
Artifactory
User Guide

1. Welcome to Artifactory . 4
1.1 Installing Artifactory . 6

1.1.1 System Requirements . 8
1.1.2 Installing on Linux Solaris or Mac OS . 10
1.1.3 Installing on Windows . 17
1.1.4 Installing with Docker . 20

1.1.4.1 Building Artifactory OSS . 24
1.1.4.2 Changing the Database . 25

1.2 Upgrading Artifactory . 27
1.2.1 Upgrading an Enterprise HA Cluster . 37

1.3 Using Artifactory . 50
1.3.1 Getting Started . 53
1.3.2 General Information . 58
1.3.3 Browsing Artifactory . 61
1.3.4 Using WebDAV . 67
1.3.5 Searching for Artifacts . 68
1.3.6 Deploying Artifacts . 76
1.3.7 Manipulating Artifacts . 83
1.3.8 Updating Your Profile . 88
1.3.9 Authentication . 93
1.3.10 Artifactory REST API . 95

1.3.10.1 Repository Configuration JSON . 193
1.3.10.2 Security Configuration JSON . 197
1.3.10.3 System Settings JSON . 198

1.4 Configuring Artifactory . 199
1.4.1 Configuring the Database . 204

1.4.1.1 MySQL . 206
1.4.1.2 Oracle . 210
1.4.1.3 Microsoft SQL Server . 211
1.4.1.4 PostgreSQL . 215

1.4.2 Configuring the Filestore . 216
1.4.3 Checksum-Based Storage . 247
1.4.4 Configuring Repositories . 250

1.4.4.1 Common Settings . 253
1.4.4.2 Local Repositories . 255
1.4.4.3 Remote Repositories . 259

1.4.4.3.1 Managing Proxies . 262
1.4.4.3.2 Advanced Settings . 263

1.4.4.4 Smart Remote Repositories . 268
1.4.4.5 Virtual Repositories . 271

1.4.5 Configuring Security . 275
1.4.5.1 Managing Users . 280
1.4.5.2 Managing Permissions . 286
1.4.5.3 Centrally Secure Passwords . 290
1.4.5.4 Master Key Encryption . 292
1.4.5.5 Managing Security with LDAP . 294
1.4.5.6 Managing Security with Active Directory . 297
1.4.5.7 Managing Certificates . 304
1.4.5.8 Using a Self-Signed Certificate . 306
1.4.5.9 Access Tokens . 307
1.4.5.10 Access Log . 314

1.4.6 Configuring a Reverse Proxy . 315
1.4.6.1 Configuring Apache . 320
1.4.6.2 Configuring NGINX . 323

1.4.7 Mail Server Configuration . 325
1.4.8 Configuration Files . 327
1.4.9 Exposing Maven Indexes . 331
1.4.10 Clustering Artifactory . 333

1.5 System Monitoring and Maintenance . 335
1.5.1 System Information . 335
1.5.2 Monitoring Storage . 336
1.5.3 Artifactory Log Files . 339
1.5.4 Artifactory JMX MBeans . 343
1.5.5 Regular Maintenance Operations . 347
1.5.6 Managing Backups . 350
1.5.7 Importing and Exporting . 353
1.5.8 Managing Disk Space Usage . 359
1.5.9 Getting Support . 362

1.6 Artifactory High Availability . 364
1.6.1 HA Installation and Setup . 369
1.6.2 Managing the HA Cluster . 382
1.6.3 Migrating Data from NFS . 385
1.6.4 Troubleshooting HA . 391

1.7 Xray Integration . 394
1.8 Bintray Integration . 397

1.8.1 Bintray info panel . 398
1.8.2 Distribution Repository . 398
1.8.3 Deploying Snapshots to oss.jfrog.org . 411

1.9 Log Analytics . 416
1.10 Artifactory Pro . 420

1.10.1 Artifactory Comparison Matrix . 422
1.10.2 Pro Features . 424

1.10.2.1 Artifactory Query Language . 426
1.10.2.2 Atlassian Crowd and JIRA Integration . 444
1.10.2.3 Azure Blob Storage . 447
1.10.2.4 Black Duck Code Center Integration . 448
1.10.2.5 Filestore Sharding . 448
1.10.2.6 Filtered Resources . 453
1.10.2.7 GPG Signing . 455
1.10.2.8 Google Cloud Storage . 457
1.10.2.9 LDAP Groups . 461
1.10.2.10 License Control . 464
1.10.2.11 OAuth Integration . 471
1.10.2.12 Properties . 480

1.10.2.12.1 Using Properties in Deployment and Resolution . 482
1.10.2.13 Repository Layouts . 484
1.10.2.14 Repository Replication . 492
1.10.2.15 S3 Object Storage . 499
1.10.2.16 SAML SSO Integration . 501
1.10.2.17 Single Sign-on . 507
1.10.2.18 Smart Searches . 510
1.10.2.19 SSH Integration . 513
1.10.2.20 User Plugins . 515
1.10.2.21 Watches . 538
1.10.2.22 WebStart and Jar Signing . 538

1.10.3 Package Management . 540
1.10.3.1 Bower Repositories . 542
1.10.3.2 Chef Cookbook Repositories . 552
1.10.3.3 CocoaPods Repositories . 559
1.10.3.4 Conan Repositories . 564
1.10.3.5 Debian Repositories . 567
1.10.3.6 Docker Registry . 575

1.10.3.6.1 Getting Started with Artifactory as a Docker Registry . 587
1.10.3.6.2 Advanced Topics . 598
1.10.3.6.3 Working with Docker Content Trust . 599
1.10.3.6.4 Using Docker V1 . 603

1.10.3.7 Git LFS Repositories . 612
1.10.3.8 Npm Registry . 618
1.10.3.9 NuGet Repositories . 628

1.10.3.9.1 Microsoft Symbol Server . 638
1.10.3.10 Opkg Repositories . 642
1.10.3.11 P2 Repositories . 646
1.10.3.12 PHP Composer Repositories . 652
1.10.3.13 Puppet Repositories . 656
1.10.3.14 PyPI Repositories . 671
1.10.3.15 RubyGems Repositories . 678
1.10.3.16 SBT Repositories . 687
1.10.3.17 Vagrant Repositories . 691
1.10.3.18 VCS Repositories . 697
1.10.3.19 RPM Repositories . 706

1.10.4 Ecosystem Integration . 716
1.10.4.1 Maven Repository . 717

1.10.4.1.1 Maven Artifactory Plugin . 723
1.10.4.2 Working with Gradle . 728

1.10.4.2.1 Gradle Artifactory Plugin . 733
1.10.4.3 Working with Ivy . 741

1.10.5 Build Integration . 744
1.10.5.1 Jenkins Artifactory Plug-in . 754

1.10.5.1.1 Working With Pipeline Jobs in Jenkins . 755
1.10.5.2 TeamCity Artifactory Plug-in . 771

1.10.5.2.1 TeamCity Artifactory Plugin - Release Management . 784
1.10.5.3 Bamboo Artifactory Plug-in . 789

1.10.5.3.1 Bamboo Artifactory Plugin - Release Management . 810
1.10.5.4 MSBuild Artifactory Plugin . 818
1.10.5.5 VS Team Services Artifactory Plugin . 827
1.10.5.6 Using File Specs . 836

1.11 Troubleshooting . 841
1.12 Known Issues . 842
1.13 End of Life . 843
1.14 Release Notes . 847
1.15 Pivotal Cloud Foundry JFrog Artifactory Tile Release Notes . 881

Welcome to Artifactory
Welcome to the JFrog Artifactory User Guide!

JFrog Artifactory is the only Universal Repository Manager supporting all major packaging formats, build tools
and CI servers.

Which Artifactory Do You Need?

Artifactory comes in the following flavors:

Artifactory

OSS

Offers powerful features with fine-grained permission control behind a sleek
and easy-to-use UI.

Using the links in the next column, you can download the Artifactory OSS
installation files, or the source files so you can build Artifactory OSS yourself.

For more information on building Artifactory OSS, please refer to the Readme
.file

Download

Download
Sources

Artifactory

Pro

Exposes a set of professional , on top of those already available toadd-ons
you from Artifactory Open Source, opening up a whole world of features that
empower you to manage your binaries and integrate with industry standard
tools in your development and deployment ecosystem.

Download

Artifactory

Cloud

JFrog's SaaS-based solution for managing your artifacts and binary
repositories in the cloud with the full power of Artifactory Pro behind you and
24/7 SLA-based support.

Register

Artifactory

Enterprise

Exposes an enterprise feature set such as cloud storage providers, advanced
capabilities for replication, high availability and more

Enterprise
Free Trial

To see which version of Artifactory best suits your needs, please see the .Artifactory Features Matrix

This user guide is for and above.Artifactory 5.0.0
Click this link to download the latest PDF version of the Artifactory User Guide:

Note that the online version may be more up-to-date.
If you are using Artifactory 4.x.y, please refer to the .Artifactory 4 User Guide

https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip/view#read
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip/view#read
https://www.jfrog.com/home/v_artifactory_opensource_download
https://api.bintray.com/content/jfrog/artifactory/jfrog-artifactory-oss-$latest-sources.tar.gz;bt_package=jfrog-artifactory-oss-zip
https://api.bintray.com/content/jfrog/artifactory/jfrog-artifactory-oss-$latest-sources.tar.gz;bt_package=jfrog-artifactory-oss-zip
http://www.jfrog.com/artifactory/features/
https://bintray.com/jfrog/product/artifactory/download
https://www.jfrog.com/artifactory/free-trial/#Cloud
https://www.jfrog.com/artifactory/free-trial/#High-Availability
https://www.jfrog.com/artifactory/free-trial/#High-Availability
https://bintray.com/jfrog/jfrog-docs/Artifactory-User-Guide/_latestVersion
https://www.jfrog.com/confluence/display/RTF4X/Welcome+to+Artifactory

How is this Guide Organized?

 Installing and U
pgrading
Artifactory

Learn how to install and upgrade Artifactory on all supported platforms, including
detailed system requirements and pre-requisites.

Using
Artifactory

Learn how to use Artifactory on a day-to-day basis including creating repositories,
deploying, copying and moving artifacts and more.

Configuring
Artifactory

Learn how to configure repositories, users, permissions and more.

Artifactory
REST API

A detailed specification of Artifactory's extensive REST API letting you automate any
process in your development ecosystem.

System
Monitoring and
Maintenance

Learn how to keep your system free of clutter and operating smoothly.

Artifactory
High
Availability

Learn how to configure and use Artifactory in a High Availability configuration providing
the most stable and secure binary repository available to enterprise users today.

Bintray
Integration

Learn how to integrate with JFrog Bintray to completely automate your software
development pipeline all the way to distribution.

Artifactory Pro Learn about all the add-ons that let Artifactory work seamlessly with packaging formats
such as Docker, NuGet, Vagrant, RubyGems and more, as well as with all major CI
servers and build tools

Release Notes Learn about the changes that came with each release of Artifactory.

Distributing Software Through Bintray

Bintray is JFrog's universal distribution platform.

Through tight integration, you can use Artifactory to push artifacts directly to your repositories in Bintray,
search through your Bintray repositories and more . Forto fully automate your software distribution process
more details, please refer to .Bintray Integration

For more details on how to use Bintray, please refer to the .Bintray User Guide

Page Contents
Welcome to the JFrog Artifactory User Guide!
Which Artifactory Do You Need?
How is this Guide Organized?
Distributing Software Through Bintray

Quick Links

Artifactory REST
API

Docker Registry Release Notes

Recently Updated

https://bintray.com/docs/usermanual/index.html

1.
2.
3.
4.

Installing Artifactory
Overview

This section provides a guide on the different ways you can install and configure Artifactory.

Installing Artifactory HA

System Requirements
Before you install Artifactory please refer to for information on supported platforms,System Requirements
supported browsers and other requirements.

Installation

The installation procedure involves the following main steps:

Installing Artifactory
Configuring the database
Configuring the filestore
Configuring an HTTP Server (Optional)

Artifactory REST API
29 minutes ago updated by • Rami Honig • view change

Artifactory REST API
about 9 hours ago updated by • Shlomi Kriheli • view change

HA Installation and Setup
yesterday at 7:39 PM updated by • Rami Honig • view change

User Plugins
yesterday at 2:44 PM updated by • Rami Honig • view change

JFrog Platform 5.7 - DONE
yesterday at 12:10 PM updated by • Rami Honig • view change

Working With Pipeline Jobs in Jenkins
yesterday at 10:53 AM updated by • Eyal Ben Moshe • view change

VCS Repositories
yesterday at 10:00 AM updated by • Rami Honig • view change

Release Notes
Nov 27, 2017 updated by • Rami Honig • view change

Release Notes 5.6.2
Nov 27, 2017 updated by • Rami Honig • view change

Getting Started with Artifactory as a Docker Registry
Nov 27, 2017 updated by • Rami Honig • view change

There are different instructions for installing Artifactory HA
If you are installing an Artifactory HA cluster, please refer to HA Installation and Setup.

If you follow the instructions on this page , your HA clusterfor an installation of Artifactory HA
will not work.

https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=46107948&selectedPageVersions=251&selectedPageVersions=250
https://www.jfrog.com/confluence/display/~krihelis
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=46107948&selectedPageVersions=250&selectedPageVersions=249
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=54988079&selectedPageVersions=154&selectedPageVersions=153
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=46107593&selectedPageVersions=33&selectedPageVersions=32
https://www.jfrog.com/confluence/display/RTF/JFrog+Platform+5.7+-+DONE
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=64718827&selectedPageVersions=2&selectedPageVersions=1
https://www.jfrog.com/confluence/display/~eyalb
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=59082388&selectedPageVersions=20&selectedPageVersions=19
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=46107855&selectedPageVersions=18&selectedPageVersions=17
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=46107982&selectedPageVersions=206&selectedPageVersions=205
https://www.jfrog.com/confluence/display/RTF/Release+Notes+5.6.2
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=63504550&selectedPageVersions=51&selectedPageVersions=50
https://www.jfrog.com/confluence/display/~ramih
https://www.jfrog.com/confluence/pages/diffpagesbyversion.action?pageId=51188497&selectedPageVersions=46&selectedPageVersions=45

Installing Artifactory

For detailed instructions, visit one of the following platform-specific pages:

Installing on Linux, Solaris or Mac OS
Installing on Windows
Installing with Docker

Configuring the Database

Artifactory comes with an embedded Derby Database out-of-the-box which it is pre-configured to use,
however, for better performance and to reuse existing infrastructures you may have, you can configure
Artifactory to work with alternative supported databases.

For details please refer to .Configuring the Database

Configuring the Filestore

By default, Artifactory is configured to use the local file system as its filestore. Artifactory supports a variety of
additional filestore configurations to meet a variety of needs for binary storage providers, storage size and
redundancy. For details, please refer to .Configuring the Filestore

Configuring an HTTP Server

You can run Artifactory with one of the supported HTTP servers set up as a front end. For details please refer
to Configuring a Reverse Proxy.

Directory Structure

After installing Artifactory, the directory will contain the following directory structure (the directory$ARTIFACTORY_HOME $ARTIFACTORY_HOME
location depends on your installation type):

File/Folder Description

access The home directory of the bundled JFrog Access. More details in the Access Tokens page.

access/etc/keys JFrog Access keys. More details in the page.Access Tokens

Page Contents
Overview
Installing Artifactory HA
System Requirements
Installation

Installing Artifactory
Configuring the Database
Configuring the Filestore
Configuring an HTTP Server

Directory Structure
Default Admin User
Watch the Screencast
Troubleshooting

Artifactory Does Not Start Up

Read more
System Requirements
Installing on Linux Solaris or Mac OS
Installing on Windows
Installing with Docker

logs Artifactory log files (general, access, request etc.)

etc Configuration files

etc/plugins Custom Groovy user plugins.

etc/security Global security related files (configuring global encryption key, PGP signing key etc.).

etc/ui Manually uploaded custom UI logos.

data/derby The Derby database (only present when using Derby).

data/filestore The checksum based storage of binaries when using the default filesystem storage.

data/tmp/work Directory to save temporary files which Artifactory generates.

data/tmp/artifactory-uploads Directory to save files uploaded using the Web UI.

bin Artifactory startup/shutdown scripts.

tomcat The default tomcat directory bundled with Artifactory.

tomcat/work The tmp directory tomcat and the JVM uses (Tomcat automatically assigns it to a java system
environment variable as .tmpdir)java.io

tomcat/logs Additional Tomcat log files

misc Configuration files used as examples for different databases and servlet containers.

backup The default backup directory Artifactory uses for system wide and repository backup.

webapps Contains the Artifactory WAR file and the Access WAR file used by the bundled Tomcat distribution.
We strongly recommend keeping both these files in the same bundled Tomcat.

Default Admin User

Once installation is complete, Artifactory has a default user with admin privileges predefined in the system:

User: admin

Password: password

Watch the Screencast

Troubleshooting

Artifactory Does Not Start Up
There are no log file entries in $ARTIFACTORY_HOME/logs/artifactory.log

Cause An exception was thrown (possibly by your servlet container) before Artifactory loaded its logging mechanism.

Resolution Check your servlet container's localhost.log file. For more information, please refer to .Artifactory Log Files

Change the admin password
We strongly recommend changing the admin password as soon as installation is complete.

http://java.io/

System Requirements

Supported Platforms

Artifactory has been tested and verified on Linux, Windows (Vista and higher), Solaris and Mac OS X. You
should be able to run Artifactory on other platforms, but these have not been tested.

JDK

You must run Artifactory with , preferably JDK 8 update 45 and above.JDK 8

JVM Memory Allocation

While not a strict requirement, we recommend that you modify the JVM memory parameters used to run Artifactory.

You should reserve at least 512MB for Artifactory, and the recommended values for JVM parameters are as follows:

To set your JVM parameters according to your platform, please refer to the corresponding instructions for , or . Linux, Solaris or Mac Windows

Browsers

Artifactory has been tested with the latest versions of Google Chrome, Firefox, Internet Explorer and Safari.

You can download the latest JDK from the .Oracle Java SE Download Site

JAVA_HOME and JRE_HOME
Make sure your JAVA_HOME environment variable correctly points to your JDK 8 installation.

If you also have JRE_HOME defined in your system, this will take precedence over JAVA_HOME
and therefore you need to either point JRE_HOME to your JDK 8 installation, or remove the
JRE_HOME definition.

Page Contents
Supported Platforms
JDK
JVM Memory
Allocation
Browsers
Recommended
Hardware

Working with
Very Large
Storage

High Availability
Configuration
Database
Requirements
Servlet Containers

Recommended JVM parameters
The larger your repository or number of concurrent users, the larger you need to make the -Xms and -Xmx values accordingly.

Recommended values are:

 -server -Xms512m -Xmx2g -Xss256k -XX:+UseG1GC

https://www.jfrog.com/confluence/display/RTF/Installing+on+Linux+Solaris+or+Mac+OS#InstallingonLinuxSolarisorMacOS-SettingJavaMemoryParameters
https://www.jfrog.com/confluence/display/RTF/Installing+on+Windows#InstallingonWindows-SettingJavaMemoryParameters
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Recommended Hardware

The following table provides hardware recommendations for a single server machine:

Number of
developers

OS/JVM Processor *Memory (RAM) for
JVM Heap

Storage

1 - 20 64 bit 4 cores 4GB Fast disk with free space that is at least 3 times the total size of stored
artifacts

20 - 100 64 bit 4 cores 8GB Fast disk with free space that is at least 3 times the total size of stored
artifacts

100 - 200 64 bit 8 cores (16 cores
recommended)

12GB Fast disk with free space that is at least 3 times the total size of stored
artifacts (backup SAN recommended)

200+ 64 bit Please contact JFrog support for a recommended setup.

Working with Very Large Storage

In most cases, our recommendation is for storage that is at least 3 times the total size of stored artifacts in order to accommodate system backups
. However, when working with a very large volume of artifacts, the recommendation may vary greatly according to the specific setup of your
system.

Therefore, when working with over of stored artifacts, please contact who will work with you to provide a recommendation for10 Tb JFrog support
storage that is customized to your specific setup.

High Availability Configuration

If you are running Artifactory in a High Availability configuration, to maintain high system performance in case of single or multiple server crash,
we recommend following the guidelines above for each of the HA server instances. For more details, please refer to recommended hardware Artif

.actory High Availability

Database Requirements

To avoid network latency issues when reading and writing artifacts data, we strongly recommend creating the database either on a machine that
is network close (latency well below 1 ms) to the machine on which Artifactory is running (database engine and storage) with fast storage. This
recommendation is critical when using (whereby files are served from database BLOBs) and the file system cache is small.fullDb

For supported databases and more details, please refer to .Configuring the Database

Servlet Containers

Artifactory should be run with its bundled Tomcat 8 servlet container.

From version 5.0, Artifactory is bundled with Tomcat version 8.0.39.

Installing on Linux Solaris or Mac OS

Overview

This page describes how to install Artifactory on Linux, Solaris or Mac OS.

*Memory (RAM) for JVM Heap
This specifies the amount of memory that Artifactory requires from the JVM heap. The server machine should have enough additional
memory to run the operating system and any other processes running on the machine.

Build machine
For the purposes of this table, a build machine is considered equivalent to 10 developers

Make sure you have reviewed the overall installation process
Before you proceed with the instructions on this page, make sure you have reviewed the whole
installation procedure as described in .Installing Artifactory

https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations

The procedure for all these platforms is identical, so for the sake of clarity the rest of this page will refer to
Linux only.

You can install Artifactory on your Linux system in one of the following ways:

Manual Installation
Service Installation
RPM Installationor Debian
As a Docker Image

Configuring Your Database and Filestore

Once you have completed installing Artifactory, make sure you configure its database and filestore according
to your preference. For details, please refer to and .Configuring the Database Configuring the Filestore

Running as root to install Artifactory as a service or RPM distribution
To install Artifactory as a service or RPM distribution you must have root privileges.

To run as root either execute the following command:

su -

or precede all commands with sudo (e.g. sudo service artifactory start)

If you are unable to get root privileges please contact your system administrator.

Page Contents
Overview

Configuring
Your
Database and
Filestore

Requirements
Setting
JAVA_HOME
Setting Java
Memory
Parameters

Manual Installation
Installing
Artifactory
Running
Artifactory

Service Installation
Installing
Artifactory
Running
Artifactory

Using
syste
md
Using
init.d
Chec
king
the
Artifa
ctory
Log

RPM or Debian
Installation

Managed Files
and Folders
Installing
Artifactory
Running
Artifactory
Backup and
Recover

Running with Docker

Requirements

Setting JAVA_HOME

As mentioned in the section on , make sure that your environment variable is correctly set to your JDKSystem Requirements JAVA_HOME
installation.

Setting Java Memory Parameters

While not a strict requirement, it is recommended to modify the JVM memory parameters used to run Artifactory.

If you can reserve at least 512MB for Artifactory, the recommended values for JVM parameters are:

Where you set your JVM parameters depends on how you are running Artifactory:

For a , modify JAVA_OPTIONS in $ARTIFACTORY_HOME/bin/artifactory.default.manual installation
For a , modify JAVA_OPTIONS in (you will need to stop and then restart theservice installation $ARTIFACTORY_HOME/etc/default
service after making the modification)
For an , modify JAVA_OPTIONS in RPM or Debian installation /etc/opt/jfrog/artifactory/default

Manual Installation

Installing Artifactory

To install Artifactory manually, simply unzip the Artifactory download file to a location on your file system. This will be your $ARTIFACTORY_HOME
location.

No further action is needed.

Running Artifactory

You can run Artifactory manually to see its behavior by directly executing:

$ARTIFACTORY_HOME/bin/artifactory.sh

The console is locked on the Artifactory process and you can stop it cleanly with .Ctrl+C

To directly run Artifactory as a daemon process, using the environment variables of the shell you are currently in, execute the following script:

$ARTIFACTORY_HOME/bin/artifactoryctl start

The ARTIFACTORY_
HOME Folder
Accessing Artifactory

Recommended minimal JVM parameters
The larger your repository or number of concurrent users, the larger you need to make the -Xms and -Xmx values accordingly.
Recommended minimal values are:

-server -Xms512m -Xmx2g -Xss256k -XX:+UseG1GC

For more recommendations about your hardware configuration (especially the -Xmx parameter), please refer to Recommended
.Hardware

Don't forget to modify your as needed by setting JAVA_OPTIONS in JVM parameters $ARTIFACTORY_HOME/bin/artifactory.de
.fault

https://www.jfrog.com/confluence/display/RTF/System+Requirements#SystemRequirements-RecommendedHardware
https://www.jfrog.com/confluence/display/RTF/System+Requirements#SystemRequirements-RecommendedHardware

Using the same script, you can check if Artifactory is running and display its process id, or stop it using:

Checking if Artifactory is running or stopping it

$ARTIFACTORY_HOME/bin/artifactoryctl check | stop

To run the Artifactory UI see .Accessing Artifactory

Service Installation

Artifactory is packaged as a zip file with a bundled Tomcat, and a complete install script that can be used to install it as a service running under a
custom user.

Installing Artifactory

To install Artifactory as a service, browse to your $ARTIFACTORY_HOME/bin directory and execute the following command as
root:

Running the installation script as root

$ARTIFACTORY_HOME/bin/installService.sh [USER [GROUP]]

The following table describes the sequence of commands performed by the install script:

User
creation

Creates a default user named (). You can change the default user by editing the artifactory $ARTIFACTORY_USER $ARTIFAC
value in .TORY_USER /etc/opt/jfrog/artifactory/default

You can also optionally run the install script to start the Artifactory service under a different user by passing in the user name as
the first parameter. If you include the user name, you may also optionally include a group.

etc config

Creates the folder , copies the configuration files there and creates a soft link in/etc/opt/jfrog/artifactory $ARTIFACTOR
Y_HOME/etc

Startup time
Depending on your system performance it may take Artifactory several seconds to start up. If you try to access Artifactory through your
browser while it is starting up, within a few seconds it will provide a notification that it is in the startup process.

Permissions
When running Artifactory as a service, the installation script creates a user called which must have run and executeArtifactory
permissions on the installation directory.

Therefore it is recommended to extract the Artifactory download file into a directory that gives run and execute permissions to all users
such as /opt

Not supported on Mac OS
The service Installation is currently supported only on Linux and Solaris. It is not supported with Mac OS.

Don't forget to modify your as needed by setting JVM parameters JAVA_OPTIONS in $ARTIFACTORY_HOME/etc/default.

You need to reinstall the service for your changes to take effect.

etc
default

Creates the file containing the main environment variables needed for Artifactory to/etc/opt/jfrog/artifactory/default
run: ... ,JAVA_HOME, ARTIFACTORY_USER, ARTIFACTORY_HOME, JAVA_OPTIONS
The is included at the top of and can include any settings./etc/opt/jfrog/artifactory/default artifactoryctl

To modify your modify JAVA_OPTIONS in /etc/opt/jfrog/artifactory/defaultJVM parameters

systemd
or init.

If you are running on a Linux distribution that supports , the install script will use it to install Artifactory - otherwise systemd init.
 will be used.d

If is supported, the install script copies the service script file to systemd artifactory /etc/systemd/system/artifactor
y.service

If is not supported and is used, the install script copies the service script file to systemd init.d artifactory /etc/init.d/
artifactory

Logs
folder

Creates the folder , makes it writable for the user and creates a soft link $ARTIFACTORY_HOME/logs ARTIFACTORY_USER $ART
.IFACTORY_HOME/logs/catalina

The folder is linked to .$ARTIFACTORY_HOME/tomcat/logs $ARTIFACTORY_HOME/logs/catalina

Backup
folder

Creates the folder , so you must create a link if you want this folder to point to a different place$ARTIFACTORY_HOME/backup
(such as for example). The script makes writable for the user /var/backup/artifactory $ARTIFACTORY_HOME/backup AR

.TIFACTORY_USER

Data
folder

Creates the folder , so you must create a link if you want this folder to point to somewhere else. The$ARTIFACTORY_HOME/data
script makes it writable for the user . ARTIFACTORY_USER

chkconfig
calls

The script calls and (you can see the output), and then activates the Artifactory serviceadd list

Running Artifactory

To start or stop Artifactory as a service you must be running as root. The command you use depends on whether the Artifactory service was
installed using or systemd init.d.

Using systemd

Start or stop Artifactory using:

Artifactory installed with systemd

 systemctl <start | stop> artifactory.service

Using init.d

Start or stop Artifactory using

Artifactory installed with init.d

service artifactory <start | stop>

Checking the status of the Artifactory service
Once Artifactory is correctly installed, you can check if it is running with:

systemctl status artifactory.service

If Artifactory is running, you should see its pid.

If Artifactory is not running you will see a list of environment variables used by the service.

Checking the Artifactory Log

You can check the Artifactory log to see the status of the service using:

tail -f $ARTIFACTORY_HOME/logs/artifactory.log

RPM or Debian Installation

Artifactory can also be installed from an RPM or Debian distribution on Red Hat compatible Linux distributions.

The installation package creates a dedicated user, installs a stripped-down distribution of the Apache Tomcat container configured for Artifactory
(on port 8081), and registers this Tomcat as a service (but does not start it immediately).

This package effectively replaces the different setup scripts included with the Artifactory Zip distribution.

Managed Files and Folders

When installed from an RPM distribution, Artifactory retains the FHS (Filesystem Hierarchy Standard) format:

File/Folder Location Ownership

Artifactory home /var/opt/jfrog/artifactory artifactory

Artifactory etc /etc/opt/jfrog/artifactory artifactory

Artifactory logs /var/opt/jfrog/artifactory/logs artifactory

Artifactory env variables /etc /artifactory/default/opt/jfrog artifactory

Tomcat home /opt/jfrog/artifactory/tomcat artifactory (root for sub dirs)

Artifactory startup script /etc/init.d/artifactory root

Artifactory binary /opt/jfrog/artifactory root

Installing Artifactory

To install Artifactory from an RPM or Debian distribution and can use the corresponding commands below:you must be running as root
Installing Artifactory Pro from an RPM distribution...

wget -O bintray-jfrog-artifactory-pro-rpms.repohttps://bintray.com/jfrog/artifactory-pro-rpms/rpm
sudo mv bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d/
sudo yum install jfrog-artifactory-pro

Installing Artifactory OSS from an RPM disribution

wget https://bintray.com/jfrog/artifactory-rpms/rpm -O bintray-jfrog-artifactory-rpms.repo
sudo mv bintray-jfrog-artifactory-rpms.repo /etc/yum.repos.d/
sudo yum install jfrog-artifactory-oss

Installing Artifactory Pro from a Debian distribution...

echo "deb {distribution} {components}" | sudo tee -a /etc/apt/sources.listhttps://jfrog.bintray.com/artifactory-pro-debs

Checking the status of the Artifactory service
Once Artifactory is correctly installed, you can check if it is running with:

service artifactory check

If Artifactory is running, you should see its pid.

If Artifactory is not running you will see a list of environment variables used by the service.

https://bintray.com/jfrog/artifactory-pro-rpms/rpm
https://bintray.com/jfrog/artifactory-pro-rpms/rpm
https://jfrog.bintray.com/artifactory-pro-debs

Note: If you are unsure, components should be "main." To determine your distribution, run lsb_release -c

Example: echo "deb https://jfrog.bintray.com/artifactory-pro-debs xenial main" | sudo tee -a /etc/apt/sources.list

curl | sudo apt-key add -https://bintray.com/user/downloadSubjectPublicKey?username=jfrog

sudo apt-get update
sudo apt-get install jfrog-artifactory-pro

Installing Artifactory OSS from a Debian distribution...

echo "deb https://jfrog.bintray.com/artifactory-debs {distribution} {components}" | sudo tee -a /etc/apt/sources.list

Note: If you are unsure, components should be "main." To determine your distribution, run -clsb_release

Example: echo "deb xenial main" | sudo tee -a /etc/apt/sources.listhttps://jfrog.bintray.com/artifactory-debs

curl | sudo apt-key add -https://bintray.com/user/downloadSubjectPublicKey?username=jfrog

sudo apt-get update
sudo apt-get install jfrog-artifactory-oss

Running Artifactory

To start or stop Artifactory and can use the following command:you must be running as root

service artifactory start | stop

You can also check the Artifactory log with:

tail -f $ARTIFACTORY_HOME/logs/artifactory.log

When installing from an RPM distribution, Artifactory is generally started as and will internally to the user. root su $ARTIFACTORY_USER

Backup and Recover

When uninstalling an RPM distribution of Artifactory, it will save the folder and create a backup folder at $ARTIFACTORY_HOME /var/opt/jfro
 while preserving symbolic links to remote filestores.g/

After installing a new instance of Artifactory, you can recover the configuration and filestore from this backup by running the script $ARTIFACTOR
.Y_BINARY/bin/recover.backup.sh

JVM parameters
Make sure to modify your by modifying JAVA_OPTIONS in jfrog artifactory as appropriate forJVM parameters /etc/opt/ / /default
your installation.

Checking the status of the Artifactory service
Once Artifactory is correctly installed, you can check if it is running with:

service artifactory check

If Artifactory is running, you should see its pid.

If Artifactory is not running you will see a list of environment variables used by the service.

Security
For reasons of security, it is not recommended to leave the variable undefined with Artifactory running as the$ARTIFACTORY_USER
current user, especially if the current user is .root

https://jfrog.bintray.com/artifactory-pro-debs
https://bintray.com/user/downloadSubjectPublicKey?username=jfrog
https://jfrog.bintray.com/artifactory-pro-debs
https://jfrog.bintray.com/artifactory-pro-debs
https://bintray.com/user/downloadSubjectPublicKey?username=jfrog

Running with Docker

From Version 3.6, Artifactory may be pulled as a Docker Image. For full details, please refer to .Installing with Docker

The FolderARTIFACTORY_HOME

It is important to know where your Artifactory home folder is located, since this folder stores your configurations and important repository data.

When Artifactory runs for the first time, it sets up a default configuration and creates all necessary files and folders under the ARTIFACTORY_HOM
 folder.E

The default location of is .ARTIFACTORY_HOME {user home / artifactory. } .

To run Artifactory with the home folder set to a different location on the file system (particularly when installing Artifactory on a production server),
either:

Start the Tomcat virtual machine with -Dartifactory home=<your preferred Artifactory home folder location> .
- or -
Set an environment variable pointing to your preferred location before running the installation.ARTIFACTORY_HOME

Artifactory creates the home folder on startup if it does not already exist.

Accessing Artifactory

Artifactory can be accessed using the following URL:

http://SERVER_DOMAIN:8081/artifactory

For example, if you are testing on your local machine you would use: http://localhost:8081/artifactory

Installing on Windows

Overview

 There are three ways to install Artifactory on your Windows system:

Manual Installation
Service Installation
As a Docker Image

Unzip the Artifactory download file to a location on your file system.

This will be your location.%ARTIFACTORY_HOME%

Define this location as an environment variable called .ARTIFACTORY_HOME

Working with an external database
This process does not back up an external database, but rather its definitions in Artifactory. Therefore, when working with an external
database, a manual dump should be performed before uninstalling the RPM, and then imported when starting the new installation.

Installing/Upgrading on a new machine
The Backup and Recover described above will only work if you are re-installing the RPM on the same machine. If you are installing or
upgrading the RPM on a new machine you will need to use Import as described in the section on .Upgrading Artifactory

Permissions on the Artifactory Home Folder
Make sure that the user running the Tomcat has write permissions the Artifactory home folder.on

Make sure you have reviewed the overall installation process
Before you proceed with the instructions on this page, make sure you have reviewed the whole
installation procedure as described in .Installing Artifactory

http://server_domain:8081/artifactory
http://localhost:8081/artifactory
https://www.jfrog.com/confluence/display/RTD/Upgrading+Artifactory

Configuring Your Database and Filestore

Once you have completed installing Artifactory, make sure you configure its database and filestore according
to your preference. For details, please refer to and .Configuring the Database Configuring the Filestore

Requirements

Setting JAVA_HOME

As mentioned in the section on , make sure that your environment variable is correctly set to your JDKSystem Requirements JAVA_HOME
installation.

Setting Java Memory Parameters

While not a strict requirement, it is recommended to modify the JVM memory parameters used to run Artifactory.

This is done by modifying the variable in , for a , or the variable in JAVA_OPTIONS artifactory.bat manual installation JOPTS installServ
 when running Artifactory as a .ice.bat service

For your changes to take effect you need to stop Artifactory and then rerun the modified file.

If you can reserve at least 512MB for Artifactory, the recommended values for JVM parameters are as follows:

Manual Installation

Browse to and execute the file . This script searches for the Java executable and runs%ARTIFACTORY_HOME%\bin artifactory.bat
Artifactory's main class.

Page Contents
Overview

Configuring
Your
Database and
Filestore

Requirements
Setting
JAVA_HOME
Setting Java
Memory
Parameters

Manual Installation
Service Installation

Running
Artifactory

Running with Docker
Accessing Artifactory

Troubleshooting
Note that normally the installation path to your JAVA_HOME might include a space, e.g. this mightc:\Program Files (x86)\java\jdk,
cause an issue and result in error "Files was unexpected at this time", in which case you will need to replace the witProgram Files (x86)
h and make sure there are no spaces in the path.PROGRA~2

Recommended JVM parameter settings
The larger your repository or number of concurrent users, the larger you need to make the -Xms and -Xmx values accordingly.

Recommended values are:

 -server -Xms512m -Xmx2g -Xss256k -XX:+UseG1GC

Security settings

To test your installation see .Accessing Artifactory

Service Installation

Artifactory makes use of the components allowing you to install the application as a Windows Service.Apache Commons Procrun

To run Artifactory as a Windows service, browse to . %ARTIFACTORY_HOME%\bin, and execute the file InstallService.bat

By editing you can modify default properties such as and the log directory.InstallService.bat, JOPTS

For your changes to take effect you need to stop the currently running Artifactory service and run again once you haveInstallService.bat
completed your modifications.

To test your installation see .Accessing Artifactory

Running Artifactory

After installing Artifactory you need to start the service.

To start or stop Artifactory as a service you can use the following command in a window:Command Prompt

Starting and stopping the Artifactory service

sc start|stop Artifactory

You can also use any standard text editor to view the artifactory log data found in $ARTIFACTORY_HOME/logs/artifactory.log

Running with Docker

Depending on the security settings under Windows, you might need to run using 'Run as administrator'artifactory.bat

Don't forget to modify your JVM parameters as needed by setting JAVA_OPTIONS in $ARTIFACTORY_HOME/bin/artifactory.ba
t.

Security
Windows 8 implements strict User Account Control (UAC). You must either disable UAC or right-click on and select "Run ascmd.exe
administrator" in order to run this script.

Running on 32 bit Windows
If you are running a 32 bit version of Windows you need to do the following:

Download the latest version of the .Apache Commons Daemon
Take from the downloaded archive and rename it to prunsvr.exe artifactory-service.exe
Replace the current found in your % directoryartifactory-service.exe ARTIFACTORY_HOME%/bin

Don't forget to as needed by setting modify your JVM parameters JAVA_OPTIONS in $ARTIFACTORY_HOME/etc/default.

You need to reinstall the service for your changes to take effect.

Checking the status of the Artifactory service
Once Artifactory is correctly installed, you can check if it is running with:

sc query Artifactory

http://commons.apache.org/proper/commons-daemon/procrun.html
http://commons.apache.org/proper/commons-daemon/download_daemon.cgi

From Version 3.6, Artifactory may be pulled as a Docker Image. To run Artifactory in a Docker container on a Windows system, you first need to
install .boot2docker

For full details, please refer to .Installing with Docker

Accessing Artifactory

Artifactory can be accessed using the following URL:

http://SERVER_DOMAIN:8081/artifactory.

For example, if you are testing on your local machine you would use: http://localhost:8081/artifactory

Installing with Docker

Overview

Artifactory Docker images can be pulled from Bintray and run as a Docker container.

To do this, you need to have Docker client properly installed and configured on your machine. For
details about installing and using Docker, please refer to the .Docker documentation

Using Docker Compose

To setup an Artifactory environment made of multiple containers (for example, a database, an
Nginx load balancer and Artifactory each running in a different container), you can use docker-co

.mpose
For more details on Docker Compose, please refer to the .Docker documentation

Artifactory OSS, and can all be run using Docker Compose. ForArtifactory Pro Artifactory HA
detailed documentation and sample Compose files showing a variety of ways to setup Artifactory
with Docker Compose, please refer to the repository on GitHub.artifactory-docker-examples

Artifactory on Docker

Running Artifactory as a container is simple and straightforward, and involves the following basic steps:

Pulling the Artifactory Docker Image
Running the Artifactory Container

Since the Artifactory instance running in a Docker container is mutable, all data and configuration files will be lost once the container is

Make sure you have reviewed the overall installation process
Before you proceed with the instructions on this page, make sure you have reviewed the
whole installation procedure as described in .Installing Artifactory

Running with Docker for Artifactory 4.x
Artifactory as a Docker container has been completely redesigned in version 5.0. If you
are running previous versions of Artifactory, please refer to in theRunning with Docker
Artifactory 4.x User Guide

Docker Compose
The way we recommend running Artifactory on Docker is to orchestrate your setup using

. This will ensure you have all the required services specified in a singleDocker Compose
YAML file with pre-configured parameters.

Page contents
Overview
Using Docker Compose
Artifactory on Docker

Pulling the
Artifactory
Docker Image
Running an
Artifactory
Container

Managing Data
Persistence

Using Host
Directories
Using a Docker
Named Volume

Upgrading Artifactory
Running Artifactory With
a Different Database
Building Artifactory OSS
From Sources
Accessing Artifactory
Troubleshooting Docker

Container State
Logs
Connect to a
Running
Container
Run an
Alternate
Entrypoint

Watch the Screencast

Read more
Building Artifactory OSS
Changing the Database

http://boot2docker.io
http://SERVER_DOMAIN:8081/artifactory
http://localhost:8081/artifactory
https://docs.docker.com/
https://docs.docker.com/compose/
https://github.com/JFrogDev/artifactory-docker-examples
https://www.jfrog.com/confluence/display/RTF4X/Running+with+Docker

removed. If you want your data to persist (for example when upgrading to a new version), you should also follow the next step.

Managing Data Persistence

Pulling the Artifactory Docker Image

The Artifactory Docker image may be pulled from Bintray by executing the corresponding Docker command below depending on whether you
are pulling Artifactory OSS or Artifactory Pro:

Pulling the Artifactory Pro Docker Image

docker pull docker.bintray.io/jfrog/artifactory-pro:latest

or

Pulling the Artifactory OSS Docker Image

docker pull docker.bintray.io/jfrog/artifactory-oss:latest

Running an Artifactory Container

You can list the Docker images you have downloaded using the command, which should display something like the followingdocker images
output:

$ docker images

REPOSITORY TAG IMAGE ID
CREATED SIZE
docker.bintray.io/jfrog/artifactory-pro latest da70b82904e7
2 days ago 861.5 MB
...

To start an Artifactory container, use the corresponding command below according to whether you are running Artifactory Pro or Artifactory
OSS:

Running Artifactory Pro in a container

$ docker run --name artifactory -d -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:latest

or

Running Artifactory OSS in a container

$ docker run --name artifactory -d -p 8081:8081
docker.bintray.io/jfrog/artifactory-oss:latest

Managing Data Persistence

For your data and configuration to remain once the Artifactory Docker container is removed, you need to store them on an external volume

mounted to the Docker container. There are two ways to do this:

Using Host Directories
Using a Docker Named Volume

Using Host Directories

The external volume is a directory in your host's file system (such as). When you pass this to the com/var/opt/jfrog/artifactory docker run
mand, the Artifactory process will use it to read configuration and store its data.

To mount the above example, you would use the following command:

$ docker run --name artifactory-pro -d -v
/var/opt/jfrog/artifactory:/var/opt/jfrog/artifactory -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:latest

This mounts the directory on your host machine to the container's and will then be used/var/opt/jfrog/artifactory /var/opt/jfrog/artifactory
by Artifactory for configuration and data.

Using a Docker Named Volume

In this case, you create a docker named volume and pass it to the container. By default, the named volume is a local directory under /var/l
, but can be set to work with other locations. For more details, please refer to the Docker documentation for ib/docker/volumes/<name>

.Docker Volumes

The example below creates a Docker named volume called and mounts it to the Artifactory container under artifactory_data /var/opt/jfrog/a
rtifactory:

$ docker volume create --name artifactory5_data
$ docker run --name artifactory-pro -d -v
artifactory5_data:/var/opt/jfrog/artifactory -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:latest

In this case, even if the container is stopped and removed, the volume persists and can be attached to a new running container using the
above command. docker run

Upgrading Artifactory

For details on how to upgrade Artifactory running in a Docker container, please refer to in the Running in a Docker Container Upgrading
 page. Artifactory

Running Artifactory With a Different Database

By default, Artifactory runs with an embedded Derby Database that comes built-in, however, Artifactory supports additional databases. To
switch to one of the other supported databases, please refer to . Changing the Database

Building Artifactory OSS From Sources

The Artifactory OSS Docker image sources are available for download allowing you to build the image yourself. For details, please refer to Bu
. ilding Artifactory OSS

Accessing Artifactory

Once the Artifactory container is up and running, you access Artifactory in the usual way by browsing to:

https://docs.docker.com/engine/reference/commandline/volume_create/
https://www.jfrog.com/confluence/display/RTF/Upgrading+Artifactory#UpgradingArtifactory-RunninginaDockerContainer

http://SERVER_DOMAIN:8081/artifactory

For example, if you are testing on your local machine you would use: http://localhost:8081/artifactory

Troubleshooting Docker

This section describes different ways you can troubleshoot a running or stopped Docker container that is not functioning as expected.

Container State

The command lists containers in your system.docker ps

$ docker ps # Lists running containers
$ docker ps -a # Lists all containers

Logs

Artifactory logs are stored in the Artifactory container under /var/opt/jfrog/artifactory/logs.

If you ran the container with a mounted volume for Artifactory data (), you can also access the logs/var/opt/jfrog/artifactory/
locally on your host.

An easy way to see the logged output of a running container is through the commanddocker logs

$ docker logs <container name>

This will output all of the container's STDOUT and STDERR to the screen both for running and stopped containers.

Connect to a Running Container

You can connect to a running container's file system and open an interactive command prompt in the container with the commdocker exec
and

$ docker exec -it <container name> /bin/bash

This will open a command prompt in the running Artifactory container, logging you in as root and placing you in the / directory.

Run an Alternate Entrypoint

There are cases where you want to run the container, but not start up Artifactory. To do this, you need to override the configured entrypoint
script using docker run --entrypoint=bash

$ docker run -it --entrypoint=/bin/bash -v
/var/opt/jfrog/artifactory:/var/opt/jfrog/artifactory -p 8081:8018
docker.bintray.io/jfrog/artifactory-pro:latest

This will run the container, presenting you with a prompt in the container, but without executing the file./entrypoint-artifactory.sh

You can then make changes to the container configuration execute to start up Artifactory in your/entrypoint-artifactory.sh

http://localhost:8081/artifactory

container.

Watch the Screencast

Building Artifactory OSS

Overview

The Artifactory OSS Docker image sources are freely available for download allowing you to build
and if necessary, tune it according to your needs.

Getting the Artifactory OSS Sources

For Artifactory OSS, the latest sources can be downloaded from Bintray to be built on your own
machines using the following link:

Page contents
Overview
Getting the
Artifactory OSS
Sources
Building the
Artifactory OSS
Docker Image
Running the
Artifactory OSS
Container
Accessing
Artifactory

Building the Artifactory OSS Docker Image

To build the image, you can use the Docker native client or install Docker for your platform by downloading or Docker for Mac Docker for
.Windows

The following code snippet shows an example of how to build the Artifactory OSS 5.0 Docker image on a Mac:

$ mkdir ~/git/artifactory.5.0/
$ cd ~/git/artifactory.5.0/

$ # unzip the Artifactory source bundle you downloaded from Bintray in
to the directory you created
$ cd ~/git/artifactory.5.0/artifactory-oss/distribution/docker
$ mvn clean package -Pdocker

Running the Artifactory OSS Container

You can list the Docker images you have built using the command, which should display something like the following output:docker images

$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE
jfrog/artifactory-oss 5.0.0 da70b82904e7 2
minutes ago 741.7 MB
...

To start an Artifactory OSS container for the image shown in the example above, use:

https://docs.docker.com/engine/installation/mac/
https://docs.docker.com/engine/installation/windows/
https://docs.docker.com/engine/installation/windows/

1.

2.
3.

$ docker run --name artifactory-5.0.0 -d -p 8081:8081
jfrog/artifactory-oss:5.0.0

Accessing Artifactory

Once the Artifactory container is up and running, you access Artifactory in the usual way by browsing to:

http://SERVER_DOMAIN:8081/artifactory.

For example, if you are testing on your local machine you would use: http://localhost:8081/artifactory

Changing the Database

Overview

By default, Artifactory runs with an embedded Derby database that comes built-in. However,
Artifactory supports additional databases as described in . Configuring the Database

To configure your Artifactory Docker container to run with one of the other supported databases,
you need to:

Mount the relevant database driver into Artifactory's directorytomcat/lib

Pass environment variables to Artifactory in the commanddocker run
Pass database parameters as Docker environment variables telling Artifactory how to
configure the database in the commanddocker run

Page contents
Overview
Mounting the
Database
Driver
Passing
Environment
Variables
Pass Database
Parameters
Examples

Postgr
eSQL
MySQ
L

Mounting the Database Driver

To mount the database driver, you first need to download its corresponding jar file from the vendor's web site provided in the following links:

MySQL
Oracle JDBC
MS SQL
PostgreSQL

Passing Environment Variables

Once you have the downloaded the database driver JAR file, you mount it into the Artifactory container using with the -v option:docker run

docker run ... -v
</path/to/driver.jar>:/opt/jfrog/artifactory/tomcat/lib/<driver.jar>

Without passing the DB parameters mentioned below, Artifactory will ignore the added jar.

Pass Database Parameters

Using PostgreSQL
If you are changing the database to PostgreSQL, note that the Artifactory
Docker image comes pre-loaded with the PostgreSQL database driver.

http://server_domain:8081/artifactory
http://localhost:8081/artifactory
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774
https://jdbc.postgresql.org/download.html
https://jdbc.postgresql.org/download.html

For Artifactory in Docker to know what database to use, you need to pass in some parameters as Docker environment variables using docke
 with the -e optionr run

docker run ... -e PARAM=<value>

The following table describes the parameters supported:

DB_TYPE

Values: , , or postgresql mysql oracle mssql

Default: blank indicating Artifactory should run with the built-in Derby database

DB_HOST

The hostname/ip of the server where the database is installed

If this value is omitted, DB_HOST defaults to the value set in DB_TYPE

DB_PORT

The database port

Defaults to the value set in the corresponding filedb.properties

DB_URL

The full database URL

Defaults to the value set in the corresponding filedb.properties

DB_USER

The database username

Defaults to the value set in the corresponding filedb.properties

DB_PASSWORD

The database password

Defaults to the value set in the corresponding filedb.properties

During execution of the , an entrypoint script will copy the matching from the directory to the docker run db.properties misc/db/ etc/
 directory and configure it.

If already exists, the script will just validate it and Artifactory will work with the specified database. etc/db.properties

Examples

Below are examples that show how Artifactory can be run in Docker with a custom database.

PostgreSQL

In this example for PostgreSQL, since only DB_TYPE is specified, the rest of the parameters will be set to their defaults taken from the
PostgreSQL file.db.properties

The PostgreSQL database driver is already in the Artifactory Docker image, so you don't need to mount it.

$ docker run -d --name artifactory-5 \
 -e DB_TYPE=postgresql \
 -v /var/opt/jfrog/artifactory:/var/opt/jfrog/artifactory \
 -p 8081:8081 docker.bintray.io/jfrog/artifactory-pro:latest

You can verify that Artifactory is running with PostgreSQL under which specifies the Admin | System Info Database Type.

MySQL

This example for MySQL uses custom database host, port, username and password settings.

The MySQL database driver is mounted in to the container's directory./opt/jfrog/artifactory/tomcat/lib/

1.

2.

3.

$ docker run -d --name artifactory-5 \
 -e DB_TYPE=mysql \
 -e DB_HOST=mysql5srv.jfrog.local \
 -e DB_PORT=33307 \
 -e DB_USER=artifactory17 \
 -e DB_PASSWORD=pass17arti56_x \
 -v
~/mysql-connector-java-5.1.40-bin.jar:/opt/jfrog/artifactory/tomcat/lib/
mysql-connector-java-5.1.40-bin.jar \
 -v /var/opt/jfrog/artifactory:/var/opt/jfrog/artifactory \
 -p 8081:8081 docker.bintray.io/jfrog/artifactory-pro:latest

You can verify that Artifactory is running with MySQL under which specifies the Admin | System Info Database Type.

Upgrading Artifactory
Overview

The procedure to upgrade Artifactory depends on your installation type. We strongly recommend
reading through this page before proceeding with your upgrade. Detailed upgrade instructions are
provided in dedicated pages for the following installation types:

ZIP file
RPM
Debian
Docker

In addition, within each installation type, there may be slight variation in instructions if you are
upgrading from older versions of Artifactory.

Before You Proceed

Before proceeding, there are a few points you need to address:

JDK Version
From version 4.0, Artifactory requires JDK 8. If your current version is v3.x, before you
upgrade to Artifactory 5.x, please make sure you install JDK 8 and update your
JAVA_HOME environment variable to point to your JDK 8 installation. For more details,
please refer to .System Requirements

Repositories with Multiple Package Types
From version 4.0, Artifactory will only index, and work with corresponding clients for single
package type repositories. If your current version is 3.x and the installation includes
repositories that support multiple package types, you need to migrate them to single
package type repositories. You may do so before upgrading or after. For more details
please refer to .Single Package Type Repositories

'Slash' character encoding for NPM builds
Handling of 'slash' character encoding for NPM has been moved from the artifactory.syste

 file to the file of your Tomcat. For details, please refer to m.properties catalina.properties N
.pm Scope Packages

1.

2.

Before you upgrade
We strongly recommend that you take the following actions to ensure you can roll back
your system in case you encounter any issues during the upgrade process:

Do a complete before commencing your upgrade procedure. If atSystem Export
any time you decide to roll back to your current version, you can use the export
to reproduce your current system in its entirety.
Back up your database.

https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-NpmScopePackages
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-NpmScopePackages

Page Contents
Overview

Before
You
Proce
ed

Upgrading
Artifactory
Enterprise / HA
Upgrading to
the Latest
Version

ZIP
Install
ation
Debia
n
Install
ation
Docke
r
Install
ation
RPM
Install
ation
RPM
OSS
Install
ation

Using SHA256
Checksums
Upgrading from
OSS to Pro
Upgrading from
Version 3.x

Single
Packa
ge
Type
Reposi
tories
Migrati
ng to
Single
Packa
ge
Type
Reposi
tories
Fixing
Multipl
e
Packa
ge
Type
Reposi
tories

Upgrading from
Any Version
Below v3.0
Downgrading
Artifactory
Watch the
Screencast

1.
2.
3.

a.
b.

4.

5.
6.

Learn more
Upgrading an
Enterprise HA
Cluster

Upgrading Artifactory Enterprise / HA

Upgrading to the Latest Version

Upgrading from version 4.x or 5.x to the latest version is a simple procedure. Please refer to the sections below with specific instructions for
your installation type.

ZIP Installation
Upgrading a ZIP installation...

Unzip the Artifactory distribution archive.
If the has been modified keep it in a temporary location. /tomcat/conf/server.xml$ARTIFACTORY_HOME
Backup files to a temporary location according to the conditions described below:

In all cases, backup $ARTIFACTORY_HOME/bin/artifactory.default
If Artifactory is configured to work with a database that is not Derby, backup the /tomcat/lib/<JDB$ARTIFACTORY_HOME

 driver. C>
Remove the following files and folders from your folder:$ARTIFACTORY_HOME

webapps/artifactory.war
webapps/access.war (this will only be present if your current version is 5.4.0 and above
due to addition of the)Access Service
tomcat
bin
misc

Replace the removed files and folders with the corresponding ones from the new unzipped version.
Any files that were stored in temporary locations should now be returned to their original location under the new installation.

There are different instructions for upgrading Artifactory HA
When upgrading an HA cluster, the procedure for upgrading each node is similar to upgrading a single instance (Non-HA)
installation, however, there are additional actions required for the nodes to operate as a high availability cluster.

If you are upgrading an Artifactory HA cluster, please refer to Upgrading an Enterprise HA Cluster.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow
the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-AccessService
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

6.

7.
a.

b.

1.
2.

If you installed Artifactory as a service, you now need to run the service
For a Linux service, browse to and execute the following command :$ARTIFACTORY_HOME/bin as root $ARTIFACTO
RY_HOME/bin/installService.sh [USER [GROUP]]
For Windows service, browse to and run . %ARTIFACTORY_HOME%\bin InstallService.bat

Debian Installation
Upgrading a Debian installation...

Log in as root (or use).sudo su -
Execute the following command:

dpkg -i $jfrog-artifactory-<oss|pro>-5.y.z.deb

Managing Configuration Files

When upgrading a installation the upgrade process overwrites the following set of configuration files:Debian

system.properties
config.xml
default
logback.xml
mimetypes.xml
All files under opt/jfrog/artifactory/misc
All files under opt/jfrog/artifactory/webapps

If any of these files were modified, a backed up file will be created automatically with a notification in the upgrade log. If you need to
restore the configuration changes you can restore them from the backup created.

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow the steps
described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed as a
separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be configured to
allow running 2 processes. If you are using a server.xml file from a previous installation, when returning it, make sure it is
configured to allow 2 start/stop threads as shown below (see <Host name="localhost" appBase="webapps" startStopThreads

/>):="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

1.
2.
3.

Docker Installation
Upgrading a Docker installation...

In order to keep your data and configuration between versions, when upgrading the Artifactory Docker image, you need to use an
external mounted volume as described under .Managing Data Persistence

To upgrade the Artifactory Docker image, follow these steps:

Stop current container
Start a container with new version, using same data and configuration
Remove old container

The example below shows this process for upgrading Artifactory from v5.0.0 to v5.1.0.

$ # Stop the currently running container
$ docker stop artifactory-5.0.0

$ # Start a new container from the new version image
$ docker run -d --name artifactory-5.1.0
--volumes-from=artifactory-5.0.0 -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:5.1.0

$ # Remove old container
$ docker rm artifactory-5.0.0

Once these commands have completed successfully, you would have the new version (5.1.0 in the above example) running with the data
and configuration from the old version that was removed.

RPM Installation
Upgrading an RPM installation...

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, you need to follow the steps described in this

.Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed as a
separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be configured to
allow running 2 processes. If you are using a server.xml file from a previous installation, when returning it, make sure it is
configured to allow 2 start/stop threads as shown below (see <Host name="localhost" appBase="webapps" startStopThreads

/>):="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Make sure you are upgrading from v3.6 or above
When running as an RPM installation, you can only upgrade to v5.x if your current version is 3.6 or above. If necessary, first
upgrade your current version to 3.6, and then upgrade to v5.x .

If you try to upgrade a version below 3.6 using you may end up deleting all of your data.rpm --force

https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

1.

2.
3.

Download the The latest version can be downloaded from the Artifactory Pro RPM Installer. JFrog Artifactory Pro Download
. Previous versions can be downloaded from .Page JFrog Bintray

Log in as root (or use).sudo su -
Execute the following command:

rpm -U jfrog-artifactory-pro-5.y.z.rpm

During an upgrade of an RPM installation different files may get backed up, where the backup file is appended with either a or a .rpmorig
 extension. .rpmnew

A extension means that the original file in your installation, the one that was there before performing the upgrade, was backed.rpmorig
up before being replaced in the upgrade process.

A extension means that the original file in your installation, was replaced in the upgrade, and instead, the new file with the.rpmnew not
same filename was backed up.

In either case, Artifactory will display a message such as:

warning: /etc/opt/jfrog/artifactory/default saved as /etc/opt/jfrog/artifactory/default.rpmorig

In these cases we recommend comparing the file installed once the upgrade has been completed with the backed-up file to see which
best fits your needs, and using that one in the final setup.

If you make any changes, you may need to restart Artifactory for the change to be applied.

Upgrading Using YUM

An easy way to upgrade Artifactory from version 3.x or 4.x to the latest version is to use YUM with the Bintray Artifactory repository. The
code snippets below show how to do this depending on whether your current version is below 3.6, or 3.6 and above.

If your current version is 3.6 and above:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum install jfrog-artifactory-pro

If your current version is below 3.6:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum upgrade artifactory
yum install jfrog-artifactory-pro

Switching from Artifactory OSS to Pro
If you are just switching from Artifactory OSS to Pro with the same version number, you
need to append the command with --force --nodeps as follows:

rpm -U jfrog-artifactory-pro-5.y.z.rpm --force --nodeps

Upgrading an Artifactory HA cluster?
 If you are upgrading an Artifactory HA cluster, and you are running with a version that is older than version 5.4.6, you should
review the instructions on Upgrading an Enterprise HA Cluster prior to upgrading.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow the steps
described in .this Knowledge Base article

https://bintray.com/jfrog/product/artifactory/download
https://bintray.com/jfrog/product/artifactory/download
https://jfrog.bintray.com/artifactory-pro-rpms/org/artifactory/pro/rpm/
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster5.5-UpgradingFromVersion5.4.5andBelowtoVersion5.5andAbove
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

1.

2.
3.

RPM OSS Installation
Click here to expand...

Download the The latest version can be downloaded from the .Artifactory OSS RPM Installer. JFrog Open Source page
Previous versions can be downloaded from .JFrog Bintray
Log in as root (or use).sudo su -
Execute the following command:

rpm -U jfrog-artifactory-oss-5.y.z.rpm

During an upgrade of an RPM installation different files may get backed up, where the backup file is appended with either a or a .rpmorig
 extension. .rpmnew

A extension means that the original file in your installation, the one that was there before performing the upgrade, was backed.rpmorig
up before being replaced in the upgrade process.

A extension means that the original file in your installation, was replaced in the upgrade, and instead, the new file with the.rpmnew not
same filename was backed up.

In either case, Artifactory will display a message such as:

warning: /etc/opt/jfrog/artifactory/default saved as /etc/opt/jfrog/artifactory/default.rpmorig

In these cases we recommend comparing the file installed once the upgrade has been completed with the backed-up file to see which
best fits your needs, and using that one in the final setup.

If you make any changes, you may need to restart Artifactory for the change to be applied.

Upgrading Using YUM

An easy way to upgrade Artifactory from version 3.x or 4.x to the latest version is to use YUM with the Bintray Artifactory repository. The
code snippets below show how to do this depending on whether your current version is below 3.6, or 3.6 and above.

If your current version is 3.6 and above:

curl https://bintray.com/jfrog/artifactory-rpms/rpm -o
bintray-jfrog-artifactory-rpms.repo && sudo mv
bintray-jfrog-artifactory-rpms.repo /etc/yum.repos.d/
yum install jfrog-artifactory-oss

If your current version is below 3.6:

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed as a
separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be configured to
allow running 2 processes. If you are using a server.xml file from a previous installation, when returning it, make sure it is
configured to allow 2 start/stop threads as shown below (see <Host name="localhost" appBase="webapps" startStopThreads

/>):="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

https://www.jfrog.com/open-source/#artifactory
https://bintray.com/jfrog/artifactory-rpms/jfrog-artifactory-oss-rpm

curl https://bintray.com/jfrog/artifactory-rpms/rpm -o
bintray-jfrog-artifactory-rpms.repo && sudo mv
bintray-jfrog-artifactory-rpms.repo /etc/yum.repos.d/
yum upgrade artifactory
yum install jfrog-artifactory-oss

Using SHA256 Checksums

From version 5.5, Artifactory natively supports SHA-256. New artifacts that are uploaded will automatically have their SHA-256 checksum
calculated, however, artifacts that were already hosted in Artifactory prior to the upgrade will not have their SHA-256 checksum in the
database yet.
To make full use of Artifactory's SHA-256 capabilities after upgrading to version 5.5 and above, you need to run a process that migrates
Artifactory's database making sure that the record for each artifact includes its SHA-256 checksum. For full details on Artifactory's SHA-256
support and instructions on how to migrate your database, please refer to . SHA-256 Support

Upgrading from OSS to Pro

Even if you're just switching your current version of Artifactory OSS to the same version of Artifactory Pro, please follow the instructions under
 according to your installation type (ZIP, RPM, Debian or Docker) Upgrading to the Latest Version

Upgrading from Version 3.x

Single Package Type Repositories

In version 3.x Artifactory supported repositories with multiple package types. You were able to upload packages with different types to the
same repository and Artifactory would calculate the metadata for those packages. Nevertheless, maintaining a single package type per
repository was always a best practice that optimized performance and produced a more organized repository structure in your system. From
version 4.0, you need to specify a single for a repository when you create it. Artifactory will only calculate metadata for, and bePackage Type

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow the steps
described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed as a
separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be configured to
allow running 2 processes. If you are using a server.xml file from a previous installation, when returning it, make sure it is
configured to allow 2 start/stop threads as shown below (see <Host name="localhost" appBase="webapps" startStopThreads

/>):="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Single Package Type
To work with version 4.x or 5.x, you need to ensure that your repositories only contain artifacts with the same package type. A
script to check this can be found on the .JFrog GitHub

https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage#Checksum-BasedStorage-BasedStorage-BasedStorage-SHA-256Support
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/
https://github.com/JFrogDev/artifactory-scripts/blob/master/4.x-migration/packageCheck.py

1.
2.
3.

recognized by the corresponding client software for artifacts of the specified for that repository. (Artifactory will not prevent youPackage Type
from uploading packages of a different type, however, it will not calculate metadata for those packages, and the client for the different
package types will not recognize the repository).

If you currently have repositories that are configured to support multiple package types, you need to migrate them to single package type
repositories, however, you may do so either before or after running the upgrade procedure.

To migrate your repositories before upgrading, please refer to .Migrating to Single Package Type Repositories

If you prefer to migrate your repositories after upgrading, or have already upgraded, please refer to Fixing Multiple Package Type
.Repositories

Migrating to Single Package Type Repositories

To migrate a repository with multiple package types to single package type repositories, execute the following steps:

Change the configuration of the original repository so it supports only one package type.
For each additional packaging type needed, create a new repository with the corresponding package type
Use the REST API or the UI to move packages from the original repository to the new one(s) created until all repositories only
contain packages of the same type.
When using the REST API, make sure to include the query parameter in order to prevent artifact pathsuppressLayouts=1
transformations.

Fixing Multiple Package Type Repositories

If you upgraded without migrating to single package type repositories, then Artifactory will start normally, however, repositories containing
multiple package types will be assigned one of the single package types from the original repository and output correspondingrandomly
messages to the file.$ARTIFACTORY_HOME/logs/artifactory.log

For example, if libs-release-local contained three different package types: RubyGems, Npm and NuGet, after upgrading, your $ARTIFACTOR
may contain messages similar to the ones below:Y_HOME/logs/artifactory.log

Generic repositories
In version 4.x and 5.x, if you need a repository to hold packages of several different types, you may specify its package type to be

Artifactory does not calculate metadata for Generic repositories, and effectively, they behave like a simple file system toGeneric.
store packages.

Npm Repositories
If you move data to an Npm repository, make sure to include the . folder. This will preserve extra information that may havenpm
been stored when deploying packages using the npm client.

2015-06-28 10:10:47,656 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:42) Converting repositories to a
single package type
2015-06-28 10:10:47,663 [art-init] [ERROR]
(o.a.v.c.v.SingleRepoTypeConverter:155) Disabling package 'Gems' for
repo 'libs-release-local' since only one packaging type is allowed!
2015-06-28 10:10:47,664 [art-init] [ERROR]
(o.a.v.c.v.SingleRepoTypeConverter:155) Disabling package 'Npm' for repo
'libs-release-local' since only one packaging type is allowed!
2015-06-28 10:10:47,664 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'libs-release-local' to type NuGet
2015-06-28 10:10:47,664 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'libs-snapshot-local' to type Maven
2015-06-28 10:10:47,664 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'plugins-release-local' to type Maven
2015-06-28 10:10:47,664 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'plugins-snapshot-local' to type Maven
2015-06-28 10:10:47,665 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'ext-release-local' to type Maven
2015-06-28 10:10:47,665 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'ext-snapshot-local' to type Maven
2015-06-28 10:10:47,666 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository 'jcenter' to
type Maven
2015-06-28 10:10:47,666 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository 'remote-repo'
to type Maven
2015-06-28 10:10:47,668 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository
'libs-snapshot' to type Maven
2015-06-28 10:10:47,668 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:128) Setting repository 'p2' to type
P2
2015-06-28 10:10:47,668 [art-init] [INFO]
(o.a.v.c.v.SingleRepoTypeConverter:56) Finished Converting repositories
to a single package type

In this example, Artifactory set the to NuGet.Package Type

To fix this condition, you can simply follow steps described above in , or after you upgrade,Migrating to Single Package Type Repositories
use the .packageType utility found on the JFrog Github for 4.x migrations

Upgrading from Any Version Below v3.0

To upgrade from a version prior to 3.0, you first need to upgrade to version 3.9.x as described in Upgrading Artifactory in the Artifactory 3
. documentation

https://github.com/JFrogDev/artifactory-scripts/tree/master/4.x-migration
https://www.jfrog.com/confluence/display/RTF3X/Upgrading+Artifactory
https://www.jfrog.com/confluence/display/RTF3X/Upgrading+Artifactory

Downgrading Artifactory

The procedure to downgrade Artifactory may vary depending on the version you are using. For more details, please contact .JFrog Support

Watch the Screencast

Upgrading an Enterprise HA Cluster

Overview

This page describes the process to upgrade your Artifactory Enterprise HA cluster.

Interim versions
Depending on your current version, upgrading to version 3.9.x may require you to first upgrade to an interim version.

No down time
Since your cluster contains more than one node, you may complete the upgrade process
without incurring any down time to the Artifactory service your organization is using.

Upgrading from 5.4.5 and below to 5.5 and above
In version 5.5, Artifactory's database underwent a schema change to accommodate
SHA256 checksums. As a result, when upgrading from version 5.4.5 and below to
version 5.5 and above, you need to follow one of the options described in the detailed

 below. instructions

1.

2.
3.

Before You Begin
Backup your system: As a precaution, before you begin the upgrade process,
we strongly recommend performing a complete . Complete System Backup
Backup your database
Read through the process: The backup procedure may vary slightly depending
on your current version and your installation type (ZIP, RPM, Debian or Docker).
To familiarize yourself with the specific backup process that you should use, we
recommend reading through all the steps of the process before you begin.

https://www.jfrog.com/support-service/support/
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup

Page Contents
Overview
The Upgrade
Process

Upgra
ding
From
Versio
n 5.4.5
and
Below
to
Versio
n 5.5
and
Above

Using SHA256 Checksums
Recov
ering
from
an
Attem
pt to
Upgra
de
Directl
y to
Versio
n 5.5
and
Above

Reinstalling Your Current Version
Upgra
ding
from
Versio
n 4.x
or 5.x

Upgrading the Primary Node
Docke
r
Install
ation

Upgrading the Secondary Node
Docke
r
Install
ation

Verify the HA Installation and Configuration
Troubleshootin
g the Upgrade
Process

The Upgrade Process

Upgrading Artifactory HA depends on which version you are starting from. Read the sections below carefully to make sure you complete the
process correctly.

Upgrading to 5.x for the first time? NFS is no longer required
From version 5.0, Artifactory HA does not require a network file system (NFS) to store data. If you wish to migrate your filestore to
alternative storage locations, please refer to .Migrating Data from NFS

1.

2.

Upgrading From Version 5.4.5 and Below to Version 5.5 and Above

Artifactory 5.5 implements a database schema change to support SHA-256 checksums. you may proceedIf your current version is 5.4.6,
with the normal upgrade procedure described in below.Upgrading from Version 4.x or 5.x

If your current version is below 5.4.6, to accommodate this change, you may select one of the following two upgrade options:

Two-phase, zero downtime
In this option, you first need to upgrade your HA cluster to version 5.4.6. Once this upgrade is completed, you can then proceed to
upgrade your HA cluster to version 5.5. In both phases, you follow the normal upgrade procedure described in in Upgrading from

 below.Version 4.x or 5.x
One phase with downtime
This option requires you to execute the following preprocessing

While the primary and all secondary nodes are up and running, add the following flag to artifactory.system.properti
 on the :es primary node

artifactory.upgrade.allowAnyUpgrade.forVersion=<to_version>
For example:
artifactory.upgrade.allowAnyUpgrade.forVersion=5.5.0

Wait until this property is synchronized to the database. You can verify that it has been synchronized by checking the artif
 file in each of the secondary nodes. Your nodes should display a message that looks like this:actory.log

[Node ID: some_node_id] detected remote modify for config 'artifactory.system.properties'
Now you can proceed with the normal upgrade procedure described in in below.Upgrading from Version 4.x or 5.x

If you try upgrading directly to version 5.5 following one of these options, the upgrade will fail and the following message will bewithout
logged in the file:artifactory.log
To upgrade your HA installation to this version, you first need to upgrade to version 5.4.6 which
implements changes required to accommodate a database schema change.

Using SHA256 Checksums

From version 5.5, Artifactory natively supports SHA-256. New artifacts that are uploaded will automatically have their SHA-256 checksum
calculated, however, artifacts that were already hosted in Artifactory prior to the upgrade will not have their SHA-256 checksum in the
database yet.
To make full use of Artifactory's SHA-256 capabilities after upgrading to version 5.5 and above, you need to run a process that migrates
Artifactory's database making sure that the record for each artifact includes its SHA-256 checksum. For full details on Artifactory's SHA-256
support and instructions on how to migrate your database, please refer to . SHA-256 Support

Recovering from an Attempt to Upgrade Directly to Version 5.5 and Above

If you try to upgrade from version 5.4.5 and below to version 5.5 and above without following the procedure in one of the two options above,
the upgrade will fail with the following message:

To upgrade your HA installation to this version, you first need to upgrade to version 5.4.6 which
implements changes required to accommodate a database schema change.

Depending on your installation type, the message may be displayed in the file, the artifactory.log $ARTIFACTORY_HOME/tomcat/log
 file or in the command line output.s/localhost.log

To recover from this error and, you first need to replace your current version as described (according to your installation type).below

System will be down during this particular upgrade
Normally, upgrading an enterprise HA cluster does not incur downtime. As you upgrade each node, the other
nodes continue to provide service.

In this particular scenario of upgrading from version 5.4.5 and below to version 5.5 and above in a single phase,
once you upgrade your primary node, your cluster will be in an incoherent state and will not be able to provide
service until all nodes in the cluster have been upgraded. You can expect to see many errors in the log file until
the upgrade is complete.

As a result, we recommend completely taking down the whole cluster (i.e. taking down all cluster nodes), and then
following the upgrade procedure, bringing up each node as it is upgraded.

https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage#Checksum-BasedStorage-BasedStorage-SHA-256Support

1.
2.
3.

1.

2.

3.

a.
b.
c.

Then you can proceed with upgrading to version 5.4.6 as required using the , and then on to your final desirednormal upgrade procedure
version, also, using the .normal upgrade procedure

Reinstalling Your Current Version

Reinstalling is similar to the process you went through when upgrading to your current version according to your installatian type.

For example, if you tried to upgrade from version 5.2 directly to version 5.5, you now need to reinstall version 5.2 and follow the instructions
below, according to your installation type.

 Zip Installation

Follow the using your current version. upgrade instructions for a Zip installation

Debian Installation

Follow the using your current version. upgrade instructions for a Debian installation

If your current version is below 5.4.0, make sure to remove the folder. This folder is a$ARTIFACTORY_HOME/tomcat/webapps/access
remnant of the failed attempt to upgrade to version 5.5 and is not needed in versions previous to 5.4 where the is bundledAccess Service
together with the Artifactory WAR.

Docker Installation

Follow the using your current version. upgrade instructions for a Docker installation

RPM Installation

Follow the using your current version. upgrade instructions for an RPM installation

If your current version is below 5.4.0, make sure to remove the folder. This folder is a$ARTIFACTORY_HOME/tomcat/webapps/access
remnant of the failed attempt to upgrade to version 5.5 and is not needed in versions previous to 5.4 where the is bundledAccess Service
together with the Artifactory WAR.

Upgrading from Version 4.x or 5.x
Upgrading to the latest version is conducted in three phases:

Upgrading the primary node
Upgrading the secondary nodes
Verifying the HA installation and configuration

Upgrading the Primary Node

Remove the primary node from the load balancer, so all requests are directed to the secondary nodes. You may look at $ARTIFACT
and ARTIFACTORY_URL/api/tasks (search for "running") to ensure that Artifactory isORY_NODE_HOME/logs/request.log

completely inactive.
Perform a graceful shutdown of the primary node. While the primary node is down, the load balancer should redirect all queries to the
secondary nodes.
Continue with the upgrade according to the instructions for your installation type.

ZIP Installation
Upgrading a ZIP installation...

Unzip the Artifactory distribution archive.
If the has been modified keep it in a temporary location. /tomcat/conf/server.xml$ARTIFACTORY_HOME

Want to stop using NFS?
If you want to stop using a shared NFS once the upgrade procedure is complete , please refer to (this is optional) Migrating Data

to migrate to alternative storage. from NFS

Upgrading from 3.x?
 If your current version is 3.5 or higher, you first need to upgrade to the latest version 4.x using the anprocedure in this link
d then upgrade to 5.x.

Upgrading Artifactory HA from a version below 3.5 to version 5.x directly is not supported. To upgrade to version 5.x, you
first need to upgrade your system to v3.5+, and then upgrade again to the final version 4.x, and then finally to 5.x.

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-AccessService
https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-AccessService
https://www.jfrog.com/confluence/display/RTF4X/HA+Installation+and+Setup#HAInstallationandSetup-UpgradingArtifactoryHA

3.

c.
i.
ii.

d.

e.
f.

g.
i.

ii.

a.
b.

Backup files to a temporary location according to the conditions described below:
In all cases, backup $ARTIFACTORY_HOME/bin/artifactory.default
If Artifactory is configured to work with a database that is not Derby, backup the /tomcat/l$ARTIFACTORY_HOME

 driver. ib/<JDBC>
Remove the following files and folders from your folder:$ARTIFACTORY_HOME

webapps/artifactory.war
webapps/access.war (this will only be present if your current version is 5.4.0 and
above due to addition of the)Access Service
tomcat
bin
misc

Replace the removed files and folders with the corresponding ones from the new unzipped version.
Any files that were stored in temporary locations should now be returned to their original location under the new
installation.

If you installed Artifactory as a service, you now need to run the service
For a Linux service, browse to and execute the following command :$ARTIFACTORY_HOME/bin as root $ART
IFACTORY_HOME/bin/installService.sh [USER [GROUP]]
For Windows service, browse to and run . %ARTIFACTORY_HOME%\bin InstallService.bat

Debian Installation
Upgrading a Debian installation...

Log in as root (or use).sudo su -
Execute the following command:

dpkg -i $jfrog-artifactory-<oss|pro>-5.y.z.deb

Managing Configuration Files

When upgrading a installation the upgrade process overwrites the following set of configuration files:Debian

system.properties
config.xml
default
logback.xml
mimetypes.xml
All files under opt/jfrog/artifactory/misc
All files under opt/jfrog/artifactory/webapps

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to
follow the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access,
installed as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's
server.xml to be configured to allow running 2 processes. If you are using a server.xml file from a previous
installation, when returning it, make sure it is configured to allow 2 start/stop threads as shown below (see
<Host name="localhost" appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina"
defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-AccessService
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

a.
b.
c.

If any of these files were modified, a backed up file will be created automatically with a notification in the upgrade log. If you need
to restore the configuration changes you can restore them from the backup created.

Docker Installation
Upgrading a Docker installation...

In order to keep your data and configuration between versions, when upgrading the Artifactory Docker image, you need to use
an external mounted volume as described under .Managing Data Persistence

To upgrade the Artifactory Docker image, follow these steps:

Stop current container
Start a container with new version, using same data and configuration
Remove old container

The example below shows this process for upgrading Artifactory from v5.0.0 to v5.1.0.

$ # Stop the currently running container
$ docker stop artifactory-5.0.0

$ # Start a new container from the new version image
$ docker run -d --name artifactory-5.1.0
--volumes-from=artifactory-5.0.0 -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:5.1.0

$ # Remove old container
$ docker rm artifactory-5.0.0

Once these commands have completed successfully, you would have the new version (5.1.0 in the above example) running with
the data and configuration from the old version that was removed.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow
the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, you need to follow the steps described in

.this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed

https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

a.

b.
c.

RPM Installation
Upgrading an RPM installation...

Download the The latest version can be downloaded from the Artifactory Pro RPM Installer. JFrog Artifactory Pro
. Previous versions can be downloaded from .Download Page JFrog Bintray

Log in as root (or use).sudo su -
Execute the following command:

rpm -U jfrog-artifactory-pro-5.y.z.rpm

During an upgrade of an RPM installation different files may get backed up, where the backup file is appended with either a .rpm
 or a extension. orig .rpmnew

A extension means that the original file in your installation, the one that was there before performing the upgrade, was.rpmorig
backed up before being replaced in the upgrade process.

A extension means that the original file in your installation, was replaced in the upgrade, and instead, the new file.rpmnew not
with the same filename was backed up.

In either case, Artifactory will display a message such as:

warning: /etc/opt/jfrog/artifactory/default saved as /etc/opt/jfrog/artifactory/default.rpmorig

In these cases we recommend comparing the file installed once the upgrade has been completed with the backed-up file to see
which best fits your needs, and using that one in the final setup.

If you make any changes, you may need to restart Artifactory for the change to be applied.

Upgrading Using YUM

An easy way to upgrade Artifactory from version 3.x or 4.x to the latest version is to use YUM with the Bintray Artifactory
repository. The code snippets below show how to do this depending on whether your current version is below 3.6, or 3.6 and
above.

as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Make sure you are upgrading from v3.6 or above
When running as an RPM installation, you can only upgrade to v5.x if your current version is 3.6 or above. If
necessary, first upgrade your current version to 3.6, and then upgrade to v5.x .

If you try to upgrade a version below 3.6 using you may end up deleting all of your data.rpm --force

Switching from Artifactory OSS to Pro
If you are just switching from Artifactory OSS to Pro with the same version
number, you need to append the command with --force --nodeps as follows:

rpm -U jfrog-artifactory-pro-5.y.z.rpm --force --nodeps

Upgrading an Artifactory HA cluster?

https://bintray.com/jfrog/product/artifactory/download
https://bintray.com/jfrog/product/artifactory/download
https://jfrog.bintray.com/artifactory-pro-rpms/org/artifactory/pro/rpm/

3.

4.

5.

1.

If your current version is 3.6 and above:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum install jfrog-artifactory-pro

If your current version is below 3.6:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum upgrade artifactory
yum install jfrog-artifactory-pro

Start up the primary node. When the primary node starts up, it will recognize that the HA cluster nodes are not all running the same
version of Artifactory, and consequently, the system will be limited to allowing uploads and downloads.

Any attempt to perform other actions such as changing the DB schema, modifying permissions, changing repository configuration
and more, are strictly blocked. This limitation will continue until all the cluster nodes are once again running the same version.

Put the primary node back to the load balancer.

Upgrading the Secondary Node

For in your HA cluster, perform the following steps:each secondary node

Remove the node from the load balancer, so all requests are directed to the other nodes. You may look at $ARTIFACTORY_NODE

 If you are upgrading an Artifactory HA cluster, and you are running with a version that is older than version 5.4.6, you
should review the instructions on Upgrading an Enterprise HA Cluster prior to upgrading.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow
the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Version inconsistency generates exceptions
Running the HA cluster nodes with different versions generates exceptions. These can be seen in the log files and reflect
the temporary inconsistent state during the upgrade process. This is normal and should be ignored until all the cluster
nodes are, once again, running the same version.

https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster5.5-UpgradingFromVersion5.4.5andBelowtoVersion5.5andAbove
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

1.

2.
3.

a.
b.
c.

i.
ii.

d.

e.
f.

g.
i.

ii.

a.
b.

and ARTIFACTORY_URL/api/tasks (search for "running") to ensure that Artifactory is completely inactive._HOME/logs/request.log
Perform a graceful shutdown of the node. While the node is down, the load balancer should redirect all queries to the other nodes.
Continue with the upgrade according to the instructions for your installation type.

ZIP Installation
Upgrading a ZIP installation...

Unzip the Artifactory distribution archive.
If the has been modified keep it in a temporary location. /tomcat/conf/server.xml$ARTIFACTORY_HOME
Backup files to a temporary location according to the conditions described below:

In all cases, backup $ARTIFACTORY_HOME/bin/artifactory.default
If Artifactory is configured to work with a database that is not Derby, backup the /tomcat/l$ARTIFACTORY_HOME

 driver. ib/<JDBC>
Remove the following files and folders from your folder:$ARTIFACTORY_HOME

webapps/artifactory.war
webapps/access.war (this will only be present if your current version is 5.4.0 and
above due to addition of the)Access Service
tomcat
bin
misc

Replace the removed files and folders with the corresponding ones from the new unzipped version.
Any files that were stored in temporary locations should now be returned to their original location under the new
installation.

If you installed Artifactory as a service, you now need to run the service
For a Linux service, browse to and execute the following command :$ARTIFACTORY_HOME/bin as root $ART
IFACTORY_HOME/bin/installService.sh [USER [GROUP]]
For Windows service, browse to and run . %ARTIFACTORY_HOME%\bin InstallService.bat

Debian Installation
Upgrading a Debian installation...

Log in as root (or use).sudo su -
Execute the following command:

If your current version is 3.5 or higher, you first need to upgrade to the latest version 4.x using the following procedure and
then upgrade to 5.x.

Upgrading Artifactory HA from a version below 3.5 to version 5.x directly is not supported. To upgrade to version 5.x, you
first need to upgrade your system to v3.5+, and then upgrade again to the final version 4.x, and then finally to 5.x.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to
follow the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access,
installed as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's
server.xml to be configured to allow running 2 processes. If you are using a server.xml file from a previous
installation, when returning it, make sure it is configured to allow 2 start/stop threads as shown below (see
<Host name="localhost" appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina"
defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-AccessService
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

b.

a.
b.
c.

dpkg -i $jfrog-artifactory-<oss|pro>-5.y.z.deb

Managing Configuration Files

When upgrading a installation the upgrade process overwrites the following set of configuration files:Debian

system.properties
config.xml
default
logback.xml
mimetypes.xml
All files under opt/jfrog/artifactory/misc
All files under opt/jfrog/artifactory/webapps

If any of these files were modified, a backed up file will be created automatically with a notification in the upgrade log. If you need
to restore the configuration changes you can restore them from the backup created.

Docker Installation
Upgrading a Docker installation...

In order to keep your data and configuration between versions, when upgrading the Artifactory Docker image, you need to use
an external mounted volume as described under .Managing Data Persistence

To upgrade the Artifactory Docker image, follow these steps:

Stop current container
Start a container with new version, using same data and configuration
Remove old container

The example below shows this process for upgrading Artifactory from v5.0.0 to v5.1.0.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow
the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

a.

b.
c.

$ # Stop the currently running container
$ docker stop artifactory-5.0.0

$ # Start a new container from the new version image
$ docker run -d --name artifactory-5.1.0
--volumes-from=artifactory-5.0.0 -p 8081:8081
docker.bintray.io/jfrog/artifactory-pro:5.1.0

$ # Remove old container
$ docker rm artifactory-5.0.0

Once these commands have completed successfully, you would have the new version (5.1.0 in the above example) running with
the data and configuration from the old version that was removed.

RPM Installation
Upgrading an RPM installation...

Download the The latest version can be downloaded from the Artifactory Pro RPM Installer. JFrog Artifactory Pro
. Previous versions can be downloaded from .Download Page JFrog Bintray

Log in as root (or use).sudo su -
Execute the following command:

rpm -U jfrog-artifactory-pro-5.y.z.rpm

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, you need to follow the steps described in

.this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Make sure you are upgrading from v3.6 or above
When running as an RPM installation, you can only upgrade to v5.x if your current version is 3.6 or above. If
necessary, first upgrade your current version to 3.6, and then upgrade to v5.x .

If you try to upgrade a version below 3.6 using you may end up deleting all of your data.rpm --force

Switching from Artifactory OSS to Pro
If you are just switching from Artifactory OSS to Pro with the same version
number, you need to append the command with --force --nodeps as follows:

https://bintray.com/jfrog/product/artifactory/download
https://bintray.com/jfrog/product/artifactory/download
https://jfrog.bintray.com/artifactory-pro-rpms/org/artifactory/pro/rpm/
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

c.

During an upgrade of an RPM installation different files may get backed up, where the backup file is appended with either a .rpm
 or a extension. orig .rpmnew

A extension means that the original file in your installation, the one that was there before performing the upgrade, was.rpmorig
backed up before being replaced in the upgrade process.

A extension means that the original file in your installation, was replaced in the upgrade, and instead, the new file.rpmnew not
with the same filename was backed up.

In either case, Artifactory will display a message such as:

warning: /etc/opt/jfrog/artifactory/default saved as /etc/opt/jfrog/artifactory/default.rpmorig

In these cases we recommend comparing the file installed once the upgrade has been completed with the backed-up file to see
which best fits your needs, and using that one in the final setup.

If you make any changes, you may need to restart Artifactory for the change to be applied.

Upgrading Using YUM

An easy way to upgrade Artifactory from version 3.x or 4.x to the latest version is to use YUM with the Bintray Artifactory
repository. The code snippets below show how to do this depending on whether your current version is below 3.6, or 3.6 and
above.

If your current version is 3.6 and above:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum install jfrog-artifactory-pro

If your current version is below 3.6:

curl https://bintray.com/jfrog/artifactory-pro-rpms/rpm -o
bintray-jfrog-artifactory-pro-rpms.repo && sudo mv
bintray-jfrog-artifactory-pro-rpms.repo /etc/yum.repos.d
yum upgrade artifactory
yum install jfrog-artifactory-pro

rpm -U jfrog-artifactory-pro-5.y.z.rpm --force --nodeps

Upgrading an Artifactory HA cluster?
 If you are upgrading an Artifactory HA cluster, and you are running with a version that is older than version 5.4.6, you
should review the instructions on Upgrading an Enterprise HA Cluster prior to upgrading.

Running Artifactory as ROOT
If you have configured Artifactory to run as the ROOT application in Tomcat, before you proceed, you need to follow
the steps described in .this Knowledge Base article

Upgrading to version 5.4.0 and above
From version 5.4.0, Artifactory's management of Access Tokens was moved to a separate service, Access, installed
as a separate web application under the same Tomcat as Artifactory. This requires your Tomcat's server.xml to be
configured to allow running 2 processes. If you are using a server.xml file from a previous installation, when returning
it, make sure it is configured to allow 2 start/stop threads as shown below (see <Host name="localhost"
appBase="webapps" />):startStopThreads="2"

https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster5.5-UpgradingFromVersion5.4.5andBelowtoVersion5.5andAbove
https://www.jfrog.com/knowledge-base/how-do-i-setup-artifactory-to-run-as-the-root-application-in-tomcat/

3.

4.
5.
6.

1.
2.

3.

4.
5.

Start up the secondary node.
Add the secondary node back to the load balancer.
Repeat this process for each secondary node.

Verify the HA Installation and Configuration

Once you have completed upgrading your HA cluster, you can verify that your cluster has been installed and configured correctly use the
following series of tests:

Directly Access the Artifactory UI for the server you have just configured
In the module go to to view the log and verify that you see an entry for Admin Advanced | System Logs HA Node ID.

The bottom of the module navigation bar should also indicate that you are running with an Enterprise licens. In case of an error you
will see an error message in the page header.

Access Artifactory through your load balancer and log in as .Admin
In the module go to There should be a section called When selected you should see aAdmin Configuration. High Availability.
table with details on all the Artifactory nodes in your cluster as displayed below.

...
 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
...

Upgrading to version 5.2.1 and above and using an NFS mount?
Once you have completed an upgrade, if your new version is 5.2.1 and above, and you are using a shared NFS mount,
make sure to remove the Bootstrap bundle archive from the folder.$NFS_MOUNT/ha-etc

Check your installation
 After starting up each secondary node, we recommend inspecting the andha-node.properties, db.properties binary

 (under store.xml files $ARTIFACTORY_NODE_HOME/etc) to ensure they are correctly configured

5.

6. In the module under verify that the field is correctly configured to the URL ofAdmin Configuration | General, Custom URL Base
the Load Balancer.

Troubleshooting the Upgrade Process

If you run into any problems during the upgrade process, please refer to for a possible resolution. Troubleshooting HA

Using Artifactory
Overview

Artifactory provides you with the features you need to manage your binary repositories, both through an
intuitive UI and with an extensive set of APIs.

The Artifactory UI is divided into four main modules:

Home

The module serves as a dashboard where you can easily access general information and commonlyHome
used features. For more details, please refer to .General Information

Artifacts

The module is used to browse the repositories in your system and search for artifacts using aArtifacts
number of different methods. While browsing through repositories, Artifactory displays useful information and
provides you with tools to perform essential actions to manage your repositories.

Search

The module is where you can search for Artifacts by name, package type, properties and a variety ofSearch
additional methods offered by Artifactory. For more details, please refer to .Searching for Artifacts

Build

The module displays the where you can view all the CI server projects that output theirBuild Build Browser
builds to Artifactory. Here you can drill down to view detailed build information and compare one build to
another.

Admin

The tab is only available to users who are defined as administrators in the system, and is used toAdmin

Want to stop using NFS?
If you want to stop using a shared NFS once the upgrade procedure is complete , please refer to (this is optional) Migrating Data

to migrate to alternative storage. from NFS

perform a variety of administration and maintenance activities such as:

Configuring different entities such as repositories, software licenses, proxies, mail servers and more
Managing different aspects of system security such as user definitions, groups, permissions, LDAP
integration and more
Managing backup and indexing of repositories
Managing import and export of repositories or of the entire system
Accessing system information and scheduling different cleanup operations

This functionality is available through the menu which is displayed when a logged-in administratorAdmin
hovers the mouse over in the navigation bar.Admin

To help locate a specific action, you can enter a search term in the field and have ArtifactoryFilter
emphasize matching menu items.

In addition to the feature set offered by the UI, Artifactory provides an extensive to facilitateREST API
integration with build automation and continuous integration systems.

Page Contents
Overview
Help Menu
Set Me Up

Inserting User Credentials
Keyboard Shortcuts

Read more
Getting Started
General Information
Browsing Artifactory
Using WebDAV
Searching for Artifacts
Deploying Artifacts
Manipulating Artifacts
Updating Your Profile
Authentication
Artifactory REST API

Help Menu

On every screen of Artifactory, you can click the menu to display a list of help topics relevant for the current screen. Selecting any of the helpHelp
topics opens a new browser tab displaying the corresponding Artifactory documentation.

Set Me Up

Artifactory's feature provides you with the commands you can use to deploy and resolve artifacts to and from specific repositories.Set Me Up
Simply select any item in the or and click Tree Browser Simple Browser Set Me Up.

Regardless of what was selected when you pop up this dialog, you can select a and a specific (the list of repositories displayedTool Repository
corresponds to the tool you selected), and Artifactory will provide the relevant commands according to your selection.

Inserting User Credentials

Every dialog includes an "Insert Credentials" button. When pressed, Artifactory will prompt you for your password and will then replaceSet Me Up
generic credential placeholders used in code snippets with your own corresponding credentials.

https://www.jfrog.com/confluence/display/RTD/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
https://www.jfrog.com/confluence/display/RTD/Browsing+Artifactory#BrowsingArtifactory-SimpleBrows

This means that you may now copy the code snippets and use them "as is". For example, for the screen displayed above, clickingSet Me Up
"Insert Credentials" will replace the placeholder with your API Key as displayed below. <API_KEY>

To undo the change, click "Remove Credentials".

Keyboard Shortcuts

To facilitate easy navigation through its UI, Artifactory offers the following set of keyboard shortcuts:

Ctrl/Cmd + Alt
+ B

Display the in the moduleBuild Browser Build

Ctrl/Cmd + Alt
+ R

Display the in the moduleArtifact Repository Browser Artifacts

Ctrl/Cmd + Alt
+ N

Create a new item (where relevant). For example, when viewing the list of local repositories, Ctrl/Cmd + Alt + N will pop up a
dialog to create a new one.

Ctrl/Cmd + Alt
+ >

Open the module menu. Once in the menu, you can browse through items using the up/down arrow keys or the tabAdmin
key.

Ctrl/Cmd + Alt
+ <

Close the module menu.Admin

Inserted user data is not persistent
Once you close the dialog, any user data that was inserted is removed. To insert user data into code snippets, you need toSet Me Up
invoke it each time you display a dialog. Set Me Up

https://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-InspectingBuilds
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing

Getting Started

Overview

To get you up and running as quickly and easily as possible for a new installation, Artifactory offers
two ways to configure your basic initial setup:

Onboarding Wizard: The onboarding wizard is invoked first time you start up Artifactory. It
will take you through the steps of initial configuration using a convenient and intuitive UI.
YAML Configuration File: The YAML configuration file offers an alternative way to specify
your initial settings allowing you to skip the onboarding wizard.

In addition, you may use a combination of these two methods, specifying some of your initial setup
in the YAML file, and then skipping the corresponding sections in the onboarding wizard.

The initial setup lets you configure the following basic settings:

License
Base URL (through the YAML configuration file only)
Admin password (through the onboarding wizard only)
Proxy server
Initial default repositories

Page contents
Overview
Onboarding
Wizard
YAML
Configuration
File

Limitat
ions
Locati
on and
Usage
Exporti
ng a
Config
uration

Onboarding Wizard

The onboarding wizard makes sure you get Artifactory set up with the minimal information needed to get started.

Welcome: The beginning of the onboarding wizard.
Click to get started.Next

License: Enter your license key and click toNext
continue.

Admin password: Set the admin password
(recommended) and click to continue, or click Next S

to stay with the .kip default admin password

Bootstrapping only
Remember that both the onboarding wizard and the YAML configuration file can only be
used to configure Artifactory upon bootstrapping it for the first time. Once Artifactory has
been started up or a repository has been set up or used, the onboarding wizard is no
longer accessible, and the YAML configuration file is not read.

https://www.jfrog.com/confluence/display/RTF/Installing+Artifactory#InstallingArtifactory-DefaultAdminUser

Proxy: Configure a proxy server and click toNext
continue, or click .Skip to configure one later

Create Repositories: Select the package formats for
which Artifactory should create default repositories
and click to continue.Create

Summary: Displays the default repositories created
according to your selection. Click to completeFinish
the wizard and get started with Artifactory.

YAML Configuration File

Setting up Artifactory using the YAML configuration file is a convenient alternative to going through the startup wizard. In addition, it gives you
an easy way to save the basic configuration of one instance and then quickly and easily reproduce that configuration in other instances you
set up.

Limitations

These limitations stem from the principle that the YAML configuration file is designated for configuration of new Artifactory instances that
essentially, have not been used before. When bootstrapping a new instance of Artifactory, it will load the configuration specified in this file if
all of the following conditions are met:

No repositories have been created
A proxy has not been set up, or a proxy has been set up and you did not configure proxy setup through the YAML configuration file
The base URL has not been set up, or the base URL has been set up and you did not configure the base URL through the YAML
configuration file
Artifactory has not been activated with a license, or it has been activated with a license and you did not configure the license through
the YAML configuration file

Location and Usage

The YAML configuration file template can be found under . To$ARTIFACTORY_HOME/misc/artifactory.config.template.yml
specify your initial bootstrap configuration, uncomment the relevant sections in the file and provide the configuration details. Rename the file,
save it as and place it under Artifactory's etc folder. When done you should have the followingartifactory.config.import.yml
configuration file: $ARTIFACTORY_HOME/etc/artifactory.config.import.yml

An example of the YAML configuration file template used for Artifactory 5.0 can be found below:
YAML configuration file template...

version: 1
This file is complementary to the JFrog Artifactory startup wizard,
and may be used to specify the initial basic
settings for a new Artifactory installation, namely:
* License Key(s)
* Base URL
* Proxy
* Default repositories
##
##
HOW TO USE THIS FILE:
##
To import these settings when bootstrapping Artifactory, save this
file as artifactory.config.import.yml under Artifactory’s /etc folder
Artifactory will load this file if all of the following conditions
are met:
- no repositories have been created
- a proxy has not been set up, or you did set up a proxy

When using the YAML configuration file, you don't have to configure all the parameters described in the above. You mayOverview
configure only some of the parameters using the YAML file, and then configure the others through the start up wizard, or manually
later on after Artifactory has started up.

externally, but did not configure proxy setup through this file
- the base URL has not been set up, or you did set up the base URL
externally, but did not configure the base URL setup through this file
- Artifactory has not been activated with a license, or Artifactory
has been activated with a license, and you did not specify a license
in this file
##
To have any of these parameters automatically configured when you
bootstrap an Artifactory instance using this file,
simply uncomment the relevant sections below, and where required,
provide values.

###
#############
General Configurations
###
#############
GeneralConfiguration:
License key to import in onboarding
 licenseKey : "Enter your license key"

Setup the Artifactory base URL
For more information about the Artifactory base URL, please refer
to
##
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#
ConfiguringArtifactory-GeneralSettings
Uncomment the line below to set the Artifactory base URL
baseUrl : "https://mycomp.arti.co"

Configure proxies for artifactory
For more information on configuring a proxy in Artifactory, please
refer to
https://www.jfrog.com/confluence/display/RTF/Managing+Proxies
Uncomment the lines below to setup a proxy
proxies :
- key : "proxy1"
host : "https://proxy.mycomp.io"
port : 443
userName : "admin"
password : "password"
defaultProxy : true
- key : "proxy2"
...
###
#############
Onboarding Configurations
###
#############
OnboardingConfiguration:
Uncomment the package types for which you want to create default
repositories
 repoTypes :

- bower
- cocoapods
- conan
- debian
- docker
- gems
- gradle
- ivy
- maven
- npm
- nuget
- opkg
- composer
- pypi
- sbt

- vagrant
- rpm
- gitlfs

For example, to set your base URL to be "https://acme.artifactory.com", you should uncomment the section and, baseUrl while keeping the
, set:same indentation

baseUrl : "https://acme.artifactory.com"

Exporting a Configuration

When Artifactory is bootstrapped for the first time, it stores a copy of its initial configuration under $ARTIFACTORY_HOME/etc/artifactor
 regardless of whether it was bootstrapped using the , or using a YAML configuration file.y.config.<timestamp>.yml Onboarding Wizard

To use this configuration to bootstrap additional Artifactory instances, copy the file into the new instance's folder$ARTIFACTORY_HOME/etc
and rename it to artifactory.config.import.yml.

General Information

Overview

The screen is divided into convenient sections and panels that provide useful information orHome
quick links to commonly used features.

Page contents
Overview

Top
Ribbo
n
Basic
Inform
ation
Searc
h
Panel
Set
Me
Up
Downl
oad
and
Deploy
Statisti
cs
Quick
Reposi
tory
Setup
Refere
nce
Panel
Featur
es
Panel

Indentation
Indentation is significant in YAML. Make sure to maintain the same indentation levels when editing the YAML configuration file.

Top Ribbon

The top ribbon in Artifactory displays the logged-in user, and provides access to Quick Search and Help. Admin users may click the user
name to display a menu of common actions for easy access.

Basic Information

At the top of the Home Screen, Artifactory displays basic information such as total number of artifacts, version information and uptime.

Search Panel

The Search Panel provides quick links to the different searches you can perform in Artifactory. For more details, please refer to Searching for
.Artifacts

Set Me Up

The Set Me Up panel provides quick access to details on how to configure your different clients to work with the corresponding repositories
you have created. Just click one of the repositories to view its "Set Me Up" screen.

For more details, please refer to .Set Me Up

Download and Deploy Statistics

These panels provide information on your last deployed builds and most downloaded artifacts.

Quick Repository Setup

The "Quick Repository Setup" button offers a quick and easy way to set up default repositories for any of the supported package formats for
which you have not yet set up repositories.

https://www.jfrog.com/confluence/display/RTF/Using+Artifactory#UsingArtifactory-SetMeUp

Reference Panel

The Reference Panel provides links to useful references such as the JFrog Artifactory User Guide (this guide) and docArtifactory's REST API
umentation, as well as additional useful links such as the , , page and questions tagged with "Artifactory"Support Portal blog webinar signup
on .Stack Overflow

Features Panel

The Features Panel at the bottom of the screen displays all the features available to you according to the license you have used to activate
Artifactory. Hover over any feature to get quick links to more information and a link to the relevant section in this user guide

Browsing Artifactory

Overview

The module in Artifactory displays the that provides two ways toArtifacts Artifact Repository Browser
browse through repositories:

Tree Browser: Displays the repository as a tree
Simple Browser: Focuses on the currently selected item and displays the level below it in the
repository hierarchy as a flat list

Both browsers adhere to the security rules defined in the system, and only allow you to perform actions
authorized by the system security policies.

To switch between browsing modes, simply select the corresponding link at the top of the Artifact
.Repository Browser

https://support.jfrog.com/
https://www.jfrog.com/blog/
https://www.jfrog.com/support-service/webinars/
http://stackoverflow.com/questions/tagged/artifactory

Both the Tree Browser and Simple Browser have features to help you navigate them and search for
repositories:

Repository type icon: Each repository is displayed with a distinct icon that represents its type
(local, cache, remote and virtual).
Search in the browser: You can search for a specific repository in both browsers by clicking on the
filter icon.
Keyboard navigation: While in the browser, type the name of the repository you are searching for
and Artifactory will navigate you to that repository.

: Filters Click the filter icon to filter the repositories displayed in the browser to only display the types
that interest you. You can also simply type the filter expression while on the browser.

Tree Browsing

The Tree Browser lets you drill down through the repository hierarchy
and displays full information for each level within it. For any repository,
folder or artifact selected in the tree, a tabbed panel displays detailed
data views and a variety of actions that can be performed on the
selected item. The information tabs available are context sensitive and
depend on the item selected. For example, if you select an npm
package, an Npm Info tab displays information specific to Npm
packages. Similarly for NuGet, RubyGems and any other supported
package formats.

Sorting the Tree Browser

The default order in which repositories appear in the Tree Browser is:
Distribution, Local, Remote, Virtual.

You can modify this order through the artifactory.treebrowser.s
system property.ortRepositories.sortByType

For example, to reverse the order, you would set:

Page Contents
Overview
Tree Browsing

Sorting the Tree Browser
Simple Browsing
Filters
Information Tabs
List Browsing
Remote Browsing
Trash Can
WebDAV Browsing

Collapse All
Click on the "Tree" link at the top of the tree browser to
collapse all open nodes in the tree.

artifactory.treebrowser.sortRepo
sitories.sortByType=virtual,remo
te,local,distribution

If you omit any repository type in the specified sort order, it will be
ordered according to the default setting.

Simple Browsing

The simple browser lets you browse repositories using simple
path-driven URLs, which are the same URLs used by build tools such as
Maven. It provides lightweight, view-only browsing.

A unique feature of this browsing mode is that you can also view remote
 (when enabled for the repository), and virtual repositories torepositories

see the true location of each folder and artifact

Filters

You can apply a filter to both the Tree Browser and the Simple Browser, either by clicking the search icon, or just typing out the filter expression
while on the browser.

By repository name: To filter by repository name, just type the name you want to filter by

By package type: To only display repositories for a particular package type, type For example, typing willpkg:<package type>. pkg:docker
filter out any repositories that are not Docker repositories

By repository type: To only display particular repository types, type For example, typing will filter outrepo:<repository type>. repo:local
any repositories that are not local repositories. The options are andlocal, cached, remote virtual.

Information Tabs

Selecting any item in the Tree or Simple browser displays tabs which provide information regarding the metadata associated with the selected
item:

General

Info: General Information including download statistics such as the total number of downloads, time stamp of last download
and the last user who downloaded.

Xray: Indicates if, and when the last time the selected artifact was indexed by JFrog Xray, as well as the reportedTop Severity
for the selected item and when the reporting alert was last updated.

Dependency Declaration: For Maven artifacts, this section provides code snippets for common build tools' dependency
declaration

Virtual Repository Associations: Indicates which virtual repositories "contain" the selected artifact.

Checksums displays SHA1, SHA-256 and MD5 checksums automatically.

Effective
Permissions

The permissions (Delete/Overwrite, Deploy/Cache, Annotate, Read) that each user or group regarding the selected item.
Permissions for groups are as specifically assigned to them. Permissions for individual users are the union of permissions
specifically assigned as well as those inherited by virtue of the user being included in groups.

Properties

The list of properties annotating the selected item.

Watchers

The list of users watching this item.

Builds

The list of builds that either produce or use the selected item.

Governance

Information on the selected item retrieved from Black Duck Code Center.

Xml/Pom
View

XML and POM files also display a tab through which you can view the file contents.

List Browsing
List Browsing lets you browse the contents of a repository outside of the
Artifactory UI. It provides a highly responsive, read-only view and is
similar to a directory listing provided by HTTP servers.

To use List Browsing, click the icon to the right of a repository name in
the Simple Browser (indicated in red in the screenshot above).

Creating public views with List Browsing
List browsing can be used to provide public views of a
repository by mounting it on a well-known path prefix such as

 (see example below).list

This allows the system administrator to create a virtual host
that only exposes Artifactory's List Browsing feature to public
users (while maintaining write and other advanced privileges),
but limiting access to the intensive UI and REST API features
for internal use only.

http://host:port/artifacto
ry/list/repo-path

Remote Browsing

Artifactory remote browsing capabilities let you navigate the contents of the remote repository even if the artifacts have not been cached locally.

To enable remote browsing, you need to set the checkbox in the remote repository configuration. Once this is set youList Remote Folder Items
can navigate that repository using the Simple or List Browser.

In the Simple Browser, an item that is not cached is indicated by an icon on its right when you hover over the item. In the List Browser, an item
that is not cached is indicated by an arrow.
Simple Browser

List Browser

Trash Can

Artifactory provides a trash can as an easy way to recover items that have been inadvertently .deleted from local repositories

The trash can can be enabled or disabled in the by an Artifactory administrator.Trash Can Settings

When enabled, the trash can is displayed at the bottom of the Artifact Repository Browser and it holds all artifacts or repository paths that have
been deleted from local repositories for the period of time specified in the field.Retention Period

Right-click on an item in the trash can gives you the option to , it to its original location, or Refresh Restore Delete permanently.

Right-click on the trash can icon gives you the option to the whole trash can, for specific items, or whichRefresh Search Trash Empty Trash
means that all items in the trash can will be permanently deleted.

Click the pin icon to pin the trash can so it remains visible even if you scroll the tree.

WebDAV Browsing

Artifactory fully supports browsing with WebDAV. For full details please refer to . Using WebDAV

Using WebDAV

Overview

Artifactory supports WebDAV shares. A local or cached repository may be mounted as a
secure WebDAV share, and made accessible from any WebDAV-supporting file
manager, by referencing the URL of the target repository as follows:

http://host:port/artifactory/repo-path

When trying to deploy a file through WebDAV where file locking is enabled, the Artifactory log may display
the following message:

"Received unsupported request method: lock".

In some cases this can be solved by disabling file locking before mounting the repository and is done
differently for each WebDAV client. For example, for davfs2 file locking is disabled as follows:

echo "use_locks 0" >> /etc/davfs2/davfs2.conf

Note that while for some clients file locking is disabled by default, it is not necessarily possible to disable file
locking in all clients.

Initial responsiveness of remote repositories
Initial remote browsing may be slow, especially when browsing a virtual repository containing multiple remote repositories. However,
browsing speeds up since remote content is cached for browsing according to the defined in the remoteRetrieval Cache Period
repository configuration panel.

Page Contents
Overview
Authentication for davfs2 Clients

https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-TrashCanSettings
http://hostport/

1.

2.

Authentication for davfs2 Clients
Davfs2 does not use preemptive authentication. Therefore, in order to authenticate using the user credentials, the client must be authenticated
using two requests. The first request is sent without credentials, and receives a 401 challenge in response. Then, a second request is sent, this
time with the credentials.

To access your repository through Artifactory with your full user permissions you need add an authorization header to the client configuration.
This way, the requests sent to Artifactory will be authenticated and there is no need to receive a 401 challenge and respond with a second
request.
Thus you are given anonymous access to Artifactory, and yet can still authenticate with your own credentials.

This can be done as follows:
Encode your username and password credentials in base64 using the following Groovy script:

Groovy script

Basic ${”username:password".bytes.encodeBase64()}

Edit the file or and add the encoded credentials to the authorization header/etc/davfs2/davfs2.conf ~/.davfs2/davfs2.conf
as follows:

Adding authorization header

add_header Authorization “Basic c2hheTpwYXNzd29yZA==”

Authentication for Windows and other WebDAV clients
We suggest utilizing a tool such as (Open Source) when using Windows (see the note below) with WebDAV shared ArtifactoryCyberduck
repositories.

Searching for Artifacts

Overview

Artifactory provides several Search Types you can use to search for artifacts in the module:Search

Quick: Search by artifact file name.
Package: Search for artifacts according to the criteria specific to the package format.
Archive Entries: Search for files that reside within archives (e.g. within a jar file).
Property: Search for artifacts based on names and values of properties assigned to them.
Checksum: Search for artifacts based on their checksum value.

Authentication for Windows and other WebDAV clients

Anonymous access with Artifactory
Artifactory may be configured to allow anonymous access and it will therefore accept requests without authentication.

In this case, Artifactory will not respond with a 401 challenge and you will get file access with anonymous user permissions which may
be less than your own user permissions.

Limitation
Although the use of Windows WebDAV/WebClient components to map/mount a Windows Drive for a shared Artifactory doesWebDAV
provide a listing of the files - other operations such as copy/move operations are utilizing WebDAV commands which are not supported
by Artifactory.

https://cyberduck.io

JCenter: Search for artifacts in Bintray's JCenter repository.
Trash Can: Search for artifacts in Artifactory's trash can

Additional advanced search features are available through the .REST API

Search in Artifactory provides true real-time results that always reflect the current state of the repository with
no need to periodically rebuild indexes. Therefore, search results will immediately show any artifacts
deployed, and will not show any artifacts removed. The * and ? wildcards are supported in your search term
to help you narrow down your search. After conducting a search, you can hover over any result item for
available actions such as:

Download

Download the artifact

Show in Tree

Displays the artifact within the Tree Browser where you can view its full details

Delete

Delete the artifact

General

The different search features are available in the module To start a search, simply select the search method you want to use.Search .

Using wildcards
When searching with the Artifactory UI, Artifactory performs prefix matching for search terms in all
the different search modes. For example, searching for is equivalent to searching for jfrog jfrog

. You can still use the * and ? wildcards by placing in your search term in double-quotes to help*
you narrow down your search (for example,)."a*.jar"

Page Contents
Overview
General
Quick Search
Archive Search
Package Search
Property Search
Checksum Search
JCenter
Trash Can
Search Results Stash

Each search method offers a set of input fields corresponding to the type of search you have selected to help narrow down your search. For
example, you can always narrow down your search by Selecting as one of your search criteria.Limit toSpecific Repositories

Quick Search

Using Quick Search you can search for artifacts by name. Select enter your search term and then click the "Search" button.Quick,

Case Sensitive
For all searches, the search term is case-sensitive.

For readability, you can limit the number of results displayed by setting the following two parameters in the $ARTIFACTORY_HOME/etc/artifa
 file:ctory.system.properties

Configuring the number of search results

Maximum number of results to return when searching through the UI
#artifactory.search.maxResults=500

The backend limit of maximum results to return from sql queries issued
by users. Should be higher than maxResults.
#artifactory.search.userQueryLimit=1000

Archive Search

Archive search performs a search for all files that match your search parameters in an archive. Typical examples are a zip or jar file, however, all
file types defined in the configuration are supported. You can specify the following parameters for your search:MIME types

Name

The term to search for within the file name.

Path

Allows you to specify a path filter for the search.

Search class resources only

When checked, only class resources are searched. Any other file type is filtered out of the search.

Exclude Inner Classes

When checked, inner classes are excluded from the search.

Limit to Specific Repositories

Limits search to the specified repositories.

You can run a Quick Search from any screen
You can also run a Quick Search from any screen using the search field in the top-right corner of the screen.

Package Search

Package search enables you to run a search based on a specific packaging type. For each type, you can specify search parameters based on the
relevant metadata for the selected package type. For example, search is suitable for searching through Docker repositories.Docker

The following table displays the parameters you may use for each package type:

Search type Search parameters

Bower

Package name, Version

View the source file
You can hover over a class file and select to view the corresponding source file if it's available.View

CocoaPods

Package name, Version

Composer

Package name, Version

Conan

Package name, Version, User , Channel, OS, Architecture, Build Type, Compiler

Debian

File name (without the extension), Distribution, Component, Architecture.deb

Docker

Full Image Namespace, Image Tag, Image Digest

Gems

Package name, Version

Maven GAVC

Group ID, Artifact ID, Version, Classifier

Npm

Package name, Version, Scope

NuGet

Package ID, Version

Opkg

Package name, Version, Architecture, Priority, Maintainer

PyPI

Package name, Version

RPM

Package name, Version, Architecture, Release

Vagrant

Box Name, Version, Provider

All these search fields support the "?" and "*" wildcard characters.

The example below shows the results of searching for any Docker image with "mysql" in its name:

Package search as an AQL query
For most package formats, package search is implemented as an AQL query. Click the "AQL" button to view the AQL query used in the
search. You may also click the "Copy" icon in the AQL code snippet to copy the query to your clipboard.

Limit search to specific repositories
When limiting search to specific repositories, Artifactory will only let you select repositories with the corresponding package type.
Package search depends on those repositories having the correct layout. Searching through repositories with the wrong layout will have
unpredictable and unreliable results.

Property Search

Artifactory Pro allows you to search for artifacts or folders based on assigned to them, whether they are standard properties assignedProperties
by Artifactory, or custom properties which you can freely assign yourself.

To define your search parameters, in the field, enter the name of the property to search for, or select one from the list provided.Key

Then, in the field, set the value you are searching for in the specified property. To add more properties to the search use the Value Add search
 drop list.criteria

You can repeat this process to specify any number of properties and values for your search.

The example below shows a search for artifacts that have a property with a value of 2build.number

Under the hood
Package search is based on standard properties that Artifactory attaches to packages according to their type. For example, when
searching for NuGet packages, Artifactory is actually matching the search terms to the values for the and nuget.id nuget.version
properties that should be attached to every NuGet package.

Limitation
Package search does not currently work on remote repository caches for RubyGems and Debian repositories.

Wildcards can be used in the Property Value field
You can use the "?" or "*" wildcards in the field.Value

Combining properties and values
Properties are combined using the AND operator.
Different values assigned to a specific property are also combined using the AND operator.
This means that only artifacts that meet all the search criteria specified will be found.

http://nuget.id

Checksum Search

Artifactory allows you to search for artifacts based on MD5, SHA1 or SHA2 checksum value.

This can be especially useful if you want to identify an artifact whose name has been changed.

Wildcard characters are not supported in Checksum Search, so the term entered in the search field must be valid MD5 or SHA1 value.

The example below shows a search for an artifact using its SHA1 checksum.

JCenter

Bintray is JFrog's software distribution platform. Using this free cloud-based service, you can publish, download and share your binaries with the
developer community.

For more details, please refer to the .JFrog website Bintray page

Artifactory provides a direct connection to Bintray's JCenter repository which contains a comprehensive collection of popular Apache Maven
packages.

To search for packages on Bintray, select as the and enter the name of the package you are looking for.JCenter Search Type

Trash Can

Artifactory lets you search for artifacts you have "removed" to the trash can by selecting as the Trash Can Search Type.

Enter the artifact's name in the field, or use and enter the artifact's checksum.Query Add search criteria...

You can hover over any search result and click to display the selected artifact in Bintray.Show in Bintray

http://www.jfrog.com/home/v_bintray

Search Results Stash

Artifactory maintains a stash where you can save search results. This provides easy access to artifacts found without having to run the search
again and also provides a convenient way to perform bulk operations on the result set.

For details, please refer to .Saving Search Results in the Stash

Deploying Artifacts

Overview

You can deploy artifacts into a local repository of Artifactory from the module by clicking toArtifacts Deploy
display the dialog. Artifacts can be deployed or in multiples.Deploy individually

You can also deploy artifacts to any repository using , see Artifactory's REST API this example for a quick
.start

Deploying a Single Artifact

To deploy a single artifact, simply fill in the fields in the Deploy dialog and click "Deploy".

Requires Artifactory Pro
This feature is available with an Artifactory Pro license

Using Import to "deploy" a whole repository
If you want to "deploy" a whole repository, you should actually import it using the Import Repository
feature in the tab under Admin Import & Export | Repositories.

Page Contents
Overview
Deploying a Single Artifact

Deploying According to Layout
Deploying Maven Artifacts
Deploying with Properties
Deploying with Multiple Properties

Deploying an Artifact Bundle
Deploying to a Virtual Repository
Failed Uploads

https://www.jfrog.com/confluence/display/RTF/Smart+Searches#SmartSearches-SavingSearchResultsintheStash
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Example-DeployinganArtifact
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Example-DeployinganArtifact

Deploying According to Layout

The dialog displays the repository package type and layout configured. To deploy your package according to the configured layout, check Deploy
. Deploy According to Layout

Artifactory displays entry fields corresponding to the layout tokens for you to fill in.

If you are deploying a Maven artifact, you may need to configure additional attributes as described in the next section.

Deploying Maven Artifacts

If you are deploying an artifact that conforms to the Maven repository layout, you should set to expose fields thatDeploy as Maven Artifact
specify the corresponding Maven attributes - , , and .GroupID ArtifactID Version, Classifier Type

The fields are automatically filled in according to the artifact name, however you can edit them and your changes will also be reflected in the Targ
et Path.

If your target repository does not include a POM, set , to use the POM within the artifact youGenerate Default POM/Deploy Jar's Internal POM
are deploying, or generate a default POM respectively.

Suggested Target Path
Artifactory will suggest a based on the details of your artifact (this works for both Maven and Ivy). For example, if a JARTarget Path
artifact has an embedded POM under its internal directory, this information is used.META-INF

Take care when editing the POM manually
If you are editing the POM manually, be very careful to keep it in a valid state.

Deploying with Properties

Properties can be attached to the uploaded file by specifying them on the .Target Path

First, unset the check box, if necessary.Deploy as Maven Artifact

Then, in the field add the properties delimited from the path and from each other by semicolons.TargetPath ,

For example, to upload an artifact with the property set to "passed", and set to "102", use the following :qa build.number Target Path

dir1/file.zip;qa=passed;build.number=102

Deploying with Multiple Properties

To deploy multiple values to the same key add the same key again with the new value, e.g. will deploy the file withkey1=value1;key1=value2
property with value of key1 value1,value2.

For example, to upload a file with property passed and values qa, stress use the following :Target Path

dir1/file.zip;passed=qa;passed=stress

Deploying Multiple Files
To deploy multiple files together, simple set the deploy to fill in the rest of the fields in the dialog and click "Deploy".Type Multi,

Deploying an Artifact Bundle

An artifact bundle is deployed as a set of artifacts packaged in an archive with one of the following supported extensions: zip, tar, tar.gz, tgz.

When you specify that an artifact should be deployed as a bundle, Artifactory will extract the archive contents when you deploy it.

To deploy an artifact bundle, in the dialog, first upload the archive file you want to deploy. Deploy

Check the checkbox and click .Deploy as Bundle Artifact Deploy

File structure within the archive
Artifacts should be packaged within the archive in the same file structure with which they should be deployed to the target repository.

Deploying to a Virtual Repository

From version 4.2, Artifactory supports deploying artifacts to a virtual repository.

To enable this, you first need to designate one of the local repositories that is aggregated by the virtual repository as a deployment target. This
can be done through the UI by setting the in the of the screen.Default Deployment Repository Basic Settings Edit Repository

You can also set the Default Deployment Repository using the parameter of the defaultDeploymentRepo Virtual Repository Configuration
 used in the and REST API endpoints. Once the deploymentJSON Create or Replace Repository Configuration Update Repository Configuration

target is configured, you may deploy artifacts to it using any packaging format client configured to work with Artifactory. For example, docker
 etc.push, npm publish, NuGet push, gem push

https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateorReplaceRepositoryConfiguration
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UpdateRepositoryConfiguration

You can also use Artifactory's REST API to and use the virtual repository key in the path to deploy. deploy an artifact

From version 4.4, if you do specify a for a virtual repository, the corresponding dialog for theDefault Deployment Repository Set Me Up
repository will also include instructions and code snippets for deploying to that repository.

Failed Uploads
The most common reasons for a rejected deployment are:

Lack of permissions
A conflict with the target repository's includes/excludes patterns
A conflict with the target repository's snapshots/releases handling policy.

Manipulating Artifacts

Overview

Artifactory supports move, copy and deletion of artifacts to keep your repositories consistent and coherent.
When an artifact is moved, copied or deleted, Artifactory immediately and automatically updates the
corresponding metadata descriptors (such as RubyGems, Npm and more) maven-metadata.xml, to reflect
the change and keep your repositories consistent with the package clients.

In addition, as a convenience feature, Artifactory provides a simple way to do a complete .version cleanup

Deleting a Single Item

To delete a single artifact or directory, select the item in the Tree Browser, and click from the menu or the right-click menu.Delete Actions

Once the item is deleted, the corresponding metadata file is updated to reflect the change so the item will not be found in a search.

Deleting a Version

It is common for a repository to accumulate many different artifacts deployed under the same group (or path prefix) and the same version. This is

Page Contents
Overview
Deleting a Single Item
Deleting a Version
Moving and Copying Artifacts

Simulating a Move or Copy
Downloading a Folder

Configuring Folder Download

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifact
https://www.jfrog.com/confluence/display/RTD/Using+Artifactory#UsingArtifactory-SetMeUp

especially true for snapshot deployments of multi-module projects, where all deployed artifacts use the same version. To delete a version by
individually deleting its constituent artifacts can be tedious, and would normally be managed by writing a dedicated script. Artifactory lets you

metaselect one of the artifacts in a version and then delete all artifacts with the same version tag in a single click while keeping the corresponding
data descriptors up to date.

To delete a version, right-click a folder in the Tree Browser and select Delete Versions...

Artifactory drills down into the selected folder and returns with a list of all the groups and versions that can be deleted.

Select the versions you want to clean up and click Delete Selected

Moving and Copying Artifacts

To move or copy an artifact or folder, select it in the Tree Browser and then click or from the menu or from the right-clickMove... Copy... Actions
menu.

Limit to number of versions displayed
To avoid an excessively long search, Artifactory only displays the different version numbers assigned to the first 1000 artifacts found in
the selected level of the repository hierarchy. If you do not see the version number you wish to delete, filter the artifacts displayed in the

 dialog by Group ID or Version number.Delete Versions

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowser

Artifactory will display a list of repositories from which you need to select your for the operation.Target Repository

The list of target repositories will contain all the local repositories, or virtual repositories with a "Default Deployment Repository" configured that
are configured with the same package type as the source repository, or configured as generic repositories. This mean, for example, you can only
move an artifact from a debian repository to a generic repository or to a local debian repository.

After selecting your , you can specify a custom if you want your source artifacts moved to a different location the Target Repository Target Path
Target Repository.

Once you have selected your Target Repository (and if needed),Custom Target Path click Move... or Copy... to
complete the operation.

Copy operations are executed using Unix conventions
Copy operations are executed using Unix conventions. For example, copying from a source repository to in aorg/jfrog/1 org/jfrog/1
target repository will result in the contents of the source being copied to org/jfrog/1/1.
To achieve the same path in the target repository, copy the source into one folder up in the hierarchy. In the above example, that would
mean copying source into target .org/jfrog/1 org/jfrog
If you leave the Target Path empty, the source will be copied into the target repository's root folder.

Custom target path supresses cross-layout translation
If you are copying or moving your source artifacts to a repository with a different layout, specifying a suppressesCustom Target Path
cross-layout translation. This means that your client may NOT be able to resolve the artifacts, even in cases of a same-layout operation.

All metadata is updated to reflect the operation once completed.

Simulating a Move or Copy

Note that an operation may fail or generate warnings for several reasons. For example, the target repository may not accept all the items due to
its own specific policies, or you may not have the required permissions to perform the operation.

Before actually doing an operation, we recommend that you check if it will succeed without errors or warnings by clicking Dry Run.

Artifactory will run a simulation and display any errors and warnings that would appear when doing the actual operation.

Downloading a Folder

Artifactory allows the download of a complete folder that is selected in the or .Tree Browser Simple Browser

This ability is configurable by an Artifactory administrator, and if allowed, when a folder is selected the function is available in the Download Actio
menu. ns

Permissions required
To successfully complete a move, you need to have DELETE permission on your source repository, and DEPLOY permission on your
target repository

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-SimpleBrowsing

Archive
Type

The Archive Type. Currently, , , and are supported.zip tar tar.gz tgz

Include
Checksum
Files

Include SHA1, SHA256 and MD5 files .sha1, .sha256 and .md5 files - In Artifactory, checksum files () are displayed and are
downloadable in the HTML browsing endpoint (for example, http://<ARTIFACTORY>/artifactory/<REPOSITORY_KEY>),
depending on one of the below pre-conditions:

1.The artifact was originally uploaded with its checksum value (i.e the deploying client provided a checksum header such as the
"X-Checksum-Sha1" header on the request).

2.The repository is set to "Trust Server Generated Checksums".Checksum Policy

If the latter applies, there is no need to provide the artifact checksums during the upload in order for its checksum files to be
visible.

The Download Folder functionality mimics this mechanism, and will write checksum files to the output archive based on the same
conditions.

*With remote repository caches, there is no distinction for the checksum policy of the repository. Simply checking this checkbox
will always result in checksum files being added.

You can also download a folder using the .Rest API

https://www.jfrog.com/confluence/display/RTF/Local+Repositories#LocalRepositories-CommonBasicSettings
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RetrieveFolderorRepositoryArchive

Configuring Folder Download

 An Artifactory administrator can enable complete folder download in the module under . ThisAdmin Admin | General Configuration
configuration will apply to all Artiactory users.

Max Size

The maximum size (MB) of artifacts that can be downloaded in a folder download.

Max Number of Files

The maximum number of artifacts that may be downloaded from the selected folder and all its sub-folders.

Max Parallel Folder Downloads

The maximum number of concurrent folder downloads allowed.

Updating Your Profile

Overview

Your profile page is used to manage the following aspects of your user profile:

API Key
Password
Email
Bintray Settings
Binding OAuth Accounts

To display your profile page, click your login name on the top right-hand corner of the screen.

Unlocking Your Profile

To edit your profile, you first need to unlock it by entering your current password and clicking .Unlock

Once unlocked, you can modify all the elements of your user profile.

Changing your Personal Settings

 Personal settings include your Artifactory API Key, password and email address.

API Key

Artifactory allows authentication for REST API calls using your API key as an alternative to your username and password in two ways: you may
either using the header with which you can specify an API key , or you may use basic authentication using your usernameX-JFrog-Art-API
and API key (instead of your password). For more details, please refer to the .REST API documentation

Creating an API Key

To create an API Key, once you have unlocked your profile, click the "Generate" button next to the field.API Key

Page Contents
Overview
Unlocking Your Profile
Changing your Personal Settings

API Key
Revoking or Regenerating an API Key
REST API

Changing Your Password and Email
Password Reminder

Bintray Settings
SSH Key
Binding OAuth Accounts

Saving your changes
Be sure to click to save any changes to your profile.Update

Using external authentication
 If you are using an external authentication server (such as , , or), HTTP SSO OAuth SSO SAML SSO you can ask your administrator
to give you access to your API key, Bintray credentials and SSH public key without having to unlock your profile.

You are not able to change your password if Artifactory is configured to use external authentication such as LDAP.

Artifactory version
To use your API key for authentication, it must be generated using Artifactory 4.4.3 or later. If generate before, you must regenerate
your API key and use the new key as a password for basic authentication.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Authentication

Revoking or Regenerating an API Key

Once an API Key is created, it displayed, masked, in the corresponding field. Click the "View" icon to see the API Key in clear-text, or the "Copy"
icon to copy the API Key to the clipboard.

To revoke the current API Key, click "Revoke API Key" Note that any REST API calls using the current API key for authentication will no longer be
valid.

You may revoke the current API Key and create a new one in a single action by clicking "Regenerate". Any REST API calls using the current API
key for authentication will no longer be valid, until you replace the API Key with the new one you just generated.

REST API

The following REST API endpoints are available with regard to API Keys:

Endpoint Description

Create API Key

Create an API key for the current user.

Get API Key

Get the current user's own API key.

Revoke API Key

Revokes the current user's API key.

Revoke User API Key

Revokes the API key of another user (requires Admin privileges).

Revoke All API Keys

Revokes all API keys currently defined in the system .(requires Admin privileges)

Changing Your Password and Email

Once your profile is unlocked, Artifactory displays your password in an encrypted format that can be used whenever you need to provide your
password in an environment that is not secure. For example, when making REST API calls over HTTP.

The encrypted password is initially masked, but you may click the "View" icon to view the encrypted password in clear-text. You may also click the
"Copy" icon to copy the encrypted password to the clipboard.

To change your Artifactory password, enter your new password and verify it.

You can also modify your email address.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateAPIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetAPIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RevokeAPIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RevokeUserAPIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RevokeAllAPIKeys

Password Reminder

If you forget your password, on the Artifactory Login dialog, select and enter your username in the following dialog that isForgot Password,
displayed.

When you click , Artifactory will send a message to the email address configured for your user account, with a link you can click on toSubmit
reset your password.

For more information about using secured passwords with your profile, please refer to .Centrally Secure Passwords

Bintray Settings

Bintray is JFrog's platform to store and distribute your software libraries. For more details please refer to the JFrog Bintray Page.

Upon installation, Artifactory has Bintray's JCenter Java repository defined as a remote repository.

You may freely read from JCenter, and other Bintray repositories, however to upload an artifact, or perform other operations on Bintray through
Artifactory such as search, you must have a Bintray account and provide your credentials through your profile page.

To provide your Bintray credentials, enter your and the you received when registering to Bintray into theBintray Username Bintray API Key
specified fields in Artirfactory.

To verify that your credentials are valid you can click .Test

SSH Key

From version 4.4, Artifactory supports authentication via SSH for the client and the .Git LFS Artifactory CLI

To be authenticated via SSH, you need to enter your SSH public key in the SSH Public Key (RSA) field.

http://www.jfrog.com/home/v_bintray
https://github.com/JFrogDev/artifactory-cli-go

Binding OAuth Accounts

From version 4.2, Artifactory is integrated with OAuth allowing you to log in through your account with one of the configured OAuth providers. To
do so, you need to bind your OAuth account to your Artifactory user by clicking next to the corresponding OAuth provider. For moreClick to bind
details, please refer to .OAuth Integration

Authentication

Overview

The following sections describe all the means of authentication available in Artifactory.

Basic Authentication

Artifactory provides a detailed and flexible permission-based system to control users' access to different
features and artifacts.

To learn more, please refer to .Configuring Security

LDAP

Artifactory supports authenticating users against an LDAP server out-of-the-box. When LDAP authentication
is active, Artifactory first attempts to authenticate the user against the LDAP server. If LDAP authentication
fails, Artifactory tries to authenticate via its internal database. For every LDAP authenticated user Artifactory
creates a new user in the internal database (provided that the user does not already exist), and automatically
assigns that user to the default groups.

To learn more, please refer to .Managing Security with LDAP

Active Directory

Artifactory supports integration with an Active Directory server to authenticate users and synchronize groups. When authentication using Active
Directory is configured and active, Artifactory first attempts to authenticate the user against the Active Directory server. If the authentication fails,

Page Contents
Overview
Basic Authentication
LDAP
Active Directory
Single Sign-On
SAML
OAuth
SSH
Atlassian Crowd
Integration
Access Tokens
Custom Authentication
with User Plugins

Artifactory tries to authenticate via its internal database. For every externally authenticated user configured in your Active Directory server,
Artifactory creates a new user in the internal database (provided the user does not already exist), and automatically assigns that user to the
default groups.

To learn more, please refer to .Managing Security with Active Directory

Single Sign-On

The Single Sign-on (SSO) Add-on allows you to reuse existing HTTP-based SSO infrastructures with Artifactory, such as the SSO modules
offered by Apache HTTPd. Artifactory's authentication will work with commonly available SSO solutions, such as native NTLM, Kerberos, etc...
SSO works by letting Artifactory know what trusted information it should look for in the HTTP request, assuming that this request has already
been authenticated by the SSO infrastructure, which sits in front of Artifactory.

To learn more, please refer to .Single Sign-on

SAML

SAML is an XML standard that allows you to exchange user authentication and authorization information between web domains. JFrog’s
Artifactory offers a SAML-based Single Sign-On service allowing federated Artifactory partners (identity providers) full control over the
authorization process. Using SAML, Artifactory acts as service provider which receives users authentication information from external identity
providers. In such case Artifactory is no longer responsible to authenticate the user although it still has to redirect the login request to the identity
provider and verify the integrity of the identity provider’s response.

To learn more, please refer to .SAML SSO Integration

OAuth

OAuth integration allows you to delegate authentication requests to external providers and let users login to Artifactory using their accounts with
those providers. Currently, Google, OpenID Connect, GitHub Enterprise and Cloud Foundry UAA are supported.

To learn more, please refer to .OAuth Integration

SSH

Artifactory supports SSH authentication for Git LFS and the JFrog CLI using RSA public and private keys. SSH has the benefit of two-way
authentication. In other words, before any sensitive data is exchanged between Artifactory and the client, the Artifactory server is authenticated to
the client, and then the user operating Git LFS or JFrog CLI client is authenticated to Artifactory.

To learn more, please refer to .SSH Integration

Atlassian Crowd Integration

The Atlassian Crowd Integration allows you to delegate authentication requests to Atlassian Crowd, use authenticated Crowd users and have
Artifactory participate in a transparent SSO environment managed by Crowd. In addition, Atlassian Crowd Integration allows the use of JIRA User
Server as an authentication server, but without support of SSO.

To learn more, please refer to .Atlassian Crowd and JIRA Integration

Access Tokens

Artifactory offers the option for authentication through access tokens. An access token may be assigned to a user, or to an entity that is not an
Artifactory user such as a job in a CI server. Permissions are assigned to access tokens by including them in Groups. Access tokens offer
advantages such as cross-site authentication, limited-time access, authenticated access for non-users and more.

To learn more, please refer to . Access Tokens

Custom Authentication with User Plugins

You can use User Plugins to implement custom authentication policies.

To learn more, please refer to .Management of Security Realms

Artifactory REST API

Overview

Artifactory exposes its REST API through an auto-generated WADL file (courtesy of the Jersey REST
).framework

This provides a convenient and up-to-date self-descriptive API and can be used by various tools/frameworks
to automate the creation of REST calls.

The WADL file is available at the following URL:

http://server:port/artifactory/api/application.wadl

Usage

Artifactory REST API endpoints can be invoked in any of the standard ways to invoke a RESTful API. This
section describes how to use the Artifactory REST API using cURL as an example.

Authentication

Artifactory's REST API supports four forms of authentication:

Basic authentication using your username and password
Basic authentication using your username and .API Key
Using a dedicated header () with your API Key.X-JFrog-Art-Api
Using an instead of a password for basic authentication.access token
Using an as a bearer token in an authorization header access token ()Authorization: Bearer
with your access token.

Using JFrog CLI

JFrog CLI is a compact and smart client that provides a simple interface to automate access to Artifactory. As
a wrapper to the REST API, it offers a way to simplify automation scripts making them more readable and
easier to maintain, features such as parallel uploads and downloads, checksum optimization and
wildcards/regular expressions make your scripts more efficient and reliable. Please note that several of the
functions available through the REST API are also available through JFrog CLI and you should consider
which method best meets your needs.

For more details on download, installation and usage of JFrog CLI, please refer to the .JFrog CLI User Guide

Example - Deploying an Artifact

The example below demonstrates how to invoke the REST API.Deploy Artifact

You are using cURL from the unix command line, and are presently working from the home (~)
 of the user ' 'directory myUser

You wish to deploy the file ' ', which is located in your Desktop directory, ('myNewFile.txt ~/Deskt
')op/myNewFile.txt

You have Artifactory running on your local system, on port 8081
You wish to deploy the artifact into the ' ' repository, under the 'my-repository my/new/artifact

' folder structure, and wish to store the file there as ' '/directory/ file.txt
You have configured a user in Artifactory named 'myUser', with password 'myP455w0rd!', and this

Using and Configuring cURL
 You can download cURL . Learn how to use and configure cURL .here here

Artifactory version
 To use your API key for , it must be generated using Artifactory 4.4.3 orBasic Authentication
later. If generated on a previous version, you regenerate your API key and use the new keymust
as a password for basic authentication.

https://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Realms
https://jersey.java.net/
https://jersey.java.net/
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/CLI/Welcome+to+JFrog+CLI
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

user has permissions to deploy artifacts
Your API Key is ' 'ABcdEF
Where possible, the same example is demonstrated using JFrog CLI

To deploy the file using your for authentication, you would use the followingusername and password
command:

Using cURL with the REST API

curl -u myUser:myP455w0rd! -X PUT
"http://localhost:8081/artifactory/my-repository/my/n
ew/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

Using JFrog CLI

jfrog rt u file.txt
my-repository/my/new/artifact/directory/
--user=myUser --password=myP455w0rd!

To deploy the file using your for basic authentication, you would use the following command:API Key

Using cURL with the REST API

curl -u myUser:ABcdEF -X PUT
"http://localhost:8081/artifactory/my-repository/my/n
ew/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

Using JFrog CLI

jfrog rt u file.txt
my-repository/my/new/artifact/directory/
--apiKey=ABcdEF

To deploy the file using your in a header, you would use the following command:API Key

Using cURL with the REST API

curl -H "X-JFrog-Art-Api:ABcdEF" -X PUT
"http://localhost:8081/artifactory/my-repository/my/n
ew/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

To deploy the file using your for basic authentication, you would use the following command:access token

Using cURL with an access token

curl -u myUser:<Token> -X PUT
"http://localhost:8081/artifactory/my-repository/my/n
ew/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

To deploy the file using your in a header, you would use the following command:access token

Using cURL with an access token

curl -H "Authorization: Bearer <Token>" -X PUT
"http://localhost:8081/artifactory/my-repository/my/n
ew/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

Working with Artifactory SaaS

JFrog Artifactory SaaS offers the same extensive functionality and capabilities for automation as an on-prem
installation, including authentication, use of JFrog CLI and the REST API endpoints.

As a SaaS service, the URL is different from an on-prem installation and the REST API endpoints can be
reached at:

http://<Server Name>.jfrog.io/<Server Name>

Example

The snippets below apply the same described above to an Artifactory SaaS instance namedexample
"myArtifactorySaas" (instead of to an on-prem installation).

To deploy the file using your for authentication, you would use the followingusername and password
command:

Using cURL with the REST API for Artifactory SaaS

curl -u myUser:myP455w0rd! -X PUT
"http://myartifactorysaas.jfrog.io/myartifactorysaas/
my-repository/my/new/artifact/directory/file.txt" -T
Desktop/myNewFile.txt

Using JFrog CLI

jfrog rt u file.txt
my-repository/my/new/artifact/directory/
--user=myUser --password=myP455w0rd!

Note that using JFrog CLI is identical with an Artifactory SaaS instance. You only need to configure JFrog CLI
with the correct URL for your instance.

https://www.jfrog.com/confluence/display/CLI/CLI+for+JFrog+Artifactory#CLIforJFrogArtifactory-Configuration

REST Resources

The sections below provide a comprehensive listing of the REST resources exposed by Artifactory.

For details on handling errors please refer to below.ERROR RESPONSES

BUILDS

All Builds

Description: Provides information on all builds
: 2.2.0Since

: Requires a privileged user (can be anonymous)Security
: GET /api/buildUsage

: application/vnd.org.jfrog.build.Builds+jsonProduces
:Sample Output

GET /api/build
{
 "uri":
"http://localhost:8081/artifactory/api/build"
 "builds" : [
 {
 "uri" : "/my-build",
 "lastStarted" : ISO8601
(yyyy-MM-dd'T'HH:mm:ss.SSSZ)
 },
 {
 "uri" : "/jackrabbit",
 "lastStarted" : ISO8601
(yyyy-MM-dd'T'HH:mm:ss.SSSZ)
 }
]
}

Build Runs

Description: Build Runs
: 2.2.0Since

: Requires a privileged user (can be anonymous)Security
: GET /api/build/{buildName}Usage

: application/vnd.org.jfrog.build.BuildsByName+jsonProduces
:Sample Output

Usage of REST resources is subject to security restrictions applicable to each individual resource.

GET /api/build/my-build
{
 "uri":
"http://localhost:8081/artifactory/api/build/my-build
"
 "buildsNumbers" : [
 {
 "uri" : "/51",
 "started" : ISO8601
(yyyy-MM-dd'T'HH:mm:ss.SSSZ)
 },
 {
 "uri" : "/52",
 "started" : ISO8601
(yyyy-MM-dd'T'HH:mm:ss.SSSZ)
 }
]
}

Build Upload

Description: Upload Build
: Requires a privileged user (can be anonymous)Security

 Notes: All build modules must have the build.name and properties set as well as thebuild.number
correct SHA1 and MD5 in order to be properly linked in the build info.

: PUT /api/build/ -H "Content-Type: application/json" --upload-file build.json Usage
: application/vnd.org.jfrog.build.BuildsByName+jsonConsumes

curl -X PUT " " -H "Content-Type: application/json"Example: http://localhost:8081/artifactory/api/build
--upload-file build.json

 Sample format:
Click to view sample build.json

{
 "properties" : {
 /* Environment variables and properties
collected from the CI server.
 The "buildInfo.env." prefix is added to
environment variables and build related properties.
 For system variables there's no prefix. */
 "buildInfo.env.JAVA_HOME" : "",
 ...
 },
 "version" : "1.0.1", // Build Info schema version
 "name" : "My-build-name", // Build name
 "number" : "28", // Build number
 "type" : "MAVEN", // Build type (values currently
supported: MAVEN, GRADLE, ANT, IVY and GENERIC)
 "buildAgent" : { // Build tool information
 "name" : "Maven", // Build tool type
 "version" : "3.0.5" // Build tool version

http://localhost:8080/artifactory/api/build

 },
 "agent" : { // CI Server information
 "name" : "Jenkins", // CI server type
 "version" : "1.554.2" // CI server version
 },
 "started" : "2014-09-30T12:00:19.893+0300", //
Build start time in the format of
yyyy-MM-dd'T'HH:mm:ss.SSSZ
 "artifactoryPluginVersion" : "2.3.1",
 "durationMillis" : 9762, // Build duration in
milliseconds
 "artifactoryPrincipal" : "james", // Artifactory
principal (the Artifactory user used for
deployment)
 "url" :
"http://my-ci-server/jenkins/job/My-project-name/2
8/", // CI server URL
 "vcsRevision" :
"e4ab2e493afd369ae7bdc90d69c912e8346a3463", // VCS
revision
 "vcsUrl" :
"https://github.com/github-user/my-project.git", //
VCS URL
 "licenseControl" : { // Artifactory License
Control information
 "runChecks" : true, // Artifactory will run
automatic license scanning after the build is
complete (true/false)
 "includePublishedArtifacts" : true, // Should
Artifactory run license checks on the build
artifacts, in addition to the build dependecies
(true/false)
 "autoDiscover" : true, // Should Artifactory
auto discover licenses (true/false)
 "scopesList" : "", // A space-separated list of
dependency scopes/configurations to run license
violation checks on. If left empty all dependencies
from all scopes will be checked.
 "licenseViolationsRecipientsList" : "" //
Emails of recipients that should be notified of
license violations in the build info
(space-separated list)
 },
 "buildRetention" : { // Build retention
information
 "deleteBuildArtifacts" : true, // Automatically
remove build artifacts stored in Artifactory
(true/false)
 "count" : 100, // The maximum number of builds
to store in Artifactory.
 "minimumBuildDate" : 1407345768020, // Earliest
build date to store in Artifactory
 "buildNumbersNotToBeDiscarded" : [] // List of

build numbers that should not be removed from
Artifactory
 },
 /* List of build modules */
 "modules" : [{ // The build's first module
 "properties" : { // Module properties
 "project.build.sourceEncoding" : "UTF-8"
 },
 "id" : "org.jfrog.test:multi2:4.2-SNAPSHOT", //
Module ID
 /* List of module artifacts */
 "artifacts" : [{
 "type" : "jar",
 "sha1" :
"2ed52ad1d864aec00d7a2394e99b3abca6d16639",
 "md5" : "844920070d81271b69579e17ddc6715c",
 "name" : "multi2-4.2-SNAPSHOT.jar"
 }, {
 "type" : "pom",
 "sha1" :
"e8e9c7d790191f4a3df3a82314ac590f45c86e31",
 "md5" : "1f027d857ff522286a82107be9e807cd",
 "name" : "multi2-4.2-SNAPSHOT.pom"
 }],
 /* List of module dependencies */
 "dependencies" : [{
 "type" : "jar",
 "sha1" :
"99129f16442844f6a4a11ae22fbbee40b14d774f",
 "md5" : "1f40fb782a4f2cf78f161d32670f7a3a",
 "id" : "junit:junit:3.8.1",
 "scopes" : ["test"]
 }]
 }, { // The build's second module
 "properties" : { // Module properties
 "project.build.sourceEncoding" : "UTF-8"
 },
 "id" : "org.jfrog.test:multi3:4.2-SNAPSHOT", //
Module ID
 /* List of module artifacts */
 "artifacts" : [{ // Module artifacts
 "type" : "war",
 "sha1" :
"df8e7d7b94d5ec9db3bfc92e945c7ff4e2391c7c",
 "md5" : "423c24f4c6e259f2774921b9d874a649",
 "name" : "multi3-4.2-SNAPSHOT.war"
 }, {
 "type" : "pom",
 "sha1" :
"656330c5045130f214f954643fdc4b677f4cf7aa",
 "md5" : "b0afa67a9089b6f71b3c39043b18b2fc",
 "name" : "multi3-4.2-SNAPSHOT.pom"
 }],

 /* List of module dependencies */
 "dependencies" : [{
 "type" : "jar",
 "sha1" :
"a8762d07e76cfde2395257a5da47ba7c1dbd3dce",
 "md5" : "b6a50c8a15ece8753e37cbe5700bf84f",
 "id" : "commons-io:commons-io:1.4",
 "scopes" : ["compile"]
 }, {
 "type" : "jar",
 "sha1" :
"342d1eb41a2bc7b52fa2e54e9872463fc86e2650",
 "md5" : "2a666534a425add50d017d4aa06a6fca",
 "id" :
"org.codehaus.plexus:plexus-utils:1.5.1",
 "scopes" : ["compile"]
 }, {
 "type" : "jar",
 "sha1" :
"449ea46b27426eb846611a90b2fb8b4dcf271191",
 "md5" : "25c0752852205167af8f31a1eb019975",
 "id" :
"org.springframework:spring-beans:2.5.6",
 "scopes" : ["compile"]
 }]
 }],
 /* List of issues related to the build */
 "issues" : {
 "tracker" : {
 "name" : "JIRA",
 "version" : "6.0.1"
 },
 "aggregateBuildIssues" : true, //whether or
not there are issues that already appeared in
previous builds
 "aggregationBuildStatus" : "Released",
 "affectedIssues" : [{
 "key" : "RTFACT-1234",
 "url" :
"https://www.jfrog.com/jira/browse/RTFACT-1234",
 "summary" : "Description of the relevant
issue",
 "aggregated" : false //whether or not this
specific issue already appeared in previous builds
 }, {
 "key" : "RTFACT-5469",
 "url" :
"https://www.jfrog.com/jira/browse/RTFACT-5678",
 "summary" : "Description of the relevant
issue",
 "aggregated" : true
 }]

 },
 }
}

Build Info

Description: Build Info
: 2.2.0Since

: Requires a privileged user with deploy permissions (can be anonymous)Security
: GET /api/build/{buildName}/{buildNumber}Usage

: application/vnd.org.jfrog.build.BuildInfo+jsonProduces
:Sample Output

GET /api/build/my-build/51
{
"uri":
"http://localhost:8081/artifactory/api/build/my-build
/51"
"buildInfo" : {
 ...
 }
}

Builds Diff

Description: Compare a build artifacts/dependencies/environment with an older build to see what has
changed (new artifacts added, old dependencies deleted etc).

: 2.6.6Since
: Requires a privileged user (can be anonymous)Security

: GET /api/build/{buildName}/{buildNumber}?diff={OlderbuildNumber}Usage
: application/vnd.org.jfrog.build.BuildsDiff+jsonProduces

:Sample Output

GET /api/build/my-build/51?diff=50
{
 "artifacts": {
 "updated": [],
 "unchanged": [],
 "removed": [],
 "new": []
 }, "dependencies": {
 "updated": [],
 "unchanged": [],
 "removed": [],
 "new": []
 }, "properties": {
 "updated": [],
 "unchanged": [],
 "removed": [],
 "new": []
 }
}

Page contents
Overview
Usage

Authentication
Using JFrog CLI
Example - Deploying an Artifact
Working with Artifactory SaaS

Example
REST Resources

BUILDS
All Builds
Build Runs
Build Upload
Build Info
Builds Diff
Build Promotion
Promote Docker Image
Delete Builds
Build Rename
Push Build to Bintray
Distribute Build
Control Build Retention

ARTIFACTS & STORAGE
Folder Info
File Info
Get Storage Summary Info
Item Last Modified
File Statistics
Item Properties
Set Item Properties
Delete Item Properties
Set Item SHA256 Checksum
Retrieve Artifact
Retrieve Latest Artifact
Retrieve Build Artifacts Archive
Retrieve Folder or Repository Archive
Trace Artifact Retrieval
Archive Entry Download
Create Directory
Deploy Artifact

Deploy Artifact by Checksum
Deploy Artifacts from Archive
Push a Set of Artifacts to Bintray
Push Docker Tag to Bintray
Distribute Artifact
File Compliance Info
Delete Item
Copy Item
Move Item
Get Repository Replication Configuration
Set Repository Replication Configuration
Update Repository Replication Configuration
Delete Repository Replication Configuration
Scheduled Replication Status
Pull/Push Replication
Pull/Push Replication (Deprecated)
Create or Replace Local Multi-push Replication
Update Local Multi-push Replication
Delete Local Multi-push Replication
Enable or Disable Multiple Replications
Get Global System Replication Configuration
Block System Replication
Unblock System Replication
Artifact Sync Download
Folder Sync (Deprecated)
File List
Get Background Tasks
Empty Trash Can
Delete Item From Trash Can
Restore Item from Trash Can
Optimize System Storage
Get Puppet Modules
Get Puppet Module
Get Puppet Releases
Get Puppet Release

SEARCHES
Artifactory Query Language (AQL)
Artifact Search (Quick Search)
Archive Entries Search (Class Search)
GAVC Search
Property Search
Checksum Search
Bad Checksum Search
Artifacts Not Downloaded Since
Artifacts With Date in Date Range
Artifacts Created in Date Range
Pattern Search
Builds for Dependency
License Search
Artifact Version Search
Artifact Latest Version Search Based on Layout
Artifact Latest Version Search Based on Properties
Build Artifacts Search
List Docker Repositories
List Docker Tags

SECURITY
Get Users
Get User Details
Get User Encrypted Password
Create or Replace User
Update User
Delete User
Expire Password for a Single User
Expire Password for Multiple Users
Expire Password for All Users
Unexpire Password for a Single User
Change Password
Get Password Expiration Policy
Set Password Expiration Policy
Configure User Lock Policy
Retrieve User Lock Policy
Get Locked Out Users

Unlock Locked Out User
Unlock Locked Out Users
Unlock All Locked Out Users
Create API Key
Regenerate API Key
Get API Key
Revoke API Key
Revoke User API Key
Revoke All API Keys
Get Groups
Get Group Details
Create or Replace Group
Update Group
Delete Group
Get Permission Targets
Get Permission Target Details
Create or Replace Permission Target
Delete Permission Target
Effective Item Permissions
Security Configuration
Save Security Configuration (Deprecated)
Activate Master Key Encryption
Deactivate Master Key Encryption
Set GPG Public Key
Get GPG Public Key
Set GPG Private Key
Set GPG Pass Phrase
Create Token
Refresh Token
Revoke Token
Get Service ID
Get Certificates
Add Certificate
Delete Certificate

REPOSITORIES
Get Repositories
Repository Configuration
Create Repository
Update Repository Configuration
Delete Repository
Remote Repository Configuration (Deprecated)
Calculate YUM Repository Metadata
Calculate NuGet Repository Metadata
Calculate Npm Repository Metadata
Calculate Maven Index
Calculate Maven Metadata
Calculate Debian Repository Metadata
Calculate Opkg Repository Metadata
Calculate Bower Index

SYSTEM & CONFIGURATION
System Info
System Health Ping
Verify Connection
General Configuration
Save General Configuration
Update Custom URL Base
License Information
Install License
HA License Information
Install HA Cluster Licenses
Delete HA Cluster License
Version and Add-ons information
Get Reverse Proxy Configuration
Update Reverse Proxy Configuration
Get Reverse Proxy Snippet
Create Bootstrap Bundle

PLUGINS
Execute Plugin Code
Retrieve Plugin Code
Retrieve Plugin Info
Retrieve Plugin Info Of A Certain Type
Retrieve Build Staging Strategy

Build Promotion

Description: Change the status of a build, optionally moving or copying the build's artifacts and its dependencies to a target repository and
setting properties on promoted artifacts.
All artifacts from all scopes are included by default while dependencies are not. Scopes are additive (or).

: 2.3.3Since
: Requires Artifactory ProNotes

: Requires a privileged user (can be anonymous)Security
: POST /api/build/promote/{buildName}/{buildNumber}Usage

: application/vnd.org.jfrog.artifactory.build.PromotionRequest+jsonConsumes

Execute Build Promotion
Reload Plugins

IMPORT & EXPORT
Import Repository Content
Import System Settings Example
Full System Import
Export System Settings Example
Export System

SUPPORT
Create Bundle
List Bundles
Get Bundle
Delete Bundle

ERROR RESPONSES

Read More
Repository Configuration JSON
Security Configuration JSON
System Settings JSON

POST /api/build/promote/my-build/51
{
 "status": "staged", // new build status (any string)
 "comment" : "Tested on all target platforms.", // An optional comment
describing the reason for promotion. Default: ""
 "ciUser": "builder", // The user that invoked promotion from the CI
server
 "timestamp" : ISO8601, // the time the promotion command was received
by Artifactory (It needs to be unique),
 // the format is: 'yyyy-MM-dd'T'HH:mm:ss.SSSZ'. Example:
'2016-02-11T18:30:24.825+0200'.
 "dryRun" : false, // run without executing any operation in
Artifactory, but get the results to check if the operation can succeed.
Default: false
 "sourceRepo" : "libs-snapshot-local", // optional repository from which
the build's artifacts will be copied/moved
 "targetRepo" : "libs-release-local", // optional repository to move or
copy the build's artifacts and/or dependencies
 "copy": false, // whether to copy instead of move, when a target
repository is specified. Default: false
 "artifacts" : true, // whether to move/copy the build's artifacts.
Default: true
 "dependencies" : false, // whether to move/copy the build's
dependencies. Default: false.
 "scopes" : ["compile", "runtime"], // an array of dependency scopes
to include when "dependencies" is true
 "properties": { // a list of properties to attach to the build's
artifacts (regardless if "targetRepo" is used).
 "components": ["c1","c3","c14"],
 "release-name": ["fb3-ga"]
 },
 "failFast": true // fail and abort the operation upon receiving an
error. Default: true
}

Produces: application/vnd.org.jfrog.artifactory.build.PromotionResult+json
:Sample Output

{
 "messages" : [
 {
 "level": "error",
 "message": "The repository has denied...."
 },...
]
}

Promote Docker Image

Description: Promotes a Docker image from one repository to another

: 3.7Since
: Requires Artifactory ProNotes

: Requires a privileged user Security
: Usage POST api/docker/<repoKey>/v2/promote

: application/jsonConsumes

{
 "targetRepo" : "<targetRepo>", // The target repository for the
move or copy
 "dockerRepository" : "<dockerRepository>", // The docker repository
name to promote
 "targetDockerRepository" : "<targetDockerRepository>" // An optional
docker repository name, if null, will use the same name as
'dockerRepository'
 "tag" : "<tag>", // An optional tag name to promote, if null -
the entire docker repository will be promoted. Available from v4.10.
 "targetTag" : "<tag>", // An optional target
tag to assign the image after promotion, if null - will use the same tag
 "copy": false // An optional value to set whether to copy
instead of move. Default: false
}

Produces: application/text
Sample Usage:

POST api/docker/docker-local/v2/promote
{
 "targetRepo": "docker-prod",
 "dockerRepository": "jfrog/ubuntu"
}

Delete Builds

Description: Removes builds stored in Artifactory. Useful for cleaning up old build info data.
If the parameter is evaluated as 1 (0/false by default), build artifacts are also removed provided they have the corresponding artifacts build.

 and properties attached to them.name build.number
If the parameter is evaluated as 1 (0/false by default), the whole build is removed.deleteAll

: 2.3.0; artifact removal since 2.3.3;Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: DELETE /api/build/{buildName}[?buildNumbers=n1[,n2]][&artifacts=0/1][&deleteAll=0/1]Usage

: application/textProduces
:Sample Usage

DELETE /api/build/my-build?buildNumbers=51,52,55&artifacts=1

The following builds has been deleted successfully: 'my-build#51',
'my-build#52', 'my-build#55'.

DELETE /api/build/my-build?deleteAll=1

All 'my-build' builds have been deleted successfully.

Build Rename

Description: Renames a build stored in Artifactory. Typically used to keep the build info in sync with a renamed build on the CI server.
: 2.2.5Since
: Requires Artifactory ProNotes

: Requires a valid user with deploy permissionsSecurity
: POST /api/build/rename/{buildName}?to=newBuildNameUsage

: application/textProduces
:Sample Usage

POST /api/build/rename/myJobName?to=myNewJobName

Build renaming of 'myJobName' to 'myNewJobName' was successfully started.

Push Build to Bintray

Deprecated: This endpoint is deprecated and is replaced with Distribute Build

Description: Push a build to Bintray as a version.
Uses a descriptor file (that must have 'bintray-info' in it's filename and a .json extension) that is included with the build artifacts. For more details,
please refer to . Pushing a Build
Signing a version is controlled by the gpgSign parameter in the descriptor file, and the paramater passed to this command. gpgSign The value

.passed to this command always takes precedence over the value in the descriptor file
If you also want a passphrase to be applied to your signature, specify gpgPassphrase=<passphrase>.
You may omit the descriptor file by passing 6 override parameters (see below). If you wish to use the descriptor file you should pass an empty
json string instead.

Since: 3.5.0
: Requires a valid user with deploy permissions and Bintray credentials defined (for more details, please refer to Security Entering your Bintray

).credentials
: POST /api/build/pushToBintray/{build.name}/{build.number}?gpgPassphrase=<passphrase>[&gpgSign=true\false]Usage

Consumes: application/vnd.org.jfrog.artifactory.build.BintrayDescriptorOverrideParams+json
:Sample Input

POST
/api/build/pushToBintray/testBuild/1?gpgPassphrase=password&gpgSign=true
{
 "subject": "myUser",
 "repoName": "test",
 "packageName": "overridePkg",
 "versionName": "overrideVer",
 "licenses": ["MIT"],
 "vcs_url": "https://github.com/bintray/bintray-client-java"
}

Produces: application/vnd.org.jfrog.artifactory.bintray.BintrayPushResponse+json

Sample Output:

{"Message": "Pushing build to Bintray finished successfully."}

Distribute Build

Description: Deploys builds from Artifactory to Bintray, and creates an entry in the corresponding Artifactory distribution repository specified.
Requires Artifactory Pro: Notes

: 4.8Since
: Requires an authenticated user.Security

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Push+to+Bintray+-+Deprecated&linkCreation=true&fromPageId=46107948
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings

: POST /api/build/distribute/{buildName}/{buildNumber}Usage
application/jsonConsumes:

{
 "publish" : "<true | false>" // Default: true. If true, builds are
published when deployed to Bintray
 "overrideExistingFiles" : "<true | false>" // Default: false. If true,
Artifactory overwrites builds already existing in the target path in
Bintray.
 // Existing version attributes are also overridden if defined
in the distribution repository Advanced Configuration
 "gpgPassphrase" : "<passphrase>" // If specified, Artifactory will GPG
sign the build deployed to Bintray and apply the specified passphrase
 "async" : "<true | false>" // Default: false. If true, the build will
be distributed asynchronously. Errors and warnings may be viewed in the log
file
 "targetRepo" : "<targetDistributionRepo>", // The Distribution Repository
into which artifacts should be deployed
 "sourceRepos" : ["<repoKey>"] // An array of local repositories from
which build artifacts should be deployed
 "dryRun" : "<true | false>" // Default: false. If true, distribution
is only simulated. No files are actually moved.
}

Sample input:

POST /api/build/distribute/my-build/1
{
 "targetRepo" : "dist-repo-jfrog-artifactory",
 "sourceRepos" : ["yum-local"]
}

Control Build Retention

Description: Specifies retention parameters for build info
: 5.2.1Since

: Requires a privileged user with deploy permissions (can be anonymous)Security
: POST /api/build/retention/{buildName}?async=<true | false>Usage

: application/jsonConsumes

{
 "deleteBuildArtifacts" : <true | false>, // When true, automatically
removes build artifacts stored in Artifactory
 "count" : <count>, // The maximum number of builds to store in
Artifactory.
 "minimumBuildDate" : <date>, // Earliest build date to store in
Artifactory - ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ)
 "buildNumbersNotToBeDiscarded" : [] // List of build numbers that
should not be removed from Artifactory
}

Sample Usage:

POST /api/build/retention/myBuild?async=true

{
 "deleteBuildArtifacts" : true,
 "count" : 100, //
 "minimumBuildDate" : 1407345768020,
 "buildNumbersNotToBeDiscarded" : [5, 9]
}

ARTIFACTS & STORAGE

Folder Info

Description: Folder Info
For virtual use, the virtual repository returns the unified children. Supported by local, local-cached and virtual repositories.

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/storage/{repoKey}/{folder-path}Usage
: application/vnd.org.jfrog.artifactory.storage.FolderInfo+jsonProduces

:Sample Output

GET /api/storage/libs-release-local/org/acme
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
",
"repo": "libs-release-local",
"path": "/org/acme",
"created": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"createdBy": "userY",
"lastModified": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"modifiedBy": "userX",
"lastUpdated": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"children": [
{
 "uri" : "/child1",
 "folder" : "true"
 },{
 "uri" : "/child2",
 "folder" : "false"
 }
]
}

File Info

Description: File Info
For virtual use the virtual repository returns the resolved file. Supported by local, local-cached and virtual repositories.

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/storage/{repoKey}/{filePath}Usage
: application/vnd.org.jfrog.artifactory.storage.FileInfo+jsonProduces

:Sample Output

GET /api/storage/libs-release-local/org/acme/lib/ver/lib-ver.pom
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.pom",
"downloadUri":
"http://localhost:8081/artifactory/libs-release-local/org/acme/lib/ver/lib
-ver.pom",
"repo": "libs-release-local",
"path": "/org/acme/lib/ver/lib-ver.pom",
"remoteUrl": "http://some-remote-repo/mvn/org/acme/lib/ver/lib-ver.pom",
"created": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"createdBy": "userY",
"lastModified": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"modifiedBy": "userX",
"lastUpdated": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"size": "1024", //bytes
"mimeType": "application/pom+xml",
"checksums":
{
 "md5" : string,
 "sha1" : string,
 "sha256" : string
 },
"originalChecksums":{
 "md5" : string,
 "sha1" : string,
 "sha256" : string
 }
}

Get Storage Summary Info

Description: Returns storage summary information regarding binaries, file store and repositories.
: 4.2.0Since

: Requires a privileged user (Admin only)Security
: GET /api/storageinfoUsage

: application/jsonProduces
:Sample Output

GET /api/storageinfo
{
 "binariesSummary": {
 "binariesCount": "125,726",
 "binariesSize": "3.48 GB",
 "artifactsSize": "59.77 GB",
 "optimization": "5.82%",
 "itemsCount": "2,176,580",
 "artifactsCount": "2,084,408"
 },
 "fileStoreSummary": {
 "storageType": "filesystem",
 "storageDirectory": "/home/.../artifactory/devenv/.artifactory/data/filestore",
 "totalSpace": "204.28 GB",
 "usedSpace": "32.22 GB (15.77%)",
 "freeSpace": "172.06 GB (84.23%)"
 },
 "repositoriesSummaryList": [
 {
 "repoKey": "plugins-release",
 "repoType": "VIRTUAL",
 "foldersCount": 0,
 "filesCount": 0,
 "usedSpace": "0 bytes",
 "itemsCount": 0,
 "packageType": "Maven",
 "percentage": "0%"
 },
 {
 "repoKey": "repo",
 "repoType": "VIRTUAL",
 "foldersCount": 0,
 "filesCount": 0,
 "usedSpace": "0 bytes",
 "itemsCount": 0,
 "packageType": "Generic",
 "percentage": "0%"
 },

...

 {
 "repoKey": "TOTAL",
 "repoType": "NA",
 "foldersCount": 92172,
 "filesCount": 2084408,
 "usedSpace": "59.77 GB",
 "itemsCount": 2176580
 }
]
}

Item Last Modified

Description: Retrieve the last modified item at the given path. If the given path is a folder, the latest last modified item is searched for recursively.
Supported by local and local-cached repositories.

: 2.2.5Since
: Requires Artifactory ProNotes

: Requires a valid user with deploy permissionsSecurity
: GET /api/storage/{repoKey}/{item-path}?lastModifiedUsage

: application/vnd.org.jfrog.artifactory.storage.ItemLastModified+jsonProduces
:Sample Output

GET /api/storage/libs-release-local/org/acme?lastModified
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/foo/1.0-SNAPSHOT/foo-1.0-SNAPSHOT.pom",
"lastModified": ISO8601
}

File Statistics

Description: Item statistics record the number of times an item was downloaded, last download date and last downloader. Supported by local
and local-cached repositories.

 3.1.0Since:
 Requires read privilegesSecurity:

 GET /api/storage/{repoKey}/{item-path}?statsUsage:
 application/vnd.org.jfrog.storage.StatsInfo+jsonProduces:

Sample Output:

GET /api/storage/libs-release-local/org/acme/foo/1.0/foo-1.0.jar?stats
{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/foo/1.0/foo-1.0.jar",
 "lastDownloaded": Timestamp (ms),
 "downloadCount": 1337,
 "lastDownloadedBy": "user1"
}

Item Properties

Description: Item Properties. Optionally return only the properties requested.
: 2.2.1Since

: Requires a privileged user (can be anonymous)Security
: GET /api/storage/{repoKey}/{itemPath}?properties[=x[,y]]Usage

: application/vnd.org.jfrog.artifactory.storage.ItemProperties+jsonProduces
:Sample Output

GET /api/storage/libs-release-local/org/acme?properties\[=x[,y]\]
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme"
"properties":{
 "p1": ["v1","v2","v3"],
 "p2": ["v4","v5","v6"]
 }
}

Set Item Properties

Description: Attach properties to an item (file or folder). When a folder is used property attachment is recursive by default.

In order to supply special characters (comma (,), backslash(\), pipe(|), equals(=)) as key/value you must add an encoded backslash (%5C) before
them. For example: ..?properties=a=1%5C=1 will attach key a with 1=1 as value.
To specify multiple properties, you can separate the items in one of the following ways:

Use a semicolon - ; (recommended)
Use the encoding for the pipe ("|") character - %7C
Alternatively, you may configure your NGINX to encode URLs so that if an unencoded pipe is used in the URL, NGINX will encode it to
%7C. We recommend that you verify that this configuration does not break any other systems served by NGINX

Supported by local and local-cached repositories.
: Requires Artifactory ProNotes

The following special characters are forbidden in the key field: and the .)(}{][*+^$\/~`!@#%&<>;=,±§ Space character

Since: 2.3.0
Security: Requires a privileged user (can be anonymous)

: PUT /api/storage/{repoKey}{itemPath}?properties=p1=v1[,v2][|p2=v3][&recursive=1]Usage
:Sample Usage

PUT
/api/storage/libs-release-local/ch/qos/logback/logback-classic/0.9.9?prope
rties=os=win,linux;qa=done&recursive=1

Delete Item Properties

Description: Deletes the specified properties from an item (file or folder). When a folder is used property removal is recursive by default. Support
ed by local and local-cached repositories.

: Requires Artifactory ProNotes
: 2.3.2Since

: Requires a privileged user (can be anonymous)Security
: DELETE /api/storage/{repoKey}{itemPath}?properties=p1[,p2][&recursive=1]Usage

:Sample Usage

DELETE
/api/storage/libs-release-local/ch/qos/logback/logback-classic/0.9.9?prope
rties=os,qa&recursive=1

Set Item SHA256 Checksum

Description: Calculates an artifact's SHA256 checksum and attaches it as a property (with key "sha256"). If the artifact is a folder, then
recursively calculates the SHA256 of each item in the folder and attaches the property to each item.

: 4.2.1Since
: Requires an admin userSecurity

application/jsonConsumes:
POST /api/checksum/sha256 -H "Content-Type: application/json"Usage:

Sample Usage:

POST /api/checksum/sha256 -H "Content-Type: application/json"
{
 "repoKey":"ext-snapshot-local",
 "path":"artifactory-powerpack-3.9.3/bin/"
}

Retrieve Artifact

Description: Retrieves an artifact from the specified destination.
You can also use as part of retrieving artifacts.Property-based Resolution

: Requires a user with 'read' permission (can be anonymous)Security

1.
2.

: GET /repo-key/path/to/artifact.extUsage
:Sample Usage

GET
http://localhost:8081/artifactory/libs-release-local/ch/qos/logback/logbac
k-classic/0.9.9/logback-classic-0.9.9.jar

Retrieve Latest Artifact

Description: Retrieves the latest artifact version from the specified destination.
: Specify or for the version in the requested path to get the latest Maven integration orLatest Maven Release/Integration SNAPSHOT [RELEASE]

release artifact.
: Specify or for the version in the requested path (replacing the Latest Non-Maven Release/Integration [INTEGRATION] [RELEASE] [folder

 and ItegRev] [fileItegRev]
as defined by the repository's) to get the latest integration version or latest release version artifact accordingly based on alphabeticallayout
sorting.
Integration and release tokens cannot be mixed together.
You can also use as part of retrieving artifacts to restrict resolution of artifacts assigned with specific properties.property-based resolution

NOTE:

Only local, cache and virtual repositories will be used.
To change the retrieve latest behavior to retrieve the latest version based on the created date you can add the following flag to $ARTIFA

 and add the following flag CTORY_HOME/etc/artifactory.system.properties artifactory.request.searchLatestReleaseByDat
and restart Artifactory service.eCreated=true

Notes: Requires Artifactory Pro.
: Latest Maven: 2.6.0; Latest non-Maven: 2.6.2Since

: Requires a user with 'read' permission (can be anonymous)Security
: GET /repo-key/path/to/artifact.extUsage

:Sample Usage

Download the latest Maven unique snapshot artifact:

GET
http://localhost:8081/artifactory/libs-release-local/ch/qos/logback/logbac
k-classic/0.9.9-SNAPSHOT/logback-classic-0.9.9-SNAPSHOT.jar

Download the latest release artifact:

GET
http://localhost:8081/artifactory/ivy-local/org/acme/[RELEASE]/acme-[RELEA
SE].jar

Download the latest integration artifact:

GET
http://localhost:8081/artifactory/ivy-local/org/acme/1.0-[INTEGRATION]/acm
e-1.0-[INTEGRATION].jar

Retrieve Build Artifacts Archive

Description: Retrieves an archive file (supports zip/tar/tar.gz/tgz) containing all the artifacts related to a specific build, you can optionally provide
mappings to filter the results,
the mappings support which enables you to dynamically construct the target path inside the result archive file.regexp capturing groups

http://www.regular-expressions.info/brackets.html

: Requires Artifactory ProNotes
: 2.6.5Since

: Requires a privileged user (can be anonymous)Security
: POST /api/archive/buildArtifacts -H "Content-Type: application/json"Usage

: application/vnd.org.jfrog.artifactory.build.BuildArtifactsRequest+jsonConsumes
 application/zip (for zip archive type), application/x-tar (for tar archive type), application/x-gzip (for archive type)Produces: tar.gz/tgz

:Sample Usage

POST /api/archive/buildArtifacts -H "Content-Type: application/json"
{
 +"buildName": "build-name" // The build name for search by
 +"buildNumber": "15" // The build number to search by, can be LATEST to
search for the latest build number
 -"buildStatus": "Released" // Optionally search by latest build status
(e.g: "Released")
 -"repos": ["libs-release-local,ext-release-local"] // Optionally refine
search for specific repos, omit to search within all repositories
 +"archiveType": "tar/zip/tar.gz/tgz" // The archive file type to return
 -"mappings": [// Optionally refine the search by providing a list of
regexp patterns to search by
 {
 "input": "(.+)/(.+)-sources.jar",
 "output": "$1/sources/$2.jar" // Optionally provide different path of the
found artifacts inside the result archive, supports regexp groups tokens
 },
 {
 "input": "(.+)-release.zip"
 }
]
}

Retrieve Folder or Repository Archive

Description: Retrieves an archive file (supports zip/tar/tar.gz/tgz) containing all the artifacts that reside under the specified path (folder or
repository root). Requires to be set.Enable Folder Download

: Requires Artifactory ProNotes
: 4.1.0Since

: Requires a privileged user with read permissions on the path.Security
: GET /api/archive/download/{repoKey}/{path}?archiveType={archiveType}[&includeChecksumFiles=true]Usage

 Produces: */*
:Sample Usage

GET /api/archive/download/my-local-repo/path/to/folder?archiveType=zip
{Stream containing contents of path my-local-repo/path/to/folder}

GET /api/archive/download/my-local-repo?archiveType=zip
{Stream containing contents of repo my-local-repo}

Trace Artifact Retrieval

Description: Simulates an artifact retrieval request from the specified location and returns verbose output about the resolution process.
This API is useful for debugging artifact retrieval issues.

: As applied to standard artifact retrieval by the requesting user.Security
: 2.6.0Since
: GET /repo-key/path/to/artifact.ext?traceUsage

http://tar.gz/tgz
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-EnableFolderDownload

: text/plainProduces
:Sample Output

GET
http://localhost:8081/artifactory/libs-release-local/jmock/jmock/1.0.1/jmo
ck-1.0.1.jar?trace

Request ID: 51c808f6
Repo Path ID: libs-release-local:jmock/jmock/1.0.1/jmock-1.0.1.jar
Method Name: GET
User: resolver
Time: 2012-05-06T10:49:09.528+03:00
Thread: pool-1-thread-31
Steps:
2012-05-06T10:49:09.587+03:00 Received request
2012-05-06T10:49:09.588+03:00 Request source = 0:0:0:0:0:0:0:1, Last
modified = 01-01-70 01:59:59 IST, If modified since = -1, Thread name =
pool-1-thread-31
2012-05-06T10:49:09.697+03:00 Retrieving info
2012-05-06T10:49:09.723+03:00 Identified resource as a file
...
2012-05-06T10:49:09.788+03:00 Responding with selected content handle
2012-05-06T10:49:09.807+03:00 Request succeeded

Archive Entry Download

Description: Retrieves an archived resource from the specified archive destination.
: Requires a user with 'read' permission (can be anonymous)Security

: GET /repo-key/path/to/artifact.jar*!*/path/to/archived/resource (the '!' between the archive file name and the archive entry path)Usage NOTE!
:Sample Output

GET
http://localhost:8081/artifactory/repo1-cache/commons-lang/commons-lang/2.
6/commons-lang-2.6.jar!/META-INF/LICENSE.txt

Create Directory

Description: Create new directory at the specified destination.
: You can also as part of creating directories.Notes attach properties

: Requires a user with 'deploy' permissions (can be anonymous)Security
: PUT /repo-key/path/to/directory/Usage

: application/vnd.org.jfrog.artifactory.storage.ItemCreated+jsonProduces
:Sample Usage

PUT /libs-release-local/path/to/directory/
{
"uri":
"http://localhost:8081/artifactory/libs-release-local/path/to/directory",
"repo": "libs-release-local",
"path": "/path/to/directory",
"created": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"createdBy": "userY",
"children" : []
}

Deploy Artifact

Description: Deploy an artifact to the specified destination.
: You can also as part of deploying artifacts.Notes attach properties

: Requires a user with 'deploy' permissions (can be anonymous)Security
: PUT /repo-key/path/to/artifact.extUsage

: application/vnd.org.jfrog.artifactory.storage.ItemCreated+jsonProduces
:Sample Usage

PUT /libs-release-local/my/jar/1.0/jar-1.0.jar
{
"uri":
"http://localhost:8081/artifactory/libs-release-local/my/jar/1.0/jar-1.0.j
ar",
"downloadUri":
"http://localhost:8081/artifactory/libs-release-local/my/jar/1.0/jar-1.0.j
ar",
"repo": "libs-release-local",
"path": "/my/jar/1.0/jar-1.0.jar",
"created": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"createdBy": "userY",
"size": "1024", //bytes
"mimeType": "application/java-archive",
"checksums":
{
 "md5" : string,
 "sha1" : string
 },
"originalChecksums":{
 "md5" : string,
 "sha1" : string
 }
}

Deploy Artifact by Checksum

Description: Deploy an artifact to the specified destination by checking if the artifact content already exists in Artifactory.
If Artifactory already contains a user readable artifact with the same checksum the artifact content is copied over to the new location and return a
response without requiring content transfer.
Otherwise, a 404 error is returned to indicate that content upload is expected in order to deploy the artifact.

: You can also as part of deploying artifacts. Notes attach properties
: Requires a user with 'deploy' permissions (can be anonymous)Security

: PUT /repo-key/path/to/artifact.extUsage
: X-Checksum-Deploy: true, X-Checksum-Sha1: sha1Value, X-Checksum-Sha256: sha256Value, X-Checksum: checksum value (type isHeaders

resolved by length)
: application/vnd.org.jfrog.artifactory.storage.ItemCreated+jsonProduces

: 2.5.1Since
:Sample Output

PUT /libs-release-local/my/jar/1.0/jar-1.0.jar
{
"uri":
"http://localhost:8081/artifactory/libs-release-local/my/jar/1.0/jar-1.0.j
ar",
"downloadUri":
"http://localhost:8081/artifactory/libs-release-local/my/jar/1.0/jar-1.0.j
ar",
"repo": "libs-release-local",
"path": "/my/jar/1.0/jar-1.0.jar",
"created": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
"createdBy": "userY",
"size": "1024", //bytes
"mimeType": "application/java-archive",
"checksums":
{
 "md5" : string,
 "sha1" : string
 },
"originalChecksums":{
 "md5" : string,
 "sha1" : string
 }
}

Deploy Artifacts from Archive

Description: Deploys an archive containing multiple artifacts and extracts it at the specified destination maintaining the archive's file structure.
Deployment is performed in a single HTTP request and only the extracted content is deployed, not the archive file itself.
Supported archive types are: zip; tar; tar.gz; and tgz. that deployment of compressed archives (unlike tar) may incur considerable CPUNOTE!
overhead.

Requires Artifactory Pro: Notes
: Requires a user with 'deploy' permissions (can be anonymous)Security

: PUT path1/to/repo-key/ /path2/to/archive.zipUsage
: - archive will be exploded upon deployment, - archive will beHeaders X-Explode-Archive: true X-Explode-Archive-Atomic: true

exploded in an atomic operation upon deployment
: text/plainProduces

: 2.6.3Since
:Sample Usage

PUT /libs-release-local/ /Users/user/Desktop/archive.zip

Push a Set of Artifacts to Bintray

Deprecated: This endpoint is deprecated and is replaced with Distribute Artifact

Description: Push a set of artifacts to Bintray as a version.
Uses a descriptor file (that must have 'bintray-info' in it's filename and a .json extension) that was deployed to artifactory, the call accepts the full
path to the descriptor as a parameter.
For more details, please refer to Pushing a Set of Files.
Signing a version is controlled by the gpgSign parameter in the descriptor file, and the gpgSign paramater passed to this command. The value
passed to this command always takes precedence over the value in the descriptor file.
If you also want a passphrase to be applied to your signature, specify gpgPassphrase=<passphrase>.

Security: Requires a valid user with deploy permissions and Bintray credentials defined (for more details, please refer to Entering your Bintray
credentials).
Usage: POST /api/bintray/push?descriptor=pathToDescriptorFile[&gpgPassphrase=passphrase][&gpgSign=true\false]
Since: 3.5.0
Produces: application/vnd.org.jfrog.artifactory.bintray.BintrayPushResponse+json

Sample Output:

{"Message": "Pushing build to Bintray finished successfully."}

Push Docker Tag to Bintray

Description: Push Docker tag to Bintray
Calculation can be synchronous (the default) or asynchronous.

: Requires a valid user with deploy permissions and Bintray credentials defined (for more details, please refer to Security Entering your Bintray
).credentials

: POST /api/bintray/docker/push/{repoKey}Usage
: 3.6.0Since

: text/plainProduces

Sample Output:

POST api/bintray/docker/push/docker-local
{
 "dockerImage": "jfrog/ubuntu:latest", // The docker image to push, use
':' for specific tag or leave blank for 'latest'
 "bintraySubject": "shayy", // The Bintray Subject
 "bintrayRepo": "containers", // The Bintray Subject's repository
 "async": false // Optionally execute the push asynchronously. Default:
false
}

Distribute Artifact

Description: Deploys artifacts from Artifactory to Bintray, and creates an entry in the corresponding Artifactory distribution repository specified
Requires Artifactory Pro: Notes

: 4.8Since
: Requires an authenticated user.Security

: POST /api/distributeUsage
application/jsonConsumes:

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Push+to+Bintray+-+Deprecated&linkCreation=true&fromPageId=46107948
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings

{
 "publish" : "<true | false>" // Default: true. If true, artifacts are
published when deployed to Bintray
 "overrideExistingFiles" : "<true | false>" // Default: false. If true,
Artifactory overwrites files already existing in the target path in
Bintray.
 // Existing version attributes are also overridden if defined
in the distribution repository Advanced Configuration
 "gpgPassphrase" : "<passphrase>" // If specified, Artifactory will GPG
sign the version deployed to Bintray and apply the specified passphrase
 "async" : "<true | false>" // Default: false. If true, the artifact
will be distributed asynchronously. Errors and warnings may be viewed in
the log file
 "targetRepo" : "<targetDistributionRepo>", // The Distribution Repository
into which artifacts should be deployed
 "packagesRepoPaths" : ["<localRepo/path/to/distribute>",
"<distRepo/path/to/distribute>"] // An array of local or distribution
repositories and corresponding paths to artifacts that should be deployed
to the specified target repository in Bintray
 "dryRun" : "<true | false>" // Default: false. If true, distribution
is only simulated. No files are actually moved.
}

Sample input:

POST /api/distribute
{
 "targetRepo" : "dist-repo-jfrog-artifactory",
 "packagesRepoPaths" : ["yum-local/jfrog-artifactory-pro-4.7.6.rpm"]
}

File Compliance Info

Description: Get compliance info for a given artifact path. The result includes license and vulnerabilities, if any. Supported by local and
local-cached repositories.

Requires Artifactory Pro, requires Black Duck addon enabled.: Notes
: 3.0.0Since

: Requires an authenticated user.Security
: GET: /api/compliance/{repoKey}/{item-path}Usage

: application/jsonProduces
:Sample output

GET:
/api/compliance/libs-release-local/ch/qos/logback/logback-classic/0.9.9/lo
gback-classic-0.9.9.jar
{
 "licenses" : [{"name":"LGPL v3", "url": "http://"}, {"name":"APL v2",
"url": "http://"}...],
 "vulnerabilities" : [{"name":"CVE-13427", "url": "http://"},
{"name":"CVE-1041", "url": "http://"}...]
}

Delete Item

Description: Deletes a file or a folder from the specified destination.
: Requires a user with 'delete' permission (can be anonymous)Security

: DELETE /repo-key/path/to/file-or-folderUsage
:Sample Usage

DELETE
http://localhost:8081/artifactory/libs-release-local/ch/qos/logback/logbac
k-classic/0.9.9

Copy Item

Description: Copy an artifact or a folder to the specified destination. Supported by local repositories only.
Optionally suppress cross-layout module path translation during copy.
You can test the copy using a dry run.
Copy item behaves similarly to a standard file system and supports renames. If the target path does not exist, the source item is copied and
optionally renamed. Otherwise, if the target exists and it is a directory,
the source is copied and placed under the target directory.

Notes: Requires Artifactory Pro
: Requires a privileged user (can be anonymous)Security

: POST /api/copy/{srcRepoKey}/{srcFilePath}?to=/{targetRepoKey}/{targetFilePath}[&dry=1][&suppressLayouts=0/1(default)][&failFast=0/1]Usage
: application/vnd.org.jfrog.artifactory.storage.CopyOrMoveResult+jsonProduces

: 2.2.2Since
:Sample Output

POST
/api/copy/libs-release-local/org/acme?to=/ext-releases-local/org/acme-new&
dry=1
{
"messages" : [
{
 "level": "error",
 "message": "The repository has denied...."
 },...
]
}

Move Item

Description: Moves an artifact or a folder to the specified destination. Supported by local repositories only.
Optionally suppress cross-layout module path translation during move.
You can test the move using dry run.
Move item behaves similarly to a standard file system and supports renames. If the target path does not exist, the source item is moved and
optionally renamed. Otherwise, if the target exists and it is a directory,
the source is moved and placed under the target directory.

: Requires Artifactory ProNotes
: Requires a privileged user (can be anonymous)Security

: POST /api/move/{srcRepoKey}/{srcFilePath}?to=/{targetRepoKey}/{targetFilePath}[&dry=1][&suppressLayouts=0/1(default)][&failFast=0/1]Usage
: application/vnd.org.jfrog.artifactory.storage.CopyOrMoveResult+jsonProduces

: 2.2.2Since
:Sample Output

POST
/api/move/libs-release-local/org/acme?to=/ext-releases-local/org/acme-new&
dry=1
{
"messages" : [
{
 "level": "error",
 "message": "The repository has denied...."
 },...
]
}

Get Repository Replication Configuration

Description: Returns the replication configuration for the given repository key, if found. Note: TheSupported by local and remote repositories.
'enableEventReplication' parameter refers to both push and pull replication.

: Requires Artifactory ProNotes
: Requires a privileged userSecurity

: GET /api/replications/{repoKey}Usage
: application/vnd.org.jfrog.artifactory.replications.ReplicationConfigRequest+jsonProduces

: 3.1.1Since
:Sample Usage

GET /api/replications/libs-release-local
{
 "url" : "http://localhost:8081/artifactory/remote-repo",
 "socketTimeoutMillis" : 15000,
 "username" : "admin",
 "password" : "password",
 "enableEventReplication" : false,
 "enabled" : true,
 "cronExp" : "0 0 12 * * ?",
 "syncDeletes" : true,
 "syncProperties" : true,
 "syncStatistics" : false,
 "repoKey" : "libs-release-local",
 "pathPrefix" : "/path/to/repo"
}

Set Repository Replication Configuration

Description: Add or replace replication configuration for given repository key. Supported by local and remote repositories. Accepts the JSON

payload returned from for a single and an array of configurations. If the payload is an array of replicationGet Repository Replication Configuration
configurations, then values for and cronExp in the first element in the array will determine the correspondingenableEventReplication
values when setting the repository replication configuration.

: Requires Artifactory ProNotes
: Requires a privileged user Security

: PUT /api/replications/{repoKey}Usage
: application/vnd.org.jfrog.artifactory.replications.ReplicationConfigRequest+jsonConsumes

: 3.1.1Since
:Sample Usage

PUT /api/replications/libs-release-local

Update Repository Replication Configuration

Description: Update existing replication configuration for given repository key, if found. Supported by local and remote repositories.
: Requires Artifactory ProNotes

: Requires a privileged userSecurity
: POST /api/replications/{repoKey}Usage

: full or partial application/vnd.org.jfrog.artifactory.replications.ReplicationConfigRequest+jsonConsumes
: 3.1.1Since

:Sample Usage

POST /api/replications/libs-release-local

Delete Repository Replication Configuration

Description: Delete existing replication configuration for given repository key. Supported by local and local-cached repositories.
: Requires Artifactory ProNotes

: Requires a privileged userSecurity
: DELETE /api/replications/{repoKey}Usage

: 3.1.1Since
:Sample Usage

DELETE /api/replications/libs-release-local

Scheduled Replication Status

Description: Returns the status of scheduled replication jobs define via the Artifactory UI on repositories. Supported by local,cron-based
local-cached and remote repositories.

: Requires Artifactory ProNotes
: Requires a user with 'read' permission (can be anonymous)Security

: GET /api/replication/{repoKey}Usage
: application/ .jfrog.artifactory.replication.ReplicationStatus+jsonProduces vnd.org

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/crontrigger.html
http://vnd.org/

GET /api/replication/remote-libs
{
 "status": {status},
 "lastCompleted": {time},
 "targets":
 [
 { "url" : targetUrl, "repoKey": {repoKy}, "status" : {status},
"lastCompleted" : {time} },
 ...
 { "url" : targetUrl, "repoKey": {repoKy}, "status" : {status},
"lastCompleted" : {time}}
],
 "repositories":
 {
 {repoKy} : { "status" : {status}, "lastCompleted" : {time} },
 ...
 {repoKy} : { "status" : {status}, "lastCompleted" : {time} }
 }
}

where:
{status}= never_run|incomplete(running or
interrupted)|error|warn|ok|inconsistent
{time}= time in ISO8601 format (yyyy-MM-dd'T'HH:mm:ss.SSSZ), or null if
never completed

Since: 2.4.2
:Sample Usage

GET /api/replication/remote-libs
{
 "status" : "ok",
 "lastCompleted" : 2015-12-27T15:08:49.050+02:00",
 "targets":
 [
 { "url": "http://remote_host/remote-libs1", "repoKey": "remote-libs1",
"status" : {status}, "lastCompleted" : "2015-12-27T15:07:49.050+02:00" },
 ...
 { "url" : "http://remote_host/remote-libs2", "repoKey": "remote-libs2",
"status" : {status}, "lastCompleted" : "2015-12-27T15:07:49.050+02:00" }
],
 "repositories":
 {
 "remote-libs1" : { "status" : "ok", "lastCompleted" :
"2015-12-27T15:07:49.050+02:00" },
 ...
 "remote-libs2" : { "status" : "ok", "lastCompleted" :
"2015-12-27T15:07:49.050+02:00" }
 }
}

Pull/Push Replication

Description: Schedules immediate content replication between two Artifactory instances.

Replication can optionally include properties and delete items if they do not exist in the source repository.
This API completes the existing replication exposed via the Artifactory UI and allows for pre-scheduled execution.cron-based

 - pulls content from a remote Artifactory repository to a local cache of the remote repository.Pull Replication
 - pushes content from a local repository into a local repository of another Artifactory instance.Push Replication

 - pushes content from a local repository into a local repository of several Artifactory instances. This feature is onlyMulti-push Replication
available with Artifactory Enterprise license.
The type of replication initiated depends on the type of repository specified in the parameter. repoPath
If is a local repository, a push replication will be triggered. You may specify multiple target repositories in the payload for multi-pushrepoPath
replication, but all must be local to their respective instances.
If is a remote repository cache, a pull replication will be triggered. Note that in this case you may only specify a single repository in therepoPath
payload.

 - If no repositories are provided in the payload, Artifactory will trigger all existing replication configurations.Important note
Security: Requires a privileged user (can be anonymous) For non-admin users, the maximum number of files that will be replicated is as defined
by the artifactory.search.userQueryLimit system property.
Usage: POST /api/replication/execute/{repoPath}
Consumes: application/json

[
 {
+ "url" : "<URL of the repository at the remote Artifactory instance, Used
only by push replication>",
+ "username" : "<username at the remote Artifactory instance, Used only by
push replication>",
+ "password" : "<password at the remote Artifactory instance, Used only by
push replication>",
- "proxy" : "<name of the proxy (if used) at the remote Artifactory
instance, Used only by push replication>"
- "properties" : "<true | false>", // When true, properties of replicated
artifacts will be synchronized also
- "delete" : "<true | false>" // When true, items that were deleted
remotely will also be deleted locally (including properties metadata)
 }
]

+=mandatory; -=optional
Since: 4.7.5
Sample Usage:

// Single push replication
POST /api/replication/execute/libs-release-local
{
 [
 {
 "url":"http://localhost:8082/artifactory/libs-release-local",
 "username":"admin",
 "password":"password",
 "proxy":"localProxy"
 }
]
}

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/crontrigger.html

// Pull replication
POST /api/replication/execute/libs-remote
{
 [
 {
 "properties" : "true",
 "delete" : "true"
 }
]
}

// Multi-push replication
POST /api/replication/execute/libs-release-local
{
 [
 {
 "url":"http://localhost:8082/artifactory/libs-release-local",
 "username":"admin",
 "password":"password",
 "proxy":"localProxy",
 "properties" : "true",
 "delete" : "true"
 },
 {
 "url":"http://localhost:8082/artifactory/ext-release-local",
 "username":"admin",
 "password":"password"
 "properties" : "true",
 "delete" : "true"
 },
 {
 "url":"http://localhost:8082/artifactory/plugins-release-local",
 "username":"admin",
 "password":"password"
 "properties" : "true",
 "delete" : "true"
 }
]
}

// Trigger configured push replication
POST /api/replication/execute/libs-release-local

// Trigger configured pull replication
POST /api/replication/execute/libs-remote

Pull/Push Replication (Deprecated)

Description: Schedules immediate content replication between two Artifactory instances. Replication can include properties and can optionally
delete local items if they do not exist in the source repository.
This API completes the existing replication exposed via the Artifactory UI and allows for on-demand execution.cron-based
Pull Replication - pulls content from a remote Artifactory repository to a local cache of the remote repository.
Push Replication - pushes content from a local repository into a remote Artifactory local repository.
Supported by local, local-cached and remote repositories.
Notes: Requires Artifactory Pro
Security: Requires a privileged user (can be anonymous) For non-admin users will replicate at max the number of files as defined by the artifa
ctory.search.userQueryLimit system property.
Usage: POST /api/replication/{srcRepoKey}/{srcPath}
Consumes: application/ .jfrog.artifactory.replication.ReplicationRequest+jsonvnd.org
Since: 2.4.0
Sample Usage:

POST /api/replication/libs-release-local/com/acme
{
 //The following is only applicable for push replication
 + "url" : "https://repo.nmiy.org/repo-key", // The remote repository URL
 + "username": "replicator", //The name of a user with deploy permissions
on the remote repository
 + "password": "***", //The remote repository password
 - "properties": true, //Sync item properties (true by default)
 - "delete": true, //Sync deletions (false by default)
 - "proxy": "org-prox", //A name of an Artifactory-configured proxy to use
for remote requests
}

+=mandatory; -=optional

Create or Replace Local Multi-push Replication

Description:Creates or replaces a local multi-push replication configuration. Supported by local and local-cached repositories.
Notes: Requires an enterprise license
Security: Requires an admin user.
Usage: PUT /api/replications/multiple/{repo-key}
Consumes: application/vnd.org.jfrog.artifactory.replications.MultipleReplicationConfigRequest+json
Since: 3.7
Sample Usage:

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/crontrigger.html
http://vnd.org

PUT /api/replications/multiple/libs-release-local
{
 "cronExp":"0 0/9 14 * * ?",
 "enableEventReplication":true,
 "replications":[
 {
+ "url": "http://localhost:8081/artifactory/repo-k",
+ "socketTimeoutMillis": 15000,
+ "username": "admin",
+ "password": "password",
- "enableEventReplication": true,
- "enabled": true,
- "syncDeletes": false,
- "syncProperties": true,
- "syncStatistics" : false,
- "repoKey": "libs-release-local"
 }
,
 {
+ "url": "http://localhost:8081/artifactory/repo-v",
+ "socketTimeoutMillis": 15000,
+ "username": "admin",
+ "password": "password",
- "enableEventReplication": true,
- "enabled": true,
- "syncDeletes": false,
- "syncProperties": true,
- "syncStatistics" : false,
- "repoKey": "libs-release-local"
 }
]
}

+=mandatory; -=optional

Update Local Multi-push Replication

Description:Updates a local multi-push replication configuration. Supported by local and local-cached repositories.
: Requires an enterprise licenseNotes

: Requires an admin user.Security
: POST /api/replications/multiple/{repo-key}Usage

: application/vnd.org.jfrog.artifactory.replications.MultipleReplicationConfigRequest+jsonConsumes
: 3.7Since

:Sample Usage

POST /api/replications/multiple/libs-release-local
{
 "cronExp":"0 0/9 14 * * ?",
 "enableEventReplication":true,
 "replications":[
 {
+ "url": "http://localhost:8081/artifactory/repo-k",
+ "socketTimeoutMillis": 15000,
+ "username": "admin",
+ "password": "password",
- "enableEventReplication": true,
- "enabled": true,
- "syncDeletes": false,
- "syncProperties": true,
- "syncStatistics" : false,
- "repoKey": "libs-release-local"
 }
,
 {
+ "url": "http://localhost:8081/artifactory/repo-v",
+ "socketTimeoutMillis": 15000,
+ "username": "admin",
+ "password": "password",
- "enableEventReplication": true,
- "enabled": true,
- "syncDeletes": false,
- "syncProperties": true,
- "syncStatistics" : false,
- "repoKey": "libs-release-local"
 }
]
}

+=mandatory; -=optional

Delete Local Multi-push Replication

Description:Deletes a local multi-push replication configuration. Supported by local and local-cached repositories.
: Requires an enterprise licenseNotes

: Requires an admin user.Security
: DELETE /api/replications/{repoKey}?url={replicatedURL}Usage

If the url parameter is omitted, all multi-push replication configurations for the source repository are deleted.
: Produces application/vnd.org.jfrog.artifactory.replications.ReplicationConfigRequest+json, application/vnd.org.jfrog.artifactory.replications.Multipl

eReplicationConfigRequest+json
: 3.7Since

:Sample Usage

DELETE
/api/replications/libs-release-local?url=http://10.0.0.1/artifactory/libs-
release-local

//Delete all multi-push replication configurations for libs-release-local
DELETE /api/replications/libs-release-local

Enable or Disable Multiple Replications

Description: Enables/disables multiple replication tasks by repository or Artifactory server based in include and exclude patterns.
: Requires Artifactory ProNotes

: Requires a privileged userSecurity
: POST /api/replications/{enable | disable}Usage

: application/jsonConsumes
: 4.4.3Since

:Sample Usage

//Enable/disable all push replications except those going out to
http://artimaster:port/artifactory and
https://somearti:port/artifactory/local-repo.
POST /api/replications/{enable | disable}
{
 "include" : ["**"],
 "exclude" : ["http://artimaster:port/artifactory/**",
"https://somearti:port/artifactory/local-repo"]
}

//Enable/disable all push replications expect those going out to
http://artidr:port/artifactory
POST /api/replications/{enable | disable}
{
 "include" : ["**"],
 "exclude" : ["http://artidr:port/artifactory/**"]
}

Get Global System Replication Configuration

Description: Returns the global system replication configuration status, i.e. if push and pull replications are blocked or unblocked.
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/system/replicationsUsage

: application/jsonProduces
: 4.7.2Since

:Sample Usage

GET /api/system/replications
{
 "blockPullReplications": false,
 "blockPushReplications": false
}

Block System Replication

Description: Blocks replications globally. Push and pull are true by default. If false, replication for the corresponding type is not blocked.
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST api/system/replications/block?push=[true|false]&pull=[true|false]Usage

: text/plainProduces
: 4.7.2Since

:Sample Usage

POST /api/system/replications/block
Successfully blocked all replications, no replication will be triggered.

Unblock System Replication

Description: Unblocks replications globally. Push and pull are true by default. If false, replication for the corresponding type is not unblocked.
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST api/system/replications/unblock?push=[true|false]&pull=[true|false]Usage

: text/plainProduces
: 4.7.2Since

:Sample Usage

POST /api/system/replications/unblock
Successfully unblocked all replications

Artifact Sync Download

Description: Downloads an artifact with or without returning the actual content to the client. When tracking the progress marks are printed (by
default every 1024 bytes). This is extremely useful if you want to trigger downloads on a remote Artifactory server,
for example to force eager cache population of large artifacts, but want to avoid the bandwidth consumption involved in transferring the artifacts to
the triggering client. If no content parameter is specified the file content is downloaded to the client.

: This API requires Artifactory Pro.Notes
: Requires a privileged user (can be anonymous)Security

: GET /api/download/{repoKey}/{filePath}[?content=none/progress][&mark=numOfBytesToPrintANewProgressMark]Usage
: application/octet-stream, text/plain (depending on content type)Produces

: 2.2.2Since
:Sample Output

GET
/api/download/my-remote/org/acme/1.0/acme-1.0.jar?content=progress&mark=512
...
...
.....

Completed: 150/340 bytes

Folder Sync (Deprecated)

Description: Triggers a no-content download of artifacts from a remote Artifactory repository for all artifacts under the specified remote folder.
Can optionally delete local files if they do not exist in the remote folder,

overwrite local files only if they are older than remote files or never overwrite local files.
The default is not to delete any local files and to overwrite older local files with remote ones. By default progress marks of the sync are displayed.
The default timeout for the remote file list is 15000 milliseconds (15 seconds).

: This API is . Requires Artifactory ProNotes deprecated
: Requires a privileged user (can be anonymous) For non-admin users will replicate at max the number of files as defined by the Security artifa

 system property.ctory.search.userQueryLimit
: GETUsage

/api/sync/{remoteRepositoryKey}/{folderPath}[?progress=showProgress][&mark=numOfBytesToPrintANewProgressMark][&delete=deleteExisting
Files][&overwrite=never/force][&timeout=fileListTimeoutInMillis]

: text/plainProduces
: 2.2.4Since

:Sample Output

GET /api/sync/my-remote/org/acme/1.0?progress=1&delete=1
...
...
...
..

Completed: 970/1702 bytes
...
..................
Completed: 1702/1702 bytes
Completed with 0 errors and 2 warnings (please check the server log for
more details).

File List

Description: Get a flat (the default) or deep listing of the files and folders (not included by default) within a folder.
For deep listing you can specify an optional depth to limit the results.
Optionally include a map of metadata timestamp values as part of the result (only properties are displayed in since 3.0.0).
folder inclusion since 2.3.2; checksum inclusion since: 2.3.3; include folder root path since: 2.5.2. Supported by all types of repositories.

: 2.2.4Since
: Requires Artifactory ProNotes

: Requires a non-anonymous privileged user.Security
: GET /api/storage/{repoKey}/{folder-path}?list[&deep=0/1][&depth=n][&listFolders=0/1][&mdTimestamps=0/1][&includeRootPath=0/1]Usage

: application/vnd.org.jfrog.artifactory.storage.FileList+jsonProduces
:Sample Output

GET
/api/storage/libs-release-local/org/acme?list&deep=1&listFolders=1&mdTimes
tamps=1
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
",
"created": ISO8601,
"files" : [
 {
 "uri": "/archived",
 "size": "-1",
 "lastModified": ISO8601,
 "folder": "true"
 },
 {
 "uri": "/doc.txt",
 "size": "253207", //bytes
 "lastModified": ISO8601,
 "folder": "false",
 "sha1": sha1Checksum,
 "mdTimestamps": { "properties" : lastModified (ISO8601) }
 },
 {
 "uri": "/archived/doc1.txt",
 "size": "253100", //bytes
 "lastModified": ISO8601,
 "folder": "false",
 "sha1": sha1Checksum,
 "mdTimestamps": { "properties" : lastModified (ISO8601) }
 },...
]
}

Get Background Tasks

Description: Retrieves list of background tasks currently scheduled or running in Artifactory. In HA, the nodeId is added to each task. Task can
be in one of few states: scheduled, running, stopped, cancelled. Running task also shows the task start time.

: 4.4.0Since
: Requires a valid admin userSecurity

: GET /api/tasksUsage
: application/jsonProduces

:Sample Output

 {
 "tasks" : [{
 "id" :
"artifactory.UpdateIndicesJob#d7321feb-6fd9-4e27-8f0e-954137be855b",
 "type" :
"org.artifactory.addon.gems.index.GemsVirtualIndexHandler$UpdateIndicesJob
",
 "state" : "scheduled",
 "description" : "Gems Virtual Repositories Index Calculator",
 "nodeId" : "artifactory-primary"
 }, {
 "id" :
"artifactory.VirtualCacheCleanupJob#82bb1514-ea34-4a71-940d-78a61887981e",
 "type" : "org.artifactory.repo.cleanup.VirtualCacheCleanupJob",
 "state" : "scheduled",
 "description" : "",
 "nodeId" : "artifactory-primary"
 }, {
 "id" :
"artifactory.BinaryStoreGarbageCollectorJob#039664ac-990d-4a32-85e1-decd0b
508142",
 "type" :
"org.artifactory.storage.binstore.service.BinaryStoreGarbageCollectorJob",
 "state" : "running",
 "started" : "2015-05-15T15:39:37.566+02:00"
 "description" : "Binaries Garbage Collector",
 "nodeId" : "artifactory-primary"
 }]
}

Empty Trash Can

Description: Empties the trash can permanently deleting all its current contents.
: Requires Artifactory ProNotes

: Requires a valid admin userSecurity
: POST /api/trash/emptyUsage

: 4.4.3Since

Delete Item From Trash Can

Description: Permanently deletes an item from the trash can.
: Requires Artifactory ProNotes

: Requires a valid admin userSecurity
: DELETE /api/trash/clean/{repoName/path}Usage

: 4.4.3Since
Sample usage:

DELETE /api/trash/clean/npm-local

Restore Item from Trash Can

Description: Restore an item from the trash can.

: Requires Artifactory ProNotes
: Requires a valid admin userSecurity

: POST /api/trash/restore/{from path}?to={to path}Usage
: 4.4.3Since

Sample usage:

POST /api/trash/restore/npm-local?to=npm-local2

Successfully restored trash items

Optimize System Storage

Description: Raises a flag to invoke balancing between redundant storage units of a sharded filestore following the next garbage collection.
 4.6.0Since:
 This is an advanced feature intended for administrators. Notes:

: Requires a valid admin user.Security
: POST Usage /api/system/storage/optimize

Produces: text/plain
Sample Usage:

POST /api/system/storage/optimize

200 OK

Get Puppet Modules

Description: Returns a list of all Puppet modules hosted by the specified repository. Results are paginated and all of the parameters in the
pagination section are optional.
Notes: Requires Artifactory Pro. This endpoint will work only on local and remote repositories.
Usage: GET /api/puppet/{repoKey}/v3/modules
Security: Requires a privileged user (can be anonymous)
Produces: application/json

Click here to expand...

{
 "total": 0,
 "limit": 0,
 "offset": 0,
 "current": "uri",
 "next": "uri",
 "previous": "uri",
 "results": [
 {
 "uri": "uri",
 "name": "",
 "downloads": 0,
 "created_at": "date-time",
 "updated_at": "date-time",
 "supported": false,
 "owner": {
 "uri": "",
 "username": ""
 },
 "current_release": {
 "uri": "",
 "version": "",
 "module": "object",
 "metadata": "object",
 "tags": [
 ""
],
 "supported": false,
 "file_size": 0,
 "file_md5": "",
 "downloads": 0,
 "readme": "",
 "changelog": "",
 "license": "",
 "created_at": "date-time",
 "updated_at": "date-time",
 "deleted_at": "date-time"
 },
 "releases": [
 {
 "uri": "uri",
 "version": ""
 }
],
 "homepage_url": "uri",
 "issues_url": "uri"
 }
]
}

Sample Usage:

GET /api/puppet/puppet-local/v3/modules/
Response:
{
 "pagination" : {
 "limit" : 20,
 "offset" : 0,
 "first" : "/v3/modules?limit=20&offset=0",
 "previous" : null,
 "current" : "/v3/modules?limit=20&offset=0",
 "next" : null,
 "total" : 1
 },
 "results" : [{
 "uri" : "/v3/modules/maestrodev-wget",
 "slug" : "maestrodev-wget",
 "name" : "wget",
 "downloads" : 0,
 "created_at" : "2017-07-16 12:07:715 +0300",
 "updated_at" : "2017-07-16 12:07:00 +0300",
 "supported" : false,
 "endorsement" : null,
 "module_group" : "base",
 "owner" : {
 "uri" : "/v3/users/maestrodev",
 "slug" : "maestrodev",
 "username" : "maestrodev",
 "gravatar_id" : null
 },
 "current_release" : {
 "uri"
...
 }]
}

Get Puppet Module

Description: Returns information about a specific Puppet module.
Notes: Requires Artifactory Pro. This endpoint will work only on local and remote repositories.
Usage: GET /api/puppet/{repoKey}/v3/modules/{user}-{module}
Security: Requires a privileged user (can be anonymous)
Produces: application/json

Click here to expand...

{
 "uri": "uri",
 "name": "",
 "downloads": 0,
 "created_at": "date-time",
 "updated_at": "date-time",
 "supported": false,
 "owner": {
 "uri": "",
 "username": ""
 },
 "current_release": {
 "uri": "",
 "version": "",
 "module": "object",
 "metadata": "object",
 "tags": [
 ""
],
 "supported": false,
 "file_size": 0,
 "file_md5": "",
 "downloads": 0,
 "readme": "",
 "changelog": "",
 "license": "",
 "created_at": "date-time",
 "updated_at": "date-time",
 "deleted_at": "date-time"
 },
 "releases": [
 {
 "uri": "uri",
 "version": ""
 }
],
 "homepage_url": "uri",
 "issues_url": "uri"
}

Get Puppet Releases

Description: Returns a list of all Puppet releases hosted by the specified repository. Results are paginated and all of the parameters in the
pagination section are optional.

Notes: Requires Artifactory Pro. This endpoint will work only on local and remote repositories.
Usage: GET /api/puppet/{repoKey}/v3/releases
Security: Requires a privileged user (can be anonymous)
Produces: application/json

{
 "total": 0,
 "limit": 0,
 "offset": 0,
 "current": "uri",
 "next": "uri",
 "previous": "uri",
 "results": [
 {
 "uri": "uri",
 "version": "",
 "module": {
 "uri": "",
 "name": ""
 },
 "metadata": "object",
 "tags": [
 ""
],
 "supported": false,
 "file_size": 0,
 "file_md5": "",
 "downloads": 0,
 "readme": "",
 "changelog": "",
 "license": "",
 "created_at": "date-time",
 "updated_at": "date-time",
 "deleted_at": "date-time"
 }
]
}

Get Puppet Release

Description: Returns information about the specific Puppet module's release.
Notes: Requires Artifactory Pro. This endpoint will work only on local and remote repositories.
Usage: GET /api/puppet/{repoKey}/v3/releases/{user}-{module}-{version}
Security: Requires a privileged user (can be anonymous)
Produces: application/json

{
 "uri": "uri",
 "version": "",
 "module": {
 "uri": "",
 "name": ""
 },
 "metadata": "object",
 "tags": [
 ""
],
 "supported": false,
 "file_size": 0,
 "file_md5": "",
 "downloads": 0,
 "readme": "",
 "changelog": "",
 "license": "",
 "created_at": "date-time",
 "updated_at": "date-time",
 "deleted_at": "date-time"
}

SEARCHES

Artifactory Query Language (AQL)

Description: Flexible and high performance search using .Artifactory Query Language (AQL)
Since: 3.5.0
Security: Requires an authenticated user. Certain domains/queries may require Admin access.
Usage: POST /api/search/aql
Consumes: text/plain
Sample Usage:

POST /api/search/aql
items.find(
 {
 "repo":{"$eq":"libs-release-local"}
 }
)

Produces: application/json
Sample Output:

All searches return limited results for internal and anonymous users (same limits as in the user interface).

To modify the default limit results, edit the with artifactory.system.properties file artifactory.search.limitAnonymousUsersOnl
 (default is) and add a new limit with (default is).y=false true artifactory.search.userQueryLimit 1000

Applicable to the following REST API calls:
, , , , (limited by UI max results), Artifact Search Archive Entries Search GAVC Search Property Search Checksum Search Artifacts Not

, , .Downloaded Since Artifacts With Date in Date Range Artifacts Created in Date Range

https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SystemProperties
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsNotDownloadedSince
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsNotDownloadedSince
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsWithDateinDateRange

{
 "results" : [
 {
 "repo" : "libs-release-local",
 "path" : "org/jfrog/artifactory",
 "name" : "artifactory.war",
 "type" : "item type",
 "size" : "75500000",
 "created" : "2015-01-01T10:10;10",
 "created_by" : "Jfrog",
 "modified" : "2015-01-01T10:10;10",
 "modified_by" : "Jfrog",
 "updated" : "2015-01-01T10:10;10"
 }
],
 "range" : {
 "start_pos" : 0,
 "end_pos" : 1,
 "total" : 1
 }
}

Artifact Search (Quick Search)

Description: Artifact search by part of file name.
Searches return file info URIs. Can limit search to specific repositories (local or caches).

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/search/artifact?name=name[&repos=x[,y]]Usage
 X-Result-Detail: info (To add all extra information of the found artifact), X-Result-Detail: properties (to get the properties ofHeaders (Optionally):

the found artifact), X-Result-Detail: info, properties (for both).
: application/vnd.org.jfrog.artifactory.search.ArtifactSearchResult+jsonProduces

:Sample Output

GET /api/search/artifact?name=lib&repos=libs-release-local
{
"results": [
{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.pom"
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver2/lib-ver2.pom"
 }
]
}

Archive Entries Search (Class Search)

Description: Search archive for classes or any other resources within an archive.
Can limit search to specific repositories (local or caches).

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/search/archive?name=[archiveEntryName][&repos=x[,y]]Usage
: application/vnd.org.jfrog.artifactory.search.ArchiveEntrySearchResult+jsonProduces

:Sample Output

GET
/api/search/archive?name=*Logger.class&repos=third-party-releases-local,re
po1-cache
{
"results" :[
 {
 "entry":
"org/apache/jackrabbit/core/query/lucene/AbstractIndex.LoggingPrintStream.
class",
 "archiveUris": [

"http://localhost:8081/artifactory/api/storage/third-party-releases-local/
org/apache/jackrabbit/
 jackrabbit-core/1.2.3/jackrabbit-core-1.2.3.jar",

"http://localhost:8081/artifactory/api/storage/third-party-releases-local/
org/apache/jackrabbit/
 jackrabbit-core/1.3.1/jackrabbit-core-1.3.1.jar"
]
 },{
 "entry": "org/codehaus/plexus/logging/AbstractLogger.class",
 "archiveUris": [

"http://localhost:8081/artifactory/api/storage/repo1-cache/org/codehaus/pl
exus/plexus-container-default/

1.0-alpha-9-stable-1/plexus-container-default-1.0-alpha-9-stable-1.jar"
]
 }
]
}

GAVC Search

Description: Search by Maven coordinates: GroupId, ArtifactId, Version & Classifier.
Search must contain at least one argument. Can limit search to specific repositories (local and remote-cache).

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/search/gavc?[g=groupId][&a=artifactId][&v=version][&c=classifier][&repos=x[,y]]Usage
 X-Result-Detail: info (To add all extra information of the found artifact), X-Result-Detail: properties (to get the properties ofHeaders (Optionally):

the found artifact), X-Result-Detail: info, properties (for both).
: application/vnd.org.jfrog.artifactory.search.GavcSearchResult+jsonProduces

:Sample Output

GET
/api/search/gavc?g=org.acme&a=artifact&v=1.0&c=sources&repos=libs-release-
local
{
"results": [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/artifact/1.0/artifact-1.0-sources.jar"
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/artifactB/1.0/artifactB-1.0-sources.jar"
 }
]
}

Property Search

Description: Search by properties.
If no value is specified for a property - assume '*'. Can limit search to specific repositories (local, remote-cache or virtual).

: 2.2.0Since
: Requires a privileged user (can be anonymous)Security

: GET /api/search/prop?[p1=v1,v2][&p2=v3][&repos=x[,y]]Usage
 X-Result-Detail: info (To add all extra information of the found artifact), X-Result-Detail: properties (to get the properties ofHeaders (Optionally):

the found artifact), X-Result-Detail: info, properties (for both).
: application/vnd.org.jfrog.artifactory.search.MetadataSearchResult+jsonProduces

:Sample Output

GET /api/search/prop?p1=v1,v2&p2=v3&repos=libs-release-local
{
"results" : [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.pom"
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver2/lib-ver2.pom"
 }
]
}

Checksum Search

Description: Artifact search by checksum (md5, sha1, or sha256)
Searches return file info URIs. Can limit search to specific repositories (local, remote-cache or virtual).

: Requires Artifactory ProNotes
: 2.3.0Since

: Requires a privileged user (can be anonymous)Security
: GET /api/search/checksum?md5=md5sum?sha1=sha1sum?sha256=sha256sum[&repos=x[,y]]Usage

 X-Result-Detail: info (To add all extra information of the found artifact), X-Result-Detail: properties (to get the properties ofHeaders (Optionally):

the found artifact), X-Result-Detail: info, properties (for both).
: application/vnd.org.jfrog.artifactory.search.ChecksumSearchResult+jsonProduces

:Sample Output

GET
/api/search/checksum?sha256=9a7fb65f15e00aa2a22c1917d0dafd4374fee8daf0966a
4d94cd37a0b9acafb9&repos=libs-release-local
{
"results": [
{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/jfro
g/build-info-api/1.3.1/build-info-api-1.3.1.jar"
 }
]
}

Bad Checksum Search

Description: Find all artifacts that have a bad or missing client checksum values (md5 or sha1)
Searches return file info uris. Can limit search to specific repositories (local, remote-cache or virtual).

: Requires Artifactory ProNotes
: 2.3.4Since

: Requires a privileged user (can be anonymous)Security
: GET /api/search/badChecksum?type=md5|sha1[&repos=x[,y]]Usage

: application/vnd.org.jfrog.artifactory.search.BadChecksumSearchResult+jsonProduces
:Sample Output

GET /api/search/badChecksum?type=md5&repos=libs-release-local
{
"results": [
{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/jfro
g/build-info-api/1.3.1/build-info-api-1.3.1.jar"
 "serverMd5": "4040c7c184620af0a0a8a3682a75eb7"
 "clientMd5": "4040c7c184620af0a0a8a3682a75e44" //On missing
checksum this element will be an empty string
 }
]
}

Artifacts Not Downloaded Since

Description: Retrieve all artifacts not downloaded since the specified Java epoch in .milliseconds
Optionally include only artifacts created before the specified date, otherwise only artifacts created before arecreatedBefore notUsedSince
returned.
Can limit search to specific repositories (local or caches).

: 2.2.4Since
: Requires a privileged non-anonymous user.Security

: GET /api/search/usage?notUsedSince=javaEpochMillis[&createdBefore=javaEpochMillis][&repos=x[,y]]Usage
: application/vnd.org.jfrog.artifactory.search.ArtifactUsageResult+jsonProduces

:Sample Output

GET
/api/search/usage?notUsedSince=long&createdBefore=long&repos=libs-release-
local
{
"results" : [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.jar",
 "lastDownloaded": ISO8601
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver2/lib-ver2.jar",
 lastDownloaded: ISO8601
 }
]
}

Artifacts With Date in Date Range

Description: Get all artifacts with specified dates within the given range. Search can be limited to specific repositories (local or
caches).
Since: 3.2.1
Security: Requires a privileged non-anonymous user.
Usage: GET /api/search/dates?[from=fromVal][&to=toVal][&repos=x[,y]][&dateFields=c[,d]]
Parameters: The from and to parameters can be either a long value for the java epoch (sincemilliseconds

the epoch), or an ISO8601 string value. is mandatory. If is not provided, now() will be used instead,from to

and if either are omitted, is returned.400 bad request

The dateFields parameter is a comma separated list of date fields that specify which fields the from and to

values should be applied to . The date fields supported are: created, lastModified, lastDownloaded.

It is a mandatory field and it also dictates which fields will be added to the JSON returned.
If ANY of the specified date fields of an artifact is within the specified range, the artifact will be returned.

Produces: application/vnd.org.jfrog.artifactory.search.ArtifactResult+json

Sample Output:

GET
/api/search/dates?dateFields=created,lastModified,lastDownloaded&from=long
&to=long&repos=libs-release-local
{
"results" : [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.jar",
 "created": ISO8601,
 "lastModified": ISO8601,
 "lastDownloaded": ISO8601
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver2/lib-ver2.jar",
 "created": ISO8601.
 "lastModified": ISO8601,
 "lastDownloaded": ISO8601
 }
]
}

Artifacts Created in Date Range

Description: Get All Artifacts Created in Date Range
If 'to' is not specified use now(). Can limit search to specific repositories (local or remote-cache).

: 2.2.0Since
: Requires a privileged non-anonymous user.Security

: GET /api/search/creation?from=javaEpochMillis[&to=javaEpochMillis][&repos=x[,y]]Usage
: application/vnd.org.jfrog.artifactory.search.ArtifactCreationResult+jsonProduces

:Sample Output

GET /api/search/creation?from=long&to=long&repos=libs-release-local
{
"results" : [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.jar",
 "created": ISO8601
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver2/lib-ver2.jar",
 "created": ISO8601
 }
]
}

Pattern Search

Description: Get all artifacts matching the given Ant path pattern
: 2.2.4Since
: Requires Artifactory Pro. Pattern "**" is not supported to avoid overloading search results.Notes

: Requires a privileged non-anonymous user.Security
: GET /api/search/pattern?pattern=Usage repo-key:this/is/a/*pattern*.war

: application/vnd.org.jfrog.artifactory.search.PatternResultFileSet+jsonProduces
:Sample Output

GET /api/search/pattern?pattern=libs-release-local:killer/*/ninja/*/*.jar
{
 "repositoryUri" :
"http://localhost:8081/artifactory/libs-release-local",
 "sourcePattern" : "libs-release-local:killer/*/ninja/*/*.jar",
 files : [
 "killer/coding/ninja/1.0/monkey-1.0.jar",
 "killer/salty/ninja/1.5-SNAPSHOT/pickle-1.5-SNAPSHOT.jar"
]
}

Builds for Dependency

Description: Find all the builds an artifact is a dependency of (where the artifact is included in the build-info dependencies)
: Requires Artifactory ProNotes
: 2.3.4Since

: Requires a privileged user (can be anonymous)Security
: GET /api/search/dependency?sha1=sha1ChecksumUsage

: application/vnd.org.jfrog.artifactory.search.DependencyBuilds+jsonProduces
:Sample Output

GET /api/search/dependency?sha1=451a3c5f8cfa44c5d805379e760b5c512c7d250b
{
"results" : [
 {
 "uri": "http://localhost:8081/artifactory/api/build/my-build/50"
 },{
 "uri": "http://localhost:8081/artifactory/api/build/my-build/51"
 }
]
}

License Search

Description: Search for artifacts that were already tagged with license information and their respective licenses.
To search by specific license values use Property Search with the 'artifactory.licenses' property.

When the autofind parameter is specified Artifactory will try to automatically find new license information and return it as part of the result in
the found field.
Please note that this can affect the speed of the search quite dramatically, and will still search only on already-tagged artifacts.

Default parameter values when unspecified: unapproved=1, unknown=1, notfound=0, neutral=0, approved=0, autofind=0.
Can limit search to specific repositories (local, remote-cache or virtual).

Since: 2.3.0
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/search/license[?unapproved=1][&unknown=1][¬found=0][&neutral=0][&approved=0][&autofind=0][&repos=x[,y]]Usage

http://repo-keythis/

: application/vnd.org.jfrog.artifactory.search.LicenseResult+jsonProduces
:Sample Output

GET
/api/search/license?approved=1&unknown=1&autofind=1&repos=libs-release-loc
al,staging
{
"results" : [
 {
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.jar",
 "license": "lgplv2",
 "found": "lgplv2",
 "status": "approved"
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme
/lib/ver/lib-ver.jar",
 "license": "cddlv1",
 "found": "gplv3",
 "status": "neutral"
 },{
 "uri":
"http://localhost:8081/artifactory/api/storage/staging/org/acme/lib/ver2/l
ib-ver2.jar",
 "license": "gplv3",
 "found": "gplv3",
 "status": "unapproved"
 }
]
}

Artifact Version Search

Description: Search for all available artifact versions by GroupId and ArtifactId in local, remote or virtual repositories.
Search can be limited to specific repositories (local, remote and virtual) by settings the parameter.repos

: Unless the parameter is specified, both release and integration versions are returned. When is sRelease/integration versions version version
pecified, e.g. , result includes only integration versions. 1.0-SNAPSHOT

Integration versions are determined by the of the repositories searched. For integration search to work the repository layoutrepository layout
requires an 'Artifact Path Pattern' that contains the token and then the token with only literals between them.baseRev fileItegRev

: By default only local and cache repositories are used. When specifying , Artifactory searches for versions on remoteRemote searches remote=1
repositories. that this can dramatically slow down the search.NOTE!
For Maven repositories the remote is consulted. For non-maven layouts, remote file listing runs for all remote repositoriesmaven-metadata.xml
that have the 'List Remote Folder Items' checkbox enabled.

 The parameter can accept the * and/or ? wildcards which will then filter the final result to match onlyFiltering results (Artifactory 3.0.2+): version
those who match the given version pattern.

: 2.6.0Since
: Requires Artifactory ProNotes

: Requires a privileged user (can be anonymous)Security
: GET /api/search/versions?[g=groupId][&a=artifactId][&v=version][&remote=0/1][&repos=x[,y]]Usage

: application/vnd.org.jfrog.artifactory.search.ArtifactVersionsResult+jsonProduces

Sample Output:

GET /api/search/versions?g=org.acme&a=artifact&repos=libs-release-local
{
"results": [
 {
 "version": "1.2",
 "integration": false
 },{
 "version": "1.0-SNAPSHOT",
 "integration": true
 },{
 "version": "1.0",
 "integration": false
 }
]
}

Artifact Latest Version Search Based on Layout

Description: Search for the latest artifact version by groupId and artifactId, based on the layout defined in the repository
Search can be limited to specific repositories (local, remote-cache or virtual) by settings the parameter. When searching in a virtualrepos
repository, each child-repository layout will be consulted accordingly.

: Unless the parameter is specified, the search returns the latest artifact release version. When Latest release vs. latest integration version vers
 is specified, e.g. , the result is the latest integration version. Integration versions are determined by the ofion 1.0-SNAPSHOT repository layout

the repositories searched. For integration search to work the repository layout requires an "Artifact Path Pattern" that contains the tokenbaseRev
and then the token with only literals between them.fileItegRev

: By default only local and cache repositories will be used. When specifying , Artifactory searches for versions onRemote searches remote=1
remote repositories. that this can dramatically slow down the search.NOTE!
For Maven repositories the remote will be consulted. For non-Maven layouts, remote file listing runs for allmaven-metadata.xml
remote repositories that have the 'List Remote Folder Items' checkbox enabled.

 The parameter can accept the * and/or ? wildcards which will then filter the final result to match onlyFiltering results (Artifactory 3.0.2+): version
those who match the given version pattern.

: The [org] and [module] fields must be specified in the of the repository layout for this call to work.Artifact path pattern artifact path pattern
: 2.6.0Since
: Requires Artifactory ProNotes

: Requires a privileged user (can be anonymous)Security
: GET /api/search/latestVersion?[g=groupId][&a=artifactId][&v=version][&remote=1][&repos=x[,y]]Usage

: text/plainProduces
:Sample Output

GET
/api/search/latestVersion?g=org.acme&a=artifact&v=1.0-SNAPSHOT&repos=libs-
snapshot-local

1.0-201203131455-2

Artifact Latest Version Search Based on Properties

: Description Search for artifacts with the latest value in the "version" property. Only artifacts with a "version" property expressly defined in
 Results can be filtered by specifying additional properties.lower case will be returned.

{repo}: Specify a repository to search through or replace with "_any" to search through all repositories
{path}: Specify a path to search through or replace with "_any" to search through all paths
listFiles=0 (default): Artifactory will only retrieve the latest version
listFiles=1: Artifactory will retrieve the latest version and the corresponding files
You may specify filters to restrict the set of artifacts that are searched by adding any properties to your search URL
Notes: Requires Artifactory Pro

https://www.jfrog.com/confluence/display/RTF/Repository+Layouts#RepositoryLayouts-ArtifactPathPatterns

Since: 3.1.1
Security: Requires an authenticated user (not anonymous) to use the api and read permission to the repository of each artifact.
Usage: GET /api/versions/{repo}/{path}?[listFiles=0/1]&[<property key>=<property value>]&[<property key>=<property value>]
Consumes: json
Examples:

Return the latest version and corresponding artifacts by searching for
through all repositories whose path starts with a/b and are annotated with
the properties os=win and license=GPL.
GET /api/versions/_any/a/b?os=win&license=GPL&listFiles=1
{
 "version" : "1.1.2",
 "artifacts" : [{
 "uri" : "http://...."
 }]
}

Return the latest version (without the corresponding artifacts) by
searching through all repositories whose path starts with a/b and are
annotated with the properties os=win and license=GPL.
Return only the version.
GET /api/versions/_any/a/b?os=win&license=GPL
{
 "version" : "1.1.2",
 "artifacts" : []
}

Build Artifacts Search

Description: Find all the artifacts related to a specific build.
: Requires Artifactory ProNotes
: 2.6.5Since

: Requires a privileged user (can be anonymous)Security
: POST /api/search/buildArtifactsUsage

: application/vnd.org.jfrog.artifactory.search.BuildArtifactsRequest+jsonConsumes
:Sample Usage

POST /api/search/buildArtifacts
{
 +"buildName": "build-name" // The build name for search by
 +"buildNumber": "15" // The build number to search by, can be LATEST to
search for the latest build number
 -"buildStatus": "Released" // Optionally search by latest build status
(e.g: "Released")
 -"repos": ["libs-release-local,ext-release-local"] // Optionally refine
search for specific repos, omit to search within all repositories
 -"mappings": [// Optionally refine the search by providing a list of
regexp patterns to search by
 {
 "input": "(.+)-sources.jar"
 },
 {
 "input": "(.+)-javadoc.jar"
 }
]
}

: Produces application/vnd.org.jfrog.artifactory.search.BuildArtifactsSearchResult+json
:Sample Output

POST /api/search/buildArtifacts
{
"results" : [
 {
 "downloadUri":
"http://localhost:8081/artifactory/libs-release-local/org/acme/lib/ver/lib
-sources.jar"
 },{
 "downloadUri":
"http://localhost:8081/artifactory/ext-release-local/org/acme/lib/ver/lib-
ver-javadoc.jar"
 }
]
}

List Docker Repositories

Description: Lists all Docker repositories (the registry's _catalog) hosted in an Artifactory Docker repository.
: 4.4.3. Since The and pagination parameters are supported from version 5.4.6.n last
: Requires Artifactory ProNotes

: Requires a privileged userSecurity
: GET /api/docker/{repo-key}/v2/_catalog?Usage n=<n from the request>&last=<last tag value from previous response>

: application/jsonProduces

{
 "repositories": [
 <name>,
 ...
]
}

Sample Usage:

GET /api/docker/docker-local/v2/_catalog
{
 "repositories": [
 "busybox",
 "centos",
 "hello-world"
]
}

List Docker Tags

Description: Lists all tags of the specified Artifactory Docker repository.
: 4.4.3. The and pagination parameters are supported from version 5.4.6.Since n last
: Requires Artifactory ProNotes

: Requires a privileged userSecurity
: GET /api/docker/{repo-key}/v2/{image name}/tags/list?Usage n=<n from the request>&last=<last tag value from previous response>

: application/jsonProduces

{
 "name": "<image name>",
 "tags" : ["<tag>"]
}

Sample Usage:

GET api/docker/v2/postgres/tags/list
{
 "name" : "postgres",
 "tags" : ["9.5.2"]
}

SECURITY

Get Users

Description: Get the users list
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/security/usersUsage

: Produces application/vnd.org.jfrog.artifactory.security.Users+json
:Sample Output

GET /api/security/users
[
 {
 "name": "davids"
 "uri" : "http://localhost:8081/artifactory/api/security/users/davids"
 "realm" : "internal"
 }, {
 "name": "danl"
 "uri" : "http://localhost:8081/artifactory/api/security/users/danl"
 "realm" : "ldap"
 }
]

Get User Details

Description: Get the details of an Artifactory user
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/security/users/{userName}Usage

: Produces application/vnd.org.jfrog.artifactory.security.User+json
:Sample Output

GET /api/security/users/davids
{
user.json
}

Get User Encrypted Password

Description: Get the encrypted password of the authenticated requestor
: 3.3.0Since

: Requires a privileged userSecurity
: GET /api/security/encryptedPasswordUsage

: plain/textProduces
:Sample Output

GET /api/security/encryptedPassword

AP5v2zs9ga7CJNZb74u3arAKE5B

Create or Replace User

Description: Creates a new user in Artifactory or replaces an existing user
: 2.4.0Since
: Requires Artifactory ProNotes

Missing values will be set to the default values as defined by the consumed type.
: Requires an admin userSecurity

: PUT /api/security/users/{userName}Usage
: Consumes application/vnd.org.jfrog.artifactory.security.User+json

:Sample Usage

PUT /api/security/users/davids
{
user.json
}

Update User

Description: Updates an exiting user in Artifactory with the provided user details.
: 2.4.0Since
: Requires Artifactory ProNotes

Missing values will be set to the default values as defined by the consumed type
: Requires an admin userSecurity

: POST /api/security/users/{userName}Usage
: Consumes application/vnd.org.jfrog.artifactory.security.User+json

:Sample Usage

POST /api/security/users/davids
{
user.json
}

Delete User

Description: Removes an Artifactory user.
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: DELETE /api/security/users/{userName}Usage

: application/textProduces
:Sample Usage

DELETE /api/security/users/davids

User 'davids' has been removed successfully.

Expire Password for a Single User

Description: Expires a user's password
: 4.4.2Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST /api/security/users/authorization/expirePassword/{userName}Usage

:Sample Usage

POST /api/security/users/authorization/expirePassword/davids

Expire Password for Multiple Users

Description: Expires password for a list of users
: 4.4.2Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST /api/security/users/authorization/expirePassword -H "Content-type: application/json" -d '[{userA}, {userB}]'Usage

:Sample Usage

POST /api/security/users/authorization/expirePassword -H "Content-type:
application/json" -d '[{davids}, {johnb}]'

Expire Password for All Users

Description: Expires password for all users
: 4.4.2Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST /api/security/users/authorization/expirePasswordForAllUsersUsage

:Sample Usage

POST /api/security/users/authorization/expirePasswordForAllUsers

Unexpire Password for a Single User

Description: Unexpires a user's password
: 4.4.2Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST /api/security/users/authorization/unexpirePassword/{userName}Usage

: application/textProduces
:Sample Usage

POST /api/security/users/authorization/unexpirePassword/davids

Change Password

Description: Changes a user's password
: 4.4.2Since
: Requires Artifactory ProNotes

: Admin can apply this method to all users, and each (non-anonymous) user can use this method to change his own password.Security
: POST /api/security/users/authorization/changePassword -H "Content-type: application/json" -d ' { "userName" : "{user}", "oldPassword" :Usage

"{old password}", "newPassword1" : "{new password}", "newPassword2" : "{verify new password}" }
: application/textProduces

:Sample Usage

POST /api/security/users/authorization/changePassword -H "Content-type:
application/json" -d ' { "userName" : "davids", "oldPassword" : "op",
"newPassword1" : "np", "newPassword2" : "np" }

Get Password Expiration Policy

Description: Retrieves the password expiration policy
: 4.4.2Since

: Requires Artifactory ProNotes
: Requires an admin userSecurity

: GET /api/security/configuration/passwordExpirationPolicyUsage
: application/jsonProduces

:Sample Usage

GET /api/security/configuration/passwordExpirationPolicy
{
 "enabled":"true"
 "passwordMaxAge":"60"
 "notifyByEmail":"true"
}

Set Password Expiration Policy

Description: Sets the password expiration policy
: 4.4.2Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: PUT /api/security/configuration/passwordExpirationPolicy -H "Content-type: application/json" -d ' { "enabled" : "true|false",Usage

"passwordMaxAge" : "1-999", "notifyByEmail": "true|false" }
: application/jsonProduces

:Sample Usage

POST /api/security/configuration/passwordExpirationPolicy -H "Content-type:
application/json" -d ' { "enabled" : "true", "passwordMaxAge" : "60",
"notifyByEmail": "true" }

Configure User Lock Policy

Description: Configures the user lock policy that locks users out of their account if the number of repeated incorrect login attempts exceeds the
configured maximum allowed.

 Requires a valid admin userSecurity:
 PUT /api/security/userLockPolicyUsage:

 application/textProduces:
 4.4 Since:

Sample usage:

PUT http://{host}:{port}/artifactory/api/security/userLockPolicy -H
'Content-Type: application/json'-d '
{
 "enabled" : true|false,
 "loginAttempts" : {value}
}'

Retrieve User Lock Policy

Description: Retrieves the currently configured user lock policy.
 Requires a valid admin user Security:

 GET /api/security/userLockPolicy Usage:
 application/json Produces:

 4.4Since:
Sample usage:

GET http://{host}:{port}/artifactory/api/security/userLockPolicy
'{
 "enabled" : true|false,
 "loginAttempts" : {value}
}'

Get Locked Out Users

Description: If locking out users is enabled, lists all users that were locked out due to recurrent incorrect login attempts.
: Requires a valid admin userSecurity

: GET Usage /api/security/lockedUsers
: application/jsonProduces

: 4.4Since
:Sample Usage

GET /api/security/lockedUsers

["usera", "userb", ...]

Unlock Locked Out User

Description: Unlocks a single user that was locked out due to recurrent incorrect login attempts.
Security: Requires a valid admin user

 POST /api/security/unlockUsers/{userName}Usage:
application/textProduces:

 4.4Since:
Sample Usage:

POST /api/security/unlockUsers/{userName}

Unlock Locked Out Users

Description: Unlocks a list of users that were locked out due to recurrent incorrect login attempts.
Security: Requires a valid admin user

 POST /api/security/unlockUsersUsage:
application/textProduces:

 4.4Since:
Sample Usage:

POST /api/security/unlockUsers -H 'Content-Type: application/json' -d '[
{userA}, {userB}]'

Unlock All Locked Out Users

Description: Unlocks all users that were locked out due to recurrent incorrect login attempts.
Security: Requires a valid admin user

 POST /api/security/unlockAllUsersUsage:
application/textProduces:

http://hostport/
http://hostport/

 4.4Since:
Sample Usage:

POST /api/security/unlockAllUsers

Create API Key

Description:Create an API key for the current user. Returns an error if API key already exists - use regenerate API key instead.
: 4.3.0Since
: POST /api/security/apiKeyUsage

: application/jsonProduces
:Sample input

POST /api/security/apiKey

Sample output:

{
 "apiKey": "3OloposOtVFyCMrT+cXmCAScmVMPrSYXkWIjiyDCXsY="
}

Regenerate API Key

Description:Regenerate an API key for the current user
: 4.3.0Since
: PUT /api/security/apiKeyUsage

: application/jsonProduces
:Sample input

PUT /api/security/apiKey

Sample output:

{
 "apiKey": "3OloposOtVFyCMrT+cXmCAScmVMPrSYXkWIjiyDCXsY="
}

Get API Key

Description:Get the current user's own API key
: 4.3.0Since
: GET /api/security/apiKeyUsage

: application/jsonProduces

Sample usage:

GET /api/security/apiKey

Sample output:

{
 "apiKey": "3OloposOtVFyCMrT+cXmCAScmVMPrSYXkWIjiyDCXsY="
}

Revoke API Key

Description: Revokes the current user's API key
: 4.3.0Since
: DELETE /api/security/apiKeyUsage

: application/jsonProduces

Revoke User API Key

Description: Revokes the API key of another user
: 4.3.0Since

Requires a privileged user (Admin only) Security:
: DELETE /api/security/apiKey/{username} Usage

: application/jsonProduces

Revoke All API Keys

Description: Revokes all API keys currently defined in the system
: 4.3.0Since

Requires a privileged user (Admin only) Security:
: DELETE /api/security/apiKey?deleteAll={0/1} Usage

: application/jsonProduces

Get Groups

Description: Get the groups list
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/security/groupsUsage

: , application/ .jfrog.artifactory.security.Groups+json, Produces application/vnd.org.jfrog.artifactory.security.Users+json vnd.org application/vnd.org.j
frog.artifactory.security.PermissionTargets+json

:Sample Output

GET /api/security/groups
[
 {
 "name": "readers"
 "uri" : "http://localhost:8081/artifactory/api/security/groups/readers"
 }, {
 "name": "tech-leads"
 "uri" :
"http://localhost:8081/artifactory/api/security/groups/tech-leads"
 }
]

Get Group Details

Description: Get the details of an Artifactory Group
: 2.4.0Since

http://vnd.org/

: Requires Artifactory ProNotes
: Requires an admin userSecurity

: GET /api/security/groups/{groupName}Usage
: Produces application/vnd.org.jfrog.artifactory.security.Group+json

:Sample Output

GET /api/security/groups/dev-leads
{
group.json
}

Create or Replace Group

Description: Creates a new group in Artifactory or replaces an existing group
: 2.4.0Since
: Requires Artifactory ProNotes

Missing values will be set to the default values as defined by the consumed type.
: Requires an admin userSecurity

: PUT /api/security/groups/{groupName}Usage
: Consumes application/vnd.org.jfrog.artifactory.security.Group+json

:Sample Usage

PUT /api/security/groups/dev-leads
{
group.json
}

Update Group

Description: Updates an exiting group in Artifactory with the provided group details.
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: POST /api/security/groups/{groupName}Usage

: Consumes application/vnd.org.jfrog.artifactory.security.Group+json
:Sample Usage

POST /api/security/groups/dev-leads
{
group.json
}

Delete Group

Description: Removes an Artifactory group.
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: DELETE /api/security/groups/{groupName}Usage

: application/textProduces
:Sample Usage

DELETE /api/security/groups/dev-leads

Group 'dev-leads' has been removed successfully.

Get Permission Targets

Description: Get the permission targets list
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/security/permissionsUsage

: , application/ .jfrog.artifactory.security.Groups+json, Produces application/vnd.org.jfrog.artifactory.security.Users+json vnd.org application/vnd.org.j
frog.artifactory.security.PermissionTargets+json

:Sample Output

GET /api/security/permissions
[
 {
 "name": "readSourceArtifacts"
 "uri" :
"http://localhost:8081/artifactory/api/security/permissions/readSourceArti
facts"
 }, {
 "name": "populateCaches"
 "uri" :
"http://localhost:8081/artifactory/api/security/permissions/populateCaches"
 }
]

Get Permission Target Details

Description: Get the details of an Artifactory Permission Target
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: GET /api/security/permissions/{permissionTargetName}Usage

: Produces application/vnd.org.jfrog.artifactory.security.PermissionTarget+json
:Sample Output

GET /api/security/permissions/populateCaches
{
permission-target.json
}

Create or Replace Permission Target

Description: Creates a new permission target in Artifactory or replaces an existing permission target
: 2.4.0Since
: Requires Artifactory ProNotes

Missing values will be set to the default values as defined by the consumed type.
: Requires an admin userSecurity

: PUT /api/security/permissions/{permissionTargetName}Usage

http://vnd.org

: Consumes application/vnd.org.jfrog.artifactory.security.PermissionTarget+json
:Sample Usage

PUT /api/security/permissions/populateCaches
{
permission-target.json
}

Delete Permission Target

Description: Deletes an Artifactory permission target.
: 2.4.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: DELETE /api/security/permissions/{permissionTargetName}Usage

: application/textProduces
:Sample usage

DELETE /api/security/permissions/populateCaches

Permission Target 'remoteCachePopulation' has been removed successfully.

Effective Item Permissions

Description: Returns a list of effective permissions for the specified item (file or folder).
Only users and groups with some permissions on the item are returned. Supported by local and local-cached repositories.
Permissions are returned according to the following conventions:
m=admin; d=delete; w=deploy; n=annotate; r=read

: Requires Artifactory ProNotes
: 2.3.4Since

: Requires a valid admin or local admin user.Security
: GET /api/storage/{repoKey}/{itemPath}?permissionsUsage

: application/vnd.org.jfrog.artifactory.storage.ItemPermissions+jsonProduces
:Sample Output

GET /api/storage/libs-release-local/org/acme?permissions
{
"uri":
"http://localhost:8081/artifactory/api/storage/libs-release-local/org/acme"
"principals": {
 "users" : {
 "bob": ["r","w","m"],
 "alice" : ["d","w","n", "r"]
 },
 "groups" : {
 "dev-leads" : ["m","r","n"],
 "readers" : ["r"]
 }
 }
}

Security Configuration

Description: Retrieve the security configuration (security.xml).
: 2.2.0Since
: This is an advanced feature - make sure the new configuration is really what you wanted before saving.Notes

: Requires a valid admin userSecurity
: GET /api/system/securityUsage

: application/xmlProduces
:Sample Output

GET /api/system/security

<security.xml/>

Save Security Configuration (Deprecated)

Description: Save the security configuration (security.xml). Requires the security.xml file from the same version.
: 2.2.0Since
: This API is .Notes deprecated

: Requires a valid admin userSecurity
: POST /api/system/securityUsage

: application/xmlConsumes
:Sample Usage

POST /api/system/security

<security.xml/>

Activate Master Key Encryption

Description: Creates a new master key and activates master key encryption.
: 3.2.2Since
: This is an advanced feature intended for administratorsNotes

: Requires a valid admin userSecurity
: POST /api/system/encryptUsage

: text/plainProduces
:Sample Usage

POST /api/system/encrypt

DONE

Deactivate Master Key Encryption

Description: Removes the current master key and deactivates master key encryption.
: 3.2.2Since
: This is an advanced feature intended for administratorsNotes

: Requires a valid admin userSecurity
: POST /api/system/decryptUsage

: text/plainProduces
:Sample Usage

POST /api/system/decrypt

DONE

Set GPG Public Key

Description: Sets the public key that Artifactory provides to Debian and Opkg clients to verify packages
: Requires a valid admin userSecurity

: PUT /api/gpg/key/publicUsage
: text/plainProduces

3.3: Since
Sample Usage:

PUT /api/gpg/key/public

Get GPG Public Key

Description: Gets the public key that Artifactory provides to Debian and Opkg clients to verify packages
Requires an authenticated user, or anonymous (if "Anonymous Access" is globally enabled) : Security

Usage: GET /api/gpg/key/public
Produces: text/plain

: Since 3.3
Sample Usage:

GET /api/gpg/key/public

Set GPG Private Key

Description: Sets the private key that Artifactory will use to sign Debian and ipk packages
Requires a valid admin user: Security

Usage: PUT /api/gpg/key/private
Produces: text/plain

: Since 3.3
Sample Usage:

PUT /api/gpg/key/private

Set GPG Pass Phrase

Description: Sets the pass phrase required signing Debian and ipk packages using the private key
Requires a valid admin user: Security

: PUT /api/gpg/key/passphraseUsage
 Headers: -H X-GPG-PASSPHRASE:passphrase

Produces: text/plain
: Since 3.3

Sample Usage:

PUT /api/gpg/key/passphrase

Create Token

Description: Creates an access token
: 5.0.0Since

: Requires a valid userSecurity
: POST /api/security/tokenUsage

Content-Type: application/x-www-form-urlencoded

Produces: application/json

{
 "access_token": "<the access token>",
 "expires_in": <Validity period in seconds>,
 "scope": "<access scope>",
 "token_type": "Bearer",
 "refresh_token": "<the refresh token if access_token is refreshable>"
}

Sample Usage:

curl -uadmin:password -XPOST
"http://localhost:8081/artifactory/api/security/token" -d "username=johnq"
-d "scope=member-of-groups:readers"

200
{
 "access_token": "adsdgbtybbeeyh...",
 "expires_in": 3600,
 "scope": "api:* member-of-groups:readers",
 "token_type": "Bearer",
 "refresh_token": "fgsfgsdugh8dgu9s8gy9hsg..."
}

This endpoint takes the following parameters:

grant_type

[Optional, default: "client_credentials"]

The grant type used to authenticate the request. In this case, the only value supported is "client_credentials" which is also the
default value if this parameter is not specified.

username

The user name for which this token is created. If the user does not exist, a transient user is created. Non-admin users can only
create tokens for themselves so they must specify their own username.

If the user does not exist, the scope token must be provided (e.g. member-of-groups member-of-groups: g1, g2,
)g3...

scope

[Optional if the user specified in exists]username

The scope to assign to the token provided as a space-separated list of scope tokens. Currently there are three possible scope
tokens:

"api:*" - indicates that the token grants access to REST API calls. This is always granted by default whether specified in the
call or not.
member-of-groups:[<group-name>] - indicates the groups that the token is associated with (e.g. member-of-groups:

. The token grants access according to the permission targets specified for the groups listed.g1, g2, g3...)
Specify "*" for group-name to indicate that the token should provide the same access privileges that are given to the group
of which the logged in user is a member.
A non-admin user can only provide a scope that is a subset of the groups to which he belongs
"jfrt@<instance-id>:admin" - provides admin privileges on the specified Artifactory instance. This is only available for
administrators.

If omitted and the username specified exists, the token is granted the scope of that user.

expires_in

[Optional, default: 3600]

The time in seconds for which the token will be valid. To specify a token that never expires, set to zero. Non-admin can only set
a value that is equal to or less than the default 3600.

refreshable

[Optional, default: false]

If true, this token is refreshable and the refresh token can be used to replace it with a new token once it expires.

audience

[Optional, default: Only the service ID of the Artifactory instance that created the token]

A space-separate list of the other Artifactory instances or services that should accept this token identified by their Artifactory
Service IDs as obtained from the endpoint.Get Service ID

In case you want the token to be accepted by all Artifactory instances you may use the following audience parameter
"audience=jfrt@*".

Refresh Token

Description: Refresh an access token to extend its validity. If only the access token and the refresh token are provided (and no other
parameters), this pair is used for authentication. If username or any other parameter is provided, then the request must be authenticated by a
token that grants admin permissions.

: 5.0.0Since
: Requires a valid user (unless both access token and refresh token are provided)Security

Usage: POST /api/security/token

Content-Type: application/x-www-form-urlencoded

Produces: application/json (Please refer to Create Token)

Sample Usage:

curl -XPOST "http://localhost:8081/artifactory/api/security/token" -d
"grant_type=refresh_token" -d "refresh_token=fgsg53t3g…" -d
"access_token=gsfdgw35gt..."

200 (Success) As in Create Token

400 (Error) If the token was created by a different Artifactory instance
(and hence cannot be refreshed)

This endpoint takes the following parameters:

grant_type

Should be set to .refresh_token

refresh_token

The refresh token of the access token that needs to be refreshed.

access_token

The access token to refresh.

username

Please refer to .Create Token

Note: and are mutually exclusive, so only one of these parameters should be specified.access_token username

If is provided, the new token is created with the same settings as that token.access_token

scope

expires_in

refreshable

audience

Revoke Token

Description: Revoke an access token
: 5.0.0Since

: Requires a valid userSecurity
Usage: POST /api/security/token/revoke
Content-Type: application/x-www-form-urlencoded

: application/json Produces
Sample Usage:

curl -uadmin:password -XPOST
"http://localhost:8081/artifactory/api/security/token/revoke" -d
"token=fasdt3..."

200 OK (Also returned if the token was already revoked or non-existent)

400 (Error) If the token was created by a different Artifactory instance
(and hence cannot be revoked)

This endpoint takes the following parameters:

token

The token to be revoked

Get Service ID

Description: Provides the service ID of an Artifactory instance or cluster. Up to version 5.5.1, the Artiafctory service ID is formatted jf-artifac
. From version 5.5.2 the service ID is formatted tory@<id> jfrt@<id>.

: 5.0.0Since
: Requires an admin userSecurity

Usage: GET /api/system/service_id
: text/plainProduces

Sample Usage:

curl -uadmin:password -XGET
"http://localhost:8081/artifactory/api/system/service_id"

200
jfrt@ee27b1d1-534d-4723-80b5-5bd893d19c43

Get Certificates

: Returns a list of Description installed SSL certificates.

:5.4.0Since

: Requires an admin user Security

: Usage GET /api/system/security/certificates

: Produces application/json

[
 {
 "certificateAlias" : "<The Certificate Alias>",
 "issuedTo" : "<The entity to whom the certificate was issued>",
 "issuedBy" : "<The issuing entity>",
 "issuedOn" : "<ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ)>",
 "validUntil" : "<ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ)>",
 "fingerPrint" : "<The certificate's SHA256 fingerprint>"
 }
]

:Sample Usage

GET /api/system/security/certificates

[
 {
 "certificateAlias" : "example1",
 "issuedTo" : "JFrog",
 "issuedBy" : "Some_CA",
 "issuedOn" : "Sun May 01 2017 10:00:00 GMT +02:00 (UTC)",
 "validUntil" : "Sun May 01 2019 10:00:00 GMT +02:00 (UTC)",
 "fingerPrint" : "ab:cd:ef:gh"
 },
 {
 "certificateAlias" : "example2",
 "issuedTo" : "Cool-Company",
 "issuedBy" : "Some_Other_CA",
 "issuedOn" : "Sun May 01 2017 10:00:00 GMT +02:00 (UTC)",
 "validUntil" : "Sun May 01 2019 10:00:00 GMT +02:00 (UTC)",
 "fingerPrint" : "ab:cd:ef:gh"
 }
]

Add Certificate

: Adds an Description SSL certificate.
:5.4.0Since

: Requires an admin user Security
: Usage POST /api/system/security/certificates/{Certificate_alias} -T {Certificate PEM file}

: Consumes application/text

Produces: application/json

{ "status" : 200,
 "message" : ["The certificates were successfully installed"]
}

Delete Certificate

Description: Deletes an SSL certificate.
:5.4.0Since

: Requires an admin user Security
: Usage DELETE /api/system/security/certificates/{Certificate_alias}

: Produces application/json
Sample Usage:

DELETE /api/security/certificates/cert1

Response:
{
 "status" : 200,
 "message" : "The certificates were successfully deleted"
}

REPOSITORIES

Get Repositories

Description: Returns a list of minimal repository details for all repositories of the specified type.
: 2.2.0Since

: Requires a privileged user (can be anonymous)Security
: GET /api/repositories[?type=repositoryType (local|remote|virtual|distribution)]Usage

: application/vnd.org.jfrog.artifactory.repositories.RepositoryDetailsList+jsonProduces

Sample Output:

GET /api/repositories
[
 {
 "key" : "libs-releases-local",
 "type" : "LOCAL",
 "description" : "Local repository for in-house libraries",
 "url" : "http://localhost:8081/artifactory/libs-releases-local"
 }, {
 "key" : "libs-snapshots-local",
 "type" : "LOCAL",
 "description" : "Local repository for in-house snapshots",
 "url" : "http://localhost:8081/artifactory/libs-snapshots-local"
 }
]

Repository Configuration

Description: Retrieves the current configuration of a repository. Supported by local, remote and virtual repositories.
: 2.3.0Since
: Requires Artifactory ProNotes

: Requires an admin user for complete repository configuration. Non-admin users will receive only partial configuration data.Security
: GET /api/repositories/{repoKey}Usage

: , Produces application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json application/vnd.org.jfrog.artifactory.repositories.R
,emoteRepositoryConfiguration+json

application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json

https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json

Sample Output:

GET /api/repositories/libs-release-local
{
repository-config.json
}

Create Repository

Description: Creates a new repository in Artifactory with the provided configuration. Supported by local, remote and virtual repositories.
: 2.3.0Since
: Requires Artifactory ProNotes

An existing repository with the same key are removed from the configuration and its content is removed!
Missing values are set to the default values as defined by the consumed type spec.

: Requires an admin userSecurity
: PUT /api/repositories/{repoKey}Usage

: , Consumes application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json application/vnd.org.jfrog.artifactory.repositories.
, RemoteRepositoryConfiguration+json

application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json
:Sample Usage

PUT /api/repositories/libs-release-local
{
repository-config.json
}

Update Repository Configuration

Description: Updates an exiting repository configuration in Artifactory with the provided configuration elements. Supported by local, remote and
virtual repositories.

: 2.3.0Since
: Requires Artifactory ProNotes

The class of a repository (the attribute cannot be updated.rclass
: Requires an admin userSecurity

: POST /api/repositories/{repoKey} -H "Content-Type: application/json"Usage
: , Consumes application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json application/vnd.org.jfrog.artifactory.repositories.

, RemoteRepositoryConfiguration+json
application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json

:Sample Usage

POST /api/repositories/libs-release-local -H "Content-Type:
application/json"
{
repository-config.json
}

Delete Repository

Description: Removes a repository configuration together with the whole repository content. Supported by local, remote and virtual repositories.
: 2.3.0Since
: Requires Artifactory ProNotes

: Requires an admin userSecurity
: DELETE /api/repositories/{repoKey}Usage

: application/textProduces
:Sample Usage

https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json
https://www.jfrog.com/confluence/display/RTF/Repository+Configuration+JSON#RepositoryConfigurationJSON-application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json

DELETE /api/repositories/libs-release-local

Repository 'libs-release-local' and all its content have been removed
successfully.

Remote Repository Configuration (Deprecated)

Description: Repository Configuration (Deprecated)
Gets the shared configuration of a remote repository.

: 2.2.0Since
: This API is . Use the Get Repository Configuration API instead.Notes deprecated

: Requires a valid user for a shared remote repository and admin user for anything else. Shared remote repository data will be sanitizedSecurity
for security when non-admin user is used.

: GET /api/repositories/{remoteRepoName}/configurationUsage
: application/vnd.org.jfrog.artifactory.repositories.SharedRemoteRepositoryConfiguration+jsonProduces

:Sample Output

GET /api/repositories/remote-repo/configuration
{
repository-config.json
}

Calculate YUM Repository Metadata

Description: For Local repositories: calculates/recalculates the YUM metdata for this repository, based on the RPM package currently hosted in
the repository. Supported by local and virtual repositories only.
Calculation can be synchronous (the default) or asynchronous.
For Virtual repositories, calculates the merged metadata from all aggregated repositories on the specified path. The parameter must bepath
passed for virtual calculation.
Please see the documentation for more details.YUM integration

Notes: Requires Artifactory Pro. Immediate calculation requests cannot be called on repositories with automatic asynchronous calculations
enabled (applies to local repositories only). The parameter applies to virtual repositories only. path

: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security
Delete/Overwrite + Deploy/Cache + Annotate + Read).

: POST /api/yum/{repoKey}[?path={path to repodata dir][&async=0/1]Usage
 Headers (Optionally): -H X-GPG-PASSPHRASE:passphrase

: application/textProduces
: 2.3.5Since

:Sample Output

POST /api/yum/yum-local?async=1
POST /api/yum/yum-virtual?path=7/os/x86_64&async=1

YUM metadata calculation for repository 'yum-local' accepted.

Calculate NuGet Repository Metadata

Description: Recalculates all the NuGet packages for this repository (local/cache/virtual), and re-annotate the NuGet properties for each NuGet
package according to it's internal nuspec file.
Please see the documentation for more details.NuGet integration
Supported by local, local-cache, remote and virtual repositories.

: Requires Artifactory Pro.Notes
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).

: POST /api/nuget/{repoKey}/reindexUsage
: application/textProduces

: 3.0.3Since
:Sample Output

POST /api/nuget/nuget-local/reindex

NuGet reindex calculation for repository 'nuget-local' accepted.

Calculate Npm Repository Metadata

Description: Recalculates the npm search index for this repository (local/virtual). Please see the documentation for moreNpm integration
details. Supported by local and virtual repositories.

: Requires Artifactory Pro.Notes
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).
: POST /api/npm/{repoKey}/reindexUsage

: application/textProduces
: 3.2.0Since

:Sample Output

POST /api/npm/npm-local/reindex

Recalculating index for npm repository npm-local scheduled to run

Calculate Maven Index

Description: Calculates/caches a Maven index for the specified repositories.
For a virtual repository specify all underlying repositories that you want the aggregated index to include.
Calculation can be forced, which for remote repositories will cause downloading of a remote index even if a locally cached index has not yet
expired; and index recalculation based on the cache on any failure to download the remote index, including communication errors (the default
behavior is to only use the cache when a remote index cannot be found and returns a 404). Forcing has no effect on local repositories index
calculation.
Please see the documentation for more details.Exposing Maven Indexes

: Requires Artifactory Pro.Notes
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).
: POST /api/maven[?repos=x[,y]][&force=0/1]Usage

: application/textProduces
: 2.5.0Since

:Sample Output

POST /api/maven?repos=libs-release-local,ext-release-local&force=1

Maven index refresh for repositories '[libs-release-local,
ext-release-local]' has been accepted.

Calculate Maven Metadata

Description: Calculates Maven metadata on the specified path (local repositories only).
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).
: POST /api/maven/calculateMetadata/{repoKey}/{folder-path}?{nonRecursive=true | false}Usage

: application/textProduces
: 3.0.2Since

:Sample Output

http://www.jfrog.com/confluence/display/RTF/Npm+Repositories#NpmRepositories-NpmSearch

POST /api/maven/calculateMetadata/libs-release-local/org/acme
OK

Calculate Debian Repository Metadata

Description: Calculates/recalculates the Packages and Release metadata for this repository,based on the Debian packages in it.
Calculation can be synchronous (the default) or asynchronous. Please refer to for more details. Debian Repositories Supported by local
repositories only.
From version 4.4, by default, the recalculation process also writes several entries from the Debian package's metadata as properties on all of the
artifacts (based on the control file's content).
This operation may not always be required (for example, if the Debian files are intact and were not modified, only the index needs to be
recalculated. The operation is resource intensive and can be disabled by passing the query param. ?writeProps=0

: Requires Artifactory Pro. Notes
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).
: POST api/deb/reindex/{repoKey} [?async=0/1][?writeProps=0/1]Usage

 Headers (Optionally): -H X-GPG-PASSPHRASE:passphrase
: application/textProduces

: 3.3Since
:Sample Output

POST /api/deb/reindex/debian-local

Recalculating index for Debian repository debian-local scheduled to run.

Calculate Opkg Repository Metadata

Description: Calculates/recalculates the Packages and Release metadata for this repository,based on the ipk packages in it (in each feed
location).
Calculation can be synchronous (the default) or asynchronous. Please refer to for more details. Supported by local repositoriesOpkg Repositories
only.
By default, the recalculation process also writes several entries from the ipk package's metadata as properties on all of the artifacts (based on the
control file's content).
This operation may not always be required (for example, if the ipk files are intact and were not modified, only the index needs to be recalculated.
The operation is resource intensive and can be disabled by passing the query param. ?writeProps=0

: Requires Artifactory Pro. Notes
: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security

Delete/Overwrite + Deploy/Cache + Annotate + Read).
: POST api/opkg/reindex/{repoKey} [?async=0/1][?writeProps=0/1]Usage

 Headers (Optionally): -H X-GPG-PASSPHRASE:passphrase
: application/textProduces

: 4.4Since
:Sample Output

POST /api/opkg/reindex/opkg-local

Recalculating index for Opkg repository opkg-local scheduled to run.

Calculate Bower Index

Description: Recalculates the index for a Bower repository.
: Requires Artifactory Pro. Notes

: Up to version 4.8 , requires a valid admin user. From version 4.8 only requires the set of permissions assumed by Manage (Manage +Security
Delete/Overwrite + Deploy/Cache + Annotate + Read).

: POST api/bower/{repoKey}/reindexUsage
: application/textProduces

: 3.6.0Since
:Sample Output

POST /api/bower/bower-local/reindex

Bower index for refresh for bower-local has been accepted

SYSTEM & CONFIGURATION

System Info

Description: System Info
Get general system information.

: 2.2.0Since
: Requires a valid admin userSecurity

: GET /api/systemUsage
: text/plainProduces

:Sample Output

GET /api/system

system info output text

System Health Ping

Description: Get a simple status response about the state of Artifactory
Returns 200 code with an 'OK' text if Artifactory is working properly, if not will return an HTTP error code with a reason.

: 2.3.0Since
: Requires a valid user (can be anonymous). If artifactory.ping.allowUnauthenticated=true is set in artifactory.system.properties, then noSecurity

authentication is required even if anonymous access is disabled.
: GET /api/system/pingUsage

: text/plainProduces
:Sample Output

GET /api/system/ping
OK

Verify Connection

Description: Verifies a two-way connection between Artifactory and another product
Returns Success (200) if Artifactory receives a similar success code (200) from the provided endpoint. See possible error codes below.

: 4.15.0Since
: Requires an admin user.Security

: POST/api/system/verifyconnectionUsage
application/jsonConsumes:

POST /api/system/verifyconnection
{
 + "endpoint" : "<The URL that Artifactory should connect to>",
 - "username" : "<Username to be used for the connection test>",
 - "password" : "<Password to be used for the connection test>"
}

Produces: application/json

Upon success (200):
200 Successfully connected to endpoint

Upon error, returns 400 along with a JSON object that contains the error
returned from the other system.

Sample Output:

{
 "errors" : [{
 "status" : 400,
 "message" : "Received error from endpoint url: HTTP 404: Page not
found"
 }]
}

General Configuration

Description: Get the general configuration (artifactory.config.xml).
: 2.2.0Since

: Requires a valid admin userSecurity
: GET /api/system/configurationUsage

: application/xml ()Produces http://www.jfrog.org/xsd/artifactory-v1_7_3.xsd
:Sample Output

GET /api/system/configuration

<artifactory.config.xml/>

Save General Configuration

Description: Save the general configuration (artifactory.config.xml).
: 2.2.0Since
: This is an advanced feature - make sure the new configuration is really what you wanted before saving.Notes

: Requires a valid admin userSecurity
: POST /api/system/configurationUsage

: application/xml ()Consumes http://www.jfrog.org/xsd/artifactory-v1_7_3.xsd
:Sample Usage

http://www.jfrog.org/xsd/artifactory-v1_7_3.xsd
http://www.jfrog.org/xsd/artifactory-v1_7_3.xsd

POST /api/system/configuration

<artifactory.config.xml/>

Update Custom URL Base

Description: Changes the Custom URL base
: 3.9.0Since

: Requires a valid admin userSecurity
: PUT /api/system/configuration/baseUrlUsage

curl -X PUT " " -d ' 'Example: http://localhost:8081/artifactory/api/system/configuration/baseUrl https://mycompany.com:444/artifactory
-uadmin:password -H "Content-type: text/plain"

:Sample Output

URL base has been successfully updated to
"https://mycompany.com:444/artifactory".

License Information

Description: Retrieve information about the currently installed license.
: 3.3.0Since

: Requires a valid admin userSecurity
: GET /api/system/licenseUsage

: Produces application/json
:Sample Output

GET /api/system/license
{
 "type" : "Commercial",
 "validThrough" : "May 15, 2014",
 "licensedTo" : "JFrog inc."
}

Install License

Description: Install new license key or change the current one.
: 3.3.0Since

: Requires a valid admin userSecurity
: POST /api/system/licenseUsage

: Produces application/json
: (Consumes application/json { "licenseKey": "your supplied license key ..." })

:Sample Output

POST /api/system/license
{
 "status" : 200,
 "message" : "The license has been successfully installed."
}

HA License Information

Description: Retrieve information about the currently installed licenses in an HA cluster.
: 5.0.0Since

: Requires a valid admin userSecurity
: GET /api/system/licensesUsage

: Produces application/json

http://localhost:8080/artifactory/api/build
https://mycompany.com:444/artifactory

[{
 "type" : "Enterprise",
 "validThrough" : "<validity date formatted MMM DD, YYYY>",
 "licensedTo" : "<Company name>",
 "licenseHash" : "<license hash code>",
 "nodeId" : "<Node ID of the node activated with this license | Not in
use>",
 "nodeUrl" : "<URL of the node activated with this license | Not in
use>",
 "expired" : <true | false>
}]

Sample Output:

GET /api/system/licenses

[{
 "type" : "Enterprise",
 "validThrough" : "May 15, 2018",
 "licensedTo" : "JFrog",
 "licenseHash" : "179b7ea384d0c4655a00dfac7285a21d986a17923",
 "nodeId" : "art1",
 "nodeUrl" : "http://10.1.16.83:8091/artifactory",
 "expired" : false
}, {
 "type" : "Enterprise",
 "validThrough" : "May 15, 2018",
 "licensedTo" : "JFrog",
 "licenseHash" : "e10b8aa1d1dc5107439ce43debc6e65dfeb71afd3",
 "nodeId" : "Not in use",
 "nodeUrl" : "Not in use",
 "expired" : false
}]

Install HA Cluster Licenses

Description: Install a new license key(s) on an HA cluster.
: 5.0.0Since

: Requires an admin userSecurity
: POST /api/system/licensesUsage

: Consumes application/json

[{
 "licenseKey": "<License key>"
}]

Produces: application/json

{
 "status" : 200,
 "messages" : {
 ["<License key>" : "<status message>"]
 }

Sample Usage:

POST /api/system/licenses
[
 {
 "licenseKey": "tL9r2Y...lDBiktbbt"
 },
 {
 "licenseKey": DiYgVA...P7nvyNI7q"
 }
]

Response:
{
 "status" : 200,
 "messages" : {
 "tL9r2Y...lDBiktbbt" : "OK",
 "DiYgVA...P7nvyNI7q" : "OK",
}

Delete HA Cluster License

Description: Deletes a license key from an HA cluster.
: 5.0.0Since

: Requires an admin userSecurity
: DELETE /api/system/licenses?licenseHash=licenseHash1, licenseHash2...Usage

: Produces application/json

{
 "status" : 200,
 "messages" : {["<License hash code>" : "<status message>"]}
}

 Sample Usage:

DELETE /api/system/licenses?licenseHash=tL9r2YlDBiktbbt, DiYgVAP7nvyNI7q

Response:
{
 "status" : 200,
 "messages" : {
 "tL9r2YlDBiktbbt" : "OK",
 "DiYgVAP7nvyNI7q" : "OK"
 }
}

Version and Add-ons information

Description: Retrieve information about the current Artifactory version, revision, and currently installed Add-ons
: 2.2.2Since

: Requires a valid user (can be anonymous)Security
: GET /api/system/versionUsage

: Produces application/vnd.org.jfrog.artifactory.system.Version+json
:Sample Output

GET /api/system/version
{
 "version" : "2.2.2",
 "revision" : "10427",
 "addons" : ["build", "ldap", "properties", "rest", "search", "sso",
"watch", "webstart"]
}

Get Reverse Proxy Configuration

Description: Retrieves the reverse proxy configuration
: 4.3.1Since

: Requires a valid admin userSecurity
: Usage GET /api/system/configuration/webServer

: application/jsonProduces
:Sample Output

https://www.jfrog.com/confluence/display/RTF/System+Settings+JSON#SystemSettingsJSON-application/vnd.org.jfrog.artifactory.system.Version+json

GET /api/system/configuration/webServer

{
 "key" : "nginx",
 "webServerType" : "NGINX",
 "artifactoryAppContext" : "artifactory",
 "publicAppContext" : "artifactory",
 "serverName" : "jfrog.com",
 "serverNameExpression" : "*.jfrog.com",
 "artifactoryServerName" : "localhost",
 "artifactoryPort" : 8081,
 "sslCertificate" : "/etc/ssl/myKey.cert",
 "sslKey" : "/etc/ssl/myKey.key",
 "dockerReverseProxyMethod" : "SUBDOMAIN",
 "useHttps" : true,
 "useHttp" : true,
 "sslPort" : 443,
 "httpPort" : 76
}

Update Reverse Proxy Configuration

Description: Updates the reverse proxy configuration
: 4.3.1Since

: Requires an admin userSecurity
: POST Usage /api/system/configuration/webServer

application/json: Consumes
Sample Usage:

POST /api/system/configuration/webServer
{
 "key" : "nginx",
 "webServerType" : "NGINX",
 "artifactoryAppContext" : "artifactory",
 "publicAppContext" : "artifactory",
 "serverName" : "jfrog.com",
 "serverNameExpression" : "*.jfrog.com",
 "artifactoryServerName" : "localhost",
 "artifactoryPort" : 8081,
 "sslCertificate" : "/etc/ssl/myKey.cert",
 "sslKey" : "/etc/ssl/myKey.key",
 "dockerReverseProxyMethod" : "SUBDOMAIN",
 "useHttps" : true,
 "useHttp" : true,
 "sslPort" : 443,
 "httpPort" : 76
}

Get Reverse Proxy Snippet

Description: Gets the reverse proxy configuration snippet in text format
: 4.3.1Since

: Requires a valid user (not anonymous)Security
: GET Usage /api/system/configuration/reverseProxy/nginx

text/plain: Produces
Sample Usage:

GET /api/system/configuration/reverseProxy/nginx

add ssl entries when https has been set in config
ssl_certificate /etc/ssl/myKey.cert;
ssl_certificate_key /etc/ssl/myKey.key;
ssl_session_cache shared:SSL:1m;
ssl_prefer_server_ciphers on;
server configuration
server {
 listen 443 ssl;
 listen 76 ;
 server_name ~(?<repo>.+)\.jfrog.com jfrog.com;

 if ($http_x_forwarded_proto = '') {
 set $http_x_forwarded_proto $scheme;
 }
 ## Application specific logs
 ## access_log /var/log/nginx/jfrog.com-access.log timing;
 ## error_log /var/log/nginx/jfrog.com-error.log;
 rewrite ^/$ /artifactory/webapp/ redirect;
 rewrite ^/artifactory$ /artifactory/webapp/ redirect;
}

Create Bootstrap Bundle

Description: This rest is relevant for High Availability set up. It will create a bootstrap bundle on the primary node of an Artifactory HA installation
that will include all the relevant keys so a new node can access the database and fetch all the relevant configuration files. The same bundle must
be installed on all nodes during an installation of new nodes or if upgrading from a version older than 5.0. For more details, please refer to Installin

. g Artifactory HA
: 5.0.0Since

Requires an admin user: Security
: POST /api/system/bootstrap_bundleUsage

: application/jsonProduces

{
 "file" : "<Location on primary node where bootstrap bundle was created>"
}

Sample usage:

POST /api/system/bootstrap_bundle

{
 "file" : "/opt/jfrog/artifactory/etc/bootstrap.bundle.tar.gz"
}

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-InstallingArtifactoryHA
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-InstallingArtifactoryHA

PLUGINS

Execute Plugin Code

Description: Executes a named execution closure found in the section of a .executions user plugin
Execution can take parameters and be synchronous (the default) or asynchronous.

When parameters can have multiple values, you can separate the items in one of the following ways:

Use a semicolon - ; (recommended)
Use the encoding for the pipe ("|") character - %7C
Alternatively, you may configure your NGINX to encode URLs so that if an unencoded pipe is used in the URL, NGINX will encode it to
%7C. We recommend that you verify that this configuration does not break any other systems served by NGINX

Since: 2.3.1
: Requires Artifactory ProNotes

: Requires an authenticated user (the plugin can control which users/groups are allowed to trigger it)Security
: POST /api/plugins/execute/{executionName}?[params=p1=v1[,v2][|p2=v3][&async=1]]Usage

: text/plainProduces
:Sample Output

POST
/api/plugins/execute/cleanup?params=suffix=SNAPSHOT;types=jar,war,zip&asyn
c=1
OK

Retrieve Plugin Code

Description: Retrieves the source code of the specified user plugin.
: 5.0.0Since
: Requires Artifactory ProNotes

: Requires an admin user.Security
: GET /api/plugins/download/{pluginName}Usage

: Produces text/x-groovy-source
Sample Usage

GET /api/plugins/download/myPlugin

Response:
<The source code of the plugin>

Retrieve Plugin Info

Description: Retrieves information for and plugins (subject to the permissions of the provided credentials).user plugin Executions Staging
: 2.5.2Since
: Requires Artifactory ProNotes

: Requires an authenticated user.Security
: GET /api/pluginsUsage

: application/jsonProduces
:Sample Output

GET /api/plugins
{
 "executions": [
 {
 "name": "execution1",
 "version": "version",
 "description": "description",
 "users": ["user1"],
 "groups": ["group1", "group2"],
 "params": {}
 }
],
 "staging": [
 {
 "name": "strategy1",
 "version": "1.0",
 "description": "desc",
 "params": {"key1": "val1"}
 }
]
}

Retrieve Plugin Info Of A Certain Type

Description: Retrieves all available information (subject to the permissions of the provided credentials) of the specified type.user plugin
: 2.5.2Since
: Requires Artifactory ProNotes

: Requires an authenticated user.Security
: GET /api/plugins/{pluginType}Usage

: application/jsonProduces
:Sample Output

GET /api/plugins/staging
{
 "staging": [
 {
 "name": "strategy1",
 "version": "1.0",
 "description": "desc",
 "params": {"key1": "val1"}
 }
]
}

Retrieve Build Staging Strategy

Description: Retrieves a build staging strategy defined by a .user plugin
When passing in parameters that may take multiple values, you can separate the items in one of the following ways:

Use a semicolon - ; (recommended)
Use the encoding for the pipe ("|") character - %7C

Alternatively, you may configure your NGINX to encode URLs so that if an unencoded pipe is used in the URL, NGINX will encode it to
%7C. We recommend that you verify that this configuration does not break any other systems served by NGINX

Since: 2.5.2
: Requires Artifactory ProNotes

: Requires an authenticated user.Security
: GET /api/plugins/build/staging/{strategyName}?buildName={buildName}&[params=p1=v1[,v2][|p2=v3]]Usage

: application/vnd.org.jfrog.plugins.BuildStagingStrategyProduces
:Sample Output

GET
/api/plugins/build/staging/strategy1?buildName=build1¶ms=types=jar,war
,zip
{
 "defaultModuleVersion":
 {
 "moduleId": "moduleId",
 "nextRelease": "nextRelease",
 "nextDevelopment": "nextDevelopment"
 },
 "vcsConfig":
 {
 "useReleaseBranch": true,
 "releaseBranchName": "branchName",
 "createTag": true,
 "tagUrlOrName": "tagUrl",
 "tagComment": "comment",
 "nextDevelopmentVersionComment": "comment"
 },
 "promotionConfig":
 {
 "targetRepository": "repoKey",
 "comment": "comment",
 "status": "statusName"
 }
}

Execute Build Promotion

Description: Executes a named promotion closure found in the section of a .promotions user plugin
: 2.5.2Since
: Requires Artifactory ProNotes

: Requires an authenticated user.Security
: POST /api/plugins/build/promote/{promotionName}/{buildName}/{buildNumber}?[params=p1=v1[,v2][|p2=v3]]Usage

: text/plainProduces
:Sample Output

POST
/api/plugins/build/promote/promotion1/build1/3?params=types=jar,war,zip
OK

Reload Plugins

Description: Reloads user plugins if there are modifications since the last user plugins reload. Works regardless of the automatic user plugins

refresh interval.
: 2.9.0Since
: Requires Artifactory ProNotes

: Requires a valid admin userSecurity
: POST /api/plugins/reloadUsage

: text/plainProduces
:Sample Output

POST /api/plugins/reload
Successfully loaded: myplugin1.groovy, myplugin2.groovy

IMPORT & EXPORT

Import Repository Content

Description: Import one or more repositories.
: 2.2.2Since

: Requires a valid admin userSecurity
: POST: /api/import/repositoriesUsage

Requests Params:
path - The file system path to import from. This may point to a specific folder to import data for a single repository, or to the parent "repositories"
folder to import data for all repositories.
repo - Empty/null repo -> all
metadata - Include metadata - default 1
verbose - Verbose - default 0

: text/plainProduces
:Sample Output

POST: /api/import/repositories?path=pathToRepos&verbose=1

Import System Settings Example

Description: Returned default Import Settings JSON.
: 2.4.0Since

: Requires a valid admin userSecurity
: GET: /api/import/systemUsage

: Produces application/vnd.org.jfrog.artifactory.system.ImportSettings+json
:Sample Usage

GET /api/import/system
{
 "importPath" : "/import/path",
 "includeMetadata" : true,
 "verbose" : false,
 "failOnError" : true,
 "failIfEmpty" : true
}

Full System Import

Description: Import full system from a server local Artifactory export directory.
: 2.4.0Since

https://www.jfrog.com/confluence/display/RTF/System+Settings+JSON#SystemSettingsJSON-application/vnd.org.jfrog.artifactory.system.ImportSettings+json

: Requires a valid admin userSecurity
: POST: /api/import/systemUsage

 : Consumes application/vnd.org.jfrog.artifactory.system.ImportSettings+json
: text/plainProduces

:Sample Usage

POST /api/import/system
{
import-settings.json
}

Export System Settings Example

Description: Returned default Export Settings JSON.
: 2.4.0Since

: Requires a valid admin userSecurity
: GET: /api/export/systemUsage

: Produces application/vnd.org.jfrog.artifactory.system.ExportSettings+json
:Sample Usage

GET /api/export/system
{
 "exportPath" : "/export/path",
 "includeMetadata" : true,
 "createArchive" : false,
 "bypassFiltering" : false,
 "verbose" : false,
 "failOnError" : true,
 "failIfEmpty" : true,
 "m2" : false,
 "incremental" : false,
 "excludeContent" : false
}

Export System

Description: Export full system to a server local directory.
: 2.4.0Since

: Requires a valid admin userSecurity
: POST: /api/export/systemUsage

 : Consumes application/vnd.org.jfrog.artifactory.system.ExportSettings+json, application/json
: text/plainProduces

:Sample Usage

POST /api/export/system{ export-settings.json }

SUPPORT

Create Bundle

Description: Create a new support bundle.
 4.3.0Since:

https://www.jfrog.com/confluence/display/RTF/System+Settings+JSON#SystemSettingsJSON-application/vnd.org.jfrog.artifactory.system.ImportSettings+json
https://www.jfrog.com/confluence/display/RTF/System+Settings+JSON#SystemSettingsJSON-application/vnd.org.jfrog.artifactory.system.ExportSettings+json
https://www.jfrog.com/confluence/display/RTF/System+Settings+JSON#SystemSettingsJSON-application/vnd.org.jfrog.artifactory.system.ExportSettings+json

Requires an admin userSecurity:
: All bundle items are optional.Notes
: POST /api/support/bundles/Usage

:Sample Usage

POST /api/support/bundles
{
 - "systemLogsConfiguration" : {
 "enabled" : true,(default)
 "startDate" : {date-in-millis},
 "endDate" : {date-in-millis}
 },
- "systemInfoConfiguration" : {
 "enabled" : true (default)
 },
- "securityInfoConfiguration" : {
 "enabled" : true, (default)
 "hideUserDetails" : true (default)
 },
- "configDescriptorConfiguration" : {
 "enabled" : true, (default)
 "hideUserDetails" : true (default)
 },
- "configFilesConfiguration" : {
 "enabled" : true (default),
 "hideUserDetails" : true (default)
 },
- "storageSummaryConfiguration" : {
 "enabled" : true (default)
 },
- "threadDumpConfiguration" : {
 "enabled" : true, (default)
 "count" : {amount-of-dumps}, (1 is default)
 "interval" : {interval in millis} (0 is default)
 }
}

NOTE: systemLogsConfiguration parameter can also be expressed as number of
days as follows:
...
 - "systemLogsConfiguration" : {
 "enabled" : true,(default)
 "daysCount" : {number-of-days}
 },
...

{
 "bundles" : [
 "/api/support/bundles/support-bundle-20151118-1709272-1447859367247.zip"
]
}

List Bundles

Description: Lists previously created bundle currently stored in the system.
Since: 4.3.0
Security: Requires a privileged user (Admin only)
Usage: GET /api/support/bundles/
Produces: application/json
Sample Usage:

GET /api/support/bundles

{
 "bundles" : [
 "/api/support/bundles/support-bundle-20151118-1709272-1447859367247.zip",
 "/api/support/bundles/support-bundle-20151117-1035500-1447749350025.zip",
 "/api/support/bundles/support-bundle-20151117-1035147-1447749314704.zip"
]
}

Get Bundle

Description: Downloads a previously created bundle currently stored in the system.
: 4.3.0Since

: Requires a privileged user (Admin only)Security
: GET /api/support/bundles/{bundle-name}Usage

Produces: application/json
Sample Usage:

GET /api/support/bundles/support-bundle-20151122-1705472-1448211947280.zip

Delete Bundle

Description: Deletes a previously created bundle from the system.
: 4.3.0Since

: Requires a privileged user (Admin only)Security
: DELETE /api/support/bundles/{bundle-name}Usage

: application/jsonProduces

Sample Usage:

DELETE
/api/support/bundles/support-bundle-20151122-1705472-1448211947280.zip

ERROR RESPONSES

In case of an error, Artifactory will return an error response in JSON format. The response contains the HTTP status code and error message.

For example, a badly formatted API call would return the "404, File not found" response below:

{
 "errors" : [{
 "status" : 404,
 "message" : "File not found."
 }]
}

Sample input:

POST /api/security/apiKey
{
 "apiKey": "3OloposOtVFyCMrT+cXmCAScmVMPrSYXkWIjiyDCXsY="
}

PUT /api/storage/libs-release-local/ch/qos/logback/logback-classic/0.9.9?properties=os=win,linux;qa=done&
recursive=1

When parameters can have multiple values, you can separate the items in one of the following ways:

Use a semicolon - ; (recommended)
Use the encoding for the pipe ("|") character - %7C
Alternatively, you may configure your NGINX to encode URLs so that if an unencoded pipe is used in the URL, NGINX will encode it to
%7C. We recommend that you verify that this configuration does not break any other systems served by NGINX

Repository Configuration JSON

Repository Configuration JSON

Legend

+ Mandatory element in create/replace queries
(optional in "update" queries)

- Optional element in create/replace queries

(default) The default value when unspecified in
create/replace queries

Page Contents
Repository
Configuration
JSON
Local
Repository

applic
ation/v
nd.org.
jfrog.ar
tifactor
y.repo
sitorie
s.Loca
lRepos
itoryC
onfigur
ation+j
son

Remote
Repository

applic
ation/v
nd.org.
jfrog.ar
tifactor
y.repo
sitorie
s.Rem
oteRe
positor
yConfi
guratio
n+json

Virtual
Repository

applic
ation/v
nd.org.
jfrog.ar
tifactor
y.repo
sitorie
s.Virtu
alRep
ository
Config
uration
+json

Local Repository

application/vnd.org.jfrog.artifactory.repositories.LocalRepositoryConfiguration+json

{
 - "key": "local-repo1",
 + "rclass" : "local",
 - "packageType": "maven" | "gradle" | "ivy" | "sbt" | "nuget" | "gems"
| "npm" | "bower" | "debian" | "composer" | "pypi" | "docker" |
"vagrant" | "gitlfs" | "yum" | "conan" | "chef" | "puppet" | "generic"
(default)
 - "description": "The local repository public description",
 - "notes": "Some internal notes",
 - "includesPattern": "**/*" (default),
 - "excludesPattern": "" (default),
 - "repoLayoutRef" : "maven-2-default",
 - "debianTrivialLayout" : false,
 - "checksumPolicyType": "client-checksums" (default) |
"server-generated-checksums"
 - "handleReleases": true (default),
 - "handleSnapshots": true (default),
 - "maxUniqueSnapshots": 0 (default),
 - "maxUniqueTags": 0 (default)
 - "snapshotVersionBehavior": "unique" | "non-unique" (default) |
"deployer",
 - "suppressPomConsistencyChecks": false (default),
 - "blackedOut": false (default),
 - "propertySets": ["ps1", "ps2"],
 - "archiveBrowsingEnabled" : false,
 - "calculateYumMetadata" : false,
 - "yumRootDepth" : 0,
 - "dockerApiVersion" : "V2" (default),
 - "enableFileListsIndexing " : "false" (default)
}

Remote Repository

application/vnd.org.jfrog.artifactory.repositories.RemoteRepositoryConfiguration+json

{
 - "key": "remote-repo1",
 + "rclass" : "remote",
 - "packageType": "maven" | "gradle" | "ivy" | "sbt" | "nuget" | "gems"
| "npm" | "bower" | "debian" | "pypi" | "docker" | "yum" | "vcs" |
"composer" | "p2" | "chef" | "puppet" | "generic" (default)
 + "url" : "http://host:port/some-repo",
 - "username": "remote-repo-user",
 - "password": "pass",
 - "proxy": "proxy1",
 - "description": "The remote repository public description",
 - "notes": "Some internal notes",
 - "includesPattern": "**/*" (default),
 - "excludesPattern": "" (default),
 - "repoLayoutRef" : "maven-2-default",
 - "remoteRepoChecksumPolicyType": "generate-if-absent" (default) |
"fail" | "ignore-and-generate" | "pass-thru",
 - "handleReleases": true (default),
 - "handleSnapshots": true (default),
 - "maxUniqueSnapshots": 0 (default),
 - "suppressPomConsistencyChecks": false (default),
 - "hardFail": false (default),
 - "offline": false (default),
 - "blackedOut": false (default),
 - "storeArtifactsLocally": true (default),
 - "socketTimeoutMillis": 15000 (default),
 - "localAddress": "212.150.139.167",
 - "retrievalCachePeriodSecs": 43200 (default),
 - "failedRetrievalCachePeriodSecs": 30 (default),
 - "missedRetrievalCachePeriodSecs": 7200 (default),
 - "unusedArtifactsCleanupEnabled": false (default),
 - "unusedArtifactsCleanupPeriodHours": 0 (default),
 - "assumedOfflinePeriodSecs" : 300 (default),
 - "fetchJarsEagerly": false (default),
 - "fetchSourcesEagerly": false (default),
 - "shareConfiguration": false (default),
 - "synchronizeProperties": false (default),
 - "blockMismatchingMimeTypes" : true (default),
 - "propertySets": ["ps1", "ps2"],
 - "allowAnyHostAuth": false (default),
 - "enableCookieManagement": false (default),
 - "bowerRegistryUrl": "https://bower.herokuapp.com" (default),
 - "vcsType": "GIT" (default),
 - "vcsGitProvider": "GITHUB" (default) | "BITBUCKET" | "OLDSTASH" |
"STASH" | "ARTIFACTORY" | "CUSTOM",
 - "vcsGitDownloadUrl": "" (default),
 - "bypassHeadRequest" : false (default)
 - "clientTlsCertificate": "" (default)
}

Virtual Repository

application/vnd.org.jfrog.artifactory.repositories.VirtualRepositoryConfiguration+json

{
 - "key": "virtual-repo1",
 + "rclass" : "virtual",
 + "packageType": "maven" | "gradle" | "ivy" | "sbt" | "nuget" | "gems"
| "npm" | "bower" | "pypi" | "docker" | "p2" | "yum" | "chef" | "puppet"
| "generic"
 - "repositories": ["local-rep1", "local-rep2", "remote-rep1",
"virtual-rep2"]
 - "description": "The virtual repository public description",
 - "notes": "Some internal notes",
 - "includesPattern": "**/*" (default),
 - "excludesPattern": "" (default),
 - "debianTrivialLayout" : false
 - "artifactoryRequestsCanRetrieveRemoteArtifacts": false,
 - "keyPair": "keypair1",
 - "pomRepositoryReferencesCleanupPolicy": "discard_active_reference"
(default) | "discard_any_reference" | "nothing"
 - "defaultDeploymentRepo": "local-repo1"
}

Security Configuration JSON

Security Configuration JSON

Legend

+ Mandatory element in create/replace queries, optional in "update" queries

- Optional element in create/replace queries

! Read-only element

(default) The default value when unspecified in create/replace queries

application/vnd.org.jfrog.artifactory.security.User+json

{
 - "name": "davids",
 + "email" : "davids@jfrog.com",
 + "password": "***" (write-only, never returned),
 - "admin": false (default),
 - "profileUpdatable": true (default),
 - "disableUIAccess" : true,
 - "internalPasswordDisabled": false (default),
 ! "lastLoggedIn": ISO8601 (yyyy-MM-dd'T'HH:mm:ss.SSSZ),
 ! "realm": "Internal",
 - "groups" : ["deployers", "users"]
}

application/vnd.org.jfrog.artifactory.security.Group+json

{
 - "name": "dev-leads",
 - "description" : "The development leads group",
 - "autoJoin" : false (default, must be false if adminPrivileges is true),
 - "adminPrivileges" : false (default),
 - "realm": "Realm name (e.g. ARTIFACTORY, CROWD)",
 - "realmAttributes": "Realm attributes for use by LDAP"
}

application/vnd.org.jfrog.artifactory.security.PermissionTarget+json

Permissions are set/returned according to the following conventions:
m=admin; d=delete; w=deploy; n=annotate; r=read

name - limited to 64 characters
includePattern/excludePattern - limited to 1024 characters

{
 - "name": "populateCaches",
 - "includesPattern": "**" (default),
 - "excludesPattern": "" (default),
 + "repositories": ["local-rep1", "local-rep2", "remote-rep1",
"virtual-rep2"],
 - "principals": {
 "users" : {
 "bob": ["r","w","m"],
 "alice" : ["d","w","n", "r"]
 },
 "groups" : {
 "dev-leads" : ["m","r","n"],
 "readers" : ["r"]
 }
 }
}

System Settings JSON

System Settings JSON

Legend

+ Mandatory element

- Optional element

(default) The default value when unspecified

application/vnd.org.jfrog.artifactory.system.ImportSettings+json

{
 + "importPath" : "/import/path" (A path to a directory on the local file
system of Artifactory server),
 - "includeMetadata" : true (default),
 - "verbose" : false (default),
 - "failOnError" : true (default),
 - "failIfEmpty" : true (default)
}

application/vnd.org.jfrog.artifactory.system.ExportSettings+json

{
 + "exportPath" : "/export/path" (A path to a directory on the local file
system of Artifactory server),
 - "includeMetadata" : true (default),
 - "createArchive" : false (default),
 - "bypassFiltering" : false (default),
 - "verbose" : false (default),
 - "failOnError" : true (default),
 - "failIfEmpty" : true (default),
 - "m2" : false (default),
 - "incremental" : false (default),
 - "excludeContent" : false (default)
}

application/vnd.org.jfrog.artifactory.system.Version+json

{
 "version" : "2.2.2",
 "revision" : "10427",
 "addons" : ["build", "ldap", "properties", "rest", ...] (list of active
addons)
}

Configuring Artifactory

Overview

You can access the General Configuration settings of Artifactory in the tab under Admin Configuration |
.General

General Settings
The fields under General Settings allow you to set up various global parameters in Artifactory. The icon?
next to each field provides a detailed description of the field. Fields marked with a red star are mandatory.

Saving changes
Any changes you make must be saved in order for them to take effect.

Page Contents
Overview
General Settings
Global Replication Blocking
Folder Download Settings
Trash Can Settings
Look and Feel Settings (Branding)
Custom Message

Read More
Configuring the Database
Configuring the Filestore
Checksum-Based Storage
Configuring Repositories
Configuring Security
Configuring a Reverse Proxy
Mail Server Configuration
Configuration Files
Exposing Maven Indexes
Clustering Artifactory

The General Settings fields are as follows:

Server
Name (mandatory)

The name of the server to be displayed on the title of each page.

Custom URL Base
By default, URLs generated in Artifactory use the context URL returned by your servlet container as a base.
A custom URL base is useful when Artifactory is running behind a proxy. In this case the base for URLs generated in
Artifactory for links and redirect responses must be specified manually.

Another reason to change the base URL would be to have non-request-based operations in Artifactory use the correct
address, for example in generated emails.

This may also be modified using the REST API.Update Custom URL Base

File Upload Max
Size

Maximum size allowed for files uploaded via the web interface.

Bintray Max Files
Upload

The maximum number of files that can be in a single operation.pushed to Bintray

Date Format
(mandatory)

The date format for displaying dates in the web interface.

Global Offline
Mode

When checked, Artifactory will behave as if it is not connected to an external network (such as the internet), and
therefore, will not query remote repositories (regardless of the offline status of any specific remote repository).

Enable Help
Component

If set, Artifactory will display context sensitive help topics in the top right corner of the UI.

Global Replication Blocking

By configuring Global Replication Blocking, you can enable or disable replication globally as needed.

Overriding the Custom URL Base
You can override the Custom URL Base by adding an HTTPX-Artifactory-Override-Base-Url
header to your request. This can be useful if you need Artifactory to answer to more than one host name.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UpdateCustomURLBase

Block Replications
When set, push and pull replication will be blocked according to the check boxes below, regardless of the
configuration for specific repositories.

Block Push
Replications

When set, push replication will be blocked regardless of the configuration for specific repositories.

Block Pull
Replications

When set, pull replication will be blocked regardless of the configuration for specific repositories.

Folder Download Settings

Enable Folder Download
Must be set to enable folder download

Max Size
The maximum size (in MB) of a folder that may be downloaded

Max Number of Files
The maximum number artifacts that may be downloaded under one folder

Max Parallel Folder Downloads
The maximum number of folder download requests that may be run concurrently

Trash Can Settings

Enable Trash Can
If set, trash can will be enabled and deleted items will be stored in the trash can for the specified retention period.

Retention Period
The number of days to keep deleted items in the trash can before deleting permanently.

Empty Trash Can
Click to delete all items currently in the trash can permanently.

Look and Feel Settings (Branding)

In the Look and Feel Settings you can configure Artifactory to present your company logo in the top left corner
of the screen and customize the footer text.

You may either upload an image to be used locally, or reference a remote image URL.

File
If selected, upload your company logo image file.

URL
If selected, specify the URL from which Artifactory should display your company logo

Custom Message

You can display a at the top of Artifactory screens.Custom Message

Logo file upload
The uploaded logo file is copied into the folder.ARTIFACTORY_HOME/etc/ui

To configure the custom message, in the module, select .Admin Configuration | General

Enabled
Toggles the custom message on and off.

Show Only in Home
Page

When set, the custom message will only be displayed on the Artifactory .Home Page

Title
The title for the message.

Title Color
Click on the colored rectangle to select a color, or enter the color in Hex format.

Message
The message to display. You can include links in the message using the following format: [<link URL>, <link
text>]

Configuring the Database

https://www.jfrog.com/confluence/display/RTD/General+Information

Overview

Artifactory comes with a built-in embedded Derby database that can be reliably used to store data
(metadata) for production-level repositories up to hundreds of gigabytes in size.

However, Artifactory supports pluggable database implementations allowing you to change the default
to use other popular databases.

Artifactory currently supports the following databases:

Derby (The default embedded database)
MySQL v5.5 and above with InnoDB
Oracle version 10g and above
Microsoft SQL Server 2008 and above
PostgreSQL v9.2 and above

For each of the supported databases you can find the corresponding properties file inside $ARTIFACT
ORY_HOME/misc/db.

Choosing the Right Database

As the default database, Derby provides good performance since it runs in the same process as
Artifactory, however, under intensive usage or high load, performance may be degraded since
Artifactory and the database compete for shared JVM resources such as caches and memory.
Therefore, for Artifactory servers that need to support heavy load, you may consider using an external
database such as MySQL or PostgreSQL which are very common choices in many Artifactory
installations.

Any of the other supported databases is also a fair choice and may be the practical choice to make if
your organization is already using one of them.

Modes of Operation

Artifactory supports two modes of operation:

Metadata in the database and binaries stored on the file system (This is the default and
recommended configuration).
Metadata and binaries stored as BLOBs in the database

Checksum-Based Storage

Artifactory uniquely stores artifacts using checksum-based storage. For details, please refer to Check
.sum-Based Storage

Accessing a Remote Database
When using an external database, you need a reliable, stable and low-latency network
connection to ensure proper functioning of your system.

When using a configuration, we strongly recommend a high-bandwidth tofullDB
accommodate the transfer of large BLOBs over the network.

Page Contents
Overview

Choosing the Right Database
Modes of Operation
Checksum-Based Storage

Before You Start
Backup Your Current Installation

Setup the New Database
Advanced Settings

Read more
MySQL

Before You Start

Backup Your Current Installation

When changing the database for an existing installation you must first perform a using the " " option. OnceFull System Export Exclude Content
your new database is set up and configured, you will import this data to re-populate your Artifactory metadata content.

Make sure to your current Artifactory system before updating to a new database. You will need your Artifactory instance to bebackup
disconnected from the network to avoid usage during this procedure.

Setup the New Database

To setup your new database you need to perform the following steps:

Create a database instance
Create an Artifactory user for the database
Install the appropriate JDBC driver
Copy the relevant database configuration file
Configure the corresponding file.db.properties
Start Artifactory
Import the metadata using Full System Import

These steps are fully detailed in the specific documentation page for each of the supported databases listed in the .Overview

Advanced Settings

Once you have setup your database, you can configure it to support your expected load with the following two parameters:

pool.max.active

The maximum number of pooled database connections (default: 100).

pool.max.idle

The maximum number of pooled idle database connections (default: 10).

MySQL

Overview

By using MySQL you can benefit from features in the MySQL infrastructure such as backup, restore and high
availability.

For Artifactory to run with MySQL you must create a dedicated MySQL database instance and then configure
Artifactory to use it as described in the following sections.

Oracle
Microsoft SQL Server
PostgreSQL

Preprocessing
Changing the database does not automatically transfer your data to the new database. Please follow the steps below to backup your
data so that you can restore it after the change.

Before You Continue
Before proceeding with the steps below, please make sure you have read and followed the steps
described in .Configuring the Database

https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExport
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup
https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExport

Creating the Artifactory MySQL Database

Artifactory provides a script that will execute the SQL commands you need to create your MySQL database.

The script can be found in and is displayed below.$ARTIFACTORY_HOME/misc/db/createdb/createdb_mysql.sql

You should review the script and modify it as needed to correspond to your specific environment.

createdb.sql Script

CREATE DATABASE artdb CHARACTER SET utf8 COLLATE utf8_bin;
GRANT ALL on artdb.* TO 'artifactory'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

Increasing MySQL Default Packet Size

Since some data files (builds, configurations etc.) are stored in MySQL, it is extremely important to increase the maximum allowed packet size
used by MySQL to avoid errors related to large packets.

(Please refer to MySQL documentation:).Packet Too Large

It is recommended to change this in the file as follows:/etc/my.cnf

Page Contents
Overview
Creating the
Artifactory
MySQL
Database
Increasing
MySQL Default
Packet Size
Tuning MySQL
for Artifactory
Configuring
Artifactory to use
MySQL

Supported MySQL Versions
Artifactory supports MySQL v5.5 and above with engine which is the default provided.InnoDB

Selecting a Case-Sensitive Collation
While MySQL Database Server is not case-sensitive by default, it is important to select a case-sensitive collation because Artifactory is
case-sensitive.

For example, in the script above COLLATE is set to " .createdb.sql utf8_bin"

Artifactory privileges
We recommend providing Artifactory with full privileges on the database

http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html

Modifying /etc/my.cnf

The MySQL server
[mysqld]
.
The maximum size of the binary payload the server can handle
max_allowed_packet=8M
.

Tuning MySQL for Artifactory

When using Artifactory with MySQL it is recommended to use the InnoDB engine with the following tuning parameters configured in the /etc/my
 file:.cnf

/etc/my.cnf Absolute Path
If does not already exist it should be created under the absolute path and not under /etc/my.cnf $ARTIFACTORY_HOME

Restart required
After modifying the maximum allowed packed size you need to restart MySQL

You can also use the command line
You can also change the variable on the MySQL command line as in the following example:max_allowed_packet

SET GLOBAL max_allowed_packet = 134217728;

Note, however, that upon a restart, the value of the max_allowed_packet variable will be read from the file and revert to/etc/my.cnf
the value in that file as described above.

1.

2.

3.

4.

Tuning Parameters for MySQL

The MySQL server
[mysqld]
.
By default innodb engine use one file for all databases and tables. We
recommend changing this to one file per table.
NOTE: This will take effect only if Artifactory tables are not created
yet! Need to be set and MySQL restarted before starting Artifactory for the
first time.
innodb_file_per_table

Theses are tuning parameters that can be set to control and increase the
memory buffer sizes.
innodb_buffer_pool_size=1536M
tmp_table_size=512M
max_heap_table_size=512M

Theses control the innodb log files size and can be changed only when
MySQL is down and MySQL will not start if there are some innodb log files
left in the datadir.
So, changing theses means removing the old innodb log files before start.
innodb_log_file_size=256M
innodb_log_buffer_size=4M
.

Configuring Artifactory to use MySQL

Copy to $ARTIFACTORY_HOME/misc/db/mysql.properties $ARTIFACTORY_HOME/etc/db.properties
(If you do not have this file you can take it from the standalone zip distribution or directly from the). For a full explanation onJFrog domain
the contents of this file please refer to .The Bundled Storage Configurations

Adjust the connection definitions in the file to match the attributes of the Artifactory$ARTIFACTORY_HOME/etc/db.properties
database you created.
You must configure the database URL and username/password to use. The schema and tables are created first time Artifactory is run
using the new database.

Download the MySQL JDBC driver (available from the) and copy the fileMySQL website mysql-connector-java-<version>.jar
into the server's shared lib directory.
For example when installed as a service or in the standalone version.$TOMCAT_HOME/lib $ARTIFACTORY_HOME/tomcat/lib

Start Artifactory.

Restart required
After tuning, you need to restart MySQL

Permissions
Make sure your driver has the same permissions as the rest of the files in the shared lib directory.

Storing BLOBs inside MySQL
The suggested (and recommended) configuration stores all artifact information in MySQL while the artifact binary data is stored on the

http://subversion.jfrog.org/artifactory/public/trunk/distribution/standalone/src/main/install/misc/db/mysql.properties
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations
http://dev.mysql.com/downloads/connector/j/

1.

2.

Oracle

Overview

By using Oracle you can benefit from features in Oracle infrastructure such as backup, restore and high
availability.

For Artifactory to run with Oracle you must create a dedicated Oracle database instance and then configure
Artifactory to use it as described in the following sections.

Creating the Artifactory Oracle Database

You can choose between two configurations to set up your Oracle Database

DB-Filesystem
This configuration stores metadata in Oracle Database and artifact binary data is stored on the file system (under $ARTIFACTORY_HOME

. This option has the advantage of being very lightweight on the Oracle database./data/filestore)

Full DB
This configuration stores both metadata and BLOBs in Oracle Database. This option requires minimal maintenance and allows you to rely
solely on Oracle for failover and backup procedures, since all data is in the database.
When using this option, make sure you have created a table space big enough to accommodate your binaries.

file system (under).$ARTIFACTORY_HOME/data/filestore
While it is , it is possible to store BLOBs inside MySQL provided that the typical BLOB size is relatively small.not recommended
Storing large BLOBs in MySQL can cause memory issuesbecause MySQL buffers BLOBs rather than streaming them (please refer to

) and may result in errors with large binaries depending on your JVM heap size.MySQL Bug #15089 OutOfMemory

To store BLOBs in MySQL, in the file set and changestorage.propreties binary.provider.type=fullDb max_allowed_p
to be higher than the maximum artifact size you intend to store in Artifactory.acket

Before You Continue
Before proceeding with the steps below, please make sure you have read and followed the steps
described in .Configuring the Database

Upgrading the Database?
To avoid a regression of performance while upgrading the Oracle database (as a result of changes
in the execution plans), make sure to preserve the optimizer's behavior from the previous version.
For more details, please refer to Oracle documentation on .Influencing the Optimizer

Page Contents
Overview
Creating the Artifactory
Oracle Database
Configuring Artifactory
to use Oracle

Supported Oracle Versions
Artifactory supports Oracle v10g and above.

Artifactory privileges
Artifactory creates all tables automatically first time it is run. When performing a software upgrade Artifactory may have to alter tables

http://bugs.mysql.com/bug.php?id=15089
https://docs.oracle.com/database/121/TGSQL/tgsql_influence.htm#TGSQL246

1.

2.

3.

4.

Configuring Artifactory to use Oracle

Copy to $ARTIFACTORY_HOME/misc/db/oracle.properties $ARTIFACTORY_HOME/etc/db.properties
(If you do not have this file you can take it from the standalone zip distribution or directly from the JFrog domain). For a full explanation on
the contents of this file please refer to .The Bundled Storage Configurations

Adjust the connection definitions in the file to match the attributes of the Artifactory$ARTIFACTORY_HOME/etc/db.properties
database you created.
You must configure the database URL and username/password to use. The schema and tables are created first time Artifactory is run
using the new database.

Download the JDBC driver corresponding to your Oracle version from the and copy the file intoJDBC/UCP Download Page ojdbc6.jar
the server's shared lib directory.
For example when installed as a service or in the standalone version. $TOMCAT_HOME/lib $ARTIFACTORY_HOME/tomcat/lib

Start Artifactory.

Microsoft SQL Server

Overview

By using MicrosoftSQLyou can benefit from features in the Microsoft SQL Server infrastructure such as
backup,restoreand high availability.

and indices, so make sure you grant the configured connection the appropriate user permissions to perform such actions.

Recommendation
With both of the above options (), it is recommended to create a dedicated table space and use Full DB and DB-Filesystem AL32

 encoding.UTF8

Reclaiming BLOB space
For efficiency, Artifactory uses a checksum to ensure that only one copy of any binary data is stored, however, you may want to reclaim
deleted BLOB space from time to time by shrinking the BLOB table space as follows:

Reclaiming Deleted BLOB Space

{schema}.binary_blobs modify lob (data) (shrink space cascade);

Permissions
Make sure your driver has the same permissions as the rest of the files in the shared lib directory.

Optimizing Artifactory when running with MS SQL Server
When running Artifactory with Microsoft SQL Server you may create the Artifactory schema on an
existing server used for other applications, however for optimal performance, we recommend
creating a dedicated Microsoft SQL Server database instance and then configure Artifactory to use
it as described in the following sections.

Before You Continue
Before proceeding with the steps below, please make sure you have read and followed the steps
described in .Configuring the Database

http://subversion.jfrog.org/artifactory/public/trunk/distribution/standalone/src/main/install/misc/db/oracle.properties
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

1.

2.

3.

4.

Creating the Artifactory Microsoft SQL Server Database

Create a new user for Artifactory:
In , open the , right click on and select .Microsoft SQL Server Management Studio Object Explorer Security New | Login...

Create user "artifactory" and set its password.

Create the Artifactory database:
In Microsoft SQL Server Management Studio, open the , right click on and select Object Explorer Databases New database...

In the dialog window, select in the navigation pane. New Database General Select a page:
Set to "artifactory" and to "artifactory" (the user name you created in step 2).Database name Owner

Page Contents
Overview
Creating the Artifactory Microsoft SQL Server Database
Configuring Artifactory to use Microsoft SQL Server

Supported Microsoft SQL Server Versions
Artifactory supports Microsoft SQL Server 2008 and above.

http://www.microsoft.com/en-us/download/details.aspx?id=8961

4.

5. Select the page and set to "Latin1_General_CS_AI". Options Collation
Then click to confirm.OK

5.

1.

2.

Configuring Artifactory to use Microsoft SQL Server

Copy to $ARTIFACTORY_HOME/misc/db/mssql.properties $ARTIFACTORY_HOME/etc/db.properties
(If you do not have this file you can take it from the standalone zip distribution or directly from the JFrog domain). For a full explanation on
the contents of this file please refer to .The Bundled Storage Configurations

Adjust the connection definitions in the file to match the attributes of the Artifactory$ARTIFACTORY_HOME/etc/db.properties
database you created.
You must configure the database URL and username/password to use. The schema and tables are created first time Artifactory is run
using the new database.
For example:

Configuring the Database URL and user/password

url=jdbc:sqlserver://hostname:1433;databaseName=dbname;sendStringPara
metersAsUnicode=false;applicationName=Artifactory Binary Repository

Where is your database address, is your database port (if not the default 1433), is the name of the databasehostname 1433 dbname
you created in the previous step.

Selecting a Case-sensitive Collation
While Microsoft SQL Database Server is not case-sensitive by default, it is important to select a case-sensitive collation
because Artifactory is case-sensitive.

sendStringParameterAsUnicode
Make sure not to overwrite since this is critical for appropriate and efficient use sendStringParametersAsUnicode=false
of the database indices.

http://subversion.jfrog.org/artifactory/public/trunk/distribution/standalone/src/main/install/misc/db/mssql.properties
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations

2.

3.

4.

Download and extract the and copy the file into the server's shared lib directory.Microsoft JDBC Driver sqljdbc4.jar
For example when installed as a service or in the standalone version. $TOMCAT_HOME/lib $ARTIFACTORY_HOME/tomcat/lib

Start Artifactory.

PostgreSQL

Overview

By using PostgreSQL you can benefit from features in PostgreSQL infrastructure such as backup, restore
and high availability.

For Artifactory to run with PostgreSQL you must create a dedicated PostgreSQL database instance and then
configure Artifactory to use it as described in the following sections.

Creating the Artifactory PostgreSQL Database

The commands below create artifactory user and database with appropriate permissions.

Use the commands below to create an Artifactory user and database with appropriate permissions. Modify the relevant values to match your
specific environment:

Creating an Artifactory User and Database

CREATE USER artifactory WITH PASSWORD 'password';
CREATE DATABASE artifactory WITH OWNER=artifactory ENCODING='UTF8';
GRANT ALL PRIVILEGES ON DATABASE artifactory TO artifactory;

Permissions
Make sure your driver has the same permissions as the rest of the files in the shared lib directory.

Before You Continue
Before proceeding with the steps below, please make sure you have read and followed the steps
described in .Configuring the Database

Page Contents
Overview
Creating the
Artifactory
PostgreSQL Data
base
Configuring
Artifactory to use
PostgreSQL

Supported PostgreSQL Versions
Artifactory supports PostgreSQL 9.2 and above using driver version 9.2-1002.jdbc4 and above.

Artifactory privileges
We recommend providing Artifactory with full privileges on the database.

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

1.

2.

3.

4.

Configuring Artifactory to use PostgreSQL

Copy to $ARTIFACTORY_HOME/misc/db/postgresql.properties $ARTIFACTORY_HOME/etc/db.properties
(If you do not have this file you can take it from the standalone zip distribution or directly from the JFrog domain). For a full explanation on
the contents of this file please refer to .The Bundled Storage Configurations

Adjust the connection definitions in the file to match the attributes of the Artifactory$ARTIFACTORY_HOME/etc/db.properties
database you created.
You must configure the database URL and username/password to use. The schema and tables are created first time Artifactory is run
using the new database.

Download the DBC driver corresponding to your PostgreSQL version from the and copy the J PostgreSQL JDBC Driver Download site po
 file into the server's shared lib directory.stgresql-9.x-xxx.jdbc4.jar

For example when installed as a service or in the standalone version. $TOMCAT_HOME/lib $ARTIFACTORY_HOME/tomcat/lib

Start Artifactory.

Configuring the Filestore

Overview

JFrog Artifactory offers flexible filestore management that is configurable to meet a variety of needs
in terms of binary storage providers, storage size, and redundancy. Not only are you now able to
use different storage providers, but you can also chain a series of providers together to build
complex structures of binary providers and support seamless and unlimited growth in storage.

Artifactory offers flexible filestore management through the configuration filebinarystore.xml
located in the folder. By modifying this file you can implement a$ARTIFACTORY_HOME/etc
variety of different binary storage configurations.

Chains and Binary Providers

The binarystore.xml file specifies a chain with a set of binary providers. A binary provider repr
esents a type of object storage feature such as “cached filesystem”. Binary providers can be
embedded into one another to form chains that represent a coherent filestore. Artifactory comes
with a built-in set of chains that correspond to the binary.provider.type parameter that was used in
previous versions of Artifactory. The built-in set of chains available in Artifactory are:

file-system
cache-fs
full-db
full-db-direct

Page contents
Overview

Chains
and
Binary
Provid
ers

Configuring a
Built-in
Filestore
Basic
Configuration
Elements

Built-in
Templ
ates

Modifying an
Existing
Filestore

Permissions
Make sure your driver has the same permissions as the rest of the files in the shared lib directory.

Storing BLOBs inside PostgreSQL is not recommended
The above recommended configuration keeps all artifact information in PostgreSQL while storing the artifact binary data on the file
system (under).$ARTIFACTORY_HOME/data/filestore

While it is possible, to store BLOBs inside PostgreSQL . This is important because the PostgreSQL driverwe do not recommended it
doesn't support streaming BLOBs with unknown length to the database. Therefore, Artifactory will temporarily save deployed files to the
filesystem and only then save the BLOB to the database.

Take care when modifying binarystore.xml
Making changes to this file may result in losing binaries stored in Artifactory!

If you are not sure of what you are doing, please contact for assistance.JFrog Support

http://subversion.jfrog.org/artifactory/public/trunk/distribution/standalone/src/main/install/misc/db/postgresql.properties
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations
http://jdbc.postgresql.org/download.html#current
http://jdbc.postgresql.org/download.html#current
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-TheBundledStorageConfigurations
https://www.jfrog.com/support-service/support/

s3
google-storage
double-shards
redundant-shards
cluster-file-system
cluster-s3
cluster-google-storage

Configuring a Built-in Filestore

To configure Artifactory to use one of the built-in filestores, you only need some basic configuration
elements.

Built-in Chain
Templates

Filesys
tem
Binary
Provid
er
Cache
d
Filesys
tem
Binary
Provid
er
Full-D
B
Binary
Provid
er
Full-D
B-Dire
ct
Binary
Provid
er
Cloud
Storag
e
Provid
ers

S3 Binary Provider
S3Old Binary Provider
Google Storage Binary Provider
Azure Blob Storage Binary Provider
Eventual Binary Provider
Retry Binary Provider

Doubl
e
Shard
s,
Redun
dant
Shard
s

Double Shards Binary Provider
Redundant Shards Binary Provider
Sharding Binary Provider
State-Aware Binary Provider

Config
uring
Shardi
ng for
HA
Cluste
r

File System Cluster Binary Provider
S3 Cluster Binary Provider
Google Storage Cluster Binary Provider
Azure Blob Storage Cluster Binary Provider
Sharding-Cluster Binary Provider
Remote Binary Provider

Configuring a
Custom
Filestore From
Scratch
Configuring the
Filestore for
Older
Artifactory
Versions

Basic Configuration Elements

For basic filestore configuration, the binarystore.xml file is quite simple and contains the basic tags or elements that are described below
along with the attributes that they may include:

config tag

The <config> tag specifies a filestore configuration. It includes a version attribute to allow versioning of configurations.

<config version="v1">
…
</config>

chain element

The config tag contains a element that that defines the structure of the filestore. To use one of the built-in filestores, the chain elementchain
needs to include the corresponding template attribute. For example, to use the built-in basic “ ” template, all you need is thefile system
following configuration:

<config version="v1">
 <chain template="file-system"/>
</config>

Built-in Templates

The following sections describe the basic chain templates come built-in with Artifactory and are ready for you to use out-of-the-box, as well as
other binary providers that are included in the default chains.
Additional information about every template can be found below, under the Built-in Chain Templates section.

file-system

The most basic filestore configuration for Artifactory used for a local or mounted filestore.

cache-fs

Works the same way as filesystem but also has a binary LRU (Least Recently Used) cache for download
requests. Improves performance of instances with high IOPS (I/O Operations) or slow NFS access.

full-db

All the metadata and the binaries are stored as BLOBs in the database with an additional layer of caching.

full-db-direct

All the metadata and the binaries are stored as BLOBs in the database without caching.

s3

This is the setting used for using the JetS3t library.S3 Object Storage

s3Old

This is the setting used for using JCloud as the underlying framework.S3 Object Storage

google-storage

This is the setting used for Google Cloud Storage as the remote filestore.

azure-blob-storage

This is the setting used for Azure Blob Storage as the remote filestore.

double-shards

A pure configuration that uses 2 physical mounts with 1 copy (which means each artifact is savedsharding
only once).

redundant-shards

A pure configuration that uses 2 physical mounts with 2 copies (which means each shard stores asharding
copy of each artifact).

cluster-file-system

A filestore configuration where each node has its own local filestore (just like the file-system chain) and is
connected to all other nodes via dynamically allocated using the pRemote Binary Providers Sharding-Cluster
rovider.

cluster-s3

This is the setting used for using the JetS3t library. It is based on the sharding andS3 Object Storage
dynamic provider logic that synchronizes the cluster-file-system.

cluster-google-storage

This is the setting used for using the JetS3t library. It is based on the sharding andGoogle Cloud Storage
dynamic provider logic that synchronizes the cluster-file-system.

cluster-azure-blob-storage

This is the setting used for zure Blob Storage. It is based on the sharding and dynamic provider logic thatA
synchronizes the cluster-file-system.

Modifying an Existing Filestore

To accommodate any specific requirements you may have for your filestore, you may modify one of the existing chain templates either by
extending it with additional binary providers or by overriding one of its attributes. For example, the built-in filesystem chain template stores
binaries under the directory. To modify the template so that it stores binaries under $ARTIFACTORY_HOME/data/filestore $FILESTORE

 you could extend it as follows:/binaries

<!-- file-system chain template structure -->
<config version="v1">
 <chain template="file-system"/>
 <provider id="file-system" type="file-system"> <!-- Modify the
"file-system" binary provider -->
 <baseDataDir>$FILESTORE/binaries</baseDataDir> <!-- Override the
<baseDataDir> attribute -->
 </provider>
</config>

Built-in Chain Templates

Artifactory comes with a set of chain templates built-in allowing you to set up a variety of different filestores out-of-the-box. However, to
override the built-in filestores, you need to be familiar with the attributes available for each binary provider that is used in them. These are
described in the following sections which also show the template configuration and what is 'under the hood' in each template. Also, usage
examples can be found for all templates.

Filesystem Binary Provider

This is the basic filestore configuration for Artifactory and is used for a local or mounted filestore.

file-system template configuration

If you choose to use the template, your configuration file should look like this:file-system binarystore.xml

https://www.jfrog.com/confluence/display/RTF/Filestore+Sharding#FilestoreSharding-RemoteBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Filestore+Sharding#FilestoreSharding-Sharding-ClusterBinaryProvider

<config version="v1">
 <chain template="file-system"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood.binarystore.xml file-system
In this example, the filestore and temp folder are located under the root directory of the machine.

<config version="v1">
 <chain template="file-system"/>
 <provider id="file-system" type="file-system">
 <baseDataDir>/var/opt/jfrog/data</baseDataDir>
 <fileStoreDir>/filestore</fileStoreDir>
 <tempDir>/temp</tempDir>
 </chain>
 </provider>
</config>

Where:

type

file-system

baseDataDir

Default: $ARTIFACTORY_HOME/data
The root directory where Artifactory should store data files.

fileStoreDir

Default: filestore
The root folder of binaries for the filestore. If the value specified starts with a forward slash (“/”) the value is considered the
fully qualified path to the filestore folder. Otherwise, it is considered relative to the .baseDataDir

tempDir

Default: temp
A temporary folder under into which files are written for internal use by Artifactory. This must be on the samebaseDataDir
disk as the .fileStoreDir

Cached Filesystem Binary Provider

The serves as a binary LRU (Least Recently Used) cache for all upload/download requests. This can improve Artifactory'scache-fs
performance since frequent requests will be served from the (as in case of the S3 binary provider).cache-fs

The binary provider will be the closest filestore layer of Artifactory. This means that if the filestore is mounted, we would like the cache-fs ca
 to be local on the artifactory server itself (if the filestore is local, then cache-fs is meaningless). In the case of an HA configuration,che-fs

the will be mounted and the recommendation is for each node to have its own layer.cache-fs cache-fs

cache-fs template configuration

If you choose to use the template, your configuration file should look like this:cache-fs binarystore.xml

<config version="v1">
 <chain template="cache-fs"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml cache-fs

This example sets the cache-fs size to be 10GB and its location (absolute path since it starts with a "/") to be /cache/filestore.

<config version="v1">
 <chain template="cache-fs"/>
 <provider id="cache-fs" type="cache-fs">
 <cacheProviderDir>/cache/filestore</cacheProviderDir>
 <maxCacheSize>10000000000</maxCacheSize>
 </provider>
</config>

Where:

type

cache-fs

maxCacheSize

Default: 5000000000 (5GB)
The maximum storage allocated for the cache in . Please note that maxCacheSize does include files thatbytes not
are in progress of being uploaded (which is saved under cache/_pre); thus it is recommended to keep extra spaces for

._pre folder

cacheProviderDir

Default: cache
The root folder of binaries for the filestore cache. If the value specified starts with a forward slash (“/”) it is considered
the fully qualified path to the filestore folder. Otherwise, it is considered relative to the .baseDataDir

Full-DB Binary Provider

This binary provider saves all the metadata and binary content as BLOBs in the database with an additional layer of caching on the
filesystem.
Caching can improve Artifactory's performance since frequent requests will be served from the before reaching out to the database. cache-fs

full-db template configuration

If you choose to use the template, your configuration file should look like this:full-db binarystore.xml

<config version="v1">
 <chain template="full-db"/>
 </config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml full-db
For details about the provider, please refer to .cache-fs Cached Filesystem Binary Provider
The provider is what handles the actual saving of metadata and binary content as BLOBs in the database. blob

<config version="v1">
 <chain template="full-db"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="blob" type="blob"/>
 </provider>
 </config>

https://www.jfrog.com/jira/browse/RTFACT-14606
https://www.jfrog.com/jira/browse/RTFACT-14606

Full-DB-Direct Binary Provider
This binary provider saves all the metadata and binary content as BLOBs in the database without using a caching layer.

full-db-direct template configuration

If you choose to use the template, your configuration file should look like this:full-db-direct binarystore.xml

<config version="v1">
 <chain template="full-db-direct"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml full-db-direct
The provider is what handles the actual saving of metadata and binary content as BLOBs in the database.blob

<config version="v1">
 <chain template="full-db-direct"/>
 <provider id="blob" type="blob"/>
</config>

Cloud Storage Providers
Using cloud storage providers is only available with an Enterprise license.

As part of its universal approach, Artifactory supports a variety of cloud storage providers described in detail in the sections below. These
providers will typically be wrapped with other binary providers to ensure that the binary resources are always available from Artifactory (for
example, to enable Artifactory to serve files when requested even if they have not yet reached the cloud storage due to upload latency).

S3 Binary Provider

Artifactory provides templates to let you configure storage on an S3 cloud provider where there are two options: s3 and s3old

The s3 template is used for configuring S3 Object Storage using the JetS3t library.
The s3Old template is used for configuring S3 Object Storage using the JClouds.

These binary providers for cloud storage solutions have a very similar selection of parameters.

type

s3 or s3old

testConnection

Default: true

When set to true, the binary provider uploads and downloads a file
when Artifactory starts up to verify that the connection to the cloud
storage provider is fully functional.

useSignature

Default: false.

When set to true, requests to AWS S3 are signed. Available from
AWS S3 version 4. For details, please refer to Signing AWS API

 in the AWS S3 documentation.requests

multiPartLimit

Default: 100,000,000 bytes

File size threshold over which file uploads are chunked and
multi-threaded.

http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

identity

Your cloud storage provider identity.

credential

Your cloud storage provider authentication credential.

region

The region offered by your cloud storage provider with which you
want to work.

bucketName

Your globally unique bucket name.

path

Default: filestore
The path relative to the bucket where binary files are stored.

rootFoldersNameLength

Default: 2

The number of initial characters in the object's checksum that should
be used to name the folder in storage. This can take any value
between 0 - 5. 0 means that checksum files will be stored at the root
of the object store bucket.

For example, if the object's checksum is 8c335149... and rootFolde
 is set to 4, the folder under which the object wouldrsNameLength

be stored would be named 8c33.

proxyIdentity

Corresponding parameters if you are accessing the cloud storage
provider through a proxy server.

proxyCredential

proxyPort

proxyHost

port

The cloud storage provider’s port.

endPoint

The cloud storage provider’s URL.

roleName

Only available on S3.

The IAM role configured on your Amazon server for authentication.

When this parameter is used, the parameter refreshCredentials mus
 be set to true.t

refreshCredentials

Default: false. Only available on S3.

When true, the owner's credentials are automatically renewed if they
expire.

When is used, this parameter be set to true.roleName must

httpsOnly

Default: true. Only available on .S3

Set to true if you only want to access your cloud storage provider
through a secure https connection.

httpsPort

Default: 443. Must be set if is . The https port for thehttpsOnly true
secure connection.

When this value is specified, the port needs to be removed from the e
.ndPoint

providerID

Set to S3. Only available for .S3old

s3AwsVersion

Default: 'AWS4-HMAC-SHA256' (AWS signature version 4). Only
available on S3.

Can be set to 'AWS2' if AWS signature version 2 is needed. Please
refer the for more information.AWS documentation

<property
name="s3service.disable-dns-buckets" value="true"></property>

Artifactory by default prepends the bucketName in front of the
endpoint (e.g.) to create an URL that it accessmybucket.s3.aws.com
the S3 bucket with. S3 providers such as Amazon AWS uses this
convention.
However, this is not the case for some S3 providers use the bucket
name as part of the context URL (e.g.); sos3provider.com/mybucket
Artifactory needs to have following perimeter added in order for the
URI to be compatible with the S3 providers. S3 providers that use this
URI format includes OpenStack, CEPH, CleverSafe, and EMC ECS.

The snippets below show the basic template configuration and examples that use the S3 binary provider to support several configurations
(CEPH, CleverSafe and more).

s3 template configuration

Because you must configure the provider with parameters specific to your account (but can leave all other parameters with thes3
recommended values), if you choose to use this template, your configuration file should look like this:binarystore.xml

<config version="2">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <endpoint>http://s3.amazonaws.com</endpoint>
 <identity>[ENTER IDENTITY HERE]</identity>
 <credential>[ENTER CREDENTIALS HERE]</credential>
 <path>[ENTER PATH HERE]</path>
 <bucketName>[ENTER BUCKET NAME HERE]</bucketName>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood.binarystore.xml s3

http://docs.aws.amazon.com/general/latest/gr/signature-version-2.html
http://mybucket.s3.aws.com/
http://s3provider.com/mybucket

<config version="v1">
 <chain template="s3"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="eventual" type="eventual">
 <provider id="retry" type="retry">
 <provider id="s3" type="s3"/>
 </provider>
 </provider>
 </provider>
</config>

For details about the provider, please refer to .cache-fs Cached Filesystem Binary Provider
For details about the provider, please refer to .eventual Eventual Binary Provider
For details about the provider, please refer to .retry Retry Binary Provider

Example 1

A configuration for OpenStack Object Store Swift.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint><My OpenStack Server></endpoint>
 <bucketName><My OpenStack Container></bucketName>
 <httpsOnly>false</httpsOnly>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 </provider>
</config>

Example 2

A configuration for CEPH.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXXX</identity>
 <credential>XXXXXXXXXXXXXXXXX</credential>
 <endpoint><My Ceph server></endpoint> <!-- Specifies the CEPH
endpoint -->
 <bucketName>[My Ceph Bucket Name]</bucketName>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 <httpsOnly>false</httpsOnly>
 </provider>
</config>

Example 3

A configuration for CleverSafe.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint>[My CleverSafe Server]</endpoint> <!-- Specifies the
CleverSafe endpoint -->
 <bucketName>[My CleverSafe Bucket]</bucketName>
 <httpsOnly>false</httpsOnly>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 </provider>
</config>

Example 4

A configuration for S3 with a proxy between Artifactory and the S3 bucket.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXXX</identity>
 <credential>XXXXXXXXXXXXXXXXX</credential>
 <endpoint>[My S3 server]</endpoint>
 <bucketName>[My S3 Bucket Name]</bucketName>
 <proxyHost>[http proxy host name]</proxyHost>
 <proxyPort>[http proxy port number]</proxyPort>
 <proxyIdentity>XXXXX</proxyIdentity>
 <proxyCredential>XXXX</proxyCredential>
 </provider>
</config>

Example 5

A configuration for S3 using an IAM role instead of an IAM user.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <roleName>XXXXXX</roleName>
 <endpoint>s3.amazonaws.com</endpoint>
 <bucketName>[mybucketname]</bucketName>
 <refreshCredentials>true</refreshCredentials>
 </provider>
</config>

Example 6

A configuration for S3 when using server side encryption.

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint>s3.amazonaws.com</endpoint>
 <bucketName>[mybucketname]</bucketName>
 <property name="s3service.server-side-encryption"
value="AES256"></property>
 </provider>
</config>

Example 7

A configuration for S3 when using .EMC Elastic Cloud Storage (ECS)

https://www.emc.com/en-us/storage/ecs/
https://www.emc.com/en-us/storage/ecs/

<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXXX</identity>
 <credential>XXXXXXXXXXXXXXXXX</credential>
 <endpoint><My ECS server></endpoint> <!-- e.g.
https://emc-ecs.mycompany.com -->
 <httpsPort><My ECS Server SSL Port></httpsPort> <!--
Required only if HTTPS port other than 443 is used -->
 <bucketName>[My ECS Bucket Name]</bucketName>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 </provider>
</config>

S3Old Binary Provider

The snippet below shows an example that uses the S3 binary provider where JClouds is the underlying framework.

s3Old template configuration

A configuration for AWS.
Because you must configure the provider with parameters specific to your account (but can leave all other parameters with thes3Old
recommended values), if you choose to use this template, your configuration file should look like this:binarystore.xml

<config version="v1">
 <chain template="s3Old"/>
 <provider id="s3Old" type="s3Old">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint>s3.amazonaws.com</endpoint>
 <bucketName>[mybucketname]</bucketName>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml s3Old

<config version="v1">
 <chain template="s3Old"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="eventual" type="eventual">
 <provider id="retry" type="retry">
 <provider id="s3Old" type="s3Old"/>
 </provider>
 </provider>
 </provider>
</config>

For details about the provider, please refer to .cache-fs Cached Filesystem Binary Provider
For details about the provider, please refer to .eventual Eventual Binary Provider
For details about the provider, please refer to .retry Retry Binary Provider

Google Storage Binary Provider

The google-storage template is used for configuring Google Cloud Storage as the remote filestore.

The snippets below show the basic template configuration and an examples that use the Google Cloud Storage binary provider.

This binary provider uses the following set of parameters:

type

google-storage

testConnection

Default: true

When set to true, the binary provider uploads and downloads a file when Artifactory starts up to verify that the
connection to the cloud storage provider is fully functional.

multiPartLimit

Default: 100,000,000 bytes

File size threshold over which file uploads are chunked and multi-threaded.

identity

Your cloud storage provider identity.

credential

Your cloud storage provider authentication credential.

bucketName

Your globally unique bucket name.

path

Default: filestore
The path relative to the bucket where binary files are stored.

proxyIdentity

Corresponding parameters if you are accessing the cloud storage provider through a proxy server.

proxyCredential

proxyPort

proxyHost

port

The cloud storage provider’s port.

endPoint

The cloud storage provider’s URL.

httpsOnly

Default: true.

Set to true if you only want to access your cloud storage provider through a secure https connection.

httpsPort

Default: 443. Must be set if is . The https port for the secure connection.httpsOnly true

When this value is specified, the port needs to be removed from the .endPoint

bucketExists

Default: false.

When set to true, it indicates to the binary provider that a bucket already exists in Google Cloud Storage and therefore
does not need to be created.

google-storage template configuration

Because you must configure the provider with parameters specific to your account (but can leave all other parameters withgoogle-storage
the recommended values), if you choose to use this template, your configuration file should look like this:binarystore.xml

<config version="v1">
 <chain template="google-storage"/>

 <provider id="google-storage" type="google-storage">
 <endpoint>commondatastorage.googleapis.com</endpoint>
 <bucketName><BUCKET NAME></bucketName>
 <identity>XXXXXX</identity>
 <credential>XXXXXXX</credential>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood.binarystore.xml google-storage

<config version="v1">
 <chain template="google-storage"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="eventual" type="eventual">
 <provider id="retry" type="retry">
 <provider id="google-storage" type="google-storage"/>
 </provider>
 </provider>
 </provider>
</config>

For details about the provider, please refer to .cache-fs Cached Filesystem Binary Provider
For details about the provider, please refer to .eventual Eventual Binary Provider
For details about the provider, please refer to .retry Retry Binary Provider

Example 1

A configuration with a dynamic property from the JetS3t library. In this example, the parameter sets the maximumhttpclient.max-connections
number of simultaneous connections to allow globally (default is 100).

<config version="v1">
 <chain template="google-storage"/>
 <provider id="google-storage" type="google-storage">
 <endpoint>commondatastorage.googleapis.com</endpoint>
 <bucketName><BUCKET NAME></bucketName>
 <identity>XXXXXX</identity>
 <credential>XXXXXXX</credential>
 <property name="httpclient.max-connections" value=150></property>
 </provider>
</config>

Azure Blob Storage Binary Provider

The azure-blob-storage template is used for configuring Azure Blob Storage as the remote filestore.

The snippets below show the basic template configuration and an examples that use the Azure Blob Storage binary provider.

This binary provider uses the following set of parameters:

testConnection

Default: true

When true, Artifactory uploads and downloads a file when starting up to verify that the connection to the cloud storage
provider is fully functional.

accountName

The storage account can be a General-purpose storage account or a Blob storage account which is specialized for
storing objects/blobs.

 Your cloud storage provider identity.

accountKey

Your cloud storage provider authentication credential.

containerName

Your globally unique container name on Azure Blob Storage.

endpoint

The hostname. You should only use the default value unless you need to contact a different endpoint for testing
purposes.

httpsOnly

Default: true.

Set to true if you only want to access through a secure https connection.

The following snippet shows the default chain that uses as the binary provider:azure-blob-storage

<config version="1">
 <chain template="azure-blob-storage"/>
 <provider id="azure-blob-storage" type="azure-blob-storage">
 <accountName>XXXXXXXX</accountName>
 <accountKey>XXXXXXXX</accountKey>

<endpoint>https://<ACCOUNT_NAME>.blob.core.windows.net/</endpoint>
 <containerName><NAME></containerName>
 </provider>
</config>

Eventual Binary Provider

This binary provider is not independent and will always be used as part of a template chain for a remote filestore that may exhibit upload
latency (e.g. S3 or GCS). To overcome potential latency, files are first written to a folder called “eventual” under the in localbaseDataDir
storage, and then later uploaded to persistent storage with the cloud provider. The default location of the folder is under the eventual $ART

 folder (or in the case of an HA configuration using a version of Artifactory 5.0)IFACTORY_HOME/data $CLUSTER_HOME/ha-data below
and is not configurable. You need to make sure that Artifactory has full read/write permissions to this location.

There are three additional folders under the l folder:eventua

_pre: part of the persistence mechanism that ensures all files are valid before being uploaded to the remote filestore
_add: handles upload of files to the remote filestore
_delete: handles deletion of files from the remote filestore

Example

The example below shows a configuration that uses S3 for persistent storage after temporary storage with an eventual binary provider. The
eventual provider configures 10 parallel threads for uploading and a lock timeout of 180 seconds.

<!-- The S3 binary provider configuration -->
<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint><My OpenStack Server></endpoint>
 <bucketName><My OpenStack Container></bucketName>
 <httpsOnly>false</httpsOnly>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 </provider>

<!-- The eventual provider configuration -->
 <provider id="eventual" type="eventual">
 <numberOfThreads>10</numberOfThreads>
 <timeout>180000</timeout>
 </provider>
</config>

Where:

type

eventual

timeout

The maximum amount of time a file may be locked while it is being written to or deleted from the filesystem.

dispatchInterval

Default: 5000 ms

The interval between which the provider scans the “eventual” folder to check for files that should be uploaded to
persistent storage.

numberOfThreads

Default: 5

The number of parallel threads that should be allocated for uploading files to persistent storage.

Retry Binary Provider

This binary provider is not independent and will always be used as part of a more complex template chain of providers. In case of a failure in
a read or write operation, this binary provider notifies its underlying provider in the hierarchy to retry the operation.

type

retry

interval

Default: 5000 ms
The time interval to wait before retries.

maxTrys

Default: 5
The maximum number of attempts to read or write before responding with failure.

Example

The example below shows a configuration that uses S3 for persistent storage , but uses a retry provider to keep retrying (up to a maximum of
10 times) in case upload fails.

<!-- The S3 binary provider configuration -->
<config version="v1">
 <chain template="s3"/>
 <provider id="s3" type="s3">
 <identity>XXXXXXXXX</identity>
 <credential>XXXXXXXX</credential>
 <endpoint><My OpenStack Server></endpoint>
 <bucketName><My OpenStack Container></bucketName>
 <httpsOnly>false</httpsOnly>
 <property name="s3service.disable-dns-buckets"
value="true"></property>
 </provider>

<!-- The retry provider configuration -->
 <provider id="retry" type="retry">
 <maxTrys>10</maxTrys>
 </provider>
</config>

Double Shards, Redundant Shards

These binary providers are only available with an Enterprise license.

Double Shards Binary Provider

The template is used for pure sharding configuration that uses 2 physical mounts with 1 copy (which means each artifact isdouble-shards
saved only once). To learn more about the different sharding capabilities, refer to . Filestore Sharding

double-shards template configuration

If you choose to use the template, your configuration file should look like this:double-shards binarystore.xml

<config version="4">
 <chain template="double-shards"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml double-shards
For details about the provider, please refer to .cache-fs Cached Filesystem Binary Provider
For details about the provider, please refer to .sharding Sharding Binary Provider
For details about the sub-provider, please refer to .state-aware State-Aware Binary Provider

<config version="4">
 <chain template="double-shards"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding" type="sharding">
 <redundancy>1</redundancy>
 <sub-provider id="shard-fs-1" type="state-aware"/>
 <sub-provider id="shard-fs-2" type="state-aware"/>
 </provider>
 </provider>
</config>

Redundant Shards Binary Provider

The template is used for pure sharding configuration that uses 2 physical mounts with 2 copies (which means each shardredundant-shards
stores a copy of each artifact). To learn more about the different sharding capabilities, refer to . Filestore Sharding

redundant-shards template configuration

If you choose to use the template, your configuration file should look like this:redundant-shards binarystore.xml

<config version="4">
 <chain template="redundant-shards"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml redundant-shards
Details about the provider can be found in the section.cache-fs Cached Filesystem Binary Provider
Details about the provider can be found in the section.sharding Sharding Binary Provider
Details about the sub-provider can be found in the section.state-aware State-Aware Binary Provider

<config version="4">
 <chain template="redundant-shards"/>
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding" type="sharding">
 <redundancy>2</redundancy>
 <sub-provider id="shard-state-aware-1" type="state-aware"/>
 <sub-provider id="shard-state-aware-2" type="state-aware"/>
 </provider>
 </provider>
</config>

Sharding Binary Provider

Artifactory offers a Sharding Binary Provider that lets you manage your binaries in a sharded filestore. A sharded filestore is one that is
implemented on a number of physical mounts (M), which store binary objects with redundancy (R), where R <= M.
This binary provider is not independent and will always be used as part of a more complex template chain of providers. To learn about
sharding, refer to . Filestore Sharding

type

sharding

readBehavior

This parameter dictates the strategy for reading binaries from the mounts that make up the sharded
filestore.

Possible values are:

roundRobin (default): Binaries are read from each mount using a round robin strategy.

writeBehavior

This parameter dictates the strategy for writing binaries to the mounts that make up the sharded filestore.
Possible values are:

 roundRobin (default): Binaries are written to each mount using a round robin strategy.

 freeSpace: Binaries are written to the mount with the greatest absolute volume of free space available.

 percentageFreeSpace: Binaries are written to the mount with the percentage of free space available.

redundancy

Default: r = 1
The number of copies that should be stored for each binary in the filestore. Note that redundancy must
be less than or equal to the number of mounts in your system for Artifactory to work with this
configuration.

concurrentStreamWaitTimeout

Default: 30,000 ms

To support the specified redundancy, accumulates the write stream in a buffer, and uses “r” threads
(according to the specified redundancy) to write to each of the redundant copies of the binary being
written. A binary can only be considered written once all redundant threads have completed their write
operation. Since all threads are competing for the write stream buffer, each one will complete the write
operation at a different time. This parameter specifies the amount of time (ms) that any thread will wait
for all the others to complete their write operation.

concurrentStreamBufferKb

Default: 32 Kb
The size of the write buffer used to accumulate the write stream before being replicated for writing to the
“r” redundant copies of the binary.

If a write operation fails, you can try increasing the value of this parameter.

If a write operation fails, you can try increasing the value of this parameter.

maxBalancingRunTime

Default: 3,600,000 ms (1 hour)
Once a failed mount has been restored, this parameter specifies how long each balancing session may
run before it lapses until the next Garbage Collection has completed. For more details about balancing,
please refer to .Using Balancing to Recover from Mount Failure

freeSpaceSampleInterval

Default: 3,600,000 ms (1 hour)

To implement its write behavior, Artifactory needs to periodically query the mounts in the sharded
filestore to check for free space. Since this check may be a resource intensive operation, you may use
this parameter to control the time interval between free space checks.

minSpareUploaderExecutor

Default: 2

Artifactory maintains a pool of threads to execute writes to each redundant unit of storage. Depending on
the intensity of write activity, eventually, some of the threads may become idle and are then candidates
for being killed. However, Artifactory does need to maintain some threads alive for when write activities
begin again. This parameter specifies the minimum number of threads that should be kept alive to supply
redundant storage units.

uploaderCleanupIdleTime

Default: 120,000 ms (2 min)

The maximum period of time threads may remain idle before becoming candidates for being killed.

State-Aware Binary Provider

This binary provider is not independent and will always be used in the or providers. The provider is aware if itssharding sharding-cluster
underlying disk is functioning or not. It is identical to the basic provider provider, however, it can also recover from errors (thefilesystem
parent provider is responsible for recovery) with the addition of the field. checkPeriod

type

state-aware

checkPeriod

Default: 15000 ms

The minimum time to wait between trying to re-activate the provider if it had fatal errors at any point.

zone

The name of the sharding zone the provider is part of (only applicable under a sharding provider)

Configuring Sharding for HA Cluster

These binary providers are only available with an Enterprise license.

For a High Availability cluster, Artifactory offers templates that support sharding-cluster for File-System, S3 and Google Storage. To learn
more about the different sharding capabilities, refer to . Filestore Sharding
When configuring your filestore on an HA cluster, you need to place the under in the primarybinarystore.xml $ARTIFACTORY_HOME/etc
node and it will be synced to the other members in the cluster.

File System Cluster Binary Provider

To restore your system to full redundancy more quickly after a mount failure, you may increase
the value of this parameter. If you find this causes an unacceptable degradation of overall
system performance, you can consider decreasing the value of this parameter, but this means
that the overall time taken for Artifactory to restore full redundancy will be longer.

If you anticipate a period of intensive upload of large volumes of binaries, you can consider
decreasing the value of this parameter in order to reduce the transient imbalance between
mounts in your system.

When using the template each node has its own local filestore (just like in the) and iscluster-file-system , file-system binary provider
connected to all other cluster nodes via dynamically allocated using the .Remote Binary Providers Sharding-Cluster Binary Provider

cluster-file-system template configuration

If you choose to use the template, your configuration file should look like this:cluster-file-system binarystore.xml

<config version="2">
 <chain template="cluster-file-system"/>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the cluster-file-system template looks like under thebinarystore.xml
hood.
Details about the provider can be found in the section.cache-fs Cached Filesystem Binary Provider
Details about the can be found in the section.sharding-cluster Sharding-Cluster Binary Provider
Details about the sub-provider can be found in the section.state-aware State-Aware Binary Provider

<config version="2">
 <chain> <!--template="cluster-file-system"-->
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding-cluster" type="sharding-cluster">
 <sub-provider id="state-aware" type="state-aware"/>
 <dynamic-provider id="remote-fs" type="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="state-aware" type="state-aware">
 <zone>local</zone>
 </provider>

 <!-- Shard dynamic remote provider configuration -->
 <provider id="remote-fs" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="sharding-cluster" type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <property name="zones" value="local,remote"/>
 </provider>

</config>

S3 Cluster Binary Provider

This is the setting used for using the JetS3t library when configuring filestore sharding for an HA cluster. It is based on theS3 Object Storage
sharding and dynamic provider logic that synchronizes the cluster-file-system.
When using the template data is temporarily stored on the file system of each node using the , and is thencluster-s3 , Eventual Binary Provider
passed on to your S3 object storage for persistent storage.
Each node has its own local filestore (just like in the) and is connected to all other cluster nodes via dynamicallyfile-system binary provider
allocated using the .Remote Binary Providers Sharding-Cluster Binary Provider

cluster-s3 template configuration

Because you must configure the provider with parameters specific to your account (but can leave all other parameters with thes3
recommended values), if you choose to use the template, your configuration file should look like this:cluster-s3 binarystore.xml

<config version="2">
 <chain template="cluster-s3"/>
 <provider id="s3" type="s3">
 <endpoint>http://s3.amazonaws.com</endpoint>
 <identity>[ENTER IDENTITY HERE]</identity>
 <credential>[ENTER CREDENTIALS HERE]</credential>
 <path>[ENTER PATH HERE]</path>
 <bucketName>[ENTER BUCKET NAME HERE]</bucketName>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under the hood. binarystore.xml cluster-s3

<config version="2">
 <chain> <!--template="cluster-s3"-->
 <provider id="cache-fs-eventual-s3" type="cache-fs">
 <provider id="sharding-cluster-eventual-s3"
type="sharding-cluster">
 <sub-provider id="eventual-cluster-s3"
type="eventual-cluster">
 <provider id="retry-s3" type="retry">
 <provider id="s3" type="s3"/>
 </provider>
 </sub-provider>
 <dynamic-provider id="remote-s3" type="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="sharding-cluster-eventual-s3" type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <property name="zones" value="local,remote"/>
 </provider>

 <provider id="remote-s3" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="eventual-cluster-s3" type="eventual-cluster">
 <zone>local</zone>
 </provider>
 <provider id="s3" type="s3">
 <endpoint>http://s3.amazonaws.com</endpoint>
 <identity>[ENTER IDENTITY HERE]</identity>
 <credential>[ENTER CREDENTIALS HERE]</credential>
 <path>[ENTER PATH HERE]</path>
 <bucketName>[ENTER BUCKET NAME HERE]</bucketName>
 </provider>
</config>

Details about the provider can be found in the section.cache-fs Cached Filesystem Binary Provider
Details about the can be found in the section.sharding-cluster Sharding-Cluster Binary Provider
Details about the sub-provider can be found in the section.eventual-cluster Eventual Binary Provider
Details about the provider can be found in the section. retry Retry Binary Provider
Details about the dnyamic provider can be found in the section. remote Remote Binary Provider

Google Storage Cluster Binary Provider

This is the setting used for using the JetS3t library when configuring filestore sharding for an HA cluster. It is based onGoogle Cloud Storage
the sharding and dynamic provider logic that synchronizes the cluster-file-system.
When using the template data is temporarily stored on the file system of each node using the cluster-google-storage , Eventual Binary

, and is then passed on to your Google storage for persistent storage. Provider
Each node has its own local filestore (just like in the) and is connected to all other cluster nodes via dynamicallyfile-system binary provider
allocated using the .Remote Binary Providers Sharding-Cluster Binary Provider

cluster-google-storage template configuration

Because you must configure the provider with parameters specific to your account (but can leave all other parameters withgoogle-storage
the recommended values), if you choose to use the template, your configuration file should lookcluster-google-storage binarystore.xml
like this:

<config version="2">
 <chain template="cluster-google-storage"/>
 <provider id="google-storage" type="google-storage">
 <endpoint>commondatastorage.googleapis.com</endpoint>
 <bucketName><BUCKET NAME></bucketName>
 <identity>XXXXXX</identity>
 <credential>XXXXXXX</credential>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like under thebinarystore.xml cluster-google-storage
hood.

<config version="2">
 <chain> <!--template="cluster-google-storage"-->
 <provider id="cache-fs-eventual-google-storage" type="cache-fs">
 <provider id="sharding-cluster-eventual-google-storage"
type="sharding-cluster">
 <sub-provider id="eventual-cluster-google-storage"
type="eventual-cluster">
 <provider id="retry-google-storage" type="retry">
 <provider id="google-storage"
type="google-storage"/>
 </provider>
 </sub-provider>
 <dynamic-provider id="remote-google-storage"
type="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="sharding-cluster-eventual-google-storage"
type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <property name="zones" value="local,remote"/>
 </provider>

 <provider id="remote-google-storage" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="eventual-cluster-google-storage" type="eventual-cluster">
 <zone>local</zone>
 </provider>

 <provider id="google-storage" type="google-storage">
 <endpoint>commondatastorage.googleapis.com</endpoint>
 <bucketName><BUCKET NAME></bucketName>
 <identity>XXXXXX</identity>
 <credential>XXXXXXX</credential>
 </provider>
</config>

Details about the provider can be found in the section.cache-fs Cached Filesystem Binary Provider
Details about the can be found in the section.sharding-cluster Sharding-Cluster Binary Provider
Details about the sub-provider can be found in the section.eventual-cluster Eventual Binary Provider
Details about the provider can be found in the section. retry Retry Binary Provider
Details about the dnyamic provider can be found in the section. remote Remote Binary Provider

Azure Blob Storage Cluster Binary Provider

This is the setting used for . It is based on the sharding and dynamic provider logic that synchronizes theAzure Blob Storage
cluster-file-system.
When using the template data is temporarily stored on the file system of each node using the cluster-azure-blob-storage , Eventual Binary

, and is then passed on to your Azure Blob Storage for persistent storage. Provider

Each node has its own local filestore (just like in the) and is connected to all other cluster nodes via dynamicallyfile-system binary provider
allocated using the .Remote Binary Providers Sharding-Cluster Binary Provider

cluster-azure-blob-storage template configuration

Because you must configure the provider with parameters specific to your account (but can leave all other parametersazure-blob-storage
with the recommended values), if you choose to use the template, your configuration filecluster-azure-blob-storage binarystore.xml
should look like this:

<config version="2">
 <chain template="cluster-azure-blob-storage"/>
 <provider id="azure-blob-storage" type="azure-blob-storage">
 <accountName>XXXXXX</accountName>
 <accountKey>XXXXXX</accountKey>

<endpoint>https://<ACCOUNT_NAME>.blob.core.windows.net/</endpoint>
 <containerName><NAME></containerName>
 </provider>
</config>

What's in the template?

While you don't need to configure anything else in your , this is what the template looks like underbinarystore.xml cluster-azure-blob-storage
the hood:

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-FilesystemBinaryProvider

<config version="2">
 <chain template=“cluster-azure-blob-storage”>
 <provider id=“cache-fs-eventual-azure-blob-storage”
type=“cache-fs”>
 <provider id=“sharding-cluster-eventual-azure-blob-storage”
type=“sharding-cluster”>
 <sub-provider id=“eventual-cluster-azure-blob-storage”
type=“eventual-cluster”>
 <provider id=“retry-azure-blob-storage” type=“retry”>
 <provider id=“azure-blob-storage”
type=“azure-blob-storage”/>
 </provider>
 </sub-provider>
 <dynamic-provider id=“remote-azure-blob-storage”
type=“remote”/>
 </provider>
 </provider>
 </chain>

 <!-- cluster eventual Azure Blob Storage Service default chain -->
 <provider id="sharding-cluster-eventual-azure-blob-storage"
type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <lenientLimit>1</lenientLimit>
 <property name="zones" value="local,remote"/>
 </provider>

 <provider id="remote-azure-blob-storage" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="eventual-cluster-azure-blob-storage"
type="eventual-cluster">
 <zone>local</zone>
 </provider>

 <!--cluster eventual template-->
 <provider id="azure-blob-storage" type="azure-blob-storage">
 <accountName>XXXXXX</accountName>
 <accountKey>XXXXXX</accountKey>
 <endpoint>https://<ACCOUNT_NAME>.blob.core.windows.net/</endpoint>
 <containerName><NAME></containerName>
 </provider>
</config>

Details about the provider can be found in the section.cache-fs Cached Filesystem Binary Provider
Details about the can be found in the section.sharding-cluster Sharding-Cluster Binary Provider
Details about the sub-provider can be found in the section.eventual-cluster Eventual Binary Provider
Details about the provider can be found in the section. retry Retry Binary Provider
Details about the dnyamic provider can be found in the section. remote Remote Binary Provider

Sharding-Cluster Binary Provider

The sharding-cluster binary provider can be used together with other binary providers for both local or cloud-native storage. It adds a crossN
parameter to be used as read and write behaviors for validation of the redundancy values and the balance mechanism. ItetworkStrategy

must include a in its dynamic-provider setting to allow synchronizing providers across the cluster.Remote Binary Provider

The Sharding-Cluster provider listens to cluster topology events and creates or removes dynamic providers based on the current state of
nodes in the cluster.

type

sharding-cluster

zones

The zones defined in the sharding mechanism. Read/write strategies take providers based on zones.

lenientLimit

Default: 1 (From version 5.4. Note that for filestores configured with a custom chain and not using the built-in
templates, the default value of the lenientLimit parameter is 0 to maintain consistency with previous versions.)

The minimum number of filestores that must be active for writes to continue. For example, if is set tolenientLimit
2, my setup includes 4 filestores, and 2 of them go down, writing will continue. If a 3rd filestore goes down, writing will
stop.

Typically this is used to address transient failures of an individual binary store, with the assumption that the balance
mechanism will make up for it over time.

dynamic-provider

The type of provider that can be added and removed dynamically based on cluster topology changes. Currently only
the is supported as a dynamic provider.Remote Binary Provider

Example

<config version="v1">
 <chain>
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding-cluster" type="sharding-cluster">
 <sub-provider id="state-aware" type="state-aware"/>
 <dynamic-provider id="remote" type="remote"/>
 <property name="zones" value="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="sharding-cluster" type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <lenientLimit>1</lenientLimit>
 </provider>

 <provider id="state-aware" type="state-aware">
 <fileStoreDir>filestore1</fileStoreDir>
 </provider>

 <provider id="remote" type="remote">
 <checkPeriod>15000</checkPeriod>
 <connectionTimeout>5000</connectionTimeout>
 <socketTimeout>15000</socketTimeout>
 <maxConnections>200</maxConnections>
 <connectionRetry>2</connectionRetry>
 <zone>remote</zone>
 </provider>
</config>

Remote Binary Provider

This binary provider is not independent and will always be used as part of a more complex template chain of providers. In case of a failure in
a read or write operation, this binary provider notifies its parent provider in the hierarchy.

The remote Binary Provider links a node to all other nodes in the cluster, meaning it enables each node to 'see' the filestore of every other
node.

type

remote

connectionTimeout

Default: 5000 ms
Time before timing out an outgoing connection.

socketTimeout

Default: 15000 ms
Time before timing out an established connection (i.e. no data is sent over the wire).

maxConnections

Default: 200

Maximum outgoing connections from the provider.

connectionRetry

Default: 2

How many times to retry connecting to the remote endpoint.

zone

The name of the sharding zone the provider is part of (only applicable under a sharding provider).

checkPeriod

Default: 15000 ms

The minimum time to wait between trying to re-activate the provider if it had fatal errors at any point.

Example

The following is an example how a remote binary provider may be configured. To see how this can be integrated with a complete binarysto
 configuration, please refer to the example under .re.xml Sharding-Cluster Binary Provider

<provider id="remote" type="remote">
 <checkPeriod>15000</checkPeriod>
 <connectionTimeout>5000</connectionTimeout>
 <socketTimeout>15000</socketTimeout>
 <maxConnections>200</maxConnections>
 <connectionRetry>2</connectionRetry>
 <zone>remote</zone>
</provider>

Configuring a Custom Filestore From Scratch
In addition to the built-in filestore chain templates below, you may construct custom chain template to accommodate any filestore structure
you need.
Since the different Binary providers in the filestore must be compatible with each other, misconfiguration might lead to data loss. For
configuring a custom filestore, please contact . JFrog Support

Configuring the Filestore for Older Artifactory Versions

For versions of Artifactory below 4.6, the filestore used is configured in the file as$ARTIFACTORY_HOME/etc/storage.properties
follows

binary.provider.type

filesystem (default)
This means that metadata is stored in the database, but binaries are stored in the file system. The
default location is under however this can be modified.$ARTIFACTORY_HOME/data/filestore

fullDb
All the metadata and the binaries are stored as BLOBs in the database.

cachedFS
Works the same way as but also has a binary LRU (Least Recently Used) cache forfilesystem
upload/download requests. Improves performance of instances with high IOPS (I/O Operations) or slow
NFS access.

S3
This is the setting used for . S3 Object Storage

binary.provider.cache.maxSize

This value specifies the maximum cache size (in bytes) to allocate on the system for caching BLOBs.

binary.provider.filesystem.dir

If is set to this value specifies the location of the binaries (default: binary.provider.type filesystem
).$ARTIFACTORY_HOME/data/filestore

https://www.jfrog.com/support-service/support/

binary.provider.cache.dir

The location of the cache. This should be set to your $ARTIFACTORY_HOME directory directly (not on
the NFS).

maxCacheSiz

Checksum-Based Storage

Overview

Artifactory uniquely stores artifacts using checksum-based storage.

A file that is uploaded to Artifactory, first has its SHA1 checksum calculated, and is then renamed
to its checksum. It is then hosted in the configured filestore in a directory structure made up of the
first two characters of the checksum. For example, a file whose checksum is "ac3f5e56..." would be
stored in directory "ac"; a file whose checksum is "dfe12a4b..." would be stored in directory "df" and
so forth. The example below shows the "d4" directory that contains two files whose checksum
begins with "d4".

In parallel, Artifactory's creates a database entry mapping the file's checksum to the path it was
uploaded to in a repository. This way of storing binaries optimizes many operations in Artifactory
since they are implemented through simple database transactions rather than actually manipulating
files.

Page Contents
Overview
SHA-256
Support

Migrati
ng the
Datab
ase to
Includ
e
SHA-2
56

Configuring the Migration Process
Monitoring the Migration Process

Deduplication

Artifactory stores any binary file only once. This is what we call "once and once only storage". First time a file is uploaded, Artifactory runs the
required checksum calculations when storing the file, however, if the file is uploaded again (to a different location, for example), the upload is
implemented as a simple database transaction that creates another record mapping the file's checksum to its new location. There is no need
to actually store the file again in storage. No matter how many times a file is uploaded, the filestore only hosts a single copy of the file.

Copying and Moving Files

Copying and moving a file is implemented by simply adding and removing database references and, correspondingly, performance of these
actions is that of a database transaction.

Deleting Files

Deleting a file is also a simple database transaction in which the corresponding database record is deleted. The file itself is not directly
deleted, even if the last database entry pointing to it is removed. So-called "orphaned" files are removed in the background by Artifactory's
garbage collection processes.

Upload, download and replication

Before moving files from one location to another, Artifactory sends checksum headers. If the files already exist in the destination, they are not
transferred even if they exist under a different path.

Filesystem Performance

Filesystem performance is greatly improved because actions on the filestore are implemented as database transactions, so there is never any
need to do a write-lock on the filesystem.

Checksum Search

Searching for a file by its checksum is extremely fast since Artifactory is actually searching through the database for the specified checksum.

Flexible Layout

Since the database is a layer of indirection between the filestore and the displayed layout, any layout can be supported, whether for one of
the standard packaging formats such as Maven1, Maven2, npm, NuGet etc. or for any custom layout.

SHA-256 Support

From version 5.5, Artifactory natively supports SHA-256. An artifact's SHA-256 checksum is calculated when it is deployed to Artifactory, and
is maintained in persistent storage as part of the database. The REST API endpoint (which sets an artifact'sSet Item SHA256 Checksum
SHA-256 checksum as one of its properties) is still supported for backward compatibility, however, this endpoint will eventually be
deprecated.

Artifactory's support for SHA-256 checksums is fully-featured and is evident in several ways:

They can be used in , and are returned in corresponding responses AQL queries
They are included as download header information
They can be used in the and REST API endpoints. Deploy Artifact Deploy Artifact by Checksum
They are included when downloading a folder
They are displayed in the tab of the Artifact Repository Browser General Information
The can be used in a variety of REST API endpoints used for search

After upgrading to version 5.5 (or above), Artifactory will be fully capable of utilizing an artifact's SHA-256 checksum for any of the features
mentioned above.

Migrating the Database to Include SHA-256

The migration is configured through a set of properties in Artifactory's file as described below, and essentially, doessystem.properties
the following:

Search for all database records that don't have a SHA-256 value.
For each such record, find all others in the database with the same SHA1 checksum value

If any of them have the SHA-256 calculated already, use that to update all the others
If none of them have the SHA-256 calculated already, calculate it and then use that to update all others

If there are no other records with the same SHA1 value, calculate the SHA-256

Configuring the Migration Process

The migration process may be configured through the following .system properties

By default, the migration will run on the primary node, however, using the property described below, you may configureforceRunOnNodeId
it to run on a secondary node.

Making full use of Artifactory's native support for SHA256
New artifacts that are uploaded will automatically have their SHA-256 checksum calculated, however, artifacts that were already
hosted in Artifactory prior to the upgrade will not have their SHA-256 checksum in the database yet.

To make full use of Artifactory's SHA-256 capabilities, you need to run a process that makmigrates Artifactory's database
ing sure that the record for each artifact includes its SHA-256 checksum.

Migrating the database may be a resource intensive operation
Depending on the size of your database, this process may be resource intensive. To mitigate the possible load on your system, you
may configure the process using several system properties listed below. We strongly recommend reading through the entire
process migration process to ensure the optimal configuration for your system.

First run garbage collection to optimize the migration process
The migration process is complete once all database entries have been populated with SHA-256 values. Since your database may
contain entries for artifacts that have been deleted, but have not yet been physically removed by , we stronglygarbage collection
recommend manually invoking garbage collection before invoking the database migration. Removing deleted artifacts can greatly
improve performance and total run time of the migration by reducing the number of downloads it generates.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetItemSHA256Checksum
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-EntitiesandFields
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifact
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactbyChecksum
https://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts#ManipulatingArtifacts-DownloadingaFolder
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-InformationTabs
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SEARCHES
https://www.jfrog.com/confluence/display/RTF/Regular+Maintenance+Operations#RegularMaintenanceOperations-GarbageCollection

Property Name Function

artifactory.sha2.migration.job.enabled [Default: false]

When true, the process that migrates the database to include SHA-256
checksum for all artifacts will be invoked when the node is restarted.

artifactory.sha2.migration.job.forceRunOnNodeId [Default: null]
Only valid for an HA installation.

By default, the migration process runs on the primary node. To run the
process on any other node, set this value to the corresponding node's ID
(as specified in the property in the nodes node.id $ARTIFACTORY_HO

 file).ME/etc/ha-node.properties

 artifactory.migration.job.dbQueryLimit [Default: 100]

Specifies the number of rows that should be retrieved each time the
migration job queries the database for entries that are missing SHA-256
values.

 artifactory.migration.job.batchSize [Default: 10]

Artifacts are updated concurrently in batches with new SHA-256 values
and then a sleep cycle is initiated. This property specifies the number of
artifacts in each batch.

artifactory.sha2.migration.job.queue.workers

[Default: 2]
Specifies the number of concurrent threads that should execute actual
artifact updates.

Each concurrent artifact update may incur a download in order to
calculate its SHA-256 checksum. However, the artifact will only be
downloaded once, first time a database entry is found for it with no
SHA-256 value. Subsequent database entries for the same artifact
(which therefore have the same SHA1 value) will reuse the SHA-256
value that was already calculated.

artifactory.migration.job.sleepIntervalMillis

[Default:]5000 milliseconds
Specifies the duration of the sleep cycle which is initiated after each
batch of updates.

A sample snippet you can paste into your artifactory.system.properties is below, adjust the number of workers as appropriate based on I/O
and CPU utilization:

Running the migration on a dedicated node
This gives you the option of dedicating a specific node to run
the migration and allocating extra resources allowing it to finish
the process faster.

Set the property on both the primary and the
corresponding secondary node
To run the migration process on a secondary node, you need
to set this property on BOTH the master node and the

. Artifactory will still only runcorresponding secondary node
the process on the corresponding secondary node.

http://node.id/

Example artifactory.system.properties snippet

##SHA2 Migration block
artifactory.sha2.migration.job.enabled=true
artifactory.sha2.migration.job.queue.workers=5

Monitoring the Migration Process

Depending on the size of your storage, and the migration parameters you have configured, the migration process may take a long time. To
enable easy monitoring of the process, status and error messages are printed into a dedicated log file, ARTIFACTORY_HOME/logs/sha256

In addition, some messages (process initiation, startup errors) are also logged in the _migration.log. ARTIFACTORY_HOME/logs/arti
file.factory.log

Configuring Repositories

Overview

Artifactory hosts three types of repository:

Local
Remote
Virtual

Local and remote repositories are true physical repositories, while a virtual repository is actually an
aggregation of them used to create controlled domains for search and resolution of artifacts.

To configure repositories, in the module, select Admin Repositories.

Repositories can be created, deleted, edited, ordered and aggregated.

Single Package Type

When creating any repository, you must specify its package type; this is a fundamental characteristic of the
repository and can not be changed later. Once the repository type is set, Artifactory will index artifacts and
calculate the corresponding metadata for every package uploaded which optimizes performance when
resolving artifacts. Note that virtual repositories can only include repositories of the same type.

Restart required
For changes to the migration configuration to take effect, you need to restart the instance (or node in the case of an HA installation)
that will run it. The default values specified above are set to keep your system performing optimally during the migration process.
To speed up the migration process, you may tweak these values (keeping hardware limits in mind), however that may come at a
cost of system performance.

Wrong Package Type
While Artifactory will not prevent you from uploading a package of the wrong type to a repository,
we strongly recommend maintaining consistency between the repository type and packages you
upload.

if you do upload packages of the wrong type to a repository, Artifactory will not index the package
or update the metadata for the repository.

Generic Repositories

You may define a repository as in which case it has no particular type, and you may upload packages of any type. Generic Generic repositories
do not maintain separate package indexes. For using a client associated with a specific package type (e.g. yum, gem) you should create a
matching repository.

Local Repositories

Local repositories are physical, locally-managed repositories into which you can deploy artifacts.

Artifacts in a local repository can be accessed directly using the following URL:
http://<host>:<port>/artifactory/<local-repository-name>/<artifact-path>

Artifactory is deployed with a number of pre-configured local repositories which can be used for internal and external releases, snapshots and
plugins.

For full details on configuring local repositories, please refer to Local Repositories.

Page Contents
Overview
Single Package Type

Generic Repositories
Local Repositories
Remote Repositories
Virtual Repositories

The Default Virtual Repository (Deprecated)
Virtual Resolution Order

General Resolution Order

Read More
Common Settings
Local Repositories
Remote Repositories
Smart Remote Repositories
Virtual Repositories

Remote Repositories

A remote repository serves as a caching proxy for a repository managed at a remote URL (which may itself be another Artifactory remote
repository).

Artifacts are stored and updated in remote repositories according to various configuration parameters that control the caching and proxying
behavior. You can remove artifacts from a remote repository cache but you cannot actually deploy a new artifact into a remote repository.

Artifacts in a remote repository can be accessed directly using the following URL:

http://<host>:<port>/artifactory/<remote-repository-name>/<artifact-path>

This URL will fetch a remote artifact to the cache if it has not yet been stored.

In some cases it is useful to directly access artifacts that are already stored in the cache (for example to avoid remote update checks).

To directly access artifacts that are already stored in the cache you can use the following URL:

http://<host>:<port>/artifactory/<remote-repository-name>-cache/<artifact-path>

Artifactory is deployed with a number of pre-configured, remote repositories which are in common use. Of course you can change these according
to the needs of your organization.

For full details on configuring remote repositories please refer to .Remote Repositories

Virtual Repositories

A virtual repository (or "repository group") aggregates several repositories with the same package type under a common URL. The repository is
virtual in that you can resolve and retrieve artifacts from it but you cannot deploy artifacts to it.

The Default Virtual Repository (Deprecated)

Artifactory offers an option to use a global virtual, which contains all local and remote repositories.

By default this option is disabled, to enable the Default Virtual Repository edit the 'artifactory.system.properties' located at
$ARTIFACTORY_HOME/etc and set the following flag to :false

Disable the download access to the global 'repo'
artifactory.repo.global.disabled=false

This change requires you restart your Artifactory service.

Once enabled the repository is available at:

http://<hostname>:<port>/artifactory/repo

Virtual Resolution Order

When an artifact is requested from a virtual repository, the order in which repositories are searched or resolved is local repositories first, then rem
ote repository caches, and finally remote repositories themselves.

Within each of these, the order by which repositories are queried is determined by the order in which they are listed in the configuration as
described in below.General Resolution Order

Proxy vs. Mirror
A remote repository acts as a not as a mirror. Artifacts are not pre-fetched to a remote repository cache. They are only fetchedproxy
and stored when requested by a client.on demand
Therefore, a remote repository should not contain any artifacts in its cache immediately after creation. Artifacts will only be fetched to
the cache once clients start working with the remote repository and issuing requests.

Generic Virtual Repositories
By their nature, Virtual Repositories whose package type has been specified as can aggregate repositories of any type,Generic
however generic virtual repositories do not maintain any metadata

For a virtual repository, you can see the effective search and resolution order in the list view in the settings tab.Included Repositories Basic
This is particularly helpful when nesting virtual repositories. For more details on configuring a virtual repository please refer to .Virtual Repositories

General Resolution Order

You can set the order in which repositories of each type (local, remote and virtual) are searched and resolved by simply ordering them accordingly
within the corresponding section of the page. To set the order you need to add the repositories to the list of selectedConfigure Repositories
repositories in the order in which they should be searched to resolve artifacts.

The order in which repositories are searched is also affected by additional factors such as security privileges, include/exclude patterns and
policies for handling snapshots and releases.

Common Settings

Overview

Several of the settings are common for local, remote and virtual repositories. These are found in the Basic
tab of the corresponding screen under the section. Additional settings may beSettings New/Edit General

found in the type-specific section according to the package types specified for the repository.

Common Basic Settings

Package
Type

The Package Type must be specified when the repository is created, and once set, cannot
be changed.

Repository
Key

The Repository Key is a mandatory identifier for the repository and must be unique within
an Artifactory instance. It cannot begin with a number or contain spaces or special
characters. For local repositories we recommend using a "-local" suffix (e.g.
"libs-release-local").

Repository
Layout

Sets the layout that the repository should use for storing and identifying modules. Artifactory
will suggest a layout that corresponds to the package type defined, and index packages
uploaded and calculate metadata accordingly.

Public
Description

A free text field that describes the content and purpose of the repository.

Internal
Description

A free text field to add additional notes about the repository. These are only visible to the
Artifactory administrator.

Include
and
Exclude
Patterns

The and the fields provide a way to filter out specificInclude Patterns Exclude Patterns
repositories when trying to resolve the location of different artifacts.

In each field you can specify a list of Ant-like patterns to filter in and filter out artifact
queries. Filtering works by subtracting the excluded patterns (default is none) from the
included patterns (default is all).

Example:

Consider that the Include Patterns and Exclude Patterns for a repository are as follows:

Include Patterns: org/apache/**,com/acme/**
Exclude Patterns: com/acme/exp-project/**

In this case, Artifactory will search the repository for org/apache/maven/parent/1/1.p
 and but not for om com/acme/project-x/core/1.0/nit-1.0.jar com/acme/exp-p

is/core/1.1/san-1.1.jar roject because com/acme/exp-project/**
specified as an Exclude pattern.

JFrog Xray
Integration

If Artifactory is connected to an instance of Xray, indicates if the repository is indexed for
analysis.

Avoiding Security Risks with an Exclude Pattern

Any proprietary artifacts you deploy to Artifactory are stored within local repositories so that they are available for secured and authorized internal
use.

Anyone searching for one of your internal artifacts by name will extract it through Artifactory from the local repository.

However, consider what happens if a request for an internal artifact is inadvertently directed of the organization.outside

Two examples of how this could happen are:

there is a simple typo in the requested artifact name
the developer has requested a snapshot with a version number that does not exist.

In this case, since Artifactory does not find the requested artifact in a local repository, it continues to search through the remote repositories
defined in the system. Artifactory will, in fact, search through the remote repositories defined in your system before returning "Not found".all

This presents a security risk since any request made on a remote repository may be logged exposing all details of the query including the full
.artifact name which may include sensitive business information

Avoiding Performance Issues with an Include Pattern

In a typical scenario, Artifactory will reference large all-purpose repositories such as or Maven Central for resolving artifacts.JCenter

In addition, Artifactory may reference any number of additional repositories which may host a more specialized and specific set of of artifacts.

Page Contents
Overview
Common Basic Settings

Avoiding Security Risks with an Exclude Pattern
Avoiding Performance Issues with an Include Pattern

Local and Remote Repositories

Best practices using an excludes pattern for remote repositories to avoid security risks
To avoid exposing sensitive business information as described above, we strongly recommend the following best practices:

The list of remote repositories used in an organization should be managed under a single virtual repository to which all
requests are directed
All internal artifacts should be specified in the field of the virtual repository (or alternatively, of remoteExclude Pattern each
repository) using wildcard characters to encapsulate the widest possible specification of internal artifacts.

https://bintray.com/bintray/jcenter

If Artifactory receives a request for a deterministic set of artifacts (e.g. a specific version of an artifact), then it searches through the different
repositories according to its resolution order until the artifact is found.

However, if Artifactory receives a request for a non-deterministic set of artifacts (e.g. all versions of) then it must searchmaven-metadata.xml
through of the repositories it references until it can provide a complete response.all

In most cases, the majority of artifacts downloaded by an organization will come from one of the large all-purpose repositories, but in
non-deterministic requests bperformance is downgraded because Artifactory continues to search through all the specialized repositories
efore it can return a response.

Local and Remote Repositories

In addition to the settings above, Local and Remote repositories share the following settings in the type-specific section for relevant package
types.

Max Unique
Snapshots

Specifies the maximum number of unique snapshots of the same artifact that should be stored. Once this number is reached
and a new snapshot is uploaded, the oldest stored snapshot is removed automatically.

Blank (default) indicates that there is no limit on the number of unique snapshots.

Handle
Releases

If set, Artifactory allows you to deploy release artifacts into this repository.

Handle
Snapshots

If set, Artifactory allows you to deploy snapshot artifacts into this repository.

Local Repositories

Overview

To configure a local repository, in the module, go to and click it to display the Admin Repositories | Local E
 screen.dit Repository

Common Basic Settings

The following are fully described in the page.Common Settings

Best practices using an includes pattern for remote repositories to avoid needless and wasteful search
To avoid performing needless and wasteful search when responding to non-deterministic requests we strongly recommend that all
specialized repositories be configured with an appropriate specifying only the set of artifacts that the organizationInclude Pattern
might need.

In this case, non-deterministic requests for artifacts that are typically found in general purpose repositories will skip over the specialized
repositories thereby improving performance.

1.

2.

Package Type
Repository Key
Repository Layout
Public Description
Internal Description
Includes and Excludes Pattern

Additional Basic Settings

Repositories may have additional settings depending on the Basic Package Type.

Maven, Gradle, Ivy and SBT Repositories

Maven, Gradle, Ivy and SBT repositories share the same additional settings.Basic

Checksum
Policy

Checking the Checksum effectively verifies the integrity of a deployed resource. The determines howChecksum Policy
Artifactory behaves when a client checksum for a deployed resource is missing or conflicts with the locally calculated
checksum.

There are two options:

Verify against client checksums (default) - If a client has not sent a valid checksum for a deployed artifact then
Artifactory will return a 404 (not found) error to a client trying to access that checksum. If the client has sent a checksum,
but it conflicts with the one calculated on the server then Artifactory will return a 409 (conflict) error until a valid checksum
is deployed.
Trust server generated checksums - Artifactory will not verify checksums sent by clients and will trust the server's locally
calculated checksums. An uploaded artifact is immediately available for use, but integrity might be compromised.

Page Contents
Overview
Common Basic Settings
Additional Basic Settings

Maven, Gradle, Ivy and SBT Repositories
Other Repository Types

Advanced Settings
Replications
Pre-defined Local Repositories

https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-PackageType
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryKey
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryLayout
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-PublicDescription
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-InternalDescription
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludesandExcludesPattern

1.
2.
3.

Maven
Snapshot
Version
Behavior

Artifactory supports centralized control of how snapshots are deployed into a repository, regardless of end user-specific
settings. This can be used to guarantee a standardized format for deployed snapshots within your organization. There are three
options:

Unique: Uses a unique, time-based version number
Nonunique: Uses the default self-overriding naming pattern: artifactID-version-SNAPSHOT.type
Deployer: Uses the format sent by the deployer as is.

Max Unique
Snapshots

Specifies the maximum number of unique snapshots of the same artifact that should be stored. Once this number is reached
and a new snapshot is uploaded, the oldest stored snapshot is removed automatically.

A value of 0 (default) indicates that there is no limit on the number of unique snapshots.

Handle
Releases

If set, Artifactory allows you to deploy release artifacts into this repository.

Handle
Snapshots

If set, Artifactory allows you to deploy snapshot artifacts into this repository.

Suppress
POM
Consistency

When deploying an artifact to a repository, Artifactory verifies that the value set for in thegroupId:artifactId:version
POM is consistent with the deployed path.

If there is a conflict between these then Artifcatory will reject the deployment. You can disable this behavior by setting this
checkbox.

Other Repository Types

For other type-specific repository configuration, please refer to the corresponding repository page under .Artifactory Pro

Advanced Settings

Maven 3 Only Supports Unique Snapshots
Maven 3 has dropped support for resolving and deploying non-unique snapshots. Therefore, if you have a snapshot
repository using non-unique snapshots, we recommend that you change your Maven snapshot policy to 'Unique' and
remove any previously deployed snapshots from this repository.

The unique snapshot name generated by the Maven client on deployment cannot help in identifying the source
control changes from which the snapshot was built and has no relation to the time sources were checked out.
Therefore,we recommend that the artifact itself should embed the revision/tag (as part of its name or internally) for
clear and visible revision tracking. Artifactory allows you to tag artifacts with the revision number as part of its Build

 support.Integration

http://groupidartifactidversion/

Select
Property Sets

Defines the property sets that will be available for artifacts stored in this repository.

Blacked Out

If set, Artifactory ignores this repository when trying to resolve artifacts. The repository is also not available for download or
deployment of artifacts.

Allow Content
Browsing

If set, allows you to view file contents (e.g., Javadoc browsing, HTML files) directly from Artifactory.

Replications

The tab lets you define and edit replication settings for the repository. For details, please refer to .Replications Repository Replication

Pre-defined Local Repositories

Artifactory comes with a set of pre-defined local repositories, which reflect best practices in binary repository management as follows:

libs-release-local

Your code releases

libs-snapshot-local

Your code snapshots

ext-release-local

Manually deployed 3rd party libs (releases)

ext-snapshot-local

Manually deployed 3rd party libs (shapshots)

plugins-release-local

Your and 3rd party plugins (releases)

Security
When content browsing is allowed we recommend strict content moderation to ensure that any uploaded content
does not compromise security (for example, cross-site scripting attacks)

plugins-snapshot-local

Your and 3rd party plugins (snapshots)

Remote Repositories

Overview

To configure a remote repository, in the Admin module, go to Repositories | Remote and click it to display
the Edit Repository screen.

Common Basic Settings

The following are fully described in the page.Common Settings

Package Type
Repository Key
Public Description
Internal Notes
Includes and Excludes Pattern

Additional Basic Settings

URL

The URL for the remote repository. Currently only HTTP and HTTPS URLs are supported.

Offline

If set, this repository will be considered offline and no attempts will be made to fetch artifacts
from it.

For more details, please refer to below. Single Repository Offline

Type-Specific Basic Settings

Repositories may have additional settings depending on the Basic Package Type.

Maven, Gradle, Ivy and SBT Repositories

Page Contents
Overview
Common Basic Settings
Additional Basic Settings
Type-Specific Basic Settings

Maven, Gradle, Ivy and SBT Repositories
Other Repository Types

Handling Offline Scenarios
Single Repository Offline
Global Offline Mode

Read More
Managing Proxies
Advanced Settings

https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-Package
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryKey
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-PublicDescription
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-InternalNotes
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludesandExcludesPattern

1.

2.

3.

4.

Checksum
Policy

Checking the Checksum effectively verifies the integrity of a deployed resource. The determines howChecksum Policy
Artifactory behaves when a client checksum for a remote resource is missing or conflicts with the locally calculated checksum.

There are four options:

Generate if absent (default): Artifactory attempts to retrieve the remote checksum, If it is not found, Artifactory will
automatically generate one and fetch the artifact.
If the remote checksum does not match the locally calculated checksum, the artifact will not be cached and the download
will fail.
Fail: If the remote checksum does not mach the locally calculated checksum, or is not found, the artifact will not be cached
and the download will fail.
Ignore and generate: Artifactory ignores the remote checksum and only uses the locally generated one. As a result,
remote artifact retrieval never fails, however integrity of the retrieved artifact may be compromised.
Ignore and Pass-thru: Artifactory stores and passes through all remote checksums (even if they do not match the locally
generated one). If a remote checksum is not found, Artifactory generates one locally. As a result, remote resource retrieval
never fails, however integrity of the retrieved artifact may be compromised, and client side checksum validation (as
performed by Maven, for example) will fail.

Max Unique
Snapshots

Please refer to Max Unique Snapshots under Local Repositories.

Eagerly
Fetch Jars

When set, if a POM is requested, Artifactory attempts to fetch the corresponding jar in the background. This will accelerate first
access time to the jar when it is subsequently requested.

Suppress
POM
Consistency

By default, Artifactory keeps your repositories healthy by refusing POMs with incorrect coordinates (path). If the groupId:art
 information inside the POM does not match the deployed path, Artifactory rejects the deployment with aifactId:version

"409 Conflict" error.

You can disable this behavior by setting the checkbox.Suppress POM Consistency

Eagerly
Fetch
Sources

When set, if a binaries jar is requested, Artifactory attempts to fetch the corresponding source jar in the background. This will
accelerate first access time to the source jar when it is subsequently requested.

https://www.jfrog.com/confluence/display/RTF/Local+Repositories#LocalRepositories-MaxUniqueSnapshots
http://groupidartifactidversion/
http://groupidartifactidversion/

Handle
Releases

Please refer to Handle Releases under Local Repositories.

Handle
Snapshots

Please refer to Handle Snapshots under Local Repositories.

Other Repository Types

For other type-specific repository configuration, please refer to the specific repository page under .Artifactory Pro

Handling Offline Scenarios

Artifactory supports offline repository management at two levels:

: One or more specific remote repositories need to be offline.Single Repository
Global: The whole organization is disconnected from remote repositories

Single Repository Offline

If a remote repository goes offline for any reason, Artifactory can be configured to ignore it by setting the checkbox. In this case, only Offline
artifacts from this repository that are already present in the cache are used. No further attempt will be made to fetch remote artifacts.

Global Offline Mode

This is common in organizations that require a separate, secured network and are disconnected from the rest of the world (for example, military or
financial institutions) .

In this case, remote repositories serve as caches only and do not proxy remote artifacts.

You can enable Global Offline Mode by setting the corresponding checkbox in the tab under Admin Configuration | General.

https://www.jfrog.com/confluence/display/RTF/Local+Repositories#LocalRepositories-HandleReleases
https://www.jfrog.com/confluence/display/RTF/Local+Repositories#LocalRepositories-HandleSnapshots

Managing Proxies

Overview

In corporate environments it is often required to go through a proxy server to access remote resources.

Artifactory supports several types of network proxy including NTLMv2 (if running on Linux you may use
NTLMv2 only with CNTLM).

Defining Proxies

To create a new proxy definition, in the module go to and click the "New" button.Admin Configuration | Proxies

Fields that are not required by the proxy may be left blank (for example, if you are not using authentication credentials or with an NTLM proxy you
may leave the and fields blank).Username Password

Page Contents
Overview
Defining Proxies

Proxy Key The unique ID of the proxy.

System Default When set, this proxy will be the default proxy for new remote repositories and for internal HTTP requests issued by
Artifactory.

When you set this checkbox, Artifactory displays a confirmation message and offers to apply the proxy setting also to
existing remote repository configurations.

Host The name of the proxy host.

Port The proxy port number.

Username The proxy username when authentication credentials are required.

Password The proxy password when authentication credentials are required.

NT Host The computer name of the machine (the machine connecting to the NTLM proxy).

NT Domain The proxy domain/realm name.

Redirecting Proxy
target Hosts

An optional list of newline or comma separated host names to which this proxy may redirect requests.

The credentials defined for the proxy are reused by requests redirected to all of these hosts.

Advanced Settings

Overview

The advanced settings for a remote repository configure network access behavior, cache management and
several other parameters related to remote repository access.

To access the advanced settings, in the screen select the tab.Edit Remote Repository Advanced

Remote Credentials

Username The username that should be used for HTTP authentication when accessing this remote
proxy.

Using proxies
Artifactory only accesses a remote repository through a proxy if one is selected in the section of the settings for aNetwork Advanced
remote repository.

Whether this has been set manually, or by setting a proxy as described , you can override this by removing the System Default above
 setting for any specific repository. Proxy

In this case, Artifactory will access the specific repository without going through a proxy.

Password The password that should be used for HTTP authentication when accessing this remote
proxy.

SSL/TLS
Certificate

The SSL/TLS certificate this repository should use for authentication to the remote
resource for which it is a proxy.

Network Settings

Proxy If your organization requires you to go through a proxy to access a remote repository, this parameter lets you select the
corresponding Proxy Key.
For more details on setting up proxies in Artifactory please refer to .Managing Proxies

Local Address When working on multi-homed systems, this parameter lets you specify which specific interface (IP address) should be
used to access the remote repository.
This can be used to ensure that access to the remote repository is not blocked by firewalls or other organizational
security systems.

Socket Timeout The time that Artifactory waits (for both a socket and a connection) before giving up on an attempt to retrieve an artifact
from a remote repository.
Upon reaching the specified Artifactory registers the repository as "assumed offline" for the period ofSocket Timeout
time specified in .Assumed Offline Limit

Query Params A custom set of parameters that should automatically be included in all HTTP requests to this remote repository.
For example, param1=value1¶m2=value2¶m3=value3

Lenient Host
Authentication

When set, allows using the repository credentials on any host to which the original request is redirected.

Cookie
Management

When set, the repository will allow cookie management to work with servers that require them.

Page Contents
Overview
Remote Credentials
Network Settings
Cache Settings

Zapping Caches
Select Property Sets
Other Settings

Using Oracle Maven Repository
To use :Oracle Maven Repository

Set your Oracle credentials in and of the Username Password Remote Credentials
Set Lenient Host Authentication

http://maven.oracle.com

Cache Settings

Artifactory stores artifacts retrieved from a remote repository in a local cache. The specify how to manage cached artifacts.Cache Settings

Unused
Artifacts
Cleanup
Period

Many cached artifacts in Artifactory remote repository storage are actually unused by any current projects in the organization. This
parameter specifies how long an unused artifact will be stored before it is removed. Once reaching this period Artifacts will be
removed in the next invocation of cleanup. For more details please refer Cleanup Unused Cached Artifacts in Regular
Maintenance Operations.

Leaving the field empty (default) means that the artifact is stored indefinitely.

Metadata
Retrieval
Cache
Period

Defines how long before Artifactory checks for a newer version of a requested artifact in a remote repository.
A value of 0 means that Artifactory will always check for a newer version.

Assumed
Offline
Period

In case of a connection error, this parameter specifies how long Artifactory should wait before attempting an online check in order
to reset the offline status.
A value of 0 means that the repository is never assumed offline and Artifactory will always attempt to make the connection when
demanded.

Missed
Retrieval
Cache
Period

If a remote repository is missing a requested artifact, Artifactory will return a "404 Not found" error. This response is cached for the
period of time specified by this parameter. During that time, Artifactory will not issue new requests for the same artifact.
A value of 0 means that the response is not cached and Artifactory will always issue a new request when demanded.

Zapping Caches

"Zapping" a cache means forcing the Retrieval Cache Period and Missed Retrieval Cache Period to time out. To "zap" a cache, in the mArtifacts
odule browser, Tree

Select the repository cache you wish to "zap" and click in the right-click menu or drop-down menu.Zap caches Actions

Set Enable Cookie Management.

Caching Maven artifacts
Caching for Maven artifacts is only applicable to snapshots since it is assumed that releases never change.

On which file types does this parameter work?
This setting refers to artifacts that expire after a period of time (e.g. metadata files such as npmaven-metadata.xml,

etc.).m or Docker package.json manifest.json

Note that most artifacts that are downloaded do not change (e.g. release versions), therefore this setting has no effect
on them.

Select Property Sets

Defines the property sets that will be available for artifacts stored in this repository.

Other Settings

Blacked out If set, Artifactory ignores this repository when trying to resolve artifacts. The repository is also not available for download or
deployment of artifacts.

Allow
content
browsing

When set, allows Artifactory users to browse the internal contents of archives (for example, browsing specific Javadoc files from
within a Javadoc archive).

Store
artifacts
locally

When set, Artifactory artifacts from this repository will be cached locally. If not set, direct repository-to-client streaming is used.

Synchronize
properties

When set, synchronizes properties of artifacts retrieved from a remote instance of Artifactory.

Bypass
HEAD
Requests

When set, Artifactory will not send a HEAD request to the remote resource before downloading an artifact for caching

Block
Mismatching
Mime Types

When set, artifacts will fail to download if a mismatch is detected between the requested and received mime type, according to
a list specified in the system.properties file under blockedMismatchingMimeTypes. You can override this setting by
adding mime types to the override list below.

Override
Default
Blocked
Mime Types

The set of mime types that should override the Block Mismatching Mime Types setting.

Propagate
Query
Params

When set, if query params are included in the request to Artifactory, they will be passed on to the remote repository.

Care
When archive browsing is allowed, strict content moderation should be employed to ensure malicious users do not
upload content that may compromise security (e.g. cross-site scripting attacks)

When might you use direct repository-to-client streaming?
If your organization has multiple servers connected over a high speed LAN, you may have one instance of Artifactory
caching data on a central storage facility with additional instances of Artifactory running on other servers. In this case,
it makes sense for the additional instances of Artifactory to act as satellite pass-through servers rather than have
them duplicate the cached data within their own environments.

Generic Repositories Only
This setting is only available for Generic type repositories.

Smart Remote Repositories

Overview

A smart remote repository is a remote repository that proxies a repository from another instance of
Artifactory. In addition to the usual benefits of , smart remote repositories offer severalremote repositories
additional benefits:

Reported download statistics

Artifactory maintains download statistics for repositories so you are able to evaluate if artifacts are still being
used and manage your cleanup policies. When you proxy a repository in another instance of Artifactory, and
cache an artifact downloaded from the other instance, the distant Artifactory is not aware if users on your end
continue to use the artifact (downloading it from your local cache), and may end up cleaning up the original
artifact. An Artifactory Smart Remote Repository lets you notify the distant instance whenever a cached
artifact is downloaded, so it can update an internal counter for remote downloads.

Synchronized properties

When you proxy a repository in another instance of Artifactory and cache an artifact downloaded from it, you may not be aware of changes that
may have been made to the original artifact’s properties if they are done after you cache it. By synchronizing properties, any changes to artifact
properties in the remote instance are propagated to your cached instance of the artifact.

Remote repository browsing

You can browse the contents of the repository in the remote Artifactory instance for all package types, even if none have been cached in your
instance of Artifactory.

Source absence detection

When viewing a cached artifact, Artifactory will indicate if the original artifact in the remote instance has been deleted. This gives you an
opportunity to copy the artifact over from your remote repository cache to a local repository in case you need to maintain access to it.

update an internal counter for remote downloads.

Configuration

To create a Smart Remote Repository, set the repository to point to a repository in another instance of Artifactory. URL

Page Contents
Overview
Configuration
Remote List Browsing

Download statistics may vary between Artifactory instances
Downloads are only reported through the proxy chain from the time this option is set, so the actual download statistics reported for an
artifact may be different in the local Artifactory instance compared the numbers reported in the remote Artifactory instance.

Repository URL must be prefixed with api/<type>
To accommodate different packaging format clients, for several repository types, when accessing the repository through Artifactory, the
repository URL must be prefixed with in the path.api/<type>

For example,

<repository key>http://ARTIFACTORY_URL/api/<package type>/

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/<package type>/

The prefix is required for the following repository types:

Type Prefix

Bower api/bower

CocoaPods api/pods

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories
http://artifactoryonline.com/%3Cserver

Once you have finished entering the URL and move to another field, Artifactory automatically detects that the remote URL is on another instance
of Artifactory and displays a dialog where you can configure the behavior of your smart remote repository.

Note also that the package type icon is overlaid with an Artifactory logo to indicate a smart remote repository.

Docker api/docker

NuGet api/nuget

Npm api/npm

PyPI api/pypi

RubyGems api/gems

Vagrant api/vagrant

PHP Composer api/composer

Chef api/chef

Puppet api/puppet

Report Statistics

If set, Artifactory will notify the remote instance whenever an artifact in the Smart Remote Repository is downloaded locally
so the it can update its download counter.

Note that if this option is not set, there may be a discrepancy between the number of artifacts reported to have been
downloaded in the different Artifactory instances of the proxy chain.

Sync Properties

If set, properties for artifacts that have been cached in this repository will be updated if they are modified in the artifact
hosted at the remote Artifactory instance.

The trigger to synchronize the properties is download of the artifact from the remote repository cache of the local Artifactory
instance.

List Remote
Folder Items

If set, enables .Remote List Browsing

Source Absence
Detection

If set, Artifactory displays an indication on cached items if they have been deleted from the corresponding repository in the
remote Artifactory instance.

You can modify these settings at any time from the screen.Edit Repository

Remote List Browsing

When is checked for a repository, Artifactory lets you navigate the contents of the repository at the remote ArtifactoryList Remote Folder Items
instance, for all package types, even if the artifacts have not been cached in the repository defined in your instance of Artifactory.

Virtual Repositories

Overview

To simplify access to different repositories, Artifactory allows you to define a virtual repository which is a
collection of local, remote and other virtual repositories accessed through a single logical URL.

A virtual repository hides the access details of the underlying repositories letting users work with a single,
well-known URL. The underlying participating repositories and their access rules may be changed without
requiring any client-side changes.

Basic Settings

The following are fully described in the page.Common Settings

Package Type
Repository Key
Repository Layout
Public Description
Internal Description
Includes and Excludes Pattern

In addition, in the Repositories section of the Basic settings screen you select the you want to include in the new virtualAvailable Repositories
repository and move them to the Selected Repositories list.

This list can be re-ordered by dragging and dropping within the list.Selected Repositories

Page Contents
Overview
Basic Settings

Nesting
Using Includes and Excludes Patterns

Deploying to a Virtual Repository
Advanced Settings

Maven, Gradle, Ivy and SBT Repositories
Pre-defined Repositories

http://www.jfrog.com/confluence/display/RTF4/Common+Settings
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-PackageT
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryKey
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryLayout
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-PublicDescription
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-InternalDescription
https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludesandExcludesPattern

The section displays the effective list of actual repositories included in this virtual repository. If any of the availableIncluded Repositories
repositories you have selected are themselves virtual repositories, then the section will display the local and remoteIncluded Repositories
repositories included within them. The list is automatically updated in case any of the nested virtual repositories change.Included Repository

Nesting

Nesting is a unique feature in Artifactory and facilitates more flexibility in using virtual repositories.

Using Includes and Excludes Patterns

The ability to define and and an for virtual repositories (especially when nesting is used) provides a powerfulIncludes Pattern Excludes Pattern
tool you can use to manage artifact requests in your organization.

For example, your organization may have its own artifacts which are hosted both internally in a local repository, but also in a remote repository.
For optimal performance, you would want these artifacts to be accessed from the local repository rather than from the remote one. To enforce this
policy, you can define a virtual repository called "remote-repos" which includes the full set of remote repositories accessed by your organization,
and then specify an Excludes Pattern with your organization's groupID. in this way, any attempt to access your internal artifact from a remote
repository would be rejected.

Consider another example in which you wish to define a virtual repository for your developers, however you wish to keep certain artifacts hidden
from them. This could be achieved by defining an based on groupId, source or version.Excludes Pattern

Deploying to a Virtual Repository

From version 4.2, Artifactory supports deploying artifacts to a virtual repository. For example you can now use docker push, npm publish,

1.
2.
3.

The search/resolution order when requesting artifacts from a virtual repository is always:

Local repositories
Remote repository caches
Remote repositories themselves.

The order within these categories is controlled by the order they are presented in the list.Selected Repositories

You should take care not to create an "infinite loop" of nested repositories. Artifactory analyzes the internal composition of virtual
repositories and will issue a warning if the virtual repository can not be resolved due to invalid nesting.

 Artifactory's REST API and more to deploy packages to a virtual repository.NuGet push, gem push

For more details, please refer to .Deploying Artifacts

Advanced Settings

Artifactory
Requests
Can
Retrieve
Remote
Artifacts

An Artifactory instance may request artifacts from a virtual repository in another Artifactory instance. This checkbox specifies
whether the virtual repository should search through remote repositories when trying to resolve an artifact requested by another
Artifactory instance. For example, you can use this feature when Artifactory is deployed in a mesh (grid) architecture, and you
do not want all remote instances of Artifactory to act as proxies for other Artifactory instances.

Maven, Gradle, Ivy and SBT Repositories

In addition to the above checkbox, these repository types offer the following settings:Advanced

https://www.jfrog.com/confluence/display/RTF/Deploying+Artifacts#DeployingArtifacts-DeployingtoaVirtualRepository

Cleanup Repository
References in POMs

Public POMs may include direct references to external repositories. If either of the below code samples are present in
the POM, Maven dynamically adds an external repository URL to the build which circumvents Artifactory.

<project><repositories><repository>
or
<project><pluginRepositories><pluginRepository>

A client side solution for this is to use mirrorOf. For details please refer to .Additional "Mirror-any" Setup

This setting gives you the ability to ensure Artifactory is the sole provider of Artifacts in your system by automatically
cleaning up the POM file. The three values available for this setting are:

Discard Active
References

Removes repository elements that are declared directly under project or under a profile in the
same POM that is activeByDefault

Discard Any
References

Removes all repository elements regardless of whether they are included in an active profile or
not

Nothing

Does not remove any repository elements declared in the POM

Key Pair

A named key-pair to use for automatically signing artifacts.

Please refer to .WebStart and Jar Signing

Pre-defined Repositories

Artifactory comes with a set of pre-defined virtual repositories, which reflect binary management best practices as follows.

remote-repos

Aggregation of all remote repositories

lib-releases

libs-releases-local, ext-releases and remote-repos

plugins-releases

plugins-releases-local, ext-releases and remote-repos

libs-snapshots

libs-snapshots-local, ext-snapshots-local, remote-repos

plugins-snapshots

plugins-snapshots-local, ext-snapshots-local, remote-repos

Configuring Security

Overview

Artifactory's security model offers protection at several levels. It allows you to do the following:

Assign role-based or user-based permissions to areas in your repositories (called Permission
Targets)
Allow sub-administrators for Permission Targets
Configure LDAP out-of-the-box
Prevent clear text in Maven's filesettings.xml
Inspect security definitions for a single artifact or folder and more.

https://www.jfrog.com/confluence/display/RTD/Maven+-+Configuring+Artifacts+Resolution#Maven-ConfiguringArtifactsResolution-Additional%22Mirror-any%22Setup

Artifactory's security is based on Spring Security and can be extended and customized.

This section explains the strong security aspects and controls offered by Artifactory.

General Configuration

Artifactory provides several system-wide settings to control access to different resources. These are
found under in the tab.Security | General Administration

Page Contents
Overview
General Configuration

Allow
Anonymous
Access
Prevent
Anonymous
Access to
Build Related
Info
Hide
Existence of
Unauthorized
Resources
Password
Encryption
Policy
User Lock and
Login
Suspension

Temp
orary
Login
Susp
ensio
n
User
Accou
nt
Locki
ng
Unloc
king
User
Accou
nts

Password
Expiration
Policy
Managing API
Keys

Allow Anonymous Access

Artifactory provides a detailed and flexible permission-based system to control users' access to different features and artifacts.

However, Artifactory also supports the concept of "Anonymous Access" which controls the features and artifacts available to a user who has not
logged in.

This is done through an "Anonymous User" which comes built-in to Artifactory with a default set of permissions.

Anonymous access may be switched on (default) or off using the setting under in the Allow Anonymous Access Security General Settings Ad
moduleministration .

You can modify the set of permissions assigned to the "Anonymous User" just like you would for any other user, and this requires that Allow
 is enabled.Anonymous Access

Prevent Anonymous Access to Build Related Info

This setting gives you more control over anonymous access, and allows you to prevent anonymous users from accessing the moduleBuild
where all information related to builds is found, even when anonymous access is enabled.

Hide Existence of Unauthorized Resources

When a user tries to access a resource for which he is not authorized, Artifactory's default behavior is to indicate that the resource exists but is
protected.

For example, an anonymous request will result in a request for authentication (401), and a request by an unauthorized authenticated user will
simply be denied (403).

You can configure Artifactory to return a 404 (instead of 403) - Not Found response in these cases by setting Hide Existence of Unauthorized
 under in the module.Resources Security | General Administration

Password Encryption Policy

Artifactory provides a unique solution to support encrypted passwords through the setting as follows:Password Encryption Policy

Supported

Artifactory can receive requests with an encrypted password but will also accept requests with a non-encrypted password
(default)

Required

Artifactory requires an encrypted password for every authenticated request

Unsupported

Artifactory will reject requests with encrypted password

Passwords
Encryption

Read More
Managing Users
Managing Permissions
Centrally Secure
Passwords
Master Key Encryption
Managing Security
with LDAP
Managing Security
with Active Directory
Managing Certificates
Using a Self-Signed
Certificate
Access Tokens
Access Log

For more details on why Artifactory allows you to enforce password encryption please refer to . Centrally Secure Passwords

User Lock and Login Suspension

User account locking and temporary login suspension are two mechanisms employed by Artifactory to prevent identity theft via brute force attack.

Temporary Login Suspension

Temporary login suspension means that when a login attempt fails due to incorrect authentication credentials being used, Artifactory will
temporarily suspend that user's account for a brief period of time during which Artifactory ignores additional login attempts. If login attempts fail
repeatedly, Artifactory will increase the suspension period each time until it reaches a maximum of 5 seconds.

User Account Locking

In addition to temporary login suspension, you can configure Artifactory to lock a user's account after a specified number of failed login attempts.
This is enabled by checking "Lock User After Exceeding Max Failed Login Attempts", and specifying the field. UsersMax Failed Login Attempts
who get locked out of their account because they have exceeded the maximum number of failed login attempts allowed (as specified in Max

 must have an administrator access to unlock their account. Failed Login Attempts)

Unlocking User Accounts

An Artifactory administrator can unlock all locked-out users using the "Unlock All Users" button under screenSecurity General Configuration
where user locking is configured. An administrator can also unlock a specific user or a group of users in the under Security Module User
Management.

Through the REST API, an administrator can unlock a , a or . single user group of users all locked-out users at once

Password Expiration Policy

Artifactory lets an admin user enforce a password expiration policy that forces all users to change their passwords at regular intervals. When the
password expiration policy is enforced, users who do not within the specified time interval will be locked out of their accounts until they change
their password.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UnlockLockedOutUser
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UnlockLockedOutUsers
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UnlockAllLockedOutUsers

Enable Password Expiration Policy

When checked, password expiration policy is enabled.

Password Expires Every (Days)

Specifies how frequently all users must change their password.

Send Mail Notification Before Password
Expiration

When checked, users receive an email notification a few days before their password
expires.

Force Password Expiration For All Users

Forces all passwords to expire. All users will have to change their password at next login.

Managing API Keys

As an admin user, you can revoke all the API keys currently defined in the system under in the module.Security | General Administration

To revoke all API keys in the system, click "Remove API Keys for All Users".

To revoke a specific user's API key, navigate to module >> and select the relevant user to edit . Once in theAdministration Security | Users
edit screen one of the available actions is "Revoke API key"

Once you revoke an API key, any REST API calls using that API key will no longer work. The user will have to create new API key and
update any scripts that use it.

Passwords Encryption

Different configuration files in Artifactory may include password information stored in plain text.

If you click "Encrypt", Artifactory will generate a master encryption key and encrypt all passwords.

Managing Users

Overview

You can manage access to repositories by defining users, assigning them to groups and setting up roles and
permissions which can be applied to both users and groups.

Creating and Editing Users

To manage users who can access repositories in your system, in the Admin module, select Security | Users
.

Create a new user by clicking New at the top of the users table.

Page Contents
Overview
Creating and Editing Users

Administrator Users
The Anonymous User

Creating and Editing Groups
Default Groups
Admin Privileges for a Group

User Management
Setting Groups for a User
Setting Users for a Group

Recreating the Default Admin User
Obtaining a Security Configuration File
Resetting the Admin Password
Replacing the Security Configuration File

User
Password

Disabling Remember Me at Login

Only administrators can create users
To create users you must be an administrator (unless you are using external authentication such as LDAP)

In the (or) dialog you can set the , and for the user as well as the followingNew User Edit User User Name Email Address Password
parameters:

Admin

When set, this user is an administrator with all the ensuing privileges. For more details please refer to .Administrator Users

Disable UI
Access

When set, this user can only access Artifactory through the REST API.

Can Update
Profile

When set, this user can update his profile details (except for the password. Only an administrator can update the password).

There may be cases in which you want to leave this unset to prevent users from updating their profile. For example, a
departmental user with a single password shared between all department members.

Disable
Internal
Password

When set, disables the fallback of using an internal password when external authentication (such as LDAP) is enabled.

If the user has generated an API key, you can revoke it from the menu.Actions

Artifactory stores passwords as hashes or encrypted hashes.

Administrator Users

An administrator user is to Artifactory as a "root" is to UNIX systems. Administrators are not subject to any security restrictions, and we therefore
recommend to create a minimum number of administrators in your system.
You can control which permission-targets administrators have access to thereby assigning responsibility for a specific repository path. For details
please refer to .Managing Permissions

The Anonymous User

Artifactory supports the concept of anonymous users and installs with a pre-defined user to which you can assign justanonymous permissions
like for any other user.

Anonymous access can be controlled under Set to activate the anonymous user.Security General Configuration. Allow Anonymous Access
The anonymous user must be activated before you can fine tune its permissions.

When anonymous access is activated, anonymous requests can download cached artifacts and populate caches, regardless of other permissions
defined.

Creating and Editing Groups

A group represents a role in Artifactory and is used with RBAC (Role-Based Access Control) rules.

To manage groups, in the module select .Admin Security | Groups

Create a new group by clicking at the top of the groups table.New

You must assign a unique name to each group and can add an optional description

The Default Admin Account
The default user name and password for the built-in administrator user are: .admin/password
You should change the password after first log in. If you forget the admin account password, you can recover it. Please refer to Recreati

.ng the Default Admin User

https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-SecurityGeneralConfiguration

1.
2.

Default Groups

When creating (or editing) a group you can set Automatically Join New Users to this Group.

When this parameter is set, any new users defined in the system are automatically assigned to this group.

This is particularly useful if users are defined automatically and you want them to be assigned to certain groups. For example, when using
external authentication such as LDAP, users are automatically created on successful login and you can use this parameter to assign these users
to particular groups by default.

Admin Privileges for a Group

If is set, any users added to this group will automatically be assigned with admin privileges in the system.Admin Privileges
For reasons of security when Admin Privileges is set, is disabled so that new users are notAutomatically Join New Users to this Group
automatically provided with admin privileges.

User Management

There are two ways to manage users' assignment to groups:

Setting the groups for a user
Setting the users for a group

Setting Groups for a User

You can assign and remove a user from groups when the user is created or by editing user's details later.

In the module, under , from the list of users, select the user you wish to assign to or remove from groups.Admin Security | Users

In the section of the form, you can set which groups the user should be assigned to.Related Groups

Setting permissions
In both cases, you can assign corresponding permissions to the user or group respectively on the same screen. For more details please
refer to .Managing Permissions

Setting Users for a Group

You can assign and remove a users from a group by editing the group's details.

In the module, under , from the list of groups, select the group you wish modify.Admin Security | Groups

In the section of the form, you can set which users should be assigned to the group.Users

1.
2.
3.

Recreating the Default Admin User

If you are unable to obtain administrator access, you will need to recreate the default administrator user in order to be able to manage users of
your system using the following steps::

Obtain a security configuration file
Reset the admin password
Correctly place the security configuration file

Obtaining a Security Configuration File

The security configuration file is called .security.xml

If your instance of Artifactory is configured to perform automatically, you can find it in the root backup folder.backups

If Artifactory is configured to perform backups automatically you need to force creation of a new file as follows:not security.xml

Remove the file and restart Artifactory$ARTIFACTORY_HOME/data/.deleteForSecurityMarker .
Make sure that Artifactory completes the startup sequence without interruption
The security configuration file with the current time stamp can be found in $ARTIFACTORY_HOME/etc/security.<time
stamp>.xml

Resetting the Admin Password

Reset the admin password as follows:

Make a copy of the file you obtained in the previous sectionsecurity.xml
In the copy, edit the admin's password field and enter the password hash code (according to your version of Artifactory) as follows:

Admin password hash code

For version 3.x and above:
<password>1f70548d73baca61aab8660733c7de81</password>
For version 2.x: <password>5f4dcc3b5aa765d61d8327deb882cf99</password>

Replacing the Security Configuration File

Place the modified security configuration file under $ARTIFACTORY_HOME/etc
Rename the file to security.import.xml
Restart Artifactory

Once Artifactory has completed its startup sequence you will be able to login using the default admin user credentials:

User

admin

Password

password

Disabling at LoginRemember Me

The Artifactory login screen includes a checkbox. If the user sets this checkbox when logging in, Artifactory will store a cookie inRemember Me
the browser for a period of 7 days allowing the user to be logged in automatically when starting up Artifactory.

Once the cookie expires, the user will have to log in again.

An Artifactory administrator can disable this feature and force all users to enter their credentials at every login. To do so simply add the following
property to and restart Artifactory:$ARTIFACTORY_HOME/etc/artifactory.system.properties

artifactory.security.disableRememberMe=true

Managing Permissions

Overview

Artifactory allows you to control access to repositories via .Permission Targets

A permission target is comprised of a set of physical repositories (i.e. local or remote repositories - but not
virtual ones), and a set of users or groups with a corresponding set of permissions defining how they can
access the specified repositories. Include and Exclude patterns give you finer control over access to a
specific set of artifacts within the repositories of the permission target.

For example, you can create a permission target that allows user "Builder" and group "Deployers" to read
from and deploy artifacts to the repository. Using the Include Pattern and Exclude Patternlibs-releases
settings you could implement finer control over specific artifacts within that repository if so desired.

To manage permissions, in the module go to .Admin Security | Permissions

Creating a Permission Target

To create a , in the page click "New" to display the screen.Permission Target Permissions Management New Permission

Page Contents
Overview
Creating a Permission
Target

Permission
Target
Managers
Preventing
Overwriting
Deployments

Examining
Permissions

By Repository
By User or
Group

Name

You must provide a unique name for each (limited to 64 characters).Permission Target

Repositories

Select the repositories to which this applies. You can use the or checkPermission Target Any Local Repository Any Remote Repository
boxes as a convenience.

Include and Exclude Patterns

Using an "Ant-like" expressions, you can specify any number of Include or Exclude Patterns as a comma-separated list in the corresponding entry
field (limited to 1024 characters in total).

In the example above, source files have been excluded from the named "Not sources" using the appropriate Permission Target Exclude Pattern
.

User and Group Permissions

Using the corresponding tabs, you can set the permissions granted to a user or a group. Double-click the user or group you want to modify to add
it to the list of , and then check the permissions you wish to grant.Principals

You cannot add a user or group with admin privileges to a Permission Target
Since an admin is privileged with all permissions, you cannot add a user or group with admin privileges to a Permission Target.

The available permissions are as follows:

Manage

Allows changing the permission settings for other users on this permission target

Delete/Overwrite

Allows deletion or overwriting of artifacts

Deploy/Cache

Allows deploying artifacts and deploying to caches (i.e. populating caches with remote artifacts)

Annotate

Allows annotating artifacts and folders with metadata and properties

Read

Allows reading and downloading of artifacts

Permission Target Managers

By assigning the permission to a user, you may designate them as the "Permission Target Manager". These users may assign andManage
modify permissions granted to other users and groups for this . In the Artifactory UI these users have access to the specificPermission Target
users they are allowed to manage. This can be useful on a multi-team site since you can delegate the responsibility of managing specific
repositories to different team members.

Preventing Overwriting Deployments

You can prevent a user or group from overwriting a deployed release or unique snapshot by not granting the permission. Delete Non-unique
snapshots can always be overwritten (provided the permission is granted).Deploy

Multiple Permissions
Permissions are additive and must be explicitly granted. If a checkbox is not set for a user, then that user does not have the
corresponding permission.

Examining Permissions

 You can examine permissions in the context of repositories, users or groups.

By Repository

In the module, select repository you want to view in the and then select the tab toArtifacts Artifact Repository Browser Effective Permissions
see the permissions granted to users or groups for this repository.

By User or Group

For any user or Group, you can view the list of Permission Targets that it is associated with (whether directly or through membership in a group).

For users, In the module, under select the user you wish to examine. The are displayed at theAdmin Security | Users, User Permissions
bottom of the user's page.

You can similarly view Group permissions in the module under .Admin Security | Groups

Centrally Secure Passwords

Overview

Some tools use cleartext passwords, which can pose a security risk. The security risk is even greater if you
use LDAP or other external authentication, since you expose your SSO password in cleartext and that
password is likely to be used for other services, not just Artifactory.

For example, Maven uses cleartext passwords in the file by default.settings.xml

Using Maven's built-in support for encrypted passwords and generating passwords on the client side does
not overcome the security risks for the following reasons:

1.

2.
3.

1.

2.

The login password is decrypted on the client side and ends up as cleartext in memory, and then
transmitted over the wire (unless forcing SSL too).
The master password used for decryption is stored in clear text on the file system.
Password encryption is left to the good will of the end-user and there is no way to centrally mandate
it.

Artifactory provides a unique solution to this problem by generating encrypted passwords for users based on
secret keys stored in Artifactory. You can ensure users' shared passwords are never stored or transmitted as
clear text.

You can set a central policy for using or accepting encrypted passwords in the module under by setting the Admin Security | General Password
 field.Encryption Policy

The behavior according to the setting is as follows:Password Encryption Policy

Supported

Artifactory can receive requests with encrypted password (default).

Required

Artifactory requires an encrypted password for every authenticated request.

Unsupported

Artifactory will reject requests with encrypted password.

Using Your Secure Password

To secure your password:

Open your profile page (click on your login name on the upper-right corner), type-in your password in the field andCurrent Password
click .Unlock

Once your profile is unlocked, click the corresponding icons next to your encrypted password to view it openly or copy it to the clipboard.

Page Contents
Overview
Using Your Secure
Password

2.

Master Key Encryption

Overview

The stores the various passwords that are needed in order to interfaceglobal Artifactory configuration file
with your organizations systems and external repositories. For example, Artifactory may need your LDAP
server password.

In order to keep these passwords secure, you can choose to store them in an encrypted format. In this case,
Artifactory will generate a which will be used to encrypt these passwords for storageMaster Encryption Key
and display, and to decrypt them when you need to access the corresponding resources.

Different encryption mechanisms
The encryption mechanisms of the Oracle and IBM JDKs are not identical. Switching from one to another will make your encrypted
password obsolete

1.
2.
3.

4.

IBM JDK Encryption Restrictions
Some of the IBM JRE/JDK are shipped with a restriction on the encryption key size (mostly for countries outside the US); This
restriction can be officially removed by downloading unrestricted policy files from IBM and overriding the existing ones:

Register and download the unrestricted JCE policy files from the . IBM website
Select the correct zip that matches your JAVA version.
The downloaded zip file contains 2 jar files - and . Backup the existing files in local_policy.jar US_export_policy.jar

 and extract the jars from the zip file to this location$IBM_JDK_HOME/jre/lib/security
Restart Artifactory

IBM JDK Encryption Restrictions
Users of the IBM JDK should read about IBM JDK encryption restrictions described in Using Your

.Secure Password

Page Contents
Overview
Encrypting Passwords

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

Encrypting Passwords
When Master Key Encryption is activated all current passwords in the are encrypted, and any new passwords, or updatesglobal configuration file
will also be encrypted automatically.

By default Artifactory is configured to encrypt passwords. An Artifactory administrator can activate and deactivate encryption by either using the R
, or through the Artifactory UI in the module under EST API Admin Security | General.

Once Master Key Encryption is activated, subsequent activation using the REST API are ignored.

Decrypting Passwords

An Artifactory administrator can deactivate encryption, and decrypt any currently encrypted passwords by either using the , or throughREST API
the Artifactory UI in the module under Admin Security | General.

When you select all passwords in the global configuration file are decrypted, the configuration is reloaded and the current Master Key isDecrypt,
removed.

Any new passwords entered, or passwords updated will not be encrypted.

Exporting and Importing the Master Key
If the Master Key is in its default location under the folder, it will be exported during a or full $ARTIFACTORY_HOME/etc system backup system

.export

Correspondingly, if a Master Key was exported, and you now perform a full system import, the key will be copied to the default location and the
Master Key Encryption feature will be activated. i.e. the Master Key will be used to encrypt and decrypt the imported configuration.

Master Key File Location

By default, the Master Key file is located under $ARTIFACTORY_HOME/etc/security/artifactory.key.

You may wish to exercise more stringent security so that the master key file is in a more secure location.

Decrypting Passwords
Exporting and Importing the Master Key

Master Key File Location

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ActivateMasterKeyEncryption
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ActivateMasterKeyEncryption
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeactivateMasterKeyEncryption
https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExport
https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExport

In this case you can change the file location by modifying the property in the artifactory.security.master.key artifactory.system
file..properties

For example,

Modifying the default master key file location

artifactory.security.master.key=<other location>/artifactory.key

If you use a partial path, then it will be interpreted as relative to the folder.$ARTIFACTORY_HOME/etc

If you change the Master Key file location, it will not be exported automatically. It is up to the administrator to back it up along with the export, and
restore it manually on an import.

Managing Security with LDAP

Introduction

Artifactory supports authenticating users against an LDAP server .out-of-the-box

When LDAP authentication is active, Artifactory first attempts to authenticate the user against the LDAP
server. If LDAP authentication fails, Artifactory tries to authenticate via its internal database.

For every LDAP authenticated user Artifactory creates a new user in the internal database (provided the user
does not already exist), and automatically assigns that user to the default groups.

Configuration

Managing Permissions for LDAP Groups
Artifactory can synchronize your LDAP groups and leverage your existing organizational structure
when managing group-based permissions. LDAP groups in Artifactory use super-fast caching and
support Static, Dynamic and Hierarchical mapping strategies.

Powerful management is accomplished with multiple, switchable LDAP settings and visual
feedback about the up-to-date status of groups and users coming from LDAP.
The LDAP Groups feature is bundled as one of the Add-ons included in Artifactory Pro.

For full details on how to synchronize your LDAP Groups with Artifactory, please refer to LDAP
.Groups

Using Active Directory?
 If you are using Active Directory to authenticate users, please refer to Managing Security with

.Active Directory

Page Contents
Introduction
Configuration

Non-UI Authentication Cache
Avoiding Clear Text Passwords
Preventing Authentication Fallback to the Local Artifactory Realm
Using LDAPS (Secure LDAP)
Watch the Screencast

To configure LDAP authentication, in the module go to and click .Admin Security | LDAP New

The configuration parameters for LDAP connection settings are as follows:

Settings Name

The unique ID of the LDAP setting.

Enabled

When set, these settings are enabled.

LDAP URL

Location of the LDAP server in the following format: .ldap://myserver:myport/dc=sampledomain,dc=com

The URL should include the base DN used to search for and/or authenticate users.

Auto Create Artifactory
Users

When set, Artifactory will automatically create new users for those who have logged in using LDAP, and assign
them to the default groups.

Allow Created Users
Access To Profile Page

When set, users created after logging in using LDAP will be able to access their profile page in Artifactory.

User DN Pattern

A DN pattern used to log users directly in to the LDAP database. This pattern is used to create a DN string for
"direct" user authentication, and is relative to the base DN in the LDAP URL.

The pattern argument { } is replaced with the username at runtime. This only works if anonymous binding is0
allowed and a direct user DN can be used (which is not the default case for Active Directory).

For example:
uid={0},ou=People

Email Attribute

An attribute that can be used to map a user's email to a user created automatically by Artifactory.

Search Filter

A filter expression used to search for the user DN that is used in LDAP authentication.
This is an LDAP search filter (as defined in 'RFC 2254') with optional arguments. In this case, the is theusername
only argument, denoted by .'{0}'

Possible examples are:
 - this would search for a username match on the uid attribute.uid={0})

Authentication using LDAP is performed from the DN found if successful.

Search Base

The Context name in which to search relative to the base DN in the LDAP URL. Multiple search bases may be
specified separated by a pipe (|). This is parameter is optional.

Manager DN

The full DN of a user with permissions that allow querying the LDAP server. When working with LDAP Groups, the
user should have permissions for any extra group attributes such as memberOf.

Manager Password

The password of the user binding to the LDAP server when using "search" authentication.

Search Sub Tree

When set, enables deep search through the sub-tree of the LDAP URL + Search Base. True by default.

Non-UI Authentication Cache

You can configure Artifactory to cache data about authentication against external systems such as LDAP for REST API requests. This means that
the first time a user needs to be authenticated, Artifactory will query the external system for the user's permissions, group settings etc.

The information received from the external system is cached for a period of time which you can configure in the $ARTIFACTORY_HOME/etc/art
 file by setting the property.ifactory.system.properties artifactory.security.authentication.cache.idleTimeSecs

This means that once a user is authenticated, while the authentication data is cached, Artifactory will use the cached data rather than querying the
external system, so authentication is much faster

By default this is set to 300sec.

Avoiding Clear Text Passwords

Storing your LDAP password in clear text in on your disk is a big security threat, since this password is very sensitive and is usedsettings.xml

REST API Only
 The cache is only relevant for REST API requests, and is not relevant when using the Artifactory UI.

in SSO to other resources in the domain.
When using LDAP, we strongly recommend, using in your local settings.Artifactory's Encrypted Passwords

Preventing Authentication Fallback to the Local Artifactory Realm

In some cases, as an administrator you may want to require users to authenticate themselves through LDAP with their LDAP password.
However, if a user already has an internal account with a password in Artifactory, Artifactory can fallback to use his internal password if LDAP
authentication fails.

You can prevent this fallback authentication by ensuring that the Disable Internal Password checkbox in the Edit
 User dialog is set.

Using LDAPS (Secure LDAP)

To use LDAPS with a valid certificate from a CA trusted by Java, all you need to do us use a secure LDAP URL in your settings, e.g. ldaps://s
.ecure_ldap_host:636/dc=sampledomain,dc=com

If you want to use LDAPS with a non-trusted (self-signed) certificate, please follow the steps described in .Using a Self-Signed Certificate

Watch the Screencast

Managing Security with Active Directory

Introduction

Artifactory supports integration with an Active Directory server to authenticate users and synchronize groups.

When authentication using Active Directory is configured and active, Artifactory first attempts to authenticate
the user against the Active Directory server. If the authentication fails, Artifactory tries to authenticate via its
internal database.

For every externally authenticated user configured in your Active Directory server, Artifactory creates a new
user in the internal database (provided the user does not already exist), and automatically assigns that user
to the default groups.

Working With Active Directory

We will describe how to configure Artifactory to work with Active Directory using an example.

Consider an Active Directory server that must support the following conditions:

Users are located in two geographically separated sites. Some are in the US (designated as "us"), while others are in Israel (designated
as "il").
Each site defines users and groups in different places in the Active Directory tree as displayed below.

Page Contents
Introduction
Working With Active
Directory
Importing Active
Directory Groups

Support for
Nested
Groups

Using Secure Active
Directory

https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingUsers
https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-CreatingandEditingUsers

To configure Active Directory authentication, in the module, go to and click .Admin Security | LDAP New

The configuration parameters are as follows:

Settings
Name

The unique ID of the Active Directory setting.

Enabled

When set, these settings are enabled.

Active
Directory
URL

Location of the Active Directory server LDAP access point in the following format: ldap://myserver:myport/dc=sampledo
.main,dc=com

The URL may include the base DN used to search for and/or authenticate users. If not specified, the field isSearch Base
required.

User DN
Pattern

A DN pattern used to log users directlyin tothe LDAP database.

For Active Director only works if anonymous binding is allowed and a directy, we recommend sinceleaving this field blank this
user DN can be used, which is not the default case in Active Directory.

Auto
Create
Artifactory
Users

When set, Artifactory will automatically create new users for those who have logged in using Active Directory. Any newly created
users will be associated to the default groups.

Email
Attribute

An attribute that can be used to map a user's email to a user created automatically by Artifactory.

This corresponds to the field in Active Directory.mail

Search
Filter

A filter expression used to search for the user DN that is used in Active Directory authentication.
This is an LDAP search filter (as defined in 'RFC 2254') with optional arguments. In this case, the is the onlyusername
argument, denoted by .'{0}'

For Active Directorythe corresponding field should be .sAMAccountName={0}

Search
Base

The Context name in which to search relative to the base DN in the Active Directory URL. This parameter is optional, but if
possible, we highly recommend that you set it to prevent long searches on the Active Directory tree. Leaving this field blank will
significantly slow down the Active Directory integration.

The configuration in the example below indicates that search should only be performed under "frogs/il" or "frogs/us". This
improves search performance since Artifactory will not search outside the scope of the "frogs" entry.

Manager
DN

The full DN of a user with permissions that allow querying the Active Directory server. When working with LDAP Groups, the user
should have permissions for any extra group attributes such as memberOf.

Manager
Password

The password of the user binding to the Active Directory server when using "search" authentication.

Search
Sub Tree

When set, enables deep search through the sub-tree of the Active Directory URL + Search Base. True by default.

Importing Active Directory Groups

Active Directory groups can be imported using either a mapping strategy or a one (Active Directory works for both).Static Dynamic

The only difference is in the attribute defined on the corresponding Active Directory entry:

The Static mapping strategy defines a "member" multi-value attribute on the entry containing user DNs of the group membersgroup
The "Dynamic" configuration defines a "memberOf" multi-value attribute on the entry containing group DNs of user the groups the user is
a member of.

Active Directory supports both configurations, so you can choose the one which fits your organization's structure.

Support for Nested Groups

Artifactory supports synchronization with Active Directory "Nested Groups".
Microsoft provides a unique OID for rule chain matching as part of the , so when executing an LDAP Query to Active Directorysearch filter syntax
using this OID, Active Directory returns a list of all the groups that a user's main group membership inherits from.
The screenshot below shows the following example:
Mapping Strategy: Static
Group Membership Attribute: member:1.2.840.113556.1.4.1941:
Group Name Attribute: cn
Filter: (objectClass=group)

http://msdn.microsoft.com/en-us/library/aa746475%28v=vs.85%29.aspx

Using Secure Active Directory

To use Secure Active Directory with a valid certificate from a CA trusted by Java, all you need to do us use a secure Active Directory URL in your
settings, e.g. .ldaps://secure_ldap_host:636/dc=sampledomain,dc=com

If you want to use Secure Active Directory with a non-trusted (self-signed) certificate, please follow the steps described in Using a Self-Signed
.Certificate

Manager DN

ldaps://secure_ldap_host:636/dc=sampledomain,dc=com

Managing Certificates

Overview

Some remote repositories (e.g. Red Hat Networks) block access from clients that are not
authenticated with an SSL/TLS certificate. Therefore, to use a remote repository to proxy such
resources, Artifactory must be equipped with the corresponding SSL/TLS certificate.

To support this requirement when needed, from version 5.4, Artifactory lets you manage certificates
and configure them for use by remote repositories.

Page Contents
Overview
Adding
Certificates
Using a
Certificate with
a Remote
Repository
Proxying a
Resource that
Uses a
Self-Signed
Certificates
REST API

Get
Certific
ates
Add
Certific
ate
Delete
Certific
ate

Adding Certificates

Certificates are managed in the module under Admin Security | Certificates.

A certificate entered into this module should be a file that includes both a private key and its corresponding certificate.PEM

To add a new certificate, click New.

To construct the Manager DN string according to your
Active Directory server, navigate to a user with
administrator privileges (e.g. Administrator (1)), and
then construct the Manager DN in reverse order (2,3)
from the User, up the folder hierarchy.

For example, in this simple configuration, the Manager
DN here should be
cn=Administrator,cn=Users,dc=alljfrog,dc=org

Notice that the domain (3) is split in reverse order to
dc=alljfrog,dc=org

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

Provide the and copy the certificate contents into the designated area. Alternatively, you can drag and drop theCertificate Alias
corresponding PEM file into the designated area.

Using a Certificate with a Remote Repository

When a remote repository proxy's a resource that requires authentication with a certificate, you need to obtain the certificate from the
resource's owner and add it to the list of certificates as described above.

Under the remote repository's , select the certificate you want to use from the list provided in the field.Other Settings SSL/TLS Certificate

Proxying a Resource that Uses a Self-Signed Certificates

If the remote resource that your Artifactory remote repository is proxying (e.g. Red Hat Network's server) uses an server certificateuntrusted
it is and not signed by any known Certificate Authority), you need to import the server's certificate into Artifactory's JVM(i.e. self-signed

truststore. To learn more about configuring a Self-Signed Certificate in Artifactory, please refer to Using a Self-Signed Certificate.

To avoid text errors, we recommend dragging and dropping the PEM file into the designated area

Password-protected PEM files are not supported
 Make sure the PEM file you upload is not password-protected.

https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-OtherSettings

1.

2.

3.

REST API

Artifactory supports automated management of certificates using the REST API endpoints described below

Get Certificates

Gets a list of installed SSL certificates.

For details, refer to the REST API documentation for .Get Certificates

Add Certificate

Installs a new SSL certificate.

For details, refer to the REST API documentation for .Add Certificate

Delete Certificate

Deletes the specified certificate.

For details, refer to the REST API documentation for . Delete Certificate

Using a Self-Signed Certificate

Overview

For several security features that you want to use over a secure connection (such as LDAPS, Secure Active
Directory, or Secure OAuth), you may configure Artifactory to allow a non-trusted self-signed certificate

Configuring a Self-Signed Certificate

For outbound Artifactory connections (remote repositories, external authentication servers...) intended for SSL self-signed/internal CA signed
certificates URL endpoints, you may use use one of the following ways to establish trusts based on certificates: your

Use the to import a single/chain of certificates to your JVM's keystore.instructions described on Oracle's documentation
Point Artifactory to use a custom certificate store. Follow the steps below (thanks to Marc Schoechlin for providing this information):

Download/acquire the certificate(s) of the SSL secured server openssl s_client -connect <secure authentication server IP and
 -showcerts < /dev/null > port> server.ca

Identify the CA certificate and keep only the ascii-text between BEGIN/END CERTIFICATE maker

You cannot configure a self-signed certificate in Artifactory SaaS
If you are using Artifactory SaaS (as opposed to an on-prem installation), you will not be able to proxy resources that use untrusted
(i.e. self-signed) certificates since you do not have access to the Artifactory SaaS JVM truststore.

Page Contents
Overview
Configuring a Self-Signed Certificate

Examples
LDAP or Active Directory:

server.caopenssl s_client -connect the.ldap.server.net:636 -showcerts < /dev/null >

OAuth (Use the Authorization URL). For example, with GitHub:
 openssl s_client -connect github.com:443/login/oauth/authorize -showcerts < /dev/null > server.ca

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetCertificates
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-AddCertificate
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeleteCertificate
https://docs.oracle.com/javase/tutorial/security/toolfilex/rstep1.html
https://github.com/login/oauth/authorize
https://github.com/login/oauth/authorize

3.
4.

5.

6.

7.

8.

Identify the standard file of your Java installationcacerts
Create a custom file by copying the file to the Artifactory configuration dir, e.g.cacerts cacerts
cp /usr/lib64/jvm/java-1_6_0-ibm-1.6.0/jre/lib/security/cacerts /etc/opt/jfrog/artifactory/
Import the CA certificate into the cacerts filecustomized
keytool -import -alias myca -keystore /etc/opt/jfrog/artifactory/cacerts -trustcacerts -file
server.ca
=> Password: changeit
=> Agree to add the certificate
Change permissions for the userartifactory
chmod 755 /etc/opt/jfrog/artifactory/cacerts
chown artifactory:users /etc/opt/jfrog/artifactory/cacerts
Modify the defaults of the Artifactory JVM to use the custom filecacerts
echo "export JAVA_OPTIONS=\"\$JAVA_OPTIONS
-Djavax.net.ssl.trustStore=/etc/opt/jfrog/artifactory/cacerts\"" >>
/etc/opt/jfrog/artifactory/default
Restart Artifactory

Access Tokens

Overview

From version 5.0, Artifactory offers access tokens as a new and flexible means of authentication
with a range of capabilities previously unavailable:

Cross-instance authentication
Access tokens can be used for authentication, not only by the Artifactory instance or
cluster where they were created, but also for other instances and clusters that are all part
of the same "circle of trust" (described below).

User and non-user authentication
The case for authenticating Artifactory users is clear, however access tokens can also be
assigned to non-user entities such as CI server jobs.

Time-based access control
Access tokens have an expiry period so you can control the period of time for which you
grant access. However, you may also delegate that control to the receiving user by making
them refreshable

Flexible scope
By assigning Groups to tokens, you can control the level of access they provide .

 To support these capabilities, an access token has the following properties:

Subject

The user to which this access token is
associated. If the user specified does not exist,
Artifactory will create a corresponding transient
user. Artifactory administrators can assign a
token to any subject (user); non-admin users
who create tokens can only assign tokens to
themselves.

Issuer

An identifier of the cluster on which the access
token was created

Scope

The scope of access that the token provides.
Access to the REST API is always provided by
default; in addition, you may specify the group
memberships that the token
provides. Artifactory administrators can set any
scope; non-admin users can only set the
scope to a subset of the groups to which they
belong.

Page Contents
Overview

Access Service
Access Service
Logs

Configu
ring
Loggin
g

Cross-Instance
Authentication

Setting the
Private Key and
Root Certificate

New
Instanc
es
Existing
Instanc
es

Using Tokens
Basic
Authentication
Authorization
Headers

Support Authentication
for Non-Existing Users
Generating Expirable
Tokens
Generating Refreshable
Tokens
Generating Admin
Tokens
Revoking Tokens
REST API

Create Token
Refresh Token
Revoke Token
Get Service ID

UI
Troubleshooting

Expiry

The period of time from creation after which
the token will expire. Artifactory administrators
can set any expiry period; non-admin users
can not change the expiry period so tokens
they create expire after the default period of 60
minutes.

Refreshable

Whether the token may be refreshed for
continued use or not

Audience

The set of Artifactory instances or clusters on
which the token may be used identified by their
Service IDs. The Service ID is a unique,
internally generated identifier of an Artifactory
instance or cluster and is obtained through Get

 REST API endpoint.Service ID

Access tokens are fully managed through as described below. REST API

Access Service

From Artifactory version 5.4, access tokens are managed under a new service called Access which is implemented in a separate WAR file, a
. This change has no impact on how access tokens are used, however, the Artifactory installation file structure now also includesccess.war

the added WAR file under the folder. Artifactory communicates with the Access service over HTTP and$ARTIFACTORY_HOME/webapps
assumes it is running in the same Tomcat using the context path of "access".

The new implementation is backwards compatible to old tokens, so you can still use tokens generated by an older version to authenticate in
the new version, however, you cannot use tokens generated by the new version to authenticate in an older version.

Breaking Change: Note that the change is not forwards compatible, so tokens created from version 5.4 and above cannot be used for
authentication with versions previous to 5.4. This may impact a circle of trust in which some instances are running versions below 5.4 while
others are running version 5.4 and above.

Access Service Logs

The Artifactory Access Service uses the to manage logging. Activity is logged according to type in three different log filesLogback Framework
which can be found under the folder.ARTIFACTORY_HOME/access/logs

The following log files are available:

access.log

This is the main Access service log file containing data on the Access server activity

request.log

The HTTP traffic information for requests coming in. Most of these are from Artifactory

audit.log

Auditing of the actions performed by the service. Currently only successful actions are recorded (e.g. token was created,
token was refreshed or revoked)

Since the Access service runs under the same Tomcat as Artifactory, its logs (catalina.out. localhost etc.) contains entries for both Artifactory
and Access.

Configuring Logging

Logging for the Access service is configured in the file.$ARTIFACTORY_HOME/access/etc/logback.xml

Cross-Instance Authentication

Access tokens support cross-instance authentication through a "circle of trust" established by sharing a private and public key pair among all
participating instances. It is up to the Artifactory administrator to make sure that all participating instances are equipped with the same key
pair. This means that any instance can generate a token to be used with any other instance within the circle of trust. When an Artifactory
instance receives a REST API call authenticated by a signed token, it will use the root certificate that includes the public key to verify that its
issuer is in the circle of trust.

Limitations
Only a token that is expirable and refreshable can be used for authentication on a different instance from the one that created it.

http://logback.qos.ch/

1.

2.

3.

4.

1.

2.
a.

b.

Setting the Private Key and Root Certificate

As mentioned above, it is up to the Artifactory administrator to make sure that all participating instances are equipped with the same key pair.
The process to ensure this varies depending on whether you are bootstrapping new instances or setting up cross-instance authentication for
existing instances.

New Instances

Artifactory Pro or OSS

Start up the first Artifactory instance (or cluster node for an HA installation) that will be in your circle of trust. A private key and root
certificate are generated and stored under .$ARTIFACTORY_HOME/access/etc/keys
Copy the private key and root certificate files to a location on your file system that is accessible by all other instances/nodes that are
in your circle of trust.
Before bootstrapping, for each of the other instances/nodes, create the folder and create a$ARTIFACTORY_HOME/access/etc
properties file in it called with the following contents:access.bootstrap.config

key=/path/to/private.key
crt=/path/to/root.crt

When each instance/node starts up, if the file exists, then the$ARTIFACTORY_HOME/access/etc/ access.bootstrap.config
private key and root certificate are copied from the specified location into the server's home directory under $ARTIFACTORY_HOME
/access/etc/keys.

Artifactory HA

In the case of an Artifactory HA installation, the private key and root certificate are included in the . bootstrap bundle

Existing Instances

Copy the private key and root certificate files from the Artifactory instance whose circle of trust you want the current instance to join,
to a location on your file system that is accessible by the current instance.
Before bootstrapping the instance:

Delete the existing private key and root certificate files (and) from the private.key root.crt $ARTIFACTORY_HOME/ac
folder.cess/etc

Create the with the following contents:$ARTIFACTORY_HOME/access/etc/access.bootstrap.config

Only the issuing instance can refresh a token.

Key rotation will invalidate any issued access tokens
The procedure below will create new key pairs which in turn will invalidate any existing Access Tokens issued by the current
instance.

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-CreatingtheBootstrapBundle

2.

b.

c.

d.

e.

key=/path/to/private.key
crt=/path/to/root.crt

Add the following JVM property (under the enviroment variable) to JAVA_OPTIONS $ARTIFACTORY_HOME/bin/artifac
tory.default:

-Djfrog.access.force.replace.existing.root.keys=true

Start up the and verify that theinstance ready to be added to your circle of trust
artifactory.log file shows the following entry:

**

*** Forcing replacement of the root private key and
certificate ***
**

Delete the JVM property you added to /bin/artifactory.default$ARTIFACTORY_HOME in step c.

Using Tokens

There are several ways you can use access tokens for authentication.

Basic Authentication

An access token can be used instead of a password for basic authentication. This may be useful when you need a client (such as certain
dependency managers) that only supports basic authentication to access Artifactory. In this case, it is important to access Artifactory using
the same user name provided when creating the token (with).-d "username=<USERNAME>"

For example, to use an access token as a password to ping Artifactory you could use:

curl -u<USERNAME>:<TOKEN> http://ARTIFACTORY_URL/api/system/ping

Authorization Headers

An access token can be used as a bearer token in authorization headers. This is especially useful for authenticating CI servers with
Artifactory instead of using credentials, since you don't need to have a user defined in Artifactory if the group provided in -d
"member-of-groups:<GROUP>" is configured in that Artifactory instance. As a result, there is no need to manage fictitious users for your
different automation tools that need access to Artifactory.

For example, to use an access token as a bearer token to ping Artifactory you could use:

curl -H"Authorization: Bearer <TOKEN>"
http://ARTIFACTORY_URL/api/system/ping

Support Authentication for Non-Existing Users

One of the big advantages of access tokens is the fact that you don't have to create a user in Artifactory to use them. When creating a token,

you can specify a user name that does not exist, and Artifactory will create a transient user that will only exist as long as the token is valid.
This can be useful to in giving access to different tools such as a CI server coordinating a build without having to manage fake user accounts.
This method is also more secure since you can assign a new token for each "job" that the external tool runs.

Generating Expirable Tokens

You can limit the validity period of a token by setting the expiry time when generating a token. If set, the token will be valid until the expiration
time will pass.
You can all set a token to be non-expirable by setting the expiry to zero, in which case it will valid indefinitely until actively revoked.

This value is set by using the "&expires_in=<VALUE_IN_SECONDS>" param when generating the token (see example in REST API section
below). If not used the default value will be 3600 meaning your token will be valid for one hour.

Generating Refreshable Tokens

As mentioned above, you can limit the validity period of an token by setting its expiry time. To allow extending access privileges of a token
once it has expired, you can provide a refresh token which will generate a new token with the same privileges as the original one. This takes
token management out of the hands of its issuer and delegates it to the user who received the token.

Generating Admin Tokens

In general, the scope for a token is defined by specifying the groups into which the token is included, however, an Artifactory administrator
can also create a token with admin privileges. This can be useful for JFrog Mission Control and JFrog Xray since both of these
complementary applications require admin permissions to work seamlessly with Artifactory. With this capability, when Mission Control or Xray
connect to an instance of Artifactory, they can create an admin tokens and use that for authentication instead of using basic authentication
with a username and password.

Revoking Tokens

Any refreshable or non-expirable token can be revoked but only by the instance (or cluster) that issued it. A token with an expiry specified will
lapse automatically upon reaching its expiry period (but can also be actively revoked earlier). A token that is not expirable (paraexpires_in
meter is set to 0) must be actively revoked to terminate its usage. As described above, to support cross-site authentication, a token must be
both expirable and refreshable. Note that this kind of token cannot be revoked. The only way to terminate its usage is to revoke its refresh
token, so its usage will be terminated next time its expiry period lapses.

Artifactory Administrator Only
Note that this feature is only available for Artifactory administrator since non-admin users can only create tokens with themselves
as the Subject.

Artifactory Administrator Only
 Note that only an Artifactory administrator can change the validity period of a token to any value. Non-admin users, can only set
the token validity period to a value that is equal or less than the default 3600 seconds.

Who can refresh?
Only the instance (or HA cluster) that issued a refreshable token can actually refresh it.

Limitation
 An external user who has created a token will still be able to refresh it even if he has been removed from the external
authentication server.

"Revoking" a cross-instance authentication token
To terminate usage of a token used for cross-instance authentication, you need to revoke its refresh token.

REST API

All management of access tokens is done via REST API through the endpoints described below.

Create Token

Creates an access token.

For details, refer to the REST API documentation for .Create Token

Refresh Token

Refresh an access token to extend its validity. If only the access token and the refresh token are provided (and no other parameters), this pair
is used for authentication. If username or any other parameter is provided, then the request must be authenticated by a token that grants
admin permissions.

For details, refer to the REST API documentation for . Refresh Token

Revoke Token

Revoke an access token

For details, refer to the REST API documentation for . Revoke Token

Get Service ID

Provides the service ID of an Artifactory instance or cluster

For details, refer to the REST API documentation for . Get Service ID

UI

Admin users can view details on all created Access Tokens in the module under .Admin Security | Access Tokens

The Access Tokens page allows you to view, revoke, search by subject and filter to view only expirable tokens.

Additional functionalities, such as creating new tokens, is done via .REST API

Troubleshooting
An exception is thrown for "java.lang.IllegalStateException: Provided private key and latest private key fingerprints mismatch"

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateToken
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RefreshToken
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RevokeToken
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetServiceID

a.

b.

c.

Symptoms During startup, Artifactory fails to start and an error is thrown:

java.lang.IllegalStateException: Provided private key and latest private key fingerprints mismatch.

Cause Artifactory tries to validate and compare access keys' fingerprint that reside on Artifactory's database and the local file system. If the keys do
not match, the exception above will be thrown along with the mismatching fingerprint IDs.

This could occur during an attempted upgrade/installation of Artifactory.

Resolution Follow the steps below to make sure that all instances in your circle of trust have the same private key and root certificate:

Add the following JVM property (under the enviroment variable) to JAVA_OPTIONS $ARTIFACTORY_HOME/bin/artifactory.d
efault:

-Djfrog.access.force.replace.existing.root.keys=true

Start up the new instance and verify that the $ARTIFACTORY_HOME/logs/artifactory.log or
$ARTIFACTORY_HOME/access/logs/access.log file shows the following entry:

*** Forcing replacement of the root private key and certificate ***

Delete the JVM property you added to in step a./bin/artifactory.default$ARTIFACTORY_HOME

Following an upgrade of an Artifactory HA cluster node, the node fails to start up.

Symptoms After correctly following the upgrade procedure, an Artifactory HA cluster node fails to start up

Cause In Artifactory 5.4, the implementation of access tokens was taken out of the Artifactory WAR file and moved to a
separate WAR file. As a result, your Tomcat's file needs to be modified.server.xml

Key rotation will invalidate any issued access tokens
The procedure below will create new key pairs which in turn will invalidate any existing Access Tokens.

Resolution Make sure that your $ARTIFACTORY_HOME file is configured with 2 start/stop threads astomcat/conf/server.xml
shown in the example below (see <Host name="localhost" appBase="webapps" />:startStopThreads="2"

<Server port="8015" shutdown="SHUTDOWN">
 <Service name="Catalina">

 <Connector port="8081"/>

 <!-- This is the optional AJP connector -->
 <Connector port="8019" protocol="AJP/1.3"/>

 <Engine name="Catalina" defaultHost="localhost">
 <Host name="localhost" appBase="webapps"
startStopThreads="2"/>
 </Engine>
 </Service>
</Server>

The access token I generated is not working

Symptoms Authentication with an access token doesn't work with an error that says " ".Token validation failed

Cause The implementation of access tokens was changed in Artifactory 5.4. The change is backwards compatible, so tokens
created with earlier versions of Artifactory can be authenticated in the new version, however the reverse is not true.
Tokens created in versions 5.4 or later cannot be authenticated by versions earlier than 5.4.

Resolution Either upgrade your older Artifactory instances, or make sure you only create access tokens with the older instances.

Access Log

The Artifactory access.log

Artifactory maintains an access log containing all security-related events, their source IP and context. Events
include information on accept/reject of logins, and download, browsing and deployment of artifacts.

The access log is located at .$ARTIFACTORY_HOME/logs/access.log

You can also view and download the access log from the Artifactory UI. In the module go to Admin Advance
d | System Logs.

Watches

You can also choose to receive focused information about events for a specific repository section, using the .Watches Add-on

Configuring a Reverse Proxy

Overview

In many cases, an organization may provide access to Artifactory through a reverse proxy such as or NGINX
. In some cases, for example with Docker, this set up is even mandatory. To simplify configuring aApache

reverse proxy, from version 4.3.1, Artifactory provides a screen inReverse Proxy Configuration Generator
which you can fill in a set of fields to generate the required configuration snippet which you can then
download and install directly in the corresponding directory of your reverse proxy server. You can also use
the to manage reverse proxy configuration.REST API

Reverse Proxy Settings

To configure a reverse proxy, in the module, select | and execute the following steps:Admin Configuration Reverse Proxy

Fill in the fields according to your configuration.
Generate the configuration file. You may click the icons in the top right of the screen to view your configuration (which you may copy) or
download it as a text file.
Place the configuration file in the right place under your reverse proxy server installation and reload the configuration.

Page Contents
The Artifactory access.log
Watches

If you are using Artifactory behind a reverse proxy, we recommend that you set your Custom URL
 to match your .Base Artifactory Server Name

Page Contents
Overview
Reverse Proxy Settings
Docker Reverse Proxy Settings

Using Subdomain
Using Port Bindings

REST API

Using NGINX? Note these requirements.
To use NGINX as a reverse proxy to work with Docker, you need NGINX v1.3.9 or higher.

The NGINX configuration file should be placed under the directory.sites-enabled

For more details, please refer to .Configuring NGINX

Using Apache? Note these requirements.
Some features in the Apache configuration are only supported from Apache HTTP Server v2.4.

To use Apache as your reverse proxy server, make sure you have the following modules installed and activated:

proxy_http
proxy_ajp
rewrite
deflate
headers

https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomURLBase
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomURLBase

proxy_balancer
proxy_connect
proxy_html
ssl
lbmethod_byrequests
slotmem_shm
proxy

Support to generate Apache reverse proxy configuration is available from Artifactory version 4.4.1.

For more details, please refer to Configuring Apache.

Best practice
When using a reverse proxy, we recommend passing it the header as follows:X-Artifactory-Override-Base-Url

For NGINX:

proxy_set_header X-Artifactory-Override-Base-Url $http_x_forwarded_proto://$<host>:<server
port>/<public context>

For Apache:
RewriteCond %{REQUEST_SCHEME} (.*)
RewriteRule (.*) - [E=my_scheme:%1]
[...]
RequestHeader set X-Artifactory-Override-Base-Url %{my_scheme}e://<server_name>/<app_context>

Web
Server
Type

The reverse proxy type.

Artifactory
Server
Name

The internal server name for Artifactory. If the Web Server is installed on the same machine as Artifactory you can use ,localhost
otherwise use the or the .IP address machine name

Artifactory
Port

The port configured for Artifactory. The default value is 8081.

Artifactory
Context
Path

The path which will be used to access Artifactory. If Artifactory is accessible at the root of the server, leave this field empty.

Balance
Members
(Apache)

Upstream
Name
(NGINX)

Only available in an Artifactory HA installation. Defines the group of servers in the HA cluster for load balancing. (default:
artifactory).

For more details, please refer to the or accordingly.NGINX documentation Apache documentation

Public
Server
Name

The server name which will be publicly used to access Artifactory within the organization.

Public
Context
Path

The path which will be publicly used to access Artifactory. If Artifactory is accessible on the root of the server leave this field
empty.

You can configure access to Artifactory via HTTP, HTTPS or both (at least one is required). For each of these check boxes that you set, you need
to fill in the corresponding fields as follows:

Use HTTP

When set, Artifactory will be accessible via HTTP at the corresponding port that is set.

HTTP Port

The port for access via HTTP. The default value is 80.

Use HTTPS

When set, Artifactory will be accessible via HTTPS at the corresponding port that is set.

Multiple Artifactory instances under the same domain
If using multiple Artifactory instances under the same domain, e.g. artdev.mycompany.org and artprod.mycompany.org
you must assign a different names for balance members / upstream name to each cluster configuration since the
session cockies will be avilable to both clusters and can cause an issue if trying to access both clusters in the same
time.

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#upstream
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#balancermember

HTTPS Port

The port for access via HTTPS. The default value is 443.

SSL Key Path

The full path to the key file for access via HTTPS.

SSL Certificate Path

The full path to the certificate file for access via HTTPS.

Docker Reverse Proxy Settings

When using Artifactory as a private Docker registry, the Docker client can only access Artifactory through a reverse proxy (Artifactory SaaS is an
exception since it is external to your organization). Therefore, your Docker repositories must be configured with the corresponding Reverse Proxy
settings in the tab The screen also sets up your DockerDocker Repository Configuration Advanced . Reverse Proxy Configuration
Repository configuration.

There are two ways to configure Docker repositories to work with a reverse proxy: bindings or Port Subdomain.

Using Subdomain

If you select as the , when configuring a Docker Repository, the in the Subdomain Reverse Proxy Method Registry Name Docker Repository
 tab will be set automatically to the required value, and will use the as the .Configuration Advanced Repository Key Subdomain

Docker Reverse Proxy Settings in Reverse Proxy Configuration Corresponding Reverse Proxy settings in Docker Repository
Advanced Configuration

Using Port Bindings

If you select as the , when configuring a Docker Repository, you will need to set the in the Port Reverse Proxy Method Registry Port Docker
 tab. Together with the , this is the port the Docker client will use to pull images fromRepository Configuration Advanced Public Server Name

and push images to the repository. Note that in order for all of your Docker repositories to be included in your reverse proxy configuration, you first
you need to set the port for each Docker repository defined in your system, and only then generate the reverse proxy configuration. Note also that
each repository must be bound to a unique port

Docker Reverse Proxy Settings in Reverse Proxy Configuration Corresponding Reverse Proxy settings in Docker Repository
Advanced Configuration

Wildcard certificate
Using the method requires a certificate such as. . You also need to ensure that theSubdomain Wildcard *.myservername.org
certificate you use supports the number of levels used in your subdomain.

Best Practice
We recommend creating a which aggregates all of your other Docker repositories, and use that to pull and Docker Virtual Repository pu

. This way you only need to set up the NGINX configuration for that virtual repository.sh images

http://myservername.org
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-VirtualDockerRepositories
https://www.jfrog.com/confluence/display/RTD/Deploying+Artifacts#DeployingArtifacts-DeployingtoaVirtualRepository
https://www.jfrog.com/confluence/display/RTD/Deploying+Artifacts#DeployingArtifacts-DeployingtoaVirtualRepository

REST API

Artifactory also supports managing reverse proxy configuration through the REST API using the following endpoints:

Get Reverse Proxy Configuration

Retrieves the reverse proxy configuration JSON.

Update Reverse Proxy Configuration

.Updates the reverse proxy configuration

Get Reverse Proxy Snippet

Gets the reverse proxy configuration snippet in text format.

Configuring Apache

Setting Up Apache HTTP Server

You can set up Apache HTTP Server as a front end to Artifactory using either the HTTP or
AJP protocol.

Client ----------> HTTPD ---------->
Artifactory
 HTTP HTTP/AJP

Using AJP

The AJP protocol offers optimized low-level binary communication between the servlet
container and Apache with additional support for smart-routing and load balancing.

The configuration is flexible and can be used either with , or with .mod_proxy_ajp mod_jk

The example below shows how to configure Apache using mod_proxy_ajp which is distributed
by default, however you need to install and then enable as follows:

Enabling mod_proxy_ajp

sudo a2enmod proxy_ajp

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetReverseProxyConfiguration
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UpdateReverseProxyConfiguration
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetReverseProxySnippet

Configuring Apache With mod_proxy_ajp Installed

The sample virtual host below refers to Apache as a reverse proxy to Tomcat, where Tomcat
runs with the AJP connector on port 8019:

Configuring Apache with mod_ajp

<VirtualHost *:80>
 ServerAdmin your@email.address.com
 DocumentRoot "/srv/www/httpd/htdocs"
 ServerName artifactory.yourdomain.com
 ErrorLog "logs/artifactory-error_log"
 ProxyPreserveHost on
 ProxyPass /artifactory ajp://<yourdomain>:8019/artifactory
</VirtualHost>

Configuring Your Tomcat

If you are using a dedicated Tomcat rather than the one that is bundled with the Artifactory download zip file, you must configure the AJP
connector located, by default, under :$CATALINA_HOME/conf/server.xml

Configuring a Dedicated Tomcat

<Connector port="8019" protocol="AJP/1.3"
 maxThreads="500" minSpareThreads="20"
 enableLookups="false"
 backlog="100"/>

Please refer to for more configuration options.Apache Tomcat Configuration Reference

Configuring Apache With a Custom Artifactory Path

You can configure Apache using the same setup as above but here the goal is to have http://artifactory.yourdomain.com/repositor
 as the root URL for Artifactory as follows:y/

Page Contents
Setting Up Apache HTTP Server

Using AJP
Configuring Apache With mod_proxy_ajp Installed
Configuring Your Tomcat
Configuring Apache With a Custom Artifactory Path

Using an HTTP Proxy
Configuring Apache With mod_proxy_ajp Installed

Setting Up Apache HTTPS
Using AJP
Using an HTTP Proxy

Configuring Apache With mod_proxy_ajp Installed and Tomcat
Configuring a Custom URL Base in Artifactory

Reset Your Cookies
When changing the Artifactory context path in Apache make sure to reset your browser's host and session cookies.

Having a stale context path value cached by cookies can lead to inconsistent issue with the user interface such as Not authorized
 errors when switching between tabs.to instantiate class

http://tomcat.apache.org/tomcat-7.0-doc/config/ajp.html

Configuring Apache With Your Custom Artifactory Path

 <VirtualHost *:80>
 ServerAdmin your@email.address.com
 DocumentRoot "/srv/www/httpd/htdocs"
 ServerName artifactory.yourdomain.com
 ErrorLog "logs/artifactory-error_log"
 ProxyPreserveHost on
 ProxyPass /repository ajp://<yourdomain>:8019/artifactory
 ProxyPassReverse /repository
http://artifactory.yourdomain.com/artifactory
 ProxyPassReverseCookiePath /artifactory /repository
</VirtualHost>

Using an HTTP Proxy

When running Artifactory with Tomcat, we recommend that you set up Apache to proxy Artifactory via HTTP.

You must configure redirects correctly using the PassReverse directive, and also set the base URL in Artifactory itself so that the UI links show up
correctly.

Configuring Apache With mod_proxy_ajp Installed

The sample virtual host assumes that the Tomcat HTTP connector runs on port 8081.

Setting a PassReverse Directive on Apache

<VirtualHost *:80>
 ServerAdmin your@email.address.com
 DocumentRoot "/srv/www/httpd/htdocs"
 ServerName artifactory.yourdomain.com
 ErrorLog "logs/artifactory-error_log"
 ProxyPreserveHost on
 ProxyPass /artifactory http://<yourdomain>:8081/artifactory
 ProxyPassReverse /artifactory
http://artifactory.yourdomain.com/artifactory
</VirtualHost>

Setting Up Apache HTTPS

You can set up Apache with SSL (HTTPS) as a front end to Artifactory using either the HTTP or AJP protocol.

Client ----------> HTTPD ----------> Artifactory
 HTTPS HTTP/AJP

Ensuring HTTP Redirect Works Correctly
For HTTP redirects to work, you must set a PassReverse directive on Apache, otherwise the underlying container base URL is passed
in redirects

In the example below it is set to . http://artifactory.yourdomain.com/artifactory/

1.
2.

Using AJP

If you are not running Artifactory with Tomcat, then it is recommended to use AJP since it provides the servlet container with all the information
about the correct base URL and requires no configuration in Artifactory.

Using an HTTP Proxy

Configuring Apache With Installed and Tomcatmod_proxy_ajp

The Apache and Tomcat sample configuration is as described in the section on Apache HTTP Server above under .Using AJP

Configuring a Custom URL Base in Artifactory

When using an HTTP proxy, the links produced by Artifactory, as well as certain redirects contain the wrong port and use the instead of http htt
. ps

Therefore, you must configure a custom base URL as follows:

On the tab select .Admin Configuration | General Custom URL Base field
Set the field to the value used to contact Artifactory on ApacheCustom URL Base
For example: https://artifactory.yourdomain.com/artifactory

Please refer to for more details about configuring the base URL.General Configuration

Configuring NGINX

Setting Up the NGINX Server

You can use Artifactory behind an nginx server.

When setting up nginx as a front end to Artifactory it is recommended to use HTTP or HTTPS.

Using HTTP or HTTPS

You must set the base URL in Artifactory itself so that the links in the user interface appear correctly.

In the example below, the configuration assumes that the Tomcat HTTP connector runs on port 8081.

Page Contents
Setting Up the NGINX Server

Using HTTP or HTTPS
Configuring a Custom URL Base in Artifactory
Advanced Tomcat Configuration

http://www.jfrog.com/confluence/display/RTF/General+Configuration

Configuring nginx to use HTTP or HTTPS

add ssl entries when https has been set in config
ssl_certificate /etc/nginx/ssl/docker.jfrog.com.crt;
ssl_certificate_key /etc/nginx/ssl/docker.jfrog.com.key;
ssl_session_cache shared:SSL:1m;
ssl_prefer_server_ciphers on;
server configuration
server {
 listen 443 ssl;
 listen 80 ;

 server_name artifactory.jfrog.com;
 if ($http_x_forwarded_proto = '') {
 set $http_x_forwarded_proto $scheme;
 }
 ## Application specific logs
 ## access_log /var/log/nginx/artifactory.jfrog.com-access.log timing;
 ## error_log /var/log/nginx/artifactory.jfrog.com-error.log;
 rewrite ^/$ /artifactory/webapp/ redirect;
 rewrite ^/artifactory/?(/webapp)?$ /artifactory/webapp/ redirect;
 chunked_transfer_encoding on;
 client_max_body_size 0;
 location / {
 proxy_read_timeout 900;
 proxy_pass_header Server;
 proxy_cookie_path ~*^/.* /;
 if ($request_uri ~ ^/artifactory/(.*)$) {
 proxy_pass
http://<rproxy_artifactory>:8081/artifactory/$1;
 }
 proxy_pass http://rproxy_artifactory:8081/artifactory/;
 proxy_set_header X-Artifactory-Override-Base-Url
$http_x_forwarded_proto://$host:$server_port/<public context>;
 proxy_set_header X-Forwarded-Port $server_port;
 proxy_set_header X-Forwarded-Proto $http_x_forwarded_proto;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Configuring a Custom URL Base in Artifactory

When using an HTTP proxy, the links produced by Artifactory, as well as certain redirects contain the wrong port and use the instead of http htt
. ps

Internal Proxies
Regular expression (using) that a proxy's IP address must match to be considered an internal proxy. Internaljava.util.regex
proxies that appear in the are trusted and do not appear in the value.remoteIpHeader proxiesHeader

If not specified, the default value of 10\.\d{1,3}\.\d{1,3}\.\d{1,3}|192\.168\.\d{1,3}\.\d{1,3}|169\.254\.\d{1,3
 is used.}\.\d{1,3}|127\.\d{1,3}\.\d{1,3}\.\d{1,3}

1.
2.

Therefore, you must configure a custom base URL as follows:

On the tab select .Admin Configuration | General Custom URL Base field
Set the field to the value used to contact Artifactory on ApacheCustom URL Base
For example: https://artifactory.yourdomain.com/artifactory

Please refer to for more details about configuring the base URL.General Configuration

Advanced Tomcat Configuration

On Tomcat you may modify your HTTP connector configuration to support advanced capabilities, for example:

Configuring the HTTP connector

<Connector port="8081" protocol="HTTP/1.1"
 maxThreads="500" minSpareThreads="20"
 enableLookups="false" disableUploadTimeout="true"
 backlog="100"/>

Mail Server Configuration

Overview

Artifactory supports sending mail to notify administrators and other users for significant events that happen in
your system.

Some examples are:

Watch notifications
Alerts for backup warnings and errors
License violation notifications

To enable mail notifications, you need to configure Artifactory with your mail server details as described
below.

Setup
To access the mail server configuration, in the module select .Admin Configuration | Mail

Setup is straightforward and can be verified by sending a test message. Simply click "Send Test Mail" in the screen. Configure Mail

HTTP connector location
By default, the HTTP Connector can be found in $CATALINA_HOME/conf/server.xml

Page Contents
Overview
Setup

https://artifactory.yourdomain.com/artifactory
http://www.jfrog.com/confluence/display/RTF/General+Configuration

Enabled

When set, mail notifications are enabled

Host

The host name of the mail server

Port

The port of the mail server

Username

The username for authentication with the mail server

Password

The password for authentication with the mail server

From (optional)

The "from" address header to use in all outgoing mails.

Subject Prefix

A prefix to use for the subject of all outgoing mails

Artifactory URL (optional)

The Artifactory URL to use in all outgoing mails to denote links to Artifactory.

Use TLS

When set, uses Transport Layer Security when connecting to the mail server

1.
2.

Use SSL

When set, uses a secure connection to the mail server

Test Message Recipient

The email address of a recipient to receive a test message

Configuration Files
All Artifactory configuration files are located under the folder.$ARTIFACTORY_HOME/etc

On Linux, Solaris and MacOS is usually a soft link to $ARTIFACTORY_HOME /etc/artifact
.ory

Global Configuration Descriptor

The global Artifactory configuration file is used to provide a default set of configuration
parameters.

The file is located in and is$ARTIFACTORY_HOME/ / config xml etc artifactory. .
loaded by Artifactory at initial startup. Once the file is loaded, Artifactory renames it to artifa

 and from that point on, the configuration is stored internallyconfig bootstrapctory. . .xml
in Artifactory's storage. This ensures Artifactory's configuration and data are coherently stored
in one place making it easier to back up and move Artifactory when using direct database
backups. On every startup, Artifactory also writes its current configuration to $ARTIFACTORY_

 as a backup.HOME/ / config startup xmletc artifactory. . .

At any time, the default configuration can be changed in the Artifactory UI module.Admin

There are two ways to directly modify the Global Configuration Descriptor:

Using the Artifactory UI
Using the REST API

Modifying Configuration Using the UI

You can access the Global Configuration Descriptor in the module under There you can modify the file'sAdmin Advanced | Config Descriptor.
contents directly or copy the contents from the entry field.

Page Contents
Global Configuration Descriptor

Modifying Configuration Using the UI
Modifying Configuration Using the REST API
Bootstrapping the Global Configuration

Security Configuration Descriptor
Modifying Security Using the UI
Modifying Security Using the REST API
Bootstrapping the Security Configuration

Content Type/MIME Type
MIME Type Attributes
Setting Content-Type During Download

System Properties
Logging Configuration Files
Storage Properties

Care
Direct modification of the global configuration descriptor is an advanced feature, and if done incorrectly may render Artifactory in an
undefined and unusable state. We strongly recommend backing up the configuration before making any direct changes, and taking
great care when doing so.

1.
2.

Modifying Configuration Using the REST API

You can retrieve or set the global configuration by sending a GET or POST request to http://<host>:<port>/artifactory/api/system
. For example:/configuration

Retrieving and Setting the Global Configuration Descriptor

curl -u admin:password -X GET -H "Accept: application/xml"
http://localhost:8080/artifactory/api/system/configuration
curl -u admin:password -X POST -H "Content-type:application/xml"
--data-binary @artifactory.config.xml
http://localhost:8080/artifactory/api/system/configuration

Bootstrapping the Global Configuration

You can bootstrap Artifactory with a predefined global configuration by creating an $ARTIFACTORY_HOME/ / config imporetc artifactory. .
 file containing the Artifactory configuration descriptor.t xml.

If Artifactory detects this file at startup, it uses the information in the file to override its global configuration. This is useful if you want to copy the
configuration to another instance of Artifactory.

Security Configuration Descriptor

There are two ways to directly modify the Security Configuration Descriptor:

Using the Artifactory UI
Using the REST API

Modifying Security Using the UI

Care
Direct modification of the security descriptor is an advanced feature, and if done incorrectly may render Artifactory in an undefined and
unusable state. We strongly recommend backing up the configuration before making any direct changes, and taking great care when
doing so.

You can access the Security Configuration Descriptor in the module under There you can modify theAdmin Advanced | Security Descriptor.
file's contents directly or copy the contents from the entry field.

Modifying Security Using the REST API

You can retrieve or set the security configuration by sending a GET or POST request to http://<host>:<port>/artifactory/api/syste
. For example:m/security

Modifying the Security Descriptor

curl -u admin:password -X GET -H "Accept: application/xml"
http://localhost:8080/artifactory/api/system/security
curl -u admin:password -X POST -H "Content-Type: application/xml"
--data-binary @security.xml
http://localhost:8080/artifactory/api/system/security

Bootstrapping the Security Configuration

Artifactory stores all security information as part of its internal storage.You can bootstrap Artifactory with a predefined security configuration by
creating an file containing the Artifactory exported security configuration information.$ARTIFACTORY_HOME/ /security.import xmletc .

If Artifactory detects this file at startup, it uses the information in the file to override all security settings. This is useful if you want to copy the
security configuration to another instance of Artifactory.

Content Type/MIME Type

Artifactory provides a flexible mechanism to manage content type/MIME Type. You can define system-wide MIME types for common usage, but
you can also overwrite the MIME types for specific files as needed. The list of default MIME types can be found in in $ARTIFACTORY_HOME/et

 and can be edited in order to add, remove or change MIME types. If a file has an extension that is not supported by any ofc/mimetypes.xml
the MIME types, or does not have an extension at all, Artifactory will use the default MIME type of . To determineapplication/octet-stream
an artifact's MIME type, Artifactory compares its extension with the those in the file, and applies the MIME type of the firstmimetype.xml
extension that matches.

Admin privileges
You must supply a user with privileges to modify the security descriptor through the REST APIAdmin

MIME Type Attributes
Each MIME type may have the following attributes:

type

The MIME type unique name (mandatory)

extensions

A comma separated list of file extensions mapped to this MIME type (mandatory)

index

True if this MIME type should be indexed for archive searching (valid only for supported archive files)

archive

True if this MIME type is a browsable archive

viewable

True if this MIME type can be viewed as a text file inside Artifactory UI

syntax

The UI highlighter syntax to for this MIME type (only relevant if this is a type)viewable

css

The css class of a display icon for this mime type

Example of mimetype.xml

<mimetypes version="4">
 <mimetype type="text/plain" extensions="txt, properties, mf, asc"
viewable="true" syntax="plain"/>
 <mimetype type="text/html" extensions="htm, html" viewable="true"
syntax="xml"/>
 <mimetype type="text/css" extensions="css" viewable="true"
syntax="css"/>
 <mimetype type="text/xsl" extensions="xsl" viewable="true"
syntax="xml"/>
 <mimetype type="text/xslt" extensions="xslt" viewable="true"
syntax="xml"/>
 <mimetype type="text/x-java-source" extensions="java" viewable="true"
syntax="java"/>
 <mimetype type="text/x-javafx-source" extensions="fx" viewable="true"
syntax="javafx"/>
</mimetypes>

For example, from the extensions parameter in the above file sample we can conclude that:mimtypes.xml

test.properties is a MIME type text/plain
 test.css is a MIME typetext/css

test.doc is an MIME type since " " is not included in any of the other MIME types).application/octet-stream doc

IMPORTANT: Make sure you restart Artifactory for your changes to take affect.

Artifactory MIME Types
Some of the Mime-Types specified in are used by Artifactory. Great caremimetypes.xml (e.g. application/x-checksum)
should be taken before changing these Mime-Types to ensure Artifactory continues to function correctly.

Setting Content-Type During Download

Using Artifactory, when downloading files you can override the HTTP header by setting the pr Content-Type artifactory.content-type
operty.

 Artifactory will use the default mechanism of matching the artifact nameIf the artifactory.content-type property is not explicitly set,
extension to the extensions in the to apply the Content-Type.mimtypes.xml file

This feature is only available with Artifactory Pro.

System Properties

Rather than configuring properties in the JVM runtime configuration of the hosting container, you can edit $ARTIFACTORY_HOME/etc/artifac
 file and restart Artifactory.tory.system.properties

The Artifactory system properties are documented within this file.

Since these settings impact the entire container VM, we recommend using this feature primarily for specifying Artifactory-related properties only
(such as changing the database used by Artifactory, etc.).

Logging Configuration Files

Artifactory uses the to manage logging and lets you configure the verbosity of log files. For details please refer to Logback Framework Configuring
Log Verbosity

Storage Properties

Artifactory provides you with a file so that you can configure the specific storage solution used in your system. For detailsbinarystore.xml
please refer to .Configuring the Filestore

Exposing Maven Indexes

Overview

Artifactory exposes Maven indexes for use by Maven integrations of common IDEs (for example,
IntelliJ IDEA, NetBeans, Eclipse).

Indexes are fetched remotely from remote repositories that provide them and are calculated for
local and virtual repositories (note that many repositories do not provide indexes, or do not keep an
updated index).

If Artifactory cannot find a remote index, it calculates one locally, based on the remote repository's
previously cached artifacts.

Setting properties in is an advanced feature and is typically not required.artifactory.system.properties

Do not confuse these setting with those in the file, which are for internal$ARTIFACTORY_HOME/data/artifactory.properties
use.

Page Contents
Overview
Usage

Artifactory's search and indexing facilities are not related to Maven indexes
The indexing performed by Artifactory is secure, immediately effective and supports a larger variety of search options, including
custom metadata searches.

http://logback.qos.ch/
https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ConfiguringLogVerbosity
https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ConfiguringLogVerbosity

Usage

To administer Maven indexes, in the module select .Admin Services | Maven Indexer

Artifactory provides you with controls to specify how frequently indexing is run and which repositories are included in the index calculation.

Enabled

When set, indexing is enabled and will run according to the Cron Expression setting

Cron Expression

A valid expression that determines the frequency in which Maven indexes on the selected repositories will beCron
recalculated

Next Indexing Time

Indicates the next scheduled indexing run

Run Indexing Now

Invokes indexing immediately

Maven indexes only exist in Artifactory for the purpose IDE integrations. They are periodically calculated, contain a limited set of
data and are non-secure by design.

Information about the content of a repository is exposed to anyone with access to the repository's index, regardless of any effective
path permission you have in place. If this is a concern, do not expose an index for that repository.

Using Artifactory SaaS?
The Maven Indexer service is only available on Artifactory SaaS .dedicated servers

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

Included
Repositories

Specifies the repositories that should be indexed on the next run

Excluded
Repositories

Specifies the repositories that should not be indexed on the next run

Clear All

Removes all repositories from the listIncluded Repositories

Clustering Artifactory

Active/Active Architecture

Artifactory HA is an Active/Active clustered installation of Artifactory that provides a full set of true High
Availability features and is supported with an Artifactory .Enterprise License

For full details please refer to .Artifactory High Availability

Active/Passive Architecture

Overview

Artifactory clustered Active/Passive architecture provides fast disaster recovery and can be implemented in
one of the following two ways:

Deployment on fault-tolerant storage (strongly recommended)
Periodic cross-server data sync.

Deployment on Fault-tolerant Storage

Using a fault-tolerant disk mounted on another machine allows for a very short MTR (Mean Time to
Recovery) in case the "active" server goes down. If Artifactory is deployed on a NAS or SAN the "passive"
machine can immediately mount the storage, bootstrap Artifactory from it and start accepting requests in
place of the originally "active" machine that is has gone down.

Indexing is resource intensive
Calculating and indexing for a repository may be a resource intensive operation, especially for a large local repository or if the
repository is a virtual one containing other underlying repositories.

Therefore, we recommend that you do not include repositories that do not require indexing for a periodic index calculation.

Page Contents
Active/Active
Architecture
Active/Passive
Architecture

Overview
Deployment
on
Fault-tolerant
Storage
Cross-server
Data
Synchronizati
on

Synch
ronizi
ng the
Data
and
Confi
gurati

https://www.jfrog.com/pricing/

1.
2.
3.

To set this up quickly and efficiently, we recommend using the built-in Virtual Machine Failover feature offered by virtualization software providers
as follows:

Create a VM image that runs the Artifactory startup script and mounts the auxiliary storage.
The storage should contain the full Artifactory installation along with the data in a location defined as $ARTIFACTORY_HOME.
Use the VM image on two Virtual Machines and have Artifactory running on one machine while the other machine is readily available as a
failover target by the virtualization monitor.

Cross-server Data Synchronization

If deployment on fault-tolerant storage, as described in the previous section, is not possible (or if redundancy is required), fault-tolerance can be
achieved by correctly replicating the data folder to a warm standby server.

The setup of an up-to-date passive replication server for the active Artifactory server requires database replication and synchronization of file
system directories.

Synchronizing the Data and Configuration Directories

To synchronize the data and configuration directories you need to run on and .rsync $ARTIFACTORY_HOME/data $ARTIFACTORY_HOME/etc

This can be done by running the command on while excluding the directories that are not required as follows: rsync $ARTIFACTORY_HOME

rsync -vvah --del --progress --log-file=/home/replication/replication.log
--exclude-from=rsync-excludes.txt \
artifactory@active-artifactory-host:$ARTIFACTORY_HOME/ $ARTIFACTORY_HOME/

For the above example the file appears as follows:rsync-excludes.txt

/work/
/data/tmp*/
/data/cache/
/logs/

Synchronizing the Database

on
Direct
ories
Synch
ronizi
ng the
Datab
ase
Time
Synch
roniza
tion
on the
Stand
by
Serve
r

rsync
The should be executed from the passive stand-by server rsync

Database Replication
 Database replication must run executing . before rsync

The procedure to synchronize a database varies between the different database vendors. Please refer to the relevant documentation for your
specific database.

For example, instructions on how to synchronize with MySQL can be found in the MySQL documentation for .How to Set Up Replication

It is also possible to use a full dump/restore procedure on the database to synchronize the database and filestore state. In this case, we
recommend that you perform the dump in a single routine along with (in case of File System Storage Types).rsync

Time Synchronization on the Standby Server

It is very important that the metadata stored in the database and the data stored on the file system are synchronized on the standby server.

A straightforward way to achieve this, is to make sure that the database synchronized is in a state that is to the file system (data/filestore)prior
state.

This allows you to:

Make a database dump before executing the file system sync,
Activate database replication on demand just before executing .rsync

Since the sync operations are not atomic, there may be a gap between the data from and data from database replication. rsync

System Monitoring and Maintenance
Overview

Artifactory provides a set of tools that allow you to monitor and maintain your system to keep it running and
responsive:

System Information lets you examine the various properties and parameters of your system at
runtime and is a valuable resource when investigating any issues that may arise.
You can to monitor storage view the number of artifacts and physical files in your system as well as
the amount of space that they occupy.

 let you monitor all the activity that has occurred in your systemLog files
 let you monitor repositories, executor pools and storageJMX Beans

You can configure regular, periodic to manage resource allocation and freemaintenance operations
up disk space
You can define a regimen for complete system backup
You can data both at system level and repository levelimport and export
You can monitor activity related to a specific artifact by defining a watch

System Information

1.
2.

The snapshot time that Artifactory is set to is the database replication time.
Items synced to the file system which have no representation in the database can be purged by clicking on Prune

 in the tab and then in the Artifactory configuration.Unreferenced Data Admin Advanced | Maintenance

Read More
System Information
Monitoring Storage
Artifactory Log Files
Artifactory JMX MBeans
Regular Maintenance Operations
Managing Backups
Importing and Exporting
Managing Disk Space Usage
Getting Support

http://dev.mysql.com/doc/refman/5.7/en/replication-howto.html

Overview

Artifactory can display different system information such as JVM runtime parameters, JVM arguments,
memory usage and more.

This can be useful if you need to examine your system at runtime and is a valuable resource when
investigating any issues that may arise.

To view Artifactory system information, in the module, go to .Admin Advanced | System Info

Monitoring Storage

Overview

Artifactory allows you to monitor various statistics related to the amount of storage that repositories occupy in
your system. You can view the number of artifacts and physical files as well as the amount of space that they
occupy. To monitor usage of storage in your system, in the module, go to Admin Advanced | Storage
Summary.

Binaries

This section provides information on the number of files in your system and the amount of physical and virtual storage that they occupy.

Page Contents
Overview

Page Contents
Overview
Binaries
File Store

Filestore Sharding
Repositories

Binaries
Count

The total number of physical binaries stored in your system.

Binaries Size

The amount of physical storage occupied by the binaries in your system.

Artifacts Size

The amount of physical storage that would be occupied if each artifact was a physical binary (not just a link).

Optimization

The ratio of to This reflects how much the usage of storage in your system has been reduced byBinaries Size Artifacts Size.
Artifactory

Items Count

The total number of items (both files and folders) in your system.

File Store

Your system is set up to store binaries as defined in your storage configuration file.

This section provides information on where your binaries are stored and the amount of storage space they are
using.

Storage Type

The type of storage used (e.g. "File system").

Storage
Directory

If is "filesystem" then this is the path to the physical file store.Storage Type

If is "fullDb" then this is the path to the directory that caches binaries when they are extracted from theStorage Type
database.

Usage

Displays the amount of storage used out of the total available.

Storage space warning and limit thresholds set for your system are also displayed.

Filestore Sharding

From version 4.6, Artifactory offers an additional and highly flexible way to manage storage through . If you use theConfiguring the Filestore
advanced configuration to setup in your system, your usage of storage is displayed with details of how sharding is configured. filestore sharding

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-TheBundledStorageConfigurations

You can select any of the sharding zones to drill down and get more details about it.

Repositories

 The section provides detailed information about the storage used by each repository in your system.Repositories

Repository Key

The repository id.

Repository
Type

Indicates if this is a local repository, remote repository cache or a virtual repository.

Package Type

The repository's package type.

Percentage

The percentage of the total available space occupied by this repository.

Artifacts Size

The amount of space used by artifacts in this repository. Similar to the total export size (including non-unique artifact
references).

Files

The total number of files in this repository.

Folders

The total number of folders in this repository.

Items

The total number of items (folders and files) in this repository.

Artifactory Log Files

Overview

Artifactory uses the to manage logging. Activity is logged according to type in fourLogback Framework
different log files which can be found under the folder.ARTIFACTORY_HOME/logs

The following log files are available:

artifactory.log

The main Artifactory log file containing data on Artifactory server activity.

access.log

Security log containing important information about accepted and denied
requests, configuration changes and password reset requests. The originating IP
address for each event is also recorded.

request.log

Generic http traffic information similar to the Apache HTTPd request log.

import.export.log

A log used for tracking the process of long-running import and export commands.

sha256_migration.log

Logs status and errors when migrating the Artifactory database to include
 values.SHA256

Configuring Log Verbosity

Page Contents
Overview
Configuring Log Verbosity

Minimizing Output to catalina.out
Log File Structure

Request Log
Access Log

Viewing Log Files from the UI
Sending Artifactory Logs to Syslog

Tomcat/Servlet container-specific log files
When running Artifactory inside an existing servlet container, the container typically has its own log files.

These files normally contain additional information to that in or application bootstrapping-time information that isartifactory.log
not found in the Artifactory logs.

In Tomcat, these files are and respectively.catalina.out localhost.yyyy-mm-dd.log

http://logback.qos.ch/
http://Checksum-Based Storage#BasedStorage-MigratingtheDatabasetoIncludeSHA-256
http://Checksum-Based Storage#BasedStorage-MigratingtheDatabasetoIncludeSHA-256

The verbosity of any logger in your system can be configured by entering or modifying the value in the corresponding entry in the Logbacklevel
configuration file ARTIFACTORY_HOME/etc/logback.xml.
For example:

Modifying the verbosity of a logger

<logger name="org.apache.wicket">
 <level value="error"/>
 </logger>

Minimizing Output to catalina.out

When running Artifactory as a background service, Artifactory log messages are redirected to catalina.out which may cause this file to be
over-inflated with content. To reduce the volume of logging to catalina.out we recommend adding a "threshold filter" to the "CONSOLE" appender
in logback.xml as follows:

...

<appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">

 <!-- Add a Threshold filter to reduce log output that is below the
specified threshold. In the example below, only ERROR level log messages
will be added -->
 <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
 <level>ERROR</level>
 </filter>

 <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
 <layout
class="org.artifactory.logging.layout.BackTracePatternLayout">
 <pattern>%date ${artifactory.contextId}[%thread] [%-5p]
\(%-20c{3}:%L\) - %m%n</pattern>
 </layout>
 </encoder>
 </appender>
...

Log File Structure

The Request and Access log files each display specific type of activity and as such have a consistent and specific file structure for maximum
readability

Request Log

A request log file record has the following structure:

Artifactory loads any changes made to the Logback configuration file within several seconds without requiring a restart.

Date and Time stamp | Request time | Request type | IP | User name | Request method | Requested resource path | Protocol version |
 Response code | Request Content-Length

Note: If not provided by the client, 'Request Content-Length' is initialised as "-1".

Here is a typical example:

Request log file record sample

20140508154145|2632|REQUEST|86:12:14:192|admin|GET|/jcenter/org/iostreams/
iostreams/0.2/iostreams-0.2.jar|HTTP/1.1|200|8296

Date and time stamp

The date and time the request was completed and entered into the log file. Format is
[YYYYMMDDHHMMSS]

Request time

The time in ms taken for the request to be processed

Request type

DOWNLOAD for a download request

UPLOAD for an upload request

REQUEST for any other request

IP

The requesting user's IP address

User name

The requesting user's user name or "non_authenticated_user" when accessed anonymously

Request method

The HTTP request method. e.g. GET, PUT etc.

Requested resource path

Relative path to the requested resource

Protocol version

The HTTP protocol version

Response code

The HTTP response code

Size (bytes) of request or
response

If request method is GET: Size of response

If request method is PUT or POST: Size of request

Access Log

An access log file record has the following structure:

Date and Time stamp | Action response and type | Repository path (Optional) | Message (Optional) | User name | IP

Here is a typical example:

Access log file record

2014-05-08 15:52:27,456 [ACCEPTED DOWNLOAD]
jcenter-cache:org/iostreams/iostreams/0.2/iostreams-0.2.jar for
anonymous/86:12:14:192.

Date and Time stamp

The date and time that the entry was logged. Format is [YYYY-MM-DD HH:MM:SS, milliseconds]

[Action response and type]

The response (ACCEPTED/DENIED) and the action type (e.g. DOWNLOAD, UPLOAD etc.)

Repository path (Optional)

The repository that was accessed

Message (Optional)

An optional system message

User name

The accessing user's user name or "anonymous" when accessed anonymously

IP

The accessing user's IP address

Viewing Log Files from the UI

You can view or download any of the Artifactory log files from the UI.

In the module, under select the file you want to view from the drop-list. The log tail view is automaticallyAdmin Advanced | System Logs,
refreshed every few seconds, however can be paused and resumed if you wish to browse the log.

Sending Artifactory Logs to Syslog

Some sites want to consolidate logs into the syslog facility. Switching artifactory to use syslog in addition to, or instead of the standard log files
takes a quick edit of a couple of files. Artifactory currently uses the logback library for logging, so that's what needs to be configured.

To save system resources, do not leave the log view open in your browser unnecessarily.

First edit the $ARTIFACTORY_HOME/etc/logback.xml file to send logs to the syslog facility. You need to add an appender to syslog:

<appender name="SYSLOG" class= "ch.qos.logback.classic.net.SyslogAppender">
<syslogHost>localhost</syslogHost>
<facility>SYSLOG</facility>
<suffixPattern>[%thread] %logger %msg</suffixPattern>
</appender>

then you need to add this appender to the output, in the section:

<root>
<level value="info"/>
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>
</root>

add:

<appender-ref ref="SYSLOG"/>

before the line.</root>

Save the file, you will not need to restart artifactory for this to take effect.

Since logback is using internet sockets, you have to make sure your syslog facility accepts them. Modern linux distributions are using the rsyslog
daemon for syslogging. Ensure that the configuration for internet domain sockets is enabled, either by editing and/etc/rsyslog.conf
uncommenting:

Provides UDP syslog reception
$ModLoad imudp
$UDPServerRun 514

Provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 514

or placing it in a file under ending in .conf/etc/rsyslog.d

Rsyslog will need restarting with for this to take effect.service rsyslog restart

Artifactory JMX MBeans

Overview

Artifactory exposes MBeans under the domain that let you monitor repositories,org.jfrog.artifactory
executor pools, storage and HTTP connection pools.

Repositories

This section lists the available repositories under the current instance of Artifactory.
Read-only attributes are as follows:

RepositoryKey

Name of the repository

ArtifactsCount

Number of artifacts in the repository

ArtifactsTotalSize

Total size of all of the artifacts in the repository

Executor Pools

This section lists the executor pools in use by Artifactory.
Read-only attributes are as follows:

TaskCount

Total number of tasks that have ever been scheduled for execution

Page Contents
Overview
Repositories
Executor Pools
Storage
HTTP Connection Pools
Logging

CompletedTaskCount

Total number of tasks that have been completed by the executors

CorePoolSize

Executor pool size

MaximumPoolSize

Maximum size of the executor pool

ActiveCount

Number of active executors

LargestPoolSize

The largest pool size that has been active at any one time

Storage

This section describes File System Binary Storage and Database Data Source read-only attributes.

There is only one File System Binary Storage read-only attribute:

Size

Total size of Artifactory storage in bytes

Database Data Source read-only attributes are:

MaxActive

Maximum number of active connections to the database

Url

Database URL

Idle

Number of idle database connections

ActiveConnectionsCount

Number of active database connections

MaxIdle

Maximum number of idle database connections allowed

MaxWait

Timeout in ms when attempting to get a free connection

MinIdle

Minimum number of idle database connections to maintain

HTTP Connection Pools

Artifactory supports JMX MBeans for the following HTTP resources:

Remote repositories
Distribution Repositories
Xray Client Connection
Replication Queues
Event propagation service for Artifactory HA cluster nodes

The following read-only attributes are available for each HTTP connection pool:

Available

Number of available connections

Leased

Number of currently active connections

Max

The maximum number of connections possible

Pending

The number of connections in process and pending completion

Logging

To support log analytics, Artifactory implements log appenders that send log information to Sumo Logic. The following log appenders can be
monitored through JMX MBeans:.

Access
Console

Request
Traffic

For each log appender, Artifactory displays the following read-only attributes:

QueueMaxSize

The maximum number of log entries the queue can hold

QueueCurrentSize

The current number of log entries in the queue

QueueDiscardingThreshold

Below this remaining capacity threshold, trace and debug log entries will be discarded

BatchMaxSize

The maximum number of log entries a batch can contain before it is processed

BatchCurrentSize

The size of the current batch pending to be sent to Sumologic

BatchQuietPeriod

The time window (in milliseconds) log entries are collected in a batch before it is being sent to
Sumologic

CategoryHeader

The category header value which is sent to Sumologic for this appender

Regular Maintenance Operations

Overview

Artifactory provides several facilities allowing you to maintain your system for optimal performance.

To configure your global system maintenance, in the module select Admin Advanced | Maintenance.

Garbage Collection

Artifactory SaaS Users
JFrog manages regular maintenance operations for all instances of Artifactory SaaS. If you are an
Artifactory SaaS user, the features described on this page are all monitored and optimally
managed for you by JFrog Artifactory SaaS administrators.

Page Contents
Overview
Garbage Collection
Storage Quota Limits
Cleanup Unused Cached Artifacts
Cleanup Virtual Repositories
Storage

Artifactory uses checksum-based storage to ensure that each binary file is only stored once.

When a new file is deployed, Artifactory checks if a binary with the same checksum already exists and if so, links the repository path to this binary.
Upon deletion of a repository path, Artifactory does not delete the binary since it may be used by other paths. However, once all paths pointing to
a binary are deleted, the file is actually no longer being used. To make sure your system does not become clogged with unused binaries,
Artifactory periodically runs a "Garbage Collection" to identify unused ("deleted") binaries and dispose of them from the datastore. By default, this
is set to run every 4 hours and is controlled by a expression.cron

For example, to run garbage collection every 12 hours you should specify the following expression:

0 0 /12 * * ?

Cron Expression

Specifies the frequency in which garbage collection should be run automatically

Next Run Time

Indicates the next automatic run of garbage collection according to the specified Cron Expression

Run Now

Manually invokes garbage collection immediately

Storage Quota Limits

Artifactory lets you set a limit on how much of your entire system disk space storage may be used to ensure that your server file system capacity
is never used up. This helps to keep your system reliable and available.

Once disk space used for storage reaches the specified limit, any attempt to deploy a binary is rejected by Artifactory with a status code of 413
 and a "Datastore disk space is too high" error is displayed at the bottom of the screen.Request Entity Too Large Maintenance

To help you avoid reaching your disk space quota, Artifactory also allows you to specify a warning level. Once the specified percentage of disk

Garbage collection frequency
Garbage collection is a resource intensive operation. Running it too frequently may compromise system performance.

When using filesystem storage, the partition checked is the one containing the directory.$ARTIFACTORY_HOME/data/filestore
When using database blob storage, the partition checked is the one containing the directory.$ARTIFACTORY_HOME/data/cache

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/tutorial-lesson-06.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

space is used, Artifactory will log a warning in the file and display a "Datastore disk space is$ARTIFACTORY_HOME/logs/artifactory.log
too high" warning at the bottom of the screen.Maintenance

Enable Quota
Control

When set, Artifactory will monitor disk space usage and issue warnings and errors according to the quotas specified in Stor
and age Space Limit Storage Space Warning

Storage Space
Limit

The percentage of available disk space that may be used for storage before Artifactory rejects deployments and issues
errors

Storage Space
Warning

The percentage of available disk space that may be used for storage before Artifactory issues warnings

Cleanup Unused Cached Artifacts

When configuring a remote repository, the setting lets you specify how long a cached unused artifact from that repositoryKeep Unused Artifacts
should be kept before it is a candidate for cleanup. This setting does not immediately clean up the unused cached artifact, but merely marks it for
clean up after the specified number of hours. The Cleanup Unused Cached Artifacts setting specifies when the cleanup operation should run,
and only then unused, cached artifacts marked for cleanup are actually removed from the system.

 The cleanup frequency is specified with a cron expression. For example, to run cleanup every 12 hours you should specify the following
expression:

0 0 /12 * * ?

Cleanup Virtual Repositories

Virtual repositories use an internal cache to store aggregated metadata such as POM files. The Cleanup Virtual Repositories operation deletes
cached POM files that are older than 168 hours (one week)

The cleanup frequency is specified with a cron expression. For example, to run cleanup every 12 hours you should specify the following
expression:

https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-KeepUnusedArtifacts
http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/tutorial-lesson-06.html

0 0 /12 * * ?

Storage

Compress
the Internal
Database

A Derby database may typically contain unused allocated space when a large amount of data is deleted from a table or its
indices are updated. By default, Derby does not return unused space to the operating system. For example, once a page has
been allocated to a table or index, it is not automatically returned to the operating system until the table or index is destroyed.

When you invoke this action, Artifactory reclaims unused and allocated space in a table and its indexes thereby compressing
the internal database.

Prune
Unreferenced
Data

Unreferenced binary files may occur due to running with wrong file system permissions on storage folders, or running out of
storage space.

When you invoke this action, Artifactory removes unreferenced binary files and empty folders present in the filestore or cache
folders.

Managing Backups

Complete System Backup

You can automatically and periodically backup the entire Artifactory system. The backup process creates a
time-stamped directory in the target backup directory.

To define multiple backups, in the module, select |Admin Services Backups. Each backup may
have its own schedule and repositories to either process or exclude.

Derby database only
This feature is only relevant when using the internal Derby database

We recommend running this when Artifactory activity is low, since compression may not be able to complete when
storage is busy (in which case the storage will not be affected).

Ensure complete shutdown
To avoid such errors, we recommend that you always allow Artifactory to shut down completely

Page Contents
Complete System Backup

In the Backups page you may select an existing to edit, or click "New" to create a new Backup Backup.

Restoring a Backup

Backup content is stored in standard file system format and can be loaded into any repository, so that Artifactory never locks you out.

Backing up very large filestores
If you are backing up more than 1TB of storage, please refer to in our for instructions.this article Knowledge Base

https://www.jfrog.com/knowledge-base/how-should-we-backup-our-data-when-we-have-1tb-of-files/
https://www.jfrog.com/knowledge-base/

Backup Key

A unique logical name for this backup

Cron Expression

A valid expression that you can use to control backup frequency. For example, to back up every 12 hours useCron
a value of: 0 0 /12 * * ?

Next Time Backup

When the next backup is due to run

Server Path for Backup

The directory to which local repository data should be backed up as files
The default is $ARTIFACTORY_HOME/backup/[backup_key]

Each run of this backup will create a new directory under this one with the time stamp as its name.

Send Mail to Admins if
there are Backup
Errors

If set, all Artifactory administrators will be notified by email if any problem is encountered during backup.

Exclude Builds

Exclude all builds from the backup.

Retention Period

The number of hours to keep a backup before Artifactory will clean it up to free up disk space. Applicable only to
non-incremental backups.

Verify enough disk
space is available for
backup

If set, Artifactory will verify that the backup target location has enough disk space available to hold the backed up
data. If there is not enough space available, Artifactory will abort the backup and write a message in the log file.

Incremental

When set, this backup should be incremental. In this case, only changes from the previous run will be backed up, so
the process is very fast.

The backup directory name will be called (as opposed to using the timestamp)current

The backup files can be used by any incremental file-system based backup utility (such as r
).sync

Backup to a Zip Archie
(Slow and CPU
Intensive)

If set, backups will be created within a Zip archive

Do not store any custom files under the target backup directory, since the automatic backup cleanup
processes may delete them!

Monitoring Backup Progress

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://rsync.samba.org/
http://rsync.samba.org/

Restoring a Backup

To restore a system backup you need perform a system import. For details please refer to .System Import and Export

Importing and Exporting

Overview

Artifactory supports import and export of data at two levels:

System level
Repository level

At , Artifactory can export and import the whole Artifactory server: configuration,system level
security information, stored data and metadata. The format used is identical to the System Backup
format. This is useful when manually running backups and for migrating and restoring a complete
Artifactory instance (as an alternative to using database level backup and restore).

At , Artifactory can export and import data and metadata stored in a repository.repository level
This is useful when moving store data, including its metadata between repositories and for batch
population of a repository.

System Import and Export

To access import and export of your entire system, in the module, select Admin Import & Export | System

During a system backup, Artifactory writes several messages to the ARTIFACTORY_HOME/logs/artifactory.log file. To
monitor progress of the backup process, look for messages that indicate the beginning and the end of
a full system export as in the following example:

2016-06-09 02:00:00,023 [art-exec-1] [INFO]
(o.a.s.ArtifactoryApplicationContext:508) - Beginning full system
export...
...
2016-06-09 02:00:00,357 [art-exec-1] [INFO]
(o.a.s.ArtifactoryApplicationContext:620) - Full system export
completed successfully.

Page Contents
Overview
System Import and
Export

System Import
and Export for
an HA Cluster

Repositories Import and
Export

Export
Import

Import
Layout

https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExport

Target Export Dir

The target directory for the exported files. You may browse your file system to select the directory

Exclude Content

Export: When set, repository binaries are excluded from the export.

Import: When set, binaries and metadata are excluded from the import. Only builds and configuration files are
imported.

Exclude Metadata

When set, repository metadata are excluded from the import/export.
(Maven 2 metadata is unaffected by this setting)

Exclude Builds

When set, all builds are excluded from the export

Create .m2 Compatible
Export

When set, includes Maven 2 repository metadata and checksum files as part of the export

Create a Zip Archive
(Slow and CPU
Intensive!)

When set, creates and exports to a Zip archive

Output Verbose Log

When set, lowers the log level to "debug" and redirects the output from the standard log to the import-export log.

The source/target of the import/export operations are folders (Zip archives are not recommended) on the
Artifactory server itself.

You can use the built-in server-side browsing inside Artifactory to select server-side source/target folders:

Docker repositories must have metadata
For Docker repositories to work they must have their metadata intact. Therefore, if you have Docker
repositories, make sure that is not checked when doing a system export or import.Exclude Metadata

Monitoring the log
You can monitor the log in the page.System Logs

https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI

System Import and Export for an HA Cluster

When performing a system export and subsequent import for an HA cluster, you need to follow the procedure below to ensure that the cluster
is able to correctly synchronize its nodes.

Perform a normal system export from the source cluster as described above
In the target cluster, keep the primary node running, and perform a graceful shutdown of all secondary nodes
Perform normal system import to the target cluster (which now has only the primary node running) as described above
Perform a graceful shutdown of the primary node and then restart it
Create the bootstrap bundle on the primary node
For each secondary node:

Delete the following folders
$ARTIFACTORY_HOME/access
$ARTIFACTORY_HOME/etc/security
$ARTIFACTORY_HOME/etc/ui
$ARTIFACTORY_HOME/etc/plugins

Delete the file$ARTIFACTORY_HOME/etc/db.properties
Delete the file$ARTIFACTORY_HOME/etc/binarystore.xml
Copy the bootstrap bundle you created on the primary node, , to the bootstrap.bundle.tar.gz $ARTIFACTORY_HOME/

folder on the secondary node.etc

Importing or exporting a large amount of data may be time consuming. During the import/export operation you can browse away
from the page and sample the to monitor progress.System Logs

Bootstrap Bundle and db.properties
This is a critical step in the import process. The bootstrap bundle must be installed in each secondary node before
you start it up for it to operate correctly in the cluster.

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-CreatingtheBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI

Start up the secondary node

Once you have completed the import, we recommend verifying that your HA cluster is up and running normally as described in Testing your
HA Configuration.

Repositories Import and Export

To access import and export of repositories, in the tab, select Admin Import & Export | Repositories

Export

When exporting, you need to specify the following parameters:

Source Local Repository

You can specify a single repository to export, or All Repositories

Export to Path

The export target directory on your server

Exclude Metadata

When set, repository metadata are excluded from the export.(Maven 2 metadata is unaffected by this
setting)

Create .m2 Compatible
Export

When set, includes Maven 2 repository metadata and checksum files as part of the export

Output Verbose Log

When set, lowers the log level to "debug" and redirects the output from the standard log to the
import-export log.

Import

You can import repositories from a server side folder, or by zipping a repository and uploading it to Artifactory.

Note also, if the folder in your secondary node already contains a f$ARTIFACTORY_HOME/etc db.properties
ile, it will prevent the bootstrap bundle from being properly extracted when you start up the secondary node
causing the import to fail.

Monitoring the log
You can monitor the log in the page.System Logs

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-TestingYourHAConfiguration
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-TestingYourHAConfiguration
https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI

When importing, you need to specify the following parameters:

Target Local
Repository

You can specify a single repository to import, or . The repository layout should be different dependingAll Repositories
on your selection. Please refer to Import Layout

Server Path for
Import

The import source directory on your server

Exclude
Metadata

When set, repository metadata are excluded from the import

Output Verbose
Log

When set, lowers the log level to "debug" and redirects the output from the standard log to the import-export log.

Import Layout

An imported repository needs to be formatted using a Maven 2 repository layout.

When importing a single repository, the file structure within the import folder (or zip file) should be as follows:

Monitoring the log
You can monitor the log in the page.System Logs

Don't exclude metadata for Docker
To work with a Docker repository, it must have its metadata intact. Therefore, when importing to/exporting from a Docker repository
make sure that is not checked.Exclude Metadata

Importing into a Remote Repository Cache
You can take advantage of remote repositories you have already downloaded to your local environment, and import them directly
into a local repository.

For example, you can take your local Maven repository (usually located under ~/.m2) and upload it into Artifactory so that all the
artifacts you have already downloaded are now available on the server.

https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI

IMPORT_FOLDER/ZIP_FILE
|
|--LIB_DIR_1

When importing all repositories, the file structure within the import folder should be as follows:

IMPORT_FOLDER/ZIP_FILE
|
|--REPOSITORY_NAME_DIR_1
| |
| |--LIB_DIR_1

Managing Disk Space Usage

Overview

Artifactory includes features to help you manage the amount of disk space used by your system. This
is done by providing alerts, limiting the amount of space allocated for the output of automatic
procedures, and by cleaning up unused artifacts in a controlled manner.

Garbage Collection

When an Artifactory user "deletes" a file, what is actually deleted is the reference from the Artifactory
database to the physical file. Before actually deleting a file Artifactory must scan the system to ensure
that there are no other users referencing the file. Scanning the system is very CPU intensive, and
locks files while the scan is in process, and this may stress the development environment. Therefore
this can be scheduled to run periodically as a "Garbage Collection" process during times when
demands on the system are low.

This is done in the Artifactory UI module under Admin Advanced | Regular Maintenance
where you can schedule an automatic run of Garbage Collection with a expression., Operations Cron

You can also invoke an immediate run by clicking "Run Storage Garbage Collection".

When importing all repositories, you need to ensure that the names of the directories representing the repositories in the archive
match the names of the target repositories in Artifactory.

Page Contents
Overview

Garbage Collection
Storage Quota

Limiting the Number of Snapshots
Deleting Unused Cached Artifacts
Deleting Complete Versions
User Plugins

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

Storage Quota

To avoid running out of disk space Artifactory allows you to limit the storage space allocated for your repositories.

In the module, under , set and specify to specify the percentageAdmin Advanced | Maintenance Enable Quota Control, Storage Space Limit
of disk space that you allocate for your repositories. An attempt to store binaries above the allocated storage percentage will fail with an error. You
may also set Storage Space Warning to specify at what percentage of disk space usage to receive a warning from Artifactory.

Limiting the Number of Snapshots

Working with snapshots is a standard development practice, however depending on the number of snapshots that are saved, this can use up
large quantities of disk space.

To specify the maximum number of snapshots that may be stored, select the module and click the repository whose settings youRepositories
want to edit.

In the ettings, check and then set the field This value is zero by default, which means thatBasic s Handle Snapshots Max Unique Snapshots .
all snapshots are saved.

To avoid issues of concurrency, Artifactory requires that you store a minimum of 2 unique snapshots, however can can control the maximum
number of snapshots that are stored.

Manual Cleanup with the REST API
Discarding old builds with Jenkins Artifactory plugin

Redundant snapshots are not deleted immediately
Every time you deploy a snapshot, Artifactory will check the value for the repository, and if exceeded will markMax Unique Snapshots
any excess old snapshots for deletion. Then, every 5 minutes, Artifactory runs a background process that deletes those oldest
snapshots that have been marked. For example, if you set Max Unique Snapshots to 5 and deploy a sixth and seventh snapshot to
the repository, then next time the background process runs, it will delete the two oldest snapshots.

Deleting Unused Cached Artifacts

When working with , to optimize performance, Artifactory locally caches and aggregates snapshots of remote artifacts thatremote repositories
are being used. However, if at some point, these artifacts are no longer used, Artifactory can identify and remove them.

You can control how long an unused artifact will remain cached before it is eligible for cleanup. In the screen under Edit Repository Advanced
, specify the number of hours in the field.Settings Unused Artifacts Cleanup Period

By default this value is set to zero which means that an artifacts from the corresponding repository are never removed from the cache.

Cleaning up unused cached artifacts can be scheduled to run automatically during times when demands on the system are low using a Cron

expression in the module under Admin Advanced | Maintenance. You can also invoke an immediate run by clicking "Run
Unused Cached Artifacts Cleanup"

Deleting Complete Versions

Artifactory supports a complete manual deletion of an installed version. This is fully described in .Deleting a Version

User Plugins

Artifactory supports cleanup by allowing you to write custom which you can develop to meet your own specific cleanupUser Plugins
requirements.

JFrog provides a number of which you can use as provided or modify to suit yourcleanup scripts on GitHub
own needs. For example the following artifactCleanup plugin deletes artifacts that have not been downloaded for
a specified number of months.

Recommended Frequency for Deleting Unused Cached Artifacts
Deleting unused cached artifacts is a resource-intensive operation, so to avoid concurrency and performance issues it is recommended
to do it no more than once or twice a day, and preferably during "quiet time" such as outside of regular working hours.

http://www.jfrog.com/confluence/display/RTF/Cleaning-up+Complete+Versions
https://github.com/JFrogDev/artifactory-user-plugins/tree/master/cleanup
https://github.com/JFrogDev/artifactory-user-plugins/blob/master/cleanup/artifactCleanup/artifactCleanup.groovy

Manual Cleanup with the REST API

Using the Artifactory , you may write scripts to implement virtually any custom cleanup logic. This provides you with an extensive andREST API
flexible set of customization capabilities as provided by the REST API.

Examples:

Use the REST API as described , to identify artifacts that have not been downloaded since a specificArtifacts Not Downloaded Since
Java epoch, and then remove them.
Use the REST API as described in to identify artifacts created within a specific date range and thenArtifacts Created in Date Range
remove them.

Discarding old builds with Jenkins Artifactory plugin

When using Jenkins for continuous integration, you can configure a policy to discard old builds that are stored in Artifactory along with their
artifacts.

For more details please refer to the page of the .Artifactory Plugin Jenkins Wiki Documentation

Getting Support

Overview

JFrog provides SLA based support for Pro and Enterprise licensing tiers. If you have purchased one of these
tiers you may contact JFrog support through the JFrog Support Portal. In most cases, JFrog support will
require some initial information about your system and relevant log files. In order to expedite handling of your
issue, Artifactory lets you generate all the initially required information in the module sAdmin Support Zone
creen. When opening a support ticket, you can attach the information bundle to expedite handling of your
issue.

Requesting Support

To request support, create an with the relevant information, and then login to where you can open ainformation bundle JFrog Support Portal
support ticket and attach the information bundle.

Artifactory OSS and Pro users
If you are running Artifactory on an OSS license, and therefore do not have access to JFrog
Support Portal, you may visit to access the Artifactory CommunityJFrog website support page
Forum.

Availability
Support Zone is only available for Artifactory on-prem installations.

Page Contents
Overview
Requesting Support
Collecting an Information Bundle
Previously Created Bundles
REST API

What should I include?
Unless you are sure about the information JFrog support will need in order to address your issue, we recommend providing all items in
the information bundle you upload.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsNotDownloadedSince
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsCreatedinDateRange
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ExcludedartifactsandtheBuildInfo
https://wiki.jenkins-ci.org/display/JENKINS/Home
https://support.jfrog.com/
https://www.jfrog.com/support-service/support/

Collecting an Information Bundle

The support zone provides a variety of options to select what information is included in the bundle you provide JFrog support.

System info

If checked, provides information about your system including storage, system properties, JVM information and plugin status.
For details please refer to .System Information

Security
descriptor

If checked, provides information about how you have security configured in Artifactory. For details please refer to Security Co
.nfiguration Descriptor

Config
descriptor

If checked, provider your Artifactory config descriptor which includes detailed information on how Artifactory and its
repositories are configured. For details please refer to Global Configuration Descriptor.

Configuration
files

If checked, provides configuration files that affect Artifactory's functionality.

Storage
summary

If checked, provides information about your system's storage including binaries, file store, and repositories. For details,
please refer to .Monitoring Storage

Scrub
passwords
and private
information

If checked, passwords and private information such as email addresses are removed from all items in the information bundle.

Thread dump

If checked, Artifactory will create a thread dump for all running threads. By default a single thread dump is created, however,
to get a picture of how data may change over time, you can request several thread dumps separated by a specified time
interval with the and fields.Number of Thread Dumps Interval

https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SecurityConfigurationDescriptor
https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SecurityConfigurationDescriptor
https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-GlobalConfigurationDescriptor

System logs

If checked, system logs are included in the information bundle. You may specify the time span for which system logs should
be included.

Once you have checked all the information items you wish to include in your information bundle, click "Create" to create the bundle.

Previously Created Bundles

Every information bundle you create is stored in Artifactory and is available for download under .Previously Created Bundles

REST API

Artifactory REST API provides the following endpoints you can use to work with information bundles:

Create Bundle

Create a new support information bundle

List Bundles

Lists previously created bundle currently stored in the system

Get Bundle

Downloads a previously created bundle currently stored in the system

Delete Bundle

Deletes a previously created bundle from the system.

Artifactory High Availability
Overview

From version 3.1, Artifactory supports a High Availability network configuration with a cluster of 2 or
more, active/active, read/write Artifactory servers on the same Local Area Network (LAN).

Setting up several servers in an HA configuration is supported with an andEnterprise License
presents several benefits to your organization:

Maximize Uptime

Artifactory HA redundant network architecture means that there is no single-point-of-failure, and
your system can continue to operate as long as at least one of the Artifactory nodes is operational.
This maximizes your uptime and can take it to levels of up to "five nines" availability.

Date range
Date range considers files according to the time stamp present in the file name, not by its contents.

Artifactory HA
When creating an information bundle for an Artifactory HA installation, the bundle is created by the specific HA node that happens to
handle the "Create" request.

Resource intensive operations
Note that creating a and may be resource intensive operations and may create large information bundles.Thread dump System logs

Page Contents
Overview

Maximize
Uptime
Manage Heavy
Loads
Minimize
Maintenance
Downtime

Architecture

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListBundles
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeleteBundle
http://www.jfrog.com/home/v_pricing#On_Premise

Manage Heavy Loads

By using a redundant array of Artifactory server nodes in the network, your system can
accommodate larger load bursts with no compromise to performance. With horizontal server
scalability, you can easily increase your capacity to meet any load requirements as your
organization grows.

Minimize Maintenance Downtime

By using an architecture with multiple Artifactory servers, Artifactory HA lets you perform most
maintenance tasks with no system downtime.

Architecture

Artifactory HA architecture presents a Load Balancer connected to a
cluster of two or more Artifactory servers that share a common
database where all the Artifactory configuration files are maintained.
Binaries may be stored on a Network File System, or using a zoned
sharded binary provider as described in Configuring Sharding for

. The Artifactory cluster nodes must be connectedHigh Availability
through a fast internal LAN in order to support high system
performance as well as to stay synchronized and notify each other of
actions performed in the system instantaneously. One of the
Artifactory cluster nodes is configured to be a "primary" node. Its
roles are to execute cluster-wide tasks such as cleaning up
unreferenced binaries.

JFrog support team is available to help you configure the Artifactory
cluster nodes. It is up to your organization's IT staff to configure your
load balancer, database and object store.

Network Topology

Load Balancer

The load balancer is the entry point to your Artifactory HA installation
and optimally distributes requests to the Artifactory server nodes in
your system. It is the responsibility of your organization to manage
and configure it correctly.

Artifactory HA Version
From version 5.0, Artifactory HA has undergone a major change in infrastructure and
uses a binary provider that manages the distribution of files across the cluster nodes and
supports cloud-native storage providers.

This guide provides instructions for installing and using Artifactory HA from version 5.0
and above.

Network
Topology

Load
Balanc
er
Artifact
ory
Server
Cluster
Local
Area
Networ
k

Filestore
Database

Read more
HA Installation and
Setup
Managing the HA
Cluster
Migrating Data from
NFS
Troubleshooting HA

Use Artifactory's reverse proxy generator
You may generate configuration snippets for Apache
HTTPD and Nginx backed Artifactory High Availability
clusters with the built-in - it willReverse Proxy generator
detect the existing server nodes and add them to the
generated configuration file.

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-ConfiguringShardingforHighAvailability
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-ConfiguringShardingforHighAvailability
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-ReverseProxySettings

The code samples below show some basic examples of load
balancer configurations:

Apache load balancer configuration example...

First install the following
modules:
LoadModule proxy_module
modules/mod_proxy.so
LoadModule
proxy_balancer_module
modules/mod_proxy_balancer.
so
LoadModule
proxy_http_module
modules/mod_proxy_http.so

Then configure as follows:
<VirtualHost *:80>
 ServerAdmin
admin@frogs.com
 ServerName
artifactory.jfrog.com
 ServerAlias *.jfrog.com

 <Proxy
balancer://tomcats>

 # Artifactory server #1
 BalancerMember
http://IP_SERVER_1:PORT
route=art1

 # Artifactory server #2
 BalancerMember
http://IP_SERVER_1:PORT
route=art2

 ProxySet
lbmethod=byrequests
 </Proxy>

 ProxyPreserveHost on
 ProxyPass
/balancer-manager !
 ProxyPass /
balancer://tomcats/
 ProxyPassReverse
/artifactory
https://<server
name>/artifactory
 RewriteEngine On

 RewriteRule ^/$
/artifactory [R,L]

 LogLevel warn
 ErrorLog
/var/log/httpd/apache-ha-te
st.error.log
 CustomLog

/var/log/httpd/apache-ha-te
st.access.log combined
</VirtualHost>

nginx load balancer configuration example...

http {
...
...
...
upstream artifactory {
 server
IP_SERVER_1:8081;
 server
IP_SERVER_2:8081;
}

server {
 listen 80;
 server_name
YOUR_SERVER_NAME;
...
...
...
rewrite ^/$
http://$host/artifactory/we
bapp;
 location / {
 proxy_pass
http://artifactory;
 }
}
}

More details are available on the nginx website.

Artifactory Server Cluster

Each Artifactory server in the cluster receives requests routed to it by the load balancer. All servers share a common database, and
communicate with each other to ensure that they are synchronized on all transactions.

Local Area Network

To ensure good performance and synchronization of the system, all the components of your Artifactory HA installation must be installed on
the same high-speed LAN.

In theory, Artifactory HA could work over a Wide Area Network (WAN), however in practice, network latency makes it impractical to achieve
the performance required for high availability systems.

Filestore

Artifactory HA offers different options for storing binaries. Some examples are:

http://nginx.org/en/docs/http/ngx_http_upstream_module.html

Local file system in which binaries are stored with redundancy using a binary provider which manages synchronizing files between
the cluster nodes according to the redundancy defined.
Cloud storage currently, Amazon S3 and Google Cloud Storage are supported) (
Network File System (NFS)

Database

Artifactory HA requires an external database, which is fundamental to management of binaries and is also used to store cluster wide
configuration files. Currently MySQL, Oracle, MS SQL and PostgreSQL are supported. For details on how to configure any of these
databases please refer to . Configuring the Database

Since Artifactory HA contains multiple Artifactory cluster nodes, your database must be powerful enough to service all the nodes in the
system. Moreover, your database must be able to support the maximum number of connections possible from all the Artifactory cluster
nodes in your system.

If you are replicating your database you must ensure that at any given point in time all nodes see a consistent view of the database,
regardless of which specific database instance they access. Eventual consistency, and write-behind database synchronization is not
supported.

HA Installation and Setup

Overview

This page describes how to set up a set of Artifactory nodes as an Artifactory HA cluster.

Each of the HA components is configured individually and a common setup file is configured to
bring together all of the components in the system as a whole.

Requirements

Version

Artifactory HA is supported from Artifactory 3.1 and above. If you are running a previous version of
Artifactory, you first need to upgrade as described in .Upgrading Artifactory

All nodes within the same Artifactory HA installation must be running the same Artifactory version
and the same JVM version.

Licensing

Artifactory HA is supported with an . Each node in the cluster must be activatedEnterprise License
with a different license, however, this is transparently and automatically managed by the Artifactory

. Cluster License Manager

Hardware

Artifactory HA requires the following hardware:

Load balancer
External database server with a single URL to the database

Network

All the Artifactory HA components (Artifactory cluster nodes, database server and load
balancer) must be within the same fast LAN
All the HA nodes must communicate with each other through dedicated TCP ports
Network communications between the cluster nodes must be enabled for each of the
cluster nodes.

Database

Artifactory HA requires an external database and currently supports Oracle, MySQL, MS SQL and
PostgreSQL. For details on how to configure any of these databases please refer to Configuring

.the Database

Page Contents
Overview
Requirements
Home Directory
Installing Artifactory HA

The Bootstrap
Bundle
The Installation
Process
Setting Up Your
Storage
Configuration

Using
Filesyst
em
Storage
with the
NFS
Using
Filesyst
em
Storage
Without
the
NFS
Using
Cloud
Storage
With
the
NFS
Using
Cloud
Storage
Without
 the
NFS

Installing the
Cluster Nodes

Installin
g the
Primary
Node
Creatin
g the

https://www.jfrog.com/pricing/

Home Directory
When setting up Artifactory HA you need to configure the directory separately for each of the Artifactory cluster nodes$ARTIFACTORY_HOME
in your system.

The general layout of these directories is as follows:
Click for directory layout...

|- $ARTIFACTORY_HOME

|- access

|- etc/

|- ha-node.properties
|- logback.xml
|- artifactory.cluster.lic
|- mimetypes.xml
|- cluster.id

|- binarystore.xml
|- db.properties
|- plugins
|- ui
|- security
 |- access
 |-etc

|- data/
 |- tmp/
 |- artifactory.properties

|- logs/

|- webapps/

|- tomcat/

Bootstr
ap
Bundle
Add
License
s
Set the
URL
Base
Add
Second
ary
Nodes

Upgrading Artifactory
HA
Testing Your HA
Configuration
Cluster License
Management

Adding
Licenses
License Expiry
Deleting
Licenses
REST API

Screencast

http://cluster.id

1.

a.

b.
2.

 |- lib/
 |- <jdbc driver>/

|- bin/

|- misc/

 |-backup/

 |-support

Installing Artifactory HA

An Artifactory HA node is first installed as an Artifactory Pro instance, and is then modified to operate as a node in the HA cluster by
configuring the file. Once the primary node is set up, it is used to create a bootstrap$ARTIFACTORY_HOME/etc/ha-node.properties
bundle which is then used to configure the secondary nodes in the cluster.

The Bootstrap Bundle

The bootstrap bundle, , contains a set of security keys and configuration files required for the proper functioning of thebootstrap.bundle.tar.gz
cluster. During the process of installing and configuring the HA nodes, the bootstrap bundle is generated by calling the Create Bootstrap

 endpoint on the primary node. The same bootstrap bundle should be copied manually to each secondary node during itsBundle REST API
installation process (into the etc folder). There’s no need to unpack the archive, Artifactory handles this process when starting up.

The Installation Process

The binary storage in an HA installation must be accessible to all nodes in the cluster. This is achieved either by mounting a Network File
System (NFS) on each cluster node, using shared object storage, or by using the nodes' local file systems while using a mechanism that
synchronizes the binaries between them.

The installation procedure involves two stages:

 Setting up your storage configuration
The storage configuration varies depending on your decision for two parameters of your setup:

Binary store: Do you plan to use to store binaries on your nodes' filesystems, or a proFilesystem Storage Cloud Storage
vider such as S3, GCS or any other S3-compliant provider?
NFS: Do you plan to use the Network File System (NFS) or not?

 Installing the cluster nodes
Once your storage is configured and set up, the rest of the installation process is identical

Setting Up Your Storage Configuration

Your choice for binary store and use of NFS or not leads to one of the following four options for setting up your storage configuration:

Using Filesystem Storage with the NFS

Click here to expand for details...

To set up your HA cluster to use filesystem storage with the NFS, follow these steps which are detailed below:

Create and configure $ARTIFACTORY_HOME/etc/ha-node.properties
Create an NFS mount
Configure the binarystore.xml file

Once you have completed configuring your filestore, you are ready to complete the HA installation process by .installing the cluster nodes

Create ha-node.properties

Create the file and populate it with the following parameters:$ARTIFACTORY_HOME/etc/ha-node.properties

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateBootstrapBundle

node.id Unique descriptive name of this server.

context.url The context url that should be used to communicate with this server within the cluster.

There are two ways to specify the context.url field:

As an explicit IP address
As a host name. In this case, you need to specify the field with wildcards.hazelcast.interface
For details, please refer to the description for field below.hazelcast.interface

membership.port The port that should be used to communicate with this server within the cluster.
If not specified, Artifactory will allocate a port automatically, however we recommend to set this to a fixed
value to ensure that the port allocated is open to all of your organizations security systems such as
firewalls etc.

primary (true | false) Indicates if this is the primary server. There must be one (and only one) server configured in
the cluster to be the primary server. For other servers this parameter is optional and its value defaults to
"false".

artifactory.ha.data.dir This property provides the full path to the root directory of your NFS binary storage.

artifactory.ha.backup.dir This property provides the full path to the root directory of your Artifactory back-up data on the NFS.

hazelcast.interface [Optional] When nodes in the same cluster are running on different networks (e.g. nodes on different
docker hosts), set this value to match the server's internal IP address.

If you have specified the as a host name, you need to use to context.url the wildcard character (i.e.,
an asterisk - '*') so as to include the server's internal IP address as well as that of all members in the
cluster.

For example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.3.33 node.b

then the field should be set to hazelcast.interface 10.1.*.*

Another example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.2.33 node.b

then the field should be set to hazelcast.interface 10.1.2.*

The example below shows how an file may be configured for using filesystem storage with the NFS ha-node.properties

Uniqueness
Make sure that each node has an id that is unique on your whole network.

ha-node.properties file permissions
On Linux, once the file is created, the Artifactory user should be set as its owner and its permissionsha-node.properties
should be set to 644(-rw-r--r--)

http://node.id/

node.id=art1
context.url=http://10.0.0.121:8081/artifactory
membership.port=10001
primary=true
artifactory.ha.data.dir=/mnt/shared/artifactory/ha-data
artifactory.ha.backup.dir=/mnt/shared/artifactory/ha-backup
hazelcast.interface=192.168.0.2 (optional)

Create an NFS mount

When setting up Artifactory HA you need to configure the directory separately for each of the Artifactory cluster$ARTIFACTORY_HOME
nodes in your system, and a common that is accessible to all nodes to host all your filestore binaries$DATA_DIR

Create an NFS mount which will be accessible to all nodes. This mount will serve as the $DATA_DIR.

In addition, you need to set up a that must be accessible by the master node. It may be located on the same NFS mount,$BACKUP_DIR
however this is not compulsory.

Configure the binarystore.xml File

The default that comes with Artifactory out-of-the-box contains the . Since this is exactly thebinarystore.xml file-system template
configuration you need, there is no need to modify the file.binarystore.xml
In this configuration, Artifactory uses the as the location for all binaries.artifactory.ha.data.dir

You are now ready to complete the HA installation process by .installing the cluster nodes

Using Filesystem Storage Without the NFS

Click here to expand for details...

To set up your HA cluster to use filesystem storage without the NFS, follow these steps which are detailed below:

Create and configure $ARTIFACTORY_HOME/etc/ha-node.properties
Configure the binarystore.xml file

Create ha-node.properties

Create the file and populate it with the following parameters:$ARTIFACTORY_HOME/etc/ha-node.properties

node.id Unique descriptive name of this server.

Escaping the backslash in Windows systems
Note that in Windows-based system the backslash characters in the paths to the ha-data and ha-backup directories need to be
escaped with another backslash. For example:
artifactory.ha.data.dir = \\\\windows\\UNC\\path\\ha-data artifactory.ha.backup.dir = \\\\windows\\UNC\\path\\ha-backup

Privileges
Each of the Artifactory cluster nodes must have full write privileges on the directory tree and the UID/GID for the$DATA_DIR
artifactory user must match on all nodes.

Mounting the NFS from Artifactory HA nodes
When mounting the NFS on the client side, make sure to add the following option for the command:mount

lookupcache=none

This ensures that nodes in your HA cluster will immediately see any changes to the NFS made by other nodes.

Uniqueness
Make sure that each node has an id that is unique on your whole network.

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-FilesystemBinaryProvider
http://node.id/

context.url The context url that should be used to communicate with this server within the cluster.

There are two ways to specify the context.url field:

As an explicit IP address
As a host name. In this case, you need to specify the field with wildcards. Forhazelcast.interface
details, please refer to the description for field below.hazelcast.interface

membership.port The port that should be used to communicate with this server within the cluster.
If not specified, Artifactory will allocate a port automatically, however we recommend to set this to a fixed value
to ensure that the port allocated is open to all of your organizations security systems such as firewalls etc.

primary (true | false) Indicates if this is the primary server. There must be one (and only one) server configured in the
cluster to be the primary server. For other servers this parameter is optional and its value defaults to "false".

hazelcast.interface [Optional] When nodes in the same cluster are running on different networks (e.g. nodes on different docker
hosts), set this value to match the server's internal IP address.

If you have specified the as a host name, you need to use to the wildcard character (i.e., ancontext.url
asterisk - '*') so as to include the server's internal IP address as well as that of all members in the cluster.

For example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.3.33 node.b

then the field should be set to hazelcast.interface 10.1.*.*

Another example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.2.33 node.b

then the hazelcast.interface field should be set to 10.1.2.*

The example below shows how the file might be configured for your cluster nodes to use filesystem storage ha-node.properties
without the NFS:

node.id=art1
context.url=http://10.0.0.121:8081/artifactory
membership.port=10001
primary=true
hazelcast.interface=192.168.0.2 (optional)

Configure the binarystore.xml File

The default that comes with Artifactory out-of-the-box contains the file-system template which uses the NFS.binarystore.xml
Therefore, to setup your filestore so that it doesn't use the NFS, you need to modify this file.

ha-node.properties file permissions
On Linux, once the file is created, the Artifactory user should be set as its owner and its permissionsha-node.properties
should be set to 644(-rw-r--r--)

Take care when modifying binarystore.xml
Making changes to this file may result in losing binaries stored in Artifactory!

If you are not sure of what you are doing, please contact JFrog Support for assistance.

We recommend using the template which is one of the built-in templates that come with Artifactory out-of-the-box.cluster-file-system
This configuration uses the default filestore location (under) to store binaries locally on the filesystem,$ARTIFACTORY_HOME/data
unless specified otherwise. A mechanism connected to all other nodes in the cluster is used to keep binaries synchronized and
accessible to all nodes, based on the required redundancy value (which is 2 by default).

You are now ready to complete the HA installation process by .installing the cluster nodes

Using Cloud Storage With the NFS

Click here to expand for details...

To set up your HA cluster to use cloud storage with the NFS, follow these steps which are detailed below:

Create and configure $ARTIFACTORY_HOME/etc/ha-node.properties
Create an NFS mount
Configure the binarystore.xml file

Create ha-node.properties

Create the ha-node.properties file and populate it with the following parameters:

node.id Unique descriptive name of this server.

context.url The context url that should be used to communicate with this server within the cluster.

There are two ways to specify the context.url field:

As an explicit IP address
As a host name. In this case, you need to specify the field with wildcards.hazelcast.interface
For details, please refer to the description for field below.hazelcast.interface

membership.port The port that should be used to communicate with this server within the cluster.
If not specified, Artifactory will allocate a port automatically, however we recommend to set this to a fixed
value to ensure that the port allocated is open to all of your organizations security systems such as
firewalls etc.

primary (true | false) Indicates if this is the primary server. There must be one (and only one) server configured in
the cluster to be the primary server. For other servers this parameter is optional and its value defaults to
"false".

artifactory.ha.data.dir This property provides the full path to the root directory of your NFS binary storage.

artifactory.ha.backup.dir This property provides the full path to the root directory of your Artifactory back-up data on the NFS.

How to use the cluster-file-system template
 To learn how to configure your to use the cluster-file-system template, please refer to binarystore.xml Basic Configuration

 under .Elements Configuring the Filestore

If your cluster has only two nodes, we recommend modifying the from its default value of 0 which would preventlenientLimit
writes to Artifactory if one of the nodes goes down.

Uniqueness
Make sure that each node has an id that is unique on your whole network.

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-FileSystemClusterBinaryProvider
http://node.id/
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-BasicConfigurationElements
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-BasicConfigurationElements
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-lenientLimit

hazelcast.interface [Optional] When nodes in the same cluster are running on different networks (e.g. nodes on different
docker hosts), set this value to match the server's internal IP address.

If you have specified the as a host name, you need to use to the wildcard character (i.e.,context.url
an asterisk - '*') so as to include the server's internal IP address as well as that of all members in the
cluster.

For example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.3.33 node.b

then the field should be set to hazelcast.interface 10.1.*.*

Another example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.2.33 node.b

then the field should be set to hazelcast.interface 10.1.2.*

The example below shows how the file might be configured for your cluster nodes to use cloud storage with the ha-node.properties
NFS:

node.id=art1
context.url=http://10.0.0.121:8081/artifactory
membership.port=10001
primary=true
artifactory.ha.data.dir=/mnt/shared/artifactory/ha-data
artifactory.ha.backup.dir=/mnt/shared/artifactory/ha-backup
hazelcast.interface=192.168.0.2

Create an NFS mount

When setting up Artifactory HA you need to configure the directory separately for each of the Artifactory cluster$ARTIFACTORY_HOME
nodes in your system, and a common that is accessible to all nodes to host all your filestore binaries$DATA_DIR

Create an NFS mount which will be accessible to all nodes. This mount will serve as the $DATA_DIR.

In addition, you need to set up a that must be accessible by the master node. It may be located on the same NFS mount,$BACKUP_DIR
however this is not compulsory.

Escaping the backslash in Windows systems
Note that in Windows-based system the backslash characters in the paths to the ha-data and ha-backup directories need to be
escaped with another backslash. For example:

artifactory.ha.data.dir = \\\\windows\\UNC\\path\\ha-data

artifactory.ha.backup.dir = \\\\windows\\UNC\\path\\ha-backup

ha-node.properties file permissions
On Linux, once the ha-node.properties file is created, the Artifactory user should be set as its owner and its permissions
should be set to 644(-rw-r--r--)

Configure the filebinarystore.xml

The default that comes with Artifactory out-of-the-box contains the . Therefore, to setup yourbinarystore.xml file-system template
filestore so to use cloud storage with the NFS, you need to modify this file.

Warning: Take care when modifying the binarystore.xml file

Making changes to this file may result in losing binaries stored in Artifactory!

If you are not sure of what you are doing, please contact JFrog Support for assistance.

We recommend using either the chain or the chain which are among the that come withs3 google-storage built-in chain templates
Artifactory out-of-the-box. These chains use the shared filestore location (under $DATA_DIR) to store binaries in a staging area, before
they are moved to the cloud storage.

:Tip To learn how to configure your to use the s3 and google-storage chain templates, please refer to binarystore.xml Basic
 under .Configuration Elements Configuring the Filestore

You are now ready to complete the HA installation process by .installing the cluster nodes

Using Cloud Storage Without the NFS

Click here to expand for details...

To set up your HA cluster to use cloud storage without the NFS, follow these steps which are detailed below:

Create and configure $ARTIFACTORY_HOME/etc/ha-node.properties
Configure the binarystore.xml file

Create ha-node.properties

Create the ha-node.properties file and populate it with the following parameters:

node.id Unique descriptive name of this server.

context.url The context url that should be used to communicate with this server within the cluster.

There are two ways to specify the context.url field:

As an explicit IP address
As a host name. In this case, you need to specify the field with wildcards. Forhazelcast.interface
details, please refer to the description for field below.hazelcast.interface

membership.port The port that should be used to communicate with this server within the cluster.
If not specified, Artifactory will allocate a port automatically, however we recommend to set this to a fixed value
to ensure that the port allocated is open to all of your organizations security systems such as firewalls etc.

primary (true | false) Indicates if this is the primary server. There must be one (and only one) server configured in the
cluster to be the primary server. For other servers this parameter is optional and its value defaults to "false".

Privileges
Each of the Artifactory cluster nodes must have full write privileges on the directory tree.$DATA_DIR

Mounting the NFS from Artifactory HA nodes
When mounting the NFS on the client side, make sure to add the following option for the command:mount

lookupcache=none

This ensures that nodes in your HA cluster will immediately see any changes to the NFS made by other nodes.

Uniqueness
Make sure that each node has an id that is unique on your whole network.

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-FilesystemBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-S3BinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-GoogleStorageBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-Built-inChainTemplates
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-BasicConfigurationElements
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-BasicConfigurationElements
http://node.id/

hazelcast.interface [Optional] When nodes in the same cluster are running on different networks (e.g. nodes on different docker
hosts), set this value to match the server's internal IP address.

If you have specified the as a host name, you need to use to the wildcard character (i.e., ancontext.url
asterisk - '*') so as to include the server's internal IP address as well as that of all members in the cluster.

For example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.3.33 node.b

then the field should be set to hazelcast.interface 10.1.*.*

Another example, if you have two nodes with the following parameters:

Node IP Host name

A 10.1.2.22 node.a

B 10.1.2.33 node.b

then the field should be set to hazelcast.interface 10.1.2.*

The example below shows how the file might be configured for your cluster nodes to use cloud storage without ha-node.properties
the NFS:

node.id=art1
context.url=http://10.0.0.121:8081/artifactory
membership.port=10001
primary=true
hazelcast.interface=192.168.0.2 (optional)

Configure the binarystore.xml File

The default that comes with Artifactory out-of-the-box contains the file-system template. Therefore, to setup yourbinarystore.xml
filestore so to use cloud storage without the NFS, you need to modify this file.

We recommend using either the chain or the chain which are among the built-in templates that comecluster-s3 cluster-google-storage
with Artifactory out-of-the-box. These templates use a mechanism connected to all other nodes in the cluster to keep binaries
synchronized and accessible to all nodes according to the required redundancy (which is 2 by default). Binaries are first stored locally on
each node (under by default), with additional copies on other nodes according to the$ARTIFACTORY_HOME/data/eventual
redundancy configured, before moving on to persistent cloud storage.

You are now ready to complete the HA installation process by .installing the cluster nodes

ha-node.properties file permissions
On Linux, once the file is created, the Artifactory user should be set as its owner and its permissionsha-node.properties
should be set to 644(-rw-r--r--

Take care when modifying binarystore.xml
Making changes to this file may result in losing binaries stored in Artifactory!

If you are not sure of what you are doing, please contact JFrog Support for assistance.

How to use the s3 and google-storage chain templates
To learn how to configure your to use the cluster-s3 and cluster-google-storage chain templates, pleasebinarystore.xml
refer to under .Basic Configuration Elements Configuring the Filestore

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-S3ClusterBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-GoogleStorageClusterBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-BasicConfigurationElements

1.
2.
3.
4.
5.

1.
2.

3.

4.

Installing the Cluster Nodes

Once you have completed setting up your filestore configuration, the process for installing the cluster nodes is identical and described in the
steps below:

Install the primary node
Create the bootstrap bundle
Add licenses
Set the cluster's URL Base
Add secondary nodes

Installing the Primary Node

Go through a regular installation of Artifactory Pro as described in , Installing Artifactory and then convert it to be the HA primary node by
 when you to the . adding the file you createdha-node.properties set up your storage configuration $ARTIFACTORY_HOME/etc Do

 not start up the instance yet.

Note that an external database must be configured for usage at this point, as mentioned in the section Requirements

You should also verify that your database JDBC driver is correctly located in $ARTIFACTORY_HOME/tomcat/lib for each Artifactory cluster
.node

Creating the Bootstrap Bundle

First, start up the primary node. Once your primary node is up and running, you can create the bootstrap bundle by calling the Create
 REST API endpoint on the primary node. This creates the bundle, , and stores it under Bootstrap Bundle bootstrap.bundle.tar.gz $AR

You will need the bootstrap bundle later on when adding secondary nodes.TIFACTORY_HOME/etc.

Note: The bootstrap bundle file is only used when none of the files it includes are present in the corresponding locations in the secondary
cluster nodes. Once Artifactory is finished with it (either used it or deemed unnecessary) the bundle file is deleted as it contains sensitive files.

: Tip We recommend backing up the bootstrap bundle to a folder that is different from where the Artifactory cluster data or
ARTIFACTORY_HOME folder are located until you have and have verified that the cluster is up and runningadded all your secondary nodes
correctly.

Add Licenses

There are several ways you can add licenses to the cluster:

Using the Cluster License Manager UI or REST API as described in Adding Licenses
As part of the you will get when you start up Artifactory for the first timeonboarding wizard
Using the (NOTE: this will only work for the primary node) YAML configuration file

Since currently, the only operative node is the primary node, you can install your licenses there. Once you add the secondary nodes to the
cluster, they will be licensed automatically through the . Cluster License Manager

All licenses used must be Enterprise licenses.

Set the URL Base

After you have installed the node and verified that your system is working correctly as an HA installation, you should configure the Custom
URL Base.
In the tab under set the field to the URL of the Load Balancer.Admin Configuration | General, Custom URL Base

Add Secondary Nodes

You should also verify that your database JDBC driver is correctly located in $ARTIFACTORY_HOME/tomcat/lib for each Artifactory cluster
.node

To add secondary nodes, for each node, follow these steps:

Create an file according to how you want to . ha-node.properties set up your storage configuration
Go through a new Artifactory Pro installation as described in . Installing Artifactory Do not start up the instance yet.
Note that an external database be configured for usage at this point, as mentioned in the sectionmust Requirements
Once the Artifactory Pro installation is complete, add the file you created to the ha-node.properties $ARTIFACTORY_HOME/etc

folder.
Copy the bootstrap bundle you created on the primary node, , to the foldbootstrap.bundle.tar.gz $ARTIFACTORY_HOME/etc
er on the secondary node.

Warning: Bootstrap Bundle and db.properties

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/Getting+Started#GettingStarted-OnboardingWizard
https://www.jfrog.com/confluence/display/RTF/Getting+Started#GettingStarted-YAMLConfigurationFile

4.

5.

6.

1.
2.

3.

4.
5.

6.

This is a critical step in the upgrade process. The bootstrap bundle must be installed in each secondary node before you start it up
for it to operate correctly in the cluster.
Note also, if the folder in your secondary node already contains a file, make sure to$ARTIFACTORY_HOME/etc db.properties
remove it. Presence of this file will prevent the bootstrap bundle from being properly extracted when you start up the secondary node
causing the upgrade to fail.

Start up the cluster node. Upon starting up, the node is automatically allocated a license by the , and isCluster License Manager
automatically configured through the bootstrap bundle.
Test your HA configuration after each cluster node that you add to your system.

Warning: Ensure network communication

Make sure that network communication is enabled for each of the following:between the cluster nodes

context.url
hazelcast.interface and membership.port (used together. For example, 172.24.0.1:10001)

Upgrading Artifactory HA

Upgrading Artifactory HA depends on which version you are starting from. For detailed instructions, please refer to Upgrading an Enterprise
. HA Cluster

Testing Your HA Configuration
The following are a series of tests you can do to verify that your system is configured correctly as an HA installation:

Directly Access the Artifactory UI for the server you have just configured
In the module go to to view the log and verify that you see an entry for Admin Advanced | System Logs HA Node ID.

The bottom of the module navigation bar should also indicate that you are running with an Enterprise licens. In case of an error you
will see an error message in the page header.

Access Artifactory through your load balancer and log in as .Admin
In the module go to There should be a section called When selected you should see aAdmin Configuration. High Availability.
table with details on all the Artifactory nodes in your cluster as displayed below.

In the module under verify that the field is correctly configured to the URL ofAdmin Configuration | General, Custom URL Base
the Load Balancer.

Cluster License Management

Artifactory 5.0 introduces an automated license management interface for HA clusters through which all licenses are allocated automatically
to nodes as they are added to the cluster. A batch of licenses can be added through the UI and REST API to any node in a cluster.

A new node starting up will request an available license from the pool automatically, and will be allocated the license with the latest expiry
date. The license is also automatically returned to the pool if the node is shut down or removed from the HA cluster.

Once you have purchased a set of licenses, they are provided to you as a space-separated or newline-separated list.

Adding Licenses

There are three ways that licenses can be added to an HA cluster:

Through the UI
Using the REST API
Adding them to the primary node's filesystem (for automation).

Using the UI

Through the UI, in the Admin module, under | , you can view all licenses uploaded to your cluster.Configuration Artifactory Licenses

To add licenses to your cluster, click and copy your license key(s) into the entry field. You can also simply drag and dropNew License Key
the file containing the license key(s) into the same field. Make sure that each license is separated by a newline.

Which license is allocated?
Note that adding a license through a node does not necessarily mean that the license will be attached to that specific node. The
license is added to the pool available and the available license with the latest expiry date will be allocated to the node.

Specifying multiple licenses
 When specifying multiple licenses, whether in the Artifactory UI, using the REST API or in the artifactory.cluster.license
 file, make sure that the licenses are separated by a newline.

Using the REST API

You can also add licenses through the REST API endpoint Install License

Using the Primary Node's Filesystem

To accommodate spinning up Artifactory HA nodes using automation, , you can place the before booting up your primary node artifacto
 file in its folder. Upon being booted up, the primary node automatically extracts one ofry.cluster.license $ARTIFACTORY_HOME/etc

the licenses.

Similarly, upon being started up, each secondary node also automatically extracts one of the remaining available licenses.

License Expiry

Nodes running with a license that is about to expire will automatically be updated with a new license available from the pool. Artifactory
administrators can manually delete the expired license from within the UI or using REST API.

Deleting Licenses

A license can be deleted under one the following conditions:

It is not currently being used,
There is an alternative license available in the pool. In this case, the node to which the deleted license was attached will
automatically be allocated with an alternative license.

REST API

You can manage your Artifactory HA licenses using the , and RHA License Information Install HA Cluster Licenses Delete HA Cluster License
EST API endpoints.

Screencast

Managing the HA Cluster

Overview

Perpetual License
 Note that Artifactory licenses are perpetual and may continue to activate an Artifactory instance indefinitely, however, an instance
running on an expired license may not be upgraded and is not eligible for support.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-InstallLicense
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-HALicenseInformation
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-InstallHAClusterLicenses
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeleteHAClusterLicense

You can view the status of, and manage your HA cluster nodes in the module under Admin Configuration |
High Availability.

This screen displays a table with details on all the Artifactory nodes in your cluster as displayed below:

The table columns are as follows:

ID

Unique descriptive name of the server.

Start Time

The time that the server was started .

URL

The context URL that should be used to communicate with this server within the cluster.

Membership
Port

The port that should be used to communicate with this server within the cluster.

State

The current state of the server as follows:

Offline - The node has started in an invalid state (For example, same HA license, or the same node id has been set on two
different nodes). In this case you should the specific server logs for details.
Starting - The node is starting up.
Running - The node is up and running. This is the normal state for a node.
Stopping - The node is in the process of shutting down.
Stopped - The node is shut down.
Converting - The node is converting database tables and configuration files.

Role

The role of the server as follows:

Primary - The primary node.
Member - A regular member node.
Standalone - The node is not configured into your HA cluster. It is running as a separate
installation of Artifactory (Pro or Open Source).

Last
Heartbeat

The last time this server signaled that it is up and running. By default, each node signals every 5 seconds.

Version

The Artifactory version running on this cluster node.

Revision

The Artifactory revision number .running on this cluster node

Page Contents
Overview
Monitoring for
Unresponsive Nodes
Removing an Unused
Node

Release

The Artifactory release .running on this cluster node

Monitoring for Unresponsive Nodes

You can use the field to identify unresponsive nodes. If a node abruptly stops working (e.g. system crash on the server), then itLast Heartbeat
may not be able to correctly update its value, and will continue to appear as State Running.

However, since the server Heartbeat does not get updated for a long interval of time, it is displayed in red with a warning sign as displayed below.

In this case you should check that the corresponding server is up and running and fully connected to your HA cluster and the database.

Removing an Unused Node

If you remove a node from your cluster, it will still appear in your database and will therefore be displayed in the list of cluster nodes.

To avoid confusion you should remove it from your list of cluster nodes (and detach it from the database) so that it doesn't interfere with normal
cluster behavior.

To do so, hover over the corresponding server from the list and click "Delete".

When to remove a node
The "Remove" "long" button is only available once a node has not signaled a Heartbeat for a time.

We recommend that you only remove a node from your list if it has indeed been removed from your system.

In case of an error in one of the nodes, or if a node is shut down for maintenance, the Heartbeat will not be updated and
Artifactory will alert you to this as described in the previous section.

In this case there is no need to remove the node from your list. Once you fix the error and restart the
server the Heartbeat will be updated and the warning will be dismissed.

1.
2.
3.
4.
5.
6.

Migrating Data from NFS

Overview

Previous to version 5.0, an Artifactory HA installation stored binaries and configuration files on an
NFS mount. This mount was used by the folder to synchronize configuration$CLUSTER_HOME
and binary files between the cluster nodes. From version 5.0, you have the option of migrating your
binaries to alternative storage which presents the following advantages:

The filestore can be distributed between the cluster nodes or on a cloud storage provider
(S3)
Limitations of the network (such as file size limits) no longer affect the filestore
The cluster nodes do not require access to one central location
Once removed from the NFS, binaries are stored with redundancy in a clustered sharding
configuration

This page is designated for users who have upgraded their Artifactory HA installation from version
4.x to version 5.x. During the upgrade process, all configuration files will have been migrated to the
database, and will be synchronized and managed there henceforth, however, the data in these
installations is still stored on an NFS mount under the folder which$CLUSTER_HOME/ha-data
leaves you still reliant on the NFS. While you may continue operating in this mode, you also have
the option of migrating your data to alternative storage and removing the NFS mount.

The instructions on this page describe how to move your binary data away from the $CLUSTER_HO
 folder on the NFS mount allowing you to remove the mount altogether. We will coverME/ha-data

three main use cases:

Use Case Initial State Final State

1

NFS:
All data is stored on the NFS

Local FS:
All data is stored on each
node's local file system

2

NFS Eventual + S3:
NFS is used as the Eventual

 before Binary Provider copyin
data over to S3 forg

persistent object store

Local FS Evenutal + S3:
Each node's local file system
is used as the Eventual
Binary Provider before
copying data over to S3 for
persistent object store

3

NFS:
All data is stored on the NFS

Local FS Evenutal + S3:
Each node's local file system
is used as the Eventual
Binary Provider before copyin

data over to S3 forg
persistent object store

For all these use cases, once the data has been migrated, you will be able to completely remove
the NFS mount.

Page contents
Overview
Configuring the
Migration

Verifyi
ng
Versio
ns
Verify
Config
uration
Files
are
Synchr
onized
Edit
the
ha-nod
e.prop
erties
File
Copy
Data
to the
New
Locati
on

Use Case 1: NFS Local FS
Use Case 2: NFS Eventual + S3: Local FS Eventual + S3
Use Case 3: NFS Local FS Eventual + S3

Config
ure
binary
store.x
ml

Local FS
Local FS Eventual + S3

Testin
g Your
Config
uration

Configuring the Migration

Before migrating your data away from the NFS, make sure all nodes in your HA cluster are up and running. Then, to configure migration of
your data for the use cases described above, follow the procedure below:

Verify versions
Verify configuration files are synchronized
Edit the fileha-node.properties
Copy data to the new location
Configure binarystore.xml to match your setup
Test the configuration

Migrating data is optional. NFS is still supported.
 While migrating your data from NFS presents the advantages described above, this is
optional. Artifactory 5 still supports an HA cluster storing its data on the NFS.

https://www.jfrog.com/confluence/display/RTF4X/HA+Installation+and+Setup#HAInstallationandSetup-HomeDirectories
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-EventualBinaryProvider

Verifying Versions

Before proceeding with transferring your data, you need to verify that all cluster nodes are installed with exactly the same version which must
be 5.0 and above. To verify the version running on each node in your HA cluster, in the module under Admin Configuration | High

check the column of the table displaying your HA nodes.Availability, Version

Verify Configuration Files are Synchronized

When upgrading your HA cluster from version 4.x to version 5.x, an automatic conversion process synchronizes the configuration files for all
the cluster nodes. This replaces the need for the Once you have verified that all folder that was used in v4.x. $CLUSTER_HOME/ha-etc
nodes are running the same version, you should verify that all configuration files are synchronized between the nodes. For each node,
navigate to its folder and verify the following:$ARTIFACTORY_HOME/etc

ha-node.properties

Each node should still have this file configured as described in Create ha-node.properties

db.properties

This file was introduced in Artifactory 5.0 and it defines the connection to the database. The password specified in
this file is encrypted by the key in the file. It should be identical in each cluster node.communication.key

binarystore.xml

This file opens up the full set of options to configure your binary storage without the NFS. It will contain the binary
provider configuration according to how you wish to store your binaries. For each of the use cases described above,
you can find the corresponding binary provider configuration under .Configure binarystore.xml

communication.key

This file contains the key used to encrypt and decrypt files that are used to synchronize the cluster nodes It should.
be identical on each cluster node.

From version 5.0, Artifactory HA synchronizes configuration files from the primary to all secondary nodes, a change made to one of these files
on the primary triggers the mechanism to synchronize the change to the other nodes.

Edit the ha-node.properties File

Locate the ha-node.properties file in each node under the and comment out or remove the following entries$ARTIFACTORY_HOME/etc
otherwise Artifactory will continue write according to the previous path you have configured to the shared file system.

artifactory.ha.data.dir=/var/opt/jfrog/artifactory-ha
artifactory.ha.backup.dir=/var/opt/jfrog/artifactory-backup

Copy Data to the New Location

Once you have verified your configuration files are correctly synchronized, you are ready to migrate your data. The sub-sections below
describe how to migrate your data for the three use-cases described in the above.Overview

Use Case 1: NFS Local FS

For this use case, we first need to ensure that there is enough storage available on each node to accommodate the volume of data in my /da
 folder and the desired redundancy. In general, you need to comply with the following formula:ta

Max storage * redundancy < total space available on all nodes

For example,

If you expect the maximum storage in your environment to be 100 TB

Sync carefully
 Since changes on one node are automatically synchronized to the other nodes, take care not to simultaneously modify the same
file on two different nodes since changes you make on one node could overwrite the changes you make on the other one.

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-Createha-node.properties

Your redundancy is 2
You have in your cluster,4 nodes

Then each node should have at least of storage available.50 TB

For a redundancy of N, copy the data from your NFS to N of the nodes in your cluster.

For example, for a redundancy of 2, and assuming you have two nodes named "Node1" and "Node2" respectively, copy the $CLUSTER_HOME
 folder to the folder on each of Node1 and Node2./ha-data $ARTIFACTORY_HOME/data

Use Case 2: NFS Eventual + S3: Local FS Eventual + S3

This use case refers to using S3 as persistent storage, but is equally applicable to other cloud object store providers such as GCS, CEPH,
OpenStack and other supported vendors.

In this use case, you only need to ensure that there are . If any files are still there, they shouldno files in the folder of your NFSeventual
be moved to your cloud storage provider bucket, or to one of the nodes' folder. eventual

Use Case 3: NFS Local FS Eventual + S3

Migrating a filestore for a single installation to S3 is normally an handled by Artifactory, however, in the case of movingautomatic procedure
an HA filestore from the NFS, the automatic procedure does not work since the folder structure changes.

In this case, you need to copy the data under from your NFS to the bucket on your cloud storage provider (here$CLUSTER_HOME/ha-data
too, other providers described in Use Case 2 are also supported) while making sure that there are no files left in the or folders_queue _pre
of the eventual binary provider on your node's local file system.

Configure binarystore.xml

In this step you need to configure the binarystore.xml to match the setup you have selected in the use case. Note that the three use cases
above use one of two final configurations:

All data is stored on the cluster node's local filesystem (labelled here as)Local FS

The cluster nodes use the cluster node's local filesystem as an eventual binary provider and data is persistently stored on S3 (labelled here
as)Local FS Eventual + S3

Local FS

In this example, all data is stored on the nodes' file systems. For the sake of this example, we will assume that:

We have 3 nodes
We want redundancy = 1

To accomplish this setup, you need to:

Copy the data from the on your NFS to the folder on two of the nodes. $CLUSTER_HOME/ha-data $ARTIFACTORY_HOME/data
Once all data has been copied, you need to place the binarystore.xml under of each cluster node.$ARTIFACTORY_HOME/etc
Finally, you need to gracefully restart each node for the changes to take effect.

Example

In this use case, the binarystore.xml used with the NFS before migration would look like the following if you are using one of the default

Optimize distribution of your files
 Once you have copied your filestore to to each of the N nodes according to the desired redundancy, we recommend invoking the

 REST API endpoint in order to optimize the storage by balancing it storage amongst all nodes in theOptimize System Storage
cluster.

Node downtime required
To modify the binarystore.xml file for a node, you first need to gracefully shut down the node, modify the file and then restart the
node in order for your new configuration to take effect

Optimizing the redundant storage
After restarting your system, you can trigger optimization using the REST API so that all three nodes are utilized for redundancy.
For details, please refer to . Optimize System Storage

https://www.jfrog.com/confluence/display/RTF/S3+Object+Storage#S3ObjectStorage-AutomaticFilestoreMigration(Recommended)
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-OptimizeSystemStorage
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-OptimizeSystemStorage

file-system template.

<config version="1">
 <chain template="file-system"/>
</config>

After migrating the data, the new binarystore.xml placed on each cluster node you can use the cluster-file-system template.

<config version="2">
 <chain template="cluster-file-system"/>
</config>

While you don't need to configure anything else, this is what the template looks like:cluster-file-system

<config version="2">
 <chain> <!--template="cluster-file-system"-->
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding-cluster" type="sharding-cluster">
 <sub-provider id="state-aware" type="state-aware"/>
 <dynamic-provider id="remote-fs" type="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="state-aware" type="state-aware">
 <zone>local</zone>
 </provider>

 <!-- Shard dynamic remote provider configuration -->
 <provider id="remote-fs" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="sharding-cluster" type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <property name="zones" value="local,remote"/>
 </provider>

</config>

Redundancy leniency
We recommend adding the lenientLimit parameter to the below configuration under the provider configuration:sharding-cluster

<lenientLimit>1</lenientLimit>

Without this parameter, Artifactory won't accept artifact deployments while the number of live nodes in your cluster is lower than the
specified redundancy.

Local FS Eventual + S3

In this example, data is temporarily stored on the file system of each node using an Eventual binary provider, and is then passed on to your
S3 object storage for persistent storage.

In this use case, the binarystore.xml used your NFS for cache and eventual with your object store on S3 before migration will look like the
following if you are using the S3 template.

<config version="2">
 <chain template="s3"/>
</config>

After migrating your filestore to S3 (and stopping to use the NFS), your should use the template as follows:binarystore.xml cluster-s3

<config version="2">
 <chain template="cluster-s3"/>
</config>

The template looks like this:cluster-s3

Redundancy leniency
We recommend adding the lenientLimit parameter to the below configuration under the provider configuration:sharding-cluster

<lenientLimit>1</lenientLimit>

Without this parameter, Artifactory won't accept artifact deployments while the number of live nodes in your cluster is lower than the
specified redundancy.

<config version="2">
 <chain> <!--template="cluster-s3"-->
 <provider id="cache-fs-eventual-s3" type="cache-fs">
 <provider id="sharding-cluster-eventual-s3"
type="sharding-cluster">
 <sub-provider id="eventual-cluster-s3"
type="eventual-cluster">
 <provider id="retry-s3" type="retry">
 <provider id="s3" type="s3"/>
 </provider>
 </sub-provider>
 <dynamic-provider id="remote-s3" type="remote"/>
 </provider>
 </provider>
 </chain>

 <provider id="sharding-cluster-eventual-s3" type="sharding-cluster">
 <readBehavior>crossNetworkStrategy</readBehavior>
 <writeBehavior>crossNetworkStrategy</writeBehavior>
 <redundancy>2</redundancy>
 <property name="zones" value="local,remote"/>
 </provider>

 <provider id="remote-s3" type="remote">
 <zone>remote</zone>
 </provider>

 <provider id="eventual-cluster-s3" type="eventual-cluster">
 <zone>local</zone>
 </provider>
 <provider id="s3" type="s3">
 <endpoint>http://s3.amazonaws.com</endpoint>
 <identity>[ENTER IDENTITY HERE]</identity>
 <credential>[ENTER CREDENTIALS HERE]</credential>
 <path>[ENTER PATH HERE]</path>
 <bucketName>[ENTER BUCKET NAME HERE]</bucketName>
 </provider>
</config>

Because you must configure the s3 provider with parameters specific to your account (but can leave all others with the recommended
values), if you choose to use this template, your configuration file should look like this:binarystore.xml

<config version="2">

 <chain template="cluster-s3"/>

 <provider id="s3" type="s3">
 <endpoint>http://s3.amazonaws.com</endpoint>
 <identity>[ENTER IDENTITY HERE]</identity>
 <credential>[ENTER CREDENTIALS HERE]</credential>
 <path>[ENTER PATH HERE]</path>
 <bucketName>[ENTER BUCKET NAME HERE]</bucketName>
 </provider>

</config>

Testing Your Configuration

To test your configuration you can simply deploy an artifact to Artifactory and then inspect your persistent storage (whether on your node's file
system on your cloud provider) and verify that the artifact has been stored correctly.

Troubleshooting HA

Artifactory Does Not Start Up
There are no log file entries in $ARTIFACTORY_HOME/logs/artifactory.log

Cause

Something within your or $CLUSTER_HOME$ARTIFACTORY_HOME
directory is either not defined, or misconfigured

Resolution

In some cases in which the $ directory tree is notARTIFACTORY_HOME
validly constructed, log file entries are written to $ARTIFACTORY_HOME

Check the contents of this file to see/logs/catalina/localhost/<date>/logs.
which specific errors were logged.

After restarting a cluster node which uses a shared NFS mount, the startup fails

Cause

The still contains the bootstrap bundle archive used for the last upgrade. Artifactory tries$NFS_MOUNT/ha-etc
redeploy the archive's contents to its respective locations under the and runs in a conflict. The $ARTIFATORY_HOME

shows the following output:jfrog-access.bootstrap.log

[jfrog-access] [INFO] Found bootstrap bundle file:
/clusterhome/ha-etc/bootstrap.bundle.tar.gz
[jfrog-access] [INFO] Deploying bootstrap bundle file
to: /var/opt/jfrog/artifactory

Resolution

Delete the bootstrap bundle archive . Restart the node and the startup shouldfrom the folder$NFS_MOUNT/ha-etc
succeed.

The log says "Stopping Artifactory start up ,another server running converting process".

Cause

You are upgrading more than one server at a time.

1.

2.

Resolution

When upgrading your system, make sure you complete the upgrade
process on one server before starting to upgrade the next one.

The log says "Stopping Artifactory start up ,another server with different version has been

found".

Cause

You are trying to install different versions of Artifactory into the same
system.

Resolution

Make sure that all the instances of Artifactory installed in your system are
the same version.

The log says "Stopping Artifactory since duplicate node ids have been found in registry. If

you restarted this server, make sure to wait at least 30 seconds before re-activating it"

Cause

This may happen in one of two cases:

Two servers are configured into your system with the same node.id
specified in the $ARTIFACTORY_HOME/etc/ha-node.propertie

 file.s
You have shut down an Artifactory server and tried to restart it within
30 seconds.

Resolution

Make sure that all servers within your Artifactory HA installation have a
unique value.node.id

Shut down your server and wait at least 30 seconds before you restart it.

The log says "Node could not join cluster. A Configuration mismatch was detected:

Incompatible partition count! expected: 8, found: 1 Node is going to shutdown now!"

Cause

A new node has new Artifactory Hazelcast system property values
defined $ARTIFACTORY_HOME/etc/artifactory.system.propert

 file and it is trying to join a cluster with nodes with different Hazelcasties
property values.

Resolution

Make sure that all servers within your Artifactory HA installation have the
same values.

Shut down your cluster (not rolling restart), start the nodes one by one.

Artifactory Starts Up But Remains Offline
The log says "Changing Artifactory mode to offline since the server is configured as HA but the license does not exist or is not an HA License"

Page Contents
Artifactory Does Not Start Up
Artifactory Starts Up But Remains
Offline
Artifactory UI login still prompts for
credentials after a successful
attempt
Artifactory Starts Up But Not as an
HA Installation
A Cluster Node Does Not
Synchronize with Other Nodes
Upgrading from Version 5.4.5 or
Below to Version 5.5 or Above Fails

1.
2.
3.

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.

Cause

Your server does not have a valid HA license installed

Resolution

Install a valid HA license in your server and restart it

The log says "Changing Artifactory mode to offline since the local server is running as HA but found no HA server in registry."

Cause

You are starting an Artifactory server as an HA installation, however you already have an Artifactory Pro (or OSS version)
running within the same system.

Resolution

Make sure your system is consistent - either you have a set of Artifactory Pro instances running separately, or you all of your
servers are configured as Artifactory HA

The log says "Could not find cluster properties"

Cause

Your file is not defined.$CLUSTER_HOME/ha-etc/cluster.properties

Resolution

When installing Artifactory HA, you need to manually create a $CLUSTER_HOME directory and the $CLUSTER_HOME/ha-et
c/cluster.properties file. For details please refer to Configuring the Cluster.

Artifactory UI login still prompts for credentials after a successful attempt
Artifactory version 5.x and above running with Hazelcast allow UI logins made without sticky session/persistance configuration required on the

load balancer.

Cause

You have not opened the required Hazelcast ports (Artifactory's nodes syncronized memory component) which are
configured under:

 $ARTIFACTORY_HOME/etc/ha-node.properties file

Resolution

Open the membership ports on your operating system level
Ensure communication to the newly opened ports from the membering cluster nodes
Verify that the UI login works now (no restart is needed)

Artifactory Starts Up But Not as an HA Installation
Artifactory starts up as an instance of Artifactory Pro

Cause

You have not created a valid $ARTIFACTORY_HOME/etc/ha-node.properties file

Resolution

Shutdown the node
Delete the folder$ARTIFACTORY_HOME/access
Delete the folder$ARTIFACTORY_HOME/etc/security/access
Delete $ARTIFACTORY_HOME/etc/security/communication.key
Delete $ARTIFACTORY_HOME/etc/binarystore.xml
Delete $ARTIFACTORY_HOME/etc/db.properties
Delete $ARTIFACTORY_HOME/etc/cluster.id
Copy the bootstrap bundle you created on the primary node, , to the bootstrap.bundle.tar.gz $ARTIFACTORY_HO

 folder on the secondary node.ME/etc
Ensure that the bundle is owned by artifactory user (chown artifactory:artifactory)bootstrap.bundle.tar.gz
Create a valid $ARTIFACTORY_HOME/etc/ha-node.properties file as described in Installing Artifactory HA.
Start up the node

A Cluster Node Does Not Synchronize with Other Nodes

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=HA+Installation+and+Setup+for+v4.x&linkCreation=true&fromPageId=46108131
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-InstallingArtifactoryHA

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.

The node does not contain the right bootstrap bundle

Cause

The node was installed without the right bootstrap bundle () or no bootstrap bundle at all.bootstrap.bundle.tar.gz

Resolution

Install the right bootstrap bundle using the following procedure:

Shutdown the node
Delete the folder$ARTIFACTORY_HOME/access
Delete the folder$ARTIFACTORY_HOME/etc/security/access
Delete $ARTIFACTORY_HOME/etc/security/communication.key
Delete $ARTIFACTORY_HOME/etc/binarystore.xml
Delete $ARTIFACTORY_HOME/etc/db.properties
Delete $ARTIFACTORY_HOME/etc/cluster.id
Copy the bootstrap bundle you created on the primary node, , to the bootstrap.bundle.tar.gz $ARTIFACTORY_HO

 folder on the secondary node.ME/etc
Ensure that the bundle is owned by artifactory user ()chown artifactory:artifactory bootstrap.bundle.tar.gz
Start up the node

Upgrading from Version 5.4.5 or Below to Version 5.5 or Above Fails
The log says "To upgrade your HA installation to this version, you first need to upgrade to version 5.4.6 which implements changes required to

accommodate a database schema change."

Cause

Artifactory 5.5 introduces a change to the database schema. To upgrade to this version or above, the database must first be
migrated to the new schema

Resolution

Artifactory 5.4.6 implements a process that performs the required database schema migration. To upgrade to version 5.5 or
above from version 5.4.5 or below, you first need to upgrade to version 5.4.6 using the accordingnormal upgrade procedure
to your installation type, and then upgrade to your desired version (5.5 or above), also using the .normal upgrade procedure

Xray Integration
Overview

JFrog Xray is a universal binary analysis product that works with Artifactory to analyze software components,
and reveal a variety of issues at any stage of the software application lifecycle. By scanning binary
components and their metadata, recursively going through dependencies at any level, JFrog Xray provides
unprecedented visibility into issues lurking in components anywhere in your organization. As a
complementary product to Artifactory, JFrog Xray has access to the wealth of metadata Artifactory stores
which, combined with deep recursive scanning, puts Xray in a unique position to analyze the relationships
between binary artifacts and provide radical transparency into your component architecture to reveal the
impact that an issue in one component has on any other.

For more information about the types of analyses that Xray performs, please refer to in the JFrogWatches
Xray User Guide.

How Does It Work

For Xray to perform its analyses it needs to be connected to an instance of Artifactory in order to access its
repositories and metadata. Once connected, Xray can index the artifacts in Artifactory's repositories to
efficiently access them for . Since the indexing process is resource intensive,Scanning or Impact Analysis
Xray does not automatically analyse all of your repositories; you need to specify which repositories should be
indexed. All builds are indexed automatically.

Version Compatibility

JFrog Xray can connect to Artifactory from version 4.0 and above.

Page Contents
Overview

https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-TheUpgradeProcess
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-TheUpgradeProcess
https://www.jfrog.com/confluence/display/XRAY/Welcome+to+JFrog+Xray
https://www.jfrog.com/confluence/display/XRAY/Watches
https://www.jfrog.com/confluence/display/XRAY/Welcome+to+JFrog+Xray#WelcometoJFrogXray-HowDoesJFrogXrayProtectYou

1.
2.
3.

Configuring the Integration

Configuring Artifactory to work with JFrog Xray involves the following three main steps:

Connecting Artifactory to JFrog Xray
Specifying repositories whose artifacts should be indexed for analysis by Xray and configuring download blocking
Indexing artifacts

In addition, JFrog Xray should be properly configured as described in in the JFrog Xray User Guide Configuring Xray

Connecting to JFrog Xray

The connection between Artifactory and Xray is established by Xray which creates a user with "admin" privileges called in Artifactory in orderxray
to access the data it needs to perform its different analyses and functions.

For details, please refer to in the JFrog Xray User Guide.Connecting to Artifactory

Specifying Repositories for Analysis

For Xray to analyze the artifacts in your installation efficiently, it first needs to index them in its database. If Xray were to index and analyze ofall
the artifacts in your Artifactory installation, that could cause excessive processing and cluttered component graphs which may obscure the
significant components you are really interested in. Therefore, to let you focus on the most important artifacts in your Artifactory installation, Xray
will only analyze artifacts from repositories your mark for indexing. There is no need to specify builds; all builds are automatically indexed by Xray.

Repositories marked for indexing by Xray are found in the module under Admin Configuration | JFrog Xray

To enable analysis of repositories in general, you first need to globally enable Xray by setting the checkbox.Enable Xray Integration

How Does It Work
Version Compatibility

Configuring the Integration
Connecting to JFrog Xray
Specifying Repositories for Analysis

Per Repository
In Bulk
Configuring Download Blocking

Indexing Artifacts

https://www.jfrog.com/confluence/display/XRAY/Configuring+Xray
https://www.jfrog.com/confluence/display/XRAY/Configuring+Xray#ConfiguringXray-ConnectingtoArtifactory

1.
2.

Once repositories are marked for analysis, Xray will index (and reindex) their artifacts based on different triggers such as adding, deleting and
moving artifacts. Artifacts in all builds are indexed automatically by JFrog Xray and re-indexed each time a new build is created.

There are two ways to specify repositories whose artifacts should be indexed:

Per repository
In bulk

Per Repository

To specify a specific repository for indexing, in the repository Basic configuration, under , check Xray Integration Enable Indexing in Xray.

In Bulk

The Xray Integration screen displays the repositories that have been enabled for indexing. To add more repositories for indexing, click Add.

From the list of select the repositories you wish to add for indexing and click "Save".Available Repositories

Configuring Download Blocking

To prevent potentially harmful artifacts from being used by developers, an administrator can prevent them from being downloaded from Artifactory
using the following two settings in the repository Basic configuration, under :Xray Integration

Block Unscanned
Artifacts

When checked, Artifactory will block download of artifacts from this repository until they have been scanned by
JFrog Xray.

Block Downloads With
Severity Above

When set, Artifactory will block download of artifacts that have been identified to include an issue with a
severity of the degree selected at least.

Once these parameters are set, a is created in Xray to detect artifacts that meet the set specifications and block their beingSystem Watch
downloaded.

Indexing Artifacts

Once JFrog Artifactory and JFrog Xray have been configured to work together, artifacts will be indexed for analysis on an ongoing basis according
to different events that happen in Artifactory. To set up the initial database of artifacts Xray, you need to invoke indexing manually. For details,
please refer to in the JFrog Xray User Guide. Indexing Artifacts

Bintray Integration
 is JFrog's platform for storage and distribution of software libraries on the cloud. It is the new way forBintray

developers to publish, download and share software across one unified community around the world. The
free, cloud-based platform empowers developers to control and streamline the entire process of making
software libraries publicly available, with all the services needed to collaborate, advertise and deploy a new
software solution.

Naturally, Artifactory integrates with Bintray in more than one way:

Remote Search in Bintray's JCenter repository - the most comprehensive collection of Maven
artifacts.
Information insight from Bintray on artifacts - package description and latest released version.
Pushing artifacts to Bintray through a .Distribution Repository
Complete continuous delivery stack for selected OSS projects based on oss.jfrog.org and Bintray.

Distributing Software Through Bintray
For details on how to use Bintray, please refer to the .Bintray User Guide

Read More
Bintray info panel
Distribution Repository
Deploying Snapshots to oss.jfrog.org

https://www.jfrog.com/confluence/display/XRAY/Watches#Watches-SystemWatchesandDownloadBlocking
https://www.jfrog.com/confluence/display/XRAY/Configuring+Xray#ConfiguringXray-IndexingArtifacts
http://www.bintray.com
https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-RemoteSearch
https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-RemoteSearch
https://bintray.com/docs/usermanual/index.html

Bintray info panel

Overview

As part of Artifactory's integration with Bintray information about components stored in Bintray is fetched and
displayed in the Tree Browser under .Package Information

To view Bintray Package Information:

You need to be logged in
You need to have the Bintray user and API Key configured in your . Artifactory profile
The selected file type is supported (e.g., pom, jar, war, ear)

Distribution Repository

Overview

Artifactory takes its integration with JFrog Bintray to the next step with Distribution Repositories. Distribution
repositories provide an easy way to move artifacts from Artifactory to Bintray, for distribution to end users. As

Page Contents
Overview

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings

1.
2.
3.
4.

opposed to other repositories in Artifactory, distribution repositories are not typed to a particular package
format, but rather, are governed by a set of rules that specify how an artifact that gets to the distribution
repository should be routed to its corresponding repository in Bintray.

Configuring a Distribution Repository

You can access your distribution repositories in the module under Admin Repositories | Distribution.

To set up a new distribution repository, click New and execute the following main steps:

Connect to Bintray - obtain authorization from your Bintray account for Artifactory to connect and deploy packages
Configure distribution - specify basic distribution parameters
Configure Advanced Settings - specify advanced settings
Define rules - specifies the rules that govern how this distribution repository will deploy packages to Bintray

Connecting to Bintray

Artifacts are synchronized from your Artifactory distribution repository to Bintray through a Bintray organization to which you have administration
privileges. To set up the connection, you first need authorize Artifactory to access your Bintray organization. Artifactory will display a popup dialog
where you can enter your Bintray credentials.

Page Contents
Overview
Configuring a Distribution Repository

Connecting to Bintray
Basic Distribution Parameters
Advanced Settings

Managing Rules
Rule Order
Specifying Rule Parameters
Repository and Path Filter Parameters

Using Unnamed Capture Groups
Using Named Capture Groups
Enumerating Capture Groups

Distributing Artifacts
Distributing Through the UI

Dry Run
Distributing via REST API

After authorizing access to your account, you need to select the organization in that account that you authorize Artifactory to manage.

Bintray will issue an authorization code which you need to copy, and then paste in your distribution repository configuration.

Already logged into Bintray?
If you are already logged into your Bintray account, Artifactory will skip this step

When you close the popup with the authorization code, Artifactory will display a popup for you to enter it.

Once the process is complete, you can verify that Artifactory has been authorized to access your Bintray organization, in that organization's profile
page under OAuth Applications.

Basic Distribution Parameters

Once you have set up Artifactory as an authorized application in your Bintray organization, you can set up the distribution parameters

Repository Key The repository key.

General

Description A description of the repository.

Bintray Product

Use This Repository
To Distribute a Product

When set, indicates that artifacts distributed through this repository should be linked to a product. Artifactory will
create the product (if necessary) and link deployed packages to the product.

Product Name The product name.

Bintray Application

customer ID The client ID assigned by Bintray to Artifactory as an authorized application.

Organization The Bintray organization which Artifactory is authorized to manage for distribution.

Default Repository
Settings

If Artifactory creates a new repository on Bintray for distribution, this setting specifies if the repository should be
private or public. If the repository exists, Artifactory will not override its access regardless of this setting.

Default Package
Settings

Licenses Specifies the OSS licenses that should be attached to any packages distributed through this repository.

VCS URL Specifies the VCS URL for packages distributed through this repository.

Advanced Settings

Proxy

Select a proxy to use when synchronizing artifacts to Bintray.

GPG Signing

When set, Artifactory will GPG sign artifacts synchronized to Bintray.

GPG Passphrase

The passphrase to use for GPG signing.

Map Properties to Bintray
Attributes

Specify a list of properties which, if they annotate the artifact distributed, should be mapped to version
attributes in Bintray.

Managing Rules

As opposed to local, remote and virtual repositories in Artifactory, distribution repositories are not limited to a specific package type. Instead, you
specify a set of rules, based on package type, and , that give you fine-grained control over how different packages are pushed todifferent filters
Bintray for distribution. To view the rules defined for your repository, click the tab. New distribution repositories come with a pre-defined setRules
of rules which you can modify, delete or add to as needed.

Rule Order

The order in which rules are displayed specifies the order in which they are applied. To change the rule order, you can select a rule and drag it to
a new location in the list.

Specifying Rule Parameters

Filtering and deleting
Start typing the name of a rule in the filter box to find the rule you are looking for.

Hover over a rule and click the delete icon on the right to delete it, or select a number of rules in the left column and click toDelete
remove several rules at a time.

Conflicting rules
While it is possible to specify rules that conflict, since rules are applied in the order in which they appear, the first rule that is applied will
take precedence.

To specify rule parameters, click for a new rule, or the of a rule you want to edit.New Name

Name A logical name for this rule

Artifactory
Input

Parameters that determine which packages in Artifactory this rule applies to.

Package
Type

Specifies the artifact package type for which this rule should be applied. Artifacts of other package types are ignored

Available
Tokens

According to the package type selected, this specifies which tokens can be used to specify the deployment path in Bintray

Repository
Filter

Wildcard expression that specifies for which original source repositories this rule should be applied. Packages in other
repositories are ignored.

Path Filter Wildcard expression that specifies the artifact path for which this rule should be applied. Packages that have a different path
are ignored.

Output
Bintray

Parameters that determine how artifacts should be deployed to Bintray.

Repository The Bintray repository to which artiafcts should be deployed.

Package The Bintray package in the specified Bintray repository to which the artifact should be deployed. If the package does not exist,
it will be created

Version The Bintray version in the specified Bintray package and repository to which the artifact should be deployed. If the version does
not exist, it will be created.

Path The path in Bintray into which the artifact should be deployed in the specified repository.

Repository and Path Filter Parameters

Rules give you enormous flexibility in how you deploy artifacts to Bintray through use of regular expressions with capture groups where the
capture groups may be named or unnamed.

Unnamed capture groups are back-referenced using placeholder tokens, while named capture groups are back-referenced using their names.

Using Unnamed Capture Groups

For each regular expression used in or fields of the section, you can place tokens in fields of the Repository Filter Path Filter Artifactory Input
 section to back-refrence them. Bintray Output

Tokens are written using the following format:

${source:x}

where:

source path: A wildcard from the field should be replacedPath Filter

repo: A wildcard from the field should be replacedRepository Filter

x The wildcard number.

For example,

${path:1} means replace the first regular expression in the fieldPath Filter

${repo:2} means replace the second regular expression in the fieldRepository Filter

Example 1

Under Artifactory Input, set = jfrog-(.*).rpmPath Filter

Under Bintray Output, set = rpm-${path:1}Repository

With these settings, a package called will be deployed to a repository in Bintray called , while ajfrog-artifactory.rpm rpm-artifactory
package called will be deployed to a repository in Bintray called jfrog-mission-control.rpm rpm-mission-control

Example 2

Under Artifactory Input, = libs-(.*)Repository Filter

Under Bintray Output, = rpm-${repo:1}Repository

With these settings:

A package called from will be deployed to a repository in Bintray called jfrog-artifactory.rpm libs-release-local rpm-release-lo
cal.

A package called from , will be deployed to a repository in Bintray called jfrog-artifactory.rpm libs-snapshot-local rpm-snapshot-
local.

Using Named Capture Groups

You can give capture groups in the or fields of the section specific names and thenRepository Filter Path Filter Artifactory Input
back-reference the capture group using its name in the fields of the section.Bintray Output

Named capture groups are written using the following format:

(?<name>regex)

where:

name A logical name for the capture group

regex The regular expression that defines repositories or paths that should pass through the filter

Once capture groups are defined, you can back-reference them in the fields of the Bintray Output section using the following format:

$(source:name)

where:

source path: A capture group from the field should be back-referencedPath Filter

repo: A capture group from the field should be back-referencedRepository Filter

name The name of the capture group.

Example 1

If you set:

Under Artifactory Input, = (?<myRepo>-local)Repository Filter

Under Bintray Output, = generic-$(repo:myRepo)Repository

Then a package in repository will be deployed to a repository in Bintray called .builds-local generic-builds

Example 2

If you set:

Under Artifactory Input, = jfrog-(?<myPath>.*).rpmPath Filter

Under Bintray Output, = rpm-$(path:myPath)Repository

Then a package called in repository will be deployed to a repository in Bintray called jfrog-artifactory.rpm libs-release-local rpm-a
, while a package called will be deployed to a repository in Bintray called rtifactory jfrog-mission-control.rpm rpm-mission-contro

.l

Enumerating Capture Groups

You can use multiple capture groups when specifying rule parameters, and they are enumerated in the order in which they are received .

For example, if you set:

Under Artifactory Input, = jfrog-(.*).(.*)Path Filter

Under Bintray Output, = ${path:2}-${path:1}Repository

Then:
jfrog-artifactory.rpm will be deployed to a repository in Bintray called rpm-artifactory

 will be deployed to a repository in Bintray called zipjfrog-artifactory.zip -artifactory
 will be deployed to a repository in Bintray called jfrog-mission-control.rpm rpm-mission-control
 will be deployed to a repository in Bintray called zipjfrog-mission-control.zip -mission-control

You can even mix both named and unnamed capture groups together when specifying rule parameters, however, they are still enumerated in the
order in which they are received.

Expanding the example above, if you set:

Under Artifactory Input, = jfrog-(?<type>.*).(.*)Path Filter

Under Bintray Output, = ${path:2}-${path:type}Repository

1.
2.

"type" is enumerated as the first capture group, and it is back-referenced using its name.

The unnamed capture group is unnamed and second in the enumeration order, so it is back-referenced using its number, 2.

Distributing Artifacts

Once you have your distribution repositories configured, the last step in getting your files to Bintray is to invoke distribution. When you invoke
distribution, Artifactory goes through the rules defined for your distribution repository in order until the artifact you are trying to distribute passes
one of them, and then uploads the file to Bintray in accordance with that rule. Once distributed, the file will also appear in your distribution
repository to indicate that it has been uploaded to Bintray.

There are two ways to do this:

Distributing through the UI
Distributing via REST API

Distributing Through the UI

To distribute a file through the UI, select it in the Artifact Repository Browser and click in the right-click menu.Distribute

Artifactory will pop up the Distribution dialog where you can set final parameters for distribution.

Distribution Repository

The distribution repository through which the artifact should be uploaded to Bintray. The rules defined for this
repository will govern if/how the file is uploaded.

Distribute Artifacts
Asynchronously

When checked, the file will be uploaded asynchronously. To verify upload to Bintray succeeded, refresh your
distribution repository to see the distributed file.

When unchecked, if upload to Bintray fails, Artifactory will display an error message.

If upload to Bintray fails, please refer to the for details.Artifactory System Log

Publish Distributed
Artifacts

When checked, files uploaded to Bintray are published to make them available for download by end users

Override Existing Files

When checked, the uploaded file will override another file with the same name if it exists in the upload path.

Unticking Distribute Artifacts Asynchronously will produce a UI screen representing the progress and summary of the distribution process:

Once distribution is complete, Artifactory displays the outcome of the process in a section and an section.Success Error

The section displays the repository, package and version in which the distributed artifacts will be hosted in Bintray. If the distributionSuccess
process created a package or version, this will also be indicated in the Success section. In the example below, both a package and a version
were created.

If an error occurs in moving distributed files to Bintray, the Distribution dialog will also display an section. In the example below, theErrors
success section shows that there was an attempt to upload files to version in package in repository The section4.0.2 JSON generic. Errors
provides a detailed error message explaining the failure.

https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI

1.
2.
3.

Dry Run

A dry run simulates the act of moving your selected files to Bintray without actually distributing them. This is a good way to ensure your
configuration is correct and that there is no impediment to moving your files to Bintray.

Click "Dry Run" to start the simulation. Once completed, Artifactory will display the and sections as if the files were actuallySuccess Error
distributed.

Distributing via REST API

JFrog Artifactory exposes a REST API that lets you automate deploying artifacts to Bintray. For details please refer to and Distribute Artifact Distri
. bute Build

Deploying Snapshots to oss.jfrog.org

Overview

What is OJO

,oss.jfrog.org or for short, is an instance for hosting your maven-compatible buildOJO Artifactory Cloud
snapshots, provided free of charge for selected opensource software projects.

All projects in OJO are public (i.e., all the artifacts and builds can be viewed by anyone).

Existing Bintray users are granted deploy permissions to relevant folders in Artifactory, according to the
Maven Group ID of the packages they build.

Target Audience

This page is designed to help OSS contributors who want a free repository to host build snapshots, and
eventually publish release versions to distribution via .Bintray

At a Glance
The process of on-boarding to OJO, working with it to deploy continuous snapshots, and finally, promoting
these snapshots from OJO to Bintray for distribution involves three simple steps:

Creating an account on OJO
Building and deploying to the OJO Artifactory
Promoting a snapshot build to Bintray

Don't get confused
In a dry run, no files are moved; it's just a simulation

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DistributeArtifact
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DistributeBuild
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DistributeBuild
http://oss.jfrog.org/
http://www.jfrog.com/artifactory/versions/#Cloud
http://bintray.com/

1.

2.

Getting Started with OJO

To get account on OJO you must first have an account on Bintray.

Create a Maven repo on Bintray if it does not exist yet, and create your package inside this repo.
You can give your package any logical name, for example: maven2gradle
Ask for inclusion of the package in JCenter, by clicking the " " button in the package main page.Add to JCenter
In the request form, check " snapshotHost my build artifacts on the OSS Artifactory at https://oss.jfrog.org" and enter the desired
Maven group ID for your package.
For example: org.github.jbaruch.maven2gradle

After your request has been approved by the Bintray Team (usually within a few hours), you'll receive a confirmation email on the inclusion of your
package in JCenter and the creation of your new OJO account.

Working with OJO

Once your OJO account has been created, you (and all the team members in the case of an organization) should be able to login to OJO using

Page Contents
Overview

What is OJO
Target Audience
At a Glance

Getting Started with OJO
Working with OJO

Resolving from and Publishing to OJO
Releasing to Bintray

Promoting a Release Build

OJO is Artifactory!
OJO is just a regular Artifactory Pro server, so is recommended.getting familiar with Artifactory

Bintray Organizations Support
When requesting an OJO account for a repository belonging to an Bintray organization, the permissions in OJO will be granted to all the
organization members, not only the member who asked for the OJO account.

1.

a.

b.

2.

your and as the password.Bintray username API key

You will see that a folder corresponding to the Maven Group ID has been created in OJO in the and the oss-release-local oss-snapshot-
 repositories:local

You have deploy permissions to these folders:

Resolving from and Publishing to OJO

There is nothing unusual about working with repositories in OJO. You can configure your build tool to resolve release and snapshot dependencies
from the and the OJO virtual repositories, respectively; and to deploy build snapshots to the libs-release libs-snapshot oss-snapshot-

 repository. local As long as the <groupId> in your pom (for Maven) or the project.group (for Gradle) matches the group ID you requested

during onboarding, the deployment should succeed.

Please consult the Artifactory documentation on how to set up or for resolution and deployment.Maven Gradle

Releasing to Bintray

Currently, you have two ways to deploy artifacts to Bintray:

Promoting a Release Build
This will promote snapshot artifacts to release and then deploy them to Bintray:

Use promotion from the Jenkins Artifactory plugin - This allows you to use the Jenkins UI to promote the snapshot artifacts from
a selected job run.
Invoking promotion with REST - This allows promotion of a build created with any build server/tool and full programatic
automation of the promotion process.

Uploading Release Artifacts
Directly upload deployed release artifact to Bintray. If you have a released version of an artifact or a build, you can deploy them to Bintray
using the regular . Bintray integration

Promoting a Release Build

Artifactory Build Info is a must!
In order to release and promote snapshots to Bintray you need to deploy a Build Info BOM to Artifactory. The easiest way to achieve
this automatically it is to use the feature of Artifactory or the ; These and other options areBuild Integration Gradle Artifactory Plugin
described in the next section.

http://oss.jfrog.org/artifactory/webapp/browserepo.html?pathId=oss-release-local:
http://oss.jfrog.org/artifactory/webapp/browserepo.html?pathId=oss-snapshot-local:
http://oss.jfrog.org/artifactory/webapp/browserepo.html?pathId=oss-snapshot-local:
http://oss.jfrog.org/artifactory/simple/libs-release/
http://oss.jfrog.org/artifactory/simple/libs-snapshot/
http://oss.jfrog.org/artifactory/simple/oss-snapshot-local/
http://oss.jfrog.org/artifactory/simple/oss-snapshot-local/

1.

2.

3.

Promoting a Build from Jenkins

Promotion from Jenkins is performed by invoking a custom " " promotion plugin. Here's what you need to do:snapshotsToBintray

Install the and configure Artifactory servers and repositories as described in . YouJenkins Artifactory Plugin the Jenkins documentation
should configure the and as release and snapshot targets, respectively.oss-release-local oss-snapshot-local
In your build configuration, add the "Deploy artifacts to Artifactory" post-build action and check "Deploy Maven artifacts", "Capture and
publish build info" and "Allow promotion of non-staged builds":

Run your build. Upon successful completion, the build result page will have a link to the "Artifactory Release Promotion" action:

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin

3.

4.

a.

b.

5.

In the promotion configuration screen, select "snapshotsToBintray" promotion plugin:

There are two parameters to configure here:
Override the release version. By default, the version is calculated by removing the -SNAPSHOT suffix from the snapshot version,
e.g. will be released to Bintray as version .1.0-SNAPSHOT 1.0
Specifying a value in this field overrides the default version scheme.
Append a timestamp to the version. This will add a timestamp string (in Maven's timestamp format:) to theyyyyMMdd.HHmmss
release version. Values of , or will cause the timestamp suffix to be appended.true y 1

Click the "Update" button. Your release artifacts are now uploaded to Bintray.

Promoting a Build Using REST API

If you don't use Jenkins or if you need fully automated promotion, you can issue an HTTP PUT request that will trigger promotion and release to
Bintray. Promotion still operates on a Build Info BOM, previously saved in Artifactory.
Here's what you need to do:

1.
a.

b.
c.

2.

Deploy a build to Artifactory in one of the following ways:
Using a build server with an Artifactory plugin. Plugins currently exist for Jenkins, Hudson, Bamboo and TeamCity. Please see
the for further instructions on getting the build info BOM into Artifactory.Artifactory Build Integration documentation
Using the .Gradle Artifactory Plugin
Configure Maven to use Artifactory Listener as described .here

Execute the . The call accepts the same parameters as the . Here's anbuild promotion plugin call invocation of Jenkins promotion plugin
example using CURL:

curl -X POST -u bintrayUser:apiKey
http://oss.jfrog.org/api/plugins/build/promote/snapshotsToBintray/bui
ldName/3

Log Analytics
Overview
The Sumo Logic App for Artifactory automatically creates an account with Sumo Logic and sends it logs for
analysis. Once an account is created through Artifactory, you can connect several instances to that same
account. The Sumo Logic data analytics platform will, in turn, display pre-enabled dashboards which can be
customized as needed. This enables you to access Sumo Logic’s premium operational analytics directly from
Artifactory, letting you index and analyze both structured metrics data and unstructured log data together in
real time. The Sumo Logic App for Artifactory provides you with a customizable dashboard showing a variety
of analytics such as:

Traffic by geo-location
Active IPs
Most active repositories
Top referred files
Requests by status codes
Denied login attempts
and much more.

For more details about the different analytics that the Sumo Logic App for Artifactory can provide, please visit
the .Sumo Logic website

Configuration

The Log Analytics Configuration can be found in the module under .Admin Advanced | Log Analytics

Page Contents
Overview
Configuration

Credentials
Creating a New Account
Using an Existing Account

Connection Established
Traffic Log

Webinar

http://wiki.jfrog.org/confluence/display/RTF/Gradle+Artifactory+Plugin
http://wiki.jfrog.org/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ExecuteBuildPromotion
https://www.sumologic.com/application/artifactory/

Get started by setting the checkbox.Enable

Continue by obtaining your Sumo Logic credentials as described in the next section.

Credentials

To access the Sumo Logic Artifactory dashboard, you need a Client ID and Secret.

Creating a New Account

If this is the first time you are using the Sumo Logic App for Artifactory you need to create an account to obtain your login credentials. Select Crea
. and click "Access Dashboard".te New Connection

Artifactory will connect you to the Sumo Logic App for Artifactory. Your user name will automatically be taken as the email from your Artifactory
account.

Select your region, agree to the and click "Access Dashboard".Service License Agreement

Using an Existing Account

If you already have a Sumo Logic account, you can use the credentials you already have and enter them in the corresponding fields (if you
obtained them using the same browser you are currently using, they should be filled in automatically). Note that you may use credentials
generated for the current Artifactory instance or from any other instance from which you have connected to Sumo Logic.

Connection Established

Once the connection is established, the Sumo Logic App will start analyzing your log files and populating the dashboard. This process may take
several minutes to complete.

Out-of-the-box, the Sumo Logic App comes pre-configured with several dashboards. You can modify these and add to them as needed.

Region
For best performance, make sure to select the region that is geographically closest to your Artifactory instance.

Trial account is free for for 30 days
The account created through this integration with Artifactory is a 30-day free trial account. To continue using the integration through this
account beyond 30 days, you need to access your account on Sumo Logic and upgrade it to a paid account.

For details on how to work with and modify your dashboard, please refer to the .Sumo Logic documentation

The Log Analytics screen in Artifactory will reflect the connected status showing the Client ID and Secret needed to log into your account.

https://help.sumologic.com/Apps/Artifactory_App

Traffic Log

To activate the file, add the following parameter to your file :traffic.log $ARTIFACTORY_HOME/etc/artifactory.system.properties

artifactory.traffic.collectionActive=true

For this change to take effect so you can start collecting site traffic information, you will need to restart your system.

Webinar

For more details on how to set up and use Artifactory's integration with Sumo Logic, please watch the webinar below.

Artifactory Pro
Overview

Artifactory Pro exposes an extensive set of capabilities on top of the core repository management features that are available to you from
Artifactory Open Source:

Pro and Enterprise
Features

A wide range of features to support the needs for enterprise artifact management including security, high availability,
replication, advanced search and more

Package

Management

Full support for all major package formats and dependency managers

Ecosystem
Integration

Integration with the build ecosystem and additional JFrog products

CI Server Integration Integration with all major CI servers

Download

If you need a license, please visit the JFrog website and either or .purchase a license request an evaluation license

Once you submit the corresponding form, a download link will be provided to you by email.

You may also access the latest version through the .Artifactory Pro Download Site

Installation and Upgrade

Performing a clean installation of Artifactory Pro is identical to installing Artifactory OSS. Please refer to Installing Artifactory.

To upgrade from a previous version of Artifactory Pro or Artifactory OSS, please refer to .Upgrading Artifactory

Activating Artifactory Pro

Whether you have requested an evaluation of Artifactory Pro, or have purchased a license, your license key is provided in the same email that
contains the download link sent to you.

Your Artifactory administrator should enter the license key into the corresponding field in the module under Admin Configuration | Register
License.

Comparing ArtifactoryPro , Artifactory OSS and Artifactory Online
To compare the features and services offered by each version of Artifactory please refer to the Artifactory Version Comparison

t Matrix o see which version of Artifactory best fits your needs.

For more information please contact .support@jfrog.com

Page Contents
Overview

Package Management
Download
Installation and Upgrade
Activating Artifactory Pro

Read More
Artifactory Comparison Matrix
Pro Features
Package Management
Ecosystem Integration
Build Integration

Data is preserved when upgrading from Artifactory OSS to Artifactory Pro
For a standalone installation, to upgrade an instance of Artifactory OSS to Artifactory Pro you only need toof the same version
replace the file and enter a valid license key. All data stored in Artifactory is preserved in the process.artifactory.war

Once you have entered a valid Artirfactory Pro license key, all Artifactory Pro features will be available with the same settings and
content you had on the Artifactory OSS version from which you upgraded.

https://www.jfrog.com/artifactory/buy-now/
https://www.jfrog.com/registration/evaluateaddons.html?10
https://bintray.com/jfrog/product/artifactory/download

Artifactory Comparison Matrix

Choose the Artifactory Edition that Fits You Best

 OSS Pro SaaS

SaaS

(Dedicated
Server)

Enterprise

Basic Artifact Management:
Details...

Proxy and cache remote repository artifacts

Bulk artifact deployment (from archive)

Include/exclude patterns for stored artifacts

Deploy Artifacts via the UI or via REST/HTTP

Move/copy/delete artifacts through the UI

Checksum-based Storage with Deduplication

Administrator
You must be an Artifactory administrator in order to access the License Key field.

Using encrypted passwords
If you are using encrypted passwords with an IBM JDK/JRE, you may encounter encryption restrictions. For details please refer to Usin

.g Your Secure Password

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactsfromArchive
http://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludesandExcludesPattern
http://www.jfrog.com/confluence/display/RTF/Deploying+via+the+Web+UI
http://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludesandExcludesPattern
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifact
http://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts
http://www.jfrog.com/confluence/display/RTF/Changing+the+Default+Storage#ChangingtheDefaultStorage-%22Once-And-Only-Once%22ContentStorage
https://www.jfrog.com/confluence/display/RTF/Centrally+Secure+Passwords#CentrallySecurePasswords-UsingYourSecurePassword
https://www.jfrog.com/confluence/display/RTF/Centrally+Secure+Passwords#CentrallySecurePasswords-UsingYourSecurePassword

On Demand Jar Signing and Web Start Application
Hosting

Custom repository layout for non-Maven module
management

Repository Replication

Multi-push Replication

Universal support for all major package formats:

Maven
Other package formats...

Bower
Chef Cookbooks
CocoaPods
Conan
Debian
Docker
Git LFS
NPM
NuGet
Opkg
P2
PHP Composer
Puppet
PyPI
RPM
RubyGems
SBT
Vagrant
VCS

Integration with all leading CI-servers

Promotion, demotion and cleanup of build artifacts

Managing build artifacts for reproducible builds

Powerful REST API for Release Automation

Extend Artifactory with Groovy-based User Plugins

Basic Security
Details...

LDAP Authentication

Role-based authorization with teams and
permissions

LDAP Groups

Multiple additional options for authentication
Details...

, , Active Directory Atlassian Crowd and JIRA OAu
th (multiple providers)

Automatic 3rd Party License Violation Detection
per Build

Powerful SSO integration for NTLM, Kerberos, Etc.

Search by Name, Archive, Property or Checksum
Values

Artifactory Query Language (AQL)

Annotate Artifacts with Searchable Properties

Aggregate and Run Bulk Operations on Search
Results

http://www.jfrog.com/confluence/display/RTF/WebStart+and+Jar+Signing
http://www.jfrog.com/confluence/display/RTF/WebStart+and+Jar+Signing
http://www.jfrog.com/confluence/display/RTF/Repository+Layouts
http://www.jfrog.com/confluence/display/RTF/Repository+Layouts
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-Multi-pushReplication
http://www.jfrog.com/confluence/display/RTF/Debian+Repositories
http://www.jfrog.com/confluence/display/RTF/Npm+Repositories
http://www.jfrog.com/confluence/display/RTF/NuGet+Repositories
http://www.jfrog.com/confluence/display/RTF/P2+Repositories
http://www.jfrog.com/confluence/display/RTF/PyPI+Repositories
http://www.jfrog.com/confluence/display/RTF/YUM+Repositories
http://www.jfrog.com/confluence/display/RTF/RubyGems+Repositories
http://www.jfrog.com/confluence/display/RTF/Build+Integration
http://www.jfrog.com/confluence/display/RTF/Release+Management
http://www.jfrog.com/confluence/display/RTF/Release+Management
http://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-Build-levelInformation
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API
http://www.jfrog.com/confluence/display/RTF/User+Plugins
http://www.jfrog.com/confluence/display/RTF/Managing+Permissions
http://www.jfrog.com/confluence/display/RTF/Managing+Permissions
http://www.jfrog.com/confluence/display/RTF/License+Control
http://www.jfrog.com/confluence/display/RTF/License+Control
http://www.jfrog.com/confluence/display/RTF/Single+Sign-on
http://www.jfrog.com/confluence/display/RTF/Searching+Artifacts
http://www.jfrog.com/confluence/display/RTF/Searching+Artifacts
http://www.jfrog.com/confluence/display/RTF/Properties
http://www.jfrog.com/confluence/display/RTF/Smart+Searches
http://www.jfrog.com/confluence/display/RTF/Smart+Searches

Advanced Storage Solutions
Details...

S3 Object Storage

Google Cloud Storage

Microsoft Azure Cloud Storage

Filestore Sharding

(Managed by JFrog)

(Managed by JFrog)

High Availability
Details...

Five-nines Availability

Redundant Cluster of Servers

Unlimited Server Scalability

Near-zero Maintenance Downtime

(Managed by JFrog) (Managed by JFrog)

Integration with Other JFrog Products

JFrog Bintray and JFrog CLI

JFrog Xray

JFrog Mission Control

(view only)

(view only)

(view only)

Disaster Recovery

SaaS Features
Details...

SaaS-based Maintenance-free Hosted Repository

Always up-to-date Artifactory Version

Setup Free Automated Backups

Maintenance and Administration
Details...

Incremental and Historical Backup Services

Focused Email Notifications for Artifact Changes

Free Upgrades

SLA-based Support

(Pro Plus and Pro

X)

Pro Features

Overview

Artifactory Pro exposes a full set of capabilities that takes you beyond basic repository management to
include advanced features for security, build integration, replication, advanced search, automation through a
REST API and more.

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-GoogleStorage,S3andS3OldBinaryProviders
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-AzureBlobStorageClusterBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability#ArtifactoryHighAvailability-MaximizeUptime
https://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability#ArtifactoryHighAvailability-ArtifactoryServerCluster
https://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability#ArtifactoryHighAvailability-ManageHeavyLoads
https://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability#ArtifactoryHighAvailability-MinimizeMaintenanceDowntime
https://www.jfrog.com/confluence/display/CLI/JFrog+CLI
https://www.jfrog.com/confluence/display/MC/Welcome+to+JFrog+Mission+Control
https://www.jfrog.com/confluence/display/MC/Disaster+Recovery
http://www.jfrog.com/confluence/display/RTF/Managing+Backups
http://www.jfrog.com/confluence/display/RTF/Watches

Artifactory
Query
Language

A simple way to formulate complex queries that can find artifacts based on any number
of search criteria.

Black Duck
Code Center
integration

Automate security and license governance of open source components and software.

Filtered
Resources

Provision common settings and configuration to clients by turning any textual artifact
into a dynamic template based on request parameters, current user identity and artifact
properties.

GPG Signing Manage signing key pairs so you can sign packages in different formats for
authentication.

JFrog CLI A simple interface that automates access to Artifactory through a compact and smart
client.

LDAP Groups Synchronize your LDAP groups with Artifactory and leverage your existing
organizational structure to manage group-based permissions.

License Control Manage and control your organization's licensing policies for third-party dependencies
used by your software.

Properties Annotate your artifacts and folders with fully-searchable properties.

Repository
Layouts

Define the layout by which software modules areindentifiedin your repository for
automatic cleanup of old versions and cross-repository layout conversion.

Repository
Replication

Actively synchronize your repository content and metadata with remote Artifactory
repositories using pull or push replication.

REST API Automate your repository management and release life-cycle with a powerful REST
API.

Smart Search Save search results in a stash browser for easy access and perform bulk operations on
the result set.

SSO Integrate with SSO infrastructures such as , and .Apache HTTPd Atlassian Crowd SAML

User Plugins Extend Artifactory by plugging in your own custom Groovy scripts.

Watches Watch selected artifacts, folders, or repositories for any event , and receive email
notifications on changes that are interesting to you.

Webstart and
JAR Signing

Manage signing keys and sign JAR files for use with Java Web Start

Enterprise Features

When activated with an enterprise license, JFrog Artifactory Pro offers and additional set of features to meet
the high-end needs for repository management in larger enterprises.

Filestore
Sharding

Implement a sharded filestore for a flexible filestore that offers unmatched stability, unlimited
scalability and optimized performance.

Google
Cloud
Storage

Let your Artifactory filestore reside with GCS for unlimited scalability, security and disaster
recovery capabilities.

High
Availability

Deploy Artifactory in a high availability configuration to maximize uptime (up to five-nines
availability), manage heavy loads and minimize maintenance downtime.

Multi-push
Replication

Replicate a repository to multiple remote sites simultaneously.

S3 Object
Storage

Manage your filestore on the cloud with any S3 compliant provider such as Amazon S3.

https://www.jfrog.com/confluence/display/CLI/JFrog+CLI
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-Multi-pushReplication
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-Multi-pushReplication

Artifactory Query Language

Overview

Artifactory Query Language (AQL) is specially designed to let you uncover any data related to the
artifacts and builds stored within Artifactory. Its syntax offers a simple way to formulate complex
queries that specify any number of search criteria, filters, sorting options, and output parameters. AQL
is exposed as a RESTful API which uses data streaming to provide output data resulting in extremely
fast response times and low memory consumption. Currently, AQL can only extract data that resides
in your instance of Artifactory, so it runs on ,local repositories and remote repository caches virtu

.al repositories

Here are a few simple examples:

// Return all artifacts of the "artifactory"
build.
items.find({"@build.name":{"$eq":"artifactory"}})

// Return all builds that have a dependency with
a license that is not Apache.
builds.find({"module.dependency.item.@license":{"
$nmatch":"Apache-*"}})

// Return all archives containing a file called
"org/artifactory/Main.class".
items.find({"archive.entry.name":{"$eq":"Main.cla
ss"} ,
"archive.entry.path":{"$eq":"org/artifactory"}})

Here is a slightly more complex example.

Page Contents
Overview
Enterprise Features

Read more
Artifactory Query Language
Atlassian Crowd and JIRA Integration
Azure Blob Storage
Black Duck Code Center Integration
Filestore Sharding
Filtered Resources
Google Cloud Storage
GPG Signing
LDAP Groups
License Control
OAuth Integration
Properties
Repository Layouts
Repository Replication
S3 Object Storage
SAML SSO Integration
Single Sign-on
Smart Searches
SSH Integration
User Plugins
Watches
WebStart and Jar Signing

http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-LocalRepositories
http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories
https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-VirtualRepositories
https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-VirtualRepositories

// Return all entries of any archive named
"Artifactory.jar" from any build named
"Artifactory" with
// build number 521.
archive.entries.find({
 "archive.item.name":{"$eq":"Artifactory.jar"},

"archive.item.artifact.module.build.name":{"$eq":
"Artifactory"},

"archive.item.artifact.module.build.number":{"$eq
":"521"}
})

Here is an another example that shows the full power of AQL to mine information from your repositories in a way that no other tool can match.

Page Contents
Overview
Architecture

Supported Domains
Usage

Syntax
Using Fields

Execution
Entities and Fields
Constructing Search Criteria

Field Criteria
Properties Criteria
Compounding Criteria

Matching Criteria on a Single Property ($msp)
Comparison Operators
Using Wildcards

Using Wildcards with $match and $nmatch
"Catch all" Notation on Properties
Examples

Date and Time Format
Relative Time Operators

Specifying Output Fields
Displaying All Fields
Displaying Specific Fields
Users Without Admin Privileges

Filtering Properties by Key
Sorting
Display Limits and Pagination
Working With Virtual Repositories

Filtering on a Virtual Repository
Output Fields

// Compare the contents of artifacts in 2 "maven+example" builds
items.find(
 {
 "name":{"$match":"multi2*.jar"},
 "$or":[
 {
 "$and":[
 {"artifact.module.build.name":{"$eq":"maven+example"}},
 {"artifact.module.build.number":{"$eq":"317"}}
]
 },
 {
 "$and":[
 {"artifact.module.build.name":{"$eq":"maven+example"}},
 {"artifact.module.build.number":{"$eq":"318"}}
]
 }
]
}).include("archive.entry")

Click to view the output of this query...

{
 "results" : [{
 "repo" : "ext-snapshot-local",
 "path" : "org/jfrog/test/multi2/3.0.0-SNAPSHOT",
 "name" : "multi2-3.0.0-20151012.205507-1.jar",
 "type" : "file",
 "size" : 1015,
 "created" : "2015-10-12T22:55:23.022+02:00",
 "created_by" : "admin",
 "modified" : "2015-10-12T22:55:23.013+02:00",
 "modified_by" : "admin",
 "updated" : "2015-10-12T22:55:23.013+02:00",
 "archives" : [{
 "entries" : [{
 " " : "App.class",entry.name
 "entry.path" : "artifactory/test"
 }, {
 " " : "MANIFEST.MF",entry.name
 "entry.path" : "META-INF"
 }]
 }]
 },{
 "repo" : "ext-snapshot-local",
 "path" : "org/jfrog/test/multi2/3.0.0-SNAPSHOT",
 "name" : "multi2-3.0.0-20151013.074226-2.jar",
 "type" : "file",
 "size" : 1015,
 "created" : "2015-10-13T09:42:39.389+02:00",
 "created_by" : "admin",
 "modified" : "2015-10-13T09:42:39.383+02:00",
 "modified_by" : "admin",
 "updated" : "2015-10-13T09:42:39.383+02:00",
 "archives" : [{
 "entries" : [{
 " " : "App.class",entry.name
 "entry.path" : "artifactory/test"
 }, {
 " " : "MANIFEST.MF",entry.name
 "entry.path" : "META-INF"
 }]

http://entry.name/
http://entry.name/
http://entry.name/
http://entry.name/

Architecture

AQL is constructed as a set of interconnected domains as displayed in the diagram below. You may run queries only on one domain at a time,
and this is referred to as the domain of the query. Primary

Currently, the following are supported as primary domains: , and i.e., your queries may be of the form: Item Build, Entry, Promotion. items.find(.
, ...), builds.find(...) archive.entries.find(...), or build.promotions.find(...)

You may use fields from other domains as part of your search criteria or to specify fields to display in the output, but in that case, you need to
follow the conventions described in .Using Fields

Supported Domains

AQL was introduced in Artifactory V3.5.0 with support for as a primary domain with its attached , as well as as aItem Property Statistic
secondary domain. Later versions of Artifactory introduced additional domains that can be included in queries. The following table summarizes
from which version each domain is accessible.

 3.5.0 4.2.0 4.7.0

Item

Item.Property

Statistic

}]
}],
"range" : {
"start_pos" : 0,
"end_pos" : 2,
"total" : 2
}
}

https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-UsingFields

Archive

Archive.Entry

Artifact

Dependency

Module

Module.Property

Build

Build.Property

Promotion

Usage

Syntax

<domain_query>.find(<criteria>).include(<fields>).sort(<order_and_fields>)
.limit(<num_records>).offset(<offset_records>)

where:

domain_query

The query corresponding to the primary domain. Must be one of , or .items builds entries

criteria

The search criteria in valid JSON format

fields

(Optional) There is a default set of fields for query output. This parameter lets you thatspecify a different set of fields
should be included in the output

order_and_fields

(Optional) The fields on which the output should be sorted, and the sort order. A default set of fields and sort order is
defined for each domain.

num_records

(Optional) The maximum number of records that should be extracted. If omitted, all records answering the query criteria will
be extracted.

offset

(Optional) The offset from the first record from which to display results (i.e. how many results should be skipped for display)

Limitation
Sort, and elements only work in the following cases:limit offset

Using Fields

Any fields from your primary domain can be used directly anywhere in your query. If you use fields from other domains, they must be specified
using a complete relation path from the primary domain.

For example, to find all items in a repository called "myrepo" you would use:

items.find({"repo": "myrepo"})

But to find all items created by modules named "mymodule" you would use:

items.find({"artifact.module.name" : "mymodule"})

And since you may also issue a query from the domain, to find all builds that generated an item called "artifactory.war", you could also use:build

builds.find({"module.artifact.item.name": "artifactory.war"})

Execution

To execute an AQL query, use the .Artifactory Query Language REST API

Entities and Fields

You may issue a request according to the above, and configure your request to display fields from any of the domains.find syntax

Domain Field Name Type Description

item repo String The name of the repository in which this item is stored

path String The full path associated with this item

name String The name of the item

created Date When the item was created

modified Date File system timestamp indicating when the item was last modified

updated Date When the item was last uploaded to a repository.

created_by String The name of the item owner

modified_by String The name of the last user that modified the item

type Enum The item type (file/folder/any).

If is not specified in the query, the default type searched for is type file

Your query does not have an elementinclude
If you do have an element, you only specify fields from the primary domain in it.include

For example, in the following query, , and will not work because the primary domain is , but the element ssort limit offset item include
pecifies that fields from the the , and domains should be displayed:artifact module build

items.find().include("artifact","artifact.module","artifact.module.b
uild")

depth int The depth of the item in the path from the root folder

original_md5 String The item's md5 hash code when it was originally uploaded

actual_md5 String The item's current md5 hash code

original_sha1 String The item's sha1 hash code when it was originally uploaded

actual_sha1 String The item's current sha1 hash code

sha256 String The item's sha256 hash code

size long The item's size on disk

virtual_repos String The virtual repositories which contain the repository in which this item is stored.

archive

entry name String The entry's name

path String The path of the entry within the repository

promotion created Date When the build was promoted

created_by String The Artifactory user that promoted the build

status String The status of the promotion

repo String The name of the repository to which the build was promoted

comment String A free text comment about the promotion

user String The CI server user that promoted the build

build url String The URL of the build

name String The build name

number String The build number

created Date File system timestamp indicating when the item was last modified

created_by String The name of the user who created the build

modified Date File system timestamp indicating when the build was last modified

modified_by String The name of the last user that modified the build

property key String The property key

value String The property value

stat downloaded date The last time an item was downloaded

downloads int The total number of downloads for an item

downloaded_by String The name of the last user to download this item

remote_downloads int The total number of downloads for an item from a smart remote repository proxying the local repository in
which the item resides

remote_downloaded date The last time an item was downloaded from a smart remote repository proxying the local repository in which
the item resides

remote_downloaded_by String The name of the last user to download this item from a smart remote repository proxying the local repository
in which the item resides

remote_origin String The address of the remote Artifactory instance along a smart remote proxy chain from which the download
request originated.

remote_path String The full path along a smart remote proxy chain through which the download request went from the origin
instance to the current instance.

The archive domain currently contains no fields

artifact name String The name of the artifact

type String The type of the artifact

sha1 String The SHA1 hash code of the artifact

md5 String The MD5 hash code of the artifact

module name String The name of the module

dependency

name String The name of the dependency

scope String The scope of the dependency

type String The type of the dependency

sha1 String The SHA1 hash code of the dependency

md5 String The MD5 hash code of the dependency

Constructing Search Criteria

The element must be a valid JSON format statement composed of the criteria that specify the items that should be returned. It iscriteria
essentially a compound boolean statement, and only elements for which the statement evaluates to are returned by the query. true

Each criterion is essentially a comparison statement that is applied either to a field or a property. Please see the full list of Comparison Operators.
While each criterion may be expressed in complete general format, AQL defines shortened forms for readability as described below.

Field Criteria

The general way to specify a criterion on a field is as follows:

{"<field>" : {"<comparison operator>" : "<value>"}}

If the query applied is to a different domain, then field names must be pre-pended by a relation path to the primary domain.

For example:

//Find items whose "name" field matches the expression "*test.*"
items.find({"name": {"$match" : "*test.*"}})

//Find items that have been downloaded over 5 times.
//We need to include the "stat" specifier in "stat.downloads" since
downloads is a field of the stat domain and not of the item domain.
items.find({"stat.downloads":{"$gt":"5"}})

//Find items that have never been downloaded. Note that when specifying
zero downloads we use "null" instead of 0.
//We need to include the "stat" specifier in "stat.downloads" since
downloads is a field of the stat domain and not of the item domain.
items.find({"stat.downloads":{"$eq":null}})

//Find builds that use a dependency that is a snapshot
builds.find({"module.dependency.item.name":{"$match":"*SNAPSHOT*"}})

Properties Criteria

Artifactory lets you attach, and search on properties in three domains: , and items modules builds.

The general way to specify a criterion on a property is as follows:

{"@<property_key>":{"operator":"<property_value>"}}

Here are some examples:

//Find items that have been approved by QA"
items.find({"@qa_approved" : {"$eq" : "true"}})

//Find builds that were run on a linux machine"
builds.find({"@os" : {"$match" : "linux*"}})

//Find items that were created in a build that was run on a linux machine.
items.find({"artifact.module.build.@os" : {"$match" : "linux*"}})

Fields with "Zero" value in the stat domain
Note that when searching for items that have a "zero" value in the stat domain, you should search for null, not 0. For example, as
shown above, when searching for items with zero downloads you specify "null" instead of 0.

Short notation for Field criteria
AQL supports a short notation for search criteria on fields.

 An "equals" ("$eq") criterion on a field may be specified as follows:

{"<field>" : "<value>"}

Example

Find items whose "name" field equals "ant-1.9.4.jar"

Regular notation

items.find({"name":{"$eq":"ant-1.9.4.jar"}})

Short notation

items.find({"name":"ant-1.9.4.jar"})

Accessing the right properties
If you are specifying properties from the primary domain of your query, you may simply enter the property key and value as described
above. If you are specifying properties from one of the other domains, you need to specify the full relational path to the property.

In the example below, the primary domain is the domain, but we want to find builds based a property in the domain, so webuild item
must specify the full path to the property:

builds.find({"module.artifact.item.@qa_approved" : {"$ne" : "true"}})

Short notation for properties criteria
AQL supports a short notation for search criteria on properties.

An "equals" ("$eq") criterion on a property may be specified as follows:

{"@<property_key>" : "<property_value>"}

Compounding Criteria

Search criteria on both fields and properties may be nested and compounded into logical expressions using " " or " " operators. If no$and $or
operator is specified, the default is $and

<criterion>={<"$and"|"$or">:[{<criterion>},{<criterion>}]

Here are some examples:

Example

Find items with associated properties named "license" with a value that equals "GPL"

Regular notation

items.find({"@artifactory.licenses" : {"$eq" : "GPL"}})

Short notation

items.find({"@artifactory.licenses" : "GPL"})

Criteria may be nested to any degree
Note that since search criteria can be nested to any degree, you may construct logical search criteria with any degree of complexity
required.

//This example shows both an implicit "$and" operator (since this is the
default, you don't have to expressly specify it, but rather separate the
criteria by a comma), and an explicit "$or" operator.
//Find all items that are files and are in either the jcenter or my-local
repositories.
items.find({"type" : "file","$or":[{"repo" : "jcenter", "repo" : "my-local"
}]})

//Find all the items that are either in a repository called "debian" and
whose name ends with ".deb" or are in a repository called "yum" and whose
name ends with ".rpm".
items.find(
 {
 "$or":
 [
 {
 "$and":
 [
 {"artifact.module.build.name" : "my_debian_build"} ,
 {"name" : {"$match" : "*.deb"}}
]
 },
 {
 "$and":
 [
 {"artifact.module.build.name" : "my_yum_build"} ,
 {"name" : {"$match" : "*.rpm"}}
]
 }
]
 }
)

//Find all items in a repository called "my_local" that have a property
with a key called "license" and value that is any variant of "LGPL".
items.find({"repo" : "my_local"},{"@artifactory.licenses" : {"$match" :
"*LGPL*"}})

Matching Criteria on a Single Property ($msp)

A search that specifies several criteria on properties may sometimes yield unexpected results.

This is because items are frequently annotated with several properties, and as long as any criterion is true for any property, the item will be
returned in a regular . find

But sometimes, we need to find items in which a single specific property answers several criteria. For this purpose we use the $msp (match on
operator.single property)

The fundamental difference between a regular and using the operator is:find $msp

find will return an item if of its properties answer of the criteria in the search term. ANY ALL
$msp will only return an item if at least of its properties answers of the criteria in the term. ONE ALL $msp

Here is an example.

Consider two items A and B.

A has a license property with value AGPL-V3

B has two license properties . One is , and the other LGPL-2.1 LGPL-2.2

Now let's assume we want to find items that use any variety of GPL license as long as it's NOT LGPL-2.1.

In our example we would expect to get both returned since has and has .Items A and B A AGPL-V3 B LGPL-2.2

As a first thought, we might write our query as follows:

items.find({
 "@license":{"$match": "*GPL*"},
 "@license":{"$nmatch": "LGPL-2.1*"}
 })

But this query only returns .item A

Item A is returned because it clearly answers both criteria: "@license":{"$match": "*GPL*"} and "@license":{"$nmatch": "LGPL-2.1*"}

Item B is not returned because it has the property license=LGPL-2.1 which does not meet the criterion of "@license":{"$ ": "LGPL-2.1*"}.nmatch

If we use the operator as follows:$msp

"items.find({
 "$msp": [
 "@license":{"$match": "*GPL*"},
 "@license":{"$nmatch": "LGPL-2.1*"}
]}).

Then both are returned. Item A and Item B

Item A is returned because it has the @license property which meets the {"@license":{"$match": "*GPL*"}} criterion andAGPL-V3 both
the "@license":{"$nmatch": "LGPL-2.1*"} criterion.

Item B is returned because it has the @license property which also meets the{"@license":{"$match": "*GPL*"}} criterion andLGPL-2.2 both
the "@license":{"$nmatch": "LGPL-2.1*"} criterion.

Comparison Operators

The following table lists the full set of comparison operators allowed:

Operator Types Meaning

$ne string, date, int, long Not equal to

$eq string, date, int, long Equals

$gt string, date, int, long Greater than

$gte string, date, int, long Greater than or equal to

Note that the operator works equally well on all domains that have properties: , and .$msp item module build

$lt string, date, int, long Less than

$lte string, date, int, long Less than or equal to

$match string Matches

$nmatch string Does not match

For time-based operations, please also refer to .Relative Time Operators

Using Wildcards

To enable search using non-specific criteria, AQL supports wildcards in common search functions.

Using Wildcards with and $match $nmatch

When using the " " and " " operators, the "*" wildcard replaces any string and the "?" wildcard replaces a single character.$match $nmatch

"Catch all" Notation on Properties

In addition to supporting " " and " ", AQL supports a notation that uses wildcards to match key or value on properties.$match $nmatch any any

If you specify "@*" as the property key, then it means a match on any key.

If you specify " " as the property value, then it means a match on any value*

Example

Find items that have any property with a value of "GPL"

Regular
notation

items.find({"$and" : [{"property.key" : {"$eq" : "*"}}, {"property.value" : {"$eq" :
"GPL"}}]})

Short notation

items.find({"@*":"GPL"})

Example

Find any items annotated with any property whose key is "license" (i.e. find any items with a "license" property)

Regular notation

items.find({"$and" : [{"property.key" : {"$eq" : "license"}}, {"property.value" : {"$eq" : "*"}}]})

Short notation

items.find({"@artifactory.licenses":"*"})

Examples

To avoid confusion, here are some examples that use the "*" and "?" characters explaining why they are interpreted as wildcards or literals.

Query Wildcard
or
Literal

Explanation What the query
returns

items.find({"name":{"$match":"ant-1.9.4.*"}}) Wildcard Wildcards on fields are allowed with the opera$match
tor.

All items whose name
matches the expression
"ant-1.9.4.*"

items.find({"name":{"$eq":"ant-1.9.4.*"}}) Literal Wildcards on fields are only allowed with the a$match
nd operators.$nmatch

Only find items whose
name is literally
"ant-1.9.4.*"

items.find({"@artifactory.licenses":"*"}) Wildcard For properties, this short notation is allowed and
denotes any value

All items with a property
whose key is "license"

Be careful not to misuse widlcards
Wildcard characters ("*" and "?") used in queries that do not conform to the above rules are interpreted as literals.

items.find({"@artifactory.licenses":"*GPL"}) Literal This is the short notation replacing the $eq operator for
properties, but it does not use the "catch all" notation
for properties.

All items with a license
whose value is literally
"*GPL"

items.find({"@artifactory.licenses":{"$match
":"*GPL*"}})

Wildcard Wildcards on properties are allowed with the o$match
perator.

All items with a license
matches the expression
"*GPL*"

Date and Time Format

AQL supports Date and Time formats according to a of the ISO 8601 Standard for Date and Time Formats.W3C profile

The complete date and time notation is specified as:

YYYY-MM-DDThh:mm:ss.sTZD (e.g., 2012-07-16T19:20:30.45+01:00)

Date/Time specified in partial precision is also supported: (i.e. specify just the year, or year and month, year, month and day etc.)

For example, the following query will return all items that were modified after July 16, 2012 at 30.45 seconds after 7:20pm at GMT+1 time zone:

//Find all the items that have been modified after
2012-07-16T19:20:30.45+01:00
items.find({"modified" : {"$gt" : "2012-07-16T19:20:30.45+01:00"}})

//Find all the builds that have were created after 2012-07-01
builds.find({"created" : {"$gt" : "2012-07-01"}})

For full details, please refer to the .W3C documentation

Relative Time Operators

AQL supports specifying time intervals for queries using relative time. In other words, the time interval for the query will always be relative to the
time that the query is run, so you don't have to change or formulate the time period, in some other way, each time the query is run. For example,
you may want to run a query over the last day, or for the time period up to two weeks ago.

Relative time is specified using the following two operators:

$before

The query is run over complete period up to specified time.

$last

The query is run over period from the specified time until the query is run

Time periods are specified with a number and one of the following suffixes:

milliseconds

 "mills", "ms"

seconds

"seconds", "s"

minutes

"minutes"

days

"days", "d"

weeks

"weeks", "w"

months

"months", "mo"

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

years

"years", "y"

For example, to specify five days, you could use "5d". To specify two weeks, you could use "2w".

Below are some examples using relative time operators:

//Find all the items that were modified during the last three days
items.find({"modified" : {"$last" : "3d"}})

 //Find all the builds that were created up to two weeks ago (i.e. no later
than two weeks ago)
builds.find({"created" : {"$before" : "2w"}})

Specifying Output Fields

Each query displays a default set of fields in the result set, however you have complete control this and may specify which fields to display using
an optional element in your query.include

You can even specify to display fields from other entities related to your result set.

Displaying All Fields

Use: .include("*")

For example:

//Find all items, and display all the item fields
items.find().include("*")

Displaying Specific Fields

Each query displays a default set of fields in the output. Using the element you can override this default setting and specify any.include
particular set of fields you want to receive in the output.

Use: .include("<field1>", "<field2>"...)

For example:

//Find all items, only display the "name" and "repo" fields
items.find().include("name", "repo")

You can also display specific fields from other entities associated with those returned by the query.

If you specify any field from the domain, then this will override the default output setting, and only the fields you expressly specified willitem item
be displayed.

If you only specify fields from the or domains, then the output will display the default fields from the domain, and in addition,property stat item
the other fields you expressly specified from the or domains.property stat

For example:

//Find all items, and display the "name" and "repo" fields as well as the
number of "downloads" from the corresponding "stat" entity
items.find().include("name", "repo", "stat.downloads")

//Find all items, and display the default item fields fields as well as the
stat fields
items.find().include("stat")

//Find all items, and display the default item fields as well as the stat
and the property fields
items.find().include("stat", "property")

//Find all items, and display the "name" and "repo" fields as well as the
stat fields
items.find().include("name", "repo", "stat")

//Find all builds that generated items with an Apache license, and display
the build fields as well as the item "name" fields. Click below to view the
output of this query
builds.find({
 "module.artifact.item.@license":{"$match":"Apache*"}
 }
).include("module.artifact.item.name")

Click to view the output of the last query

Note that the output displays the default fields of the "build" domain, and the "name" field from the item domain. Fields from the module and
artifact domains are not displayed since they were not specified in the include element.
{

"results" : [{
 "build.created" : "2015-09-06T15:49:01.156+03:00",
 "build.created_by" : "admin",
 " " : "maven+example",build.name
 "build.number" : "313",
 "build.url" : " ",http://localhost:9595/jenkins/job/maven+example/313/
 "modules" : [{
 "artifacts" : [{
 "items" : [{
 "name" : "multi-3.0.0-20150906.124843-1.pom"
 }]
 }]
 }]
},{
 "build.created" : "2015-09-06T15:54:40.726+03:00",
 "build.created_by" : "admin",
 " " : "maven+example",build.name
 "build.number" : "314",
 "build.url" : " ",http://localhost:9595/jenkins/job/maven+example/314/
 "modules" : [{
 "artifacts" : [{
 "items" : [{
 "name" : "multi-3.0.0-20150906.124843-1.pom"
 }]
 }]
 }]
}],
"range" : {
 "start_pos" : 0,

http://build.name/
http://localhost:9595/jenkins/job/maven+example/313/
http://build.name/
http://localhost:9595/jenkins/job/maven+example/314/

1.
2.

 "end_pos" : 2,
 "total" : 2
}

}

Users Without Admin Privileges

To ensure that non-privileged users do not gain access to information without the right permissions, users without admin privileges have the
following restrictions:

The primary domain in the query may only be item.
The following three fields must be included in the directive: , and .include name, repo path

Note, however, that once these restrictions are met, you may include any other accessible field from any domain in the include directive.

Filtering Properties by Key

As described above, the primary use of the .include element is to specify output fields to display in the result set.

This notion is applied in a similar way in regard to properties. Each item may be annotated with several (even many) properties. In many cases
you may only be interested in a specific subset of the properties, and only want to display those.

So the . element can be used to filter out unwanted properties from the result, and only display (i.e. "include") those you are interested in.include

For example, to display all the properties annotating an item found :

//Find all items, and display the "name" and "repo" fields, as well as all
properties associated with each item
items.find().include("name", "repo", "property.*")

However, if you are only interested in a specific property (e.g. you just want to know the version of each item returned), you can filter out all other
properties and only include the property with the key you are interested in:

//Find all items, and display the "name" and "repo" fields, as well as the
key and value of the "version" property of each item
items.find().include("name", "repo", "@version")

Sorting

AQL implements a default sort order, however, you can override the default and specify any other sort order using fields in your output by adding
the element to the end of your query as follows: .sort

.sort({"<$asc | $desc>" : ["<field1>", "<field2>",...]})

Here are some examples:

You can only specify sorting on fields that are displayed in the output (whether they are those displayed by default or due to a .includ
 element).e

// Find all the jars in artifactory and sort them by repo and name
items.find({"name" : {"$match":"*.jar"}).sort({"$asc" : ["repo","name"]})

 // Find all the jars in artifactory and their properties, then sort them
by repo and name
items.find({"name" : {"$match":"*.jar"}}).include("@").sort({"$asc" :
["repo","name"]})

Display Limits and Pagination

Using the elements, you can limit the number of records that will be displayed by your query..limit

// Find all the jars in artifactory and sort them by repo and name, but
only display the first 100 results
items.find({"name" : {"$match":"*.jar"}).sort({"$asc" :
["repo","name"]}).limit(100)

You can also implement pagination when you want to focus on a subset of your results using the element..offset

//Run the same example, but this time, display up to 50 items but skipping
the first 100
items.find({"name" : {"$match":"*.jar"}).sort({"$asc" :
["repo","name"]}).offset(100).limit(50)

Working With Virtual Repositories

From version 4.8.1, AQL supports virtual repositories. Since virtual repositories only contain items indirectly through the local repositories they
include, several conventions have been laid down as described in the following sections.

Filtering on a Virtual Repository

You may limit queries to search in a specified virtual repository. In practice this means that the query will be applied to local repositories and
remote repository caches included in the specified virtual repository.

For example, find all the items within any repository contained in a virtual repository called "my-virtual":

items.find({"repo" : "my-virtual"})

Output Fields

The domain has a field which includes the virtual repositories in which a found item is contained. In general, to display thisitem virtual_repos
field, you need to expressly specify it in your query as an . However, if your query specifies a virtual repository as its search target, the output field

 field is implicitly included in the search results as an output field.virtual_repos

Limitation
Note the important limitation on and .sort, limit offset described above

An item must be accessible in order to be found

Atlassian Crowd and JIRA Integration

Overview

The integration between Artifactory and Crowd/JIRA allows you to delegate authentication requests to
Atlassian Crowd/JIRA, use authenticated Crowd/JIRA users and have Artifactory participate in a transparent
SSO environment managed by Crowd/JIRA.

Usage

Crowd integration can then be configured in the module under .Admin Security | Crowd/JIRA

A search query will only find an item in a virtual repository if it is accessible by that virtual repository. For example, the local repository
that contains an item may specify and which prevents access to the item by the encapsulating virtualinclude or exclude pattern
repository. In this case the search query will not find the item.

Page Contents
Overview
Usage
Crowd Groups

https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-IncludeandExcludePatterns

Field Name Description

Enable Crowd /
JIRA Users
Management
Integration

Set this checkbox to enable security integration with Atlassian Crowd or JIRA.

User Management
Server

Select which User Management Server you are using.

Server URL

The full URL of the server to use.

Application Name

The application name configured for Artifactory in Crowd/JIRA.

Crowd Application
Password

The application password configured for Artifactory in Crowd/JIRA.

Session Validation
Interval

The time window, in minutes, in which the session does not need to be revalidated.

Use Default Proxy
Configuration

If this checkbox is set and a default proxy definition exists, it is used to pass through to the Crowd/JIRA Server.

1.
2.
3.
4.

5.

6.

7.

8.

1.
2.

3.

4.

Auto Create
Artifactory Users

When automatic user creation is off, authenticated users will not be automatically created inside Artifactory. Instead, for
every request from a Crowd/JIRA user, the user is temporarily associated with default groups (if such groups are
defined), and the permissions for these groups applies.

Without automatic user creation, you will need to manually create the user inside Artifactory in order to manage user
permissions that are not attached to his default groups.

Filter by Group
Name

Filter the search to see only groups of the specified username. If unchecked, all Crowd groups are shown.

To enable Crowd/JIRA integration:

Select which User Management Server you are using. If you select JIRA, SSO will be disabled since it's not supported by JIRA.
Define Artifactory as a inside Crowd.Custom Application Client
Complete the Crowd server URL, and the application credentials defined in Step 1.
The session validation interval defines the principal token validity time in minutes. If left at the default of 0, the token expires only when
the session expires.
If you are using JIRA User Server provide it's URL in the "Crowd Server URL" and check the "Use JIRA User Server". This will disable
SSO, which is not supported by JIRA.
If you have a proxy server between the Artifactory server and the Crowd server, you may set the Use Default Proxy

 check-box.Configuration
You may instruct Artifactory to treat externally authenticated users as temporary users, so that Artifactory does not automatically create
them in its security store. In this case, permissions for such users are based on the permissions given to auto-join groups.
Test the configured connection and save it.

Crowd Groups

To use Crowd/JIRA groups:

Set up a Crowd server for authentication as detailed above.
Verify your setup by clicking the button on the sub-panel. A list of available Crowd groups,Refresh Synchronize Crowd Groups
according to your settings is displayed.
The groups table allows you to select which groups to import into Artifactory and displays the sync-state for each group. A group can
either be completely new or may already exist in Artifactory.
Select and import the groups that you wish to import to Artifactory. Once a group is imported (synced) a new external Crowd group is
created in Artifactory with the name of the group.

You can on the synced Crowd groups in the same way you manage them for regular Artifactory groups.Manage Permissions

Users association to these groups is external and controlled strictly by Crowd.

System properties
Crowd configuration properties may be added to the run time system properties or to the $ARTIFACTORY_HOME/etc/artifactory.

 file.system.properties

NOTE that setting a configuration through properties overrides configurations set through the user interface.

Ensure the Crowd group settings is enabled in order for your settings to become effective.

http://confluence.atlassian.com/display/CROWD/Adding+an+Application

1.

2.

3.

Azure Blob Storage

Overview

From version 5.4, Artifactory supports managing your Artifactory filestore on the cloud with Azure
Blob Storage providing you with:

Massive scalability
On the cloud, your Artifactory filestore is massively scalable. You may freely continue to
upload files without having to install or maintain any file storage devices. You can even
upload files larger than 5 GB using multi-part upload with the blob size limit currently at

. 4.75 TB Currently, there is also a 500 TB limit on an Azure Blob Storage account.
Security
An Azure Blob Storage account offers a variety of security capabilities such as role-based
access control, Azure Active Directory, in-transit security, Storage Service encryption and
more. For full details on the security capabilities provided by Azure Blob Storage, please
refer to .Azure Storage Security Overview
Disaster recovery
Since your files are replicated and stored with redundancy, using Azure Blob Storage
offers the capability for disaster recovery.

Support for Azure Blob Storage is included with .JFrog Enterprise Edition

In order to use Azure Blob Storage with Artifactory, make sure you first or to install upgrade Artifact
ory V5.4.0 or later.

To learn more, please refer to in the Microsoft AzureIntroduction to Microsoft Azure Storage
documentation.

Page Contents
Overview
Setting up
Artifactory to
Use Azure
Blob Storage

Setting
Your
Licens
e
Config
uring
Artifact
ory to
Use
Azure
Blob
Storag
e
Migrati
ng
Your
Filesto
re

Setting up Artifactory to Use Azure Blob Storage

To move your Artifactory filestore to Azure Blob Storage, execute the following steps:

Shut down Artifactory.
Set your enterprise license
Configure Artifactory to use Azure Blob Storage
Migrate your filestore to the cloud
Start up Artifactory

Setting Your License

To use Azure Blob Storage, your Artifactory installation needs to be activated with an . enterprise license

Configuring Artifactory to Use Azure Blob Storage

To configure Artifactory to use Azure Blob Storage, you need to use the Azure Blob Storage binary provider described in Configuring the
. Filestore

Migrating Your Filestore

For an Artifactory HA cluster running version 5.0 and above, to migrate your filestore, please refer to .Migrating Data from NFS

Backup your system. Your current filestore will be deleted.
Setting up Artifactory to use Azure Blob Storage will delete all files in your current
filestore.

If you already have a running installation of Artifactory, then before you setup Artifactory
to use Azure Blob Storage and migrate your filestore to the cloud, we strongly
recommend that you do a .complete system backup

First time installation or upgrade
Whether you are for the first time, or are moving your filestore to Azure Blob Storage in the context of installing Artifactory upgradin

, we recommend that you first do a standard installation of Artifactory using the default settings, or a standard upgradeg Artifactory
using your current settings.

https://docs.microsoft.com/en-us/azure/security/security-storage-overview
https://www.jfrog.com/artifactory/versions/#High-Availability
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-AzureBlobStorageBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-AzureBlobStorageBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup

Black Duck Code Center Integration

Deprecated

As of Artifactory v5.0, integration of Black Duck Code Center has been deprecated.

Access to Black Duck services is still available through its integration into JFrog Xray. For details, please
refer to the .JFrog Xray documentation

Filestore Sharding

Overview

From version 4.6, Artifactory offers a Sharding Binary Provider that lets you manage your binaries in a
sharded filestore. A sharded filestore is one that is implemented on a number of physical mounts (M), which
store binary objects with redundancy (R), where R <= M.

For example, the diagram below represents a sharded filestore where M=3 and R=2. In other words, the
filestore consists of 3 physical mounts which store each binary in two copies.

Artifactory’s sharding binary provider presents several benefits:

Unmatched stability and reliability

Thanks to redundant storage of binaries, the system can withstand any mount going down as long as M >=
R.

https://www.jfrog.com/confluence/display/XRAY/Integrations

Unlimited scalability

If the underlying storage available approaches depletion, you only need to add another mount; a process that
requires no downtime of the filestore. Once the mount is up and running, the system regenerates the filestore
redundancy according to configuration parameters you control.

Filestore performance optimization

Sharding Binary Provider offers several configuration parameters that allow you to optimize how binaries are
read from or written to the filestore according to your specific system’s requirements.

Configuring a Sharding Binary Provider

A sharding binary provider is a binary provider as described in Configuring the Filestore. is used to configure aBasic sharding configuration
sharding binary provider for an instance of Artifactory Pro.

Basic Sharding Configuration

The following parameters are available for a basic sharding configuration:

readBehavior

This parameter dictates the strategy for reading binaries from the mounts that make up the sharded filestore.

Possible values are:

roundRobin (default): Binaries are read from each mount using a round robin strategy.

writeBehavior

This parameter dictates the strategy for writing binaries to the mounts that make up the sharded filestore.
Possible values are:

 roundRobin (default): Binaries are written to each mount using a round robin strategy.

 freeSpace: Binaries are written to the mount with the greatest absolute volume of free space available.

 percentageFreeSpace: Binaries are written to the mount with the percentage of free space available.

redundancy

Default: r=1
The number of copies that should be stored for each binary in the filestore. Note that redundancy must be
less than or equal to the number of mounts in your system for Artifactory to work with this configuration.

concurrentStreamWaitTimeout

Default: 30,000 ms

To support the specified redundancy, accumulates the write stream in a buffer, and uses “r” threads
(according to the specified redundancy) to write to each of the redundant copies of the binary being written. A
binary can only be considered written once all redundant threads have completed their write operation. Since
all threads are competing for the write stream buffer, each one will complete the write operation at a different
time. This parameter specifies the amount of time (ms) that any thread will wait for all the others to complete
their write operation.

Enterprise license required
Sharded filestore is available for Artifactory installations activated with an enterprise license.

Page Contents
Overview
Configuring a Sharding Binary Provider

Basic Sharding Configuration
Using Balancing to Recover from Mount Failure
Restoring Balance in Unbalanced Redundant Storage Units
Optimizing System Storage

If a write operation fails, you can try increasing the value of this parameter.

concurrentStreamBufferKb

Default: 32 Kb
The size of the write buffer used to accumulate the write stream before being replicated for writing to the “r”
redundant copies of the binary.

maxBalancingRunTime

Default: 3,600,000 ms (1 hour)
Once a failed mount has been restored, this parameter specifies how long each balancing session may run
before it lapses until the next Garbage Collection has completed. For more details about balancing, please
refer to .Using Balancing to Recover from Mount Failure

freeSpaceSampleInterval

Default: 3,600,000 ms (1 hour)

To implement its write behavior, Artifactory needs to periodically query the mounts in the sharded filestore to
check for free space. Since this check may be a resource intensive operation, you may use this parameter to
control the time interval between free space checks.

minSpareUploaderExecutor

Default: 2

Artifactory maintains a pool of threads to execute writes to each redundant unit of storage. Depending on the
intensity of write activity, eventually, some of the threads may become idle and are then candidates for being
killed. However, Artifactory does need to maintain some threads alive for when write activities begin again.
This parameter specifies the minimum number of threads that should be kept alive to supply redundant
storage units.

uploaderCleanupIdleTime

Default: 120,000 ms (2 min)

The maximum period of time threads may remain idle before becoming candidates for being killed.

Example 1

The code snippet below is a sample configuration for the following setup:

A cached sharding binary provider with three mounts and redundancy of 2.
Each mount "X" writes to a directory called /filestoreX.
The read strategy for the provider is .roundRobin
The write strategy for the provider is . percentageFreeSpace

If a write operation fails, you can try increasing the value of this parameter.

To restore your system to full redundancy more quickly after a mount failure, you may increase the
value of this parameter. If you find this causes an unacceptable degradation of overall system
performance, you can consider decreasing the value of this parameter, but this means that the
overall time taken for Artifactory to restore full redundancy will be longer.

If you anticipate a period of intensive upload of large volumes of binaries, you can consider
decreasing the value of this parameter in order to reduce the transient imbalance between mounts
in your system.

<config version="4">
 <chain>
 <provider id="cache-fs" type="cache-fs"> <!-- This is a cached
filestore -->
 <provider id="sharding" type="sharding"> <!-- This is a
sharding provider -->
 <sub-provider id="shard1" type="state-aware"/> <!-- There
are three mounts -->
 <sub-provider id="shard2" type="state-aware"/>
 <sub-provider id="shard3" type="state-aware"/>
 </provider>
 </provider>
 </chain>

// Specify the read and write strategy and redundancy for the sharding
binary provider
 <provider id="sharding" type="sharding">
 <readBehavior>roundRobin</readBehavior>
 <writeBehavior>percentageFreeSpace</writeBehavior>
 <redundancy>2</redundancy>
 </provider>

//For each sub-provider (mount), specify the filestore location
 <provider id="shard1" type="state-aware">
 <fileStoreDir>filestore1</fileStoreDir>
 </provider>

 <provider id="shard2" type="state-aware">
 <fileStoreDir>filestore2</fileStoreDir>
 </provider>

 <provider id="shard3" type="state-aware">
 <fileStoreDir>filestore3</fileStoreDir>
 </provider>
</config>

Example 2

The following code snippet shows the "double-shards" template which can be uses as is for your binary store configuration.

<config version="4">
 <chain template="double-shards" />

 <provider id="shard-fs-1" type="state-aware">
 <fileStoreDir>shard-fs-1</fileStoreDir>
 </provider>

 <provider id="shard-fs-2" type="state-aware">
 <fileStoreDir>shard-fs-2</fileStoreDir>
 </provider>
</config>

The double-shards template uses a cached provider with two mounts and a redundancy of 1, i.e. only one copy of each artifact is stored.

<chain>
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding" type="sharding">
 <redundancy>1</redundancy>
 <sub-provider id="shard-fs-1" type="state-aware"/>
 <sub-provider id="shard-fs-2" type="state-aware"/>
 </provider>
 </provider>
</chain>

To modify the parameters of the template, you can change the values of the elements in the template definition. For example, to increase
redundancy of the configuration to 2, you only need to modify the tag as shown below.<redundancy>

<chain>
 <provider id="cache-fs" type="cache-fs">
 <provider id="sharding" type="sharding">
 <redundancy>2</redundancy>
 <sub-provider id="shard-fs-1" type="state-aware"/>
 <sub-provider id="shard-fs-2" type="state-aware"/>
 </provider>
 </provider>
</chain>

Using Balancing to Recover from Mount Failure

In case of a mount failure, the actual redundancy in your system will be reduced accordingly. In the meantime, binaries continue to be written to
the remaining active mounts. Once the malfunctioning mount has been restored, the system needs to rebalance the binaries written to the
remaining active mounts to fully restore (i.e. balance) the redundancy configured in the system. Depending on how long the failed mount was
inactive, this may involve a significant volume of binaries that now need to be written to the restored mount, which may take significant amount of
time. Since restoring the full redundancy is a resource intensive operation, the balancing operation is run in a series of distinct sessions until
complete. These are automatically invoked after a process has been run in the system.Garbage Collection

Restoring Balance in Unbalanced Redundant Storage Units

https://www.jfrog.com/confluence/display/RTF/Regular+Maintenance+Operations#RegularMaintenanceOperations-GarbageCollection

In the case of voluntary actions that cause an imbalance the system redundancy, such as when doing a filestore migration, you may manually
invoke rebalancing of redundancy using the Optimize System Storage REST API endpoint. Applying this endpoint raises a flag for Artifactory to
run rebalancing following the next Garbage Collection. Note that, to expedite rebalancing, you can invoke garbage collection manually from the
Artifactory UI.

Optimizing System Storage
Artifactory REST API provides an endpoint that allows you to raise a flag to indicate that Artifactory should invoke balancing between redundant
storage units of a sharded filestore after the next garbage collection. For details, please refer to . Optimize System Storage

Filtered Resources

Overview

The Filtered Resources Add-on (introduced in Artifactory version 2.3.3) allows treating any textual file as a
filtered resource by processing it as a template.FreeMarker

Each file artifact can be marked as 'filtered' and upon receiving a download request, the content of the artifact
is passed through a FreeMarker processer before being returned to the user.

This is an extremely powerful and flexible feature because Artifactory applies some of its own APIs to the
filtering context (see below), allowing you to create and provision dynamic content based on information
stored in Artifactory.

For example, you can provision different content based on the user's originating IP address or based on
changing property values attached to the artifact.

Marking an Artifact as a Filtered Resource

Any artifact can be specified as filtered by selecting it in the and setting the checkbox in the tab.Artifact Repository Browser Filtered General

Page Contents
Overview
Marking an Artifact as a Filtered Resource
Filtering Context
Provisioning Build Tool Settings
Example

Permissions
You must have permissions on the selected artifact in order to specify it as "Filtered".Annotate

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-OptimizeSystemStorage
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-OptimizeSystemStorage
http://freemarker.sourceforge.net/

1.
2.

Filtering Context

Artifactory provides the following environment variables for the FreeMarker template:

"properties" - Contains the of the requested artifact and any matrix params included in the()org.artifactory.md.Properties properties
request; when a clash of properties with identical keys occurs, the former takes precedence
"request" - The current request that was sent for the artifact()org.artifactory.request.Request
"security" - Artifactory's current security object()org.artifactory.security.Security

Provisioning Build Tool Settings

When logged-in as an admin user, you can provision your user-generated settings for the various build tools (Maven, Gradle and Ivy) using the
Filtered Resources features.

To provision user-generated settings:

In the , click "Set Me Up" to display the settings generator.Artifact Repository Browser
Select your build tool, set the appropriate repositories and click "Generate Settings".

http://repo.jfrog.org/artifactory/oss-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/md/Properties.html
http://repo.jfrog.org/artifactory/oss-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/request/Request.html
http://repo.jfrog.org/artifactory/oss-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/security/Security.html

2.

3.
4.
5.
6.

Download the generated settings and edit them as required.
Back in the , click "Deploy".Artifact Repository Browser
In the Deploy dialog, set your upload your settings file and set your Target Repository, Target Path.
Click "Deploy" to deploy your settings.

Example

The following example demonstrates provisioning a different resource based on the current user group and a property on the requested artifact.

In this example, the artifact 'vcsProj.conf.xml' has a property 'vcs.rootUrl' which holds the root URL for
the version control system. Depending on the user group a different project version control URL is returned.

For the template of :'vcsProj.conf.xml'

<servers>
<#list properties.get("vcs.rootUrl") as vcsUrl>
 <#list security.getCurrentUserGroupNames() as groupName>
 <vcs>${vcsUrl}/<#if groupName == "dev-product1">product1<#elseif
groupName == "dev-product2">product2<#else>global</#if></vcs>
 </#list>
</#list>
</servers>

If, for example, the value of the the property on the artifact is and the'vcs.rootUrl' 'vcsProj.conf.xml' 'http://vcs.company.com'
file is downloaded by a developer belonging to the group, then the returned content is:'dev-product2'

<servers>
 <vcs> http://vcs.company.com/product2 </vcs>
</servers>

GPG Signing

Overview

Artifactory lets you manage a pair of GPG signing keys so you can sign packages infor authentication
several formats such as Debian, Opkg and YUM. You can manage your GPG signing keys in the modAdmin
ule under .Security | Signing Keys

Generating Keys

The way to generate keys is platform dependent.

The example below shows how to generate the public and private keys on Linux:

Generating PGP keys

generate the keys
gpg --gen-key

list all keys in your system and select the pair you want to use in
Artifactory
gpg --list-keys

resolve the key-id from the lists-keys by selecting the relevant license
pub 2048R/8D463A47 2015-01-19
uid JonSmith (Jon) <jon.smith@jfrog.com>
key-id = 8D463A47

#export the private key with the specified id to a file
gpg --output {private key file name and path} --armor --export-secret-keys
{key-id}

#export the public key with the specified id to a file
gpg --output {public key file name and path} --armor --export {key-id}

You also need to specify a pass phrase that must be used together with the signing keys. The pass phrase can be saved, or passed in with a
REST API call.

Uploading Keys

To upload your signing keys, in the tab, go to Admin Security | Signing Keys.

Page Contents
Overview

Generating Keys
Uploading Keys
Downloading the Public Key

Once you have specified the key file, select the "Upload" button for the corresponding field.

Artifactory will indicate when keys are installed, and you can click on the link to download the public key.Public key is installed

If your signing keys were created with a pass-phrase, enter it in the designated field. You can click "Verify" to make sure the pass-phrase matches
the uploaded keys.

Click "Save" to save your changes.

Downloading the Public Key

Once you have uploaded your signing keys, you can download your public key whenever needed using the link. Public key is installed

Google Cloud Storage

Overview

Don't forget to click "Save"
To ensure that your signing keys are properly stored in Artifactory's database, you need to click "Save" even if your signing keys do not
have a pass-phrase.

Upload your pass-phrase with REST
If you prefer not to upload your pass phrase using the UI, you can set it using the . REST API

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetGPGPassPhrase

1.

2.

3.

From version 4.6, Artifactory fully supports Google Cloud Storage (GCS) so your Artifactory filestore can
reside on the cloud. This presents several benefits:

Unlimited scalability
Since your files are now stored on the cloud, this means that your Artifactory filestore is scalable and
effectively unlimited (to the extent offered by your storage provider). You may freely continue to
upload files without having to install or maintain any file storage devices. You can even upload files
larger than 5 GB using multi-part upload.

Security
Google's security model offers end-to-end process offering a replicated strategy with all data
encrypted both in-flight and at rest.

Disaster recovery
Since your files are replicated and stored with redundancy, this offers the capability for disaster
recovery.

Support for GCS is included with JFrog Enterprise Edition.

In order to use GCS with Artifactory, make sure you first or Artifactory V4.6 or later.install upgrade to

Setting up Artifactory to Use GCS

In order to move your Artifactory filestore to the cloud, you need to execute the following steps:

Shut down Artifactory.
Set your enterprise license
Configure Artifactory to use GCS
Migrate your files to the cloud
Start up Artifactory

Setting Your License

To use Artifactory's support for GCS, you need to have an enterprise license with your Artifactory installation.

To do so, make sure your file contains your enterprise license.$ARTIFACTORY_HOME/etc/artifactory.lic

Backup your system. Your current filestore will be deleted.
Setting up Artifactory to use GCS will delete all files in your current filestore.

If you already have a running installation of Artifactory, then before you setup Artifactory to use
GCS and migrate your filestore to the cloud, we strongly recommend that you do a complete

.system backup

Page Contents
Overview
Setting up Artifactory
to Use GCS

Setting Your
License
Configuring
Artifactory to
Use GCS
Interoperable
Storage
Access Keys

Migrating Your
Filestore

First time installation or upgrade
If you are moving your filestore to GCS in the context of upgrading Artifactory, or a first time installation, we recommend that you first do
a standard installation of Artifactory using the default settings, or a standard upgrade using your current settings.

http://www.jfrog.com/home/v_pricing#On_Premise
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup

Configuring Artifactory to Use GCS

To configure Artifactory to use a GCS object storage provider, you need to use the Google Cloud Storage binary provider described in Configuring
 making sure to set the following parameters: the Filestore

Parameter Description

testConnection

Default: true

When true, the Artifactory uploads and downloads a file when starting up to verify that the connection to the cloud storage
provider is fully functional.

multiPartLimit

Default: 100,000,000 bytes

File size threshold over which file uploads are chunked and multi-threaded.

identity

Your cloud storage provider identity.

credential

Your cloud storage provider authentication credential.

bucketName

Your globally unique bucket name on GCS.

path

The relative path to your files within the bucket

proxyIdentity

Corresponding parameters if you are accessing the cloud storage provider through a proxy server.

proxyCredential

proxyPort

proxyHost

port

Default: 80

The port number through which you want to access GCS. You should only use the default value unless you need to contact
a different endpoint for testing purposes.

endpoint

Default: .commondatastorage.googleapis.com

The GCS hostname. You should only use the default value unless you need to contact a different endpoint for testing
purposes.

httpsOnly

Default: false.

Set to true if you only want to access GCS through a secure https connection.

httpsPort

Default: 443

The port number through which you want to access GCS securely through https. You should only use the default value
unless you need to contact a different endpoint for testing purposes.

bucketExists

Default: false. Only available on .google-storage

When true, it indicates to the binary provider that a bucket already exists in Google Cloud Storage and therefore does not
need to be created.

JetS3t Framework
Artifactory uses the JetS3t framework to access GCS. Some of the parameters below are used to set the corresponding value in the
framework. For more details, please refer to the . JetS3t Configuration Guide

https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-GoogleStorage,S3andS3OldBinaryProviders
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-GoogleStorage,S3andS3OldBinaryProviders
http://binary.provider.s3.bucket.name/
http://commondatastorage.googleapis.com
http://www.jets3t.org/toolkit/configuration.html

The following snippet shows the default chain that uses google-storage as the binary provider:

<config version="v1">
 <chain>
 <provider id="cache-fs" type="cache-fs">
 <provider id="eventual" type="eventual">
 <provider id="retry" type="retry">
 <provider id="google-storage" type="google-storage"/>
 </provider>
 </provider>
 </provider>
 </chain>

<!-- Here is an example configuration part for the google-storage: -->
 <provider id="google-storage" type="google-storage">
 <endpoint>commondatastorage.googleapis.com</endpoint>
 <bucketName><NAME></bucketName>
 <identity>XXXXXX</identity>
 <credential>XXXXXXX</credential>
 </provider>
</config>

Interoperable Storage Access Keys

The Interoperability API lets you use HMAC authentication and lets GCS interoperate with tools written for other cloud storage systems. To use
GCS, you need to turn on this API and use interoperability access details of the current user in GCS. This API is enabled per project member, not
per project. Each member can set a default project and maintain their own access keys. For more details, please refer to Google Cloud Storage

.Interoperability

You can obtain your access key parameters through your Google GCS account console and set them into the corresponding parameters in
Artifactory as follows:

identity

This parameter is provided by GCS as your access key

credential

This parameter is provided by GCS as your access secret

Migrating Your Filestore

To migrate your filestore, you need to execute the following steps:

Stop Artifactory
Copy the $ARTIFACTORY_HOME/data/filestore directory to your GCS bucket name and path specified when you configured

.Artifactory to use GCS
Start Artifactory

Keep your database settings
Make sure you don't change your database settings in your file.db.properties

https://cloud.google.com/storage/docs/interoperability
https://cloud.google.com/storage/docs/interoperability

LDAP Groups

Overview

The LDAP Groups Add-on allows you to synchronize your LDAP groups with Artifactory and leverage your
existing organizational structure for managing group-based permissions.

Unlike many LDAP integrations, LDAP groups in Artifactory use super-fast caching, and has support for both
Static, Dynamic and Hierarchical mapping strategies. Powerful management is accomplished with multiple
switchable LDAP settings and visual feedback about the up-to-date status of groups and users coming from
LDAP.

LDAP groups synchronization works by instructing Artifactory about the external groups authenticated users
belong to. Once logged-in, you are automatically associated with your LDAP groups and inherit group-based
permission managed in Artifactory.

Usage

LDAP Groups settings are available in the module under Admin Security | LDAP.

To use LDAP groups you must first from the LDAP Settings screen. You must also alert Artifactoryset up an LDAP server for authentication
about the correct LDAP group settings to use with your existing LDAP schema.

Make sure users log in
Synchronizing LDAP groups does not automatically create users that are members of those
groups. Once the LDAP connection is configured, the LDAP users are only created in Artifactory
after they log in to Artifactory for the first time. Automatic creation of users can be controlled by the
Auto Create Artifactory Users checkbox in the LDAP Settings screen.

Page Contents
Overview
Usage

Group Synchronization Strategies
Synchronizing LDAP Groups with Artifactory

Importing Groups Through the UI
Using the REST API

Watch the Screencast

Active Directory Users
For specific help with setting up LDAP groups for an Active Directory installation please see .Managing Security with Active Directory

https://www.jfrog.com/confluence/display/RTF/Managing+Security+with+LDAP#ManagingSecuritywithLDAP-AutoCreateArtifactoryUsers
https://www.jfrog.com/confluence/display/RTF/Managing+Security+with+LDAP#ManagingSecuritywithLDAP-Configuration

Group Synchronization Strategies

Artifactory supports three ways of mapping groups to LDAP schemas:

Static: Group objects are aware of their members, however, the users are not aware of the groups they belong to.
Each group object such as or holds its respective member attributes, typically or groupOfNames groupOfUniqueNames member uniq

, which is a user DN.ueMember

Dynamic: User objects are aware of what groups they belong to, but the group objects are not aware of their members.
Each user object contains a custom attribute, such as , that holds the group DNs or group names of which the user is a member.group

Hierarchy: The user's DN is indicative of the groups the user belongs to by using group names as part of user DN hierarchy.
Each user DN contains a list of 's or custom attributes that make up the group association. ou
For example,

 indicates that belongs to two groups: and .uid=user1,ou=developers,ou=uk,dc=jfrog,dc=org user1 uk developers

Synchronizing LDAP Groups with Artifactory

Importing Groups Through the UI

Once you have configured how groups should be retrieved from your LDAP server, you can verify your set up by clicking the button onRefresh
the sub-panel. A list of available LDAP groups is displayed according to your settings.Synchronize LDAP Groups

You are now ready to synchronize/import groups into Artifactory. The groups table allows you to select which groups to import and displays the
sync-state for each group:

A group can either be completely new or already existing in Artifactory. If a group already exists in Artifactory it can become outdated (for
example, if the group DN has changed) - this is indicated in the table so you can select to re-import it.

Once a group is imported (synced) a new external LDAP group is created in Artifactory with the name of the group.

Using OpenLDAP
When using OpenLDAP, you can't apply the strategy because the attribute is not defined by default (isDynamic memberOf memberOf
an overlay), so Artifactory would not be able to fetch it from the LDAP server.

Once you have imported LDAP groups, you can on them as with regular Artifactory groups. Users association to theseManage Permissions
groups is external and controlled strictly by LDAP.

To synchronize a group through the UI, in the module, under select the group you want to synchronize, and search forAdmin Security | LDAP,
groups that have been defined under the corresponding group settings. Once groups have been found, select Import.

Once the groups are synchronized, you should see them in your list of groups (module under) indicated as "External".Admin Security | Groups

Using the REST API

You may also synchronize LDAP groups by using the REST API Create Group to create groups with the ‘ldap’ realm and full DN path to the group
object under your LDAP server.

When using the REST API to synchronize LDAP groups, you need to specify the exact and full Group DN path to the group on your LDAP server.
The example below shows the JSON payload you would use to synchronize the "testgroup" group displayed in the below LDAP server:

Make sure that LDAP group settings is enabled (in the panel) in order for your settings to become effective.LDAP Groups Settings

Limitation
 Make sure to use lower case only when creating LDAP groups through the REST API. Using upper or mixed case will prevent
synchronization of groups.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateorReplaceGroup

Sample JSON:
{
 "name": "testgroup",
 "description" : "This groups already exists in ldap",
 "autoJoin" : false,
 "realm": "ldap",
 "realmAttributes":
"ldapGroupName=testgroup;groupsStrategy=STATIC;groupDn=cn=testgroup,ou=sup
port,ou=UserGroups,dc=openstack,dc=org"
}

Watch the Screencast

License Control

Controlling Third Party Licenses

The License Control Add-on completes the Add-on allowing you full control overArtifactory Build Integration
the licenses of the dependencies used by your builds (and eventually in your software).

This Add-on is part of the Artifactory Pro Power Pack.

As part of the Build Server deployment to Artifactory, it analyzes the used dependencies and tries to match
them against a set of license management rules.

Notifications can be sent to a selected list of recipients about dependencies with unknown or unapproved
license information.

To support this feature Artifactory includes a new license management facility where rules about license

matching and approval status are defined. These rules are consulted as part of the license analysis.

Central License Management
Licenses are managed in the module under .Admin Configuration | Licenses

You can add a new license by clicking or edit the information for a license by selecting its in the list.New License Key

Artifactory comes preconfigured with all the common licenses and JFrog has already tuned these licenses against common project builds.OSI

By selecting you can also export the license list and import it later on to new Artifactory instances.Export,

Editing License Information

How does license analysis work?
Automatic analysis is performed upon deployment by examining information found in artifact
module files. Currently files are supported.Maven POM, Ivy Descriptor, NuGet, and RPM

You can always override the automatic results and assign license information manually to
dependencies. You can also compare the current license status to the auto calculated one and
decide what results of the automatic analysis to accept.

License information is stored with the artifact and reused by the automatic license analysis on
subsequent builds.

Page Contents
Controlling Third Party Licenses
Central License Management

Editing License Information
Using Build Licenses

Build Server Configuration
Examining Build Licenses
Running Manual License Discovery

Setting License Information Manually
Licenses REST API

http://www.opensource.org/licenses

License Key

A unique identifier for this license in Artifactory

Long Name

A description of the license

URLs

The URL that describes the terms of the license

Notes

Additional notes

RegExp

The regular expression by which to match the license (by comparing it to license information in module files).

Approved

When set, this license is approved which means you allow the use of components that come with this license.

Using Build Licenses

Build Server Configuration

When you run a build from your CI server (Hudson, TeamCity or Bamboo), configure the Artifactory Plugin to run license checks as part of the
build.

Below is a sample section from the Hudson configuration of the Artifactory Plugin:

If you leave the regexp field blank, Artifactory attempts an exact match against the license key.

You can configure whether or not you wish license checks to take place as part of deploying Build Info to Artifactory (the Build Info Bill of Materials
must be deployed to Artifactory for license checks to run).

You can also set a list of recipients to be notified about license violations as soon as they occur. This way whenever a dependency with an
unknown or unapproved license is added to the build recipients receive an immediate email notification and can tend to any potential license
violation.

Examining Build Licenses

Once the build has finished on the build server and Build Info has deployed to Artifactory, license checks are run.

You can view detailed license information in the tab of the This tab displays information about all the dependenciesLicenses Build Browser.
used in the build and the license they are associated with. To group the information by or click the corresponding column header.Scope License

The summary panel displays the overall count of licenses by status and inside the table itself, licenses are displayed in different colors according
to their status:

License Status Description

Unapproved

The license found is not an approved license

Sending license violation notifications is performed through Artifactory and requires a to be configured.valid mail server

Not failing the build
Currently, Artifactory does not fail the build as a result of license violations.

This is an informed decision in the spirit of allowing technical development to continue, while alerting others about the advent of
unauthorized dependencies in near or real-time, so they can be addressed early on by the appropriate parties.

1.

2.
3.

Unknown License information was found but cannot be related to any license managed in Artifactory

Not Found No license information could be found for the artifact.

Neutral The license found is unapproved, however another approved license was found for the artifact

(Only applicable for artifacts that are associated with multiple licenses)

Approved The license found is an approved license

Inline License Editing

From the Build Browser, an Artifactory administrator can manually change the license information for any artifact displayed. Clicking the entry
under the column for any artifact will display the dialog where the administrator can specify theLicense Edit 'artifactory.licenses' Property
licenses for that artifact. For example, clicking the license entry from the screenshot above will display the following dialog:Public Domain

Running Manual License Discovery

You can manually run the license discovery rules after a build has already run. There are several reasons why you may want to do this:

License rules (configured licenses and regular expressions) have changed and you want to compare the existing build licenses with the
results of the new rules, or use them to complete missing license information.
To test the current rules against the dependencies and tweak the rules, if necessary.
To check which license information can come from rules and which license information must be set manually.

To trigger license discovery select the "Auto-find Licenses" button.

Any license conflicts are displayed to the right of the table. You can override the existing license information with the
discovered license by checking the corresponding checkbox (you must have annotate permissions for the artifacts fo

you want to override licenses). r which

Setting License Information Manually

To set license information for artifacts manually, when viewing an artifact's details in the in the tab Artifact Repository Browser, General Licens
 entry, click es Add.

This will display the dialog where you can specify the licenses for the selected artifact.Add Artifactory Licenses Property

Multiple licenses
Note that an artifact may be associated with multiple licenses

Scanning artifact Maven/Ivy model for license

Another option for editing the license information is by scanning the Maven/Ivy model for licenses, that is, looking for an existing pom matching
the artifact.

Once you have the artifact selected in the tree browser go to the tab and under the label choose and confirm licensesGeneral License Scan
found in the scan results, if any.

Yet another option would be to use the 'Search For Archive License File' link, which will scan the artifact archive for a 'License' or 'License.txt'
entry and ask for confirmation, if found.

License Information as Properties

Internally, license information is stored as regular , using the built-in property name.properties artifactory.licenses

Therefore, all operations with properties are available to license information (searches, recursive assignment, property-based deployment and
resolution etc.)

Licenses REST API

License-oriented searches and management operations are available through the REST API.

Refer to the for usage information.REST API Documentation

OAuth Integration

Overview

From version 4.2, Artifactory is integrated with OAuth allowing you to delegate authentication requests to
external providers and let users login to Artifactory using their accounts with those providers.

Currently, the provider types supported are , , andGoogle OpenID Connect GitHub Enterprise, Cloud
You may define as many providers of each type as you need.Foundry UAA.

Usage

When OAuth is enabled in Artifactory, users may choose to sign in through any of the supported OAuth
providers. To log in through a provider, simply click on the provider's button in the login screen.

You will be redirected to the login screen of the corresponding provider.

If you are already logged in to any of that provider's applications you will not need to log in again, but you
may have to authorize Artifactory to access your account information, depending on the provider type.

Configuring OAuth

To access OAuth integration settings, in the module, select | Admin Security OAuth SSO.

Page Contents
Overview
Usage
Configuring OAuth

Adding a New Provider
Using Query Params

Binding Existing User Accounts
Creating OAuth Provider Accounts

GitHub OAuth Setup
Google OAuth Provider Setup
Cloud Foundry UAA Setup

Using Secure OAuth
Using API Key with OAuth Users
Using OAuth on High Availability Setup

Enable OAuth

If checked, authentication with an OAuth provider is enabled and Artifactory will display all OAuth providers
configured. If not checked, authentication is by Artifactory user/password.

Auto Create Artifactory
Users

If checked, Artifactory will create an Artifactory user account for any new user logging in to Artifactory for the first
time.

Default Provider

Specifies the provider through which different clients (such as NPM, for example) should authenticate their login
to gain access to Artifactory.

Allow Created Users
Access To Profile Page

When checked, users created after authenticating using OAuth, will be able to access their profile. This means
they are able to generate their and for future use.API Key set their password

Adding a New Provider

The list of providers defined in Artifactory is displayed in the section. Providers

To add a new provider, click "New". Artifactory displays a dialog letting you enter the provider details. These may vary slightly depending on the
provider you are configuring.

Default provider
Currently, only a GitHub Enterprise OAuth provider may be defined as the Default Provider.

Custom URL base
For your OAuth settings to work, make sure you have your configured.Custom URL Base

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-ChangingYourPasswordandEmail
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomURLBase

The following table describes the settings required by each supported provider, and the corresponding values you should use (where available):

GitHub.com GitHub Enterprise Google

Enabled

Provider
Name

Provider
Type

Provider
ID

Secret

Domain

Docker
Login

Npm
Login

Basic
URL

/https://github.com <Server Base URL>

Auth
URL

https://github.com/login/oauth/authorize /login/oaut<Server Base URL>
h/authorize

https://accounts.google.com/o/oauth2/auth

API URL

https://api.github.com/user <Server Base
URL>/api/v3/user

https://www.googleapis.com/oauth2/v1/userinfo

Token
URL

https://github.com/login/oauth/access_token <Server Base
URL>/login/oauth/access_token

https://www.googleapis.com/oauth2/v3/token

Using Query Params

You may pass query params along with the . For example,Authorization URL

https://github.com/login/oauth/authorize?realm=Employees

Multiple query params should be separated with an ampersand. For example,

https://github.com/login/oauth/authorize?realm=Employees?client_id=XXXXXXX
XXXX&scope=openid%20profile%20email

Binding Existing User Accounts

If you already have an account in Artifactory, in order to be able to login using any ofinternal (not external realms such as LDAP, SAML...)
your OAuth provider accounts, you need to bind your Artifactory account to the corresponding account.

To bind your account, go to your page and enter your Artifactory password to unlock it.Profile

Under , select next to the OAuth provider you wish to bind to.OAuth User Binding Click to bind

GitHub.com Accounts
Any GitHub.com account that has access to
the Artifactory URL will be allowed to login,
including accounts that are outside your
GitHub.com organization scope.

1.

2.

3.
4.

5.
a.

b.

6.

Creating OAuth Provider Accounts

In order to use OAuth authentication, you need to set up an account with each OAuth provider you wish to use in order to get the various
parameters (such as Provider ID and Secret) you will need to set up OAuth integration in Artifactory.

GitHub OAuth Setup

To set up your OAuth account on GitHub, execute the following steps:

Login to your GitHub account. Under your personal profile settings, select and click the .Applications Developer Applications tab

Click Register new application.

Set the For example, Application name. Artifactory SaaS OAuth.
Set the . This is your Artifactory server host URL (). Homepage Url https://<artifactory-server>/
For example, https://mycompany.jfrog.io/mycompany/

Set the as follows: Authorization Callback Url
For Artifactory on-prem installation: http://<server_host>/artifactory/api/oauth2/loginResponse
For example, http://mycompany.artifactory.com/artifactory/api/oauth2/loginResponse

For Artifactory SaaS: https://<server_name>.jfrog.io/<server_name>/api/oauth2/loginResponse
For example, https://mycompany.jfrog.io/mycompany/api/oauth2/loginResponse

Click to generate your and . Register application Client ID Client Secret
Make a note of these; you will need them to configure OAuth authentication through GitHub on Artifactory.

Caution: Access to GitHub.com Accounts
Any account that has access to the Artifactory URL will be allowed to login, including accounts that are outside your GitHub.com GitHub

 organization scope. This does not apply to GitHub Enterprise..com

https://github.com/settings/applications/new
http://github.com/
http://github.com/
http://github.com/

1.
2.
3.
4.

5.

Google OAuth Provider Setup

To set up your OAuth account on Google, execute the following steps:

Login to .Google Developer Console
Create a new project. For example, "Artifactory OAuth".
Once the project is created, in the left navigation bar, select | APIs & auth Credentials.
Select the tab and configure the consent screen end users will see when logging in with the Google credentials.OAuth consent screen

Back in the tab, Click and select Credentials Add Credential OAuth 2.0 client ID

https://console.developers.google.com/

5.

6.
7.

8.

Under select .Create client ID, Web application
Enter a and set the Name Authorized redirect URIs
For Artifactory on-prem: https://<server_host>/artifactory/api/oauth2/loginResponse
For Artifactory SaaS: https://<server_name>.jfrog.io/<server_name>/api/oauth2/loginResponse

Click to generate your and . Create Client ID Client Secret

8.

Make a note of these; you will need them to configure OAuth authentication through Google on Artifactory.

Cloud Foundry UAA Setup

OAuth authentication with Cloud Foundry UAA is supported from Artifactory version 4.2.1.

To setup your OAuth authentication with Cloud Foundry UAA, fill in the fields as needed.

Using Secure OAuth

To use secure OAuth with a valid certificate from a CA trusted by Java, all you need to do us use a secure OAuth URL in your settings.

If you want to use OAuth with a non-trusted (self-signed) certificate, please follow the steps described in .Using a Self-Signed Certificate

Using API Key with OAuth Users

While OAuth provides access to Artifactory UI, it is also possible for OAuth users to generate an that can be used instead of a passwordAPI key
for basic authentication or in a dedicated , this is very useful when working with different clients, e.g. docker, npm, maven, etc.REST API header
or using Artifactory REST API.

In order to allow OAuth users access to an API key you will need to make sure that the " " and "Auto Create Artifactory Users Allow Created
" check boxes are checked. This means that OAuth users are also saved in Artifactory database and can accessUsers Access To Profile Page

their in order to generate, retrieve and revoke their API key.profile page

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Authentication

Using OAuth on High Availability Setup

The OAuth protocol requires the client to give permission to a specific application. Artifactory will redirect the user to the configured application
URL and one permission is granted user will be navigated back.

The limitation on this process when working in High Availability setup is that the user must return to the same node, otherwise the authentication
process will fail, in order to achieve this a sticky session configuration should include the ./artifactory/api/oauth2/

The example below shows NGINX configuration.

NGINX Reverse Proxy Configuration

location ~ (/artifactory/webapp/|/artifactory/ui/|/artifactory/api/oauth2/)
{
 proxy_http_version 1.1;
 proxy_pass http://<UPSTREAM_NAME>;
 proxy_intercept_errors on;
 proxy_pass_header Server;
 proxy_connect_timeout 75s;
 proxy_send_timeout 2400s;
 proxy_read_timeout 2400s;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $http_x_forwarded_proto;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Artifactory-Override-Base-Url
$http_x_forwarded_proto://$host/artifactory;
}

Properties

Overview

Artifactory allows you to place properties on both artifacts and folders. Setting (and deleting) properties is
supported by local repositories or local-cache repositories. While you cannot set or delete properties on
virtual repositories, you can retrieve them.

You can assign properties from the UI, via REST (see below), or on deployment, using Matrix Parameters.
Properties can also be used to Control Artifacts Resolution.

Properties are and can be combined with to search for items based on theirsearchable Smart Searches
properties and then manipulate all the items in the search result in one go.

Property Sets

You can define the collections of properties called 'Property Sets' in the user interface. In each property-set
you can define properties and for each property specify whether the property is open, single-value or
multi-value.

This impacts the user interface you see when setting a property value and when searching for property
values. Using searchable properties in artifact management is a very powerful feature.

Page Contents
Overview

Property Sets
Attaching Properties via the UI
Attaching and Reading Properties via REST API

Attaching Properties via the UI

When selecting any item in the tree browser, you can view its tab to view or edit the properties attached to the item.Properties

To add a property, simply enter its name and value and click "Add".

To add multi-value properties, enter the values separated with a semi-colon (;). For example:

You can edit the value of any property by clicking on it

Read More
Using Properties in Deployment and Resolution

Properties are for Guiding, not for Restricting
When you define a property-set with 'strongly-typed' property values, those values are used to provide an intuitive, guiding UI for
tagging and locating items.

The actual value does not force a strong relationship to the original property-set's predefined values. This is by design, to not slow-down
common repository operations and for keeping artifacts management simple by allowing properties to change and evolve freely over
time, without worrying about breaking older property rules.

Properties are therefore a helpful and non-restrictive feature.

1.
2.

Attaching and Reading Properties via REST API

Properties are a special form of metadata and are stored on items just like any metadata - in XML form.

In fact, you can view properties not only from the tab, but also from the tab, in which you canArtifacts:Properties Artifacts:Metadata
examine properties as they are stored in XML form. The properties XML is using the root tag and has a very simple format.properties

You can set, retrieve and remove properties from repository items via REST API, as you would do with any other XML-based metadata.

Using Properties in Deployment and Resolution

Introducing Matrix Parameters

Matrix parameters key-value pairs parameters separated by a semicolon (;) that you can place anywhere on
a URI.

This is a method for specifying parameters in HTTP (in addition to querying parameters and pathstandard
parameters).

For example:

http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local/or
g/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar;status=DEV;rating=5

Artifactory makes use of matrix parameters for:

Adding properties to artifacts as part of deployment
Controlling artifact resolution using matrix parameters

Dynamically Adding Properties to Artifacts on Deployment

You can add key-value matrix parameters to deploy (PUT) requests and those are automatically transformed to properties on the deployed

Page Contents
Introducing Matrix Parameters
Dynamically Adding Properties to Artifacts on Deployment
Controlling Artifact Resolution with Matrix Parameters Queries

Non-mandatory Properties
Mandatory Properties

Multi-valued Properties Support

http://www.w3.org/DesignIssues/MatrixURIs.html
http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar
http://repo.jfrog.org/artifactory/libs-releases-local/org/libs-releases-local/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar

artifact.

Since matrix parameters can be added on any part of the URL, not just at the end, you can add them to the target deployment base URL. At the
time of deployment, the artifact path is added after the matrix parameters and the final deployed artifact will be assigned the defined properties.

You can even use dynamic properties, depending on our deployment framework.

When using Maven, for instance, you can add two parameters to the deployment URL: and , which Maven replaces atbuildNumber revision
deployment time with dynamic values from the project properties (e.g. by using the Maven build-number plugin).

So, if you define the distribution URL as:

http://myserver:8081/artifactory/qa-releases;buildNumber=${buildNumber};re
vision=${revision}

And deploy to the repository a jar with the following path:qa-releases

/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar

Upon deployment the URL is transformed to:

http://myserver:8081/artifactory/qa-releases;buildNumber=249;revision=1052
/org/jfrog/build-info-api/1.3.1/build-info-api-1.3.1.jar

And the deployed has two new properties:build-info-api-1.3.1.jar

buildNumber=249
revision=1052

Controlling Artifact Resolution with Matrix Parameters Queries

Matrix parameters can also be used in artifact resolution, to control how artifacts are found and served.

There is currently support for two types of queries:

Non-conflicting values
Mandatory values.

Non-mandatory Properties

Resolved artifacts may either have no property with the key specified, or have the property with the key specified and the exact value specified
(i.e. the artifact is resolved if it has a property with a non-conflicting value).

Non-mandatory properties are identified by a simple parameter.key=value

For example:

Current Artifact Property Matrix Parameter Resolution Result

color=black color=black OK (200)

None or height=50 color=black OK (200)

color=red color=black NOT_FOUND (404)

Permissions to attach properties
You must have the 'Annotate' permission in order to add properties to deployed artifacts.

Mandatory Properties

Resolved artifacts must have a property with the key specified and the exact value specified.

Mandatory properties are identified with a plus sign (+) after the property key: .key+=value

For example:

Current Artifact Property Matrix Parameter Resolution Result

color=black color+=black OK (200)

None or height=50 color+=black NOT_FOUND (404)

color=red color+=black NOT_FOUND (404)

Multi-valued Properties Support

All matrix parameters can support multiple values by separating values with a comma (,). For example:

colors=red,gold,green

Repository Layouts

Overview

Together with the growing number of choices for build-tools and frameworks there are also many ways in
which modules can be stored within a repository.

Initially, Artifactory supported the Maven layout conventions for dealing with modules (and relying on
Maven-specific metadata). However, your build tool should be able to "talk" to the repository "naturally", so if
you are using Ivy or Gradle, there is no need to configure them to use the Maven conventions in order to "fit
in". Moreover, combining and chaining repositories that use different layouts should work out-of-the-box.

This is where the Repository Layouts Add-on comes into play!

The Freedom of Custom Layouts

With the Repository Layouts Add-on, Artifactory allows you to take full control over the layout used by each
repository and uses layout definitions to identify module artifacts and descriptors. By using repository layouts,
Artifactory offers these smart module management facilities for any build technology:

Automatic snapshot/integration versions cleanup
Deleting old versions
Conversions between remote and local layouts
Conversions between 2 local layouts when moving or copying
Resolution conversions from a virtual repository to its underlying repositories (where the virtual
repository has its own layout defined)

Multiple properties in queries
Multiple key-value matrix parameters are additive, forming an AND query between each key-value subsection.

Page Contents
Overview
The Freedom of Custom Layouts
Bundled Layouts
Modules and Path Patterns used by Repository Layouts

Module Fields
Using Module Fields to Define Path Patterns

Path Pattern Tokens
Artifact Path Patterns
Descriptor Path Patterns

Configuration
Layout Configuration

Testing Layouts

Bundled Layouts

Artifactory comes o with a number of default, predefined layouts requiring no additional configuration:ut-of-the-box

Maven 2/3
Ivy (default layout)
Gradle (Wharf cache default layout)
Maven 1

Modules and Path Patterns used by Repository Layouts

Module Fields

To support smart module management, Artifactory must construct module information for stored files. Artifactory constructs this information based
on path pattern information defined as part of the Repository Layout configuration (detailed below).

A module is comprised of various sub-elements or fields, which are typically expressed in the path of a stored artifact.

The module-sub elements recognized by Artifactory are listed below. At a minimum, there are three mandatory fields required for module
identification:

Organization
Module
Base Revision.

Field Description Example Mandatory

Organization A sequence of literals that identifies the artifact's organization " "org.slf4j

Module A sequence of literals that identifies the artifact's module " "slf4j-api

Base
Revision

A sequence of literals that identifies the base revision part of the
artifact version, excluding any integration information

" ", or in case of an integration revision "1.5.10 1.2-SNAP
" the base revision is " "SHOT 1.2

Folder
Integration
Revision

A sequence of literals that identifies the integration revision part
used in folder names in the artifact's path, excluding the base
revision

in case of an integration revision " " the1.2-SNAPSHOT
folder integration revision is " "SNAPSHOT

File
Integration
Revision

A sequence of literals that identifies the integration revision part in
the artifact's file name, excluding the base revision

in case of an integration revision "1.2-20110202.14453
" the file integration revision is " "3-3 20110202.144533-3

Classifier A sequence of literals that identifies the artifact's classifier " "sources

Extension A sequence of literals that identifies the artifact's extension " "zip

Type A sequence of literals that identifies the artifact's type.
Typically used when the artifact's extension cannot be reused as
the artifact's type

" "java-source

Using Module Fields to Define Path Patterns

Path Patterns
Regular Expressions for File and Folder Integration Revision

Repository Configuration
Local Repository Configuration
Remote Repository Configuration
Virtual Repository Configuration

Support for repository layouts in Artifactory OSS
Layout configuration for conversion and resolution is available only to Artifactory Power Pack users. Users of the OSS version can only

 to use the default repository layouts bundled with Artifactory.Configure their Repositories

The OSS version only supports the automatic snapshot/integration version cleanup and deleting old version features.

A path pattern is used in the configuration of a Repository Layout.

The pattern is similar to that of the Ivy pattern and is used to define a convention for artifact resolution and publication paths.

Artifactory uses path patterns to construct module information for stored files. This module information is then used to facilitate all the features
mentioned above (version cleanup, cross-repo path conversions, etc.).

Path Pattern Tokens

A path pattern is constructed of tokens (explained below), path separators (' '), optional parentheses (' ' and ' ') and literals (' ', ' ', etc.). Tokens/ () . -
are modeled after module fields, as presented above.

Path patterns can be defined for every artifact in the repository or you can define a separate path patterns for descriptor-type artifacts (such as, a
 or an file)..pom ivy.xml

The following tokens are available:

[org]

Represents the field where the levels are separated by dots (' '), a-la Ivy. ForOrganization .
example: " "org.slf4j

[orgPath]

Represents the field where the levels are separated by path separators (' '), a laOrganization /
Maven. For example: " "org/slf4j

[baseRev]

Represents the fieldBase Revision

[module]

Represents the fieldModule

[folderItegRev]

Represents the fieldFolder Integration Revision

[fileItegRev]

Represents the fieldFile Integration Revision

[classifier]

Represents the fieldClassifier

[ext]

Represents the fieldExtension

[type]

Represents the fieldType

[customTokenName<customTokenRegex>]

A custom token. Can be used to create a new type of token when the provided defaults are
insufficient.

For example, creates a new custom token named [myIntegRev<ITEG-(?:[0-9]+)>] myIn
 that matches the word followed by a dash and a minimum of one digit.tegRev ITEG

Custom tokens
When using custom tokens in the repository layout, make sure that the layout begins with If the [module] token is[orgPath]/[module].
missing in the layout, some REST API calls will not work.

Multiple Custom Tokens
Artifactory supports any number of custom tokens, but when provided with multiple custom tokens of the same key, Artifactory only
takes into account the regular expression of the first occurrence while substituting the rest with a repetition expression (even if each
occurrence has a different regular expression value.

For example:

[custom1<.+>]/[custom1<.*>]/[custom1<[0-9]+>]

Artifact Path Patterns

An artifact path pattern represents the typical structure that all module artifacts are expected to be stored in.

For example,

To represent a normal Maven artifact path: "org/eclipse/jetty/jetty-ajp/7.0.2.v20100331/jetty-ajp-7.0.2.v2010033
"1.jar

Use the artifact path pattern:

[orgPath]/[module]/[baseRev](-[folderItegRev])/[module]-[baseRev](-[f
ileItegRev])(-[classifier]).[ext]

To represent a default Ivy artifact path: "org.eclipse.jetty/jetty-ajp/7.0.2.v20100331/jars/jetty-ajp-7.0.2.v20100
"331.jar

Use the artifact path pattern:

[org]/[module]/[baseRev](-[folderItegRev])/[type]s/[module]-[baseRev]
(-[fileItegRev])(-[classifier]).[ext]

Descriptor Path Patterns

A descriptor path pattern is used to recognize descriptor files (like or files)..pom ivy.xml

Using a specific descriptor path pattern is optional. When not used, Artifactory constructs module information for
descriptor files using the artifact path pattern.

Even though descriptor paths patterns are optional, usage of them is in cases of distinctive descriptors, such as Ivy highly recommended ivy_-

 and Maven .1.0.xml bobs-tools-1.0.pom

For example,

To represent a normal Maven descriptor path: "org/eclipse/jetty/jetty-ajp/7.0.2.v20100331/jetty-ajp-7.0.2.v20100
"331.pom

Use the descriptor path pattern:

[orgPath]/[module]/[baseRev](-[folderItegRev])/[module]-[baseRev](-[f
ileItegRev])(-[classifier]).pom

To represent a default Gradle descriptor path: " "org.eclipse.jetty/jetty-ajp/ivy-7.0.2.v20100331.xml

Use the descriptor path pattern:

Translates to:

<custom1>.+/\1/\1

Optional parts
To specify tokens or a sequence of tokens and literals as optional in the path pattern, surround the sequence with the optional
parentheses ' ' and ' ' literals.()

For example, the pattern " " matches both " " and " ", and the pattern[module](-[classifier]) bobs-tools-sources bobs-tools
" " matches both " " and " ".[baseRev](-[fileItegRev]) 1.2-SNAPSHOT 1.2

[org]/[module]/ivy-[baseRev](-[fileItegRev]).xml

Configuration

Repository layouts are configured on the global level of your Artifactory instance, so that any layout can be shared and reused across any number
of repositories.

Layout Configuration

Layout configuration is available to administrator users in the module under .Admin Repositories | Layouts

Additional layouts can be created from scratch by clicking "New" or by duplicating an existing layout.

Testing Layouts

Once you have finished configuring your layout, you can test it on an artifact path, and see how Artifactory would build module information from
the path, using the layout definitions.

Path Patterns

These are used to define the artifact path pattern and the descriptor path pattern (optional), as explained above.

Regular Expressions for File and Folder Integration Revision

These fields should contain regular expressions that exactly match and describe the integration revision (excluding the base revision) formats as
they are expected in the artifact's file name and path-structure folder name.

Use patterns in the directory part of the path
To achieve best path matching results, it is highly recommended that artifact and descriptor patterns also contain the mandatory tokens
(or , and) within the directory structure itself.[org] [orgPath] [module] [baseRev]
For example, Gradle's artifact path pattern:

[org]/[module]/[baseRev](-[folderItegRev])/[module]-[baseRev](-[file
ItegRev])(-[classifier]).[ext]

Avoid using capturing group syntax in regexp
Regular expressions entered in these fields are wrapped and treated as a single capturing group.

Folder integration revision regular expression examples:

Maven's folder integration revision is simply the constant appended to the base revision ("1.2-SNAPSHOT"), so the regular-SNAPSHOT
expression is

SNAPSHOT

Ivy's default folder integration revision is usually equal to the file integration revision and is normally a 14 digit timestamp
("5.1-20101202161531"), so the regular expression can be

\d{14}

File integration revision regular expression examples:

Maven's file integration revision can be either the constant ("1.2-SNAPSHOT") or a timestamp, where the date and time are-SNAPSHOT
separated by a dot ('.'), with an addition of a dash ('-') and a build-number ("2.3-20110108.100922-2"), so the regular expression should
be able to fit them both

SNAPSHOT|(?:(?:\d{8}.\d{6})-(?:\d+))

Ivy's default file integration revision is is normally a 14 digit timestamp ("5.1-20101202161531") and usually equal to the folder integration
revision, so the regular expression may be the same as suggested in the file's example

\d{14}

Repository Configuration

Local Repository Configuration

Layouts are mandatory for local repositories, since they define the structure with which artifact are stored.

When you create a new repository, Artifactory will recommend the best layout according to the selected for the repository.Package Type

Refrain from introducing any capturing groups within the expressions. Failure to do so may result in unexpected behavior
compromiseand the accuracy of the matcher.

Before custom layouts
Repositories created prior to the introduction of custom repository layouts are automatically configured with the default Maven 2 layout.

Remote Repository Configuration

Layouts are mandatory only for the remote repository cache configuration, however, you can also specify the layout of the remote repository itself.

If the remote repository itself uses a different layout than the one chosen for the cache, all requests the to the remote target are translated from
the path of the cache layout to the path of the remote layout.

For example, the remote repository http://download.java.net/maven/1 stores its artifacts according to the
Maven 1 convention. You can configure the cache of this repository to use the Maven 2 layout, but set the Remote

 to Maven 1. This way, the repository cache handles Maven 2 requests and artifact storage, whileLayout Mapping
outgoing requests to the remote repository are translated to the Maven 1 convention.

http://download.java.net/maven/1

Virtual Repository Configuration

You can also configure a layout for a virtual repository.

When configured, all resolution requests can be made according to the virtual repository layout. When trying to
resolve requests to the virtual repository Artifactory attempts to translate the request path to the layout of each
nested repository, according to the module information constructed from the virtual request.

In the following cases, the request path is not translated, and requests pass through to nested repositories with the original specified path:

Module information cannot be constructed
The virtual module information cannot be mapped to a nested repository (e.g., fields are missing on one of the sides)
The virtual repository or the nested repository are not configured with a layout

Repository Replication

Overview

Through the Replication Add-on in Artifactory Pro, Artifactory allows replication of repositories
between two Artifactory instances to support development by different teams distributed over
distant geographical sites. The benefits of replication are:

Ensuring developers all work with the same version of remote artifacts
Ensuring build artifacts are shared efficiently between the different development teams
Overcome connectivity issues such as network latency and stability when accessing
remote artifacts
Accessing specific versions of remote artifacts

Artifactory versions for replication
We strongly recommend that replication is only performed between servers running the

Page Contents
Overview

Push
Replication

Advant
ages
Multi-p
ush
Replica
tion

Pull Replication
Advant
ages

Scheduling and
Configuring Replication

Using the UI

Two main methods of replication are supported:

Push replication
Both scheduled and event-based push replication are supported, and multi-push
replication is available with an Enterprise license

Pull replication
Both scheduled and event-based pull replication are supported; event-based pull requires
an Enterprise license.

Push Replication

Push replication is used to synchronize , and is implemented by the Artifactory server on the near end invoking aLocal Repositories
synchronization of artifacts to the far end.

There are two ways to invoke push replication:

Scheduled push: Pushes are scheduled asynchronously at regular intervals
Event-based push: Pushes occur in nearly in real-time since each create, copy, move or delete of an artifact is immediately
propagated to the far end.

Advantages

It is fast because it is asynchronous.
It minimizes the time that repositories are not synchronized.
It reduces traffic on the master node in case of a replication chain ("Server A" replicates to "Server B", "Server B" then replicates to
"Server C" etc.).

Replication loop to be strictly avoided

Multi-push Replication

same version of Artifactory Pro. Configu
ring
Push
Replica
tion
Adding
a push
replicati
on
target
Configu
ring
Pull
Replica
tion

Replicating with
REST API
Replication
Properties

Watch the Screencast

Avoid Replication Loops ("Cyclic Replication")
A replication loop occurs ("Cyclic" or "Bi-directional" replication) occurs when two
instances of Artifactory running on different servers are replicating content from one to
the other concurrently.

For example, "Server A" is configured to replicate its repositories to "Server B", while at
the same time, "Server B" is configured to replicate its repositories to "Server A".

Or "Server A" replicates to "Server B" which replicates to "Server C" which replicates
back to "Server A".

We strongly recommend avoiding cyclic replication since this can have disastrous effects
on your system causing loss of data, or conversely, exponential growth of disk-space
usage.

When to Use Push Replication
Event-based push replication is recommended when it is important for the repository at the far end to be updated in near-real-time
for any change (create, copy, move or delete of an artifact) in the repository at the near end.

Regular scheduled replications run on top of event-based replication to guarantee full copy consistency even in cases of server
downtime and network partitions.

With an Enterprise license, Artifactory supports multi-push replication allowing you to replicate a local repository from a single source to
multiple enterprise target sites simultaneously.

Pull Replication

This provides a convenient way to proactively populate a remote cache, and is very useful when waiting for new artifacts to arrive on demand
(when first requested) is not desirable due to network latency.

There are two ways to invoke a pull replication:

Scheduled pull: Pull replication is invoked by a remote repository, and runs asynchronously according to a defined schedule to
synchronize repositories (local, remote or virtual) at regular intervals.
Event-based pull:

Pulls occur nearly in real-time since each create, copy, move or delete of an artifact is immediately propagated to the far end. As
soon as a file is uploaded it is replicated and immediately available to the target (pulling) instance without even having to wait for the
file upload to be completed at the source

Advantages

Many target servers can pull from the same source server efficiently implementing a one-to-many replication.
It is safer since each package only has one "hop".
It reduces traffic on target servers since they do not have to pass on artifacts in a replication chain.

Scheduling and Configuring Replication

Using the UI

Replication is configured via the user interface as a scheduled task. Local repositories can be configured for push replication, and remote
repositories can be configured for pull replication.

All replication messages are logged in the main ().Artifactory log file artifactory.log

The column in your list of local repositories indicates if replication is configured for each repository in the list. If replication isReplications
indeed configured for a repository, you can click the icon in the list to invoke it.

Configuring Push Replication

When and when not to Use Pull Replication
 Pull replication is recommended in the following cases:

When you need to replicate a repository to many targets.
When your source repository is located behind a proxy that prevents push replication (e.g. replicating a repository hosted
on Artifactory SaaS to a local repository at your site)

Pull replication cannot be used to replicate a remote resource that is not an Artifactory repository. Artifacts from third party
repositories can only be cached on-demand in the normal cache and proxy behavior of a .remote repository

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories

A push replication task for a Local Repository is configured in the tab of the dialog. Replication Edit Local Repository

First, in the Cron Expression field define the replication task schedule using a valid cron expression.

The will indicate update accordingly.Next Replication Time

Once you have configured the replication properties for each of your replication targets, the tab for your repository displays them.Replication

Field Name Description

Push to

The replication targets you have defined

Enabled

When set, enables replication of this repository to the target specified in Push to

Enable Event
Replication

When set, each event will trigger replication of the artifacts changed in this event. This can be any type of event on
artifact, e.g. add, deleted or property change.

Adding a push replication target

To add a target site for this replication, click to display the dialog, and fill in the details as follows.Add Replication Properties

Cron Expression VS Event Base Replication
Replication of this repository to all of its targets occurs simultaneously according to the Cron Expression you define.

The event base replication will attempt to replicate the artifacts affected by the event while the Cron Expression will trigger aonly
sync of all artifacts in repository. This difference is important since in case one of the event sync has failed the next time the Cron
Expression will trigger a sync all changed will be synced.

Number of replication targets
If you do not have an Enterprise license, you may only define replication target. With an Enterprise license, Artifactory supportsone
multi-push replication and you may define as many targets as you need.

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/tutorial-lesson-06.html

Field
Name

Description

Enable
Active
Replication
of this
Repository

When set, this replication will be
enabled when saved

URL

The URL of the target local repository
on a remote Artifactory server.

Username

The HTTP authentication username.

Password

The HTTP authentication password.

Proxy

A proxy configuration to use when
communicating with the remote
instance.

Socket
Timeout

The network timeout in milliseconds to
use for remote operations.

Sync
Deleted
Artifacts

When set, items that were deleted
locally should also be deleted remotely
(also applies to properties metadata).

Sync
Artifact
Properties

When set, the task also synchronizes
the properties of replicated artifacts.

Sync
Artifact
Statistics

When set, the task also synchronizes
artifact download statistics. Set to
avoid inadvertent cleanup at the target
instance when setting up replication for
disaster recovery.

Path Prefix
 (optional)

Only artifacts that located in path that
matches the subpath within the
repository will be replicated.

Configuring Pull Replication

A pull replication task for a Remote Repository is configured in the tab of the dialog. Replication Edit Remote Repository

First, in the field define the replication task schedule using a valid expression.Cron Expression cron

The will indicate update accordingly.Next Replication Time

Field
Name

Description

http://www.quartz-scheduler.org/documentation/quartz-2.2.x/tutorials/tutorial-lesson-06.html

Enable
Active
Replication
of this
Repository

When set, this replication will be
enabled when saved

URL

The URL of the target local repository
on a remote Artifactory server.

For some package types, you need to
prefix the repository key in the URL
with For a list of packageapi/<pkg>.
types where this is required, see the no

.te below

Sync
Deleted
Artifacts

When set, items that were deleted
locally should also be deleted remotely
(also applies to properties metadata).

Sync
Artifact
Properties

When set, the task also synchronizes
the properties of replicated artifacts.

Path Prefix
 (optional)

Only artifacts that located in path that
matches the subpath within the remote
repository will be replicated.

Enable
Event
Replication

When set, each event will trigger
replication of the artifacts changed in
this event. This can be any type of
event on artifact, e.g. added, deleted or
property change.

Replicating with REST API

Both Push and Pull Replication are supported by Artifactory's REST API. For details please refer to the following:

Get Repository Replication Configuration
Set Repository Replication Configuration
Update Repository Replication Configuration
Delete Repository Replication Configuration
Scheduled Replication Status
Pull/Push Replication

Regarding credentials of the remote repository configuration
The remote repository's file listing for replication is retrieved using the repository's credentials defined under the repository's Advanc

 configuration section.ed

The remote files retrieved depend on the effective permissions of the configured user on the remote repository (on the other
Artifactory instance).

* Check for which package formats you need to prefix the repository path with api/<pkg>
For some packaging formats, when using the corresponding client to access a repository through Artifactory, the repository key in
the URL needs to be prefixed with in the path. For example, in the case of repositories, the repository key shouldapi/<pkg> Npm
be prefixed with .api/npm

Nevertheless, there are exceptions to this rule. For example, when replicating Maven repositories, you do need to add a prefixnot
the remote repository path.

The considerations of whether to prefix the repository key with or not are the same as those when configuring smartapi/<pkg>
remote repositories. For a detailed list of package formats that should be prefixed with , please refer to undapi/<pkg> Configuration
er .Smart Remote Repositories

http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetRepositoryReplicationConfiguration
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetRepositoryReplicationConfiguration
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-UpdateRepositoryReplicationConfiguration
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeleteRepositoryReplicationConfiguration
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ScheduledReplicationStatus
http://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Pull%2FPushReplication
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-UsingtheNpmCommandLine
https://www.jfrog.com/confluence/display/RTF/Smart+Remote+Repositories#SmartRemoteRepositories-Configuration

1.

Replication Properties

Once replication has been invoked, Artifactory annotates the source repository being replicated and annotates it with properties that indicate
the status of the replication. These can be viewed, along with other properties that may annotate the repository, in the tab of the Properties T

.ree Browser

For single push replication operations, the following properties are created/updated:

Key Value

artifactory.replication.<source_repo_key>.started Indicates when the replication started

artifactory.replication.< repo_key>.statussource_ Indicates the status of the replication operation once complete. It can take the following
values:

ok: The replication succeeded

failure: The replication failed. You should check the log files for errors

artifactory.replication.< repo_key>.finishesource_
d

Indicates when the replication finished

For multi-push replication operations (available to Enterprise customers only), the following properties are created/updated:

Key Value

artifactory.replication.<source_repo_key> .started_<target_repo_URL> Indicates when the replication started

artifactory.replication.<source_repo_key> .status_<target_repo_URL> Indicates the status of the replication operation once complete. It
can take the following values:

ok: The replication succeeded

failure: The replication failed. You should check the log files for
errors

artifactory.replication.<source_repo_key>_<target_repo_URL>.finished Indicates when the replication finished

Watch the Screencast

To see replication in action, watch the short screencast below.

S3 Object Storage

Overview

Artifactory fully supports S3 object storage for distributed file systems so your Artifactory filestore can reside
on the cloud. This presents several benefits:

Unlimited scalability

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing

1.

2.

3.

4.

Since your files are now stored on the cloud, this means that your Artifactory filestore is scalable and
effectively unlimited (to the extent offered by your storage provider). You may freely continue to
upload files without having to install or maintain any file storage devices. You can even upload files
larger than 5 GB using multi-part upload.

Security
Enjoy the same security and authentication mechanisms provided by your S3 provider.

Disaster recovery
Since your files are replicated and stored with redundancy, this offers the capability for disaster
recovery.

 Support any S3 compatible distributed file system
 Arifactory's support is based on the S3 protocol. Any provider that uses S3, such as Ceph, Swift (thr

 will also be supported by Artifactory. and others ,ough the S3 API) With support for AWS S3 version
.4, you can sign AWS requests using Signature Version 4

Support for S3 object storage is included with an Artifactory Enterprise license.

Setting up Artifactory to Use S3

In order to move your Artifactory filestore to the cloud, you need to execute the following steps:

Backup your system. Your current filestore will be deleted.
Setting up Artifactory to use S3 will delete all files in your current filestore.

If you already have a running installation of Artifactory, then before you setup Artifactory to use S3
and migrate your filestore to the cloud, we strongly recommend that you do a complete system
backup.

Page Contents
Overview
Setting up Artifactory
to Use S3

Setting Your
License
Configuring
Artifactory to
Use S3
Migrating Your
Filestore from
local/mounted
storage to S3

Auto
matic
Filest
ore
Migrat
ion
(Reco
mmen
ded)
Manu
al
Filest
ore
Migrat
ion

First time installation or upgrade
If you are moving your filestore to S3 in the context of upgrading Artifactory, or a first time installation, we recommend that you first do a
standard installation of Artifactory using the default settings, or a standard upgrade using your current settings.

http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
http://www.jfrog.com/home/v_pricing#On_Premise
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup

Shut down Artifactory.
Set your enterprise license
Configure Artifactory to use your S3 object storage provider
Migrate your files to the cloud manually or automatically
Start up Artifactory

Setting Your License

To use an S3 object store, your Artifactory installation needs to be activated with an . Enterprise license

Configuring Artifactory to Use S3

From version 4.6, Artifactory's filestore is configured through the file. For details, please refer to . binarystore.xml Configuring the Filestore

Migrating Your Filestore from local/mounted storage to S3

For an Artifactory running version 5.0 and above, to migrate your filestore to an S3 provider, please refer to HA cluster Migrating Data
 Wiki page.from NFS

Standalone installations: there are two ways to migrate your filestore over to your S3 provider.

Automatically (recommended)
Manually

Automatic Filestore Migration (Recommended)

To make sure your filestore migration completes successfully without corrupting files, we recommend configuring Artifactory to do this migration
for you automatically:

To do so, you need to create the following links in (create it if the folder does not exist - it$ARTIFACTORY_HOME/data/eventual/ eventual
is created automatically when the eventual binary provider is applied via an Artifactory restart with an updated binarystore.xml):

A link with the name that points to the directory_add $ARTIFACTORY_HOME/data/filestore
A link with the name that points to the directory _pre $ARTIFACTORY_HOME/data/ _pre

With this setting, as soon as Artifactory starts up, it will automatically move your complete filestore over to your S3 provider.

Manual Filestore Migration

To migrate your filestore manually, you need to execute the following steps:

Stop Artifactory
Copy the $ARTIFACTORY_HOME/data/filestore directory to your S3 object storage to the bucket name and path specified when
you .configured Artifactory to use S3
Start Artifactory

SAML SSO Integration

SAML (Security Assertion Markup Language)

SAML is an XML standard that allows you to exchange user authentication and authorization information
between web domains.

Artifactory offers a SAML-based Single Sign-On service allowing federated Artifactory partners (identity
 providers) full control over the authorization process.

Using SAML, Artifactory acts as service provider which receives users' authentication information from

Your current filestore will be deleted
The process of moving your filestore to your S3 provider will delete your current filestore. We strongly recommend you do a complete

 before doing this migration.system backup

Once the migration is complete, you may delete the link and the directory_pre $ARTIFACTORY_HOME/data/ _pre

https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-S3andGoogleStorage
http://www.jfrog.com#AutomaticFilestoreMigration(Recommended)
http://www.jfrog.com#Manually
http://www.jfrog.com#ManualFilestoreMigration
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-CompleteSystemBackup

external identity providers.

In this case, Artifactory is no longer responsible for authentication of the user although it still has to redirect
the login request to the identity provider and verify the integrity of the identity provider’s response.

Artifactory’s SAML configuration

SAML SSO integration is configured in the module under Admin Secuirty | SAML SSO.

Page Contents
SAML (Security Assertion Markup Language)
Artifactory’s SAML configuration
Understanding Artifactory's SAML-based SSO Login Process
Understanding the Artifactory's SAML-based SSO Logout Process
Artifactory Profiles and Bindings

After SAML Setup
Login Failure

Using API Key with SAML Users

Enable SAML
Integration

When checked, SAML integration is enabled and users may be authenticated via a SAML server.

SAML Login URL

The SAML login URL.

SAML Logout URL

The SAML logout URL.

SAML Service Provider
Name

The SAML service provider name. This should be a URI that is also known as the entityID, providerID, or entity
identity. For more details, see section 8.3.6 of the .SAML v2 specification

Auto Associate Groups

When set, in addition to the groups the user is already associated with, he will also be associated with the groups
returned in the SAML login response.

Note that the user’s association with the returned groups is not persistent. It is only valid for the current login
session in the browser (i.e. this will not work for logins using the SAML user id and API Key).

Also, the association will not be reflected in the UIs Groups settings page. Instead, you can see this by enabling
this SAML logger in your file as follows:$ARTIFACTORY_HOME/etc/logback.xml

<logger name="org.artifactory.addon.sso.saml">
 <level value="debug"/>
</logger>

Group Attribute

The group attribute in the SAML login XML response. Note that Artifactory will search for a case-sensitive match to
an existing group.

Email Attribute

If is enabled or an internal user exists, Artifactory will set the user’s email to theAuto Create Artifactory Users
value in this attribute that is returned by the SAML login XML response.

SAML Certificate

The X.509 certificate that contains the public key.

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

1.
2.
3.
4.
5.

6.

7.
8.

1.
2.
3.
4.

5.

6.

7.

8.

9.

Auto Create Artifactory
Users

When checked, for new users accessing Artifactory in for the first time via SAML, Artifactory will create a user that
will persist in the data base.

Allow Created Users
Access To Profile Page

When checked, users created after authenticating using SAML, will be able to access their profile. This means they
are able to generate their and for future use.API Key set their password

Auto Redirect Login
Link to SAML Login

When checked, clicking on the login link will direct the users to the configured SAML login URL.

 To use SAML-based SSO in Artifactory:

Login to Artifactory with administrator privileges.
In the module, go to Admin Security | SAML SSO.
Enable the SAML integration by checking the checkbox.Enable SAML Integration
Enable or disable “Auto Create Artifactory users” (Using SAML login). If enabled, new users will persist in the database.
Enable or disable "Allow Users Access to Profile Page". If enabled users will be able to without having to provide aaccess their profile
password.
Provide the and SAML Login URL SAML Logut URL

Provide the service provider name (Artifactory name in SAML federation)
Provide the X.509 certificate that contains the public key. The public key can use either the DSA or RSA algorithms. Artifactory uses this
key to verify SAML response origin and integrity. Make sure to match the embedded public key in the X.509 certificate with the private
key used to sign the SAML response.

Understanding Artifactory's SAML-based SSO Login Process

The user attempts to reach a hosted Artifactory, Home Page.
Artifactory generates a SAML authentication request.
The SAML request is encoded and embedded into the identity provider URL.
Artifactory sends a redirect to the user's browser. The redirect URL includes the encoded SAML authentication request that should be
submitted to the identity provider.
The identity provider decodes the SAML message and authenticates the user. The authentication process can proceed by asking for
valid login credentials or by checking for valid session cookies.
The identity provider generates a SAML response that contains the authenticated user's username. In accordance with the SAML 2.0
specification, this response is digitally signed with the identity provider’s private DSA/RSA keys.
The identity provider encodes the SAML response and returns that information to the user's browser. The identity provider redirects back
to Artifactory with the signed response.
Artifactory’s ACS verifies the SAML response using the partner's public key. If the response is successfully verified, the ACS redirects the
user to the destination URL.
The user has been redirected to the destination URL and is logged in to Artifactory.

 Figure (2) Artifactory’s SAML-based SSO login process.

SAML Logout URL
In order to simultaneously logout from your SAML provider and Artifactory, you need to correctly set your provider's logout
URL SAML Logout URL field. Setting this incorrectly will keep your users logged in with the SAML provider even after logging
out from Artifactory.

Custom URL base
For your SAML SSO settings to work, make sure you have your configured.Custom URL Base

Signed and encrypted Assertions
1. Please make sure your SAML IdP (Identity Provider) provides a signed login Assertion - this is mandatory for the Assertion
verification by Artifactory.

2. Encrypted Assertion is currently unsupported by Artifactory.

3. Signed Logout is also currently unsupported by Artifactory.

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-ChangingYourPasswordandEmail
https://www.jfrog.com/confluence/display/RTD/Updating+Your+Profile
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomURLBase

9.

1.
2.
3.
4.
5.

Understanding the Artifactory's SAML-based SSO Logout Process

The user attempts to reach a hosted Artifactory logout link.
Artifactory logs the client out and generates a SAML logout request.
Artifactory redirects to the identity provider with the encoded SAML logout request.
The identity provider decodes the SAML message and logs the user out.
The user is redirected to the configured URL in the identity provider.

 Figure (3) Artifactory’s SAML-based SSO logout process.

Artifactory Profiles and Bindings

Artifactory currently supports the Web Browser SSO and Single Logout Profiles.

The Web Browser SSO Profile uses HTTP redirect binding to send the AuthnRequest from the service provider to the identity provider, and

HTTP POST to send the authentication response from the identity provider to the service provider.

Similar to the previous profile, the Single Logout Profile uses HTTP redirect binding to send the LogoutRequest from the service provider to

the identity provider and HTTP POST to send the logout response from the identity provider to the service provider.

If your IDP supports uploading service provider metadata, you can use the following metadata XML:

Figure (4) Artifactory’s service provider metadata XML.

Artifactory SP metadata XML

<ns2:EntityDescriptor xmlns="http://www.w3.org/2000/09/xmldsig#"
xmlns:ns2="urn:oasis:names:tc:SAML:2.0:metadata"
entityID="<SP_NAME_IN_FEDERATION>">
 <ns2:SPSSODescriptor WantAssertionsSigned="true"
AuthnRequestsSigned="false"
protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">

<ns2:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</n
s2:NameIDFormat>
 <ns2:AssertionConsumerService index="1"
Location="<ARTIFACTORY_URL>/webapp/saml/loginResponse"
Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"/>
 </ns2:SPSSODescriptor>
</ns2:EntityDescriptor>

 NOTE! that to use the service provider metadata:

Do not forget to update the following fields in the service provider metadata XML:

entityID - Artifactory’s ID in the federation. Must match in Artifactory's SAML configuration page.SAML Service Provider Name
Location - Artifactory's home URL

After SAML Setup

Using SAML, Artifactory automatically redirects the request to IDP which Authenticates the user and after a successful login redirects back to
Artifactory.

If "Anonymous User" is enabled, Artifactory doesn’t have to authenticate the user therefore it doesn’t redirect to the IDP. If the user still wants to
sign in through SAML, they can do so by clicking the "SSO login" link in the login page.

Login Failure

In case of IDP failover or bad configuration, Artifactory allows you to bypass SAML login by using Artifactory login page:

http://<ARTIFACTORY_URL>/webapp/#/login

This URL can be used by internal users who need to log in directly to Artifactory.

Using API Key with SAML Users

While SAML provides access to Artifactory UI, it is also possible for SAML users to generate an that can be used instead of a passwordAPI key
for basic authentication or in a dedicated , this is very useful when working with different clients, e.g. docker, npm, maven, etc.REST API header
or using Artifactory REST API.

In order to allow SAML users access to an API key you will need to make sure that the " " and "Auto Create Artifactory Users Allow Created

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Authentication

" check boxes are checked. This means that SAML users are also saved in Artifactory database and can accessUsers Access To Profile Page
their in order to generate, retrieve and revoke their API key.profile page

Single Sign-on

Overview

The Single Sign-on (SSO) add-on allows you to reuse existing HTTP-based SSO infrastructures with
Artifactory, such as the SSO modules offered by Apache HTTPd.

You can have Artifactory's authentication work with commonly available SSO solutions, such as native
NTLM, Kerberos etc.

SSO works by letting Artifactory know what trusted information it should look for in the HTTP request,
assuming this request has already been authenticated by the SSO infrastructure that sits in front of
Artifactory.

Usage

To access the Single Sign-On (SSO) add-on, in the module, select .Admin Security | HTTP SSO

To enable SSO you must alert Artifactory that it is running behind a secure HTTP server that forwards trusted requests to it.

Then you must tell Artifactory in which variable to look for trusted authentication information.

The default is to look for a REMOTE_USER header or the request variable, which is set by Apache's AJP and JK connectors.

You can choose to use any request attribute (as defined by the Servlet specification) by providing a different variable name.

Finally, you can instruct Artifactory to treat externally authenticated users as temporary users, so that Artifactory does not create them in its
security database.

In this case, permissions for such users are based on the permissions given to auto-join groups.

Page Contents
Overview
Usage
Integrating Apache and Tomcat
Setting Up a Reverse SSL Proxy for SSO

Components and Versions
Modifying Your Webserver Configuration File

Using API Key with HTTP-SSO Users

Adding Your Own SSO Integration

You can write a simple servlet filter to integrate with custom security systems and set a request attribute on the request to be trusted by
the SSO add-on.

Field Name Description

Artifactory is
Proxied by a Secure
HTTP Server

When checked, Artifactory trusts incoming requests and reuses the remote user originally set on the request by the
SSO of the HTTP server.

This is extremely useful if you want to use existing enterprise SSO integrations, such as the powerful authentication
schemes provided by Apache (mod_auth_ldap, mod_auth_ntlm, mod_auth_kerb, etc.).

When Artifactory is deployed as a webapp on Tomcat behind Apache:

If using mod_proxy_ajp, make sure to set tomcatAuthentication="false" on the AJP connector.
If using mod_jk, make sure to use the "JkEnvVar REMOTE_USER" directive in Apache's configuration.

Remote User
Request Variable

The name of the HTTP request variable to use for extracting the user identity. Default is: REMOTE_USER.

Auto Create
Artifactory Users

When not checked, authenticated users are not automatically created inside Artifactory. Instead, for every request from
a SSO user, the user is temporarily associated with default groups (if such groups are defined) and the permissions for
these groups apply.

Without auto user creation, you must manually create the user inside Artifactory to manage user permissions not
attached to its default groups.

Allow Created
Users Access To
Profile Page

When checked, users created after authenticating using HTTP SSO, will be able to access their profile. This means
they are able to generate their and for future use.API Key set their password

Integrating Apache and Tomcat

Custom URL base
For your HTTP SSO settings to work, make sure you have your configured.Custom URL Base

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-ChangingYourPasswordandEmail
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomURLBase

When Artifactory is deployed as a webapp on Tomcat behind Apache:

If using - Make sure to set on the AJP connector.mod_proxy_ajp tomcatAuthentication="false"
If using - Make sure to use the directive in Apache's configuration.mod_jk JkEnvVar REMOTE_USER
If using (requires , and - There are two known working methods that forwardmod_proxy mod_proxy_http mod_headers mod_rewrite
the header:

RequestHeader set REMOTE_USER %{REMOTE_USER}e

or

RewriteEngine On
 RewriteCond %{REMOTE_USER} (.+)
 RewriteRule . - [E=RU:%1]
 RequestHeader set REMOTE_USER %{RU}e

Setting Up a Reverse SSL Proxy for SSO

You may set up a reverse SSL proxy on your webserver in order to run Artifactory supporting SSO.

To do this, you need to have the right installed, , and then for SSO.components modify your webserver configuration file configure Artifactory

When correctly set up,you should be able to login to Artifactory with your Windows credentials and stay logged in between sessions.

Components and Versions

The instructions below have been tested to work with Kerberos/NTLM SSO working with Artifactory using the following components.

 running on Windows 8 using the .IBM Websphere 8.5.5 IBM Websphere Java 7 JDK Package
Artifactory v3.3.0.1 or later must be installed on the Websphere instance. For details please refer to Running Artifactory on IBM
WebSphere.
The mod_auth_sspi Apache module.

Modifying Your Webserver Configuration File

Once you have the right components and versions installed, you need to add the following lines to your [HTTP_SERVER_HOME]/conf/httpd.c
onf file:

https://www.jfrog.com/confluence/display/RTD/Deploying+on+Servlet+Containers+-+Done#DeployingonServletContainers-Done-RunningArtifactoryonIBMWebSphere
http://www.ibm.com/developerworks/java/jdk/index.html
https://www.jfrog.com/confluence/display/RTD/Deploying+on+Servlet+Containers+-+Done#DeployingonServletContainers-Done-RunningArtifactoryonIBMWebSphere
https://www.jfrog.com/confluence/display/RTD/Deploying+on+Servlet+Containers+-+Done#DeployingonServletContainers-Done-RunningArtifactoryonIBMWebSphere
http://www.jfrog.com/confluence/display/RTD/Internal+Websphere+Installation
http://sourceforge.net/projects/mod-auth-sspi/

httpd.conf file

<VirtualHost *:80>
ServerName yourhostname
DocumentRoot "C:/IBM/Installation
Manager/eclipse/plugins/org.apache.ant_1.8.3.v20120321-1730"
ProxyPreserveHost on
ProxyPass /artifactory http://yourhostname:9080/artifactory
ProxyPassReverse /artifactory http://yourhostname:9080/artifactory
</VirtualHost>

<Location /artifactory>
AuthName "Artifactory Realm"
AuthType SSPI
SSPIAuth On
SSPIAuthoritative On
require valid-user
RewriteEngine On
RewriteCond %{REMOTE_USER} (.+)
RewriteRule . - [E=RU:%1]
RequestHeader set REMOTE_USER %{RU}e
</Location>

Then you need to enable the following modules in your file:httpd.conf

Modules to enable

LoadModule sspi_auth_module modules/mod_auth_sspi.so
LoadModule headers_module modules/mod_headers.so
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule rewrite_module modules/mod_rewrite.so

Using API Key with HTTP-SSO Users

While HTTP-SSO provides access to Artifactory UI, it is also possible for HTTP-SSO users to generate an that can be used instead of aAPI key
password for basic authentication or in a dedicated , this is very useful when working with different clients, e.g. docker, npm,REST API header
maven, etc. or using Artifactory REST API.
In order to allow HTTP-SSO users access to an API key you will need to make sure that the " " and "Auto Create Artifactory Users Allow

" check boxes are checked. This means that SSO users are also saved in Artifactory database and canCreated Users Access To Profile Page
access their in order to generate, retrieve and revoke their API key.profile page

Smart Searches

Overview

Smart search is a feature that allows you to assemble a custom set of artifacts returned by a series of

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Authentication

separate searches actions. This is done by saving search results in a Stash.

The Stash provides easy access to artifacts found without having to run the series of searches again, and
also provides a convenient way to perform bulk operations on the result set using the . Stash Browser

Using the Stash you can save a search result, then use additional searches to add, remove and intersect
new results with the original result. Effectively, you are assembling a 'shopping cart' of artifacts, which you
can then manipulate as one unit.

For example, you can search for all artifacts deployed by a certain build (by build number), remove all the
sources from the search results (by running another search) and promote the final result set to a public
repository. Or, you can search all POMs containing a specific license and move them to a repository of
approved artifacts, or attach an "approved" property to them.

Saving Search Results in the Stash

To save search results after running a search, click To save only a subset of the search results, first select the items you want toStash Results.
save and then click If you don't select any items, the whole result set will be saved.Stash Results.

Once you have items stored in the stash, Artifactory displays the number of items stored and offers several actions you can perform.

View

This displays the Stash Browser showing all items currently stored in the stash

Page Contents
Overview
Saving Search Results in the Stash

View
Clear
Actions

Stash Browser
From Staging to Promotion

http://www.jfrog.com/confluence/display/RTD/Copy+of+Searching+for+Artifacts#CopyofSearchingforArtifacts-StashBrowser

Clear

Remove all items from the stash

Actions

Add: Adds to the stash items found in the current result set that are not already stored in the stash

Subtract: Items found in the current search result set, that are also in the stash, are subtracted (i.e. removed) from the
stash

Intersect: Items that are in the intersection of the current search results and the current stash contents are kept in the
stash. All other items are removed.

Stash Browser

The stash browser displays all items that are in the stash. You can browse through the items and view relevant information corresponding to the
item type just like you would in the . Tree Browser

 If you select one of the items in the stashed search results tree, the specific information panel relevant to the selected item is displayed. The Acti
 available are:ons

Delete

Delete the item.

Discard from Stash

Remove the item from the stash without deleting it.

Show in Tree

Display the item in the Artifact Tree Browser.

View

View the contents of the file

Download

Download the artifact or folder

If you are on the root item, you can perform bulk actions on all the contents of the stash at once.Stashed Search Results

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing

Copy Stash to Repository Copies the entire stash contents to a repository

Move Stash to Repository Move the entire stash contents from their current location to a repository

Discard search results Removes all items from the stash without deleting them.

On the root item you can also perform an export of the entire stash in the same way you would .Stashed Search Results export a repository

To go back to the Artifacts Tree Browser, click .Back to Repository Browser

From Staging to Promotion

For more detailed information about using Smart Searches for powerful, yet simple, promotion support please see .this blog entry

SSH Integration

Overview

From version 4.4, Artifactory supports SSH authentication for Git LFS and the using RSA publicJFrog CLI
and private keys. This allows these tools to exchange sensitive information with the Artifactory server that is
authenticated via SSH.

There are two main facets of SSH authentication:

Server authenticates itself to the client

The server must be authenticated before you send it any confidential data. For example, you should not
authenticate a user to the server with the user's password before the server has been authenticated. The
server is authenticated in the following manner.

When the SSH connection is established, the server sends its public key to the client, and the client matches
the key to a list of known public keys stored in a known_hosts file. (Before the first ever connection to the
server, you must obtain the server's public key by some other means and add it it to the known_hosts file
manually). This verifies that the server is indeed the owner of the stored public key, since only that server will
have the corresponding private key. It also verifies that the server is known (and not an imposter) since its
public key is stored in the known_hosts file.

User authenticates itself to the server

This process mirrors the process of the server being authenticated to the client. The user must first provide
his public key to the server which stores it in the user's account authorization list. Then, when the user tries to
log in, the server sends the user back his public key, and the user must show that he holds the corresponding
private key.

Limitation
SSH is not supported if using cloud service.Artifactory Saas

Page Contents
Overview
Configuring SSH

Configuring Server Authentication
Configuring User Authentication

https://www.jfrog.com/blog/search-based-promotion/
https://www.jfrog.com/confluence/display/CLI/JFrog+CLI
https://www.jfrog.com/artifactory/versions/#Cloud

1.
2.
3.

Configuring SSH

To configure SSH authentication, you need to execute the following main steps:

Configure Server Authentication
Configure User Authentication
Configure the Git LFS or CLI Client

Configuring Server Authentication

In this step you will configure Artifactory's SSH authentication parameters. First you need to generate an SSH key pair for Artifactory. For
example, on a Linux-based system, you could execute the following command:

ssh-keygen -t rsa -C "server@domain.com"

 Then, to configure Artifactory for SSH authentication, in the module, select and fill in the required fields.Admin Security | SSH Server

Enable SSH
Authentication

When checked, SSH authentication is enabled

Port

The port that should be used for an SSH connection

Configuring the Client

Custom URL
Base

The that should be used for SSH connections. Note that this is the same Custom URL Base configuredCustom URL Base
in the module under Admin Configuration | General.

Public
key/Private key

The key pair used for authentication

Configuring User Authentication

In this step, you will configure Artifactory with your public key so that you may be authenticated when sending requests to Artifactory from the Git
LFS client or from the Artifactory CLI.

First, you need to generate a key pair. For example, on a Linux-based system, you could execute the following command:

ssh-keygen -t rsa -C "USER@domain.com"

Your public and private keys should be created under the folder.~/.ssh

Configuring the Client

To configure your Git LFS client, please refer to .Authenticating with SSH

To configure the JFrog CLI, please refer to . Authenticating with RSA Keys

User Plugins

About Plugins

Artifactory Pro allows you to easily extend Artifactory's behavior with your own plugins written in .Groovy

User plugins are used for running user's code in Artifactory. Plugins allow you to perform the following tasks:

Add scheduled tasks
Extend Artifactory with your own security realms
Change resolution rules
Manipulate downloaded content
Respond to any storage events on items and properties
Deploy and query artifacts and metadata
Perform searches
Query security information
Invoke custom commands via REST
Execute custom promotion logic
Provide information and strategies for .Artifactory's Build Servers Plugins

During the development phase, you can change plugin source files and have your plugins redeployed

Don't forget to update your public key
Update your public key under the section of your User Profile.SSH

https://www.jfrog.com/confluence/display/RTF/Git+LFS+Repositories#GitLFSRepositories-AuthenticatingwithSSH
https://www.jfrog.com/confluence/display/CLI/CLI+for+JFrog+Artifactory#CLIforJFrogArtifactory-AuthenticatingwithRSAKeys
http://groovy.codehaus.org/
http://wiki.jfrog.org/confluence/display/RTF/Build+Integration
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-SSHKey

on-the-fly. You can even debug the plugin code using your favorite IDE.

Deploying Plugins

Place your plugin files under .$ ARTIFACTORY_HOME / /plugins{ } etc

Any file name ending with on startup. You can have multiple plugin files which are loaded in alphabetical order. Callbacks.groovy is loaded
defined in plugins are called by the order they were loaded.

Reloading Plugins

By default, plugins are not reloaded after Artifactory has started-up. You can configure Artifactory to automatically detect plugin changes diskon
or new plugin files and automatically reload them runtime (plugin removals are not detected), or reload plugins using the REST API.in

Auto Reload

To automatically reload plugins that have changed, set the number of seconds to check for plugin updates to a number greater than 0, by
changing the following property in , or by specifying the property with -D${ARTIFACTORY_HOME}/etc/artifactory.system.properties
to the JVM running Artifactory:

artifactory.plugin.scripts.refreshIntervalSecs=0

NOTE! that deleting or renaming plugin while auto-reloading is active is not fully supported and requires an Artifactory restart.files

Groovy Version
Groovy 2.4 is supported

Page Contents
About Plugins
Deploying Plugins

Reloading Plugins
Auto Reload
Reloading Plugins via REST API

Plugins Lib Directory
Removing Plugins
Retrieving Plugin Source Code
Writing Plugins

The Artifactory Public API (PAPI)
Globally Bound Variables
Plugin Execution Points

Execution Context
Including AQL Queries

Plugin Template Source
General Info
Download
Storage
Jobs
Executions
Realms
Build
Promotions
Staging
Replication

Controlling Plugin Log Level
Sample Plugin

Artifactory HA Plugins Directory
If you are working with a cluster your user plugins should be added to the node under:High Availability primary

$ ARTIFACTORY_HOME /etc/plugins{ }

And they will be propagated to the entire cluster.

Reloading Plugins via REST API

You can reload plugins using the REST API endpoint. Reload Plugins

Plugins Lib Directory

If your plugin requires any external dependencies, you can place them under the $ ARTIFACTORY_HOME /{ } etc directory./plugins/lib

Removing Plugins

To remove a plugin, simply delete it from the $ ARTIFACTORY_HOME /{ } etc directory./plugins

Retrieving Plugin Source Code

You can retrieve the Groovy source code of a user plugin using the REST API endpoint Retrieve Plugin Code

Writing Plugins

Artifactory plugins are written as Groovy scripts in regular files and have a simple DSL to wrap users code in closures inside well-known extension
points.

Scripts have a couple of helper objects that are globally bound (see the plugin script template).

The Artifactory Public API (PAPI)

Scripts have access to the full classpath of Artifactory, however, the only API supported for plugins is the , defined inArtifactory Public API
the .artifactory-papi.jar

The can be found under folder inside the .artifactory-papi.jar WEB-INF/lib artifactory.war

Please see the and below for more details.Plugin Code Template Sample Plugin

Globally Bound Variables

Variable Name Variable Type Comments

Disabling Plugin Reloading for Production
Ensure plugin auto-reloading is disabled in a production environment.

Removing Plugins from an Artifactory HA Cluster
To remove a plugin from a cluster you only need to delete the plugin file from the node.High Availability master

The deletion event is then propagated to all other nodes in the cluster and Artifactory will delete the respective file from each cluster
node automatically.

Naming conventions
Note that Groovy scripts must follow the same naming conventions as those specified for Java.

IDE code completion
All major IDEs have good Groovy editing and debugging capabilities.

In order to make your developing experience complete, we provide support for our own DSL for IntelliJ IDEA. IntelliJ IDEA's Groovy
 for Artifactory User Plugins can be found in our .DSL script GitHub repo

 courtesy of Eclipse DSLD file is also available James Carnegie.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ReloadPlugins
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RetrievePluginCode
http://repo.jfrog.org/artifactory/oss-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/index.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367
http://confluence.jetbrains.net/display/GRVY/Scripting+IDE+for+DSL+awareness
http://confluence.jetbrains.net/display/GRVY/Scripting+IDE+for+DSL+awareness
https://github.com/JFrogDev/artifactory-user-plugins
https://github.com/JFrogDev/artifactory-user-plugins/blob/8efa237b3a84b9f62d4ed16529a8401cf7a4f667/ArtifactoryUserPlugins.dsld

log

org.slf4j.Logger Writes to Artifactory log
logger name is the name of the script file

repositories

org.artifactory.repo.Repositories Allows queries and operations on repositories
and artifacts

security

org.artifactory.security.Security Provides information about current security context,
(e.g. current user and her permissions)

searches

org.artifactory.search.Searches API for searching for artifacts and builds
Since 2.3.4

builds

org.artifactory.build.Builds Allows CRUD operations on builds
Since 2.6

Plugin Execution Points

The following table summarizes the available execution points. For more details about specific plugin look follow the section links.

Plugin Type Code block name When executed Description

Download

Event
Callback (with
return values)

altResponse On any download Provide an alternative response, by setting a success/error status code value and an
optional error message or by setting new values for the inputStream and size context
variables (For succeeded resolutions).

altRemotePath When reaching out to
remote repositories

Provides an alternative download path under the same remote repository, by setting a
new value to the path variable.

altRemoteContent After fetching content
from remote
repositories

Provide an alternative download content, by setting new values for the inputStream
and size context variables.

afterDownloadError After failing during
content fetching from
remote repositories

Provide an alternative response, by setting a success/error status code value and an
optional error message or by setting new values for the inputStream and size context
variables (For failed resolutions).

Event
Callback
(without
return value)

beforeRemoteDownload Before fetching content
from remote
repositories

Handle before remote download events.

afterRemoteDownload After fetching content
from remote
repositories

Handle after remote download events.

beforeDownload On any download Handle before download events.

afterDownload On any download Handle after download events

beforeDownloadRequest On any download Handle before download requset events, executed before Artifactory starts to handle
the original client request, useful for intercepting expirable resources (other than the
default ones like maven-metadata.xml).

Storage

Closure Variables
Note! Declaring your own closure variables using the Groovy 'def ' keyword is considered best practice. Avoiding the "def" keyword is
risky in terms of variable scoping, and will result in the variable being scoped globally, making it accessible from other closure
executions.

Plugins Repository
Enhancing Artifactory with user plugins is community-driven effort.

If you are looking to go beyond Artifactory's out-of-the-box functionality take a look at , you mightalready contributed plugins on GitHub
find what you are thinking about. If not, your contribution is very welcome!

http://slf4j.org/apidocs/org/slf4j/Logger.html
http://repo.jfrog.org/artifactory/libs-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/repo/Repositories.html
http://repo.jfrog.org/artifactory/libs-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/security/Security.html
http://repo.jfrog.org/artifactory/oss-releases-local/org/artifactory/artifactory-papi/4.14.1/artifactory-papi-4.14.1-javadoc.jar!/org/artifactory/search/Searches.html
http://repo.jfrog.org/artifactory/libs-releases-local/org/artifactory/artifactory-papi/%5BRELEASE%5D/artifactory-papi-%5BRELEASE%5D-javadoc.jar!/org/artifactory/build/Builds.html
https://github.com/JFrogDev/artifactory-user-plugins

Event
Callback
(without
return value)

before/after
Create, Delete,
Move, Copy,
PropertyCreate,
PropertyDelete

Before / After selected
storage operation

Handle events before and after Create, Delete, Move and Copy operations

Jobs

Scheduled
execution

any valid Groovy (Java)
literal as execution name

According to provided
interval/delay or ecron
xpression

Job runs are controlled by the provided interval or expression, which arecron
mutually exclusive. The actual code to run as part of the job should be part of the job's
closure.

Executions

User-driven
execution

any valid Groovy (Java)
literal as execution name

By REST call External executions are invoked via REST requests.

Realms

Event
Callback
(without
return value)

any valid Groovy (Java)
literal as realm name with
nested blocks:

authenticate
userExists

During user
authentication

Newly added realms are added before any built-in realms (Artifactory internal realm,
LDAP, Crowd etc.). User authentication will be attempted against these realms first,
by the order they are defined.

Build

Event
Callback
(without
return value)

beforeSave Before the build info is
saved in Artifactory

Handle before build info save events

afterSave After the build info is
saved in Artifactory

Handle after build info save events

Promotions

User or build
server driven
execution

any valid Groovy (Java)
literal as promotion name

By REST call Promotes integration (a.k.a. snapshot) build to be a release invoking any code
associated with it.

Staging
Strategy

build server
driven
execution

 valid Groovy (Java)any
literal as staging strategy
name

During build server
driven staging build
configuration

The strategy provides the build server with the following information:

How the artifacts in the staged build should be ;versioned
How the artifacts in the next integration build should be ;versioned
Should the build server create a release branch/tag/stream in VCS and how it
should be called;
To which repository in Artifactory the built artifacts should be submitted.

 Replication

Event
callback (with
return value)

beforeFileReplication Before is replicatedfile Handle before file replication events. File replication can be skipped.

beforeDirectoryReplication Before directory is
replicated

Handle before directory replication events. Directory replication can be skipped.

beforeDeleteReplication Before file/directory is
deleted

Handle before file or directory are deleted.

beforePropertyReplication Before properties are
replicated

Handle properties replication.

Execution Context

The , , and plugin types are executed under the identity of the user request that triggered them.Download Storage Execution Build

It is possible to force a block of plugin code to execute under the "system" role, which is not bound to any authorization rules and
can therefore perform actions that are otherwise forbidden for the original user.

To run under the "system" role wrap your code with the closure:asSystem

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Staging
http://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Staging
http://wiki.jfrog.org/confluence/display/RTF/User+Plugins#UserPlugins-Replication

... someCode ...

asSystem {
 //This code runs as the system role
}

... someOtherCode ...

The and plugin types already execute under the "system" role. This cannot be changed.Realm Job

Including AQL Queries

User plugins may include opening up the full set of search capabilities that AQL has to offer. AQL queries are implemented within theAQL queries
 object as shown in the example below.Searches

import org.artifactory.repo.RepoPathFactory
import org.artifactory.search.Searches
import org.artifactory.search.aql.AqlResult

executions {
 gemPropsPopulator() {
 def repoKey = "gem-local"
 ((Searches) searches).aql(
 "items.find({" +
 "\"repo\": \"" + repoKey + "\"," +
 "\"\$or\":[" +
 "{\"property.key\":{\"\$ne\":\"gem.name\"}}," +
 "{\"property.key\":{\"\$ne\":\"gem.version\"}}" +
 "]})" +
 ".include(\"path\", \"name\")") {
 AqlResult result ->
 result.each {
 ...
 ...
 ...
 }
 }
 }
}

Plugin Template Source

General Info

General info....

/*
 * Copyright (C) 2011 JFrog Ltd.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 *
 * Globally bound variables:
 *
 * log (org.slf4j.Logger)
 * repositories (org.artifactory.repo.Repositories)
 * security (org.artifactory.security.Security)
 * searches (org.artifactory.search.Searches) [since: 2.3.4]
 * builds (org.artifactory.build.Builds) [since 2.5.2]
 *
 * ctx (org.artifactory.spring.InternalArtifactoryContext) - NOT A
PUBLIC API - FOR INTERNAL USE ONLY!
 */

Download

Handling and manipulating "download" events...

download {

 /**
 * Provide an alternative response, by one of the following methods:
 * (1) Setting a success/error status code value and an optional error
message.
 * (2) Provide an alternative download content, by setting new values
for the inputStream and size context variables.
 *
 * Note that, unless specifically handled, checksum requests for
altered responses will return the checksum of the
 * original resource, which may not match the checksum of the
alternate response.
 *
 * Will not be called if the response is already committed (e.g. a
previous error occurred).
 * Currently called only for GET requests where the resource was

found.
 *
 * Context variables:
 * status (int) - a response status code. Defaults to -1 (unset).
 * message (java.lang.String) - a text message to return in the
response body, replacing the response content.
 * Defaults to null.
 * inputStream (java.io.InputStream) - a new stream that provides the
response content. Defaults to null.
 * size (long) - the size of the new content (helpful for clients
processing the response). Defaults to -1.
 * headers (java.util.Map<String,String>) - Map containing the extra
headers to override or add if not exists to the response.
 *
 * Usage example:
 * headers = ["ExtraHeader":"SpecialHeader"]
 *
 *
 *
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request.
 * responseRepoPath (org.artifactory.repo.RepoPath) - a read-only
parameter of the response RepoPath (containing the
 * physical
repository the resource was found in).
 */
 altResponse { request, responseRepoPath ->
 }

 /**
 * Provides an alternative download path under the same remote
repository, by setting a new value to the path
 * variable.
 *
 * Context variables:
 * path (java.lang.String) - the new path value. Defaults to the
originalRepoPath's path.
 *
 * Closure parameters:
 * repoPath (org.artifactory.repo.RepoPath) - a read-only parameter of
the original request RepoPath.
 */
 altRemotePath { repoPath ->
 }

 /**
 * Provide an alternative download content, by setting new values for
the inputStream and size context variables.
 *
 * Context variables:
 * inputStream (java.io.InputStream) - a new stream that provides the
response content. Defaults to null.

 * size (long) - the size of the new content (helpful for clients
processing the response). Defaults to -1.
 *
 * Closure parameters:
 * repoPath (org.artifactory.repo.RepoPath) - a read-only parameter of
the original request RepoPath.
 */
 altRemoteContent { repoPath ->
 }

 /**
 * In case of resolution error provide an alternative response, by
setting a success/error status code value and an optional error message.
 * Will not be called if the response is already committed (e.g. a
previous error occurred).
 * As opposite to altResponse, called only for GET requests during
which error occurred (e.g. 404 - not found, or 409 - conflict).
 *
 * Context variables:
 * status (int) - a response error status code (may be overridden in
the plugin).
 * message (java.lang.String) - a response error message (may be
overridden in the plugin).
 * inputStream (java.io.InputStream) - a new stream that provides the
response content. Defaults to null.
 * size (long) - the size of the new content (helpful for clients
processing the response). Defaults to -1.
 *
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request.
 */
 afterDownloadError { request ->
 }

 /**
 * Handle before remote download events.
 *
 * Context variables:
 * headers (java.util.Map<String,String>) - Map containing the extra
headers to insert into the remote server request
 *
 * Usage example:
 * headers = ["ExtraHeader":"SpecialHeader"]
 *
 * Note: The following cannot be used as extra headers and Artifactory
will always override them:
 * "X-Artifactory-Originated". "Origin-Artifactory", "Accept-Encoding"
 *
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request. [since: 2.3.4]
 * repoPath (org.artifactory.repo.RepoPath) - a read-only parameter of

the original request RepoPath.
 */
 beforeRemoteDownload { request, repoPath ->
 }

 /**
 * Handle after remote download events.
 *
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request. [since: 2.3.4]
 * repoPath (org.artifactory.repo.RepoPath) - a read-only parameter of
the original request RepoPath.
 */
 afterRemoteDownload { request, repoPath ->
 }

 /**
 * Handle before local download events.
 *
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request.
 * responseRepoPath (org.artifactory.repo.RepoPath) - a read-only
parameter of the response RepoPath (containing the
 * physical
repository the resource was found in).
 */
 beforeDownload { request, responseRepoPath ->
 }

 /**
 * Handle before any download events, at this point the request passed
all of Artifactory's filters (authentication etc) and is about to reach
the repositories.
 *
 * Context variables:
 * expired (boolean) - Mark the requested resource as expired.
Defaults to false (unset).
 * An expired resource is one that it's (now() -
(last updated time)) time is higher than the repository retrieval cache
period milliseconds.
 * Setting this option to true should be treated
with caution, as it means both another database hit (for updating the
last updated time)
 * as well as network overhead since if the resource is expired,
a remote download will occur to re-download it to the cache.
 * A common implementation of this extension point is to check if
the resource comply with a certain pattern (for example: a *.json file)
 * AND the original request was to the remote repository (and not
directly to it's cache)
 * AND a certain amount of time has passed since the last expiry
check (to minimize DB hits).

 * See our public GitHub for an example here:
https://github.com/JFrogDev/artifactory-user-plugins/blob/master/downloa
d/beforeDownloadRequest/beforeDownloadRequest.groovy
 *
 * modifiedRepoPath (org.artifactory.repo.RepoPath)
 * Forces Artifactory to store the file at the specified
repository path in the remote cache.
 * See our public GitHub for an example here:
https://github.com/JFrogDev/artifactory-user-plugins/blob/master/downloa
d/modifyMD5File/ModifyMD5FileTest.groovy
 * Closure parameters:
 * request (org.artifactory.request.Request) - a read-only parameter
of the request.
 * repoPath (org.artifactory.repo.RepoPath) - a read-only parameter
of the response RepoPath (containing the
 * physical
repository the resource was found in).
 */

 beforeDownloadRequest { request, repoPath ->
 }
}

Storage

Handling and manipulating "storage" events...

If you want to abort an action, you can do that in 'before' methods by throwing a runtime org.artifactory.exception.CancelException with an
error message and a proper http error code.

storage {

 /**
 * Handle before create events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the original item being created.

 */
 beforeCreate { item ->
 }

 /**
 * Handle after create events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the original item being created.

 */
 afterCreate { item ->
 }

 /**
 * Handle before delete events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the original item being being
deleted.
 */
 beforeDelete { item ->
 }

 /**
 * Handle after delete events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the original item deleted.
 */
 afterDelete { item ->
 }

 /**

 * Handle before move events.
 *
 * Closure parameters:

 * item (org.artifactory.fs.ItemInfo) - the source item being moved.
 * targetRepoPath (org.artifactory.repo.RepoPath) - the target repoPath
for the move.
 */
 beforeMove { item, targetRepoPath, properties ->
 }

 /**
 * Handle after move events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the source item moved.
 * targetRepoPath (org.artifactory.repo.RepoPath) - the target repoPath
for the move.
 */
 afterMove { item, targetRepoPath, properties ->
 }

 /**
 * Handle before copy events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the source item being copied.
 * targetRepoPath (org.artifactory.repo.RepoPath) - the target repoPath
for the copy.
 */
 beforeCopy { item, targetRepoPath, properties ->
 }

 /**
 * Handle after copy events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the source item copied.
 * targetRepoPath (org.artifactory.repo.RepoPath) - the target repoPath
for the copy.
 */
 afterCopy { item, targetRepoPath, properties ->
 }

 /**
 * Handle before property create events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the item on which the property
is being set.
 * name (java.lang.String) - the name of the property being set.
 * values (java.lang.String[]) - A string array of values being assigned
to the property.

 */
 beforePropertyCreate { item, name, values ->
 }
 /**
 * Handle after property create events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the item on which the property
has been set.
 * name (java.lang.String) - the name of the property that has been set.

 * values (java.lang.String[]) - A string array of values assigned to
the property.
 */
 afterPropertyCreate { item, name, values ->
 }
 /**
 * Handle before property delete events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the item from which the property
is being deleted.
 * name (java.lang.String) - the name of the property being deleted.
 */
 beforePropertyDelete { item, name ->
 }
 /**
 * Handle after property delete events.
 *
 * Closure parameters:
 * item (org.artifactory.fs.ItemInfo) - the item from which the property
has been deleted.
 * name (java.lang.String) - the name of the property that has been
deleted.
 */

 afterPropertyDelete { item, name ->
 }
}

Jobs

Defining scheduled jobs...

jobs {

 /**
 * A job definition.
 * The first value is a unique name for the job.
 * Job runs are controlled by the provided interval or cron
expression, which are mutually exclusive.
 * The actual code to run as part of the job should be part of the
job's closure.
 *
 * Parameters:
 * delay (long) - An initial delay in milliseconds before the job
starts running (not applicable for a cron job).
 * interval (long) - An interval in milliseconds between job runs.
 * cron (java.lang.String) - A valid cron expression used to schedule
job runs (see:
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html)
 */

 myJob(interval: 1000, delay: 100) {
 }

 mySecondJob(cron: "0/1 * * * * ?") {
 }
}

Executions

Defining external executions...

curl -X GET -v -u admin:password
"http://localhost:8080/artifactory/api/plugins/execute/myExecution?param
s=msg=And+the+result+is:|no1=10|no2=15&async=0"

executions {

 /**
 * An execution definition.
 * The first value is a unique name for the execution.
 *
 * Context variables:
 * status (int) - a response status code. Defaults to -1 (unset). Not
applicable for an async execution.
 * message (java.lang.String) - a text message to return in the
response body, replacing the response content.
 * Defaults to null. Not applicable for
an async execution.
 *
 * Plugin info annotation parameters:
 * version (java.lang.String) - Closure version. Optional.
 * description (java.lang.String) - Closure description. Optional.
 * httpMethod (java.lang.String, values are GET|PUT|DELETE|POST) -
HTTP method this closure is going
 * to be invoked with. Optional (defaults to POST).
 * params (java.util.Map<java.lang.String, java.lang.String>) -
Closure default parameters. Optional.
 * users (java.util.Set<java.lang.String>) - Users permitted to query
this plugin for information or invoke it.
 * groups (java.util.Set<java.lang.String>) - Groups permitted to
query this plugin for information or invoke it.
 *
 * Closure parameters:
 * params (java.util.Map) - An execution takes a read-only key-value
map that corresponds to the REST request
 * parameter 'params'. Each entry in the map contains an array of
values. This is the default closure parameter,
 * and so if not named it will be "it" in groovy.
 * ResourceStreamHandle body - Enables you to access the full input
stream of the request body.
 * This will be considered only if the type ResourceStreamHandle is
declared in the closure.
 */

 myExecution(version:version, description:description, httpMethod:
'GET', users:[], groups:[], params:[:]) { params ->
 }

 execWithBody(version:version, description:description, httpMethod:
'GET', users:[], groups:[], params:[:]) { params, ResourceStreamHandle
body ->
 }

}

Realms

Management of security realms...

Realms defined here are added before any built-in realms (Artifactory internal realm, LDAP, Crowd etc.). User authentication will be
attempted against these realms first, by the order they are defined.

realms {

 /**
 * A security realm definition.
 * The first value is a unique name for the realm.
 *
 * Closure parameters:
 * autoCreateUsers (boolean) - Whether to automatically create users
in Artifactory upon successful login. Defaults to
 * true. When false, the user will be transient and his privileges
will be managed according to permissions defined for auto-join groups.
 * realmPolicy (org.artifactory.security.RealmPolicy): (Optional) - If
included with value RealmPolicy.ADDITIVE, plugin will be executed only
if the user has previously been authenticated, and allows enrichment of
the authenticated
 * user with additional data.
 * See our public GitHub for an example here:
https://github.com/JFrogDev/artifactory-user-plugins/blob/master/securit
y/synchronizeLdapGroups/synchronizeLdapGroups.groovy
 */

 myRealm(autoCreateUsers: true, realmPolicy: RealmPolicy.ADDITIVE) {
 /**
 * Implementation should return true/false as the result of the
authentication.
 *
 * Context variables:
 * groups (java.lang.String[]) - An array of groups that the
authenticated user should be associated with (since 3.0.2).
 * user (org.artifactory.security.User) - The authenticated user.
 *
 * Closure parameters:
 * username (java.lang.String) - The username
 * credentials (java.lang.String) - The password
 */
 authenticate { username, credentials ->
 }

 /**
 * Implementation should return true if the user is found in the
realm.
 * Closure parameters:
 * username (java.lang.String) - The username
 */
 userExists { username ->
 }
 }
}

Build

Handling "Build Info" events...

build {

 /**
 * Handle before build info save events
 *
 * Closure parameters:
 * buildRun (org.artifactory.build.DetailedBuildRun) - Build Info
model to be saved. Partially mutable.
 */
 beforeSave { buildRun ->
 }

 /**
 * Handle after build info save events
 *
 * Closure parameters:
 * buildRun (org.artifactory.build.DetailedBuildRun) - Build Info that
was saved. Partially mutable.
 */
 afterSave { buildRun ->
 }
}

Promotions

Defining REST executable build promotion operations...

promotions {

 /**
 * A REST executable build promotion definition.
 *
 * Context variables:
 * status (int) - a response status code. Defaults to -1 (unset).
 * message (java.lang.String) - a text message to return in the
response body, replacing the response content. Defaults to null.
 *
 * Plugin info annotation parameters:
 * version (java.lang.String) - Closure version. Optional.
 * description (java.lang.String - Closure description. Optional.
 * params (java.util.Map<java.lang.String, java.lang.String>) -
Closure parameters. Optional.
 * users (java.util.Set<java.lang.String>) - Users permitted to query
this plugin for information or invoke it.
 * groups (java.util.Set<java.lang.String>) - Groups permitted to
query this plugin for information or invoke it.
 *
 * Closure parameters:
 * buildName (java.lang.String) - The build name specified in the REST
request.
 * buildNumber (java.lang.String) - The build number specified in the
REST request.
 * params (java.util.Map<java.lang.String,
java.util.List<java.lang.String>>) - The parameters specified in the
REST request.
 */
 promotionName(version, description, users, groups, params) {
buildName, buildNumber, params ->
 }
}

Staging

Defining REST retrievable build staging strategy construction...

/**
 * Set of staging strategy definitions to be used by the build server
during staging process.
 * The strategy provides the build server with the following
information:
 * 1. How the artifacts in the staged build should be versioned;
 * 2. How the artifacts in the next integration build should be
versioned;
 * 3. Should the build server create a release branch/tag/stream in VCS
and how it should be called;
 * 4. To which repository in Artifactory the built artifacts should be
submitted.
 *
 * This user plugin is called by the build server using REST call.
 */
staging {

 /**
 * A build staging strategy definition.
 *
 * Closure delegate:
 * org.artifactory.build.staging.BuildStagingStrategy - The strategy
that's to be returned.
 *
 * Plugin info annotation parameters:
 * version (java.lang.String) - Closure version. Optional.
 * description (java.lang.String - Closure description. Optional.
 * params (java.util.Map<java.lang.String, java.lang.String>) - Closure
parameters. Optional.
 * users (java.util.Set<java.lang.String>) - Users permitted to query
this plugin for information or invoke it.
 * groups (java.util.Set<java.lang.String>) - Groups permitted to query
this plugin for information or invoke it.
 *
 * Closure parameters:
 * buildName (java.lang.String) - The build name specified in the REST
request.
 * params (java.util.Map<java.lang.String,
java.util.List<java.lang.String>>) - The parameters specified in the
REST request.
 */
 strategyName(version, description, users, groups, params) { buildName,
params ->
 }
}

Replication

Handling and filtering replication events (since version 3.0.4)...

replication {
 /**

 * Handle before file replication events.
 *
 * Context variables:
 * skip (boolean) - whether to skip replication for the current
item. Defaults to false. Set to true to skip replication.
 * targetInfo (org.artifactory.addon.replication.ReplicationTargetInfo)
- contains information about the replication target server
 *
 * Closure parameters:
 * localRepoPath (org.artifactory.repo.RepoPath) - the repoPath of
the item on the local Artifactory server.
 */
 beforeFileReplication { localRepoPath ->
 }
 /**
 * Handle before directory replication events.
 *
 * Context variables:
 * skip (boolean) - whether to skip replication for the current
item. Defaults to false. Set to true to skip replication.
 * targetInfo (org.artifactory.addon.replication.ReplicationTargetInfo)
- contains information about the replication target server
 *
 * Closure parameters:
 * localRepoPath (org.artifactory.repo.RepoPath) - the repoPath of
the item on the local Artifactory server.
 */
 beforeDirectoryReplication { localRepoPath ->
 }
 /**
 * Handle before delete replication events.
 *
 * Context variables:
 * skip (boolean) - whether to skip replication for the current
item. Defaults to false. Set to true to skip replication.
 * targetInfo (org.artifactory.addon.replication.ReplicationTargetInfo)
- contains information about the replication target server
 *
 * Closure parameters:
 * localRepoPath (org.artifactory.repo.RepoPath) - the repoPath of
the item on the local Artifactory server.
 */
 beforeDeleteReplication { localRepoPath ->
 }
 /**
 * Handle before property replication events.
 *
 * Context variables:
 * skip (boolean) - whether to skip replication for the current
item. Defaults to false. Set to true to skip replication.
 * targetInfo (org.artifactory.addon.replication.ReplicationTargetInfo)
- contains information about the replication target server
 *

 * Closure parameters:
 * localRepoPath (org.artifactory.repo.RepoPath) - the repoPath of
the item on the local Artifactory server.
 */
 beforePropertyReplication { localRepoPath ->
 }
 /**
 * Handle before statistics replication events.
 *
 * Context variables:
 * skip (boolean) - whether to skip replication for the current
item. Defaults to false. Set to true to skip replication.
 * targetInfo (org.artifactory.addon.replication.ReplicationTargetInfo)
- contains information about the replication target server
 *
 * Closure parameters:
 * localRepoPath (org.artifactory.repo.RepoPath) - the repoPath of
the item on the local Artifactory server.
 */

 beforeStatisticsReplication { localRepoPath ->
 }
}

Controlling Plugin Log Level

The default log level for user plugins is "warn". To change a plugin log level, add the following to :${ARTIFACTORY_HOME}/etc/logback.xml

<logger name="my-plugin">
 <level value="info"/>
</logger>

The logger name is the name of the plugin file without the " " extension (in the example above the plugin file name is .groovy my-plugin.groov
). The logging levels can be either error, warn, info, debug or trace.y

Sample Plugin

Sample plugin is .available to download

Watches

Overview

The Watches feature allows you to monitor selected artifacts, folders or repositories for storage events (create/delete/modify) and receive detailed
email notifications on repository changes that are of interest to you.

You can add and remove Watches from the 'General' tab in the tree browser. Watches or folders intercept changes on all children. An admin can
view and manage watches via the 'Watches' tab in the tree browser.

Watch notifications are aggregated at around 1 minute intervals and sent in a single email message.

All notifications respect the read permissions of the watcher on the watched item(s).

WebStart and Jar Signing

Overview

Java Web Start is a technology developed by Sun Microsystems (now Oracle) to allow you to download and
run Java applications directly from your browser with one-click activation.

Java Web Start requires that any JAR downloaded is signed by the software vendor. To support this
requirement, Artifactory lets you manage a set of signing keys that are used to automatically sign JAR files
downloaded from a virtual repository.

For more information, please refer to the . Oracle documentation for Java Web Start

Managing Signing Keys

Signing keys are managed in the module under Admin Security | Signing Keys.

Generating JAR Signing Keys

Debian Signing Key
Debian signing keys are also managed on this page, however these are not related to JAR signing.
For details, please refer to .Debian Signing Keys

https://www.jfrog.com/confluence/download/attachments/46107593/samplePlugin_v4.groovy?version=1&modificationDate=1399538106000&api=v2
https://java.com/en/download/faq/java_webstart.xml
https://www.jfrog.com/confluence/display/RTF/Debian+Repositories#DebianRepositories-SigningDebianPackages

In order to sign JAR files, you first need to create a keystore, and generate and add key pairs to it. These can
be created with Oracle's utility, that comes built into your Java Runtime Environment (JRE), bykeytool
executing the following command:

keytool -keystore <keystore filename> -keypass
<key_password> -storepass <store_password> -alias
<store_alias> \
-genkeypair -dname "cn=<cName>, ou=<orgUnit>,
o=<orgName>, S=<stateName>, c=<country>" -validity
<days>

For details, please refer to the Oracle .keytool - Key and Certificate Management Tool documentation

Setting Your Keystore and Keys

Before you can add a keystore, you must set the password that will be needed to make any later changes to the keystore. You will need this
password to remove or update the keystore.

Set the password and click "Create". This will unlock the rest of the keystore management fields.

Once your keystore password is set and you have created a keystore and a set of signing keys, you can add them to Artifactory.

First upload your keystore file under and enter the keystore password. Click "Unlock"Add Key-Store

Once your keystore is set in Artifactory you may add key pairs under Add Key-Pair.

Page Contents
Overview
Managing Signing Keys

Generating JAR Signing Keys
Setting Your Keystore and Keys
Removing a Key Pair
Configuring Virtual Repositories to Sign JARs

https://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Removing a Key Pair

To remove a key pair, simply select the key pair and click "Remove".

Configuring Virtual Repositories to Sign JARs

Once Artifactory has a keystore and key pairs, you can configure a virtual repository with the key pair you wish to use for JAR signing. This is
done in the of the virtual repository configuration screen. settingsAdvanced

Package Management

Overview

Artifactory Pro brings the universal nature of Artifactory to full force with advanced package management for
all major packaging formats in use today. As the only repository with a unique architecture that includes a
filestore layer and a separate database layer, Artifactory is the only repository manager that can natively

https://www.jfrog.com/confluence/display/RTF/Virtual+Repositories#VirtualRepositories-AdvancedSettings

support current package formats as well as any new format that may arise from time to time. With a paradigm
of single-type-repositories, all repositories are assigned a type upon creation allowing efficient indexing to
allow any client or dependency manager to work directly with Artifactory transparently as its natural
repository.

Artifactory Pro currently supports the following package formats with new formats added regularly as the
need arises.

Bower

Boost your front end development by hosting your own Bower components and proxying
the Bower registry in Artifactory.

Chef

Enhance your capabilities for configuration management with Chef using all the benefits of
a repository manager.

CocoaPods

Speed up development with Xcode and CocoaPods with fully fledged CocoaPods
repositories.

Conan

Artifactory is the only secure, private repository for C/C++ packages with fine-grained
access control.

Debian

Host and provision Debian packages complete with GPG signatures.

Docker

Host your own secure private Docker registries and proxy external Docker registries such
as Docker Hub.

Git LFS

Optimize your workflow when working with large media files and other binary resources.

Maven

Artifactory is both a source for Maven artifacts needed for a build, and a target to deploy
artifacts generated in the build process.

npm

Host your own node.js packages, and proxy remote npm repositories like throughnpmjs.org
Artifactory.

NuGet

Host and proxy NuGet packages in Artifactory, and pull libraries from Artifactory into your
various Visual Studio .NET applications.

Opkg

Optimize your work with OpenWrt using Opkg repositories. Proxy the official OpenWrt
repository and cache remote files..ipk

P2

Proxy and host all your Eclipse plugins via an Artifactory P2 repository, allowing users to
have a single-access-point for all Eclipse updates.

PHP
Composer

Provision Composer packages from Artifactory to the Composer command line tool, and
access Packagist and other remote Composer metadata repositories.

Puppet

Configuration management meets repository management with Puppet repositories in
Artifactory.

PyPI

Host and proxy PyPI distributions with full supportforpip.

RPM

Distribute RPMs directly from your Artifactory server, acting as fully-featured YUM
repository.

RubyGems

Use Artifactory to host your own gems and proxy remote gem repositories like rubygems.or
.g

https://registry.npmjs.org/
http://www.RubyGems.org
http://www.RubyGems.org

1.

2.
3.

4.

5.

SBT

Resolve dependencies from and deploy build output to SBT repositories when running SBT
builds.

Vagrant

Securely host your Vagrant boxes in local repositories.

VCS

Consume source files packaged as binaries.

Bower Repositories

Overview

Artifactory supports repositories on top its for advanced artifact management.bower existing support

Artifactory support for Bower provides:

The ability to provision Bower packages from Artifactory to the Bower command line tool from all
repository types.
Calculation of Metadata for Bower packages hosted in Artifactory's local repositories.
Access to remote Bower registries (such as) through http://bower.herokuapp.com Remote

 which provide the usual proxy and caching functionality.Repositories
The ability to access multiple Bower registries from a single URL by aggregating them under a Virtua

.l Repository
Assign access privileges according to projects or development teams.

Configuration

Local Repositories

To enable calculation of Bower package metadata set to be the when you create yourBower Package Type
local Bower repository.

Page Contents
Overview

Read more
Bower Repositories
Chef Cookbook Repositories
CocoaPods Repositories
Conan Repositories
Debian Repositories
Docker Registry
Git LFS Repositories
Npm Registry
NuGet Repositories
Opkg Repositories
P2 Repositories
PHP Composer Repositories
Puppet Repositories
PyPI Repositories
RPM Repositories
RubyGems Repositories
SBT Repositories
Vagrant Repositories
VCS Repositories

http://bower.io
http://bower.herokuapp.com

Deploying Bower Packages

The Bower client does not provide a way to deploy packages and relies on a Git repository to host the Bower package code.
To deploy a Bower package into Artifactory, you need to use Artifactory's or the .REST API Web UI

Page Contents
Overview
Configuration

Local
Repositories

Deplo
ying
Bowe
r
Packa
ges

Remote
Repositories
Virtual
Repositories

Adva
nced
Confi
gurati
on

Using the Bower
Command Line

Using Bower
Version 1.5
and above
Using Older
Versions of
Bower

Working with
Artifactory without
Anonymous Access
Cleaning Up the Local
Bower Cache
Automatically
Rewriting External
Dependencies

Rewriting
Workflow
Using the
Bower Shorth
and Resolver

Registering Bower
Packages
Viewing Individual
Bower Package
Information

1.
2.

3.

A Bower package is a simple file which contains your project code as well as a file describing the package name andtar.gz bower.json
version.

Usually, you will use a custom / task to pack your project into an archive file and deploy it to Artifactory.Grunt Gulp

Remote Repositories

The public does not contain any actual binary packages; it is a simple key-value store pointing from a package name to itsbower registry
equivalent Git repository.

Since most of the packages are hosted in GitHub, you will want to create a Remote Repository which serves as a caching proxy for . Ifgithub.com
necessary, you can do the same for or any other bitbucket.org remote repository you want to access.

Artifacts (such as tar.gz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the remote
repository cache, however you can not manually deploy artifacts to a remote repository.

To define a remote repository to proxy github.com as well as the public Bower registry follow the steps below:
Create a new remote repository and set to be its Bower Package Type
Set the value, and enter in the field as displayed belowRepository Key https://github.com URL

In the section, select as the Bower Settings GitHub Git Provider.
Finally, click "Save & Finish"

Version property
Make sure to include a property in your file. You can add the property manually or by using the version bower.json bower

 command.version

Working with Bitbucket?
If your packages are hosted on Bitbucket (formerly Stash), you need to ensure that the Bitbucket Archive Plugin is installed on your
Bitbucket server.

Bower Registry URL
Usually, you will point the field at the public registry as displayed above.Bower Registry URL

However, if you are using a private bower registry or a remote Artifactory instance, simply set the same URL as configured in field.URL

http://gruntjs.com/
http://gulpjs.com/
http://bower.herokuapp.com
https://github.com
https://bitbucket.org

Virtual Repositories

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted Bower packages and remote proxied Bower registries from a single URL defined for the virtual
repository.

To create a virtual Bower repository set Bower to be its Package Type, and select the underlying local and remote bower repositories to include
under the sectionRepositories .

Advanced Configuration

The fields under are connected to for Bower packages that needExternal Dependency Rewrite automatically rewriting external dependencies
them.

Bower have changed their regitry URL from the default configured in Artifactory. In order to resolve from the public registry, set the
Registry URL to https://registry.bower.io.

https://registry.bower.io/

Enable
Dependency
Rewrite

When checked, automatically rewriting external dependencies is enabled.

Remote
Repository For
Cache

The remote repository aggregated by this virtual repository in which the external dependency will be cached.

Patterns
Whitelist

A white list of Ant-style path expressions that specify where external dependencies may be downloaded from. By default,
this is set to which means that dependencies may be downloaded from any external source.**

For example, if you wish to limit external dependencies to only be downloaded from , you should add github.com **/git
 (and remove the default expression).hub.com/** **

Using the Bower Command Line

Bower repositories must be prefixed with api/bower in the path
When accessing a Bower repository through Artifactory, the repository URL must be prefixed with in the path. This applies toapi/bower
all Bower commands including and bower install bower info.

For example, if you are using Artifactory standalone or as a local service, you would access your Bower repositories using the following
URL:

http://localhost:8081/artifactory/ <repository key>api/bower/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/bower/

1.
2.

Artifactory has been updated to work seamlessly with the latest version of the Bower client from version 1.5, and also supports older versions of
Bower.

Using Bower Version 1.5 and above

In order to use Bower with Artifactory you need 2 components (npm packages):

 - A custom, pluggable Bower resolver which is dedicated to integrate with Artifactory.bower-art-resolver
 - Bower version and above.bower 1.5.0

Once Bower is installed, add the Artifactory Bower resolver by editing your configuration file~/.bowerrc

Adding a Pluggable Resolver

{
 "resolvers": [
 "bower-art-resolver"
]
}

Replace the default registry with a URL pointing to a Bower repository in Artifactory by editing your configuration file (the example~/.bowerrc
below uses a repository with the key):bower-repo

Replacing the default registry

{
 "registry": "http://localhost:8081/artifactory/api/bower/bower-repo"
}

Once the Bower command line tool is configured, every command will fetch packages from the bower repository specifiedbower install
above. For example:

Older versions of Bower
If your version of Bower is below 1.5, please refer to .Using Older Versions of Bower

Bower Documentation
For more information, please refer to the Bower documentation on .Pluggable Resolvers

Using the Bower Shorthand Resolver
 If you want to configure the Bower Shorthand Resolver to work with Artifactory, please refer to below.Bower Shorthand Resolver

.bowerrc file location
Windows: %userprofile%\.bowerrc

Linux: ~/.bowerrc

We recommend referencing a URL as a registry. This gives you the flexibility Virtual Repository to reconfigure and aggregate other
external sources and local repositories of Bower packages you deployed.

https://www.npmjs.com/package/bower-art-resolver
https://www.npmjs.com/package/bower
http://bower.io/docs/pluggable-resolvers/
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

1.
2.

$ bower install bootstrap
bower bootstrap#* not-cached art://twbs/bootstrap#*
bower bootstrap#* resolve art://twbs/bootstrap#*
bower bootstrap#* extract archive.tar.gz
bower bootstrap#* resolved art://twbs/bootstrap#e-tag:0b9cb774e1

Using Older Versions of Bower

Using Bower below version 1.5...

In order to use Bower below version 1.5 with Artifactory you need 2 components (npm packages):

 - A custom Bower resolver dedicated to integrate with Artifactory.bower-art-resolver
 - A temporary custom Bower CLI with the pluggable resolvers mechanism currently in . bower-art pending pull request

The package is a peer dependency of . Therefore, both can be easily installed with:bower-art bower-art-resolver

npm install -g bower-art-resolver

Once is installed, replace the default registry with a URL pointing to a Bower repository in Artifactory by editing your bower-art ~/.bowerr
 configuration file (the example below uses a repository with the key):c bower-repo

Replacing the default registry

{
 "registry": "http://localhost:8081/artifactory/api/bower/bower-repo"
}

Once the Bower command line tool is configured, every command will fetch packages from the bower repositorybower-art install
specified above. For example:

Version support
 Older versions of Bower are only supported by Artifactory up to version 4.2.0.

Use bower-art instead of bower
While Artifactory support for Bower is in Beta, after installing the required components, you need to execute instead ofbower-art
each command.bower
For example, use instead of bower-art install <pkg> bower install <pkg>

Updating Resolver
In order to update Artifactory resolver, please the "bower-art" npm package first, and then install the resolver. This step isuninstall
necessary because npm doesn`t update peer dependencies.

.bowerrc file location
Windows: %userprofile%\.bowerrc

Linux: ~/.bowerrc

We recommend referencing a URL as a registry. This gives you the flexibility Virtual Repository to reconfigure and aggregate other
external sources and local repositories of Bower packages you deployed.

https://www.npmjs.com/package/bower-art-resolver
https://www.npmjs.com/package/bower-art
https://github.com/bower/bower/pull/1686
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

$ bower install bootstrap
bower bootstrap#* not-cached art://twbs/bootstrap#*
bower bootstrap#* resolve art://twbs/bootstrap#*
bower bootstrap#* extract archive.tar.gz
bower bootstrap#* resolved
art://twbs/bootstrap#e-tag:0b9cb774e1

Working with Artifactory without Anonymous Access

By default, Artifactory allows anonymous access to Bower repositories. This is defined under . For detailsSecurity | General Configuration
please refer to .Allow Anonymous Access
If you want to be able to trace how users interact with your repositories you need to uncheck the setting. This meansAllow Anonymous Access
that users will be required to enter their username and password.
Unfortunately, the Bower command line tool does not support authentication and you will need to add your credentials to the URL of the bower
registry configured in ~/.bowerrc:

Replacing the default registry with credentials

{
 "registry":
"http://admin:password@localhost:8081/artifactory/api/bower/bower-repo"
}

Cleaning Up the Local Bower Cache

The Bower client saves caches of packages that were downloaded, as well as metadata responses.

We recommend removing the Bower caches (both packages and metadata responses) before using Artifactory for the first time. This is to ensure
that your caches only contain elements that are due to requests from Artifactory and not directly from .http://bower.herokuapp.com

To clear the bower cache use:

Clean Bower Cache

bower cache clean

Automatically Rewriting External Dependencies

Packages requested by the Bower client frequently use external dependencies as defined in the packages' file. Thesebower.json
dependencies may, in turn, need additional dependencies. Therefore, when download an Bower package, you may not have full visibility into the
full set of dependencies that your original package needs (whether directly or transitively). As a result, you are at risk of downloading malicious
dependencies from unknown external resources. To manage this risk, and maintain the best practice of consuming external packages through
Artifactory, you may specify a "safe" whitelist from which dependencies may be downloaded, cached in Artifactory and configure to rewrite the
dependencies so that the Bower client accesses dependencies through a virtual repository as follows:

Check in the Bower virtual repository .Enable Dependency Rewrite advanced configuration
Specify a whitelist patterns of external resources from which dependencies may be downloaded.
Specify the remote repository in which those dependencies should be cached.

Use an encrypted password
Use an encrypted password instead of clear-text; see .Centrally Secure Passwords

http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://bower.herokuapp.com
https://www.jfrog.com/confluence/display/RTF/Npm+Repositories#NpmRepositories-AdvancedConfiguration

1.
2.

a.
b.
c.

3.

It is preferable to configure a dedicated remote repository for that purpose so it is easier to maintain.

In the example below the external dependencies will be cached in "bower" remote repository and only package from https://github.com/jf
 are allowed to be cached. rogdev

Rewriting Workflow

When downloading a Bower package, Artifactory analyzes the list of dependencies needed by the package.
If any of the dependencies are hosted on external resources (e.g. on github.com), and those resources are specified in the white list,

Artifactory will download the dependency from the external resource.
Artifactory will cache the dependency in the remote repository configured to cache the external dependency.
Artifactory will then modify the dependency's entry in the package's package.json file indicating its new location in the Artifactory
remote repository cache before returning it to the Bower client.

Consequently, every time the Bower client needs to access the dependency, it will be provisioned from its new location in the Artifactory
remote repository cache.

Using the Bower Shorthand Resolver

When running on a file that is hosted on your local machine, you need to define a custom template in . fibower install bower.json bowerrc
le by adding the following line.

shorthand-resolver": "art://{{owner}}/{{package}}"

From version v4.11, for bower packages downloaded from remote repositories, Artifactory supports resolving dependencies that are specified
using the . Use of the shorthand resolver is reflected in the Bower install output,Bower shorthand resolver for dependencies hosted on GitHub
in the shorthand resolver dependencies, which are prefixed with . For example:$$$art-shorthand-resolver$$$

https://github.com/jfrogdev
https://github.com/jfrogdev
http://github.com
https://github.com/bower/spec/blob/master/config.md#shorthand-resolver

bower
mypackagetest#$$$art-shorthand-resolver$$$-<username>-mypackagetest-master
.tar.gz
not-cachedart://<username>/mypackagetest#$$$art-shorthand-resolver$$$-<use
rname>-mypackagetest-master.tar.gz
bower
mypackagetest#$$$art-shorthand-resolver$$$-<username>-mypackagetest-master
.tar.gz
resolveart://<username>/mypackagetest#$$$art-shorthand-resolver$$$-<userna
me>-mypackagetest-master.tar.gz
bower
mypackagetest#$$$art-shorthand-resolver$$$-<username>-mypackagetest-master
.tar.gz
resolvedart://<username>/mypackagetest#$$$art-shorthand-resolver$$$-<usern
ame>-mypackagetest-master.tar.gz

Registering Bower Packages

From version 4.6, Artifactory is a Bower registry and lets you register bower packages through remote and virtual repositories. This means you
can retrieve bower packages directly from your private Git repositories.

When creating private remote repositories, the Registry URL is redundant and can be left as is.

For example, a private Stash server hosted at with a project named "artifactory" will be registered as follows:http://stash.mycompany.com:7990

bower register artifactory
ssh://git@stash.mycompany.com:7999/artifactory/artifactory.git

Once the server is registered, to download a Bower package from the stash server and cache it in the remote Bower repository in Artifactory
(ready for access by users) you can simply run

bower install artifactory

Viewing Individual Bower Package Information

Artifactory lets you view selected metadata of a Bower package directly from the UI.

In the tab, select and drill down to select the file you want to inspect. The metadata is displayed in the Artifacts Tree Browser zip/tar.gz Bow
 tab.er Info

http://stash.mycompany.com:7990

1.

2.
3.

4.

Chef Cookbook Repositories

Overview

Artifactory supports repositories on top of its for advanced artifactChef Cookbook existing support
management.

Artifactory support for Chef Cookbook provides:

The ability to provision Cookbook packages from Artifactory to the Knife and Berkshelf
command line tool from all repository types.
Calculation of metadata for Cookbook packages hosted in Artifactory local repositories.
Access to remote Cookbook repositories (in particular the publicChef supermarket
repository) through which provide proxy and caching functionality.remote repositories
The ability to access multiple Cookbook repositories from a single URL by aggregating
them under a Virtual Repository. This overcomes the limitation of the Knife client which

https://docs.chef.io/cookbooks.html
https://supermarket.chef.io/

4.

5.

6.

can only access a single repository at a time.
Compatibility with the Knife command line tool to list, show and install Cookbooks.
Compatibility with the Berkshelf command line to resolve Cookbook dependencies.
The ability to assign access privileges according to projects or development teams.

Page contents
Overview
Configuration

Local
Chef
Super
market
Reposi
tory
Layout
Remot
e Chef
Super
market
Virtual
Chef
Super
market

Using the Knife
Command Line
Working with
Artifactory
without
Anonymous
Access
Publishing
Cookbooks
Using
the Berkshelf
Command Line
Viewing
Individual Chef
Cookbook
Information
Searching Chef
Cookbooks

Configuration

Local Chef Supermarket

To enable calculation of Chef package metadata in local repositories so they are, in effect, Chef supermarkets, set the to Package Type Che
when you create the repository:f

Repository Layout

Artifactory allows you to define any layout for your Chef Cookbook repositories. In order to upload packages according to your custom layout,

Chef Repository
Chef uses the concept of a , to represent storing their own data objectsChef repository
on a workstation. This is different from the use of "repository" in Artifactory.

Chef provides an official "supermarket" for cookbook packages, so Chef repositories in
Artifactory are actually Chef supermarkets in Chef terminology. This page refers to Chef
Cookbook repositories and Chef supermarkets interchangeably.

https://docs.chef.io/chef_repo.html

1.
2.

3.

you need to package your Chef Cookbook files with Knife or Berkshelf and archive the files as . Then you can upload to any path withintar.gz
your local Chef supermarket, see .publishing Cookbooks

Remote Chef Supermarket

A defined in Artifactory serves as a caching proxy for a supermarket managed at a remote URL such as Remote Repository https://supe
.rmarket.chef.io

Artifacts (such as tgz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the
remote repository cache, however, you can not manually deploy artifacts to a remote Chef repository.

To define a remote repository to proxy a remote Chef Cookbook, repository follow the steps below:
In the module, under click "New". Admin Repositories | Remote,
In the New Repository dialog, set the to , set the value, and specify the URL to the remotePackage Type Chef Repository Key
repository in the field as displayed below.URL

Click "Save & FInish".

Virtual Chef Supermarket

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted Chef Cookbook packages and remote proxied Chef Cookbook repositories from a single URL
defined for the virtual repository.
To define a virtual Chef Cookbook repository, create a , set the to be and select the underlying localvirtual repository Package Type Chef,
and remote Chef repositories to include in the settings tab.Basic

https://www.jfrog.com/confluence/display/RTF/Chef+Cookbook+Repositories#ChefCookbookRepositories-PublishingCookbooks
https://supermarket.chef.io
https://supermarket.chef.io

Using the Knife Command Line

To use the Knife command line you need to make sure it's installed. It's part of ChefDK, that can be .installed in various ways

Once you have created your Chef supermarket, you can select it in the Tree Browser and click to get code snippets you can useSet Me Up
to change your Chef supermarket URL, and deploy and resolve packages using the knife command line tool.

Chef repositories must be prefixed with api/chef in the path
When accessing a Chef supermarket through Artifactory, the repository URL must be prefixed with api/chef in the path. This
applies to all Knife commands.
For example, if you are using Artifactory standalone or as a local service, you would access your Chef supermarket using the
following URL:

http://localhost:8081/artifactory/ <repository key>api/chef/

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/chef/

https://downloads.chef.io/chef-dk/
http://jfrog.io/%3Cserver

Set the default Chef supermarket with a URL pointing to a Chef supermarket in Artifactory by editing your configuration~/.chef/knife.rb
file (the example below uses a repository with the key):chef-virtual

Setting the default Chef supermarket for Knife

knife[:supermarket_site] =
'http://localhost:8081/artifactory/api/chef/chef-virtual'

Working with Artifactory without Anonymous Access

By default, Artifactory allows Anonymous Access for Chef repositories. This is defined under . For detailsSecurity | General Configuration
please refer to .Allow Anonymous Access
If you want to be able to trace how users interact with your repositories you need to uncheck the setting. ThisAllow Anonymous Access
means that users will be required to enter their username and password.

The Knife command line tool does not support basic authentication (it only supports authentication with RSA keys).
To enable basic authentication, you will need to install the .knife-art.gem plugin

knife.rb file location
The knife.rb file doesn't exist by default. It can be created with the command. Refer to the knife configure knife documentation
for possible knife.rb locations.

The location of this file can be overidden with the parameter when running a knife command--config

http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
https://rubygems.org/gems/knife-art
https://docs.chef.io/config_rb_knife.html

Install knife-art plugin

chef gem install knife-art

If properly installed you should see the following specific Artifactory commands:

Knife Artifactory plugin commands

** ARTIFACTORY COMMANDS **
knife artifactory download COOKBOOK [VERSION] (options)
knife artifactory install COOKBOOK [VERSION] (options)
knife artifactory list (options)
knife artifactory search QUERY (options)
knife artifactory share COOKBOOK [CATEGORY] (options)
knife artifactory show COOKBOOK [VERSION] (options)
knife artifactory unshare COOKBOOK VERSION

These commands are a wrapper around the standard Knife supermarket commands, that enable basic authentication. To add these
credentials, pre-pend them to the URL of the Chef supermarket configured in your file:knife.rb

Setting the default Chef supermarket for Knife with credentials

knife[:supermarket_site] =
'http://admin:password@localhost:8081/artifactory/api/chef/chef-virtual'

Publishing Cookbooks

You can use the UI or a simple REST API call to upload the containing the Cookbook to a Chef repository.tgz/tar.gz

Artifactory will automatically extract the relevant information from the to later serve the index and respond properly to clientmetadata.json
calls. This file is mandatory. If it does not exist in your cookbook, you can use a Knife command to generate it and thenmetadata.json
publish it to Artifactory. For example:

Publishing a new Cookbook

$ chef generate cookbook myapp
$ knife artifactory share myapp tool

Using the Berkshelf Command Line

Berkshelf is a dependency manager for Chef Cookbooks, and is a part of the .ChefDK
To resolve dependencies from a Chef supermarket in Artifactory, set the default supermarket in your Berksfile's Cookbook:

Use an encrypted password
Use an encrypted password instead of clear-text; see .Centrally Secure Passwords

Currently, using Berkshelf with Artifactory only supports Anonymous access. A plugin to enable authenticated access with
Berkshelf will be provided in a forthcoming release of Artifactory.

http://berkshelf.com/
https://docs.chef.io/about_chefdk.html

Setting the default Chef supermarket for Berkshelf

source 'http://localhost:8081/artifactory/api/chef/chef-virtual'

Then you can execute the command to download the required dependencies from Artifactory:berks

Resolving dependencies with Berkshelf

vagrant@default-ubuntu-1404:~/chef-zero/mycookbook$ berks
Resolving cookbook dependencies...
Fetching 'mycookbook' from source at .
Fetching cookbook index from
http://localhost:8081/artifactory/api/chef/chef-virtual...
Installing apt (5.0.0) from
http://localhost:8081/artifactory/api/chef/chef-virtual ([opscode]
http://localhost:8081/artifactory/api/chef/chef-virtual/api/v1)
Installing chef-apt-docker (1.0.0) from
http://localhost:8081/artifactory/api/chef/chef-virtual ([opscode]
http://localhost:8081/artifactory/api/chef/chef-virtual/api/v1)
Installing chef-yum-docker (1.0.1) from
http://localhost:8081/artifactory/api/chef/chef-virtual ([opscode]
http://localhost:8081/artifactory/api/chef/chef-virtual/api/v1)
Installing compat_resource (12.16.2) from
http://localhost:8081/artifactory/api/chef/chef-virtual ([opscode]
http://localhost:8081/artifactory/api/chef/chef-virtual/api/v1)
Using mycookbook (0.1.0) from source at .
Installing yum (4.1.0) from
http://localhost:8081/artifactory/api/chef/chef-virtual ([opscode]
http://localhost:8081/artifactory/api/chef/chef-virtual/api/v1)

Viewing Individual Chef Cookbook Information

Artifactory lets you view selected metadata of a Chef Cookbook directly from the UI.

In the tab, select and drill down to select the file you want to inspect. The metadata is displayed in the Artifacts Tree Browser tgz/tar.gz
 tab.Chef Info

Searching Chef Cookbooks

Artifactory supports a variety of ways to .search for artifacts
Artifactory also supports knife search [search terms ...]:

For local repositories, it will look for the given terms in the name, description and maintainer fields.
For remote repositories, the search will be done on the local cache, then the search query will be forwarded to the external repository
and the results merged before returned to the client.
For virtual repositories, the search will be done on local repositories and then on remote repositories, the results merged before
returning to the client.

CocoaPods Repositories

Overview

Artifactory supports repositories on top its for advanced artifact management.CocoaPods existing support

Properties
Artifactory annotates each deployed or cached Chef Cookbook package with at least 3 properties: anchef.name, chef.version
d . If available, it will also add multi-valued properties.chef.maintainer , chef.dependencies chef.platforms

You can use to search for Chef Cookbook according to their name, version, maintainer, dependencies or platformsProperty Search
requirements.

https://cocoapods.org/
https://www.jfrog.com/confluence/display/RTF2X/Property+Search

1.

2.
3.

4.

Artifactory support for CocoaPods provides:

The ability to provision CocoaPods packages from Artifactory to the pod command line tool from
local and remote repositories.
Calculation of Metadata for pods hosted in Artifactory's local repositories.
Access to remote CocoaPods Specs repositories (such as https://github.com/CocoaPods/Sp

) through which provide the usual proxy and caching functionality.ecs Remote Repositories
The ability to assign access privileges according to projects or development teams.

Configuration

Local Repositories

To enable calculation of CocoaPods package metadata set to be the when you create your localCocoaPods Package Type
CocoaPods repository.

Deploying Pods

The CocoaPods client does not provide a way to deploy packages and mostly (though not only) relies on a Git repository to host the pod's code.

To deploy a pod into Artifactory, you need to use Artifactory's or the .REST API Web UI

A pod is a simple file which contains your project code as well as a file describing the packagetar.gz .podspec or .podspec.json
metadata.

Page Contents
Overview
Configuration

Local
Repositories

Deplo
ying
Pods

Remote
Repositories

Using the Pod
Command Line

Using
cocoapods-art
Synchronizing
the
cocoapods-art
Plugin's
repositories
with Artifactory

Working with
Artifactory without
Anonymous Access
Cleaning Up the Local
Pod Cache
Watch the Screencast

https://github.com/CocoaPods/Specs
https://github.com/CocoaPods/Specs

1.
2.

3.

Remote Repositories

The public does not contain any actual binary packages; it is a git repository containing files pointingCocoaPods Specs repo podspec.json
from a package name and version to its storage endpoint.
Since the majority of the packages are hosted on GitHub, you need to create a Remote Repository which serves as a caching proxy for github.co

. If necessary, you can do the same for or any other m bitbucket.org remote repository you want to access.

Artifacts (such as tar.gz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the remote
repository cache, however you can not manually deploy artifacts to a remote repository.

To define a remote repository to proxy github.com as well as the public Specs repo follow the steps below:
Create a new remote repository and set to be its CocoaPods Package Type
Set the value, and enter in the field as displayed belowRepository Key https://github.com URL

In the section, select as the , and leave the leave the default (CocoaPods Settings GitHub Git Provider Registry URL https://github.co
 m/CocoaPods/Specs).

Finally, click "Save & Finish"

Pod filetypes
Although more extensions are supported by the client, the Artifactory CocoaPods local repositories currently only support pods that are
archived as tar.gz

Working with Stash?
If your packages are hosted on Bitbucket (formerly Stash), you need to ensure that the Stash Archive Plugin is installed on your
Bitbucket server.

Specs Repo URL
Usually, you will point the field at the public Specs repo as displayed above.Specs Repo URL

However, if you are using a private Specs repo - set the URL to be the same as the the one configured in the field.URL

If the remote URL is an Artifactory instance you need to append it's url with /<repo> i.e./api/pods
http://art-prod.company.com/artifactory/api/pods/pods-local

https://github.com/CocoaPods/Specs
https://github.com
https://github.com
https://bitbucket.org
https://github.com/CocoaPods/Specs
https://github.com/CocoaPods/Specs

1.

2.

3.

Using the Pod Command Line

Artifactory has been updated to work seamlessly with the latest version of the CocoaPods client from version 0.39.0

Using cocoapods-art

In order to use CocoaPods with Artifactory, you need the cocoapods-art plugin which presents Artifactory repositories as Specs repos and pod
sources.

You can download the plugin as a Gem, and its sources can be found on .cocoapods-art GitHub

To use Artifactory with CocoaPods, execute the following steps:

 Install the cocoapods-art plugin:

gem install cocoapods-art

The next step is to add an Artifactory repository by using the command:pod 'repo-art add'

pod repo-art add <local_specs_repo_name>
http://localhost:8081/artifactory/api/pods/<repository_key>

Once the repository is added, add the following in your Podfile:

Adding an Artifactory source in the Podfile

plugin 'cocoapods-art', :sources => [
 '<local_specs_repo_name>'
]

Private Bitbucket server
Working with a private Bitbucket server? set the "Git Provider" to be Stash, and Bitbucket. The public Bitbucket endpoint answersnot
some API calls that a private Bitbucket server doesn't, hence, it is important to set the Git Provider to be Stash when working with a
private Bitbucket server. In this case, the URL field should be the root of your Bitbucket server, and the Specs Repo URL should be the
full URL to the Specs repo in Bitbucket.

CocoaPods repositories must be prefixed with api/pods in the path
When accessing a CocoaPods repository through Artifactory, the repository URL must be prefixed with in the path. Thisapi/pods
applies to the command.pod repo-art add

For example, if you are using Artifactory standalone or as a local service, you would access your CocoaPods repositories using the
following URL:

http://localhost:8081/artifactory/ <repository key>api/pods/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/pods/

Using Hombrew?
We recommend installing both the CocoaPods client and the cocoapod-art plugin as gems. Installing with Homebrew may
cause issues with the CocoaPods hooks mechanism that the plugin relies on.

https://rubygems.org/gems/cocoapods-art
https://github.com/JFrogDev/cocoapods-art

Where the local repo name is the name you gave the specs repo locally when adding it.

Once the pod command line tool is configured, every command will fetch pods from the CocoaPods repository specified above. pod install

Synchronizing the Plugin's repositories with Artifactorycocoapods-art

As opposed to the cocoapods client's default behavior, the cocoapods-art plugin does not automatically update its index whenever you run client
commands (such as install). To keep your plugin's index synchronized with your CocoaPods repository, you need to update it by executing the
following command:

pod repo-art update

Working with Artifactory without Anonymous Access

By default, Artifactory allows anonymous access to CocoaPods repositories. This is defined under . For detailsSecurity | General Configuration
please refer to .Allow Anonymous Access
If you want to be able to trace how users interact with your repositories you need to uncheck the setting. This meansAllow Anonymous Access
that users will be required to enter their username and password.
Unfortunately, the pod command line tool does not support authentication against http endpoints. The plugin solves this by forcingcocoapods-art
curl (which pod uses for all http requests) to use the file:.netrc

.netrc file example

machine art-prod.company.com
login admin
password password

Since Artifactory also supports basic authentication using your , you could use that instead of your password:API key

.netrc file using your API key

machine art-prod.company.com
login admin
password
AKCp2TfQM58F8FTkXo8qSJ8NymwJivmagefBqoJeEBQLSHCZusEH6Z2dmhS1siSxZTHoPPyUW

Working without the Master repository?
If you have removed the CocoaPods Master repository from your system, due to a known with the CocoaPods stats plugin, youissue
need to add the following to your Podfile, or add the corresponding variable to your environment:

 ENV['COCOAPODS_DISABLE_STATS'] = 'true'

For details, please refer to JFrog Jira

pod repo-art commands
The plugin exposes most commands that are normally invoked with (i.e. add, update, list etc.). Use cocoapods-art pod repo pod

 instead of whenever dealing with Artifactory-backed Specs repositories.repo-art pod repo

CocoaPods local Specs repos location
~/.cocoapods/repos

Use an encrypted password
We recommend using an encrypted password instead of clear-text. For details, please refer to .Centrally Secure Passwords

https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-AllowAnonymousAccess
https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-AllowAnonymousAccess
https://www.gnu.org/software/inetutils/manual/html_node/The-_002enetrc-file.html
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://github.com/CocoaPods/CocoaPods/issues/4032
https://www.jfrog.com/jira/browse/RTFACT-9279

1.

2.

3.

4.

Cleaning Up the Local Pod Cache

The pod client saves caches of pods that were downloaded, as well as metadata.
We recommend removing the CocoaPods caches (both packages and metadata responses) before using Artifactory for the first time. This is to
ensure that your caches only contain elements that are due to requests from Artifactory and not directly from other Specs repos.

To clear the pod cache use:

Clean Pod Cache

pod cache clean

Watch the Screencast

Watch this short screencast to learn how easy it is to host RPMs in Artifactory.

Conan Repositories

Overview

Artifactory introduces advanced artifact management to the world of C/C++ through support for
local repositories that work directly with the client to manage Conan packages andConan
dependencies. As a repository to which builds can be uploaded, and from which dependencies can
be downloaded, Artifactory offers many benefits to C/C++ developers using Conan:

Secure, private repositories for C/C++ packages with fine-grained access control
according to projects or development teams
Automatic layout and storage of C/C++ packages for all platforms configured in the Conan
client
The ability to provision C/C++ dependencies from Artifactory to the Conan command line
tool from local repositories.
Enterprise features such as high availability, repository replication for multi-site
development, different options for massively scalable storage

...and much more.

For more details on building Conan packages and working with the Conan client, please refer to
the .Conan documentation

Configuration

Local Repositories

To enable calculation of C/C++ package metadata, set to be the when youConan Package Type
create your local repository.

Page Contents
Overview
Configuration

Local
Repositories

Using Conan with
Artifactory

Adding Your
Repository
Authenticating
the Conan
Client
Installing
Dependencies
Uploading
Packages

Viewing Individual
Conan Package
Information

https://www.conan.io/
http://docs.conan.io/en/latest/

Make sure to also select as the repository layout.conan-default

Using Conan with Artifactory

Once the Conan client is installed, you can access Conan repositories in Artifactory through its command line interface. You can only install
packages from or export packages to your Artifactory local Conan repository using the Conan client.

Once you have created your Conan repository, select it in the Tree Browser and click , to see the code snippets you will need inSet Me Up
order to use your repository as a source to install packages and as a target for export.

In the sections below, <REMOTE> is used to denote the logical name you set with which the Conan client can identify the Conan local

Local vs. Remote
Don't let Conan terminology confuse you. For the purposes of this integration, the Conan "Remote" is actually the Artifactory local
repository you have created for Conan packages.

repository in Artifactory.

Adding Your Repository

To use your local repository with Conan, you first need to add it as a Conan "Remote" to the client as follows:

conan remote add <REMOTE> http://<ARTIFACTORY_URL>/api/conan/<REPO_KEY>

Where:

<REPO_KEY> is the . repository key

Authenticating the Conan Client

To authenticate the Conan client to Artifactory you need to log in using:

conan user -p <PASSWORD> -r <REMOTE> <USERNAME>

Installing Dependencies

To install dependencies from Artifactory as defined in your file use:conanfile.txt

conan install . -r <REMOTE>

Uploading Packages

To upload packages to your Artifactory local Conan repository use:

 conan upload <RECIPE> -r <REMOTE> --all

Where <RECIPE> specifies your Conan recipe reference formatted <NAME>/<VERSION>@<USER>/<CHANNEL>

Viewing Individual Conan Package Information

Artifactory lets you view selected metadata of a Conan package directly from the UI.
In the tab, select and drill down to select the package file you want to inspect. The metadata is displayed in the Artifacts Tree Browser Cona

 tab. The specific information displayed depends on the tree item you have selected. Selecting the root item of a package displaysn Info
details of the Conan recipe used to upload the package.

Conan repositories must be prefixed with api/conan in the path
When accessing a Conan repository through Artifactory, the repository URL must be prefixed with in the path. Thisapi/conan
applies to all Conan commands including .conan install

For example, if you are using Artifactory standalone or as a local service, you would access your Conan repositories using the
following URL:

<repository key>http://localhost:8081/artifactory/api/conan/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/conan/

Accessing Artifactory anonymously
If Artifactory is configured for , you may skip authenticating the Conan client. anonymous access

https://www.jfrog.com/confluence/display/RTF/Common+Settings#CommonSettings-RepositoryKey
http://localhost:8081/artifactory/
https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-AllowAnonymousAccess

If you select one of the packages, you get detailed Conan Package info including , and dependencies (" ")Settings Options Requires

1.

2.
3.

4.
5.

Debian Repositories

Overview

From version 3.3, Artifactory supports Debian repositories whether they use the current Automatic Debia
n architecture or the deprecated Trivial architecture. As a fully-fledged Debian
repository, Artifactory generates index files that are fully compliant with Debian
clients.

Artifactory support for Debian provides:

The ability to provision Debian packages from Artifactory to a Debian client from local and remote
repositories.
Calculation of Metadata for Debian packages hosted in Artiafctory's local repositories.
Access to remote Debian resources (such as) us.archive.ubuntu.com through Remote
Repositories which provide the usual proxy and caching functionality.
Providing GPG signatures that can be used by Debian clients to verify packages.
Complete management of GPG signatures using the Artifactory UI and the REST API.

Configuration

You can only deploy Debian packages to a local repository that has been created with the Debian Package
.Type

You can download packages from a local or a remote Debian repository.

Local Repositories

To create a new local repository that supports Debian, under the settings, set the to be Basic Package Type D
.ebian

If you are using Debian with a layout, in the section, set the checkbox.Trivial Debian Settings Trivial Layout

Page Contents
Overview
Configuration

Local Repositories
Deploying a package using the UI
Deploying a package using Matrix Parameters
Setting the Target Path
Specifying multiple layouts
Artifact Metadata
Metadata Validation

Remote Repositories
Signing Debian Packages
Adding MD5 Checksum to the Packages file
Authenticated Access to Servers
Compression Formats
Acquiring Packages by Hash
REST API Support
Watch the Screencast

https://www.debian.org/doc/manuals/repository-howto/repository-howto#id442666
https://www.debian.org/doc/manuals/repository-howto/repository-howto#id443677
http://www.jfrog.com/confluence/display/RTF/Remote+Repositories
http://www.jfrog.com/confluence/display/RTF/Remote+Repositories

Deploying a package using the UI

To deploy a Debian package to Artifactory, in the Artifactory Repository Browser, click Deploy.

Select your Debian repository as the upload the file you want to deploy.Target Repository,

Check the checkbox and fill in the and fields in the section.Deploy as Debian Artifact Distribution, Component Architecture Debian Artifact
Notice that the is automatically updated to reflect your input.Target Path

You can also deploy Debian packages to Artifactory with an explicit URL using Matrix Parameters.

Once you have deployed your Debian package, and Artifactory has recalculated the repository index, your repository should be organized as
displayed below:

Setting the target path manually? Be careful with spaces
We recommend using the fields in the section to set your . Nevertheless, if you choose to specify the Debian Artifact Target Path Targ

manually, make sure you don't enter any superfluous spaces.et Path

For example to upload package planckdb-08-2015.deb, and specify that its layout is from the trusty distribution, in the main compone
nt and the i386 architecture, you would enter:

pool/planckdb-08-2015.deb;deb.distribution=trusty;deb.component=main;deb.architecture=i386

After you deploy the artifact, you need to wait about one minute for Artifactory to recalculate the repository index and display your
upload in the Repository Browser.

Deploying a package using Matrix Parameters

The URL is built similarly to the format as follows:Target Path

Deploying a package using Matrix Parameters

PUT
"http://$ARTIFACTORY_HOME/{debianRepoKey}/pool/{debianPackageName};deb.dis
tribution={distribution};deb.component={component};deb.architecture={archi
tecture}"

For example, to upload package , and specify that its layout is from the distribution, in the component and the libatk1.0_i386.deb wheezy main i3
 architecture, you would enter:86

Example

PUT
"http://localhost:8080/artifactory/debian-local/pool/libatk1.0_i386.deb;de
b.distribution=wheezy;deb.component=main;deb.architecture=i386"

Setting the Target Path

The needs to be entered in a strict and specific format that uses system properties to define where the artifact will be stored and itsTarget Path
specific layout as follows:

Target Path Format

[path];deb.distribution=[distribution];deb.component=[component];deb.archi
tecture=[architecture]

path

The repository path where the package should be stored.

Artifactory supports storing Debian packages anywhere within the repository. The examples on
this page show Debian packages stored under the pool folder in accordance with the Debian
convention.

distribution

The value to assign to the property used to specify the Debian package distributiondeb.distribution

component

The value to assign to the property used to specify the Debian package component namedeb.component

architecture

The Debian package architecturevalue to assign to the deb.architecture property used to specify the

Specifying multiple layouts

Whether uploading a package using the UI or Matrix Parameters, you can specify multiple layouts for any Debian package you upload, by
including additional values for the distribution, component or architecture separated by a comma,

For example, to upload package libatk1.0_i386.deb to both and distributions, in both and wheezy trusty main contri
components and both and architectures you would specify the following Target Path tob i386 64bit-arm

upload using the UI:

Target path for multiple layouts

pool/libatk1.0_i386.deb;deb.distribution=wheezy;deb.distribution=trusty;de
b.component=main;deb.component=contrib;deb.architecture=i386;deb.architect
ure=64bit-arm

Correspondingly, to upload the file using Matrix Parameters, you would use the following:

Multiple layouts using Matrix Parameters

PUT
"http://localhost:8080/artifactory/debian-local/pool/libatk1.0_i386.deb;de
b.distribution=wheezy;deb.distribution=trusty;deb.component=main;deb.compo
nent=contrib;deb.architecture=i386;deb.architecture=64bit-arm"

Artifact Metadata

From version 4.4, Artifactory writes several entries from the Debian package's metadata (based on the controlas properties on all of the artifacts
file's content).

These properties can be used to search for Debian packages more efficiently using Arifactory's .Package Search

Metadata properties are written for each new Artifact that is deployed to Artifactory.

Adding Architecture Independent Packages
Uploading a Debian package with will cause it to appear in the Packages index of all the other architecturesdeb.architecture=all
under the same Distribution and Component, as well as under a new index branch called which holds all Debianbinary-all
packages that are marked as "all'.
Removing an "all" Debian package will also remove it from all other indexes under the same Distribution and Component.
When the last Debian package in an architecture is removed but the Packages index still contains an "all" Debian package, it is
preserved in the index.
If you want such an architecture index removed you may do so via the UI or using in the RESTCalculate Debian Repository Metadata
API, which cleans up orphaned package files from the index.

https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-PackageSearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateDebianRepositoryMetadata

To have these properties written to Debian artifacts that already exist in your repositories you need to call the Calculate Debian Repository
 REST API which writes the properties to all of the artifacts by default.Metadata

Metadata Validation

To ensure that Debian repositories are not corrupted by malformed packages, Artifactory first validates parts of the Debian metadata to make sure
that none of the relevant metadata fields are empty. If the validation process indicates a malformed package, Artifactory provides several
indications:

The package is not indexed
The package is annotated with the following property:

key: deb.index.status
value: the reason the package failed the validation process

If the package is selected in the Tree Browser, the Debian Info tab will display a message indicating that it was not indexed and why it
failed the validation process

A message is logged in the Artifactory log file indicating that the package was not indexed and why it failed the validation process.

Remote Repositories

You can download Debian packages from Local Debian Repositories as described above, or from Remote Repositories specified as supporting
Debian packages.

To specify that a Remote Repository supports Debian packages, you need to set its to when it is created.Package Type Debian

Disable validation
Debian package validation is controlled by the . Package validation is enabled bydebian.metadata.validation system property
default. To disable Debian package validation set:
debian.metadata.validation=false

Finding malformed packages
To easily find all malformed packages in your Debian repositories, you can use or run an AQL query with Property Search Properties

 on the property described above.Criteria deb.index.status

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateDebianRepositoryMetadata
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateDebianRepositoryMetadata
https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-PropertySearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-PropertiesCriteria
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-PropertiesCriteria

Note that the index files for remote Debian repositories (including the sources index) are stored and renewed according to the Retrieval Cache
 setting.Period

Signing Debian Packages

Artifactory supports signing Debian packages using a GPG key. This process will create a signed Release file named Release.gpg that will be
shipped alongside the Release file. Artifactory will store and manage public and private keys that are used to sign and verify Debian packages.

To generate a pair of GPG keys and upload them to Artifactory, please refer to .GPG Signing

Adding MD5 Checksum to the Packages file

To support tools (e.g.) that require Debian packages to include their MD5 checksum in their metadata file for validation, you canAptly Packages
configure Artifactory to add this value by setting the following system property in the artifactory.system.properties file:

Add package MD5 checksum to Debian Packages file
#artifactory.debian.metadata.calculateMd5InPackagesFiles=true

Artifactory needs to be restarted for this change to take efffect.

Authenticated Access to Servers

If you need to access a secured Artifactory server that requires a username and password, you can specify these in your Debian fisource.list
le by prefixing the artifactory host name with the required credentials as follows:

Accessing Artifactory with credentials

http://user:password@$ARTIFACTORY_HOME/{repoKey} {distribution}
{components}
For example:
http://admin:password@localhost:8081/artifactory/debian-local wheezy main
restricted

Compression Formats

Artifactory supports the following compression formats for Debian indices:

Encrypting your password
You can use your encrypted password as described in .Using Your Secure Password

https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-RetrievalCachePeriod
https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-RetrievalCachePeriod
https://www.aptly.info/

Gzip (.gz file extension)
Bzip2 (.bz2 file extension)

Acquiring Packages by Hash

From version 5.5.2, Artifactory supports the acquire-by-hash functionality of APT clients for Debian repositories laid out using the Automatic
architecture (Trivial architecture is not supported for acquiring packages by hash). This feature is supported by two :system properties

debian.use.acquire.byhash [default: true]

When true, the value of acquire-by-hash in Debian release files is set to true allowing APT
clients to access Debian packages by their checksums (MD5, SHA1, SHA256). To allow this,
Artifactory will add the "by-hash" layout to all Debian repositories

debian.packages.byhash.history.cycles.to.Keep [default: 3]

Specifies the number of cycles of package file history to save when acquire-by-hash is
enabled

REST API Support

The Artifactory REST API provides extensive support for Debian signing keys and recalculating the repository index as follows:

Set the public key
Get the public key
Set the private key
Set the pass phrase
Recalculate the index

Watch the Screencast

Docker Registry
Set up a secure private Docker registry in minutes to manage all your Docker images while exercising
fine-grained access control. Artifactory places no limitations and lets you set up any number of Docker
registries, through the use of local, remote and virtual Docker repositories, and works transparently with the
Docker client to manage all your Docker images, whether created internally or downloaded from remote
Docker resources such as Docker Hub.

Multiple Docker Registries
Artifactory lets you define as many Docker registries as you wish. This enables you to manage each project
in a distinct registry and exercise better access control to your Docker images.

Use Docker Naturally
Artifactory supports the relevant calls of the Docker Registry API so that you can transparently use the
Docker client to access images through Artifactory.

Secure private Docker Registry with Fine-grained Access Control
Local Docker repositories are where you store internal Docker images for distribution across your
organization. With the fine-grained access control provided by , Artifactory offersbuilt-in security features
secure Docker push and pull with local Docker repositories as fully functional, secure, private Docker
registries.

Consistent and reliable access to remote images
Remote Docker repositories in Artifactory proxy external resources such as Docker Hub, or a remote Docker
repository in another Artifactory instance, and cache downloaded images. As a result, overall networking is
reduced, and access to images on these remote resources is faster, consistent and reliable.

Confidently Promoting Images to Production

https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SystemProperties
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetGPGPublicKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetGPGPublicKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetGPGPrivateKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetGPGPassPhrase
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateDebianRepositoryMetadata
https://docs.docker.com/registry/spec/api/
http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-LocalRepositories
http://www.jfrog.com/confluence/display/RTF/Configuring+Security
http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories

Artifactory lets you promote Docker images, as immutable, stable binaries, through the quality gates all the
way to production.

Smart Search
Using Artifactory's Package Search, find your images in the most natural way for Docker using the image
name, tag or digest.

JFrog End-to-End Platform
Through Artifactory's tight integration with JFrog Bintray, you can manage your Docker images from
development, through your pipeline, all the way to distribution.

Registries and Repositories

Both Artifactory and Docker use the term "repository", but each uses it in a different way.

A is a hosted collection of tagged images that, together, create the file system for aDocker repository
container

A is a host that stores Docker repositoriesDocker registry

An is a hosted collection of Docker repositories, effectively, a Docker registry Artifactory repository in every
way, and one that you can access transparently with the Docker client.

Since Artifactory places no limitation on the number of repositories you may create, you can manage any
number of Docker registries in Artifactory.

Page Contents
Registries and
Repositories
Getting Started With
Artifactory as a Docker
Registry
Configuring Docker
Repositories

Local Docker
Repositories
Remote
Docker
Repositories

Dock
er
Repo
sitory
Path
and
Doma
in

Virtual Docker
Repositories
Reverse Proxy
Settings

Promoting Docker
Images
Pushing and Pulling
Images

Set Me Up
Browsing Docker
Repositories

Tag Info
Docker Tag
Visualization
Labels

Searching for Docker
Images
Listing Docker Images
Pushing Images to
Bintray
Deletion and Cleanup

Limiting
Unique Tags

Migrating from Docker

1.
2.
3.

1.
2.
3.

Getting Started With Artifactory as a Docker Registry

There are three main ways to get started using Docker with Artifactory:

Artifactory SaaS account
Using Docker Compose (1-minute setup)
Artifactory On-Prem

For more details, please refer to . Getting Started with Artifactory as a Docker Registry

Configuring Docker Repositories

Artifactory supports three types of repositories when working with Docker:

Local repositories are a place for your internal Docker images. Through Artifactory's security capabilities, these are secure private Docker
registries.

Remote repositories are used to proxy remote Docker resources such as Docker Hub.

Virtual repositories can aggregate multiple Docker registries thus enabling a single endpoint you can use for both pushing and pulling Docker
images. This enables the admin to manage the different Docker registries without his users knowing, and continue to work with the same end
point.

**Make sure to go to the Advanced tab of each repository and set the Registry Port if you are using the Port method for Docker. Then, the reverse
proxy generator should add a new section in for the specified port.

Local Docker Repositories

A local Docker repository is where you can deploy and host your internal Docker images. It is, in effect, a Docker registry able to host collections
of tagged Docker images which are your Docker Repositories. Once your images are hosted, you can exercise fine-grained access control, and
share them across your organization through replication or by being proxied by repositories in other Artifactory instances.

To define a local Docker repository, follow the steps below:
Create a new and set as theLocal Repository Docker Package Type.
Set the , and in the Docker Settings section, select as the Docker API version.Repository Key V2
Set . This specifies the maximum number of unique tags, per repository, that should be stored for a Docker image.Max Unique Tags
Once the number of tags for an image exceeds this number, older tags will be removed. Leaving the field blank (default) means all tags
will be stored.

V1 to Docker V2
Support Matrix

Read More
Getting Started with
Artifactory as a Docker
Registry
Advanced Topics
Working with Docker
Content Trust
Using Docker V1

1.
2.

Remote Docker Repositories

With Docker, you can proxy a remote Docker registry through remote repositories. A defined in Artifactory serves as a cachingRemote Repository
proxy for a registry managed at a remote URL such as https://registry-1.docker.io/ (which is the Docker Hub), or even a Docker repository
managed at a remote site by another instance of Artifactory.

Docker images requested from a remote repository are cached on demand. You can remove downloaded images from the remote repository
cache, however, you can not manually push Docker images to a remote Docker repository.

To define a remote repository to proxy a remote Docker registry follow the steps below:
Create a new Remote Repository and set as theDocker Package Type.
Set the value, and specify the URL to the remote registry in the fieldRepository Key URL

If you are proxying the Docker Hub, use https://registry-1.docker.io/ as the URL, and make sure the Enable Token Authentication check
box is checked (these are the default settings).

Docker Repository Path and Domain

1.
2.
3.
4.

When accessing a remote Docker repository through Artifactory, the repository URL must be prefixed with in the path.api/docker

For Example:

http://my-remote-site:8081/artifactory/api/docker/<repository key>

Virtual Docker Repositories

From version 4.1, Artifactory supports virtual Docker Repositories. A defined in Artifactory aggregates images from both localVirtual Repository
and remote repositories that are included in the virtual repositories.

This allows you to access images that are hosted locally on local Docker repositories, as well as remote images that are proxied by remote
Docker repositories, and access all of them from a single URL defined for the virtual repository. Using virtual repositories can be very useful since
users will continue to work with the virtual repository while the admin can manage the included repositories, replace the default deployment target
and those changes will be transparent to the users.

To define a virtual Docker repository follow the steps below:
Create a new Virtual Repository and set as theDocker Package Type.
Set the value.Repository Key
Select the underlying local and remote Docker repositories to include under the section.Repositories
You can optionally also configure your This is the repository to which Docker images uploaded to thisDefault Deployment Repository.
virtual repository will be routed, and once this is configured, your virtual Docker repository is a fully-fledged Docker registry. Using the
default deployment repository, you can set up your virtual repository to wrap a series of repositories that represent the stages of your
pipeline, and then from the default deployment repository through the pipeline to production. Any repository thatpromote images
represents a stage in your pipeline within this virtual repository can be configured with permissions for authenticated or unauthenticated
(anonymous) access according to your needs.

Reverse Proxy Settings

A reverse proxy is required for Docker. In case you are using the Artifactory configuration generator you can configure DockerReverse Proxy
repository's reverse proxy settings under the settings tab.Advanced

For details, please refer to .Docker Reverse Proxy Settings

Promoting Docker Images

Artifactory supports promoting Docker images from one Docker repository in Artifactory to another.

Promoting is useful when you need to move Docker images through different acceptance and testing stages, for example, from a development
repository, through the different gateways all the way to production. Instead of rebuilding the image multiple times using promotion will ensure the
image you will have in your production environment is the one built by your CI server and passed all the relevant tests.

Promotion can be triggered using the following endpoint with cURL:the following endpoint with cURL:

POST api/docker/<repoKey>/v2/promote
{
 "targetRepo" : "<targetRepo>",
 "dockerRepository" : "<dockerRepository>",
 "tag" : "<tag>",
 "targetTag" : "<tag>",
 "copy": <true | false>
}

where:

repoKey Source repository key

targetRepo The target repository to move or copy

dockerRepository The docker repository name to promote

tag An optional tag name to promote, if null - the entire docker repository will be promoted. Default: "latest"

targetTag The new tag that the image should have after being promoted if you want to

copy When true, a copy of the image is promoted. When false, the image is moved to the target repository

An example for promoting the docker image "jfrog/ubuntu" with all of it's tags from docker-local to docker-prod using cURL would be:

curl -i -uadmin:password -X POST "https://artprod.company.com/v2/promote"
-H "Content-Type: application/json" -d
'{"tagetRepo":"docker-prod","dockerRepository":"jfrog/ubuntu"}'

Notice that the above example is executed through your reverse proxy. To go directly through Artifactory, you would execute this command as
follows:

curl -i -uadmin:password -X POST
"http://localhost:8080/artifactory/api/docker/docker-local/v2/promote" -H
"Content-Type: application/json" -d
'{"targetRepo":"docker-prod","dockerRepository":"jfrog/ubuntu"}'

The following example adds retagging with a specific version of the " image (4.9.0) being retagged to "latest" as it gets promoted:jfrog/ubuntu"

https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-DockerReverseProxySettings

curl -i -uadmin:password -X POST "https://artprod.company.com/v2/promote"
-H "Content-Type: application/json" -d
'{"targetRepo":"docker-prod","dockerRepository":"jfrog/ubuntu", "tag" :
"4.9.0", "targetTag" : "latest"}'

Pushing and Pulling Images

Set Me Up

To get the corresponding and commands for any repository, select it in the Tree Browser and click buttdocker push docker pull Set Me Up
on.

Browsing Docker Repositories

For general information on how to browse repositories, please refer to .Browsing Artifactory

The tab presents three sections: , , and .Docker Info Tag Info Docker Tag Visualization Labels

Tag Info

Presents basic details about the selected tag.

Title The Docker tag name.

Digest The tag's SHA 256 digest.

Total Size The total size of the image

Label Count The number of labels attached to this tag.

Docker Tag Visualization

This section maps the entire set of commands used to generate the selected tag along with the digest of the corresponding layer. Essentially, you
would see the same series of commands using .docker history

You can select any layer of the image to view the following properties:

Symbol Property

The layer
ID

The layer
size

The
timestamp
when the
layer was
created

Click the label count to view the attached labels at the bottom of the screen.

The
command
that
created
the layer

Labels

This section displays the labels attached to the image.

Note also, that from version 4.4.0, Artifactory extracts any labels associated with a Docker image and creates corresponding properties on the ma
 file which you can use to specify search parameters, this can be used to easily add additional metadata to any image.nifest.json

Searching for Docker Images

You can search for Docker images by their name, tag or image digest using Artifactory's or through the . Package Search REST API

Listing Docker Images

From version 4.4.3, Artifactory supports the following REST API endpoints related to Docker registries:

List Docker Images provides a list of Docker images in the specified Artifactory Docker registry. This endpoint mimics the Docker _catalo
 REST API.g

List Docker Tags provides a list of tags for the specified Docker image.

https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-PackageSearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerRepositories
https://docs.docker.com/registry/spec/api/#listing-repositories
https://docs.docker.com/registry/spec/api/#listing-repositories
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerRepositories

From version 5.4.6, Artifactory also supports pagination for this endpoint.

Pushing Images to Bintray

Through Artifactory's close integration with JFrog Bintray, you can push Docker images from your Artifactory Docker Registries directly to Bintray.
To enable this, make sure your are properly configured in your User Profile page. Bintray credentials

To push an image to Bintray, use the . Distribution Repository

Deletion and Cleanup

Artifactory natively supports removing tags and repositories and complies with the Docker Hub spec.

Deletion of Docker tags and repositories automatically cleans up any orphan layers that are left (layers not used by any other tag/repository).

Currently, the Docker client does not support DELETE commands, but deletion can be triggered manually. To delete an entire Docker repository
using cURL, execute the following command:

curl -u<user:password> -X DELETE "<Artifactory URL>/<Docker v2 repository
name>/<image namespace>"

Or for a specific tag version:

curl -u<user:password> -X DELETE "<Artifactory URL>/<Docker v2 repository
name>/<image namespace>/<tag>"

For example, to remove the latest tag of an Ubuntu repository:

//Removing the latest tag from the "jfrog/ubuntu" repository
curl -uadmin:password -X DELETE
"https://artprod.company.com/dockerv2-local/jfrog/ubuntu/latest"

Limiting Unique Tags

To avoid clutter and bloat in your Docker registries caused by many snapshots being uploaded for an image, set the field in theMax Unique Tags
 configuration to limit the number of unique tags. Local Docker Repository

Migrating from Docker V1 to Docker V2

If you are still using Docker V1, we strongly recommend upgrading to Docker V2. This requires that you migrate any Docker repositories that were
created for Docker V1, and is done with a simple cURL endpoint.

For details, please refer to under the documentation.Migrating a V1 repository to V2 Using Docker V1

Empty Directories
Any empty directories that are left following removal of a repository or tag will automatically be removed during the next folder pruning
job (which occurs every 5 minutes by default).

Using Docker V1?
This document shows how to use Artifactory with the Docker V2 . If you are using the Docker V1, please refer to .Using Docker V1

https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-BintraySettings
https://www.jfrog.com/confluence/display/RTF/Using+Docker+V1#UsingDockerV1-MigratingaV1repositorytoV2

Support Matrix

This matrix provides information on features supported as the versions of Artifactory progress.

Artifactory Version Docker Client Version Docker V1 API Docker V2 API Remote Repositories* Virtual Repositories*

4.9+ 1.12

4.8+ 1.11

4.4.3+ 1.10

4.1+ 1.8+

4.0.2+ 1.8

4.0.0+ 1.6+

4.0.0+ <1.6

* Supported for Docker V2 API only

Getting Started with Artifactory as a Docker Registry

Overview

There are three main ways you can use Docker with Artifactory and this document describes how to get
started with each way.

Please review the brief summary below to decide which is the best way for you to use Docker with Artifactory.
Artifactory SaaS

The easiest way to start using Docker with Artifactory is through an account.Artifactory SaaS

In this mode, since Artifactory is a hosted service, you do not need to set up a reverse proxy and can create
your Docker repositories and start pushing and pulling Docker images.

For more details, please refer to .Getting Started with Artifactory SaaS
Using Docker Compose - 1 Minute Setup

Artifactory can be run in a Docker container preconfigered as a Docker registry.

For more details, please refer to Using Docker Compose - 1 Minute Setup.
Artifactory On-Prem

You can setup your on-prem installation of Artifactory Pro to work with Docker.

Since the Docker client requires a different hostname for each registry you will need to configure a reverse
proxy when using this method.

For more details, please refer to .Getting Started with Artifactory Pro On-Prem

Page Contents
Overview
Getting Started with Artifactory SaaS

Using Docker Client with Artifactory SaaS
Test Your Setup

Using Docker Compose - 1 Minute Setup
Complete the Setup

https://www.jfrog.com/artifactory/versions/#Cloud

Getting Started with Artifactory SaaS

Using Docker repositories with is quick and easy to use. Artifactory SaaS

Since, with Artifactory SaaS, you are using Artifactory as a hosted service, there is no need to configure Artifactory with a reverse proxy.

The example at the end of this section shows a complete process of creating a Docker repository, logging in, pulling an image and pushing an
image.

Using Docker Client with Artifactory SaaS

To use the Docker client with one of your Artifactory SaaS Docker repositories, you can use the native Docker client to login to each Docker
repository, pull, and push images as shown in the following example:

Login to your repository use the following command with your Artifactory SaaS credentials

docker login ${server-name}-{repo-name}.jfrog.io

Pull an image using the following command

docker pull ${server-name}-{repo-name}.jfrog.io/<image name>

To push an image, first tag it and then use the push command

docker tag <image name> ${server-name}-{repo-name}.jfrog.io/<image
name>
docker push ${server-name}-{repo-name}.jfrog.io/<image name>

Test Your Setup

You can test your setup with this example that assumes you are using an Artifactory SaaS server named " ".acme

The scenario it demonstrates is:

Pulling the "hello-world" Docker image
Logging into your local Docker repository
Retagging the "hello-world" image, and the pushing it into your local Docker repository

Start by creating a called . local Docker repository dockerv2-local

Pull the "hello-world" image

docker pull hello-world

Login to repository dockerv2-local

Test Your Setup
Getting Started with Artifactory Pro On-Prem

The Subdomain Method
Configuring Artifactory and Your Reverse Proxy
Test Your Setup

The Ports Method
Configuring Artifactory and Your Reverse Proxy
Configuring Your Docker Client
Test Your Setup

https://www.jfrog.com/artifactory/versions/#Cloud
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-LocalDockerRepositories

1.

2.

docker login acme-dockerv2-local.jfrog.io

Tag the "hello-world" image

docker tag hello-world acme-dockerv2-local.jfrog.io/hello-world

Push the tagged "hello-world" image to dockerv2-local

docker push acme-dockerv2-local.jfrog.io/hello-world

Using Docker Compose - 1 Minute Setup

Artifactory may easily be installed as a Docker registry running in Docker. This is the easiest way to use Artifactory as a Docker registry
on-premises. The installation spins up the following three containers:

Artifactory Pro
NGINX proxy that uses a self-signed certificate and is configured for access using the sub-domain method
A Postgres database

To spin up this installation run the following command:

curl -L
'https://bintray.com/api/v1/content/jfrog/run/art-compose/$latest/art-comp
ose?bt_package=art-compose' | sudo bash

Complete the Setup

To complete the setup, invoke the by running Artifactory in your browser at . onboarding wizard http://<HOST_NAME>/artifactory

Activate Artifactory with your license key. If you do not have a license you can get a free 30 day . Trial license
You may set the Admin password or skip to accept the default
If necessary, configure your network proxy or just skip this step (you may at any time later)configure a proxy server
At select and continue to complete the wizardCreate Repositories, Docker

Finally, follow the steps below:

You need to add the following to your DNS or file:/etc/hosts

<ip-address> docker-local.artifactory docker-remote.artifactory
docker.artifactory artifactory

Since the certificate is self-signed, you need to import it to your Docker certificate trust store as described in the . Docker documentation
Alternatively, you can configure the Docker client to work with an insecure registry by adding the following line to your /etc/default/d

 file (you may need to create the file if it does not already exist):ocker

Sub-domains method
 We use this method so you will not need to change the reverse proxy configuration for each new Docker repository created.

https://www.jfrog.com/confluence/display/RTF/Getting+Started#GettingStarted-OnboardingWizard
https://www.jfrog.com/artifactory/free-trial/
https://docs.docker.com/registry/insecure/#using-self-signed-certificates

2.

3.

1.
2.

DOCKER_OPTS="$DOCKER_OPTS --insecure-registry docker-local.artifactory
--insecure-registry docker-remote.artifactory --insecure-registry
docker.artifactory"

Restart your Docker daemon/engine to apply the insecure registry flag (if self-signed certificate is imported, you do not need to restart the
Docker daemon/engine).

Test Your Setup

You can test your setup with this example .

The scenario it demonstrates is:

Pulling the "hello-world" Docker image
Logging into your virtual Docker repository
Retagging the "hello-world" image, and the pushing it into your virtual Docker repository

The Artifactory Docker registry is already configured with a virtual repository called docker.artifactory.

Pull the "hello-world" image

docker pull hello-world

Login to repository "docker.artifactory"

docker login docker.artifactory

Tag the "hello-world" image

docker tag hello-world docker.artifactory/hello-world

Push the tagged "hello-world" image to docker.artifactory

docker push docker.artifactory/hello-world

Getting Started with Artifactory Pro On-Prem

Using Artifactory Pro On-Prem with Docker requires a reverse proxy due to the following limitations of the Docker client:

You cannot use a context path when providing the registry path (e.g is not valid)localhost:8081/artifactory
Docker will only send basic HTTP authentication when working against an HTTPS host

Therefore, you need a reverse proxy to map Docker commands to Docker registries in Artifactory using either the or thesubdomain method port
. s method

Testing or evaluating?
 If you are currently only testing or evaluating using Artifactory with Docker, we recommend wrunning Artifactory as a Docker container
hich is easily installed and comes with a proxy server and Docker registries pre-configured out-of-the-box. You can be up and running in
minutes.

1.
2.

1.

2.
3.
4.

5.

a.
b.

With the ports method, a port number mapped to each Artifactory Docker registry. While this is an easy way to get started, you will need to modify
your reverse proxy configuration and add a new mapping for each new Docker registry you define in Artifactory. In addition, firewalls and other
restrictions by your IT department may restrict port numbers making the ports method not feasible.

With the subdomain method, you only need to configure your reverse proxy once, and from then on, the mapping from Docker commands to
Docker registries in Artifactory is dynamic and requires no further modification of your reverse proxy configuration.

We recommend to use the subdomain method since it will require one time effort.

The Subdomain Method

Getting started with Docker and your on-prem Artifactory Pro installation using the subdomain method involves two basic steps:

Configuring Artifactory and your reverse proxy.
Configuring your Docker client.

Configuring Artifactory and Your Reverse Proxy

To configure Artifactory and your reverse proxy using the subdomain method, carry out the following steps:

Make sure Artifactory is , and is . up and running activated with a valid license
Create your . In our example below we will use a repository named . local Docker repository docker-local
Make sure you have a reverse proxy server up and running.
Obtain a SSL certificate or use a wildcard self-signed certificate. wildcard

Configure your reverse proxy. Artifactory's can generate your complete reverse proxyReverse Proxy Configuration Generator
configuration file for supported servers. All you need to do is fill in the fields in according to how your reverse proxy is set up while making
sure to:

Use the correct in the field (in our example this will be)Artifactory hostname Public Server Name art.local
Select as the under Subdomain Reverse Proxy Method Docker Reverse Proxy Settings

NGINX
Copy the code snippet generated by the into your file, and place it in your configuration generator artifactory-nginx.conf /etc/n

Make sure your certificate matches the used in your reverse proxy configuration. In our example belowArtifactory hostname
we will use .art.local

https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-LocalDockerRepositories
https://en.wikipedia.org/wiki/Wildcard_certificate
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-PublicServerName
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-DockerReverseProxySettings

5.

1.

2.

3.

 directory.ginx/sites-available

Create the following symbolic link.

sudo ln -s /etc/nginx/sites-available/artifactory-nginx.conf
/etc/nginx/sites-enabled/artifactory-nginx.conf

Apache HTTPD

Copy the code snippet generated by the into your file and place it in you configuration generator artifactory-apache.conf /etc/a
 directory. pache2/sites-available

Create the following symbolic link:

sudo ln -s /etc/apache2/sites-available/artifactory-apache.conf
/etc/apache2/sites-enabled/artifactory-apache.conf

Configuring Your Docker Client

To configure your Docker client, carry out the following steps

Add the following to your DNS or to the client's /etc/hosts file:

<ip-address> docker-local.art.local

Since the certificate is self-signed, you need to import it to your Docker certificate trust store as described in the . Docker documentation
Alternatively, you can configure the Docker client to work with an insecure registry by adding the following line to your /etc/default/d

 file (you may need to create the file if it does not already exist)ocker :

DOCKER_OPTS="$DOCKER_OPTS --insecure-registry docker-local.art.local"

Restart your Docker daemon/engine to apply the insecure registry flag (if self-signed certificate is imported, you do not need to restart the
Docker daemon/engine).

Test Your Setup
To verify your reverse proxy is configured correctly, run the following command making sure that the return code is 200:

curl -I -k -v https://<artifactory url>

Run the following commands to ensure your proxy configuration is functional and can communicate with Artifactory:

Pull the "hello-world" image

docker pull hello-world

Login to repository docker-local

docker login docker-local.art.local

Tag the "hello-world" image

https://docs.docker.com/registry/insecure/#using-self-signed-certificates

1.
2.

1.
2.
3.
4.

5.

a.
b.

docker tag hello-world docker-local.art.local/hello-world

Push the tagged "hello-world" image to docker-local

docker push docker-local.art.local/hello-world

The Ports Method

Getting started with Docker and your on-prem Artifactory Pro installation using the ports method involves two basic steps:

Configuring Artifactory and your reverse proxy.
Configuring your Docker client.

Configuring Artifactory and Your Reverse Proxy

To configure Artifactory and your reverse proxy using the ports method, carry out the following steps:

Make sure Artifactory is , and is .up and running activated with a valid license
Create your . In our example below we will use a repository named . local Docker repository docker-local
Make sure you have a reverse proxy server up and running.
Obtain an SSL certificate or use a Self-Signed certificate that can be generated following this example.

Configure your reverse proxy. Artifactory's can generate your complete reverse proxy Reverse Proxy Configuration Generator
configuration file for supported servers. All you need to do is fill in the fields in according to how your reverse proxy is set up while making
sure to:

Use the correct in the field Artifactory hostname Public Server Name
Select as the under In the example below, we will use port Ports Reverse Proxy Method . Docker Reverse Proxy Settings 500

 to bind repository 1 docker-local.
NGINX

For Artifactory to work with Docker, the preferred web server is and above. NGINX v1.3.9
 First, you need to create a self-signed certificate for NGINX as described here for Ubuntu.

Then use Artifactory's Reverse Proxy Configuration Generator to generate the configuration code snippet for you.
Copy the code snippet into your artifactory-nginx.conf file and place it in your /etc/nginx/sites-available directory.
Finally, create the following symbolic link:

sudo ln -s /etc/nginx/sites-available/artifactory-nginx.conf
/etc/nginx/sites-enabled/artifactory-nginx.conf

Apache HTTPD

 and then install the .Install Apache HTTP server as a reverse proxy required modules

Create the following symbolic link:

sudo ln -s /etc/apache2/mods-available/slotmem_shm.load
/etc/apache2/mods-enabled/slotmem_shm.load

Similarly, create corresponding symbolic links for:
headers
proxy_balancer
proxy_load
proxy_http

Make sure your certificate matches the used in your reverse proxy configuration. In our example belowArtifactory hostname
we will use .art.local

https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-LocalDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-PublicServerName
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-DockerReverseProxySettings
https://www.digitalocean.com/community/tutorials/how-to-create-a-ssl-certificate-on-nginx-for-ubuntu-12-04
https://www.digitalocean.com/community/tutorials/how-to-use-apache-http-server-as-reverse-proxy-using-mod_proxy-extension
https://github.com/GCRC/nunaliit/wiki/Optionally-configuring-Apache2-as-a-reverse-proxy-virtual-host

5.

proxy_connect
proxy_html
rewrite.load
ssl.load
lbmethod_byrequests.load

Then use Artifactory's to generate the configuration code snippet for you.Reverse Proxy Configuration Generator
Copy the code snippet into your artifactory.conf file and place it in your /etc/apache2/sites-available directory.
HAProxy
First, you need to create a self-signed certificate for HAProxy as described here for Ubuntu.

Then, copy the code snippet below into your /etc/haproxy/haproxy.cfg file. After editing the file as described in the snippet, you
can test your configuration using the following command:

haproxy -f /etc/haproxy/haproxy.cfg -c

 HAProxy v1.5 Configuration

haproxy server configuration
version 1.0
History
#

Features enabled by this configuration
HA configuration
port 80, 443 Artifactory GUI/API
#
This uses ports to distinguish artifactory docker repositories
port 443 docker-virtual (v2) docker v1 is redirected to
docker-dev-local.
port 5001 docker-prod-local (v1); docker-prod-local2 (v2)
port 5002 docker-dev-local (v1); docker-dev-local2 (v2)
#
Edit this file with required information enclosed in <...>
1. certificate and key
2. artifactory-host
3 replace the port numbers if needed
#

global
 log 127.0.0.1 local0
 chroot /var/lib/haproxy
 maxconn 4096
 user haproxy
 group haproxy
 daemon
 tune.ssl.default-dh-param 2048
 stats socket /run/haproxy/admin.sock mode 660 level admin
defaults
 log global
 mode http
 option httplog
 option dontlognull

https://www.vultr.com/docs/add-ssl-termination-to-haproxy-on-ubuntu

5.

 option redispatch
 option forwardfor
 option http-server-close
 maxconn 4000
 timeout connect 5000
 timeout client 50000
 timeout server 50000
 errorfile 400 /etc/haproxy/errors/400.http
 errorfile 403 /etc/haproxy/errors/403.http
 errorfile 408 /etc/haproxy/errors/408.http
 errorfile 500 /etc/haproxy/errors/500.http
 errorfile 502 /etc/haproxy/errors/502.http
 errorfile 503 /etc/haproxy/errors/503.http
 errorfile 504 /etc/haproxy/errors/504.http
frontend normal
 bind *:80
 bind *:443 ssl crt </etc/ssl/certs/server.bundle.pem>
 mode http
 option forwardfor
 reqirep ^([^\ :]*)\ /v2(.*$) \1\
/artifactory/api/docker/docker-virtual/v2\2
 reqadd X-Forwarded-Proto:\ https if { ssl_fc }
 option forwardfor header X-Real-IP
 default_backend normal

if only need to access the docker-dev-local2 then skip this section.
Docker-virtual can be configured to deploy to docker-dev-local2
frontend dockerhub
 bind *:5000 ssl crt </etc/ssl/certs/server.bundle.pem>
 mode http
 option forwardfor
 option forwardfor header X-Real-IP
 reqirep ^([^\ :]*)\ /v2(.*$) \1\
/artifactory/api/docker/docker-remote/v2\2
 reqadd X-Forwarded-Proto:\ https if { ssl_fc }
 default_backend normal

if only need to access the docker-dev-local2 then skip this section.
Docker-virtual can be configured to deploy to docker-dev-local2
frontend dockerprod
 bind *:5001 ssl crt </etc/ssl/certs/server.bundle.pem>
 mode http
 option forwardfor
 option forwardfor header X-Real-IP
 reqirep ^([^\ :]*)\ /v1(.*$) \1\
/artifactory/api/docker/docker-prod-local/v1\2
 reqirep ^([^\ :]*)\ /v2(.*$) \1\
/artifactory/api/docker/docker-prod-local2/v2\2
 reqadd X-Forwarded-Proto:\ https if { ssl_fc }
 default_backend normal

if only need to access the docker-dev-local2 then skip this section.
Docker-virtual can be configured to deploy to docker-dev-local2

5.

frontend dockerdev
 bind *:5002 ssl crt </etc/ssl/certs/server.bundle.pem>
 mode http
 option forwardfor
 option forwardfor header X-Real-IP
 reqirep ^([^\ :]*)\ /v1(.*$) \1\
/artifactory/api/docker/docker-dev-local/v1\2
 reqirep ^([^\ :]*)\ /v2(.*$) \1\
/artifactory/api/docker/docker-dev-local2/v2\2
 reqadd X-Forwarded-Proto:\ https if { ssl_fc }
 default_backend normal

Artifactory Non HA Configuration
i.e server artifactory 198.168.1.206:8081
#
backend normal
 mode http
 server <artifactory-host> <artifactory-host ip
address>:<artifactory-host port>

#
Artifactory HA Configuration
Using default failover interval - rise = 2; fall =3 3; interval - 2
seconds
backend normal
mode http
balance roundrobin
option httpchk OPTIONS /
option forwardfor
option http-server-close
appsession JSESSIONID len 52 timeout 3h
server <artifactory-host-ha1> <artifactory-host ip

5.

1.

2.

3.

1.

address>:<artifactory-host port>
server <artifactory-host-ha2> <artifactory-host ip
address>:<artifactory-host port>

Configuring Your Docker Client

To configure your Docker client, carry out the following steps

 Add the following to your DNS or to the client's /etc/hosts file:

<ip-address> art.local

Since the certificate is self-signed, you need to import it to your Docker certificate trust store as described in the . Docker documentation
Alternatively, you can configure the Docker client to work with an insecure registry by adding the following line to your /etc/default/d

 file (you may need to create the file if it does not already exist):ocker

DOCKER_OPTS="$DOCKER_OPTS --insecure-registry art.local:5001"

Restart your Docker engine.

Test Your Setup

To verify your reverse proxy is configured correctly, run the following command:

// Make sure the following results in return code 200
curl -I -k -v https://<artifactory url>

Run the following commands to ensure your proxy configuration is functional and can communicate with Artifactory. In this example, we will pull
down a Docker image, tag it and then deploy it to our our repository that is bound to :docker-local port 5001

// Pull the "hello-world" image
docker pull hello-world

// Login to repository docker-local
docker login art-local:5001

// Tag the "hello-world" image
docker tag hello-world art-local:5001/hello-world

// Push the tagged "hello-world" image to docker-local
docker push art-local:5001/hello-world

Testing With a Self-signed Certificate

Since the certificate is self-signed, you need to import it to your Docker certificate trust store as described in the . ADocker documentation
lternatively, you can configure the Docker client to work with an insecure registry by adding the following line to your /etc/default/do

 file (you may need to create the file if it does not already exist).cker

DOCKER_OPTS="$DOCKER_OPTS --insecure-registry docker-local.art.local"

https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates

2.

3.

Restart your Docker daemon/engine to apply the insecure registry flag (if self-signed certificate is imported, you do not need to restart the
Docker daemon/engine).
Use the steps above to interact with the Artifactory Docker Registry

Advanced Topics

Overview

This page provides some advanced topics for using Docker with Artifactory.

Using a Self-signed SSL Certificate

You can use self-signed SSL certificates with commands, however for this to work, you need to docker push/pull specify the --insecure-r
egistry daemon flag for each insecure registry.

For full details please refer to the .Docker documentation

For example, if you are running Docker as a service, edit the file, and append the flag with/etc/default/docker --insecure-registry
your registry URL to the DOCKER_OPTS variable as in the following example:

Edit the DOCKER_OPTS variable

DOCKER_OPTS="-H unix:///var/run/docker.sock --insecure-registry
artprod.company.com"

For this to take effect, you need to restart the Docker service.

If you are using , please refer to the documentation for .Boot2Docker Boot2Docker Insecure Registry

If you do not make the required modifications to the --insecure-registry daemon flag, you should get the following error:

Error message

v2 ping attempt failed with error: Get https://artprod.company.com/v2/:
x509: cannot validate certificate for artprod.company.com because it
doesn't contain any IP SANs

Using Your Own Certificate

The NGINX configuration provided with Artifactory out-of-the-box references the internally bundled certificate and key which you may replace with
your own certificate and key.

For details, please refer to .Using Your Own Certificate

Setting Your Credentials Manually

If you are unable to log in to Docker, you may need to set your credentials manually.
Manually setting your Docker credentials

The Docker command line tool supports authenticating sensitive operations, such as push, with the server using basic HTTP authentication.

To enforce authenticated access to docker repositories you need to provide the following parameters to the Docker configuration file.

The Docker endpoint URL (must use HTTPS for basic authentication to work)

Page Contents
Overview
Using a Self-signed SSL Certificate
Using Your Own Certificate
Setting Your Credentials Manually
Authenticating via OAuth

https://docs.docker.com/reference/commandline/cli/#miscellaneous-options
https://github.com/boot2docker/boot2docker#insecure-registry
https://www.jfrog.com/confluence/display/DEL/TEMP+-+Installing+with+Docker#TEMP-InstallingwithDocker-UsingYourOwnCertificate

Your Artifactory username and password (formatted) as encoded stringsusername:password Base64
Your email address

You can use the following command to get these strings directly from Artifactory and copy/paste them into your ~/ file:.dockercfg

The Docker configuration file may contain a separate authentication block for each registry that you wish to access.

Below is an example with two URL endpoints:

{
 "https://artprod.company.com": {
 "auth":"YWRtaW46cGFzc3dvcmQ=",
 "email":"myemail@email.com"
 },
 "https://artprod2.company.com": {
 "auth":"YWRtaW46cGFzc3dvcmQ=",
 "email":"myemail@email.com"
 }
}

Authenticating via OAuth

From version 4.4, Artifactory supports authentication of the Docker client using OAuth through the default GitHub OAuth provider. When
authenticating using OAuth you will not need to provide additional credentials to execute with Artifactory. docker login

To set up OAuth authentication for your Docker client, execute the following steps:

Under , make sure is checked to make sure a user record is created for youGeneral OAuth Settings Auto Create Artifactory Users
first time you log in to Artifactory with OAuth.
Log in to Artifactory with OAuth using your Git Enterprise account

Once you are logged in to Artifactory through your Git Enterprise OAuth account, your Docker client will automatically detect this and use OAuth
for authentication, so you do not need to provide additional credentials.

Working with Docker Content Trust

Overview

Notary is Docker's platform to provide trusted delivery of content by signing images that are published. A
content publisher can then provide the corresponding signing keys that allow users to verify that content
when it is consumed. Artifactory fully supports working with Docker Notary to ensure that Docker images
uploaded to Artifactory can be signed, and then verified when downloaded for consumption. When the
Docker client is configured to work with Docker Notary, after pushing an image to Artifactory, the client
notifies the Notary to sign the image before assigning it a tag.

Artifactory supports hosting signed images without the need for any additional configuration.

sudo
If you are using Docker commands with "sudo" or as a root user (for example after installing the Docker client), note that the Docker
configuration file should be placed under/root/.dockercfg

Getting .dockercfg entries directly from Artifactory
$ curl -uadmin:password "https://artprod.company.com/<v1|v2>/auth"
{
"https://artprod.company.com" : {
"auth" : "YWRtaW46QVA1N05OaHZTMnM5Qk02RkR5RjNBVmF4TVFl",
"email" : "admin@email.com"
}
}

http://usernamepassword/
http://www.base64encode.org/
https://www.jfrog.com/confluence/display/RTF/OAuth+Integration#OAuthIntegration-ConfiguringOAuth

Configuring Docker Notary and Docker Client

There is no configuration needed in Artifactory in order to work with trusted Docker images. However, in the setup instructions below, we do
recommend testing your configuration by signing Artifactory and running it in a container.

To configure the Docker Notary and client to work with Artifactory, execute the following main steps:

Configure your hosts file
Configure the Notary server and run it as a container
Configure the Docker client

Configuring Your Hosts File

If you are not working with a DNS, add the following entries to your file:/etc/hosts

sudo sh -c 'echo "<Host IP> <Notary Server Name>" >> /etc/hosts'
sudo sh -c 'echo "<Host IP> <Artifactory Server Name>" >> /etc/hosts'

Configuring the Notary Server

Create a directory for your Notary server. In the code snippets below we will use .notarybox

Create a dockerfile with the following content:

FROM debian:jessie

ADD https://get.docker.com/builds/Linux/x86_64/docker-1.9.1 /usr/bin/docker
RUN chmod +x /usr/bin/docker \
 && apt-get update \
 && apt-get install -y \
 tree \
 vim \
 git \
 ca-certificates \
 --no-install-recommends

WORKDIR /root
RUN git clone https://github.com/docker/notary.git && \
 cp /root/notary/fixtures/root-ca.crt
/usr/local/share/ca-certificates/root-ca.crt && \
 update-ca-certificates

ENTRYPOINT ["bash"]

Page Contents
Overview
Configuring Docker Notary and Docker Client

Configuring Your Hosts File
Configuring the Notary Server
Configuring the Docker Client

Test Your Setup

Use a private certificate
This configuration runs with a public certificate. Any Docker client running with the same public certificate may be able to access your

Build the test image:

docker build -t [image name] [path to dockerfile]

If you are running the build in your dockerfile directory, you can just use "." as the path to the dockerfile

Start the Notary server:

To start the Notary server, you first need to have installed.Docker Compose

Then execute the following steps:

cd notarybox
git clone -b trust-sandbox https://github.com/docker/notary.git
cd notary
docker-compose build
docker-compose up -d

Configuring the Docker Client

To connect the Notary server to the Docker client you need to enable the Docker content trust flag and add the Notary server URL as follows:

export DOCKER_CONTENT_TRUST=1
export DOCKER_CONTENT_TRUST_SERVER=https://notaryserver:4443

Test Your Setup

The example below demonstrates setting up the Notary server and Docker client, signing an image and the pushing it to Artifactory, with the
following assumptions:

Notary server and Artifactory run on localhost (127.0.0.1)
Notary server is in directory notarybox
Working without a DNS (so we need to configure the file)hosts
Notary server name is notaryserver
Artifactory server name is artifactory-registry
Docker Compose is installed

Set up the IP mappings

sudo sh -c 'echo "127.0.0.1 notaryserver" >> /etc/hosts'
sudo sh -c 'echo "127.0.0.1 artifactory-registry" >> /etc/hosts'

Create the Dockerfile

Notary server.

For a secure setup, we recommend replacing it with your organization's private certificate by replacing the public certificroot-ca.crt

ate file with your private certificate under on your Notary server, and under /root/notary/fixtures /usr/local/share/ca-ce

rtificates on the machine running your Docker client.

https://docs.docker.com/compose/install/

FROM debian:jessie

ADD https://get.docker.com/builds/Linux/x86_64/docker-1.9.1 /usr/bin/docker
RUN chmod +x /usr/bin/docker \
 && apt-get update \
 && apt-get install -y \
 tree \
 vim \
 git \
 ca-certificates \
 --no-install-recommends

WORKDIR /root
RUN git clone -b trust-sandbox https://github.com/docker/notary.git && \
 cp /root/notary/fixtures/root-ca.crt
/usr/local/share/ca-certificates/root-ca.crt && \
 update-ca-certificates

ENTRYPOINT ["bash"]

Note that this example uses the public certificate.root-ca.crt

Navigate to the Dockerfile location and build the test image

docker build -t notarybox .

Run Artifactory as a container

docker pull
jfrog-docker-reg2.bintray.io/jfrog/artifactory-registry:<version>
docker run -d --name artifactory-registry -p 80:80 -p 8081:8081 -p 443:443
-p 5000-5002:5000-5002
jfrog-docker-reg2.bintray.io/jfrog/artifactory-registry:<version>

Access your Artifactory instance (at and with an Artifactory Pro license. http:/localhost:8081/artifactory) activate it

For more details on running Artifactory as a Docker container, please refer to .TEMP - Installing with Docker

Start your container

In this step you will start the container with the you created earlier, and link it to your Notary server and Artifactory.dockerfile

docker run -it -v /var/run/docker.sock:/var/run/docker.sock --link
notary_server_1:notaryserver --link
artifactory-registry:artifactory-registry notarybox

Pull an image for testing

docker pull docker/trusttest

https://www.jfrog.com/confluence/display/RTF/Artifactory+Pro#ArtifactoryPro-ActivatingArtifactoryPro
https://www.jfrog.com/confluence/display/DEL/TEMP+-+Installing+with+Docker

After you have pulled the image, you need to to docker login artifactory-registry:5002/v2

Configure the Docker client

export DOCKER_CONTENT_TRUST=1
export DOCKER_CONTENT_TRUST_SERVER=https://notaryserver:4443

Tag the image you pulled for testing and push it to Artifactory

docker tag docker/trusttest artifactory-registry:5002/test/trusttest:latest
docker push artifactory-registry:5002/test/trusttest:latest

You will be asked to enter the root key passphrase. This will be needed every time you push a new image while the
DOCKER_CONTENT_TRUST flag is set.

The root key is generated at: /root/.docker/trust/private/root_keys

You will also be asked to enter a new passphrase for the image. This is generated at /root/.docker/trust/private/tuf_keys/[regist
ry name] /[imagepath]

Using Docker V1

Overview

This page describes how to use Artifactory with the Docker V1 Registry API. If you are using the Docker V2
Registry API, please refer to .Docker Registry

For general information on using Artifactory with Docker, please refer to .Artifactory as a Docker Registry

Getting Started with Artifactory and Docker

Artifactory supports Docker transparently, meaning you can point the Docker client at Artifactory and issue
push, pull and other commands in exactly the same way that you are used to when working directly with a
private registry or Docker Hub.

To get started using Docker with Artifactory you need to execute the following steps:

1.
2.
3.
4.

1.

2.

Set up a web server as a reverse proxy
Create a local repository
Set up authentication
Push and pull images

The at the end of this section provides a demonstration.screencast

1. Setting up NGINX as a Reverse Proxy

Artifactory can only be used with Docker through a reverse proxy due to the following limitations of the
Docker client:

You cannot provide a context path when providing the registry path (e.g localhost:8081/artifa
 is not valid)ctory

Docker will only send basic HTTP authentication when working against an HTTPS host

For Artifactory to work with Docker, the preferred web server is and above configured as aNGINX v1.3.9
reverse proxy.

For other supported web servers, please refer to .Alternative Proxy Servers

Below is a sample configuration for NGINX which configures SSL on port 443 to a specific local repository in
Artifactory (named) on a server called docker-local .artprod.company.com

NGINX Configuration for Docker V1

This code requires NGINX to support chunked transfer encoding which is available from NGINX v1.3.9.

Using Docker v1, Docker client v1.10 and Artifactory 4.4.3 known issue.
To avoid incompatibility when using Docker V1 with Docker 1.10, use the NGINX configuration
displayed below and not the NGINX configuration generated by Artifactory v4.4.3.

http://artprod.company.com/

 [...]

http {

 ##
 # Basic Settings
 ##
 [...]

 server {
 listen 443;
 server_name artprod.company.com;

 ssl on;
 ssl_certificate
/etc/ssl/certs/artprod.company.com.crt;
 ssl_certificate_key
/etc/ssl/private/artprod.company.com.key;

 access_log
/var/log/nginx/artprod.company.com.access.log;
 error_log
/var/log/nginx/artprod.company.com.error.log;

 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Original-URI
$request_uri;
 proxy_read_timeout 900;

 client_max_body_size 0; # disable any
limits to avoid HTTP 413 for large image uploads

 # required to avoid HTTP 411: see Issue
#1486
(https://github.com/docker/docker/issues/1486)
 chunked_transfer_encoding on;

 location /v1 {
 proxy_pass
http://artprod.company.com:8081/artifactory/api/do
cker/docker-local/v1;
 }
 }
}

Multiple Docker repositories and port bindings

2. Creating a Local Docker Repository

This is done in the same way as when to work with Docker V2, however, in theconfiguring a local repository
Docker Settings section, you should make sure to select V1 as the Docker API version.

Working with Artifactory SaaS

Click here to expand...

Due to limitations of the Docker client, in Artifactory SaaS there is a special configuration for each server with a sub-domain.

You need to create a new Docker enabled local repository named docker-local.

Then, use the following address when working with the Docker client: "${account_name}.jfrog.io"

3. Setting Up Authentication

When using Artifactory with Docker V1, you need to set your credentials manually by adding the following section to your ~/.docker/config.j
 file.son

If you want to use multiple Docker repositories, you need to copy this configuration and bind
different ports to each local repository in Artifactory. For details, please refer to Port Bindings.

Repository URL prefix
When accessing a Docker repository through Artifactory, the repository URL must be prefixed with
api/docker in the path. For details, please refer to Docker Repository Path and Domain.

Page Contents
Overview
Getting Started with Artifactory and Docker

1. Setting up NGINX as a Reverse Proxy
2. Creating a Local Docker Repository

Working with Artifactory SaaS
3. Setting Up Authentication
4. Pushing and Pulling Images
Watch the Screencast

Browsing Docker Repositories
Viewing the Docker Images Tree
Viewing Individual Docker image Information
Searching for Docker Images
Promoting Docker Images with V1

Migrating a V1 repository to V2
Deletion and Cleanup
Advanced Topics

Using a Self-signed SSL Certificate
Alternative Proxy Servers

Apache Configuration
Port Bindings
Docker Repository Path and Domain

Support Matrix

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Docker+Repositories+-+Deprecated&linkCreation=true&fromPageId=47120641

~/.docker/config.json

{
 "auths" :{
 "https://artprod.company.com" : {
 "auth": "<USERNAME>:<PASSWORD> (converted to base 64)",
 "email": "youremail@email.com"
 },
 "https://artdev.company.com" : {
 "auth": "<USERNAME>:<PASSWORD> (converted to base 64)",
 "email": "youremail@email.com"
 }
 }
}

4. Pushing and Pulling Images

Pushing and pulling images when using Docker V1 is done in the same way as when using Docker V2. Please refer to Pushing and
 under the Docker Repositories page.Pulling Images

Watch the Screencast

Once you have completed the above setup you should beableuse the Docker client to transparently push images to and pull them from Docker
repositories in Artifactory. You can see this in action in the screencast below.

Browsing Docker Repositories

Artifactory stores docker images in a layout that is made up of 2 main directories:

.images: Stores all the flat docker images.
repositories: Stores all the repository information with tags (similar to how repositories are stored in the Docker Hub).

In addition, Artifactory annotates each deployed docker image with two properties:

docker.imageId: The image id
docker.size: The size of the image in bits

Deployed tags are also annotated with two properties:

docker.tag.name: The tag name
docker.tag.content: The id of the image that this tag points to

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Docker+Repositories+-+Deprecated&linkCreation=true&fromPageId=47120641
https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Docker+Repositories+-+Deprecated&linkCreation=true&fromPageId=47120641

Viewing the Docker Images Tree

Artifactory lets you view the complete images tree for a specific image directly from the UI in a similar way to what you would get from the docker
 command.images --tree

In the module drill down to select the you want to inspect. The metadata is displayed in the tab.Artifacts Tree Browser, image Docker Ancestry

Viewing Individual Docker image Information

In the module drill down to select image you want to inspect. The metadata is displayed in the tab.Artifacts Tree Browser, Docker Info

Searching for Docker Images

In addition to other properties related to Docker repositories, you can also search for repositories using a property called , whidocker.repoName
ch represents the repository name (e.g., "library/ubuntu").

Promoting Docker Images with V1

Promoting Docker images with Docker V1 is done in exactly the same way as when . Promoting Images with Docker V2

Migrating a V1 repository to V2

We recommend using Docker V2 repositories when possible (provided your Docker client is version 1.6 and above).

If you have an existing Docker V1 repository, you can migrate its content into a V2 repository using the following endpoint with cURL:

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=Docker+Repositories+-+Deprecated&linkCreation=true&fromPageId=47120641

POST api/docker/<repoKey>/v1/migrate
{
 "targetRepo" : "<targetRepo>",
 "dockerRepository" : "<dockerRepository>",
 "tag" : "<tag>"
}

where:

<repoKey> Source repository key (For example, as used in this page)docker-local

<targetRepo> The target Docker V2 repository to migrate to (For example, as used in this page). The repository shoulddocker-local2
be created before running the endpoint.migrate

<dockerRepository> An optional docker repository name to migrate, if null - the entire source repository will be migrated. Default: ""

<tag> An optional tag name to promote, if null - the entire docker repository will be promoted. Default: ""

An example for migrating the docker image with all of it's tags from to using cURL would"jfrog/ubuntu" docker-local docker-local2
be:

curl -i -uadmin:password -X POST
"http://localhost:8081/artifactory/api/docker/docker-local/v1/migrate" -H
"Content-Type: application/json" -d
'{"targetRepo":"docker-local2","dockerRepository":"jfrog/ubuntu"}'

Deletion and Cleanup

Artifactory natively supports removing tags and repositories and complies with the .Docker Hub Spec

Deletion of Docker tags and repositories automatically cleans up any orphan layers that are left (layers not used by any other tag/repository).

Currently, the Docker client does not support DELETE commands, but deletion can be triggered manually using cURL. Here are some examples:

Removing repositories and tags

//Removing the "jfrog/ubuntu" repository
 curl -uadmin:password -X DELETE
"https://artprod.company.com/v1/repositories/jfrog/ubuntu"

//Removing the "12.04" tag from the "jfrog/ubuntu" repository
 curl -uadmin:password -X DELETE
"https://artprod.company.com/v1/repositories/jfrog/ubuntu/tags/12.04"

Advanced Topics

Using a Self-signed SSL Certificate

Empty Directories
Any empty directories that are left following removal of a repository or tag will automatically be removed during the next folder pruning
job (which occurs every 5 minutes by default).

https://docs.docker.com/v1.4/reference/api/hub_registry_spec/#delete

From Docker version 1.3.1, you can use self-signed SSL certificates with commands, however for this to work, you need to docker push/pull
specify the --insecure-registry daemon flag for each insecure registry.

For full details please refer to the .Docker documentation

For example, if you are running Docker as a service, edit the file, and append the flag with/etc/default/docker --insecure-registry
your registry URL to the DOCKER_OPTS variable as in the following example:

Edit the DOCKER_OPTS variable

DOCKER_OPTS="-H unix:///var/run/docker.sock --insecure-registry
artprod.company.com"

For this to take effect, you need to restart the Docker service.

If you are using , please refer to the documentation for .Boot2Docker Boot2Docker Insecure Registry

If you do not make the required modifications to the --insecure-registry daemon flag, you should get the following error:

Error message

Error: Invalid registry endpoint https://artprod.company.com/v1/: Get
https://artprod.company.com/v1/_ping: x509: certificate signed by unknown
authority.

Alternative Proxy Servers

In addition to NGINX, you can setup Artifactory to work with Docker using Apache.

Apache Configuration

The sample configuration below configures SSL on port 443 and a server name of .artprod.company.com
Apache config for docker V1

Using previous versions of Docker
In order to use self-signed SSL certificates with previous versions of Docker, you need to manually install the certificate into the OS of
each machine running the Docker client (see Issue 2687).

https://docs.docker.com/reference/commandline/cli/#miscellaneous-options
https://github.com/boot2docker/boot2docker#insecure-registry
http://artprod.company.com/
https://github.com/docker/docker/pull/2687
https://github.com/docker/docker/pull/2687

<VirtualHost *:443>
 ServerName artprod.company.com

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 SSLEngine on
 SSLCertificateFile/etc/ssl/certs/artprod.company.com.pem
 SSLCertificateKeyFile /etc/ssl/private/artprod.company.com.key

 ProxyRequests off
 ProxyPreserveHost on

 ProxyPass /
http://artprod.company.com:8080/artifactory/api/docker/docker-local/
 ProxyPassReverse /
http://artprod.company.com:8080/artifactory/api/docker/docker-local/
</VirtualHost>

Port Bindings

If you want to use multiple repositories, you need to copy the and bind different ports to each local repository in Artifactory.NGINX configuration

When binding a port other than 443, note that the configuration for the proxy header must be appended with the port number on the proxy_set_
 line.header

For example, for a server running on port 444 you should write .proxy_set_header Host $host:444

Docker Repository Path and Domain

When accessing a Docker repository through Artifactory, the repository URL must be prefixed with in the path.api/docker

You can copy the full URL from the UI using when the repository is selected in the Tree Browser.Set Me Up

For example, if you are using Artifactory standalone or as a local service, you would access your Docker repositories using the following URL:

<repository key>http://localhost:8081/artifactory/api/docker/

Also, the domain of your Docker repository must be expressed as an explicit IP address. The only exception is when working locally, you can use
the domain name as the proxy pass.localhost

Support Matrix

Please refer to the under Docker Repositories. support matrix

http://localhost:8081/artifactory/
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-SupportMatrix

Git LFS Repositories

Overview

From version 3.9, Artifactory supports repositories on top of Artifactory's Git Large File Storage (LFS) existing
 for advanced artifact management.support

Artifactory support for Git LFS provides you with a fully functional LFS server that works with the Git LFS
client.

LFS blobs from your Git repository can be pushed and maintained in Artifactory offering the following
benefits:

Performance:
With Artifactory’s file storage on your local or corporate network, file download times may be
significantly reduced. When considering the number of files that may be needed for a build, this can
drastically reduce your build time and streamline your workflow.

Reliable and consistent access to binaries:
With Artifactory as your LFS repository, all the resources you need for development and build are
stored on your own local or corporate network and storage. This keeps you independent of the
external network or any 3rd party services.

Share binary assets with remote Git LFS repositories
Share your video, audio, image files and any other binary asset between teams across your
organization by proxying Git LFS repositories on other Artifactory instances or on GitHub.

Upload and download binary assets using a single URL
Use a virtual Git LFS repository as both a source and a target for binary assets. By wrapping local
and remote repositories, and defining a deploy target in a virtual Git LFS repository, your Git LFS
client only needs to be exposed to that single virtual repository for all your work with binary assets.

Security and access control:
Artifactory lets you define which users or groups of users can access your LFS repositories with a full
set of permissions you can configure. You can control where developers can deploy binary assets to,
whether they can delete assets and more. And if it’s access to your servers that you’re concerned
about, Artifactory provides full integration with the most common access protocols such as LDAP,
SAML, Crowd and others.

One solution for all binaries:
Once you are using Artifactory to store media assets there is no need to use a 3rd party LFS
provider. Artifactory can now handle those along with all the other binaries it already manages for
you.

Configuration

Page Contents
Overview
Configuration

Local
Repositories
Remote
Repositories
Virtual
Repositories
Setting Up the
Git LFS Client
to Point to
Artifactory

Working with
Artifactory without
Anonymous Access
Authenticating
with SSH
Metadata
Storage
5-Minute Setup

https://git-lfs.github.com/

Local Repositories

To create a Git LFS local repository and enable calculation of LFS package metadata set as the GitLfs Package Type.

Remote Repositories

You can create a Git LFS to proxy LFS repositories on GitHub, or Git LFS local repositories on other Artifactory instances. Ifremote repository
you are proxying a Git LFS local repository on another instance of Artifactory, you can enjoy all the features of a . smart remote repository

To define a Git LFS remote repository, create a new remote repository, set its Package Type to be , and set the URL of the repository youGit LFS
want to proxy.

Virtual Repositories

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted binary assets and remote proxied git LFS repositories from a single URL defined for the virtual
repository.

To create a Git LFS virtual repository set to be its Package Type and select the underlying local and remote Git LFS repositories toGit LFS ,
include under the section.Repositories

Make sure you also set the so you can both download from and upload to this repository.Default Deployment Repository

Setting Up the Git LFS Client to Point to Artifactory

In order for your client to upload and download LFS blobs from artifactory the clause should be added to the . file of your Git[lfs] lfsconfig
repository in the following format.

.lfsconfig

[lfs]
 url = "https://<artifactory server path>/api/lfs/<LFS repo key>"

For example:
[lfs]
 url = "https://localhost:8080/artifactory/api/lfs/lfs-local"

You can also set different LFS endpoints for different remotes on your repo (as supported by the Git LFS client), for example:

.git/config different lfs url for remotes

[remote "origin"]
 url = https://...
 fetch = +refs/heads/*:refs/remotes/origin/*
 lfsurl = "http://localhost:8081/artifactory/api/lfs/lfs-local"

Copy these clauses using Set Me Up
If you select your GitLFS repository in the Tree Browser and click Artifactory will display these clauses in a dialog fromSet Me Up,
which you can simply copy and paste them.

Working with Proxies and HTTPS
When using HTTPS (i.e. behind a proxy) with a self signed certificate your configuration might also require you to add the following:

.gitconfig http section

[http]
 sslverify = false

Always consult your System Administrator before bypassing secure protocols in this way.

When running Artifactory behind a proxy, defining a is usually required (depending on configuration) due to the operation ofbase url
the

Git LFS client which expects to receive redirect urls to the exact upload \ download location of blobs.

LFS repositories must be prefixed with api/lfs in the path
When accessing a Git LFS repository through Artifactory, the repository URL must be prefixed with in the path, api/lfs except when

.configuring replication

For example, if you are using Artifactory standalone or as a local service, you would access your LFS repositories using the following
URL:

<repository key>http://localhost:8081/artifactory/api/lfs/

Or, if you are using SaaS the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>api/lfs/

When configuring replication, reference the repository's browsable url i.e.;

/<repository key>http://localhost:8081/artifactory

http://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory
http://localhost:8081/artifactory/
http://localhost:8081/artifactory/

Working with Artifactory without Anonymous Access

By default, Artifactory allows anonymous access to Git LFS repositories. This is defined in the module under . ForAdmin Security | General
details please refer to .Allow Anonymous Access
If you want to be able to trace how users interact with your repositories you need to uncheck the setting. This meansAllow Anonymous Access
that users will be required to enter their username and password.
The Git LFS client will ask for credentials for the Artifactory LFS repo when accessing it - if anonymous access is allowed you can just enter blank
credentials, otherwise you should enter your Artifactory user name and password (not your Git one).

To make the authentication process automatic you can use to store these for you, and have the Git LFS client authenticateGit Credential Helpers
automatically.

Authenticating with SSH

From version 4.4, Artifactory supports authenticating your Git LFS client via SSH.

To authenticate yourself via SSH when using the Git LFS client, execute the following steps:

Make sure Artifactory is properly configured for SSH as described in .Configuring Server Authentication

Upload your SSH Public Key in the SSH section of your user profile as described in Configuring User Authentication.
Configure the Git LFS client as follows:

Update the file with the Artifactory server public key. This file is located under (and thereknown_hosts ~/.ssh/known_hosts
is also a system-wide file under This should take the following format:). /etc/ssh/known_hosts
[<server_custom_base_URL>]:<server_port> <content of the Artifactory server public ssh key>
For example,

[myartifactory.company.com]:1339 ssh-rsa
AAAAB3Nza...PC0GuTJT9TlaYD user@domain.com

Update your file at the repository level (not the global level) as follows:.lfsconfig
ssh://$USERNAME@$HOST:$PORT/artifactory/<repoKey>
For example,

url =
"ssh://git@myartifactory.company.com:1339/artifactory/lfs-local"

Metadata

As the Git LFS client supplies only limited data about the blob being uploaded (only it's sha256 checksum, or 'OID', and it's size) Artifactory does
not store or process any metadata for LFS blobs.

Git stores credentials in plain text by default
You should take extra measures to secure your username and password when using Git credential
helpers

Artifactory Online Dedicated Server
 If you are using a dedicated server on Artifactory SaaS and wish to authenticate via SSH, please contact .support@jfrog.com

http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://git-scm.com/docs/gitcredentials
https://www.jfrog.com/confluence/display/RTF/SSH+Integration#SSHIntegration-ConfiguringServerAuthentication
https://www.jfrog.com/confluence/display/RTF/SSH+Integration#SSHIntegration-ConfiguringUserAuthentication

1.

2.
3.

4.

5.
6.

You can set properties on the blobs for your own convenience but this requires extra logic to infer a sha256-named file stored in artifactory from
the actual pointer stored in your Git repository.

Storage

Artifactory stores LFS blobs in a manner similar to the Git LFS client, using the provided sha256 checksum.

Git LFS blobs will be stored under a path such as <lfs_repo>/objects/ / /ad1b8d6e1cafdf33e941a5de462ca7edfa8818a70c79fad 1b
eaf68e5ed53dec414c4

Where and are the 1st and 2nd, and the 3rd and 4th characters in the blob's name respectively.ad 1b

5-Minute Setup

Visit our Knowledge Base and learn how to .setup Git LFS to work with Artifactory in 5 minutes

Npm Registry

Overview

Artifactory provides full support for managing npm packages and ensures optimal and reliable access to npmj
s.org.Aggregating multiple npm registries under a virtual repository Artifactory provides access to all your
npm packages through a single URL for both upload and download.

As a fully-fledged npm registry on top of its capabilities for , Artifactory'sadvanced artifact management
support for provides:npm

The ability to provision npm packages from Artifactory to the npm command line tool from all
repository types
Calculation of Metadata for npm packages hosted in Artifactory's local repositories
Access to remote npm registries (such as) through https://registry.npmjs.org Remote

 which provide the usual proxy and caching functionalityRepositories
The ability to access multiple npm registries from a single URL by aggregating them under a Virtual

. This overcomes the limitation of the npm client which can only access a single registry atRepository
a time.
Compatibility with the to deploy and remove packages and more.npm command line tool
Support for that allow you to organize your npm packages and assignflexible npm repository layouts
access privileges according to projects or development teams.

Configuration

Local Npm Registry

To enable calculation of npm package metadata in local repositories so they are, in effect, npm registries, set
the to when you create the repository:Package Type npm

Git LFS behavior when download from the LFS endpoint fails
The Git LFS client will download the pointer file it created in your remote Git repository if downloading the blob from the LFS endpoint
failed (i.e. wrong credentials, network error etc.).

This will cause the actual file in your local repo to be substituted with the pointer created by the LFS client andwith the same name
lead to any number of problems this behavior can cause.

This is a limitation of the LFS client tracked by .issue 89

Npm version support
Artifactory supports NPM version 1.4.3 and above.

https://www.jfrog.com/knowledge-base/how-to-make-git-lfs-work-and-configure-it-with-artifactory-in-5-min/
https://www.npmjs.com/
https://registry.npmjs.org
https://npmjs.org/doc/
https://github.com/github/git-lfs/issues/89

Page Contents
Overview
Configuration

Local Npm
Registry

Repository Layout
Remote Npm
Registry
Virtual Npm
Registry

Adva
nced
Confi
gurati
on

Using the Npm
Command Line

Setting the
Default
Registry
Authenticating
the npm Client

Using
npm
login
Using
Basic
Authe
nticati
on

Resolving
npm
Packages

Npm Publish
(Deploying Packages)

Setting Your
Credentials
Deploying
Your
Packages

Specifying the Latest
Version
Working with
Artifactory without
Anonymous Access
Using OAuth Credenti
als
Npm Search
Cleaning Up the Local
Npm Cache
Npm Scope Packages

1.
2.

3.

Repository Layout

Artifactory allows you to define any layout for your npm regsitries. In order to upload packages according to your custom layout, you need to
package your npm files using npm pack.

This creates the .tgz file for your package which you can then upload to any path within your local npm repository.

Remote Npm Registry

A defined in Artifactory serves as a caching proxy for a registry managed at a remote URL such as Remote Repository https://registry.np
.mjs.org

Artifacts (such as tgz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the remote
repository cache, however, you can not manually deploy artifacts to a remote npm registry.

To define a remote repository to proxy a remote npm registry follow the steps below:
In the module, under click "New". Admin Repositories | Remote,
In the New Repository dialog, set the to , set the value, and specify the URL to the remote registryPackage Type npm Repository Key
in the field as displayed belowURL

Click "Save & FInish"

Virtual Npm Registry

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted npm packages and remote proxied npm registries from a single URL defined for the virtual
repository.
To define a virtual npm registry, create a , set the to be and select the underlying local and remote npmvirtual repository Package Type npm,
registries to include in the settings tab.Basic

Configuring
the npm Client
for a Scope
Registry

Using
Login
Crede
ntials

Automatically
Rewriting External
Dependencies

Rewriting
Workflow

Viewing Individual
Npm Package
Information
Watch the Screencast

https://registry.npmjs.org
https://registry.npmjs.org

Click "Save & Finish" to create the repository.

Advanced Configuration

The fields under are connected to for npm packages that needExternal Dependency Rewrite automatically rewriting external dependencies
them.

Enable
Dependency
Rewrite

When checked, automatically rewriting external dependencies is enabled.

Remote
Repository For
Cache

The remote repository aggregated by this virtual repository in which the external dependency will be cached.

Patterns
Whitelist

A white list of Ant-style path expressions that specify where external dependencies may be downloaded from. By default,
this is set to which means that dependencies may be downloaded from any external source.**

For example, if you wish to limit external dependencies to only be downloaded from github.com, you should add **gith
ub.com** (and remove the default ** expression).

Using the Npm Command Line

To use the npm command line you need to make sure npm is installed. Npm is included as an integral part of recent versions of . Node.js

Please refer to on GitHub or the .Installing Node.js via package manager npm README page

Once you have created your npm repository, you can select it in the Tree Browser and click to get code snippets you can use toSet Me Up
change your npm registry URL, deploy and resolve packages using the npm command line tool.

Setting the Default Registry

For your npm command line client to work with Artifactory, you first need to set the default npm registry with an Artifactory npm repository using
the following command (the example below uses a repository called):npm-repo

Replacing the default registry

npm config set registry
http://<ARTIFACTORY_SERVER_DOMAIN>:8081/artifactory/api/npm/npm-repo

For scoped packages, use the following command:

npm config set @<SCOPE>:registry
http://<ARTIFACTORY_SERVER_DOMAIN>:8081/artifactory/api/npm/npm-repo

Authenticating the npm Client

Once you have set the default registry, you need to authenticate the npm client to Artifactory in one of two ways: using the commandnpm login
or using basic authentication.

Using npm login

Npm repositories must be prefixed with api/npm in the path
When accessing an npm repository through Artifactory, the repository URL must be prefixed with in the path. This applies to allapi/npm
npm commands including and npm install npm publish.

For example, if you are using Artifactory standalone or as a local service, you would access your npm repositories using the following
URL:

<repository key>http://localhost:8081/artifactory/api/npm/

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/npm/

We recommend referencing a URL as a registry. This gives you the flexibility Virtual Repository to reconfigure and aggregate other
external sources and local repositories of npm packages you deployed.

Note that If you do this, you need to use the parameter to specify the local repository into which you are publishing your--registry
package when using the command.npm publish

http://nodejs.org/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://npmjs.org/doc/README.html
http://localhost:8081/artifactory/
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

Authentication using was introduced in version 5.4. npm login

Run the following command in your npm client. When prompted, provide your Artifactory login credentials:

npm login

Upon running this command, Artifactory creates a which the client uses for authentication against Artifactory fornon-expirable access token
subsequent and actions. npm install npm publish

If the token is removed from Artifactory, the client will have to login again to receive a new token.

Using Basic Authentication

To support basic authentication you need to edit your file and enter the following:.npmrc

Your Artifactory username and password (formatted) as encoded strings username:password Base64
Your email address (will not work if your email is not specified in)npm publish .npmrc
You need to set always-auth = true

If, in addition, you are also working with scoped packages, you also need to run the following command:

curl -uadmin:<CREDENTIAL>
http://<ARTIFACTORY_SERVER_DOMAIN>:8081/artifactory/api/npm/npm-repo/auth/
<SCOPE>

Where <CREDENTIAL> is your Artifactory password or API Key

Paste the response to this command in the ~/.npmrc file on your machine (in Windows, %USERPROFILE%/.npmrc).

Resolving npm Packages

Once the npm command line tool is configured, every command will fetch packages from the npm repository specified above. Fornpm install
example:

.npmrc file location
Windows: %userprofile%\.npmrc

Linux: ~/.npmrc

Getting .npmrc entries directly from Artifactory
You can use the following command to get these strings directly from Artifactory:

$ curl -uadmin:<CREDENTIAL>
http://<ARTIFACTORY_SERVER_DOMAIN>:8081/artifactory/api/npm/auth

Where <CREDENTIAL> is your Artifactory password or API Key

Here is an example of the response:

_auth = YWRtaW46e0RFU2VkZX1uOFRaaXh1Y0t3bHN4c2RCTVIwNjF3PT0=
email = myemail@email.com
always-auth = true

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-GeneratingExpirableTokens
http://usernamepassword/
http://www.base64encode.org/
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey

$ npm install request
npm http GET http://localhost:8081/artifactory/api/npm/npm-repo/request
npm http 200 http://localhost:8081/artifactory/api/npm/npm-repo/request
npm http GET
http://localhost:8081/artifactory/api/npm/npm-repo/request/-/request-2.33.
0.tgz
npm http 200
http://localhost:8081/artifactory/api/npm/npm-repo/request/-/request-2.33.
0.tgz

Npm Publish (Deploying Packages)

Setting Your Credentials

The npm command line tool requires that sensitive operations, such as , are authenticated as described under publish Authenticating the npm
 above.Client

Deploying Your Packages

There are two ways to deploy packages to a local repository:

Edit your file and add a section to a local repository:package.json publishConfig
"publishConfig":{"registry":" /npm-local"}http://localhost:8081/artifactory/api/npm

Provide a local repository to the command:npm publish
 npm publish --registry /npm-localhttp://localhost:8081/artifactory/api/npm

Specifying the Latest Version

By default, the "latest" version of a package in an NPM registry in Artifactory is the one with the highest version number. You canSemVer
override this behavior so that the most recently uploaded package is returned by Artifactory as the "latest" version. To do so, in Artifactory's
system.properties file, add or set:

artifactory.npm.tag.tagLatestByPublish = true

Working with Artifactory without Anonymous Access

By default, Artifactory allows anonymous access to npm repositories. This is defined in the module under . For detailsAdmin Security | General
please refer to .Allow Anonymous Access
If you want to be able to trace how users interact with your repositories you need to uncheck the setting. This meansAllow Anonymous Access
that users will be required to enter their username and password as described in above.Setting Your Credentials

Using OAuth Credentials

Artifactory uses GitHub Enterprise as its . If you have an account, you may use your GitHub Enterprise login details to bedefault OAuth provider
authenticated when using npm login.

Npm Search

Artifactory supports a variety of ways to search of artifacts. For details please refer to .Searching Artifacts

Artifactory also supports , however, packages may not be available immediately after being published fornpm search [search terms ...]

https://www.npmjs.org/doc/json.html#publishConfig
http://localhost:8081/artifactory/
http://localhost:8081/artifactory/
http://semver.org/
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
https://www.jfrog.com/confluence/display/RTF/OAuth+Integration#OAuthIntegration-ConfiguringOAuth
http://www.jfrog.com/confluence/display/RTF/Searching+Artifacts

the following reasons:

When publishing a package to a local repository, Artifactory calculates the search index asynchronously and will wait for a "quiet period" to lapse
before indexing the newly published package.

Since a virtual repository may contain local repositories, a newly published package may not be available immediately for the same reason.

You can specify the indexing "quiet period" (time since the package was published) by setting the following system properties (in $ARTIFACTORY
) . _HOME/etc/artifactory.system.properties

artifactory.npm.index.quietPeriodSecs=60
artifactory.npm.index.cycleSecs=60

In the case of remote repositories, a new package will only be found once Artifactory checks for it according to the Retrieval Cache Period setting
.

Cleaning Up the Local Npm Cache

The npm client saves caches of packages that were downloaded, as well as the JSON metadata responses (named)..cache.json

The JSON metadata cache files contain URLs which the npm client uses to communicate with the server, as well as other ETag elements sent by
previous requests.

We recommend removing the npm caches (both packages and metadata responses) before using Artifactory for the first time. This is to ensure
that your caches only contain elements that are due to requests from Artifactory and not directly from .https://registry.npmjs.org

The default cache directory on Windows is while on Linux it is %APPDATA%\npm-cache ~/.npm.

Npm Scope Packages

Artifactory fully supports . The support is transparent to the user and does not require any different usage of the npm client.npm scope packages

Configuring the npm Client for a Scope Registry

Using Login Credentials

Scopes can be associated with a separate registry. This allows you to seamlessly use a mix of packages from the public npm registry and one or
more private registries.

Artifactory annotates each deployed or cached npm package with two properties: and npm.name npm.version

You can use to search for npm packages according to their name or version. Property Search

Npm 'slash' character encoding
By default, the npm client encodes slash characters ('/') to their ASCII representation ("%2f") before communicating with the npm
registry. If you are running Tomcat as your HTTP container (the default for Artifactory), this generates an "HTTP 400" error since
Tomcat does not allow encoded slashes by default. In order npmwork with scoped packages, you can override this default behavior by
defining the following property in the catalina.properties file of your Tomcat:

org.apache.tomcat.util.buf.UDecoder.ALLOW_ENCODED_SLASH=true

Note that since Artifactory version 4.4.3, the bundled Tomcat is configured by default to enable encoded slashes. If you are using a
previous version you will need to adjust the Tomcat property above.

URL decoding and reverse proxy
If Artifactory is running behind a reverse proxy, make sure to disable URL decoding on the proxy itself in order to work with npm scope
packages.

For Apache, add the " " directive inside the <VirtualHost *:xxx> block.AllowEncodedSlashes NoDecode

http://registry.npmjs.org/
https://www.npmjs.org/doc/misc/npm-scope.html
http://www.jfrog.com/confluence/display/RTF/Property+Search

For example, you can associate the scope with the registry by@jfrog http://localhost:8081/artifactory/api/npm/npm-local/
manually altering your file and adding the following configuration:~/.npmrc

@jfrog:registry=http://localhost:8081/artifactory/api/npm/npm-local/
//localhost:8081/artifactory/api/npm/npm-local/:_password=cGFzc3dvcmQ=
//localhost:8081/artifactory/api/npm/npm-local/:username=admin
//localhost:8081/artifactory/api/npm/npm-local/:email=myemail@email.com
//localhost:8081/artifactory/api/npm/npm-local/:always-auth=true

Automatically Rewriting External Dependencies

Packages requested by the Npm client frequently use external dependencies as defined in the packages' file. Thesepackage.json
dependencies may, in turn, need additional dependencies. Therefore, when downloading an Npm package, you may not have full visibility into the
full set of dependencies that your original package needs (whether directly or transitively). As a result, you are at risk of downloading malicious
dependencies from unknown external resources. To manage this risk, and maintain the best practice of consuming external packages through
Artifactory, you may specify a "safe" whitelist from which dependencies may be downloaded, cached in Artifactory and configure to rewrite the
dependencies so that the Npm client accesses dependencies through a virtual repository as follows:

Check in the Npm virtual repository .Enable Dependency Rewrite advanced configuration
Specify a whitelist patterns of external resources from which dependencies may be downloaded.
Specify the remote repository in which those dependencies should be cached.
It is preferable to configure a dedicated remote repository for that purpose so it is easier to maintain.

In the example below the external dependencies will be cached in "npm" remote repository and only package from https://github.com/jfro
 are allowed to be cached. gdev

Getting .npmrc entries directly from Artifactory
From Artifactory 3.5.3, you can use the following command to get these strings directly from Artifactory:

$ curl -uadmin:password "http://localhost:8081/artifactory/api/npm/npm-local/auth/jfrog"
@jfrog:registry=http://localhost:8081/artifactory/api/npm/npm-local/
//localhost:8081/artifactory/api/npm/npm-local/:_password=QVA1N05OaHZTMnM5Qk02RkR5RjNBVmF4TVFl
//localhost:8081/artifactory/api/npm/npm-local/:username=admin
//localhost:8081/artifactory/api/npm/npm-local/:email=admin@jfrog.com
//localhost:8081/artifactory/api/npm/npm-local/:always-auth=true

User email is required
When using scope authentication, npm expects a valid email address. Please make sure you have included your email address in your
Artifactory user profile.

The password is just a base64 encoding of your Artifactory password, the same way used by the .old authentication configuration

Recommend npm command line tool version 2.1.9 and later.
While npm scope packages have been available since version 2.0 of the npm command line tool, we highly recommend using npm
scope packages with Artifactory only from version 2.1.9 of the npm command line tool.

http://localhost:8081/artifactory/api/npm/npm-local/

1.

2.

a.

b.

c.

3.

Artifactory supports all possible shorthand resolvers including the following:

git+ssh://user@hostname:project.git#commit-ish
git+ssh://user@hostname/project.git#commit-ish
git+https://git@github.com/<user>/<filename>.git

Rewriting Workflow

When downloading an Npm package, Artifactory analyzes the list of dependencies needed by the
package.
If any of the dependencies are hosted on external resources (e.g. on github.com), and those

resources are specified in the white list,
Artifactory will download the dependency from the external resource.
Artifactory will cache the dependency in the remote repository configured to cache the external
dependency.
Artifactory will then modify the dependency's entry in the package's package.json file indicating its
new location in the Artifactory remote repository cache before returning it to the Npm client.

Consequently, every time the Npm client needs to access the dependency, it will be provisioned from its
new location in the Artifactory remote repository cache.

Viewing Individual Npm Package Information

Artifactory lets you view selected metadata of an npm package directly from the UI.

In the drill down to select the tgz file you want to inspect. The metadata is displayed in the tab.Tree Browser, Npm Info

1.
2.
3.
4.
5.

6.

Watch the Screencast

NuGet Repositories

Overview

From version 2.5, Artifactory provides complete support for repositories on top of Artifactory's NuGet existing
 for advanced artifact management.support

Artifactory support for NuGet provides:

The ability to provision NuGet packages from Artifactory to NuGet clients from all repository types
Metadata calculation for NuGet packages hosted in Artifactory's local repositories
The ability to define proxies and caches to access Remote NuGet repositories
Multiple NuGet repository aggregation through virtual repositories
APIs to deploy or remove packages that are compatible with Visual StudioNuGet Package Manager
extension and the NuGet Command Line Tool
Debugging NuGet packages directly using Artifactory as a Microsoft Symbol Server

Metadata updates
NuGet metadata is automatically calculated and updated when adding, removing, copying or
moving NuGet packages. The calculation is only invoked after a package-related action is
completed.
It is asynchronous and its performance depends on the overall system load, therefore it may
sometimes take up to 30 seconds to complete.
You can also invoke metadata calculation on the entire repository by selecting "Reindex
Packages".

Page Contents
Overview
Configuration

Local
Repositories

Local

http://nuget.org/
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c
https://www.nuget.org/packages/Nuget.CommandLine

Configuration

Local Repositories

To create a local repository for which Artifactory will calculate NuGet package metadata, set NuGet to be the Package Type.

Local Repository Layout

Repo
sitory
Layou
t
Publis
hing
to a
Local
Repo
sitory

Remote
Repositories
Virtual
Repositories

Accessing NuGet
Repositories from
Visual Studio
Using the NuGet
Command Line
NuGet API Key
Authentication
Anonymous Access to
NuGet Repositories

Working
Without
Anonymous
Access
Allowing
Anonymous
Access

Viewing Individual
NuGet Package
Information
Watch the Screencast

Read More
Microsoft Symbol
Server

To support a more manageable repository layout, you may store NuGet packages inside folders that correspond to the package structure.

Artifactory will find your packages by performing a property search so the folder hierarchy does not impact performance.

To use a hierarchical layout for your repository you should define a . This way, different maintenance features like Custom Layout Version Cleanup
 will work correctly with NuGet packages.

Below is an example of a named Custom Layout nuget-default.

Placing packages to match your repository layout
Defining a for your repository does not force you to place your packages in the corresponding structure, however it isCustom Layout
recommended to do so since it allows Artifactory to perform different maintenance tasks such as automatically.Version Cleanup

It is up to the developer to correctly deploy packages into the corresponding folder. From NuGet 2.5 you can push packages into a
folder source as follows:

nuget push mypackage.1.0.0.nupkg -Source
http://10.0.0.14:8081/artifactory/api/nuget/nuget-local/path/to/fold
er

https://www.jfrog.com/confluence/display/RTD/Cleaning-up+Complete+Versions
https://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts#ManipulatingArtifacts-DeletingaVersion

In this example, the three fields that are mandatory for module identification are:

Organization = "orgPath"
Module = "module"
Base Revision ("baseRev") is not a part of the layout hierarchy in this example, but it is included here as one of the required fields.

You can configure this Custom Layout as displayed in the image above, or simply copy the below code snippet into the relevant section in your Gl
:obal Configuration Descriptor

https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-GlobalConfigurationDescriptor
https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-GlobalConfigurationDescriptor

<repoLayout>
 <name>nuget-default</name>

<artifactPathPattern>[orgPath]/[module]/[module].[baseRev](-[fileItegRev])
.[ext]</artifactPathPattern>

<distinctiveDescriptorPathPattern>false</distinctiveDescriptorPathPattern>
 <folderIntegrationRevisionRegExp>.*</folderIntegrationRevisionRegExp>
 <fileIntegrationRevisionRegExp>.*</fileIntegrationRevisionRegExp>
</repoLayout>

Since the package layout is in a corresponding folder hierarchy, the Artifactory Version Cleanup tool correctly detects previously installed
versions.

Publishing to a Local Repository

When a NuGet repository is selected in the module Tree Browser, click to display the code snippets you can use toArtifacts Set Me Up
configure Visual Studio or your NuGet client to use the selected repository to publish or resolve artifacts.

Remote Repositories

When working with remote NuGet repositories, your Artifactory configuration depends on how the remote repositories are set up.

Different NuGet server implementations may provide package resources on different paths, therefore the feed and download resource locations in
Artifactory are customizable when proxying a remote NuGet repository.

Here are some examples:

The exposes its feed resource at and its download resource at NuGet gallery https://www.nuget.org/api/v2/Packages https://www.nuget.o
rg/api/v2/package
Therefore, to define this as a new repository you should set the repository to , its toURL https://www.nuget.org Feed Context Path
 and the to .api/v2 Download Context Path api/v2/package

The module exposes its feed resource at and its download resource at NuGet.Server http://host:port/nuget/Packages http://host:port/a
.pi/v2/package

To define this as a new repository you should set the repository to , its to and its URL http://host:port Feed Context Path nuget Downlo

http://www.nuget.org/
https://www.nuget.org/api/v2/Packages
https://www.nuget.org/api/v2/package
https://www.nuget.org/api/v2/package
https://www.nuget.org/
http://docs.nuget.org/docs/creating-packages/hosting-your-own-nuget-feeds
http://myhostmyport/
http://myhostmyport/
http://myhostmyport/
http://myhostmyport/

 Path to .ad Context api/v2/package

Another Artifactory repository exposes its feed resource at and its downloadhttp://host:port/artifactory/api/nuget/repoKey/Packages
resource at . http://host:port/artifactory/api/nuget/repoKey/Download
To define this as a new repository you should set the repository URL to , its http://host:port/artifactory/api/nuget/repoKey Feed Context

 should be left empty and its to , like this:Path Download Context Path Download

Virtual Repositories

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.

This allows you to access both locally hosted NuGet packages and remote proxied NuGet libraries from a single URL defined for the virtual
repository.

To create a virtual Bower repository set NuGet to be its Package Type, and select the underlying local and remote NuGet repositories to include
under the sectionRepositories .

1.
2.

Using a proxy server
If you are accessing NuGet Gallery through a proxy server you need to define the following two URLs in the proxy's white list:

*.nuget.org
az320820.vo.msecnd.net (our current CDN domain)

http://hostport/
http://hostport/
http://myhostmyport/

Accessing NuGet Repositories from Visual Studio

Artifactory exposes its NuGet resources via the REST API at the following URL: http://localhost:8081/
artifactory/ /api/nuget <repository key>.

This URL handles all NuGet related requests (search, download, upload, delete) and supports both V1 and V2 requests.

To configure the NuGet Visual Studio Extension to use Artifactory, check the corresponding repositories in the "Options" window: (You can
access Options from the Tools menu).

NuGet repositories must be prefixed with api/nuget in the path
When configuring Visual Studio to access a NuGet repository through Artfactory, the repository URL must be prefixed with inapi/nuget
the path.

For example, if you are using Artifactory standalone or as a local service, you would configure Visual Studio using the following URL:

http://localhost:8081/artifactory/ <repository key>api/nuget/

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>api/nuget/

1.
2.
3.

Using the NuGet Command Line

To use the Nuget Command Line tool:

Download NuGet.exe
Place it in a well known location in your file system such as c:\utils
Make sure that NuGet.exe is in your path

For complete information on how to use the NuGet Command Line tool please refer to the .NuGet Docs Command Line Reference

First configure a new source URL pointing to Artifactory:

nuget sources Add -Name Artifactory -Source
http://localhost:8081/artifactory/api/nuget/<repository key>

NuGet API Key Authentication

NuGet tools require that sensitive operations such as push and delete are authenticated with the server using an . The API key youapikey

NuGet repositories must be prefixed with api/nuget in the path
When using the NuGet command line to access a repository through Artfactory, the repository URL must be prefixed with inapi/nuget
the path. This applies to all NuGet commands including and .nuget install nuget push

For example, if you are using Artifactory standalone or as a local service, you would access your NuGet repositories using the following
URL:

http://localhost:8081/artifactory/ <repository key>api/nuget/

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>api/nuget/

http://docs.nuget.org/docs/reference/command-line-reference
http://nuget.codeplex.com/releases/view/58939
http://docs.nuget.org/docs/reference/command-line-reference

should use is in the form of , where the password can be either clear-text or .username:password encrypted
Set your API key using the NuGet Command Line Interface:

nuget setapikey admin:password -Source Artifactory

Now you can perform operations against the newly added server. For example:

nuget list -Source Artifactory

nuget install log4net -Source Artifactory

Anonymous Access to NuGet Repositories

By default, Artifactory allows anonymous access to NuGet repositories. This is defined under . For detailsSecurity | General Configuration
please refer to .Allow Anonymous Access

Working Without Anonymous Access

In order to be able to trace how users interact with your repositories we recommend that you uncheck the settingAllow Anonymous Access
described above. This means that users will be required to enter their user name and password when using their NuGet clients.

You can configure your NuGet client to require a username and password using the following command:

nuget sources update -Name Artifactory -UserName admin -Password password

You can verify that your setting has taken effect by checking that the following segment appears in your %APPD

ATA%\NuGet\NuGet.Config file:

<packageSourceCredentials>
 <Artifactory>
 <add key="Username" value="admin" />
 <add key="Password" value="...encrypted password..." />
 </Artifactory>
</packageSourceCredentials>

Allowing Anonymous Access

Artifactory supports NuGet repositories with Allow Anonymous Access enabled.

When is enabled, Artifactory will not query the NuGet client for authentication parameters by default, so you need toAllow Anonymous Access
indicate to Artifactory to request authentication parameters in a different way.

You can override the default behavior by setting the checkbox in the New or Edit Repository dialog.Force Authentication

NuGet.Config file can also be placed in your project directory, for further information please refer to NuGet Configuration File

http://usernamepassword/
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://docs.nuget.org/docs/reference/nuget-config-file

When set, Artifactory will first request authentication parameters from the NuGet client before trying to access this repository.

Viewing Individual NuGet Package Information

You can view all the metadata annotating a NuGet package by choosing the NuPkg file in Artifactory's tree browser and selecting the NuPkg
 tab:Info

Watch the Screencast

Microsoft Symbol Server

Overview

Microsoft Symbol Server is a Windows technology used to obtain debugging information (symbols) needed in
order to debug an application with various Microsoft tools. Symbol files (which are .pdb files) provide a
footprint of the functions that are contained in executable files and dynamic-link libraries (DLLs), and can
present a roadmap of the function calls that lead to the point of failure.

A Symbol Server stores the .PDB files and binaries for all your public builds. These are used to enable you to
debug any crash or problem that is reported for one of your stored builds. Both Visual Studio and WinDBG
know how to access Symbol Servers, and if the binary you are debugging is from a public build, the debugger
will get the matching PDB file automatically.

The TFS 2010 build server includes built-in build tasks to index source files and copy symbol files to your
Symbol Server automatically as part of your build.

http://en.wikipedia.org/wiki/Debugging

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.

Using Artifactory as Your Symbol Server

Configuring your system to use Artifactory as your Symbol Server requires the following main steps:

Configure your debugger
Configure your build
Configure repositories in Artifactory
Install the Artifactory Symbol Server Plugin
Configure IIS
Configure Visual Studio

Configuring Your Debugger

To enable you to step into and debug your source files, your debugger needs the corresponding files and searches for them in the following.pdb
order until they are found:

The directory from which your binary was loaded
The hard-coded build directory specified in the entry of your portable executable (PE) fileDebug Directories
Your Symbol Server cache directory (assuming you have a Symbol Server set up)
The Symbol Server itself

So to fully support this search order, you need to specify the Symbol Server URL in your debugger.

Under enter Tools | Options | Debugging | Symbols http://msdl.microsoft.com/download/symbols

Configuring Your Build

You need to configure your build machine to publish your files into a known directory which is later used in your IIS configuration..pdb

Assuming you are using TFS, and want to publish your files into a directory called your build definition would look.pdf Builds/symbols,
something like the below:

Configure Repositories in Artifactory

Page Contents
Overview
Using Artifactory as Your Symbol Server

Configuring Your Debugger
Configuring Your Build
Configure Repositories in Artifactory
Install the Artifactory Symbol Server Plugin
Configure IIS
Configuring Visual Studio

http://msdl.microsoft.com/download/symbols

Create the following repositories:

Repository name Description/Instructions

microsoft-symbols-IIS A repository.Remote

Set the repository URL to point to the virtual directory configured in your IIS below. (For the example on this page we
will use http://localhost/symbols)

microsoft-symbols A Remote repository.

Set the repository URL to point to the Microsoft Symbol Server URL: http://msdl.microsoft.com/download/
.symbols

symbols A repository.virtual

Configure this repository to aggregates the other two repositories, resolving from first. Oncemicrosoft-symbols-IIS
configured, this repository will aggregate all the NuGet packages with symbol (.pdb) files.

Install the Artifactory Symbol Server Plugin

The Artifactory Symbol Server Plugin listens for requests for symbol files and then redirects them to the Microsoft Symbol Server.

Download the Artifactory Symbol Server Plugin from GitHub and install it in your directory. $ARTIFACTORY-HOME\etc\plugin

Configure IIS

To configure your Internet Information Services (IIS) machine, you need to

Add a virtual directory on which your files reside.pdb
Define a MIME type to be associated with files..pdb
Enable directory browsing.

To add a virtual directory on your IIS, execute the following steps:

Under , right click Control Panel | System and Security | Administrative Tools | Internet Information Service(IIS) Manager Default
 and select Website Add Virtual Directory.

Set to Physical path C:\build\symbols

Make this a NuGet repository
Be sure to specify as the for this repositoryNuGet Package Type

Check your system properties
To ensure that the plugin is loaded, check that your isartifactory.plugin.scripts.refreshIntervalSecs system property
not 0.

If you do modify this system property, you need to restart Artifactory for this modification to take effect.

http://localhost
http://msdl.microsoft.com/download/symbols
http://msdl.microsoft.com/download/symbols
https://github.com/JFrogDev/artifactory-user-plugins/blob/master/download/beforeSymbolServerDownload/beforeSymbolServerDownload.groovy

To define a MIME type so that your IIS associates the file extension with Symbol files, execute the following steps:.pdb

Right click the MIME Type symbol and select Open Feature.

Click Add on the right side of the window fill in the fields as follows:…

Field Value

File name extension .pdb

MIME type application/octet-stream

Configuring Visual Studio

Before you configure Visual Studio, you need to remove the symbol cache located under C:\Users\Administrator\AppData\Local\Temp
\1\SymbolCache

1.

2.
3.

4.
5.

Once you have removed the symbol cache, you need to change the location of the symbol () file. Under .pdb Tools | Options | Debugging |
 add a new symbol server pointing to the virtual directory you above.Symbols symbols defined in Artifactory

This should be /symbolshttp://tfs::8081/artifactory

Opkg Repositories

Overview

From version 4.4, Artifactory supports Opkg repositories. As a fully-fledged Opkg repository,
Artifactory generates index files that are fully compliant with the Opkg client.

Artifactory support for Opkg provides:

The ability to provision ipk packages from Artifactory to an Opkg client from local and remote
repositories.
Calculation of Metadata for ipk packages hosted in Local Repositories.
Access to remote Opkg resources (such as) downloads.openwrt.com through Remote
Repositories which provide the usual proxy and caching functionality.
Providing GPG signatures that can be used by Opkg clients to verify packages.
Complete management of GPG signatures using the Artifactory UI and the REST API.

Configuration

You can only deploy Opkg packages to a local repository that has been created with the Opkg .Package Type

You can download packages from a local or a remote Opkg repository.

Local Repositories

Note that there is no way to set the path directly to Artifactory since the symbol server cannot take a URL as a path.

Page Contents
Overview
Configuration

Local Repositories
Deploying a package using the UI

Remote Repositories
Configuring the Opkg Client to Work with Artifactory
Signing Opkg Package Indexes
Authenticated Access to Servers
REST API Support

To create a new local repository that supports Opkg, under the settings, set the to be Basic Package Type Op
.kg

Artifactory supports the common Opkg index scheme which indexes each feed location according to all ipk packages in it.

Deploying a package using the UI

To deploy a Opkg package to Artifactory, in the Artifactory Repository Browser, click Deploy.

Select your Opkg repository as the and upload the file you want to deploy.Target Repository,

Remote Repositories

You can download ipk packages from Local Opkg Repositories as described above, or from Remote Repositories specified as supporting Opkg
packages.

To specify that a Remote Repository supports Opkg packages, you need to set its to when it is created.Package Type Opkg

After you deploy the artifact, you need to wait about one minute for Artifactory to recalculate the repository index and display your
upload in the Repository Browser.

You can either point the remote to a specific feed (location of a Packages file), i.e. http://downloads.openwrt.org/chaos_calmer/15.05/adm5120/rb
1xx/packages/luci

Or you can specify some base level and point your client to the relevant feeds in it i.e. url is an http://downloads.openwrt.org/chaos_calmer/15.05/
d your opkg.conf file has the entry src adm5120/rb1xx/packages/luci

Note that the index files for remote Opkg repositories are stored and renewed according to the setting.Retrieval Cache Period

Configuring the Opkg Client to Work with Artifactory

As there is no "release" of the Opkg client, to support gpg signature verification and basic HTTP authentication that are provided by Artifactory it
has to be compiled with the following options: --enable-gpg --enable-curl

For example, to compile Opkg on Ubuntu to support these you can use:

Compiling Opkg

Download opkg release (latest when this was written was 0.3.1):
wget http://downloads.yoctoproject.org/releases/opkg/opkg-0.3.1.tar.gz
tar -zxvf opkg-0.3.1.tar.gz
Install compilation dependencies:
apt-get update && apt-get install -y gcc libtool autoconf pkg-config
libarchive13 libarchive-dev libcurl3 libcurl4-gnutls-dev libssl-dev
libgpgme11-dev
Compile Opkg(compile with curl to support basic auth, and with gpg
support for signature verification):
Note: if there's no configure script in the release you downloaded you
need to call ./autogen.sh first
./configure --with-static-libopkg --disable-shared --enable-gpg
--enable-curl --prefix=/usr && make && sudo make install

Each Opkg feed corresponds to a path in Artifactory where you have chosen to upload ipk packages to. This is where the Packages index is
written.

For example, you can add each such feed to your (default location is)file with entries like: opkg.conf /etc/opkg/opkg.conf

http://downloads.openwrt.org/chaos_calmer/15.05/
http://downloads.openwrt.org/chaos_calmer/15.05/
http://downloads.openwrt.org/chaos_calmer/15.05/

Opkg feed locations

src artifactory-armv7a
http://prod.mycompany:8080/artifactory/opkg-local/path/to/my/ipks/armv7a
src artifactory-i386
http://prod.mycompany:8080/artifactory/opkg-local/path/to/my/ipks/i386

Signing Opkg Package Indexes

Artifactory uses your GPG public and private keys to sign and verify Opkg package indexes.

To learn how to generate a GPG key pair and upload it to Artifactory, please refer to .GPG Signing

Once you have GPG key pair, to have Opkg verify signatures created with the private key you uploaded to
Artifactory, you need to import the corresponding public key into Opkg's keychain (requires).gnupg

Importing gpg keys to Opkg's keychain

Commands taken from opkg-utils package:
mkdir /etc/opkg
gpg --no-options --no-default-keyring --keyring /etc/opkg/trusted.gpg
--secret-keyring /etc/opkg/secring.gpg --trustdb-name /etc/opkg/trustdb.gpg
--batch --import key.pub

After the key is imported you need to add the option check_signature in your opkg.conf file by adding the following entry:

Opkg signature verification

option check_signature true

Authenticated Access to Servers

If you need to access a secured Artifactory server that requires a username and password, you can specify these in your file byopkg.conf
adding the ' option:http_auth'

Accessing Artifactory with credentials

option http_auth user:password

REST API Support

The Artifactory REST API provides extensive support for signing keys and recalculating the repository index as follows:

Encrypting your password
You can use your encrypted password as described in .Using Your Secure Password

Set the public key
Get the public key
Set the private key
Set the pass phrase
Recalculate the index

P2 Repositories

Overview

From version 2.4, Artifactory provides advanced support for proxying and caching of P2
repositories and aggregating P2 metadata using an Artifactory virtual repository which serves

 as a single point of distribution (single URL) for Eclipse, Tycho and any other P2 clients.

This virtual repository aggregates P2 metadata and P2 artifacts from underlying repositories in
Artifactory (both local and remote) providing you with full visibility of the P2 artifact sources and
allowing powerful management of caching and security for P2 content.

For more information on defining virtual repositories please refer to .Virtual Repositories

Configuration

To use P2 repositories, follow the steps below:

Define a virtual repository in Artifactory
Select local repositories to add to your virtual repository
Select remote repositories to add to your virtual repository
Create the selected local and remote repositories in your virtual repository
Configure Eclipse to work with your virtual repository

Defining a Virtual Repository

Create a new virtual repository and set as the P2 Package Type

For P2 support we recommend using Eclipse Helios (version 3.6) and above.

Older versions of Eclipse may not work correctly with Artifactory P2 repositories.

Page Contents
Overview
Configuration

Defining a Virtual Repository
Selecting Local Repositories
Selecting Remote Repositories
Creating the Repositories

Eclipse
Integration with Tycho Plugins
Multiple Remote Repositories with the Same Base URL
Configuring Google Plugins Repository

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateOpkgRepositoryMetadata
http://eclipse.org/tycho

Selecting Local Repositories

Adding a local repository to your virtual P2 repository does not require any special configuration:

Simply select the desired local repository from the field. Usually, this will be either a Maven or a Generic repository.Local Repository
In the field, specify the path to the P2 metadata files (etc.).Path Prefix content.jar, artifacts.jar, compositeContent.xml
If left empty, the default is to assume that the P2 metadata files are directly in the repository root directory.
Click the "Add" button.

If you have a Tycho repository deployed to a local repository as a single archive, specify the archive's root path. For example: eclipse-reposi
tory.zip!/

If developers in your organization use different versions of Eclipse (e.g. Helios and Juno), we recommend that you define a different P2
virtual repository for each Eclipse version in use.

1.
2.

Selecting Remote Repositories

To add a remote P2 repository to Artifactory, enter the URL to the corresponding P2 metadata files (content.jar, artifacts.jar,
, etc.) and click the "Add" buttoncompositeContent.xml

Two common examples are:

The main Juno repository: http://download.eclipse.org/releases/juno
The Google plugins repository for Indigo (GWT, GAE, etc.): http://dl.google.com/eclipse/plugin/3.7

Artifactory analyzes the added URL and identifies which remote repositories should to be created in Artifactory based on the remote P2
metadata (since remote P2 repositories may aggregate information from different hosts).

Creating the Repositories

Once you have selected the local and remote repositories to include in your virtual repository, Artifactory will indicate what action will be taken
once you select the "Save & Finish" button.

The possible actions are as follows:

Create*

Creates a new, P2 enabled, remote repository with the given key (you may still edit the remote repository key).

Modify*

Enables P2 support in an existing remote repository.

Include

Adds the repository to the list of repositories aggregated by this virtual repository.

Included

No action will be taken. This repository is already included in the virtual repository.

*For remote repositories only

When P2 metadata files reside inside an archived file, simply add '!' to the end of the URL.

For example: !/http://eclipse.org/equinox-sdk.zip

http://download.eclipse.org/releases/juno
http://dl.google.com/eclipse/plugin/3.7
http://eclipse.org/equinox-sdk.zip

Eclipse

You are now ready to configure eclipse to work with the virtual repository you have created above.

In the Eclipse menu, select and then click .Help | Install new Software Add

In the popup, enter the name of you virtual repository and click "OK":Add Repository

Eclipse will then query Artifactory for available packages and update the screen to display them as below:

Integration with Tycho Plugins

Artifactory fully supports hosting of Tycho plugins as well as resolving Tycho build dependencies.

To resolve all build dependencies through Artifactory, simply change the repository URL tag of your build pom.xml file and point it to a dedicated
virtual repository inside Artifactory

For example:

<repository>
 <id>eclipse-indigo</id>
 <layout>p2</layout>
 <url>http://localhost:8081/artifactory/p2-virtual</url>
</repository>

Multiple Remote Repositories with the Same Base URL

When using P2-enabled repositories with multiple remote repositories that have the same base URL (e.g) ,http://download.eclipse.org
you need to ensure that only 1 remote repository is created within your virtual repository (for each base URL). When creating your virtual
repository, Artifactory takes care of this for you, but if you are creating the remote repositories manually, you must ensure to create only a single
remote repository, and point the sub-paths accordingly in the P2 virtual repository definition.

In the example below, and juno were both added to the samehttp://download.eclipse.org/releases/helios http://download.eclipse.org/releases/
virtual repository...repository.

...but in fact, the virtual repository only really includes one remote repository

Configuring Google Plugins Repository

The Google Plugins repository () is aggregated across 3 different URLs. Therefore you needhttp://dl.google.com/eclipse/plugin/3.7
to configure Artifactory to create all of them in order to resolve P2 artifacts correctly:

The P2 virtual repository should contain URLs to all local repositories with an optional sub-path in them where Tycho build artifacts
reside.

http://download.eclipse.org
http://download.eclipse.org/releases/helios
http://download.eclipse.org/releases/helios
http://dl.google.com/eclipse/plugin/3.7

1.

2.
3.

4.

PHP Composer Repositories

Overview

Artifactory supports repositories on top its for advanced artifactPHP Composer existing support
management.

Artifactory support for Composer provides:

The ability to provision Composer packages from Artifactory to the Composer command
line tool from all repository types.
Calculation of metadata for Composer packages hosted in Artifactory local repositories.
Access to remote Composer metadata repositories (Packagist and Artifactory Composer
repositories) and package repositories (such as Github, Bitbucket etc..) through remote

 which provide proxy and caching functionality.repositories
Assign access privileges according to projects or development teams.

Configuration

Local Repositories

To enable calculation of Composer package metadata, set to be the PHP Composer Package
 when you create your local Composer repository.Type

Deploying Composer Packages

The Composer client does not provide a way to deploy packages and relies on a source control repository to host the Composer package
code. To deploy a Composer package into Artifactory, you need to use Artifactory's or the .REST API Web UI

A Composer package is a simple archive, usually zip or a tar.gz file, which contains your project code as well as a filecomposer.json
describing the package.

Page Contents
Overview
Configuration

Local
Repositories

Deployi
ng
Compo
ser
Packag
es

Remote
Repositories

Using the Composer
command line

Replacing the
Default
Repository
Authentication

Cleaning Up the Local
Composer Cache
Viewing Individual
Composer Package
Information

Version
For Artifactory to index packages you upload, each package must have its version specified. There are three ways to specify the

https://getcomposer.org/

1.
2.
3.

4.

Remote Repositories

The does not contain any actual binary packages; it contains the package indexes that point to the correspondingpublic Composer repository
source control repository where the package code is hosted.
Since the majority of public Composer packages are hosted on GitHub, we recommend creating a Composer to serve as aremote repository
caching proxy for , specifying as the location of the public package index files. A Composer remote repository ingithub.com packagist.org
Artifactory can proxy and other Artifactory Composer repositories for index files, and version control systems such as GitHub orpackagist.org
BitBucket, or local Composer repositories in other Artifactory instances for binaries.

Composer artifacts (such as zip, tar.gz files) requested from a remote repository are cached . You can remove the downloadedon demand
artifacts from the remote repository cache, however you can not manually deploy artifacts to a remote repository.

To define a remote repository to proxy as well as the public Composer Packagist repository follow the steps below:github.com
Create a new remote repository and set to be its PHP Composer Package Type
Set the , and enter the repository URL (e.g. in the field as displayed belowRepository Key)https://github.com/ URL
In the section, select as the , and leave the leave the default (e.g. Composer Settings GitHub Git Provider Registry URL https://p

 ackagist.org/).
Finally, click "Save & Finish"

Using the Composer command line

Once the Composer client is installed, you can access Composer repositories in Artifactory through its command line interface.

package version:

Include the attribute in the package fileversion composer.json
Set a property when deploying a package via REST (or on an existing package)composer.version
Use the field when deploying via the UIversion

URL vs. Registry URL
To avoid confusion, note that:

URL is the URL of your Git provider where the actual package binaries are hosted.

Registry URL is the URL where the package index files holding the metadata are hosted.

To proxy a public Composer registry, set the Registry URL field to the location of the index files as displayed above. To proxy a
Composer repository in another Artifactory instance, set both the field and the field to the remote ArtifactoryURL Registry URL
repository's API URL. For example: https://jfrog-art.com/artifactory/api/composer/composer-local

https://packagist.org/
https://github.com/
http://packagist.org/
http://packagist.org/
http://github.com/
https://github.com/
https://packagist.org/
https://packagist.org/
https://jfrog-art.com/artifactory/api/composer/composer-local

Once you have created a Composer repository, you can select it in the Tree Browser and click to get code snippets you can useSet Me Up
to set your Composer repository URL in your file.config.json

Replacing the Default Repository

You can change the default repository specified for the Composer command line in the file as follows:config.json

Composer repositories must be prefixed with api/composer in the path
When accessing a Composer repository through Artifactory, the repository URL must be prefixed with in the path.api/composer
This applies to all Composer commands including .composer install

For example, if you are using Artifactory standalone or as a local service, you would access your Composer repositories using the
following URL:

<repository key>http://localhost:8081/artifactory/api/composer/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>. name>/ <repository key>jfrog.io/<server api/composer/

Composer config.json file
Windows: %userprofile%\.composer\config.json
Linux: ~/.composer/config.json

http://localhost:8081/artifactory/

{
 "repositories": [
 {
 "type": "composer",
 "url":
"https://localhost:8081/artifactory/api/composer/composer-local"},
 {
 "packagist": false
 }
]
}

Working with a secure URL (HTTPS) is considered a best practice, but you may also work with an insecure URL (HTTP) by setting the secure
 configuration to :-http false

{
 "config": {
 "secure-http" : false
 },
 "repositories": [
 ...
]
}

Authentication

In order to authenticate the Composer client against your Artifactory server, you can configure Composer to use basic authentication in your a
 file as follows:uth.json

{
 "http-basic": {
 "localhost": {
 "username": "mikep",
 "password": "APBJ7XgkrigBzb2XKTuwgnRq5vc"
 }
 }
}

Once the Composer command line tool is configured, every command will fetch packages from the Composercomposer install
repository specified above.

Cleaning Up the Local Composer Cache

The Composer client saves caches of packages that were downloaded, as well as metadata responses.
We recommend removing the Composer caches (both packages and metadata responses) before using Artifactory for the first time, this is to
ensure that your caches only contain elements that are due to requests from Artifactory and not directly from Packagist. To clear your
Composer cache, run the following command:

Composer auth.json file
Windows: %userprofile%\.composer\auth.json

 ~/.composer/auth.jsonLinux:

1.

2.

Clean the Composer cache

composer clear-cache

Viewing Individual Composer Package Information

Artifactory lets you view selected metadata of a Composer package directly from the UI.
In the tab, select and drill down to select the package archive file you want to inspect. The metadata is displayed inArtifacts Tree Browser
the tab.Composer Info

Puppet Repositories

Overview

Artifactory provides full support for managing Puppet modules, ensuring optimal and reliable
access to By aggregating multiple Puppet repositories under a single virtualPuppet Forge.
repository Artifactory enables upload and download access to all your Puppet modules through a
single URL.

As a fully-fledged Puppet repository, on top of its capabilities for ,advanced artifact management
Artifactory's support for provides:Puppet

The ability to provision Puppet modules from Artifactory to the Puppet command line tool
for all repository types.

Page Contents
Overview

composer.lock file
In your project directory already has a file that contains different 'dist' URLs (download URLs) than Artifactory, youcomposer.lock
need to remove it, otherwise, when running the command, the composer client will resolve the dependenciescomposer install
using the file URLscomposer.lock

https://forge.puppet.com/
https://puppet.com

2.
3.

4.

5.

Calculation of Metadata for Puppet modules hosted in Artifactory's local repositories.
Access to remote Puppet repositories, such as , using https://forgeapi.puppetlabs.com/ Re

 which provides proxy and caching functionalities.mote Repositories
Access to multiple Puppet repositories from a single URL by aggregating them under a Virt

. This overcomes the limitation of the Puppet client which can only access aual Repository
single registry at a time.
Support for that allow you to organize your Puppetflexible puppet repository layouts
modules, and assign access privileges according to projects or development teams.

Configuration

Local Puppet Repository

To enable calculation of Puppet module metadata in local repositories, set the to Package Type P
when you create the repository:uppet

Configuration
Local
Puppe
t
Reposi
tory
Reposi
tory
Layout
Remot
e
Puppe
t
Reposi
tory
Virtual
Puppe
t
Reposi
tory

Using the
Puppet
Command Line
Using
librarian-puppe
t
Using r10k
Puppet Publish
(Deploying
Modules)

Setting
Your
Crede
ntials
Deploy
ing
Your
Modul
es

Working with
Artifactory
without
Anonymous
Access
Puppet Search
Cleaning Up
the Local
Puppet Cache
Viewing
Individual
Puppet Module
Information
Using Puppet
4.9.1 and
Below

Puppet version support
Puppet does not support a context path up to version 4.9.1, we recommend using
Artifactory with Puppet version and above. Please see below if you are using 4.9.2 Pupp

.et 4.9.1 and below

https://forgeapi.puppetlabs.com/

1.
2.

3.

REST API
Get
Puppe
t
Modul
es
Get
Puppe
t
Modul
e
Get
Puppe
t
Releas
es
Get
Puppe
t
Releas
e

Repository Layout

Artifactory allows you to define any layout for your Puppet repositories. To upload a module according to your custom layout, you need to
package your Puppet files using puppet module build.

This creates a file for your module which you can then upload to any path within your local Puppet repository..tar.gz

Remote Puppet Repository

A defined in Artifactory serves as a caching proxy for a repository managed at a remote URL such as Remote Repository https://forgeapi.pup
.petlabs.com/

Artifacts (such as tar.gz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the
remote repository cache, however, you can not manually deploy artifacts to a remote Puppet repository.

To define a remote repository to proxy a remote Puppet resource follow the steps below:
In the module, under click "New". Admin Repositories | Remote,
In the New Repository dialog, set the to , set the value, and specify the URL to the remotePackage Type Puppet Repository Key
repository in the field as displayed below.URL
Click "Save & Finish".

Virtual Puppet Repository

A repository, in Artifactory, aggregates modules from both and repositories.virtual local remote

This allows you to access both locally hosted Puppet modules and those from remote proxied Puppet repositories from a single URL defined
for the virtual repository.
To define a virtual Puppet repository, create a , set the to and select the underlying local and remotevirtual repository Package Type Puppet,
Puppet repositories to include in the settings tab.Basic

Click "Save & Finish" to create the repository.

https://forgeapi.puppetlabs.com/
https://forgeapi.puppetlabs.com/

Using the Puppet Command Line

When accessing a Puppet repository through Artifactory, the repository URL path must be prefixed with .api/puppet

This applies to all Puppet commands including and puppet module install puppet module search.

For example, if you are using Artifactory standalone or as a local service, you would access your Puppet repositories using the following URL:

http://localhost:8081/artifactory/api/puppet/<REPO_KEY>

Or, if you are using Artifactory SaaS the URL would be:

https://<server name>.jfrog.io/<server name>/api/puppet/<REPO_KEY>

To use the Puppet command line you need to make sure Puppet is installed on your client.

Once you have created your Puppet repository, you can select it in the Tree Browser and click the button to get useful codeSet Me Up
snippets. These allow you to change your Puppet repository URL in the file, and resolve modules using the Puppet commandpuppet.conf
line tool.

Replacing the default repository

To replace the default repository with a URL pointing to a Puppet repository in Artifactory, add following in your file:puppet.conf
Note: This example uses a repository with the key puppet

[main]
module_repository=http://localhost:8080/artifactory/api/puppet/puppet

Tip: We recommend referencing a Virtual Repository URL as a repository. This gives you the flexibility to reconfigure and aggregate other
external sources and local repositories of Puppet modules you deploy.
Note that if you do this, you can also use the --module_repository parameter to specify the local repository from which you want to
resolve your module when using the Puppet module install command.

Once the Puppet command line tool is configured, every command will fetch packages from the Puppetpuppet module install
repository specified above. For example:

$ puppet module install
--module_repository=http://localhost:8080/artifactory/api/puppet/puppet
puppetlabs-mysql
Notice: Preparing to install into
/Users/jainishs/.puppetlabs/etc/code/modules ...
Notice: Downloading from
http://localhost:8080/artifactory/api/puppet/puppet ...
Notice: Installing -- do not interrupt ...
/Users/jainishs/.puppetlabs/etc/code/modules
 puppetlabs-mysql (v3.10.0)

Using librarian-puppet

 is a bundler for your Puppet infrastructure. librarian-puppet From version 5.4.5, you can use librarian-puppet with Artifactory as a
Puppet repository to manage the Puppet modules your infrastructure depends on.

To configure librarian-puppet to fetch modules from Artifactory, add the following to your :Puppetfile

forge
"http://<ARTIFACTORY_HOST_NAME>:<ARTIFACTORY_PORT>/artifactory/api/puppe
t/<REPO_KEY>"

For example, a Puppetfile that uses librarian-puppet could look something like this:

forge "http://localhost:8080/artifactory/api/puppet/puppet-local"

mod 'puppetlabs-mysql', '3.7.0'
mod 'puppetlabs-apache', '1.5.0'

To fetch and install the Puppet modules from Artifactory, run the following command:

librarian-puppet install --no-use-v1-api

Using r10k

r10k is a Puppet environment and module deployment tool. From version 5.4.5, you can use r10k to fetch Puppet environments and modules
from an Artifactory Puppet repository for deployment.

To configure r10k to fetch modules from Artifactory, add the following to your file:r10k.yaml

forge:
 baseurl:
'http://<ARTIFACTORY_HOST_NAME>:<ARTIFACTORY_PORT>/artifactory/api/puppe
t/<REPO_KEY>'

1.

For example:

forge:
 baseurl: 'http://localhost:8080/artifactory/api/puppet/puppet-local'

To fetch and install the Puppet modules from Artifactory, run the following command:

r10k puppetfile install

Puppet Publish (Deploying Modules)

Setting Your Credentials

To support authentication, you need to add your Artifactory credentials to your file:puppet.conf
Note: your credentials should be formatted as as a encoded stringsusername:password Base64

Your Artifactory credentials, formatted as encoded strings.username:password Base64
For example:

[main]
module_repository=http://admin:AP7eCk6M6JokQpjXbkGytt7r4sf@localhost:808
0/artifactory/api/puppet/puppet-local

Deploying Your Modules

There are two ways to deploy packages to a local repository:

Using the Artifactory UI
Once you have created your Puppet repository, you can select it in the Tree Browser and click to upload Puppet module.Deploy
Select your module(s), and click Deploy.

Make sure you have an Artifactory user in order to publish modules.

http://www.base64encode.org/
http://www.base64encode.org/

1.

2. Using Artifactory REST API
For Example:
curl -uadmin:AP7eCk6M6JokQpjXbkGytt7r4sf -XPUT http://localhost:8080/artifactory/puppet-local/<TAR

> -T <PATH_TO_FILE>GET_FILE_PATH

Working with Artifactory without Anonymous Access

By default, Artifactory allows anonymous access to Puppet repositories. This is defined in the module under . ForAdmin Security | General
details please refer to .Allow Anonymous Access

To be able to trace how users interact with your repositories, you need to uncheck the setting. This means thatAllow Anonymous Access
users will be required to enter their username and password as described in above.Setting Your Credentials

Puppet Search

Artifactory supports a variety of ways to search for artifacts. For details, please refer to .Searching Artifacts

Artifactory also supports, the command. However, a module may not be availablepuppet module search [search terms ...]
immediately after being published, for the following reasons:

When publishing modules to a local repository, Artifactory calculates the search index asynchronously and will wait for indexing the
newly published module.
Since a virtual repository may contain local repositories, a newly published package may not be available immediately for the same
reason.
In the case of remote repositories, a new package will only be found once Artifactory checks for it according to the Retrieval Cache

 setting.Period

http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
http://www.jfrog.com/confluence/display/RTF/Security+General+Configuration#SecurityGeneralConfiguration-AllowAnonymousAccess
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-SettingYourCredentials
http://www.jfrog.com/confluence/display/RTF/Searching+Artifacts

Cleaning Up the Local Puppet Cache

The Puppet client saves caches of modules that were downloaded, as well as their JSON metadata responses (called)..cache.json

The JSON metadata cache files contain the Puppet modules metadata.

We recommend removing the Puppet caches, both modules and metadata, before using Artifactory for the first time. This is to ensure that
your caches only contain elements that are due to requests from Artifactory and not directly from .https://forge.puppet.com

Viewing Individual Puppet Module Information

Artifactory lets you view selected Puppet module metadata directly from the UI.

Drill down in the and select the file you want to inspect, and view the metadata in the tab.Tree Browser tar.gz Puppet Info

Using Puppet 4.9.1 and Below

Up till version 4.9.1, the Puppet client does not support context path for remote Puppet Forge repositories. Therefore, we recommend using
Artifactory with Puppet 4.9.2 and above.

If you need to use Puppet 4.9.1 and below you can use a workaround which uses NGINX or Apache to rewrite all requests from to /v3/* /a
rtifactory/api/puppet/<repo-name>/v3/*.

For example, if you have a repository called , and you are using Puppet 3.0, you would configure your proxy server topuppet-virtual
rewrite to /v3/* ./artifactory/api/puppet/puppet-virtual/v3/*

The following sections show sample configurations for NGINX and Apache for both the ports method and the sub-domain method to use a
virtual repository named .puppet-virtual

Sample NGINX configuration using the Ports method

Artifactory annotates each deployed or cached Puppet module with two properties: and puppet.name puppet.version

You can use to search for Puppet packages according to their name or version. Property Search

https://forge.puppet.com/
http://www.jfrog.com/confluence/display/RTF/Property+Search

server configuration
server {
 listen 8001 ;
 location ^~/v3 {
 rewrite ^/v3/(.*) /artifactory/api/puppet/puppet-virtual/v3/$1
break;
 proxy_redirect off;
 proxy_pass http://localhost:8080/artifactory/;
 }
}

Sample NGINX configuration using the Subdomain method

server configuration
server {
 listen 443 ssl;
 listen 80 ;
 server_name ~(?<repo>.+)\.artifactory-cluster artifactory-cluster;

 if ($http_x_forwarded_proto = '') {
 set $http_x_forwarded_proto $scheme;
 }
 ## Application specific logs
 ## access_log /var/log/nginx/artifactory-cluster-access.log
timing;
 ## error_log /var/log/nginx/artifactory-cluster-error.log;
 rewrite ^/$ /artifactory/webapp/ redirect;
 rewrite ^/artifactory/?(/webapp)?$ /artifactory/webapp/ redirect;
 rewrite ^/(v1|v2)/(.*) /artifactory/api/docker/$repo/$1/$2;
 rewrite ^/v3/(.*) /artifactory/api/puppet/$repo/v3/$1;
 chunked_transfer_encoding on;
 client_max_body_size 0;
 location /artifactory/ {
 proxy_read_timeout 900;
 proxy_pass_header Server;
 proxy_cookie_path ~*^/.* /;
 if ($request_uri ~ ^/artifactory/(.*)$) {
 proxy_pass http://artifactory/artifactory/$1;
 }
 proxy_pass http://artifactory/artifactory/;
 proxy_next_upstream http_503 non_idempotent;
 proxy_set_header X-Artifactory-Override-Base-Url
$http_x_forwarded_proto://$host:$server_port/artifactory;
 proxy_set_header X-Forwarded-Port $server_port;
 proxy_set_header X-Forwarded-Proto $http_x_forwarded_proto;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Sample Apache HTTP server configuration using the Ports method

###
this configuration was generated by JFrog Artifactory
###

add HA entries when ha is configured
<Proxy balancer://artifactory>
 BalancerMember http://10.6.16.125:8080 route=14901314097097
ProxySet lbmethod=byrequests
ProxySet stickysession=ROUTEID
</Proxy>
<VirtualHost *:80>
 ProxyPreserveHost On
 ServerName artifactory-cluster
 ServerAlias *.artifactory-cluster
 ServerAdmin server@admin

 ## Application specific logs
 ## ErrorLog ${APACHE_LOG_DIR}/artifactory-cluster-error.log
 ## CustomLog ${APACHE_LOG_DIR}/artifactory-cluster-access.log
combined
 AllowEncodedSlashes On
 RewriteEngine on
 RewriteCond %{SERVER_PORT} (.*)
 RewriteRule (.*) - [E=my_server_port:%1]
 ## NOTE: The 'REQUEST_SCHEME' Header is supported only from
apache version 2.4 and above
 RewriteCond %{REQUEST_SCHEME} (.*)
 RewriteRule (.*) - [E=my_scheme:%1]

 RewriteCond %{HTTP_HOST} (.*)
 RewriteRule (.*) - [E=my_custom_host:%1]

 RewriteRule ^/$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory(/)?$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory/webapp$ /artifactory/webapp/ [R,L]

 RequestHeader set Host %{my_custom_host}e
 RequestHeader set X-Forwarded-Port %{my_server_port}e
 ## NOTE: {my_scheme} requires a module which is supported only
from apache version 2.4 and above
 RequestHeader set X-Forwarded-Proto %{my_scheme}e
 RequestHeader set X-Artifactory-Override-Base-Url
%{my_scheme}e://artifactory-cluster:%{my_server_port}e/artifactory
 ProxyPassReverseCookiePath /artifactory /artifactory

 ProxyRequests off
 ProxyPreserveHost on
 ProxyPass /artifactory/ balancer://artifactory/artifactory/
 ProxyPassReverse /artifactory/ balancer://artifactory/artifactory/
 Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;
path=/artifactory/" env=BALANCER_ROUTE_CHANGED
</VirtualHost>

Listen 8001
<VirtualHost *:8001>
 ProxyPreserveHost On
 ServerName artifactory-cluster
 ServerAlias *.artifactory-cluster
 ServerAdmin server@admin
 ## Application specific logs
 ## ErrorLog ${APACHE_LOG_DIR}/artifactory-cluster-error.log
 ## CustomLog ${APACHE_LOG_DIR}/artifactory-cluster-access.log
combined

 AllowEncodedSlashes On
 RewriteEngine on

 RewriteCond %{SERVER_PORT} (.*)
 RewriteRule (.*) - [E=my_server_port:%1]
 ## NOTE: The 'REQUEST_SCHEME' Header is supported only from
apache version 2.4 and above
 RewriteCond %{REQUEST_SCHEME} (.*)
 RewriteRule (.*) - [E=my_scheme:%1]

 RewriteCond %{HTTP_HOST} (.*)
 RewriteRule (.*) - [E=my_custom_host:%1]
 RewriteRule "^/v3/(.*)$"
"/artifactory/api/puppet/puppet-virtual/v3/$1" [P]

 RewriteRule ^/$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory(/)?$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory/webapp$ /artifactory/webapp/ [R,L]

 RequestHeader set Host %{my_custom_host}e
 RequestHeader set X-Forwarded-Port %{my_server_port}e
 ## NOTE: {my_scheme} requires a module which is supported only
from apache version 2.4 and above
 RequestHeader set X-Forwarded-Proto %{my_scheme}e
 RequestHeader set X-Artifactory-Override-Base-Url
%{my_scheme}e://artifactory-cluster:%{my_server_port}e/artifactory
 ProxyPassReverseCookiePath /artifactory /artifactory

 ProxyPass /artifactory/ balancer://artifactory/artifactory/
 ProxyPassReverse /artifactory/ balancer://artifactory/artifactory/

 Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;
path=/artifactory/" env=BALANCER_ROUTE_CHANGED
</VirtualHost>

Sample Apache HTTP server configuration using the Subdomain method:

###
this configuration was generated by JFrog Artifactory
###

add HA entries when ha is configured
<Proxy balancer://artifactory>
 BalancerMember http://10.6.16.125:8080 route=14901314097097
ProxySet lbmethod=byrequests
ProxySet stickysession=ROUTEID
</Proxy>
<VirtualHost *:80>
 ProxyPreserveHost On
 ServerName artifactory-cluster
 ServerAlias *.artifactory-cluster
 ServerAdmin server@admin

 ## Application specific logs
 ## ErrorLog ${APACHE_LOG_DIR}/artifactory-cluster-error.log
 ## CustomLog ${APACHE_LOG_DIR}/artifactory-cluster-access.log
combined

 AllowEncodedSlashes On
 RewriteEngine on

 RewriteCond %{SERVER_PORT} (.*)
 RewriteRule (.*) - [E=my_server_port:%1]
 ## NOTE: The 'REQUEST_SCHEME' Header is supported only from
apache version 2.4 and above
 RewriteCond %{REQUEST_SCHEME} (.*)
 RewriteRule (.*) - [E=my_scheme:%1]

 RewriteCond %{HTTP_HOST} (.*)
 RewriteRule (.*) - [E=my_custom_host:%1]

 RewriteCond "%{REQUEST_URI}" "^/(v1|v2|
)/"
 RewriteCond "%{HTTP_HOST}" "^(.*)\.artifactory-cluster$"
 RewriteRule "^/v3/(.*)$" "/artifactory/api/puppet/%1/v3/$1" [PT]
 RewriteRule "^/(v1|v2)/(.*)$" "/artifactory/api/docker/%1/$1/$2"

[PT]

 RewriteRule ^/$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory(/)?$ /artifactory/webapp/ [R,L]
 RewriteRule ^/artifactory/webapp$ /artifactory/webapp/ [R,L]

 RequestHeader set Host %{my_custom_host}e
 RequestHeader set X-Forwarded-Port %{my_server_port}e
 ## NOTE: {my_scheme} requires a module which is supported only
from apache version 2.4 and above
 RequestHeader set X-Forwarded-Proto %{my_scheme}e
 RequestHeader set X-Artifactory-Override-Base-Url
%{my_scheme}e://artifactory-cluster:%{my_server_port}e/artifactory
 ProxyPassReverseCookiePath /artifactory /artifactory

 ProxyRequests off
 ProxyPreserveHost on
 ProxyPass /artifactory/ balancer://artifactory/artifactory/
 ProxyPassReverse /artifactory/ balancer://artifactory/artifactory/

1.

2.
3.

4.

 Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;
path=/artifactory/" env=BALANCER_ROUTE_CHANGED
</VirtualHost>

Once you have your reverse proxy configured, you can install modules from Artifactory using the following commands:

Ports Method

puppet module install --module_repository http://localhost:8001
puppetlabs-apache

Subdomain Method

puppet module install --module_repository
http://puppet-virtual.artifactory-cluster puppetlabs-apache

REST API

The following REST API endpoints are available to facilitate automation for configuration management with Puppet. Artifactory also uses
these endpoints to support the and clients:librarian-puppet r10k

Get Puppet Modules

Returns a list of all Puppet modules hosted by the specified repository.

For details, please refer to in the Artifactory REST API documentation. Get Puppet Modules

Get Puppet Module

Returns information about a specific Puppet module

For details, please refer to in the Artifactory REST API documentation. Get Puppet Module

Get Puppet Releases

Returns a list of all Puppet releases hosted by the specified repository.

For details, please refer to in the Artifactory REST API documentation. Get Puppet Releases

Get Puppet Release

Returns information about the specific Puppet module's release.

For details, please refer to in the Artifactory REST API documentation. Get Puppet Release

PyPI Repositories

Overview

Artifactory fully supports repositories providing:PyPI

The ability to provision PyPI packages from Artifactory to the command line tool from allpip
repository types.
Calculation of Metadata for PyPI packages hosted in Artifactory's local repositories.
Access to remote PyPI repositories through (such as) https://pypi.python.org/ Remote

 which provide proxy and caching functionality.Repositories

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetPuppetModules
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetPuppetModule
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetPuppetReleases
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetPuppetRelease
https://pypi.python.org/pypi
https://pypi.python.org/pypi
http://www.jfrog.com/confluence/display/RTF/Remote+Repositories
http://www.jfrog.com/confluence/display/RTF/Remote+Repositories

4.

5.

The ability to access multiple PyPI repositories from a single URL by aggregating them under a Virtu
.al Repository

Compatibility with the and its predecessor libraries for uploading PyPI packages.setuptools distutils

Configuration

Local Repositories

To create a new PyPI local repository, in the New Local Repository screen, set the to Package Type PyPI.

Page Contents
Overview
Configuration

Local
Repositories
Remote
Repositories
Virtual
Repositories

Resolving from
Artifactory Using PIP

Specifying the
Repository on
the Command
Line

Using
Crede
ntials

Using a
Configuration
File
Using a
Requirements
File

Publishing to
Artifactory

Using distutils
or setuptools

Creat
e the
$HO
ME/.p
ypirc
File
Uploa
ding

Publishing
Manually
Using the Web
UI or REST

Searching for PyPI
Packages

Using PIP
Artifactory

http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories
https://pythonhosted.org/setuptools/
https://docs.python.org/2.7/distutils/
http://www.jfrog.com/confluence/display/RTF/Local+Repositories

1.
2.

3.

Remote Repositories

A defined in Artifactory serves as a caching proxy for a registry managed at a remote URL such as .Remote Repository https://pypi.python.org/

Artifacts (such as .whl files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the remote
repository cache, however you can not manually deploy artifacts to a remote PyPI repository.

To create a repository to proxy a remote PyPI repository follow the steps below:

In the module under select "New" Admin Repositories | Remote,
Set the to enter the value, and specify the URL to the remote repository in the field asPackage Type PyPI, Repository Key URL
displayed below:

Click "Save & Finish"

Virtual Repositories

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted PyPI packages and remote proxied PyPI repositories from a single URL defined for the virtual
repository.
To define a virtual PyPI repository, create , set its to be PyPI, select the underlying local and remote PyPIvirtual repository Package Type
repositories to include in the settings tab, click "Save & Finish".Basic

Search
Viewing Metadata of
PyPI Packages
Watch the Screencast

PyPI remote repository URL

You should not include "/pypi" or "/simple" in the the PyPI remote repository URL. These suffixes are added by
Artifactory when accessing the remote repository.

If you use a custom PyPI remote repository, you need to make sure it has a simple index accessible by (directory listing style)
.<URL>/simple

Remote Artifactory
If the remote repository is also managed by an Artifactory server, then you need to point to its PyPI API URL, for example http
://my.remote.artifactory/artifactory/api/pypi/python-project

http://www.jfrog.com/confluence/display/RTF/Remote+Repositories
https://pypi.python.org/
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

Resolving from Artifactory Using PIP

To install the command line tool refer to . We recommend using to separate your environment whenpip pip documentation pages virtualenv
installing PIP.

To display code snippets you can use to configure and to use your PyPI repository, select the repository and then click pip setup.py Set Me
Up.

Specifying the Repository on the Command Line

Index URL
When accessing a PyPI repository through Artifactory, the repository URL must be prefixed with in the path. This applies to all api/pypi

 commands and URLs including pip distutils pip install.

When using to resolve PyPI packages it must point to .pip <Artifactory URL>/api/pypi/<repository key>/simple

https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/latest/

Once pip is installed, it can be used to specify the URL of the repository from which to resolve:

Installing with full repository URL

$ pip install frog-bar -i
http://localhost:8081/artifactory/api/pypi/pypi-local/simple

Using Credentials

Due to it's design, pip does not support reading credentials from a file. Credentials can be supplied as part of the URL, for example http://<us
The password can be omitted (with thelocalhost:8081/artifactory/api/pypi/pypi-local/simpleername>:<password>@ .

preceding colon), and in this case, the user will be prompted to enter credentials interactively.

Using a Configuration File

Aliases for different repositories can be specified through a pip configuration file, . The file contains configuration parameters per~/.pip/pip.conf
repository, for example:

~/.pip/pip.conf

[global]
index-url =
http://user:password@localhost:8081/artifactory/api/pypi/pypi-virtual/simp
le

For more information, please refer to .PIP User Guide

Using a Requirements File

A requirements file contains a list of packages to install. Usually these are dependencies for the current package. It can be created manually or
using the command. The index URL can be specified in the first line of the file, For example:pip freeze

requirements.txt

--index-url http://localhost:8081/artifactory/api/pypi/pypi-local/simple
PyYAML==3.11
argparse==1.2.1
frog-bar==0.2
frog-fu==0.2a
nltk==2.0.4
wsgiref==0.1.2

Publishing to Artifactory

For example, if you are using Artifactory standalone or as a local service, you would access your PyPI repositories using the following
URL:

http://localhost:8081/artifactory/ <repository key>/api/pypi/ simple

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>/api/pypi/ simple

https://pip.pypa.io/en/stable/user_guide/#config-file

Using distutils or setuptools

Uploading to Artifactory using a script is supported in a similar way to uploading to PyPI. First, you need to add Artifactory as an indexsetup.py
server for your user.

For instructions on using to package Python projects and create a script, please refer to the and setuptools setup.py setuptools documentation thi
.s tutorial project

Create the $HOME/.pypirc File

To upload to Artifactory, an entry for each repository needs to be made in as follows:$HOME/.pypirc

[distutils]
index-servers =
 local
 pypi

[pypi]
repository: https://pypi.python.org/pypi
username: mrBagthrope
password: notToBeSeen

[local]
repository: http://localhost:8081/artifactory/api/pypi/pypi-local
username: admin
password: password

Notice that the URL does not end with ./simple

Uploading

After creating a file and a script at the root of your project, you can upload your egg (tar.gz) packages as follows:.pypirc setup.py

~/python_project $ python setup.py sdist upload -r local

If you are using wheel (whl) you can upload your packaged as follows:

~/python_project $ python setup.py bdist_wheel upload -r local

Or if you wish to use both egg (tar.gz) and wheel (whl), you can upload them as follows:

setuptools vs. distutils and python versions
Artifactory is agnostic to whether you use or , and also to the version or implementation of Python yoursetuptools distutils
project uses.

The following instruction were written for Python 2.7 and in mind. Using different tools such setuptools different version of Python, or
 and others may require minor modification to the instructions below.zest, distutils

The HOME environment variable
 setuptools requires that the file be found under using the environment variable..pypirc $HOME/.pypirc, HOME

On unix-like systems this is usually set by your system to but in certain environments such as build servers you/home/yourusername/
will have to set it manually.

On Windows it must be set manually.

https://pythonhosted.org/setuptools/setuptools.html
https://pythonhosted.org/an_example_pypi_project/setuptools.html
https://pythonhosted.org/an_example_pypi_project/setuptools.html

~/python_project $ python setup.py sdist bdist_wheel upload -r local

Where is the name of the section in your file that points to your Artifactory PyPI repository.local .pypirc

Publishing Manually Using the Web UI or REST

PyPI packages can also be uploaded manually using the or the . For Artifactory to handle those packages correctlyWeb UI Artifactory REST API
as PyPI packages they must be uploaded with and .pypi.name pypi.version Properties

Searching for PyPI Packages

Using PIP

Artifactory supports search using 's command in local, remote and virtual repositories. For example:pip search

pip search

$ pip search frog-fu --index
http://localhost:8081/artifactory/api/pypi/pypi-virtual/
frog-fu - 0.2a
 INSTALLED: 0.2a (latest)

$ pip search irbench --index
http://localhost:8081/artifactory/api/pypi/pypi-virtual/
irbench - Image Retrieval Benchmark.

In this example is a locally installed package, while is found at , both repositories aggregated by the refrog-fu irbench pypi.python.org pypi-virtual
pository.

Artifactory Search

PyPI packages can also be searched for using Artifactory's . All PyPI packages have the properties , anProperty Search pypi.name pypi.version
d set by the uploading client, or later during indexing for supported file types.pypi.summary

Default upload
By default, both and will upload to if no repository is specified.setuptools distutils https://pypi.python.org/pypi

The 'register' command should be omitted
When uploading directly to the documentation states that your package must first be registered pypi.python.org, by calling python
setup.py register.

When uploading to Artifactory this is neither required nor supported and .should be omitted

Automatic extraction of properties
While indexing the newly uploaded packages Artifactory will try to extract required properties from the package metadataautomatically
saved in the file. Note that not all supported files can be extracted.

Currently, only and files can be extracted for metadata.zip, tar, tgz, tar.gz, tar.bz2, egg whl

In addition, indexing starts after a 60 second quiet period, counting from the last upload to the current repository.

Specifying the index
When using the search command, the index should be specified explicitly (without the at the end), as pip will ignore the /simple index

 variable in its file.-url pip.conf

https://www.jfrog.com/confluence/display/RTD/Property+Search

Viewing Metadata of PyPI Packages

Artifactory lets you view selected metadata of a PyPI package directly from the UI.

In the module drill down to select the file you want to inspect. The metadata is displayed in the tab.Artifacts Tree Browser, PyPI Info

Watch the Screencast

RubyGems Repositories

Overview
Artifactory provides full support for RubyGems repositories including:

Local repositories with RubyGems API support
Caching and proxying remote RubyGems repositories
Virtual repositories that aggregate multiple local and remote repositories including indices of both
gems and specifications
Support for common Ruby tools such as gem and bundler

For general information on configuring Artifactory to work with RubyGems, please refer to Configuring
. Repositories

Page Contents
Overview
General Configuration
Local Repositories

Usage
Remote Repositories

Usage
Virtual Repositories

Usage
Using the REST API
Viewing RubyGems
Artifact Information

Viewing and
Extracting
License
Information

Watch the Screencast

General Configuration

All RubyGems commands, including gem source and gem push, must prepend the repository path with .api/gems

For example, if you are using Artifactory standalone or as a local service, you would access your RubyGems
repositories using the following URL:

http://localhost:8081/artifactory/ <repository key>api/gems/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>api/gems/

Local Repositories

Local RubyGems repositories are physical, locally-managed repositories into which you can deploy and manage your in-house Gems.

To create a local RubyGems repository, in the module, under click "New" and set to be the Admin Repositories | Local, RubyGems Package
Type.

You can set up a local RubyGems repository as follows:

All RubyGems repositories must be prefixed with api/gems in the path
When using the RubyGems command line to access a repository through Artifactory, the repository URL must be prefixed with api/gem

in the path.s

Using RubyGems repositories with Artifactory version 3.4.1 and below, and Java 7 update 40 or higher

If you are using RubyGems repositories with Java 7 update 40 or higher, you may receive the following exception:

org.jruby.exceptions RaiseException. : () stack level too deepSystemStackError
 at ...

This is due to an with Artifactory's use of JRuby.issue

If you are using Artifactory version 3.4.1 and below, you need to define the following and restart Artifactory:System Property

jruby.compile.invokedynamic=false

In Artifactory version 3.4.2, an enhancement has been implemented to overcome this issue and from
this version on, no action is required.

https://github.com/jruby/jruby/issues/1533
https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SystemProperties

You need to add the repository source URL by modifying your ~/.gemrc file or using the gem source command as displayed below. You can
extract the source URL by selecting the repository in the and clicking Tree Browser Set Me Up.

Notice that there are two sources. First, the remote proxy, then the local one. This will effectively allow you to retrieve Gems from both of them in
the specified order.

gem source -a http://localhost:8081/artifactory/api/gems/my-gems-local/

Usage

First, setup the appropriate for the tool: either include the API key in the file or issue this command:credentials gem ~/.gem/credentials

Setting Up Credentials

curl http://localhost:8081/artifactory/api/gems/<repository
key>/api/v1/api_key.yaml -u admin:password > ~/.gem/credentials

All RubyGems repositories must be prefixed with api/gems in the path
When using the RubyGems command line to access a repository through Artifactory, the repository URL must be prepended with api/g

in the path.ems

Running on Linux
You may need to change the permissions of the credentials file to 600 ()chmod 600

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing

1.

2.

In order to gems to the local repository, you can set the global variable to point to the local repository as follows:push $RUBYGEMS_HOST

Setting RUBYGEMS_HOST

export RUBYGEMS_HOST=http://localhost:8081/artifactory/api/gems/<repository
key>

To get this value, select your repository in click the Tree Browser and Set Me Up.

Alternatively you could use the command with , and optionally, to specify the relevant API key. gem push --host --key

Remote Repositories

A remote RubyGems repository serves as a caching proxy for a repository managed at a remote URL such as . http://rubygems.org

Once requested, artifacts (Gems) are cached on demand. They can then be removed, but you cannot manually deploy anything into a remote
repository.

To create a remote RubyGems repository, execute the following steps:

in the module, under click "New" and set to be the Admin Repositories | Remote, RubyGems Package Type.

Running on Windows
The credentials file is located under %USERPROFILE%/.gem/credentials

You also need to set the API key encoding to be "ASCII". For example:

curl <repository key>/api/v1/api_key.yaml | Out-File ~/.gem/credentials -Encoding "ASCII"http://localhost:8081/artifactory/api/gems/

API keys
You can modify the credentials file manually and add different API keys. You can later use to choose the relevantgem push -k key
API key.

Make sure you are familiar with your effective sources and their order as specified in the file.~/.gemrc

Also, make sure you are familiar with your global variable before you issue a command or use the $RUBYGEMS_HOST gem push push
 option.--host

When a local repository is first created, it is populated with by default. In order to disable this behavior,rubygems-update-*.gem
you must change the to include: System Properties
artifactory.gems.gemsAfterRepoInitHack=false

Make sure you deploy to a "gems" folder
When deploying Gems to your repositories, you need to place them in a gems folder for Artifactory to include them in its indexing
calculations.

https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
http://rubygems.org
http://localhost:8081/artifactory/api/gems/
http://www.jfrog.com/confluence/display/RTF/System+Properties

2.

1.
2.

3.

Set the , and specify the to the remote repository. The example below references .Repository Key URL rubygems.org

Usage

In order to allow the integration with the command line tool, you must add the relevant source URL to your RubyGems configuration.gem
In the , select your newly created repository and click .Tree Browser Set Me Up
Copy the source URL from the section. RubyGems Sources

Add this URL by modifying your file or using the command as follows:~/.gemrc gem source

All RubyGems repositories must be prefixed with api/gems in the path
When using the RubyGems command line to access a repository through Artifactory, the repository URL must be prefixed with

in the path.api/gems

https://rubygems.org/
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing

3.

gem source -a http://localhost:8081/artifactory/api/gems/rubygems/

Virtual Repositories

A Virtual RubyGems repository (or "repository group") can aggregate multiple local and remote RubyGems repositories, seamlessly exposing
them under a single URL.

The repository is virtual in that you can resolve and retrieve artifacts from it but you cannot deploy anything to it. For more information please refer
to .Virtual Repositories

The procedure for setting up a virtual repository is very similar to setting up a local or remote repository, however as a last step, you need to
select the repositories that will be included in the virtual repository you are creating.

Usage

Using a virtual RubyGems repository you can aggregate both your local and remote repositories.

You need to set the right repository source URL, in the same way as described in for a local RubyGems repository, just with theUsage
appropriate repository key as follows:

 source: http://localhost:8081/artifactory/api/gems/<repository key>/

 target: http:// /artifactory/api/gems/ localhost:8081 <repository key> (no slash at the end!)

Additional Gem Commands You Can Use
You can remove previous source entries by modifying your file manually or by running ~/.gemrc gem sources -r
You can also run to know what your effective sources are and their order.gem sources --list

Overcoming Unauthorized Status Failures
Some gem/bundler commands may fail with an Unauthorized (401) status. In some cases these can be overcome by using one of the
following options:

Enable the "Anonymous User" by checking in as described in Allow Anonymous Access Security General Configuration M
.anaging Users

Create a specialized that allows anonymous access only to the remote repository. Permission Target
Use a source URL with embedded credentials, such as: gem sources -a http://user:password@host/...

http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories
http://www.jfrog.com/confluence/display/RTF/Managing+Permissions

Using the REST API

The REST API provides access to the Gems Add-on through the repository key using the following URL:

http://localhost:8081/artifactory/ /<repository key>/api/gems

In addition to the basic binary repository operations, such as download, deploy, delete etc., the following API Gem commands areRubyGems.org
supported:

Gem
command

Curl syntax example Remarks

Info curl http://localhost:8081/artifactory/ /<repapi/gems ository key>/api/v1/gems/my_
gem.(json|xml|yaml)

Optionally indicate JSON / XML / YAML
(default: JSON)

Search curl http://localhost:8081/artifactory/ /<repositoryapi/gems
]key>/api/v1/search.(json|xml|yaml)?query=[query

Will search for gems with name
containing query

Dependencies curl http://localhost:8081/artifactory/ /<repositoryapi/gems
key>/api/v1/dependencies?gems=[gem1,...]

Use a csv of gem names for the value of
gems

Yank curl -X DELETE api/v1http://localhost:8081/artifactory/ /<repository key>/api/gems
/yank

-d 'gem_name= ' -d 'version= ' -d 'platform= 'gem_name 0.0.1 ruby

Deletes the specific gem file from the
repository

Indexing is done automatically by Artifactory in the background, however if you still need to recreate or update
the spec index files, the following REST API commands are also available:

REST
command

Curl syntax example Remarks

ReIndex curl -X POST http://localhost:8081/artifactory/ /<repository key>/reindexapi/gems Re-creates all spec index files.

Update index curl -X POST http://localhost:8081/artifactory/ /<repositoryapi/gems
key>/updateIndex

Updates all spec index files if
needed.

Viewing RubyGems Artifact Information

If you select a RubyGems artifact in the Tree Browser you can select the tab to view detailed information on the selected artifact. RubyGems

http://RubyGems.org

Viewing and Extracting License Information

From version 4.4, Artifactory can scan a Gem to extract information about license files embedded in the Gem.

To scan for license files, in the tab, click General SCAN.

When scanning a Gem for licenses, Artifactory searches for the following file names: license,LICENSE,license.txt,LICENSE.txt,LICE
NSE.TXT

Once a license has been extracted, Artifactory annotates the Gem with a corresponding property.

Searching for RubyGems license files
You can override or extend the list of files Artifactory searches for by modifying the artifactory.archive.licenseFile.names
property.

Watch the Screencast

SBT Repositories

Overview

Artifactory provides integration with sbt, allowing you to configure it to resolve dependencies from, and deploy
build output to sbt repositories. All you need to do is make minor modifications to your configuratbuild.sbt
ion file.

Configuration

Local Repositories

A local sbt repository is used as a target to which you can deploy the output of your script. Tobuild.sbt
create an sbt repository, set the to .Package Type SBT

1.
2.

3.

Remote Repositories

A defined in Artifactory serves as a caching proxy for a registry managed at a remote URL.Remote Repository

Artifacts (such as JAR files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the remote
repository cache, however, you can not manually deploy artifacts to a remote SBT repository.

To define a remote sbt repository to proxy a remote sbt registry follow the steps below:
In the module, under click "New". Admin Repositories | Remote,
In the New Repository dialog, set the to , set the value, and specify the URL to the remote registryPackage Type SBT Repository Key
in the field as displayed below:URL

Click "Save & FInish"

The parameters needed to configure remote sbt repositories are identical to those used for Maven repositories. For more details, please refer to T
 under . ype-Specific Basic Settings Remote Repositories

Virtual Repositories

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted JARS and remote proxied sbt registries from a single URL defined for the virtual repository.
To define a virtual sbt repository, create a , set the to be sbt and select the underlying local and remotevirtual repository Package Type ,
sbt repositories to include in the settings tab.Basic

Page Contents
Overview
Configuration

Local Repositories
Remote Repositories
Virtual Repositories

Configuring sbt
Configuring Proxy Repositories
Configuring Artifact Resolution
Deploying Artifacts

Sample Project

http://www.jfrog.com/confluence/display/RTF/Remote+Repositories
https://www.jfrog.com/confluence/display/RTF/Remote+Repositories#RemoteRepositories-Type-SpecificBasicSettings
https://www.jfrog.com/confluence/display/RTF/Remote+Repositories#RemoteRepositories-Type-SpecificBasicSettings
http://www.jfrog.com/confluence/display/RTF/Virtual+Repositories

Click "Save & Finish" to create the repository.

The parameters needed to configure virtual sbt repositories are identical to those used for Maven repositories. For more details, please refer to Vir
.tual Repositories

Configuring sbt

To configure sbt to resolve and deploy artifacts through sbt repositories defined in Artifactory, simply select one of the sbt repositories in the Tree
Browser and click . Artifactory will display code snippets you can use in the relevant sbt files.Set Me Up

Configuring Proxy Repositories

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTD&title=Remote+Repositories
https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTD&title=Remote+Repositories

To configure a repository defined in Artifactory as a proxy repository for sbt, add the code snippet below to your file.~/.sbt/repositories

[repositories]
local
my-ivy-proxy-releases: http://<host>:<port>/artifactory/<repo-key>/,
[organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revisio
n]/[type]s/[artifact](-[classifier]).[ext]
my-maven-proxy-releases: http://<host>:<port>/artifactory/<repo-key>/

Where are the host URL and port on which Artifactory is running.<host>:<port>

For example, if you are running Artifactory on your local machine, on port 8081, and want to proxy Ivy repositories through a repository called sbt
, and proxy Maven repositories through a repository called you would use:-ivy-proxy sbt-maven-proxy

[repositories]
local
my-ivy-proxy-releases: http://localhost:8081/artifactory/sbt-ivy-proxy/,
[organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revisio
n]/[type]s/[artifact](-[classifier]).[ext]
my-maven-proxy-releases: http://localhost:8081/artifactory/sbt-maven-proxy/

To specify that all resolvers added in the sbt project should be ignored in favor of those configured in the repositories configuration, add the
following configuration option to the sbt launcher script:

-Dsbt.override.build.repos=true

You can also add this setting to your /usr/local/etc/sbtopts

For more details on sbt proxy repositories, please refer to in the .Proxy Repositories SBT Reference Manual

Configuring Artifact Resolution

To resolve artifacts through Artifactory, simply add the following code snippet to your file:build.sbt

resolvers += "Artifactory" at
"http://<host>:<port>/artifactory/<repo-key>/"

Where are the host URL and port on which Artifactory is running, and repo-key is the Artifactory repository through which you<host>:<port>
are resolving artifacts

Deploying Artifacts

To deploy sbt build artifacts to repositories in Artifactory, add the following code snippets to your file.build.sbt

For add:releases,

Proxying Maven and Ivy repositories separately
We recommend using different repositories to proxy Maven and Ivy repositories as a best practice described in Proxying Ivy

in the .Repositories SBT Reference Manual

http://www.scala-sbt.org/0.13/docs/Proxy-Repositories.html
http://www.scala-sbt.org/0.13/docs/index.html
http://www.scala-sbt.org/0.13/docs/Proxy-Repositories.html#Proxying+Ivy+Repositories
http://www.scala-sbt.org/0.13/docs/Proxy-Repositories.html#Proxying+Ivy+Repositories
http://www.scala-sbt.org/0.13/docs/index.html

1.
2.
3.
4.

5.

publishTo := Some("Artifactory Realm" at
"http://<host>:<port>/artifactory/<repo-key>")
credentials += Credentials("Artifactory Realm", "<host>", "<USERNAME>",
"<PASS>")

For add:snapshots,

publishTo := Some("Artifactory Realm" at
"http://<host>:<port>/artifactory/<repo-key>;build.timestamp=" + new
java.util.Date().getTime)
credentials += Credentials("Artifactory Realm", "<host>", "<USERNAME>",
"<PASS>")

Where are the host URL and port on which Artifactory is running, and repo-key is the Artifactory repository to which you are<host>:<port>
deploying artifacts.

Sample Project

A sample SBT project that uses Artifactory is available on and can be freely forked.GitHub

Vagrant Repositories

Overview

On top of Artifactory support for provides:general support for advanced artifact management, Vagrant

Distribution and sharing of Vagrant boxes within your organization.
Calculation of Metadata for Vagrant boxes hosted in Artifactory's local repositories
Extensive security features that give you fine-grained access control over boxes.
Support for flexible repository layouts that allow you to organize your boxes and assign access
privileges according to projects or development teams.
Smart searches for boxes.

Configuration

Local Repositories

To create a local Vagrant repository to host your Vagrant boxes, create a new Local Repository and set Vagr
as theant Package Type.

https://github.com/JFrogDev/project-examples/tree/master/sbt-example
http://docs.vagrantup.com/v2/boxes.html

Deploying Vagrant Boxes

Deploying a package using the UI

To deploy a Vagrant box to Artifactory, select the repository to which you want to deploy your Vagrant box and click Deploy..

The dialog is displayed with your selected repository as the and a default Deploy Target Repository Target path.

Page Contents
Overview
Configuration

Local
Repositories

Deploying Vagrant
Boxes

Deploying a
package using
the UI

Set
Me
Up

Deploying a
package using
Matrix
Parameters

Settin
g the
Targe
t Path

Provisioning Vagrant
Boxes
Authenticated Access
to Servers
Watch the Screencast

You can add properties you wish to attach to your box as parameters to the target path.

For example, to upload the box , and specify that its name is , with a provider of and theprecise64-virtualbox-1.0.0.box precise64 virtualbox
version is , you would enter:1.0.0

Specifying the Target Path

/precise64-virtualbox-1.0.0.box;box_name=precise64;box_provider=virtualbox
;box_version=1.0.0

Set Me Up

You can also select your repository and click to view the cURL command you can use to upload your box.Set Me Up

Once you have deployed your Vagrant box, and Artifactory has recalculated the repository index, your repository should be organized as
displayed below:

Deploying a package using Matrix Parameters

You can also deploy Vagrant boxes to Artifactory with an explicit URL using .Matrix Parameters

The URL is built similarly to the format as follows:Target Path

Be careful with spaces
Make sure you don't enter any superfluous spaces in the Target Path specification.

Deploying a package using Matrix Parameters

PUT "http://{Artifactory
URL}/{vagrantRepoKey}/{vagrantBoxName.box};box_name={name};box_provider={p
rovider};box_version={version}"

For example, to upload the box , and specify that it's name is , with a provider of and theprecise64-virtualbox-1.0.0.box precise64 virtualbox
version is , you would enter:1.0.0

Example

PUT
"http://localhost:8080/artifactory/vagrant-local/precise64-virtualbox-1.0.
0.box;box_name=precise64;box_provider=virtualbox;box_version=1.0.0"

Setting the Target Path

The can be anywhere in the repository, but it has to contain the 3 mandatory matrix parameters: , and Target Path box_name box_provider box
 and the file name must end with The format is as follows:_version .box.

Target Path Format

PUT "http://{Artifactory
URL}/{vagrantRepoKey}/{path/to/vagrantBoxName.box};box_name=[name];box_pro
vider=[provider];box_version=[version]"

name

The value to assign to the property used to specify the Vagrant box name.box_name

provider

The value to assign to the box property used to specify the Vagrant box (virtualbox/lxc or others)._provider provider

version

The value to assign to the property used to specify the Vagrant box version (must comply with box_version Vagrant's versioning
)schema

Provisioning Vagrant Boxes

Vagrant boxes are available through the following URL:

Vagrant box URL

vagrant box add "http://{Artifactory
URL}/api/vagrant/{vagrantRepoKey}/{boxName}"

Specifying the path to the box
With Vagrant client commands, make sure you don't specify the path to a box in the command. The path should be specified using
properties.

http://docs.vagrantup.com/v2/providers/basic_usage.html
http://docs.vagrantup.com/v2/boxes/versioning.html
http://docs.vagrantup.com/v2/boxes/versioning.html

For example, to provision a Vagrant box called precise64 from a repository called vagrant-local, you would construct it's name in the following
manner:

Provisioning a Vagrant box

vagrant box add
"http://localhost:8080/artifactory/api/vagrant/vagrant-local/precise64"

You can select the repository from which you want to provision your box, and click to get the specific URL for the selected repository.Set Me Up

You can also, optionally, pass parameters to specify a specific box version or provider. For example:

Provisioning a Vagrant box by version

vagrant box add
"http://localhost:8080/artifactory/api/vagrant/vagrant-local/precise64
--provider virtualbox --box-version 1.0.0"

In addition, boxes can be provisioned using properties; this is useful when you want to download the latest box tagged by a specific property.
The properties query parameter value should comply with . Using Properties in Deployment and Resolution

Examples:

Provisioning a Vagrant box by version

vagrant box add
"http://localhost:8080/artifactory/api/vagrant/vagrant-local/precise64?pro
perties=box_version%2B=3.0.0"

Note the '%2B' encoding on the command for the '+' symbol (which is for properties: key+=value) Mandatory

The following example downloads a box with , from .box_name=trusty64 box_version=3.0.0 path="folder"

It uses an optional "path" property (in addition to the mandatory properties) to specify the path where the box is stored in Artifactory. We will use
this property for resolution of the box.

vagrant box add
"http://localhost:8080/artifactory/api/vagrant/vagrant-local/trusty64?prop
erties=box_version%2B=3.0.0;path%2B=folder"

Note the format for resolution of multiple properties: key1+=value1;key2+=value2....

http://www.w3schools.com/tags/ref_urlencode.asp
https://www.jfrog.com/confluence/display/RTF/Using+Properties+in+Deployment+and+Resolution#UsingPropertiesinDeploymentandResolution-MandatoryProperties

1.
2.

1.
2.

Authenticated Access to Servers

If you need to access a secured Artifactory server that requires a username and password, you need to specify 2 environment variables:

ATLAS_TOKEN - A encoded string of the user credentials (formatted).Base64 username:password
VAGRANT_SERVER_URL - The base URL for the Artifactory server.

Setting ATLAS_TOKEN and VAGRANT_SERVER_URL

export ATLAS_TOKEN={token}
export VAGRANT_SERVER_URL=http://{Artifactory
URL}/api/vagrant/{vagrantRepoKey}
For example:
export ATLAS_TOKEN=YWRtaW46QVAzWGhzWmlDU29NVmtaQ2dCZEY3XXXXXXXX
export VAGRANT_SERVER_URL=http://localhost:8081/api/vagrant/vagrant-local

Watch the Screencast

VCS Repositories

Overview

Today, many technologies that are consumed as pure source files are deployed as binaries (for
example, PHP, Rails, Node.js, Ruby etc.). As a Binary Repository Manager, Artifactory completes
the picture by providing you an easy, safe and secure way to consume those binaries through
support for VCS repositories.

Artifactory support for VCS provides:

The ability to list all the tags and branches of any VCS repository.
Access to remote VCS repositories such as GitHub () andhttps://github.com
Bitbucket (through which provide the)https://bitbucket.org Remote Repositories

Getting the ATLAS_TOKEN directly from Artifactory
You can use the following command to get the ATLAS_TOKEN string directly from Artifactory:

$ curl -uadmin:password "http://localhost:8080/artifactory/api/vagrant/auth"

YWRtaW46QVAzWGhzWmlDU29NVmtaQ2dCZEY3XXXXXXXX

Page Contents
Overview
Configuration

Repository
Layout
Remote
Repositories

Git
Provide
rs
Using
Stash

http://www.base64encode.org/
http://usernamepassword/
http://bower.herokuapp.com/
ttps://github.com
https://bitbucket.org

2.

3.

4.

usual proxy and caching functionality.
On-demand local caching of tags and branches for later use in case of network instability
or hosted VCS service downtime.
The ability to assign access privileges according to projects or development teams.

Configuration

Repository Layout

VCS repositories require an appropriate repository layout to support a more hierarchical layout of
the cached items.

To use a hierarchical layout for your repository, you can either use the built-in layoutvcs-default
that comes with Artifactory out-of-the-box, or define a . This will ensure that differentCustom Layout
maintenance features like will work correctly.Version Cleanup

Below is an example of a named Custom Layout vcs-default:

or
Bitbuck
et

Using the API
Get VCS Tags
Get VCS
Branches
Download Tag
Download File
within a Tag
Download
Branch
Download File
within a Branch
Download
Release
Examples

Accessing Private VCS
Repositories

Repository layout is final
Once a remote repository is created you cannot change it's layout so we recommend that you define it beforehand.

Built-in Custom Layout: vcs-default
Artifactory's default layout for VCS repositories () can work with both GitHub and BitBucket. built-in vcs-default

https://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts#ManipulatingArtifacts-DeletingaVersion

You can configure this Custom Layout as displayed in the image above, or simply copy the below code snippet into the relevant section in
your Artifactory Central Configuration (in the module under |):Admin , Advanced Config Descriptor

<repoLayout>
 <name>vcs-default</name>

<artifactPathPattern>[orgPath]/[module]/[refs<tags|branches>]/[baseRev]/
[module]-[baseRev](-[fileItegRev])(-[classifier]).[ext]</artifactPathPat
tern>

<distinctiveDescriptorPathPattern>false</distinctiveDescriptorPathPatter
n>

<folderIntegrationRevisionRegExp>.*</folderIntegrationRevisionRegExp>

<fileIntegrationRevisionRegExp>[a-zA-Z0-9]{40}</fileIntegrationRevisionR
egExp>
</repoLayout>

1.
2.

If a repository package layout is in a corresponding folder hierarchy, the Artifactory Version Cleanup tool correctly detects previously installed
versions.

Searching for artifact versions using the REST API also works properly:

$ curl
"http://localhost:8081/artifactory/api/search/versions?g=jquery&a=jquery
&repos=github-cache"
{
 "results" : [{
 "version" : "2.0.3",
 "integration" : false
 }, {
 "version" : "master-062b5267d0a3538f1f6dee3df16da536b73061ea",
 "integration" : true
 }]
}

Remote Repositories

You need to create a Remote Repository which serves as a caching proxy for . If necessary, you can do the same for github.com bitbucket.org
or any other remote git repository that you need.

Artifacts (such as tar.gz files) requested from a remote repository are cached on demand. You can remove downloaded artifacts from the
remote repository cache, however, you can not manually deploy artifacts to a remote repository.

To create a remote repository to proxy or an on-prem GitHub Enterprise repository, follow the steps below:github.com
In the module, under click "New" and set to be the . Admin Repositories | Remote, VCS Package Type
Set the , and specify the to be (or your GitHub Enterprise URL endpoint) as displayedRepository Key URL https://github.com
below:

https://github.com
https://bitbucket.org

2.

3. Under VCS Settings, select the GitHub provider in the field and click "Save & Finish".Git Provider

Git Providers

Artifactory supports proxying the following Git providers out-of-the-box: GitHub, Bitbucket, Stash, a remote Artifactory instance or a custom
Git repository as displayed below:

Use the custom provider if you have a Git repository which does not exist in the pre-defined list. In this case, you need to provide Artifactory
with the download paths for your Git tarballs.

You do so by providing 4 placeholders:

Placeholder Description

{0} Identifies the username or organization name.

{1} Identifies the repository name.

{2} Identifies the branch or tag name.

{3} Identifies the file extension to download.

For example, GitHub exposes tarball downloads at: https://github.com/ / /archive/ .<user> <repo> <tag/branch> <extension>

Therefore, the custom download path configured for Artifactory should be {0}/{1}/archive/{2}.{3}

Using Stash or Bitbucket

If you are using Stash or BitBucket, you need to download and install the .BitBucket Server Archive Plugin

Once the JAR is downloaded, select it in your Stash UI, under Administration | Manage add-ons | Upload add-on.

Once you have installed the add-on you need to restart Stash.

Using the API

Artifactory exposes REST APIs that let you do the following with VCS repositories:

List all tags
List all branches
Download a specific tag
Download a file within a tag
Download a specific branch
Download a file within a branch
Download a release

To help you build the API call correctly, you can select the VCS repository you want to interact with and click .Set Me Up

VCS repositories must be prefixed with api/vcs in the path
When accessing a VCS repository through Artifactory, the repository URL must be prefixed with in the path.api/vcs

For example, if you are using Artifactory standalone or as a local service, you would access your VCS repositories using the
following URL:

<repository key>http://localhost:8081/artifactory/api/vcs/

Or, if you are using Artifactory SaaS, the URL would be:

https://<server name>.jfrog.io/<server name>/ <repository key>api/vcs/

https://marketplace.atlassian.com/plugins/com.atlassian.stash.plugin.stash-archive/versions
http://localhost:8081/artifactory/

Get VCS Tags

Description: Lists all VCS tags.
: 3.6.0Since

: Requires a privileged user (can be anonymous)Security
: GET /api/vcs/tags/{repoKey}/{userOrg}/{repo}Usage

: application/jsonProduces
:Sample Output

GET /api/vcs/tags/github/jquery/jquery
[{
 "name" : "1.0",
 "commitId" : "bcc8a837055fe720579628d758b7034d6b520f2e",
 "isBranch" : false
}, {
 "name" : "1.0.1",
 "commitId" : "bcc8a837055fe720579628d758b7034d6b520f2e",
 "isBranch" : false
}
...]

Get VCS Branches

Description: Lists all VCS branches.
: 3.6.0Since

: Requires a privileged user (can be anonymous)Security

: GET /api/vcs/branches/{repoKey}/{userOrg}/{repo}Usage
: application/jsonProduces

:Sample Output

GET /api/vcs/branches/github/jquery/jquery
[{
 "name" : "1.11-stable",
 "commitId" : "852529c9f148de6df205be01659a79731ce8ebef",
 "isBranch" : true
}, {
 "name" : "1.x-master",
 "commitId" : "73c1ceaf4280bd0318679c1ad832181f3f449814",
 "isBranch" : true
}
...]

Download Tag

Description: Download a complete tarball (tar.gz/zip, default tar.gz) of a tag.
Downloading can be executed conditionally according to properties by specifying the properties query param. In this case only cached
artifacts are searched.

 3.6.0Since:
 Requires a privileged user (can be anonymous)Security:

 GET /api/vcs/downloadTag/{repoKey}/{userOrg}/{repo}/{tag-name}?ext=tar.gz/zip (default tar.gz)Usage:
 Produces: application/octet-stream

Sample Output:

GET /api/vcs/downloadTag/github/jquery/jquery/2.0.1
<Tag binary content>

Download File within a Tag

Description: Download a specific file from within a tag.
 3.6.0Since:

 Requires a privileged user (can be anonymous)Security:
 GET /api/vcs/downloadTagFile/{repoKey}/{userOrg}/{repo}/{tag-name}!{file-path}Usage:

 Produces: application/octet-stream
Sample Output:

GET /api/vcs/downloadTagFile/github/jquery/jquery/2.0.1!AUTHORS.txt
<AUTHORS.txt content>

Download Branch

Description: Downloads a tarball (, default tar.gz) of a .tar.gz/zip complete branch
Downloading can be executed conditionally according to properties by specifying the properties query param. In this case only cached
artifacts are searched.

 3.6.0Since:
 Requires a privileged user (can be anonymous)Security:

 GET /api/vcs/downloadBranch/{repoKey}/{userOrg}/{repo}/{branch-name}?ext=tar.gz/zip[&properties=qa=approved]Usage:
 application/octet-streamProduces:

Sample Output:

http://tar.gz/zip

GET /api/vcs/downloadBranch/github/jquery/jquery/master
<Branch binary content>

Download File within a Branch

Description: Downloads a specific file from within a branch.
 3.6.0Since:

 Requires a privileged user (can be anonymous)Security:
 GET /api/vcs/downloadBranchFile/{repoKey}/{userOrg}/{repo}/{branch-name}!{file-path}Usage:

 application/octet-streamProduces:
:Sample Output

GET /api/vcs/downloadBranchFile/github/jquery/jquery/master!README.md
<AUTHORS.txt content>

Download Release

Description: Downloads a complete release tarball (tar.gz/zip, default tar.gz) of a tag from GitHub.
 4.3.0Since:

 Requires a privileged user (can be anonymous)Security:
 GitHub onlyVCS Usage:

 GET /api/vcs/downloadRelease/{repoKey}/{userOrg}/{repo}/{release-name}?ext=tar.gz/zip (default tar.gz)Usage:
 application/octet-streamProduces:

:Sample Output

GET
/api/vcs/downloadRelease/git-remote/google/protobuf/v3.0.0-beta-1?ext=ta
r.gz/zip
<Tag binary content>

Examples

Below are some examples of working with the API using cURL:

Download jquery master branch from GitHub

curl -i
"http://localhost:8080/artifactory/api/vcs/downloadBranch/github/jquery/
jquery/master"

Download a specific tag from Bitbucket

curl -i
"http://localhost:8080/artifactory/api/vcs/downloadTag/bitbucket/lsystem
s/angular-extended-notifications/1.0.0"

1.
2.
3.
4.

Download a file within the tag 2.0.1 of jquery, '!' is escaped as '%21'

curl -i
"http://localhost:8080/artifactory/api/vcs/downloadTagFile/github/jquery
/jquery/2.0.1%21AUTHORS.txt"

When files are already cached, you can conditionally request them using a properties query param:

Download a file within the tag 2.0.1 of jquery, '!' is escaped as '%21'

curl -i
"http://localhost:8080/artifactory/api/vcs/downloadBranch/github/jquery/
jquery/2.0.1?properties=qa=approved"

Accessing Private VCS Repositories

Artifactory also supports accessing private VCS repositories such as a private GitHub or any self-hosted authenticated one.

To do so, simply add your credentials under of the remote repository configuration panel.Advanced Settings

RPM Repositories

Overview

Artifactory is a fully-fledged RPM repository. As such, it enables:

RPM metadata calculation for RPMs hosted in Artifactory local repositories.
Provisioning RPMs directly from Artifactory to YUM clients.
Detailed RPM metadata views from Artifactory's web UI.
Providing GPG signatures that can be used by the YUM client to authenticate RPMs.

RPM Metadata for Hosted RPMs

The RPM metadata generated by Artifactory is identical to the basic-mode output of the Red Hat-based Linux
command .createrepo

A folder named is created in the configured location within a local repository with the followingrepodata
files in it:

File Description

Credentials when redirected
Some git providers (GitHub included) redirects download requests to a CDN provider.

You will need your credentials to pass along with the redirected request, simply check the and theLenient Host Authentication
credentials will pass transparently on each redirected request.

Valid for YUM also
The instructions on this page can be used for RPM repositories and YUM repositories
interchangeably.

http://createrepo.baseurl.org/

1.
2.

1.
2.

primary.xml.gz

Contains an XML file describing the primary metadata of each RPM archive.

filelists.xml.gz

Contains an XML file describing all the files contained within each RPM archive.

other.xml.gz

Contains an XML file describing miscellaneous information regarding each RPM archive.

repomd.xml

Contains information regarding all the other metadata files.

Triggering RPM Metadata Updates

When enabled, the metadata calculation is triggered automatically by some actions, and can also be invoked manually by others. Either way, the
metadata produced is served to YUM clients.

Automatic

RPM metadata is automatically calculated:

When deploying/removing/copying/moving an RPM file.
When performing content import (both system and repository imports).

Manual

You can manually invoke RPM metadata calculation:

By selecting the local repository in the Tree Browser and clicking in the menu.Recalculate Index Actions
Via Artifactory's .REST-API

YUM Support is Platform Independent!
Artifactory's RPM metadata calculation is based on pure Java.

It does not rely on the existence of the binary or on running external processes oncreaterepo

the host on which Artifactory is running.

Page Contents
Overview

RPM Metadata for Hosted RPMs
Triggering RPM Metadata Updates
Indexing the File List

Configuration
Local Repositories
Remote Repositories
Virtual Repositories

Signing RPM Metadata
Using Yum to Install RPM Packages
Using Yum to Deploy RPM Packages
YUM Groups

Attaching a YUM Group
YUM Group Commands
Setting Group Properties

Yum Authentication
Proxy Server Settings
SSL Setting

Using Yum Variables
Viewing Individual RPM Information

Metadata Fields as Properties
Watch the Screencast

Metadata calculation cleans up RPM metadata that already existed as a result of manual deployment or import. This includes RPM
metadata stored as SQLite database files.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateYUMRepositoryMetadata

Indexing the File List

The metadata file of an RPM repository contains a list of all the files in each package hosted in the repository. When thefilelists.xml
repository contains many packages, reindexing this file as a result of interactions with the YUM client can be resource intensive causing a
degradation of performance. Therefore, from version 5.4, reindexing this file is initially disabled when an RPM repository is created. To enable
indexing , set the checkbox. filelists.xml Enable File List Indexing

Note that the metadata file for a virtual repository may not be complete (i.e. it may not actually list all the files it aggregates) iffilelists.xml
any of the repositories it aggregates do not have file listing enabled. Note that if indexing of the file is disabled, it is not possiblefilelists.xml
to search for a file using the YUM client to determine which package wrote the queried file to the filesystem.

Configuration

To create an RPM local repository, select as the when you create the repository.RPM Package Type

Local Repositories

To enable automatic RPM metadata calculation on a local RPM repository, in the section of the settings screen, set RPM Settings Basic Auto-ca
.lculate RPM Metadata

Field Description

1.
2.

RPM Metadata
Folder Depth

Informs Artifactory under which level of directory to search for RPMs and save the directory.repodata

By default this value is 0 and refers to the repository's root folder. In this case, Artifactory searches the entire repository for RPMs
and saves the directory at .repodata $REPO-KEY/repodata

Using a different depth is useful in cases where generating metadata for a repository separates its artifacts by name, version and
architecture. This will allow you to create multiple RPM repositories under the same Artifactory RPM repository.

For example:
If the repository layout is similar to that shown below and you want to generate RPM metadata for every artifact divided by name,
set the to and the directory is saved at :Depth 1 repodata REPO_ROOT/ARTIFACT_NAME/repodata

REPO_ROOT/$ARTIFACT_NAME/$ARTIFACT_VERSION/$ARCHITECTURE/FILE_NAME
- or -
rpm-local/foo/1.0/x64/foo-1.0-x64.rpmm

Auto-calculate
RPM Metadata

 When set, RPM metadata calculation is automatically triggered by the actions described .above

Enable File
List Indexing

When set, RPM metadata calculation will also include indexing the metadata file.filelists.xml

RPM Group
File Names

A comma-separated list of associated with your RPM packages.YUM group files

Note that at each level (depth), the directory in your repository may contain a different group file name, however each repodata
 directory may contain only 1 group metadata file (multiple groups should be listed as different tags inside the XML file.repodata

For more details, please refer to the).YUM Documentation

Remote Repositories

Artifactory remote repositories support RPMs out-of-the-box, and there no need for any special configuration needed in order to work with RPMs
in a remote repository.

All you need to do is point your YUM client at the remote repository, and you are ready to use YUM with Artifactory.

To define a remote repository to proxy an RPM remote repository, follow the steps below:

In the module under click "New" to create a new remote repository.Admin Repositories | Remote,
Set the value, and specify the URL to the remote repository in the field as displayed below.Repository Key URL

When changing the configured depth of existing repository, packages indexed in the old depth might need to be
re-indexed or moved to a new depth to be available in the new configured depth, and YUM clients might need to change
their configuration to point to the new depth.depth.

Metadata calculation is asynchronous and does not happen immediately when triggered, whether or .automatically manually

Artifactory invokes the actual calculation only after a certain "quiet period", so the creation of metadata normally occurs only 1-2
minutes after the calculation was triggered.

http://yum.baseurl.org/wiki/YumGroups

2.

3.
4.

5.

6.

Click "Save & Finish"
Back in the module, in the select the repository. Note that in the Tree Browser, the repository name is appendedArtifacts Tree Browser,
with "-cache".
Click and copy the value of the tag.Set Me Up baseurl

Next, pcreate the /etc/yum.repos.d/ file and targetCentos.repo aste the following configuration into it:

[targetCentos]
name=targetCentos
baseurl=http://localhost:8081/artifactory/targetCentos/
enabled=1
gpgcheck=0

Virtual Repositories

1.

2.

A Virtual Repository defined in Artifactory aggregates packages from both local and remote repositories.
This allows you to access both locally hosted RPM packages and remote proxied RPM repositories from a single URL defined for the virtual
repository.
To define a virtual YUM repository, create a , set the to be and select the underlying local and remotevirtual repository Package Type RPM,
RPM repositories to include in the settings tab.Basic

To allow deploying packages to this repository, set the .Default Deployment Repository

Signing RPM Metadata

Artifactory supports using a GPG key to sign RPM metadata for authentication by the YUM client.

To generate a pair of GPG keys and upload them to Artifactory, please refer to .GPG Signing

Using Yum to Install RPM Packages

After configuring the repository in Artifactory, you need to configure your local machine to install software packages from it byrpm-local
executing the following steps:

Edit the file with root privilegesartifactory.repo

sudo vi /etc/yum.repos.d/artifactory.repo

Paste the following configuration into the artifactory.repo file:

[Artifactory]
name=Artifactory
baseurl=http://localhost:8081/artifactory/rpm-local/
enabled=1
gpgcheck=0

Now, every RPM file deployed to the root of the repository can be installed using:rpm-local

https://www.jfrog.com/confluence/display/RTF/Deploying+Artifacts#DeployingArtifacts-DeployingtoaVirtualRepository

1.

2.

3.

yum install <package_name>

Using Yum to Deploy RPM Packages

Once you have configured your local machine to install RPM packages from your RPM local repository, you may also deploy RPM packages to
the same repository or using the . using the UI REST API

Through the REST API you also have the option to or . deploy by checksum deploying from an archive

For example, to deploy an RPM package into a repository called you could use the following:rpm-local

curl -u<USERNAME>:<PASSWORD> -XPUT
http://localhost:8080/artifactory/rpm-local/<PATH_TO_METADATA_ROOT> -T
<TARGET_FILE_PATH>

where PATH_TO_METADATA_ROOT specifies the path from the repository root to the deploy folder.

YUM Groups

A YUM group is a set of RPM packages collected together for a specific purpose. For example, you might collect a set of "Development Tools”
together as a YUM group.

A group is specified by adding a group XML file to same directory as the RPM packages included in it. The group file contains the metadata of the
group including pointers to all the RPM files that make up the group.

Artifactory supports attaching a to the YUM calculation essentially mimicking the command.YUM Group file createrepo -g

A group file can also be created by running the following command:

sudo yum-groups-manager -n "My Group" --id=mygroup --save=mygroups.xml
--mandatory yum glibc rpm

Attaching a YUM Group

The process of attaching YUM group metadata to a local repository is simple:

Create an XML file in the groups format used by YUM. You can either just type it out manually using any text editor, or run the yum-grou
 command from .ps-manager yum-utils

Deploy the created group file to the folder. repodata
Artifactory will automatically perform the following steps:

Create the corresponding file and deploy it next to the deployed group XML file..gz
Invoke a YUM calculation on the local repository.
Attach the group information (both the XML and the file) to the file..gz repomd.xml

Make sure the group file names are listed in the field under the Basic tab of the repository configuration. ThisYUM Group File Names
tells Artifactory which files should be attached as repository group information.

YUM Group Commands

The following table lists some useful YUM group commands:

Command Description

yum groupinstall <Group ID> Install the YUM group. The group must be deployed to the root of the YUM local repository.

yum groupremove <Group ID> Remove the RPM group

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifact
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactbyChecksum
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactsfromArchive
http://yum.baseurl.org/wiki/YumGroups
http://linux.die.net/man/8/createrepo

yum groupupdate <Group ID> Update the RPM group. The group must be deployed to the root of the YUM local repository.

yum groupinfo <Group ID> List the RPM packages within the group.

yum grouplist | more List the YUM groups

Setting Group Properties

YUM group properties can be set in the file as follows:/etc/yum.config

Setting Allowed values Description

overwrite_groups 0 or 1 Determines YUM's behavior if two or more repositories offer package groups with the
same name.

If set to 1 then the group packages of the last matching repository will be used.

If set to 0 then the groups from all matching repositories will be merged together as one
large group.

groupremove_leaf_only 0 or 1 Determines YUM's behavior when the command is run.groupremove

If set to 0 (default) then all packages in the group will be removed.

If set to 1 then only those packages in the group that aren't required by another package
will be removed.

enable_group_conditionals 0 or 1 Determines whether YUM will allow the use of conditionals packages.

If set to 0 then conditionals are not allowed

If set to 1 (default) package conditionals are allowed.

group_package_types optional, default,
mandatory

Tells YUM which type of packages in groups will be installed when isgroupinstall
called. Default is: default, mandatory

Yum Authentication

Proxy Server Settings

If your organization uses a proxy server as an intermediary for Internet access, specify the settings in proxy /etc/yum.conf. If the proxy
server also requires authentication, you also need to specify the proxy_username, and proxy_password settings.

proxy=<proxy server url>
proxy_username=<user>
proxy_password=pass

If you use the yum plugin () to access the ULN, specify the and settings in yum-rhn-plugin enableProxy httpProxy /etc/sysconfig/rh
In addition, If the proxy server requires authentication, you also need to specify the , , and n/up2date. enableProxyAuth proxyUser proxyP

 settings as shown below.assword

enableProxy=1
httpProxy=<proxy server url>
enableProxyAuth=1
proxyUser=<user>
proxyPassword=<password>

SSL Setting

YUM supports SSL from version 3.2.27.

To secure a repository with SSL, execute the following steps:

Generate a private key and certificate using .OpenSSL
Define your protected repository in a file as follows:.repo

[protected]
name = SSL protected repository
baseurl=<secure repo url>
enabled=1
gpgcheck=1
gpgKey=<URL to public key>
sslverify=1
sslclientcert=<path to .cert file>
sslclientkey=<path to .key file>

where:
gpgkey is a URL pointing to the ASCII-armored GPG key file for the repository . This option is used if YUM needs a public key to verify a
package and the required key has not been imported into the RPM database.
If this option is set, YUM will automatically import the key from the specific URL. You will be prompted before the key is installed unless
the option is set.assumeyes

https://www.openssl.org/

Using Yum Variables

You can use and reference the following built-in variables in yum commands and in all YUM configuration files (i.e. /etc/yum.conf and all .rep
o files in the /etc/yum.repos.d/ directory):

Variable Description

$releasever

This is replaced with the package's version, as listed in . This defaults to the version of the distroverpkg redhat-release
 package.

$arch

This is replaced with your system's architecture, as listed by in Python.os.uname()

$basearch

This is replaced with your base architecture. For example, if =i686 then =i386$arch $basearch

The following code block is an example of how your file might look:/etc/yum.conf

[main]
cachedir=/var/cache/yum/$basearch/$releasever
keepcache=0
debuglevel=2
logfile=/var/log/yum.log
exactarch=1
obsoletes=1
gpgcheck=1
plugins=1
installonly_limit=3
[comments abridged]

Viewing Individual RPM Information

You can view all the metadata that annotates an RPM by choosing it in Artifactory's tree browser and selecting the tab:RPM Info

Metadata Fields as Properties

The corresponding RPM metadata fields are automatically added as properties of an RPM artifact in YUM repositories accessed through
Artifactory:

rpm.metadata.name
rpm.metadata.arch
rpm.metadata.version
rpm.metadata.release
rpm.metadata.epoch
rpm.metadata.group
rpm.metadata.vendor
rpm.metadata.summary

Properties can be used for searching and other functions. For more details please refer to .Properties

Watch the Screencast

Watch this short screencast to learn how easy it is to host RPMs in Artifactory.

1.
2.

Ecosystem Integration

Overview

As a universal artifact repository, Artifactory not only supports all major packaging formats, it is also
integrated with all major build tools and CI servers currently available. In addition, Artifactory is tightly
integrated with additional JFrog products such as , and JFrog Bintray JFrog Mission Control .JFrog Xray

Build Tool
Plugins

Resolve artifacts through Artifactory and deploy build artifacts to repositories in Artifactory
transparently with all common build tools like , , and .Maven Gradle Ivy SBT

CI System
Plugins

Deploy your build artifacts into Artifactory directly from industry standard CI servers such as
, , and .Jenkins TeamCity Bamboo TFS/MSBuild

JFrog
Bintray

Integrate with JFrog Bintray Universal Distribution for a fully automated software delivery
pipeline, end-to-end.

JFrog
Mission
Control

JFrog Mission Control provides universal repository management providing you with a
centralized dashboard to manage all your enterprise Artifactory instance.

JFrog Xray JFrog Xray provides universal artifact analysis for software artifacts, and reveals a variety of
issues at any stage of the software application lifecycle.

Maven Repository

Overview

As a Maven repository, Artifactory is both a source for artifacts needed for a build, and a target to deploy
artifacts generated in the build process. Maven is configured using a file located under yoursettings.xml

Maven home directory . For more information on(typically, this will be)/user.home/.m2/settings.xml
configuring Maven please refer to the .Apache Maven Project Settings Reference

The default values in this file configure Maven to work with a default set of repositories used to resolve
artifacts and a default set of plugins.

To work with Artifactory you need to configure Maven to perform the following two steps:

Resolve artifacts through Artifactory
Deploy artifacts to repositories through Artifactory

Once your Maven build is configured, Artifactory also provides tight integration with commonly used CI
servers (such as , or a) through a set of plugins that you can freely install and use.Jenkins TeamCity Bamboo

Page Contents
Overview

Read more
Maven Repository
Working with Gradle
Working with Ivy

Page Contents
Overview
Viewing Maven Artifacts
Resolving Artifacts through Artifactory

Automatically Generating Settings
Provisioning Dynamic Settings for Users
Manually Overriding the Built-in Repositories
Additional Mirror Any Setup
Configuring Authentication

Deploying Artifacts Through Artifactory
Setting Up Distribution Management
Setting Up Security in Maven Settings

Watch the Screencast

https://bintray.com/
https://www.jfrog.com/confluence/display/MC/Welcome+to+JFrog+Mission+Control
https://www.jfrog.com/confluence/display/XRAY/Welcome+to+JFrog+Xray
https://bintray.com/
https://bintray.com/
https://www.jfrog.com/confluence/display/MC/Welcome+to+JFrog+Mission+Control
https://www.jfrog.com/confluence/display/MC/Welcome+to+JFrog+Mission+Control
https://www.jfrog.com/confluence/display/MC/Welcome+to+JFrog+Mission+Control
https://www.jfrog.com/confluence/display/XRAY/Welcome+to+JFrog+Xray
http://user.home/.m2/settings.xml
https://maven.apache.org/settings.html
http://www.jfrog.com/confluence/display/RTF/TeamCity+Artifactory+Plug-in
http://www.jfrog.com/confluence/display/RTF/Bamboo+Artifactory+Plug-in

Viewing Maven Artifacts

If you select a Maven metadata file (maven-metadata.xml) or a POM file (pom.xml) in the Tree Browser, Artifactory provides corresponding tabs
allowing you to view details on the selected item.
Maven Metadata View

POM View

Resolving Artifacts through Artifactory

To configure Maven to resolve artifacts through Artifactory you need to modify the You can generate one automatically, orsettings.xml.
modify it manually.

Automatically Generating Settings

To make it easy for you to configure Maven to work with Artifactory, Artifactory can automatically generate a settings.xml file which you can
save under your Maven home directory.

The definitions in the generated file override the default and repositories of Maven.settings.xml central snapshot

In the of the module, select In the dialog, set in the field and clickArtifact Repository Browser Artifacts Set Me Up. Set Me Up Maven Tool
"Generate Maven Settings". You can now specify the repositories you want to configure for Maven.

Releases The repository from which to resolve releases

Snapshots The repository from which to resolve snapshots

Read More
Maven Artifactory Plugin

Plugin
Releases

The repository from which to resolve plugin releases

Plugin
Snapshots

The repository from which to resolve plugin snapshots

Mirror Any When set, you can select a repository that should mirror
any other repository. For more details please refer to Ad
ditional SetupMirror Any

Once you have configured the settings for Maven you can click "Generate Settings" to generate and save the settings.xml file.

Provisioning Dynamic Settings for Users

You can deploy and provision a dynamic settings template for your users.

Once downloaded, settings are generated according to your own logic and can automatically include user authentication information.

For more details, please refer to the under .Provisioning Build Tool Settings Filtered Resources

Manually Overriding the Built-in Repositories

To override the built-in and repositories of Maven, you need to ensure that Artifactory is correctly configured so that no requestcentral snapshot
is ever sent directly to them.

To do so, you need to insert the following into your parent POM or settings.xml (under an active profile):

Using the automatically generated file as a template
You can use the automatically generated file as an example when defining the repositories to use for resolvingsettings.xml
artifacts.

<repositories>
 <repository>
 <id>central</id>
 <url>http://[host]:[port]/artifactory/libs-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>snapshots</id>
 <url>http://[host]:[port]/artifactory/libs-snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <url>http://[host]:[port]/artifactory/plugins-release</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>snapshots</id>
 <url>http://[host]:[port]/artifactory/plugins-snapshot</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>

Additional Mirror Any Setup

In addition to , you can use the setting to redirect all requests to a Maven repository throughoverriding built-in Maven repositories Mirror Any
Artifactory, including those defined inside POMs of plug-ins and third party dependencies. (While it does not adhere to best practices, it is not
uncommon for POMs to reference Maven repositories directly). This ensures no unexpected requests directly to Maven are introduced by such
POMs.

You can either check in the screen when generating your file, or you can manually insert theMirror Any Maven Settings settings.xml
following:

Using the Default Global Repository
You can configure Maven to run with the so that any request for an artifact will go through Artifactory whichDefault Global Repository
will search through all of the local and remote repositories defined in the system.

We recommend that you fine tune Artifactory to search through a more specific set of repositories by defining a dedicated virtual (or
local) repository, and configure Maven to use that to resolve artifacts instead.

<mirrors>
 <mirror>
 <id>artifactory</id>
 <mirrorOf>*</mirrorOf>
 <url>http://[host]:[port]/artifactory/[virtual repository]</url>
 <name>Artifactory</name>
 </mirror>
</mirrors>

Configuring Authentication

Artifactory requires user authentication in three cases:

Anonymous access has been disabled by unchecking the global setting.Allow Anonymous Access
You want to restrict access to repositories to a limited set of users
When deploying builds (while theoretically possible, it is uncommon to allow anonymous access to deployment repositories)

Authentication is configured in Maven using <server> elements in the settings.xml file.

Each <repository> and <mirror> element specified in the file must have a corresponding <server> element with a matching <id> that specifies the
username and password.

The sample snippet below emphasizes that the element with has a corresponding element with <repository> id=central <server> id=ce
ntral.

Similarly, the element with has a corresponding element with . <repository> id=snapshots <server> id=snapshots

The same would hold for <mirror> elements that require authentication.

In both cases the username is and the password is encrypted.admin

Care when using "Mirror Any"
While this is a convenient way to ensure Maven only accesses repositories through Artifactory, it defines a coarse proxying rule that
does not differentiate between releases and snapshots and relies on the single specified repository to do this resolution.

Using Mirrors
For more information on using mirrors please refer to in the Apache Maven documentation.Using Mirrors for Repositories

Sample snippet from settings.xml

...

<servers>

<server>

<id> </id>central
<username>admin</username>
<password>\{DESede\}kFposSPUydYZf89Sy/o4wA==</password>

</server>

<server>

<id> </id>snapshots
<username>admin</username>
<password>\{DESede\}kFposSPUydYZf89Sy/o4wA==</password>

</server>

</servers>

<profiles>

<profile>

https://maven.apache.org/guides/mini/guide-mirror-settings.html

Deploying Artifacts Through Artifactory

Setting Up Distribution Management

To deploy build artifacts through Artifactory you must add a deployment element with the URL of a target local repository to which you want to
deploy your artifacts.

To make this easier, Artifactory displays a code snippet that you can use as your deployment element. I seln the Artifacts module Tree Browser
ect the repository you want to deploy to and click The code snippet is displayed under Set Me UP. Deploy.

<repositories>

<repository>

<id> </id>central
<snapshots>
<enabled>false</enabled>
</snapshots>
<name>libs-release</name>
<url> </url>http://localhost:8081/artifactory/libs-release

</repository>
<repository>

<id> </id>snapshots
<snapshots />
<name>libs-snapshot</name>
<url>http://localhost:8081/artifactory/libs-snapshot</url>

</repository>

</repositories>

</profile>

</profiles>

...

Artifactory encrypts passwords for safe and secure access to Maven repositories
To avoid having to use cleartext passwords, Artifactory in the settings.xml file that is generated. For example, inencrypts the password
the above sample snippet we can see that the admin user name is specified in cleartext, but the password is encrypted:

<username>admin</username>
<password>\{DESede\}kFposSPUydYZf89Sy/o4wA==</password>

Synchronizing authentication details for repositories with the same URL
If you have repository definitions (either for deployment or download) that use , Maven takes the authentication detailsthe same URL
(from the corresponding server definition) of the first repository encountered and uses it for the life-time of the running build for all
repositories with the same URL. This may cause authentication to fail (producing 401 errors for downloads or deployment) if you are
using different authentication details for the respective repositories. This is inherent Maven behavior and can only be solved by using
the same authentication details for all repository definitions with the same URL in your settings.xml.

http://localhost:8081/artifactory/libs-release
http://localhost:8081/artifactory/libs-snapshot

Setting Up Security in Maven Settings

When deploying your Maven builds through Artifactory, you must ensure that any element in your distribution settings has a<repository>
corresponding element in the file with a valid username and password as described in abo<server> settings.xml Configuring Authentication
ve. For the example displayed above, the Maven client expects to find a element in the with <server> settings.xml <id>artifactory</i

 specified.d>

Watch the Screencast

Maven Artifactory Plugin

Overview

Artifactory supports Maven builds on commonly used build servers such as , and tJenkins TeamCity Bamboo
hrough corresponding plugins for these CI servers. However, in the last few years, the popularity of

cloud-based build servers has grown spawning products like Travis CI, drone.io and Codeship.
The problem, is that none of these are "pluggable" in the traditional way. Therefore,
to support Maven builds running on cloud-based build servers, you can use the Ma

 ven Artifactory Plugin.

Remember that you can not deploy build artifacts to remote, so you should not use them in a deployment element.

Anonymous access to distribution repository
If anonymous access to your distribution repository is allowed then there is no need to configure authentication. However, while it is
technically possible, this is not good practice and is therefore an unlikely scenario

http://www.jfrog.com/confluence/display/RTF/Jenkins+%28Hudson%29+Artifactory+Plug-in
http://www.jfrog.com/confluence/display/RTF/TeamCity+Artifactory+Plug-in
http://www.jfrog.com/confluence/display/RTF/Bamboo+Artifactory+Plug-in
https://travis-ci.org/
https://drone.io/
https://www.codeship.io/

1.
2.
3.

You can use the Maven Artifactory plugin if a plugin for your CI server is not available (for example,
cloud-based CI servers), or if you have very specific needs that are not supported by your CI server plugin.

Through the Maven Artifactory Plugin, Artifactory is fully integrated with Maven builds and allows you to do the following:

Attach properties to published artifacts in Artifactory metadata.
Capture a object which can be passed to the to provide a fully traceable build context.BuildInfo Artifactory REST API
Automatically publish all build artifacts at the end of the build.

Usage

The Maven Artifactory Plugin coordinates are org.jfrog. 6.1. buildinfo:artifactory-maven-plugin:2. It can be viewed on ,Bintray
 and can be download via the JCenter Repository.

A typical build plugin configuration would be as follows:

Use only one plugin
However your build ecosystem is set up, make sure that you are only using one of the Artifactory pl

(either for your CI server, or for your build tool) to avoid clashing instructions and duplicatedugins
builds.

Source Code Available!
The Maven Artifactory Plugin is an which you can freely browse andopen-source project on GitHub
fork.

Page Contents
Overview
Usage
Configuration
Reading Environment Variables and System Properties

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-BuildInfo
http://buildinfoartifactory-maven-plugin:2.2.2
https://bintray.com/jfrog/jfrog-jars/artifactory-maven-plugin
http://jcenter.bintray.com
https://github.com/JFrogDev/build-info/tree/master/build-info-extractor-maven3-plugin

<build>
 <plugins>
 ...
 <plugin>
 <groupId>org.jfrog.buildinfo</groupId>
 <artifactId>artifactory-maven-plugin</artifactId>
 <version>2.6.1</version>
 <inherited>false</inherited>
 <executions>
 <execution>
 <id>build-info</id>
 <goals>
 <goal>publish</goal>
 </goals>
 <configuration>
 <deployProperties>
 <gradle>awesome</gradle>
 <review.team>qa</review.team>
 </deployProperties>
 <publisher>
 <contextUrl>https://oss.jfrog.org</contextUrl>
 <username>deployer</username>
 <password>{DESede}...</password>
 <repoKey>libs-release-local</repoKey>

<snapshotRepoKey>libs-snapshot-local</snapshotRepoKey>
 </publisher>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

The plugin's invocation phase is by default and we recommend you don't change it so the plugin is called as early as possible in the" "validate
lifecycle of your Maven build.

Configuration

The example above configures the Artifactory , to deploy build artifacts either to the or the repository of the publisher releases snapshots public
 when is executed OSS instance of Artifactory mvn deploy .

However, the Maven Artifactory Plugin provides many other configurations which you can see by running and are displayedmvn -X validate
below:

<deployProperties> .. </deployProperties>
<artifactory>
 <envVarsExcludePatterns> .. </envVarsExcludePatterns>
 <envVarsIncludePatterns> .. </envVarsIncludePatterns>
 <includeEnvVars>true/false</includeEnvVars>
 <timeoutSec>N</timeoutSec>
</artifactory>

https://oss.jfrog.org/libs-releases-local
https://oss.jfrog.org/libs-snapshots-local
http://oss.jfrog.org/
http://oss.jfrog.org/
https://oss.jfrog.org/

<publisher>
 <contextUrl> .. </contextUrl>
 <username> .. </username>
 <password> .. </password>
 <repoKey> .. </repoKey>
 <snapshotRepoKey> .. </snapshotRepoKey>
 <publishArtifacts>true/false</publishArtifacts>
 <publishBuildInfo>true/false</publishBuildInfo>
 <excludePatterns> .. </excludePatterns>
 <includePatterns> .. </includePatterns>

<filterExcludedArtifactsFromBuild>true/false</filterExcludedArtifactsFromB
uild>
 <!-- If true build information published to Artifactory will include
implicit project as well as build-time dependencies -->
 <recordAllDependencies>true/false</recordAllDependencies>
 </publisher>
<buildInfo>
 <agentName> .. </agentName>
 <agentVersion> .. </agentVersion>
 <buildName> .. </buildName>
 <buildNumber> .. </buildNumber>
 <buildNumbersNotToDelete> .. </buildNumbersNotToDelete>
 <buildRetentionMaxDays>N</buildRetentionMaxDays>
 <buildRetentionCount>N</buildRetentionCount>
 <buildUrl> .. </buildUrl>
 <principal> .. </principal>
 <vcsRevision> .. </vcsRevision>
</buildInfo>
<licenses>
 <autoDiscover>true/false</autoDiscover>
 <includePublishedArtifacts>true/false</includePublishedArtifacts>
 <runChecks>true/false</runChecks>
 <scopes> .. </scopes>
 <violationRecipients> .. </violationRecipients>
</licenses>
<blackDuck>
 <appName> .. </appName>
 <appVersion> .. </appVersion>

<autoCreateMissingComponentRequests>true/false</autoCreateMissingComponent
Requests>

<autoDiscardStaleComponentRequests>true/false</autoDiscardStaleComponentRe
quests>
 <includePublishedArtifacts>true/false</includePublishedArtifacts>
 <reportRecipients> .. </reportRecipients>

 <scopes> .. </scopes>
</blackDuck>

<deployProperties> Specifies you can attach to published artifacts. For example:properties

<deployProperties>
 <groupId>${project.groupId}</groupId>
 <artifactId>${project.artifactId}</artifactId>
 <version>${project.version}</version>
</deployProperties>

<artifactory> Specifies whether environment variables are published as part of metadata and which include orBuildInfo
exclude patterns are applied when variables are collected

<publisher> Defines an Artifactory repository where build artifacts should be published using a combination of a <contextUrl>
and <repoKey>/<snapshotRepoKey>.

Build artifacts are deployed if the goal is executed and only after all modules are builtdeploy

<buildInfo> Updates metadata published together with build artifacts. You can configure whether or not BuildInfo BuildInfo
metadata is published using the configuration.<publisher>

<licenses> Controls auto-discovery and violation monitoring of third-party licenses

<blackDuck> Configures Artifactory integration. Note that you need to specify toBlackDuck <runChecks>true</runChecks>
activate it.

Reading Environment Variables and System Properties

Every build server provides its own set of environment variables. You can utilize these variables when configuring the plugin as shown in the
following example:

<publisher>

<contextUrl>{{ARTIFACTORY_CONTEXT_URL|"https://oss.jfrog.org"}}</contextUr
l>
 ...
</publisher>
<buildInfo>

<buildNumber>{{DRONE_BUILD_NUMBER|TRAVIS_BUILD_NUMBER|CI_BUILD_NUMBER|BUIL
D_NUMBER|"333"}}</buildNumber>
 <buildUrl>{{DRONE_BUILD_URL|CI_BUILD_URL|BUILD_URL}}</buildUrl>
</buildInfo>

Any plugin configuration value can contain several expressions. Each expression can contain a single or multiple environment{{ .. }}
variables or system properties to be used.

The expression syntax allows you to provide enough variables to accommodate any build server requirements according to the following rules:

Each expression can contain several variables, separated by a ' | ' character to be used with a configuration value
The last value in a list is the default that will be used if none of the previous variables is available as an environment variable or a system
property

http://black%20duck%20code%20center%20integration/

1.

2.

a.
b.

c.
d.

For example, for the expression the plugin will attempt to locate environment variable , then system property {{V1|V2|"defaultValue"}} V1
, then environment variable or system property , and if none of these is available, " " will be used. V1 V2 defaultValue

If the last value is not a string (as denoted by the quotation marks) and the variable cannot be resolved, will be used (for example, for null
expression where neither nor can be resolved). {{V1|V2}} V1 V2

Examples

The below project provides a working example of using the plugin:

Maven Artifactory Plugin

Working with Gradle

Overview

Artifactory provides tight integration with Gradle. All that is needed is a simple modification of your build.gr
 script file with a few configuration parameters.adle

Both the new and older publishing mechanisms of Gradle are supported, however some of the steps to
configure the depend on the version you are using, and these are detailed in theGradle Artifactory Plugin
documentation pages.

The Gradle Artifactory Plugin can be used whether you are running builds using a CI server, or running
standalone builds. In either case, you should note the following points:

CI Server Integration
When running Gradle builds in your continuous integration server, we recommend using one of
the Artifactory Plugins for , or . Jenkins TeamCity Bamboo
You can use your build server UI to configure resolving and publishing artifacts through Artifactory to
capture exhaustive build information.
Standalone Integration
The Gradle Artifactory plugin offers a simple DSL to perform the following steps in your Gradle build:

Define the default dependency resolution from Artifactory.
Define configurations that publish artifacts to Artifactory after a full (multi-module) successful
build.
Define properties that should be attached to published artifacts in Artifactory metadata.
Capture and publish a object to the Artifactory build-info REST API to provide abuild-info
fully traceable build context.

The following sections describe the main configuration steps and provide a sample Gradle script that shows
the information you need to get started using Gradle with Artifactory.

You can attach additional artifacts to your module using the .Build Helper Maven Plugin

Keeping your Artifactory publisher credentials secure
If you prefer to keep your Artifactory publisher credentials (username and password) secure (rather than providing them as free text in
the plugin configuration), we recommend storing them as environment variables or system properties and have the plugin read them
when needed. Since the usual Maven deploy does not support environment variables or system properties in , thissettings.xml
capability is unique to the Maven Artifactory Plugin.

Source Code Available!
This Gradle Artifactory Plugin is an which you can freely browseopen source project on GitHub
and fork.

Page Contents
Overview
Configuring Artifact Resolution

https://github.com/JFrogDev/project-examples/tree/master/artifactory-maven-plugin-example
http://www.jfrog.com/confluence/display/RTF/Gradle+Artifactory+Plugin
http://mojo.codehaus.org/build-helper-maven-plugin
https://github.com/JFrogDev/build-info/tree/master/build-info-extractor-gradle

Configuring Artifact Resolution

Using the Gradle Build Script Generator

With Artifactory's , you can easily create a Gradle init script that handles resolution. Gradle Build Script Generator

In the of the module, select In the dialog, set in the field and clickArtifact Repository Browser Artifacts Set Me Up. Set Me Up Gradle Tool
"Generate Gradle Settings". You can now specify the settings you want to configure for Gradle.

Plugin/Libs
Resolver

The repository that should be used to resolve
plugins/libraries

Use
Maven/Use
Ivy

When checked, specifies that resolving should be
done using the Maven/Ivy pattern

Libs
Publisher

The repository that should be used to publish libraries

Use
Maven/Use
Ivy

When checked, specifies that library should be
published using a Maven/Ivy descriptor

Repository
Layout

Specifies the layout of the corresponding repository

Once you have configured the settings for Gradle you can click
"Generate Settings" to generate and save the andbuild.gradle gr
adle.properties file.

Using the Gradle Build Script Generator
Provisioning Dynamic Settings for Users

Sample Build Script and Properties
Running Gradle
Dependency Declaration Snippets
Optimizing Gradle Builds

Configuring Artifactory
Configuring Gradle
Replication Across Different Sites

Watch the Screencast

Read More
Gradle Artifactory Plugin

Provisioning Dynamic Settings for Users

Artifactory lets you deploy and provision a dynamic settings template for your users. Once downloaded, settings are generated according to your
own logic and can automatically include user authentication information.

For more details, please refer to section under .Provisioning Build Tool Settings Filtered Resources

Sample Build Script and Properties

You can download sample scripts from the JFrog .GitHub public repository

Running Gradle

For Gradle to build your project and upload generated artifacts to Artifactory, you need to run the following command:

gradle artifactoryPublish

For more details on building your projects with Gradle, please refer to the .Gradle Documentation

Dependency Declaration Snippets

Artifactory can provide you with dependency declaration code snippets that you can simply copy into the sectioGradle Dependency Declaration
n of your file.build.gradle

In the of the module, drill down in the repository tree and select a relevant artifact. Under the Artifact Repository Browser Artifacts Dependenc
 section, select to display the corresponding dependency declaration that you can copy into your file.y Declaration Gradle build.gradle

Getting debug information from Gradle
We highly recommend running Gradle with the option to get useful and readable information if something goes wrong with your-d
build.

https://www.jfrog.com/confluence/display/RTF/Filtered+Resources#FilteredResources-ProvisioningBuildToolSettings
https://github.com/JFrogDev/project-examples
http://www.gradle.org/documentation

1.
2.

Optimizing Gradle Builds

From V3.5, Gradle introduces a build cache feature that lets you reuse outputs produced by other builds, instead of rebuilding them, and
dramatically reduce build time. This feature supports not only your local filesystem cache, but also remote caches that can be shared across your
organization.

To optimize your Gradle builds:

 to be your Gradle build cacheConfigure Artifactory
Configure Gradle to use the build cache in Artifactory

Configuring Artifactory

Artifactory can be used as the Gradle build cache by simply creating a in Artifactory.generic repository

For example, the following is a where the CI server builds a project and stores the build cache in Artifactory for later use by thesimple use case
following builds. This will greatly improve the build time in your local developer environments.

The Gradle team has measured an average in total build time, and even a reduction of 80% with some of theirreduction of 25%
commits!

https://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-GenericRepositories
https://github.com/JFrogDev/project-examples/tree/master/gradle-examples/4/gradle-cache-example
https://blog.gradle.org/introducing-gradle-build-cache

Configuring Gradle

Configure Gradle to use the build cache and point it to Artifactory.

gradle.properties

artifactory_user=admin
artifactory_password=password
artifactory_url=http://localhost:8081/artifactory
org.gradle.caching=true
gradle.cache.push=false

settings.gradle

Set the h property to true, on the CI server, by overriding it using .gradle.cache.pus -Pgradle.cache.push=true

include "shared", "api", "services:webservice"

ext.isPush = getProperty('gradle.cache.push')

buildCache {
 local {
 enabled = false
 }
 remote(HttpBuildCache) {
 url = "${artifactory_url}/gradle-cache-example/"
 credentials {
 username = "${artifactory_user}"
 password = "${artifactory_password}"
 }
 push = isPush
 }
}

Replication Across Different Sites

You can also use Artifactory as a that’s synchronized across both local and remote teams using push and pull repositorydistributed cache
replication, and improve both your local and remote build times.

Watch the Screencast

Gradle Artifactory Plugin

Overview

The Gradle Artifactory Plugin allows you to deploy your build artifacts and build information to Artifactory and
also to resolve your build dependencies from Artifactory.

Latest Version

For the latest version number of the Gradle Artifactory Plugin, please refer to the download page on Bintray
.

Download and Installation

Automatic Installation

Build script snippet for use in all Gradle versions

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath
"org.jfrog.buildinfo:build-info-extractor-gradle:late
st.release"
 }
}
apply plugin: "com.jfrog.artifactory"

https://bintray.com/jfrog/jfrog-jars/build-info-extractor-gradle

Build script snippet for use in Gradle 2.1 and above

plugins {
 id "com.jfrog.artifactory" version "latest.release"
}

Manual Installation

The latest plugin jar file can be . Download and copy the downloaded from JFrog Bintray build-info-extractor-gradle-<x.y.z>-uber.j
 into your gradle home plugins directory (). ar ~/.gradle/plugins

Then add the following line to your project build script:

buildscript.dependencies.classpath files(new File(gradle.gradleUserHomeDir,
'plugins/build-info-extractor-gradle-<x.y.z>-uber.jar'))

Configuration

Using the Artifactory Plugin DSL

The Gradle Artifactory plugin is configured using its own Convention DSL inside the script of your root project.build.gradle

The syntax of the Convention DSL is described below:

We highly recommend also using our as a reference when configuring the DSL in your build scripts.examples

artifactory {
 +contextUrl = 'http://repo.myorg.com/artifactory' //The base
Artifactory URL if not overridden by the publisher/resolver
 publish {
 contextUrl = 'http://repo.myorg.com/artifactory' //The base
Artifactory URL for the publisher
 //A closure defining publishing information
 repository {

Currently the "plugins" notation cannot be used for applying the plugin for sub projects, when used
from the root build script

Page Contents
Overview
Latest Version
Download and Installation

Automatic Installation
Manual Installation
Configuration

Using the Artifactory Plugin DSL
The Artifactory Project Publish Task
Controlling Resolution and Publication in Sub-Projects

Examples

Mandatory items within the relevant context are prefixed with '+'. All other items are optional.

https://bintray.com/jfrog/jfrog-jars/build-info-extractor-gradle
https://github.com/JFrogDev/project-examples/tree/master/gradle-examples

 +repoKey = 'integration-libs' //The Artifactory repository key to
publish to
 +username = 'deployer' //The publisher user name
 password = 'deployerPaS*' //The publisher password
 ivy {
 //Optional section for configuring Ivy publication. Assumes Maven
repo layout if not specified
 ivyLayout =
'[organization]/[module]/[revision]/[type]s/ivy-[revision].xml'
 artifactLayout =
'[organization]/[module]/[revision]/[module]-[revision](-[classifier]).[ex
t]'
 mavenCompatible = true //Convert any dots in an [organization]
layout value to path separators, similar to Maven's groupId-to-path
conversion. True if not specified
 }
 }
 defaults {
 //List of Gradle Publications (names or objects) from which to collect
the list of artifacts to be deployed to Artifactory.
 publications ('ivyJava','mavenJava','foo')
 ////List of Gradle Configurations (names or objects) from which to
collect the list of artifacts to be deployed to Artifactory.
 publishConfigs('archives', 'published')
 properties = ['qa.level': 'basic', 'q.os': 'win32, deb, osx']
//Optional map of properties to attach to all published artifacts
 /*
 The properties closure in the "defaults" task uses the following
syntax:
 properties {
 publicationName 'group:module:version:classifier@type',
key1:'value1', key2:'value2', ...
 }
 publicationName: A valid name for a publication of the project. You
can use all to apply the properties to all publications.
 group:module:version:classifier@type: A filter that specifies the
artifacts to which properties should be attached.
 The filter may contain wildcards: * for all characters or ? for a single
character.
 key:'value': A list of key/value properties that will be attached
to to the published artifacts matching the filter.
 */
 properties {
//Optional closure to attach properties to artifacts based on a list of
artifact patterns per project publication
 foo '*:*:*:*@*', platform: 'linux', 'win64'
//The property platform=linux,win64 will be set on all artifacts in foo
publication
 mavenJava 'org.jfrog:*:*:*@*', key1: 'val1'
//The property key1=val1 will be set on all artifacts part of the mavenJava
publication and with group org.jfrog
 all 'org.jfrog:shared:1.?:*@*', key2: 'val2', key3: 'val3'
//The properties key2 and key3 will be set on all published artifacts (all

publications) with group:artifact:version
 //equal to org.jfrog:shared:1.?
 }
 publishBuildInfo = true //Publish build-info to Artifactory (true
by default)
 publishArtifacts = true //Publish artifacts to Artifactory (true
by default)
 publishPom = true //Publish generated POM files to Artifactory
(true by default).
 publishIvy = true //Publish generated Ivy descriptor files to
Artifactory (true by default).
 }
 }
 resolve {
 contextUrl = 'http://repo.myorg.com/artifactory' //The base
Artifactory URL for the resolver
 repository {
 +repoKey = 'libs-releases' //The Artifactory (preferably virtual)
repository key to resolve from
 username = 'resolver' //Optional resolver user name (leave out
to use anonymous resolution)
 password = 'resolverPaS*' //The resolver password
 maven = true //Resolve Maven-style artifacts and
descriptors (true by default)
 ivy {
 //Optional section for configuring Ivy-style resolution. Assumes
Maven repo layout if If not specified
 ivyLayout = ...
 artifactLayout = ...
 mavenCompatible = ...
 }
 }
 }
 // Redefine basic properties of the build info object
 clientConfig.setIncludeEnvVars(true)
 clientConfig.setEnvVarsExcludePatterns('*password*,*secret*')
 clientConfig.setEnvVarsIncludePatterns('*not-secret*')
 clientConfig.info.addEnvironmentProperty('test.adding.dynVar',new
java.util.Date().toString())
 clientConfig.info.setBuildName('new-strange-name')
 clientConfig.info.setBuildNumber('' + new
java.util.Random(System.currentTimeMillis()).nextInt(20000))
 clientConfig.timeout = 600 // Artifactory connection timeout (in
seconds). The default timeout is 300 seconds.

}

 Using the old Gradle publishing mechanism?

If you are using the old Gradle publishing mechanism, you need to replace
the above defaults closure with the following one:

defaults {
 //This closure defines defaults for all 'artifactoryPublish' tasks
of all projects the plugin is applied to
 publishConfigs ('a','b','foo')
//Optional list of configurations (names or objects) to publish.

//The 'archives' configuration is used if it exists and no configuration is
specified
 mavenDescriptor = '/home/froggy/projects/proj-a/fly-1.0.pom'
//Optional alternative path for a POM to be published (can be relative to
project baseDir)
 ivyDescriptor = 'fly-1.0-ivy.xml'
//Optional alternative path for an ivy file to be published (can be
relative to project baseDir)
 properties = ['qa.level': 'basic', 'q.os': 'win32, deb, osx']
//Optional map of properties to attach to all published artifacts
 /*
 The properties closure in the "defaults" task uses the following
syntax:
 properties {
 configuration 'group:module:version:classifier@type',
key1:'value1', key2:'value2', ...
 }
 configuration: A configuration that is a valid name of a
configuration of the project. You can use all to apply the properties to
all configurations.
 group:module:version:classifier@type: An artifact specification
filter for matching the artifacts to which properties should be attached.
 The filter may contain wildcards: * for all characters or ? for a single
character.
 key:'value': A list of key/value(s) properties that are attached to
to the published artifacts matching the filter.
 */
 properties {
//Optional closure to attach properties to artifacts based on a list of
artifact patterns per project configuration
 foo '*:*:*:*@*', platform: 'linux', 'win64'

Controlling how environment variables are exposed
As shown in the example above, you can control which environment variables are exposed in clientConfig.setIncludeEnvVars
using and . These calls specifyclientConfig.setEnvVarsExcludePatterns clientConfig.setEnvVarsIncludePatterns
which environment variables should be excluded or included respectively using a parameter which is a comma-separated list of
expressions to exclude or include. a star ('*') wildcard to specify multiple environment variables.The expressions can use

//The property platform=linux,win64 will be set on all artifacts in foo
configuration
 archives 'org.jfrog:*:*:*@*', key1: 'val1'
//The property key1=val1 will be set on all artifacts part of the archives
configuration and with group org.jfrog
 all 'org.jfrog:shared:1.?:*@*', key2: 'val2', key3: 'val3'
//The properties key2 and key3 will be set on all published artifacts (all
configurations) with group:artifact:version

//equal to org.jfrog:shared:1.?
 }
 publishBuildInfo = true //Publish build-info to Artifactory (true
by default)
 publishArtifacts = true //Publish artifacts to Artifactory (true
by default)
 publishPom = true //Publish generated POM files to
Artifactory (true by default)
 publishIvy = false //Publish generated Ivy descriptor files
to Artifactory (false by default)

 }

The Artifactory Project Publish Task

The Artifactory Publishing Plugin creates an Gradle task for each project the plugin is applied to. The task is configuredartifactoryPublish
by the closure of the plugin.publish

You can configure the project-level task directly with the task's closure, which uses identical Syntax to that of theartifactoryPublish
plugin's closure.publish.defaults

artifactoryPublish {
 skip = false //Skip build info analysis and publishing (false by
default)
 contextUrl = 'http://repo.myorg.com/artifactory'
 publications ('a','b','c')
 properties = ['qa.level': 'basic', 'q.os': 'win32, deb, osx']
 properties {
 c '**:**:**:*@*', cProperty: 'only in c'
 }
 clientConfig.publisher.repoKey = 'integration-libs'
 clientConfig.publisher.username = 'deployer'
 clientConfig.publisher.password = 'deployerPaS'
}

Controlling Resolution and Publication in Sub-Projects

define different resolution and publication configuration for sub projects. You may also define theThe Gradle Artifactory Plugin allows you to
configuration once for the whole project by defining the closure only in the root project. The plugin also lets you disable publication forartifactory
a sub-module.

When defining the configuration anywhere in the hierarchy, all sub-projects beneath it inherit the configuration and can override it whether
it is defined in the root or in a sub-project.
Each sub-project can override either the closure or the closure, or both of them.publish resolve

Example for overriding publication only

artifactory {
 publish {
 contextUrl = 'http://localhost:8081/artifactory'
 repository {
 repoKey = "libs-snapshot-local"
 username = "user"
 password = "pass"
 }
 }
}

Example for overriding resolution only

artifactory {
 resolve {
 contextUrl = 'http://localhost:8081/artifactory'
 repoKey = 'libs-snapshot'
 username = "user"
 password = "pass"
 }
}

Example for overriding both publication and resolution

 artifactory {
 contextUrl = 'http://localhost:8081/artifactory'
 publish {
 repository {
 repoKey = "libs-snapshot-local"
 username = "admin"
 password = "password"
 }
 }
 resolve {
 repoKey = 'jcenter'
 }
}

For buildInfo to be published, a publish closure must be defined in the root project.
Use the artifactoryPublish.skip flag to deactivate analysis and publication.

Activate the corresponding Gradle task manually for each project to which you wish to apply the plugin. artifactoryPublish For
example in our you can run:Gradle project example

Activating the plugin manually

./gradlew clean api:artifactoryPublish shared:artifactoryPublish

Controlling the Build Name and Number
By default, BuildInfo is published with a build name constructed from the name of your root project and a build number that is the start date of the
build.
You can control the build name and number values by specifying the following properties respectively:

Specifying the build name and number

buildInfo.build.name=my-super-cool-build
buildInfo.build.number=r9001

The above properties should be added to your project's gradle.properties file.

Examples

https://github.com/JFrogDev/project-examples/tree/master/gradle-examples/gradle-example

1.

2.
3.

1.
2.

Project examples which use the Gradle Artifactory Plugin are available .here

Working with Ivy

Overview

Artifactory fully supports working with Ivy both as a source for artifacts needed for a build, and as a target to
deploy artifacts generated in the build process.

 For Ivy to work with Artifactory, the following files must be present and configured:

The Ivy settings file: is used to configure resolution and deployment of artifactsivysettings.xml
using repositories in Artifactory.
The Ivy modules file: is where the project's modules and dependencies are declared.ivy.xml
The Ant build file: is used to execute the ANT tasks that will, in turn, use Ivy forbuild.xml
resolution and deployment of artifacts.

Ivy Settings - ivysettings.xml

The file holds a chain of Ivy resolvers for both regular artifacts and Ivy module files.ivysettings.xml
These are used to resolve and publish (i.e. deploy) artifacts.

There are a two ways to configure resolvers in in order to set up Ivy to work withivysettings.xml
Artifactory:

Automatically, using the Artifactory Ivy Settings Generator
Manually defining and resolvers.IBiblio URL

Automatic Settings with Artifactory's Ivy Settings Generator

To begin quickly, you can define credentials and resolver settings using Artifactory's Ivy Settings Generator. This generates a URL resolver
suitable for resolution.

In the of the module, select In the dialog, set in the field and clickArtifact Repository Browser Artifacts Set Me Up. Set Me Up Ivy Tool
"Generate Ivy Settings". You can now specify the repositories you want to configure for Ivy.

Since the field only includes virtual or remote repositories, none of these will be suitable for deployment, and you need to Libs Repository modify
 to point to a local repository.the deployment URL

Page Contents
Overview
Ivy Settings - ivysettings.xml

Automatic Settings with Artifactory's Ivy Settings Generator
Provisioning Dynamic Settings for Users

Defining a Manual Resolver
The IBiblio Resolver
The URL Resolver
Using a Chain Resolver

Ivy Modules - ivy.xml
Ant Build - build.xml
Publishing to Artifactory

Using a Dedicated Settings File for Deployment

https://github.com/JFrogDev/project-examples/tree/master/gradle-examples

Provisioning Dynamic Settings for Users

You can deploy and provision a dynamic settings template for your users.

Once downloaded, settings are generated according to your own logic, and can automatically include user authentication information.

For details, please refer to under .Provisioning Build Tool Settings Filtered Resources

Defining a Manual Resolver

The IBiblio Resolver

This resolver is only used to resolve dependencies. By default, it assumes artifacts in your repository are laid-out in the popular and standard
Maven 2 format (which may not always be the case).

The IBiblio resolver can resolve artifacts from remote Maven 2 HTTP repositories, and if you use version ranges it relies on maven-metadata.x
ml files in the remote repository to gather information on the available versions.

To use the IBiblio resolver, add the following to your :ivysettings.xml file

<resolvers>
 <ibiblio name="artifactory" m2compatible="true"
root="http://localhost:8080/artifactory/libs-releases"/>
</resolvers>

The URL Resolver

The URL resolver can be used to resolve dependencies and/or for deployment of both regular artifacts and Ivy module files.

To publish or resolve artifacts to or from Artifactory, you need to configure a URL resolver with the pattern that matches your target repository
layout for both Ivy and artifact files.

For example:

Choose an Ivy Repository Layout
Be sure to select layout that is compatible with Ivy such as or a custom layout that you have defined.ivy-default

The URL specified in the property must point to an Artifactory repository. In the above example, it is the pre-configured root libs-re
 virtual repository.leases

The m2compatible property configures the resolver with an artifact pattern that follows the standard Maven 2 layout.

http://ant.apache.org/ivy/history/latest-milestone/resolver/ibiblio.html

<!-- Authentication required for publishing (deployment). 'Artifactory
Realm' is the realm used by Artifactory so don't change it. -->
<credentials host="localhost" realm="Artifactory Realm" username="admin"
passwd="password"/>
<resolvers>
 <url name="artifactory-publish">
 <!-- You can use m2compatible="true" instead of specifying your
own pattern -->
 <artifact pattern=

"http://localhost:8080/artifactory/ivy-local/[organization]/[module]/[revi
sion]/[artifact]-[revision].[ext]"/>
 <ivy
pattern="http://localhost:8080/artifactory/ivy-local/[organization]/[modul
e]/[revision]/ivy-[revision].xml" />
 </url>
</resolvers>

Using a Chain Resolver

You can combine resolver definitions under a chain resolver in Ivy which uses a set of sub resolvers to resolve dependencies and for publishing.

For details please refer to the Ivy documentation for .Chain Resolver

Ivy Modules - ivy.xml

ivy.xml files contain a list of dependency declarations that must be resolved for the build.

In the of the module, you can obtain dependency declaration snippets by selecting either an Ivy module,Artifact Repository Browser Artifacts
or a POM artifact, and copying the Ivy section into your file.Dependency Declaration ivy.xml

The URL resolver uses HTML href analysis to learn about the available versions of a remote artifact. This is less reliable than using an
IBiblio resolver, however it works well with remote Artifactory servers.

http://ant.apache.org/ivy/history/latest-milestone/resolver/chain.html

Ant Build - build.xml

To work with Ivy to resolve dependencies, you need to use in your file. This will load the from < >ivy:configure/ build.xml Ivy settings ivys
.ettings.xml

Artifacts are resolved using < >ivy:retrieve/ .

For details please refer to the Ivy documentation for .Ant Tasks

Publishing to Artifactory

You can use the command to configure Ivy to deploy your artifacts into Artifactory using the specified resolver.< >ivy:publish

For example:

<ivy:publish resolver="artifactory-publish" overwrite="true">
 <!--
 Use overwrite="true" if you wish to overwrite existing artifacts
 and publishivy="false" if you only want to publish artifacts not module
descriptors
 -->
 <artifacts/>
</ivy:publish>

Using a Dedicated Settings File for Deployment

If you have specified deployment settings with the required credentials in a dedicated settings file, you can refer to them by assigning a unique ID.

For example, the following code snippet assigns the deployment settings with the id :ivy.publish.settings

<ivy:settings id="ivy.pub.settings"
file="publish_to_artifactory_settings.xml"/>

Then, the publishing task points to these settings using the following attribute in the element:publish

settingsRef="ivy.pub.settings"

For details please refer to the Ivy documentation for .Ant Tasks

Build Integration

Overview

Artifactory supports build integration whether you are running builds on one of the common CI servers in use
today, on cloud-based CI servers or standalone without a CI server.

Integration of Artifactory into your build ecosystem provides important information that supports fully
reproducible builds through visibility of artifacts deployed, dependencies and information on the build
environment.

The Artifactory Build Integration Add-on provides a set of plugins you can use with industry standard CI
systems and build tools that enable you to:

See all the builds that are published and their build results in Artifactory.
Explore the modules of each build, including published artifacts and corresponding dependencies.
Obtain information about the build environment.
Check if a specific artifact is required for or is a result of a build, and providing alerts if such an
artifact should be targeted for removal.
Treat all the artifacts and/or dependencies from a specific build as a single unit and perform bulk

http://ivyconfigure
http://ivyretrieve
http://ant.apache.org/ivy/history/latest-milestone/ant.html
http://ivypublish
http://ant.apache.org/ivy/history/latest-milestone/ant.html

operations such as move, copy, export etc.
Receive bidirectional links between build and artifact information inside the build server and
Artifactory pages.

Running Builds on a CI Server

Artifactory can easily be added to a continuous integration build ecosystem by treating the CI server as a
regular build client, so that it resolves dependencies from Artifactory, and deploys artifacts into a dedicated
repository within Artifactory.

Supported Plugins

CI servers that are currently supported, each through a specific plugin are:

/Jenkins Hudson
TeamCity
Bamboo
TFS

The build tools supported on all of these CI servers are: , , , asMaven 3 and 2 Gradle Ivy/Ant .Net, MSBuild
well as build tools. For details please refer to the documentation for each CI server plugin.Generic

Running Standalone Builds or on a Cloud-based CI Server

In the last few years, the popularity of cloud-based CI servers has grown. Some examples are, , CircleCI Travi
, and . The problem is that none of these are "pluggable" in the traditional way.s CI drone.io Codeship

Therefore, to support builds running on cloud-based build servers, as well as standalone builds, Artifactory
provides plugins for industry standard build tools such as Maven, Gradle, Ivy/Ant and MSBuild. These plugins
provide all the benefits of Artifactory that facilitate fully reproducible builds without the need for a CI server.
For more details please refer to , , and Maven Repository Working with Gradle Working with Ivy MSBuild

.Artifactory Plugin

Bintray Plugins
 In addition to the plugins supported by Artifactory, there is also the whichGradle Bintray Plugin
provides integration between Gradle builds directly with JFrog Bintray.

Build Integration for Artifactory open source version vs. Artifactory Pro
When using the OSS version of Artifactory, Build Integration includes the Generic VieBuildInfo
w and the ability to traverse and view build information using Artifactory's REST APIs.

Artifactory Power Pack extends these capabilities and provides Module Artifacts and Dependencies
View, Repository View of Builds and the ability to export and manipulate build items.

Page Contents
Overview

Running Builds on a CI Server
Supported Plugins
Running Standalone Builds or on a Cloud-based CI Server

Inspecting Builds
Builds and Build History
Build-level Information

General Build Information
Published Modules
Module Artifacts and Dependencies
Environment
Issues
Licenses
Build Diff
Release History
Build Info JSON
Generic BuildInfo View

Exporting and Manipulating Build Items
Repository View of Builds
Behind the Scenes
Release Management

https://circleci.com/
https://travis-ci.org/
https://travis-ci.org/
https://drone.io/
https://www.codeship.io/
https://bintray.com/docs/usermanual/formats/formats_mavenrepositories.html#anchorGradleDeploy
http://www.jfrog.org/addons.php#build

Inspecting Builds

Builds and Build History

All CI server projects that deploy their output to Artifactory can be viewed in the which is accessed in the module under Build Browser Artifacts
.Builds

Selecting a project displays all runs of that build reflecting the build history in the CI server.

Read More
Jenkins Artifactory Plug-in
TeamCity Artifactory Plug-in
Bamboo Artifactory Plug-in
MSBuild Artifactory Plugin
VS Team Services Artifactory Plugin
Using File Specs

1.
2.
3.

Selecting a build item from the list displays complete . build-level information You can also view the build in the CI server by selecting the
corresponding link under the column.CI Server

Build-level Information

You can select the to drill down into a specific build. This displays detailed information about the build, and enables you toBuild Number
compare it with another build as described in the following sections.

There are three categories of information:

General build information about the build and its environment.
Build modules along with their .artifacts and dependencies
Generic view of the build information in JSON format.

General Build Information

This tab displays general information about the build:

Permissions
To view build information you must have the 'deploy' permission on some repository path.

Name

The name assigned to the component being built

Number

The specific run of the build

Type

The build tool used

Agent

The CI server managing the build

Build Agent

The specific version of build tool used

Started

The time stamp when the build was started

Duration

The duration of the build

Principal

The factor that triggered this build. This may be a CI server user, or another build

Artifactory Principal

The Artifactory user that triggered this build

URL

Link to the build information directly on the build server

Published Modules

This tab displays the modules published into Artifactory as a result of the build, along with the number of artifacts and dependencies that they
contain.

Module Artifacts and Dependencies

Selecting a published module that was built will display its artifacts and dependencies. You can group these by type or scope by clicking the
corresponding column header.

You can click any item to download it directly, or click its to view it in the .Repo Path Tree Browser

http://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowser

Environment

The Environment tab displays an extensive list of properties and environment settings defined for the selected build. You can use these to
reproduce the environment precisely if you need to rerun the build.

Issues

The provides integration between Artifactory, Jenkins CI server and JIRA issue tracker. When using Jenkins CI, if you to set the Issues Enable
 option in the Jenkins Artifactory Plugin, the tab will display any JIRA issues that have been addressed by this build. JIRA Integration Issues

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-JIRAIntegration
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-JIRAIntegration

Licenses

The tab displays the results of a detailed license analysis of all artifacts and their dependencies.Licenses

The line displays the number of artifacts found with the following statuses:Summary

Unapproved

The license found has not been approved for use

Approving licenses
You can approve a license for use in the tab under For details please refer to Admin Configuration | Licenses. Lice

.nse Control

Not Found

No license requirements were found for the artifact.

Unknown

The artifact requires a license that is unknown to Artifactory

Neutral

A license requirement that is not approved has been found for the artifact, however there is another license that is approved.

Approved

All license requirements for the artifact are approved in Artifactory.

Build Diff

The tab allows you to compare the selected build with any other build. Once you select a build number in the Diff Select A Build To Compare
 field, Artifactory displays all the differences between the builds that were detected including new artifacts added, dependencies deleted,Against

properties changed and more.

Release History

The Release History tab displays a list of the selected build's release landmarks.

Build Info JSON

Generic ViewBuildInfo

This tab displays the raw JSON representation of the build information in Artifactory. This data can be accessed via the REST API orBuildInfo
used for debugging and is also available in the Artifactory OSS version.

Exporting and Manipulating Build Items

You can view a build in the repository browser and perform actions on it as a whole with all its artifacts and dependencies. For example, you could
promote it to another repository, copy it, or export it to a disk.

Repository View of Builds

When viewing an artifact within the , you can see all of the builds with which that artifact is associated, whether directly or as aTree Browser
dependency in the tabBuilds

Moreover, if you try to remove the artifact you will receive a warning that the build will no longer be reproducible.

The association of an artifact with a build is retained even if you move or copy it within Artifactory, because the association linked to the
artifact's checksum which remains constant, regardless of the its location.

http://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowser

1.
2.

3.

Behind the Scenes

Behind the scenes, the Artifactory plug-in for your CI server performs two major tasks:

It resolves all dependencies from a resolution repository in Artifactory.
It deploys all the artifacts to Artifactory as an atomic operation at the end of the build, guaranteeing a more coherent deployment when
building multi-module projects
(Maven and Ivy deploy each module at the end of its build cycle. If one of the modules fails, this can result in partial deployments).
It sends a BuildInfo data object to Artifactory via the REST API at the end of deployment. This is a structured JSON object containing
all the data about the build environment, artifacts and dependencies, in a standard and open format.

Release Management

Artifactory supports release management through its plugins for , and .Jenkins TeamCity Bamboo

When you run your builds using or with jobs that use , Git or as your version control system, you can manuallyMaven Gradle Subversion Perforce
stage a release build allowing you to:

Change values for the release and next development version
Choose a target staging repository to which to deploy the release
Create a VCS tag for the release

Staged release builds can later be or , changing their release status in Artifactory, with the option to move the buildpromoted rolled-back
artifacts to a different target repository.

Inside Artifactory, the history of all build status change activities (staged, promoted, rolled-back, etc.) is recorded and displayed for full traceability.

To learn more about release management specific to your CI server, please refer to:

 Release Management in the Jenkins Documentation

TeamCity Artifactory Plugin - Release Management

 Bamboo Artifactory Plug-in - Release Management

Jenkins Artifactory Plug-in

Overview

Artifactory provides tight integration with Jenkins a plugin which you need to install using Jenkins Plugin
Manager. For more information, please refer to the .Jenkins documentation

The plug-in provides:

Easy setup to resolve dependencies and deploy build artifacts through Artifactory.
Capture exhaustive build information such as artifacts deployed, dependencies resolved, system and
environment information and more to enable fully traceable builds.
Enhanced deployment that transfers additional important build information to Artifactory.
UI integration providing links from a Jenkins build directly to Artifactory.
Release management with staging and promotion.
Extensive APIs for Pipeline jobs.

You can find the latest Java-binding artifacts and the source .BuildInfo here here

Before you begin
Please refer to the general information about before using theArtifactory's Build Integration

http://maven.apache.org/
http://www.gradle.org/
http://subversion.apache.org/
http://www.perforce.com/index.html
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ReleaseManagementwithStagingandPromotion
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
http://repo.jfrog.org/artifactory/libs-releases-local/org/jfrog/buildinfo/build-info-api/
https://github.com/JFrogDev/build-info

Supported Build Technologies

 The Jenkins Artifactory Plugin currently supports , , and as well asMaven 3, Maven2 Gradle Ivy/Ant, generic
 builds that use other build tools.(free style)

Installing and Configuring the Plug-in

For information about installing and configuring the plug-in, please refer to the instructions at the . Jenkins Plug-in Center

Navigating Between Jenkins and Artifactory

Each build viewed in Artifactory corresponds to its Jenkins job counterpart, and contains a build history of all runs corresponding to the build
history in Jenkins.

You can about each item in the build history, or drill down and view details view the build in the CI server by selecting the corresponding link in the
column.CI Server

You can also navigate back to Artifactory from Jenkins, as shown below:

Watch the Screencast

Working With Pipeline Jobs in Jenkins

Introduction

Jenkins Artifactory Plugin.

Source Code Available!
The Jenkins Artifactory Plugin is an which you can freely browse andopen source project on GitHub
fork.

Page Contents
Overview

Supported Build Technologies
Installing and Configuring the Plug-in
Navigating Between Jenkins and Artifactory
Watch the Screencast

Read more
Working With Pipeline Jobs in Jenkins

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ConfiguringMaven2andMaven3Builds
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ConfiguringGradleBuilds
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ConfiguringIvyAntBuilds
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ConfiguringGeneric%28Freestyle%29Builds
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin#ArtifactoryPlugin-ConfiguringGeneric%28Freestyle%29Builds
http://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-Build-levelInformation
https://github.com/JFrogDev/jenkins-artifactory-plugin

The Pipeline Jenkins Plugin simplifies building a continuous delivery pipeline with Jenkins by
creating a script that defines the steps of your build. For those not familiar with Jenkins Pipeline,
please refer to the or the documentation.Pipeline Tutorial Getting Started With Pipeline

The has been extended to support Artifactory operations as part of theJenkins Artifactory Plugin
Pipeline script DSL. You have the added option of downloading dependencies, uploading artifacts,
and publishing build-info to Artifactory from a Pipeline script.

Using the Artifactory DSL

Creating an Artifactory Server Instance

To upload or download files to and from your Artifactory server, you need to create an Artifactory
server instance in your Pipeline script.

If your Artifactory server is already defined in Jenkins, you only need its server ID which can be
obtained under Manage | Configure System.

Then, to create your Artifactory server instance, add the following line to your script:

def server = Artifactory.server 'my-server-id'

If your Artifactory is not defined in Jenkins you can still create it as follows:

def server = Artifactory.newServer url:
'artifactory-url', username: 'username',
password: 'password'

You can also user Jenkins Credential ID instead of username and password:

def server = Artifactory.newServer url:
'artifactory-url', credentialsId:
'ccrreeddeennttiiaall'

You can modify the server object using the following methods:

server.bypassProxy = true
// If you're using username and password:
server.username = 'new-user-name'
server.password = 'new-password'
// If you're using Credentials ID:
server.credentialsId = 'ccrreeddeennttiiaall'

Page contents
Introduction
Using the
Artifactory DSL

Creati
ng an
Artifact
ory
Server
Instan
ce

Use variables
We recommend using variables rather than plain text to specify the Artifactory server
details.

https://github.com/jenkinsci/pipeline-plugin/blob/master/TUTORIAL.md
https://jenkins.io/doc/pipeline/
https://github.com/JFrogDev/jenkins-artifactory-plugin

Uploading and
Downloading
Files

Publis
hing
Build-I
nfo to
Artifact
ory
Promo
ting
Builds
in
Artifact
ory
Allowi
ng
Interac
tive
Promo
tion for
Publis
hed
Builds
Maven
Builds
with
Artifact
ory
Gradle
Builds
with
Artifact
ory
Maven
Releas
e
Manag
ement
with
Artifact
ory
Conan
Builds
with
Artifact
ory
Docke
r
Builds
with
Artifact
ory
Scanni
ng
Builds
with
JFrog
Xray
Distrib
uting
Build
Artifact
s

File Spec
Schema

Examp
les

Uploading and Downloading Files

To upload or download files you first need to create a spec which is a JSON file that specifies which files should be uploaded or downloaded
and the target path.

For example:

def downloadSpec = """{
 "files": [
 {
 "pattern": "bazinga-repo/*.zip",
 "target": "bazinga/"
 }
]
}"""

The above spec specifies that all ZIP files in the bazinga-repo Artifactory repository should be downloaded into the bazinga directory on your
Jenkins agent file system.

To download the files, add the following line to your script:

server.download(downloadSpec)

Uploading files is very similar. The following example uploads all ZIP files that include froggy in their names into the froggy-files folder in the b
 azinga-repo Artifactory repository.

def uploadSpec = """{
 "files": [
 {
 "pattern": "bazinga/*froggy*.zip",
 "target": "bazinga-repo/froggy-files/"
 }
]
}"""
server.upload(uploadSpec)

You can read about using File Specs for downloading and uploading files .here

Publishing Build-Info to Artifactory

Both the download and upload methods return a build-info object which can be published to Artifactory as shown in the following examples:

def buildInfo1 = server.download downloadSpec
def buildInfo2 = server.upload uploadSpec
buildInfo1.append buildInfo2
server.publishBuildInfo buildInfo1

"files" is an array
Since the "files" element is an array, you can specify several patterns and corresponding targets in a single download spec.

def buildInfo = Artifactory.newBuildInfo()
server.download spec: downloadSpec, buildInfo: buildInfo
server.upload spec: uploadSpec, buildInfo: buildInfo
server.publishBuildInfo buildInfo

Modifying the Default Build Name and Build Number

You can modify the default build name and build number set by Jenkins. Here's how you do it:

def buildInfo = Artifactory.newBuildInfo()
buildInfo.name = 'super-frog'
buildInfo.number = 'v1.2.3'
server.publishBuildInfo buildInfo

Capturing Environment Variables

To set the Build-Info object to automatically capture environment variables while downloading and uploading files, add the following to your
script:

def buildInfo = Artifactory.newBuildInfo()
buildInfo.env.capture = true

By default, environment variables named "password", "secret", or "key" are excluded and will not be published to Artifactory.

You can add more include/exclude patterns as follows:

def buildInfo = Artifactory.newBuildInfo()
buildInfo.env.filter.addInclude("*a*")
buildInfo.env.filter.addExclude("DONT_COLLECT*")

Here's how you reset to the include/exclude patterns default values:

buildInfo.env.filter.reset()

You can also completely clear the include/exclude patterns:

buildInfo.env.filter.clear()

To collect environment variables at any point in the script, use:

If you're setting the build name or number as shown above, it is important to do so before you're using this buildInfo instance for
uploading files.

Here's the reason for this: The server.upload method also tags the uploaded files with the build name and build number (using the
 and build.number properties). Setting a new build name or number on the buildInfo instance will not update thebuild.name

properties attached to the files.

http://build.name

buildInfo.env.collect()

You can get the value of an environment variable collected as follows:

value = buildInfo.env.vars['env-var-name']

Triggering Build Retention

To trigger build retention when publishing build-info to Artifactory, use the following method:

buildInfo.retention maxBuilds: 10

buildInfo.retention maxDays: 7

To have the build retention also delete the build artifacts, add the with value as shown below:deleteBuildArtifacts true

buildInfo.retention maxBuilds: 10, maxDays: 7, doNotDiscardBuilds: ["3",
"4"], deleteBuildArtifacts: true

It is possible to trigger an asynchronous build retention. To do this, add the argument with as shown below:async true

buildInfo.retention maxBuilds: 10, deleteBuildArtifacts: true, async:
true

Promoting Builds in Artifactory

To promote a build between repositories in Artifactory, define the promotion parameters in a promotionConfig object and promote that. For
example:

1.

2.

3.

def promotionConfig = [
 // Mandatory parameters
 'buildName' : buildInfo.name,
 'buildNumber' : buildInfo.number,
 'targetRepo' : 'libs-release-local',

 // Optional parameters
 'comment' : 'this is the promotion comment',
 'sourceRepo' : 'libs-snapshot-local',
 'status' : 'Released',
 'includeDependencies': true,
 'copy' : true,
 // 'failFast' is true by default.
 // Set it to false, if you don't want the promotion to abort
upon receiving the first error.
 'failFast' : true
]

 // Promote build
 server.promote promotionConfig

Allowing Interactive Promotion for Published Builds

The 'Promoting Builds in Artifactory' section in this article describes how your Pipeline script can promote builds in Artifactory. In some cases
however, you'd like the build promotion to be performed after the build finished. You can configure your Pipeline job to expose some or all the
builds it publishes to Artifactory, so that they can be later promoted interactively using a GUI. Here's how the Interactive Promotions looks
like:

When the build finishes, the promotion window will be accessible by clicking on the promotion icon, next to the build run.

Here's how you do this.

First you need to create a 'promotionConfig' instance, the same way it is shown in the 'Promoting Builds in Artifactory' section.

Next, you can use it, to expose a build for interactive promotion as follows:

Artifactory.addInteractivePromotion server: server, promotionConfig:
promotionConfig, displayName: "Promote me please"

You can add as many builds as you like, by using the method multiple times. All the builds added will be displayed in the promotion window.

The 'addInteractivePromotion' methods expects the following arguments:

"server" is the Artifactory on which the build promotions is done. You can create the server instance as described in the beginning of
this article.
"promotionConfig" includes the promotion details. The "Promoting Builds in Artifactory" section describes how to create a
promotionConfig instance.
 "displayName" is an optional argument. If you add it, the promotion window will display it instead of the build name and number.

Maven Builds with Artifactory

Maven builds can resolve dependencies, deploy artifacts and publish build-info to Artifactory. To run Maven builds with Artifactory from your
Pipeline script, you first need to create an Artifactory server instance, as described at the beginning of this article.
Here's an example:

def server = Artifactory.server('my-server-id')

The next step is to create an Artifactory Maven Build instance:

def rtMaven = Artifactory.newMavenBuild()

Now let's define where the Maven build should download its dependencies from. Let's say you want the release dependencies to be resolved
from the 'libs-release' repository and the snapshot dependencies from the 'libs-snapshot' repository. Both repositories are located on the
Artifactory server instance you defined above. Here's how you define this, using the Artifactory Maven Build instance we created:

rtMaven.resolver server: server, releaseRepo: 'libs-release',
snapshotRepo: 'libs-snapshot'

Now let's define where our build artifacts should be deployed to. Once again, we define the Artifactory server and repositories on the
'rtMaven' instance:

rtMaven.deployer server: server, releaseRepo: 'libs-release-local',
snapshotRepo: 'libs-snapshot-local'

By default, all the build artifacts are deployed to Artifactory. In case you want to deploy only some artifacts, you can filter them based on their
names, using the 'addInclude' method. In the following example, we are deploying only artifacts with names that start with 'frog'

rtMaven.deployer.artifactDeploymentPatterns.addInclude("frog*")

You can also exclude artifacts from being deployed. In the following example, we are deploying all artifacts, except for those that are zip files:

rtMaven.deployer.artifactDeploymentPatterns.addExclude("*.zip")

And to make things more interesting, you can combine both methods. For example, to deploy all artifacts with names that start with 'frog', but
are not zip files, do the following:

rtMaven.deployer.artifactDeploymentPatterns.addInclude("frog*").addExclu
de("*.zip")

If you'd like to add custom properties to the deployed artifacts, you can do that as follows:

rtMaven.deployer.addProperty("status",
"in-qa").addProperty("compatibility", "1", "2", "3")

In some cases, you want to disable artifacts deployment to Artifactory or make the deployment conditional. Here's how you do it:

rtMaven.deployer.deployArtifacts = false

To select a Maven installation for our build, we should define a Maven Tool through Jenkins Manage, and then, set the tool name as follows:

rtMaven.tool = 'maven tool name'

Here's how you define Maven options for your build:

rtMaven.opts = '-Xms1024m -Xmx4096m'

In case you'd like Maven to use a different JDK than your build agent's default, no problem.
Simply set the JAVA_HOME environment variable to the desired JDK path (the path to the directory above the bin directory, which includes
the java executable).
Here's you do it:

env.JAVA_HOME = 'path to JDK'

OK, we're ready to run our build. Here's how we define the pom file path (relative to the workspace) and the Maven goals. The deployment to
Artifactory is performed during the 'install' phase:

def buildInfo = rtMaven.run pom: 'maven-example/pom.xml', goals: 'clean
install'

The above method runs the Maven build.
By default, the build artifacts will be deployed to Artifactory, unless rtMaven.deployer.deployArtifacts property was set to false.
In this case, artifacts can be deployed using the following step:

rtMaven.deployer.deployArtifacts buildInfo

Make sure to use the same buildInfo instance you received from the rtMaven.run method. Also make sure to run the above method on the
same agent that ran the rtMaven.run method, because the artifacts were built and stored on the file-system of this agent.

By default, Maven uses the local Maven repository inside the .m2 directory under the user home. In case you'd like Maven to create the local
repository in your job's workspace, add the -Dmaven.repo.local=.m2 system property to the goals value as shown here:

def buildInfo = rtMaven.run pom: 'maven-example/pom.xml', goals: 'clean
install -Dmaven.repo.local=.m2'

What about the build information?
The build information has not yet been published to Artifactory, but it is stored locally in the 'buildInfo' instance returned by the 'run' method.
You can now publish it to Artifactory as follows:

server.publishBuildInfo buildInfo

You can also merge multiple buildInfo instances into one buildInfo instance and publish it to Artifactory as one build, as described in the
'Publishing Build-Info to Artifactory' section in this article.

Gradle Builds with Artifactory

Gradle builds can resolve dependencies, deploy artifacts and publish build-info to Artifactory. To run Gradle builds with Artifactory from your
Pipeline script, you first need to create an Artifactory server instance, as described at the beginning of this article.
Here's an example:

def server = Artifactory.server 'my-server-id'

The next step is to create an Artifactory Gradle Build instance:

def rtGradle = Artifactory.newGradleBuild()

Now let's define where the Gradle build should download its dependencies from. Let's say you want the dependencies to be resolved from the
'libs-release' repository, located on the Artifactory server instance you defined above. Here's how you define this, using the Artifactory Gradle
Build instance we created:

rtGradle.resolver server: server, repo: 'libs-release'

Now let's define where our build artifacts should be deployed to. Once again, we define the Artifactory server and repositories on the
'rtGradle' instance:

rtGradle.deployer server: server, repo: 'libs-release-local'

By default, all the build artifacts are deployed to Artifactory. In case you want to deploy only some artifacts, you can filter them based on their
names, using the 'addInclude' method. In the following example, we are deploying only artifacts with names that start with 'frog'

rtGradle.deployer.artifactDeploymentPatterns.addInclude("frog*")

You can also exclude artifacts from being deployed. In the following example, we are deploying all artifacts, except for those that are zip files:

rtGradle.deployer.artifactDeploymentPatterns.addExclude("*.zip")

And to make things more interesting, you can combine both methods. For example, to deploy all artifacts with names that start with 'frog', but
are not zip files, do the following:

rtGradle.deployer.artifactDeploymentPatterns.addInclude("frog*").addExcl
ude("*.zip")

If you'd like to add custom properties to the deployed artifacts, you can do that as follows:

rtGradle.deployer.addProperty("status",
"in-qa").addProperty("compatibility", "1", "2", "3")

In some cases, you want to disable artifacts deployment to Artifactory or make the deployment conditional. Here's how you do it:

rtGradle.deployer.deployArtifacts = false

In case the "com.jfrog.artifactory" Gradle Plugin is already applied in your Gradle script, we need to let Jenkins know it shouldn't apply it.
Here's how we do it:

rtGradle.usesPlugin = true

In case you'd like to use the Gradle Wrapper for this build, add this:

rtGradle.useWrapper = true

If you don't want to use the Gradle Wrapper, and set a Gradle installation instead, you should define a Gradle Tool through Jenkins Manage,
and then, set the tool name as follows:

rtGradle.tool = 'gradle tool name'

In case you'd like Maven to use a different JDK than your build agent's default, no problem.
Simply set the JAVA_HOME environment variable to the desired JDK path (the path to the directory above the bin directory, which includes
the java executable).
Here's you do it:

env.JAVA_HOME = 'path to JDK'

OK, looks like we're ready to run our Gradle build. Here's how we define the build.gradle file path (relative to the workspace) and the Gradle
tasks. The deployment to Artifactory is performed as part of the 'artifactoryPublish' task:

def buildInfo = rtGradle.run rootDir: "projectDir/", buildFile:
'build.gradle', tasks: 'clean artifactoryPublish'

The above method runs the Gradle build.

By default, the build artifacts will be deployed to Artifactory, unless rtGradle.deployer.deployArtifacts property was set to false.

In this case, artifacts can be deployed using the following step:

rtGradle.deployer.deployArtifacts buildInfo

Make sure to use the same buildInfo instance you received from the rtMaven.run method. Also make sure to run the above method on the
same agent that ran the rtMaven.run method, because the artifacts were built and stored on the file-system of this agent.

What about the build information?
The build information has not yet been published to Artifactory, but it is stored locally in the 'buildInfo' instance returned by the 'run' method.
You can now publish it to Artifactory as follows:

server.publishBuildInfo buildInfo

You can also merge multiple buildInfo instances into one buildInfo instance and publish it to Artifactory as one build, as described in the
'Publishing Build-Info to Artifactory' section in this article.

That's it! We're all set.

The rtGradle instance supports additional configuration APIs. You can use these APIs as follows:

def rtGradle = Artifactory.newGradleBuild()
 // Deploy Maven descriptors to Artifactory:
 rtGradle.deployer.deployMavenDescriptors = true
 // Deploy Ivy descriptors (pom.xml files) to Artifactory:
 rtGradle.deployer.deployIvyDescriptors = true

 // The following properties are used for Ivy publication
configuration.
 // The values below are the defaults.

 // Set the deployed Ivy descriptor pattern:
 rtGradle.deployer.ivyPattern =
'[organisation]/[module]/ivy-[revision].xml'
 // Set the deployed Ivy artifacts pattern:
 rtGradle.deployer.artifactPattern =
'[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])
.[ext]'
 // Set mavenCompatible to true, if you wish to replace dots with
slashes in the Ivy layout path, to match the Maven layout:
 rtGradle.deployer.mavenCompatible = true

Maven Release Management with Artifactory

With the Artifactory Pipeline DSL you can easily manage and run a release build for your Maven project by following the instructions below:

First, clone the code from your source control:

git url: 'https://github.com/eyalbe4/project-examples.git'

If the pom file has a snapshot version, Maven will create snapshot artifacts, because the pom files include a snapshot version (for example,
1.0.0-SNAPSHOT).
Since you want your build to create release artifacts, you need to change the version in the pom file to 1.0.0.
To do that, create a mavenDescriptor instance, and set the version to 1.0.0:

def descriptor = Artifactory.mavenDescriptor()
descriptor.version = '1.0.0'

If the project's pom file is not located at the root of the cloned project, but inside a sub-directory, add it to the mavenDescriptor instance:

descriptor.pomFile = 'maven-example/pom.xml'

In most cases, you want to verify that your release build does not include snapshot dependencies. The are two ways to do that.

The first way, is to configure the descriptor to fail the build if snapshot dependencies are found in the pom files. In this case, the job will fail
before the new version is set to the pom files.
Here's how you configure this:

descriptor.failOnSnapshot = true

The second way to verify this is by using the hasSnapshots method, which returns a boolean true value if snapshot dependencies are found:

def snapshots = descriptor.hasSnapshots()
 if (snapshots) {

 }

That's it. Using the mavenDescriptor as it is now will change the version inside the root pom file. In addition, if the project includes
sub-modules with pom files, which include a version, it will change them as well.
Sometimes however, some sub-modules should use different release versions. For example, suppose there's one module whose version
should change to 1.0.1, instead of 1.0.0. The other modules should still have their versions changed to 1.0.0. Here's how to do that:

descriptor.setVersion "the.group.id:the.artifact.id", "1.0.1"

The above setVersion method receives two arguments: the module name and its new release version. The module name is composed of the
group ID and the artifact ID with a colon between them.
Now you can transform the pom files to include the new versions:

descriptor.transform()

The transform method changed the versions on the local pom files.
You can now build the code and deploy the release Maven artifacts to Artifactory as described in the " " section inMaven Builds with Artifactory
this article.

The next step is to commit the changes made to the pom files to the source control, and also tag the new release version in the source
control repository. If you're using git, you can use the git client installed on your build agent and run a few shell commands from inside the
Pipeline script to do that.
The last thing you'll probably want to do is to change the pom files version to the next development version and commit the changes. You can
do that again by using a mavenDescriptor instance.

Conan Builds with Artifactory

Conan is a C/C++ Package Manager. The Artifactory Pipeline DSL includes APIs that make it easy for you to run Conan builds, using the
Conan Client installed on your build agents. Here's what you need to do before you create your first Conan build job with Jenkins:

1, Install the latest Conan Client on your Jenkins build agent. Please refer to the for installation instructions.Conan documentation

2. Add the Conan Client executable to the PATH environment variable on your build agent, to make sure Jenkins is able to use the client.

3. Create a Conan repository in Artifactory as described in the Artifactory documentation.Conan Repositories

OK. Let's start coding your first Conan Pipeline script.

We'll start by creating an Artifactory server instance, as described at the beginning of this article.
Here's an example:

def server = Artifactory.server 'my-server-id'

Now let's create a Conan Client instance

def conanClient = Artifactory.newConanClient()

When creating the Conan client, you can also specify the Conan user home directory as shown below:

def conanClient = Artifactory.newConanClient userHome:
"conan/my-conan-user-home"

https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+-+Working+With+the+Pipeline+Jenkins+Plugin#Artifactory-WorkingWiththePipelineJenkinsPlugin-MavenBuildswithArtifactory
https://conan.io/
http://docs.conan.io/en/latest/

We can now configure our new conanClient instance by adding an Artifactory repository to it. In our example, we're adding the 'conan-local'
repository, located in the Artifactory server, referenced by the server instance we obtained:

String remoteName = conanClient.remote.add server: server, repo:
"conan-local"

As you can see in the above example, the 'conanClient.remote.add' method returns a string variable - 'remoteName'.

What is this 'remoteName' variable? What is it for?

Well, a 'Conan remote' is a repository, which can be used to download dependencies from and upload artifacts to. When we added the
'conan-local' Artifactory repository to our Conan Client, we actually added a Conan remote. The 'remoteName' variable contains the name of
the new Conan remote we added.

OK. We're ready to start running Conan commands. You'll need to be familiar with the Conan commands syntax, exposed by the Conan
Client to run the commands. You can read about the commands syntax in the .Conan documentation

Let's run the first command:

def buildInfo1 = conanClient.run command: "install --build
missing"

The 'conanClient.run' method returns a buildInfo instance, that we can later publish to Artifactory. If you already have a buildInfo instance, and
you'd like the 'conanClient.run' method to aggregate the build information to it, you can also send the buildInfo instance to the run command
as and an argument as shown below:

conanClient.run command: "install --build missing", buildInfo:
buildInfo

The next thing we want to do is to use the Conan remote we created. For example, let's upload our artifacts to the Conan remote. Notice how
we use the 'remoteName' variable we got earlier, when building the Conan command:

String command = "upload * --all -r ${remoteName}
--confirm"
conanClient.run command: command, buildInfo: buildInfo

We can now publish the the buildInfo to Artifactory, as described in the 'Publishing Build-Info to Artifactory' section in this article. For example:

server.publishBuildInfo buildInfo

Docker Builds with Artifactory

The Jenkins Artifactory Plugin supports a Pipeline DSL that enables you to collect and publish build-info to Artifactory for your Docker builds.
To collect the build-info, the plugin uses an internal HTTP proxy server, which captures the traffic between the Docker Daemon and your
Artifactory reverse proxy. To setup your Jenkins build agents to collect build-info for your Docker builds, please refer to the setup instructions

http://docs.conan.io/en/latest/
https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+Artifactory+Plugin+-+Setting+Up+Docker+Build+Info

// Create an Artifactory server instance, as described above in this
article:
 def server = Artifactory.server 'my-server-id'

 // Create an Artifactory Docker instance. The instance stores the
Artifactory credentials and the Docker daemon host address:
 def rtDocker = Artifactory.docker username: 'artifactory-username',
password: 'artifactory-password', host: "tcp://<daemon IP>:<daemon
port>"

 // If the docker daemon host is not specified,
"/var/run/dokcer.sock" is used as a default value:
 def rtDocker = Artifactory.docker username: 'artifactory-username',
password: 'artifactory-password'

 // You can also use the Jenkins credentials plugin instead of
username and password:
 def rtDocker = Artifactory.docker credentialsId:
'ccrreeddeennttiiaall'

 // Attach custom properties to the published artifacts:
 rtDocker.addProperty("project-name",
"docker1").addProperty("status", "stable")

 // Push a docker image to Artifactory (here we're pushing
hello-world:latest). The push method also expects
 // Artifactory repository name:
 def buildInfo =
rtDocker.push('<artifactory-docker-registry-url>/hello-world:latest',
'<target-artifactory-repository>')

 // Publish the build-info to Artifactory:
 server.publishBuildInfo buildInfo

Scanning Builds with JFrog Xray

From version 2.9.0, Jenkins Artifactory Plugin is integrated with JFrog Xray through JFrog Artifactory allowing you to have build artifacts and
dependencies scanned for vulnerabilities and other issues. If issues or vulnerabilities are found, you may choose to fail a build job or perform
other actions according to the Pipeline script you write. This integration requires and above and anJFrog Artifactory v4.16 JFrog Xray v1.6
d above.

You may scan any build that has been published to Artifactory. It does not matter when the build was published, as long as it was published
before triggering the scan by JFrog Xray.

The following instructions show you how to configure your Pipeline script to have a build scanned.

First, create a scanConfig instance with the build name and build number you wish to scan:

def scanConfig = [
 'buildName' : 'my-build-name',
 'buildNumber' : '17'
]

If you're scanning a build which has already been published to Artifactory in the same job, you can use the build name and build number
stored on the buildInfo instance you used to publish the build. For example:

server.publishBuildInfo buildInfo
 def scanConfig = [
 'buildName' : buildInfo.name,
 'buildNumber' : buildInfo.number
]

Before you trigger the scan, there's one more thing you need to be aware of. By default, if the Xray scan finds vulnerabilities or issues in the
build that trigger an alert, the build job will fail. If you don't want the build job to fail, you can add the 'failBuild' property to the scanConfig
instance and set it to 'false' as shown here:

def scanConfig = [
 'buildName' : buildInfo.name,
 'buildNumber' : buildInfo.number,
 'failBuild' : false
]

OK, we're ready to initiate the scan. The scan should be initiated on the same Artifactory server instance, to which the build was published:

def scanResult = server.xrayScan scanConfig

That's it. The build will now be scanned. If the scan is not configured to fail the build job, you can use the scanResult instance returned from
the xrayScan method to see some details about the scan.
For example, to print the result to the log, you could use the following code snippet:

echo scanResult as String

For more details on the integration with JFrog Xray and JFrog Artifactory to scan builds for issues and vulnerabilities, please refer to CI/CD
 in the JFrog Xray documentation.Integration

Distributing Build Artifacts

From version 2.11.0, you can easily distribute your build artifacts to the world or to your community using Pipeline. Your artifacts are
distributed to JFrog Bintray, using a Distribution Repository in Artifactory. You can read more about Distribution Repositories and the steps for
setting them up .here

In order to distribute a build, it should be first published to Artifactory, as described in the "Publishing Build-Info to Artifactory" section in this
article.

Once you have your Distribution Repository set up and your build is published to Artifactory, define a distributionConfig instance in your
Pipeline script as shown here:

https://www.jfrog.com/confluence/display/XRAY/CI-CD+Integration
https://www.jfrog.com/confluence/display/XRAY/CI-CD+Integration

def distributionConfig = [
 // Mandatory parameters
 'buildName' : buildInfo.name,
 'buildNumber' : buildInfo.number,
 'targetRepo' : 'dist-repo',

 // Optional parameters
 'publish' : true, // Default: true. If true, artifacts
are published when deployed to Bintray.
 'overrideExistingFiles' : false, // Default: false. If true,
Artifactory overwrites builds already existing in the target path in
Bintray.
 'gpgPassphrase' : 'passphrase', // If specified, Artifactory
will GPG sign the build deployed to Bintray and apply the specified
passphrase.
 'async' : false, // Default: false. If true, the
build will be distributed asynchronously. Errors and warnings may be
viewed in the Artifactory log.
 "sourceRepos" : ["yum-local"], // An array of local
repositories from which build artifacts should be collected.
 'dryRun' : false, // Default: false. If true,
distribution is only simulated. No files are actually moved.
]

OK, we're ready to distribute the build. The distribution should be donw on the same Artifactory server instance, to which the build was
published:

server.distribute distributionConfig

File Spec Schema

You can read the File Spec schema .here

Examples

The can help get you started using the Artifactory DSL in your Pipeline scripts.Jenkins Pipeline Examples

TeamCity Artifactory Plug-in

Overview

Artifactory provides tight integration with TeamCity CI Server through the TeamCity Artifactory Plug-in.
Beyond managing efficient deployment of your artifacts to Artifactory, the plug-in lets you capture information
about artifacts deployed, dependencies resolved, environment data associated with the TeamCity build runs
and more, that effectively provides full traceability for your builds.

From version 2.1.0 the TeamCity Artifactory Plug-in provides powerful features for release management and
promotion. For details please refer to .TeamCity Artifactory Plugin - Release Management

https://github.com/JFrogDev/project-examples/tree/master/jenkins-pipeline-examples

Build Runner Support

The TeamCity Artifactory plugin supports most build runner types, including: , (withMaven2, Maven 3 Ivy/Ant
Ivy modules support), , , , and .Gradle NAnt MSBuild FxCop Ipr

Installing the Plugin

Plugins are deployed to TeamCity by placing the packaged plugin into the and$ directory< >/pluginsTeamCity Data Directory
restarting TeamCity. You can also accomplish this via the TeamCity UI via and choosing theAdministration | Plugins List | Upload Plugin Zip
zip-file from your file-system. You will need to restart TeamCity (tomcat) for the plugin to take effect.

Download the latest version of the plugin:

Configuration

To use the TeamCity Artifactory plugin you first need to configure your Artifactory servers in TeamCity's server configuration. You can then set up
a project build runner to deploy artifacts and Build Info to a repository on one of the Artifactory servers configured.

Configuring System-wide Artifactory Servers

Before you begin
Please refer to the general information about before using theArtifactory's Build Integration
TeamCity Artifactory Plugin.

Source Code Available!
The TeamCity Artifactory Plugin is an which you can freely browseopen source project on GitHub
and fork.

Page Contents
Overview

Build Runner Support
Installing the Plugin
Configuration

Configuring System-wide Artifactory Servers
Configuring Project-specific Runners

Editing Project-specific Configuration
Triggering Build Retention in Artifactory
Scanning Builds with JFrog Xray
Running License Checks
Generic Build Integration
File Specs
Legacy Patterns (deprecated)
Attaching Searchable Parameters to Build-Info and to Published Artifacts
Black Duck Code Center Integration (deprecated)
Viewing Project-specific Configuration

Running a Build with the Artifactory Plugin
Triggering Builds in Reaction to Changes in Artifactory
Proxy Configuration
Licence
Change Log

Read More
TeamCity Artifactory Plugin - Release Management

Remove older versions
If you have an older version of the plug-in, be sure to remove it before upgrading to a newer one

https://confluence.jetbrains.com/display/TCD9/TeamCity+Data+Directory
https://bintray.com/jfrog/jfrog-jars/teamcity-artifactory-plugin/_latestVersion
https://github.com/JFrogDev/teamcity-artifactory-plugin

To make Artifactory servers globally available to project runner configurations, they must be defined in Administration | Integrations |
.Artifactory

Select and fill in the URL of the Artifactory server.Create new Artifactory server configuration

Deployer credentials can be set at the global level for all builds, but they can also be overridden and set at a project build level.

Specifying a username and password for the resolver repository is optional. It is only used when querying Artifactory's REST API for a list of
configured repositories and then only if the target instance does not allow anonymous access.

Configuring Project-specific Runners

Editing Project-specific Configuration

To set up a project runner to deploy build info and artifacts to Artifactory go to and select the project you want toAdministration | Projects
configure.

Then, under the section, click the link for the build you want to configure.Build Configurations Edit

Under select the relevant and click the link for the build step you want to configure.Build Configuration Settings, Build Step Edit

When you select a value in the field, the selected server is queried for a list of configured repositories (using theArtifactory server URL
credentials configured in the corresponding). This populates the field with a list ofArtifactory Server Configuration Target Repository
repositories to which you can select to deploy.

Clicking on the checkbox enables you to type in repository name as free text. You may also include variables as part of the text.Free-text mode
For example: libs-%variableName%

Configuration errors
If the list remains empty, check that the specified Artifactory server URL, credentials and proxy information (ifTarget Repository
provided) are valid.

Any information about communication errors that might occur can be found in the TeamCity server logs.

Triggering Build Retention in Artifactory

You can trigger build retention when publishing build-info to Artifactory.

Scanning Builds with JFrog Xray

The TeamCity Artifactpry Plugin is integrated with JFrog Xray through JFrog Artifactory, allowing you to have build artifacts and dependencies
scanned for vulnerabilities and other issues. If issues or vulnerabilities are found, you may choose to fail a build job. The scan result details are
always printed into the build log. This integration requires and above and and above. JFrog Artifactory v4.16 JFrog Xray v1.6

1.

2.

Running License Checks

If you are using Artifactory Pro, you can benefit from the License Control feature to discover and handle third party dependency licensing issues
as part of the build.
If you check the Run License Checks checkbox, Artifactory will scan and check the licenses of all dependencies used by this build. You can also
specify a list of recipients who should receive any license violation notifications by email.

Generic Build Integration

Generic build integration provides Build Info support for the following runner types:

Command Line
FxCop
MSBuild
Rake
Powershell
XCode Project
NuGet Publish
NAnt
Visual Studio (sln)
Visual Studio 2003
SBT, Scala build tool

This allows the above builds to:

Upload any artifacts to Artifactory, together with custom properties metadata, and keep published artifacts associated with the TeamCity
build.
Download artifacts from Artifactory that are required by your build.

You can define the artifacts to upload and download by either using "File Specs" or "Legacy Patterns".

File Specs

File Spec are specified in JSON format. You can read the File Spec schema here.

Legacy Patterns (deprecated)

Legacy patterns are deprecated since version 1.8.0 and will be removed in future releases.

Custom
published
artifacts

Allows you to specify which artifact files produced by the build should be published to Artifactory. At the end of the build the
plugin locates artifacts in the build's checkout directory according to the specified artifact patterns, and publishes them to
Artifactory to one or more locations, optionally applyinga mapping for the target path of each deployed artifact. The pattern
and mapping syntax for Published Artifacts is similar to the one used by TeamCity for .Build Artifacts

Custom build
dependencies

Allows you specify dependency patterns for published artifacts that should be downloaded from Artifactory before the build is
run. You can have detailed control over which artifacts are resolved and downloaded by using query-based resolution, adding
to your artifact paths a query with the properties that the artifact should have before it can be downloaded. For further
information read here about .Resolution by Properties

http://confluence.jetbrains.net/display/TCD5/Build+Artifact

Attaching Searchable Parameters to Build-Info and to Published Artifacts

In the you can select to define system properties or environment variables that should be attached toBuild Configuration Settings Parameters
artifacts and their corresponding build info.

To define a parameter click on the button.Add new parameter

FIll in the corresponding fields.

Parameters relevant for builds run through Artifactory are:

buildInfo.property.* - All properties starting with this prefix are added to the root properties of the build-info
artifactory.deploy.* - All properties starting with this prefix are attached to any deployed produced artifacts

You can specify all the properties in a single file, and then define another property pointing to it.

As of version 2.1.4, the above configuration is not backward compatible and you may need to re-save the builds configuration for them
to run properly.

If no matching artifacts are found, remember that these parameters may be case sensitive depending on the operating system, the
agent and the server they are running on.

To point the plugin to a properties file, define a property called and set its value to the absolute path ofbuildInfoConfig.propertiesFile
the properties file.

It is also possible to point the plugin to a properties file containing the aforementioned properties.

Black Duck Code Center Integration (deprecated)

This feature is no loner supported since version 5 of Artifactory.

If you are using Artifactory Pro and have an account with Code Center, you can run the build through an automated, non-invasive,Black Duck
open source component approval process, and monitor for security vulnerabilities.

Viewing Project-specific Configuration

Existing project configuration can be viewed in under :Settings Projects | $PROJECT_NAME | $BUILD_NAME

The properties file should be located on the machine running the build agent, not on the server!

1.

2.

3.

Running a Build with the Artifactory Plugin

Once you have completed setting up a project runner you can run a project build. The Artifactory plugin takes effect at the end of the build and
does the following:

For all build runner types - Publishes the specified Published Artifacts to the selected target repository and applies corresponding path
mappings.
For Maven or Ivy/Ant build runner - Deploys all artifacts to the selected target repository together at the end of the build (as opposed to
deploying separately at the end of each module build as done by Maven and Ivy).
Deploys the Artifactory BuildInfo to Artifactory, providing , with links back to the build in TeamCity. full traceability of the build in Artifactory

3.

You can also link directly to the build information in Artifactory from a build run view:

Triggering Builds in Reaction to Changes in Artifactory

The plugin allows you to set a new type of trigger that periodically polls a path in Artifactory, a folder or an individual file. Whenever a change is
detected in the polled element, the TeamCity build is triggered. For example, the build could be triggered when new artifacts have been deployed
to the specified path in Artifactory.

Artifactory Pro required
Triggering builds is only available with Artifactory Pro

To configure a new build trigger, under select Then, under Administration, $PROJECT_NAME | $BUILD_NAME. Build Configuration Settings
 select Triggers.

Click the button to select an Add new trigger Artifactory Build Trigger

Select the and the Artifactory Server URL Target repository.

Complete the username and a password fields of a valid deployer for the selected repository.

Then, in Items to watch, specify the paths in the selected repository in which a change should automatically trigger a build.

Deploy permssion
The specified user must have deploy permissions on the repository

Proxy Configuration

If the Artifactory server is accessed via a proxy, you need to configure the proxy by setting the following properties in the $TEAMCITY_USER_HOM
 file. If the file does not exist, you'll need to create it.E/.BuildServer/config/internal.properties

org.jfrog.artifactory.proxy.host
org.jfrog.artifactory.proxy.port
org.jfrog.artifactory.proxy.username
org.jfrog.artifactory.proxy.password

Since version 2.5.0, you can also define a proxy for specific build agents. You do that by adding the TeamCity agent name to the end of the above

Be as specific as possible in Items to watch
In order to establish if there has been a change, Artifactory must traverse all the folders and their sub-folders specified in Items to

. If the specified folders have a lot of content and sub-folders, this is a resource intensive operation that can take a long time.watch

Therefore, we recommend being as specific as possible when specifying folders in Items to watch.

1.
2.
3.
4.

1.
2.
3.
4.
5.

1.
2.
3.

1.

1.

1.

1.
2.
3.

property names.

For example, if you wish to configure a proxy for the "my-agent" agent, the proxy properties configuration should look as follows:

org.jfrog.artifactory.proxy.host.my-agent
org.jfrog.artifactory.proxy.port.my-agent
org.jfrog.artifactory.proxy.username.my-agent
org.jfrog.artifactory.proxy.password.my-agent

Licence

The TeamCity Artifactory plugin is available under the Apache v2 License.

Change Log
Click to see change log details...

28 Sep 20172.5.0 ()

Allow proxy configuration per agent (TCAP-237)
Support pattern exclusion in File Specs (TCAP-300)
File specs AQL optimizations (TCAP-302)
Bug fixes (, , ,)TCAP-297 TCAP-299 TCAP-301 TCAP-303

29 Jun 20172.4.0 ()

Support for retention policy within TeamCity Plugin (TCAP-283)
Support Xray build scan (TCAP-292)
Add upload and download from file specs support to generic jobs (TCAP-294)
Allow to extract supported formats using file specs (TCAP-295)
Bug fixes (, ,)TCAP-167 TCAP-293 TCAP-296

23 Jan 20172.3.1 ()

Support full path in specs ()7TCAP-28
Add to file spec the ability to download artifact by build name and number ()TCAP-288
Change file Specs pattern ()TCAP-285

2.3.0 (13 Nov 2016)

Upload and download File Specs support to generic jobs ()TCAP-284

2.2.1 (19 May 2016)

Bug fix ()TCAP-214

2.2.0 (21 March 2016)

Bug fixes (, TCAP-238 , TCAP-239 , TCAP-241 , TCAP-244 , TCAP-245 , TCAP-247 , TCAP-250 , TCAP-258)TCAP-236

2.1.13 (4 May 2015)

Support multi Artifactory Build Triggers ()TCAP-222
Support SBT build tool ()TCAP-223
Bug fix ()TCAP-214

In case your build agent name contains a white-space, you should replace the white-space in the property name with \u0020.

For example, here's how you define the proxy host for the "Default Agent":

org.jfrog.artifactory.proxy.host.Default\u0020Agent

https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-237
https://www.jfrog.com/jira/browse/TCAP-300
https://www.jfrog.com/jira/browse/TCAP-302
https://www.jfrog.com/jira/browse/TCAP-297
https://www.jfrog.com/jira/browse/TCAP-299
https://www.jfrog.com/jira/browse/TCAP-301
https://www.jfrog.com/jira/browse/TCAP-303
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-283
https://www.jfrog.com/jira/browse/TCAP-292
https://www.jfrog.com/jira/browse/TCAP-294
https://www.jfrog.com/jira/browse/TCAP-295
https://www.jfrog.com/jira/browse/TCAP-167
https://www.jfrog.com/jira/browse/TCAP-293
https://www.jfrog.com/jira/browse/TCAP-296
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-287
https://www.jfrog.com/jira/browse/TCAP-288
https://www.jfrog.com/jira/browse/TCAP-285
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-284
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-275
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-238
https://www.jfrog.com/jira/browse/TCAP-239
https://www.jfrog.com/jira/browse/TCAP-241
https://www.jfrog.com/jira/browse/TCAP-244
https://www.jfrog.com/jira/browse/TCAP-245
https://www.jfrog.com/jira/browse/TCAP-247
https://www.jfrog.com/jira/browse/TCAP-250
https://www.jfrog.com/jira/browse/TCAP-258
https://www.jfrog.com/jira/browse/TCAP-236
https://www.jfrog.com/jira/browse/TCAP/fixforversion/14281
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-222
https://www.jfrog.com/jira/browse/TCAP-223
https://www.jfrog.com/jira/browse/TCAP-214

1.

1.
2.

1.

1.
2.
3.
4.

1.
2.

1.

1.
2.
3.
4.
5.

1.
2.

1.
2.

1.
2.
3.
4.

1.

1.
2.
3.

1.
2.

Mar2.1.12 (12 2015)

Adding support for free text repository configuration ()TCAP-217

2.1.11 (7 Dec 2014)

Compatibility with Gradle 2.x ()TCAP-211
Bug Fixed ()TCAP-205

2.1.10 (8 May 2014)

Bug Fixed (,)TCAP-206 TCAP-72

2.1.9 (17 Apr 2014)

Adding Version Control Url property to the Artifactory Build Info JSON. ()TCAP-203
Support for TeamCity 8.1 Release management feature issues
Support working with maven 3.1.1
Bug Fixed (,)TCAP-197 TCAP-161

2.1.8 (15 Jan 2014)

Allow remote repository caches to be used for build triggering - TCAP-196
Bug Fixes

2.1.7 (18 Dec 2013)

Add support for blackduck integration - TCAP-185

2.1.6 (03 Sep 2013)

TeamCity 8.0.x full compatability issue - TCAP-172
Global and build credentials issue - TCAP-153
Repositories refreshed by credential issue - TCAP-166
Generic deploymentresolution on Xcode builds - TCAP-180
Working directory in Gradle build issue - TCAP-125

2.1.5 (07 Jul 2013)

Fix security issue - TCAP-172
Improve generic resolution - BI-152

2.1.4 (21 Aug 2012)

Compatible with TeamCity7.1.
Bug Fixes

2.1.3 (30 May 2012)

Compatible with TeamCity7.
Support 'Perforce' in release management.
Support multiple deploy targets for the same source pattern in generic deploy.
Support for custom build dependencies resolution per build.

2.1.2 (12 Dec 2011)

Compatible with Gradle 1.0-milestone-6.

2.1.1 (09 Aug 2011)

Support for Gradle milestone-4
Better support for releasing nested Maven projects
Fixed minor Maven deployments discrepancies

2.1.0 (14 Jul 2011)

Release management capabilities
Bug fixes

2.0.1 (9 Jan 2011)

https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12783
https://www.jfrog.com/jira/browse/TCAP-217
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-211
https://www.jfrog.com/jira/browse/TCAP-205
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12382
https://www.jfrog.com/jira/browse/TCAP-206
https://www.jfrog.com/jira/browse/TCAP-72
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12381
https://www.jfrog.com/jira/browse/TCAP-203
https://www.jfrog.com/jira/browse/TCAP-197
https://www.jfrog.com/jira/browse/TCAP-161
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12182
https://www.jfrog.com/jira/browse/TCAP-196
https://www.jfrog.com/jira/browse/TCAP/fixforversion/12182
https://www.jfrog.com/jira/browse/TCAP/fixforversion/11208
https://www.jfrog.com/jira/browse/TCAP-185
https://www.jfrog.com/jira/browse/TCAP/fixforversion/11208
https://www.jfrog.com/jira/browse/TCAP-172
https://www.jfrog.com/jira/browse/TCAP-153
https://www.jfrog.com/jira/browse/TCAP-166
https://www.jfrog.com/jira/browse/TCAP-180
https://www.jfrog.com/jira/browse/TCAP-125
https://www.jfrog.com/jira/browse/TCAP/fixforversion/11208
https://www.jfrog.com/jira/browse/TCAP-172
https://www.jfrog.com/jira/browse/BI-152
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10795
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/11207
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10795
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10795
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10581
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10518
https://issues.jfrog.org/jira/browse/TCAP/fixforversion/10517

1.
2.
3.
4.

1.
2.
3.
4.

1.

1.
2.
3.

1.

2.

Auto Snapshot/Release target repository selection
Add ivy/artifact deploy patterns
Improved Gradle support
Bug fixes

2.0.0 (5 Dec 2010)

Support for Gradle builds
Support for maven3 builds
Default deployer add resolver credentials
Support for muti steps builds

1.1.3 (21 Nov 2010)

Include/exclude pattern for artifacts deployment

1.1.2 (7 Nov 2010)

Control for including published artifacts when running license checks
Limiting license checks to scopes
Control for turning off license discovery when running license checks

TeamCity Artifactory Plugin - Release Management

Overview

The TeamCity Artifactory Plugin includes release management capabilities for Maven and Gradle runners
that use Subversion, Git or Perforce for version control.

When you run your builds using or with jobs that use , Git or asMaven Gradle Subversion Perforce
your version control system, you can manually stage a release build allowing you to:

Change values for the release and next development version
Choose a target staging repository to which to deploy the release
Create a VCS tag for the release

Staged release builds can later be promoted or rolled-back, changing their release status in Artifactory, and
build artifacts may optionally be moved to a different target repository.

Inside Artifactory, the history of all build status changes (staged, promoted, rolled-back, etc.) is recorded and
 for full traceability.displayed

Before Getting Started

Working with Git

Pre-requisites for using Release Management with Git:

Since the Release Management process runs git commands, the git client must be installed on the TeamCity build agent, using an ssh
key (using the git client with user and password is not supported)..
The git client should be configured with an ssh key, so that it can access your Git repositories. Therefore, before running the Release
Management process for the first time, it is recommended that you first make sure that you're able to perform a git push from the build
agent console. Also, make sure that the git push command runs without displaying a user prompt. Note that configuring an ssh
passphrase for the git client is not supported.

Page Contents
Overview
Before Getting Started

Working with Git
Working with Subversion

Maven Release Management
Configuring Maven Runners
Staging a Maven Release Build
Promoting a Release Build

Gradle Release Management
Configuring Gradle Runners
Staging a Gradle Release Build
Promoting a Release Build

http://maven.apache.org/
http://www.gradle.org/
http://subversion.apache.org/
http://www.perforce.com/index.html
https://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-ReleaseHistory
https://www.jfrog.com/confluence/display/RTF/Build+Integration#BuildIntegration-ReleaseHistory

2.

1.
2.
3.
4.
5.
6.

1.
2.

1.
2.
3.
4.
5.

During the release, the plugin performs the following steps:

If is checked, create and switch to the release branch.Create Branch
Commit the release version to the current branch.
Create a release tag.
Push the changes.
Switch to the checkout branch and commit the next development version.
Push the next development version to the working branch.

Working with Subversion

Release management with supports Subversion when using one checkout directory.TeamCity Artifactory Plug-in

During the release the plugin does the following:

Commits the release version directly to the tag (if is checked). The release version is not committed to the working branch.Create tag
Commits the next development version to the working branch.

Maven Release Management

The manages a release with Maven running the build only once using the following basic steps:TeamCity Artifactory Plugin

Change the POM versions to the release version (before the build starts).
Trigger the Maven build (with optionally different goals).
Commit/push changes to the tag (Subversion) or the release branch (Git).
Change the POM versions to the next development version.
Commit/push changes to the trunk.

If the build fails, the plugin attempts to rollback the changes (both local and committed).

For more information including configuration of Maven Runners, and Jobs and staging a release build, please refer to .TeamCity Artifactory Plugin

Configuring Maven Runners

To enable release management in Maven runners, edit the runner's step configuration and check the cEnable Artifactory release management
heckbox.

Staging a Maven Release Build

Once release management is enabled, the Artifactory Release Management tab appears at the top of the build page.

Changes are only committed if the files are modified (POM files or)gradle.properties

http://www.jfrog.com/confluence/display/RTD/TeamCity+Artifactory+Plug-in
http://www.jfrog.com/confluence/display/RTF/TeamCity+Artifactory+Plug-in

Clicking on the tab reveals configuration options for the release build:

The release staging page displays the last version built (the version tag is that of the root POM, and is taken from the last build that is not a
release). Most of the fields in the form are populated with default values.

Version configuration controls how the plugin changes the version in the POM files (global version for all modules, version per module or no
version changes).

If the checkbox is checked (default), the plugin commits/pushes the POMs with the release version to the version control systemCreate VCS tag
with the commit comment. When using Git, there's also an option to create a release branch.

Click on the button to trigger the release build.Build and Release to Artifactory

Promoting a Release Build

You can promote a release build after it completes successfully.

This is not a mandatory step but is very useful because it allows you to mark the build as released in Artifactory, and move or copy the built

Target server is Artifactory Pro?
If the target Artifactory server is a Pro edition, you can change the target repository, (the default is the release repository configured in
Artifactory publisher) and add a staging comment which is included in the build info deployed to Artifactory.

1.
2.
3.

4.

artifacts to another repository so they are available to other users.

To promote a build, browse to the build's result page and click the link.Artifactory Release Promotion

Clicking on the link will open the dialog:Release Promotion

Select the target status of the build ("Released" or "Rolled-Back"). You may also enter a comment to display in the build in Artifactory.

To move or copy the build artifacts, select the .Target promotion repository

Gradle Release Management

The supports release management when running builds with Gradle. This relies on the version property (andTeamCity Artifactory Plugin
others) managed by the file. The plugin reads the properties from the Artifactory release management configuration, andgradle.properties
modifies those properties in the file.gradle.properties

The plugin manages a release using the following basic steps:

Modify properties in the to release values (before the build starts).gradle.properties
Trigger the Gradle build (with optionally different tasks and options).
Commit/push changes to the tag (Subversion) or the release branch (Git)

Artifactory Pro Required
Promotion features are only available with Artifactory Pro

4.
5.

Modify the to the next integration values.gradle.properties
Commit/push changes to the trunk.

Configuring Gradle Runners

To enable release management for Gradle runners, edit the runner's step configuration and check the Enable Artifactory release management
checkbox.

Staging a Gradle Release Build

Once release management is enabled, the tab appears at the top of the build page.Artifactory Release Management

Clicking on the tab reveals configuration options for the release build:

The tab displays the and properties configured for the runner. The plugin reads these values fromRelease staging Release Next development
the file and attempts to calculate and display and in the text fields.gradle.properties Release Next integration version

If is checked (default), the plugin commits/pushes the POMs with the release version to the version control system with theCreate VCS tag
commit comment. When using Git, if is checked, the changes are carried out on the release branchUse release branch Next release version
instead of the current checkout branch. The final section allows you to change the target repository (the default is the release repository
configured in Artifactory publisher) and an optional staging comment which includes the build info deployed to Artifactory.

Click on the Build and Release to Artifactory button to trigger the release build.

Promoting a Release Build

Promotion is the same as in for Maven.Promoting a Release Build

Bamboo Artifactory Plug-in

Overview

Artifactory provides tight integration with Bamboo through the Bamboo Artifactory Plug-in. Beyond managing
efficient deployment of your artifacts to Artifactory, the plug-in lets you capture information about artifacts
deployed, dependencies resolved, environment data associated with the Bamboo build runs and more, that
effectively facilitates fully traceable builds.

Build Runner Support

The Bamboo Artifactory Plug-in currently provides full support for , and builds. Maven 3 Gradle Ivy Generic
 are available for all builder types.Deployment Tasks

Download

Latest

Download version 2.3.0 which is compatible with Bamboo 6.2.x and 6.1.x.

Upgrading to version 2.x from version 1.x of the plugin requires new installation steps. Please refer to
 Installing the Plugin for more details.

Older

Version Download link Compatibility

2.1.1 Download Bamboo 6.0.x

2.1.0 Download Bamboo 5.14.x

1.13.0 Download Bamboo 5.14.x

1.11.2 Download Bamboo 5.13.x

1.11.1 Download Bamboo 5.12.x

1.10.3 Download Bamboo 5.11.x

1.10.1 Download Bamboo 5.10.x

1.9.2 Download Bamboo 5.9.x

1.7.7 Download Bamboo 5.8.x

Installing the Plugin

Requirements

Artifactory 2.2.5 or later. For best results and optimized communication, we recommend using the
latest version of Artifactory.
Artifactory Pro is required for advanced features, such as and enhanced License Control Build

.Integration
Maven 3.
Gradle 0.9 or later.
Ant and Ivy 2.1.0 or later.

Upgrading to Versions 2.x from Versions 1.x

If you are currently using a version of the plugin below 2.0.0 and would like to upgrade to version 2.0.0 or
above, you need to migrate your Artifactory configuration data to the format expected by the type 2 plugin as
described in the following steps:

1. If you are not already on version 1.13.0 of the plugin, upgrade to that version first.

2. From , click on the Bamboo Administration | Artifactory Plugin " " button.Migrate data to v2

3. Remove plugin version 1.13.0 and restart Bamboo.

Before you begin
Please refer to the general information about before using theArtifactory's Build Integration
Bamboo Artifactory Plug-in.

Source Code Available!
The Bamboo Artifactory Plugin is which you can freely browsean open-source project on GitHub
and fork.

http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/2.3.0/bamboo-artifactory-plugin-2.3.0.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/2.1.1/bamboo-artifactory-plugin-2.1.1.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/2.1.0/bamboo-artifactory-plugin-2.1.0.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.13.0/bamboo-artifactory-plugin-1.13.0.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.11.2/bamboo-artifactory-plugin-1.11.2.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.11.1/bamboo-artifactory-plugin-1.11.1.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.10.3/bamboo-artifactory-plugin-1.10.3.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.10.1/bamboo-artifactory-plugin-1.10.1.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.9.2/bamboo-artifactory-plugin-1.9.2.jar
http://dl.bintray.com/jfrog/jfrog-jars/org/jfrog/bamboo/bamboo-artifactory-plugin/1.7.7/bamboo-artifactory-plugin-1.7.7.jar
http://www.jfrog.org/addons.php
https://github.com/JFrogDev/bamboo-artifactory-plugin

1.
2.
3.

4.

4. You're now ready to install version 2.x according to the below instructions.

Installing Versions 2.x

From version 2.0.0, the Bamboo Artifactory Plugin is released as a type 2 plugin. You can read about
installing type 2 plugins in the Bamboo documentation for Installing add-ons.

Installing Versions 1.x

For versions below 2.0.0, the plugin was released as a type 1 plugin and is deployed to Bamboo by placing
the packaged plugin jar file into the $BAMBOO_INSTALLATION_HOME/atlassian-bamboo/WEB-INF/lib
folder and restarting Bamboo.
For more details please refer to the Bamboo documentation for Installing Plugins type 1 add-ons.

Configuration

To use the Bamboo Artifactory plug-in you need to set up your Artifactory server(s) in Bamboo's server configuration. You can then set up a
project builder to deploy artifacts and build-info to a repository on one of the configured Artifactory servers.

Configuring Maven 3, Gradle and Ivy Builders

Before you begin with any Artifactory-specific setup, ensure that Maven 3, Gradle and/or Ivy builders are available for project configurations.

These builders are defined as s in BambooServer Capabilitie

To define Server Capabilities for builders:

Under the menu, select to view the page. Administration Overview Bamboo administration
Then, under selectBuild Resources Server Capabilities
Select as the Executable Capability Type

Remove older versions
If you have an older version of the plug-in, be sure to remove it before upgrading to a newer one

Page Contents
Overview

Build Runner Support
Download

Latest
Older

Installing the Plugin
Requirements
Upgrading to Versions 2.x from Versions 1.x
Installing Versions 2.x
Installing Versions 1.x

Configuration
Configuring Maven 3, Gradle and Ivy Builders
Configuring System-wide Artifactory Server(s)
Configuring a Project Builder

Selecting Artifactory Servers and Repositories
Running Licence Checks
Black Duck Code Center Integration
The Artifactory Generic Resolve Task
The Artifactory Generic Deploy Task
Using File Specs
The Artifactory Deployment Task

License
Attaching Searchable Parameters
Overriding Plan values using Bamboo Variables
Release Management
Push to Bintray

Changelog

Read More
Bamboo Artifactory Plugin - Release Management

https://confluence.atlassian.com/display/UPM/Installing+add-ons#Installingadd-ons-Installingadd-onsdirectlyfromAtlassianMarketplace
https://confluence.atlassian.com/display/UPM/Installing+add-ons#Installingadd-ons-installingversion1InstallingPlugins1typeadd-onsinJIRAandBamboo

4.
5.

Select , or as the type from the list.Artifactory Maven 3 Artifactory Gradle Artifactory Ivy Types
Make sure that points to an installation directory of the selected builder type.Path

Configuring System-wide Artifactory Server(s)

To make Artifactory servers available to project configurations, they must be defined under . Administration | Plugins | Artifactory Plugin

Enter the Artifactory server URL in the fields.Add New Server Configuration

Username and Password
Username and password are optional and are only used when querying Artifactory's REST API for a list of configured repositories
(credentials are only required if the target instance does not allow anonymous access).

1.
2.

Configuring a Project Builder

To set up a project task to deploy build-info and artifacts to Artifactory:

Go to the step of your jobs configuration.Tasks
When adding a task type, select the Artifactory Maven 3, Gradle or Ivy builder.

2.

3. The builder configuration fields appear and include Artifactory and build-info configuration options.

Selecting Artifactory Servers and Repositories

Select an Artifactory server URL for resolving artifacts and to deploy build artifacts in the corresponding fields.

If you have configured the correctly with the required credentials, then once you select an Artifactory server, theSystem Wide Artifactory Servers
corresponding fields are populated to let you choose a and Resolution Repository Target Repository.

The field is populated with a list of available target repositories as returned by the server (queried with the credentials in theTarget Repository
server configuration, if provided).

If the repository list remains empty, ensure the specified Artifactory server URL and credentials (if provided) are valid.

Select the target repository you want Bamboo to deploy artifacts and build-info to.

Repository list empty?
If the or fields remain empty, check that you have entered valid credentials when definingResolution Repository Target Repository
the Artifactory servers.

Running Licence Checks

If you have an Artifactory Pro license, you can set the checkbox so that Artifactory will scan all dependencies used by theRun License Checks
build to check for any license violations.

This feature offers the following options:

Send License Violation
Notifications to

A list of email addresses of users who should receive license violation notifications.

Limit Checks to the Following
Scopes

The on which the license check should be run. If left empty, all scopes will beMaven dependency scopes
checked.

Include Published Artifacts

Indicates that any build artifacts that are dependencies for other build artifacts, should also be scanned for
license violations

Disable Automatic License
Discovery

Tells Artifactory not to try and automatically analyze and tag the build's dependencies with license
information upon deployment.
You can still attach license information manually by running from the build's Licenses tab inAuto-Find
Artifactory.

Black Duck Code Center Integration

If you have an Artifactory Pro license, and a Black Duck Code Center account you can use the toArtifactory Black Duck Code Center integration
automatically initiate an open source component approval process, and proactively monitor for security vulnerabilities.

This feature offers the following options:

Code Center application name

The name of the Black Duck Code Center application that should be invoked.

Code Center application
version

The Black Duck Code Center application version.

Send compliance report email
to

A list of email addresses of users who should receive license violation notifications.

Limit checks to the following
scopes

The on which the compliance check should be run. If left empty, all scopes willMaven dependency scopes
be checked.

http://docs.codehaus.org/display/MAVENUSER/Dependency+Scopes
http://docs.codehaus.org/display/MAVENUSER/Dependency+Scopes

Include Published Artifacts

Indicates that any build artifacts that are dependencies for other build artifacts, should also be scanned for
license violations

Auto create missing component
requests

Automatically create missing components in Black Duck Code Center application after the build is
completed and deployed in Artifactory.

Auto discard stale component
requests

Automatically discard stale components in Black Duck Code Center application after the build is completed
and deployed in Artifactory.

The Artifactory Generic Resolve Task

The Generic Resolve task can be used in any job with any combination of tasks.

It lets you specify dependency patterns that should be downloaded from Artifactory through the creation of File Specs. Read more about File
Specs .here

Before version 2.2.0, specifying dependency patterns was possible through Legacy Patterns, which became deprecated in version 2.2.0

The Artifactory Generic Deploy Task

https://www.jfrog.com/confluence/display/RTF/Bamboo+Artifactory+Plug-in#BambooArtifactoryPlug-in-UsingFileSpecs

1.

2.

The Generic Deploy task can be used in any job with any combination of tasks, and is provided to offer minimal Build Info support for all types.

This task collects all available information regarding the build from Bamboo, and provides a deployment mechanism for the artifacts produced.

Adding the Generic Deploy task automatically deploys Build Info collected from the Published Artifacts declaration in addition to the artifacts
themselves. Specifying artifact patterns to be deployed to Artifactory is done through the creation of File Specs. Read more about File Specs here
.

Before version 2.2.0, specifying artifact patterns was possible through Legacy Patterns, which became deprecated in version 2.2.0

Using File Specs

File Spec are specified in JSON format. They are used in the and tasks, to specify the dependencies to beGeneric Resolve Generic Deploy
resolved from Artifactory or artifacts to be deployed to it.
You can use File Specs in one of the following ways:

Manage them in your SCM, and then during the build, have them pulled to the workspace with the other sources. If you choose this
option, you should select the "File" option in the "Upload spec source" or "Download spec source" field and specify the relative path to the
File Spec in your workspace.
Save the File Spec JSON as part of the job configuration. If you choose this option, you should select the "Job configuration" option in the
"Upload spec source" or "Download spec source" field and specify the File Spec JSON content in your workspace in the "File path" field.

You can read the File Spec schema .here

The Artifactory Deployment Task

The Bamboo Artifactory Plugin also supports Bamboo Deployment projects (read more about Deployment projects).here
The Artifactory Deployment task collects the build artifacts which are shared by the build plan associated with the deployment task, and uploads
them to Artifactory.

Make sure to add the Generic Deploy task as a final step!

The "Artifacts Download" Task
The task must be prior to the task in the Deployment job flow.Artifacts Download Artifactory Deployment

The Artifacts Directory
We recommend configuring a subdirectory for the task.Artifacts Download

https://www.jfrog.com/confluence/display/RTF/Bamboo+Artifactory+Plug-in#BambooArtifactoryPlug-in-UsingFileSpecs
https://confluence.atlassian.com/display/BAMBOO/Creating+and+configuring+a+deployment+project

1.

2.

Running a Build

Once you have completed setting up a project builder you can run it. The Artifactory plug-in commences at the end of the build and:

Deploys all artifacts to the selected target repository in one go (as opposed to the deploy at the end of each module build, used by
Maven/Ivy).
Deploys the Artifactory build-info to the selected server, which provides , with links back to thefull traceability of the build in Artifactory
build in Bamboo.

You can also link directly to the information in Artifactory from a build run view in Bamboo:

License

The Bamboo Artifactory plug-in is available under the Apache v2 License.

Attaching Searchable Parameters

You can define parameters that should be attached to build info and artifacts that are deployed by the plugin.

To define a parameter, under go to fill in a pair and click Administration Build Resources | Global Variables, Key/Value Save.

The available parameter types are:

buildInfo.property.* - All properties starting with this prefix will be added to the root properties of the build-info.
artifactory.deploy.* - All properties starting with this prefix will be attached to any produced artifacts that are deployed.

Using a Properties File

Instead of defining properties manually, you can point the plug-in to a properties file.

To do so, define a property named buildInfoConfig.propertiesFile and set its value to the absolute path of the properties file.

https://www.jfrog.com/confluence/display/RTD/Build+Integration+-+Done

Overriding Plan values using Bamboo Variables

The Artifactory Plugin supports overriding various in the plan configuration like Deployer credentials, Resolver credentials, repositories etc.

If you wish to override any of the values specified in the table below, you need to configure them as Bamboo variables either through the UI or
append then to the REST URL request as a query parameters.

When assigning any value to these Bamboo variables, it will override the job configuration.

Example with REST

curl -ubamboo-user:bamboo-password -XPOST
"http://<BAMBOO
HOST>:8085/rest/api/latest/queue/MVN-JOB?stage&executeAllStages&bamboo.var
iable.artifactory.override.deployer.username=new_username&bamboo.variable.
artifactory.override.deployer.password=new_password"

In the example above, we use CURL to remotely invoke a Bamboo plan. We set the Deployer username and Deployer password for this specific
request.

Note that we add the prefix to the query parameters."bamboo.varaible"

Parameter name Description Supported jobs

artifactory.override.deployer.username Deployer username Maven, Gradle, Ivy,
Generic deploy

artifactory.override.deployer.password Deployer password Maven, Gradle, Ivy,
Generic deploy

artifactory.override.resolver.username Resolver username Maven, Generic resolve

artifactory.override.resolver.password Resolver password Maven, Generic resolve

artifactory.override.resolve.repo Resolve repository Maven, Gradle

artifactory.override.deploy.repo Deploy repository Maven, Gradle, Ivy,
Generic deploy

The given path and file should be present on the machine that is running the build agent, .not the server

Note that the sent values will be applied only if the specific task support them. For example: currently Artifactory Gradle tasks do not
support Resolver credentials, hence those values will be ignored if sent.

1.
2.

artifactory.task.override.jdk If set to true, check the value of artifactory.task.override.jdk.env.var.

If that variable is populated with an environment variable,

use the value of that environment variable as the Build JDK path.

If artifactory.task.override.jdk.env.var is not defined, use the value of
JAVA_HOME for the Build JDK.

Maven, Gradle, Ivy

artifactory.task.override.jdk.env.var Stores the name of another environment variable whose value should
be used for the build JDK.

Maven, Gradle, Ivy

Release Management

The Artifactory Plugin provides a powerful feature for release management and promotion. For details please refer to Bamboo Artifactory Plugin -
Release Management.

Push to Bintray

Bintray users can publish build artifacts to Bintray by using the Artifactory Bintray integration.
This can be done on the tab of the Bamboo Artifactory Plugin in one of two ways:Push to Bintray

You can configure your Bintray details in a which should be added to your list of build artifactsdescriptor file
You can check the checkbox and specify the details in the .Override descriptor file Push to Bintray tab UI

Using a Descriptor File

1. Create a descriptor file named . bintray-info.json
bintray-info.json. Click for details...

Here is an example:

{
- "repo": {
+ "name": "test",
- "type": "generic",
- "private": false,
- "premium": false,
- "desc": "My test repo",
- "labels": ["label1", "label2"],
- "updateExisting": false
 },
+ "package": {
+ "name": "auto-upload",
+ "repo": "test",
+ "subject": "myBintrayUser",
- "desc": "I was pushed completely automatically",
- "website_url": "www.jfrog.com",
- "issue_tracker_url":
"https://github.com/bintray/bintray-client-java/issues",
+ "vcs_url": "https://github.com/bintray/bintray-client-java.git",
+ "licenses": ["MIT"],
- "labels": ["cool", "awesome", "gorilla"],
- "public_download_numbers": false,
- "public_stats": false,
- "attributes": [{"name": "att1", "values" : ["val1"], "type":
"string"},
 {"name": "att2", "values" : [1, 2.2, 4], "type": "number"},
 {"name": "att5", "values" : ["2014-12-28T19:43:37+0100"],
"type": "date"}]
 },
+ "version": {
+ "name": "0.5",
- "desc": "This is a version",
- "released": "2015-01-04",
- "vcs_tag": "0.5",
- "attributes": [{"name": "VerAtt1", "values" : ["VerVal1"], "type":
"string"},
 {"name": "VerAtt2", "values" : [1, 3.3, 5], "type": "number"},
 {"name": "VerAtt3", "values" : ["2015-01-01T19:43:37+0100"],
"type": "date"}],
- "gpgSign": false
 },
 "applyToFiles": ["repo1/org/jfrog/*.*",
"repo2/org/jfrog/test/module*/*.jar", "repo3/org/jfrog/test/**/*.*",
"repo2/org/jfrog/test/**/art.?ar"],
 "applyToRepoFiles": ["/org/jfrog/*.*, jfrog/test/**/*.*"],
 "applyToProps": [{"upload.prop1": ["val1", "val2"]}, {"upload.prop2":
["*"]}, {"*": ["valueRegardlessOfProperty"]}],
 "publish": true
}

Most of the fields are self-explanatory, however below are descriptions for those fields whose purpose may be less obvious:

Field Purpose

updateExisting

 Signifies Artifactory should update an existing repository with the same name with the values in the jsondescriptor
(applies only to the and fields)'labels' 'desc'

subject

Can either be your Bintray user nameorthe organization you are pushing to. The credentials that are used in the
operation are those you defined in your user profile (or in the section). default

applyToFiles

If you are pushing a complete build, this field should remain empty.

When pushing files, this field should contain a comma-separated list of files (in JSON format) that should be pushed.
A file matching of the file specifications will be pushed (i.e. an "OR" relationship).any

You may use wildcards as follows:

*: match any 0 or more characters
**: recursively match any sub-folders (in the path section only)
?: match any 0 or 1 character

Here are some examples of valid search paths:

Path Meaning

repo1/org/jfrog/myTest.jar The file under myTest.jar repo1/org/jfrog

repo1/org/jfrog/*.* All files under repo1/org/jfrog

repo2/org/jfrog/test/module*/*.jar All files under any subfolder of w.jar repo2/org/jfrog/test
hose name starts with " "module

repo2/org/jfrog/test/**/*.jar All files under any subfolder of .jar repo2/org/jfrog/test

repo2/org/jfrog/test/**/art.?ar All files named " " with a file extension that has 2 or 3art
characters and ends with " " under any subfolder of ar repo2/org

 /jfrog/test

applyToRepoFiles

If you are pushing a complete build, this field should remain empty.

When pushing files, this field should contain a comma-separated list of files(in JSON format) that should be pushed.
A file matching of the file specifications will be pushed (i.e. an "OR" relationship).any

This field behaves similarly to applyToFiles, including wildcards as described above, only it refers to inrelative paths
side the repo that containsthejson descriptor file:

If the path starts with a leading ' ' then the parent for this path is the repository's root, so the path wi/ /org/jfrog/*.*
ll actually point to containingRepo/org/jfrog/*.*
If the path start with a ' ' then the parent for this path is the folder containing the descriptor. So if thedoesn't /
descriptor resides in /org/jfrog/bintray-info.json, the path will actually/test/myPackage/*.*
point to containingRepo/org/jfrog/test/myPackage/*.*

applyToProps

0 or more pairs with which to filter the selected files by properties. The '*' and '?' wildcards are supported inkey:value
this filter as well.

A file matching of the property specifications will be pushed (i.e. an "AND relationship)all

publish

If set to true, the version will be automatically published once the push operation is complete.

gpgSign

If set to true and no passphrase was passed as a parameter to the REST API call, Artifactory will attempt to sign the
version without any passphrase.

If you provide the parameter in the REST API call, this will cause the call to ignore this flag and thegpgPassphrase
version will be signed with the passphrase that was passed.

The file's name itself must contain the string (anywhere in the name) and have a extensionbintray-info .json

http://keyvalue/

2. Commit the descriptor file to your source control along with your project sources.
3. Modify your build script to attach the file to your build artifacts.

Using the "Push to Bintray" Tab UI

1. Check the checkbox in the tab.Override descriptor file Push to Bintray
2. Fill in the fields that are displayed.

Bintray Required Fields
For Bintray OSS users, all fields are mandatory.
For Bintray Pro accounts, the and fields are optional .Licenses VCS URL

Maven Central sync with Bintray

When checking the "Maven Central Sync" checkbox in Push to Bintray configuration page your build will be published to Maven Central after it is
pushed to Bintray.

configuration

In order to use Maven Central sync you need to configure your Bintray and Sonatype OSS credentials in Artifactory plugin page like shown in the
image below.

Only packages included to can be synced with Maven Central automatically.jcenter

https://bintray.com/bintray/jcenter

1.
2.
3.
4.

1.
2.
3.

1.

1.
2.

1.

1.

1.

Changelog

Click to see change log details

2.3.0 (10 Oct 2017)

 ()Support pattern exclusion in File Specs BAP-391
File specs AQL optimizations ()BAP-395
Dependencies repositories have been added to the plugin's maven descriptor ()BAP-397
Bug fixes (, ,)BAP-385 BAP-390 BAP-396

2.2.0 (6 Aug 2017)

 (BAP-377)File Specs support for the Generic Resolve and Generic Deploy Tasks
Upgrade JGit ()BAP-381
Bug fixes (, , , , , ,)BAP-378 BAP-379 BAP-380 BAP-382 BAP-383 BAP-384 BAP-387

2.1.1 (22 Jun 2017)

Compatibility with Bamboo 6.0.x ()BAP-376

2.1.0 (20 Apr 2017)

Artifactory Release Management API changes ()BAP-374
Bug fixes(,)BAP-372 BAP-373

2.0.2 (16 Feb 2017)

Compatibility with Bamboo 5.15.x (BAP-370)

2.0.1 (29 Jan 2017)

Bug fix (BAP-369)

1.10.2 (22 Sep 2016)

Bug fixes (BAP-360, BAP-359)

1.10.1 (7 Apr 2016)

Bintray credentials
"Push to Bintray" works with Bintray credentials configured in Artifactory. You only need to specify Bintray credentials if you are using
the Maven Central sync option.

https://www.jfrog.com/jira/browse/BAP-391
https://www.jfrog.com/jira/browse/BAP-395
https://www.jfrog.com/jira/browse/BAP-397
https://www.jfrog.com/jira/browse/BAP-385
https://www.jfrog.com/jira/browse/BAP-390
https://www.jfrog.com/jira/browse/BAP-396
https://www.jfrog.com/jira/browse/BAP-381
https://www.jfrog.com/jira/browse/BAP-378
https://www.jfrog.com/jira/browse/BAP-379
https://www.jfrog.com/jira/browse/BAP-380
https://www.jfrog.com/jira/browse/BAP-382
https://www.jfrog.com/jira/browse/BAP-383
https://www.jfrog.com/jira/browse/BAP-384
https://www.jfrog.com/jira/browse/BAP-387
https://www.jfrog.com/jira/browse/BAP-370
https://www.jfrog.com/jira/browse/BAP-376
https://www.jfrog.com/jira/browse/BAP-374
https://www.jfrog.com/jira/browse/BAP-372
https://www.jfrog.com/jira/browse/BAP-373
https://www.jfrog.com/jira/projects/BAP/versions/17893
https://www.jfrog.com/jira/browse/BAP-370
https://www.jfrog.com/jira/projects/BAP/versions/17893
https://www.jfrog.com/jira/browse/BAP-369
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-360
https://www.jfrog.com/jira/browse/BAP-359
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683

1.

1.
2.
3.

1.

1.

1.
2.
3.

1.

1.

1.
2.
3.
4.

1.

1.
2.
3.
4.

1.
2.
3.

1.
2.

1.
2.

1.

Bug fixes (BAP-345)

1.10.0 (25 Feb 2016)

 (Compatibility with Bamboo 5.10.x BAP-336)
 (Coordinate the deployment order of artifacts according to module info in the Gradle task BAP-294)

 (Bug fix BAP-303)

1.9.2 (22 Dec 2015)

Bug fixes (BAP-330, BAP-331)

1.9.1 (13 Dec 2015)

Bug fixe (BAP-312)

1.9.0 (26 Nov 2015)

Support sending parameters when invoking Bamboo Artifactory tasks remotely. (,)BAP-281 BAP-232
New "Push to Maven Central" ()BAP-284
Bug fixes (, , ,)BAP-313 BAP-306 BAP-290 BAP-288

1.8.2 (27 Oct 2015)

Bug fixes (BAP-289, ,BAP-292 BAP-302)

1.8.1 (4 Aug 2015)

Bug fix (BAP-282)

1.8.0 (15 Jun 2015)

Add push to Bintray support (BAP-257)
Make Artifactory Upload Task available for Deployment projects (BAP-264)
Ability not to promote the version on Gradle Release Staging (BAP-258)
Bug fixes , , , , , , ,)(BAP-270 BAP-269 BAP-267 BAP-266 BAP-261 BAP-260 BAP-254 BAP-246

1.7.7 (30 Mar 2015)

 (Support for Bamboo 5.8.x BAP-249)

1.7.6 (14 Jan 2015)

 (Support for Bamboo 5.7.x BAP-230)
 ()Compatibility with Maven 3.2.5 BAP-244

Enable overriding the Build JDK value using Bamboo variables ()BAP-240
Bug fix ()BAP-241

1.7.5 (10 Nov 2014)

Support Atlassian Stash source control management (BAP-206)
Artifactory generic Resolve task ()BAP-207
Maven 3 tasks - Record Implicit Project Dependencies and Build-Time Dependencies ()BAP-225

1.7.4 (12 Aug 2014)

Support for Bamboo 5.6 (BAP-218)
Bug fix ()BAP-219

1.7.3 (29 Jul 2014)

Add support for Gradle 2.0 (GAP-153)
Bug fix ()BAP-212

1.7.2 (25 Jun 2014)

Bug fixes , , (BAP-196 BAP-208 BAP-166)

1.7.1 (26 MAY 2014)

https://www.jfrog.com/jira/browse/BAP-345
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-336
https://www.jfrog.com/jira/browse/BAP-294
https://www.jfrog.com/jira/browse/BAP-303
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-330
https://www.jfrog.com/jira/browse/BAP-331
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-312
https://www.jfrog.com/jira/browse/BAP-281
https://www.jfrog.com/jira/browse/BAP-232
https://www.jfrog.com/jira/browse/BAP-284
https://www.jfrog.com/jira/browse/BAP-313
https://www.jfrog.com/jira/browse/BAP-306
https://www.jfrog.com/jira/browse/BAP-290
https://www.jfrog.com/jira/browse/BAP-288
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-289
https://www.jfrog.com/jira/browse/BAP-292
https://www.jfrog.com/jira/browse/BAP-302
https://www.jfrog.com/jira/browse/BAP/fixforversion/14683
https://www.jfrog.com/jira/browse/BAP-282
https://www.jfrog.com/jira/browse/BAP/fixforversion/13182
https://www.jfrog.com/jira/browse/BAP-257
https://www.jfrog.com/jira/browse/BAP-264
https://www.jfrog.com/jira/browse/BAP-258
https://www.jfrog.com/jira/browse/BAP-270
https://www.jfrog.com/jira/browse/BAP-269
https://www.jfrog.com/jira/browse/BAP-267
https://www.jfrog.com/jira/browse/BAP-266
https://www.jfrog.com/jira/browse/BAP-261
https://www.jfrog.com/jira/browse/BAP-260
https://www.jfrog.com/jira/browse/BAP-254
https://www.jfrog.com/jira/browse/BAP-246
https://www.jfrog.com/jira/browse/BAP/fixforversion/13783
https://www.jfrog.com/jira/browse/BAP-249
https://www.jfrog.com/jira/browse/BAP/fixforversion/13380
https://www.jfrog.com/jira/browse/BAP-230
https://www.jfrog.com/jira/browse/BAP-244
https://www.jfrog.com/jira/browse/BAP-240
https://www.jfrog.com/jira/browse/BAP-241
https://www.jfrog.com/jira/browse/BAP/fixforversion/13380
https://www.jfrog.com/jira/browse/BAP-206
https://www.jfrog.com/jira/browse/BAP-207
https://www.jfrog.com/jira/browse/BAP-225
https://www.jfrog.com/jira/browse/BAP/fixforversion/12686
https://www.jfrog.com/jira/browse/BAP-218
https://www.jfrog.com/jira/browse/BAP-219
https://www.jfrog.com/jira/browse/BAP/fixforversion/12686
https://www.jfrog.com/jira/browse/GAP-153
https://www.jfrog.com/jira/browse/BAP-212
https://www.jfrog.com/jira/browse/BAP/fixforversion/12686
https://www.jfrog.com/jira/browse/BAP-196
https://www.jfrog.com/jira/browse/BAP-208
https://www.jfrog.com/jira/browse/BAP-166

1.

1.
2.
3.
4.

1.
2.
3.

1.
2.

1.

1.

1.
2.

1.
2.

1.

1.
2.

1.
2.
3.
4.

1.
2.

1.

1.
2.

1.

A new check box that gives the ability to ignore artifacts that are not deployed according to include/exclude patterns. ()BAP-180

1.7.0 (06 Apr 2014)

Fix Support for Bamboo 5.4+
Supporting Git Shared Credentials in Release Management functionality () BAP-189
Adding Version Control Url property to the Artifactory Build Info JSON. ()BAP-200
Bug fixes ()BAP-197

1.6.2 (24 Nov 2013)

Fix Support for Bamboo 5.2
Add Artifactory BlackDuck integration
Bug fixes ()BAP-182 BAP-184 BAP-186 BAP-184

1.6.1 (03 Oct 2013)

Support form Bamboo 5.1.1
Bug fixes 1.6.1

1.6.0 (16 Jul 2013)

Support form Bamboo 5.0

1.5.6 (03 Sep 2013)

Support form Bamboo 4.2

1.5.5 (03 Sep 2012)

Support for include/exclude captured environment variables ()BAP-143
Bug fixes ()MAP-41 MAP-40 GAP-129 BAP-148 IAP-32

1.5.4 (25 Jun 2012)

Support Bamboo 4.1.
Bug fixes. ()JIRA

1.5.3 (02 Apr 2012)

Support Bamboo 4.0.

1.5.2 (02 Apr 2012)

Support Perforce for release management. ()BAP-133
Bug fixes. ()JIRA

1.5.1 (05 Jan 2012)

Compatible release plugin for version 3.4.2. ()BAP-116
Support for Gradle properties deployment. ()BAP-117
Unique icon for each Artifactory task type.
Setting Bamboo job requirements correctly for all builder types. ()BAP-125

1.5.0 (11 Dec 2011)

Compatible with bamboo version 3.3.x.
Compatible with Gradle 1.0-milestone-6.

1.4.2 (19 Sep 2011)

Bug fix ()BAP-91

1.4.1 (01 Aug 2011)

Support for Bamboo 3.2.x
Bug fix ()BAP-90

1.4.0 (14 Jul 2011)

https://www.jfrog.com/jira/browse/BAP-180
https://www.jfrog.com/jira/browse/BAP-189
https://www.jfrog.com/jira/browse/BAP-200
https://www.jfrog.com/jira/browse/BAP-197
https://issues.jfrog.org/jira/browse/BAP-182
https://www.jfrog.com/jira/browse/BAP-184
https://www.jfrog.com/jira/browse/BAP-186
https://www.jfrog.com/jira/browse/BAP-184
https://www.jfrog.com/jira/browse/BAP/fixforversion/12083
https://issues.jfrog.org/jira/browse/BI-143
https://issues.jfrog.org/jira/browse/MAP-41
https://issues.jfrog.org/jira/browse/MAP-40
https://issues.jfrog.org/jira/browse/GAP-129
https://issues.jfrog.org/jira/browse/BAP-148
https://issues.jfrog.org/jira/browse/IAP-32
https://issues.jfrog.org/jira/browse/BAP/fixforversion/11183
https://issues.jfrog.org/jira/browse/BAP-133
https://issues.jfrog.org/jira/browse/BAP/fixforversion/10896
https://issues.jfrog.org/jira/browse/BAP-116
https://issues.jfrog.org/jira/browse/BAP-117
https://issues.jfrog.org/jira/browse/BAP-125
https://issues.jfrog.org/jira/browse/BAP-91
https://issues.jfrog.org/jira/browse/BAP-90

1.
2.
3.

1.

1.

1.

1.

1.
2.
3.

1.
2.

1.
2.
3.

Introducing Release Management capabilities.
Generic Build Info support for all job types.
Bug fixes.

1.3.2 (14 Jun 2011)

Bug fix ()BAP-65

1.3.1 (13 Jun 2011)

Bug fix ()BAP-64

1.3.0 (30 May 2011)

Support for Bamboo 3.1.x

1.2.0 (2 Mar 2011)

Support for Bamboo 3.x

1.1.0 (2 Jan 2011)

Gradle Support - Gradle builds are now fully supported with the new Gradle builder
Ivy builds now support custom Ivy patterns for artifacts and descriptors
Support for Bamboo 2.7.x

1.0.3 (21 Nov 2010)

Add Include/exclude pattern for artifacts deployment
Bug fix ()BAP-26

1.0.2 (7 Nov 2010)

Control for including published artifacts when running license checks
Limiting license checks to scopes
Control for turning off license discovery when running license checks

https://issues.jfrog.org/jira/browse/BAP-65
https://issues.jfrog.org/jira/browse/BAP-64
https://issues.jfrog.org/jira/secure/ReleaseNote.jspa?projectId=10171&version=10476
http://issues.jfrog.org/jira/browse/BAP-26

|

Bamboo Artifactory Plugin - Release Management

1.
2.
3.
4.
5.

Overview

Artifactory supports release management through the .Bamboo Artifactory Plugin

When you run your builds using or with jobs that use or as your version controlMaven Gradle Git Perforce
system, you can manually stage a release build allowing you to:

Change values for the release and next development version
Choose a target staging repository for deployment of the release, and
Create a VCS tag for the release.

Staged release builds can later be or , changing their release status in Artifactory and,promoted rolled-back
optionally, moving the build artifacts to a different target repository.

Inside Artifactory, the history of all build status change activities (staged, promoted, rolled-back, etc.) is recor
 for full traceability.ded and displayed

When release management is enabled, the Artifactory release staging link appears on the top header bar in
the job page.

Maven Release Management

The manages a release with Maven running the build only once using the following basic steps:Bamboo Artifactory Plugin

Change the POM versions to the release version (before the build starts).
Trigger the Maven build (with optionally different goals).
Commit/push changes to the release branch.
Change the POM versions to the next development version.
Commit/push changes to the trunk.

If the build fails, the plugin attempts to rollback the changes (both local and committed).

For more information including configuration of Maven Runners, and Jobs and staging a release build, please refer to . Bamboo Artifactory Plugin

Displaying the Release and Promotion Tab
To display the tab you need to click the small arrow indicatedArtifactory Release & Promotion
below.

Release management tab moved from plugin version 1.7.0
From Bamboo Artifactory Plugin version 1.7.0, the Release Management tab was moved from the

 page level to the page level because the process applies to artifacts in the context of aPlan Job
single job rather than a whole plan (which may hold several jobs).
The tab name was also changed from to Artifactory Release management Artifactory Release

.& Promotion

Page Contents
Overview
Maven Release Management

Configuring Maven Jobs
Staging a Maven Release Build

Gradle Release Management
Configuring Gradle Jobs
Staging a Gradle Release Build

Promoting a Release Build
Working with Git
Working with Perforce

http://maven.apache.org/
http://www.gradle.org/
http://git-scm.com/
http://www.perforce.com/index.html
http://wiki.jfrog.org/confluence/display/RTF/Build+Integration#BuildIntegration-ReleaseHistory
http://wiki.jfrog.org/confluence/display/RTF/Build+Integration#BuildIntegration-ReleaseHistory

Configuring Maven Jobs

To enable release management in Maven jobs, edit the job configuration and check the Enable Artifactory release management checkbox.

Staging a Maven Release Build

Clicking on the release staging link opens a new page with configuration options for the release build:

The release staging page displays the last version built (the version tag is that of the root POM, and is taken from the last build that is not a
release). Most of the fields in the form are populated with default values.

Version configuration controls how the plugin changes the version in the POM files (global version for all modules, version per module or no
version changes).

If the checkbox is checked (default), the plugin commits/pushes the POMs with the release version to the version control systemCreate VCS tag
with the commit comment. When using Git, there's also an option to create a release branch.

Click on the button to trigger the release build.Build and Release to Artifactory

Gradle Release Management

Target server is Artifactory Pro?
If the target Artifactory server is a Pro edition, you can change the target repository, (the default is the release repository configured in
Artifactory publisher) and add a staging comment which is included in the build info deployed to Artifactory.

1.
2.
3.
4.
5.

The supports release management when running builds with Gradle. This relies on the version property (andBamboo Artifactory Plugin
others) managed by the file. The plugin reads the properties from the Artifactory release management configuration, andgradle.properties
modifies those properties in the file.gradle.properties

The plugin manages a release using the following basic steps:

Modify properties in the to release values (before the build starts).gradle.properties
Trigger the Gradle build (with optionally different tasks and options).
Commit/push changes to the release branch.
Modify the to the next integration values.gradle.properties
Commit/push changes to the trunk.

Configuring Gradle Jobs

To enable Gradle release management, edit the Artifactory Gradle Task configuration and check the checkbox.Enable Release Management

Staging a Gradle Release Build

Once release management is enabled, the Artifactory tab appears in the top header bar on the job page. Release staging

Clicking on the tab opens a new page with configuration options for the release build:Release staging

The tab displays the and properties configured for the job. The plugin reads these values from the Release staging Release Next development
 file and attempts to calculate and display and in the text fields.gradle.properties Release Next integration version

If is checked (default), the plugin commits/pushes the POMs with the release version to the version control system with theCreate VCS tag
commit comment. When using Git, if is checked, the changes are carried out on the release branchUse release branch Next release version
instead of the current checkout branch. The final section allows you to change the target repository (the default is the release repository
configured in Artifactory publisher) and an optional staging comment which includes the build info deployed to Artifactory.

Click on the button to trigger the release build.Build and Release to Artifactory

Promoting a Release Build

You can promote a release build after it completes successfully.

This is not a mandatory step but is very useful because it allows you to mark the build as released in Artifactory, and move or copy the built
artifacts to another repository so they are available to other users.

To promote a build, browse to the build's result page and click the tab.Artifactory Release & Promotion

Select the target status of the build ("Released" or "Rolled-Back"). You may also enter a comment to display in the build in Artifactory.

To move or copy the build artifacts, select the .Target promotion repository

Working with Git

To work with Git, the Git plugin must be configured to build one branch to checkout to the same local branch.AND

The remote URL should allow Read+Write access.

The uses the Git client installed on the machine and uses its credentials to push back to the remote Git repository.Bamboo Artifactory Plugin

Artifactory Pro required
 Promotion features are only available with Artifactory Pro

Release management
From Bamboo Artifactory Plug-in version 1.7.0, the Artifactory Release Promotion was moved from the tab to the new Artifactory Artif

 tab.actory Release & Promotion

1.
2.
3.
4.
5.
6.

During the release, the plugin performs the following steps:

If is checked, create and switch to the release branch.Create Branch
Commit the release version to the current branch.
Create a release tag.
Push the changes.
Switch to the checkout branch and commit the next development version.
Push the next development version to the working branch

Working with Perforce

Shallow Clones
Bamboo's Git plugin allows the use of shallow clones, however this causes the "push" not to work.

Therefore, when using the Artifactory Bamboo Plugin, you must have shallow clones .unchecked

For more information about shallow clones, please refer to .git-clone Manual Page

http://www.kernel.org/pub/software/scm/git/docs/git-clone.html

1.

2.

1.

2.

Release management with supports Perforce when using one checkout directory.Bamboo Artifactory Plugin

During the release the plugin does the following:

Commits the release version directly to the tag (if is checked). The release version is not committed to the workingCreate VCStag
branch.
Commits the next development version to the working branch

MSBuild Artifactory Plugin

Overview

Artifactory brings Continuous Integration to MSBuild, TFS and Visual Studio through the MSBuild Artifactory
Plugin. This allows you to capture information about deployed artifacts, resolve Nuget dependencies and
environment data associated with MSBuild build runs, and deploy artifacts to Artifactory. In addition, the
exhaustive build information captured by Artifactory enables fully traceable builds.

MSBuild Artifactory Plugin

The MSBuild Artifactory plugin is an which you can freely browse and fork. open source project on GitHub

The MSBuild Artifactory Plugin can be used whether you are running standalone builds or using a CI server.
In either case, you should note the following points:

Standalone Integration
The MSBuild Artifactory Plugin fully integrates with the MSBuild process, so it can run as part of a
standard build.
The plugin uses a conventional MSBuild XML configuration file to influence different stages of the
build process.
CI Server Integration
When running MSBuild builds in your continuous integration server, using the plugin is transparent
since it is effectively an integral part of the MSBuild process. The only difference is that the plugin
collects information from the CI server.
The MSBuild Artifactory Plugin fully supports TFS and collects exhaustive build information to enable
fully traceable builds. Support for additional CI servers such as Jenkins, TeamCity and Bamboo is
partial, and the build information collected when running with these tools is correspondingly partial.

Changes
Changes are only committed if the files are modified (POM files or).gradle.properties

Sample code
 To get yourself started, of a solution with multiple projects that use thehere is an example
MSBuild Artifactory Plugin

Page Contents
Overview

MSBuild
Artifactory
Plugin

Installation
Update
Uninstalling
Migration from the old
plugin implementation
Configuration

General
Information
Resolution
Deployment

Chec
ksum
Deplo
yment
Proje
ct-spe
cific

https://www.jfrog.com/confluence/display/RTD/Bamboo+Artifactory+Plug-in+-+Done
https://github.com/JFrogDev/msbuild-artifactory-plugin
https://github.com/JFrogDev/project-examples/tree/master/msbuild-example

Installation

The MSBuild Artifactory Plugin is installed as a "Project Template" using Visual Studio as follows:

Under , choose , select the source under the section, Tools Extensions and Updates... Visual Studio Gallery Online and run a search
for "Artifactory".
Select extension found, and click .Artifactory Template Package Install

Deplo
yment

Environment
Variables
License
Control
Black Duck
Code Center
Integration
Network
Configuration

Deplo
ying
via
Proxy

Running a build with
MSBuild Artifactory
Plugin
Team Foundation
Server (TFS)
Integration

MSBuild
Arguments in
TFS
Package
Restore with
Team
Foundation
Build

License
Screencast
Changelog

Once the installation is complete, select the Solution into which you want to install the plugin. right-click the solution node and select Ad
 | d New Project.... Select and click OK. Artifactory

You should see the following changes to your Solution:

A new custom project linked to the Artifactory plugin.
A folder is added to your Solution. Make sure this directory is committed to source control..artifactory
Under the folder, an file is created. This is the main plugin configuration file..artifactory Artifactory.build
Two files are created. These are used internally by the plugin and should not be modified manually..targets

Creating Artifactory project
To resolve dependencies, the plugin requires a Nuget .nuget directory within your Solution. Before you start installation, make sure
that this directory exists.

New packages related to the plugin should have been installed into the Solution. Nuget
The plugin also imports its own MSBuild configuration file to the and files in order toartifactory.csproj .nuget\NuGet.targets
be added to the MSBuild process.

The last step will be to link your relevant projects to the Artifactory project via the added . Only the linked projects will beProject Reference
monitor by the plugin.

Update

To update Artifactory extensions, execute the following steps:

Under , select , and then, the "Visual Studio Gallery" source under the section.Tools Extensions and Updates... Updates
Select the extension found, and click .Artifactory Template Package Update

Uninstalling

Remove the .artifactory folder and its contents from the solution.
Remove the custom Artifactory project from the solution.

Make sure to delete the items from the file system also.

Migration from the old plugin implementation

To migrate from the old plugin implementation, you need to uninstall it and then install the new implementation

Follow the steps described in . Uninstalling
Follow the steps described in .Installation

Configuration

General Information

The MSBuild Artifactory Plugin is configured in the configuration file. The file is structured using languageArtifactory.build MSBuild
conventions, so all the properties can be externally overridden using or Reserved Properties Environment Properties.

Installing plugin dependencies
The following two dependencies: and must also be installed together with the plugin.Nuget.core v2.8.2 Microsoft.Web.Xdt v2.1.1

If you are installing the plugin from an instance of Artifactory, you need to ensure that Artifactory has access to the plugin and its
dependencies. For example, you might have a virtual repository that references a local repository containing the plugin, and a remote
repository that references nuget.org. For more details on configuring Artifactory, please refer to .NuGet Repositories

Existing Project (Optional Step)
If you already existing Artifactory project template in your solution, and you want to update it to the latest one, execute thehave an
following steps:

Right-click on the Artifactory project and select Manage NuGet Packages...
In the window, select a source (e.g. nuget.org) under the section.Manage NuGet Packages Updates
Select the package found, and click .Artifactory Update

https://www.nuget.org/packages/Nuget.Core/2.8.2
https://www.nuget.org/packages/Microsoft.Web.Xdt/

MSBuild can collect properties that were configured in the build scope, or in the Environment Variables. This ability can be helpful in different
cases:

You can dynamically override the plugin configuration according to the build context that it runs in.
You can prevent sensitive information from being checked into source control.
For example, if the build runs under a build server such as TFS, all the Artifactory credentials can be defined by the server administrator,
and will therefore, not be Checked in/Committed to source control.

For more information about MSBuild properties, please refer to the . MSBuild Reference Documentation

Resolution

To resolve packages, the MSBuild Artifactory Plugin uses the NuGet Package Restore feature with the MSBuild-Integrated Package Restore appr
oach. To support this, the project that installed the plugin must be a part of a solution with the .nuget folder. If the .nuget folder is absent, the
plugin will not override the Package Restore in the solution.

Deployment

In order to support a wide variety of project templates, solution structures and artifact types, the MSBuild Artifactory Plugin is designed to be very
flexible and allows the user great freedom in configuring how to deploy packages.

relativeUsing an Input Pattern, the user can specify the path to files that the plugin will collect for deployment. The path is to the project
in which the plugin is installed, and to other projects referenced by it in the solution.
Using an , the user can specify a deployment path in Artifactory that corresponds to the specified Output Pattern Input Pattern.
The user can also specify Custom Properties that should annotate all the artifacts resulting from the specified Input Pattern.

Checksum Deployment

To support Artifactory's , the plugin efficiently deploys packages to Artifactory using Checksum"Once-And-Only-Once" Content Storage
Deployment. Before an artifact is actually deployed, the plugin passes its checksum to Artifactory.

If the package already exists then Artifactory does not accept a new copy, it just creates a new metadata entry in the database to indicate that
another "copy" of the artifact exists in specified deployment path.

Configuration Instructions
For more details on configuration, please refer to the .Artifactory.build configuration file

Please note the following points:
Even though the plugin is installed on a project level, it overrides the NuGet resolution on the projects under the sameall
solution.
Manual configuration in the file is ignored by the plugin..nuget/NuGet.Config
Modifying the file can cause unexpected behavior in the resolution process. We strongly.nuget/NuGet.targets
recommend that you do not modify these files manually.
The folder must be committed to source control..nuget

Ensuring package resolution through Artifactory
In order to mitigate situations in which a network connection is not available, the NuGet client locally caches any artifacts downloaded
from a remote repository in the (under NuGet Local Cache % . AppData%\Local\NuGet\Cache) Subsequently, the NuGet client firs
t checks the cache when trying to resolve packages. Therefore, artifacts downloaded from a remote repository in Artifactory or from the
NuGet Gallery, typically get stored in this local cache and will be provided from the cache next time you try to reference them.

To ensure that the NuGet client resolves packages through Artifactory, you need to delete the NuGet Local Cache.

Target repository layout
You may define a custom layout for your target repository, but it is up to you to specify the right Output Pattern to ensure that your
artifacts are deployed to the right location within the repository. For more details, please refer to .Local Repositories

http://msdn.microsoft.com/en-us/library/dd393574.aspx
http://msdn.microsoft.com/en-us/library/dd393574.aspx
http://docs.nuget.org/docs/reference/package-restore
http://docs.nuget.org/docs/reference/package-restore#MSBuild-Integrated_Package_Restore
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Database#ConfiguringtheDatabase-"Once-And-Only-Once"ContentStorage
https://github.com/JFrogDev/msbuild-artifactory-plugin/blob/master/packaging/nupkg/artifactory/artifactory.build
https://github.com/JFrogDev/msbuild-artifactory-plugin/blob/master/ArtifactoryTemplate/ArtifactoryDeployer/.artifactory/Artifactory.build

Project-specific Deployment

The file under the directory applies to all projects within the solution. However, you can override theArtifactory.build .artifactory
deployment configuration for a specific project providing an file within the project scope. Artifactory.build For example, you could use this
to specify the full path of an artifact that needs to be deployed. The plugin detects the project-specific Artifactory.build file and applies the
deployment configuration to that project, overriding the general deployment configuration. The example below shows the "ArtifactoryDemo.DAL"
project with its own file to overide the general solution deployment configuration.Artifactory.build

Environment Variables

You can enable the tag so that MSBuild Artifactory Plugin uses all environment variables accessible by the build processEnvironmentVariables
and registers them in the build info. If running under a build server, the server's properties also used and registered. You may define IncludePatte

 and to control which variables are included in the published build info.rns ExcludePatterns

License Control

 MSBuild Artifactory Plugin supports Artifactory Pro License Control. This feature is controlled by several tags in the Artifactory.build config
uration file.

LicenseControl

Enables or disables the license control feature

LicenseViolationRecipients

Specifies addresses of recipients that should receive license alerts by email

Pattern wildcards
Include patterns are applied before exclude patterns.A pattern may contain the * and the ? wildcards.

Extensive build information may slow down deployment
Including all environment variables as part of the captured build information may result in very large build objects which in turn, may
slow down deployment.

https://www.jfrog.com/confluence/display/RTD/License+Control

AutomaticLicenseDiscovery

When set, Artifactory will analyze and tag the build's dependencies with license information upon deployment

IncludePublishedArtifacts

License checks are usually only run on the dependencies of the published package. If this flag is set, a license
check is run on the deployed artifact itself (only valid for NuGet packages)

ScopesForLicenseAnalysis

Lets you specify the scopes on which license analysis should be run.

Black Duck Code Center Integration

If you are using Artifactory Pro and have an account with Black Duck Code Center, you can run the build through an automated, non-invasive,
open source component approval process, and monitor for security vulnerabilities.

BlackDuckComplianceCheck

Enables or disables the license control feature

CodeCenterApplicationName

The existing Black Duck Code Center application name

CodeCenterApplicationVersion

The existing Black Duck Code Center application version

LicenseViolationRecipients

Specifies addresses of recipients that should receive license alerts by email

ScopesForLicenseAnalysis

Lets you specify the scopes on which license analysis should be run.

IncludePublishedArtifacts

License checks are usually only run on the dependencies of the published package. If this flag is set, a
license check is run on the deployed artifact itself (only valid for NuGet packages)

AutoCreateMissingComponent

Auto create missing components in Black Duck Code Center application after the build is completed and
deployed in Artifactory.

AutoDiscardStaleComponent

Auto discard stale components in Black Duck Code Center application after the build is completed and
deployed in Artifactory.

Network Configuration

Deploying via Proxy

MSBuild Artifactory Plugin supports deployments via your network proxy. If the values in the tag of the ProxySettings Artifactory.build con
figuration file are not recognized by the plugin, it will fall back to using the Environment Variables for proxy configuration using thehttp_proxy
format http://<username>:<password>@proxy.com.

You can bypass the proxy by setting the Bypass tag in the plugin configuration.

Resource intensive
Automatic license discovery is a resource intensive operation which may slow down deployment. If
you do not run automatic license discovery, you can still attach license information manually by
running 'Auto-Find'

from the build's tab in the Artifactory UI. For more details, please refer to Licenses Examining Build
.Licenses

Resolution Proxy
Due to a technical issue in the Nuget Client, you cannot configure the NuGet client for resolution via a proxy through the plugin. For the
Nuget client to resolve artifacts via a proxy, you need to configure the proxy settings in %APPDATA%\NuGet\NuGet.Config.

For more information on how to configure a Nuget proxy, please refer to .NuGet Config Settings

http://www.jfrog.com/confluence/display/RTF/Black+Duck+Code+Center+Integration
https://www.jfrog.com/confluence/display/RTD/License+Control#LicenseControl-ExaminingBuildLicenses
https://www.jfrog.com/confluence/display/RTD/License+Control#LicenseControl-ExaminingBuildLicenses
https://nuget.codeplex.com/workitem/4121?FocusElement=CommentTextBox
http://docs.nuget.org/docs/reference/nuget-config-settings

1.
2.

Running a build with MSBuild Artifactory Plugin

Once you have completed setting up the MSBuild Artifactory Plugin, you can run a project build. The plugin takes effect at the end of the build and
does the following:

Publishes the specified published artifacts to the selected target repository and applies the proper path mappings.
Deploys the BuildInfo to Artifactory, providing , with links back to the build in TFS. full traceability of the build

The example below shows Visual Studio output of a build log (minimum verbosity log level: Normal) with some deployed artifacts. At the bottom
there is a link to the Build Info report on Artifactory.

Team Foundation Server (TFS) Integration

MSBuild Artifactory Plugin brings CI Build Integration to TFS users allowing you to efficiently deploy your artifacts to Artifactory. In addition to the
BuildInfo that the plugin already registers, all parameters associated with TFS are also recorded to facilitate fully traceable builds.

For more information about how build information is used in Artifactory, please refer to .BuildInfo

MSBuild Arguments in TFS

The MSBuild Artifactory Plugin configuration file supports MSBuild or and the best practice is toReserved Properties Environment Properties,
define these properties in the TFS build configuration. This lets you protect sensitive information and run the same build with different properties.
Below is an example of properties configured in the TFS build definition.

https://www.jfrog.com/confluence/display/RTD/Build+Integration+-+Done
https://www.jfrog.com/confluence/display/RTD/Build+Integration+-+Done

1.

1.
2.

1.
2.

1.

Package Restore with Team Foundation Build

For Team Foundation Build 2013 on-premises, the default Build Process Templates already implement the wNuGet Package Restore Workflow
ithout any special configuration.

To avoid NuGet Package Restore from outside the plugin, you need to remove it from the workflow.

License

The MSBuild Artifactory plugin is available under the .Apache v2 License

Screencast

Changelog
Click here to expand...

2.2.0 (10 Mar 2016)

Support for TFS 2015

2.1.0 (18 Aug 2015)

Support for Visual Studio 2015
Bug fix MSBAI-7

2.0.0 (30 Apr 2015)

Artifactory plugin as a , and used as a "Project template" in the solution.Visual Studio Extension
Supporting Black Duck Code Center as part of the build process.

1.0.0 (30 Sep 2014)

First release version.

https://www.jfrog.com/jira/browse/MSBAI/fixforversion/14885
https://www.jfrog.com/jira/browse/MSBAI-7
http://www.jfrog.com/confluence/display/RTF/Black+Duck+Code+Center+Integration

VS Team Services Artifactory Plugin

Overview

Artifactory brings continuous integration to (VSTS) through the Visual Studio Team Services Visual Studio
.Team Services Artifactory Plugin

Artifactory already provides a set of plugins for , , and other that are supported onMaven Gradle Ivy build tools
VSTS and enable you to capture information about deployed artifacts, resolve dependencies and deploy
artifacts to Artifactory. The Visual Studio Team Services Artifactory plugin adds the ability to deploy and
download generic artifacts, promote a build to Artifactory and view build information and promotion history.

Download and Installation

 The VSTS Artifactory Plugin is an extension for VSTS and is available for download by account holders from
the . VSTS Marketplace

Installation

To install the VSTS Artifactory Plugin, execute the following steps:

Sign in to your VSTS account and go to the marketplace. You can find the plugin in the Build and
 section where it is named Release JFrog Artifactory Integration.

On the VSTS Artifactory Plugin page, click "Install".
Select the account to which you want to apply the plugin and confirm installation.

Configuration

Setting up VSTS to work with Artifactory involves two basic steps:

Configuring VSTS components
Automating release workflow with custom tasks

Configuring VSTS Components

Confiugring VSTS requires the following basic steps:

Configuring an Artifactory instance
Configure your build

Page Contents
Overview
Download and Installation

Installation
Configuration

Configuring VSTS Components
Configuring an Artifactory Instance
Configuring Your Build
Running Your Build
Promoting Your Build

Automating Release Workflow
JFrog Artifactory Deployer
JFrog Artifactory Downloader
JFrog Artifactory Build Promotion Task

Access Artifactory through ssl and authorize cross-domain request
The components added to VSTS use AJAX to communicate with Artifactory through the REST API. To enable this, you need to
configure Artifactory to authorize cross-domain requests from your VSTS.

Also, as VSTS is on HTTPS you must use an HTTPS connection to your Artifactory instance.

https://www.visualstudio.com/en-us/products/visual-studio-team-services-vs.aspx
https://www.jfrog.com/confluence/display/RTD/Working+with+Maven
https://www.jfrog.com/confluence/display/RTD/Working+with+Gradle
https://marketplace.visualstudio.com/items?itemName=JFrog.jfrog-artifactory

Configuring an Artifactory Instance

In VSTS, open your team project collection and go to the tab and select the sub-tab.Build Setup JFrog Artifactory

Provide your , and default login credentials through which VSTS will connect to Artifactory.Artifactory URL
Once you save your settings they will be stored in VSTS and used for all your projects.

Configuring Your Build

In the choose the build definition you want to configure to work with Artifactory and right click on it (in the tree).Build Explorer

The VSTS Artifactory plugin adds an action called in the menu which allows you to configure your build definition toSetup JFrog Artifactory
work with Artifactory.

Select to display the configuration form.Setup JFrog Artifactory

Once fill in the form and save these settings, they are saved in VSTS as variables which you can use in your build definition files (such as pom.xm
 and other scripts).l

Field Variable Description

Artifactory URL

ArtifactoryUrl Your Artifactory server URL

Override
credentials

N/A If checked, you can enter credentials to override the default credentials you provided under Config
.uring an Artifactory Instance

User name/

Password

ArtifactoryUsername
/

ArtifactoryPassword

Artifactory login credentials to use if you have selected Override credentials.

Publish repo
key

PublishRepository The default repository for deployment.

Promote repo
key

PromoteRepository The default repository for promotion

Running Your Build

Configure your project as usual, setting it up to deploy to Artifactory, and run the build.

Once the build has completed, the build summary includes a new JFrog Artifactory section which displays Artifactory Build Info.

The two buttons demarcated in the image above are used for linking directly to the corresponding build information page in Artifactory, and to
promote the build.

Promoting Your Build

If you choose to promote your build, VSTS Artifactory Plugin will display a set of fields through which you can configure the RESTBuild Promotion
API call that will be used to promote the build.

Click "Promote" to promote the build with the parameters you have configured.

When promotion is completed, you can refresh the build summary to see the new status in the build history.

Automating Release Workflow

The VSTS Artifactory Plugin includes three custom tasks that enable you to automate your build and release workflows:

JFrog Artifactory Deployer: A generic deployer
JFrog Artifactory Downloader: A task to download artifacts produced during a build
JFrog Artifactory Build Promotion: A task to promote a build

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-BuildPromotion

JFrog Artifactory Deployer

The JFrog Artifactory Deployer task uses the and facilitates working with VSTS and Artifactory, effectively, on any build tool such asJFrog CLI
Maven, Gradle and others, for any packaging format such as NuGet, npm and others.

To use it, you need to configure a new service that points to an Artifactory instance as displayed in the following screenshot.

https://bintray.com/jfrog/jfrog-cli-go/jfrog-cli-windows-amd64/view

Artifactory URL

Click "Manage" to set the Artifactory instance to which you want to deploy artifacts.

Target Repository

The target repository and path within that repository to which you want to deploy artifacts. Note that you can use
environment variables such as $(Build.BuildNumber).

Override Credentials

When checked, you can override credentials provided by the service.

User Login

User name to use if you have checked Override Credentials.

User Encrypted
Password

Corresponding encrypted password to use if you have checked Override Credentials.

Path to JFrog
Artifactory Cli.exe

Path to the Artifactory CLI in your VSTS team project code repository.

Path to the Artifacts

Path to the artifacts you want to deploy. You may use environment variables and wild card characters.

Properties

Properties to attach to deployed artifacts.

Enable build
information

If checked, build information will be created.

In the example above, we are deploying any NuGet package containing "VSODemo" in its name that is located in the build directory or subfolder
of the Artifactory configured as service “ArtifactoryGC” in the repository called “nuget-stage-local” with path
“JFrog/MyTestProject/<BuildNumberValue>”. Some properties will be attached and the build information provided.

Once the build is complete, you can view its details in Artifactory as displayed below:

You can also view details for each build including a link back to the VSTS build summary:

JFrog Artifactory Downloader

The JFrog Artifactory Downloader task downloads artifacts generated in a build from Artifactory as a zip archive and stored as $env:temp\arti
facts.zip

The main point of this task is to enable download of artifacts in a release workflow and deploy them in a target environment where you can apply
acceptance or other tests to them.

Artifactory
URL

Please refer to parameters for the task.JFrog Artifactory Deployer

Override
Credentials

Please refer to parameters for the JFrog Artifactory Deployer task.

User Login

Please refer to parameters for the JFrog Artifactory Deployer task.

User API Key

Please refer to parameters for the JFrog Artifactory Deployer task.

Build Name

The name of the build from which to download artifacts.

Build Number
(optional)

If not provided, the task will use the current build number from the environment variable. If thisBUILD_BUILDNUMBER
variable is not available in context, the task will use the latest build from Artifactory.

Build Status
(optional)

If provided, the task only downloads artifacts linked to the latest build with the specified status.

If not provided, the task downloads artifacts from the current build number (as determined from the environment variables).

If the task is applied in a release workflow (rather than being triggered by a build, and therefore, there is no build number
available), the latest build will be used.

JFrog Artifactory Build Promotion Task

Artifactory URL

Please refer to parameters for the task.JFrog Artifactory Deployer

Target Repository

Please refer to parameters for the task.JFrog Artifactory Deployer

Override Credentials

Please refer to parameters for the task.JFrog Artifactory Deployer

User Login

Please refer to parameters for the task.JFrog Artifactory Deployer

User API Key

Please refer to parameters for the task.JFrog Artifactory Deployer

Build Name (optional)

The name of the build from which to download artifacts. If not provided, the task will use values from environment
variables if available.

Build Number (optional)

The number of the build from which to download artifacts. If not provided, the task will use values from
environment variables if available.

Build Status

Target status for promotion.

Comment (Optional)

Optional comment to add.

Target Repository
(Optional)

You may set this parameter if you want the build moved/copied to a target repository.

Copy artifacts

If checked, build artifacts will be copied, otherwise they will be moved.

Copy/move build
dependencies

If checked, the build dependencies will also be copied/moved in the promotion.

Properties (optional)

You may add a set of properties separated by a semicolon.

Using File Specs

Overview
File Specs can be used to specify the details of files you want to upload or download to or from
Artifactory. They are specified in JSON format and are currently supported in , JFrog CLI Jenkins

,Artifactory Plugin and TeamCity Artifactory Plugin Bamboo Artifactory Plugin.

This article describes the File Specs structure used in Jenkins, TeamCity and the Bamboo
Artifactory plugins.
You can read about JFrog CLI with File Specs .here

Download Spec Schema

The download spec schema offers the option of using or wildcard patterns according to theAQL
JSON element you specify:

Page contents
Overview
Download
Spec Schema
Upload Spec
Schema
Using
Placeholders
Examples

https://www.jfrog.com/confluence/display/CLI/Welcome+to+JFrog+CLI
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin
https://www.jfrog.com/confluence/display/RTF/Bamboo+Artifactory+Plug-in#BambooArtifactoryPlug-in-in-UsingFileSpecs
https://www.jfrog.com/confluence/display/CLI/CLI+for+JFrog+Artifactory#CLIforJFrogArtifactory-UsingFileSpecs

{
 "files": [
 {
 "pattern" or "aql": "[Mandatory]",
 "target": "[Mandatory]",
 "props": "[Optional]",
 "recursive": "[Optional, Default: true]",
 "flat": "[Optional, Default: false]",
 "build": "[Optional]",
 "explode": "[Optional, Default: false]",
 "excludePatterns": ["[Optional]"]
 }
]
}

Where:

Element Description

pattern

[Mandatory if 'aql' is not specified]
Specifies the source path in Artifactory, from which the artifacts should be downloaded, in the following format:
[repository name]/[repository path]. You can use wildcards to specify multiple artifacts.

target

[Mandatory]
Specifies the local file system path to which artifacts which should be downloaded.

For flexibility in specifying the target path, you can include placeholders in the form of }, }, }...{1 {2 {3 which are replaced
by corresponding tokens in the pattern property that are enclosed in parenthesis. For more details, please refer to Usin
g Placeholders.

Since version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory plugin the target
format has been simplified and uses the same file separator "/" for all operating systems, including Windows.

aql

[Mandatory if 'pattern' is not specified]
An AQL query that specified the artifacts to be downloaded.

props

[Optional]
List of "key=value" pairs separated by a semi-colon. (For example, "key1=value1;key2=value2;key3=value3). Only
artifacts with all of the specified properties and values will be downloaded.

flat

[Default: false]
If true, artifacts are downloaded to the exact target path specified and their hierarchy in the source repository is ignored.
If false, artifacts are uploaded to the target path in the file system while maintaining their hierarchy in the source
repository.

recursive

[Default: true]
If true, artifacts are also downloaded from sub-paths under the specified path in the source repository.
If false, only artifacts in the specified source path directory are downloaded.

build

[Optional]
If specified, only artifacts of the specified build are downloaded. The 'pattern' property is still taken into account when
'build' is specified.

The property format is build-name/build-number.

If the build number is not specified, or the keyword LATEST is used for the build number, then the latest published build
number is used.

explode

[Default: false]

If true, the downloaded archive file is extracted after the download. The archived file itself is deleted locally. The
supported archive types are: zip, tar; tar.gz; and tgz

excludePatterns

[Optional. Applicable only when 'pattern' is specified]

Note: excludePatterns are not yet supported in Bamboo.

An array (enclosed with square brackets) of patterns to be excluded from downloading. Unlike the "pattern" property,
"excludePatterns" must NOT include the repository as part of the pattern's path. You can use wildcards to specify
multiple artifacts.

For example: ["*.sha1","*.md5"]

Upload Spec Schema

{
 "files": [
 {
 "pattern": "[Mandatory]",
 "target": "[Mandatory]",
 "props": "[Optional]",
 "recursive": "[Optional, Default: 'true']",
 "flat" : "[Optional, Default: 'true']",
 "regexp": "[Optional, Default: 'false']",
 "explode": "[Optional, Default: false]",
 "excludePatterns": ["[Optional]"]
 }
]
}

Where:

Element Description

pattern

[Mandatory]

Specifies the local file system path to artifacts which should be uploaded to Artifactory. You can specify multiple
artifacts by using wildcards or a regular expression as designated by the regexp property.
If you use a regexp, you need to escape any reserved characters (such as ".", "?", etc.) used in the expression using a
backslash "\".

Since version 2.9.0 of the Jenkins Artifactory plugin and version 2.3.1 of the TeamCity Artifactory plugin the pattern
format has been simplified and uses the same file separator "/" for all operating systems, including Windows.

target

[Mandatory]

Specifies the target path in Artifactory in the following format: [repository_name]/[repository_path]

If the pattern ends with a slash, for example "repo-name/a/b/", then "b" is assumed to be a folder in Artifactory and the
files are uploaded into it. In the case of "repo-name/a/b", the uploaded file is renamed to "b" in Artifactory.

For flexibility in specifying the upload path, you can include placeholders in the form of }, }, }...{1 {2 {3 which are
replaced by corresponding tokens in the source path that are enclosed in parenthesis, For more details, please refer to
Using Placeholders.

props

[Optional]
List of "key=value" pairs separated by a semi-colon (;) to be attached as properties to the uploaded properties. If any
key can take several values, then each value is separated by a comma (,). For example,
"key1=value1;key2=value21,value22;key3=value3".

flat

[Default: true]
If true, artifacts are uploaded to the exact target path specified and their hierarchy in the source file system is ignored.
If false, artifacts are uploaded to the target path while maintaining their file system hierarchy.

recursive

[Default: true]
If true, artifacts are also collected from sub-directories of the source directory for upload.
If false, only artifacts specifically in the source directory are uploaded.

regexp

[Default: false]
If true, the command will interpret the pattern property, which describes the local file-system path of artifacts to upload,
as a regular expression.
If false, the command will interpret the pattern property as a wild-card expression.

explode

[Default: false]

If true, the uploaded archive file is extracted after it is uploaded. The archived file itself is not saved in Artifactory. The
supported archive types are: zip, tar; tar.gz; and tgz

excludePatterns

[Optional]

Note: excludePatterns are not yet supported in Bamboo.

An array (enclosed with square brackets) of patterns to be excluded from uploading.
Allows using wildcards or a regular expression as designated by the regexp property. If you use a regexp, you need to
escape any reserved characters (such as ".", "?", etc.) used in the expression using a backslash "\".
For example: ["*.sha1","*.md5"]

Using Placeholders

File Specs offer enormous flexibility in how you , or files through use of wildcard or regular expressions with placeholders.upload download

Any wildcard enclosed in parenthesis in the pattern property can be matched with a corresponding placeholder in the target property to
determine the name of the artifact once downloaded or uploaded. The following example downloads all zip files, located under the root path
of the repository, which include a dash in their name. The files are renamed when they are downloaded, replacing the dashmy-local-repo
with two dashes.

{
 "files": [
 {
 "pattern": "my-local-repo/(*)-(*).zip",
 "target": "froggy/{1}--{2}.zip",
 "recursive": "false"
 }
]
}

Examples

Example 1: Download all files located under the directory in the repository to the all-my-frogs my-local-repo froggy/all-my-frog
 directory.s

{
 "files": [
 {
 "pattern": "my-local-repo/all-my-frogs/",
 "target": "froggy/"
 }
]
}

1.

2.
3.
4.

Example 2: Download all files retrieved by the AQL query to the directory.froggy

{
 "files": [
 {
 "aql": {
 "items.find": {
 "repo": "my-local-repo",
 "$or": [
 {
 "$and": [
 {
 "path": {
 "$match": "."
 },
 "name": {
 "$match": "a1.in"
 }
 }
]
 },
 {
 "$and": [
 {
 "path": {
 "$match": "*"
 },
 "name": {
 "$match": "a1.in"
 }
 }
]
 }
]
 }
 },
 "target": "cli-reg-test/spec-copy-test/aql-a1/"
 }
]
}

Example 3: Upload

All zip files located under the directory to the folder, under the repository.resources zip all-my-frogs
AND
All TGZ files located under the directory to the folder, under the repository.resources tgz all-my-frogs
Tag all zip files with type = zip and status = ready.
Tag all tgz files with type = tgz and status = ready.

{
 "files": [
 {
 "pattern": "resources/*.zip",
 "target": "my-repo/zip/",
 "props": "type=zip;status=ready"
 },
 {
 "pattern": "resources/*.tgz",
 "target": "my-repo/tgz/",
 "props": "type=tgz;status=ready"
 }
]
}

Example 4: Download all files located under the directory in the repository for the '.zip' files andall-my-frogs my-local-repo except
the 'props.' files

{
 "files": [
 {
 "pattern": "my-local-repo/all-my-frogs/",
 "excludePatterns": [
 "*.zip",
 "all-my-frogs/props.*"
]
 }
]
}

Troubleshooting

Overview

The Artifactory User Guide provides troubleshooting tips for different topics on the relevant pages describing those topics.

Installing Artifactory

Please refer to Troubleshooting under Installing Artifactory

Installing with Docker

Please refer to Troubleshooting Docker under Installing with Docker

Installing Artifactory HA

https://www.jfrog.com/confluence/display/RTF/Installing+Artifactory#InstallingArtifactory-Troubleshooting
https://www.jfrog.com/confluence/display/RTF/Installing+with+Docker#InstallingwithDocker-TroubleshootingDocker

Please refer to .Troubleshooting HA

Access Tokens or Access Service

Please refer to Troubleshooting under .Access Tokens

Known Issues

The following table lists the set of known issues in Artifactory including the version in which they were discovered, and the version in which they
were fixed. Click the issue ID for full details in JIRA.

Issue ID Description Affected From Version Fix Version

RTFACT-15315 Running on Ubuntu Trusty (14.04) against Debian repositories fails withapt-get update
the following error: Sub-process https received a segmentation fault

5.6.0 5.6.1

RTFACT-15297 For Artifactory HA installations, (with downtime) from version 4.x tosingle-phase upgrades
version 5.6 without going through version 5.4.6 fails. Please refer to the Upgrade Notice in
the .Artifactory 5.5 Release Notes

5.6.0 5.6.1

RTFACT-14672 Git LFS client v1.x working against Artifactory Git LFS repository using SSH fails to upload or
download LFS blobs.

5.3.0 5.4.6

RTFACT-14473 When resolving a package from an npm repository, Artifactory throws a deserialize error to
the log file if one of the package's dependencies in the corresponding file ispackage.json
declared using the following format:

“<dependency_name>” : { “version” : “<version_number>” }.

For example: "deep-diff" uses this format. As a result, the npm client fails to resolve the
package.

Note: For a workaround, please refer to the .issue details

5.4.0 5.4.6

RTFACT-14687 A system import on a High Availability installation of Artifactory 5.4.x with files exported from
a version that is below 5.4, will fail.

5.4.0 5.6.0

RTFACT-14530 After upgrading an Artifactory HA cluster from version 5.x to 5.4.x, new nodes that you add to
your Artifactory HA cluster will not start up.

5.4.0 5.4.4

RTFACT-14510 Uploading or downloading files to Artifactory using access tokens with a that issubject
longer than 64 characters fails with error 500.

5.4.2 5.4.3

RTFACT-14477 Artifactory fails to start up when Tomcat is configured to only use HTTPS, or was configured
with both HTTP and HTTPS but on different ports.

5.4.0 5.4.2

RTFACT-14495 Artifactory is unable to connect to access service and as a result cannot start when Tomcat is
configured with a Self-Signed chain certificate.

5.4.0 5.4.2

RTFACT-14279 Following an upgrade from Artifactory version 4.4 or below to 5.3 directly, Artifactory will fail
to start up.
23-May-2017: If upgrading from 4.4 or , we recommend waiting for a patch whichbelow
should be released shortly.

Note: Upgrading from version 4.4.1 and to 5.3 is not affected and Artifactory will startabove
up after the upgrade.

5.3.0 5.3.1

RTFACT-14063 An external user who has created a token will still be able to refresh it even if he has been
removed from the external authentication server.

5.2.1

RTFACT-13870 Deploying artifacts larger than 100MB in size when using an S3 compatible storage provider
can fail leading to unpredictable results.

5.1.2 5.1.3

RTFACT-13823 JFrog Mission Control reload plugin may get into a loop.

Note that as a workaround this plugin can be removed since it is no longer used if working
with Artifactory version 5.0.0 or above.

5.1.0

RTFACT-14619 User Plugins that contain the execution point will fail to be executed realms and throw an Haz
when running on Artifactory HA installations.elcastSerializationException exception

5.0.0

RTFACT-13923 Artifactory might not start up following an upgrade to version 5.x on Windows when
Artifactory is configured with a . Keystore

5.0.0 5.1.4

RTFACT-13822 Most downloaded widget in Artifactory home can cause the DB to stall. 5.0.0 5.1.3

https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-Troubleshooting
https://www.jfrog.com/jira/browse/RTFACT-15315
https://www.jfrog.com/jira/browse/RTFACT-15297
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-anchorHAUpgradeSinglePhase
https://www.jfrog.com/confluence/display/RTF/Release+Notes#ReleaseNotes-Artifactory5.5
https://www.jfrog.com/jira/browse/RTFACT-14672
https://www.jfrog.com/jira/browse/RTFACT-14473
https://www.jfrog.com/jira/browse/RTFACT-14473
https://www.jfrog.com/jira/browse/RTFACT-14687
https://www.jfrog.com/jira/browse/RTFACT-14530
https://www.jfrog.com/jira/browse/RTFACT-14510
https://www.jfrog.com/jira/browse/RTFACT-14477
https://www.jfrog.com/jira/browse/RTFACT-14495
https://www.jfrog.com/jira/browse/RTFACT-14279
https://www.jfrog.com/jira/browse/RTFACT-14063
https://www.jfrog.com/jira/browse/RTFACT-13870
https://www.jfrog.com/jira/browse/RTFACT-13823
https://www.jfrog.com/jira/browse/RTFACT-14619
https://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Realms
https://www.jfrog.com/jira/projects/RTFACT/issues/RTFACT-13923
https://www.jfrog.com/confluence/display/RTF/WebStart+and+Jar+Signing#WebStartandJarSigning-ManagingSigningKeys
https://www.jfrog.com/jira/browse/RTFACT-13822

RTFACT-14079 When using FullDB or S3 as a binary provider and an NPM virtual repository, external
dependencies cause a leak of resources that exhausts all of the DB connections that are
never freed.

4.16.0 5.3.0

RTFACT-13764 "downloadTagFile" and "downloadBranchFile" API endpoints throw a nullPointerException
when a VCS remote repository has "Store Artifacts locally" disabled

4.16.0

RTFACT-8503 When viewing n the tree browser, folders under the repositorySmart Remote Repositories i
that contain a space in their names, will not expand.

4.0.0

RTFACT-8194 ' ' fails on remote repositories when 'Store Artifacts Locally' is disabled.docker pull 3.9.0

RTFACT-11942 ' ' fails when all of the following conditions occur together:npm install

You are trying to resolve a scoped package from a virtual repository and,
The scoped package is actually hosted under one of the remote repositories aggregated
by the virtual repository and,
That remote repository has 'Store artifacts locally' disabled.

3.4.2

RTFACT-13004 When trying to retrieve an item's properties from Docker V2 repositories using the
/api/storage REST API endpoint, a 401 error is returned to the client.

3.4.2

RTFACT-12710 Python metadata calculation will fail if the Python metadata version is set to 1.2 inside the
METADATA or PKG-INFO files.

3.4.0 5.4.0

RTFACT-12379 NuGet virtual repositories that aggregate more than one local or remote repository may omit
results when searching for a package

2.5.0 5.2.1

RTFACT-10132 ' ' does not enforce include / exclude patterns on virtual NuGet repositoriesNuGet install 2.5.0 5.7.0

RTFACT-13618 When all artifacts have been deleted from a folder, the folder is not pushed to the pruning
queue even though it is empty, and is, therefore, not deleted.

2.0.0

RTFACT-12260 When performing a full system export on an instance with blacked out repositories, and then
doing a corresponding import on a target instance, the content and metadata of the blacked
out repositories are not imported.

2.0.0

RTFACT-12934 A Maven virtual repository does not return the correct latest snapshot if another package with
the same version number exists in a different repository.

2.0.0

RTFACT-12959 Anonymous users cannot download folders even if anonymous access is enabled. 2.0.0 5.6.0

RTFACT-6485 Uploading a file containing a dot in the target path will fail and a 500 error will be returned to
the client

Note: The creates upload URLs containing a dot. Therefore,maven-site-plugin
uploading artifacts through the plugin is currently not supported

2.0.0 5.4.0

RTFACT-9343 Promoting Build Info that contains a dependency or an artifact that has the same checksum
of an item that already exists may result in a race condition for the same target path.

2.0.0

End of Life

JFrog supports all versions of Artifactory from their date of release going forward 18 months.

Here is the list of versions and their End of Life (EoL) date:

Version Release Date EoL Date

5.6.0 15-Nov-2017 15-May-2019

5.5.2 29-Oct-2017 29-Apr-2019

5.5.1 26-Sep-2017 26-Mar-2019

5.5.0 25-Sep-2017 25-Mar-2019

5.4.5 18-Jul-2017 18-Jan-2019

5.4.4 06-Jul-2017 06-Jan-2019

https://www.jfrog.com/jira/browse/RTFACT-14079
https://www.jfrog.com/jira/browse/RTFACT-13764
https://www.jfrog.com/jira/browse/RTFACT-8503
https://www.jfrog.com/jira/browse/RTFACT-8194
https://www.jfrog.com/jira/browse/RTFACT-11942
https://www.jfrog.com/jira/browse/RTFACT-13004
https://www.jfrog.com/jira/browse/RTFACT-12710
https://www.jfrog.com/jira/browse/RTFACT-12379
https://www.jfrog.com/jira/browse/RTFACT-10132
https://www.jfrog.com/jira/browse/RTFACT-13618
https://www.jfrog.com/jira/browse/RTFACT-12260
https://www.jfrog.com/jira/browse/RTFACT-12934
https://www.jfrog.com/jira/browse/RTFACT-12959
https://www.jfrog.com/jira/browse/RTFACT-6485
https://www.jfrog.com/jira/browse/RTFACT-9343

5.4.3 03-Jul-2017 03-Jan-2019

5.4.2 30-Jun-2017 30-Dec-2018

5.4.1 22-Jun-2017 22-Dec-2018

5.4.0 20-Jun-2017 20-Dec-2018

5.3.1 24-May-2017 24-Nov-2018

5.3.0 11-May-2017 11-Nov-2018

5.2.1 13-Apri-2017 13-Oct-2018

5.2.0 27-Mar-2017 27-Sep-2018

5.1.4 19-Mar-2017 19-Sep-2018

5.1.3 09-Mar-2017 09-Sep-2018

5.1.0 21-Feb-2017 21-Aug-2018

5.0.1 07-Feb-2017 07-Aug-2018

5.0.0 31-Jan-2017 31-Jul-2018

4.16.0 16-Jan-2017 16-Jul-2018

4.15.0 15-Dec-2016 15-Jun-2018

4.14.3 07-Dec-2016 07-Jun-2018

4.14.2 27-Nov-2016 27-May-2018

4.14.1 01-Nov-2016 01-May-2018

4.14.0 20-Oct-2016 20-Apr-2018

4.13.1 13-Oct-2016 13-Apr-2018

4.13.0 21-Sep-2016 21-Mar-2018

4.12.2 14-Sep-2016 14-Mar-2018

4.12.1 07-Sep-2016 07-Mar-2018

4.12.0.1 29-Aug-2016 01-Mar-2018

4.11.2 17-Aug-2016 17-Feb-2018

4.11.1 14-Aug-2016 14-Feb-2018

4.11.0 01-Aug-2016 01-Feb-2018

4.10.0 20-Jul-2016 20-Jan-2018

4.9.1 13-Jul-2016 13-Jan-2018

4.9.0 01-Jul-2016 01-Jan-2018

4.8.2 19-Jun-2016 19-Dec-2017

4.8.1 09-Jun-2016 09-Dec-2017

4.8.0 23-May-2016 23-Nov-2017

4.7.7 14-May-2016 14-Nov-2017

4.7.6 09-May-2016 09-Nov-2017

4.7.5 28-Apr-2016 28-Oct-2017

4.7.4 19-Apr-2016 19-Oct-2017

4.7.3 17-Apr-2016 17-Oct-2017

4.7.2 14-Apr-2016 14-Oct-2017

4.7.1 04-Apr-2016 04-Oct-2017

4.7.0 31-Mar-2016 30-Sep-2017

4.6.1 21-Mar-2016 21-Sep-2017

4.6.0 13-Mar-2016 13-Sep-2017

4.5.2 28-Feb-2016 28-Aug-2017

4.5.1 18-Feb-2016 18-Aug-2017

4.5.0 14-Feb-2016 14-Aug-2017

4.4.3 08-Feb-2016 08-Aug-2017

4.4.2 17-Jan-2016 17-Jul-2017

4.4.1 12-Jan-2016 12-Jul-2017

4.4.0 04-Jan-2016 04-Jul-2017

4.3.3 21-Dec-2015 21-Jun-2017

4.3.2 08-Dec-2015 08-Jun-2017

4.3.1 03-Dec-2015 03-Jun-2017

4.3.0 22-Nov-2015 22-May-2017

4.2.2 05-Nov-2015 05-May-2017

4.2.1 01-Nov-2015 01-May-2017

4.2.0 18-Oct-2015 18-Apr-2017

4.1.3 27-Sep-2015 27-Mar-2017

4.1.2 20-Sep-2015 20-Mar-2017

4.1.0 08-Sep-2015 08-Mar-2017

4.0.2 12-Aug-2015 12-Feb-2017

4.0.1 09-Aug-2015 09-Feb-2017

4.0.0 02-Aug-2015 02-Feb-2017

3.9.5 29-Oct-2015 13-Feb-2017

3.9.4 13-Aug-2015 13-Feb-2017

3.9.3 09-Aug-2015 09-Feb-2017

3.9.2 06-Jul-2015 05-Jan-2017

3.9.1 24-Jun-2015 24-Dec-2016

3.9.0 21-Jun-2015 21-Dec-2016

3.8.0 31-May-2015 21-Nov-2016

3.7.0 17-May-2015 17-Nov-2016

3.6.0 12-Apr-2015 12-Oct-2016

3.5.3 22-Mar-2015 22-Sep-2016

3.5.2.1 24-Feb-2015 24-Jun-2016

3.5.2 23-Feb-2015 23-Jun-2016

3.5.1 04-Feb-2015 04-Jun-2016

3.5.0 01-Feb-2014 01-Jun-2016

3.4.2 30-Nov-2014 30-May-2016

3.4.1 21-Oct-2014 21-Apr-2016

3.4.0.1 06-Oct-2014 06-Apr-2016

3.4.0 30-Sep-2014 30-Mar-2016

3.3.1 09-Sep-2014 09-Mar-2016

3.3.0.1 10-Aug-2014 10-Feb-2016

3.3.0 13-Jul-2014 13-Jan-2016

3.2.2 22-Jun-2014 22-Dec-2015

3.2.1.1 11-Feb-2014 11-Aug-2016

3.2.1 01-Jun-2014 01-Dec-2015

3.2.0 30-Mar-2014 30-Sep-2015

3.1.1.1 11-Feb-2014 11-Aug-2015

3.1.1 09-Feb-2014 09-Aug-2015

3.1.0 15-Dec-2013 15-Jun-2015

3.0.4 27-Oct-2013 27-Apr-2015

3.0.3 11-Aug-2013 11-Feb-2015

3.0.2 08-Jul-2013 08-Jan-2015

3.0.1 13-May-2013 13-Nov-2014

3.0.0 21-Apr-2013 21-Oct-2014

2.6.7 27-Jun-2013 27-Dec-2014

2.6.6 20-Dec-2012 20-Jun-2014

2.6.5 12-Nov-2012 12-May-2014

2.6.4 20-Oct-2012 20-Apr-2014

2.6.3 02-Aug-2012 02-Feb-2014

2.6.2 23-Jul-2012 23-Jan-2014

2.6.1 23-May-2012 23-Nov-2013

2.6.0 06-May-2012 05-Nov-2013

2.5.2 25-Apr-2012 25-Oct-2013

2.5.1.1 06-Mar-2012 06-Sep-2013

2.5.1 15-Feb-2012 15-Aug-2013

2.5.0 31-Jan-2012 31-Jul-2013

2.4.2 29-Nov-2011 29-May-2013

2.4.1 16-Nov-2011 16-May-2013

2.4.0 08-Nov-2011 08-May-2013

2.3.2 03-Jan-2012 03-Jul-2013

2.3.1 14-Feb-2011 14-Aug-2012

2.3.0 20-Oct-2010 20-Apr-2012

2.2.3 25-Apr-2010 25-Oct-2011

2.2.2 22-Mar-2010 22-Sep-2011

2.2.1 17-Feb-2010 17-Aug-2011

2.2.0 08-Feb-2010 08-Aug-2011

2.1.3 21-Dec-2009 21-Jun-2011

2.1.2 03-Nov-2009 03-May-2011

2.1.1 21-Oct-2009 21-Apr-2011

2.1.0 05-Oct-2009 05-Apr-2011

2.0.8 08-Sep-2009 08-Mar-2011

2.0.7 12-Aug-2009 12-Feb-2011

2.0.6 14-May-2009 14-Nov-2010

2.0.5 08-Apr-2009 08-Oct-2010

2.0.4 31-Mar-2009 31-Sep-2010

2.0.3 17-Mar-2009 17-Sep-2010

2.0.2 18-Feb-2009 18-Aug-2010

2.0.1 09-Feb-2009 09-Aug-2010

2.0.0 05-Jan-2009 05-Jul-2010

This table is updated periodically please excuse any delay in updates. You can check for a specific version by checking the version release date
and verify the release date is within the last 18 months.

Release Notes
Overview

This page presents release notes for JFrog Artifactory describing the main fixes and enhancements
made to each version as it is released. For a complete list of changes in each version, please refer
to the linked at the end of the details for each release.JIRA Release Notes

If you need release notes for earlier versions of Artifactory, please refer to the inRelease Notes
the Artifactory 3.x User Guide.

Download

For an Artifactory Pro or Artifactory Enterprise installation, click to download the latest version of JF
.rog Artifactory Pro

For an Artifactory OSS installation, click to download the latest version of .JFrog Artifactory OSS

Previous Versions

Previous versions of JFrog Artifactory Pro and JFrog Artifactory OSS are available for download on
JFrog Bintray.

Click to download previous versions of JFrog Artifactory Pro.

Click to download previous versions of JFrog Artifactory OSS as a or ZIP .RPM

Page Contents
Overview

Download
Previous
Versions
Upgrade Notice
Installation and
Upgrade
Known Issues

Artifactory 5.6
Artifactory 5.6.1
Artifactory 5.6.2

Artifactory 5.5
Artifactory 5.5.1
Artifactory 5.5.2

Artifactory 5.4
Artifactory 5.4.1
Artifactory 5.4.2
Artifactory 5.4.3
Artifactory 5.4.4
Artifactory 5.4.5
Artifactory 5.4.6

Artifactory 5.3
Artifactory 5.3.1
Artifactory 5.3.2

Artifactory 5.2
Artifactory 5.2.1

https://www.jfrog.com/confluence/display/RTF3X/Release+Notes
https://bintray.com/jfrog/product/artifactory/download
https://bintray.com/jfrog/product/artifactory/download
https://www.jfrog.com/open-source/#artifactory
https://bintray.com/jfrog/artifactory-pro/jfrog-artifactory-pro-zip
https://bintray.com/jfrog/artifactory/jfrog-artifactory-oss-zip/view
https://bintray.com/jfrog/artifactory-rpms/jfrog-artifactory-oss-rpm/view

Upgrade Notice

Artifactory 5.5 implements a database schema change to natively support SHA-256 checksums.
This change affects the upgrade procedure for an Enterprise Artifactory HA cluster (upgrading an
Artifactory Pro or OSS installation is not affected).

For an Artifactory Enterprise HA cluster, you may proceed withif your current version is 5.4.6,
the normal upgrade procedure described in .Upgrading an Enterprise HA Cluster

If your current version is below 5.4.6, there are two options to upgrade to the latest version (5.5
and above): a two-phase option with zero downtime or a single phase option that incurs downtime.

For details, please refer to the under the release notes for Upgrade Notice Artifactory 5.5.1.

Installation and Upgrade

For installation instructions please refer to .Installing Artifactory

To upgrade to this release from your current installation please refer to .Upgrading Artifactory

 To receive automatic notifications whenever there is a new release of Artifactory, please watch
us on Bintray.

Known Issues

For a list of known issues in the different versions of Artifactory, please refer to .Known Issues

Artifactory 5.6

Released: November 15, 2017

Upgrade Notice

Longer upgrade time
Due to the changes implemented in version 5.5, upgrading to this version or above from
version 5.4.6 or below may take longer than usual and depends on the database you are
using.

For an Artifactory Pro installation and for the Primary node of an Artifactory HA cluster, if
you use MySQL database, the upgrade may take up to 5 minutes for each 1 million
artifacts in your repositories for a typical setup. If you are using one of the other
supported databases, the extra upgrade time will be less noticeable and should only take
several seconds longer than usual.

1.

2.

3.

Before Upgrading to Artifactory 5.6.0
The Artifactory Security Replication User Plugin (securityReplication.groovy)
has not yet been updated to support 5.6.0. We’re working on a new version that
will be available soon.

If you are using this plugin and need to upgrade to Artifactory 5.6.0, please
contact support@jfrog.com.

For Artifactory HA installations, single-phase upgrades (with downtime) from
version 4.x to version 5.6 without going through version 5.4.6 fails. Please refer
to the Upgrade Notice in the Artifactory 5.5 Release Notes.

There is a known issue in which running on Ubuntu apt-get update Trusty
(14.04) against Debian repositories fails with the following error: Sub-process
https received a segmentation fault

A fix for this issue is available in version 5.6.1 and we therefore recommend
upgrading to 5.6.1.

Artifactory 5.1
Artifactory 5.1.2
Artifactory 5.1.3
Artifactory 5.1.4

Artifactory 5.0
Artifactory 5.0.1

Artifactory 4.16
Artifactory
4.16.1

Artifactory 4.15
Artifactory 4.14

Artifactory
4.14.1
Artifactory
4.14.2
Artifactory
4.14.3

Artifactory 4.13
Artifactory
4.13.1
Artifactory
4.13.2

Artifactory 4.12.0.1
Artifactory
4.12.1
Artifactory
4.12.2

Artifactory 4.11
Artifactory
4.11.1
Artifactory
4.11.2

Artifactory 4.10
Artifactory 4.9

Artifactory 4.9.1
Artifactory 4.8

Artifactory 4.8.1
Artifactory 4.8.2

Artifactory 4.7
Artifactory 4.7.1
Artifactory 4.7.2
Artifactory 4.7.3
Artifactory 4.7.4
Artifactory 4.7.5
Artifactory 4.7.6
Artifactory 4.7.7

Artifactory 4.6
Artifactory 4.6.1

Artifactory 4.5
Artifactory 4.5.1
Artifactory 4.5.2

Artifactory 4.4
Artifactory 4.4.1
Artifactory 4.4.2
Artifactory 4.4.3

Artifactory 4.3
Artifactory 4.3.1
Artifactory 4.3.2
Artifactory 4.3.3

Artifactory 4.2
Artifactory 4.2.1
Artifactory 4.2.2

Artifactory 4.1
Artifactory 4.1.2
Artifactory 4.1.3

Artifactory 4.0
Artifactory 4.0.1
Artifactory 4.0.2

Previous Release Notes

https://bintray.com/jfrog/artifactory
https://github.com/JFrogDev/artifactory-user-plugins/tree/master/security/securityReplication
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-anchorHAUpgradeSinglePhase

1.

2.

3.

4.

5.

6.

Highlights

Improved Debian Performance

Significant improvement in performance when indexing Debian repositories.

Feature Enhancements

Tomcat Version Upgrade

The Tomcat bundled with Artifactory has been upgraded to version 8.5.23.

Get Distribution Repository Details

The REST API now also includes . To get the distributionGet Repositories distribution repositories
repositories details only, you can add as a query param. type=distribution

UI Performance Improvement

Performance of displaying the environment and system variables data in the Builds module in the
UI has been significantly improved.

Downloading a Folder for Anonymous Users

Admin users can now also enable for , in additionfolder download configuration anonymous users
to internal users.

Limit REST API Search Results

Added the ability to limit the number of API search results for internal users, previously available
only for anonymous users. To add a limit, edit the with artifactory.system.properties file artifact

 (default is), and a limit ory.search.limitAnonymousUsersOnly=false true artifactory
 (default is)..search.userQueryLimit 1000

Filter Expirable Access Tokens

Added an option to filter the expirable tokens in the . Access Tokens page in the Artifactory UI

Issues Resolved

Fixed an issue allowing unsupported special characters to be used in the key field when
adding properties via REST API, as already enforced in the UI.
The following characters are forbidden: and the)(}{][*+^$\/~`!@#%&<>;=,±§ Space

.character
Fixed an issue where a file with the same filename and filepath of a file that was previously
deleted, could not be deleted a second time. For this scenario, the latest file deleted will
now be under the file path in the trash.
Fixed an issue where NuGet package names containing a hyphen character "-" would be
automatically considered as pre-release packages which allowed users without
Delete/Overwrite permissions to overwrite them.
For example: Sample-Package.1.0.0.nupkg
Artifactory is now aligned with the NuGet spec, and these packages will only be
considered as pre-release if the hyphen character follows the version number.
For example: Sample-Package.1.0.0-RC.nupkg
Fixed an issue where installing an npm package, with the following date format (2010-11

) in its metadata file, would fail with an IllegalArgumentException.-09T23:36:08Z
Fixed an issue in which installing an npm package from a virtual repository would fail if the
package did not have the closure in the package.json.time

Applicable to the following REST API calls
Artifact Search, Archive Entries Search, GAVC Search, Property Search, Checksum
Search (limited by UI max results), Artifacts Not Downloaded Since, Artifacts With Date
in Date Range, Artifacts Created in Date Range.

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetRepositories
https://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts#ManipulatingArtifacts-ConfiguringFolderDownload
https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-TheAnonymousUser
https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-SystemProperties
https://www.jfrog.com/confluence/display/RTF/Access+Tokens#AccessTokens-UI
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactSearch(QuickSearch)
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArchiveEntriesSearch(ClassSearch)
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GAVCSearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-PropertySearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ChecksumSearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ChecksumSearch
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsNotDownloadedSince
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsWithDateinDateRange
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsWithDateinDateRange
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsCreatedinDateRange

6.

7.

8.

1.

2.

3.

1.

2.

Fixed an issue in which users imported from and associated to a group with adminCrowd
privilages would be created in Artifactory with the “Can Update Profile” option disabled.
This option will now be enabled for this usecase.
Fixed an issue in which users associated to a group imported from and associatedSAML
with admin privileges were not granted the appropriate admin privilages.
Fixed an issue where uploading a that contains declared environmentConan package
variables with the "=" character, the package would be deployed without its metadata.
For Example: conan install lib/1.0@user/stable -e
MYFLAG="one==tricky==value" --build

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.6.1

Released: November 22, 2017

Issues Resolved

Fixed an issue in which a of an HA cluster with downtime (by adding the single-phase upgrade artifactory.upgrade.allowAny
system property) from a version below 5.0 directly to version 5.6.0 would fail. Note that the recommended Upgrade.forVersion t

 with zero downtime was not affected. wo-phase upgrade
Fixed an issue in which when logging into Artifactory, if the group name sent in a SAML assertion as a SAML attribute was in
mixed-case (i.e., at least one character is not lower-case), and the corresponding group in Artifactory was all in lower case, then the
SAML user would not inherit the permissions associated with that group. This affected both internal groups and imported LDAP
groups.
Fixed an issue in which running on Ubuntu Trusty (14.04) against Debian repositories would fail with the followingapt-get update
error:
Sub-process https received a segmentation fault

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.6.2

Released: November 27, 2017

Issues Resolved

Fixed a critical issue in which a user would sometimes lose permissions due to a collision between an update action and a "GET"
operation that occurred concurrently.
Fixed an issue that prevented connection to Artifactory through SSH. This also resulted in JFrog CLI not being able to work with
Artifactory.

For a complete list of changes please refer to our . JIRA Release Notes

For an Artifactory Pro or Artifactory Enterprise installation, click to download this latest version of .JFrog Artifactory Pro

For Artifactory OSS, click to download this latest version of .JFrog Artifactory OSS

Artifactory 5.5

Released: September 25, 2017

Due to a critical issue discovered in this version, you should not install it. Instead, you should upgrade to version 5.5.1 or later.

Upgrade Notice

1.

For an Artifactory HA installation, there are two options to upgrade to version 5.5 from a version below 5.4.6
This note only refers to upgrading Artifactory Enterprise HA installations.

Artifactory 5.5 implements a database schema change to natively support SHA-256 checksums. yIf your current version is 5.4.6,
ou may proceed with the normal upgrade procedure described in .Upgrading an Enterprise HA Cluster

If your current version is below 5.4.6, to accommodate this change, you may select one of the following two upgrade options:

Two-phase, zero downtime
In this option, you first need to upgrade your HA cluster to version 5.4.6. Once this upgrade is completed, you can then
proceed to upgrade your HA cluster to version 5.5. In both phases, you follow the normal upgrade procedure described in

https://www.jfrog.com/confluence/display/RTF/Authentication#Authentication-SAML
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18582
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-anchorHAUpgradeSinglePhase
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-anchorHAUpgradeTwoPhase
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-anchorHAUpgradeTwoPhase
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18704
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18795
https://bintray.com/jfrog/product/artifactory/download
https://www.jfrog.com/open-source/#artifactory

Highlights

Event-based Pull Replication

JFrog Artifactory now supports event based pull replication, in addition to the already supported event based . Thispush replication
configuration allows your remote Artifactory instances get updated in near-real-time by a pull replication that's triggered by any changes made
to your local repositories, such as new or deleted artifacts. This is great for automation purposes where you want to make your artifacts
available in all of your instances as soon as they are deployed.

As a best practice, setting a for regularly scheduled replication is still required in addition to event-based replication. This willCron expression
ensure that all of the artifacts in your repository are synced and up to date, which is important in case of an event sync failure (for example,
due to maintenance operations).

Native Support for SHA-256 Checksums

Artifactory now supports SHA-256 checksums. This improved algorithm to calculate checksums enables a more secure environment for your
binaries letting you use SHA-256 checksums to validate the integrity of downloaded artifacts. You can also use the SHA-256 value for a
variety of features as described in . Whenever a new artifact is deployed, in addition to automatically calculating its MD5SHA-256 Support
and SHA1 checksums, Artifactory will now also calculate and store its SHA-256 checksum. The SHA-256 value can be used when searching
for artifacts, or displayed as output for AQL queries in the same way SHA1 and MD5 checksums are used from both the UI and the REST
API.

From version 5.5, Artifactory will automatically calculate the SHA-256 checksums deployed to your instance. for new artifacts . Depending
on the number of artifacts in your system, this process may take some time. To help you monitor the process, progress and status messages
will be printed to a dedicated log file, , with some additional general messages to the .sha256_migration.log artifactory.log file

To maintain backward compatibility with existing scripts, the Set Item SHA256 Checksum REST API endpoint is still supported.

Feature Enhancements

Improve Performance on RPM Repositories

The performance of metadata calculation on has been significantly enhanced by performing different metadata calculationsRPM repositories
in parallel making resolving and deploying packages with RPM repositories much faster.

Improve Performance of NuGet Repositories

NuGet repository performance has been significantly improved when resolving dependencies or searching for artifacts. The improved
performance is especially significant for repositories that host many artifacts.

Keep Multiple Versions of Metadata Files on RPM Repositories

Artifactory will now maintain previous metadata file versions on RPM repositories (primary, other, filelists) making them available for download
while new ones are being generated.

This is very useful when RPM metadata is updated very frequently. If a client working with an Artifactory RPM repository downloads the repo
 file, and the rest of the metadata files (primary, other, filelists) expire in the meantime, the expired version of these files will still bemd.xml

available allowing the client to complete the required download.

Retrieve Plugin Source Code by Name

Artifactory now provides access to the Groovy source code of user plugins through the REST API endpoint. Retrieve Plugin Code

Allow LDAP Users to Access Profile Page

1.

2.

.Upgrading an Enterprise HA Cluster

One phase with downtime
This option requires you to add a to your primary node during the upgrade procedure. For details, pleasesystem property
refer to . Upgrading an Enterprise HA Cluster
If you try upgrading directly to version 5.5 adding this system property, the upgrade will fail and the followingwithout
message will be logged in the file:artifactory.log
To upgrade your HA installation to this version, you first need to upgrade to version
5.4.6 which implements changes required to accommodate a database schema change.

https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-PullReplication
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-PushReplication
https://www.jfrog.com/confluence/display/RTF/Repository+Replication#RepositoryReplication-SchedulingandConfiguringReplication
https://www.jfrog.com/confluence/display/RTF/Checksum-Based+Storage#Checksum-BasedStorage-BasedStorage-SHA-256Support
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetItemSHA256Checksum
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RetrievePluginCode
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-UpgradingFromVersion5.4.5andBelowtoVersion5.5andAbove

1.

2.
3.
4.

5.

6.

7.

You can now configure Artifactory to allow new users who are created by to be able to access their . Thislogging in via LDAP profile page
means that these users can now access a set of functions such as generating their API key, setting their SSH public key, configuring their
JFrog Bintray credentials, and updating their password.

Support Additional MIME types in the UI

Artifactory now supports additional to allow viewing and files directly in the UI (as opposed to having toMIME types .log, .yml .yaml
download them first). These file types are now added to the preconfigured file. mimetypes.xml

Enable Password Encryption by Default

For new Artifactory installations, Artifactory automatically generates a and then uses it to encrypt all passwords hostedMaster Encryption Key
on the instance. Decrypting passwords and encrypting them back is possible through the REST API.

To maintain consistent behavior for existing installations, upgrading to this new version will not automatically encrypt passwords.

Configurable Web Session Timeout

You can now configure Artifactory's UI session timeout using the system property.artifactory.ui.session.timeout.minutes

Checksum-Based Storage with S3 Object Store

Artifactory's stores files in folders named after the first two characters of their checksum. When using checksum-based storage S3 object
, this feature has been enhanced allowing you to configure the number of characters that should be used to name the folder. Forstorage

example, you can configure your to store objects under folders named after the first 4 characters of their checksum. S3 binary provider

Issues Resolved

Fixed an issue in which Artifactory would return an error when trying to resolve an npm package because it would fail to parse an
npm dependency declaration that was presented in an unexpected format.
Fixed an issue in which the Set Me Up screen for virtual repositories that aggregated only remote repositories would be blank.
Fixed an issue that caused batch download from a virtual Git LFS repository, that aggregated more than one repository, to fail.
Fixed an issue in which the REST API endpoint would not return Artifacts that had been promoted to it from aBuild Artifacts Search
different repository correctly.
Fixed an issue in which resolving private Docker images from a Docker remote repository that points to Docker hub failed when
passwords in Artifactory were encrypted.
Fixed an issue in which NuGet virtual repositories that aggregated several repositories would omit results when searching for a
package.
Fixed an issue that would sometimes cause a to be thrown when there were many deployments on aNullPointerException
Maven repository that had a watch configured on it. The would cause metadata calculation to stop andNullPointerException
was due to the multiple deployments causing a race condition.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.5.1

Released: September 26, 2017

This version replaces version 5.5.0 in which a critical issues was discovered.

Upgrade Notice

1.

2.

For an Artifactory HA installation, there are two options to upgrade to version 5.5.1 and above from a version below 5.4.6
This note only refers to upgrading Artifactory Enterprise HA installations.

Artifactory versions 5.5.1 implements a database schema change to natively support SHA-256 checksums. If your current version
 you may proceed with the normal upgrade procedure described in .is 5.4.6, Upgrading an Enterprise HA Cluster

If your current version is below 5.4.6, to accommodate this change, you may select one of the following two upgrade options:

Two-phase, zero downtime
In this option, you first need to upgrade your HA cluster to version 5.4.6. Once this upgrade is completed, you can then
proceed to upgrade your HA cluster to version 5.5.1 and above. In both phases, you follow the normal upgrade procedure
described in .Upgrading an Enterprise HA Cluster

One phase with downtime
This option requires you to add a to your primary node during the upgrade procedure. For details, pleasesystem property
refer to . Upgrading an Enterprise HA Cluster

https://www.jfrog.com/confluence/display/RTF/Configuration+Files#ConfigurationFiles-ContentType/MIMEType
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-S3BinaryProvider
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-BuildArtifactsSearch
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18180
https://www.jfrog.com/confluence/display/RTF/Upgrading+an+Enterprise+HA+Cluster#UpgradinganEnterpriseHACluster-UpgradingFromVersion5.4.5andBelowtoVersion5.5andAbove

1.

2.

3.

4.

5.

6.

7.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.5.2
Released: October 29, 2017

Highlights

Support for Acquire-By-Hash flag in Debian Repositories

Hash sum mismatch errors may sometimes cause apt-get update requests to Debian repositories to fail due to rotation of Debian
metadata files. Artifactory now overcomes this issue by storing historical versions of the metadata files by their checksum and supporting the

 This allows Acquire-By-Hash flag for Debian repositories. Debian clients to download package metadata files by their checksum.

This is very useful when Debian metadata is updated very frequently. If a client working with an Artifactory Debian repository downloads the
metadata files, and they expire in the meantime, the expired version of these files will still be available allowing the client to complete the
required download.

Bypassing HEAD requests for remote repositories

Artifactory remote repositories normally send a HEAD request to a remote resource before downloading an artifact that should be cached. In
some cases, the remote resource rejects the HEAD request even though downloading artifacts is allowed. Through the remote repository
configuration, Artifactory now lets you specify that remote repositories should before downloading artifacts toskip sending HEAD requests
cache.

Feature Enhancements

Automatically Rewriting External Dependencies in NPM Registries

Artifactory now supports rewriting external dependencies for various Git and GiHub URLs. For a full list of supported URLs, please refer to Au
 tomatically Rewriting External Dependencies

Issues Resolved

Bitbucket Server version 5.1.0 deprecated the Bitbucket Archive Plugin which remote repositories for package formats that use a Git
provider in Artifactory relied on. These include Bower, VCS, CocoaPods and PHP Composer. As a result, when upgrading to
Bitbucket 5.1.0, these remote repositories stopped working. This has now been fixed by adding an option to choose “Stash / Private
Bitbucket (Prior to 5.1.0)” as the Git provider in the remote repository configuration for these package formats while the
“Stash/Private Bitbucket” option covers Bitbucket Server version 5.1.0 and above.
Fixed an issue in which when executing the REST API endpoint, Artifactory would erroneously/api/search/latestVersion
query remote repositories. This has now fixed, so Artifactory will only search in remote repositories (in addition to local and remote
repository caches) when is added as query param.remote = 1
Fixed an issue in which authenticating against Artifactory Docker registries while HTTP SSO is set would fail. This has now been
fixed so you can work with Artifactory Docker registries while HTTP SSO is enabled.
Fixed an issue in which when a REST API call included a “Range” header, the ETag returned would incorrectly include the Range
provided in the header as a suffix. In turn, different clients would interpret this as a file modification. Artifactory now returns the
correct ETag.
Fixed an issue in which system import or replication of an artifact that includes a “:” (colon) character would fail. For example, before
this fix, replicating a Docker image with a LABEL that included a colon would fail.
Fixed an issue in which running against an npm registry would fail if one of the packages in the results would be in thenpm search
following structure: , because Artifactory was expecting the structure to be: “maintainers” : “<user name> <user email>”
"maintainers": [{"name": "<user name>", "email": "<user email" }]
Fixed an issue in which a 500 error with be returned when running one of the following REST API endpoints on Docker registries
while and using an API key for authentication:

2.

If you try upgrading directly to version 5.5.1 or above adding this system property, the upgrade will fail and thewithout
following message will be logged in the file:artifactory.log
To upgrade your HA installation to this version, you first need to upgrade to version
5.4.6 which implements changes required to accommodate a database schema change.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18487
https://www.jfrog.com/confluence/display/RTF/Debian+Repositories#DebianRepositories-AcquiringPackagesbyHash
https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-OtherSettings
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AutomaticallyRewritingExternalDependencies
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AutomaticallyRewritingExternalDependencies

7.

8.

/api/storage
/api/docker/{repo-key}/v2/{image name}/tags/list
/api/docker/{repo-key}/v2/_catalog

Fixed an issue which caused to sometimes fail with a 500 error. A common manifestation of this issue waschecksum deploy
replications that would fail for certain artifacts. When this error occurred, a stack trace similar to the below could be seen in the log
files.

java.lang.NullPointerException: null
at
org.artifactory.repo.db.DbStoringRepoMixin.shouldProtectPathDeletio
n(DbStoringRepoMixin.java:814)
at
org.artifactory.repo.db.DbStoringRepoMixin.shouldProtectPathDeletio
n(DbStoringRepoMixin.java:792)

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.4

Released: June 20, 2017

Due to a known issue with this version, after upgrading an Artifactory HA cluster from version 5.x to 5.4.x, new nodes that you add
to your Artifactory HA cluster will not start up. For a workaround, please refer to .RTFACT-14530

Highlights

Access Tokens as a Separate Service

The management of , which were introduced in Artifactory 5.0, has moved to a separate service named Access. which isAccess Tokens
installed as a separate web application. This change has no impact on how access tokens are used, however, the Artifactory installation file
structure now also includes an added WAR file, under the folder. Artifactory communicatesaccess.war, $ARTIFACTORY_HOME/webapps
with the Access Service over HTTP and assumes it is running in the same Tomcat using the context path of "access".

Using access tokens through the new Access service is backwards compatible, so tokens created with earlier versions can be used for
authentication with this latest version of Artifactory.

 Breaking Change: Note that the change is not forwards compatible, so tokens created from version 5.4 and above cannot be used for
authentication with versions previous to 5.4. This may impact a circle of trust in which some instances are running versions below 5.4 while
others are running version 5.4 and above.

Support for Microsoft Azure Blob Storage

JFrog Artifactory now supports Azure Blob Storage as a new object storage provider to store artifacts. Azure Blob Storage offers massively
scalable enterprise storage for Artifactory supporting unstructured data of any type with strong consistency, object mutability, geo-redundancy
and more. This new option opens up the opportunity to co-locate Artifactory and its storage together with all the other services that you use
on the Microsoft Azure platform.

Secure Connection to Remote Repositories via SSL/TLS Client Certificates

Running Artifactory as a service?
If you are running Artifactory as a service, once you complete the steps to upgrade to this version or later, and have replaced all
files removed during the upgrade process, you need to run the script as described at the InstallService end of the upgrade

.instructions

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactbyChecksum
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18581
https://www.jfrog.com/jira/browse/RTFACT-14530
https://www.jfrog.com/confluence/display/RTF/Upgrading+Artifactory#UpgradingArtifactory-RunningasaStandaloneInstallation
https://www.jfrog.com/confluence/display/RTF/Upgrading+Artifactory#UpgradingArtifactory-RunningasaStandaloneInstallation

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

1.

2.

Artifactory now supports for remote repositories facilitating secure connections with remote resources that require themclient certificates
(e.g., Red Hat Network that requires a Red Hat client certificate for authentication). This means that Artifactory will now be able to send the
client certificate when attempting to connect to the remote resource over HTTPS.

Feature Enhancements

RPM repositories have been enhanced to give you control over whether the RPM file lists metadata file should be indexed by
Artifactory or not. Disabling indexing of the file lists metadata improves the performance of RPM repositories with many artifacts
when different clients try to resolve packages from the repository. that for new RPM repositories, indexing the file lists metadataNote
file is disabled by default, however, when upgrading from previous versions to 5.4.0 and above, indexing for RPM repositories that
already existed will remain enabled to maintain consistent behavior with the previous version.
Artifactory now supports the command as a way to . Basic authentication is also stillnpm login authenticate the NPM client
supported.
Previously, Artifactory was not able handle decoded slash characters in , so you had to modify your reverseNPM scoped packages
proxy so that it wouldn't decode the slash. Artifactory now handles decoded slash characters correctly out-of-the-box, so there is no
longer any need to modify your reverse proxy.
Artifactory can now be configured to add to the Packages metadata file in order to comply with theDebian packages' MD5 checksum
requirement of some tools (e.g. Aptly) that the MD5 is available for validation of the package.
The REST API endpoint now accepts a query param to make deleting old builds an asynchronous process.Control Build Retention
When set, the API response acknowledges the request and outputs errors, if any, to the log.
The default value of the parameter for a has been modified to be 1. This will allowlenientLimit Sharding-Cluster Binary Provider
users to continue uploading to a cluster node even if it is the only active node without having to reconfigure this parameter. Note that
for filestores configured with a custom chain, the parameter will remain 0 to maintain consistency with previouslenientLimit
versions. Therefore, the parameter will only default to 1 when using built-in templates. lenientLimit
Using the REST API endpoint, can now be created to provide the same access privileges that are givenCreate Token access tokens
to the group of which the logged in user is a member.

Issues Resolved

Fixed an issue in which performing a full system import on an Artifactory HA cluster would fail. The full system import on an
Artifactory HA cluster has been changed and is fully described under .System Import and Export for an HA Cluster
Fixed an issue in which Python metadata calculation would fail if the metadata version in the METADATA or PKG-INFO files was set
to 1.2.
Fixed an issue in which when was enabled for NPM repositories, Artifactory would only rewriteEnable Dependency Rewrite
dependencies specified in the " " element of the file and would skip the dependencies listed in the dependencies package.json op

 and elements.tionalDependencies devDependencies
Fixed an issue in which Artifactory would fail to install npm packages that contained square brackets ('[' or ']') in the "description" field
of the file. package.json
Fixed an issue in which externally authenticated users (i.e. those not created in Artifactory) logging in through an external provider
(e.g. LDAP) would not be able to complete artifact downloads that took a long time since the LDAP token used for authentication with
Artifactory would expire. This was fixed by exposing the systemartifactory.artifactory.tokens.cache.idleTimeSecs
property that managed this timeout and increasing its default value from 5 minutes to 10 minutes.
Fixed an issue in which existing repositories enabled for indexing by JFrog Xray did not trigger indexing automatically and required
you to manually trigger indexing through the JFrog Xray UI or using the REST API.
Fixed an issue in which using with the to upload a site to Artifactory would fail when themvn site-deploy maven-site-plugin
site's URL contained a dot ('.') in its path (e.g.)libs-snapshot-local/./file.jar
Fixed an issue in which NuGet virtual repositories that aggregated more than one local or remote repository would omit results or
return duplicate results when searching for a package.
Fixed an issue in which Artifactory 5.x would not display certain builds in the UI because it failed to parse dates presented in ISO

format (e.g. 2016-09-08T21:02:17.781+03:00)8601
Fixed an issue in which upload to a repository would fail, if an event-based replication defined for the repository failed for any reason.
Following the fix, uploading a file to the repository succeeds even if replication fails.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.4.1

Released: June 22, 2017

Issues Resolved

Fixed an issue in which the schema version of a Docker image manifest would change from 2 to 1 when the image was distributed
from Artifactory to JFrog Bintray.
Fixed an issue that caused batch downloads from a virtual Git LFS repository that aggregated both local and remote repositories to
fail.

https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AuthenticatingthenpmClient
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-NpmScopePackages
https://www.jfrog.com/confluence/display/RTF/Debian+Repositories#DebianRepositories-AddingMD5ChecksumtothePackagesfile
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ControlBuildRetention
https://www.jfrog.com/confluence/display/RTF/Configuring+the+Filestore#ConfiguringtheFilestore-Sharding-ClusterBinaryProvider
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateToken
https://www.jfrog.com/confluence/display/RTF/Importing+and+Exporting#ImportingandExporting-SystemImportandExportforanHACluster
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AutomaticallyRewritingExternalDependencies
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18032

2.

1.

2.

3.

1.

2.

1.

This happened when Artifactory would find one of the files in an aggregated local repository (and therefore should have stopped
searching for it), but would still go on to search for it in the aggregated remote repositories. If the file did not exist in any of the remote
repositories, Artifactory would not serve the file.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.4.2

Released: June 30, 2017

Issues Resolved

Fixed an issue in which Artifactory failed to start up when Tomcat was configured to only serve HTTPS content, or was configured to
serve both HTTP and HTTPS, but on different ports.
Fixed an issue in which when an Artifactory HA installation's filestore configuration used the eventual-cluster binary provider (for
example, when using one of the cloud storage providers), in rare cases, when uploading files involving a large number of
transactions, Artifactory would indicate that files were successfully uploaded to storage, when in fact, the uploads failed.
Fixed an issue in which Artifactory was unable to connect to the Access Service (and as a result failed to start) when Tomcat was
configured with a self signed chain certificate.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.4.3

Released: July 3, 2017

Due to a known issue with this version, after upgrading an Artifactory HA cluster from version 5.x to 5.4.x, new nodes that you add
to your Artifactory HA cluster will not start up. For a workaround, please refer to .RTFACT-14530

Issues Resolved

Fixed an issue in which uploading or downloading files to Artifactory using access tokens may have failed with error 500. This
happened when running Artifactory 5.4.2 and using access tokens with a that was longer than 64 characters.subject
Fixed an issue in which upgrading an RPM or Debian installation of Artifactory that use the init system would have fail withsystemd
a “The currently installed Artifactory version does not have the same layout as this DEB!” error.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.4.4

Released: July 6, 2017

Issues Resolved

Fixed an issue in which after upgrading an Artifactory HA cluster from version 5.x to 5.4.x, new nodes that were added to the
Artifactory HA cluster would not start up.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.4.5

Released: July 18, 2017

Highlights

Puppet Repositories Support librarian-puppet and r10k

Artifactory's support for has been significantly upgraded by introducing support for Puppet repositories librarian-puppet and r10k
allowing extended configuration management with these popular Puppet clients. In addition, Artifactory also exposes new REST API

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18052
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18084
https://www.jfrog.com/jira/browse/RTFACT-14530
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18087
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18088

1.

2.
3.

1.

2.

3.

4.

5.

endpoints to retrieve Puppet modules and releases to facilitate automated configuration management using Puppet.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.4.6

Released: August 7, 2017

Feature Enhancements

Support Pagination for Docker v2 APIs

Artifactory now supports pagination when and retrieving a registry's using the REST API.listing Docker image tags catalog
This can be useful for automation purposes and Docker clients that use pagination parameters.

Issues Resolved

Fixed an issue in which when resolving a package from an npm repository, Artifactory would throw a deserialize error to the log file if
one of the package's dependencies in the corresponding file was declared using the following format:package.json “<dependency
_name>” : { “version” : “<version_number>” }.
For example: the "deep-diff" package uses this format. As a result, the npm client would fail to resolve the package.
Fixed an issue that prevented using Git LFS client v1.x with in Artifactory when using SSH. Git LFS repositories
Fixed an issue in which NuGet virtual repositories that aggregated several repositories would omit search results when searching for
a package.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.3

Released: May 11, 2017

Due to a critical issue, if you are upgrading from a version below 4.4.1 directly to version 5.3, Artifactory will fail to start up. A patch
has been released, and if your current version is below 4.4.1 you should upgrade to . Artifactory 5.3.1

Highlights

Grant Admin Privileges to a Group of Users

Artifactory now supports granting Admin privileges to a group of users which greatly improves the user experience since previously you could
only provide Admin privileges to users individually.

This allows you to import a group from your LDAP or Crowd server and to the whole group in a single action. grant Admin privileges

Automatically Associate a SAML SSO User to an Artifactory Group

Artifactory will now accept a custom SAML attribute that can be mapped to existing groups (including imported LDAP groups). If a SAML user
has the custom SAML attribute he will now inherit the permission specified in the corresponding group in Artifactory for the current login
session.

Feature Enhancements

Performance of displaying data in the module in Artifactory UI has been significantly improved. This creates a much betterBuilds
user experience, especially for Artifactory instances with many builds or when viewing a project with many builds.
When importing users via SAML SSO, the users' email addresses are now also fetched and populate the corresponding field in their
Artifactory user profile.
The installation script that installs Artifactory as a service has been enhanced to use on Linux distributions that support it.systemd
The script will automatically detect if is supported, and if not, will use as currently implemented.systemd init.d
In the Tree Browser, when selecting the tab for the selected repository, you may now view the permissionEffective Permissions
targets associated with that repository.
Previously, virtual repositories would only provide a tab with basic information about selected artifacts. Now, virtualGeneral

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18287
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerTags
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerRepositories
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18300
https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-AdminPrivilegesforaGroup
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-EffectivePermissions

5.

1.
2.

3.

4.

5.

1.

1.

2.

3.
4.

5.

6.
7.

repositories provide additional tabs that show all data about artifacts selected similar to the data that is provided when selecting the
artifacts directly from the aggregated local or remote repositories.

Issues Resolved

Fixed an issue that prevented using Git LFS client v2.x with in Artifactory when using SSH. Git LFS repositories
Fixed a resource leak that was introduced when "Enable Dependency Rewrite" was enabled in . This issuevirtual NPM repositories
may have caused depletion of different resources such as open file handles, database connections and storage streams.
Fixed an issue that prevented pushing or pulling Docker images that had foreign layers when the image also had a "history" field in
its file.config.json
Fixed an issue that caused a login failure when the "List Contents" permission in Active Directory was enabled for an Admin, but not
for the user that was attempting to log in.
Fixed an issue related to Maven repositories in which the wrong artifact may have been retrieved for a download request since
Artifactory did not consider the full path beyond the GAV coordinates.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.3.1

Released: May 24, 2017

Highlights

This is a patch that fixes a critical issue that was discovered in version 5.3.0 in which after upgrading from a version below Artifactory 4.4.1
, Artifactory failed to start up.directly to Artifactory 5.3.0

Note that this issue did affect upgrades from Artifactory 4.4.1 and above.not

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.3.2

Released: June 7, 2017

Issues Resolved

Fixed an issue in which, when upgrading an Artifactory HA cluster with 2 or more nodes, from version 5.x to version 5.3.x, Artifactory
would throw a HazelcastSerializationException when displaying the UI. In the process of upgrading the cluster, you will still encounter
this issue from nodes that have not yet been upgraded.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 5.2

Released: March 28, 2017

Main Updates

Improved the performance of property search when using PostgreSQL.
This will significantly improve Docker operations on Artifactory Docker registries as the property search mechanism is used upon
searching for Docker layers.
Improved the performance of Docker layers search mechanism on Artifactory Docker registries. This will be mostly significant when
working with Docker layers that are being used by thousands of Docker images.
The Tomcat bundled with Artifactory has been upgraded to version 8.0.41.
Artifactory now regards the and the files on a remote P2 repository as expirable resources, socontent.xml.xz artifacts.xml.xz
whenever there is a metadata change in one of these files, Artifactory will use the updated file instead of the expired one.
When working with Conan repositories, Artifactory now supports variables with multiple values in the file. Thisconanfile.txt
enables Artifactory to fully extract variables with multiple values and assign all those values to the corresponding property[env]
annotating the package in Artifactory.
Fixed an issue in which deploying multiple files to a virtual repository through the UI would fail.
Fixed a bug related to remote Docker registries in Artifactory that left connections and input streams open following docker pull

https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-VirtualNpmRegistry
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17996
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18021
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=18038

7.

8.

9.

10.

1.

2.

1.

2.

3.

4.

1.

2.

3.

4.

5.

operations.
Fixed an issue related to Debian repositories. Artifactory now adds an empty line at the end of the Packages file to fully support
Debian tools such as debootstrap.
Fixed an issue related to Debian repositories in which the section in the generated file was namedComponents Release
"Component" when there was indeed only one component. This has been fixed by naming the section "Components", regardless of
the number of components. Following the fix, Artifactory now fully support tools such as . debootstrap
Fixed an issue occurring in Artifactory HA clusters. When a node was stopped for any reason, its state as reported by the UI
remained as Running. This has now been fixed so the state for a stopped node is displayed as Unavailable.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.2.1

Released: April 13, 2017

Highlights

Access Tokens

Authentication using has undergone two significant enhancements. access tokens

Any valid user in Artifactory can now create access tokens for personal use whereas previously only an Artifactory admin could
create access tokens. This removes the burden of creating and managing access tokens for all users from the admin's shoulder, and
gives non-admin users more freedom to operate within their ecosystem.
An Artifactory administrator can now create access tokens with admin privileges whereas previously, access privileges were
specified by inclusion in different groups. This enhances the integration of external applications which may need admin privileges to
work seamlessly with Artifactory.

Feature Enhancements

When upgrading an Artifactory HA installation from version 4.x to version 5.x, managing the has been improved tobootstrap bundle
become an automatic and seamless process. Artifactory will now create the on the primary node automatically, andbootstrap bundle
extract it to the secondary nodes, so there is no longer any need to create and copy the bootstrap bundle manually.
Control Build Retention : A new REST endpoint that lets you specify parameters for build retention has been added. Previously build
retention could only be specified when uploading new build info. This enhancement provides an easy way to configure cleanup
procedures for different jobs, and reduces the risk of timing out when deploying heavy build info.
By default, the "latest" version of an NPM package is the one with the highest SemVer version number. NPM repositories have now
been enhanced so you can override the default behavior by setting a system property to assign a to the package that was"latest" tag
most recently uploaded.
The now comes with the PostgreSQL driver built in, so there is no need to mount it separately or build it intoArtifactory Docker image
a separate Docker image.

Issues Resolved

Artifactory is now aligned with the Docker spec and returns an authentication challenge for each Docker endpoint (even when
anonymous access is enabled). This means that when using internal Artifactory Docker endpoints, you must first retrieve an
authentication token which must then be used for all subsequent calls by your Docker client.
Fixed an issue in which NuGet virtual repositories that aggregated more than one local or remote repository may have omitted results
when searching for a package.
When an Artifactory user with no "Delete" permissions was trying to deploy a build while specifying build retention, Artifactory would
try and delete old builds and return a 500 error. This has now been fixed, and Artifactory will, instead, return a 403 error.
Fixed an issue in which Artifactory failed to pull a Docker image according to the digest of the manifest file from a remote Docker
registry.
Fixed an issue in which aborting a download of a folder as an archive could leave open connections that were not closed which in
turn would prevent further download of folders.
This has now been fixed so download slots are freed and the connection is closed properly.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.1

Released: February 21, 2017

Configuration Management with Chef

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17382
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-TheBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-TheBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ControlBuildRetention
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-SpecifyingtheLatestVersion
https://www.jfrog.com/confluence/display/RTF/Installing+with+Docker#InstallingwithDocker-ArtifactoryonDocker
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17947

1.

2.

3.

4.

5.

6.

7.
8.
9.

10.

11.

1.

2.

3.

1.
2.

Artifactory meets the heart of DevOps adding full support for configuration management with Chef. Share and distribute proprietary
Cookbooks in local Chef Cookbook repositories, and proxy remote Chef supermarkets and cache remote cookbooks locally with remote
repositories. Virtual Cookbook repositories let you access multiple Cookbook repositories through a single URL overcoming the limitation of
the Knife client that can only access one repository at a time.

Configuration Management with Puppet

Artifactory now also fully supports configuration management with Puppet. Use local Puppet repositories to share and distribute proprietary
Puppet modules, and use remote Puppet repositories to proxy and cache Puppet Forge and other remote Puppet resources. Use a virtual
Puppet repository so the Puppet client can access multiple repositories from a single URL.

Main Updates

Support configuration management with Chef through . Artifactory fully supports the Knife client forChef Cookbook repositories
authenticated access, and also supports Berkshelf for anonymous access. Authenticated access for Berkshelf will be added in a
forthcoming release.
Support configuration management with Puppet through . Full support for Puppet command line along with local,Puppet repositories
remote and virtual repositories for hosting and provisioning Puppet modules.
For Artifactory administrators, a list of common actions is available from the in the Artifactory UI for quick and easy access.top ribbon
This makes it easy to do things like creating repositories, adding users, adding groups and more.
Artifactory can now be run as a standalone instance in a Kubernetes cluster. For details, please refer to JFrog's examples using

.Docker on GitHub
Artifactory now supports disabling UI access (i.e. the user may only access Artifactory through the REST API) through the addition of
the element in the . disableUIAccess Security Configuration JSON
The default order of repository types in the tree browser has been changed to show virtual and distribution repositories first, as these
are accessed more frequently, and then local and remote repositories.
Modified to enable using NPM scoped packages. NGINX reverse proxy configuration generated by Artifactory
A performance issue with the login and logout procedure has been fixed, so the time to login or logout is now significantly reduced.
A bug in which duplicate files simultaneously uploaded to a sharded filestore occasionally caused deletion of the files, was fixed.
A bug in permissions management that disabled the Admin module after removing the default "Anything" and "Anonymous"
permissions, was fixed.
Fixed an issue when upgrading Artifactory 4.x to 5.x in which the IAM role settings for S3 object storage in the werebinarystore.xml
not correctly migrated to the upgrade has been fixed.

For a complete list of changes please refer to our JIRA Release Notes

Artifactory 5.1.2

Released: March 8, 2017

Note: Due to a critical issue found when uploading files larger than 100MB to S3 compatible storage, this version has been removed from JFr
.og Bintray

Main Updates

Fixed a performance issue related to the "Most Downloaded Artifacts" widget on the Artifactory Home Page which, when refreshed,
could cause the Artifactory database to stall on instances with a large number of artifacts.
Added support for Conan client v0.20.0 which includes a new section in the conanfile to allow adding environment variables and
custom properties. These are indexed in Artifactory as properties and can be used in searches.
Improved performance of queries for artifacts which include an underscore character ("_") in their name. This is especially important
for resolution of Docker images since all Docker layers include an underscore in the layer name.

For a complete list of changes please refer to our JIRA Release Notes.

Artifactory 5.1.3

Released: March 9, 2017

Main Updates

Fixed issue related to uploading files larger than 100MB to S3 bucket.
Fixed issue causing display wrong information in “Most Downloaded Artifacts” when working with OraleDB.

For a complete list of changes please refer to our JIRA Release Notes.

https://www.jfrog.com/confluence/display/RTF/General+Information#GeneralInformation-TopRibbon
https://github.com/JFrogDev/artifactory-docker-examples/tree/master/kubernetes
https://github.com/JFrogDev/artifactory-docker-examples/tree/master/kubernetes
https://www.jfrog.com/confluence/display/RTF/Security+Configuration+JSON#SecurityConfigurationJSON-application/vnd.org.jfrog.artifactory.security.User+json
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17381
https://bintray.com/jfrog/
https://bintray.com/jfrog/
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17926
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17931

1.

Artifactory 5.1.4

Released: March 19, 2017

Main Updates

Fixed an issue preventing Artifactory from starting up following an upgrade to version 5.x on Windows when Artifactory is configured
with a . Keystore

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.0

Released: January 31, 2017

Improvements in Artifactory HA

Cloud Native Storage: Artifactory HA infrastructure has undergone significant changes and now fully supports cloud native storage.
We have completely removed the requirement for using a Network File System (NFS). This release introduces a new type of binary
provider that manages distribution of files and configuration across the cluster nodes. This new functionality supports scaling out your
storage by relying on object storage solutions or using the nodes' filesystem without the limitations of a traditional NFS, while
enjoying other benefits such as distributed storage and redundancy.
Removal of Sticky Sessions: Artifactory no longer requires that the load balancer used in the Artifactory HA network configuration
support session affinity (sticky sessions). You may need to change or remove NGINX configurations that related to sticky sessions.
Cluster License Management: Managing licenses for an Artifactory HA cluster is much simpler in Artifactory 5.x. Instead of
registering a license per node, just upload all your cluster license keys to any cluster node, and Artifactory
will transparently allocate them as new nodes are added to and removed from the cluster. This allows automatic provisioning of
cluster nodes without the need to deal with manually assigning a license for each node.

Compatibility with JFrog Mission Control

If you are managing your Artifactory licenses through JFrog Mission Control, Cluster License Management will also be supported in Mission
Control, starting from version 1.8, scheduled for release with the next release of Artifactory which is scheduled for February 2017.

To perform a clean installation of Artifactory HA, please refer to .HA Installation and Setup

To upgrade your current installation of Artifactory HA, please refer to .Upgrading Artifactory HA

Running Artifactory as a Docker Container

Installing and running the has been greatly simplified. Essentially it is now a matter of running andArtifactory Docker image docker pull
then , while passing in mounted volumes to maintain persistence. docker run

Access Tokens

Artifactory 5.0 introduces as a new and flexible means of authentication allowing cross-instance authentication, authenticatingaccess tokens
both users and non-users, providing time-based access control and group-level access control.

Enriched and Simplified Onboarding Experience

When starting up for the first time, Artifactory presents two new ways to get you through basic setup and configuration so you can get started
immediately. The first is the that creates default repositories for package types you select, sets up a reverse proxy, setsOnboarding Wizard
the Admin password and more. The second is a in which you can configure the same parameters that the wizard isYAML Configuration File
used for. For example, once you have configured your first instance of Artifactory through the Onboarding Wizard, you can generate the
YAML Configuration File from it and use that to spin up additional instances with the same initial configuration.

New Home Screen

The Artifactory has been completely redesigned in version 5.0. The new Home Screen provides quick and easy access toHome Screen
some of the most common actions taken by users including searching for artifacts using any of the search methods available, creating new
repositories, displaying the "Set Me Up" dialog for any repository, showing information on the latest builds and downloaded artifacts and
more.

Breaking Changes

https://www.jfrog.com/confluence/display/RTF/WebStart+and+Jar+Signing#WebStartandJarSigning-ManagingSigningKeys
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17940
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-UpgradingArtifactoryHA
https://www.jfrog.com/confluence/display/RTF/Getting+Started#GettingStarted-OnboardingWizard
https://www.jfrog.com/confluence/display/RTF/Getting+Started#GettingStarted-YAMLConfigurationFile

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.

Artifactory HA Infrastructure has Undergone Several Changes

Removal of NFS requirement: Previously, Artifactory HA required setting up a mount that was used by the $CLUSTER_HOME
 to synchronize configuration and binary files between the cluster nodes. This requirement is now removed. Configuration filesfolder

are maintained in the database, and binaries may be stored on alternative storage such as local storage on each node or on a cloud
storage provider. To learn how to migrate your filestore from NFS to alternative storage, please refer to .Migrating Data from NFS
Bootstrap Bundle: When setting up an HA cluster, you need to create a on the primary node, and then copy it tobootstrap bundle
each secondary node you add to the cluster before starting it up.
License Management: Artifactory HA licenses are now fully managed through the .Cluster License Manager
Unlicensed Nodes: When adding and starting up a node, if a valid license is not available to the Cluster License Manager, the node
will continue to run, but will remain unlicensed and return a 503 error to any requests it receives. To keep your HA cluster running
until the node is licensed, you can modify your reverse proxy configuration to redirect requests to the next upstream if a 503 error is
received by adding

. proxy_next_upstream http_503 non_idempotent;

Please refer to where you can a new Reverse Proxy Configuration that includes theConfiguring a Reverse Proxy generate
modification needed.

Black Duck Code Center Integration Deprecated

Artifactory's direct integration with Black Duck Code Center has been deprecated. To continue using the Black Duck service, you can connect
Artifactory to JFrog Xray which has as an external provider of issues and vulnerabilities. integrated with Black Duck

Global /repo Repository Deprecated

The Artifactory repository endpoint is being deprecated. As part of the deprecation, any requests to the global repository /repo /repo will no
longer be valid, regardless to the value of the system property. If you believe this deprecation willartifactory.repo.global.disabled
affect existing build jobs or scripts that are referencing the global repo, due to the deprecation, you will now be able to create your own
standard Virtual Repository and call it “repo”, since the name will no longer be reserved.

Change in Startup and Shutdown Scripts

The startup and shutdown scripts have changed in Artifactory 5.0. Previously, these scripts used to create the "Artifactory" user as a standard
user. To improve security, the user is now created without a login shell and the execution scripts use "su -s" (instead of "su -l") which means
that the Artifactory user will not be available for any purpose other than for startup and shutdown.

Set Item Properties REST API Endpoint Changed

The version of Tomcat used in Artifactory 5.0 has been upgraded to . This version of Tomcat no longer supports unencoded URLs, so8.0.39
the REST API endpoints which used a pipe character ("|") as a separator have undergone corresponding changes so you can use a
semicolon (";") as a separator instead, or use escaping to represent a pipe as %7C. Any scripts that use these endpoints may have to be
changed to support the new specification. For details, please refer to as an example. Set Item Properties

Session ID Cookie Changed

Your Artifactory session ID is now stored in a SESSION cookie (instead of a JSESSIONID cookie).

Main Updates

Artifactory can now be installed in a without needing an NFS. High Availability configuration
Cluster License Manager for Artifactory HA installations automatically manages licensing for your cluster nodes. This will also be
supported by JFrog Mission Control in its forthcoming release.
Greatly simplified Artifactory .Docker image installation
Authentication using . Access Tokens
Greatly simplified onboarding using either a UI wizard or a YAML file.
Home Screen has been redesigned with a new look and feel for easy access to common actions and a rich user experience.
Search has been redesigned and is now available as a separate module for easy access from anywhere.
UI notifications in Artifactory have been improved for clarity.
Monitoring Storage is updated with a new look and feel.
Removed the requirement for session affinity in the load balancer used in an Artifactory HA cluster.
Direct integration with Black Duck has been deprecated. You may continue using .Black Duck through JFrog Xray
Global repository has been deprecated./repo
Artifactory Tomcat version was upgraded to 8.0.39.
From version 5, the YUM package type is replaced with RPM. i.e. what used to be a YUM repository is now referred to as an RPM

. YUM will continue to be supported as a package type when creating repositories through the REST API for backwardrepository
compatibility.
Users who are logged in through a server can be associated with through the use of a user plugin. Use SAML LDAP groups this user

https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=HA+Installation+and+Setup+for+v4.x&linkCreation=true&fromPageId=46107982
https://www.jfrog.com/confluence/pages/createpage.action?spaceKey=RTF&title=HA+Installation+and+Setup+for+v4.x&linkCreation=true&fromPageId=46107982
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-CreatetheBootstrapBundle
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/confluence/display/RTF/Configuring+a+Reverse+Proxy#ConfiguringaReverseProxy-ReverseProxySettings
https://www.jfrog.com/confluence/display/XRAY/Integrations#Integrations-BlackDuck
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-SetItemProperties
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/confluence/display/DEL/TEMP+-+Installing+with+Docker
https://www.jfrog.com/confluence/display/XRAY/Integrations#Integrations-BlackDuck
https://github.com/JFrogDev/artifactory-user-plugins/tree/master/security/synchronizeLdapGroups

15.

16.

17.

18.
19.

20.

21.

22.
23.

1.

2.

3.

1.
2.
3.
4.

5.

 as a reference as an example of a user plugin.plugin
LDAP login performance was improved by narrowing Arifactory's search filter so it only searches through groups that have been
imported to Artifactory rather than the full set of LDAP groups.
Added support for to reference remote layers by URL that will be pulled by the Docker engine before running theDocker manifest
image.
Added metadata validation for Debian packages to ensure are not corrupted by malformed packages. Debian repositories
Fixed an issue in which which were imported to Artifactory and then exported sometimes failed to produce the correctDocker images
schema.
Fixed an issue regarding email notifications for backups so that now, a notification is sent for both manual and automatic scheduled
backups if the backup fails.
Fixed an issue in which downloading from a virtual would fail if the file would not exist in the first positionedGit LFS repository
repository in the list.
Fixed an issue in which YUM metadata GPG signing was skipped if the passwords in Artifactory were encrypted.
Fixed an issue in which that require authentication will fail push requests when Anonymous Access is enabled.Git LFS repositories

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 5.0.1

Released: February 7, 2017

Main Updates

A memory leak that was discovered in the new implementation has been fixed. This issue may have causedcluster license manager
Artifactory to stop responding and is now resolved.
A limitation in Artifactory HA, that potentially prevented you from accessing large support bundles, and prevented Artifactory from
starting up, has been removed. Now, you can access the support bundle for any node in an HA cluster regardless of its size.
An issue preventing Artifactory from starting up when using IBM JDK 8 has been fixed.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.16

Released: January 16, 2017

Support for Xray CI/CD Integration

As a critical link between JFrog Xray and Jenkins CI (more CI servers will be added in future releases), Artifactory adds support for Xray's
CI/CD integration allowing you to fail build jobs if vulnerabilities are found in the build. Artifactory acts as an intermediary between Jenkins
and JFrog Xray.

You can configure the Jenkins Pipeline to send a synchronous request to Xray to scan a build that has been uploaded to Artifactory.
Artifactory passes the request on to Xray which scans the builds in accordance with Watches you defined, and respond with an indication to
fail the build job if an alert is triggered.

Xray CI/CD integration is supported from Artifactory 4.16, JFrog Xray 1.6 and Jenkins Artifactory Plugin 2.9.0.

Main Updates

Add support for JFrog Xray CI/CD integration allowing you to fail build jobs if the build scan triggered an alert.
Fix a bug that caused a memory leak related to JFrog Mission Control DR configuration.
Fix an issue in which and fields were missing after running an import.createdBy modifiedBy
When a build is deleted, whether through the UI, via REST API or due to a build retention policy, Artifactory now sends a
corresponding event to Xray so it can remove that build from its database and avoid triggering alerts for deleted builds.
A fix has been put in place to prevent a security vulnerability () that may have been exploited through a web UI APICVE-2016-10036
endpoint, which potentially allowed unauthorized uploading of files to unexposed locations in the Artifactory host.
JFrog would like to thank of Verizon Enterprise Solutions for Alessio Sergi reporting this issue and for working with JFrog to help
protect our customers.

Artifactory 4.16.1

Released: March 15, 2017

Main Updates

https://github.com/JFrogDev/artifactory-user-plugins/tree/master/security/synchronizeLdapGroups
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16891
https://www.jfrog.com/confluence/display/RTF/HA+Installation+and+Setup#HAInstallationandSetup-ClusterLicenseManagement
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17901

1.

1.
2.

3.

4.

1.
2.
3.

1.

1.
2.

1.

The Tomcat bundled with Artifactory has been upgraded to version 8.0.41.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.15

Released: December 13, 2016

Conan Repositories

Artifactory brings binary repositories to the world of C/C++ development with support for . By supporting the Conan client,Conan repositories
Artifactory offers enterprise grade repository management supporting high-availability, fine-grained access control, multi-site development, CI
integration and more. Providing an in-house local repository for C/C++ binaries, Artifactory is a secure, robust source of dependencies and a
target to efficiently upload packages built through Conan. C/C++ development will never be the same again.

Main Updates

Add support for . Conan repositories
Significantly improved performance in Artifactory installations serving thousands of users related to the intensive permission
validation process. For example, this should solve slow NuGet search issues in these Artifactory installations.
Fixed an issue in which changing the severity specified for for a repository, or removing it altogether, did notdownload blocking
update Xray correctly and the change was not registered.
Fixed an issue in which the JSON returned from was not always compatible with REST APIGet Repository Replication Configuration
endpoints used to set repository replication configuration.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.14

Released: October 20, 2016

PHP Composer Repositories

Artifactory now supports development with PHP as a fully-fledged PHP Composer repository. Create local repositories to host your internal
PHP packages, or proxy remote resources that host PHP index files or PHP binary packages.

Main Updates

Support local and remote repositories.PHP Composer
Artifactory can now issue a warning before running a backup if there is .insufficient disk space
Performance when simultaneously calculating Debian metadata for multiple distributions in multiple repositories has been improved.

Known Issues

In case DR instance is manage by JFrog Mission Control there is a risk of a memory leak which may cause the Artifactory service to
stop responding.
Related issues are , . RTFACT-12854 RTFACT-13358

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.14.1

Released: November 1, 2016

Main Updates

Fixed an issue related to clean up of YUM metadata index files.
Fixed a distribution issue related to packages with special characters (e.g. ':') in the package or version name.

Known Issues

In case DR instance is manage by JFrog Mission Control there is a risk of a memory leak which may cause the Artifactory service to
stop responding.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17786
https://www.jfrog.com/confluence/display/RTF/Xray+Integration#XrayIntegration-ConfiguringDownloadBlocking
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetRepositoryReplicationConfiguration
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17683
https://www.jfrog.com/confluence/display/RTF/Managing+Backups#ManagingBackups-Verifyenoughdiskspaceisavailableforbackup
https://www.jfrog.com/jira/browse/RTFACT-12854
https://www.jfrog.com/jira/browse/RTFACT-13358
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16980

1.

1.

2.

3.

1.

1.

Related issues are , . RTFACT-12854 RTFACT-13358

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.14.2

Released: November 27, 2016

Main Updates

LDAP login performance improved

Login performance has now been improved by only searching attributes that have been configured in the LDAP Group setting rather
than for the entire set of attributes. This is especially noticeable when user belongs to many groups.

Npm search issue fix

Due to breaking changes in npm client behavior, from version 4.0 of the Npm client, searching through Artifactory was failing. This
was because the client could not parse the response with the "_updated" field of searches that used "since" . This has now been
fixed by removing the field from the response for partial searches.

NuGet search issue fix

When the results of NuGet package search required pagination, several results were omitted. This was due to a mismatch between
how Artifactory returned each page of the results (using a "$skip" parameter), and how the NuGet client expected the result (based
on the "$top" parameter. This has now been fixed by aligning Artifactory with the NuGet client so no results are omitted.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.14.3

Released: December 7, 2016

Using Previous Encryption Keys

If Artifactory is unable to decrypt data with the current Master Key (the contents of the file), you can now set the artifactory.key artifa
 property in the file which specifies thectory.security.master.key.numOfFallbackKeys artifactory.system.properties

number of previous keys Artifactory should try and use to decrypt data .

Main Updates

Enable Artifactory to use previous Master Keys keys to decrypt data.

Known Issues

In case DR instance is manage by JFrog Mission Control there is a risk of a memory leak which may cause the Artifactory service to
stop responding.
Related issues are , . RTFACT-12854 RTFACT-13358

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.13

Released: September 21, 2016

Xray Enhancements

Global enable/disable: Globally enable or disable the Xray integration
Download blocking: When connected to JFrog Xray, Artifactory can be configured per repository to block download of artifacts that
have not yet been scanned, or those that have been scanned and identified to include issues of a given severity
Scan specific artifact or path: Initiate scanning and indexing of a specific artifact or path selected in the tree browser

https://www.jfrog.com/jira/browse/RTFACT-12854
https://www.jfrog.com/jira/browse/RTFACT-13358
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17380
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17481
https://www.jfrog.com/jira/browse/RTFACT-12854
https://www.jfrog.com/jira/browse/RTFACT-13358
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17687

1.

2.

1.

2.
3.
4.

1.

1.

1.

JMX MBeans to support monitoring of log appenders for log analytics

Artifactory now implements MBeans that let you monitor appenders that send to Sumo Logic for log analytics. log information

Main Updates

Enhancements to the Xray integration including globally enabling or disabling the integration, download blocking and specific
artifact/path scanning.
JMX MBeans that monitor appenders that send to Sumo Logic for log analytics.log data

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.13.1

Released: October 13, 2016

Main Updates

An issue, in which Bower packages downloaded from virtual repositories were returned "flat" rather than in their original structure,
has been fixed.
The are refreshed periodically. An administrator can now pause the countdown to refresh the system log. system logs
The order in which different repository types are can now be set by a system property. sorted in the tree browser
Performance when managing Groups and Users for permission targets has been improved.

Known Issues

In case DR instance is manage by JFrog Mission Control there is a risk of a memory leak which may cause the Artifactory service to
stop responding.
Related issues are , . RTFACT-12854 RTFACT-13358

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.13.2

Released: October 18, 2016

Main Updates

Fixed security issue and minor bugs.

Known Issues

In case DR instance is manage by JFrog Mission Control there is a risk of a memory leak which may cause the Artifactory service to
stop responding.
Related issues are , . RTFACT-12854 RTFACT-13358

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.12.0.1

Released: August 29, 2016

Note: This release replaces version 4.12.0 due to a critical issue that was found.

JMX MBeans

To monitor resource usage, Artifactory now implements JMX MBeans that monitor HTTP connections. This exposes a variety of new
parameters that you can monitor such as remote repositories, JFrog Xray client connection, distribution repositories, replication queries, HA
event propagation and more.

YUM Virtual Repositories

With support for virtual YUM repositories, you can both download and upload RPMs using a single URL.

https://www.jfrog.com/confluence/display/RTF/Artifactory+JMX+MBeans#ArtifactoryJMXMBeans-Logging
https://www.jfrog.com/confluence/display/RTF/Artifactory+JMX+MBeans#ArtifactoryJMXMBeans-Logging
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16885
https://www.jfrog.com/confluence/display/RTF/Artifactory+Log+Files#ArtifactoryLogFiles-ViewingLogFilesfromtheUI
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-SortingtheTreeBrowser
https://www.jfrog.com/jira/browse/RTFACT-12854
https://www.jfrog.com/jira/browse/RTFACT-13358
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17082
https://www.jfrog.com/jira/browse/RTFACT-12854
https://www.jfrog.com/jira/browse/RTFACT-13358
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=17181

1.
2.
3.

4.

5.
6.

7.
8.

1.

2.

1.

2.

1.

1.

2.

Main Updates

Support .YUM Virtual Repositories
JMX MBeans support has been expanded to allow monitoring HTTP connections.
A remote repository and its corresponding cache are now collated in the and displayed together ratherArtifact Repository Browser
than in separate sections.
As a convenience feature, you can now filter users to be removed from a group or repositories to be removed from a permission
target.
Hazelcast interface matching has been disabled, allowing you to run Artifactory HA cluster nodes under different Docker hosts.
A variable has been added to the context allowing you to specify the target Artifactory URL targetInfo Replication User Plugin
and repository.
Performance of RubyGems queries has been improved.api/dependencies
Push replication now supports synchronizing download stats (for local repositories). To avoid inadvertent deletion artifacts, this is
recommended when setting up replication for disaster recovery.

Known Issues

When pushing existing docker layers to using to deploy to virtual layers will be uploaded to the wrong path. The path with be prefixed
with the target local repository key.
Note that pull command will continue to work as expected.
Related issue is , fixed in version 4.12.1.RTFACT-12396
RubyGems dependency query might cause unexpected DB behavior when working with a very large sets of artifacts.
Related issue is , fixed in version 4.12.2. RTFACT-12480

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.12.1

Released: September 7, 2016

Main Updates

Fix an issue that caused existing Docker layers to be uploaded to the wrong path when deploying to a virtual repository.
This patch will also include a conversion to move layers from the wrong path to the correct path.
Fix "AWS EC2 IAM SessionCredentials" refresh token process, when using IAM role and time is set to any time zone other than
GMT.

Known Issues

RubyGems dependency query might cause unexpected DB behavior when working with a very large sets of artifacts.
Related issue is , fixed in version 4.12.2. RTFACT-12480

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.12.2

Released: September 14, 2016

Main Updates

Fix an issue causing DB to behave unexpectedly when using query on RubyGems repositories with a very/api/gem/dependencies
large set of artifacts.
Fix an internal server error on " " REST api.Artifacts Not Downloaded Since

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.11

Released: July 31, 2016

JFrog Xray Integration

The first official version of JFrog Xray, version 1.0 has been co-released with this version of Artifactory. JFrog Xray 1.0 supports Artifactory
4.11, and above.

https://www.jfrog.com/confluence/display/RTF/RPM+Repositories#RPMRepositories-VirtualRepositories
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
https://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Replication
https://www.jfrog.com/jira/browse/RTFACT-12396
https://www.jfrog.com/jira/browse/RTFACT-12480
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16185
https://www.jfrog.com/jira/browse/RTFACT-12480
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16186
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ArtifactsNotDownloadedSince
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16890

1.
2.
3.
4.
5.

6.

1.

1.
2.
3.

4.
5.
6.

1.

To integrate JFrog Artifactory 4.11 with JFrog Xray 1.0 you need to take the following steps:

If you are doing a clean installation of JFrog Artifactory 4.11, follow the usual instructions under , and then installInstalling Artifactory
JFrog Xray as described in the .JFrog Xray User Guide
If you are upgrading from a previous version of JFrog Artifactory plto which you had connected the JFrog Xray preview version,
ease follow to create a clean environment for installation. these instructions

Performance

This version presents several improvements in performance including deletion of an artifact's properties, garbage collection and data import
and restoring artifacts from the trash can.

Main Updates

Performance when making many changes (e.g. Delete all) to an artifact's properties has been greatly improved.
Performance of the trash can has been greatly improved both when deleting artifacts or restoring them from the trash can.
Garbage collection and data import performance has been greatly improved by separating these two actions in different threads.
For artifacts that are indexed by JFrog Xray, the tab in the tree browser now displays Xray indexing and status information.General
Repository Configuration REST API endpoint has been updated to provide caller with the same information that is available,
according to that user's permissions, when querying a repository through the UI .
A fix has been put in place to prevent a security issue due to "LDAP Attribute Poisoning" .(CVE-2016-6501)
JFrog would like to thank Alvaro Munoz and Oleksandr Mirosh of Hewlett Packard Enterprise for reporting this issue and for
working with JFrog to help protect our customers.

Known Issues

Null pointer exception error is thrown when a property has a NULL value ().RTFACT-12058
This might be caused by YUM metadata calculation when a YUM group is being used causing the vendor value to be NULL.
As a workaround for this issue you can set the following system property under artifactory.node.properties.replace.all=true
$ARTIFACTORY_HOME/etc/artifactory.system.properties and restart Artifactory service. (in case you are using High Availability set
up this change need to be done on each node).

Make sure to change the value back to false after you upgrade to a later version since this issue is already fixed and leaving it to true
will result in Artifactory not using the new properties update mechanism.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.11.1

Released: August 14, 2016

Improvements to Docker Registries

Several improvements have been made for Docker registries in Artifactory.

Pull replication for remote Docker repositories, that was previously not possible due to a limitation in the Docker client, has now been
enabled for images created with the manifest schema v2.
Storage of Docker images has been optimized so that Artifactory will not duplicate layers of a Docker image that is pushed if those
layers already exist elsewhere in Artifactory.

Main Updates

In addition to listing files in Amazon S3 storage, Artifactory can now also list files in Google S3 storage.
Pull replication has now been enabled for Docker registries for images created with manifest schema v2.
When pushing a Docker image that contains layers that already exist, Artifactory will using the existing layers rather than storing an
additional copy.
Artifactory now supports for YUM metadataGPG signing
AQL can now be invoked from user plugins related to search.
Artifactory is now available for installation as a Debian distribution for Xenial (Ubuntu 16.04).

Known Issues

When pushing existing docker layers to using to deploy to virtual layers will be uploaded to the wrong path. The path with be prefixed
with the target local repository key.
Note that pull command will continue to work as expected.
Related issue is , fixed in version 4.12.1.RTFACT-12396

For a complete list of changes please refer to our .JIRA Release Notes

https://www.jfrog.com/confluence/display/XRAY/Installing+Xray
https://www.jfrog.com/knowledge-base/x-ray-is-officially-released-how-do-i-switch-from-the-preview-version/
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-General
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-RepositoryConfiguration
https://www.jfrog.com/jira/browse/RTFACT-12058
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16183
https://www.jfrog.com/jira/browse/RTFACT-12396
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16184

1.

1.
2.

3.
4.

5.

1.
2.
3.

4.
5.
6.

7.

8.

Artifactory 4.11.2

Released: August 17, 2016

Main Updates

Fix sending unnecessary delete event to Xray when overriding file with the same checksum.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.10

Released: July 19, 2016

Log Analytics

This version introduces the capability for integration with Sumo Logic Log Analytics. Artifactory creates an account with Sumo Logic so you
can view advanced analytics of your Artifactory logs to discover performance bottlenecks, attempts at unauthorized server access and more.

Docker Image Cleanup

You can now configure how many snapshots of each docker image tag Artifactory should store before deleting old snapshots to avoid them
accumulating and bloating your filestore.

Main Updates

Integration with Sumo Logic for . Log Analytics
Configure Artifactory to automatically cleanup old tags of Docker images by limiting the number of unique tags stored in any Docker
registry in Artifactory.
Performance of Maven metadata calculation has been improved to accommodate many delete operations on a Maven repository.
A new navigation menu with major improvements in the module allowing you quickly filter and navigate to a specific category.Admin
The is displayed on a mouse-over, and you can enter a search term to emphasize the item you are looking for. full menu
Support retagging a Docker image as part of the Docker promotion REST API, enabling you to easily rename and retag an image
without having to pull and push it again. This is very useful when using promotion to manage your CI pipeline.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.9

Released: July 3, 2016

JFrog Xray Integration

This version introduces the capability for full integration with JFrog Xray, Universal Artifact Analysis, that reveals a variety of issues at any
stage of the software application lifecycle. By scanning binary artifacts and their metadata, recursively going through dependencies at
any level, JFrog Xray provides radical transparency and unprecedented insight into issues that may be lurking within your software
architecture.

Main Updates

Artifactory .JFrog Xray integration
You can now restrict a user to accessing Artifactory . only through the REST API
Deprecated "Force Authentication"configuration field has been removed from that was used toDocker repository configuration
enable the command. Currently all Docker repositories support both authenticated and anonymous accessdocker login
according to the permission configuration making this field obsolete.This is especially useful for users representing different tools that
interact with Artifactory such as CI servers, build tools, etc.
Artifactory now supports custom authentication tokens. Atlassian Crowd
Artifactory OAuth integration now supports passing in as part of the authorization URL. query params
AQL and Artifactory public API, have been enhanced to support reporting detailed for smart remoteremote download statistics
repositories.
When deploying archives to Artifactory using the REST API, you can specify that they should be exploded in an atomic operation
through the header. X-Explode-Archive-Atomic
Removed support for deprecated flag in and as aartifactory.security.useBase64 artifactory.system.properties
consequence artifactory.security.authentication.encryptedPassword.surroundChars.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16501
https://www.jfrog.com/confluence/display/RTF/Using+Artifactory#UsingArtifactory-Admin
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16095
https://www.jfrog.com/confluence/display/RTF/Managing+Users#ManagingUsers-DisableUIAccess
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-ConfiguringDockerRepositories
https://www.jfrog.com/confluence/display/RTF/OAuth+Integration#OAuthIntegration-UsingQueryParams
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-anchorStat
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactsfromArchive

8.

1.

1.
2.

3.

1.
a.
b.

2.

3.
4.

In order to trigger generation of a new encrypted password, compatible with Artifactory version 4.9.0 and above, users are required to
access their user profile page and obtain a new encrypted password.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.9.1

Released: July 14, 2016

Main Updates

Improves performance when editing a user's details for a system with a large number of users.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.8

Released: May 23, 2016

Distribution Repository

A new repository type designed to let you push your software out to customers and users quickly and easily through JFrog Bintray. Once set
up, access to Bintray is managed by Artifactory so all you need to do is put your artifacts in your distribution repository, and they automatically
get pushed to Bintray for distribution.

Main Updates

Distribution Repository
Recalculation of metadata for different repository types (Ruby Gems, Npm, Bower, NuGet, Debian, YUM, Pypi, CocoaPods, Opkg)
can now be triggered by users with the set of permissions assumed by Manage (i.e. Manage + Delete/Overwrite + Deploy/Cache +
Annotate + Read). Previously this required admin permissions. Known limitation: triggering metadata recalculation for virtual
repositories through the Artifactory UI still requires admin privileges.
When rewriting external dependencies for npm or Bower repositories, shorthand dependencies that are GitHub URLs will be matched
by all patterns that contain "github.com"

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.8.1

Released: May 23, 2016

Change in OSS license

From version 4.8.1, Artifactory OSS is licensed under (previously LGPL 3.0).AGPL 3.0

Distribution Repositories

Added support for distribution dry run as well as support for both named and unnamed capture groups when specifying repositories and paths
for distribution provides enormous flexibility in how you upload files to Bintray.

Tree Performance Improvements

Major improvement in tree loading time when working on large scale tree with thousands of entries.

Main Updates

Improvements to Distribution Repository
Offer enormous flexibility in how you upload files to Bintray by supporting both and capture groups.named unnamed
Added option before executing distribution. dry run

The has undergone many changes under the hood to significantly improve behavior and performance when heavilyTree Browser
populated with many items.
Artifactory will now reject repository names that would conflict and create duplicate entries in the Tree Browser.
Resolved RubyGems error caused by version comparator method.

For a complete list of changes please refer to our .JIRA Release Notes

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16084
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16498
https://docs.npmjs.com/files/package.json#github-urls
http://github.com/
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15686
http://www.gnu.org/licenses/agpl-3.0.en.html
https://www.jfrog.com/confluence/display/RTF/Distribution+Repository#DistributionRepository-UsingNamedCaptureGroups
https://www.jfrog.com/confluence/display/RTF/Distribution+Repository#DistributionRepository-UsingUnnamedCaptureGroups
https://www.jfrog.com/confluence/display/RTF/Distribution+Repository#DistributionRepository-DryRun
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TreeBrowsing
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16180

1.

2.

3.

1.
2.
3.
4.
5.

Artifactory 4.8.2

Released: May 23, 2016

Main Updates

Conversion of the Docker manifest schema from v2 to v1 when pulling an image from a remote repository that proxies DockerHub.
This issue caused Docker client below version 1.10.0 to fail pulling images uploaded with client version 1.10.0 and higher.
In a High Availability configuration, Artifactory fails to delete a repository if a download from the repository is in progress while the
repository is being deleted.
Allow disabling maven auto-data calculation upon delete event. This will allow performing massive deletes.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.7

Released: March 31, 2016

Remote and Virtual Git LFS Repositories

Artifactory is the only repository manager that supports remote and virtual Git LFS repositories. Use remote repositories to easily share your
binary assets between teams across your organization by proxying Git LFS repositories on other Artifactory instances or on GitHub. Wrap all
your local and remote Git LFS repositories in a virtual repository allowing your Git LFS client to upload and download binary assets using a
single URL.

Artifactory Query Language

AQL has two great new features!

Added a new Promotion domain. This allows you to run queries on builds according to details on their promotion status. For example, find the
latest build with that has been promoted to "release" status.

In addition, we now support running queries across multiple domains, for example items.find().include("archive.entry","artifact.module.build").
This is especially useful since permissions can now be supported for domains which until now where available for admins only.

Authentication for Docker Repositories

We have removed the need to configure separate repositories for anonymous and authenticated users. Previously when anonymous access
was enabled, Docker repositories allowed unauthenticated access, but in order to support authenticated access, using docker login for
example, you had to use the "Force Authentication" flag. This limitation is now removed and anonymous users can pull and push, according
to configured permissions, to all repositories, including ones checked with the "Force Authentication" flag.

As a result, the "Force authentication" checkbox in Docker repository settings is deprecated. It is currently left in the UI in a checked and
immutable state for reference only, and will be removed in a future version.

NOTE: Anonymous users can continue working with existing repositories where "Force Authentication" was set to false. In a later version
when this configuration will be removed, authenticated users will be able to work with those repositories as well.

Block Mismatched Mime-types in Remote Repositories

Added support to validate that a returned artifact matches the expected Mime-Type. For example, if you request a POM file but receive an
HTML file, Artifactory will block the file from being cached. When such a mismatch is detected, Artifactory will return a 409 error to the client.

By default Artifactory will block HTML and XHTML Mime-Types. You can override this configuration from the tab in the remoteAdvanced
repository configuration to specify the list of Mime-Types to block.

Support for AWS IAM Role with S3

There's no need to save your credentials in a text file. As another way to authenticate when using AWS S3, you can now use an IAM role
instead of saving the credentials in the file.$ARTIFACTORY_HOME/etc/storage.properties

Main Updates

Remote and Git LFS repositories virtual
Promotion domain for AQL and cross domain queries for non-privileged users displaying any accessible field from any domain.
Anonymous and authenticated users can access the same docker repository.
Push Docker tags to Bintray directly from the Artifactory UI.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16483
https://www.jfrog.com/confluence/display/RTF/Git+LFS+Repositories#GitLFSRepositories-RemoteRepositories
https://www.jfrog.com/confluence/display/RTF/Git+LFS+Repositories#GitLFSRepositories-VirtualRepositories
https://www.jfrog.com/confluence/display/RTF/Push+to+Bintray+-+Deprecated

5.
6.
7.
8.

1.

1.
2.

3.
4.
5.
6.
7.
8.

1.

2.

1.

1.

Support for IAM role with S3.
Improved node recovery mechanism when working in High Availability setup.
Major improvements in YUM resulting in up to 100% improvement in performance while using much less resources.
Block mismatched Mime-Types from being cached in remote repository.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.7.1

Released: April 4, 2016

Main Updates

A fix for compatibility issue with Visual Studio 2015 update

For a complete list of changes please refer to our JIRA Release Notes.

Artifactory 4.7.2

Released: April 4, 2016

Main Updates

Change PyPI repository behavior to be case insensitive and handle '-' and '_' as the same character when comparing package name.
To support disaster recovery in JFrog Mission Control, you can now regardless of configuration in specificglobally block replication
repositories.
Configure login link to to the SAML login page. automatically redirect users
AQL supports specifying to when queries are run. time intervals relative
Add support for the NuGet command.--reinstall
Add support for the Npm command.--tag
Add support for parameter in . AWS version Filestore Configuration
Exposed a method to get or set user properties in .Artifactory's Public API

For a complete list of changes please refer to our .JIRA Release Notes

Known Issues

Existing PyPI packages will not available until triggering an index recalculation and setting the relevant metadata to support the new
PyPI implementation.
This issue is resolved in Artifactory 4.7.3 that will trigger index recalculation when upgrading from an older version for all PyPI
repositories.
Related issue - RTFACT-9865.
Upgrading to pip client 8.1.2 will introduce an issue with installing packages which contain '.' in the package name. This is due to an a
chance in pip client behavior that was supposed to included in 8.0.0 but only manifested in 8.1.2 due to a bug in pip client.
Related issue - . RTFACT-10133

Artifactory 4.7.3

Released: April 17, 2016

Main Updates

Improved migration of existing PyPI packages to new PyPI implementation.

For a complete list of changes please refer to our .JIRA Release Notes

Known Issues

In case there is a conflict is artifacts resolution that can be as a result of the , or trying to resolve a maven snapshotblock-mime types
version from a repository configured to only repository virtual repository will return a 409 (conflict) error code. Gradlehandle releases
clients do not handle this error gracefully and will not try to resolve artifacts from the next repository configured in the build.gradle file.
This issue was resolved in Artifactory 4.7.4 that reverted this improvement.
Related issue - .RTFACT-9880

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15685
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16087
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-GlobalReplicationBlocking
https://www.jfrog.com/confluence/display/RTF/SAML+SSO+Integration#SAMLSSOIntegration-AutoRedirectLoginLinktoSAMLLogin
https://www.jfrog.com/confluence/display/RTF/Artifactory+Query+Language#ArtifactoryQueryLanguage-RelativeTimeOperators
https://www.jfrog.com/confluence/display/RTF/Advanced+Filestore+Configuration#AdvancedFilestoreConfiguration-s3AwsVersion
https://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-TheArtifactoryPublicAPI(PAPI)
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16091
https://www.jfrog.com/confluence/display/RTF/Artifactory+4.7.3
https://www.jfrog.com/confluence/display/RTF/Artifactory+4.7.3
https://www.jfrog.com/confluence/display/RTF/Artifactory+4.7.3
https://www.jfrog.com/jira/browse/RTFACT-9865
https://www.jfrog.com/confluence/display/RTF/Artifactory+4.7.3
https://www.jfrog.com/jira/browse/RTFACT-10133
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16094
https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-BlockMismatchingMimeTypes
https://www.jfrog.com/confluence/display/RTF/Local+Repositories#LocalRepositories-HandleReleases
https://www.jfrog.com/jira/browse/RTFACT-9880

1.

1.

1.
2.

3.
4.
5.

6.

7.
8.

9.

1.
2.

1.

Artifactory 4.7.4

Released: April 20, 2016

Main Updates

Resolution from virtual repository might result in 409 error which can cause unexpected behavior if client doesn't handle error
gracefully.

For a complete list of changes please refer to our .JIRA Release Notes

Related issue - .RTFACT-9880

Artifactory 4.7.5

Released: May 1, 2016

Main Updates

Added support for SHA-256 hashing for Debian packages.
Maven performance has been significantly improved especially when performing multiple delete operations to use significantly less
resources.
Conversion of Docker manifest V2 schema to V1 scheme no longer requires deleting the signing key.
Fixed an issue with Hazelcast timing out due to file locking in Artifactory HA.
Added a to schedule an immediate pull, push, or multi-push replication. This replaces the wnew REST API old replication REST API
hich has been deprecated.
Fixed a compatibility issue with NuGet V2 requesting framework dependencies.

: You need to invoke a reindexing of your NuGet repositories once, via the UI or using the , for the fix to take effect. NOTE REST API
Tree browser performance has been significantly improved, especially when browsing heavily annotated repositories.
The workflow related to disabling the internal password for externally authenticated users (for example, via LDAP) has been
improved.
You can now deploy artifacts with multi-value properties. For existing artifacts, you can add multi-value properties or edit them throug

. h the UI

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.7.6

Released: May 9, 2016

Main Updates

Significantly improved performance of Maven metadata calculation on path which contains a large number of versions.
Disable the repository for new Artifactory SaaS instances provisioned./repo

: For existing customers this change will take effect next time the is re-created. ThisNOTE artifactory.system.properties
can happen when an Artifactory server is migrated to another region, or during certain maintenance operations.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.7.7

Released: May 15, 2016

Main Updates

Fixed PyPI compatibility issue. Package names will be normalized as described in PyPI spec ().PEP 503
After upgrading an automatic reindex will be triggered for all PyPI repositories.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.6

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16096
https://www.jfrog.com/jira/browse/RTFACT-9880
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Pull/PushReplication
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Pull/PushReplication(Deprecated)
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CalculateNuGetRepositoryMetadata
https://www.jfrog.com/confluence/display/RTF/Properties#Properties-AttachingPropertiesviatheUI
https://www.jfrog.com/confluence/display/RTF/Properties#Properties-AttachingPropertiesviatheUI
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16097
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16098
https://www.python.org/dev/peps/pep-0503/
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=16101

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

1.

Released: March 13, 2016

Filestore Management

This release presents great advances in filestore management with the following features:

Advanced Filestore Configuration: A new mechanism that lets you customize your filestore with any number of binary providers giving you
the most flexible filestore management capability available today.

Filestore Sharding: Through filestore sharding, Artifactory offers the most flexible and reliable way to scale your filestore indefinitely.

Google Cloud Storage: Artifactory now supports another option for enterprise-grade storage with Google Cloud Storage.

AWS S3 object store: Artifactory now supports server-side encryption for AWS S3 object store.

Using Docker with AOL

From this version, there is no limitation on the number of Docker repositories you can create on AOL. You can now access Docker
repositories on AOL through {account_name}-{repo-key}.jfrog.io

Bundled Tomcat Version

The Tomcat bundled with Artifactory has been upgraded to version 8.0.32.

Artifactory as a Bower Registry

Artifactory is now a private Bower registry as well as a repository for Bower packages. You can now use the commandsbower register
to register your packages to any remote or virtual Bower repository in Artifactory proxying your internal VCS server (e.g. Stash, Git,
BitBucket).

Main Updates

This release includes the following main updates:

Advanced Filestore Configuration.
Filestore Sharding.
Support . Google Cloud Storage
Artifactory now supports server side encryption for AWS .S3 object store
The bundled Tomcat in which Artifactory runs has been upgraded to version 8.0.32.
The simple-default used in generic repositories has been updated.repository layout
Unlimited . Docker repositories on AOL
Enhanced tab showing detailed information on Docker images. Docker Info
When , Artifactory performs prefix matching for search terms in all the different search modes.searching with the Artifactory UI
Artifactory is now a private as well as a repository for Bower packages. Bower registry
The number of characters in MSSQL properties' values is now limited to 900 characters.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.6.1

Released: March 21, 2016

Main Updates

A fix, to accommodate a change in the Docker client, that enables re-pushing existing layers when working with Docker 1.10.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.5

Released: February 14, 2016

CocoaPods repositories

Manage your dependencies for Apple OS development through Artifactory. Artifactory supports CocoaPods with local and remote
repositories.

Main Updates

http://jfrog.io/
https://www.jfrog.com/confluence/display/RTF/S3+Object+Storage#S3ObjectStorage-ConfiguringArtifactorytoUseS3
https://www.jfrog.com/confluence/display/RTF/Getting+Started+with+Docker+and+Artifactory#GettingStartedwithDockerandArtifactory-GettingStartedwithArtifactoryOnline
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-BrowsingDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Bower+Repositories#BowerRepositories-RegisteringBowerPackages
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15684
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15882

1.

1.
2.

1.
2.
3.
4.

5.
6.

7.
8.

CocoaPods Repositories.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.5.1

Released: February 18, 2016

OAuth Security Fix

This release fixes a security vulnerability related to OAuth.

YUM performance

YUM memory management had undergone additional tuning to further improve performance.

Main Updates

OAuth security fix.
YUM performance tuning.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.5.2

Released: February 28, 2016

This is a minor update that provides several bug fixes.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.4
Released: January 4, 2016

Security

Artifactory 4.4 brings more advancements to security capabilities including:

Preventing brute force attacks at identity theft with increasingly delayed responses to repeated failed attempts at authentication, and
locking out users after repeated failed login attempts.
SSH Authentication for Git LFS and Artifactory CLI
OAuth support for Docker client

Opkg Repositories

Artifactory is now a fully fledged Opkg repository, and generates index files that are fully compliant with the Opkg client. Create local
repositories for your internal ipk packages, or proxy remote Opkg repositories. Provide GPG signatures for use with the Opkg client, and
manage them using the UI or through REST API.

Trash Can

Artifactory now provides a trash can that prevents accidental deletion of important artifacts from the system. All items deleted are now stored
for a specified period of time configured by the Artifactory administrator, before being permanently removed.

Main Updates

Local and remote .Opkg repositories
Deletion protection with a . Trash Can
SSH Authentication for and .Git LFS Artifactory CLI
OAuth authentication for the . In addition, users can be granted access to their profile page using instead ofDocker Client OAuth
having to type in their passwords.
Scan RubyGems to and display them as properties. extract their licenses
To combat unauthorized logins that use brute force, an administrator can configure . In addition, Artifactory alsouser locking
implements for unauthorized REST API access.temporary login suspension
Extract Docker labels and create corresponding on the image's manifest.json file.properties
Support for Virtual Repositories and in Set Me Up dialogs.Inserting User Credentials

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15182
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15880
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15881
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-TrashCan
https://github.com/JFrogDev/artifactory-cli-go
https://www.jfrog.com/confluence/display/RTF/Advanced+Topics#AdvancedTopics-AuthenticatingviaOAuth
https://www.jfrog.com/confluence/display/RTF/OAuth+Integration#OAuthIntegration-ConfiguringOAuth
https://www.jfrog.com/confluence/display/RTF/RubyGems+Repositories#RubyGemsRepositories-ViewingandExtractingLicenseInformation
https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-UserLock
https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-TemporaryLoginSuspension
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-BrowsingDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Using+Artifactory#UsingArtifactory-InsertingUserCredentials

1.
2.

3.

1.
2.
3.
4.
5.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.4.1

Released: January 13, 2016

Password Expiration Policy

An Artifactory administrator can now force all users to change their password periodically by enabling a password expiration policy.

Externally Authenticated Users

An Artifactory administrator can now enable users, who are authenticated using external means such as SAML SSO, OAuth or HTTP SSO, to
access their profile and generate an API Key or modify their password.

Apache Reverse Proxy Configuration

In addition to NGINX, Artifactory now also provides you with the code snippet you need to configure Apache as your reverse proxy. Just feed
in your reverse proxy settings, including your handling of Docker repositories, and Artifactory will generate the configuration script you can
just plug into your Apache reverse proxy server.

Main Updates

Password expiration policy
Allow users authenticated by , , or to access their profile and generate an API Key or modify theirSAML SSO OAuth HTTP SSO
password.
Reverse proxy configuration for Apache.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.4.2
January 18, 2016

In addition to several bug fixes, this minor update fixes an issue with backward compatibility for S3 Object Store when upgrading to Artifactory
v4.3 and above.

This version also presents a significant improvement in download performance.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.4.3
February 8, 2016

Basic Authentication

You can now use your API key as your password for basic authentication. This means that clients that cannot provide the API key in a
header, can still be authenticated with the API key by including it instead of the password in the basic authentication credentials.

List Docker images

Using the List Docker Images REST API, you can get a list of images in your Docker repositories.

YUM Performance Improvements

Major improvements in performance when working with YUM repositories, showing up to 300% faster indexing of RPM packages.

Main Updates

This release includes the following main updates:

Compatibility with Docker v1.10 and the Docker Manifest v2 schema.
Major improvements in performance when working with YUM repositories.
Use your API key for . basic authentication
API key header changed to X-JFrog-Art-Api.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15181
https://www.jfrog.com/confluence/display/RTF/Configuring+Security#ConfiguringSecurity-PasswordExpirationPolicy
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15681
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15683
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-Authentication
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey

5.
6.

7.

1.
2.
3.
4.
5.
6.
7.

REST API to tasks.enable or disable replication
When authenticated externally, an admin can allow you to withoutaccess your API key, Bintray credentials and SSH public key
having to unlock your profile.
REST API to using /_catalog end point.list Docker repositories

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.3
November 22, 2015

API Keys

You may now authenticate REST API calls with an that you can create and manage through your profile page or through the API key REST
. API

Package Search

Run a search based on a specific packaging format with dedicated search parameters for the selected format. Performance is improved since
search is restricted to repositories with the specified format only.

Support Zone

Generate the information that our support team needs to provide the quickest resolution for your support tickets.

Dependency rewrite for Bower and NPM

Remove the dependence on external artifact resources for Bower and Npm. When downloading a Bower or Npm package, Artifactory will
analyze the package metadata to evaluate if it needs external dependencies. If so, Artifactory will download the dependencies, host them in a
remote repository cache, and then rewrite the dependency specification in the original package's metadata and point it to the new location
within Artifactory.

Improved support for S3 object store

JFrog S3 object store now supports S3 version 4 allowing you to sign AWS with Signature v4. Multi-part upload and very large files over 5 GB
in size are now also supported.

Main Updates

Authentication using .API keys
Package search.
Convenient page for submitting support requests. Support Zone
Improved support for with support for S3 version 4. S3 object store
Automatic rewrite of external dependencies for and repositories. Npm Bower
HTTP request object is now accessible from closures in user plugins (). Realms RTFACT-8514
REST API to from VCS repositories. download a complete release

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.3.1
December 6, 2015

Reverse Proxy

Artifactory now provides a mechanism to generate configuration for NGNIX. This is very helpful when using clients, like Docker,reverse proxy
that require a reverse proxy.

Support Google Cloud Storage (GCS)

Artifactory now supports GCS as a storage provider for you Artifactory instance.

Git LFS Batch API

Artifactory now supports batch calls from the Git LFS client allowing batch multiple file uploads.

Main Updates

https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-EnableorDisableMultipleReplications
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-UnlockingYourProfile
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-ListDockerImages
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15780
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateAPIKey
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-CreateAPIKey
https://www.jfrog.com/confluence/display/RTF/Updating+Your+Profile#UpdatingYourProfile-APIKey
https://www.jfrog.com/confluence/display/RTF/Searching+for+Artifacts#SearchingforArtifacts-PackageSearch
https://www.jfrog.com/confluence/display/RTF/Npm+Registry#NpmRegistry-AutomaticallyRewritingExternalDependencies
https://www.jfrog.com/confluence/display/RTF/Bower+Repositories#BowerRepositories-AutomaticallyRewritingExternalDependencies
https://www.jfrog.com/confluence/display/RTF/User+Plugins#UserPlugins-Realms
https://www.jfrog.com/jira/browse/RTFACT-8514
https://www.jfrog.com/confluence/display/RTF/VCS+Repositories#VCSRepositories-DownloadRelease
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14988

1.
2.
3.

1.
2.

1.
2.
3.
4.
5.
6.
7.
8.

9.

Reverse proxy configuration generator
Google Cloud Storage
Batch file uploads for Git LFS repositories

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.3.2
December 8, 2015
This is a minor update that provides several bug fixes.
For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.3.3
December 21, 2015

Propagating Query Params

When issuing requests through generic remote repositories in Artifactory, you may include query params in the request, and Artifactory will
propagate the parameters in its request to the remote resource.
Source Absence Detection for Smart Remote Repositories

You can configure whether Artifactory should indicate when an item cached in a smart remote repository has been deleted from the repository
at the remote Artifactory instance.

Main Updates

Query params may now be to generic remote repositoriespropagated
Source absence detection for smart remote repositories is now configurable.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.2
October 18, 2015

In addition to implementing several bug fixes and minor improvements, this release introduces a Debian Artifactory installation and Deploy
to Virtual repositories .

Debian Installation

Artifactory can now be installed as a Debian package.

Deploy to Virtual

Artifactory now supports deploying artifacts to a virtual repository via REST API. All you need to do is specify a local repository aggregated
within the virtual repository that will be the deploy target.

OAuth Login

Artifactory now supports login and authentication using OAuth providers. Currently, Google, Open ID and GitHub Enterprise are supported.

Artifactory Query Language (AQL)

AQL has been greatly extended to include several additional domains, including Build and Archive.Entry as primary domains, giving you
much more flexibility in building queries.

Main Updates

Artifactory installation as a Debian package
Deploy artifacts to a virtual repository
Authentication using OAuth providers
AQL has been extended to include additional domains
Improvements to Smart Remote Repositories
REST API to retrieve storage information
Overwrite NuGet pre-release packages without delete permissions
Pushing Docker images to Bintray is now also supported for Docker V2 repositories

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15380
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15382
https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-PropagateQueryParams
https://www.jfrog.com/confluence/display/RTF/Smart+Remote+Repositories#SmartRemoteRepositories-SourceAbsenceDetection
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15580
https://www.jfrog.com/confluence/display/RTF/Installing+on+Linux+Solaris+or+Mac+OS#InstallingonLinuxSolarisorMacOS-RPMorDebianInstallation
https://www.jfrog.com/confluence/display/RTF/Deploying+Artifacts#DeployingArtifacts-DeployingtoaVirtualRepository
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-GetStorageSummaryInfo

9.

1.
2.

3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Several minor improvements to the UI

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.2.1
November 1, 2015

OAuth Provider

Cloud Foundry UAA is now supported as an .OAuth provider

SHA256

In addition to SHA1 and MD5, checksums are now supported also.SHA2

Main Updates

Artifactory now supports Cloud Foundry UAA for .OAuth authentication
Since Artifactory now fully supports the Bower client, support for (below v1.5) that were older versions of Bower
using bower-art-resolver beta version is now deprecated.
Internet Explorer compatibility issues have been fixed.
Artifactory's HTTP client has been upgraded to version 4.5.
Automatic license analysis is now also triggered when .deploying RPMs
SHA256 calculation is now available, on demand via the or via .UI REST API
Several minor improvements to the UI.

For a complete list of changes please refer to our . JIRA Release Notes

Artifactory 4.2.2
November 5, 2015
This is a minor update that provides several bug fixes.
For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.1
October 18, 2015

In addition to implementing several bug fixes and minor improvements, this release introduces Smart Remote Repositories and Virtual Docker
Repositories.

Smart Remote Repositories

Define a repository in a remote Artifactory instance as your remote repository and enjoy advanced features such as automatic detection,
synchronized properties and delete indications.

Virtual Docker Repositories

Aggregate all of your Docker repositories under a single Virtual Docker Repository, and access all of your Docker images through a single
URL.

Main Updates

Support for Smart Remote Repositories
Docker enhancements with and detailed virtual Docker repositories Docker image info
Context sensitive help
Custom message
Stash search results
Enhanced AQL supporting queries in the Build domain
Downloading a folder from the UI and REST API
Ability to browse the content of tag and tar.gz files
Full support for (out of Beta)Bower
Several minor improvements to the UI

For a complete list of changes please refer to our .JIRA Release Notes

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14797
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-General
https://www.jfrog.com/confluence/display/RTF/Bower+Repositories#BowerRepositories-UsingOlderVersionsofBower
https://www.jfrog.com/confluence/display/RTF/Browsing+Artifactory#BrowsingArtifactory-General
https://www.jfrog.com/confluence/display/RTF/Artifactory+REST+API#ArtifactoryRESTAPI-DeployArtifactbyChecksum
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15081
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=15185
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-VirtualDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Docker+Registry#DockerRegistry-BrowsingDockerRepositories
https://www.jfrog.com/confluence/display/RTF/Using+Artifactory#UsingArtifactory-HelpMenu
https://www.jfrog.com/confluence/display/RTF/Configuring+Artifactory#ConfiguringArtifactory-CustomMessage
https://www.jfrog.com/confluence/display/RTF/Smart+Searches#SmartSearches-SavingSearchResultsintheStash
https://www.jfrog.com/confluence/display/RTF/Manipulating+Artifacts#ManipulatingArtifacts-DownloadingaFolder
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14794

Artifactory 4.1.2
September 20, 2015

This is a minor update that provides a fix for clients, such as Maven, that do not use preemptive authentication.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.1.3
September 27, 2015

This is a minor update that provides a fix for Docker Login with anonymous access.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.0
JFrog is excited to announce the release of Artifactory 4.0. This release presents major changes in Artifactory providing a fresh look 'n feel
with a completely revamped user interface and many other changes described below.

New User Interface

JFrog-Artifactory's user interface has been rebuilt from scratch to provide the following benefits:

Intuitive: Configuration wizards for easy repository management
Fresh and modern: New look and feel providing a rich user experience
Set Me Up: Convenient code snippets to support simple copy/paste integration with software clients and CI tools
Context-focused repositories: Repositories are optimized to calculate metadata for single package types
Easy access control: Easily implement your access policies with intuitive user, group and permission management
Smart tables: Group and filter any data that is presented in tables

Groovy 2.4 for User Plugins

JFrog Artifactory 4 supports Groovy 2.4 letting you enjoy the latest Groovy language features when writing .User Plugins

We strongly recommend you verify that all of your current User Plugins continue to work seamlessly with this version of Groovy.

Tomcat 8 as the Container

JFrog Artifactory 4.0 only supports Tomcat 8 as its container for both RPM and standalone versions. If you are currently using a different
container (e.g. Websphere, Weblogic or JBoss), please refer to for instructions on how toUpgrading When Using External Servlet Containers
migrate to Tomcat 8.

System Requirements

Java

JFrog Artifactory 4.0 requires Java 8

Browsers

JFrog Artifactory 4. 0 has been tested with the latest versions of Google Chrome, Firefox, Internet Explorer and Safari.

Breaking Changes

User Plugins

Some features of Groovy 2.4 are not backward compatible with Groovy 1.8. As a result, plugins based on Groovy 1.8 may need to be
upgraded to support Groovy 2.4.

Multiple Package Type Repositories

JFrog Artifactory 4.0 requires you to specify a single package type for each repository. For the specified package type, Artifactory will
calculate metadata and work seamlessly with the corresponding package format client. For example, a repository specified as Docker will
calculate metadata for Docker images and work transparently with the Docker client.

Artifactory will not prevent you from uploading packages of a different format to any repository, however, metadata for those packages will not
be calculated, and the corresponding client for those packages will not recognize the repository. For example, if you upload a Debian
package to a NuGet repository, Debian metadata will not be calculated for that package, and the Debian client will not recognize the NuGet
repository.

https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14983
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14984
https://www.jfrog.com/confluence/display/RTF/Upgrading+Artifactory#UpgradingArtifactory-UpgradingWhenUsingExternalServletContainers
https://java.com/en/download/

You may specify a repository as Generic and upload packages of any type, however, for this type of repository, Artifactory will not calculate
any metadata and will effectively behave as a simple file system. These repositories are not recognized by clients of any packaging format.

If your system currently includes repositories that support several package types, please refer to learn howSingle Package Type Repositories
to migrate them to single package type repositories.

Artifactory 4.0.1
August 9, 2015

This is a minor update that provides significant enhancements to our support for Docker, additional UI improvements as well as several bug
fixes.

For a complete list of changes please refer to our .JIRA Release Notes

Artifactory 4.0.2
August 12, 2015

This is a minor update that provides support for the latest Docker client 1.8.

For a complete list of changes please refer to our .JIRA Release Notes

Previous Release Notes

For release notes of previous versions of JFrog Artifactory, please refer to under the Artifactory 3.x User GuideRelease Notes

Pivotal Cloud Foundry JFrog Artifactory Tile Release Notes
Overview

List of modifications and versions for the PCF Tile specifically. Latest Documentation for the PCF tile is
available on the .pivotal documentation page

Releases

Version 1.0.32

General Availability Release 28-Jun-2016.

Features included in this release:

* Uses JFrog Artifactory Enterprise edition 4.8.2
* requires stemcell 3232.8

Version 1.0.1

General Availability Release 20-Jan-2016.

Features included in this release:

* General Availability release
* Uses JFrog Artifactory Enterprise edition 4.4.2
* Highly available JFrog configuration out of the box with 2 VMs
* Uses external MySQL service
* Can use an external NFS, or a built-in NFS server which can be provisioned with PCF
* Removed requirement for a 'healthcheck' user required in betas
* Requires stemcell 3146.3

Artifactory 4.4.2 Stemcell 3146.3

Page Contents
Overview
Releases

Version 1.0.32

https://www.jfrog.com/confluence/display/RTF/Upgrading+Artifactory#UpgradingArtifactory-SinglePackageTypeRepositories
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14796
https://www.jfrog.com/jira/secure/ReleaseNote.jspa?projectId=10070&version=14884
https://www.jfrog.com/confluence/display/RTF3X/Release+Notes
http://docs.pivotal.io/jfrog/index.html

Version 0.6.10

Third beta release. Fixes a compatibility issue with versions of ops manager past 1.4.

Artifactory 4.2.0 Stemcell 3130

Version 0.6.1

Second beta release. Now has the ability to configure an NFS mount. If the tab is left blank, it will generate an NFS mount with bosh. If you are
specifying an external NFS release, you should go to 'Resource Config' and set the number of NFS server instances to 0. Note that to use an
external NFS, it may require no-root-squash be enabled to function correctly.

Artifactory 4.1.3

Version 0.5.8

First MVP version

Artifactory 4.1.3

Version 1.0.1
Version 0.6.10
Version 0.6.1
Version 0.5.8

	Welcome to Artifactory
	Installing Artifactory
	System Requirements
	Installing on Linux Solaris or Mac OS
	Installing on Windows
	Installing with Docker
	Building Artifactory OSS
	Changing the Database

	Upgrading Artifactory
	Upgrading an Enterprise HA Cluster

	Using Artifactory
	Getting Started
	General Information
	Browsing Artifactory
	Using WebDAV
	Searching for Artifacts
	Deploying Artifacts
	Manipulating Artifacts
	Updating Your Profile
	Authentication
	Artifactory REST API
	Repository Configuration JSON
	Security Configuration JSON
	System Settings JSON

	Configuring Artifactory
	Configuring the Database
	MySQL
	Oracle
	Microsoft SQL Server
	PostgreSQL

	Configuring the Filestore
	Checksum-Based Storage
	Configuring Repositories
	Common Settings
	Local Repositories
	Remote Repositories
	Managing Proxies
	Advanced Settings

	Smart Remote Repositories
	Virtual Repositories

	Configuring Security
	Managing Users
	Managing Permissions
	Centrally Secure Passwords
	Master Key Encryption
	Managing Security with LDAP
	Managing Security with Active Directory
	Managing Certificates
	Using a Self-Signed Certificate
	Access Tokens
	Access Log

	Configuring a Reverse Proxy
	Configuring Apache
	Configuring NGINX

	Mail Server Configuration
	Configuration Files
	Exposing Maven Indexes
	Clustering Artifactory

	System Monitoring and Maintenance
	System Information
	Monitoring Storage
	Artifactory Log Files
	Artifactory JMX MBeans
	Regular Maintenance Operations
	Managing Backups
	Importing and Exporting
	Managing Disk Space Usage
	Getting Support

	Artifactory High Availability
	HA Installation and Setup
	Managing the HA Cluster
	Migrating Data from NFS
	Troubleshooting HA

	Xray Integration
	Bintray Integration
	Bintray info panel
	Distribution Repository
	Deploying Snapshots to oss.jfrog.org

	Log Analytics
	Artifactory Pro
	Artifactory Comparison Matrix
	Pro Features
	Artifactory Query Language
	Atlassian Crowd and JIRA Integration
	Azure Blob Storage
	Black Duck Code Center Integration
	Filestore Sharding
	Filtered Resources
	GPG Signing
	Google Cloud Storage
	LDAP Groups
	License Control
	OAuth Integration
	Properties
	Using Properties in Deployment and Resolution

	Repository Layouts
	Repository Replication
	S3 Object Storage
	SAML SSO Integration
	Single Sign-on
	Smart Searches
	SSH Integration
	User Plugins
	Watches
	WebStart and Jar Signing

	Package Management
	Bower Repositories
	Chef Cookbook Repositories
	CocoaPods Repositories
	Conan Repositories
	Debian Repositories
	Docker Registry
	Getting Started with Artifactory as a Docker Registry
	Advanced Topics
	Working with Docker Content Trust
	Using Docker V1

	Git LFS Repositories
	Npm Registry
	NuGet Repositories
	Microsoft Symbol Server

	Opkg Repositories
	P2 Repositories
	PHP Composer Repositories
	Puppet Repositories
	PyPI Repositories
	RubyGems Repositories
	SBT Repositories
	Vagrant Repositories
	VCS Repositories
	RPM Repositories

	Ecosystem Integration
	Maven Repository
	Maven Artifactory Plugin

	Working with Gradle
	Gradle Artifactory Plugin

	Working with Ivy

	Build Integration
	Jenkins Artifactory Plug-in
	Working With Pipeline Jobs in Jenkins

	TeamCity Artifactory Plug-in
	TeamCity Artifactory Plugin - Release Management

	Bamboo Artifactory Plug-in
	Bamboo Artifactory Plugin - Release Management

	MSBuild Artifactory Plugin
	VS Team Services Artifactory Plugin
	Using File Specs

	Troubleshooting
	Known Issues
	End of Life
	Release Notes
	Pivotal Cloud Foundry JFrog Artifactory Tile Release Notes

