 16 23 19175
22 0 2 0 8 31 20525
23 1 3 0 7 13 27959
24 1 3 1 8 24 38045
25 1 2 0 9 12 24832
26 1 3 0 5 18 25400
27 1 2 0 11 14 24800
28 1 3 1 5 16 25500
29 0 2 0 3 7 26182
30 0 2 0 3 17 23725
31 0 1 1 10 15 21600
32 0 2 0 11 31 23300
33 0 1 0 9 14 23713
34 0 2 1 4 33 20690
35 0 2 1 6 29 22450
36 1 2 0 1 9 20850
37 1 1 1 8 14 18304
38 1 1 0 4 4 17095
39 1 1 0 4 5 16700
40 1 1 0 4 4 17600
41 1 1 0 3 4 18075
42 0 1 0 3 11 18000
43 1 2 0 0 7 20999
44 1 1 1 3 3 17250
45 1 1 0 2 3 16500
46 1 1 0 2 1 16094
47 1 1 1 2 6 16150
48 1 1 1 2 2 15350
49 1 1 0 1 1 16244
50 1 1 1 1 1 16686
51 1 1 1 1 1 15000
52 1 1 1 0 2 20300

In previous versions of R, typing the name of the dataset would not load a data frame
automatically. You first needed to type the function data followed by the dataset name

before you could use the data.

> data(salary) # loading the dataset (in alr3)
> head(salary) # seeing the contents of the dataset
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Degree Rank Sex Year YSdeg Salary
1 3 0 25 35 36350
13 22 35350
10 23 28200
7 27 26775
19 30 33696
16 21 28516

o O b W
= O =
W wwww
O O, OO

But they changed the data loading mechanism for the current version of R. However, the
data function allows you to load the data from a package that is not currently loaded by
typing in the package name as the second argument (in quotes):

> data(salary, package = "alr3")

Of course, the salary package is already loaded (as is the alr3 package), so that
this extra step does not seem to add any data loading benefit. And in any case, the
dataset salary is of a form that we have not seen before ... it has many columns, and
we only talked about vectors. What are those weird vertical things next to our wonderful
vector?

2.2 Dataframes in R

In the previous chapter, we built vectors of scores (or words or trues and falses)
using the concatenate function (c), and then assigned those vectors to names using an
assignment operator (<- or =). Well, data are usually made up of more than one vector
— we are usually interested in the relationships (models) among lots of things, and we
would like to keep all of those things in one place. R has two additional objects that take
pointy things (vectors) and combines them to make rectangulary things. They are called
data.frames and matrices. The main difference between data.frames and matrices is
that all of the elements of matrices will be of the same mode (e.g., all character, numeric,
or logical), and data.frame can combine vectors of various modes. Let’s say we have the
three vectors, all of the same length:

> x <- c("bob", '"pete", "banana", "jim", "orange", "black-suit",

+ "blue-suit", "buzzoff", "yadda")

>y <-c(1, 2, 3, 4, 5, 6, 7, 8, 9)

> z <- c(TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE)

Note that x is a character vector, y is numeric, and z is logical. You can use the mode
function to verify that.

> mode (x)

[1] "character"
> mode (y)

[1] "numeric"
> mode(z)

[1] "logical"

Next, combine x, y, and z into a data.frame using the ... um ... data.frame command:
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> dat <- data.frame(meep = x, mope =y, zu = z)

The idea is simple. There are as many arguments as there are vectors that you want
to combine together. All of the vectors must be the same length, but they can be of
different modes, and the names of the variables should be the names of the arguments.
So by writing meep = x, I am saying “take the vector x and give it the name meep in the
data.frame.”

> dat

meep mope zu
1 bob 1 TRUE
2 pete 2 FALSE
3 banana 3 FALSE
4 jim 4 TRUE
5 orange 5 FALSE
6 black-suit 6 FALSE
7 blue-suit 7 TRUE
8 buzzoff 8 FALSE
9 yadda 9 FALSE

But when you try to find out the mode of dat, it will not show up as numeric, character,
or logical:

> mode (dat)
[1] "list"

It will show up as a list, which effectively means that different columns are (potentially)
different modes. A list is a generic object in R, something that we will talk about more
generally in a few chapters - and data frames are lists of vectors that all have the same
length and are put into a nice form. Once we have a data frame, we can edit the values,
add new values, make more variables etc. just by using the edit command.

> dat <- edit(dat) # to work more naturally with data.frames
> # ... also use ''fix"' for perminant changes

We can also change the variable names using the names argument (just like we did for
vectors), and we can name subjects/rows via the rownames argument.

> names (dat) <- c¢("larry", "curly", "moe")
> rownames (dat) <- c("s1", "s2", "s3", '"s4",
+ "g5", "s6", "s7", "s8", "s9")
> dat
larry curly moe
sl bob 1 TRUE
s2 pete 2 FALSE
s3 banana 3 FALSE
s4 jim 4 TRUE
s5 orange 5 FALSE
s6 black-suit 6 FALSE
s7 blue-suit 7 TRUE
s8 buzzoff 8 FALSE
s9 yadda 9 FALSE
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If you forget whether the names argument renames the rows or columns of the data
frame, remember that the columns are the variables, are more important, and the names
argument changes the important names. The rows are the observations, and the rownames
argument (being more specific) is subservient to the less specific names. As a side note,
you could also change the variable names via the colnames function:

> colnames(dat) <- c("buzz", "lightyear", "tom")

> dat

buzz lightyear tom
sl bob 1 TRUE
s2 pete 2 FALSE
s3 banana 3 FALSE
s4 jim 4 TRUE
s5 orange 5 FALSE
s6 black-suit 6 FALSE
s7 blue-suit 7 TRUE
s8 buzzoff 8 FALSE
s9 yadda 9 FALSE

So the rules are:
1. colnames always changes (or displays) the column names,
2. rownames always changes (or displays) the row names,
3. names only changes (or displays) the important or obvious names.

Once we have a data frame of variables (all in vector form), we might want to pull
out particular vectors for personal use. There are many ways of extracting vectors, three
of which we will talk about at some point in this chapter. The easiest method of using
variables is by attaching a data.frame via the attach function. After we attach a data
frame, the columns of the data frame become objects that we can call directly by name.

> dat # what does the data frame look like?
buzz lightyear tom
sl bob 1 TRUE
s2 pete 2 FALSE
s3 banana 3 FALSE
s4 jim 4 TRUE
sb orange 5 FALSE
s6 black-suit 6 FALSE
s7 blue-suit 7 TRUE
s8 buzzoff 8 FALSE
s9 yadda 9 FALSE

> attach(dat) # so we can call variables by name
> lightyear # the second column of the data frame :)

[1] 123456789

And if we are done using the vectors of a data.frame, we should detach the data frame
to free up its objects.
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> detach(dat) # removing the vectors associated with dat

> try(lightyear, silent = TRUE)[1]

[1] "Error in try(lightyear, silent = TRUE) : object 'lightyear' not found\n"
> # the vector/variable doesn't exist anymore :(

The next easiest method to extract vectors from a data frame is calling them by name
using the $ operator. I like to call the $ operator the drawer opener. It is as though a data
frame (or any list as we will find out later) is a cabinet filled with drawers, and the dollar
sign opens the appropriate drawer. Use the following syntax: data.frame$variable ...
for example:

> dat$lightyear # pulls out the lightyear vector
[1] 123456789

> wee <- dat$lightyear # assigns that vector to "wee"

> mean (wee) # calculates stuff on that vector!
(11 5

Once you have particular objects (vectors and data frames, or (later) matrices and
lists), sometimes you want to see what is contained in those objects without seeing the
entire object. Even though our data.frame only has:

> nrow(dat) # to find out the number of rows
[1]1 9

rows and

> ncol(dat) # to find out the number of columns
[1] 3

columns, many data sets are gigantic, and showing all of the data at one time would be
annoying. To only show a few rows of the data frame, we can use the functions: head
(and tail). Both head and tail depend on the particular object. For data frames (and
matrices), those functions show the first (and last) few rows, but for vectors, they show
the first (and last) few elements. For example:

> head(dat) # the first six rows (default)
buzz lightyear tom

s1 bob 1 TRUE

s2 pete 2 FALSE

s3 banana 3 FALSE

s4 jim 4 TRUE

s5 orange 5 FALSE

s6 black-suit 6 FALSE

> head(dat, n = 3) # the first three rows (changing an argument)
buzz lightyear tom

si bob 1 TRUE

s2  pete 2 FALSE

s3 banana 3 FALSE
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> tail(dat) # the last six rows (default)
buzz lightyear tom

s4 jim 4 TRUE

s5 orange 5 FALSE

s6 black-suit 6 FALSE

s7 Dblue-suit 7 TRUE

s8 buzzoff 8 FALSE

s9 yadda 9 FALSE
> tail(dat, n = 3) # the last three rows (changing an argument)
buzz lightyear tom

s7 blue-suit 7 TRUE
s8  buzzoff 8 FALSE
s9 yadda 9 FALSE

shows rows for data frames, but

> head (wee) # the first six elements
[11 123456
> tail(wee) # the last six elements

[1] 456789

shows elements for vectors.

Unfortunately, a funny thing happened on the way to creating our data frame. One
of our vectors was originally a character vector:

> x # show the original x

[1] "bob" "pete" "banana" "jim"

[6] "orange" "black-suit" "blue-suit" "buzzoff"
[9] "yadda"

> mode(x) # it is a character vector!
[1] "character"

but when we extracted that vector from the data frame something strange happened:

> x2 <- dat$buzz # the original x (in the data frame)
> x2 # what in the world is that?

[1] bob pete banana jim orange

[6] black-suit blue-suit buzzoff yadda

9 Levels: banana black-suit blue-suit bob buzzoff ... yadda

> mode (x2) # and ... it's numeric? It doesn't look numeric!?!!
[1] "numeric"

This new fangled thing is called a “factor,” and it is another kind of vector ... one that
we have not talked about until now.

2.3 Factorsin R

When you try to put a character vector into a data frame, R is like the mother who
knows best:
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You think that this vector should be a character vector. But because you are
putting it into a data frame, it has got to be a variable. Why else would you
put it in a “data” frame? You are not putting it into a “character” frame.
But because it is in character form, you really mean that it is a nominal or
categorical variable, and it is much easier if we just turn the levels of the
nominal variable into numbers. So - there bubala - and you don’t have to
thank me.

A factor vector is really like a cross between a numeric vector and a character
vector and acts like both. It has “values” (and “levels”) - which are numbers, the 1, 2,
3, ... coding each category, and “labels,” which are character strings indicating what
each number represents. R basically treats it as a numeric variable that the user sees as
character strings ... without the quotes. So let us say that we have 5 people in our data
set, some of which are males and some of which are females. We can create a factor vector
in a couple of ways.

1. Write the males and females into a character vector and tell R that we want this
character vector to really be a factor vector:

> gender <- c("male", "female", "female", "male", "female")
> gender # gender has quotes

[1] "male" "female" "female" "male" "female"
> mode(gender) # and it is a character vector (duh!)
[1] "character"

> gender2 <- as.factor(gender) # gender REALLY is a factor vector.
> gender2 # see!?! now there are "levels" for each category,

[1] male female female male female
Levels: female male

> # shown below the vector, and there are no quotes?
> mode(gender2) # it is numeric!? weird!

[1] "numeric"

2. Write the 1s and 2s into a numeric vector and tell R that we want this numeric
string to really be a factor vector with appropriate labels:

> # 1 and 2 are easier to type than "man" and "woman':
> gender3 <- c(1, 2, 2, 1, 2)
> gender3 # a standard numeric vector

[11 12212
> mode (gender3) # see!?!
[1] "numeric"

> gender4 <- factor( gender3, labels = c("male", "female") )
> gender4 # same as gender2 from before
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[1] male female female male female
Levels: male female

Note that the labels argument takes a character string: The first element codes
the 1s as “male” and the second element codes the 2s as “female” etc.

3. Or we could write a character vector and build a data frame from it, as we did
before.

Note that in the first code chunk, we used as.factor. There are also as.numeric,
as.logical, as.character, etc., which will change vector types (if possible). You prob-
ably will not have to worry about those too often, but be aware that they exist. Even
though the mode of a factor vector is “numeric,” its class is “factor.”

> class(gender4) # this is how we know it is a factor vector
[1] "factor"

The class argument is a little beyond the scope of this class (*snickers*). Basically, dif-
ferent objects have different classes, and certain functions will treat the objects differently
depending on their class. For instance, when we (later in this book) want to perform a
regression or ANOVA, the class of our vector reminds R not to treat the numbers as
real numbers in-and-of-themselves, but as categories. And if we try to take the mean of
a factor vector:

> mean(gender4) # the mean of a categorical variable!??!
[1] NA

R reminds us that the mean of a categorical variable does not make any sense.
Now let’s say we have a data frame composed of one factor and one numeric variable:

> # a data frame of gender and extraversion:
> dat2 <- data.frame(gender = gender4, extra = c(2.3, 4.5, 3.2, 4, 2))

and we are interested in just looking at properties of the males (or females!?). How can
we extract elements of our data.frame without just printing the whole data frame and
copying/pasting numbers into a new vector? Well, R allows us to access the indices of a
vector easily and with little use of copy and paste.

2.4 Accessing Specific Indices

2.4.1 Comparing Vectors

There are a few things to know before we can work with indices. First, you need
to know how to create a logical vector from a numeric or character vector. We want to
tell R which rows/columns/elements to take, and using trues and falses for that purpose
is nice. The logical operators you should know are as follows:

< # less than (duh!)
<= # less than or equal to
> # greater than (double duh!)
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>= # greater than or equal to
== # equal to (you NEED both equals)
1= # not equal to

The only tricky logical operator (for those of you with no programming experience) is ==.
Remember that = is an assignment operator, so if you write:

>x =2 # ASSIGN 2 to x

R will assign the value “2” to the name x. Therefore, we need a different method of
comparing two vectors or numbers, and the double equals serves that purpose. Now, if
we type:

>x ==2 # IS x equal to 27
(1] TRUE

R will not do any assignment and just print TRUE.

Remember the last time we talked about “vectorized” operations. Comparisons are
“vectorized” (and even “matrix-ized” and “data frame-ized”). If we use the principle that
the object on the left- hand -side is the object on which we want to do the comparison,
and the object on the right-hand-side is what we want to compare it to, we can create a
true/false vector pretty easily:

>x<-¢(3, 3, 3,1, 1, 2,1, 5, 4,5, 6, 7)
> x == 3 # which elements of x are equal to 37
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE FALSE
> x != 3 # which elements of x are not equal to 37
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[10] TRUE TRUE TRUE
> x > 3 # which elements of x are greater than 37
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[10] TRUE TRUE TRUE
> x <= 3 # which elements of x are less than or equal to 37
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[10] FALSE FALSE FALSE
> # ...

and we can also compare a vector to a vector:

>y <-¢(3, 2,3,1, 2,3, 2,2, 2,2, 3,7)
> x ==y # which values of x are equal to the
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE TRUE
> # corresponding values of y?
> x >=y # which values of x are greater than or equal to the
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
[10] TRUE TRUE TRUE
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> # corresponding values of y7?

or even a data.frame to a data.frame:

> dat2 <- data.frame(gender = gender4, extra = c(2.3, 4.5, 3.2, 4, 2))
> dat3 <- data.frame(gender = gender2, extra c(1, 4.5, 3.2, 1, 1))
> dat2 == dat3 # compare data frame elements directly!
gender extra
[1,] TRUE FALSE
[2,] TRUE TRUE
[3,] TRUE TRUE
[4,] TRUE FALSE
[5,] TRUE FALSE

Make sure to remember that the numeric comparisons (e.g., “greater than”) only work
with numeric variables, obviously.

> dat2 >= dat3 # 7?77 how can we compare categorical variables this way?

Second, you need to know how to build a logical vector from logical vectors. The
logical comparisons that you should know are the following:

& # "and": comparing all of the elements

&& # "and": comparing only the FIRST element
| # "or" (inclusive): comparing all of the elements

|| # "or" (inclusive): comparing only the FIRST ELEMENT
!' # "not": flip the TRUE's and FALSE's

The single & and | create a logical vector out of a logical vector. The double && and | |
create a logical scalar by just comparing the first elements. For instance:

> x <= 1:10 # create a numeric vector
>x <7 # which x's are less than 6

[1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[10] FALSE
>x >3 # which x's are greater than 3

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[10] TRUE

> (x >3) & (x <7) # is x greater than 3 AND less than 77

[1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[10] FALSE

> (x > 3) && (x < 7) # what about only the FIRST element of x7
[1] FALSE
> (x>3) | (x<7) # is x greater than 3 OR less than 77

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> (x > 3) || (x < 7) # what about only the FIRST element of x7
(1] TRUE

> x == # is x equal to 57
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[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

[10] FALSE
>x I=5 # is x NOT equal to 57 ... or:
[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[10] TRUE
> I(x == 5) # flip the signs of "is x equal to 57"
[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[10] TRUE

Sometimes, we want to compare each element of a vector to any number of elements.
For instance, maybe we have two sets of 1 — 5s and we want to see if anybody is a 1 or a
2. Well, if we do this directly:

> x <- ¢(1:5, 1:5)
> x == c(1, 2)

[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE

R just looks at the first two elements and ignores the rest. Weird! Now, we could look at
each element individually and then combine the vectors with the logical | (or):

> (x==1) | (x == 2)
[1] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[10] FALSE

but this method can get cumbersome pretty quickly (if we have a lot of elements to
check). A shortcut to checking any number of elements is to use the %inY command,
which compares each element of vector 1 with all of the elements of vector 2:

> x Zinj) c(1, 2)
[1] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[10] FALSE

Note that there are many functions that have this form (percent followed by command
followed by percent), and even more functions that compare logical vectors and/or numeric
vectors and/or character vectors, but we do not need to know them at present. We do,
however, need to know how to extract indices from a vector and data frame.

2.4.2 Extracting Elements

R uses particular bracket/braces things for particular purposes. There are (effec-
tively) four bracket/braces things to know:

() # group the stuff inside together or
# use a function on the stuff inside

{} # put the stuff inside into one expression
# extract elements of the stuff inside
#

extract list elements of the stuff inside
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At the moment, you really don’t need to know about [[1], and we haven’t (yet) been
introduced to {}. But differentiating between parentheses and square brackets can be
tricky. Know that parentheses tend to be used for functions, and square brackets tend to
be used for objects. Currently, we want to extract particular elements from vectors/data
frames, so we will work with the square brackets. First, we need to know how to call square
brackets. As it turns out, each dimension that we add to an object (rows, columns, third
dimension, fourth dimension, trippy!) results in a comma being added to the square-i-ness
of the bracket. So, for a vector (with one dimension, sort of), we will type something like:

vector[stuff to extract]

and for a data frame, we will (usually) type something like:

data.frame[rows to extract, columns to extract]

Now, this is a simplification—you can extract elements from data frames (or matrices,
later) without a comma, but I will mostly use the dimension-as-comma setup to reduce
confusion.

The easiest object to work with is a vector, and the methods of extracting elements
from vectors generalize to higher dimensional objects. For vectors, the numbers inside the
square brackets correspond to the element-place in the vector. So, if you have a vector of
length 10, and you want to extract the first element, put a “1” inside square brackets:

>x <-c(2, 4, 3, 2, 5, 4, 3, 6, 5, 4)
> x[1]
[1] 2

and if you want to pull out the fifth element, put a “5” inside square brackets:

> x[5]
[1]1 5

and if you want to pull out the last element, you can find out the number of elements
with the length function, and put that number inside square brackets:

> x[length(x)]
[1] 4

We can also take more than one entry at a time, which is called “slicing.” If x is a
vector of data, and ind corresponds to a vector of indices (places) of x, then writing ind
inside square brackets will form a mew vector from the x elements at those places.

> ind <- 1:4 # a sequential vector from 1 -- 4
> ind # double checking

[1] 1234

> x[ind] # the 1 -- 4 elements of x

[1] 2432

We can also take an arbitrary vector, as long as it contains positive integers but does not
contain a number greater than the length of the vector.
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> x[c(1, 3, 7)] # the 1st, 3rd, and 7th elements of x
[1] 2 3 3

As shown in the previous code chunk, by putting a vector of positive integers inside x, R
extracts the indices corresponding to those integers. But if we put a vector of negative
integers inside x, R will remove the indices corresponding to those integers. For example,
x[-1] removes the first element of a vector.

> x # all of the elements

[11 2432543654

> x[-1] # get rid of the first element
[11 432543654

And we can put any vector inside of x as long as the integers are all of the same sign.

> indl <- -1:4 # making an integer vector from -1 to 4
> indl

[11 -1 0 1 2 3 4

> ind2 <- -(1:4) # making an integer vector of -1 to -4
> ind2

[1] -1 -2 -3 -4
> try(x[ind1], silent = TRUE)[1] # does not work because

[1] "Error in x[indl] : only O's may be mixed with negative subscripts\n"
> # there are pos AND neg integers
> x[ind2] # removes the first four elements

[1] 543654

An alternative method of extracting vector elements is by using logical vectors. The
logical vectors must be of the same length as the original vector, and (obviously) the
TRUESs correspond to the elements you want to extract whereas (obviously) the FALSEs
correspond to to the elements you do not want to extract. For instance, if you have a
logical vector:

> x2 <- 1:4

> logi <- c(TRUE, FALSE, FALSE, FALSE)

> x2[logi] # only extract the first element
[11 1

only extracts the “1” because the “true” corresponds to the first element of x2. We can
do this with comparisons as well.

> x3<-c¢(2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6)
> x3[x3 > 2] # extract the values where x3 is greater than 2
[11 333445666
> x3[x3 <= 6] # extract the values where x3 is leq 6
[11 2223334456¢6¢6
> x3[x3 == 4] # extract the values where x3 equals 4
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[1] 4 4

Because the stuff inside the square brackets are logicals, we can use any logical vector
and not just those that correspond to the vector itself.

> # A data frame of gender and extraversion:

> dat2 <- data.frame(gender = gender4, extra = c(2.3, 4.5, 3.2, 4, 2))
> gen <- dat2$gender # put the gender vector in "gen"

> ext <- dat2$extra # put the extraversion vector in "ext'

> ext[gen == "male"] # extraversion scores of the males :)

[1] 2.3 4.0

> ext[gen == "female"] # extraversion scores of the women :)

[1] 4.5 3.2 2.0

So what do the following do?

> ext[!(gen == "male")] # 7777

[1] 4.5 3.2 2.0

> ext[!(gen == "female")] # 7777 + 1
[1] 2.3 4.0

Oddly, we can convert a logical vector directly to indices directly by using the which
function.

> which(gen == "male") # which indices correspond to guys?
[1] 1 4

> which(c(TRUE, FALSE, TRUE)) # the locations of TRUE!

[11 1 3

The which function makes it pretty easy to go back and forth between logicals and indices.
For instance, we might want to know which participants are “male” - and the which
function provides a direct method of finding them. Or we might feel more comfortable
working with indices than logical vectors. Or we might have a vector of frequencies and
need to determine the location corresponding to the maximum frequency. (Hint: Some
things in R are not as straightforward as in other programs).

Of course we might have a data frame rather than a vector, and if we have a data
frame and want to extract rows/columns, we do ezactly the same thing as we did for
vectors, but we include a comma separating the rows we want to take from the columns
we want to take. Moreover, if we want to include all of the rows, we leave the row part
blank ... and if we want to include all of the columns, we leave the column part blank.

> dat3 <- data.frame(gender = gender4,

+ extra = c(2.3, 4.5, 3.2, 4, 2),

+ stuff = ¢(1, 0, 1, 1, 0))

> dat3[c(1, 3), c(1, 2)] # two rows and two columns
gender extra

1 male 2.3

3 female 3.2
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> dat3[c(1, 3), ] # two rows and every column
gender extra stuff

1 male 2.3 1

3 female 3.2 1

> dat3[ , c(1, 2)] # every row and two columns
gender extra

1 male 2.3

2 female 4.5

3 female 3.2

4 male 4.0

5 female 2.0

So back to the problem at the beginning of this section. How could we construct a new
data.frame containing only “male” participants? Well, the easiest method is as follows.

> dat3[dat3$gender == "male", ] # only the male rows
gender extra stuff

1 male 2.3 1

4 male 4.0 1

In the previous code chunk, I effectively wrote: “extract the gender variable, put TRUE
when the gender variable is “male”; and take out those rows from the data.frame dat3”.
You should play around with calling indices. But we also need to do a little bit of statis-
tics/graphing before the chapter ends so that you can see the basic statistical capabilities
of R before I induce boredom and you give up.

2.5 Descriptive Statistics and Graphing

For the following (brief) demonstration, we want to use the sat.act dataset in the
psych package. First, we need to load the package and then the data inside the package

> library(psych)
> data(sat.act)

Using head we can see the first few rows of the data frame, and we can also see a description
of the data frame with 7:

> head(sat.act)

gender education age ACT SATV SATQ
29442 2 3 19 24 500 500

29457 2 3 23 35 600 500
29498 2 3 20 21 480 470
29503 1 4 27 26 550 520
29504 1 2 33 31 600 550
29518 1 5 26 28 640 640

> 7sat.act
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Apparently ACT is the ACT composite score for a particular age group. Also note that
they did not code the gender variable in the dataset but revealed the coding in the help
file. It might make sense to code gender ourselves:

> sat.act$gender <- factor( sat.act$gender, labels = c("male", "female") )

For categorical variables and/or other discrete variables, the table function is rather
useful. If you pass table a vector, it tells you the number of times each of the possible
values occurs in that vector. So

> table(sat.act$gender)

male female
247 453

tells you the number of men and women (there are many more women than men) and

> table(sat.act$education)

0 1 2 3 4 5
57 45 44 275 138 141

tells you the number of people at each education level. To make things simpler, let us
just look at the ACT scores of the women:

> # - Put TRUE where sat.act$gender is "female" and FALSE otherwise,
> # - Keep the ACT scores of the TRUEs ... err ... the "females"
> act.fem <- sat.act$ACT[sat.act$gender == "female"]

Using the female data, we can calculate descriptive statistics, many of which were dis-
cussed in the previous chapter.

> mean (act.fem) # the mean of the ACT scores
[1] 28.41722

> median(act.fem) # the median of the ACT scores
[1] 29

The mean is close to the median, so the data is probably pretty symmetric. How would
we know if the data was negatively or positively skewed from these two statistics?

> var(act.fem) # the variance of the ACT scores

[1] 21.9782

> sd(act.fem) # the standard deviation (square root of variance)
[1] 4.688091

> IQR(act.fem) # the inner-quartile range of ACT scores

(11 7

We could try to calculate the actual range:

> range(act.fem) # trying to calculate the range?
[1] 15 36
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but R is weird and returns the minimum and maximum scores and not the difference
between them. We can calculate that difference in a few ways

> x <- range(act.fem)
> x[2] - x[1]
[1] 21

or:

> diff(x) # calculate the difference between the x elements
[1] 21

or:

> max(x) - min(x)
[1] 21

Finally, we might want to visualize the scores, and R has lovely graphing capabilities.
We will talk about graphing (in detail) in a future chapter because: This chapter is already
way too long. The first major graph is a histogram, and the important arguments of the
histogram are:

hist (x, breaks, freq)

where x is a numeric vector, freq is a logical (TRUE/FALSE) indicating if “frequencies”
or “probabilities” should be plotted on the y-axis, and breaks indicates the number of
break points. If you ignore the last two arguments and just surround your vector with
hist:

> hist(act.fem) # a histogram of female scores on the ACT

Histogram of act.fem
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R will automatically set the bins, based on an algorithm, and plot the frequency on the
y-axis (in most cases). You can set freq = FALSE to plot the probabilities rather than
the frequencies:

> hist(act.fem, freq = FALSE)

Histogram of act.fem
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Magic!!?”! And you can change the number and location of the bins in two ways: (1)
Telling R the number of bins/breaks that you want, or (2) Setting the exact location of
the breaks yourself. To tell R the number of bins/breaks you want, just plug a number
into the breaks argument.

> # - Ignore the "par(mfrow)" command for now.
> # - Just copy/paste each of the histograms into your R session.
> par(mfrow = c(2, 2))

> hist(act.fem,

+ main = "Normal Bin Number")

> hist(act.fem, breaks = 20,

+ main = "Number of Bins: 20")

> hist(act.fem, breaks = 40,

+ main = "Number of Bins: 40")

> hist(act.fem, breaks = 100,

+ main = "Number of Bins: 100")

>

par(mfrow = c(1, 1))
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And to tell R exactly where to put the breaks, you supply a numeric vector of break
locations (where the minimum score is the first element and the maximum score is the
last).

> hist(act.fem, breaks = c(15, 17, 19, 25, 33, 36),
+ main = "A Strange Set of Break Points")

A Strange Set of Break Points

Density
0.04 0.06

0.00 0.02

[ I I I 1
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act.fem

Of course, R often decides not to listen to your breaks argument and sets the number of
bins itself. And in either case, the distribution of female scores appears slightly negatively
skewed.
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2.6 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Packages

install.packages(pkg, dependencies = TRUE) # get a package
library (pkg) # load a package

require (pkg) same as "library" with an odder name

library(help = "pkg")
help(topic, package)
data(dataset, package)

what is in the package "pkg"?
help before loading the package
access a dataset in a package

H H HH

# Dataframes

data.frame(...) turn the (vector) arguments into a data frame

how many rows/columns does x have?
the first/last n (rows/elements) of x

nrow(x), ncol(x)
head(x, n), tail(x, n)

#
names (x) # assign or extract IMPORTANT/OBVIOUS names
rownames (x) # assign or extract names for the rows
colnames (x) # assign or extract names for the columns
attach(df) # call the vectors by name
df $drawer # pick out one vector from a data frame

#

#

# Factors
factor(x, levels, labels) # make a factor vector with these labels

# (in order) coding these levels (in order)
as.factor(x) # turn x into a factor vector

# Logical Operators

<, <=, >, >=, ==, I= # compare numeric/character vectors
&, &&, |, |11, ! # compare logical vectors

x %in% y # is each x a part of the y vector?
# Indices

vector [stuff to extract] # either indices or TRUES/FALSES
data.frame[rows to extract, cols to extract]
which(x) # which are the indices corresponding to TRUE?

# Descriptive Statistics

length(x) # length of the vector

sum(x, na.rm) # sum of all elements in the vector

mean(x, na.rm) # mean

median(x, na.rm) # median (using standard definition)

var(x, na.rm) # variance (which is it!?)

sd(x, na.rm) # standard deviation

range (x) # the minimum and maximum score

min(x), max(x) # also ... the minimum and maximum score

diff (x) # the difference between elements in a vector
#

hist(x, breaks, freq) plotting a histogram
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Chapter 3

Matrices and Lists

Interviewer: Good evening. Well, we have in the studio tonight
a man who says things in a very roundabout way. Isn’t that
so, Mr. Pudifoot?

Mr. Pudifoot: Yes.

Interviewer: Have you always said things in a very roundabout
way?

Mr. Pudifoot: Yes.

Interviewer: Well, I can’t help noticing that, for someone who
claims to say things in a very roundabout way, your last two
answers have had very little of the discursive quality about
them.

—Monty Python’s Flying Circus - Episode 26

3.1 Matrices in R

3.1.1 Building Matrices

R is very strange (if you haven’t figured out by now). It has two types of objects to
handle multidimensional arrays: data frames and matrices (there are also actual arrays,
which are like multidimensional matrices, but most people cannot think in too many
dimensions, so these are ill-advisable). Unlike matrices, data frames are like data sets
and can have vectors of various modes. For instance, we could have a character vector,
numeric vector, and logical vector, and put them all in a data frame.

> c.vec <= c("my", "mother", "told", "me", "to", "pick", "the")

> n.vec <- ¢c(1, 2, 3, 4, 5, 6, 7)

> 1.vec <- c(TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE)

> d.framel <- data.frame(blah = c.vec, eek = n.vec, muck = 1l.vec)

> d.framel # prints the data frame (only the character vector change!)
blah eek muck

1 my 1 TRUE

2 mother 2 FALSE

3 told 3 FALSE

45



46 Chapter 3. Matrices and Lists

me 4 TRUE

to 5 FALSE
pick 6 FALSE
the 7 TRUE

~N O O

Only the character vector changed (into a factor vector), mostly because vectors have
irritating parents, as we talked about earlier. We can, of course, make sure that the
character vector does not change into a factor vector by altering the (almost too obvious)
stringsAsFactors argument to FALSE.

> d.frame2 <- data.frame(blah = c.vec, eek = n.vec, muck = 1.vec,

+ stringsAsFactors = FALSE)
> d.framel[ , 1] # no quotes, of course (and the levels thing)
[1] my mother told me to pick  the

Levels: me mother my pick the to told
> d.frame2[ , 1] # the quotes are back baby - w0OOt!

[1] umyn "mother" "told" "me" "o "piCk"
[7]'%he"

Even though the vector’s parent thinks that it knows best, no vector is affected by
the mode of other vectors in a data frame. The only relationship in construction between
the vectors is their length -- they all must be of the same length because the entries in the
data frame are supposed to represent a set of linked scores. Matrices (on the other hand)
are like multidimensional (well ... two-dimensional, so not very many of the “multi”s)
vectors, so all of the entries in a matrix must be of the same type. If we try to convert the
data frame into a matrix (which is possible, given our futuristic, 21st century technology),
just like it did when we added a bunch of vectors together, R will pick the most general
mode and force all of the vectors to be of that type.

> matl <- as.matrix(d.framel)
> matl # ooh - a matrix.

blah eek muck
[1,] "my" "q" " TRUE"
[2,] "mother" "2" "FALSE"
[3,] "told" "3" "FALSE"
[4,] "me" "4m " TRUE"
[5,]1 "to" "5 "FALSE"
[6,] "pick" "6" "FALSE"
[7,1 "the" w7w n TRUE"

This is the thought process of R during the mat1 trasformation:
e Factors do not make sense with matrices.

e We must convert the factor vector back into a character vector.

Now the character vector is the most general mode of the bunch.
e So we must put quotes around the numbers and TRUEs/FALSEs.
Yay!
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R also keeps the names of the rows/columns the same after the conversion, but those
names are deceptive. Because we no longer have a list (of which a data frame is a specific
example), our columns are no longer different drawers of the same cabinet, so we can no
longer open those drawers with the dollar sign ($) argument.

> # Note: the dollar sign is no longer valid? Annoying!
> try(mati$blah, silent = TRUE)

To call particular columns of the matrix, we can either select the entire column by
[ , column we want] after the object name (just like for data frames).

> mati[ , 2] # the column of character numbers?
[1] |l1l| Il2l| Il3l| Il4l| Il5l| Il6l| Il7l|

We can also call the column, by name, inside the square brackets.

> matl[ , "eek"] # works too.
[1] |l1l| Il2l| Il3l| Il4l| Il5l| Il6l| Il7l|

The “name inside square bracket” works for data frames as well.

> d.framel[ , "eek"] # works, but I like dollar signs ...
[11 1234567
> # they help with statistical poverty!

However, I rarely use the “name-inside-square-bracket” method, as (for some strange
reason) I don’t seem to trust that it will work. But if you prefer indexing vectors using
their names, you can. You can even put multiple names in a vector, and pull out multiple
vectors that way.

> mat1l[ , c("blah", "eek")]

blah eek
[1,] umyn nqn
[2,] "mother" "2"
[3’] "told" ngn
[4,] "me" ngn
[5’] gl ngn
[6,] "piCk" ngn
[7,] "the" rdl
> matl

blah eek muck
[1,] umyn nqn n TRUE"
[2,] "mother" "2" "FALSE"
[3,] "told" n3n wEALSE"
[4’] "me" ngn nw TRUE"
[5’] ol ngn npATQE"
[6,] "piCk" ngn "EATSE"

[7’] "the" u7n n TRUE"
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Lest I get distracted with randomly pulling out vectors (which is possible on a dark
and stormy Saturday such as this one), I should indicate how to create a new matrix ...
from scratch. The general format is as follows:

matrix (vector, nrow, ncol, byrow = FALSE, dimnames = NULL)

I will go through each argument in turn:

1. vector: A vector of any type, although factors will be converted back to character
vectors. If vector is not as long as the actual matrix, it will be repeated and
repeated until the matrix is filled.

2. nrow: The number of rows in your matrix.
3. ncol: The number of columns in your matrix.

4. byrow: A logical (TRUE or FALSE) indicating whether the vector should fill up
the first row, then the second row, then the third row ... or (defaultly) the first
column, then the second column, then the third column, ...

5. dimnames: Do not worry about this argument.

So, if you want to create a 3 X 2 matrix of all 1s (because you are number 1 — go you),
the easiest way to do so is as follows.

# We only need to put one 1 because R recycles the 1s.

# —-- nrow = 3 because we want three rows,

# -- ncol = 2 because we want two columns,

# No need for a "byrow" argument because every element is the same!
ones <- matrix(1, nrow = 3, ncol = 2)

ones # pretty :)

(.11 [,2]
[1,] 1 1
[2,1] 1 1
[3,] 1 1

vV V. V.V VYV

We can also build a matrix of different numbers, but we must consider the byrow = TRUE
argument to make sure that the entries are in the “correct” place.

> m.awesomel <- matrix( c( 1, 2, 3, 4,

+ 5, 6, 7, 8,
+ 9, 10, 11, 12,
+ 13, 14, 15, 16), nrow = 4, ncol = 4)

> m.awesomel # whoops - this is not what we want.

[,11 [,2]1 [,3] [,4]
[1,] 1 5 9 13

[2,1] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
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> m.awesome2 <- matrix( c( 1, 2, 3, 4,
+ 5 6, 7, 8,
+ 9, 10, 11, 12,
+ 13, 14, 15, 16), nrow = 4, ncol = 4,
+ byrow = TRUE)
> m.awesome2 # much better
[,11 [,2]1 [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,1] 9 10 11 12
(4,7 13 14 15 16

As specified earlier, to construct a matrix all of the same number, you should insert that
number as a scalar into matrix and let R do the work of replicating. And if you want to
build a more complicated matrix, you should write the vector in exactly the same form
as you want the matrix to look, specify the number of rows and columns, and use the

byrow = TRUE argument. Just make sure to put a vector in the first argument of matrix,

but the vector that you use can be built in any of the multitude of vector-building methods
discussed to this point, such as:

c(...) # vectors the tedious way.
begin:end # vectors the integer way.
seq(begin, end, by) # vectors the sequence way.
rep (x, times) # vectors the repetitive way.

Unlike data frames, which have a cryptic mode of list, the mode of a matrix is
ezxactly the same as the mode of the vector inside, unless, of course, that vector is a factor
vector, in which case the factor turns back into a character vector.

> mode (m.awesomel) # a numeric ... matrix!

[1] "numeric"

> fact <- d.framel[1:6 , "blah"] # some of the factor vector

> m.weird <- matrix(fact, nrow = 2, ncol = 3, byrow = TRUE)

> fact # fact is a factor vector

[1] my mother told me to pick

Levels: me mother my pick the to told

> m.weird # m.weird is now a character vector
[,11 [,2] [,3]

[1,] "my" "mother" "told"

[2,] "me" "to" "pick"

> mode (fact) # the mode of fact is "numeric"

[1] "numeric"

> mode (m.weird) # the mode of m.weird is "character"

[1] "character"

Once you’ve constructed a matrix, you might be wondering what to do with it. It does
look pretty and rectangular, but that might not be enough.



50

Chapter 3. Matrices and Lists

3.1.2 Using Matrices for Things

One (not quite sure exactly who as Psychologists are nice and rarely reveal their
disgruntled nature at having to construct matrices) might wonder why we are talking
about matrices. Well, let’s assume that we have a psychological measure with multiple
questions, all of which are binary responses (i.e., 0 or 1). With multiple questions, we
can indicate scores as columns of a data frame, but all of the questions are really all part
of the same thing, namely the questionnaire. Therefore, it makes more sense to build a
matrix representing the scores of participants to all of the items.

4,

> scores <- matrix(c(0, 0, 1, 1,

+ o, 1, 1, 1,

+ 0, 0, 0, 1,

+ 1, 1, 0, O,

+ 1, 1, 1, 1,

+ o, 0, 1, 1,

+ 0, 1, 1, 1,

+ 0, 0, 0, 1,

+ 1, 1, 0, O,

+ 0, 0, 1, 1), nrow = 10, ncol =

+ byrow = TRUE)

> colnames(scores) <- c("it1", "it2", "it3", "it4")

> rownames (scores) <- c("p1", "p2", "p3", "p4", "p5",

+ "p6", "p7", "p8", "p9", "p10")

> scores # 10 people (down the rows) and 4 items (across the
itl it2 it3 it4

pt 0 0 1 1

p2 0 1 1 1

p3 0 0 0 1

p4 1 1 0 O

p5 1 1 1 1

p6 0 0 1 1

p7 0 1 1 1

p8 0 0 0 1

P9 1 1 0 O

pilo o o0 1 1

columns)

We can then use our (newfangled) matrix to calculate the total score of each person on

the measure.

> rowSums (scores)
pl p2 p3 p4 p5
2 3 1 2 4
> colSums (scores)
itl it2 it3 it4
3 5 6 8

# creates a vector from a matrix
p6 p7 p8 p9 plo
2 3 1 2 2

# creates a vector from a matrix

To find the total score of each person, I used two new functions, rowSums and colSums,
which do pretty much what you should assume they will do (by their fairly explicit names)
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. sum across the rows and columns of a matrix. You can use rowSums and colSums on
data frames, but because data frames are mixed modes, these functions might not work
very well.

> # But can we add a character to a number?
> try(rowSums (d.framel), silent = TRUE)[1]
[1] "Error in rowSums(d.framel) : 'x' must be numeric\n"

Summing the rows and columns implicitly assumes that every part of the sum is of the
same type ... namely numeric. Therefore, by using a form that assumes everything is
of one type, we reduce the number of potential errors. There are also corresponding
functions to find the proportion of people/items that each person/item marked.

> rowMeans (scores) # the proportion of items for each person
pl p2 p3 p4 pSb p6 p7 p8 p9 plo
0.50 0.75 0.25 0.50 1.00 0.50 0.75 0.25 0.50 0.50
> colMeans (scores) # the proportion of persons for each item
itl it2 it3 it4
0.3 0.5 0.6 0.8
The row sums, column sums, row means, and column means are numeric vectors, so that

we can manipulate them like they are vectors. Remember from the first chapter that R
has nice vectorized capabilities.

> x <- rowSums (scores) # store the vector
>x + 1 # add 1 to each element of the vector
pl p2 p3 p4 p5b p6 p7 p8 p9 plo
3 4 2 3 5 3 4 2 3 3
> mat3 <- matrix(x, nrow = 2, ncol = 5, byrow = TRUE)
> mat3 # a new matrix ... that doesn't make sense?
[,11 [,2]1 [,3] [,4] [,5]
(1,] 2 3 1 2 4
(2,1] 2 3 1 2 2

As a side note, there is a generic function, called apply that can do everything that
rowSums and rowMeans can do (although a bit slower), but we will not cover that (awe-
some) function until functions are covered more generally.

Anyway, now we have a matrix of test scores for people to items. See:

> scores # A test! Yippee!
itl it2 it3 it4

pl 0 0 1 1
p2 0 1 1 1
p3 0 0 0 1
p4 1 1 0 0
p5 1 1 1 1
p6 0 0 1 1
p7 0 1 1 1
p8 0 0 0 1
p9 1 1 0 0
pl0 0 0 1 1
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Glorious! Isn’t it? Now let’s say we want to calculate the split-half reliability of our
assessment. We can first divide the items into two parts — the odd items and the even
items (or, alternatively, the first half and the second half).

> assl <- scores[ , seq(from = 1, to = ncol(scores), by = 2)] # odds

> ass2 <- scores[ , seq(from = 2, to = ncol(scores), by = 2)] # evens
>

> # Note: We could write out the numbers directly: c(1, 3) and c(2, 4)
> # but my method is more generic, and if we have a matrix of a

> # LOT of columns, writing out all of the numbers can be painful,
> # and it is easy to make mistakes.

Once we have the scores, we can find the total score for each person on each half of the
test by using our newly discovered functions.

> totl <- rowSums(assl) # total score to the odd items
> tot2 <- rowSums(ass2) # total score to the even items

We can find the raw correlation between each half of the assessment by using the soon-
to-be discovered correlation function.

> u.reli <- cor(totl, tot2)
> u.reli # the uncorrected reliability estimate

[1] 0.5267866

But we must correct the correlation by the Spearman-Brown formula to estimate the
reliability of the entire assessment.

> k <- 2 # two parts to the test
> c.reli <- (k * u.reli) / (1 + (k - 1) * u.reli )
> c.reli # the corrected reliability estimate

[1] 0.6900592

Useful Advice: Rather than plugging “2” into the equation, indicating that
the full test is twice as long as each half, you should write a generic formula
with k and assign the “2” to k. That way, if we want to estimate the reliability
for a hypothetical test of even longer length, we would only have to change
the value of k outside of the function.

> k <- 4 # changing one thing ...
> c.reli <- (k * u.reli) / (1 + (k - 1) * u.reli )

> c.reli # ... is much easier than changing 2 ...
[1] 0.8166095
> # ... or lightbulbs.

The major function that we used to calculate the split-half reliability is the cor (or
correlation) function. If you compute the correlation between two vectors, cor will return
the result as a single scalar value.
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> vl <-c¢(1, 2, 3, 4, 5, 6)
> v2 <-c¢(1, 3, 2, 5, 4, 4)
> cor(vl, v2)
[1] 0.7625867

However, if you hand cor a matriz (rather than two vectors), the function no longer
returns the correlation as a scalar element, but rather computes all possible correlations
between all possible columns of the matrix and returns the result as a matrix.

> M1 <- cbind(vl, v2) # a matrix from vectors

> cor(M1) # a matrix of correlations?
vl v2

vl 1.0000000 0.7625867

v2 0.7625867 1.0000000

Note that the above code chunk illustrates a different method of creating matrices.

Rather than forming a matrix from a single vector, cbind (and rbind) forms a matrix by
combining several vectors together. You should easily adapt to these functions because
they have (pretty much) the same format as the data.frame function without the names
argument: to form a matrix from a bunch of vectors, just put all of the vectors that you
want to combine, in order, into the cbind or rbind function, and R does all the (binding)
work.

> cbind(vl, v2) # column bind

vl v2
[1,] 1 1
[2,] 2 3
[3,] 3 2
[4,] 4 5
[6,] 5 4
[6,] 6 4

> rbind(vl, v2) # row bind

[,11 [,2] [,3] [,4]1 [,5] [,6]
vl 1 2 3 4 5 6
v2 1 3 2 5 4 4

cbind and rbind are rather generic, because as long as the binds have the correct length
and/or number of rows and/or number of columuns, you can even bind matrices together.

> M1 # a matrix

vl
(1,1 1
2,1 2
(3,1 3
(4,1 4
(5,1 5
[6,] 6 4

> cbind(M1, M1) # a much bigger matrix

O W
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<
N

[1,]
[2,]
[3,]
4,1]
(5,1
(6,1

O O WN ==
DD O W RN
DO WN -
DD OO W

Or even bind data frames to other data frames.

> cbind(d.framel, d.frame2)
blah eek muck blah eek muck

1 my 1 TRUE my 1 TRUE
2 mother 2 FALSE mother 2 FALSE
3 told 3 FALSE told 3 FALSE
4 me 4 TRUE me 4 TRUE
5 to 5 FALSE to 5 FALSE
6 pick 6 FALSE pick 6 FALSE
7 the 7 TRUE the 7 TRUE

Although, rbinding data frames is tricky, because the column names need to match in
all of the binded data frames.

> names(d.frame2) <- c("blah2", "eek", "much")
> try(rbind(d.framel, d.frame2), silent = TRUE)[1] #won't work :(

[1] "Error in match.names(clabs, names(xi)) : \n names do not match
Surveying the landscape, we now we have several things that we can build in R:

e vectors,
e data frames,

e matrices

Is there any way to build an object of multiple types that are not all of the same length?
Well, yes - of course there is, and those (amazing) objects are called lists.

3.2 Listsin R

Many functions will return an object with multiple elements, all of different types.
For instance, if you run a linear regression (later in the book), R will give you some output
that you might not find particularly useful.

vl <- ¢c(1, 2, 3, 2, 3, 4,
v2 <- c(2, 5, 4, 5, 4, 5
comp <- 1m(vl ~ v2)
comp

B >

vV V Vv VvV
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Call:
Im(formula = vi ~ v2)

Coefficients:
(Intercept) v2
-0.03659 0.57317

Once you run a regression (or any function), you might need to take some of the numbers
in the output and do computation-y things with them, but R is stubborn. If you try to
add 1 to comp, R will yell at you.

> try(comp + 1, silent = TRUE)[1]

[1] "Error in comp + 1 : non-numeric argument to binary operator\n"

The comp object is a list. A list is just an extrapolation of a data frame to odd object
types. You can figure out what is inside the list by using the names function:

> names (comp)

[1] "coefficients" ‘"residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df .residual" "xlevels"
[10] "call" "terms" "model"

And if you want to pull something out of the list, you can use the dollar sign operator.

> comp$coefficients # to pull the coefficients out.

(Intercept) v2
-0.03658537 0.57317073

Once you extract the coeflicients inside the list, then you have a vector, and you can treat
that vector like any other vector.

You can also create a list on your own (similar to how you create a data frame but
by using the 1ist rather than data.frame function). But unlike data frames, each object
of the list can be of any type (even another list!).

> vl # a vector
[11 1232345231
> v2 # a vector
(1] 2545457644
> M1 # a matrix
vl v2
[1,1] 1 1
[2,] 2 3
[3,1] 3 2
[4,] 4 5
(5,1 5 4
6,] 6 4

> d.framel # a data frame
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blah eek muck

1 my 1 TRUE
2 mother 2 FALSE

3 told 3 FALSE

4 me 4 TRUE

5 to 5 FALSE

6 pick 6 FALSE

7 the 7 TRUE

> 1.cool <- list(vl = vl1, v2 = v2, M = M1, d.frame = d.framel)
> 1.cool

$vi

[1] 1232345231

$v2
[11 2545457644

$M

vl v2
[1,] 1 1
[2,] 2 3
3,1 3 2
(4,1 4 5
[6,] 5 4
[6,] 6 4
$d.frame

blah eek muck
1 my 1 TRUE
2 mother 2 FALSE
3 told 3 FALSE
4 me 4 TRUE
5 to 5 FALSE
6 pick 6 FALSE
7 the 7 TRUE

When constructing a list, R thinks: “Well I would like to turn these objects into a data
frame, but they have weird dimensions, so let’s just put them together into one object to
make it easier to call, but let’s space the objects out rather than putting them together.”
You can (as always) figure out the names in your list.

> names(1.cool)
[1] "Vl" l|v2|| IIMII "d.fraIne"

And you can also pick sub-objects out of your list by using the dollar sign operator.

> 1.coo0l$d.frame # the data frame stored in the list
blah eek muck
1 my 1 TRUE

2 mother 2 FALSE
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3 told
4 me
5 to
6 pick
7 the
> d.framel
blah
[1,] TRUE
[2,] TRUE
[3,] TRUE
[4,]1 TRUE
[6,]1 TRUE
[6,] TRUE
[7,] TRUE

3 F
4
5F
6 F
7

== 1.cool$d.frame

eek
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

ALSE
TRUE
ALSE
ALSE
TRUE

muck
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

# are they the same? yup!

You can also turn a list into a vector by typing the unlist function: R will (usually,
although not always) spread magical pixie dust to make each object a vector, combine
each vector into a long vector, and make the type of that vector the most general type in

your list.

> unlist(1l.coo

vil

1

v1b

3

v19

3

v23

4

v27

7

M1

1

M5

5

M9

2
d.frame.blahl
3
d.frame.blahb
6
d.frame.eek?2
2
d.frame.eek6
6

1)

v12 v13
2 3
v16 v1i7
4 5
v110 v21
1 2
v24 v25
5 4
v28 v29
6 4
M2 M3
2 3
M6 M7
6 1
M10 M11
5 4

vid

v18

v22

v26

v210
4

M4

4

M8

3
M12
4

d.frame.blah2 d.frame.blah3 d.frame.blah4

2 7

1

d.frame.blah6 d.frame.blah7 d.frame.eekl

4 5

1

d.frame.eek3 d.frame.eek4 d.frame.eekb

3 4

5

d.frame.eek7 d.frame.muckl d.frame.muck?2

7 1

0

d.frame.muck3 d.frame.muck4 d.frame.muck5 d.frame.muck6

0
d.frame.muck7
1

1 0

0
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Unfortunately, unlike matrices and data frames, a list is dimensionless. The ele-
ments of a list do have an order, though, so you can also extract an element by indicating
the number of the element that you want to extract rather than calling it by name (with
the dollar sign argument). There are two ways to do this: using the single brackets
[objects to extract] or using the double brackets [[object to extract]]. The sin-
gle bracket method keeps the result in list form.

> 12 <- 1.coo0l[2] # extract a vector
> 12 # is still is a (short) 1list?
$v2

[11 2545457644
> try(12 + 2, silent = TRUE)[1] # adding doesn't work on lists
[1] "Error in 12 + 2 : non-numeric argument to binary operator\n
> 1l.cool[c(1, 2)] # but we can take out multiple list elements.

$vi
[1] 1232345231

$v2
[11 2545457644

The double bracket method no longer results in a smaller list, but you can only extract
one thing at a time.

> v3 <- 1.cool[[2]] # extract a vector

> v3 # it is now a vector!
(11 2545457644
>v3 + 2 # adding numbers now WORKS. Yay!

[11 4767679866
> 1.cool[[c(1, 2)]] # taking out multiple elements does what? Weird!
[1] 2

Speaking of lists, after you create a bunch of vectors and matrices and data frames
and lists, you will have a lot of objects in your R system. When there are many objects
stored in R, keeping track of the names becomes difficult. A very useful command to keep
track of the objects that you have in R is 1s, which stands for (appropriately) “list™:

> 1s() # specify 1s followed by (), and R will let you know all

[1] "ass1" "ass2" "c.reli" "c.vec"
[5] "comp" "d.framel"  "d.frame2"  "fact"
[9] nn "] .cool" " .vec" nion
[13] "m.awesomel" "m.awesome2" "m.weird" Min
[17] "mat1" "mat3" "n.vec" "ones"
[21] "scores" "totl" "tot2" "u.reli"
[25] "wvin "y2" "y3" "x"
> # of the objects that R has in memory. The resulting names
> # will be a character vector. The world has come full circle.

> # We have, yet again, arrived at a character vector.
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Before I get “list”-less, once you have all of these (multitude of awesome) objects,
you might want to replace particular elements without having to create a data frame or
vector again. There are (of course) easy methods of replace elements, and the easiest
method is similar to finding and extracting those elements in the first place.

3.3 Indices and Replacement

Let’s say you have a vector:

> vec <- ¢(1, 3, 2, 4, 3, 5)
> vec

[1] 132435
If you want to see the third entry of that vector, you just stick a “3” into brackets:

> vec[3] # show me the 3rd element
[1] 2

If you want to replace the third entry with a different number, you start your expression
in the exact same way,

vec[3]

but rather than leaving the space to the left of 1 blank, you stick an assignment operator
and the number that you want to assign next to J.

> vec # show me the entire vector

[1] 132435

> vec[3] # show me the 3rd element

[11 2

> vec[3] <- 3 # replace the 3rd element

> vec[3] # the vector element has changed

[11 3

> vec # but the rest of the vector is the same

[1] 133435

You can replace multiple elements in a similar way, by using multiple indices and slicing.
Rather than just changing the 3rd element, let’s change the 3rd and 4th elements of vec
to the same number...

> vec # show me the entire vector
[11 133435

> vec[c(3, 4)] # show me the 3/4 element

[1] 3 4

> vec[c(3, 4)] <- 1 # replace both elements with 1
> vecl[c(3, 4)] # yup - they are both 1

[1] 1 1

> vec # and the rest of the vector is the same
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[1] 131135

. or to a different number:

> vec # show me the entire vector

[1] 131135

> vec[c(3, 4)] # show me the 3/4 element

[1] 11

> vec[c(3, 4)] <- c(3, 4) # replace with different things

> veclc(3, 4)] # now they are different

[1] 3 4

> vec # but the rest of the vector is the same

[1] 133435

Replacement via indices is rather useful, especially when we reach for loops in a few
chapters. A complicated use of for loops is to create a vector containing a sequence of
integers.

>c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # a difficult way
[1] 1 2 3 4 5 6 7 8 910

> 1:10 # an easy way

[1] 1 2 3 4 5 6 7 8 910

> int <- NULL

> for(i in 1:10)1{ # a "for loop" way:
+ int[i] <- i

+ }

> int

[1] 1 2 3 4 5 6 7 8 910

The above for loop replaces the ith element of int with ¢, which just happens to be our
fantastic integers (1 — 10).

Our replacement method also generalizes to matrices and data frames. For instance,

if you have a matrix and want to replace the entire second column of that matrix with
the number “2”, you would just say: “Find all of the rows of the second column and put
a 2 in their place.”

> M2 <- cbind(v1l, v2, vl, v2) # creating a matrix

> M2 # a silly matrix
vl v2 vl v2
1,7 1 2 1 2
[2,] 2 5 2 5
(3,1 3 4 3 4
[4,] 2 5 2 b
[6,] 3 4 3 4
[6,] 4 5 4 5
[r,] 56 7 5 7
[8,] 2 6 2 6
[9,] 3 4 3 4
[10,] 1 4 1 4
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> Mm2[ , 2] # the second column of M2
(11 2545457644
>M2[ , 2] <- 2 # replacing the second column with 2
> M2[ , 2] # yup - replaced
112222222222

> M2 # the entire (new) matrix

<
—
<
N

1v
(1,1 1
2,1 2
[3,1 3
4,1 2
[5,] 3
4
5
2
3
1

[

(6,]
[7,]
[8,]
[9,]
[10,1]

NN NNDNNNDNDNDNDDN
= WMo WN WN
SO OO N s N

And if you wanted to replace the entire third row with the number “3”, you would do
something similar.

> M2[3, ] # the third row of M2
vl v2 vl v2
3 2 3 4
> M2[3, ] <- 3 # replacing the third row with 2
> M2[3, ] # yup - replaced
vl v2 vl v2
3 3 3 3
> M2 # the entire (new) matrix
vl v2 vl v2

[1,] 1 2 1 2

[2,] 2 2 2 5

[3,] 3 3 3 3

[4,] 2 2 2 5

(5,1 3 2 3 4

[6,] 4 2 4 5

[7,] 5 2 5 7

[8,] 2 2 2 6

9,1 3 2 3 4

[10,] 1 2 1 4

And if you wanted to replace the element in the fifth row and second column with the
number “100”, you would make sure to call only that element and not an entire row or
column.

> M2[5, 2] # the fifth row and second column

v2
2
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> M2[5, 2] <- 100 # replacing that element with 100

> M2[5, 2]
v2
100
> M2
vl v2 vl
(1,1 1 2 1
2,1 2 2 2
[3,] 3 3 3
4,] 2 2 2
[5,] 3100 3
6,1 4 2 4
[7,] 5 2 5
8,1 2 2 2
[9,] 3 2 3
(10,7 1 2 1

<
N

BAONO A WO N

# yup - replaced

# the entire (new) matrix

Unsurprisingly, you can use logical vectors inside the bracket to replace elements
rather than numbers. First, for vectors:

> vec
[11 133435
> vec[vec == 3]
> vec

[11 122425
> vec[vec <= 2]
> vec

# our vector

<- 2 # replace any element that is 3 with 2

# no more 3s

:(

<- -1 # replace any element leq 2 with -1
# everything is small !!

[1] -1 -1 -1 4 -1
Second, for matrices:
> M2
vl v2 vl v2
(1,7 1 2 1 2
2,1 2 2 2 5
[3,] 3 3 3 3
[4,] 2 2 2 5
[6,] 3100 3 4
6,] 4 2 4 5
(7,1 5 2 5 7
8,] 2 2 2 6
[9,] 3 2 3 4
[10,] 1 2 1 4
> M2[M2[
> M2
vl v2 vl v2
[1,] 1 2 1 2
[2,] 2 2 2 5

5

# our matrix

, 2] == 100, 2] <- 99 # a complicated expression :)

# but magic :)
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[3,] 3 3 3 3
4,] 2 2 2 5
[5,] 399 3 4
6,1 4 2 4 5
(7,1 5 2 5 7
8,1 2 2 2 6
[9,] 3 2 3 4
[10,] 1 2 1 4

The second line of the code chunk essentially says:

Take the second column of the matrix. Mark TRUE when an element of that
column is equal to 100 and FALSE otherwise. Replace the TRUEs (there
is only one of them) corresponding to locations in the second column of the
matrix with 99.

With a complicated expression, you should remember that the constituent parts are pretty
simple, so just break the expression into simpler chunks, explain what those simpler chunks
mean, and combine the chunks to explain the expression.

Finally, a matrix is really a really long vector, as strange as that sounds. The
elements of the vector are stacked column by column. Rather than calling elements of a
matrix with the standard:

matrix[rows to extract, columns to extract]

you can extract elements by indicating their ... vector place.

matrix[elements to extract]

Just keep in mind that R counts down the first column, then the second column, etc.. For
example, if your matrix is 10 x 4 and you want to extract the first element in the second
column, that element would be correspond to the 11th element of the matrix: 10 (for the
entire first column) + 1 (for the first element of the second column).

> M2[1, 2] # first element in second column

v2
2

> M2[11] # first element in second column?
[1] 2

Replacing matrix elements by calling the vector number is confusing and rarely used.
However, frequently we will want to replace all of the elements of a matrix that are
equal to some number with a different number. And because R keeps track of the vector
place automatically, we can create a logical matrix and put that matrix inside single
brackets next to our original matrix. For example, an easy way to replace all of the
elements of a matrix that are equal to 2 with another number (say —1) is to create a
TRUE/FALSE vector of the entire matriz and then use that TRUE/FALSE vector to
replace the corresponding elements of the entire matriz.
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> M2[M2 == 2] <- -1

> M2

(1,]
[2,]
(3,]
[4,]
(5,1
(6,1
7,1
(8,1
[9,1]
[10,]

vl
1
-1

-1
3
1

v2
-1
-1

g
=
1<
= N

| |
W=, W

b OO N O Wwo

# replace all 2s with -1s in the entire matrix!

# magic.

Isn't it!?

Replacing elements of a matrix by using a logical matrix (in single brackets) is natural,
but the only reason that this logical statement works is because a matrix really is a very

long vector.
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3.4 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Matrices and Data Frames

data.frame(..., stringsAsFactors = FALSE) # no factors!

matrix(vector, nrow, ncol, byrow, dimnames) # build a matrix

as.matrix(x) # create a matrix from something else

cbind(...) # puts a bunch of vec/mat as columns of a matrix
rbind(...) # puts a bunch of vec/mat as rows of a matrix

# Operations on Matrices

rowSums (x), colSums(x) # add the row/column elements
rowMeans(x), colMeans(x) # average the row/column elements

# Generic Operations

cor(x, y, use, method) # find the correlation between vectors

cor (X, use, method) # find a correlation matrix

# Lists

list(...) # put things into a list

unlist(list) # turn a list into a vector (usually)
list$drawer # extract the drawer object from list
list[[index]] # take out the "index" list object
list[objects to extract] # take out objects, and make a list
1sO # what objects do we have in R?

# Indices (Again)

vector [stuff to replace] <-
data.frame[rows to replace, cols to replace] <-
matrix[rows to replace, cols to replace] <-

matrix[stuff to extract]
matrix[stuff to replace] <-

replacement
replacement
replacement

replacement
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Chapter 4

Files and Tables

You probably noticed that I didn’t say: “And now for something
completely different” just now. This is simply because I am
unable to appear in the show this week. Sorry to interrupt
You.

—Monty Python’s Flying Circus - Episode 19

4.1 Reading and Writing Files

4.1.1 Reading in External Data

In Chapter 2, I discussed loading data into R when those data already belong to
some R package. We loaded data in the following way:

1. Load the R package containing the data using the library or require function.
2. Load the particular dataset using the data function.

3. Access particular variables using the name of the dataset followed by the dollar
sign operator or attaching the dataset using the attach function and calling the
variables by name.

For instance, if we want to use the Ginzberg Depression data in the car package, we
would first determine whether or not the package exists on our computer.

> library(car)

Because car probably does not exist (although it is a useful package to download), we
must then install the package,

> install.packages("car", dependencies = TRUE)
> library(car)

load the package into R once it is installed,

> library(car)

67
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load the dataset into R once the package is loaded,
> data(Ginzberg)
and then play around with (or explore) the data.

> head(Ginzberg) # what do the data look like?
simplicity fatalism depression adjsimp adjfatal adjdep

1 0.92983 0.35589 0.59870 0.75934 0.10673 0.41865

2 0.91097 1.18439 0.72787 0.72717 0.99915 0.51688

3 0.53366 -0.05837 0.53411 0.62176 0.03811 0.70699

4 0.74118 0.35589 0.56641 0.83522 0.42218 0.65639

5 0.53366 0.77014 0.50182 0.47697 0.81423 0.53518

6 0.62799 1.39152 0.56641 0.40664 1.23261 0.34042

> simp <- Ginzberg$simplicity # accessing a variable by dollar sign.
> attach(Ginzberg) # attaching the data.

> head(simplicity) # now accessing a variable by name.
[1] 0.92983 0.91097 0.53366 0.74118 0.53366 0.62799

> head (simp) # they seem to be the same.

[1] 0.92983 0.91097 0.53366 0.74118 0.53366 0.62799
> identical (simplicity, simp) # see :) and a new function to boot!
[1] TRUE

A major problem in the recently reviewed method is that the data need to be in
a particular package in R before we can explore them. Most data that we need ... are
usually not randomly inside of a package in R, as big and profound as the R machine
actually is. One may wonder whether there a way of loading external data into R without
having to type it? (You may ask). Well, of course, although loading data is not as easy
as loading packages. The major function to load data into a data.frame is read.table,
and its most important arguments are as follows:

read.table(file, header = FALSE, sep = "",
na.strings = "NA", nrows = -1, skip = 0,
fill = FALSE, stringsAsFactors)

The first argument is file: the particular dataset that you want to explore. If you have
the dataset on your computer, you do not know exactly where it is, and you want to search
for it, the function: choose.files() (in Windows) or file.choose() (on a Mac) will
allow you to select your file interactively. The “choosing interactively” thing is probably
the easiest way of finding and picking and loading a file. You can also directly indicate
the location of the file using its path in quotes. Windows users can either use double
backslashes (\\) to separate directories or a single forward slash (/). Mac/Unix users
must use the single forward slash. For instance, if you are working with a Mac and your
data file is labeled “data.txt” and located on your Desktop, using:

file = "~/Desktop/data.txt"

as your file path (in quotes) inside of read.table would attempt to load that particular
file. In Windows, I think that the path you would need to get to the Desktop depends on
your current location, but something like:
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file "C:/Documents and Settings/ (username) /Desktop/data.txt"

or:

file

"C:\\Documents and Settings\\ (username) \\Desktop\\data.txt"

should work. Notice the quotes surrounding the file name and the double (rather than
single) backslash to access directories. Of course the particular path depends (in part) on
where R is located. What in the world does that mean?! Well R works from a directory -
you can see which directory by using the getwd function.

> getwd() # it's a function, so it needs parentheses ...
[1] "/Users/stevennydick/Documents/School, Work, and Expense... "
> # but the function has no arguments ... strange ...

The directory depends on whether you open an R file (something with the “.R” extension)
or the R application first. As you can see, I am working from the directory in which I
am writing this book, which (due to my insane organizational scheme) is somewhere in
the bowels of my harddrive. You can change the working directory by using the setwd
function.

setwd (dir)

In setwd(dir), the dir argument is of the same form as the file argument of read.table
(quotes, single forward or double backward slashes, ... ) without the actual file at the
end of the extension.

file = "~/Desktop/data.txt" # includes the file, but
dir = "~/Desktop" # only gets you to a directory

As a side note, getwd and setwd? Isn’t R a poetic language!?? *sigh.* Anyway, back
to setting directories. The easiest method of setting the working directory is to use the
menu item “Change Working Directory,” and navigate to where you want R to be located.
And once R is located in the same directory as the file, you only need to write the file
name (in quotes, of course) and not the entire path. For example, if you want to access
the “data.txt” located on the Desktop, you originally had to type:

file = "~/Desktop/data.txt"

but it might be easier to type:

> o.dir <- getwd() # saving the current directory
> setwd(dir = "“/Desktop") # changing the dir to file location
> getwd () # making sure the dir is correct

[1] "/Users/stevennydick/Desktop"

and then set:
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file = "data.txt" # don't forget the .txt extension

Because all of the files that I need are in the folder in which this book is being written, I
should change the working directory back to its original location. Luckily, I had already
saved the original path as o.dir, so that I can easily type:

> gsetwd(dir = o.dir)

and I am back in business.

As a review, if a file is on your computer, the easiest method of accessing that file
is by using the file.choose function. If the file is in the working directory of R, you can
call the file name directly (in quotes and not forgetting the file extension). If the file is
not in the working directory of R, you can specify the full path (in quotes, separating the
directories by /), or you can set the working directory to the location of the file (using
setwd or a menu item) and then directly call the name of the file.

You can also access files on the internet by using the url function. For instance,
one of the datasets that I have used in a class that I taught is the “ADD” data discussed
in the book Statistical Methods for Psychology by David C. Howell. The file is at the
following address:

> # Make sure the path is in quotes.
> site = url("http://www.uvm.edu/ dhowell/methods7/DataFiles/Add.dat")
> # --> You do not need the url function, but it helps with clarity.

All you have to do is find the location of the text file online, copy the path of that text
file, and assign file the path, in quotes, inside the url function. We will continue using
this dataset in a few paragraphs.

The second argument of read.table is header. The argument, header, takes a
logical value (TRUE or FALSE) indicating whether the file has a ... um ... header (tricky
stuff), which is just a row prior to the data that contains the variable names. If your data
has a header, and you set header to FALSE, then R will think that the variable names
are observations.

The last of the really important arguments is sep, which tells R how the observations
on each row are ... um ... separated. Most of the time, your data will be separated by
white space, in which case you can leave sep = '"""". However, a common method of
creating a dataset is through Excel, saving the data as a “.csv” (comma-separated) file
(try constructing a “.csv” file in your spare time - commas are fun and swoopy). When
trying to read a “csv” file into R, you can either use the read.csv function (but who
wants to memorize a whole new function) or set sep = ",". The remaining arguments
of read.table are important, but you can read about what they do in your spare time.

Now let’s complete our loading of the “ADD” data on the Howell website. The
easiest strategy to load the data into R is directly via the link. The dataset is located at:

http://www.uvm.edu/ dhowell/methods7/DataFiles/Add.dat

and if you take a look at the data, note that there is a header row of variable names, and
observations are separated by white space, so:


http://www.uvm.edu/~dhowell/methods7/DataFiles/Add.dat
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> read.table(file = site,
+ header = TRUE, sep = "")[ , -1]

ADDSC Gender Repeat IQ EngL EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 3 2.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 2 1.67 0 1
7 69 1 1 88 2 2 2.25 1 1
8 56 1 0 102 2 4 3.40 0 0
9 58 1 0 105 3 11.33 0 0
10 48 1 0 92 2 4 3.50 0 0
11 34 1 0 131 2 4 3.75 0 0
12 50 2 0 104 1 3 2.67 0 0
13 85 1 0 83 2 3 2.75 1 0
14 49 1 0 84 2 2 2.00 0 0
15 51 1 0 85 2 3 2.75 0 0
16 53 1 0 110 2 2 2.50 0 0
17 36 2 0 121 1 4 3.55 0 0
18 62 2 0 120 2 3 2.75 0 0
19 46 2 0 100 2 4 3.50 0 0
20 50 2 0 94 2 2 2.75 1 1

would work. But, unfortunately, running the read.table function without assigning it
to an object prints the data to your screen but does not save it as a data frame for future
use.

> 1s()  # list the objects in memory!

[1] "Ginzberg" "o.dir" "simp" "site"

> # there do not appear to be any that relate to ADD... ugh!

To save a file as a data.frame in R, you need to actually assign the dataset as your own,
aptly named object. For example:

> site <- url("http://www.uvm.edu/ dhowell/methods7/DataFiles/Add.dat")
> dat.add <- read.table(file = site,

+ header = TRUE, sep = "")[ , -1]

> head(dat.add) # looks nice :)

ADDSC Gender Repeat IQ EngL EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 3 2.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 2 1.67 0 1
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would work, and now we can attach the data frame and call the variables by name or use
the dollar sign operator.

> ADD <- dat.add$ADDSC # by dollar sign (as it IS a data frame)
> attach(dat.add) # we can attach data frames
> head(dat.add)

ADDSC Gender Repeat IQ Engl EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 32.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 21.67 0 1
> head (ADD) # and they look the same. Yippee!

[1] 45 50 49 55 39 68

You might be wondering what happens if we do not remember to let R know that our data
contains a header row. Well if we forget to set header to TRUE, then our data frame
would be as follows.

> site <- url("http://www.uvm.edu/ dhowell/methods7/DataFiles/Add.dat")

> dat.add2 <- read.table(file = site, sep = "")[ , -1] # no header?

> head(dat.add2) # uggggly!
V2 V3 v4 V5 Vé V7 V8 V9 V10

1 ADDSC Gender Repeat IQ Engl EngG GPA SocProb Dropout

2 45 1 0 111 2 3 2.60 0 0

3 50 1 0 102 2 3 2.75 0 0

4 49 1 0 108 2 4 4.00 0 0

5 55 1 0 109 2 2 2.25 0 0

6 39 1 0 118 2 3 3.00 0 0

In dat.add?2, there is an extra row of new variable names (V1 through V10), and our
actual variable names are observations in the data frame. Think about why pretending
our variable names are observations is a bad idea. What is the “class” of the original
dataset (numeric)? Now, what is the “class” of the new dataset where the variable names
are now observations (factor)?

We can also save the data to the Desktop (using a right click and “Save As”). I
saved my file as “Add.dat,” and now I can read the file into R directly from my machine
without having to access the internet.

> dat.add <- read.table(file = "~/Desktop/Add.dat", header = TRUE)
> head(dat.add)

ADDSC Gender Repeat IQ Engl EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 3 2.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 21.67 0 1
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Not surprisingly, the data frame is exactly the same due to being based on the website.
Now that we can read files into R, can we get the data back out again? Of course we can!
R is a read-write machine!

4.1.2 Writing Data to an External File

The most common method of writing R data into a file is the write.table command,
with arguments rather similar to those in read.table.

write.table (x, file =" ", quote TRUE, sep = " n,
na = "NA", row.names = TRUE, col.names = TRUE)

In my setup, x is the particular object (usually a data frame) that we want to write to an
external file, file is the name of the file, quote is a logical indicating whether we want
factors/characters to be in quotes in the external file, sep tells R how the data should
be spaced, and row.names/col.names indicates whether R should include the row names
and/or column names (i.e., the participant and/or variable names) as a column and/or
row of the external file. Usually, I set row.names to FALSE (because the row names are
not interesting) but leave col.names as TRUE (because the column names are usually
the variable names). As in read.table, you can let file be a path to a new directory or
just a name (in quotes, with an extension), in which case the file will be written to your
current working directory.
As an example, let’s continue working with the “ADD” data.

> head(dat.add) # already loaded into R in the previous subsection.
ADDSC Gender Repeat IQ Engl EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 3 2.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 2 1.67 0 1

If we want to look at the data outside of R, we can write it to an external “.txt” file,
separating the values by spaces.

# ——> the object is dat.add,
# —-—> we will save the object as "Add.txt" in the current directory,
# --> factors (there are none) will not have quotes,
# ——> data will be separated by spaces,
# --> we will remove the row names but keep the variable names.
write.table(dat.add, file = "Add.txt",

quote = FALSE, sep = " ",

row.names = FALSE, col.names = TRUE)

+ + VVVVVYV

If you go into your working directory, you should see the file “Add.txt,” and if you double
click that file, you should see the data. We can (of course) read the data right back into
R.
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> # The data looks exactly the same as it did before.
> dat.add3 <- read.table("Add.txt",

+ header = TRUE, sep = "")

> head(dat.add3) # magic!??

ADDSC Gender Repeat IQ EngL EngG GPA SocProb Dropout

1 45 1 0 111 2 3 2.60 0 0
2 50 1 0 102 2 3 2.75 0 0
3 49 1 0 108 2 4 4.00 0 0
4 55 1 0 109 2 2 2.25 0 0
5 39 1 0 118 2 3 3.00 0 0
6 68 1 1 79 2 2 1.67 0 1

Unfortunately, a text file with a bunch of spaces is pretty difficult to parse, and we
might want to edit our data in Excel. The easiest method of writing a file that is Excel
compatible is by using the “.csv” extension and separating the data by commas.

> write.table(dat.add3, file = "Add.csv",
+ quote = FALSE, sep = ",",
+ row.names = FALSE, col.names = TRUE)

You should be able to read the “Add.csv” file back into Excel, either by double
clicking the file or by double clicking Excel and opening the “.csv” file. Once you have
the file in Excel, you can alter values, rename columns, etc., save the big table as a “.csv”
and then read that big table right back into R by only changing the sep argument of
read.table.

> dat.add3 <- read.table("Add.csv",
+ header = TRUE, sep = ",")

Alternatively, you can use the functions read.csv and write.csv to do all of your comma-
separated reading and writing, but I find using the read.table and write.table func-
tions and change the sep argument is much easier. Due to the flexibility of R, you can
read and write just about anything, including SPSS, SAS, Stata files. Functions allowing
you to access those files are in the foreign library, as SPSS, SAS, and Stata are foreign
concepts to the awesome R user.

When you want to save multiple R objects (including lists), reading and writing to
files is a little tricker. However, it is only a little trickier, and requires a function with
the most appropriate name: dump. To save a bunch of objects in one file, all you have to
do is specify their names in a vector inside the dump function, and indicate the (desired)
name of the file.

x <- c(1, 2, 3, 4, 5) # a numeric vector
y <- matrix(c("a", "b", "c", "d"), nrow = 2) # a character matrix
z <- list(x, y) # a list

dump(list = c("x", "y", "z"), file = "Awesome.txt")
# Note: make sure the object names are in quotes.

m(x, y, z) # removing x, y, z
try(x, silent = TRUE)[1] # does x exist? no!
TRUE) : object 'x' not found\n"

V VVVVYVVYV

[1] "Error in try(x, silent
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> try(y, silent = TRUE)[1] # does y exist? no!
[1] "Error in try(y, silent = TRUE) : object 'y' not found\n"
> try(z, silent = TRUE)[1] # does z exist? no!
TRUE) : object 'z' not found\n"

[1] "Error in try(z, silent

After dumping your objects into an external file, you can read those objects back into R
using the source function, and even if you removed those objects from R’s memory (using
the rm function), they magically reappear. Oh objects! How I missed you dearly.

> source("Awesome.txt")

> X
[11 1 2345
>y

(.11 [,2]
[1,] ngn o onen
[2’] npnoongn
>z
[[1]1]
[11 1 2345
[[211]

(.11 [,2]
[1,] "a" "e"
[2’] npnoongn

Unfortunately, the dumped file does not have a nice format. It is (maybe) R readable, but
it does not help humans with presentation, understanding, and analysis. An alternative
method of saving readable data is by using the sink function. Basically the sink function
diverts the input/output to an external file. A basic use of the sink function is to print
a few objects for human consumption.

> sink("Awesome2.txt") # the file you want to write stuff to
> print(x) # the stuff you want to save,

> print (y) # surrounded by the "print" function,
> print(z) # ... <- later

> sink() # an empty sink to close the con

After you sink the data into an external file, the data is copy and paste readable by
humans, but it is nearly impossible to read the data back into R. The print function (by
the way) is needed to actually place the objects into the file, though we will talk about
print more later. Also, note that many R practitioners recommend saving R objects
using the save (and not the dump) functions, as saveing is more reliable than dumping.
However the format of the saved file will only be R compatible but completely unreadable
by humans (unless they have sufficient decoding-computer-symbols-skills).

In any case, reading and writing data is kind of a pain in any computer language, so
we will stop talking about it now and start talking about something completely different
... tables, categorical variables, and categorical relationships.
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4.2 Categorical Variables in R

4.2.1 Tables and Boxplots

An initially tricky problem in R is trying to find the mode of a set of data. The most
efficient method of calculating the mode is by using the table function. Regardless of
the type of data, surrounding a vector with table results in a “vector” of counts at each
level of the vector.

> datl <- ¢(1, 2, 3, 3, 3, 3, 2, 2, 5, 6, 7, 4, 2, 3)
> table(dat1)

datl

4567

1111

As you can probably tell, the names of the vector elements are the possible values of the
data, and the actual elements are the counts/frequencies for each value. We can also form
tables from character vectors.

> dat2 <- c("male", "female'", "female", "male'", "other", "other", "male")
> table(dat2)
dat2
female male other
2 3 2

R is pretty neat and sorts the vector either numerically (if your data are numbers) or
alphabetically (if your data are character strings). Once your data are in table form,
you can stick the table into a barplot (using xlab to label the x-axis, ylab to label the
y-axis, and main to label the plot - these arguments work on almost any plot).

> barplot(table(dat2),

+ xlab = "Gender", ylab = "Counts", main = "Barplot of Gender")
Barplot of Gender
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o
N
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A common mistake in R-barplot construction is trying to use the original vector and not
a numeric summary via the table function.

Warning: When you construct a barplot, you must input your data as a
vector. The names of that vector must refer to the unique values of the
variable, and the wvalues of that vector must refer to the counts. You cannot
enter the vector itself but must use a summary of the vector, and the easiest
way of obtaining a correct summary is via the table function.

> # --> Does not work with a character vector

> try(barplot(dat2,

+ xlab = "Gender?", ylab = "Counts?", main = "Ugliness"),
+ silent = TRUE)[1]

[1] "Error in -0.01 * height : non-numeric argument to binary operator\n"

> # --> Is not correct with a numeric vector
> barplot(dati,

+ xlab = "X Var?", ylab = "Counts?", main = "Ugliness")
Ugliness
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Frequently, you will need to work with proportions rather than counts. To work with
proportions, you can insert your original (count) table into the prop.table function.

> g.tab <- table(dat2) # to make it easier to call the table
> prop.table(g.tab) # stick a table and NOT the original vector
dat2

female male other

0.2857143 0.4285714 0.2857143
> sum( prop.table(g.tab) ) # should be 1. Why?
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11 1

You can also attach the total count of your data to the table by using the addmargins
function.

> addmargins(g.tab) # I'm not quite sure what to do with "Sum"
dat2
female male other Sum

2 3 2 7

And you can find the total count (i.e., the marginal count of the original variable) by
using the margin.table function.

> margin.table(g.tab)
(117

Of course, with one variable, the functions sum (on the table) or length (on the orig-
inal vector) would also find the total count, and both have many fewer letters. Yet
all of these recently discussed table functions generalize to two variables. For instance,
let’s load the data set donner in the package alr3 (which you can download by typing
install.packages("alr3") into your R session).

> data(donner, package = "alr3")
> head (donner)

Age Outcome Sex Family.name Status
Breen_Edward_ 13 1 Male Breen Family
Breen_Margaret_Isabella 1 1 Female Breen Family
Breen_James_Frederick 5 1 Male Breen Family
Breen_John 14 1 Male Breen Family
Breen_Margaret_Bulger 40 1 Female Breen Family
Breen_Patrick 51 1 Male Breen Family

The donner dataset has five variables: Age, Outcome, Sex, Family.name, and Status.
Outcome refers to whether or not a particular person survived the westward migration, and
Status indicates whether the person was a family member, hired, or single. We can use
the table function to determine survival rates based on gender and family membership.

> # Coding Outcome as a factor ...
> # --> to make it easier to see survival status for particular people.
> donner$0utcome <- factor(donner$Outcome, levels = c(0, 1),
+ labels = c("died", "survived"))
> # Attaching the dataset ...
> # --> to make it easier to call the variables by name:
> attach(donner)
> # Printing attributes of the data:
> table(Outcome, Status) # what are the rates by membership?
Status
Outcome Family Hired Single
died 25 12 5

survived 43 6 0
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> table(Outcome, Sex) # what are the rates by gender?
Sex
Outcome Female Male
died 10 32
survived 25 24

The R functions prop.table and addmargins fully generalize from the one-way table to
summarize multiple categorical variables.

> # Saving certain tables as R objects:
> tab.stat <- table(Outcome, Status) # to make it easier to call
> tab.sex <- table(Outcome, Sex) # to make it easier to call
> # Printing attributes of those tables:
> addmargins (tab.stat) # marginal frequencies of tab.stat
Status
Outcome Family Hired Single Sum
died 25 12 5 42
survived 43 6 0 49
Sum 68 18 5 91
> addmargins(tab.sex) # marginal frequencies of tab.sex
Sex
Outcome Female Male Sum
died 10 32 42
survived 25 24 49
Sum 35 56 91
> prop.table(tab.stat) # as proportions?
Status
Outcome Family Hired Single
died 0.27472527 0.13186813 0.05494505

survived 0.47252747 0.06593407 0.00000000
> prop.table(tab.sex) # as proportions?
Sex
Outcome Female Male
died 0.1098901 0.3516484
survived 0.2747253 0.2637363

As before, the sum of all of the entries in the proportion table should sum to 1:

> sum( prop.table(tab.stat) ) # should be 1
[1] 1
> sum( prop.table(tab.sex) ) # should be 1
[1] 1

The function margin.table does not generalize in exactly the same manner as the
addmargins and prop.table functions, at least to this point in the example. Rather
than just having one argument, indicating the table in which to find the margins, the
margin.table function has two arguments: (1) the table in which to find the margins,
and (2) the particular margin to calculate. So, if one wants to calculate the “row margins,”
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he or she should plug a “1” into the margin argument, and if one wants to calculate the
“column margins,” he or she should plug a “2” into the margin argument.

> margin.table(tab.stat, margin = 1) # row margins

Outcome
died survived
42 49

> margin.table(tab.sex, margin = 1) # row margins

Outcome
died survived
42 49
> # These results should be the same ... are they?

. and ...

> margin.table(tab.stat, margin = 2) # column margins

Status
Family Hired Single
68 18 5
> margin.table(tab.sex, margin = 2) # column margins
Sex
Female Male

35 56

> # These results (of course) should not be the same.

Any precocious statistics student might (at this point) be wondering: “what about
the conditional distributions? How can we find the conditional distributions using these
commands?” My immediate reaction is: “bugger off,” as they are pretty easy to calculate
based on the addmargins function.

Note: Conditional distributions are found by dividing the joint counts by the
(appropriate) marginal sums. So the conditional distribution of being female
given that you died is 10/42: the number of female dead people (10) divided
by the total number of dead people (42).

But lazy people (and I am one) can find conditional distributions/probabilities by using
the margin argument (from before) in the prop.table function:

> prop.table(tab.stat, margin = 1) # conditional on rows
> prop.table(tab.sex, margin = 1) # conditional on rows
> prop.table(tab.stat, margin = 2) # conditional on columns
> prop.table(tab.sex, margin = 2) # conditional on columns

So the generalization of the margin.table and the prop.table is more similar than
originally thought. In your spare time, you can figure out whether the rows and/or
columns of these tables sum to 1.

You can also plot barplots using two-way tables (if you like). A few of your options
are as follows.
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par (mfrow = c(3, 1))
# 1) The columns of your data are on the x-axis:
barplot(tab.stat, ylim = c(0, 80),
xlab = "Status", ylab = "Counts",
main = "On-Top Barplots of the Donner Party",
legend.text = TRUE)
# 2) The rows of your data are on the x-axis:
barplot (t(tab.stat), ylim = c(0, 80),
xlab = "Outcome", ylab = "Counts",
main = "On-Top Barplots of the Donner Party",
legend.text = TRUE)
# 3) The bars are side-by-side rather than on top:
barplot(tab.stat, ylim = c(0, 80),
xlab = "Status", ylab = "Counts",
main "Side-by-Side Barplots of the Donner Party",
beside = TRUE, legend.text = TRUE)
par (mfrow = c(1, 1))

V++++VVEE+VYV++EVVY
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On-Top Barplots of the Donner Party
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I can never remember which part of the table goes on the z-axis and how the bars are
segmented, so I usually end up trying a few things before I settle on a barplot that I like.
Note that t is the “transpose” function and flips the rows and columns of a matrix (so
that we can easily change the organization of the plot).

4.2.2 Bayes Theorem

A final task for the statistically savvy would be to use probabilities in Bayes theorem.
Let’s say we know the probability of dying given that one is female, the probability of
surviving given that one is male, and the probability of being female. We can save the
appropriate probabilities using indices in R.
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> # We are conditioning on the columns (male/female):

> cond.sex <- prop.table(tab.sex, margin = 2)

> (p.d_fem <- cond.sex[1, 1]) # probability of dying given female

[1] 0.2857143

> (p.s_male <- cond.sex[2, 2]) # probability of surviving given male

[1] 0.4285714

> # We also need the probability of being female:

> marg.sex <- margin.table(prop.table(tab.sex), margin = 2)

> (p.fem <- marg.sex[1]) # probability of being female
Female

0.3846154

Bayes Theorem states:

Pr(A|B)Pr(B)
Pr(A|B)P(B) + Pr(A|-B)Pr(—-B)
Therefore, if we wanted to find the probability of being female given that one has died
(assuming that we cannot calculate this probability directly from a table), then we can

use the information saved above. Letting A be died, =A be survived, B be female, and
=B be male. Then

Pr(B|A) =

Pr(A|B) = 0.29
Pr(A|-B) = 1 — Pr(~A|-B) = 1 — 0.43 = 0.57
Pr(B) = 0.38
Pr(=B) =1—Pr(B) =1—0.38 = 0.62

Finally, we can plug those (saved) numbers into R to find the inverse probability.

> p.fem_d <- (p.d_fem*p.fem) / (p.d_fem*p.fem + (1-p.s_male)*(1-p.fem))
> p.fem_d

Female
0.2380952

Of course, if we have the entire set of data, we can check our calculation by using the
proportion table to find the conditional probability in the other direction.

> cond.surv <- prop.table(tab.sex, margin = 1)
> cond.surv([1, 1] # This should be the same as
[1] 0.2380952
> p.fem_d # this ...

Female
0.2380952

Methods based on Bayes’ theorem are infiltrating (err ... becoming a more important part
of) psychological data analysis, so you should be aware of the basic ideas even though
this book will not pursue those ideas further.

Now that we have covered the basic principles and functions for R coding, in the
next few chapters, I will introduce specialized functions that can assist in data analysis
and explain methods used in writing one’s own analysis routine.
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4.3 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Reading in External Data

read.table(file, header, sep, ...) # read in a data frame
file.choose() # find file - Mac/Windows
choose.files() # fine file = Windows

url(description) # open the internet connection

getwd () # where is R currently located?
setwd(dir) # change the location of R

# Writing External Data

write.table(x, file, quote, sep, # write a table to an
row.names, col.names) # external file.

dump(list, file) # put a bunch of objects in a txt file

source(file) # read in R commands/functions/objects
sink(file) # divert connection to an external file
sink() # close the external connection

print (object) # ... um ... print an object :)

# Listing Objects

1s(...) # what objects are in R?

rm(...) # remove objects from R's memory

# Categorical Variables
table(x, y) # contingency table (if you include y)

# or counts (if you don't include y)
prop.table(tab, margin) # joint or conditional proportions
margin.table(tab, margin) # sum across the "margin" of tab

addmargins (tab) # add marginal counts to a table

# Graphing

barplot (tab, # make a barplot with (maybe) a legend
beside,
legend.text, ... )

# Misc Functions
t(x) # flip the rows and columns of x
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Chapter 5

Samples and Distributions

Waitress: You can’t have egg, bacon, Spam and sausage with-
out the Spam.

Mrs. Bun: Why not?!

Waitress: Well, it wouldn’t be egg, bacon, Spam and sausage,
would it?

—DMonty Python’s Flying Circus - Episode 25

5.1 Sampling from User Defined Populations

A benefit to using R is the ability to play controller-of-the-universe (which, as it
turns out, is my main draw to this particular statistical software). You can create a
population and then take samples from the population. For instance, if you have a
Bernoulli distribution where

. b =1
f(xvp)_{l_p =0

then sampling from that distribution requires only need to setting up your population in
a vector, indicating the probability of 0 and 1 in another vector, and using the sample
function in R.

> set.seed(91010)

>p<- .8

> x <- c(0, 1)

> samp <- sample(x = x, size = 1000, replace = TRUE, prob = c(1 - p, p))

The first part of the above code chunk involved setting my seed (surprisingly, not a
euphemism). When R simulates random numbers, it does not simulate them in a fully
random fashion but “pseudo-randomly.” Numbers are simulated according to an algorithm
that takes a long time to complete so that the samples appear to be random. We frequently
want to repeat a particular simulation in exactly the same way. That is to say, even though
we want to “randomly sample,” we might want a future “random sample” to be identical to
a past “random sample.” For example, if statisticians want to reproduce earlier research
based on simulations, they often need to retrieve the exact same numbers. By setting

87
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my seed (using the set.seed function with a particular integer inside), I can retrieve
identical samples from my population.

> set.seed(888) # setting the seed

> sample(x = c(0, 1), size = 10, replace = TRUE)
[1I1 0001100001

> set.seed(888) # setting the same seed

> sample(x = c(0, 1), size = 10, replace = TRUE)

[tJ]o00O1100001

> set.seed(888) # setting the same seed

> sample(x = c(0, 1), size = 10, replace = TRUE)
[tJ]o00O1100001

> set.seed(999) # setting a different seed

> sample(x = c(0, 1), size = 10, replace = TRUE)
110101101001

>

> # Notice that the last sample is different from the first three.

And this “seed setting” does not just work with a simple sample (try saying that ten times
fast) of Os and 1s but with any random sample.

After setting the seed, I then picked a particular probability and let x be a vector
of 0 and 1. The probability that x = 1 is p, and the probability that x = 0is 1 —p. 1
finally ran the sample function, which takes four arguments:

1. x: A vector representing the population, or (at least) the unique values in the
population.

2. size: The size of the sample one should take from the population. Notice that,
in my example, x is a vector of length 2 and size is 1000 (much larger than 2).
Therefore, the x that I used does not represent the entire population but the unique
values in the population that units can take.

3. replace: A logical indicating whether one is sampling with or without replacement
from the population. Generally, if x is a vector of the entire population, then
replace = FALSE, but if x only indicates the unique values in the population then
replace = TRUE.

4. prob: A vector (of the same length as x) representing the probability of selecting
each value of x. If the user does not specify a vector for prob, then R assumes that
each value is equally likely to be selected.

In our case, we sampled 1000 Os and 1s (with replacement) using specified probabilities
for 0 and 1. Notice that because x = c(0, 1), the first element of prob is the probability
of selecting a 0 (or 1 — p), and the second element of prob is the probability of selecting
al (orp).

After sampling scores, we should examine our sample.

> head(samp, n = 20) # what does samp contain?
[1J]11101111101011110101
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> mean (samp) # what is the average value of samp?
[11 0.793
> var (samp) # what is the variability of samp?

[1] 0.1643153

Considering that the expected value of a Bernoulli random variable is p (with variance
p(1 —p)), does our sample result in a mean and variance close to expectation?

>p # the expected value (close to mean(samp)?)
[1] 0.8

> px(1 - p) # the variance (close to var(samp)?)

[1] 0.16

Of course, we do not need to only sample numbers. We can sample strings corre-
sponding to categories of a categorical variable.

> set.seed(9182) # so we can repeat

> x <- c("heads", "tails") # our possible outcomes

> # Determining the sample (as before):

> # --> Note that we did not specify "prob"

> # --> Both values are assumed equally likely.

> samp <- sample(x = x, size = 1000, replace = TRUE)

> head(samp, n = 20) # a few values in our sample.
[1] "tails" "tails" "heads" "heads" "heads" "heads" "tails"
[8] "heads" "tails" "tails" "tails" "heads" "tails" "tails"
[15] "heads" "tails" "tails" "tails" "tails" "heads"

We can also check to make sure that the probability of heads is what we would expect
based on the Bernoulli distribution.

> mean(samp == "heads") # the mean of our sample

[1] 0.499

> var(samp == "heads") # the variance of our sample

(1] 0.2502492

>p<-.5 # the probability of scoring heads
>p # the expected value

[1] 0.5

> p*(1 - p) # the population variance

[1]1 0.25

Note: samp == "heads" turns a character vector into TRUEs and FALSEs,

and mean() /var () turns the TRUESs into 1s and the FALSEs into Os. This
is a useful trick for how to find the probability (and variance) of being in a
particular category.

We (of course) are not forced to only sample 0s and 1s (or “heads” and “tails”). We
can construct x to be as long as we want. For instance, if x is a vector of 1 — 6, then
sampling values of x is like rolling dice.
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> set.seed(91353)

> x <- 1:6 # set the die!

> y1 <- sample(x, size = 1) # roll a die

> y2 <- sample(x, size = 1) + sample(x, size = 1) # add two dice rolls.
> y3 <- sum( sample(x, size = 2, replace = TRUE) ) # add two dice rolls.
> # Display the values for each:

>yl

[1]1 3

> y2

(11 7

> y3

[11 2

Or we can create a new distribution,

plot

> x <- -3:3 # the possible values

> pl <- c(1, 2.5, 4, 5, 4, 2.5, 1) # a weird assortment of numbers

>p <-pl / sum(pl) # turning numbers into probabilities
> sum(p) # making sure we have a distribution
(11 1

that distribution (using the plot function),

> plot(x = x, y = p,

+ xlab = "x", ylab = "probability",

+ main = "PMF of Strange Distribution"”,

+ type = "h", 1ty = c(2, 2), col = "blue", axes = FALSE)
> axis(1, col = "grey")

> axis(2, col = "grey", las = 1)
> points(x = x, y = p,
+ pch = 20, cex = 2, col = "darkblue")

PMF of Strange Distribution
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sample 1000 scores from the distribution,

> set.seed(974)
> samp2 <- sample(x, size = 1000, replace = TRUE, prob = p)

> head(samp2, n = 100) # what does the sample look like?
(1] o 0-2-1-2 2 2 1 0-1-2-2 1 0 0-1 0-2
[19 1 -2 2-2 0-2 0 1 2 3 1 0-2-3 0 0 1 O
377 2-1+ t-1-1 1-1 0 2 2 1 1 0 3 1 0 1 1
[65] 1 1 1 0 1 2 1 2 2-1 1 -1 0-2 0 0 3
(3 0-1 1 1 2 3 0-2 0 0-2-1 1 1 1-1-2-2
[91] -2 1 0 3 2-3 1 2 0 1

and form a barplot of the sample.

# Finding the counts and dividing by the counts by the length
# to obtain proportions. What is another way of doing this?
# Hint: It was discussed in a previous chapter.

barplot( table(samp2)/length(samp2) )

vV V. Vv VvV

0.20
|

0.10
|

0.00

The barplot should look pretty similar to the original PMF plot.

In the above example, only two of the functions have I yet to describe: plot and
points. Moreover, most of the arguments that I used in plot can be applied to any of the
plot-type functions (such as hist or barplot). Not surprisingly, x and y are the values on
the z-axis and y-axis, respectively. As we had discussed in a previous chapter, x1ab and
ylab are the z-axis and y-axis labels, and main is the title of the plot. The argument type
is a character (surrounded by quotes) indicating the type of plot: "p" indicates “points”,
"1" indicates “lines”, "b" indicates “both points and lines”, "h" indicates “histogram like
lines”, and "n" results in an empty plot. There are other possible values for type, but
the arguments just listed are the only ones that I ever use. Therefore, by including the
argument type = "h", R displays vertical lines from 0 to the (z, y) value on the plot. The
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argument 1ty represents the type of line (1 corresponds to a solid line, 2 corresponds to
a dashed line, etc.), col is (obviously) the color of the plot, pch is the point type (either
a number without quotes or a character in quotes). You can see how to call pch in the
points help file.

> 7points

Finally, cex is a number indicating the size of the points, relative to the default of cex = 1.
Note that points is an “add-to-plot” function, the annoyance of which I discuss in a note
near the end of this chapter. The other arguments/commands I will let you to explore on
your own.

5.2 Sampling from Built-In Populations
5.2.1 Attributes of All Distributions

Fortunately, in case that you don’t know how to magically create a population
(which is possible unless you have a dragon with hallucinogenic capabilities), R contains
built-in populations. Every distribution in R includes a set of four functions. Given a
distribution with the name of “awesome” (as the one common fact to all distributions is
that they are awesome), those functions are as follows.

dawesome (x, parameters)
pawesome (q, parameters, lower.tail)
gawesome (p, parameters, lower.tail)
rawesome (n, parameters)

The parameters “argument” refers to a sequence of parameters (with corresponding
names) separated by commas. For all distributions, the function (1) dawesome calculates
the density of the distribution at x. For discrete distributions, the “density” at x refers to
the probability of scoring x on that distribution with those parameters. The function (2)
rawesome takes a random sample (of size n) from the “awesome” distribution. The result
of rawesome will be a vector of size n (similar to using the sample function with a vector
of “all possible values” and prob corresponding to the result of dawesome). The functions
(3) pawesome and (4) qawesome are a little bit more complicated. If you know the term
“cumulative density function” (CDF), pawesome is the value of the CDF for a particular
score, and qawesome is the inverse of pawesome. When lower.tail = TRUE (the default),
pawesome finds the probability of having a score “at or below” q, and qawesome finds the
value such that p is the probability of being “at or below” it. When lower.tail = FALSE,
pawesome finds the probability of being “above” p, and qawesome finds the value such that
p is the probability of being “above” it. If all of this is confusing, pawesome and qawesome
are even more annoying when working with discrete distributions.

Warning: When working with discrete random variables, pawesome with
lower.tail = FALSE finds the probability of scoring above q. What this
means is that if you are trying to find the probability of throwing at least 6
free-throws (out of 10 total free throws), then the q that will give you the
correct probability is not 6 ... but 5!
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Because the probability of being above a particular score is 1 minus the probability of
being at or below that score, pawesome with lower.tail = FALSE is exactly equal to 1
minus the same pawesome but with lower.tail = TRUE.

Now that I introduced the generic “awesome” distribution, I probably should intro-
duce actual distributions, all of which have d, p, q, and r functions (the names of the
parameters are in parentheses).

e norm(mean, sd): A normal distribution with a mean of mean and a standard devi-
ation of sd.

e binom(size, prob): A binomial distribution after sampling size Bernoulli random
variables, all of which have probability prob.

e unif(min, max): A (continuous) uniform distribution between min and max.

e cauchy(location, scale): A Cauchy distribution with a location and scale pa-
rameter. You don’t need to know what each of these are, but location is like a
mean, and scale is like a standard deviation. A Cauchy distribution (oddly) does
not have a mean nor a standard deviation.

e t(df): A t-distribution with df degrees of freedom.

e F(df1, df2): An F-distribution with numerator degrees of freedom of df1 and
denominator degrees of freedom of df2.

e chisq(df): A x? distribution with df degrees of freedom.

Note that all of the common distributions (including those described above) can be found
with the following R-yelp:

> ?Distributions

5.2.2 Examples of Distributions in Action

The Binomial Distribution

Any set of the most important distributions include the binomial distribution (as
an example of a discrete distribution) and the normal distribution (as an example of a
continuous distribution). Pretend that we have a random variable (X) that is Bernoulli
distributed with some probability p of observing a 1. Then if ¥ = X7 4+ --- + X, is
the sum of independent Bernoulli random variables, Y will have a Binomial distribution
with probability p and sample size n. For instance, if a basketball player shoots free
throws with p = .60, then (assuming that free throws are independent, which is probably
not true) the number of successful free throws after a particular number of free throw
attempts will be binomially distributed. For example, to find the probability of making
ezactly 6 out of 10 free throws, we can use the dbinom function.

> # The probability of making EXACTLY 6 out of 10 free throws:
> dbinom(x = 6, size = 10, prob = .60)
[1] 0.2508227



94 Chapter 5. Samples and Distributions

Notice how even though the probability of making each free throw is .60, there is a less-
than 50% chance of throwing exactly 6 out of 10 free throws. We could also find the
probability of making ezactly 6 out of 10 free throws using the binomial distribution
formula

fy; nyp) = (Z)pyu )

where (Z) is the number of ways to choose y out of n things. For example, (160) is the
number of ways to shoot 6 out of 10 free throws. You can either: make the first, miss
the second, make the third, make the fourth, miss the fifth, make the sixth, make the
seventh, miss the eighth, miss the ninth, and make the tenth ... or any other sequence of
makes,/misses such that the number of makes is 6. From basic discrete math, one finds
(160) = &(1107016)! resulting sequences of making 6 out of 10 things. To calculate (Z), we
could try using the factorial function .

> # Calculating the binom coefficient using factorials:
> ten.choose.six <- factorial(10)/(factorial(6)*factorial(10 - 6))
> ten.choose.six

[1] 210
but factorials tend to be rather large numbers, and R will blow up at a certain point.

> # KaBoom!
> factorial(1000)/(factorial (2)*factorial (1000 - 2))
[1] NaN

R actually includes a function to calculate (7)) without having to worry about the factorials.
> ten.choose.six2 <- choose(n = 10, k = 6)
> ten.choose.six2
[1] 210

The choose function will not blow up as easily with extreme values due to only indirectly
evaluating the factorials.

> # Not really KaBoom!
> choose(n = 1000, k = 2)
[1] 499500

Using the choose function, we can also find the probability of making ezxactly 6 out of 10
free throws.

> choose(10, 6) * .6°6 * (1 - .6)°(10 - 6) # the formula

[1] 0.2508227

> dbinom(x = 6, size = 10, prob = .6) # the dbinom function
[1] 0.2508227

If we need the probability of making at most 3 out of 10 free throws, we can either
sum a bunch of probabilities (using dbinom),
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> # Sum a bunch of individual probabilities:
> { dbinom(x = 0, size = 10, prob = .60) +
+ dbinom(x , size = 10, prob = .60) +
+ dbinom(x , Size = 10, prob = .60) +
+ dbinom(x , Size = 10, prob .60) }
[1] 0.05476188

non
W N = O

find a vector of probabilities and sum that vector,

> # The d/p/q/r functions are vectorized! Cool!
> sum( dbinom(x = 0:3, size = 10, prob = .60) )
[1] 0.05476188

or use the pbinom function.

> pbinom(q = 3, size = 10, prob = .60)
[1] 0.05476188

If we want to find the probability of making at least 6 out of 10 free throws, we can also
sum up individual probabilities,

> # Sum a bunch of individual probabilities:

> { dbinom(x = 6, size = 10, prob = .60) +
+ dbinom(x = 7, size = 10, prob = .60) +
+ dbinom(x = 8, size = 10, prob = .60) +
+ dbinom(x = 9, size = 10, prob = .60) +
+ dbinom(x = 10, size = 10, prob = .60) }

[1] 0.6331033
or find a vector or probabilities and sum that vector,

> # The d/p/q/r functions are STILL vectorized
> sum( dbinom(x = 6:10, size = 10, prob = .60) )
[1] 0.6331033

but if you use the pbinom function with lower.tail = FALSE (to find the probability of
shooting at least a particular number of free throws), R does not behave.

> # NOT the probability of shooting at least 6 free throws:
> pbinom(q = 6, size = 10, prob = .60, lower.tail = FALSE)
[1] 0.3822806

What gives!??! The pbinom function with lower.tail = FALSE resulted in a probability
much lower than summing up the individual probabilities. Unfortunately, the previous
code chunk corresponds to the probability of shooting more than 6 free throws, which
is really the probability of shooting at least 7 free throws. How annoying! To find the
probability of shooting at least 6 free throws, we must subtract 1 in the q argument of
pbinom.
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> # The probability of shooting AT LEAST 6 free throws:

> pbinom(q = 5, #q=6-1=5. 0y!

+ size = 10, prob = .60, lower.tail = FALSE)
[1] 0.6331033

>

> # And it gives us the correct result.

We can in turn use gbinom to find the score that corresponds to particular quantiles
of the distribution. In fact, you might be wondering what q stands for in gbinom: quantile.
Aren’t those R people very creative? So, if we want to find the 90th percentile (or .9
quantile) of the binomial distribution, we should use the gbinom function.

> gbinom(p = .90, size = 10, prob = .60)
[1]1 8

What exactly does the R output mean with respect to the binomial distribution? If
we were to randomly sample an infinite number of times from this particular binomial
distribution, then 90% of those samples would have 8 or fewer free throws made. To find
the score corresponding to the top 10%, use the following code.

> gbinom(p = .10, size = 10, prob = .60, lower.tail = FALSE)
[1] 8

Of course, using lower.tail = FALSE for the gbinom function sometimes results in odd
things happening. To find the score such that 10% of scores are at or above it, I recommend
subtracting the percentage from 1 and using lower.tail = TRUE.

> # The score corresponding to top 107
> gbinom(p = 1 - .10, size = 10, prob = .60) # safer to type this!
(1] 8

One might also wonder how to draw samples from the binomial distribution. For-
tunately, there is a function (rbinom) that can sample lots of observations.

> set.seed(999)

> x <- rbinom(n = 1000, size = 10, prob = .60)
> head(x)

[1] 66 8458

In our example, x is a vector of length 1000 with every element between 0 and 10. We
can find the mean and variance of x.

> mean(x)
[1] 6.021
> var(x)
[1] 2.336896

We should check the simulated mean and variance against the theoretical values.
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>n <- 10

>p<- .6

> n*p # theoretical mean of binomial

(1] 6

> n*p*(1 - p) # theoretical variance of binomial
[1] 2.4

>

> # Are they close to the previous code chunk?

Alternatively, we can pretend that x is a population of N = 1000 scores and sample
from x using the sample function.

> set.seed(818)
> y <- sample(x, size = 10) # sampling from a sample?

In the above code chunk, I created a population (x) that is N = 1000 scores from a
binomial distribution, and I sampled from that population (using the sample function)
without replacement. It’s as though our actual population is sort-of binomial and limited
in size.

The Normal Distribution

The most important distribution in probability and statistics is (probably) the nor-
mal distribution. Because the normal distribution is continuous, dnorm does not indicate
the probability of having a particular score but, rather, dnorm denotes the height of the
density at a particular point. Therefore, with an exception for plotting the shape of a
normal distribution (which I do quite a bit, as the normal distribution is quite pretty),
you will rarely need to use the dnorm function. If you would like to plot a standard
normal distribution, use the following commands (where 1wd is the line width, similar to
cex being the point size).

x <- seq(-4, 4, by = .01)

y <- dnorm(x, mean = 0, sd = 1)

plot(x = x, y =y,
xlab = "Score", ylab = "Density",
main = "Standard Normal Distribution",
type = "1", 1lwd = 2, axes = FALSE)

axis(1, col = "grey")

axis(2, col = "grey", las = 1)

VV+ + + Vv VYV
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Standard Normal Distribution
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Unlike discrete variables, the probability of scoring at or below any point on a
continuous distribution is 1 minus the probability of scoring at or above it (because the
probability of having a score of exactly anything is identically 0: Go wacky knowledge from
calculus!). So you do not need to worry about slightly correcting scores when finding the
probability in the upper tail. If a variable is standard normally distributed, the probability
of scoring below particular standard deviations is relatively straightforward (because the
quantile of a standard normal distribution corresponds to a standard deviation).

sd = 1) # below three sd (below the mean)

I
>

> pnorm(q = -3, mean
[1] 0.001349898

> pnorm(q = -2, mean = 0, sd = 1) # below two sd (below the mean)
[1] 0.02275013

> pnorm(q = -1, mean = 0, sd = 1) # below one sd (below the mean)
[1] 0.1586553

> pnorm(q = 0, mean = 0, sd = 1) # below zero sd

[1] 0.5

> pnorm(q = 1, mean = 0, sd = 1) # below one sd (above the mean)
[1] 0.8413447

> pnorm(q = 2, mean = 0, sd = 1) # below two sd (above the mean)
[1] 0.9772499

> pnorm(q = 3, mean = 0, sd = 1) # below three sd (above the mean)

[1] 0.9986501

And the probability of scoring between particular standard deviations only involves sub-
tracting areas.

> # Scoring within three standard deviations of the mean:
> pnorm(q = 3, mean = 0, sd = 1) - pnorm(q = -3, mean = 0, sd = 1)
[1] 0.9973002
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> # Scoring within two standard deviations of the mean:

> pnorm(q = 2,

[1] 0.9544997

mean = 0, sd = 1) - pnorm(q = -2, mean = 0, sd

> # Scoring within one standard deviation of the mean:

> pnorm(q = 1,

[1] 0.6826895

mean = 0, sd = 1) - pnorm(q = -1, mean = 0, sd

1)

1)

One of the beauties of R is being able to easily find the probability of scoring be-
low/between/beyond points on a normal distribution regardless of the mean and standard
deviation. For instance, assume that a variable (X)) is normally distributed with a mean

of 60 and a standard deviation of 5.

In introduction to statistics classes, finding the

probability of scoring below a 48 requires calculating z-scores and then looking up the
probability in the back of a book.

> # First calculate z-score:
>z <- (48 - 60)/5

> # Then look

> pnorm(q = z,

up probability in the back of the book:
mean = 0, sd = 1) # Still easier in R

[1] 0.008197536

# Do we use

plot(x = x,
xlab =
main =
type =

axis(1, col

axis(2, col
polygon(x =

y
col

VVVYV++VVYVY ++ +VVVYVYVVYV

x <- seq(-4,
y <- dnorm(x, mean = 0, sd = 1)

the smaller portion? Or larger portion?

# My head hurts, I probably should draw a picture, and
# color in the area.

4, by = .01)

y=5

"Score", ylab = "Density",

"Standard Normal Distribution",

"n", axes = FALSE)

"grey")

= "grey", las = 1)

c(min(x), x[x < z], =z),

c(ylwhich.min(x)], yl[x < z], yl[which.min(x)]),
= "red")

lines(x = x, y =y, 1lwd = 2)

# OK, so the red is the smaller portion, so I must look

# up smaller portion in the z-table in the back of the book.
# I'm confused!
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Standard Normal Distribution
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In R, finding the area under a normal distribution (regardless of the mean and standard
deviation) can be done on one line.

> # Area below 48 on the appropriate normal distribution:
> pnorm(q = 48, mean = 60, sd = 5)
[1] 0.008197536

>
> # Gives exactly the same probability. Cool!

Moreover, to find the probability of having a score between 48 and 65, you just have to
subtract without worrying about first converting to z-scores.

> pnorm(q = 65, mean = 60, sd = 5) - pnorm(q = 48, mean = 60, sd = 5)
[1] 0.8331472

You don’t need to bother about whether one scores is below the mean and the other score
is above the mean. You must only know that (making sure not to change lower.tail
to FALSE), the area returned by pnorm is in the “below-the-score” direction. Therefore,
finding the probability of having a score between two values requires only typing in the
following.

pnorm(q = largest score, ... ) - pnorm(q = smallest score,

Easy peasy! And to find the probability of having an score greater than 125 for a variable
that is (sort of) normally distributed with a mean of 100 and a standard deviation of 15,
you can use the pnorm function.

> # Use lower.tail = FALSE to get the upper part of the dist:
> pnorm(q = 125, mean = 100, sd = 15, lower.tail = FALSE)

[1] 0.04779035
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R is much easier than having to calculate things, color in areas, and use the back of a
book.

You can also easily find particular cutoff scores that bracket certain areas on a
normal distribution. For instance, if a test is normally distributed with a mean of 70 and
a standard deviation of 8, then the cutoff corresponding to the top 10% of students is the
following.

> # One way is to use the upper portion:

> gqnorm(p = .10, mean = 70, sd = 8, lower.tail = FALSE)
[1] 80.25241

> # The other way is to use the lower portion:

> gqnorm(p = 1 - .10, mean = 70, sd = 8)

[1] 80.25241

>

> # Approximately a score of 80! Nice!

Alternatively, we can use the gnorm function to find the scores bracketing the middle 50%
of students on a test.

> p <- .50 # proportion we want to bracket.

> qnorm(p = (1 + p)/2, mean = 70, sd = 8) # score for the top 25},
[1] 75.39592

> gqnorm(p = (1 - p)/2, mean = 70, sd = 8) # score for the bottom 25},
[1] 64.60408

The code from the the above code chunk can be extended to bracket any percentage of a
normal distribution. For example, to bracket the middle 95% (->):

> p <- .95 # proportion to bracket.
> gqnorm(p = (1 + p)/2, mean = 70, sd
[1] 85.67971

> gqnorm(p = (1 - p)/2, mean = 70, sd = 8)
[1] 54.32029

8)

Checking Distribution Normality

Given a particular sample, one might need to determine whether that sample comes from
a normal population. An easy method of determining how similar a population is to being
normal requires finding the percentage of scores between 1, 2, and 3 standard deviations
of a sample. For example, an exponential distribution is heavily right skewed.

x <- seq(0, 4, by = .01)

y <- dexp(x, rate = 2)

plot(x = x, y =y,
xlab = "Score", ylab = "Density",
main = "Exponential Distribution"”,
type = "1", 1lwd = 2, axes = FALSE)

axis(1, col = "grey")

axis(2, col = "grey", las = 1)

VvV VvV + + + VvV VvV
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Exponential Distribution
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If you had a sample from an exponential distribution, you could empirically test whether
the sample was close to being normally distributed.

> set.seed(678)
> samp3 <- rexp(n = 1000, rate = 2) # a distribution you don't know.

The process is as follows. First, determine the mean and standard deviation of the sample.

> m.s3 <- mean(samp3) # the mean of our sample
> sd.s3 <- sd(samp3) # the sd of our sample (with N - 1 in denom)

Second, put TRUEs and FALSEs in the correct places by determining the sample values
above or below 1, 2, and 3 standard deviations from the mean.

> samp3.1sd <- (samp3 >= m.s3 - 1*sd.s3) & (samp3 <= m.s3 + 1*sd.s3)
> samp3.2sd <- (samp3 >= m.s3 - 2*sd.s3) & (samp3 <= m.s3 + 2%sd.s3)
> samp3.3sd <- (samp3 >= m.s3 - 3*sd.s3) & (samp3 <= m.s3 + 3*sd.s3)

Finally, find the proportion of sample values between 1, 2, and 3 standard deviations from
the mean.

> sum(samp3.1sd)/length (samp3)
[1] 0.867
> sum(samp3.2sd)/length (samp3)
[1] 0.951
> sum(samp3.3sd)/length (samp3)
[1] 0.982

Because those proportions dramatically differ from the 68.3%, 95.4%, and 99.7% between
standard deviations on a normal distribution, our sample is not close to being normally
distributed.

If you had a sample from a normal distribution, then the proportion of that sample
between 1, 2, and 3 standard deviations of the mean should be close to expectation.
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> set.seed(1234)

> samp4 <- rnorm(10000, mean = 0, sd = 1)

> # First, determining the mean and sd of our sample:

> m.s4 <- mean(samp4) # the mean of our sample

> sd.s4 <- sd(samp4) # the sd of our sample

> # Second, put TRUEs/FALSEs into the correct place:

> samp4.1sd <- (samp4 >= m.s4 - 1*sd.s4) & (samp4 <= m.s4 + 1*sd.s4)
> samp4.2sd <- (samp4 >= m.s4 - 2*sd.s4) & (samp4 <= m.s4 + 2%sd.s4)
> samp4.3sd <- (samp4 >= m.s4 - 3*sd.s4) & (samp4 <= m.s4 + 3%*sd.s4)
> # Third, find the proportion of TRUEs:

> sum(samp4.1sd)/length(samp4) # between -1 and 1 sd

[1] 0.6825

> sum(samp4.2sd)/length(samp4) # between -2 and 2 sd

[1] 0.9554

> sum(samp4.3sd)/length(samp4) # between -3 and 3 sd

[1] 0.9971

An alternative method of determining whether a sample arises from a normal pop-
ulation involves constructing quantile-quantile plots. Luckily, constructing quantile plots
is rather easy in R. Comparing a particular sample to quantiles of the normal distribution
can be done effectively with two functions.

> qqnorm(samp4, pch = 20) # first plotting
> qqline (samp4) # then drawing a line on top of the plot

Normal Q-Q Plot
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Important: Several plotting functions, including qqline, points, lines plot
on top of an existing plot. If you try to use those functions without the
graphing device being open, they will give you an error, and if you try to use
those functions after closing the graphing device, they will give you an error.
Therefore, make sure to call plot or qgnorm first, and then without closing
the plot, call the subsequent functions points, lines, or qqline.
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Because the sample samp4 was generated from normal distribution, the points lie
pretty much on top of the g-q line. However, samp3 was sampled from an exponential
distribution (with positive skew), so the corresponding q-q points lie above the g-q line.

> qqnorm(samp3, pch = 20)
> qgqline (samp3)

Normal Q-Q Plot
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Theoretical Quantiles

An interesting question is how skew and kurtosis affect the shape of normal quantile-
quantile plots. I do not have time, energy, nor space to go over that at the moment,
but you can experiment on your own with some flesh-and-blood friends and the rather
intrusive (but knowledgable) friend: google.
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5.3 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Sampling

set.seed(seed) # fix the "random" numbers
sample(x, size, replace, prob) # sample from a population
plot(x, y, ... ) # plot y against x
points(x, y, ... ) # add points to a plot

# Built-in Populations #

# Generic functions (applying to all)

dawesome (x, params) # the density (or probability)
pawesome(q, params, lower.tail) # prob at or below (or above)
qawesome (p, params, lower.tail) # value associated with pawesome
rawesome(n, params) # random sample from distribution

# Specific distributions

norm(mean, sd) # normal distribution
binom(size, prob) # binomial distribution
unif (min, max) # uniform distribution
cauchy(location scale) # Cauchy distribution
t(df) # t distribution

F(df1, df2) # F distribution
chisq(df) # chi-square distribution

# Populations and probabilities

factorial (x) #oxx(x - D)*(x - 2)*...%(1)
choose(n, k) # how many ways to pick k out of n things?
qqnorm(y) # plot a quantile-quantile plot

qqline(y) # draw a line ON TOP of an existing plot
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Chapter 6

Control Flow and
Simulation

Man: Um, is this the right room for an argument?
Mr. Vibrating: I've told you once.

Man: No you haven't.

Mr. Vibrating: Yes I have.

Man: When?

Mr. Vibrating: Just now.

Man: No you didn’t.

Mr. Vibrating: I did.

Man: Didn't.

Mr. Vibrating: Did.

Man: Didn’t.

Mr. Vibrating: I’'m telling you I did.

Man: You did not.

Mr. Vibrating: Oh I'm sorry, just one moment. Is this a five
manute argument or the full half hour?

—DMonty Python’s Flying Circus - Episode 29

6.1 Basic Simulation
6.1.1 for Loops in R

One of the reasons that R is better (yes, better) than other statistical software is
due to its flexibility. Anybody can write code, add code, modify code, destroy code, and
maybe even hug code (when lonely due to hanging around too much non-code). And not
surprisingly, the aspect of R most emblematic of its statistical-software-that-could mantra
is its ability to act like a programming language. In fact, R uses the S programming
language, written by John Chambers, and thus, has very similar (though probability
more intuitive) control-flow methods to C.

To take advantage of the full power of the S language, you need to know how to
use (at least) the following commands: for, if, else, and while, although function,
repeat, break, and next are also useful. The function function is so useful that it
will be covered in a separate chapter, but the basis for most simulations (even those in

107
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functions) is via for loops’. The basic format of a for loop is the following.

for (name in set.of.values) {
commands

} # END for name LOOP

In the above “pseudo-code”, name is any valid name of an R object. Usually we reserve
simple names, such as i, j, or k for name, but any valid R name is legal. set.of.values is
either a vector or a list. If set.of .values is a vector, then name will take the next value of
the vector during the next iteration of the for loop. If set.of.values is a list, then name
will take the next sub-object of the list during the next iteration. The set.of.values part
of the for loop is usually a vector of integers (such as 1:100), although any vector or list
would work. The final part of the for loop is commands, which are any set of commands,
although they usually contain the object name somewhere. The set of commands tends
to be enclosed in curly braces.

Important: To loop over a set of commands, you usually need to enclose
those commands in curly braces (i.e., {, }). Otherwise, R will only loop over
the first line of your set of commands, and the for loop will probably not
do what you want. Moreover, as for loops are more complex than simple
R statements, you really should be writing your code in a separate file and
entering the code into R once you are confident enough in its error free-ness.

A final, useful trick when constructing your own for loops is called the NULL vector:
a vector of no length with nothing in it.

> vec <- NULL # a NULL vector!
> length(vec) # see - it has no length. Weird!?

(11 o

R will stretch the NULL vector to as long as needed. For instance, if you try to put an
element in the fifth place of the NULL vector, R will increase the size of the NULL vector to
5, put the element in the 5th place, and fill the rest of the vector with NA’s.

> vec[5] <- 1 # putting an element in the 5th place
> vec

[1] NA NA NA NA 1

The NULL vector is useful because we can create an object (the NULL vector) to store
values of a simulation, but we do not need to know at the outset of the simulation how
many values we will need to store.

To illustrate the beauty of for loops, the following code chunk contains a brief and
typical set of commands.

1Unlike previous chapters, several code chunks in this and future chapters use an empty continuation
prompt rather than the default + prompt. I change the continuation prompt for long code chunks so that
you can easily copy and paste the code into your own R session.
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int <- NULL # a NULL vector!
for(i in 1:10){ # setting the for loop!

>
>
+
+ int[i] <- i  # our commands
+
+

} # ending the for loop!

In the above code chunk, I first created a NULL vector to store values. I then set a for
loop: (a) i is our name, and during each iteration of the for loop, the object i will take
the next value of the set.of.values vector; and (b) 1:10 (a vector of 1 — 10) is our the
set.of .values vector. So, during the first iteration of the for loop, i takes the value 1;
during the second iteration of the for loop, i takes the value 2, ... etc. Why? Because
1 is the first value in our set.of.values vector, 2 is the second, ... etc. Once I set the
parameters of the for loop, I put a simple command inside curly braces: at each cycle of
the for loop, R puts the object i into the ith place of the vector int. What in the world
does this mean? Well, during the first iteration, the object i is 1, so the value 1 goes into
the 1st place of int; during the second iteration, the object i is 2, so the value 2 goes
into the 2nd place of int; etc. After putting 1 in the 1st place, 2 in the 2nd place, etc.,
the contents of int should be pretty obvious.

> int
[1] 1 2 3 4 5 6 7 8 9 10

Just to demonstrate that a for loop can take any vector as its set.of .values, try
to figure out what the following code is doing on your own.

> # A set of bizarre code:

> wha <- matrix(NA, nrow = 10, ncol = 4)
>vl <-c(1, 3, 4, 6, 7, 10)

> v2 <= c("a", "b", "d", "c")

> for(i in vi){

+ for(j in v2){
+

+

+

+

>

>

whal[i, which(v2 == j)] <- j

}} # END for LOOPS
# Looking at our for loop results.
wha

[,11 [,2]1 [,3] [,4]
[1,] "a" "b" "g" "c"
[2,] NA NA NA NA
[3,] "a" "b" "d" "c"
[4,] llall llbll Ildll IICII
[5,] NA NA NA NA
[6,] "a" "b" "4" "c"
[7,] "a" "b" "4" "c"
[8,] NA NA NA NA
[9,] NA NA NA NA
[10,] l|all llbll Ildl! llcll
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Note: As is evident from the above code chunk, for loops can be nested
within other for loops. If a for loop set is nested, the iterations cycle from
the inside out, completing the j cycle before moving to the second element of
the i cycle.

6.1.2 Constructing Sampling Distributions

Many basic simulations in statistics have a similar theme: calculate a sampling
distribution of some statistic and determine its distribution. The outline of this procedure
will not vary ... very much.

reps <- 10000 # large number of samples to take
N <- 10 # sample size for EACH replication
vec <- NULL # vector to store statistics
for(i in l:reps) { # repeating the samples "reps" times
samp <— rdist(N, ... ) # a sample from the dist
vec[i] <- stat (samp) # calculating the statistic

} # END for i LOOP

You must always specify: (1) the number of samples to take (the closer to infinite, the
better, within time constraints; I usually take around 10,000 samples, which is about as
close to infinity as I can count); (2) the size of each sample (here N = 10, although
you will have to change N depending on the question); and (3) an empty vector to hold
statistics. Then you will set your for loop (where i iterates over the replications), sample
from a particular distribution, calculate a statistic, and put that statistic in the ith place
of the empty vector. Once you repeat the for loop many times, you will then examine
the distribution of statistics and determine whether the central limit theorem was made
up by delusional probabilists without computing power.

A simple example of a sampling distribution is determining the mean/variance/shape
of a distribution of sample means when N = 10 while sampling from a standard normal
distribution.

set.seed(9102)
reps <- 10000

# so things can be replicated

#
N <- 10 # sample size for EACH replication

#

#

large-ish number of samples

xbar <- NULL vector to store sample means

for(i in 1:reps){ repeating "reps" times

samp.i <- rnorm(n = N, mean = 0, sd = 1)

# Calculating the sample mean and putting it in the ith place:

>

>

>

>

>

+

+ # Sampling from a standard normal distribution:
+

+

+

+ xbar[i] <- mean(samp.i)
+

+

} # END for i LOOP
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After simulating a sampling distribution, we can compare the “empirical” mean/variance
to the “theoretical” mean/variance of this particular sampling distribution.

> mean(xbar) # SIMULATED mean of the sampling dist

[1] 0.0006293143

> var(xbar)  # SIMULATED variance of the sampling dist
[1] 0.09927399

> sd(xbar) # SIMULATED standard deviation

[1] 0.3150777

> HHHHHH R AR AR R R R R R AR AR AR R R R

>

>0 # THEORETICAL mean of the sampling dist

(11 o

> 1/N # THEORETICAL variance of the sampling dist
[1] 0.1

> 1/sqrt(N)  # THEORETICAL standard deviation
[1] 0.3162278

And we can construct a histogram to determine the similarity of our empirical sample
and a normal distribution.

> x <- seq(-4, 4, by = .01)

> y <- dnorm(x, mean = 0, sd = 1/sqrt(N))

> hist(xbar, freq = FALSE,

+ xlab = expression(bar(x)), ylab = "Density",

+ main = "Histogram of Sample Means with Normal Overlay",
+ ylim = c(0, 1.4))

>

lines(x = x, y =y, lwd = 2, col = "red")

Histogram of Sample Means with Normal Overlay
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And we can draw a qqnorm plot to determine the similarity of our sampling distribution
with a normal distribution.

> qgnorm(xbar) # the ggqnorm plot
> gqline(xbar) # the qqnorm line in the plot

Normal Q-Q Plot
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Theoretical Quantiles

The only challenging part of the above code chunks is the function expression inside
histogram. Unfortunately, the expression function is rather tricky, but for simple sym-
bols (as in bar(x) or mu), the plotted output of expression will be as expected. In
any case, the qgqnorm plot looks pretty much on a line, so I would say that our sampling
distribution is close to being normally distributed.

Not surprisingly, the central limit theorem eventually works for non-normally dis-
tributed variables. And we can also examine sampling distributions in these cases. An
example of a heavily skewed distribution is the x? distribution with 2 degrees of freedom.

set.seed(9110) # so things can be replicated
reps <- 10000 # large-ish number of samples

N <-5 # sample size for EACH replication
xbar <- NULL # vector to store sample means
for(i in 1:reps){ # repeating "reps" times

samp.i <- rchisq(n = N, df = 2)

# Calculating the sample mean and putting it in the ith place:

>
>
>
>
>
+
+ # Sampling from a chi-square distribution:
+
+
+
+ xbar[i] <- mean(samp.i)

+

+

} # END for i LOOP

Note: Seriously, these simulations should not be very difficult. All you have
to do is change N to your sample size, change (perhaps) the distribution that
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you are sampling from, and change (perhaps) the sample statistic. Everything
else is ezxactly the same. I just copied and pasted the earlier code chunk.

And we can show that our sampling distribution is not normally distributed by looking
at histograms and qgplots (as before). Note that figuring out the theoretical mean and
variance of our sampling distribution requires knowing the mean and variance of the
population, and we can estimate ;i and o2 by taking a very large sample from the original
population?.

popn <- rchisq(n = 100000, df = 2)
X <- seq(0, 10, by = .01)
N <- dnorm(x, mean = mean(popn), sd = sd(popn)/sqrt(N))
hist(xbar, freq = FALSE,

xlab = expression(bar(x)), ylab = "Density",

main = "Histogram of Sample Means with Normal Overlay")
lines(x = x, y =y, lwd = 2, col = "red")

vV + + VvV Vv VvV

Histogram of Sample Means with Normal Overlay
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For this particular distribution with this sample size, the normal distribution does not
appear to work very well. We can more easily see the problems in our approximation by
using a qgnorm plot.

> qqnorm(xbar) # curvy and ugly!
> qqline(xbar) # positively skewed. see?

2The theoretical mean of a x? random variable is its df, and the theoretical variances is 2 x df .
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Normal Q-Q Plot
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Theoretical Quantiles

Sampling distributions do not (of course) just apply to the sample mean. You might
also want to calculate a random statistic with a particular sample size, determine if that
statistic is normally distributed-ish, and then compare the distribution of that statistic
to a theoretical non-normal distribution. For example, if X is sampled from a standard
normal distribution and N = 4, then

X
TS VR

will be t-distributed with df = 3. First, simulating a sampling distribution.

set.seed(91011)
reps <- 50000

# so things can be replicated
# large-ish number of samples
N <- 4 # sample size for EACH replication
T <- NULL # vector to store sample means
#

for(i in 1:reps){ repeating "reps" times

samp.i <- rnorm(n = N, mean = 0, sd = 1)

# Calculating our t-statistic and putting it in the ith place

>

>

>

>

>

+

+ # Sampling from a standard normal distribution:
+

+

+

+ T[i] <- mean(samp.i) / (sd(samp.i) / sqrt(N))
+

+

} # END for i LOOP

Then, examining a quantile plot relative to a normal distribution.

> qqnorm(T) # qqnorm of t-distribution
> qqline(T) # very long tails - can't you tell!?
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Normal Q-Q Plot
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And, finally, comparing our sampling distribution to the appropriate ¢-distribution.

> set.seed(123485)
> qqplot(x = T, y = rt(n = reps, df = 3),

+ xlab = "Simulated Values",
+ ylab = "Theoretical Values")
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Simulated Values

Even though our simulation is not a perfect ¢-distribution, the q-qT values are closer to a
line than the g-qnorm values. Note that I put two vectors into qgplot: (a) the simulated
sampling distribution, and (b) a random sample from the theoretical distribution. My
method of plugging a random sample into qgplot is not the most appropriate—it would
be better if we directly plugged in quantiles to the qgplot function—but both methods
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lead to similar conclusions, and a random sample from the t-distribution is easier to
understand from a coding perspective.

One can also create a sampling distribution from a set of scores by sampling with
replacement from those scores. The only change to the previous code is specifying the
vector and using the sample function rather than a distribution function.

> library(MASS) # the library where the data is stores

> data(nlschools) # school data (we are interested in lang)
> lang <- nlschools$lang # language scores on a test

> hist(lang,

+ xlab = "Language Scores'", ylab = "Frequency",

+ main = "Histogram of Language Scores")

Histogram of Language Scores
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The original distribution is clearly negatively skewed, but we can still take samples of
various sizes.

set.seed(182420)
samp.10 <- NULL
samp.100 <- NULL
samp.all <- NULL
for(i in 1:10000){

samp.10[i] <- mean(sample(lang, size = 10, replace = TRUE))
samp.100[i] <- mean(sample(lang, size = 100, replace = TRUE))
samp.all[i] <- mean(sample(lang, size = length(lang), replace = TRUE))

} # END for i LOOP
# The mean of the sampling distributions (shouldn't change much).
mean (samp. 10)

[1] 40.96612

VV+ + + + + +VVYIVIVYV
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> mean (samp.100)
[1] 40.92599

> mean(samp.all)
[1] 40.9307

> # The variance of the sampling distributions (should decrease).
> var(samp.10)
[1] 8.312437

> var (samp.100)
[1] 0.8076201

> var(samp.all)
[1] 0.03538113

One of the uses of sampling from our sample (with replacement) of size equal to the
original sample (samp.all in the above code chunk) is to estimate reasonable locations
for the population mean if we do not know the theoretical sampling distribution. This
method (called “bootstrapping”) is an alternative, robust procedure for finding p-values
and confidence intervals.

6.2 Other Control Flow Statements

6.2.1 The Beauty of while and if
The while Loop in R

The other two bits of control flow useful for our purposes are while and if/else.
Both of these have a pretty similar form. The format of the while loop is as follows.

while (logical) {

commands

In the above “pseudo-code”, logical is a logical value (either TRUE or FALSE); if
logical is TRUE, then the while loop repeats, and if logical is FALSE, then the while
loop terminates. Of course, the while loop only makes sense if one of the commands inside
of the while loop has an opportunity to change the logical statement to FALSE. Oth-
erwise, the while loop repeats indefinitely (save for silly people “turning off computers”
or “ending programs”).

The while loop is also useful in simulation and distribution construction. For in-
stance, pretend that we have a Bernoulli random variable (with some p) and want to
simulate the distribution of “number of samples/flips/whatever before one success”. Ex-
amples include the number of coin flips that turn up tails before one turns up heads, or
the number of missed basketball shots before one make. Simulating this distribution can
be easily done via the while loop.

> set.seed(90210) # setting a seed
> reps <- 10000 # number of replications
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> sim.5 <- NULL # vector to store observations
> for(i in 1:reps){ # repeat reps times

# First, set k = 0 and suc to FALSE
k <-0
suc <- FALSE

while(!suc){ # while suc is not TRUE (i.e., until a success)

# Sample one observation from a binomial distribution:

tmp.i <- rbinom(1l, size = 1, prob = .5) # <- the success rate is .

if(tmp.i == 1){ # if that observation is a 1, we have a success!
suc <- TRUE

} elsef

suc <- FALSE # otherwise, we have failed (miserably)
k<-k+1 # and add 1 to k
} # END if STATEMENTS
} # END while LOOP

# Finally, put the sum until the first success in the ith place.
sim.5[1] <- k

} # END for i LOOP

The if/else Statement in R

The while loop made sure that we kept counting trials until a success. Yet checking for
that success needed another control-flow type function, the if statement.

if(logical) {
commands
} else{

commands

The above “pseudo-code” is one possibility for the if statement, but else part might not
even be needed, so that the following is another (common) possibility.

if (logical) {

commands
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In the former set of statements, if the logical inside of if is TRUE, then R will run the
commands inside the first set of curly braces, but if the logical inside of if is FALSE,
then R will run the commands inside the second set of curly braces. In the latter set of
statements, if the logical inside of if is TRUE, then R will run the commands inside the
first set of curly braces, and regardless of the TRUE or FALSE nature of the logical, R
will run the commands following the if statement.

Important: Both the while loop and the if statement take logical wvalues:
TRUE or FALSE. Moreover, if you put a vector inside while or if, R will
only look at the first element in that vector to decide whether (or not) to run
the loop. You can (and should) use comparisons (e.g., >, <=, !) to get those
logical values.

Complicated while, if, else, and for statements can be better understood by

breaking them down into constituent parts.

set.seed(90210) sets the seed, so that I can repeat the exact same simulation in
the future, reps <- 10000 sets the number of replications to a rather large number,
and sim.5 <- NULL builds an empty vector to store values. All of these we have
discussed earlier in this chapter.

for(i in 1:reps) sets the for loop to repeat reps times such that the first element
of i is 1, the second element of i is 2, etc.

k <- 0 makes sure that the count starts at 0. Note that at every cycle through the
loop, k (the count of failures before a success) will be reset to 0.

suc <- FALSE makes sure that we start out the simulation (for each iteration) on
a failure. If suc did not equal FALSE, we would never satisfy the logical statement
in the while loop, we would never simulate any value, and we could not get off the
ground.

while(!suc) forces us to repeat whatever is inside the while curly braces until suc
is TRUE. Thus, the main objective of the while loop is determining when to assign
TRUE to suc so that we can exit the while loop and start the next iteration of the
for loop.

tmp.i <- rbinom(l, size = 1, prob = .5) samples 1 observation from a bino-
mial distribution with NV = 1. By setting N = 1, we are effectively sampling from
a Bernoulli distribution.

if(tmp.i == 1) checks to see if we have a success. If so (yay for us), we set
suc <- TRUE, which satisfies the exit condition of the while loop. Why? Because
we only repeat the while loop as long as suc is FALSE.

else determines what happens if we do not have a success. If we don’t have a
success, then we keep suc equal to FALSE, and we add another failure to k (so that
k <- k + 1). Each time through the while loop, when we fail to have a success,
another value is added to k, so that by the time that the while loop is exited, k
equals the number of failures that occurred before the success that allowed us to
leave the loop.
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e sim.5[i] <- k sets the ith value of sim.5 to k (the number of failures before a
success), and then we set i equal to i + 1, and we repeat the loop again.

We can plot a histogram of our odd distribution and determine its shape.

> hist(sim.5,
+ xlab = "Number of Failures", ylab = "Frequency",
+ main = "Histogram of Number of Failures before Success")

Histogram of Number of Failures before Success
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Our crazy distribution is clearly not normally distributed. However, a standard distribu-
tion is generated in the fashion above: the geometric distribution. And forming a qqplot
of our sample against a random sample from a geometric distribution, both samples should
align.

> set.seed(234238)

> qgplot(x = sim.5, y = rgeom(n = reps, prob = .5),
+ xlab = "Simulated Values",

+ ylab = "Theoretical Values")
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Simulated Values

You should change the success rate from p = .5 to other values (e.g., p = .6 for a basketball
player, or p = .01 for a rather rare event, such as a small lottery), and determine the
distribution of the above statistic (sim.6 and sim.01).

6.2.2 A Strange Sampling Distribution

I will end this chapter with a simulation from Using R for Introductory Statistics
(Verzani, 2005, p. 180). A brief description of the logic behind the simulation will be
provided, but you should determine (on your own time) the actual result. Pretend that
we have a square with length 2 and centered at the origin. Then the area of the square
is 2 x 2 = 4. Moreover, a circle of radius 1 (with area 7 x 12 = 7) will touch the edges of
the square. And taking the ratio of “circle area” to “square area” results in 7/4. Finally,
knowing that all of the points within a circle of radius 1 satisfies the constraint that
2% +y? < 1, a simple (but rather inefficient) simulation is as follows.

> set.seed(1920)

>N <- 1000

> x <- runif(N, min = -1, max = 1)
>y <- runif (N, min = -1, max = 1)
> circ.pts <- x"2 + y"2 <=1

> magic <- 4 * mean(circ.pts)

> magic

[1] 3.132

As always, we can place our simulation inside of a for loop to determine the sampling
distribution of our statistic.

> set.seed(19203)
> reps  <- 10000
>N <- 1000
> s.cool <- NULL
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> for(i in 1:reps){

+

+ tmp.x <- runif(N, min = -1, max = 1)

+ tmp.y <- runif(N, min = -1, max = 1)

+

+ s.co0l[i] <- 4 * mean(tmp.x"2 + tmp.y~2 <= 1)
+

+ } # END for i LOOP

And we also determine the mean, standard deviation, and shape of our sampling distri-
bution.

> mean(s.cool)
[1] 3.14154
> sd(s.cool)
[1] 0.05215702
> hist(s.cool,

+ xlab = "Simulation of 777",
+ ylab = "Frequency",
+ main = "Histogram of 777")
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Try the above code chunk with N = 5000, 10000, 50000, and describe what happens to
s.cool.
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6.3 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Control Flow

## for loop ##
for(name in set.of.values){ # loop over indices

commands

}

## if/else statements ##

if (logical){ # if something holds, evaluate stuff
commands

} else{ # if not, then evaluate other stuff
commands

}

## while loop ##

while(logical){ # while something holds, evaluate stuff
commands

}

# More Graphs

hist(x, freq = FALSE, ... ) # hist with densities

lines(x, y, ... ) # draw lines on existing graph

expression(...) # draw symbols in plots

qgplot(x, y, ... ) # compare the dists of x and y
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Chapter 7

Functions and
Optimization

Good evening. Tonight on “It’s the Mind”, we examine the
phenomenon of déja vu, that strange feeling we sometimes get
that we’ve lived through something before, that what is hap-
pening now has already happened tonight on “It’s the Mind”,
we examine the phenomenon of déja vu, that strange feeling
we sometimes get that we’ve... Anyway, tonight on “It’s the
Mind”, we examine the phenomenon of déja vu, that strange

—Monty Python’s Flying Circus - Episode 16

7.1 Functions in R

7.1.1 An Outline of Functions

As explained in chapter 1, R is a functional programming language. Practically
everything done in R is through various functions. Code that you would not even consider
functions (e.g., addition, multiplication, pulling out objects, assignment) are functionally
programmed. Therefore, being able to write functions is necessary for understanding R, so
this chapter is designed to introduce you to rudimentary/basic functional programming.
If you (for some strange reason) want to write your own packages and/or take advantage
of generic functions in your own code, such as summary, print, and plot, you would need
to learn the object oriented structure of R (I recommend Matloff, 2011 for a useful intro
into R programming).

The basic format of a function is similar to much of R.

function (arguments) {
commands
return statement

} # END FUNCTION

125
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Functions are rather flexible, so that the above “psuedo-code” is the only form common
to most of them, and even so, not all functions will have arguments, not all functions
will have a return statement, and many functions will not even return anything. Yet I
find it useful to diagram the “typical” function, bearing in mind that some functions will
not follow the “typical” format. To declare a function, you first write function (which
is the function function ... oy!) and then surround the arguments of the function
in parentheses. The arguments are the intended user-inputs of the function (i.e., the
names of stuff the user might want to change about how the function works) separated
by commas. Each argument is usually of one of the following forms:

e A name without a default value (e.g., data).

— If there is a name without a default value, the function writer often intends for
the user to define the value him/herself and R will error if the user forgets.

e A name with a default value following an equal sign (e.g., mean = 0)

— If there is a name with a default value, and if the user does not change this
particular value when running the function, the argument will default to the
default value.

— An example of a default argument is mean = 0 inside the pnorm, gqnorm, or
rnorm functions. If you do not indicate that mean should be different from 0,
R will assume that your normal distribution should have a population mean of
0.

e A name with a vector of possible values following an equal sign (e.g.,
method = c("pearson", "kendall", "spearman") in the cor function).

— Even if a particular argument defaults to a particular character string (e.g.,
method defaults to ""pearson'' inside cor), the function writer will often list
all of the possible inputs in a vector so that the user knows the legal values of
an argument.

Following initialization of the function, commands is a series of legal R commands/func-
tions, separated by new lines and/or semi-colons (i.e., ;) and surrounded by curly braces.

Note: If you want R to perform a series of commands, regardless of whether or
not they are inside of a function, for loop, if statement, set of curly braces,
etc., you can either put each command on its own line or separate the series
of commands with a semi-colon. Because R is generally not sensitive to white
space, the semi-colon tells R when to stop evaluating one command and start
evaluating the next.

When terminating a function, you generally want the function to output something. The
default behavior of R is to return the last line of the function before the second curly
brace. If the last line of a function is an assignment (i.e., something that includes <-), R
will return the value invisibly, meaning that if you run a function without assigning its
output to an R object, the output will be hidden from view, and all you will see is the
next command prompt. If the last line of a function is a declaration of an object (e.g.,
x if x is visible to the function), then R will return the value visibly, meaning that if you
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run a function without assigning its output to an object, R will display the output. Most
of the functions that you have used thus far (including mean, sd, rnorm, etc.) display
output visibly. If you want R to potentially return something before the last curly brace,
you can type

return (x) # x is the object you want to return

anywhere in the function, as long as R knows the value of x by that point, to return the
object x visibly, or

return (invisible(x)) # x is the object you want to return

to return the object x invisibly.

Advice: If you are not sure what R does when you run a function or write a
function or write a for loop or ... really anything you want to do in R, run a
few tests, try to predict the output, and determine if the output is what you
predicted.

Just citing the theoretical underpinnings of functions is not particularly useful. More
usefully, I can demonstrate R’s functional capabilities with a few examples. The following
is (almost) the simplest function that I could write.

function (x) {

X + 2

In fact, this (rather useless) function (unless for some reason, you really like adding “2”
to things) is hopefully simple enough to illustrate the basic functional format. And all
of the principles from the following examples will apply to (much) more complicated
functions. The first thing that you could do with your new found function is write it
without assigning it to anything.

> function(x){
+

+ X + 2
+

+ } # END FUNCTION
function(x){

X + 2

}

And R will (happily) print the function back to you, but it will not calculate anything
nor save it to an R object. So, you might be wondering: “How might I be able to write
a function and run the function given some data?” One possible method of running the
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function is by surrounding the function with curly braces followed by the arguments of
the function inside parentheses.

> { function(x){

+

+ X + 2

+

+ } }(x=3) # if x = 3, then x + 2 = 5 for the win!
[1] 5

And R (cheerfully) prints the number 5. Yet this method is rather silly, as you would have
to re-load the entire function every time you wanted to re-run it. Most R function writers
will want to assign functions to object names (functions are objects just like objects are
functions ... trippy!) so they can call the names of the functions as proxies for the function
themselves. So we will assign the function to the name blah.

> blah <- function(x){
+

+ x + 2

.

+ } # END blah FUNCTION

Now every time we run the function blah with a different x value, R will add 2 to x. As

long as x is an object for which the “add” operator works, R will oblige your functional
desires.

> # Add 2 to: a numeric scalar, a numeric vector, and a numeric matrix
> blah(x = 3)

(11 5

> blah(x = c¢(1, 2, 3))

[1] 345

> blah(x = matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2, byrow = TRUE))
[,11 [,2]

[1,] 3 4
[2,] 5 6

But if you try to run the function blah with an x object for which the “add” operator does
not make sense, R will either error, warn you of its misdeeds, or give nonsensical results.

> # An error because we cannot add to a letter.
> try(blah(x = "s"), silent = TRUE) [1]

[1] "Error in x + 2 : non-numeric argument to binary operator\n"

We might not be satisfied with the original construction of the blah function. One
might think it wise to set a default value to the x argument of blah.

> blah <- function(x = 2){
+

+ x + 2

+

+ } # END blah FUNCTION
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Now we can run the function without hand picking a value for x because R will automat-
ically sets x = 2.

> # To run the function "defaultly":
> # --> type the function name followed by two parentheses.
> blah()

(1] 4

Important: To run a function, you always need to surround your arguments
in parentheses. If the function has default values for all of its arguments, and
if you want to use all of the defaults, you only need to write the function
name followed by two parentheses with nothing in them. We already saw two
parentheses with nothing in them for the 1s function described in chapter 4.

But functions are not useful just in their calculating abilities. We could also assign the
output of blah to a different object rather than just displaying on the second line of
the function. Let’s call the object y. Then if we run the function without assigning the
function run to another object, R will not display anything.

blah <- function(x){
y <-x+ 2

>
+
+
+
+ } # END blah FUNCTION

> # Run the function without assignment.

> blah(3) # R doesn't display anything.
> # Run the function with assignment.

> eek <- blah(3) # R doesn't display anything.
> # Call eek by itself

> eek # R displays 5 ... weird!

[1] 5

But if we assign the function run to eek and then type eek into our R session, R displays
the result of the function call. Finally, if we type return anywhere inside our function, R
will usually return whatever is inside of return rather than the last line of the function.

> #t##t#t##t#t NO RETURN #it#######
> blah <- function(x){

+
+ y <-x+ 2
+ z <-x + 3
+ z

+

+ } # END blah FUNCTION
> blah(3) # R returns 6 (z) and NOT 5 (y)

(1] 6
> HARBHHHRUHARBHHHR B AR B HAHY
> ######## A RETURN ##H####A##H
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blah <- function(x){

>
+
+ y <-x + 2

+ return(y) # return before the last line.
+

+

+

+

z <-x + 3
z

+ } # END blah FUNCTION

> blah(3) # now R returns 5 (y) and NOT 6 (z)
[1] 5

> HARBHHRRUHARBHHARBH AR BB H Y

Most of the time, you will write functions for two purposes:

1. Simple functions that take a vector, matrix, or even a bunch of arguments and
return a scalar value.

2. Complex functions that take a bunch of arguments and return a list.

The former functions are used to summarize data (such as the mean, variance, standard
deviations) and optimize a range of specifications with respect to some objective function.
The latter functions are used to perform a set of actions and return descriptions about
that set.

7.1.2 Functions and Sampling Distributions

R functions (as is almost anything in R) are best understood by providing and break-
ing down examples. In the last chapter, I discussed creating sampling distributions using
for loops. Because the generic structure of a sampling distribution is always the same,
but because sampling distributions frequently take many lines of code, one might save
time and space by putting the general “sampling distribution” outline inside of a function.

> sampDist <- function(dist
stat

C(”HOI‘IH”, ”unif”’ ”t”, ”Chisq"),
mean, size = 10, reps = 10000, ... ){

# Getting the appropriate distribution:

if(dist == "norm"){

rdist <- function(n) rnorm(nm, ... )
} else if(dist == "unif"){

rdist <- function(n) runif(m, ... )
} else if(dist == "t"){

rdist <- function(n) rt(n, ... )
} else if(dist == "chisq"){

rdist <- function(n) rchisq(m, ... )
} elsed{

stop("pick a legal dist: norm, unif, t, chisq")
} # END if STATEMENTS
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# Indicating a NULL vector to store samples:
samp <- NULL

# Repeat this a lot (reps number) of times.
for(i in 1:reps){

# Each time:

# - take a sample from the distribution

# - calculate your statistic on the sample
samp[i] <- stat( rdist(n = size) )

} # END for i LOOP

# Put the samples and mean/sd of the samples into a list:
out <- list(mn.samp = mean(samp), sd.samp = sd(samp), samp = samp)

# Return the list to R!
return(out)

} # END sampDist FUNCTION

The sampDist function is designed to calculate a sampling distribution of some statistic
given a particular distribution, sample size, and number of replications. The sampDist
function also takes the following arguments.

e dist: The particular population distribution. The options are: “norm” for normal
distribution, “unif” for uniform distribution, “t” for ¢-distribution, and “chisq” for
x? distribution. Any other input for dist will result in an error.

e stat: The statistic of which the sampling distribution is composed. stat can be
any function that returns a scalar argument.

e size: The size of each sample.

e reps: The number of replications (i.e., the number of samples to take) to construct
the sampling distribution. Note that more samples are always better as sampling
distributions are theoretically infinite.

e ...: A placeholder for user specified arguments. In our case, ... represents the
parameters of the distribution. For instance, if you wanted to change the mean and
standard deviation of the normal distribution function, you would set mean = 2 in
the ... portion of the function call, and R would know to change the mean to 2.
For this function, ... is useful because every distribution refers to a different set of
parameters (e.g., the normal distribution is parameterized with mean and sd whereas
the uniform distribution is parameterized with min and max and the t-distribution
is parameterized df). Using ... prevents the function writer from having to specify
all of the arguments for all of the possible distributions.

After setting the arguments, the first few lines of the function are intended to determine
the population distribution. For instance, if dist == "norm", then R assigns rdist (a
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generic name) the function rnorm with the user specified parameters. And for the rest of
the function, rdist is synonymous with rnorm. Cool! R then declares an empty vector,
samp, in which to store statistics. Finally, R repeatedly samples from the distribution,
calculates statistics on the distribution, and assigns those statistics to the ith place of
samp. Unlike building a sampling distribution by only using for loops, rdist is not really
a function in R but is assigned an already existing distribution, and stat is not really a
function to calculate a statistic in R but is assigned an already existing function. Thus,
by indicating that stat = median rather than stat = mean, R will construct a sampling
distribution of the median. Once the for loop is finished, the last few lines of the function
are designed to create a list of interesting statistics (e.g., the mean, standard deviation,
and vector of observations) and return that list to the user. And after saving the function
call into an object, the user can extract the mean, standard deviation, and vector of
observations with the $ operator.

> set.seed(78345)

> s.distl <- sampDist(dist = "norm", stat = median, size = 20)
> # What sub-objects are saved in s.distl?

> names(s.dist1)

[1] "mn.samp" "sd.samp" "samp"

> s.dist1$mn.samp # pulling out the sampling distribution mean.
[1] -0.0008891166

Of course, sampling distribution lectures usually start with properties of the sam-
pling distribution of the mean when sampling from a normal population. And who cares
about the ... arguments when you will always be sampling from a normal distribution
where the parameters are mean and sd?

> sampNorm <- function(stat = mean, size = 10, reps = 10000,
mean = 0, sd = 1){

# Indicating a NULL vector to store samples:
samp <- NULL

# Repeat this a lot (reps number) of times.
for(i in 1:reps){

# Each time:
- take a sample from the distribution
# - calculate your statistic on the sample
samp[i] <- stat( rnorm(n = size, mean = mean, sd = sd) )

+*

} # END for i LOOP

# Put the samples, and mean/sd of the samples into a list:
out <- list(mn.samp = mean(samp), sd.samp = sd(samp), samp = samp)

# Return the list to R!
return(out)

} # END sampNorm FUNCTION
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Unlike sampDist, sampNorm always samples from a normal distribution. In both functions,
the stat argument is a function designed to calculate a statistic, and one can set stat
to typical functions, such as the mean, median, and variance.

> set.seed(666777888)
> s.dist2 <- sampNorm(stat
> s.dist2$mn.samp

[1] -0.003181224
> s.dist2$sd.samp
[1] 0.3143386

> s.dist3 <- sampNorm(stat
> s.dist3$mn.samp

[1] -0.003582825
> s.dist3$sd.samp
[1] 0.3761127

> s.dist4 <- sampNorm(stat
> s.dist4$mn.samp

[1] 1.00184
> s.dist4$sd.samp
[1] 0.4726863

mean, size = 10)

median, size = 10)

var, size = 10)

But sometimes, you might want to construct your own statistic function and use that
function as stat inside sampNorm.

# A function to calculate the biased variance:
biasVar <- function(x){

N <- length(x)
return( sum( (x - mean(x))"2 )/N )

} # END biasVar FUNCTION
# Using the biased variance as our "stat':
set.seed(92939495)
s.distb <- sampNorm(stat = biasVar, size = 10)
# Showing that the variance is biased by using a histogram.
# (Figure out the use of "arrows" and "text" on your own).
hist(s.dist5$samp, freq = FALSE,
xlab = expression(hat(sigma)~2), ylab = "Density",
main = "Histogram of Sample Biased Variances")
arrows(x0 = 1.0, x1 =1,
yo = 0.95, y1 = 0.01,
length = .15, angle = 15, col = "darkgreen", lwd = 2)
text(x = 1.1, y = 1.0,
labels = expression(paste(sigma~2, " = 1", sep = "")))

+ v+ +V+ +VVVVVYV + + + + + VYV
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Histogram of Sample Biased Variances

Density
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Note that the stat function can be anything that returns a scalar value.

Now that you know how to write functions, frequently, you will need to provide
formatted output so that users can understand the contents of those functions. Several
functions in R are designed to format output for printing, some of which are based off
of similar C functions, but I will only describe the most basic functions that most R
programmers use.

7.1.3 Formatting Output

Printing and writing allow an R programmer to format the output of R functions so
that the end-user can see interesting/relevant calculations. And the two major methods
of printing/writing are

print (x, digits, ...)

and:

cat (..., sep =" ")

The print Function

The print function takes an object and prints it on the next line, and the cat
function takes a series of values and character strings, pastes them together into one
long character string, and displays that long character string. Many of the advanced R
functions use print and cat statements to concisely display results.

>x <-c¢(1, 2, 3) # it's easy as 1-2-3!
> print(x)
[11 1 2 3
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The above code assigns the vector c(1, 2, 3) to x and displays it on the line after the
print statement. Now you might be thinking: “Steve, your code is silly! I could have
just typed x, and the values 1, 2, 3 would have also been displayed.” 1 agree with your
precociousness! However, there are many benefits to using the print function rather than
just typing the variable you want to print. For example, you can assign an object inside
of a print statement, and R will appropriately assign the object and print the result of
that assignment at the same time. The print + assign technique is great for those of you
who like to write all of his/her code on one line (keep in mind that R does prefer if you
press “Return” every once in a while).

> # See, it prints, and everything is on one line!
> print(x <- c(1, 2, 3))
[1] 123

Note that only one command can go inside of a particular print statement. If you try
to print two (or more) things, separated by semi-colons, R will yell at you and refuse to
print them.

> # Hear the yell of illegalness!

> print(x <- c(1, 2, 3); y <- c(4, 5, 6))

Error: unexpected ';' in "try(print(x <- c(1, 2, 3);"

Note: You can only surround one assignment/object/thing inside of a print
statement. Even though one can separate R assignments with semi-colons, R
can only print (via print) one thing at a time.

Another use of print is to indicate the desired number of printed digits, simply by adding
the digits argument to the print statement. One often simulates data that has (nearly)
an infinite number of digits, but he/she usually wants to (on the fly) reduce the number
of displayed digits to something much less than infinity!

> # If we print without setting the digits:

> set.seed(1983)

> print(x <- rnorm(10))
[1] -0.01705205 -0.78367184 1.32662703 -0.23171715
[6] -1.66372191 1.99692302 0.04241627 -0.01241974
[9] -0.47278737 -0.53680130

> # But sometimes three digits is enough:

> set.seed(1983)

> print(x <- rnorm(10), digits = 3)
[1] -0.0171 -0.7837 1.3266 -0.2317 -1.6637 1.9969 0.0424
[8] -0.0124 -0.4728 -0.5368

Of course, you could also change the default R options to print fewer digits.

The cat Function

But if you want to print more than pre-formatted objects, you must design your
own printing using the cat function. Unlike print (which can print entire matrices, lists,
vectors, etc.), cat always prints a concatenated string of letters.
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> x <- matrix(c(1, 2,
+ 3, 4), nrow = 2, byrow = TRUE)
> print(x) # prints all of x, as a nice matrix
(.11 [,2]
[1,] 1 2
[2,] 3 4
> cat(x) # wtf!??7 turns it into a vector? annoying?!
1324

The print statement printed the appropriate matrix, whereas the cat function turned
the matrix into a vector and sort of printed the vector. And unless one specifies a new
line inside of cat, R will put the command prompt right next to the end of the printing

. on the same line. The commands (also called escape sequences) to “enter”; “tab”, and
other fantastical things, are similar to other computer languages:

"\n": New Line

"\t": Horizontal Tab
"\v": Vertical Tab
"\a": Bell

LA Double Quote

You only must include one of those escape sequences (in quotes) for R to perform the
appropriate action.

> cat(x, "\n") # prints x and goes onto the next line
1324

Notice that the previous code chunk highlights the layout of printing inside of a cat
function. The cat function will concatenate several R objects (separated by commas)
into one printed statement.

> set.seed(818)
> x <= 2 # some number
>y <-1 # another number
> p <- rnorm(1) # another (random) number
> # A very complicated cat statement:
> cat("\tMy", "mother", "told", "me", x, "pick", "the",
+ "Very", "best", Vs “a_nd“, P, "iS", “it.\n")
My mother told me 2 pick the very best 1 and -0.2373162 is it.

# - The \t at the beginning tabs over,
# - The \n at the end puts the command prompt on the next line,
# - Everything else is separated by commas, including objects.

V VvV Vv Vv

By default, cat separates all of the objects/words that it prints by a space, but you can
alter the spacing of cat by adding a sep argument to the end of the function.

> cat("My", "mother", p, "\n", sep = "") # no separation
Mymother-0.2373162
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> cat("My", "mother", p, "\n", sep = ",") # comma separation
My ,mother,-0.2373162,

> cat("My", "mother", p, "\n", sep =" ") # space separation
My mother -0.2373162

> cat("My", "mother", p, "\n", sep = "\n") # new line separation
My

mother

-0.2373162

> cat("My", "mother", p, "\n", sep = "\t") # tab separation
My mother -0.2373162

> cat("My", "mother", p, "\n", sep =" x ") # umm ... 7?77

My x mother x -0.2373162 x

Note that you can enter: (1) a sequence of letters (or escape sequences) within quotes;
and (2) an R object without quotes. Make sure not to accidentally put an R object within
quotes nor character strings without quotes.

Now harken back to a few paragraphs ago (... *harkening*). T indicated that a
typical use for print and cat is to display text inside of an R function. By adding a few
lines of code inside the sampling distribution function, the end user will be better attuned
to the resulting output.

> ## STUFF FROM EARLIER ##
> sampNorm2 <- function(stat = mean, size = 10, reps = 10000,
mean = 0, sd = 1){

samp <- NULL
for(i in 1:reps){
samp[i] <- stat( rnorm(n = size, mean = mean, sd = sd) )

}

out <- list(mn.samp = mean(samp), sd.samp = sd(samp), samp = samp)
HERRHHHHHHHRARARRRR R R

## STUFF FROM NOW ##

# Now, we can print the mean and the standard deviation:

cat ("\n\n\t", "Sampling Dist Mean: ", round(mean(samp), 3), sep = "")
cat("\n\t" , "Sampling Dist SD: ", round(sd(samp), 3), sep = "")
# And we can print a few vector elements:

cat("\n\n ", "A Few Observations:\n")

print(samp[1:6], digits = 2)

# And adding some more space:
cat("\n”)

HARRHHHHHHHAAARARRRRRHHHHHH



138 Chapter 7. Functions and Optimization

## STUFF FROM EARLIER ##
return(out)

}
> HHHHHAAAARARRRRHHHHHAAAARR

By calling the new sampNorm function, R displays pretty output even before we analyze
the output ourselves.

> set.seed(1827)

> mod.samp <- sampNorm2(stat = mean, size = 20)
Sampling Dist Mean: 0.003
Sampling Dist SD: 0.223

A Few Observations:
[1] 0.0083 0.4794 0.0422 -0.0224 0.1542 -0.1507

Designing print statements inside of functions is more art than science and usually involves
manipulating cat and print functions to force the output to display something reasonably
attractive to the mass of non-aesthetically devoid programmers. R programmers also use
trickery to achieve pretty printing whenever you call an object by name (and not just
when you run the function), but advanced printing is for another book.

The paste Function

A device useful for assisting printing, assignment, saving, etc. is the paste function.
I find paste solves many of my R manipulation needs. The paste function takes a bunch
of objects, strings, etc., just like cat (or ¢ for that matter), and combines them into
character strings. paste behaves differently depending on the inserted objects.

e A bunch of character strings/numbers separated by commas results in:

— — A very long string.

— — Separated by whatever you put in sep.

A bunch of possible options:
<_ paste(”a” Hb” ”C” 2 ”d” 4 sep = HH)
<_ paste("a” Hb” ”C” 2 Hd” 4 sep = n H)

<- paste(ﬂall, Hbll, ”C”, 2, Hdl!, 4, sep = IV’ II)

<- paste("a", "b", "c", 2, "d", 4, sep = "\n")

# Printing z does not print the new lines, as "\n" is added:
> print(z)

vV V.V VvVvyv
N < M I %

[1] "a\nb\nc\n2\nd\n4"

> # You can print the new lines by surrounding z with cat:
> cat(z)



7.1. Functions in R 139

SN T

e A vector of whatever and a bunch of character strings separated by commas results
in:

— — Each vector element separately pasted to the sequence of character strings.

— — Separated by whatever you put in sep.

> x <-c(1, 2, 3, 4, 5)

> # A vector and strings/numbers in whatever order you want:
> mo <- paste(x, "s", sep = "")

> po <- paste("s", x, sep = "")

> bo <- paste(x, "s", "t", 1, 2, sep = ",")

> # See the wackiness:

> mo

[1] "1s" "2s" "3s" "4s" "Bg"
> po
[1] "s1" "s2" "s3" "s4" "s5"
> bo

(11 "1,s,t,1,2" "2,s,t,1,2" "3,s,t,1,2" "4,s,t,1,2"
(61 "5,s,t,1,2"

e A bunch of vectors, all of the same length results in:

— — Individual vector elements pasted together.

— — Separated by whatever you put in sep.

>x <-c¢(1, 2, 3, 4, 5)

>y <= c("a", "b", "c", "d", "e")

>z <= c¢(7, 8 9, 10, 11)

> # A bunch of vectors (the same length) put together:
> peep <- paste(x, y, sep = "")

> beep <- paste(x, y, z, sep = "p")

> # See the wackiness:

> peep

[1] "la" "2b" "3c" "4d" "Se"

> beep
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[1] n 1pap7ll n 2pbp8" ll3pcp9" Il4pdp1oll "5pep11"

Each modification of the paste function results in slightly different output.
There are many benefits to using the paste function, but one of the simplest uses
is being able to easily label the rows and columns of a matrix.

> # X is a 4 x 2 matrix (subjects x variables):
> X <- matrix(c(1, 2,
+ 3, 4,
+ 5, 6,
+ 7, 8), nrow = 4, ncol = 2)
> # Easily identify individual subjects/variables using paste:
> colnames(X) <- paste("v", 1:2, sep = "")
> rownames (X) <- paste("s", 1:4, sep = "")
> # See - awesomeness:
> X
vl v2
sl 1 5
s2 2 6
s3 3 7
s4 4 8

Of course, paste can also assist in naming the variables in a data.frame and elements
of a single vector.

A slightly more complicated use of the paste function is to take a two vectors,
combine both vectors together, and then collapse the new vector into one character string.
You can combine and collapse vectors of character strings by using the collapse argument
of paste just as you would the sep argument.

> # x is a vector:

> x <-c¢(1, 2, 3, 4)

> # Without collapse, the output would be a vector:
> paste(x, "s", sep = "")

[1] Illsll "2S" "38" ll4sll

> # But collapse connects the vector elements:
> paste(x, "s", sep = "", collapse = ",")
[1] "1s,2s,3s,4s"

By using the collapse argument: first, paste creates a character vector by combining
several character vectors together (separating them by whatever is in the sep argument);
and second, paste creates a character string by combining all of the elements of the
character vector together (separating them by whatever is in the collapse argument).

Now why would any self respecting person want to know how to write and format
R functions? Well, much of statistical analysis require finding maximums or minimums
of stuff. And much of the time, the optimum value cannot be solved for analytically.
Not surprisingly, R has reasonable optimization mechanisms, although if one needs to
optimize a tricky function, he/she is better served by hand programming that function in
a different language.
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7.2 Simple Optimization

Most of statistics is concerned with finding the best of something, usually the best
estimator for a particular parameter, and we (people who do statistics) frequently define
“best” in terms of how close it is, on average, to the parameter. Trying to find the distance
between an estimate and its parameter is a minimization problem (or a maximization
problem if we quantify “best” using other means). Because we can never perfectly predict
the parameter, we try to find an estimate that is close enough: we (1) pick some parameter
estimation function (called “loss function” by really cool statisticians); and (2) try to pick
the estimator that minimizes the chosen function. If all of this is a tad bit over your head,
just note that minimization/maximization of functions is rather important to the applied
statistician.

R has reasonable, although not necessarily the best nor most efficient, optimization
algorithms: optim, nlm, nlmimb, trust, etc., most of which are rather difficult to under-
stand and apply to practical problems. A (mostly complete) list of optimization functions
can be accessed on the following webpage.

http://cran.r-project.org/web/views/Optimization.html

Even though I still get confused as to how to choose and use optimization functions, I
stick by the following rule of thumb.

Rule of Thumb: If I am trying to optimize a function with multiple pa-
rameters or arguments, I will use optim or nlm; if I am trying to optimize a
(smooth, err ... nice) function with only one parameter or argument, I will
use optimize; and if I am trying to optimize a very odd function, something
more specific, not smooth, and/or with constraints, I will try to dig through
the above webpage to find a better optimization routine.

And if one optimization routine does not seem to work, takes very long, or results in
solutions that do not make sense, I will try another one.

Although many optimization functions exist in R, I will briefly outline only the most
basic optimization algorithm, optimize, which has the following form.

optimize (£, interval, lower, upper, maximum = FALSE, ... )

optimize uses (effectively) a bisection search routine, which (effectively) sounds like gib-
berish to me but impresses people that I don’t know at the two or three parties (per
decade) that I attend. Of course, saying “a bisection search routine” too often has the
unfortunate consequence of not resulting in many party invitations.

In optimize, f is a function, either user specified or something already existing in
R. The only limit on the f function is that one of the function inputs must be a scalar
value, and the function must return a scalar. R will then try to find the function input
that results in the minimum (or maximum) output. Then one needs to set boundaries
for the optimization search. interval is a vector of two values, indicating the minimum
and maximum of the search, whereas lower and upper are the minimum and maximum
scalar value of the search (and one needs to only include either interval or both of
lower/upper). maximum is a logical value (TRUE or FALSE) indicating whether R should
search for the minimum of the function or the maximum of the function. Finally, ... is
the annoying ... argument, which (effectively) represents all of the arguments to the f
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function, called by name and separated by commas (except for the scalar input supposed
to result in the maximum or minimum output).

I can see (err ... read ... err ... hypothesize about) your confusion, so I will go over
some examples of when to use optimize. Pretend that you have a simple function that
returns x2 + 1 given a scalar value x.

> x.8q <- function(x){
+

+ x"2+ 1

+

+ } # END x.sq FUNCTION

The x.sq function is a rather nice function, if I do say so myself. f(z) = x?+1 is entirely
continuous (and differentiable), has a minimum at x = 0 and evaluates to a minimum
of y = 1. We can double check our assertion as to the minimum of f(z) by plugging
the function into optimize. Because x.sq only has one argument (which we want to
maximize over), we do not need to enter anything into the ... part of optimize.

> optimize(f = x.sq, lower = -2, upper = 2, maximum = FALSE)
$minimum
[1] -5.551115e-17

$objective

[1] 1

And R quickly tells us that the minimum (of x) is a value close to 0 (annoying computing
error) with an objective (i.e., y) of 1 ... exactly as predicted.

Important: When you are using optimization functions, or (really) any func-
tion with function arguments, you must put a function as the argument.
What that means is that if you put £ = x”2, R would give you an error
because x~2 is a combination of object and function. However, if you put
f = function(x) x~2, then R would display the appropriate answer. Thus
the most reliable course of action is to write an entire function prior to using
optimize and stick that function (without quotes) into the function argument.

Note that the optimize function essentially subverts all of first semester, differential
calculus by algorithmically finding the minimums/maximums of smooth functions.

> x.8q2 <- function(x){

+

+ 4¥x72 + 6*x

+

+ } # END x.sq2

> optimize(f = x.sq2, lower = -2, upper = 2, maximum = FALSE)
$minimum

[1]1 -0.75

$objective
[1] -2.25
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But there is a better reason for optimization in statistics. Pretend that we want to find
the mode of a continuous distribution. We know that d (followed by the distribution)
gives the density at any point. And for the most basic, continuous distributions, the
densities are nice and smooth. Therefore, we can find the x that maximizes the density
(and therefore is the mode of the distribution) using optimize.

The easiest distribution to maximize is the normal distribution. Because the normal
distribution is symmetric and unimodal, the mean and mode are equivalent. So by setting
f to dnorm in the optimize function, we should end up with the mean/mode as the
maximum.

> optimize(f = dnorm, lower = -4, upper = 4, maximum = TRUE)

$maximum
[1] 3.330669e-16

$objective
[1] 0.3989423

Note the two differences between the most recent use of optimize and the previous exam-
ples. First, dnorm is a built in R function, which takes a scalar (or vector) input x and re-
turns the density at that (or those) point(s). Second, rather than using maximum = FALSE,
as we did to find the minimum of the x.sq and x.sq2 function, the mode of a distribution
is a maximum. Therefore, only by changing the argument maximum = TRUE will R search
for the correct value.

For fun, we could find the maximum of other normal distributions. How could
we experience this bursting of pleasure? We would have to take advantage of the ...
argument to insert our custom mean and standard deviation as new values of mean and
sd.

> # 1) Standard arguments: f, lower, upper, maximum.
> # 2) Specific arguments: mean, sd.

> optimize(f = dnorm, lower = -4, upper = 4, maximum = TRUE,
+ mean = 2, sd = 3)
$maximum

[1] 2.000001

$objective
[1] 0.1329808

And despite rounding error, R provides the correct result.

Using optimize, we can also find the mode of a less familiar distribution, such as
the x? distribution, by using a different density function. In the case of x? we would use
the dchisq function. The idea behind using dchisq is exactly the same as behind using
dnorm, but rather than specifying mean and sd (as for the normal), we should specify df.

> optimize(f = dchisq, lower = 0, upper = 10, maximum = TRUE,
+ df = 5)

$maximum

[1] 2.999987
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$objective
[1] 0.1541803

And the value corresponding to the maximum of this particular x? distribution is approx-
imately 3. Note that the mean and mode are different for x? distributions. The mean of
the x2 distribution with df = 5 is approximately 5, but the mode is approximately 3.

> set.seed(987)
> mean( rchisq(n = 1000000, df = 5) )

[1] 4.999766

As always, to use optimize, we stick the function we want to maximize/minimize
into £, the lower and upper values for our search into lower and upper, whether we
are minimizing or maximizing into maximum, and the remaining arguments of the function
(specified by name and separated by commas) following maximum. You might be wondering
how I knew the lower/upper values of the optimal search. Much of the time, I use
“experience” to pick appropriate values, but if you are not sure, “trial and error” might
be the best option. Or you can evaluate a range of values, plot them, and try to figure
out approximately where the min/max of the plot is located.

We can (of course) save the optimize run into another R object and pull out par-
ticular values using the $ operator.

> # Running (and saving) the chi-square optimization.

> m.chi <- optimize(f = dchisq, lower = 0, upper = 10, maximum = TRUE,
+ df = 5)

> m.chi$maximum # pulling out the maximum (x)

[1] 2.999987

> m.chi$objective # pulling out the density at the maximum (y)

[1] 0.1541803

Try to experiment more with optimize on your own.

7.3 A Maximum Likelihood Function

One of the uses of optimization is to return the maximum of a likelihood function.
The following code takes a vector of data, a specification of which parameter to calculate
the likelihood with respect to (either the mean or variance), and a vector of user-defined
estimates of that parameter.

> HUAHHBHHHU AU RRH AR

> # Likelihood Function #

> REARHARHAU AR AR ARG

>

> # This function is designed to take:

> # - a vector of observations from a N(0, 1) dist,

> # - a character indicating the estimated parameter, and

> # - it assumes that the var is the biased var if est the mean
> # - it assumes that the mean is xbar if est the var

> # - a vector of (numerical) estimates of the unknown parameter.
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>
> # And return:
> # - a list of interesting estimation points, and
> # - the log-likelihood corresponding to those estimation points.
>
> likNorm <- function(dat, which = c("mean", "var"), ests){
A #
# Arguments: #
# - dat - a vector of observations #
# - which - the estimated parameter #
# - ests - a vector of estimates of that par #
# #
# Values: #
# — ests - the original estimates #
# - ests.lik - the log.lik at the ests #
# - MLE - the maximum likelihood estimate #
# - MLE.1ik - the log.lik at the MLE #
# - eval - a vector of values for the log.lik #
# - eval.lik - the log.lik at the "eval" vector #
AN #

## 1. A FEW STATISTICS OF OUR DATA ##
N <- length(dat) # the number of obs
xbar <- mean(dat) # the sample mean
v.dat <- var(dat)*(N - 1)/N # the MLE (biased) var

## 2. CALCULATING THE LOG-LIK WITH RESPECT TO MU ##
if(which == "mean"){

# First, writing a simple function to find the log-likelihood:
log.lik <- function(eval, dat){

lik.i <- dnorm(x = dat, mean = eval, sd = sqrt(v.dat))
sum( log(lik.i) )

} # END log.lik FUNCTION

# Second, picking a vector of values to evaluate the likelihood:
eval <- seq(-4 / sqrt(N), 4 / sqrt(N), by = .01)

# Third, finding the likelihood for our vector of observations:
# a) at our estimates, and
# b) at the evaluation points.
ests.lik <- sapply(X = ests, FUN = log.lik, dat = dat)
eval.lik <- sapply(X = eval, FUN = log.lik, dat = dat)

# Fourth, finding the MLE
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max.lik <- optimize(f = log.lik,
lower = min(eval), upper = max(eval),
maximum = TRUE, dat = dat)

MLE <- max.lik$maximum # the maximum

MLE.1lik <- max.lik$objective # the log-lik at the maximum

## 3. CALCULATING THE LOG-LIK WITH RESPECT TO SIGMA~2 ##
} else if(which == "var"){

# First, writing a simple function to find the log-likelihood:
log.lik <- function(eval, dat){

lik.i <- dnorm(x = dat, mean = xbar, sd = sqrt(eval))
sum( log(lik.i) )

} # END log.lik FUNCTION

# Second, picking a vector of values to evaluate the likelihood:
eval <- seq(qchisq(p = .01, df =N - 1)/(N - 1),
gchisq(p = .99, df = N - 1)/(N - 1),
by = .01)

# Third, finding the likelihood for our vector of observations:

# a) at our estimates, and

# b) at the evaluation points.
ests.lik <- sapply(X = ests, FUN
eval.lik <- sapply(X = eval, FUN

dat)
dat)

log.lik, dat
log.1lik, dat

# Fourth, finding the MLE
max.lik <- optimize(f = log.lik,
lower = min(eval), upper = max(eval),
maximum = TRUE, dat = dat)
MLE <- max.lik$maximum # the maximum
MLE.1lik <- max.lik$objective # the log-lik at the maximum

## 4. GIVING AN ERROR IF THE INPUT WAS INCORRECT ##
} elsed{

stop("you must pick either 'mean' or 'var' for 'which'")
} # END if STATEMENTS

## 5. PRINTING SOME PRETTY THINGS ##
cat("\nYou found the MLE for the ", which, ":",
"\n\n", sep = "")
cat(" The value that maximizes the likelihood function: ", round(MLE, 3),
"\Il", sep = uu)
cat(" The log-likelihood at the maximum: ", round(MLE.lik, 3),
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”\I.Z\Il”, sep = nu)

## 6. PUTTING INTO A LIST AND RETURNING ##
out <- list(ests = ests, ests.lik = ests.lik,
MLE = MLE, MLE.1lik MLE.1lik,
eval = eval, eval.lik = eval.lik,
which = which)

return(out)

} # END lik.norm FUNCTION

After loading the function into R, you first need to simulate data from a normal distribu-
tion, pick the parameter you want to estimate, and estimate that parameter in various
ways, putting all of those estimates into the same vector.

> set.seed(289734)

> dat <- rnorm(30) # 30 draws from a standard normal dist.
> ests <- c(var(dat), 4.2) # estimates of the variance.

> # Running the likelihood/maximization function:

> 1.mod <- likNorm(dat = dat, which = "var", ests = ests)

You found the MLE for the var:

The value that maximizes the likelihood function: 1.363
The log-likelihood at the maximum: -47.212

The 1.mod object contains various sub-objects, the names of which are revealed by using
the names function.

> names (1.mod)

[1] "ests" "ests.lik" "MLE" "MLE.1lik" ‘"eval"
[6] "eval.lik" "which"

Note that ests is the vector of estimates, ests.lik is the log-likelihood values at the
estimates, MLE is the maximum likelihood estimate (using optimize ), MLE.1lik is the
log-likelihood value at the MLE, eval is a vector of evaluation points near the maximum,
eval.lik are the log-likelihood values at the evaluation points, and which is a charac-
ter string indicating whether we maximized the likelihood with respect to the mean or
variance. We can pull each of the sub-objects out of the 1.mod object using the $ operator.

> 1.mod$ests # the estimates (that we plugged in)
[1] 1.40986 4.20000

> 1.mod$ests.1lik # the log-lik at the estimates

[1] -47.22052 -53.96180

> 1.mod$MLE # the maximum likelihood estimate
[1] 1.362881

> 1.mod$MLE.1ik # the log-lik at the MLE

[1] -47.21199
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We can even plot the log-likelihood function by pulling out eval and eval.lik and
connecting the dots.

> plot(x = 1l.mod$eval, y = l.mod$eval.lik,

+ xlab = "Var Estimates", ylab = "Log-lik Values",
+ main = "Log-1ik Function",

+ type = "1", 1lwd = 2, axes = FALSE)

> axis(1, col = '"grey")

> axis(2, col = "grey", las = 1)

Log-lik Function

54

Log-lik Values
|
a1
N

-56
-58
0.6 0.8 1.0 12 14 1.6

Var Estimates

Most of the useful optimization problems in statistics will take the form of 1ikNorm, so
play around with 1ikNorm to better understand the logic of function construction and
optimization. Only then can you become an R-master.
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7.4 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Functions

function(arguments){ # a function to do cool stuff
commands
return statement

}

e # the "dot-dot-dot" argument
return(x) # return "x" from the function
invisible(x) # don't display "x" (weird!)

# Optimization

optimize(f, lower, upper, maximum) # find the min or max of the
# function f

sapply (X, FUN, ...) # perform the function on each
# element of a vector/matrix

# Printing and Formatting

print(x, digits) # print an object
cat(..., sep) # write some words
paste(..., sep, collapse) # put some characters together

# Misc Plotting
plot(x, y, # connect the dots to form a line
type = "1", 1lwd)
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Chapter 8

The “ply” Functions

Inspector Tiger: Now someone has committed a murder here,

and that murderer is someone in this room. The question is
. who?

Colonel Pickering: Look, there hasn’t been a murder.

Inspector Tiger: No murder?

All: No.

Inspector Tiger: Oh, I don’t like it. It’s too simple, too clear

cut. I’d better wait.

—Monty Python’s Flying Circus - Episode 11

8.1 Functions of a Systematic Nature

8.1.1 Introduction to the “ply” Functions

Statisticians often need to evaluate the same function, systematically, across an
entire matrix, vector, list, etc. Some of the functions that we have already talked about
are examples of applying specific (smaller) functions systematically over a vector or a
matrix. For instance, rowSums takes a matrix, calculates the sum of each row of that
matrix, and outputs a vector of row sums (and, likewise, colSums sums the columns).

> # Making sure the simulation can be repeated:

> set.seed(9182)

> # Generating 0/1 values from a Bernoulli dist with p = .7:
> X <- matrix(rbinom(40, size = 1, prob = .7), nrow = 8)

>

X # Which values did we generate?

[,11 [,2]1 [,31 [,41 (,5]
[1,] 0 1 0 1 1

[2,] 0 0 0 1 0
[3,] 1 1 0 1 1
(4,1 1 1 1 1 1
[5,] 1 0 1 0 0
[6,] 1 1 1 0 1
7,1 0 1 0 0 1

151
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(8,] 1 1 1 0 1
> # Calculating the row sums and col sums of X:
> rowSums (X)

[11 31452424
> colSums (X)
[11 56446

By using rowSums or colSums, R is performing the same mini-function (i.e., the sum
function) on each row or column.

Another example of repeatedly performing the same function across a matrix or
vector is via vectorized functions. For example, as discussed in chapter 1, taking the
logarithm of a vector of elements outputs a vector of the log of each element.

>x <-c¢(1, 2, 3, 4, 5) # vector of elements
> log(x) # log of each element

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

In using log with a vector of inputs, R is performing the same mini-function (i.e., the
logarithm function) on each, individual element.

One might wonder whether R contains a general method of systematically performing
the same mini-function (any function) across rows of a matrix, across columns of a matrix,
or on elements of a vector/matrix. As in every R desire you might have, the answer is (of
course) “yes.” I will discuss three of those functions: sapply, apply, and tapply, although
two other functions (lapply and mapply) are also frequently used. Not surprisingly, due
to the wonderful coherence of names, many R users refer to these series of functions as the
“ply” functions (or the “pply” functions if you really like “p™’s). Each of the ply functions
takes a specific type of R object, performs a mini, user-specified function in a specific
manner, and returns a particular result.

1. sapply: Takes a (usually) vector or matrix, performs a function on each element of
that object, and returns (usually) a vector of calculations.

2. apply: Takes (in general) a matrix, performs a function on the rows or columns of
that matrix, and returns (usually) a vector of calculations.

3. tapply: Takes two or more vectors (one indicating score and the others indicating
group membership), performs a function within each group, and returns (usually)
a vector of calculations.

The sapply function is the easiest to understand, so I will discuss it first.

8.1.2 The sapply Function

The function sapply has the most basic structure of the “ply” family of functions.
The basic form of the sapply function is as follows.

sapply (X, FUN, ... )

In the above set-up...
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e X: A vector or matrix of scores. X can be of any mode (logical, numeric, character)

as long as the mini-function allows an object of that mode.

FUN: A function (either already in R or user specified) that takes a scalar input and
returns (in general) a scalar output. The function can have multiple arguments, but
one of those arguments (usually the first one) is of the same form as the individual
values of X.

...: The (annoying) dot-dot-dot argument. Essentially, the ... “argument” allows
for a mini-function that takes multiple arguments. One of those arguments must
be the values of X, but the remaining arguments can be specified by name and
separated by commas in place of . ... We will rarely ever use the ... argument, so
I will provide one example of how it works and ignore it thenceforth.

Perhaps an example might help alleviate confusion. Pretend that you have the

following (incredibly useful) function.

> woah <- function(x){

if(x <= 2)1{
return("mouse")

} else if(x > 2 & x <= 4){
return("cat")

} elsed{
return("elephant")

} # END if STATEMENTS

} # END woah FUNCTION

The woah function returns: (1) “mouse” if the value of x is less than or equal to 2; (2) “cat”
if the value of x is greater than 2 and less than or equal to 4; and (3) “elephant” if the
value of x is greater than 4. Due to multiple if statements, the woah function can only
take scalar elements rather than entire vectors. In fact, if you try to run this function on
a vector of elements, R will only look at the first element, ignore the remaining elements,
and issue a warning.

> # A vector of scores.
> boo <- ¢(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8)
>
> # Trying to find out the associated animal:
> try(woah(boo), silent = TRUE) [1]
[1] "mouse"
Warning in if (x <= 2) { :
the condition has length > 1 and only the first element

A solution to determining the animal associated with each element of the vector is to use
the sapply function.

> sapply(boo, FUN = woah) # the animal of each number!

[1] "mouse" "mouse" "mouse" "mouse" "cat"
[6] "cat" "elephant" "elephant" "elephant" "elephant"
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Hooray!

Note: Even though sapply works with standard, vectorized functions (such
as addition, logarithms, square roots, distribution densities, etc.), it is most
appropriate when the function is based off a complicated sequence of non-
vectorized statements. Because R is based on vectorization, using sapply
instead of a vectorized function can result in a drastic loss in efficiency.

In our example, sapply looked at the first element of boo, determined the animal asso-
ciated with the number located in the first element (based on the if/else statements),
and put the corresponding animal as the first element of the result; then sapply looked
at the second element of boo and repeated the entire process. Without sapply, your only
recourse in determining the animal associated with each number of boo would be via a
for loop.

> # Start with a null vector:

> vec <- NULL

> # Repeat the for loop for each element of boo:

> for(i in 1:length(boo)){

+

+ vec[i] <- woah(boo[i])

+

+ } # END for i LOOP

> # See what is in the vector:

> vec
[1] "mouse" "mouse" "mouse" "mouse" "cat"
[6] "cat" "elephant" "elephant" "elephant" "elephant"

Yet sapply is easier, clearer, and quicker to write. Note that sapply also works with
standard, built-in functions, such as the square root function.

> sapply(boo, FUN = sqrt)
[1] NaN 0.000000 1.000000 1.414214 1.732051 2.000000
[7] 2.236068 2.449490 2.645751 2.828427

And even though R gives a warning (the square-root of a negative number is not applicable
in R'), the square-root calculation is still attempted on each element of boo.
We could also try to sapply each element of an n x m dimensional matrix.

> # Turning boo into a matrix:
> boo2 <- matrix(boo, nrow = 2)
> boo2
(,11 [,21 [,3] [,4] [,5]

[1,] -1 1 3 5 7

[2,] 0 2 4 6 8
> sapply(boo2, FUN = woah)

[1] "mouse" "mouse" "mouse" "mouse" "cat"

[6] "cat" "elephant" "elephant" "elephant" "elephant"
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But when you use sapply on a matrix, R initially turns the matrix into a vector (putting
the first column of the matrix as the first and second elements of the vector, the second
column of the matrix as the third and fourth elements of the vector, etc. This is called
“stacking a matrix column-by-column.”) and then performs the mini-function on each
element of the newly defined vector®. Therefore, when you sapply across the elements of
a matrix, you must physically convert the vector that R outputs back into a matrix for
subsequent calculations and displays.

> matrix(sapply(boo2, FUN = woah), nrow = nrow(boo2))
(,1] [,2] [,31 [,4] [,5]

[1,] "mouse" "mouse" "cat" "elephant" "elephant"
[2,] "mouse" "mouse" "cat" "elephant" "elephant"

As mentioned earlier, the mini-functions entered into the FUN argument of sapply
need not only have a single argument.

> woah2 <- function(x, y){

if(x <= 2)1{
return(paste("mouse-", y, sep = ""))

} else if(x > 2 & x <= 4){
return(paste("cat-", y, sep = ""))

} else{
return(paste("elephant-", y, sep = ""))

} # END if STATEMENTS

} # END woah2 FUNCTION

Now, when we set x as an element and y as practically anything, R first determines the
animal associated with x and then pastes that animal to y.

> woah2(x = 2, y = "meep")

[1] "mouse-meep"

We can (of course) still use R to translate each element of boo to an animal, but we also
must specify the value of y somewhere in ... land.

> # - X is still boo,
> # - Our function is now woah2 (with x and y),
> # - We want the value of y to be "meep", so we indicate the value
> # (by name) somewhere after we declare our function, in the ...
> sapply(boo, FUN = woah2, y = "meep")

[1] "mouse-meep" "mouse-meep" "mouse-meep"

[4] "mouse-meep" "cat-meep" "cat-meep"

[7] "elephant-meep" "elephant-meep" "elephant-meep"

[10] "elephant-meep"

The ... argument(s) work(s) similarly in all of the ply functions.

3R actually turns the matrix into a list, uses the lapply function on the list, and then unlists the
result. See the help page for a more thorough discussion of lapply.
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8.1.3 The apply Function

Unlike sapply, apply takes a matrix, performs calculations on rows or columns of
the matrix, and then returns the result as (usually) a vector of elements. The basic outline
of apply is as follows.

apply (X, MARGIN, FUN, ... )

Notice how the arguments of apply are basically the same as the arguments of sapply,
only now we must let R know the MARGIN over which the mini-function is to be apply-ed.
In the apply function (in contrast to sapply), in the apply function, X will usually be
a matrix of a certain dimension, and FUN will usually be a mini-function taking a vector
of elements and returning a scalar (with optional arguments that can be put into ...
land)*. Unlike sapply, when apply-ing a mini-function to dimensions of a matrix, we
must tell R over which dimension the mini-function should be applyd. Remember that
you can either use rowSums to sum the rows of a matrix or colSums to sum the columns.
MARGIN essentially tells R whether we want to do the rowFunction (if MARGIN = 1) or
the colFunction (if MARGIN = 2). And MARGIN will usually be set to a scalar number (1
for applying the function to the rows of a matrix and 2 for applying the function to the
columns).

Even though rowSums and colSums are more efficient than apply, we can use apply
to get the same result.

# Same matrix generation as before:

set.seed(9182)

X <- matrix(rbinom(40, size = 1, prob = .7), nrow = 8)
# Row and column sums:
apply (X = X, MARGIN = 1, FUN
[11 31452424

> apply(X = X, MARGIN = 2, FUN
[11 56446

vV V. Vv VvV

sum) # rowSum alternative

sum) # colSum alternative

Unlike rowSums and rowMeans, R does not provide a built-in function to calculate the row
(or column) median or variance. Using the apply function, those calculations become
rather straightforward.

> # Generating a different matrix:

> set.seed(8889)

> Y <- matrix(rnorm(40), nrow = 8)

> # We can find the rowSums and rowMeans with and without apply.
> apply(X = Y, MARGIN = 1, FUN = sum) # option difficult: apply

[1] 2.555496548 0.234035967 -0.570690649 2.027959251
[6] -0.009911829 -1.744059059 -2.323881535 1.515020629

> rowSums(x = Y) # option easy: rowSums

4The apply function can actually take (as input) an higher-dimensional array of values and output a
higher dimensional array (depending on the function and ... arguments). Generalizations of the apply
function will not be needed for the remainder of this book, which is why I’'m putting it into a footnote.
Go footnote power!
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[1] 2.555496548 0.234035967 -0.570690649 2.027959251

[6] -0.009911829 -1.744059059 -2.323881535 1.515020629

> apply(X = Y, MARGIN = 1, FUN = mean) # option difficult: apply
[1] 0.511099310 0.046807193 -0.114138130 0.405591850

[6] -0.001982366 -0.348811812 -0.464776307 0.303004126

> rowMeans(x = Y) # option easy: rowMeans
[1] 0.511099310 0.046807193 -0.114138130 0.405591850

[6] -0.001982366 -0.348811812 -0.464776307 0.303004126

> # But the median and variance of the rows need apply.

> apply(X = Y, MARGIN = 1, FUN = median) # easy peasy!

[1] 0.9758727 -0.2273004 -0.3643722 0.2650768 -0.6377596

[6] -0.5514250 -0.9664563 -0.0197963

> apply(X = Y, MARGIN = 1, FUN = var) # easy peasy!

[1] 1.6558789 2.2930474 1.0154483 0.5901349 0.9842446

[6] 0.3537784 1.0736577 2.1269546

Important: apply, sapply, and tapply (later) take a function in the FUN
argument. The desired function is (generally) not in quotes and must either
be the name of an already existing function, the name of a function that you
created, or a function written specifically inside the FUN argument.

As in sapply, one of the beauties of apply is being able to take a user-written
mini-function, and to systematically apply that function to dimensions of a matrix. For
instance, R does not provide a function to find the mode of a set of data, but writing our
own s.mode function is relatively straightforward.

> s.mode <- function(x){

# First, create a table of counts.
tab <- table(x)

# Second, pull out the name corresponding to the max count.
mod <- names(tab) [which.max(tab)]

Finally, if the original values are numbers:
-—> turn them back into numbers.
If the original values are characters:
—--> keep them characters.
if( is.numeric(x) ){
return (as.numeric (mod))
} else{
return (mod)
} # END if STATEMENTS

H R R R

} # END s.mode FUNCTION

If you remember, boo is a vector of scores, and woah (inside of the sapply function)
determines the animal associated with each score.



158 Chapter 8. The “ply” Functions

> boo3 <- ¢(-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8)
> wee <- sapply(boo3, FUN = woah) # finding the animals

> wee # indicating the animals
[1] "mouse" "mouse" "mouse" "mouse" "mouse"
[6] "mouse" "cat" "cat" "elephant" "elephant"

[11] "elephant" "elephant"

Clearly, "mouse" is the mode of wee (there are more mice than anything else), so running
s.mode on wee will result in a confirmation of what we already know.

> s.mode (wee)

[1] "mouse"

But s.mode takes a vector of data and returns a scalar element, which is just the sort
of mini-function that we can plug into the FUN argument of apply. Therefore, by using
apply, we can easily find the mode of each row of a matrix.

> wee2 <- matrix(wee, nrow = 4, byrow = TRUE)
> # mouse is the mode of rows 1/2,
> # cat is the mode of row 3,
> # and elephant is the mode of row 4.
> wee2
[,1] [,2] [,3]
[1,] "mouse" "mouse" "mouse"
[2,] "mouse" "mouse" "mouse"
[3,] "cat" "cat" "elephant"

[4,] "elephant" "elephant" "elephant"
> apply(wee2, MARGIN = 1, FUN = s.mode) # magical, isn't it!

[1] "mouse" "mouse" "cat" "elephant"

You can apply over rows (or columns) of a matrix using any function that takes a vector
of inputs and returns a scalar output.

8.1.4 The tapply Function

The final of the “ply” family of functions that I will discuss in this chapter is tapply
and is structured according to the following diagram.

tapply (X, INDEX, FUN, ... )

Unlike the other two “ply” functions, tapply is intuitively helpful in calculating sum-
maries for introductory statistics classes. In fact, the tapply function makes calculating
within-group statistics easy and intuitively obvious. The only reason that I decided to
discuss sapply and apply was as an introduction to the logic of tapply. The difference
difference between tapply and sapply is the INDEX argument. For the rest of the book,
INDEX takes a vector of the same length of X, indicating the category or group to which
each member of X belongs. For instance, let’s load the anorexia data in the MASS package.
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> library (MASS)
> data(anorexia)
> head(anorexia)

Treat Prewt Postwt

1 Cont 80.7 80.2
2 Cont 89.4 80.1
3 Cont 91.8 86.4
4 Cont 74.0 86.3
5 Cont 78.1 76.1
6 Cont 88.3 78.1

The anorexia data contains people in one of three “treatment” groups: those in the
control group, those in the CBT group, and those in the FT group. We can verify the
unique groups by using the levels function.

> levels(anorexia$Treat) # the unique levels of the treatment factor
[1] IICBTII llcontll llFTll

The entire anorexia data set contains three vectors: (1) a numeric vector indicating scores
on the weight variable before the treatment; (2) a numeric vector indicating scores on the
weight variable after the treatment; and (3) a factor or grouping variable associating a
particular score to a specific condition. We call the latter an index because it tells us
which scores belong together. And that indexr is what we need to use as INDEX in the
tapply function.

> attach(anorexia)

> tapply(X = Postwt, INDEX = Treat, FUN = mean) # group means
CBT Cont FT

85.69655 81.10769 90.49412

> tapply(X = Postwt, INDEX = Treat, FUN = sd) # group sds
CBT Cont FT

8.351924 4.744253 8.475072

When using the tapply function with an INDEX argument, R knows to perform the mini-
function specified in FUN within each group, returning the whole shebang as a vector of
within-group calculations. For example, ANOVA (in a future chapter) becomes remark-
ably easy when taking advantage of tapply.

> # First - simple statistics per group.
> (xbar.g <- mean(Postwt))
(1] 85.17222

> (xbar.j <- tapply(X = Postwt, INDEX = Treat, FUN = mean))
CBT Cont FT

85.69655 81.10769 90.49412

> (s2.j <- tapply(X = Postwt, INDEX = Treat, FUN = var))
CBT Cont FT

69.75463 22.50794 71.82684

> (n.j <- tapply (X = Postwt, INDEX = Treat, FUN = length))
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CBT Cont FT
29 26 17
> # Second - Sums of Squares
> (SSB <- sum( n.j * (xbar.j - xbar.g)"2 ))
[1] 918.9869
> (8SW <= sum( (n.j - 1) * s2.j ))
[1] 3665.058
> (SST <- sum( (Postwt - xbar.g)~2 ))
[1] 4584.044
>
> # ... and then it's easy to calculate MS and F :)

Without using tapply, finding parts of an ANOVA table by using basic R calculations is
nearly impossible to systematize.
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8.2 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Applying and Tapplying

sapply (X, FUN, ...) # apply to each element
apply(X, MARGIN, FUN, ...) # apply to row or column
tapply (X, INDEX, FUN, ...) # apply to group members
levels(x) # unique levels/groups of a factor
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Chapter 9

Introduction to Statistical
Inference in R

Pointed sticks? Ho, ho, ho. We want to learn how to defend
ourselves against pointed sticks, do we? Getting all high and
mighty, eh? Fresh fruit not good enough for you eh? Well
I’ll tell you something my lad. When you’re walking home
tonight and some great homicidal maniac comes after you with
a bunch of loganberries, don’t come crying to me!

—Monty Python’s Flying Circus - Episode 4

All of the procedures that we have discussed to this point in the book are useful
for computer programming. And many algorithms designed in C (or any other well-
established programming language) can also be designed (in some fashion) in R. However,
R was built for statistics, so much of Rs programming capabilities are best served as
handmaidens to statistical analyses. Over the next few chapters, I will describe the basics
of statistical analysis using R. But this description will only be a brief introduction. To
better understand how to use R for statistics, pick up one of the more specialized books
(e.g., Faraway, 2005; Fox & Weisberg, 2010; Pinheiro & Bates, 2009; Venables & Ripley,
2012) or plethora of free guides on the R website:

http://cran.r-project.org/other-docs.html

9.1 Asymptotic Confidence Intervals

Basic statistical inference usually involves several, related steps. I will discuss two
of those steps: interval estimation and hypothesis testing. The third step to statistical
inference, point estimation, was briefly discussed a few chapters ago alongside likelihood
functions.

Classical interval estimation is somewhat more intuitive than hypothesis testing, so
I will discuss it first. The process for calculating a normal-based confidence interval is
rather straight forward. In fact, you should already know much of the requisite code. For
an example calculation, load the debt dataset in the faraway package.

> # If you haven't installed "faraway", first install it.
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> library(faraway) # loading the package "faraway"

> data(debt) # loading the data "debt" inside "faraway"

> head(debt) # looking at the first few rows of "debt"
incomegp house children singpar agegp bankacc bsocacc

1 2 3 1 0 2 1 NA

2 5 2 3 0 2 1 NA

3 1 1 0 0 3 NA NA

4 3 3 0 0 4 1 0

5 5 2 2 0 2 1 0

6 3 3 0 0 4 1 0
manage ccarduse cigbuy xmasbuy locintrn prodebt

1 5 2 1 1 2.83 2.71

2 4 3 0 1 4.83 3.88

3 2 2 0 0 3.83 3.06

4 5 2 0 1 4.83 4.29

5 5 3 0 1 3.17 3.82

6 4 2 0 1 3.83 3.06

A histogram of the locintrn variable is somewhat normally distributed, and the qqpoints
lie along the qqline. Therefore, using normal theory to calculate confidence intervals
might be justified, especially given the large sample size (go CLT!).

> hist(debt$locintrn,

+ xlab = "Internal Locus of Control",
+ ylab = "Frequency",
+ main = "Histogram of Locus of Control")

Histogram of Locus of Control

Frequency

20 40 60 80 100

OH
|

Internal Locus of Control

> gqnorm(debt$locintrn)
> gqline(debt$locintrn)
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Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

The normal-based confidence interval for a single mean has the following formula:

o
Cl=z1+ Z(1+.Y)/2 <\/N>

where 7 is the sample mean, v is the desired confidence level (usually v = .95), z(14~)/2 is
the (1++)/2th quantile of the standard normal distribution, o is the population standard
deviation, and N is the sample size. The sample mean (Z) and sample size (N) are found
by examining the data.

> loc <- debt$locintrn[!is.na(debt$locintrn)] # remove the NAs

> (xbar <- mean(loc)) # sample mean
[1] 4.364527

> (N <- length(loc)) # sample size
[1] 444

Note that the locintrn sub-object of debt contains NA values (i.e., missing observations).
R does not really know how to handle missing data without user specified input. For
instance, if you construct a vector with NA values and try to take simple statistics, R does
not know the actual values of the missing data, and those actual values are integral to
the ultimate calculation.

>x <-c¢(1, 2, 3, 4, 5, NA) # vector with NAs
> mean (x) # mean of vector with NAs?
[1] NA

One option to get rid of NAs is to change the na.rm argument (inside mean, var, sd,
median, etc.) to TRUE.

> mean(x, na.rm = TRUE) # remove NAs before calculating the mean
(11 3
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But sometimes the better option is to construct a new vector, y, that contains only the
observations of x (by finding all of the values that aren’t NA using the is.na function and
negating it with !).

>y <- x[lis.na(x)] # remove the NAs of x
> mean(y) # the mean of the purged data
[11 3

One reason that constructing a new vector might be more optimal than usingna.rm = TRUE
is because the new vector contains the correct number of observations (so that the length
function will work correctly on y).

After calculating ¥ = 4.365 and N = 444, we still must find o and z(;,)/2 before we
can calculate our normal-theory-based confidence interval. Assume that the population
standard deviation is known and o = 1 (due to metaphysical speculation). Then we only
need to find the (1 4 v)/2th quantile of the standard normal distribution. Making sure
that v € [0, 1], we can find the corresponding quantile using the following procedure.

> # Several confidence levels:

> gammal <- .95

> gamma2 <- .99

> gamma3 <- .90

> gammad <- .752

> # Several critical values:

> ( z1 <- gnorm( (1 + gammal)/2 ) ) # the 95) quantile
[1] 1.959964

> ( z2 <- gnorm( (1 + gamma2)/2 ) ) # the 99J, quantile
[1] 2.575829

> ( z3 <- gnorm( (1 + gamma3)/2 ) ) # the 90J, quantile
[1] 1.644854

> ( z4 <- gnorm( (1 + gamma4)/2 ) ) # the 75.2), quantile
[1] 1.155221

Each confidence level results in a slightly different quantile and, therefore, leads to a
slightly different confidence interval.

> sig <- 1

> ( CI1 <- xbar + c(-1, 1) * z1 * sig/sqrt(N) ) # 95} CI
[1] 4.271511 4.457543

> ( CI2 <- xbar + c(-1, 1) * z2 * sig/sqrt(N) ) # 997 CI
[1] 4.242284 4.486770

> ( CI3 <- xbar + c(-1, 1) * z3 * sig/sqrt(N) ) # 90} CI
[1] 4.286466 4.442588

> ( CI4 <- xbar + c(-1, 1) * z4 * sig/sqrt(N) ) # 75.2) CI?
(1] 4.309703 4.419351

The major R trick that I used to calculate symmetric confidence intervals in one step
is multiplying the half-width 2,y /2 (ﬁ) by c(-1, 1) to simultaneously obtain the
lower and upper values.
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9.2 Hypothesis Tests of a Single Mean

Rather than finding a range of plausible values for a population parameter, data
analysts are often interested in testing whether the population parameter is statistically
different from a pre-specified null value. Ignoring the arguments against the frequentist
version of statistical inference (e.g., Armstrong, 2007; Cohen, 1994), the simplest infer-
ential procedures test the location of a single, population mean (u). And the two most
basic tests for this particular research question are the z-test and t-test, each with specific
assumptions that may or may not be satisfied.

One difficulty in explaining the one-sample z-test (and one-sample ¢-test) is finding
an appropriate (and realistic) research question. A typical research question for actually
using one sample tests is for assessing long standing claims with well-defined null values.
For instance, a few decades ago, researchers collected data designed to determine whether
the average body temperature was actually equal to 98.6°, as conventional wisdom (and
mothers/doctors) suggests (Mackowiak, Wasserman, & Levine, 1992). You can access the
data using the following set of R commands.

> site <- "http://ww2.coastal.edu/kingw/statistics/R-tutorials/text/normtemp.txt"

> temp.dat <- read.table(url(site), header = FALSE)
> head(temp.dat) # what the data look like

Vi V2 V3
196.3 170
296.7 171
396.9 174
4 97.0 180
597.1 173
6 97.1 175
> nrow(temp.dat) # the number of observations
(1] 130

The first column of temp.dat contains body temperature (in sorted order) of 130 obser-
vations. Rather than using the entire dataset, we will pretend that a random sample of
N = 20 observations constitues our collection of data.

> set.seed(83234)
> ( temp.vec <- sample(temp.dat$Vl, size = 20, replace = FALSE) )

[1] 97.1 98.6 98.2 98.0 99.2 98.4 96.7 98.8 98.6 98.5 98.7
[12] 97.8 98.0 98.1 96.3 98.2 98.2 98.0 97.1 98.6

> # Notice that temp.vec is a much smaller "sample" of data.

9.2.1 One-Sample z-Tests

One-sample z-tests require several pieces of information.
1. The null and alternative hypotheses, which provides:

e The population mean under the null hypothesis: pg.
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o Whether we are performing a one-tailed or two-tailed test.
2. Other data-based information (e.g., nuisance parameters):

e The sample mean: .
e The sample size: N.

e The population standard deviation: o.
3. How to make a decision regarding our hypotheses:
e The desired Type I error rate: a.

In the current section, we will pretend that the entire sample of N = 130 observations
is the entire population, so that the standard deviation taken from the entire sample is
“truth.”

> ( sigma <- sd(temp.dat$V1l) ) # our population standard deviation
[1] 0.7331832

Our experiment was designed to disconfirm the notion that the average body tem-
perature in the population is p = 98.6, so we will use 98.6 as our null hypothesis mean —
the thing that we are trying to provide evidence against. And without a strong alternative
hypothesis, we should perform a two-tailed test to cover both of our options.

Hp: =986
Hy:p#98.6

And assuming « = .05 (even though a more conservative Type I error rate might be more
appropriate), we can perform the test. Assuming that the null hypothesis is true,

T — po

g

VN
is normally distributed with a mean of 0 and a standard deviation of 1. One method
of making a decision is to calculate z and then find the probability that |Z| > |z| (i.e.,
assuming that the null hypothesis is true) more extreme than z.

z =

> # First, find the necessary statistics:
> xbar <- mean(temp.vec)

>N <- length(temp.vec)

> # Second, calculate z using the formula:
> ( z <- (xbar - 98.6)/(sigma/sqrt(N)) )
1] -3.324291

M

> # Then find the p-value by:

> # -- taking the absolute value of z,

> # -- finding the area in the upper tail, and
> # -- multiplying that area by 2.

> ( p.z <- 2*pnorm(abs(z), lower.tail = FALSE) )

[1] 0.0008864368
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And because z = —3.324, so that |z| = 3.324, the probability of finding Z > |z| is
0.0004432, and therefore, the probability of finding |Z| > |z| is 0.0008864. Because p < a,
we would reject Hy and claim evidence that the mean body temperature in the population
is not equal to 98.6°.

Because R stores an infinite number of normal distributions, we do not even need to
transform our data to z before finding the p-value.

> # Calculating p without calculating z first:

> p.z <- 2*pnorm(abs(xbar - 98.6),

+ mean = 0, sd = sigma/sqrt(N), lower.tail = FALSE)
> p.z

[1] 0.0008864368

Notice that both p-values are identical due to linear transformations not changing the
shape of a distribution.

We could also test our hypotheses using critical values in lieu of p-values. Finding
critical values is identical to finding z(14.y/2 (which I talked about in the confidence
interval section). Why are these things equivalent? Well, we need to find the z of a
standard normal distribution such that the proportion of area greater than z plus the
proportion of area less than —z is equal to . The value of z such that a/2 is the area
above z is the (1—+)/2 quantile of the distribution. These critical values are the endpoints
of the center region in the following plot.

alpha <- .05
# a) The normal distribution evaluation:
x <- seq(-3, 3, by = .01)
y <- dnorm(x)
# b) Plotting and labeling:
plot(x, y,
xlab "z", ylab = "Density",
main = "Two-Tailed Critical Region",
type = "n", axes = FALSE)
axis(1)
axis(2, las = 1)
# c) Drawing the mean:
lines(x = c(0, 0), y = c(0, max(y)),
1ty = 2, col = "grey")
# d) Coloring and drawing the critical values:
polygon(x = c(min(x), x[x < gnorm(alpha/2)], gnorm(alpha/2)),
y = ¢(0, yl[x < gnorm(alpha/2)], 0),
col = "lightgrey")
polygon(x = c(qnorm(1 - alpha/2), x[x > gnorm(1 - alpha/2)], max(x)),
y = ¢(0, y[x > gnorm(1 - alpha/2)], 0),
col = "lightgrey")
lines(x, y, type = "1", lwd = 2)
# e) Text corresponding to alpha/2 and alpha/2:
text(x = c(qnorm(alpha/2) - .18, gqunorm(l1 - alpha/2) + .18),
y =c(.02, .02),

+VVV+ +V++VV+HVVVVYV Y+ +HYVVVVVVVY
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labels = c(expression(alpha/2), expression(alpha/2)),
cex = .7)
# f) Lines corresponding to the critical values:
segments (x0 = c(qnorm(alpha/2), qnorm(1 - alpha/2)),
y0 = ¢c(0, 0),

+ 4+ 4+ + VvV VvV + +

y1 = c(dnorm(qnorm(alpha/2)) + .025,
dnorm(qnorm(1 - alpha/2)) + .025),
lwd = 2)
Two-Tailed Critical Region
0.4
0.3
Py
2 02+
a
0.1
00 _ ‘A M
[ I I I I I ]
-3 -2 -1 0 1 2 3

And finding z such that the proportion of area greater than z is equal to a/2.

> # Our alpha level (again):

> alpha <- .05

> # Our z-critical values using our alpha level:
> ( z.crit <- gnorm(c(alpha/2, 1 - alpha/2),
+ mean = 0, sd = 1) )

[1] -1.959964 1.959964

> # Reject the null hypothesis?

> (z < z.crit[1]) | (z > z.crit[2])

(1] TRUE

> # Retain the null hypothesis?

> (z > z.crit[1]) & (z < z.crit[2])

[1] FALSE

Another option would have been to find the critical z-values (rather than the critical
z-values) and determine if our sample mean was inside the critical z-region.

One should always follow up hypothesis tests with post hoc procedures. Harking
back to the beginning of this chapter, we can easily calculate a confidence interval for the
population mean of body temperature.
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# Our silly little statistics:

xbar <- mean(temp.vec)

sigma <- sd(temp.dat$V1)

N <- length(temp.vec)

# Our confidence level:

gamma <- 1 - alpha

# Our confidence interval (symmetric!):

CI.z <- xbar + c(-1, 1)*qnorm( (1 + gamma)/2 )*sigma/sqrt(N)
Cl.z

[1] 97.73367 98.37633

V VVVVVVVYV

I will leave the corresponding lower-tailed test:

Ho : i > 98.6
H:p< 98.6

or upper tailed test:

Ho : p < 98.6
Hy @ p > 98.6

as an exercise to the reader. Of course, much of the time, statisticians do not know the
population standard deviation (o), and the sample size (V) is not quite in asymptopia.
The one-sample t-test was developed to answer questions about the population mean but
without the unrealistic assumption of a known population variance.

9.2.2 One-Sample t-Tests

The t-based test procedure in R is nearly identical to the z-based test procedure. As
always, we must specify a null and alternative hypotheses, and because we are using the
same data as before, we will keep the same hypotheses,

Hp: p=98.6
H; : p # 98.6,

and we will use the same Type I error rate of a = .05.

The t-test assumes that our data are randomly sampled from a normal distribution.
Procedures exist to test for population normality, but visual techniques (e.g., qgqnorm
plots) are usually sufficient.

> qqnorm(temp.vec, pch = 20) # is it normal?
> qqline(temp.vec) # it should be on the line.
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Normal Q-Q Plot
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Unfortunately, the data do not appear to align with the qgline. Normally, I would choose
a different method of analysis (e.g., the sign test, Wilcoxen test, bootstrapping, etc.) but
we are only using these data as an illustration of how to perform basic analyses.

Using the ¢-test Formula

The one-sample t-statistic can be calculated with

T — o
taf = —5—
VN

where df = N —1 and s, = 4/ w Because R knows the t family of functions (dt,

pt, at, and rt), the actual ¢-based procedure is not much different to the one-sample
z-test.

> # First, find the necessary statistics:
> xbar <- mean(temp.vec)

> s_x <- sd(temp.vec)

>N <- length(temp.vec)

> # Second, calculate t using the formula:
> ( t <= (xbar - 98.6)/(s_x/sqrt(N)) )

[1] -3.299206

> # Then find the p-value by:

> # -- taking the absolute value of t,

> # -- finding the area in the upper tail of t with df = N - 1, and
> # -- multiplying that area by 2.

> ( p.t <- 2*pt(abs(t), df = N - 1, lower.tail = FALSE) )

[1] 0.003772094

And because t = —3.299, so that |t| = 3.299, the probability of finding T" > |¢| is 0.001886,
and therefore, the probability of finding |T'| > |¢| is 0.0037721. Because p < «, we would
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reject Hy and claim evidence that the mean body temperature in the population is not
equal to 98.6°. Notice that I basically copied and pasted the conclusion from the one-
sample z-test. We only calculated a slightly different statistic and used a slightly different
distribution.

We can also easily calculate a t-based confidence interval.

# Our silly little statistics:

xbar <- mean(temp.vec)

s_x <- sd(temp.vec)

N <- length(temp.vec)

# Our confidence level:

gamma <- .95

# Our confidence interval (symmetric!):

CI.t <- xbar + c(-1, 1)*qt((1 + gamma)/2, df = N - 1)*s_x/sqrt(N)
# How do our confidence intervals compare?

CI.z # a z (normal) based confidence interval.

[1] 97.73367 98.37633
> CI.t # a t (t) based confidence interval.
[1] 97.70925 98.40075

V VVVVVVYVVYV

Notice that the t-based confidence interval is slightly wider than the confidence interval
calculated using asymptotic normal theory.

Using the t.test Function

Fortunately for R users everywhere, there exists a function (in R) that calculates
t-statistics, p-values, and confidence intervals all in one step. For the one-sample t-test,
the outline of the t.test function is as follows.

t.test (x,
alternative = c("two.sided", "less", "greater"),
mu = 0, conf.level = .95)

In the above description, x is a vector of data, alternative is the direction of rejection,
mu is the null hypothesis mean, and conf.level corresponds to the desired confidence
level. The t.test function defaults to performing a one-sample, two-sided t-test against
the null hypothesis that ;. = 0 and using a confidence level of vy = .95 (which is equivalent
to a=1-—.95=.05). If we test the population mean of body temperature using t.test
but keep the defaults, then R dutifully informs us that there is evidence to believe that
the mean temperature of the population is not equal to 0.

> ( t.modl <- t.test(x = temp.vec) ) # keeping the defaults
One Sample t-test

data: temp.vec

t = 593.5846, df = 19, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to O
95 percent confidence interval:

97.70925 98.40075
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sample estimates:
mean of x
98.055

How exciting!??! We should (of course) change mu to the actual null hypothesis mean.

> # The t-test automatically in R:
> ( t.mod2 <- t.test(temp.vec, mu = 98.6) )

One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.003772
alternative hypothesis: true mean is not equal to 98.6
95 percent confidence interval:
97.70925 98.40075
sample estimates:
mean of x
98.055

> # Compare with our previous calculation:
> CI.t # our (calculated) t-based confidence interval

[1] 97.70925 98.40075
> p.t # our (calculated) t-based p-value
[1] 0.003772094

And the automatic t-test resulted in exactly the same confidence interval and p-value as
our earlier results. We can also change the confidence level to anything: .99, .90, .942,
.42, and R will alter the width of the interval to match the desired confidence level.

> t.test(temp.vec, mu = 98.6, conf.level = .99)
One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.003772

alternative hypothesis: true mean is not equal to 98.6
99 percent confidence interval:

97.5824 98.5276

sample estimates:
mean of x

98.055

> t.test(temp.vec, mu = 98.6, conf.level = .90)
One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.003772
alternative hypothesis: true mean is not equal to 98.6
90 percent confidence interval:
97.76936 98.34064
sample estimates:
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mean of x
98.055

> t.test(temp.vec, mu = 98.6, conf.level = .942)
One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.003772
alternative hypothesis: true mean is not equal to 98.6
94.2 percent confidence interval:
97.72174 98.38826
sample estimates:
mean of x
98.055

Often, you might choose to perform one-sided hypothesis tests (given a particular
theory about the true mean of the population). For instance, you might believe that
the average body temperature was overestimated in the 19th century (using their prim-
itive temperature-extraction methods). To find p-values corresponding to lower-tailed
(or upper-tailed) alternative hypotheses, change alternative to "less" (or "greater").
But be warned: when alternative is not equal to two.sided, R also returns a one-sided
confidence interval.

> t.test(temp.vec, mu = 98.6, alternative = "less") # -Inf? Really!
One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.001886
alternative hypothesis: true mean is less than 98.6
95 percent confidence interval:
-Inf 98.34064

sample estimates:
mean of x

98.055

> t.test(temp.vec, mu = 98.6, alternative = "greater") # Inf? Really
One Sample t-test

data: temp.vec
t = -3.2992, df = 19, p-value = 0.9981
alternative hypothesis: true mean is greater than 98.6
95 percent confidence interval:
97.76936 Inf
sample estimates:
mean of x
98.055

As described in an earlier chapter, the t.test function is one of those model-based
R functions that calculates many values, returns those values in a list (with particular
names) and displays useful stuff (using print and cat statements) to the user. When a
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function returns a list of objects, one should determine the names of those objects, the
purpose of each object, how the objects were calculated from the data, and whether (or
not) those objects are needed for further analyses.

> names (t.mod2) # what is in mod2?
[1] "statistic"  "parameter"  ‘"p.value" "conf.int"
[6] "estimate" "null.value" "alternative" "method"
[9] "data.name"
> t.mod2$statistic # our t-statistic
t
-3.299206
> t.mod2$parameter # our degrees of freedom?
df
19
> t.mod2%p.value # the p-value from our test
[1] 0.003772094
> t.mod2$conf.int # the confidence interval vector

[1] 97.70925 98.40075

attr(,"conf.level")

[1] 0.95

> t.mod2%estimate # the x-bar in our sample

mean of x
98.055

> t.mod2%null.val # our null hypothesis mean

mean
98.6

Of course, even though we followed the one-sample t-test procedures on the tem-
perature data, we have evidence to believe that temperature is not normally distributed
in the population. The normal quantiles did not match the empirical quantiles from our
data! Can R determine the robustness of a particular statistical method? Of course - by
using the same control-flow, programming principles discussed earlier in the book.

The Robustness of the One-Sample ¢-Test

With respect to statistical testing, the meaning of the term “robustness” refers to
how close the true Type I error rate («) is to the Type I error set by the researcher
(o) in the face of certain violations. An outline of the general “robustness” procedure
can be illustrated when there are no violations. Assume that the data arise from a
(standard) normally distributed population and that the null hypothesis is true. Then
we can continuously sample from this population with a fixed sample size, and determine
the proportion of p-values less than « = .05. Because the null hypothesis is always true,
the proportion of p-values less than a = .05 should be .05.

> set.seed(827824)
> # Parameters of our simulation:
> reps <- 10000 # the number of replications
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> N <- 10 # the sample size drawn from the population
> # A vector to hold t-test based p-values:

> pval <- NULL

> # Repeating this simulation lots of times:

> for(i in 1:reps){

+

+ # Sampling from a normal dist and finding a p-value:

+  x <- rnorm(N, mean = 0, sd = 1)

+ pvalli] <- t.test(x,

+ mu = 0, alternative = "two.sided")$p.value
+

+ } # END for i LOOP

> alpha <- .05

> mean(pval < alpha)

[1] 0.0492

Is the proportion of p-values less than o = .05 close to .05 when the population is normal?
We can also determine the robustness of the one-sample t-test when the population is
extremely skewed. An example of an extremely skewed distribution is the x? distribution
with df = 1.

> x <- seq(0, 5, by = .01)

> y <- dchisq(x, df = 1)

> plot(x, y,

+ xlab = expression(chi~2), ylab = "Density",

+ main = expression(paste(chi~2, " Distribution", sep = "")),
+ type = "1", axes = FALSE)

> mtext("df = 1")

> axis(1, col = "grey")

> axis(2, col = "grey", las = 1)

)(2 Distribution

df=1
4
3
2
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0
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Using the Xile distribution as our population, we can determine the proportion of p-
values less than a = .05 when repeatedly performing one-sample t-tests.

set.

seed (83490)

# Parameters of our simulation:
reps <- 10000 # the number of replications

N

<- 10 # the sample size drawn from the population

# The ACTUAL population mean (or close to it):

mu
# A

pval

<- mean(rchisq(100000, df = 1))
vector to hold t-test based p-values:
<- NULL

# Repeating this simulation lots of times:

# Sampling from the a skewed dist and finding a p-value:

X

<- rchisq(N, df = 1)

pvall[i] <- t.test(x,

}o#

mu = mu, alternative = "two.sided")$p.value

END for i LOOP

alpha <- .05
mean(pval < alpha)

[1]1 o.

>
>
>
>
>
>
>
>
>
> for(i in 1:reps){
+
+
+
+
+
+
+
>
>

1393

What happens to the proportion of p-values less than o = .05 when we violate assump-

tions?

The following code is a generalization of the last two simulations to a variety of
skewed or heavy tailed distributions. You just have to indicate the population (either
normal, t-distributed, or x?), the size of each sample, the number of replications, the
researcher determined « level, and distributional parameters (df for dt and dchisq and
mean/sd for dnorm).

VVVVVVVVVVVVVVVYVYV
HOHE H R HEHHHHSR
|

H*

HARHUHUHUABHBRRRBRRRRBRBR U AU R RARRBRRRRRRRH
# Robust t Function to Normal Violations #
HABRBRBRURRRRRRRRBRBRBRBR B R R RARRRRRBRRRER

This function is designed to take:

a true population,

- "norm" is a normal distribution,

- "t" is t distribution (heavy tails),

- "chisq" is chi-squared distribution (skewed),
the size of each sample for testing,

the number of test replications,

the researcher set alpha level, and

parameters of the true population (in the ...)
- "norm" takes mean and sd,

- "t" and "chisq" take df.

And return:
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> # - the true Type I error rate.
>

> robustTNorm <- function(popn = c("norm", "t", "chisq"),
N = 5, reps = 10000, alpha = .05, ... ){

# The ACTUAL population mean (or close to it):
mu <- mean( get(paste("r", popn, sep = ""))(n = 100000, ... ) )

# A vector to hold t-test based p-values:
pval <- NULL

# Repeating this simulation lots of times:
for(i in 1:reps){

# Sampling from the specified dist and finding a p-value:

X <- get(paste("r", popn, sep = ""))(m =N, ... )
pvall[i] <- t.test(x,
mu = mu, alternative = "two.sided")$p.value

} # END for i LOOP
return( mean(pval < alpha) )

} # END robustTNorm FUNCTION

Because the null hypothesis is always true, the proportion of p-values less than « should
be equal to «. Here are a few examples to illustrate how to use the function. You should
play around with the robustTNorm function on your own time.

> set.seed(2723)
> robustTNorm(popn = "norm", N = 10, mean = 0, sd = 1)

[1] 0.0477
> robustTNorm(popn = "t", N = 14, df = 3)
[1] 0.0398
> robustTNorm(popn = "chisq", N = 20, df = 4)
[1]1 0.0691

9.2.3 One-Sample Power Calculations

Unfortunately (or fortunately, if you need to publish) the alternative hypothesis is
usually true. However, due to the insensitivity of particular tests, researchers frequently
fail to detect the true alternative. Therefore, every researcher should make sure that
his/her studies have enough power to detect meaningful effects (or else those studies were
a big waste of time/money/energy). Determining the power of a study is easiest in the
context of z-tests and uses the following pieces of information.

1. The null and alternative hypotheses, which provides:
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e The population mean under the null hypothesis: ug.

e Whether we are performing a one-tailed or two-tailed test.
2. The actual information about the population:

e The true population mean: u.

e The population standard deviation: o.

3. The sample size: N.

4. How to make a decision regarding our hypotheses:
e The desired Type I error rate: a.

For consistency, we will keep 0 = 0.733, set a = .05, and pretend that our future
sample is of size N = 20 (the same as our current sample). We will further pretend that
we need to calculate power for a one-tailed test with an alternative hypothesis of 1 < 98.6.

Hp:p>98.6
Hy:p<98.6

Unfortunately, to perform a power analysis, researchers also need to also know the true
population mean. Granted that you will never actually have the true population mean
(otherwise, there would be no reason to conduct hypothesis testing), but you can think
of the true population mean in the form of a “what-if”

If the true population mean is actually at this location, what is the probability
that we would be able to detect a difference (and reject our null hypothesis)
in a random sample of data?

Researchers want to determine the power to detect a minimally relevant effect—an effect
that is not just real but actually meaningful—and the value inserted as the true mean
represents this minimal difference. For illustration, pretend that the true mean body
temperature is g = 98.4 (or, in translation, we want to detect an effect if the true mean
body temperature is less than 98.4°).

Calculating the power of a one-sample z-test requires two simple steps.

1. Determine the critical score (x) based on our null hypothesis distribution (with
1 = 98.6) such that we will reject anything below this critical score.

2. Find the probability of being below z given the “true” alternative distribution (with
u=984).

> alpha <- .05 # Our significance level

> sigma # The true standard deviation
[1] 0.7331832
>N # The actual sample size

[1] 10
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> # Our null and alternative hypothesis means:

> mu0 <- 98.6

> mul <- 98.4

> # Finding x-crit (using the HO dist with mu = mu0):
> ( x.crit <- gnorm( p = alpha,

+ mean = muO, sd = sigma/sqrt(N) ) )
[1] 98.21864

> # Finding power (using the H1 dist with mu = mul):

> ( pow.z <- pnorm( q = x.crit,

+ mean = mul, sd = sigma/sqrt(N) ) )
[1] 0.2170375

Power analysis for a one-sample t-test is not as straightforward as for the z-based
test. The trick to calculating power for the one-sample ¢-test is to use a non-central
t-distribution with non-centrality parameter.

\ (1 — o)

(ol

VN
You can think of the non-central t-distribution as the true alternative distribution on the
t-scale. The non-centrality parameter is similar to the “mean” of the test statistic given a
particular alternative distribution and sample size. If you knew the population standard
deviation (and were consequently performing a z-test), then A would be the mean of your
z-test statistic given u, o, and N. Therefore, we can also calculate the power of a z-test
using the following simple steps.

1. Determine the critical value (z) such that we will reject anything below this critical
score.

2. Find the probability of being below z given a normal distribution with a mean of

(W=#0) and a standard deviation of 1.
Nos

> # Power on the standard normal scale:
> ( z.crit <- qnorm( p = alpha ) )
[1] -1.644854

> ( pow.z <- pnorm( q = z.crit,

+ mean = (mul - mu0)/(sigma/sqrt(N)) ) )
[1] 0.2170375
> # ... same answers, of course.

Unlike the z-test, where we can work in both the z and x scales, the t-distribution is
easiest to work in the scale of the test statistic. Therefore, we should determine the
power of a one-sample t-test using the following steps.

1. Determine the critical value () such that we will reject anything below this critical
score.

2. Find the probability of being below ¢ given a t-distribution with non-centrality

parameter \ = LK)
s
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> alpha <- .05 # Our significance level

> sigma # The true standard deviation
[1] 0.7331832

>N # The actual sample size

[1] 10

> # Our null and alternative hypothesis means:
> mu0 <- 98.6

> mul <- 98.4

> # Finding t-crit:

> ( t.crit <- qt( p = alpha, df =N -1 ) )

[1] -1.833113

> # Finding power (using the H1 dist with mu = mul):

> ( pow.t <-pt( q=t.crit, df =N - 1,

+ ncp = (mul - mu0)/(sigma/sqrt(N)) ) )
[1] 0.1987425

Fortunately, R has a function (power.t.test) that will figure out any aspect of a power
calculation (power, sample size, o — p, population standard deviation) given any of the
other aspects. Using power.t.test is pretty simple.

power.t.test (n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"))

Replace three of the NULLs, indicate whether the alternative hypothesis is directional
("one.sided") or non-directional ("two.sided"), set type = "one.sample", and R will
solve for the missing value in the power calculation.

> power.t.test(n = N, delta = mu0 - mul,

+ sd = sigma, sig.level = .05,

+ power = NULL, # <-- we want this!
+ type = "one.sample",

+ alternative = "one.sided")

One-sample t test power calculation

n = 10
delta = 0.2
sd = 0.7331832
sig.level = 0.05
power = 0.1987425
alternative = one.sided

Notice that the power.t.test function returns the same power as hand calculations
(0.199). Sometimes researchers will know the desired power and want to solve for the
needed sample size to achieve that power given a minimally-relevant mean difference.
Because the t-distribution depends on sample size (through degrees of freedom), calculat-
ing that sample size by hand is tedious and requires iteration. Using the power.t.test
function makes simple but tedious calculations much easier to find.
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9.3 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Confidence Intervals

is.na(x) # returns TRUE if the value is NA

mean(x, na.rm = TRUE) # remove the NAs before calculating the mean
var(x, na.rm = TRUE) # remove the NAs before calculating the var
sd(x, na.rm = TRUE) # remove the NAs before calculating the sd
median(x, na.rm = TRUE) # remove the NAs before calculating the median

# Hypothesis Tests:
t.test (x, # an automatic t-test
alternative,
mu, conf.level)
power.t.test(n = NULL, delta = NULL, # t-test power calculations
sd = 1, sig.level = 0.05,
power = NULL,
type = "one.sample",
alternative = c("two.sided", "one.sided"))
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Chapter 10

Two-Samples ¢-Tests

Mousebender: It’s not much of a cheese shop, is it?
Wensleydale: Finest in the district!

Mousebender: Ezplain the logic underlying that conclusion,
please.

Wensleydale: Well, it’s so clean, sir!

Mousebender: It’s certainly uncontaminated by cheese...
—Monty Python’s Flying Circus - Episode 33

10.1 More t-Tests in R
10.1.1 Independent Samples ¢-Tests

Pretend that you have collected data on two groups of students: one group who
drinks regularly, and one group who never drinks at all, and you want to determine
whether the drinking population performs differently in a test of ability. Assume that
the following scores are a random sample of N = 22 students, n; = 12 belonging to the
alcohol group and ny = 10 belonging to the no-alcohol group.

> d.yes <- c(16, 20, 14, 21, 20, 18, 13, 15, 17, 21, 18, 15)
> d.no <- c(18, 22, 21, 17, 20, 17, 23, 20, 22, 21)

A priori, students who drink alcohol should have a reduction in reading ability
compared to those who abstain. This prior belief must be expressed before examining the
data, as in the following set of hypotheses.

HO * Hyes Z Hno
Hl * Hyes < Hno

Of course, we do not usually have prior information, in which case the following set of
hypotheses would test the more typical situation of whether the population means of two
groups are different.

187



188 Chapter 10. Two-Samples t-Tests

HO * Hyes = HMno
Hl . ,Ufyes 7é Hno

Checking ¢-Test Assumptions

When testing whether the population means of these (independent groups) are dif-
ferent, one generally performs an independent samples t-test. Of course, the independent
samples t-test also arrives with a few assumptions: normality within each population,
homogeneity of variance (i.e., equal population variances), and independence of obser-
vations. Remember that normality is assumed whenever one uses the t-distribution, as
the t-distribution is a sampling distribution from a normally distributed population. The
simplest method of checking normality is by using qgnorm plots within each of the groups.

par (mfrow = c(1, 2))

qqnorm(d.yes) # qqnorm plot for one group
qqline(d.yes)

qqnorm(d.no)  # qgnorm plot for the other group
qqline(d.no)

par(mfrow = c(1, 1))
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But because both groups only have 10 observations, departures from normality are difficult
to detect. Note that par sets graphical parameters, and the mfrow argument of par allows
for showing multiple plots on the same screen. The mfrow argument must be specified as
a vector of two values: (1) the number of rows of plots, and (2) the number of columns
of plot. So by setting mfrow = c(1, 2), R will show one row and two columns of plots.
mfrow is so named because it forces the plotting screen to be filled by rows rather than
by columns.

One could also check normality of populations by pooling the observations within
each group. Because each group (potentially) has a different population mean, you should
mean center the observations within each group before combining them into one, big pot.
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# Mean centering the observations and pooling them:
d.all <- c(d.yes - mean(d.yes), d.no - mean(d.no))
gqnorm(d.all) # qgnorm plot for both groups together
qqline(d.all)
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Even though the modified qgqnorm plot does not appear to lie on the qgqline, pooling
data is only justified if both populations have the same variance. Of course, the classical
independent samples t-test procedures assumes that both populations have the same
variance (estimating that variance using a weighted average of sample variances—the so-
called “pooled variance”). A simple check of whether both populations have the same
variance is to construct side-by-side boxplots of the within-group scores. To construct a
single boxplot, you would put a vector of values into the boxplot function and let R work
its magic.

> boxplot(d.yes,
+ ylab = "Test Score",
+ main = "Boxplot for Alcohol Group")
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Boxplot for Alcohol Group
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Because R has magical fairies drawing pictures and calculating distributional quantiles,
your boxplot arrives factory fresh with whiskers of the correct length and outliers as dots
added to the top and bottom of the plot.

> set.seed(183)
> x <- rnorm(400)
> boxplot(x,

+ ylab = "Score",
+ main = "Boxplot of Random Normal Deviates",
+ pch = 20)

Boxplot of Random Normal Deviates
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Constructing side-by-side boxplots is not as straightforward as constructing a single
boxplot, but uses something that will be relevant over the final chapters in this book:
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formulas. Whenever one predicts a criterion from one or more predictors, he/she must
use R approved notation. The formula

y~x

tells R that y is a function of x. In a linear regression context, the dependence of a
criterion on one or more predictors is obvious. However, an independent samples ¢-test is
also, implicitly, a function of scores on an predictor variable. And by writing

scores ~ grp

R knows that scores is a vector of scores for each person, and grp is a factor vector
indicating group membership. And if we reject the null hypothesis, then the score of a
particular person depends, in some way, on his/her group. If we did not think that test
score depended on whether (or not) someone consumed alcohol, then we would have no
reason to perform a t-test. We should first let scores and grp be equal to the appropriate
numeric and factor vectors.

> # Constructing two vectors of data:
> # 1) A vector of scores for each person, and
> # 2) A vector of group membership associated with the scores.
> ( scores <- c(d.yes, d.no) )
[1] 16 20 14 21 20 18 13 15 17 21 18 15 18 22 21 17 20 17
[19] 23 20 22 21
> ( grp <- factor( c( rep(1, length(d.yes)), rep(2, length(d.no)) ),
+ labels = c("Alcohol", "No Alcohol") ) )
[1] Alcohol Alcohol Alcohol Alcohol Alcohol
[6] Alcohol Alcohol Alcohol Alcohol Alcohol
[11] Alcohol Alcohol No Alcohol No Alcohol No Alcohol
[16] No Alcohol No Alcohol No Alcohol No Alcohol No Alcohol
[21] No Alcohol No Alcohol
Levels: Alcohol No Alcohol

And then we can display side-by-side boxplots of test scores on group membership by
using the formula syntax.

> boxplot(scores ~ grp,

+ ylab = "Test Score",

+ main "Side-By-Side Boxplots",
+ pch = 20)
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Side—-By-Side Boxplots
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The default behavior of boxplot is to label group by its factor name (inside the grp
vector), but one can easily change almost anything in R by altering a few arguments.
And the names argument in boxplot allows one (if he/she so desires) to change this
unfortunate default.

> boxplot(scores ~ grp,

+ names = c("Silly", "Willy"),

+ ylab = "Test Score",

+ main = "Side-By-Side Boxplots",
+ pch = 20)

Side-By-Side Boxplots

16 18 20 22

Test Score

14
|

Silly Willy
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Using the ¢-Test Formula

After checking the normality and homogeneity of variance assumptions, we can run
the classic independent samples ¢-test by calculating

where df = n1 + ny — 2 and s = (m_il)ls 22?2 Ds3  After finding the appropriate t-

statistic, one can easily calculate probabilities and make decisions by using the t-test
procedure of the previous chapter. The most general method of calculating group-level
statistics is by using the tapply command discussed a few chapters ago.

# Sample size, mean, and variance within groups:

n.j <- tapply(X = scores, INDEX = grp, FUN = length)
xbar.j <- tapply(X = scores, INDEX = grp, FUN = mean)
s2.j  <- tapply(X = scores, INDEX = grp, FUN = var)

# Calculating the pooled variance:

s2.p <-sum( (n.j - 1) * s2.j )/(sum(n.j - 1))

# Finding the t-statistic:

t <- (xbar.j[1] - xbar.j[2])/sqrt( s2.p * (sum(1/n.j)) )

vV VVVVYVVYV

Of course, you can also calculate the ¢-statistic the much more self-explanatory (but less
cool) way.

> # Calculating simple statistics

> ni <- length(d.yes) # the number of people in each group
> n2 <- length(d.no)

> s52.1 <~ var(d.yes) # the variances of each group
> s2.2 <- var(d.no)

> xbar.1 <- mean(d.yes) # the means of each group

> xbar.2 <- mean(d.no)

> # Calculating the pooled variance:

> s52.p2 <- ( (n1 - 1)*s2.1 + (n2 - 1)*s2.2 )/(nl + n2 - 2)
> # Finding the t-statistic:

> t2 <~ (xbar.1 - xbar.2)/sqrt( s2.p2 * (1/n1 + 1/n2) )

And you will find that (not surprisingly) both ¢-statistics are identical.

>t # a t-statistic the cool way
Alcohol

-2.578778

> t2 # a t-statistic the less cool way

[1] -2.578778

Finally, we should find the p-value corresponding to our test statistic. Assume that
we are performing a one-tailed test and that the numerator of our test statistic subtracts
“Non Alcohol” from “Alcohol” (as in the ¢-statistic calculated above). Because fiyes < fino
is the resulting alternative hypothesis, piyes — fino < 0 is an equivalent way of writing
our alternative hypothesis, and we should look in the lower tail of the ¢-distribution with
df = 20.
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> ( p.t <- pt(t2, df = nl + n2 - 2) )
[1] 0.008965179

And because t = —2.579, the probability of finding T' < t is 0.009. Therefore, p < o = .05,
so we would reject Hy and claim evidence that students who consume alcohol perform
worse (on average) on a specific test than those who do not consume alcohol. We could
have also calculated a two-tailed test (using ftyes 7 fino as our alternative hypothesis) by
multiplying the p-value by 2 to account for area in the upper tail. Or we could have found
critical values and compared our obtained t-statistic to those critical values. The logic
behind all of these additions is explained in the previous chapter.

If we did not want to assume that the groups had the same population variance,
we should modify our t¢-statistic (and resulting degrees of freedom) using the Welch-
Satterthwaite correction. The new t-statistic is

(Z1 — Zo

tar =

~—
I
—
=
o] =
I
=
N
~—

where df = v/ are our corrected degrees of freedom and can be calculated using the
following formula®.

Both the t-statistic and modified degrees of freedom are much easier to calculate using
the vector of variances.

> # Our modified degrees of freedom (see the formula):
> (nu <= ( sum(s2.j/n.j)"2 )/( sum( (s2.j/n.j)"2/(n.j - 1) ) ) )
[1] 19.89977
> # Our modified t-statistic:
> ( t.wc <- (xbar.j[1] - xbar.j[2])/sqrt( sum(s2.j/n.j) ) )
Alcohol
-2.642893
> # The associated p-value:
> ( p.wc <= pt(t.wc, df = nu) )
Alcohol
0.007823715

5The Welch-Satterthwaite correction is based off of the approximate degrees of freedom for a lin-
ear combination of variance terms. Let Q = Zj kjs?. Then Q is approximately x2 distributed with
approximate degrees of freedom

v @
(kjs2)?
X —a,
where df; is the degrees of freedom corresponding to the jth variance. If k; = %, then v*
J
v’ of the Welch-Satterthwaite correction (Satterthwaite, 1946).

’ simplifies to
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The modified degrees of freedom are v/ = 19.9 as compared to our original degrees of
freedom of df = 20; the modified ¢-statistic is —2.643; and the modified (one-tailed)
p-value is 0.008. The modified degrees of freedom are slightly lower than before, the
modified p-value is also slightly lower, and (in either case) we would have rejected our
null hypothesis.

Using the t.test Function

One can also follow the independent samples t-test steps using the built-in t.test
function rather than calculating everything by hand. We only need to change a few of
the arguments. The general form of the brand spanking new t-test function is

t.test(x, y, var.equal = FALSE, ... )

with ... symbolizing all of the t.test stuff applicable to the one-sample t-test (discussed
in the previous chapter), including alternative, mu, and conf.level. In the above
function, x stands for a vector of data from one group, y stands for a vector of data
for the other group, and var.equal is a logical value indicating whether homogeneity of
variance should be assumed. One can also specify a t-test in R by using the “formula”
construction.

t.test (formula, var.equal = FALSE, ... )

R assumes (by default) that the within-group variances are not equal, sets var.equal to
FALSE, and carries out the Welch-Satterthwaite ¢-test.

Remember: The Welch-Satterthwaite degrees of freedom correction is the
default in R. To perform the classical t-test, you must (yourself) set var.equal
to TRUE. Thus, even though the classical independent samples ¢-test requires
homogeneity of variance, R knowns that most researchers will (most of the
time) want to use the more robust procedure.

Before discussing the robustness of the independent samples ¢-test to violations of homo-
geneity of variance, I should first present a few examples of performing a t-test on the
already discussed research question.

> # The original direction (using both input methods) :

> ( i.m11 <- t.test(x = d.yes, y = d.no,

+ var.equal = TRUE, alternative = "less") )
Two Sample t-test

data: d.yes and d.no
t = -2.5788, df = 20, p-value = 0.008965
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:
-Inf -0.9162861

sample estimates:
mean of x mean of y

17.33333 20.10000
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> ( 1.m12 <- t.test(scores ~ grp,
+ var.equal = TRUE, alternative = "less") )
Two Sample t-test

data: scores by grp
t = -2.5788, df = 20, p-value = 0.008965
alternative hypothesis: true difference in means is less than O
95 percent confidence interval:
-Inf -0.9162861
sample estimates:
mean in group Alcohol mean in group No Alcohol
17.33333 20.10000
> # The two-sided direction:
> ( i.m2 <- t.test(scores ~ grp,
+ var.equal = TRUE, alternative = "two.sided") )
Two Sample t-test

data: scores by grp
t = -2.5788, df = 20, p-value = 0.01793
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-5.0046126 -0.5287207
sample estimates:

mean in group Alcohol mean in group No Alcohol

17.33333 20.10000
> # Not assuming equality of variance (both tests):
> ( i.m3 <- t.test(scores ~ grp,
+ var.equal = FALSE, alternative = "less") )
Welch Two Sample t-test

data: scores by grp
t = -2.6429, df = 19.9, p-value = 0.007824
alternative hypothesis: true difference in means is less than O
95 percent confidence interval:
-Inf -0.960734
sample estimates:
mean in group Alcohol mean in group No Alcohol

17.33333 20.10000
> ( i.m4 <- t.test(scores ~ grp,
+ var.equal = FALSE, alternative = "two.sided") )

Welch Two Sample t-test

data: scores by grp
t = -2.6429, df = 19.9, p-value = 0.01565
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-4.9510266 -0.5823067
sample estimates:
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mean in group Alcohol mean in group No Alcohol
17.33333 20.10000

Check to make sure that the p-values given via the t.test function match those calculated
by hand.

> # Using t.test:

> i.m118p.value # Less than, no correction
[1] 0.008965179
> i.m3$p.value # Less than, correction

[1] 0.007823715

> # Using hand calculations:

> p.t # Less than, no correction

[1] 0.008965179

> p.wc # Less than, correction
Alcohol

0.007823715

After determining whether or not to reject the null hypothesis, you should fol-
low up your t-calculation with confidence intervals (and/or effect size estimates). A
simple method of obtaining confidence intervals on the difference between means is ex-
tracting those confidence intervals from the t.test function (making sure to specify
alternative = "two-sided" or else R will output one-sided confidence intervals).

> i.m2$conf.int # confidence interval without correction
[1] -5.0046126 -0.5287207

attr(,"conf.level")

[1] 0.95

> i.m4$conf.int # confidence interval with correction

[1] -4.9510266 -0.5823067
attr(,"conf.level")
[1] 0.95

But you could just as easily calculate those confidence intervals by hand. Assuming
homogeneity of variance, the confidence interval on the difference between two population
means has the following formula.

_ _ 1 1
CIl = (xl — JZQ) + tn1+n272; (14+7)/2 512) <nl + 712)
Without assuming homogeneity of variance, the resulting confidence interval on the dif-
ference between two population means has the following formula.

OI = (71 — &2) £ 1 T %
=\ — vl —_ —_
1= B2) Bl a2\

where 1/ is the modified degrees of freedom. Both confidence interval formulas are simple
rearrangements of the standard independent samples t-test formulas.
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> gamma <- .95

> # Pooled variance confidence interval:

> { (xbar.1 - xbar.2) +

+ c(-1, 1) * qt((1 + gamma)/2, df = sum(n.j - 1)) *

+ sqrt(s2.p * (sum(1/n.j))) }

[1] -5.0046126 -0.5287207

> # Welch confidence interval:

> { (xbar.1 - xbar.2) +

+ c(-1, 1) * qt((1 + gamma)/2, df = nu) * sqrt(sum(s2.j/n.j)) }
[1] -4.9510266 -0.5823067

To calculate the confidence interval for a single mean, you must first decide whether
the homogeneity of variance assumption is likely to be satisfied. If you do not assume
homogeneity of variance, then the single mean confidence interval is exactly the same as
the confidence interval from the one-sample t-test. However, by assuming that s? and s3
are estimating a common population variance, 2, then 5127 provides a better estimate of o2
than either s7 or s3 (because s3 is based off of more observations). Therefore, the general
formula for a (homogeneity of variance assumed) single mean confidence interval is similar
to that from the one-sample t-test, but with 512, replacing s? or s3 and df = ny +ngy — 2
replacing df; = ni — 1 or dfy = ngy — 2.

> # Single mean confidence interval for group one:

> { xbar.1 +

+ c(-1, 1) * qt((1 + gamma)/2, df = sum(n.j - 1)) * sqrt(s2.p/n.j[1]) }
[1] 15.82451 18.84216

> # Single mean confidence interval from group two:

> { xbar.2 +

+ c¢(-1, 1) * qt((1 + gamma)/2, df = sum(n.j - 1)) * sqrt(s2.p/n.jl[2]) }
[1] 18.44717 21.75283

Note that even when the confidence interval on the difference between means does not
include 0, the single-mean confidence intervals can still overlap.

The Robustness of the Independent Samples ¢-Test

Finally, one might wonder whether the independent samples ¢-test is robust to cer-
tain violations of assumptions. Because I have already discussed robustness as applied to
the normal population assumption, I will focus on assessing the robustness of the inde-
pendent samples t-test to violations of homogeneity of variance. We can first assume that
the sample sizes are equal and determine the percentage of p-values less than a = .05
using both the classic independent samples t-test and the Welch-Satterthwaite correction.

> # Setting the seed and determining the number of replications.
> set.seed(9183)

> reps <- 10000

> # Setting the sample size and within-group standard deviations.
> nil <- 10

> n2 <- 10

> sigl <-1



10.1. More t-Tests in R 199

> sig2 <-1

> # Building empty vectors to store p-values.
> a.typic <- NULL

> a.welch <- NULL

> # Repeating a simulation lots of times.

> for(i in 1:reps){

H*

Each time, generating two vectors of data from a normal distribution:
x1 <- rnorm(n = nl1, mean = 0, sd = sigl)
x2 <- rnorm(n = n2, mean = 0, sd = sig2)

R

Calculating both t-tests, and pulling out the p-values
a.typicl[i] <- t.test(x1, x2,

var.equal = TRUE,

alternative = "two.sided")$p.value
a.welch[i] <- t.test(x1l, x2,

var.equal = FALSE,

alternative = "two.sided")$p.value

+ o+ + F +t + F o+ o+ o+ o+ o+

+ } # END for i LOOP

> # Figuring out the proportion of p-values less than alpha:
> alpha <- .05

> mean(a.typic < alpha)

[1] 0.0491

> mean(a.welch < alpha)

[1] 0.0477

The above code is the “ideal” scenario, in that the sample sizes are equal and the popula-
tion variances are identical. We can write a function (similar to that of the last chapter)
to determine robustness given any n; # ny and o3 # o3.

HUHBHRBRRU B R R B HA R AR BB R R R BB R ARG BRI R AR
# Robust t Function to Hetero of Variance #
e T i b i

# This function is designed to take:
- the population standard deviations,
- sigl is the sd of group 1
- sig2 is the sd of group 2
- the size of each sample,
- nl is the sample size of group 1
- n2 is the sample size of group 2
- the number of test replications, and
- the researcher set alpha level.

HOH R B O B KR

And return:
- the true Type I error rate using:
- the classic independent samples t-test,
- the Welch corrected independent samples t-test.

VVVVVVVVVVVVVVVVVYV

H R R R
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>
> robustTVar <- function(sigl = 1, sig2 = 1, nl = 10, n2 = 10,
reps = 10000, alpha = .05){

# Vectors to store t-test based p-values.
a.typic <- NULL
a.welch <- NULL

# Repeating a simulation lots of times.
for(i in 1:reps){

# Generating two vectors of data from a normal distribution:
x1 <- rnorm(n = n1, mean = 0, sd = sigl)
x2 <- rnorm(n = n2, mean = 0, sd = sig2)

# Calculating both t-tests, and pulling out the p-values
a.typic[i] <- t.test(x1l, x2,
var.equal = TRUE,
alternative = "two.sided")$p.value
a.welch([i] <- t.test(x1, x2,
var.equal = FALSE,
alternative = "two.sided")$p.value

} # END for i LOOP

# Figuring out the proportion of p-values less than alpha:
return(list( classic.t = mean(a.typic < alpha),
welch.t = mean(a.welch < alpha) ) )

} # END robust.t.var FUNCTION

If the t-test is robust to assumptions, the proportion of p-values less than « should
be approximately equal to a. What happens if we change ny, ns, 02 and 03?

> set.seed(2347907)

> # Both tests should give the same value if the sds/ns are equal:
> robustTVar(sigl = 1, sig2 = 1, nl = 10, n2 = 10)

$classic.t

[1] 0.0515

$welch.t

(1] 0.0502

> # And both tests are usually UK as long as the ns are equal:
> robustTVar(sigl = 1, sig2 = 2, n1 = 10, n2 = 10)

$classic.t

(1] 0.0522

$welch.t
[1] 0.0481
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> robustTVar(sigl = 1, sig2 = 4, nl = 10, n2 = 10)

$classic.t
[1] 0.0603

$welch.t

[11 0.0497

> # But things get weird when the sample sizes change:
> robustTVar(sigl = 1, sig2 = 4, n1 = 20, n2 = 10)
$classic.t

[1] 0.1588

$welch.t

[1] 0.0479

> robustTVar(sigl = 1, sig2 = 4, nl1 = 40, n2 = 10)
$classic.t

[1] 0.2927

$welch.t
[1] 0.0476

You should explore the robust.t.var function on your own time.

10.1.2 Paired Samples ¢-Tests

If our data do not arise from independent groups, then you shouldn’t perform an
independent samples t-test. A typical (frequently designed) violation of independence is
gathering pairs of observations that are linked across groups. For instance: before/after,
twin studies, or parent/children data. If you violate independence in this systematic way,
you can perform a paired samples t-test as a counterpart to the independent samples
t-test. For instance, assume that we have the following set of data.

> id <-1:13

> pre.swb <- c¢(3, 0, 6, 7, 4, 3, 2, 5, 4, 3, 4, 2, 7)

> post.swb <- c¢(5, 7, 10, 14, 10, 6, 8, 5, 9, 10, 8, 6, 8)
> dat.swb <- data.frame(id, pre.swb, post.swb)

> dat.swb

id pre.swb post.swb
1 1 3 5
2 2 0 7
3 3 6 10
4 4 7 14
5 b 4 10
6 6 3 6
T 7 2 8
8 8 5 5
9 9 4 9
10 10 3 10
11 11 4 8
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12 12 2 6
13 13 7 8

The variable pre.swb stands for subjective well-being before counseling, and the variable
post.swb stands for subjective well-being (of the same person) after counseling. Because
we have pre/post scores for the same person, you would find a moderate correlation
between pre- and post- scores, and the independence (across groups) assumption of the
independent samples t-test does not hold.

> cor(pre.swb, post.swb)
[1] 0.4941769

With the above data, one can also use the t.test function (as before) to perform a
test of our hypotheses that subjective well-being improves after counseling.

HO : ﬂpre 2 Npost
Hy : Upre < Hpost

But rather than using formula (scores ~ grp) as we did in the independent samples
t-test, we instead list our vectors as separate variables in the t.test function. We also
must inform R that it should perform a paired samples t-test by setting the argument
paired to TRUE. And that’s it!

> # Testing mean of pre below mean of post:

> p.m2 <- t.test(x = pre.swb, y = post.swb, paired = TRUE,
+ alternative = "less")

> p.m2 # what were are really interested in calculating

Paired t-test

data: pre.swb and post.swb
t = -6.6853, df = 12, p-value = 1.121e-05
alternative hypothesis: true difference in means is less than O
95 percent confidence interval:
-Inf -3.159275
sample estimates:
mean of the differences
-4.307692

Of course, a paired samples t-test is just a one-sample t-test on difference scores.
Therefore, we only need to find the difference scores to calculate the paired samples ¢-test
statistic by hand.

## 1 ## Forming difference scores:

d.diff <- pre.swb - post.swb

## 2 ## Calculating the sample mean, variance, and size:

xbar.d <- mean(d.diff) # the mean of the difference scores
var.d <- var(d.diff) # the variance of the difference scores
N.d <- length(d.diff) # the number of difference scores

## 3 ## Forming our t-statistic:

( t.d <- (xbar.d - 0)/sqrt(var.d/N.d) ) # a one-sample t-test

V VVVVYVVYV
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[1] -6.685326

> ( p.d <- pt(t.d, df = N.d - 1) ) # lower.tailed test
[1] 1.121498e-05

> ## 4 ## Calculating a 95/, confidence interval:

> gamma <- .95

> CI.d <- { xbar.d +
+ c(-1, 1)*qt( (1 + gamma)/2, df = N.d - 1 )*sqrt(var.d/N.d) }

> CI.d
[1] -5.711611 -2.903773

As the paired samples t-test is identical in calculation to the one samples t-test, all of the
requisite material was covered in the previous chapter.
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Two-Samples t-Tests

10.2 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Independent t-Tests

y ~x

t.test(x, vy,
var.equal,
alternative,
mu, conf.level)

t.test(formula, ...)

# Paired t-Tests
t.test(x, vy,
paired = TRUE,

# Graphing
par (mfrow = c(row, col))
boxplot(x, ...)

boxplot(formula, names,

# y is a function of x
# a more general t-test

# perform a paired-samples t-test

# plot more than one on a screen

# construct boxplot(s)
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One-Way ANOVA

Well, er, yes Mr. Anchovy, but you see your report here says
that you are an extremely dull person. You see, our experts de-
scribe you as an appallingly dull fellow, unimaginative, timid,
lacking in initiative, spineless, easily dominated, no sense of
humour, tedious company and irrepressibly drab and awful.
And whereas in most professions these would be considerable
drawbacks, in chartered accountancy, they’re a positive boon.
—Monty Python’s Flying Circus - Episode 10

11.1 One-Way ANOVA in R
11.1.1 Setting up the ANOVA

An ANOVA tests the difference in population means between multiple groups. As-
suming that all of the group sizes are equal, you might see the data used for an ANOVA

in a matrix.

3.01, 3.93,
3.59, 2.90,
2.
1
1
2

13, 2.11,

.72, 3.13,
.81, 3.86,
.31, 4.12,

IIB n IVCH
2 2

> # Made up data:
> DV.mat <- matrix(c(1.94,
+ 0.55,
+ 1.04,
+ 3.24,
+ 2.30,
+ 0.74,
> colnames (DV.mat) <- c("A",
> # What do the data look like?
> DV.mat

A B C D
[1,] 1.94 3.01 3.93 4.10
[2,] 0.55 3.59 2.90 1.90
[3,] 1.04 2.13 2.11 3.40
[4,] 3.24 1.72 3.13 2.70
[6,] 2.30 1.81 3.86 3.89

205

.10,
.90,
.40,
.70,
.89,

[NV CICVIN N

IID H)

.00), ncol = 4, byrow

T)
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[6,]1 0.74 2.31 4.12 4.00

In our example, the columns of the matrix represent different environmental conditions,
and an individual element is the persistance time (in minutes) of a mouse, assigned to
one of the conditions, on an exercise wheel.

Alternatively, you could see the data for an ANOVA in the form of two vectors: one
of the dependent variable, and one of the independent factors.

> DV.vec <- c(DV.mat)
> IV.vec <- factor(c( col(DV.mat) ), labels = colnames(DV.mat))

The only command that you might not yet be familiar with is col, which takes a matrix
and indicates the column of each entry. Therefore, c(DV.mat) puts the dependent variable
matrix into one vector with columns stacked on top of each other, col (DV.mat) indicates
the column of each entry of the dependent variable, and c( col(DV.mat) ) then puts the
column numbers (i.e., the independent variable condition) into one vector with columns
stacked on top of each other. Neat!

You also might see the data used for an ANOVA in the form of one vector for each
factor level.

# Vector for each independent variable condition:
DV.A <- c(1.94, 0.55, 1.04, 3.24, 2.30, 0.74)
DV.B <- ¢(3.01, 3.59, 2.13, 1.72, 1.81, 2.31)
DV.C <- ¢(3.93, 2.90, 2.11, 3.13, 3.86, 4.12)
DV.D <- c(4.10, 1.90, 3.40, 2.70, 3.89, 4.00)

V V. Vv Vv Vv

And even though you can do the hand calculations directly on those four vectors, you
must combine then into one big vector for the built-in ANOVA functions to work.

> # The same DV and IV vectors as before.

> DV.vec2 <- c(DV.A, DV.B, DV.C, DV.D)

> IV.vec2 <- factor( c( rep(1, length(DV.A)),
+ rep(2, length(DV.B)),
+ rep(3, length(DV.C)),

+ rep(4, length(DV.D)) ) )

Notice that building the dependent variable vector and independent factor vector was
much easier starting out with a matrix than with vectors of individual scores. An alter-
native construction (which works when the sample sizes are unequal per group) is starting
out by putting the dependent variable into a 1ist and using the unlist command to com-
bine each group into one long vector.

Important: When you are trying to run a One-Way ANOVA in R using the
built in functions (aov or 1m), you must enter two vectors separated by the
formula operator (). One of those vectors (on the left size of ~) must be
a numeric vector of scores on the dependent variable, and the other vector
(on the right side of ~) must be a factor vector of scores on the independent
variable. If the independent variable/group membership vector is not a factor,
then you might end up with strange results.
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We will use our data to perform an ANOVA two ways, once by R and once using the aov
function. The hypotheses for each ANOVA will be the same, that is “all of the population
means are equal” versus “at least one population mean differs from at least one other
population mean.”

Ho:pr = p2 = p3 = pa
H; : At least one p is different.

The following code will be identical ways of answering that question using R.

11.1.2 Using the ANOVA Formula

After checking ANOVA assumptions, either by graphical or numeric methods (see
the previous chapter), you are ready to perform an ANOVA. To calculate the ANOVA
directly in R, it is easiest to work with the long vector of scores on the dependent variable,
long vector of group membership on the independent variable, and the tapply function.
Alternatively, you can use the original matrix and the apply function, or the vectors of
scores and the mean/var/length functions, but these are slightly more cumbersome to
employ.

The first step in ANOVA calculations is finding the (weighted) grand mean and
individual group means.

> # Find the group means and the grand mean:
> xbar_j <- tapply(X = DV.vec, INDEX = IV.vec, FUN = mean)
> xbar_G <- mean(DV.vec)

Remember that tapply takes a vector of scores, a vector of index values (e.g., to which
group each scores belongs), and a function to perform on the set of scores within each
level of the index (e.g., within each group).

We also will need our within-group variances and within-group sample sizes for
further calculations, and, not surprisingly, the exact same tapply function will be easiest
to use here as well.

> # Find the within-group standard dev and sample size:
> s2_j <- tapply(X = DV.vec, INDEX = IV.vec, FUN = var)
> n_j <- tapply(X = DV.vec, INDEX = IV.vec, FUN = length)

We will use the group means, grand means, group variances, and group sample sizes
to calculate three sums of squares in a One-Way ANOVA: the Sums of Squares Between
(SSB), Sums of Squares Within (SSW), and Sums of Squares Total (SST). The easiest
sums of squares to calculate is SST' = 37, (245 — T¢)?, which is just like the numerator
of a sample variance calculation.

> SST <- sum( (DV.vec - xbar_G)"2 )

We could have also found the sample variance of DV.vec (using the var function) and
multiplied it by the total number of observations minus 1. Another sums of squares
to calculate is SSB = Z?Zl n;(Z; — Zg)?, which is relatively simple using the (already
calculated) output of the tapply function.
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> SSB <- sum( n_j*(xbar_j - xbar_G)~2 )

The final sums of squares is SSW = 327 | 3707, (x5, — ;)% = 327_[(n; — 1)s3], which is
a generalization of the numerator of a pooled variance. Similar to SSB, SSW is rather

easy to calculate in R by taking advantage of the tapply function.

> SSW <- sum( (a_j - 1)*s2_j )

As a check, we know that the sums of squares are summative, so SST = SSB + SSW.

> SSB # sums of squares between

[1] 12.10658

> SSW # sums of squares within

[1] 14.898

> SSB + SSW # adding up the sums of squares
[1] 27.00458

> SST # the total sums of squares

[1] 27.00458

> # Are the sums of squares summative? Check! Yippee! Stats doesn't lie!

There are also three sets of degrees of freedom, each of them corresponding to a
sums of squares, dfg = g — 1, dfw = N — g, and dfr = N — 1 = dfg + dfw, where
N = Z?:l n;. With enough motivation, we could figure out the degrees of freedom by

hand (and by counting), but I am a bit too lazy for complicated tasks if I have R to solve
my problems for me.

> ( dfB <- length(xbar_j) - 1)

[11 3

> ( dfW <- sum(n_j) - length(xbar_j) )
[11 20

> ( dfT <- sum(n_j) - 1)

[1] 23

The final two calculations in an ANOVA are the mean squares and the F-statistic.
Note that MSB = SSB/dfg, MSW = SSW/dfw and F = MSB/MSW.

> ( MSB <- SSB/dfB ) # mean squares between
[1] 4.035528

> ( MSW <- SSW/dfW ) # mean squares within
[1] 0.7449

> ( F <- MSB/MSW ) # F-statistic

[1] 5.417543

And as the F-distribution has two types of degrees of freedom (numerator degrees of
freedom corresponding to df g and denominator degrees of freedom corresponding to dfw ),
we can find the p-value by using the pf function. Note that the F' test from an ANOVA

is typically a one-sided (upper-tailed) test because we care about mean divergences that
are greater than chance.



11.1. One-Way ANOVA in R 209

> (p <- pf(q = F, dfl = dfB, df2 = dfW, lower.tail = FALSE))
[1] 0.00681569

As p =0.007 < .05 = «, we would reject the null hypothesis, and claim that we have evi-
dence that mice in different environmental conditions did not all spend the same amount
of time, on average, on the exercise wheel. We could have also tested our hypotheses by
finding an F'-critical value for which to compare our Fyp test statistic.

> # Setting alpha and finding F_crit:

> alpha <- .05

> ( F_crit <- qf(p = alpha, dfl = dfB, df2 = dfW, lower.tail = FALSE) )
[1] 3.098391

> # Should we reject our null hypothesis?

> F > F_crit

[1] TRUE

11.1.3 Using the aov Function

An alternative (easier) method of performing an ANOVA is by using the aov com-
mand in R. The aov command is rather simple for a One-Way ANOVA:

aov (formula, data)

where the formula is the same type of formula described in the independent samples ¢-
test chapter (but with more than two groups in the factor vector), and the optional data
argument is the name of the data.frame containing the predictor and response variables.
Because we assigned our data to individual vectors (and not to sub-objects of a data
frame), we should not include the data argument.

> mod.aov <- aov(DV.vec ~ IV.vec)

But if our data were actually part of a data.frame, then we could indicate our variables
by name (without using attach to attach variables of the data frame) if we let aov know
in which data.frame to look for those variables.

> # Put the variables into a dataframe:

> dat <- data.frame(DV = DV.vec, IV = IV.vec)

> # If we don't indicate the data.frame:

> # - we can't call the variables by name, but

> # - we must indicate the data frame with the $ operator
> try(mod.aov2 <- aov(DV ~ IV), silent = TRUE)[1] # error!

[1] "Error in eval(expr, envir, enclos) : object 'DV' not found\n"

> mod.aov2 <- aov(dat$DV ~ dat$IV) # no error!
> # If we indicate the data frame in the '"data" argument:
> # - we can call the variables by name.

> mod.aov3 <- aov(DV ~ IV, data = dat)
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After forming an aov object, we can obtain summary statistics (using summary.aov
or summary). Note that typing the object name (mod.aov) not surrounded by the summary
function results in minimal output without much needed information. The limited infor-
mation when entering mod.aov into the R console is due to several, hidden, print (or
cat) statements that R programmers wrote into runs from the aov object, as explained
in a previous chapter.

> summary.aov(mod.aov) # which is identical to...

Df Sum Sq Mean Sq F value Pr(>F)
IV.vec 3 12.11 4.036 5.418 0.00682 *x*
Residuals 20 14.90 0.745

Signif. codes:

0
> summary (mod.aov) # in this case!

Df Sum Sq Mean Sq F value Pr(>F)
IV.vec 3 12.11 4.036 5.418 0.00682 *x*

Residuals 20 14.90 0.745

Signif. codes:
0

And the IV.vec row tells us the between stuff, whereas the Residuals row tells us the
within/error stuff. Unfortunately, R does not provide the SST, but you can determine
SST by adding up the rows of the ANOVA table.

A third method of obtaining the identical ANOVA table is through the 1m function.

lm(formula, data, ... )

which will be discussed more thoroughly in the next chapter. The syntax for 1m is very
similar to that for aov.

> mod.1lm <- Im(DV.vec ~ IV.vec)
To obtain an ANOVA table from 1m, we must use anova rather than the summary function.

> anova(mod. 1m)
Analysis of Variance Table

Response: DV.vec

Df Sum Sq Mean Sq F value Pr(>F)
IV.vec 3 12.107 4.0355 5.4175 0.006816 **
Residuals 20 14.898 0.7449
Signif. codes:
0

As is fairly obvious from the similarities in coding, regression analysis and ANOVA pro-
cedures are different manifestations of the same analysis.
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11.1.4 ANOVA Power Calculations

Because ANOVA generally includes more than two groups (unless your ANOVA is
silly), the alternative hypothesis is generally more true than for the ¢-tests of the previous
several chapters. More groups means that there is less likelihood that all (population)
group means are the same. But researchers still frequently fail to detect the true al-
ternative hypothesis because more groups also (generally) implies that more people are
needed to detect an effect. Thus, researchers should still estimate the optimal sample size
for detecting a reasonable effect lest the entire data collection operation be for naught.
Determining the power of an ANOVA depends on similar information as to that from the
simple z and t-tests.

1. The actual information about the population:

e The true effect size: f.
e The within-group variance: o2.
2. The within-group sample sizes: n;.

3. The number of groups: g¢.

4. How to make a decision regarding our hypotheses:
e The desired Type I error rate: a.

The easiest method of performing ANOVA-based power calculations in R is to use one
of two pre-packaged functions: (1) power.anova.test (in the stats package); and (2)
pwr.anova.test (in the pwr package). The arguments for power.anova.test are as
follows.

power.anova.test (groups = NULL, n = NULL,
between.var = NULL, within.wvar = NULL,
sig.level = 0.05, power = NULL)

In the power.anova.test function, groups is the number of groups in the One-Way
ANOVA, n is the number of observations per group, between.var is the between group
variance (with g — 1 in the denominator, weird), within.var is the within group vari-
ance, sig.level is the Type I error rate, and power is the power of the test. As in
power.t.test, you pass to power.anova.test all but one of the arguments, and the
power function will return the missing argument.

Important: The power.anova.test function can only be used for a balanced,
One-Way ANOVA with assumed common within-group variances.

Assume that we have four groups with true population means p; = 120, py = 121,
u3 = 123, and py4 = 124. Moreover, assume that we know o2 = 50. Then if we want
to find out the power (“... probability of rejecting a false null hypothesis ...”) to detect
an effect if n; = 15 people per group and o = .05, simply use the power.anova.test
function.
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> mu.j
> sigma2 <- 50

<- c¢(120, 121, 123, 124)

> power.anova.test(groups = length(mu.j),

+

+ + + +

Balanced one-

groups =
n =
between.var =
within.var =
sig.level =
power

NOTE: n is number

If g = 4 and n = 15, then we have very little power to detect this fairly small effect.

n = 15,

between.var = var(mu.j),
within.var = sigma2,
sig.level = .05,

power = NULL)
way analysis of variance power calculation

4

15
3.333333
50

0.05
0.257895

in each group

But

increase the number of people per group — increased power!

> power.anova.test (groups = length(mu.j),

+ o+ + + +

Balanced one-

groups =
n

between.var
within.var =
sig.level =
power

NOTE: n is number

n = 30,

between.var = var(mu.j),
within.var = sigma2,
sig.level = .05,

power = NULL)
way analysis of variance power calculation

4

30
3.333333
50

0.05
0.5031345

in each group

Most a-priori power calculations seek to determine the sample size needed for a
particular (pre-specified) power. For example, if you want to figure out the within-group

sample size needed for a power of 1 — 8 = .90, then simply leave n =
.90 as the value of power.

>
+
+
+
+
+

NULL and include

( mod.pwr <- power.anova.test(groups = length(mu.j),

n = NULL,

between.var = var(mu.j),
within.var = sigma2,
sig.level = .05,

power = .90) )
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Balanced one-way analysis of variance power calculation

groups = 4
n = 71.84254
3.333333
within.var = 50
sig.level = 0.05
power = 0.9

between.var

NOTE: n is number in each group

Therefore, you need at least 72 people. Wow! Those are pretty large groups.
An alternative function used to perform power calculations is pwr.anova.test in
the pwr package with the following setup.

pwr.anova.test (k = NULL, n = NULL,
£ = NULL,
sig.level = 0.05,
power = NULL)

Now, k is the number of groups (same as groups from before), n is the sample size per
each group (go balanced designs), £ is the effect size (which combines between.var and
within.var), and everything else is the same. As in power.anova.test, you should pass
all but one argument, and then pwr.anova.test will return the final answer. The only
tricky argument in pwr.anova.test is the aggregated effect size (see Cohen, 1988):

>0, (g — p)?
2

f=

This effect size combines the within group variance and the between group variance.
Therefore, specifying £ prevents you from having to specify both of between.var and
within.var (go simplifications!). So to use pwr.anova.test, we must first calculate f
before plugging things into power function.

g

> g <- length(mu.j)

> nl <- 15

> N1 <- g*nl

> f1 <- sqrt(nl*sum((mu.j - mean(mu.j)) 2)/(Nl*sigma2))

And then we can plug everything into pwr.anova.test.

> library(pwr)
> pwr.anova.test(k = g, n = nl,

+ f =11,
+ sig.level = .05,
+ power = NULL)

Balanced one-way analysis of variance power calculation

k=4
n = 15
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f = 0.2236068
sig.level = 0.05
power = 0.257895

NOTE: n is number in each group

Notice that pwr.anova.test returns the exact same power calculated value as power.anova.test
given the same inputs. We can also repeat the (exact same) power calculations with the
other within group sample size.

n2 <- 30
N2 <- g*n2
f2 <- sqrt(n2*sum((mu.j - mean(mu.j)) 2)/(N2*sigma2))
pwr.anova.test(k = g, n = n2,
f = f2,
sig.level = .05,
power = NULL)
Balanced one-way analysis of variance power calculation

+ + + VvV VvV

k=4
n = 30
f = 0.2236068
sig.level = 0.05
power = 0.5031345

NOTE: n is number in each group

Unfortunately, finding the sample size needed for a particular power calculation
seems impossible at first glance. To find n, we must plug something into the £ argument,
but the within-group sample size is part of the calculation of £! One way out of this bind
is to realize that § can be thought of as the “proportion of total observations within
each group.” Because the proportion of scores within a group will always be the same if
the number of groups are the same (assuming a balanced design), we can redefine this
proportion as p = & = %. Therefore, to find the sample size needed for a particular

N [
power, add a prior step to calculate p before £ before n.

>p <-1/g

> f3 <- sqrt(p*sum((mu.j - mean(mu.j)) 2)/(sigma2))
> pwr.anova.test(k = g, n = NULL,

+ f = 13,

+ power = .90)

Balanced one-way analysis of variance power calculation

k=4
n = 71.84254
f = 0.2236068
sig.level = 0.05
power = 0.9

NOTE: n is number in each group
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And (not surprisingly) the needed sample size is identical to that from power.anova.test.
The pwr package uses the f definition of effect size rather than the power.anova.test
definition, as f is more generalizable to complicated designs.

11.1.5 Post-Hoc Procedures

After making an inferential decision, you should then perform follow up procedures,
including estimating effect sizes, constructing confidence intervals for the mean of each
group, and comparing pairs of means using post-hoc tests.

Effect Sizes

The two basic effect sizes for a One-Way ANOVA, eta-squared (%) and omega-
squared (w?), are pretty easy to calculate in R. Unfortunately, I do not know of any
function to automatically calculate those effect sizes. So you must calculate effect sizes
either by R calculations or by pulling things (hopefully useful things) out of the ANOVA
object.

The first effect size is called 72 and is defined as

, SSB
T S8ST

n? describes the proportion of variability in the sample accounted for by category mem-
bership. An alternative to 1? is w?, which is calculated by

Ui

2 _ SSB—dfp x MSE
SST + MSE

for a One-Way ANOVA. Unlike 2, w? adjusts the “proportion of variance accounted for”
by the complicatedness of the experimental design ... err ... the number of categories and
observations within each category. Note that n? is similar to R? from linear regression,
whereas w? is similar to adjusted R?. These topics will come up again in the next chapter
when examining correlations and simple linear regressions. To calculate 7% and w?, first
run the ANOVA (which we did earlier), anova the ANOVA, and then pull out the sub-
objects.

> (mod.anova <- anova(mod.aov))
Analysis of Variance Table

Response: DV.vec
Df Sum Sq Mean Sq F value Pr(>F)
IV.vec 3 12.107 4.0355 5.4175 0.006816 *x*
Residuals 20 14.898 0.7449
Signif. codes:
0
> names (mod. anova)
[1] "Df" "Sum Sq" "Mean Sq" "F value" "Pr(>F)"
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Note: In the dark ages of R, you could not run an ANOVA and conveniently
pull out sums of squares, degrees of freedom, etc. To pull out these sub-
objects, you first had to run 1m (rather than aov), then anova your regression
object, and then pull out the appropriate S'S or df. However, R has grown up,
and the writers/coders have made it easier to manipulate the aov function.
Oddly, this ease of use makes running ANOVAs through R using aov pretty
redundant. For example, performing a summary of the aov object or an anova
of the aov object results in identical displays. Yet, for all their apparent
similarities, the summary object has nothing in it, whereas the anova object
includes all of your ANOVA table parts as sub-objects. Weird!

To extract parts of an ANOVA, you must: (1) Run aov (or 1m) to fit the model; and then
(2) Run anova on the aov object. We're in meta-ANOVA land here, apparently.

> (SS <- mod.anova$Sum)
[1] 12.10658 14.89800

> (df <- mod.anova$Df)
[11] 3 20

> (MS <- mod.anova$Mean)
[1] 4.035528 0.744900

The SS, df, and MS for a One-Way ANOVA in R include the “between” stuff followed by
the “within” stuff. However, to get the “total” stuff, we still must sum things up ourselves.

> (eta2 <- SS[1]/sum(SS))

[1] 0.4483159

> (omega2 <- (SS[1] - df[1]*MS[2])/(sum(SS) + MS[2]))
[1] 0.3557502

Note that w? is a bit smaller than 72 due to the small sample size and fairly large number
of categories.

Confidence Intervals and Plots

ANOVA-based confidence intervals are simple generalizations of the independent
samples t-test confidence intervals using M SW as the estimation of the common within-
group variance (02), and dfy in place of df.

For a single mean, the formula for the confidence interval is

_ MSwW
Cl =2 £iN_g; (1+v)/2"
n;
where + is the confidence level.
> gamma <- .95
> ( CI.A <- { mean(DV.4) +
+ c(-1, 1)*qt((1 + gamma)/2, df = dfW)*sqrt(MSW/length(DV.4A)) } )

[1] 0.9000123 2.3699877
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> ( CI.B <- { mean(DV.B) +

+ c(-1, 1)*qt((1 + gamma)/2, df
[1] 1.693346 3.163321

> ( CI.C <- { mean(DV.C) +

+ c(-1, 1)*qt((1 + gamma)/2, df
[1] 2.606679 4.076654

> ( CI.D <- { mean(DV.D) +

+ c(-1, 1)*qt((1 + gamma)/2, df
[1] 2.596679 4.066654

dfW) *sqrt (MSW/length(DV.B)) } )

dfW) *sqrt (MSW/length(DV.C)) } )

dfW) *sqrt (MSW/length(DV.D)) } )

And some (but not all) of the confidence intervals overlap.
Alternatively, we can form a vector of means/lengths to simultaneously find a vector
of lower bounds and a vector of upper bounds for all of the groups.

> (CI.1 <- xbar_j - qt((1 + gamma)/2, df
A B C D
0.9000123 1.6933457 2.6066790 2.5966790
> (CI.u <- xbar_j + qt((1 + gamma)/2, df
A B C D
2.369988 3.163321 4.076654 4.066654

dfW)*sqrt (MSW/n_j))

dfW) *sqrt (MSW/n_j))

Finally, because we have the following vectors corresponding to each group

e A vector of group means: xbar_j.

e A vector of group lengths: n_j.

e A vector of group variances: s2_j.

e A vector of CI lower bounds: CI.1.

e A vector if CI upper bounds: CI.u.

we can visually compare the groups using a barplot with confidence interval bands.

> x.bar <- barplot(xbar_j, ylim = c(0, max(CI.u)),

+ names = colnames (DV.mat),

+ main = "Bar Plot of Multiple Groups with CI Bands",
+ col = "white")

> segments(x0 = x.bar, x1 = x.bar,

+ y0 = CI.1, y1 =CI.u,

+ 1ty = 2)
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Bar Plot of Multiple Groups with Cl Bands

In the above code chunk, barplot made a plot of each group mean, and assigning
the barplot to x.bar saved the midpoint of each bar. The other plotting command,
segments, is like lines or points or abline, in that the output of segments is plotted
on top of an existing plot. In this case, segments takes four main arguments:

1. x0: A vector of values on the z-axis where the segments should start to be drawn.
2. y0: A vector of values on the y-axis where the segments should start to be drawn.
3. x1: A vector of values on the z-axis where the segments should be finished.

4. y1: A vector of values on the y-axis where the segments should be finished.

And then R connects the first vectors of (z, y) values with the second vectors of (x, y)
values. The 1ty = 2 resulted in dashed (rather than solid) lines.

Alternatively, we could have constructed boxplots in exactly the same way that we
constructed them in the two-samples t-tests chapter, by using the formula operator.

> boxplot(DV.vec ~ IV.vec,
+ main = "Boxplots of Multiple Groups",
+ names = colnames(DV.mat))



11.1. One-Way ANOVA in R 219

Boxplots of Multiple Groups
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Because the homogeneity of variance assumption might be violated, a more appropriate
visual comparison would be barplots of the variables with confidence bounds constructed
from individual variance estimates rather than the M SW.

> # Barplots with confidence bounds.

> x.bar2 <- barplot(xbar_j, names = colnames(DV.mat),

+ main = "Bar Plot of Multiple Groups with CI Bands",

ylim = c(0, max(CI.u)), col = "white")

mtext ("Variance NOT Pooled Across Groups")

segments(x0 = x.bar2, x1 = x.bar2,
yO = xbar_j - qt((1 + gamma)/2, df = n_j - 1)*sqrt(s2_j/n_j),
y1 = xbar_j + qt((1 + gamma)/2, df = n_j - 1)*sqrt(s2_j/n_j),
1ty = 2)

+ + + Vv Vv +

Bar Plot of Multiple Groups with Cl Bands

Variance NOT Pooled Across Groups
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We also would want to construct confidence intervals on the difference between
means rather than the means themselves. Assuming homogeneity of variance, the confi-
dence interval formula for the difference between means is

1 1
CI = (z; — .fj) TiN—g (14y)/2 \/MSW < + >

n; n;
As an example, we can compare groups A and B without correcting for multiple testing.

# The first part: the difference between means.
(CI.AB <- {mean(DV.A) - mean(DV.B) +

c(-1, 1)*qt((1 + gamma)/2, df = dfW)*
# The third part: the standard error (using MSW).

sqrt (MSW*(1/length(DV.A) + 1/length(DV.B)))})
[1] -1.8327629 0.2460962

>
>
+
+ # The second part: -/+ the critical value.
+
+
+
+

If we do not assume homogeneity of variance, then the easiest method of constructing
confidence intervals is by using the t.test function but setting var.equal to FALSE. Of
course, neither procedure is optimal because performing multiple ¢-tests or constructing
multiple confidence intervals results in inflated Type I error rates (or inaccurate overall
confidence interval coverage rates). To account for the family-wise error rate, we should
correct our post-hoc procedures for multiple comparisons.

Post-Hoc Tests

Once you reject the null hypothesis in an ANOVA, you should perform post-hoc (or
a priori) comparisons. Several of the post-hoc tests do not depend on whether or not we
rejected the null hypothesis. Of those, the easiest comparison to do in R is the Tukey test.

> ( mod.tuk <- TukeyHSD(mod.aov, conf.level = .95) )

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = DV.vec ~ IV.vec)

$IV.vec

diff lwr upr p adj
B-A 0.7933333 -0.6013684 2.188035 0.4052637
C-A 1.7066667 0.3119649 3.101368 0.0131422
D-A 1.6966667 0.3019649 3.091368 0.0137367
C-B 0.9133333 -0.4813684 2.308035 0.2878407
D-B 0.9033333 -0.4913684 2.298035 0.2966874
D-C -0.0100000 -1.4047018 1.384702 0.9999970

The TukeyHSD function outputs the difference between the groups, the lower value of the
(Tukey corrected) confidence interval, the upper value of the (Tukey corrected) confidence
interval, and the adjusted p-value. You can easily perform the set of Tukey comparisons
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even without the TukeyHSD function. The Tukey HSD test is identical to a standard
independent samples t-test, but Tukey HSD uses the M SW as the pooled variance and
has as its test statistic the absolute value of ¢ multiplied by v/2. Of course, the Tukey HSD
test uses a different distribution to determine critical values--the Tukey distribution (or
studentized range distribution), but R provides functions for calculating the appropriate
quantiles/probabilities of the Tukey distribution (ptukey and qtukey). First, finding the
p-value for a particular pair of comparisons.

> # The first part to the Tukey HSD is calculating the t-statistic:
> L.AB <- mean(DV.A) - mean(DV.B)
> Lse.AB <- sqrt(MSW+(1/length(DV.A) + 1/length(DV.B)))
> t.AB <- L.AB/Lse.AB
# The second part to the Tukey HSD is:
# - Taking the absolute value of the t-statistic,
# - Multiplying the t-statistic by the square root of 2, and
# - Finding the probability of AT LEAST that value using ptukey.
ptukey(q = sqrt(2)*abs(t.AB),
nmeans = length(xbar_j), df = dfW,
lower.tail = FALSE)
[1] 0.4052637

+ + VvV VvVvVyVvyv

But it might be easier to find the critical value of the Tukey distribution, divide the
critical value by v/2, and compare the (modified) critical value to the absolute value of
pairwise t-statistics.

> # The critical value (again, strangely, dividing by sqrt(2))
> g.crit <- qtukey(p = .05,

+ nmeans = length(xbar_j), df = dfW,

+ lower.tail = FALSE)/sqrt(2)

> # Compare the critical value to the absolute value of t:

> q.crit # Is this smaller,

[1] 2.798936
> abs(t.AB) # than this?
[1] 1.592089

Another multiple comparison correction uses the Bonferroni p-value in correcting
p-values with the pairwise.t.test function.

> ( mod.bon <- pairwise.t.test(x = DV.vec, g = IV.vec,
+ p.adjust.method = "bonferroni',
+ pool.sd = TRUE) )

Pairwise comparisons using t tests with pooled SD
data: DV.vec and IV.vec

B C

6 0.490 -
17 0.509 1.000
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P value adjustment method: bonferroni

The function pairwise.t.test (using the argument pool.sd = TRUE and setting p.adjust.method
to "bonferroni") performs all pairs of ¢-tests (assuming a common variance for all groups)
and adjusts the p-value of each test by the Bonferroni correction. Rather than adjusting
the specified Type I error rate down (so that ap = a/k, where k is the number of com-
parison), pairwise.t.test multiplies individual p-values by the number of comparisons.
As in the Tukey HSD procedure, you can easily perform the Bonferroni correction
by using simple functions in R. The three values you will need are as follows.

1. The mean squares within (MSW)
2. The degrees of freedom within (dfy)
3. The number of comparisons we will make (k)
We had already found M SW and dfy, in the omnibus ANOVA table.

> MSW
[1] 0.7449
> dfW
[1] 20

Alternatively, we could have pulled both M SW and dfy from the anova.lm object (which
is often easier than working with the summary.aov object).

> # Saving the anova of the Ilm object.

> aov.lm <- anova(mod.lm)

> # Pulling out the degrees of freedom and mean squares.
> aov.lm$Mean[2]

[11 0.7449

> aov.1m$Df [2]

(11 20

Therefore, need only determine the number of comparisons we plan on making. If we
decide to test differences between all pairs of groups, then we would have k = (9) =

2
ﬁiz)! = @ possible t-tests. In our case, g = 4, s0 k = @ = 6 pairs of comparisons.

Thus ap = a/k, and if @ = .05, then ap = a/k = .05/6 ~ .0083. Once we have our
modified ap, we can perform an independent samples t-test using ap as the modified,
per comparison, a-level.

# The mean difference:

L.CD <- mean(DV.C) - mean(DV.D)

# The standard error of the mean difference:

Lse.CD <- sqrt(MSW+(1/length(DV.C) + 1/length(DV.D)))
# The t-statistic:

t.CD <- L.CD/Lse.CD

# Either compare the two-tailed p-value to alpha_B.

p <- 2#pt(abs(t.CD), df = dfW, lower.tail = FALSE)
alphB <- .05/6

alphB # Is this larger,

vV VVVVVVYVVYV
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[1] 0.008333333

>p # than this?

(1] 0.9841877

> # Or compare the two-tailed critical value to our t-statistic.
> t.crit <- qt(alphB/2, df = dfW, lower.tail = FALSE)

> t.crit # Is this smaller,

[1] 2.927119

> abs(t.CD) # than this?

[1] 0.02006835

You can use the above logic to build modified confidence intervals based on the Bonferroni
critical value (only replacing taz,,; (14+)/2 With tap, . (1—(1—~)/(2k))). But what if you want
to determine if pairs of groups are different from other pairs of groups? Or if the means
of three groups is different from the mean of a new, fancy experimental group? Simple
paired comparisons cannot answer either of these questions. A more general method of
performing post-hoc analyses is by means of linear contrasts.

Linear Contrasts

Let’s pretend (a priori) that we expect the mean of groups “A” and “B” to be
similar and the mean of groups “C” and “D” to be similar, but groups “A” and “B” to be
different than groups “C” and “D”. Then simple paired comparisons (or paired confidence
intervals) will not provide this information. A more general method of comparing groups
in an ANOVA is by means of linear contrasts. A linear contrast is defined as L =
aifin + azpia + ... agpy such that > .a; = 0. In our simple example, we want to tests
whether groups “A” and “B” differ from groups “C” and “D”. Therefore, the contrast
coefficients are as follows.

| A B C D
L|-1 -1 +1 +1

These contrast coeflicients correspond to the following hypotheses.

Ho:—p1 —po+ ps +pa =0
Hi:—p1 —po+ps+pa #0

Once we define a contrast, we can test the significance of the contrast using a modified
t-test with the following formula:
L-L
tdf =
MSWS . %
J nj

with df = N — g. Notice that this contrast obeys the standard form of a t-test. The
numerator is the estimate of the contrast minus the hypothetical contrast (given a true
null hypothesis), and the denominator is the standard error of the contrast. Figuring
out the pieces to plug into this function is pretty straightforward when using the tapply
function (repeating earlier calculations to illuminate exactly what is happening).
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> ## BASIC STATISTICS ##

> (xbar_j <- tapply(DV.vec, IV.vec, FUN = mean))
A B C D

1.635000 2.428333 3.341667 3.331667

> (n_j <- tapply(DV.vec, IV.vec, FUN = length))

ABCD

66 6 6

> (s2_j <- tapply(DV.vec, IV.vec, FUN = var))
A B C D

1.0887100 0.5349767 0.5954967 0.7604167

> ## PARTS FOR CONTRAST ##

>a_j <-c(-1, -1, 1, 1)

> (dfW <- sum( n_j - 1))

[1] 20

> (MSW <- sum( (n_j - 1)*s2_j )/dfW)

[1] 0.7449

> (Lhat <- sum(a_j*xbar_j))

[1] 2.61

And then actually performing the test is pretty straightforward given the pieces.

> (t <- Lhat/sqrt((MSWxsum(a_j~2/n_j))))

[1] 3.703711

> (p <- 2*pt(abs(t), df = dfW, lower.tail = FALSE))
[1] 0.001405022

Therefore, p = 0.0014 < .05 = « means that we would reject the null hypothesis and
claim to have evidence that the linear contrast is different from O.

An alternative method of testing the significance of a contrast is by means of an
F-statistic. The resulting ANOVA divides the SSL by MSW and, therefore, uses an F’
distribution with 1 degree of freedom in the numerator. The formula for this contrast
sums of squares is

or, in R:

> (SSL <- (n_j[1]#Lhat~2)/(sum(a_j"2)))
A
10.21815

Note that if you were to calculate F' = Aﬁglﬁ/, you would find that F = ¢,

> (F <- SSL/MSW)
A
13.71748
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> t°2
[1] 13.71748

which immediately follows from F being a direct rearrangement of the t? formula. Why
(you may ask) do we need to worry about SSL given that we can already test the contrast
by means of a t-test? Well, I'm glad you asked (I think, assuming that you asked and
that I know this information)! It turns out that if you performed a particular set of
contrast that were set up in a particular way, then the SSL from those contrasts would
add up to SSB from the ANOVA. So one could think of contrasts as usefully dividing the
variance between groups. The rules for this educated breakdown is that the total number
of contrasts must be g — 1, the sum of the coefficients across each contrast must be 0, and
the sum of the cross-product of coefficients across any two contrasts must also be 0. If
these stipulations are satisfied, you have an “orthogonal” set of contrast. An example of
an orthogonal set of contrasts is as follows.

A B C D
L1 -1 -1 +1 +1
L2(-1 +1 0 0
L3/ o0 0 -1 -1

Notice that all of our stipulations hold. There are ¢ — 1 =4 — 1 = 3 contrasts, and

> al <- c(-1, -1, 1, 1)
> a2 <- c(-1, 1, 0, 0)
> a3 <- c(0, 0, -1, 1)
> sum(al)

[1] ©

> sum(a2)

(11 0

> sum(a3)

[1] ©

> sum(al*a2)

[1] ©

> sum(al*a3)

[1] ©

> sum(a2+*a3)

[1] ©

Therefore SSB = SSLy + SSLs + SSL;. We should (of course) check this claim.

> ## CONTRASTS ##
> (Lhatl <- sum(al*xbar_j))

[1] 2.61

> (Lhat2 <- sum(a2+*xbar_j))
[1] 0.7933333

> (Lhat3 <- sum(a3*xbar_j))
[1] -0.01
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> ## SUMS OF SQUARES ##

> (SSL1 <- (n_j[1]*Lhat172)/(sum(a1°2)))
A

10.21815

> (SSL2 <- (n_j[1]#Lhat2°2)/(sum(a2°2)))
A

1.888133

> (SSL3 <- (n_j[1]*Lhat3"2)/(sum(a3°2)))

A

3e-04

> ## CHECK ##

> SSL1 + SSL2 + SSL3
A

12.10658

> SSB
[1] 12.10658

Magic, isn’t it!?7!

Not surprisingly, several R functions allow you to automatically test the significance
of contrasts. One commonly used function is fit.contrast in the gmodels package.
There are four arguments for fit.contrasts: model, varname, and coef, and conf . int.
model is an ANOVA fit from the 1m or aov functions, varname is the name of the category
membership vector (in quotes), coef is a vector (for one contrast) or matrix (for multiple
contrasts), each row of which indicates the contrast coeflicients, and conf .int is a number
between 0 and 1 designating the confidence interval coverage rate. Note that conf.int
must be specified by the user or R will not calculate a confidence interval for your contrast.

Let’s fit a contrast on the previously run ANOVA:

> library(gmodels)
> mod.aov <- aov(DV.vec ~ IV.vec)

> fit.contrast(mod.aov, varname = "IV.vec",

+ coef = ¢(-1, -1, 1, 1), conf.int = NULL)
Estimate Std. Error t value Pr(>|t])

IV.vec c=( -1 -1 1 1) 2.61 0.7047 3.704 0.001405

Notice that the name of the row returned by fit.contrast is pretty ugly. One method of
making reasonable looking names is by turning coef into a one-row matrix (using rbind)
and then naming that row.

> fit.contrast(mod.aov, varname = "IV.vec",
+ coef = rbind('" -A-B+C+D' = c(-1, -1, 1, 1)),
+ conf.int = NULL)

Estimate Std. Error t value Pr(>ltl)
IV.vec -A-B+C+D 2.61 0.7047 3.704 0.001405

And you can fit all of the contrasts by rbinding the of the coefficients together.
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> fit.contrast(mod.aov, varname = "IV.vec",

+ coef = rbind('" -A-B+C+D' = c(-1, -1, 1, 1),
+ ' -A+B' =c(-1, 1, 0, 0),
+ ! -C+D' = c(0, 0, -1, 1)),
+ conf.int = NULL)

Estimate Std. Error t value Pr(>|tl)

IV.vec -A-B+C+D  2.6100 0.7047 3.70371 0.001405
IV.vec -A+B 0.7933 0.4983 1.59209 0.127047
IV.vec -C+D -0.0100 0.4983 -0.02007 0.984188

With multiple tests, you should probably correct your comparisons for an inflated family-
wise error error. Unfortunately, fit.contrast does not provide methods of adjusting
p-values for multiple comparisons. The easiest method of p-value correction would be
to take the p-values supplied by fit.contrast and multiply them by the number of
contrasts to arrive at Bonferroni-modified p-values. Of course, we would have no reason
to correct for multiple comparisons if the family-wise error rate did not drastically escalate
after each test. In the final section of this chapter, I discuss the consequence of multiple
comparisons on the nominal FWE.

11.2 ANOVA and Family-Wise Error Rates

A major reason for performing an ANOVA rather than several independent samples
t-test is due to the inflated « rate across a series of comparisons. One might want to know
the degree of inflation and whether supposed corrections work as expected. The following
code takes the number of groups (g), researcher specified Type I error rate («), number of
replications, population means and standard deviations of each group, and sample size of
each group, and it estimates the family-wise error rate using independent samples ¢-tests
versus an ANOVA.

> HARHHHHHHHRRRRRAAAAHH

> # MultTest Function #

> HAHAHHHHHHRRRRRAAAA S

>

> # This function is designed to take:

> # - a scalar indicating the number of groups,

> # - a scalar indicating the (specified) type I error rate (alpha),
> # - a scalar indicating the number of replications,

> # - a scalar/vector indicating the population means per group,

> # - a scalar if all groups have the same population means

> # - a vector if the groups have different population means

> # - a scalar/vector indicating the population sds per group, and
> # - a scalar/vector indicating the sample size per group.

>

> # And return:

> # - a vector of null hypothesis rejections using an ANOVA

> # - a vector of null hypothesis rejections using a t-test

> # - each vector will be TRUE for reject/FALSE for not reject

> # - the t-test vector is based on ANY rejection in all comparisons
>



228 Chapter 11. One-Way ANOVA

> MultTest <- function(g = 2, alph = .05, reps = 1000,
mu = 0, sig = 1, n = 10){

T T T T T e e e e #
# Arguments: #
#-g - the number of groups #
# - alph - the (specified) type I error rate #
# - reps - the number of replications/sims #
# - mu - the population mean per group #
# - sig - the population sd per group #
# - n - the population sample size per group #
# #
# Values #
# - F.rej - rejections (TRUE/FALSE) using ANOVA #
# - t.rej - rejections (TRUE/FALSE) using t-tests #

## 1. A FEW STATISTICS OF OUR DATA ##
mu  <- rep(mu, length.out = g) # the pop means
sig <- rep(sig, length.out = g) # the pop sds
n <- rep(n, length.out = g) # the pop samp sizes

## 2. BUILDING THE FACTOR VECTOR ##

# Building a vector to indicate the number of levels per group:
ind <- factor( rep(l:g, times = n) ) # a factor vector

# Building empty vectors to store acceptance/rejectance:
F.rej <- rep(FALSE, times = reps)
t.rej <- rep(FALSE, times = reps)

# We want to repeat this simulation a lot of times!
for(i in 1:reps){

## 3. SIMULATING THE OBSERVATIONS ##

# Simulating n_i observations for each group (into a list):
dep <- apply( cbind(n, mu, sig), MARGIN = 1,
FUN = function(x)
rnorm(n = x[1], mean = x[2], sd = x[3])

# Unlisting the observations so that they are in a vector:
dep <- c( unlist(dep) )

## 4. THE ANOVA ##
p.F <- anova( lm(dep ~ ind) )$"Pr(>F)"[1] # p-value



11.2. ANOVA and Family-Wise Error Rates 229

F.rejl[i] <- p.F < alph # p < alpha?

## 5. THE t-TEST ##

# Perform a t-test on all pairs of conditions.
p.t <- pairwise.t.test(x = dep, g = ind,
p.adjust.method = "none",
pool.sd = TRUE)$p.value

t.rejli] <- any(p.t[!is.na(p.t)] < alph) # is ANY p < alpha?

} # END for i LOOP

## 6. RETURNING STUFF ##
out <- list(F.rej = F.rej, t.rej = t.rej)

return(out)

} # END MultTest FUNCTION

Once loaded, actually using the function is rather straightforward. For instance, to com-
pare the ANOVA to all possible t-tests when there are only two groups, you would type
in the following.

> set.seed(23407)
> modl <- MultTest(g = 2) # g = 2 for TWO GROUPS.

And if you were to type names (mod1), you would find that there are two sub-objects in
the mod1 object: F.rej and t.rej. We can check the first few entries of each sub-object
by using the head function.

> head(mod1$F.rej) # what is in the F.rej subobject?
[1] FALSE FALSE FALSE FALSE FALSE FALSE
> head(mod1$t.rej) # what is in the t.rej subobject?
[1] FALSE FALSE FALSE FALSE FALSE FALSE

F.rej and t.rej are TRUE/FALSE vectors indicating the number of times one would reject
the null hypothesis that all group means are equal (using the specified « rate). We can
find the proportion of rejections in either case by taking the mean of each sub-object.

> mean(mod1$F.rej) # prop of rejections for using F
[1] 0.034
> mean(mod1$t.rej) # prop of rejections for using t
[1] 0.034

And both proportion of rejections are close to a = .05. Because the F-test is a gener-
alization of the independent samples t-test to more than two groups, the proportion of
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rejections should be identical when there are only two groups. However, when g > 2, the
overall proportion of rejections using an ANOVA will be lower than multiple ¢-tests.
You have many options for how to use the MultTest function. For instance, we can
check the overall Type I error rate when the groups have difference sample sizes of different
standard deviations. We can also use MultTest if the groups have different sample sizes,
just by changing the n argument to a vector indicating the specific group sample sizes.

> set.seed(280394)

> # Changing the sample sizes per groups:

> mod2 <- MultTest(g = 2, n = c(9, 15))

> lapply(mod2, FUN = mean) # apply a function to list elements
$F.rej

[1] 0.055

$t.rej

(1] 0.055

> # Changing the standard devs per groups:

> mod3 <- MultTest(g = 2, sig = c(1, 3))

> lapply(mod3, FUN = mean) # apply a function to list elements
$F.rej

[1] 0.067

$t.rej
[1]1 o.067

And we can even use MultTest if the group have different means by changing the mu
argument to a vector indicating the specific group means.

> mod4 <- MultTest(g = 2, mu = c(0, 1))
> lapply(mod4, FUN = mean) # apply a function to list elements

$F.rej
[1] 0.581

$t.rej
[1] 0.581

By changing the means, the proportions of rejections is no longer the true Type I error rate
but the power of the test. Of course, one does not gain by using the ANOVA procedure
to compare two groups. Our interest resides in the false rejection rate when there are
more than two groups.

> mod5 <- MultTest(g = 4)
> lapply(mod5, FUN = mean)
$F.rej

[1] 0.058

$t.rej
[1] 0.203
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And as was suspected, increasing the number of groups drastically inflates the overall
Type I error rate when using ¢-tests but does not affect the overall proportion of false
rejections when using an ANOVA.

The MultTest function can be easily adjusted to determine the proportion of (over-
all) false rejections when using the Tukey, Bonferroni, or any number of Post-Hoc proce-
dures. If one were to alter the MultTest function, he/she would find that the Bonferroni
procedure tended to overcorrect and the Tukey procedure does not optimally correct when
the group sample sizes are not all equal. The specific code for altering the MultTest func-
tion is left as an exercise.
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11.3 Appendix: Functions Used

Here is a list of important functions from this chapter:

# ANOVA in R

col(mat)

pf(q, dfl, df2, lower.tail)
qf (p, df1l, df2, lower.tail)
aov(formula, data)
summary . aov(aov.mod)
Im(formula, data)
anova.lm(lm.mod)

what are the column numbers?
probability in F distribution
quantile in F distribution
perform an ANOVA

summarize our ANOVA in a nice way
perform a regression (ANOVA)
summarize a regression as an ANOVA

H H H HHHEH

# ANOVA Power Calculations
library (pwr) # for the pwr.anova.test function
power.anova.test(groups, n, # ANOVA power 1
between.var,
within.var,
sig.level,
power)
pwr.anova.test(k, n, # ANOVA power 2
£,
sig.level,
power)

# Confidence Intervals

barplot (height, names) # draw a barplot
segments(x0, yo,
x1, y1, ... ) # draw short lines on existing plots

# Post-Hoc Tests
TukeyHSD (aov.mod, conf.level) # Tukey comparisons please :)
ptukey(q, nmeans, df, lower.tail) # probability in Tukey dist
gtukey(p, nmeans, df, lower.tail) # quantile in Tukey dist
pairwise.t.test(x, g, # t-tests with adjusted p-values
p.adjust.method,
pool.sd, alternative)

# Contrasts

library(gmodels) # for the fit.contrast function

fit.contrast(model, varname, # automatic linear contrasts :)
coef, conf.int)

# Applying and Tapplying
lapply (X, FUN, ...) # apply to each (list) element
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Correlation and Simple
Linear Regression

Arthur Nudge: Eh? know what I mean? Know what I mean?
Nudge, nudge! Know what I mean? Say no more! A nod’s as
good as a wink to a blind bat, say no more, say no more!
Man: Look, are you insinuating something?

Arthur Nudge: Oh, no no no no... yes.

Man: Well?

Arthur Nudge: Well, you’re a man of the world, squire...
you’ve been there, you’ve been around.

Man: What do you mean?

Arthur Nudge: Well, I mean, you’ve done it... you’ve slept...
with a lady...

Man: Yes...

Arthur Nudge: What’s it like?

—Monty Python’s Flying Circus - Episode 3

Most people think “Statistical Analysis” includes several sub-parts: (1) modeling
data, (2) point estimation, (3) interval estimation, (4) testing hypotheses, (5) making
decisions, and (6) asymptotic inference (i.e., what happens when N — oo). Statisticians
care about all six areas, but social scientists (including psychologists) care primarily about
modeling complex phenomena, and regression analysis initiates the building of models.
Because of its place at the forefront of data analysis, R has nearly unlimited resources
for handling regression problems. The plethora of material/resources makes running a
regression in R annoying (how does one sort through all of the functions to pick the most
relevant one) but convenient (most of the time, the needed function will be “out there”
somewhere).

233
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12.1 Pearson Correlations

12.1.1 Descriptive Statistics and Graphing

Most datasets are of the appropriate form for correlational analyses. For example,
using the following commands, load the BDI (Beck’s Depression Inventory), BFI (Big
Five Inventory), Anx (Anxiety) dataset into R.

> link <- "http://personality-project.org/r/datasets/maps.mixx.epi.bfi.data"
> dat <- read.table(url(link), header = TRUE)
> head(dat)

epiE epiS epilmp epilie epiNeur bfagree bfcon bfext

1 18 10 7 3 9 138 96 141

2 16 8 5 1 12 101 99 107

3 6 1 3 2 5 143 118 38

4 12 6 4 3 15 104 106 64

5 14 6 5 3 2 115 102 103

6 6 4 2 5 15 110 113 61
bfneur bfopen bdi traitanx stateanx

1 51 138 1 24 22

2 116 132 7 41 40

3 68 90 4 37 44

4 114 101 8 54 40

5 86 118 8 39 67

6 54 149 5 51 38

Using the BDI-BFI-Anx dataset, we can assess the relationship between many pairs of
variables. For our purposes, we will choose bfneur as our predictor (x) variable and
traitanx as our criterion (y) variable. Even though neuroticism as predicting anxiety is
not a particularly interesting question, we do have an intuitive idea of how our results
should appear.

> dat2 <- data.frame(bfneur = dat$bfneur, traitanx = dat$traitanx)
> X <- dat2$bfneur # our x-variable
>y <- dat2$traitanx # our y-variable

As shown in an earlier chapter, calculating a Pearson correlation on two vectors (or
even on a data.frame) is straightforward in R by using the cor function. In general, the
cor function either takes a matrix/data frame and then calculates a “correlation matrix”
of all pairs of variables or takes two vectors and calculates a single correlation.

> cor(dat2) # correlation of a matrix --> returns a matrix
bfneur traitanx

bfneur 1.0000000 0.5930101

traitanx 0.5930101 1.0000000

> cor(x, y) # correlation of two vectors --> returns a scalar

[1] 0.5930101

We can also calculate the correlation directly with simple R functions. The cov
function works similarly to the cor function but returns individual covariances rather
than correlations.
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> cov.xy <- cov(x, y) # covariance of two vectors

> sd.x <- sd(x) # standard deviation of one variable

> sd.y <- sd(y) # standard deviation of the other variable
> cov.xy/(sd.x*sd.y) # correlation between x and y

[1] 0.5930101

Or we can find the correlations directly by using the correlation formula.

o S-Dy-9)
VS e S

> S8S.xy <- sum( (x - mean(x)) * (y - mean(y)) ) # sum of cross-products
> S8S.x <- sum( (x - mean(x))"2 ) # sum of squares 1

> S8S.y <- sum( (y - mean(y))"2 ) # sum of squares 2

> SS.xy/(sqrt(SS.x*SS.y)) # correlation again

[1] 0.5930101

In any case, the correlation indicates that there is a moderately strong, positive, linear
relationship between neuroticism and trait anxiety as measured by these questionnaires.

We should next assess whether the correlation is a reasonable descriptive tool for
these data by constructing a bivariate scatterplot. Constructing a scatterplot in R is a
straightforward (and relatively intuitive) extension of the plot function.

> plot(x = x, y =y,

xlab = "Big Five Neuroticism",
ylab = "Trait Anxiety",
main = "Scatterplot”,
pch = 20, axes = FALSE)
> axis(1, col = "grey")

> axis(2, col "grey", las = 1)
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Based on the scatterplot, the relationship does appear to be linear, but you might notice
both some range restriction and the low end of the trait anxiety scale and some minor
heteroscedasticity.

12.1.2 Hypothesis Testing on Correlations

Many researchers frequently desire to test whether a correlation is significantly dif-
ferent from zero. Testing Hy : p = 0 is often not advisable due to the test statistic being
solely a function of sample size, but the process of simple hypothesis testing is still rather
straightforward by using the cor.test function. The input (and output) of cor.test is
nearly identical to that from the t.test function.

> ( mod.cor <- cor.test(x, y,
alternative = "two.sided",
conf.level = .95) )

Pearson's product-moment correlation

data: x and y
t = 11.145, df = 229, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.5023874 0.6707460
sample estimates:
cor
0.5930101

Not surprisingly, the p-value associated with the correlation is very small, and we would

reject Hy at any conventional « level.
We could also determine whether a correlation is significant by plugging our data

into
; T N —2
_g = =r
N=2 [1—r2 V1—r2
N—2

where N is the number of pairs of observations.

> r <- cor(x, y) # the correlation between x and y

> N <- length(x) # the number of pairs of observations
>(t<-r*sqrt( (N-2)/(1 -1r"2)) )

[1] 11.14497

> ( p <- 2#pt(abs(t), df = N - 2, lower.tail = FALSE) )
[1] 2.491328e-23

> # Is the t-statistic identical to before?

> mod.cor$statistic

t
11.14497
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12.1.3 Confidence Intervals

Constructing confidence intervals for population correlations is (perhaps) more use-
ful but a bit tricker. The sampling distribution of r is only approximately normally
distributed when p = 0. For all other population correlations, the sampling distribution
of r is skewed toward 0. The r — 2’ transformation was proposed by Fisher as a variance
stabilizing transformation to approximate normality, so that (approximate) normal the-
ory would apply to the transformed value. Therefore, constructing a confidence interval
for p requires the following three steps.

1. Calculate r — 2/ using: 2/ = tanh™'(r) = .51n (}f:)

2. Form CIs on 2’ using normal theory: CIL» = 2’ £ 2(144)/21/ %73

exp(2C1,/)—1

3. Calculate 2z’ — r for CI bounds on p: CI,. = tanh(C1I,/) = SpECTITT

Useful functions in calculating the correlation confidence interval include tanh and atanh.
Note that we do not even need to know the exact formula for the r — 2z’ — r transfor-
mation, as long as we know that the tanh and atanh functions are doing the right thing.
Go trig!

> # Pick the confidence level:

> gamma <- .95

> ## 1. ## Go from r to z:

>z <- atanh(r)

## 2. ## Build a confidence interval around z:

CI.z <- z + c(-1, 1)*gnorm( (1 + gamma)/2 )*sqrt(1/(N - 3))
## 3. ## Back transform the endpoints of the CI to r:

CI.r <- tanh(CI.z)

vV V. VvV

And the formula-based confidence interval should be identical to the one constructed using
the cor.test function.

> CI.r # formula based

[1] 0.5023874 0.6707460

> mod.cor$conf.int # cor.test construction
[1] 0.5023874 0.6707460

attr(,"conf.level")
[1] 0.95

Other uses of the r — 2’ transformation are to test non-zero null hypotheses for p, and
build confidence intervals/test the difference between pairs of correlations.

12.2 Alternative Correlations

Unfortunately, Pearson correlations only adequately describe the underlying rela-
tionship between two variables if those variables are linearly related. What should one
do if they have variable that (by design or due to data collection) have non-linear rela-
tionships? One solution would be to add non-linear terms to a prediction equation and
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calculate the correlation between y; and predicted y;. This method is for a different book
at a different time. Another solution is to develop theory appropriate for measuring non-
linear relationships. Common non-oval-shaped variables include those based on ranks and
those based on discretizing continuous variables.

12.2.1 Rank-Order Correlations

Common rank-order correlations include Spearman’s p and Kendall’s 7. Both cor-
relations (in different ways) circumvent problems in interpreting Pearson correlations on
ordinal level data or data with outliers. For this section, we will use the marks dataset in

the ggm package.

> data(marks, package = "ggm")

> head (marks)
mechanics vectors algebra analysis statistics

7
63
75
55
63
53

DO WN -

The marks dataset includes N = 88 students’ grades on each of J = 5 academic exams.
When plotting analysis against statistics using the plot function of the previous
section, we find fairly skewed variables with additional, problematic outliers.

82
78
73
72
63
61

67
80
71
63
65
72

67
70
66
70
70
64

81
81
81
68
63
73

> plot(x = marks$analysis, y = marks$statistics,

xlab
ylab
main

> axis (1)
> axis(2)

"Analysis Scores",
"Statistics Scores",
"Scatterplot”,

pch = 20, axes = FALSE)
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One can alleviate problems with skew and outliers by calculating either Spearman’s
p or Kendall’s 7. Spearman’s p is simply a correlation on the ranks of the variables.
Therefore, you can calculate Spearman’s p simply by following these steps:

1. Rank order the data, making sure to assign ties the average of the corresponding
ranks.

2. Compute the Pearson correlation on the ranks.

The end. That’s it! And because multiplying both variables by —1 will not change
the correlation, you can rank from highest = 1 to lowest = N or from highest = N to
lowest = 1. It does not matter! So, we must first rank-order both variables. The easiest
function that rank-orders our data is the rank function. For the standard Spearman’s p,
we require the rank of ties to be the average of the corresponding ranks, so we should set
ties.method to ""average''.

> head(anal.r <- rank(marks$analysis, ties.method = "average"))
[1] 85 87 84 87 87 82
> head(stat.r <- rank(marks$statistics, ties.method = "average"))

[1] 86.5 86.5 86.5 80.0 74.5 83.5

Notice that rank sets the minimum score equal to 1 (unless there are ties) and the maxi-
mum score equal to N (unless there are ties).

> (anal.m <- which.min(marks$analysis)) # where is the minimum score?
[1] 88

> anal.r[anal.m] # rank of minimum score?

[11 1

Also notice that ranking data results in a quadrilateral shape (as opposed to the elliptical
shape typical of interval data).
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> par(mfrow = c(1, 2))

> plot(x = marks$analysis, y = marks$statistics,
xlab = "Analysis Scores",
ylab = "Statistics Scores",
main = "Scatterplot: Scores",
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> plot(x = anal.r, y = stat.r,
xlab = "Analysis Ranks",
ylab = "Statistics Ranks",
main = "Scatterplot: Ranks",
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> par(mfrow = c(1, 1))

Scatterplot: Scores Scatterplot: Ranks
- o we o R
o _| . .. [°e) - - .
~ . e o .
9 1 . . g et
B c © 1° 1]
S L. g . e e s
;) o _| o’ o x . ® . LI
1) . . .
a s L weo, } a o _| - tee, .
'3) — ) ‘e -:.'ol . ﬁ < . .. . . .
m o . . ® wn 8 i — . .. . .
7 T u % . S
o ] . . ". 3 . .
— . o - .
[ T T T T T 1 [ T T T 1
10 20 30 40 50 60 70 0 20 40 60 80
Analysis Scores Analysis Ranks

After calculating the ranks on the data, you only need to correlate those ranks to obtain
Spearman’s p.

> (cor.rhol <- cor(anal.r, stat.r))
[1] 0.6280038

An additional method of finding Spearman’s p is by use the following formula:

2
N v
N(N2-1)
Because p is simply a Pearson correlation on the ranks, this formula is obtained via
simplification. The d stands for the difference between the ranks of each observation.
Unfortunately, this computation is not exact with ties in the data. So without ties:

vl <-¢c(1, 2, 5, 3, 7, 8)

v2 <- ¢(1, 3, 4, 9, 2, 6)

# Method 1: Correlation on Ranks
cor(rank(vl), rank(v2))

vV VvV VvV
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[1] 0.4285714

> # Method 2: Using Formula

> d <- rank(vl) - rank(v2) # differences in ranks
> N <- length(d) # length of differences
> 1 - 6*%sum(d~2)/(N*(N°2 - 1))

[1] 0.4285714

But in our case, if we try to take anal.r, subtract stat.r, square the resulting values, and
add up all of those squared terms, we get something slightly different from our original
correlation.

> # Method 1: Correlation on Ranks

> cor.rhol

[1] 0.6280038

> # Method 2: Using Formula

> head(d <- anal.r - stat.r) # difference in ranks
[1] -1.5 0.5 -2.5 7.0 12.5 -1.5

> (N <- length(d)) # length of differences
[1] 88

> (cor.rho2 <- 1 - (6*%sum(d"2))/(Nx(N~2 - 1)))

[1] 0.6284738

>

> # The formulas are not the same? Weird!

And if you are in doubt as to whether the first or second method is more appropriate,
you can set method equal to ""spearman'' in the cor function.

> (cor.rho3 <- cor(marks$analysis, marks$statistics,
method = "spearman"))
[1] 0.6280038

Notice that the correlation computed by the cor function is equivalent to the Pearson
correlation on the ranks and not the computational formula.

An alternative to Spearman’s p in the case of ordinal data is Kendall’s 7. Unlike
Spearman’s p, Kendall’s 7 has a defined standard error with a known sampling distribu-
tion. Therefore, hypotheses tests can be performed on Kendall’s 7 without simulations.
With all unique scores, then Kendall’s 7 can be written

#{concordant pairs} — #{discordant pairs}
T= ,
N(N —-1)/2
where a concordant pair means that if z; > x; then y; > y; or if x; < x; then y; < y;; a

discordant pair means that if z; > x; then y; < y; or if x; < z; then y; > y;; and N is
N(N—1)
2

the number of pairs. Note that all possible (];] ) =

compared, which is why the denominator is N(A;*l). An equivalent (and slightly simpler

formula) for Kendall’s 7 (without pairs) is

pairs of (x;,y;) and (x;,y;) are

N-1
- Zj>i Zi:l sgn(z; — 3Cj)5gn(yi - yj)
N N(N —1)/2 ’
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where sgn is the sign function and represents 1 if z; —z; > 0, =1 if 2; — 2; <0, and 0 if
xz;—x; = 0. For a dataset with no ties, this 7 formula is correct and fairly straightforward
(although annoying) to compute in R (using the sign function to calculate the differences).

> tau.n <- 0

>x <-vil

>y <-v2

> N <- length(x)

> for(i in 1:(N - 1)){
for(j in i:N){

tau.n <- tau.n + sign(x[i] - x[j])*sign(y[i] - y[j1)

}} # END ij LOOPS

The sum of sign products is 5 and equivalent to the difference between the number of
concordant pairs minus the number of discordant pairs. We can use tau.n to easily
calculate Kendall’s 7.

> tau.n/(Nx(N - 1)/2)
[1] 0.3333333

Not surprisingly, you can also calculate Kendall’s 7 using the cor function by changing
method to ''kendall'. And if you were to check the hand calculations, you would find
that they match up pretty well.

> tau.n/(N*(N - 1)/2) # calculated by hand
[1] 0.3333333

> cor(x, y, method = "kendall") # calculated in R
[1] 0.3333333

Unfortunately, if you were to repeat the Kendall’s 7 calculation using the marks dataset
(which has ties), then the two results would be different.

> # Method 1: By Hand

> tau.n <- 0

> x <- marks$analysis
>y <- marks$statistics
> N <- length(x)

> for(i in 1: (N - 1)){
for(j in i:NM){

tau.n <- tau.n + sign(x[i] - x[j])*sign(y[i] - y[j1)

}} # END ij LOOPS
> (taul <- tau.n/(N*(N - 1)/2))
[1] 0.4568966

> # Method 2: Using R Formula
> (tau2 <- cor(x, y, method = "kendall"))
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[1] 0.4664624
>
> # Close ... but different!

The cor function uses a much more complicated method to calculate 7 with ties in the
data.

12.2.2 Approximate/Categorical Correlations

When trying to compute correlations on categorical variables, the appropriate for-
mula depends on the existence of hypothetical, underlying, normally distributed variables.
To help see what some of these correlations are doing, I will first generate a bivariate, nor-
mally distributed variable, then I will discretize it, and finally, I will compute correlations
on the discretized variable. The function that I will use to generate multivariate normally
distributed variable is mvrnorm (multivariate random normal) in the MASS package.

set.seed(8912)
library (MASS)
X <- mvrnorm(n = 100, mu = c(0, 0),
Sigma = matrix(c(1, .8, .8, 1), nrow = 2))
> cont.vl <- X[ , 1]
> cont.v2 <- X[ , 2]

vV Vv Vv

cont.vl and cont.v2 are correlated approximately .8 as per the off-diagonals of the
Sigma matrix.

> cor(cont.v1l, cont.v2)
[1] 0.7965685

And if you plot cont.v1 against cont.v2, the variables are pretty elliptical-like.

> plot(x = cont.vl, y = cont.v2,
xlab = "Continuous Var 1",
ylab "Continuous Var 2",
main "Multivariate Normal Data",
pch = 20, axes = FALSE)
> axis(1)
> axis(2)
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Multivariate Normal Data
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Next, I will discretize the first variable into three parts.

> # If V1 < -1 --> POLY = 0
># If V1 > .5 --> POLY = 2
> # If V1 Between -1 and .5 --> POLY = 1
> poly.vl <- rep(0, length(cont.v1))
> poly.v1l[(cont.vl >= .5)] <- 2
> poly.vl[(cont.vl >= -1) & (cont.vl < .5)] <- 1
> # What does poly.vl look like?
> table(poly.v1)
poly.vil
0 1 2
12 55 33

And I will discretize the second variable into three parts.

> # If V1 < -.5 --> POLY = 0
> # If V1 > 1.5 --> POLY = 2
> # If V1 Between -.5 and 1.5 --> POLY =1
> poly.v2 <- rep(0, length(cont.v2))
> poly.v2[(cont.v2 >= 1.2)] <- 2
> poly.v2[(cont.v2 >= -.5) & (cont.v2 < 1.2)] <- 1
> # What does poly.v2 look like?
> table(poly.v2)
poly.v2
0 1 2
25 64 11
>

> # How comparable are the cutpoints for poly.vl/poly.v2?
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And when plotting poly.v1l against poly.v2, things are a little chunkier. Note that the
jitter function is useful in plotting scores with lots of repetitions, as it randomly shakes
the scores a little so that you can see how many scores are at a point.

> par(mfrow = c(1, 2))
> plot(x = cont.vl, y = cont.v2,
xlab = "Continuous Var 1",

ylab = "Continuous Var 2",
main = "Multivariate Normal Data',
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> plot(x = jitter(poly.v1l), y = jitter(poly.v2),
xlab = "Polytomous Var 1",
ylab = "Polytomous Var 2",

main = "Underlying Normal Data",
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> par(mfrow = c(1, 1))
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As evident by the scatterplot, discretizing continuous variables results in decreased cor-
relations.

> cor(cont.v1l, cont.v2) # original variables
[1] 0.7965685

> cor(poly.vl, poly.v2) # polytomous cuts
[1] 0.6440504

I had already discretized cont.v1l and cont.v2 into polytomous variable with three
categories. Next, I will discretize the first continuous variables into two, dichotomous
parts.
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> # If V1 < -.5 -——=> DICH = 0

> # If V1 > -.5 --=> DICH = 1

> dich.vl <- rep(0, length(cont.v1))
> dich.v1[(cont.vl >= -.5)] <- 1

> # What does dich.v1l look like?

> table(dich.v1)

dich.v1l

0 1

26 74

And I will discretize the second continuous variable into two parts.

> # If V1 < .2 --> DICH = 0
> # If V1 > .2 --> DICH = 1
> dich.v2 <- rep(0, length(cont.v2))
> dich.v2[(cont.v2 >= .2)] <- 1
> # What does dich.v2 look like?
> table(dich.v2)
dich.v2
0 1
49 51

And when plotting dich.v1 against dich.v2, the relationships are even chunkier.

> par (mfrow = c(1, 2))
> plot(x = cont.vl, y = cont.v2,
xlab = "Continuous Var 1",

ylab = "Continuous Var 2",
main = "Multivariate Normal Data',
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> plot(x = jitter(dich.v1l), y = jitter(dich.v2),
xlab = "Dichotomous Var 1",
ylab = "Dichotomous Var 2",
main = "Underlying Normal Data",
pch = 20, axes = FALSE)

> axis(1)

> axis(2)

> par(mfrow = c(1, 1))
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Notice how fewer cut-points results in lower correlations.

> cor(cont.v1l, cont.v2) # original variables
[1] 0.7965685

> cor(poly.vl, poly.v2) # polytomous cuts
[1] 0.6440504

> cor(dich.v1l, dich.v2) # dichotomous cuts
[1] 0.4223041

What do you do if you want to estimate the correlation among the underlying, nor-
mally distributed variables that have been butchered into discrete chunks? As we decrease
the number of possible scores (i.e., decrease the number of cuts), the correlation drops.
One proposed solution is to calculate tetrachoric (with a 2 x 2 table) or polychoric (with
an any size table) correlations to approximate the original relationship. A tetrachoric
correlation is an estimate of the correlation between two continuous variables underlying
a 2 x 2 contingency table assuming that those continuous variables are bivariate normally
distributed. The tetrachoric correlation is basically trying to go in the reverse direction of
our discretizing step and recover the original relationship. You can calculate tetrachoric
and polychoric correlations using the polychor function in the polycor package.

> library(polycor)
The polychor function takes four arguments:

1. x: Either a contingency table or an ordered, categorical variable.

2. y: An ordered categorical variable (if x is also an ordered categorical variable) or
NULL.

3. ML: A logical letting R know whether to compute the maximum likelihood (best?!)
estimate of the correlation or to quickly approximate that estimate.

4. std.err: A logical telling R whether or not to also include diagnostic information
along with the correlation.
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I always set ML to TRUE and std.err to TRUE so that I can perform follow-up tests on the
significance of the correlations. We will also generally compute these correlation using a
contingency table of counts based on the discretized variables.

> dich.tab <- table(dich.v1l, dich.v2)
> poly.tab <- table(poly.vl, poly.v2)
> dich.r <- polychor(x = dich.tab, ML
> poly.r <- polychor(x = poly.tab, ML

TRUE, std.err = TRUE)
TRUE, std.err = TRUE)

The polychor object contains several sub-objects, including: rho (the actual correlation),
var (the variance matrix between the correlation and the cuts), row.cuts (the estimated
cutpoints on the row variable), and col.cuts (the estimated cutpoints on the column
variable). Notice that both correlations are closer to the original correlation between the
continuous variables than the correlations using dichotomized variables.

> dich.r$rho

0.6783541

> poly.r$rho

0.8530738

> cor(cont.vl, cont.v2)
[1] 0.7965685

And the cutpoints are also reasonably estimated.

> dich.r$row.cuts
0
-0.6433454
> dich.r$col.cuts
0
-0.02506891
> poly.r$row.cuts
0 1
-1.1856482 0.4512085
> poly.r$col.cuts
0 1
-0.6740325 1.2129506

In the final section of this chapter, I will discuss how to model linear relationships
in R. The models discussed assume that the Pearson correlation adequately describes the
linear relationship. Therefore, I will use the dataset from the previous section and not
any of the datasets discussed in this section.

12.3 Simple Linear Regression
12.3.1 The Im Function

After determining that a linear relationship exists between two variables, one might
want to build a linear prediction equation using OLS regression. The easiest method of
regressing a criterion on one or more predictors is by using the 1m function (which stands
for “linear models.”).
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lm(formula, data)

In the above function, formula is of the form y ~ x, and data is a data.frame in which
the x and y vectors are located. As in One-Way ANOVA, if you input into lm vectors
outside of a data frame, you do not need to supply a value to the data argument. Because
we have trait anxiety and big five neuroticism both inside and outside a data frame, the
following function calls will result in identical output.

> ( mod.1m1 <- Im(traitanx ~ bfneur, data = dat2) )

Call:
Im(formula = traitanx ~ bfneur, data = dat2)

Coefficients:
(Intercept) bfneur
17.724 0.242
> ( mod.1m2 <- 1lm(dat2$traitanx ~ dat2$bfneur) )
Call:

Im(formula = dat2$traitanx ~ dat2$bfneur)

Coefficients:
(Intercept) dat2$bfneur
17.724 0.242

> x <- dat2$bfneur

> y <- dat2$traitanx

> ( mod.Im3 <- Im(y ~ x) )
Call:

lm(formula = y ~ x)

Coefficients:
(Intercept) X
17.724 0.242

Alternatively, we could also calculate the intercept and slope by using standard R func-
tions.

> bl <- cov(x, y)/var(x) # formula for slope
> b0 <- mean(y) - mean(x)+*bl # formula for intercept

Not surprisingly, the hand calculations result in the same output as when estimating the
slope and intercept by using the 1m function.

> coef(mod.1ml) # the "coefficients" (intercept and slope)

(Intercept) bfneur
17.7235831 0.2419592
> b0 # our intercept (calculated)

[1] 17.72358
> bl # our slope (calculated)
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[1] 0.241959

After saving an "1m" object (by using the 1m function), the summary (or summary.1lm)

2

function meaningfully summarizes the linear model.

> summary (mo

Call:
Im(formula =

Residuals:
Min
-13.887 -4.

Coefficients

(Intercept)
bfneur
Signif. code
0

d.1lm1)

traitanx ~ bfneur, data = dat2)

1Q Median 3Q Max
959 -1.082 3.678 29.564

Estimate Std. Error t value Pr(>|tl)
17.72358 1.97561 8.971 <2e-16 *x*x
0.24196 0.02171 11.145 <2e-16 *x*x*

S:

With 1m objects, the summary function contains the model-building formula, the five
number summary of the residuals (where e; = y; —9;), the coefficients, the standard errors
of the coefficients, the t-statistics (and corresponding p-values) when testing significance

of the coefficient, etc.

To extract values from the summary object, we can save the

summary into its own object (with a "summary.1lm" class) and extract individual parts of

the summary with

the dollar sign operator.

> sum.lml <- summary(mod.lml) # saving the summary

> names (sum.1lml) # what is inside the summary?
[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
(7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"
> sum.lml$coefficients # our test statistics
Estimate Std. Error t value Pr(>ltl)
(Intercept) 17.7235831 1.97561242 8.971184 1.076979e-16

bfneur
> sum.1lm1$si
[1] 7.683463

We can also plot t

0.2419592 0.02171017 11.144967 2.491328e-23

gma # our residual standard error

he regression line on top of the (already constructed) scatterplot by

using the abline function.

> # The original scatterplot:
> plot(x = x, y =y,

xlab
ylab

= "Big Five Neuroticism",
"Trait Anxiety",
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main = "Scatterplot"”,
pch = 20, axes = FALSE)
axis(1, col = "grey")
axis(2, col = "grey", las = 1)
# Our regression line on top of the plot:
abline(mod.1lm1, lwd = 2)

vV V. Vv Vv

Scatterplot
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The abline function plots a vertical, horizontal, or slanted line across an entire (already
existing) plotting surface.

12.3.2 Checking Regression Assumptions

After fitting and plotting a regression function, we should check to make sure the
simple linear regression assumptions are upheld. We can check for heteroscedasticity by
pulling the residuals out of the "1m" object and plotting those residuals agains the fitted
values.

# Pulling out the residuals and fitted values:
resid.lm <- residuals(mod.lml) # the residuals
fitted.1lm <- fitted(mod.1lm1) # the fitted values
# Plotting the fitted values/residuals on the x/y axes:
plot(x = fitted.1lm, y = resid.lm,

xlab = "Fitted", ylab = "Resid",

main = "Residual vs. Fitted Value Plot",

pch = 20, axes = FALSE)
axis(1, col = "grey")
axis(2, col = "grey", las = 1)
abline(h = 0, lwd = 2)

V VvV Vv VvV

vV Vv Vv
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Residual vs. Fitted Value Plot
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Based on the plot, the variability around the regression line appears constant for all values
of §. However, there might be a bit of non-normality (skew) due to the spread of the
residuals above the regression line being larger than the spread of the residuals below the
regression line. A better check for skew (and other non-normalities of the residuals) is via
constructing a qqnorm plot of the residuals.

> qqunorm(resid.lm, pch = 20) # qqnorm plot of the residuals
> qqline(resid.1lm) # qqline for the qgnorm plot
>
>

# Curvature above the line? Positive skew!

Normal Q-Q Plot
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Given the evidence of positive skew, the assumption of residual normality does not appear
to hold. However, regression analysis is usually robust to mild violations of normality.
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The residual versus fitted plot and qqnorm plot can also be constructed automatically
from the "1m" object.

> par(mfrow = c(2, 2)) # four plotting surfaces
> plot(mod.1lm1)
> par(mfrow = c(1, 1))
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Because the plot function is class specific, plugging different things into plot will result
in different plotted output: (1) two vectors will yield a scatterplot; (2) a regression object
yields diagnostic plots. And you will find many variations of the plot function, most of
which will only appear when inserting a specific R object.

12.3.3 Hypothesis Testing on Regression Coefficients

As in correlation analyses, we can test the significance of the slope and intercept
from a regression model. As a reminder, the coefficients of our linear model (predicting
trait anxiety from neuroticism) are as follows.

> coef (mod.1m1)

(Intercept) bfneur
17.7235831 0.2419592

The model coefficients can be used to (of course) build a prediction equation.

E(Y|X) = ij; = 17.724 + 0.242z;

Therefore, a score of 0 on neuroticism is predicted to result in a score of 17.724 on the
trait anxiety scale, and each additional point of neuroticism results in a predicted increase
of 0.242 trait anxiety units. The coefficients sub-object inside of mod.1m1 indicates
that both the slope and intercept are significantly different from 0 at o = .05.



254 Chapter 12. Correlation and Simple Linear Regression

> sum.lml$coefficients # find the slope/intercept p-value!

Estimate Std. Error t value Pr(>ltl)
(Intercept) 17.7235831 1.97561242 8.971184 1.076979e-16
bfneur 0.2419592 0.02171017 11.144967 2.491328e-23

But we could also test the significance of a regression slope by using the appropriate
formula.

. b
N-2 = —F——=
Var(ﬁl)
where
o A2
Var(p1) = ﬁe_l)

is the estimated standard error of the simple linear regression slope. In R, the procedure
for testing the significance of a regression slope is as follows.

>N <- length(resid.lm)
> ( var.eps <- sum( resid.1m"2 )/(N - 2) )
[1] 59.0356

> ( var.bl <- var.eps/(var(x)*(N - 1)) ) # from above
[1] 0.0004713317

> ( t.b1 <- b1/sqrt(var.bl) ) # a typical t-test
[1] 11.14497

> ( p.b1 <- 2*pt(abs(t.bl), df = N - 2, lower.tail = FALSE) )
[1] 2.491328e-23

Notice that the t-statistic for testing the significance of a slope is identical to the t-statistic
when testing the significance of a correlation coefficient. For simple linear regression, the
slope/correlation are isomorphic assuming fixed variances.

We can also use the (estimated) standard error (above) to calculate confidence inter-
vals for the true population slope. And not surprisingly, R contains a function to compute
those confidence intervals automatically.

> gamma <- .95
> ## 1 ## The easy method (using a build-in function):
> confint(mod.1ml, level = gamma)

2.5 % 97.5 %
(Intercept) 13.8308813 21.6162850
bfneur 0.1991819 0.2847364

> ## 2 ## The much more difficult method (by hand):
> ( CI.slp <- { b1 +

c(-1, 1)*qt( (1 + gamma)/2, df = N - 2 )#*sqrt(var.bl) } )
[1] 0.1991819 0.2847364
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12.3.4 Fitted and Predicted Intervals

One of the benefits to regression analysis is the ability to form a confidence interval
for a future observation. The function predict takes a regression object, predicts new
values given a data frame (or list) of those new values by name, and calculates confidence
intervals for predicted or fitted values.

predict (mod.1lm,

newdata = list( ... ),
interval = c("none", "confidence", "prediction"),
level = .95)

For example, to predict trait anxiety from a neuroticism score of 120, we can use the
following code.

> ( fit.int <- predict(mod.lml, newdata = list(bfneur = 120),
interval = "confidence") )
fit lwr upr
1 46.75868 45.0647 48.45266
> ( pred.int <- predict(mod.lml, newdata = list(bfneur = 120),
interval = "prediction") )
fit lwr upr

1 46.75868 31.52489 61.99248

Note: When using predict in R, you must specify your new data as a list of
vectors. Each vector in that list corresponds to an independent variable (of
which we only have one), and the name of the vectors MUST be identical to
the names of the predictor variables in your regression model. If the vector
names are not the same, R will not know which variables you want to predict.
For example, in mod.1m2, the name of the x-variable is bfneur; in mod.1lm2,
the name of the z-variable is dat2$bfneur; and in mod.1m3, the name of the
z-variable is x. Therefore, the contents of newdata depends on which model
one uses to find predictions.

One might wonder how to predict future observations and find confidence intervals
for predictions without the use of the (convenient) predict function. Not surprisingly,
finding predicted values is a simple application of the “multiply” and “divide” operators.

> x.1i <- 120
> ( yhat.i <- bO + bl*x.i )
[1] 46.75868

And finding confidence intervals requires knowing the standard error of a predicted value.
To find the standard error of the predicted value, one must first know the standard error
of fit,

R FRpop
Ofitted = Oe¢ N Sg(N—]_)

where x; is the point used to predict g;.
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> # Variance of the fitted value:

> var.fit <- var.eps*(1/N + (x.i - mean(x)) 2/(var(x)*(N - 1)))

> # Standard error of the fitted value is the square root of the variance:
> ( se.fit <- sqrt(var.fit) )

[1] 0.8597229

The standard error of fit is a modification of the standard error of the intercept by forcing
z; to be equal to 0 on the x-axis. The standard error of prediction is equal to the standard
error of fit plus extra variability of residuals around the fitted value,

. R 1 T, — )2
Opredict — Ue\/l + =+ ( ‘ )

N (N -1)

x

where the 1 under the radical indicates the extra residual variability.

> # Variance of the predicted value:

> var.pred <- var.eps*(1 + 1/N + (x.i - mean(x))"2/(var(x)*(N - 1)))
> # Standard error of the predicted value:

> ( se.pred <- sqrt(var.pred) )

[1] 7.731412

After finding predicted values and standard errors, the process to construct confi-
dence intervals is the same as always.

> gamma <- .95
> ( fit.int2 <- { yhat.i +

c(-1, 1)*qt( (1 + gamma)/2, df
[1] 45.06470 48.45266
> ( pred.int2 <- { yhat.i +

c(-1, 1)*qt( (1 + gamma)/2, df
[1] 31.52489 61.99248

N - 2 )*se.fit } )

N - 2 )*se.pred } )

And the confidence intervals line up exactly with those calculated using the predict
function.

Note: A confidence interval for a fitted value is semantically different from
a confidence interval for a predicted value. The CI for a fitted value is basi-
cally the confidence interval for the regression line at that point. The further
away that the point is from the regression line, the less sure we are that the
regression line describes the conditional mean. The CI for a predicted value is
a confidence interval for the point itself. When we form a confidence interval
for prediction, we are saying something about the actual y value and not just
the regression line. Due to the variability of points around y, the prediction
confidence interval is usually much larger than the fitted confidence interval.

For predictor scores far away from the mean of the distribution, the fitted /prediction
intervals are wider than for fitted/predictor scores close to the mean of the distribution.

> # The original scatterplot:
> plot(x = x, y =y,
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xlim = ¢(0, 160), ylim = c(0, 100),

xlab = "Big Five Neuroticism",
ylab = "Trait Anxiety",
main = "Scatterplot”,

pch = 20, axes = FALSE)
axis(1, col = "grey")
axis(2, col = "grey", las = 1)
abline(mod.1lm1, lwd = 2)
# The prediction interval bands:
x.t <- seq(0, 160, by = .01)
y.t <- predict(mod.1lml, newdata = list(bfneur = x.t))
var.pred2 <- var.eps*(1 + 1/N + (x.t - mean(x)) 2/(var(x)*(N - 1)))
se.pred2 <- sqrt(var.pred2)
lines(x.t, y = y.t - qt((1 + gamma)/2, df = N - 2)*se.pred2,
1ty = 3, 1wd = 3, col = "darkgreen")
lines(x.t, y = y.t + qt((1 + gamma)/2, df = N - 2)*se.pred2,
lty = 3, lwd = 3, col = "darkgreen")
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12.4 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Pearson Correlations in R

cor(x, y) # correlation on two vectors

cor (X) # correlation on a matrix or data.frame
cov(x, y) # correlation on two vectors

cov(X) # covariance on a matrix

cor.test(x, y) # is this correlation sig dif from 07
atanh(r) # r --> z (arc (inverse) hyperbolic tangent)
tanh(z) # z -—> r (hyperbolic tangent)

# Alternative Correlations in R

library(polycor) # for the polychor function

cor(x, y, method) # general correlation on two vectors

polychor(x, y, ML, # tetrachoric/polychoric cors
std.err)

rank (x) # ranks of the data

sign(x) # sign (+/-) of each score

# Regression in R
lm(formula, data) # perform a linear regression
summary (mod . 1m) # summary statistics for our model
plot(mod.1lm) # interesting regression plots :)
coef (mod . 1m) # the slope and intercept
fitted(mod.1lm) # the fitted values (on the reg line)
resid(mod.1lm) # the residuals (off of the reg line)
confint (mod.1lm, # a confidence interval for reg parameters
level)
predict(mod.lm, newdata, # predict or fit new values
interval,
level)

# Scatterplots

plot(x, y, ... ) # a scatterplot

jitter(x) # add some noise to a variable
abline(mod.1lm) # the linear fit (on top of the plot)
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Tests on Count Data

Interviewer: Was there anything unusual about Dinsdale?
Lady Friend: I should say not! Dinsdale was a perfectly nor-
mal person in every way. FErcept inasmuch as he was con-
vinced that he was being watched by a giant hedgehog he re-
ferred to as Spiny Norman.

—DMonty Python’s Flying Circus - Episode 14

One question that students fret over in introduction to statistics classes is: “how
do we conduct inferential statistics with count or proportion data?” All of the inferential
tests discussed in earlier chapters draw conclusions about the sample mean of one or
several groups. Yet often (generally in made up problems for the emotional benefit of
statistics teachers), one encounters questions about the relationship between categorical
variables. These questions were actually addressed by the earliest statisticians. And many
of the resulting test names: “Pearson’s x2” or “Fisher’s Exact Test” or “Yates’ Continuity
Correction” reference those early statisticians.

13.1 ? Testsin R

There are two classic x? tests on count data developed by Pearson (and then Fisher),
the x? goodness of fit test, and the x2 test of independence. The former test determines
(inferentially) whether a set of sample counts are unlikely given proportions from a hy-
pothetical population. Although the traditional x? goodness of fit test is rarely used, the
x? distribution is often used to compare the fit of models. This comparison usually takes
the form of a likelihood ratio, which will be discussed later in the chapter. The other
x? test (referred to as the x? independence because, you know, the x? test decided to
escape from all of the other sillier tests described in earlier chapters) tries to determine
whether several categorical variables are related. Both of these tests parallel the propor-
tions, probability, Bayes’ theorem stuff described in Chapter 4. Before getting into the
nitty gritty of performing each test, I should review how to form tables appropriate for
the x2.

259
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13.1.1 Setting up Data

One of the initial problems in performing a x? test is setting up the data in such a
form as to be able to do calculations. An example dataset appropriate for x2 tests is the
survey dataset in the MASS package, which we can load via the data function.

> data(survey, package = "MASS")
> head (survey)

Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer

1 Female 18.5 18.0 Right R on L 92 Left Some

2 Male 19.5 20.5 Left Ron L 104 Left None

3 Male 18.0 13.3 Right L on R 87 Neither None

4 Male 18.8 18.9 Right R on L NA Neither None

5 Male 20.0 20.0 Right Neither 35 Right Some

6 Female 18.0 17.7 Right L on R 64 Right Some
Smoke Height M.I Age

1 Never 173.00 Metric 18.250

2 Regul 177.80 Imperial 17.583

3 Occas NA <NA> 16.917

4 Never 160.00 Metric 20.333

5 Never 165.00 Metric 23.667

6 Never 172.72 Imperial 21.000

The survey dataset describes attributes of students in an introduction to statistics class,
including: gender, handedness, pulse, smoke, etc. To use the survey data (or data in
a similar form) for a x? test, you must first organize the data. The table function (if
you don’t remember) creates a contingency table based on the number of scores in each
combination of levels. We could use the table function to count the number of males
and females,

> (0.Sex <- table(survey$Sex))

Female Male
118 118

left-handed and right-handed students,

> (0.Hnd <- table(survey$W.Hnd))

Left Right
18 218

or the level of smoking for students.

> (0.Smk <- table(survey$Smoke))

Heavy Never Occas Regul
11 189 19 17

And we could create a 2-way contingency table by listing pairs of (usually categorical)
variables in order.

> (0.SH <- table(survey$Sex, survey$W.Hnd))
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Left Right
Female 7 110
Male 10 108

> (0.8Sm <- table(survey$Sex,  survey$Smoke))
Heavy Never (Occas Regul
Female 5 99 9 5
Male 6 89 10 12
> (0.HSm <- table(survey$W.Hnd, survey$Smoke))
Heavy Never Occas Regul
Left 1 13 3 1
Right 10 175 16 16

And we could even create a 3-way (or more) contingency table by listing triples of variables
in order.

> (0.SHSm <- table(survey$Sex, survey$W.Hnd, survey$Smoke))

, » = Heavy
Left Right
Female 0 5
Male 1 5

, , = Never
Left Right
Female 6 92
Male 6 83

, » = Occas
Left Right
Female 1 8
Male 2 8

, » = Regul
Left Right
Female 0 5
Male 1 11

Datasets might also be given to you in those weird n-way contingency tables. For
example, the HairEyeColor dataset describes the hair, eye color, and sex of statistics’
students in a pretty-easy-to-interpret-but-difficult-to-manipulate way.
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> data(HairEyeColor) # yay - exciting data!

> HairEyeColor # wtf do we do with this?
, , Sex = Male
Eye

Hair Brown Blue Hazel Green

Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

, , Sex = Female

Eye
Hair Brown Blue Hazel Green
Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

Although these really weird tables can be manipulated mathematically,

> HairEyeColor + 1

, , Sex = Male
Eye
Hair Brown Blue Hazel Green
Black 33 12 11 4
Brown 54 51 26 16
Red 11 11 8 8
Blond 4 31 6 9

, , Sex = Female

Eye
Hair Brown Blue Hazel Green
Black 37 10 6 3
Brown 67 35 30 15
Red 17 8 8 8
Blond 5 65 6 9
> HairEyeColor * 428
, , Sex = Male
Eye
Hair Brown Blue Hazel Green

Black 13696 4708 4280 1284
Brown 22684 21400 10700 6420
Red 4280 4280 2996 2996
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Blond 1284 12840 2140 3424
, , Sex = Female

Eye
Hair Brown Blue Hazel Green
Black 15408 3852 2140 856
Brown 28248 14552 12412 5992
Red 6848 2996 2996 2996
Blond 1712 27392 2140 3424

you generally want to break down contingency tables into constituent parts. The (obvi-
ously existing) function for this job is margin.table, also discussed in Chapter 4:

margin.table (table, margin)

The first argument of margin.table is the table that you want to simplify (here, that table
is HairEyeColor). The second argument of margin.table is the particular “dimensions”
of the table that you want to keep in the resulting table, in order, inside of a vector, where:
row is 1, column is 2, third dimension (after double comma) is 3, fourth dimension (after
triple comma) is 4, etc. For example, the variable on the rows of HairEyeColor is Hair,
so if we let margin = 1, we will end up with a table of the number of people with each
hair color.

> (0.Hair <- margin.table(HairEyeColor, margin = 1)) # hair color
Hair
Black Brown Red Blond

108 286 71 127

We can also construct a margin table of the column variable (Eye) or the third-dimension
variable (Sex):

> (0.Eye <- margin.table(HairEyeColor, margin = 2)) # eye color
Eye
Brown Blue Hazel Green

220 215 93 64
> (0.Sex <- margin.table(HairEyeColor, margin = 3)) # gender
Sex

Male Female
279 313

However, we can also use the margin argument to take this 3-way contingency table and
force out of it a 2-way contingency table by listing the two desired dimensions to keep as
elements of a numeric vector. For instance, we could form a Hair by Eye color contingency
by letting margin equal the vector 1 (to stand for Hair) and 2 (to stand for Eye)

> # c(1, 2) --> 1 (Hair) and 2 (Eye)
> (0.HE <- margin.table(HairEyeColor, margin = c(1, 2)))
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Eye
Hair Brown Blue Hazel Green
Black 68 20 15 5
Brown 119 84 54 29
Red 26 17 14 14
Blond 7 94 10 16

And using our vector rules, we could form every other combination of counts.

> # c(1, 3) ——> 1 (Hair) and 3 (Sex)
> (0.HS <- margin.table(HairEyeColor, margin = c(1, 3)))

Sex
Hair Male Female
Black 56 52
Brown 143 143
Red 34 37
Blond 46 81

> # c(2, 3) -=> 2 (Eye) and 3 (Sex)
> (0.ES <- margin.table(HairEyeColor, margin = c(2, 3)))
Sex
Eye Male Female
Brown 98 122
Blue 101 114
Hazel 47 46
Green 33 31

We could also take 4-way or 5-way or even 6-way contingency tables and let margin
equal a length 3 or 4 vector to break down our bigger tables into slightly smaller parts.
However, the annoying repetitiveness of the margin.table function is not needed any-
more. Once we have small (1-way or 2-way) contingency tables, we are ready to use
MATH to turn those contingency tables into beautiful x? statistics.

13.1.2 The x? Goodness of Fit Test

The x? goodness of fit test starts with two “vectors”: observed counts and null
hypothesis probabilities. Once you have those two vectors, you can perform the x? test
by R or let the chisq.test function do all of the magic itself.

Pretend that you have collected quite a few statistics’ students and you want to
determine whether there’s evidence to believe that the proportion of students with brown
and blue eyes are the same, the proportion of students with hazel and green eyes are
the same, and the proportion of students with brown/blue eyes is twice the proportion of
students with hazel/green eyes. Then your null and alternative hypotheses can be written
as follows:

Ho : Thrown = Thlue = .33; Thagel = Tgreen = A7

Hy : Hy is not true.

Our observed frequencies are listed in 0.Eye object.
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> 0.Eye

Eye

Brown Blue Hazel Green
220 215 93 64

And the observed proportions should be compared to the expected proportions according
to the null hypothesis.

> Ep.Eye <- ¢(.33, .33, .17, .17)

The order of the probability vector must correspond to the order of the observed vector,
or R will match the incorrect frequency with the incorrect probability. We can then create
a vector of expected frequencies (under the null hypothesis) by multiplying the expected
probabilities by the total number of students:

> N <- sum(0.Eye)
> (E.Eye <- N * Ep.Eye)
[1] 195.36 195.36 100.64 100.64

The x? statistic is then calculated by translating the Old MacDonald formula:

Old MacDonald had a statistical procedure: E;, E;, O (4)

And using this statistical procedure he tested counts: E;, E;, O (7)
What a useless test, what a silly test,

Here a whew, there a rue,

If the null hypothesis is never true,

Why don’t we just collect more people? I don’t know! Statistics is silly!

X?lf = ZC: {(Oi ;iEi)Q]

i=1
with df = C — 1. It’s fairly easy to plug the numbers into the formula using what we
already know about “math” in R.

> (chisq.obt <- sum( (0.Eye - E.Eye) 2/E.Eye ))
(1] 19.00171

> (df.obt <- length(0.Eye) - 1)

[11 3

Because 0.Eye is a vector of counts, length(0.Eye) tells us the number of eye colors.
Once we have x2,,, what do we do? Well, as always, there are two options. We could find
the critical value using the qchisq function, noting that our one parameter is df and the
x2-test is always an upper-tailed test.

> alpha <- .05

> (chisq.crit <- qchisq(alpha, df = df.obt, lower.tail = FALSE))
[1] 7.814728

> (chisq.crit < chisq.obt) # do we reject the null hypothesis?
[1] TRUE
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Or we could find the p-value directly in R by using the pchisq function, noting that the
p-value is the area greater than (lower.tail = FALSE) our ngt.

> (p <- pchisq(chisq.obt, df = df.obt, lower.tail = FALSE))
[1] 0.0002731764

> (p < alpha) # do we reject the null hypothesis?

[1] TRUE

An alternative method of performing the x? goodness of fit test is by using the
(automatically awesome) chisq.test function in R.

chisqg.test (x, y = NULL, correct = TRUE,
p, rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

The chisq.test function takes the following arguments:

e x: Either a vector/matrix of counts (using the table, margin.table, c, or matrix
functions) or a factor vector with another factor vector in the y argument. For a
goodness of fit test, x must be a vector of counts. The “matrix of counts” and “factor
vector” only work with the the test of independence.

e y: Either nothing (for a goodness of fit test), a numeric matrix of counts (if perform-
ing a test of independence and x is a numeric matrix of counts) or a factor vector
(if performing a test of independence and x is a factor vector). Because we are only
concerned about the goodness of fit test at the moment, y will not be needed.

e correct: A logical vector (TRUE/FALSE) indicating whether to do Yates’ conti-
nuity correction (which does not apply to the goodness of fit test).

e p: A vector of null hypothesis probabilities for the goodness of fit test. < We care
about this argument. If p is left blank, then R assumes that the null hypothesis is
that each category has equal probabilities in the population.

e rescale.p: A logical vector (TRUE/FALSE) indicating whether the p vector should
be rescaled to sum to 1.

e simulate.p.value: A logical vector indicating whether the traditional/approxi-
mate x? test should be performed or whether an “exact” p-value should be calculated
by simulation.

e B: The number of replications of the simulation if simulate.p.value is TRUE.

For the x? goodness of fit test, x should always be a vector of counts and not the original
factor vector.

> # Test the chisq.test function with the Sex variable in survey:
> head (survey$Sex)

[1] Female Male Male Male Male Female

Levels: Female Male
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> # Plug the original vector into chisq.test? Bad!
> try(chisq.test(x = survey$Sex), silent = TRUE) [1]
[1] "Error in chisq.test(x = survey$Sex) : \n all entries of 'x' must be nonnegat

> # Find counts prior to plugging into chisq.test? Good!
> chisq.test(x = table(survey$Sex))

Chi-squared test for given probabilities

data: table(survey$Sex)
X-squared = 0, df = 1, p-value =1

But if we plug just a vector of counts into the chisq.test function without changing any
of the other arguments, R will assume that our null hypothesis is “all probabilities are
equal” and spit out a x2,, value far away from the one that we already calculated.

> chisq.test(x = 0.Eye) # not correct :(

Chi-squared test for given probabilities

data: O0.Eye
X-squared = 133.473, df = 3, p-value < 2.2e-16

We could correct the null hypothesis by explicitly plugging a vector of probabilities into
the p argument.

> chisq.test(x = 0.Eye,
p = Ep.Eye, rescale.p = TRUE)
Chi-squared test for given probabilities

data: O0.Eye

X-squared = 19.0017, df = 3, p-value = 0.0002732
> chisq.obt # does our chi”2 match? yup!

(1] 19.00171

>p # does our p-value match? yup!

[1] 0.0002731764

Note: You might want to set rescale.p equal to TRUE or R will give you
an error if your p vector does not add up to 1. Because the entries in your p
vector are just approximate probabilities, setting rescale.p equal to TRUE
will prevent rounding error resulting in really annoying R-ounding error =

Examining the output of the chisq.test function

> mod.chisq <- chisq.test(x = 0.Eye,
p = Ep.Eye, rescale.p = TRUE)
> names (mod.chisq) # what is in the chi”2 object?
[1] "statistic" "parameter" "p.value"  "method"
[6] "data.name" "observed" "expected" '"residuals"
[9] "stdres"
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The mod. chisq object contains the x? test statistic (in the statistic sub-object), degrees
of freedom (in the parameter sub-object, for some reason), p-value (in the p.value sub-
object), observed and expected counts (in the observed and expected sub-objects) and
two other wacky things. We can pull each of the sub-objects out of mod.chisq with the
$ operator:

> mod.chisq$statistic # chi"2 statistic (to plug into pchisq)

X-squared
19.00171

df
3

> mod.chisq$p.value # p.value (output of pchisq)
[1] 0.0002731764
> mod.chisq$observed # observed counts (what we plugged in)
Eye
Brown Blue Hazel Green
220 215 93 64

> mod.chisq$expected # expected counts (p-vector * N)

Brown Blue Hazel Green
195.36 195.36 100.64 100.64

The second to last wacky thing is the residuals. If we square and sum residuals, we
end up with our X2, test statistic:

> mod.chisq$residuals
Eye

Brown Blue Hazel Green
1.7628805 1.4051531 -0.7615669 -3.6523312

> sum(mod.chisq$residuals~2)
[1] 19.00171

And the last wacky thing is the stdres. As it turns out, stdres are like the regular resid-
uals (the things we square and sum), but the difference between O; and E; is standardized
in a different manner. We can think about a regular residual as

. _O0i-E _ 0i-F
T VR VN KB

the difference between O; and FE; standardized by the square-root of the expected count
i each cell over repeated sampling. The standardized residual is instead

0, — E; 0, — E;
€; = =
i std \/E‘/i \/N X Epl(l — Epz)

the difference between O; and F; standardized by the square-root of the expected variance
in each cell over repeated sampling.

> mod.chisq$stdres
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Eye

Brown Blue Hazel Green
2.1537013 1.7166678 -0.8359282 -4.0089543
> (0.Eye - E.Eye)/sqrt(N * Ep.Eye * (1 - Ep.Eye))
Eye

Brown Blue Hazel Green
2.1537013 1.7166678 -0.8359282 -4.0089543

13.1.3 The x? Test of Independence

Unlike the x? goodness of fit test, the x? test of independence starts with a matrix
of observed counts. Because the test of independence uses a very specific null hypothesis,
the matrix of expected counts can be formed directly from the matrix of observed counts
without needing to know a strange, hypothesized p vector. And then the x? test follows
as always.

Pretend that we have collected data from statistics students in Canada (using a
time machine and flying ability) and want to know (for some reason) whether exercise is
dependent on sex. The null and alternative hypotheses can be written as follows:

Hp : Exercise is Independent of Sex

H; : Exercise is Dependent on Sex

The data are stored in the dataset survey in the MASS package, which can be accessed by
using the data function and letting the package argument equal '"MASS''.

> data(survey, package = "MASS")
> head(survey)

Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer

1 Female 18.5 18.0 Right R on L 92 Left Some

2 Male 19.5 20.5 Left R on L 104 Left None

3 Male 18.0 13.3 Right L on R 87 Neither None

4 Male 18.8 18.9 Right R on L NA Neither None

5 Male 20.0 20.0 Right Neither 35 Right Some

6 Female 18.0 17.7 Right L on R 64 Right Some
Smoke Height M.I Age

1 Never 173.00 Metric 18.250

2 Regul 177.80 Imperial 17.583

3 Occas NA <NA> 16.917

4 Never 160.00 Metric 20.333

5 Never 165.00 Metric 23.667

6 Never 172.72 Imperial 21.000

We want to construct a table of Sex x Exer, which we can easily do using the table
function and specifying the appropriate variables.

> (0.SE <- table(Sex = survey$Sex, Exercise = survey$Exer))
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Exercise
Sex Freq None Some
Female 49 11 58
Male 65 13 40

Unfortunately, we now need an expected table of frequencies, and obtaining the expected
table for a x? test of independence is not nearly as straightforward as for the goodness of
fit test.

The expected table of frequencies assumes that: (1) The marginal frequencies are
the same, and (2) The variables are independent. Independence = (implies) Product
Rule, which after a few lines of “math” reduces to the following formula

NieTle;
Eijj = — N =
where n;, is the number of people in row i, n.; is the number of people in column
j, and N is the total number of people in the table. Two R commands will find the
total frequencies in the rows and columns of the table: rowSums and colSums, which, as
described in Chapter 8 take matrices, add up all of the entries on the columns or rows of
those matrices, and return a vector of sums.

> (0.S <- rowSums(0.SE)) # the row sums

Female Male
118 118

> (0.E <- colSums(0.SE)) # the column sums

Freq None Some
114 24 98

> (N <- sum(0.SE)) # the sum of EVERYONE!
[1] 236

But what now!??! How can we take these vectors and form a new expected count matrix?
Well the trick is to use specialized binary operators. You already know of several binary
operators: +, -, *, \. Binary operators take two things -- one before the operator and
one following the operator -- and combine those things in some specialized way. Most
of the binary operators in R use the following formulation: %thing%, where thing is the
unique part of the operation. Some examples of binary operators are: %% (modulus or
remainder, e.g., 13%%5 = 3), %/% (quotient or integer part of division, e.g., 13%/%5 = 2),
%*% (matrix multiplication), %x% (Kronecker product), etc. A useful binary operator for
our purposes is the outer product operator: %o%. Let’s say we have two vectors, x and y,
where x is length 3 and y is length 2. Then %o% will result in the following matrix:

z[1] xy[1]  z[1] = y[2]
x %0% y = |x[2] xy[l] x[2]*y[2]
z[3] *y[l] (3] xy[2]

So using %o% results in the first column in the new matrix being x multiplied by the first
entry of y, the second column in the new matrix being x multiplied by the second entry
of y, etc. Using this logic, we can efficiently form an expected frequency matrix:

> (E.SE <- (0.8 YoY% 0.E)/N)
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Freq None Some
Female 57 12 49
Male 57 12 49

And then we can form our typical, obtained x? statistic as always:

> (chisq.obt <- sum( (0.SE - E.SE)"2/E.SE ))
[1] 5.718403

> (df <- (length(0.S) - 1)*(length(0.E) - 1))
(11 2

And once we have X(z)bt, we can either find the critical value using the qchisq function or
find the p-value directly in R via the pchisq function.

> alpha <- .05

> (chisq.crit <- qchisq(alpha, df = df, lower.tail = FALSE))
[1] 5.991465

> (chisq.crit < chisq.obt) # do we reject the null hypothesis?
[1] FALSE

> (p <- pchisq(chisq.obt, df = df, lower.tail = FALSE))

[1] 0.0573145

> (p < alpha) # do we reject the null hypothesis?
[1] FALSE

Not surprisingly, the x2 test of independence can also be pretty easily performed
using the chisq.test function. For the y? test of independence, x can either be a matrix
of counts (if y is null) or the original factor vector (if y is set to the other factor vector).
And ... that’s it! As long as your table of counts is larger than 2 x 2, R will automatically
perform the test of independence.

> # First, using the matrix of observed counts:
> chisq.test(x = 0.SE, correct = FALSE)

Pearson's Chi-squared test

data: O0.SE

X-squared = 5.7184, df = 2, p-value = 0.05731

> # Second, using the appropriate factor vectors:

> chisq.test(x = survey$Sex, y = survey$Exer, correct = FALSE)
Pearson's Chi-squared test

data: survey$Sex and survey$Exer

X-squared = 5.7184, df = 2, p-value = 0.05731

>

> # Note: I set correct to FALSE to make sure the Yates correction
> # was not performed.
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But what if we had a 2 x 2 table? For instance, we could create a new observed data
matrix by combining the None and Sum categories of the previous table.

> 0.SE2 <- cbind(0.SE[ , 1], rowSums(0.SE[, 2:31))
> colnames(0.SE2) <- c("Yeh", "Meh")
> 0.SE2
Yeh Meh
Female 49 69
Male 65 53

Using the new Sex x Exercise table, we could (of course) perform the typical x? test of
independence, as before.

> (chisq.toi <- chisq.test(0.SE2, correct = FALSE))

Pearson's Chi-squared test

data: O0.SE2
X-squared = 4.344, df = 1, p-value = 0.03714

But with a 2 x 2 table, there are many, alternative options.

13.1.4 Alternatives to the Typical y*

The Yates’ Continuity Correction

The simplest alternative to the standard x? test of independence is called Yates’
continuity correction. The basic idea behind Yates’ continuity correction is simple. If X
is binomially distributed, then the probability that X is less than or equal to x is identical
to the probability that X is less than x + 1 (because X can only take on integer values),
or:

PriX<z)=Pr(X <z+1)

But if we want to approximate X with some continuous variable (say Y, which is normally
distributed), then we should pretend that z and = + 1 are somehow connected. And we
do this by violating nature! If Pr(X < z) = Pr(X < z + 1), then it might be better to
use the value between the two points, = + 1/2, as a continuous approximation halfway
between the discrete parts of  and = + 1. Of course, X can never take the value z + 1/2
(as X is discrete). But we are approximating discrete with continuous, and Y can take
any value. Therefore

PriY <z+1/2)=Pr(Y <z)=Pr(Y <z +1)

might be a continuous value that better approximates the area between the jumps of a
discrete sum.

Rather than using a normal distribution to approximate a binomial distribution,
the Yates’ correction uses a x? distribution to approximate a very specific multinomial
distribution. But in the same manner as for the standard continuity correction, we shift
the observed counts a bit toward the expected counts to overcome the discrete jumps in
the multinomial distribution. The Yates’ correction is defined as
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Xy Yatos = zz{ Ew‘ i

i=1 j=1

if every O;; is separated by more than .5 from every E;;. If an O;; is separated by less
than .5 from a specific E;;, the Yates’ correction is not applied only for that part of the
sum. Using the new Sex x Exercise table, the Yates’ y? value is

> # Our observed table from before:
> 0.SE2
Yeh Meh
Female 49 69
Male 65 53
> # Our new expected table:
> (E.SE2 <- (rowSums(0.SE2) Jo} colSums(0.SE2))/N)
Yeh Meh
Female 57 61
Male 57 61
> # Note: every E.SE2 is at least .5 away from the 0.SE2 value.
>
> (yates.obt <- sum( (abs(0.SE2 - E.SE2) - .5)"2/E.SE2 ))
[1] 3.817947
> (df2 <- (nrow(0.SE2) - 1)*(ncol(0.SE2) - 1))
[11 1

and the corresponding p-value is

> (p.yates <- pchisq(yates.obt, df = df2, lower.tail = FALSE))
[1] 0.05070635

The Yates’ correction can be done automatically using the chisq.test function by setting
correct equal to TRUE.

> (chisq.yates <- chisq.test(0.SE2, correct = TRUE))

Pearson's Chi-squared test with Yates' continuity
correction

data: 0.SE2
X-squared = 3.8179, df = 1, p-value = 0.05071

As promising as Yates’ might be, one finds three important comments on the Yates’
correction. First, the Yates’ correction is only appropriate with 2 x 2 contingency tables.
Second, given a 2 x 2 table, the Yates’ correction is the default in R. You must set correct
equal to FALSE to not perform the Yates’ correction. And finally, the Yates’ p-value (of
0.051) is quite a bit larger/more conservative than the standard x? test of independence
p-value (of 0.037). Later in this chapter, I will describe exactly how conservative the
Yates’ correction is relative to the standard x? test.
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The Likelihood Ratio Test

Another alternative option to the standard x? that still has an approximate x?
distribution is the likelihood ratio test,

c R o
Xzf;Likelihood = 22 Z |:Oij log (Ewﬂ
ij

i=1 j=1

where log is the natural logarithm. The likelihood ratio test is similar to the standard y?2
test of independence in that both are only an approximations to the x? distribution and
both use the same degrees of freedom. The only difference between the two x? statistics
is the arithmetic form. Using the statistics obtained in the previous part,

> # The likelihood ratio (easy!)
> (lik.obt <- 2#sum(0.SE2*log(0.SE2/E.SE2)))

[1] 4.357463

> # The degrees of freedom (same as before!)

>df2# (R - 1)(C - 1)

[1] 1

> # The p-value (same method as before!)

> (p.lik <- pchisq(lik.obt, df = df2, lower.tail = FALSE))
[1] 0.03684714

Notice that the likelihood ratio p-value is actually smaller than the original x? statistic
(and much smaller than the Yates’ correction) as the likelihood ratio is (oddly) more
asymptotic than the original approximation!

Fisher’'s Exact Test

An alternative option to test dependency in a 2 x 2 table is Fisher’s exact test.
Unlike the typical x? test of independence, the x? with Yates’ continuity correct, and
the likelihood ratio test, Fisher’s exact test is not an approximation to the p-value under
certain (unlikely) situations. The inspiration for Fisher’s exact test came from the lady
tasting tea episode, whereby a lady proclaimed that she could tell whether a tea bag was
added before milk or whether a tea bag was added before milk when making tea. And like
the lady tasting tea experiment, Fisher’s exact test assumes fized marginals (e.g., that
the number of cups with tea first and the number of cups with milk first are chosen in
advance, and the testing lady knows, and therefore will choose, a specific number of cups
to have tea or milk first). Fixed marginal counts is indeed a difficult assumption to make
for most data collection designs.

In the lady tasting tea experiment, Fisher assumes m cups with tea before milk, n
cups with milk before tea, and the lady will say a priori that & cups have tea before milk
(and, therefore, m + n — k cups have milk before tea). If the lady cannot tell whether a
cup has “tea before milk” or “milk before tea”, then the number of TRUE “tea before milk
cups” that she will say has “tea before milk” can be described with the hypergeometric
distribution. And therefore, we can use the hypergeometric distribution when trying
to find p-values. In our case, we have 118 females and 118 males. If exercising was
held constant, and if gender was independent of exercise level, then the probability of
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observing as few female exercisers as we did could be found by using the hypergeometric

distribution.
> # - m is the numer of females
> # - n is the number of NOT-females
> # - k is the number of high exercisers (determined a priori!)
> phyper(q = 0.SE2[1, 1], m = 0.5S[1], n = 0.S[2], k = colSums(0.SE2)[1])

[1] 0.02523843

>

vV Vv Vv
H B R

If Sex is independent of Exercise:
-— prob of 0.SE[1, 1] or less female exercisers?
—-- hypergeometric distribution!

The above calculation is an example of a lower tailed Fisher’s exact test. Odd! For
the typical x2, we must perform a two-tailed test (independent versus not independent),
whereas for the Fisher’s exact test, we can perform lower tailed (less than a particular
number in the upper left quadrant of the table), upper tailed (greater than a particular
number) or two-tailed tests (more extreme than a particular number). In R, the above
calculation can be easily performed by using the fisher.test function.

> fisher.test(0.SE2, alternative = "less")

Fisher's Exact Test for Count Data

data: 0.SE2
p-value = 0.02524
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
0.0000000 0.9224437
sample estimates:
odds ratio
0.5803901

Of course, one would usually assume a two-tailed alternative hypothesis when looking at
any 2 x 2 table, which is the default in R.

> fisher.test(0.SE2)

Fisher's Exact Test for Count Data

data: 0.SE2
p-value = 0.05048
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.334605 1.001085
sample estimates:
odds ratio
0.5803901

The two-tailed p-value for the Fisher’s exact test is more complicated than the typical p-
value (and, therefore, more difficult to calculate), but it can usually be well approximated
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by 2 times the appropriate one-tailed p-value. Interestingly, Fisher’s exact test isn’t really
testing the same statistic as any of the x2 tests. Fisher’s exact test takes as its statistic
the odds ratio. And with the Fisher’s exact test, you can change the null hypothesis odds
ratio (by making the or argument different from 1) or even change the confidence interval
around the odds ratio (by manipulating the conf.level argument). However, the odds
ratio that fisher.test calculates is only an estimate of the odds ratio based on some
maximization algorithm. How could one actually find the actual odds ratio in any given
sample?

13.2 0Odds and Risk

The natural descriptors of 2 x 2 contingency tables are the relative risk and the
odds ratio. The risk is essentially the conditional probability of being in one cell of the
table under the assumption of being in a particular category. For example, the risk of
exercising (an odd phrasing to say the least, unless exercising causes death!) given that
one is female is

# Exercising Females
# Females

In our case, that risk can be easily calculated by using the appropriate joint count and
the appropriate marginal count.

Risk Exercising | Female =

> (risk.f <- 0.SE2[1, 1]/rowSums(0.SE2)[1])

Female
0.4152542

Using the same logic, one could also calculate the risk of exercising given that one is male:

> (risk.m <- 0.SE2[2, 1]/rowSums(0.SE2)[2])

Male
0.5508475

and then the relative risk of exercising given that one is female is the ratio of the two
risks with the “female” part of the risk put in the numerator.

> (relrisk.f <- risk.f/risk.m)

Female
0.7538462

If the counts of each part of one of the variables are chosen in advance of the experiment
(e.g., the number of females equalling the number of males), then the risk only makes
sense in one direction. The relative risk of being female for heavy exercisers, while possible
to calculate,

> (risk.y <- 0.SE2[1, 1]/colSums(0.SE2)[1])
Yeh
0.4298246

> (risk.n <- 0.SE2[1, 2]/colSums(0.SE2)[2])
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Meh

0.5655738

> (relrisk.y <- risk.y/risk.n)
Yeh

0.7599797

does not make sense as being female is not a consequence of exercising.
An alternative to the risk/relative risk is the odds/odds ratio. The odds are also
conditional on being in a particular category:

E ising Femal
Odds Exercising | Female = # Exercising Females

# Not Exercising Females’

and calculated directly in the 2 x 2 contingency table without having to find the marginal
counts.

> (odds.f <- 0.SE2[1, 1]/0.SE2[1, 2])
[1] 0.7101449
> (odds.m <- 0.SE2[2, 1]/0.SE2[2, 2])
[1] 1.226415

And the odds ratio of females exercising to males exercising is just the odds of exercising
for females divided by the odds of exercising for males, or:

> (oddsrat.f <- odds.f/odds.m)
[1] 0.5790412

But in a retrospective study, it also makes sense to look at the odds of being female given
that one exercises and the odds of being female given that one does not exercise.

> (odds.y <- 0.SE2[1, 1]1/0.SE2[2, 1])
[1] 0.7538462
> (odds.n <- 0.SE2[1, 2]/0.SE2[2, 2])
[1] 1.301887

And unlike the relative risk, the odds ratio looking at the table in one direction and the
odds ratio looking at the table the other direction are identical.

> (oddsrat.y <- odds.y/odds.n) # odds ratio of y/f same as ...
[1] 0.5790412

> oddsrat.f # odds ratio of f/y.

(1] 0.5790412

13.3 Testing the \? Test Statistic

You might wonder whether the x? distribution adequately approximates the distri-
bution of the y? test statistic under the null hypothesis. One might also wonder if the
other tests described in this chapter are better or worse approximations of reality. The
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following function takes the total number of observations (N), true proportions in the
rows of the table (R,), true proportions in the columns of the table (C}), whether or
not the margins are fixed, the particular test, and the number of replications, and simu-
lates p-values from the (hopefully) null distribution under the chosen test. If the test is
accurate, approximately a p-values should be less than a.

> HHHHHHHAAAAHRRRRRRHHH
> # ChisqSim FUNCTION #
> HARUHARBHAARBHARBRHHR
>
>

ChisqSim <- function(N = 10, Rp = c(.5, .5), Cp = c(.5, .5),
margin.fixed = FALSE,
Yates = FALSE, Fisher = FALSE,
reps = 10000){

AN #
# Arguments: #
#-N - the sum of all of the joint counts #
# - Rp - the marginal probabilities on the rows #
# - Cp - the marginal probabilities on the columns #
# - margin.fixed - whether to assume fixed or varying marginal counts #
# - Yates - whether (or not) to use Yates' correction #
# - Fisher - whether (or not) to use Fisher's exact test #
# - reps - the number of samples to take #
# #
# Values: #
# - stat - a vector of sample chi”2s or odds rats (only if Fisher) #
# - p.value - a vector of corresponding p-values #
A #

## 1. SCALE THE MARGINAL PROBABILITIES (IN CASE THEY DON'T ADD TO ONE) ##
Rp <- Rp/sum(Rp)
Cp <- Cp/sum(Cp)

## 2. VECTORS TO STORE THINGS ##
stat <- NULL
p.value <- NULL

## 3. FINDING REPS STATISTICS/P-VALUES ##
for(i in 1:reps){

# "repeat" is to make sure that our statistic is a number:
repeatd{

# If we assume fixed marginals, we:
# a) Simulate a count in one cell of the table, and
# b) Subtract to get counts in the other cells!

if (margin.fixed == TRUE){
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0 <- matrix(0, nrow = 2, ncol = 2)

0[1, 1] <- rhyper(nn = 1, m = N*Rp[1], n = N*Rp[2], k = N+Cp[1])
0[2, 1] <- NxCp[1] - 0[1, 1]

0[1, 2] <- N*Rp[1] - O[1, 1]

o0[2, 2] <- N - (0[1, 1] + 0[2, 1] + O[1, 2])

} elsef

# If we do not assume fixed marginals, we:
# a) Find the joint probabilities for all cells,
# b) Simulate counts based on these probabilities, and
# c) Combine these counts into an appropriate matrix!
0 <- rmultinom(1l, size = N, prob = c(Rp o/ Cp))
0 <- matrix(0, nrow = 2)

} # END ifelse STATEMENT

# If Fisher is TRUE --> Use fisher.test.
if (Fisher == TRUE){

samp <- fisher.test (0, conf.int = FALSE)
stat[i] <- samp$estimate

} elsef

# If Fisher is FALSE --> Use chisq.test:

# a) Yates correction only if Yates is TRUE,

# b) suppressWarnings prevents annoying output.
samp <- suppressWarnings( chisq.test(x = 0, cor = Yates) )
stat[i] <- samp$statistic

} # END ifelse STATEMENT
p.value[i] <- samp$p.value
# Checking to make sure our statistic is a number:
# —--> Yes? Leave the repeat and do another iteration of for
# —--> No? Ignore our stat and stay on the same iteration of for
if( !is.nan(stat[i]) )
break;
} # END repeat LOOP
} # END i LOOP

## 4. PUTTING INTO A LIST AND RETURNING ##
return(list(stat = stat, p.value = p.value))
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} # END chisq.sim FUNCTION

After loading the above function, we can test whether sample x? statistics are ac-
tually x? distributed. For example, if we assume a really small sample size (N = 10),
assume that the marginal frequencies can vary, and assume that the marginal probabilities
are identical, then we could simulate sample x? statistics under the null hypothesis.

> set.seed(8923)
> chisq.samp <- ChisqSim(N = 10, Rp = c(.5, .5), Cp = c(.5, .5),
+ margin.fixed = FALSE, reps = 10000)

Our new object has two sub-objects: stat and p.value,

> names (chisq.samp)
[1] "stat" "p.value"

both of which we can access using the $ operator.

> head(chisq.samp$stat)

[1] 0.4000000 0.2777778 1.6666667 4.4444444 0.6250000
[6] 2.8571429

> head(chisq.samp$p.value)

[1] 0.52708926 0.59816145 0.19670560 0.03501498 0.42919530
[6] 0.09096895

One can check the correctness of the x? assumption by finding the proportion of p-values
less than some set « rate (say o = .05):

> alpha <- .05
> mean(chisq.samp$p.value < alpha)

[1] 0.053

and the theoretical o is pretty close to actual a. So the x? test did a pretty good job.
Both the Yates’ correction and Fisher’s exact test assume fixed marginals. And both are
bound to be extremely conservative if that assumption can not be made. You should
play around with the ChisqSim function on your own to determine the accuracy of your
p-values under all of the methods with a particular total count and either assuming (or
not) fixed marginal counts.
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13.4 Appendix: Functions Used

Here is a list of important functions from this chapter:

# Binary operators:
%o% # outer product

# Categorical Variables:
table( ... ) # (complicated) contingency tables

margin.table(tab, margin) # sum across the "margin" of tab

# Chi-Squared Tests in R

chisq.test(x, y, # goodness of fit test or ...

correct, # ... test of independence
p, rescale.p,
simulate.p.value, B)

fisher.test(x, alternative) # Fisher's exact test
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