
User and Developer Guide

User and Developer Guide

This is version 8.8.1.0 of the KonaKart User Guide

This User Guide can be downloaded in PDF format from http://www.konakart.com/docs/KonaKart_User_Guide.pdf
[KonaKart_User_Guide.pdf]

Legal Notices

(c) 2006-2018 DS Data Systems UK Ltd, All rights reserved.

DS Data Systems and KonaKart and their respective logos, are trademarks of DS Data Systems UK Ltd. All rights reserved.

The information in this document is free; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

iii

Table of Contents
1. Introduction ... 1

What is KonaKart ? .. 1
Who is the software intended for? ... 1

Retailer ... 1
Solution Provider / System Integrator / OEM ... 1
ISP ... 1

Important changes from v.6.5.0.0 .. 2
2. KonaKart Information .. 3

Community and Enterprise Versions .. 3
Is KonaKart Open Source? ... 6
Is the full source code available? .. 6

3. KonaKart Features .. 7
General Functionality .. 7

JSR 286 Liferay Portlet ... 7
ERP Integration .. 7
Content Management System Integration .. 7
Basic Content Management .. 7
Setup/Installation .. 8
Design/Layout .. 8
Multi-Store .. 8
Multi-Vendor ... 9
Customer Functionality .. 9
Customer Groups - Wholesale/Retail .. 9
B2B Features ... 10
Call Center Functionality ... 10
Social Login .. 10
One page checkout .. 10
Checkout without registration .. 10
Products .. 10
Digital Downloads .. 11
Bookable Products .. 11
Product Stock Reservation .. 11
Product Bundles ... 11
Gift Certificates .. 12
Reward Points .. 12
Indexed Search ... 12
Suggested Search .. 12
Product Tags and Tag Groups (Faceted Search) .. 12
Merchandising .. 12
Promotions .. 13
Marketing - Customer Tags and Expressions .. 14
Advanced Search Engine Optimization (SEO) .. 14
Reporting .. 14
Payment Functionality ... 14
Recurring Billing .. 14
Shipping Functionality ... 15
Tax Functionality .. 15
Order management .. 15
Returns ... 15
Refunds ... 15
PDF Invoices ... 15

User and Developer Guide

iv

Java Message Queue Integration .. 16
Customer Events ... 16
Exchange Rate Updates ... 16
Filters ... 16
KonaKart and KonaKartAdmin Tiles .. 16
Facebook Messenger Bot. ... 16

4. Architecture ... 17
Software Architecture .. 17
Deployment Architecture .. 19

5. Installation ... 21
Before You Begin ... 21

Platforms Supported .. 21
Pre-requisites ... 21
Install Java .. 21

Create a Database ... 21
Upgrading the Database between releases of KonaKart .. 22

Install KonaKart ... 22
Installing KonaKart on Windows ... 22
Installing KonaKart on Unix/Linux .. 22
Silent Mode Installations .. 23
Graphical Installation Wizard .. 24

Manual Installation ... 35
Starting Up and Shutting Down KonaKart ... 37

Starting up KonaKart ... 37
Shutting down KonaKart .. 38

Setting up KonaKart as a Windows Service ... 38
Default Admin App Credentials .. 39

Admin Password Validation .. 39
Super User .. 40

Installation Notes for Databases .. 40
Defining the Database Parameters .. 40
Encrypting the Database Parameters ... 41
Defining the Database Parameters - Using JNDI ... 42
Notes for DB2 and Oracle .. 43
Notes for Postgresql .. 43
Notes for MySQL ... 44
Notes for Microsoft SQL Server .. 44

6. Installation of KonaKart Enterprise Extensions ... 46
Before You Begin ... 46

Licensing ... 46
Pre-requisites ... 46

Create a Database ... 46
Installing Enterprise Extensions ... 47

Installing KonaKart Enterprise Extensions on Windows ... 47
Installing KonaKart Enterprise Extensions on Unix/Linux .. 47
Silent Mode Installations .. 48
Graphical Installation Wizard .. 49

Manual Installation of the Enterprise Extensions ... 60
Users created by the Enterprise Extensions Installation .. 65

Single Store Mode .. 66
Multi-Store Multiple DB Mode ... 66
Multi-Store Single DB Mode with Shared Customers .. 66
Multi-Store Single DB Mode NON-Shared Customers ... 67

7. Installation of KonaKart on other Application Servers .. 68

User and Developer Guide

v

General Notes on Installing KonaKart on Application Servers ... 69
Edit Config Files - Admin Application Functionality ... 69
Email Properties File ... 71
Reporting Port Numbers and Report Location .. 71
Configuring Parameters for Images .. 71
Setting the Optimum Memory Values ... 72

Installing KonaKart on BEA's WebLogic Application Server .. 72
Installation ... 72
Configuration ... 73

Installing KonaKart on JBoss or Wildfly ... 73
Installation ... 73
Configuration ... 74

Installing KonaKart on IBM's WebSphere Application Server ... 75
Installation ... 75
Configuration ... 75

Installing KonaKart on IBM's WebSphere Application Server Community Edition 75
Installation ... 76
Configuration ... 76

Installing KonaKart on GlassFish .. 76
Installation ... 76
Configuration ... 76

Installing KonaKart on JOnAS with Tomcat .. 77
Installation ... 77
Configuration ... 77

Installing KonaKart on JOnAS with Jetty .. 77
Installation ... 78
Configuration ... 78

8. Upgrading .. 79
Recommended Upgrade Steps ... 79

Backup .. 79
Installation of the new Version .. 79
Database Upgrade ... 80
Test new Installation against Upgraded Database .. 80
Re-build Custom Code ... 80
Upgrade the Struts Storefront .. 80
Assess Changes to WebApp Configuration files ... 81
Assess Changes to Tomcat Configuration files ... 81
KonaKart Directory Structure Changes ... 81
KonaKart Message Changes ... 81
Documentation and javadoc Changes .. 82
Admin App Changes ... 82

9. Administration and Configuration .. 83
KonaKart Administration Application ... 83

Main Features .. 84
Reporting .. 86
Reporting - BIRT Viewer Security ... 86
Role-based Security and Configuration ... 87
Initial Locked-Down Configuration .. 88
Filters ... 90
File-based Configuration .. 91

Launching the Admin App ... 94
Configuring KonaKart for HTTPS / SSL ... 94
Editing the KonaKart Configuration Files .. 94
Changing the Editable File List in the Admin App .. 95

User and Developer Guide

vi

KonaKart Properties Files .. 96
Configuration of Messages ... 97

Switching to Database Messages ... 97
KKMessages Utility .. 97

Logging .. 99
Log4j2 Logging .. 99
AXIS/SOAP Logging ... 100

Internationalization of KonaKart .. 101
Translating the KonaKart Application ... 101
Translating the country names ... 103
Translating the KonaKart Admin Application ... 103

Changing the Logo on the KonaKart Admin Application .. 104
Changing the Date Format in the KonaKart Application ... 105
Formatting of Addresses ... 105
Email Configuration .. 106
Modifying the Email Templates ... 107

Receiving Notification EMails of Exceptions ... 107
Adding Custom Business Objects for use in Velocity Templates 107

Search Engine Optimization (SEO) Features .. 108
Sitemap Generation ... 108
Caching ... 109
Adding Custom Functionality to the Admin App .. 110

Adding Panels .. 110
Adding Custom Configuration Panel ... 112
Adding Buttons ... 112
Adding A Custom Application - Insert Product Wizard .. 112

Searching with wildcards .. 113
Case In-Sensitive Searching .. 115
Making something happen when a product needs to be reordered 115
Making something happen when the state of an order changes ... 116
PDF Invoices .. 118
Activating a Promotion .. 119
Testing a Promotion .. 120
Applying Promotions to Products ... 122
Displaying Coupon Entry Fields in your Store .. 123
Configuring Digital Downloads ... 123
Configuring Bookable Products ... 124
Import/Export of KonaKart Data .. 124

Export of Orders using exportOrder .. 124
Import/Export of KonaKart Data using XML_IO .. 125
Custom Imports Using the Importer Panel ... 128
Reset Database Tool .. 130

Multiple Prices for Products .. 132
Sale Price .. 135
Tier Pricing .. 136
Dynamic product prices .. 137
Tax Configuration ... 138

Tax algorithm and numeric precision .. 139
Validation of Order Totals .. 140
Multiple Quantities for Products .. 140
Default Sort Order for Products ... 142
Bundle Configuration ... 142
Product Options .. 143
Product Tags .. 144

User and Developer Guide

vii

Managing Product Reviews ... 145
Using CLOBs for Product Descriptions ... 145
Credit Card Refunds .. 145
Saving and Editing of Credit Card details .. 146

Configuration of Admin Application ... 146
Configuration of Store Front Application ... 147

Edit Order Number and Custom Fields ... 148
Shippers and Shipments ... 149
Wish Lists ... 150
Gift Registries .. 150
Gift Certificates .. 151
Enable Gift Certificates .. 151
Creating a Gift Certificate .. 151
Creating a new Admin App User ... 154
Creating New Roles ... 154
Default Customer Configuration .. 155
Making Customers Invisible .. 155
Customer Groups .. 155
Auditing .. 156
Forgotten Password ... 157
Authentication with Username or Telephone .. 157
Custom Credential Checking ... 158
Custom Credential Checking - LDAP ... 159
Multi-Store Configuration and Administration .. 160

Introduction .. 160
Configuring KonaKart to function in Multi-Store Mode .. 160
Multi-Store Configuration ... 162
Product Synchronization ... 169

Scheduling in KonaKart ... 170
Configuring Quartz to execute KonaKart jobs .. 170
Customizing the KonaKart jobs ... 175

Deletion of Expired Data .. 176
Data Integrity ... 176

Executing the Data Integrity Checker from a Script ... 177
Configuring KonaKart to use Analytics Tools .. 178

Configuring KonaKart to use Google Analytics .. 178
Configuring KonaKart to use Other Analytics Tools .. 179

Setting up RMI Services .. 180
Step by Step Guide to setting Up KonaKart to use RMI ... 180

Integrating a Java Message Queue .. 182
Setting Up The Java Message Queue .. 183
Monitoring The Java Message Queue ... 185

kkCmd - Command line tool ... 185
Changing the standard password encryption algorithm ... 186

10. KonaKart Content .. 187
Content Overview ... 187

Text Content .. 188
Banner Content ... 189
Content Expressions .. 189
Content Caching ... 189
Content Access ... 190

11. Marketing - Customer Tags and Expressions ... 191
What are Customer Tags? ... 191
What are Expressions? ... 192

User and Developer Guide

viii

Tutorial for creating an expression using the standard customer tags 192
How to set Customer Tag Values in Java code ... 197
Mailing Lists .. 198

12. Reward Points ... 200
Configuration of Reward Points ... 200
Technical Details .. 203

13. Solr Search Engine ... 204
Configuring KonaKart to use Solr .. 204

Instructions .. 204
Customization of Solr .. 206
Forcing Solr Usage .. 207

Suggested Search .. 207
Suggested Search using Solr terms ... 207

Suggested Spelling .. 208
Functionality .. 208
Setup .. 209

Catalog Support for Suggested Search and Spelling ... 211
Faceted Searching ... 211

Prices, Manufacturers and Categories .. 211
Custom Faceted Search .. 211
Multi-Valued Facets .. 217

14. Payment, Shipping and OrderTotal Modules ... 221
Module Types .. 221

Payment Modules .. 221
Shipping Modules ... 222
Order Total Modules ... 224

How to Create a Payment Module .. 224
Introduction .. 225
Study the "KonaPay" APIs ... 225
Choose which Interface Type you want for your users .. 225
Sign up for a Test Account with "KonaPay" ... 226
Determine which of the existing payment modules is the closest match 226
Copy the files of the closest match as the starting point .. 226
Define the configuration parameters ... 226
Understanding the Configuration Options .. 228
Add the "KonaPay" gateway to the Admin App .. 229
Implement the PaymentInterface .. 229
NameValue[] Parameters .. 230
Implement the Action code ... 230
Save IPN details ... 230
Save the gateway response to a file .. 230
Send payment confirmation email .. 231
Struts mapping .. 231
Build, Deploy and Test .. 232

How to Create a Promotion Module ... 233
Determine which of the existing Promotion modules is the closest match 233
Copy the files of the closest match as the starting point .. 233
Define the configuration parameters ... 233
Add the new promotion module to the Admin App .. 235
Build, Deploy and Test .. 235

15. Recurring Billing ... 236
Payment Schedule ... 236
Subscription ... 236
Using a Payment Gateway that supports Recurring Billing .. 236

User and Developer Guide

ix

Insert a subscription ... 237
Update a subscription ... 237
Read the status of a subscription .. 238

Manual Subscription Management .. 238
Managing Recurring Billing through KonaKart ... 238

16. Multi-Vendor Functionality .. 240
Configuration ... 240

Setting up a Main Store ... 240
Setting up a Vendor Store .. 241

Orders ... 243
Customer View of the Order ... 244
Vendor View of the Order .. 244
Administrator view of the Order .. 245
Order State Change ... 246
Order Payment .. 246
Vendors ... 247

17. Product Stock Reservation ... 249
API Calls ... 249
Storefront Application .. 250
Order Integration Manager .. 250
Reservations for Bookable Products .. 251
Batch Removal of Expired Stock Records ... 251

18. Order Management ... 253
Order Creation .. 253
Order Lifecycle Management .. 254
Order Modification .. 254
API Calls for Archived Orders .. 259
Returns .. 259

19. KonaKart B2B features ... 261
Customer Hierarchy ... 261
Catalog / Contract Prices .. 262
Customer Tags .. 262
B2B Customer Administrator .. 264

Company Administrator Security ... 265
20. KonaKart ERP Integration ... 266

Introduction .. 266
File Transport ... 266
XML Message Structure ... 266
Messages from ERP to KonaKart ... 267

Update Product ... 267
Update Order .. 268
Export Invoice .. 270
Export Customer to KonaKart ... 271
Match Customer to KonaKart .. 273
Payment Capture ... 274

Messages from KonaKart to ERP ... 274
Export Customer to ERP .. 274
Match Customer to ERP ... 276
Order Export to ERP ... 277
Update Object .. 284

Installation and Configuration .. 285
Incoming Message Processor ... 285
Apache ActiveMQ ... 286
ERP Integration - Configuration Parameters ... 287

User and Developer Guide

x

ERP Integration - OrderIntegrationMgr ... 288
ERP Integration - Logging .. 289

21. Custom Validation ... 290
Custom Validation for the Store-Front .. 290

Configuring validation on data entered through the UI ... 290
Custom Validation for the Admin Application .. 290

CustomValidaton.properties file ... 290
Fields Supported by Custom Validation ... 291
CustomValidaton Using a Custom Engine ... 291

22. Custom Product Attributes and Miscellaneous Items ... 293
Using Custom Product Attributes ... 293

What types of Custom Attributes can be added to a product? 293
Creating a Custom Attribute Definition and adding it to a Template 294
Entering Template based Custom Attribute data for a Product 295
Displaying the custom data in the storefront Application ... 295

Miscellaneous Items .. 295
Product Description Custom Fields ... 296

23. Programming Guide ... 297
Using the Java APIs .. 297
Using the SOAP Web Service APIs ... 298

Enable the SOAP Web Services ... 299
Securing the SOAP Web Services .. 299
Step-by-step guide to using the SOAP APIs: .. 300

Using the JAX Web Service Storefront APIs .. 302
Enable the JAX Web Storefront Services ... 303

Using the JAX Web Service Admin APIs .. 305
Enable the JAX Web Admin Services ... 306

Using the RMI APIs .. 308
Using the JSON APIs .. 310
Using the JSON APIs to build a JavaScript client ... 316
HTML character escaping ... 317
Running Your Own SQL .. 318
Database Layer Changes from v7.2.0.0 ... 319

Table and Column Name Changes ... 320
KonaKart/Torque Programming Changes ... 320

Customizable Source Code ... 321
Source Code Location .. 321
Building the Customizable Source .. 322
Developing the storefront in Eclipse ... 326
Developing the Product Creation Wizard in Eclipse ... 326

Customization of the KonaKart Engines .. 327
KonaKart Customization Framework .. 327
Adding a New API call .. 328
Modifying an Existing API call ... 335
Enabling Engine Customizations .. 339

Building with Maven ... 340
Pluggable Managers ... 341

24. Reporting ... 343
KonaKart Reporting from the Admin App ... 343

Modifying the Reports ... 343
Adding New Reports ... 343
Defining a Chart to appear on the Status Page of the Admin App 344
Reports Configuration .. 344
Defining the Set of Reports Shown in the Admin App ... 344

User and Developer Guide

xi

Accessing the Database in the Reports .. 345
Customer Events ... 345

Creating Customer Events ... 345
25. Liferay Portal Integration .. 347

Introduction .. 347
Creation of portlet WAR files ... 347

26. Social Login ... 348
Facebook ... 348
Google+ .. 349
PayPal Login .. 351
All Modules ... 353

27. TaxCloud Integration .. 354
Introduction .. 354
How does the integration work? .. 354

Reconciliation ... 355
Points to Note .. 355

28. Thomson Reuters Integration ... 357
Introduction .. 357
How does the integration work? .. 357

Auditing of Order Transactions .. 358
Points to Note .. 359

29. PunchOut ... 360
Introduction .. 360
Customization of the PunchOut message ... 361
Application PunchOut Code .. 362

1

Chapter 1. Introduction
What is KonaKart ?

KonaKart is software that implements an enterprise java eCommerce / shopping cart system. It's main
components are:

• A shop application used by customers to buy your products. There are actually two storefront applica-
tions; one of which is specific for mobile devices.

• An Administration application to enable you to manage your store.

• Many Customization and Extension features - allowing you to customize and extend the way KonaKart
works.

Who is the software intended for?

Retailer
If you are a retailer and looking for a product to develop an on line store, then KonaKart could be a good
match. Regardless of your size, KonaKart will provide a powerful solution that should cover most, if not
all of your requirements, delivering unparalleled price / performance.

Although KonaKart is very easy to install and to get up and running, it really does require some JSP / Java
development and deployment knowledge in order to realistically take a store into production. Therefore, if
you have no Java knowledge in your company and you don’t intend on using external professional services,
then it’s probably not the product that you should be using.

If your company has Java competency then you should feel right at home using KonaKart and soon be
in a position where you can install and customize the software to cover all of your business needs and
integrate with your other systems.

We provide Professional Services and Support Contracts to assist you during the development stage and
to ensure that your store continues to run smoothly once in production.

Solution Provider / System Integrator / OEM
KonaKart offers an enterprise level eCommerce solution that you can easily customize to match the re-
quirements of your customers. Most of the customizable areas such as the store front application, payment,
shipping and promotion modules are open source. Also, the KonaKart engine implements a documented
API, on top of which you can write integration modules and custom features in order to personalize your
KonaKart offering.

We offer a Partner Program, Professional Services and Support Contracts to help you be successful and
profitable in your eCommerce projects.

ISP
KonaKart is a very good match for ISPs offering Java hosting and software solutions. You may offer the
community edition completely free of charge to your customers, with point and click installation to easily
enable them to create their on line store.

Introduction

2

The enterprise version of KonaKart which includes multi-store, is a good solution for providing many
stores in a resource efficient manner.

Important changes from v.6.5.0.0
In version 6.5.0.0 of KonaKart a new storefront application was introduced with a more modern and ap-
pealing design. The new storefront uses Apache Struts 2 (rather than Struts 1) as the Model View Con-
troller. It makes use of JQuery and Ajax to provide a more productive interface with less screen refreshes
and it no longer uses GWT for One Page Checkout functionality and for the Suggested Search widget.

The standard version 6.5.0.0 installer installs the new Struts 2 based storefront.

3

Chapter 2. KonaKart Information
Community and Enterprise Versions

Since version 3.2.0.0, KonaKart comes in two separate installations:

• A free Community Edition which can be downloaded from our web site downloads page.

• Enterprise Extensions which we charge for. See our web site prices page for pricing details.

The Community Edition is generally intended for small businesses. A condition of the license agreement
is to display "Powered By KonaKart" with a link to our web site, on the main page of the on line store.

The Enterprise Extensions are available as a separate installation kit which is installed on top of the com-
munity edition to provide more features and functionality. Although we would prefer you to keep it, the
"Powered by KonaKart" link is not mandatory for a KonaKart based store when the Enterprise Extensions
are installed. Currently the features present only in the Enterprise Extensions are:

• KonaKart Client Engine source code. It includes the full source code of the client engine as well as
a utility for creating an Eclipse project for customizing the storefront application. Both versions of
KonaKart include the source code for the JSPs and Struts action classes but the EE also includes the
client engine so that all aspects of the storefront can be easily customized. Note that even extensive
storefront customizations remain compatible with future versions of KonaKart since they communicate
with the KonaKart eCommerce engine through the APIs, which remain backwards compatible.

• Multi-Store. This mode allows you to run an unlimited number of stores with a single KonaKart instal-
lation and a single database schema. Even when deploying a single production store, it's useful to run
KonaKart in multi-store shared products and categories mode in order to create stores for managing
products in staging environments.

• Multi-Vendor. KonaKart allows vendors to manage their own products and orders through the Admin
App. The storefront application displays products from all vendors and allows the customer to checkout
with any selection of products in a single order.

• Indexed Search. Indexed search using Lucene search technology (Solr) gives you a lightning fast search
experience even for very large product catalogs as well as powerful faceted searches. Digital download
products (.txt and .pdf) can be indexed in the Solr search engine and text fragments (snippets) surround-
ing search keywords can be returned.

• Suggested Search. As you type into the search box, a list of suggested search items appear matching the
typed letters. The suggestions are weighted by popularity so the most common suggestions are shown
first.

• Spelling suggestions. If a search provides no results, a list of suggested words that exist in the catalog
are presented to the customer.

• Content management support. This includes programmable banners, editable page content etc. The con-
tent items can be set up in the Administration Application and accessed via the KonaKart APIs to show
in your storefront. The content displayed to individual customers may be defined using KonaKart ex-
pressions.

• KonaKart tiles which can be regarded as building blocks for creating an eCommerce application
that can be easily integrated into a front end system such as a CMS or portal. For more details see
KonaKart_Tiles.pdf in the doc directory after installation.

KonaKart Information

4

• KonaKartAdmin tiles. JavaScript tiles that allow you to integrate administration functionality (such as
product maintenance) into any system allowing you to easily create an administration dashboard to
maintain KonaKart functionality alongside the functionality of other applications such as a CMS. For
more details see KonaKartAdmin_Tiles.pdf in the doc directory after installation.

• ERP Integration by exchanging XML messages on a message queue.

• Advanced marketing functionality that allows you to capture customer data as the customer uses your
KonaKart eCommerce store; and to use that data within complex expressions in order to show dynamic
content, activate promotions and send eMail communications. For example, you could show a banner
or activate a promotion only to customers in a certain age bracket that have Product A in their wish list
and at least $50 worth of goods in their cart.

• Testing of promotions in a live system. Promotions may be put into test mode and a set of test users can
be defined in order to verify that the promotions function correctly. When in test mode, the promotions
are only active for logged in test users.

• Promotion evaluation directly for products, rather than as Order Total modules. This allows a customer
to view the available promotions for a product without having to add it to the cart.

• Configurable product options where a customer may enter the quantity or price of an option as well as
text to customize a product.

• Unlimited number of custom product attributes. Each attribute may include metadata for validation and
widget selection during data entry using the Admin App.

• Unlimited number of miscellaneous objects may be associated with products and categories.

• Wish List functionality. Registered customers can add products to a wish list. The KonaKart API sup-
ports multiple named wish lists for each customer.

• Gift Registry functionality. Registered customers can create a gift registry which can be made public
or private. Public gift registries can be searched for by shoppers and items within the registry can be
bought and shipped directly to the address of the registry owner. The store front application contains
an implementation of a wedding registry.

• Reward Points which enable you to increase customer loyalty and increase sales by rewarding customers
for purchases as well as other actions such as registering, writing a review, referrals etc. The points may
be redeemed during checkout.

• Gift Certificates. Gift Certificate products may be connected to any type of promotion and activated
through a coupon code contained within the certificate.

• The KonaKart APIs are available via Java RMI (Remote Method Invocation), JAXWS, JSON and
JavaScript. The Community Version of KonaKart allows you to call the APIs as Java methods and
through SOAP.

• jQuery plugin. This plugin allows you to easily call the KonaKart JSON APIs directly from JavaScript.

• Facebook Messenger Bot. A Messenger Bot to help customers find products managed by a Kon-
aKart store, using the Facebook Messenger interface and Wit.ai artificial intelligence. Full source
code is provided allowing you to add your own bespoke functionality. For more details see
KonaKart_Messenger_Bot.pdf in the doc directory after installation.

• Shopping Widgets. These are widgets that can be introduced in any web page using a few lines of
JavaScript. They allow you to promote your products from web sites such as social networks (Facebook
etc.) and blogs.

KonaKart Information

5

• Job Scheduling. This is achieved with an integration of the Open Source Quartz scheduler. There is a
framework for adding your own batch jobs and the source code of some useful example jobs.

• Support for Order Management. An administrator may modify and resubmit a customer order. KonaKart
archives the previous order so that an audit trail is kept.

• Support for Recurring Billing. Payment Schedule and Subscription objects have been introduced to
support recurring billing natively using a KonaKart batch or through a payment gateway that manages
the billing process at regular intervals.

• Support for Refunds. Real time credit card refunds through the payment gateway can be managed from
the Admin App.

• Support for Shippers and Shipments. Multiple shipments for a single order can be added from the admin
app.

• Product Synchronization feature to allow the synchronization of products between pre-production and
production environments. This feature is available when in multi-store, shared product and shared cat-
egory mode.

• XML Import/Export feature for KonaKart objects such as product, customer, order etc. This feature can
be run with a script, providing arguments to define which objects to import or export. Some example
scripts are provided.

• Java Message Queue Integration (Apache ActiveMQ) to support the guaranteed delivery of messages
to external systems.

• Digital download products (txt and .pdf) may now be indexed in the Solr search engine and text frag-
ments (snippets) surrounding search keywords can be returned from the search.

• The products within a single store may contain an unlimited number of price and quantity in stock
definitions. The price and quantity used, is determined by a catalogId which is passed to the relevant
API call. The selection of which catalogId to use can be made using custom business rules.

• B2B features include customer hierarchies for order visibility and approval, contract pricing using cat-
alogs and B2B Customer Administrator that can manage all B2B users for his company, directly from
the storefront application.

• The language of the admin app may be changed dynamically.

• PDF invoices can be created and sent to customers as email attachments and downloaded from the
storefront application. The created PDF invoices can be stored on disk for archiving purposes or created
dynamically whenever they are required.

• Customer events that may be used for reporting purposes. You can log any event such as when a product
is viewed or removed from the cart or when a customer starts and completes the checkout process.

• Bookable Products such as courses and tickets may be defined. Each product can have an associated
schedule and a list of bookings.

• Product stock reservation. Product stock may be reserved to avoid selling products that may become
out of stock during the checkout process.

• LDAP module to connect to an LDAP directory in order to validate customer and admin user credentials.

• Flexible configuration of product image loading and scaling.

KonaKart Information

6

• Ehcache used to improve performance by caching of data.

• PunchOut functionality allowing an e-procurement system such as SAP to order from a KonaKart store.

• XML sitemap generation to inform search engines about pages that are available for crawling.

• Support for the creation of mailing Lists for import into 3rd Party email systems (such as MailChimp)
containing defined segments of your customers.

• Social Login to allow customers to sign into KonaKart using credentials from a social networking service
such as Facebook, Google+ and PayPal.

• Login using username or telephone number rather than the eMail address.

Support Packages and Professional Services are available for *all* versions of KonaKart.

Is KonaKart Open Source?
The full source code of the storefront application including the KonaKart client engine, the Struts action
classes, the JSPs, the payment modules, order total modules and shipping modules are included in the
Enterprise Edition of KonaKart. The Community Edition includes all of the above except the source of
the client engine. The Community Edition source code is shipped under the GNU Lesser General Public
License.

Is the full source code available?
Under certain circumstances DS Data Systems will sell the entire KonaKart source code, although we
prefer to sell an Escrow service where possible.

The Enterprise version of KonaKart contains the complete source code of the Client Engine as well as
the JSPs and Struts action classes. This gives you full control over the functionality and look and feel of
the storefront application.

For the cases where functionality is missing, and it makes sense for this functionality to reside in the
KonaKart eCommerce engines, we normally provide fixed price quotes for implementing the missing
features and providing an API which we maintain for new releases. This allows you to easily upgrade
when new releases become available and also allows you to be supported. The disadvantage of taking the
source code and editing it, is that in most cases this results in a branching of the KonaKart code base which
becomes difficult to upgrade and maintain.

7

Chapter 3. KonaKart Features

General Functionality
• KonaKart supports most popular databases through JDBC. (e.g. MySQL, PostgreSQL, Oracle, DB2,

MS SQL Server are all supported in the download package).

• Written in Java. Needs a servlet engine such as Apache Tomcat to run.

• Modular approach with APIs at various levels. The APIs are available as Java APIs, SOAP, JAXWS,
JSON and RMI. The JSON APIs are used by the jQuery plugin that allows the KonaKart application
engine to be called using AJAX JavaScript calls. The variety of protocols supported, promote connec-
tivity even from outside of the company firewall and allow client side applications (i.e. .Net, MS Excel
etc.) to use the KonaKart engine. They also allow you to easily integrate eCommerce functionality into
your current application, which may be for example, a content management system.

• Completely multilingual.

• Many objects contain custom fields to facilitate personalizations

JSR 286 Liferay Portlet
• In order to easily integrate the KonaKart Storefront and Admin applications into the popular Liferay

portal environment, we supply ANT tasks that automatically generate portlets from the applications
which can then be easily imported into Liferay. The storefront application maybe customized within an
Eclipse based project to match you requirements before you generate the portlet.

ERP Integration
• The Enterprise version of KonaKart provides features for integration with an ERP system by exchanging

XML messages on a message queue (Apache MQ is bundled with KonaKart to support this feature).
All of the key integration points are supported between KonaKart and the ERP system and vice versa.

Content Management System Integration
• KonaKart has been successfully integrated with many CMS systems using the APIs. KonaKart tiles

(see KonaKart_Tiles.pdf in the doc directory) facilitates the integration effort by providing functional
widgets that already have a template based UI design and that autonomously capture events and com-
municate with the KonaKart server. The JavaScript tiles communicate using the JSON API and AJAX.

Basic Content Management
• KonaKart has some basic Content Management features that may be sufficient for some store owners

who don't want to integrate with a sophisticated Content Management System for more advanced fea-
tures.

• With KonaKart you can define "Content" objects which can be anything you like including blocks of
text, images and clickable banners. You can set up these content items in the Administration Application
and access them via the KonaKart APIs to show in your storefront. Their use is demonstrated in the
sample store that you get when you install KonaKart.

KonaKart Features

8

• A powerful feature of KonaKart Content is that you are able to link content to KonaKart expressions.
using this technique you can select content appropriate for each customer visiting your site.

Setup/Installation
• Simple click and run installation through an installer.

Design/Layout
• The store front application uses a JSP / Struts design. The source code of the JSPs and Struts Action

classes is provided in the download so that they may be customized.

• It is relatively easy to write a UI in the technology of your choice by directly calling the KonaKart APIs.
One example is the jQuery demo which shows how the KonaKart Application Engine API may be easily
accessed using AJAX JavaScript calls made available by the KonaKart jQuery plugin.

Multi-Store
• KonaKart provides advanced multi-store functionality to enable you to run your stores from a single

KonaKart deployment and a single database.

• Shared customers mode allows you to share customers between all stores. This is very useful for shop-
ping mall applications since a customer only has to register once in order to shop in many different stores.

• Shared products mode allows you to share products between stores. This means that the products may
only exist once in the database for maintenance purposes, but may be included in many stores. The
product price may be different for each store in which the product is included. This is a useful mode for
companies setting up stores in different countries, selling the same products.

• Shared products and shared categories mode allows you to share products and categories between stores.
This mode can be very useful for using stores to provide one or more pre-production environments.
KonaKart includes functionality that allows you to synchronize products between stores when working
in this mode. Once the products in the pre-production store have been approved, they can be copied to
the production store on the click of a button or through the use of a scheduled batch program.

• When KonaKart is configured to be in multi-store mode with a shared database (Engine Mode 2), prod-
uct searches can span more than one store. They can span all of the stores, or a list of stores can be
supplied in the search request.

The ProductSearch object has a searchAllStores boolean which should be set to search all stores. If the
search is only for a limited number of stores, then an array of storeId Strings can be set (storesToSearch)
to identify which stores should be searched.

• The administration application allows a super user to create a store and then create a store administrator
role so that when the store administrator logs into the administration application, he can only administer
the store that has been assigned to him.

• For special cases where store data has to be kept within separate DB schemas, KonaKart can be con-
figured to achieve this, although some of the functionality such as the sharing of customers described
above, is not available in this mode.

• When in shared customer or shared product mode, other data, such as countries, zones and tax informa-
tion is also shared. This can save a great deal of time in administering a KonaKart multi-store installation
as these objects only need to be set up once for all stores.

KonaKart Features

9

Multi-Vendor
• KonaKart allows vendors to manage their own products and orders through the Admin App. The store-

front application displays products from all vendors and allows the customer to checkout with any se-
lection of products in a single order.

• Vendor company information can be managed by KonaKart and customers can write reviews for ven-
dors. The vendor details, average vendor rating and the vendor reviews can be viewed from the store-
front application.

Customer Functionality
• Customers can view their order history and order statuses.

• Customers can maintain their accounts. They have an address book for multiple shipping and billing
addresses.

• Permanent shopping carts for guests and registered customers. The permanent cart for guests is managed
through cookies.

• Registered and temporary customers can create wish lists.

• Registered customers can create a gift registry which can be made public or private. Public gift registries
can be searched for by shoppers and items within the registry can be bought and shipped directly to
the address of the registry owner. The store front application contains an implementation of a wedding
registry.

• Fast and friendly quick search, advanced search and suggested search features. Search for products by
category, by manufacturer or both.

• Product reviews for an interactive shopping experience.

• Number of products in each category can be shown or hidden.

• Global and per-category bestseller lists.

• Dynamic product attributes relationship.

• HTML based product descriptions.

• Display of specials

• Control if out of stock products can still be shown and are available for purchase.

• Customers can subscribe to products to receive related emails/newsletters.

• All emails are template driven and so fully customizable using the Apache Velocity template language.

Customer Groups - Wholesale/Retail
• Control what prices are displayed to customers. i.e. You may show different prices to wholesale cus-

tomers or company employees etc.

• Enable promotions. Promotions may be enabled only for certain types of customers. i.e. You may want
a 3 for 2 promotion to only apply to your retail customers.

KonaKart Features

10

• Send communications. You may send out bulk emails only to customers that belong to a particular
customer group.

B2B Features
• Customer Hierarchies can be defined so that a corporate buyer can view and approve orders made by

colleagues.

• Catalog / Contract Pricing

• Customer tags can be used to store customer privilege information in order to modify the behaviour of
the storefront application for the B2B buyers based on their roles.

• A customer type of B2B Customer Administrator can manage all B2B users for his company, directly
from the storefront application. He can create, update, disable, delete users and define their roles such
as whether they have an order limit or their orders require approval etc.

Call Center Functionality
• From the administration application, an administrator can open up a browser displaying the KonaKart

eCommerce application and log in on behalf of a customer without requiring the customer's credentials.
Once logged in as that customer, he can process orders for the customer and perform all tasks that are
normally enabled for the customer when logging in independently.

Social Login
• Social Login allows customers to sign into KonaKart using credentials from a social networking service

such as Facebook, Google+ and PayPal. It is designed to simplify the registration and login process
since customers are not asked for a KonaKart specific username and password.

One page checkout
• One Page Checkout screen using AJAX technology

• Existing customers go directly to the checkout screen where they can add coupons, change shipping
methods, payment methods etc. and immediately see the updated total order amount without a screen
refresh.

• New customers can add address details as part of the checkout process. They don't have to go through
a registration process.

Checkout without registration
• KonaKart may be configured to allow customers to checkout without registering and creating an ac-

count.

Products
• Each product may be configured with multiple options. Every configuration may have:

• A unique price

• A unique SKU

KonaKart Features

11

• A unique quantity

• A unique available date

Configurable options are also supported where a customer may enter the quantity or price of an option
as well as text to customize a product.

• Each product may be associated with a number of images.

• Each product may be associated with up to 4 prices. The actual price displayed can be controlled by the
customer group. The Enterprise Extensions package allows you to associate a product with an unlimited
number of catalogs, each containing prices and stock information.

• A special sale price with a start and end date may be defined for a product.

• Tier prices or percentage discounts may be defined for volume discounting.

• Each product may contain structured data as well as a description. The structured data can be used for
comparing product features.

• Each product may contain an unlimited number of custom attributes. Each attribute may include meta-
data for validation and widget selection during data entry using the Admin App.

• Each product may contain an unlimited number of miscellaneous items which can have a type as well
as a value. i.e. Useful for associating a product with multiple videos and documents.

• KonaKart includes an import/export tool to efficiently load products into the database from a file, and
to create a file from the products in the database.

Digital Downloads
• A product may be defined as a digital download.

• When a digital download has been paid for, a download link appears in the customer's private account
page.

• The download link can be set to expire after a number of days or after a number of downloads.

Bookable Products
• A product such as a course or ticket may be defined as a bookable product.

• Each bookable product has a start and end date and may have a schedule defining time slots for certain
days of the week. Whenever a bookable product is purchased, a booking is created which is associated
with the bookable product so that at any point in time, the number of bookings may be monitored.

Product Stock Reservation
• Product stock may be reserved to avoid selling products that may become out of stock during the check-

out process. This is a useful feature when selling products that must not be oversold.

Product Bundles
• Bundle products can be defined in the Admin App. The quantity of the bundle product is calculated

automatically and tools are provided to calculate the cost (optionally using discounts) and the weight.

KonaKart Features

12

In the application, the bundled products are available in the product detail screen, the quantity available
is calculated and the quantity in stock of the bundled products is decremented automatically when an
order is processed.

Gift Certificates
• Gift Certificate products may be connected to any type of promotion and activated through a coupon

code contained within the certificate.

Reward Points
• Reward Points enable you to increase customer loyalty and increase sales by rewarding customers for

purchases as well as other actions such as registering, writing a review, referrals etc. The points may
be redeemed during checkout.

Indexed Search
• KonaKart has been engineered to manage product catalogs containing hundreds of thousands of prod-

ucts. In order to search for these products in an efficient manner, KonaKart may be configured to use
the Apache Solr enterprise search server based on the Lucene Java search library.

• This powerful technology not only provides for a lightning fast search experience (including faceted
searches), but also incorporates intelligence to correct common problems such as misspellings and plu-
rals which often frustrate shoppers making them go elsewhere. For example, the words Television,
Televisions, TV, TVs can all be configured to find televisions.

Suggested Search
• As you type into the search box, a list of suggested search items appear matching the typed letters. The

suggestions are weighted by popularity so the most common suggestions are shown first.

• For each product, many suggestion terms are indexed such as the product name, model, category, man-
ufacturer, manufacturer within a category and category for a manufacturer. This greatly increases the
usability of the search and directs the user not only to products matching the search string, but also to
categories of products or products for a manufacturer or products for a manufacturer within a category
etc.

Product Tags and Tag Groups (Faceted Search)
• Tags are attributes that can be associated to a product and can be used to refine product searches.

• The purpose of a tag group is to organize tags and a tag group may be associated to a category so that
it can be automatically displayed in a context sensitive fashion when a customer is viewing products
belonging to a specific category.

Merchandising
• Display what other customers have ordered with the current product shown.

• For every product you may define a list of products for:

• Up-selling

KonaKart Features

13

• Cross-selling

• Accessories

• Dependent products (e.g. Service Plans or Extended Warranties)

Promotions
• Very powerful promotions sub-system

• All promotions can be associated with one or more coupons. Each coupon can be configured for unlim-
ited use or to be used only for a programmable number of times.

• The following rules can be set for all promotions:

• Include only some customers (e.g. those that haven't placed an order in the last 60 days) or exclude
some customers (e.g. those that have placed an order in the last 60 days). Configure how many times
an included customer can use the promotion.

• Include or exclude customers based on the customer group.

• Include or exclude customers based on expressions.

• Include or exclude products based on their category.

• Include or exclude products based on their manufacturer.

• Include or exclude any products at a product option granularity. (e.g. Promotion only applies to shoe
size 7 or applies to all sizes except size 7)

• Promotions may be cumulative (e.g. A promotion of 10% discount for all hardware products and a
promotion of 20% discount for all software products) or promotions may be exclusive, in which case
the promotion giving the largest discount is chosen.

• All promotions may be configured to have a start and end date.

• The promotions themselves are KonaKart Order Total Modules which can easily be developed and
slotted into the KonaKart architecture. The source code of the available promotion modules is included
in the download package.

• The currently available modules are :

• Order Total Discount

• The promotion gives a discount on the total amount of the order.
• You may set a minimum order value, the minum number of products, the minimum quantity of a

single product, the discount as an amount or a percentage and whether to apply the discount before
or after tax.

• Product Discount

• The promotion gives a discount on a product
• You may set a minimum order value, the minimum quantity of a single product, the discount as an

amount or a percentage and whether to apply the discount before or after .

• Buy X get Y free

KonaKart Features

14

• If the customer buys X + Y products, he only pays for X.

• Shipping Discount

• The promotion gives a discount on selected shipping methods.

• Free Product

• The promotion entitles the customer to receive a free product if the conditions of the promotion
are met.

Marketing - Customer Tags and Expressions
• The Enterprise version of KonaKart contains sophisticated marketing functionality that allows you to

capture customer data as the customer uses your KonaKart eCommerce store; and to use that data within
complex expressions in order to show dynamic content, activate promotions and send eMail commu-
nications.

• Later in this document there is a chapter dedicated to this functionality.

Advanced Search Engine Optimization (SEO)
• You have full control over which SEO features to activate. KonaKart allows you to define multi-lingual

templates in order to write product information (name, model, manufacturer, category) into:
• The URL
• The window title
• The meta description
• The meta keywords

• XML sitemap generation. Sitemaps are an easy way for to inform search engines about pages that are
available for crawling.

Reporting
• KonaKart is integrated with BIRT which is is an open source Eclipse-based reporting system. The de-

fault installation package includes a number of useful reports. Others may be easily added through the
Admin App or just by copying them to a directory where they are automatically read by KonaKart.
Instructions can be found in the Reporting Chapter of this User Guide.

Payment Functionality
• KonaKart implements an API and modular approach for introducing payment gateways. We include

the source code of all currently available gateways.

• Disable certain payment services based on a zone basis.

Recurring Billing
• Support for Recurring Billing. Payment Schedule and Subscription objects have been introduced to

support recurring billing natively using a KonaKart batch or through a payment gateway that manages
the billing process at regular intervals.

KonaKart Features

15

• Later in this document there is a chapter dedicated to this functionality.

Shipping Functionality
• Weight, price, and destination based shipping modules

• Free shipping based on amount and destination

• Free shipping on a product by product basis

• Disable certain shipping services based on a zone basis

• KonaKart implements an API and modular approach for introducing custom shipping services. Popular
services such as FedEx, UPS and USPS are provided out of the box.

• Shippers and Shipments can be defined and saved in the database. Multiple shipments may be defined
for a single order. The shipments (including tracking number) can be included in a notification eMail
and are visible from the order details page of the storefront application.

Tax Functionality
• Flexible tax implementation on a state and country basis.

• Set different tax rates for different products.

• Charge tax on shipping on a per shipping service basis.

• Connect with online tax calculation services such as TaxCloud and Avalara.

Order management
• The lifecycle of an order may be managed through the Admin Application or through the APIs driven

by an external system.

• An administrator may modify and resubmit a customer order. KonaKart archives the previous order so
that an audit trail is kept.

Returns
• Returns may be managed from the Admin App. KonaKart can support multiple returns per order, each

of which may contain different product quantities and have a unique RMA code.

Refunds
• Real time credit card refunds through the payment gateway can be managed from the Admin App. The

full details of the refund transactions are saved in the database.

PDF Invoices
• PDF invoices can be created and sent to customers as email attachments and downloaded from the

storefront application. The created PDF invoices can be stored on disk for archiving purposes or created
dynamically whenever they are required.

KonaKart Features

16

Java Message Queue Integration
• To support the guaranteed delivery of messages to external systems the Apache ActiveMQ java message

queue has been integrated (Enterprise Extensions only).

A typical example of where this might be useful is where you wish to transfer orders to another system
via a message queue once your orders have reached a certain status (eg. once payment has been received).

Customer Events
• Customer Events may be defined to save important event information that may be used for reporting

purposes. For example, events may be inserted whenever a product is viewed or removed from the cart
or when a customer starts and completes the checkout process.

Events may be written to another database rather than the production database in order to not impact
production performance. All events are written to a local queue which is emptied by a separate thread
so that the insertion of events never becomes a performance bottleneck.

Exchange Rate Updates
• A batch job and associated module are available for Enterprise users to provide live exchange rate

updates. The module implements updates to the KonaKart currencies table using data provided by the
CurrencyLayer service (http://www.currencylayer.com). Contact us for more information about this
feature.

Filters
• Filters are an Enterprise-Only feature that can be used to filter records on a per user basis. Initially the

filtering is only supported in the base product for Orders.

The idea is that you can create filtering rules that define for each user which orders they can see. This
feature can be used to implement order processing workflow in the KonaKart Admin Console or in your
own workflow tool.

KonaKart and KonaKartAdmin Tiles
• Tiles can be regarded as building blocks for creating an eCommerce application that can be easily inte-

grated into a front end system such as a CMS or portal. The documentation for tiles maybe downloaded
from the KonaKart web site and is also available as PDF documents in the doc directory after installation
(KonaKart_Tiles.pdf and KonaKartAdmin_Tiles.pdf).

Facebook Messenger Bot.
• A Messenger Bot to help customers find products managed by a KonaKart store, using the Face-

book Messenger interface and Wit.ai artificial intelligence. Full source code is provided allowing
you to add your own bespoke functionality. The documentation maybe downloaded from the Kon-
aKart web site and is also available as a PDF document in the doc directory after installation
(KonaKart_Messenger_Bot.pdf).

17

Chapter 4. Architecture
KonaKart has a flexible architecture lending itself to a variety of different physical implementations to
suit different needs.

Software Architecture
KonaKart has a modular architecture consisting of different software layers as can be seen in the diagram
below. Source code is provided for the JSPs, HTML, Struts Actions, KonaKart Client (Enterprise only)
and all the modules and reports. The diagram shows how storefront applications written in Java and other
technologies may interface to the KonaKart engines using one of the supported API technologies.

Architecture

18

KonaKart - Software Architecture

The KonaKart Server is a multi-threaded component that contains the core functionality of the eCom-
merce application. It exposes a SOAP Web Service interface (WSDL [http://www.konakart.com/
konakart/services/KKWebServiceEng?wsdl]), a JAXWS interface (WSDL [http://localhost:8780/kon-
akart/KKJAXWSKKEng?wsdl]), an RMI interface, a JSON interface and a Java API (Javadoc [http://

http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://localhost:8780/konakart/KKJAXWSKKEng?wsdl
http://localhost:8780/konakart/KKJAXWSKKEng?wsdl
http://localhost:8780/konakart/KKJAXWSKKEng?wsdl
http://www.konakart.com/javadoc/server/
http://www.konakart.com/javadoc/server/

Architecture

19

www.konakart.com/javadoc/server/]). It interfaces to a persistence layer and plug in modules for calculat-
ing shipping costs, promotional discounts and for connecting to payment gateways. The persistence layer
supports databases from many different vendors such as Oracle, Microsoft’s SQL Server, DB2 from IBM,
MySQL, PostgreSQL and many others.

The KonaKart Client manages the state of a user (associated with the user’s session) as he navigates around
the application. The process of writing a web based application is greatly simplified by using the API of
the KonaKart client (Javadoc [http://www.konakart.com/javadoc/client-s2/]) rather than by calling the
KonaKart Server directly. Note however that you do lose some flexibility calling the Client rather than the
Server since the Client has been written for a certain type of storefront application which may not exactly
match the storefront that you need to build.

Struts [http://struts.apache.org/] is a popular framework that implements the Model-View-Controller
(MVC) architecture. The source code of the Struts Action classes (for the store front application [http://
www.konakart.com/konakart/Welcome.action]) is included in the download package in order to provide
examples of how to call the KonaKart Client API. The store front application uses JSPs to generate the UI.
However, different technologies can easily be implemented thanks to the modular approach of KonaKart.
An example of this is the jQuery demo that uses the KonaKart jQuery library to make JavaScript calls
directly to the KonaKart server engine from within an HTML page on the browser.

Deployment Architecture

KonaKart - Hardware / Deployment Architecture

KonaKart software resides on the application servers. Each physical application server may contain mul-
tiple instances of KonaKart. Each instance of KonaKart can communicate with other applications through

http://www.konakart.com/javadoc/server/
http://www.konakart.com/javadoc/client-s2/
http://www.konakart.com/javadoc/client-s2/
http://struts.apache.org/
http://struts.apache.org/
http://www.konakart.com/konakart/Welcome.action
http://www.konakart.com/konakart/Welcome.action
http://www.konakart.com/konakart/Welcome.action

Architecture

20

an AXIS 1.4 SOAP Web Service, a JAXWS Service, an RMI Service or a JSON Service. All application
servers must point to the same database server which may be a cluster to provide fault tolerance.

Each web server can forward requests to any KonaKart instance. However, once a session has been es-
tablished, all subsequent requests must be passed to the same instance, since it contains state information
for that session. Note that sticky sessions are only necessary when using the Client Engine. The Server
Engine is stateless.

21

Chapter 5. Installation
Please read this section carefully before attempting to install KonaKart.

Before You Begin
Before proceeding, please check that your chosen platform is one that is currently supported and that you
have installed the pre-requisite software.

Platforms Supported
Currently KonaKart can be installed on Linux, Unix, or Windows XP/2003/Vista/7/8. It has been success-
fully installed on other platforms including Mac OS using the manual installation .

Please contact the KonaKart team at <support@konakart.com> if you would like to see KonaKart
support running on another platform.

Pre-requisites
• A Java runtime environment

• A database loaded with KonaKart tables

• KonaKart itself

Install Java
KonaKart requires the Java 2 Standard Edition Runtime Environment (JRE) version 6.0 or later for versions
up to and including v8.0.0.0. For version 8.1.0.0 you must use Java 7 or later.

• Download the Java 2 Standard Edition Runtime Environment (JRE), release version 7.0 or later, from
http://java.sun.com/j2se .

• Install the JRE according to the instructions included with the release.

• Ensure you have set JAVA_HOME in your environment prior to installation.

The installer attempts to locate your JRE automatically but you can override the one that's found if you
require. The selected JRE is validated to help you avoid typing errors when entering the JRE location
manually.

Create a Database
KonaKart needs a JDBC-compliant database. For the community edition of KonaKart you must use either
MySQL (with the InnoDB engine to get support for transactions), PostgreSQL, Oracle, DB2 or MS SQL
Server but if you would like KonaKart to be supported on any other database please contact us. MySQL
works well with KonaKart and is free so this makes a popular choice. You can obtain MySQL from http://
www.mysql.com/.

http://java.sun.com/j2se

Installation

22

Check the specific notes for each database to verify that the database you plan to use is fully supported
(see below in this FAQ) or whether you might have to take a few additional manual steps to load the
database objects.

Once the database is installed, create a new database user for KonaKart then either run the installation
wizard which will (optionally) load up the database ready for using KonaKart, or if you prefer, execute the
SQL script appropriate for your chosen database manually. The database initialization scripts are provided
for all supported databases under the database directory under your KonaKart installation directory.

Upgrading the Database between releases of KonaKart
Starting with the upgrade from KonaKart v2.2.0.0 to v2.2.0.1 there will always be an upgrade script pro-
vided that can be run on your database without risking the loss of your existing data (although it is always
recommended to backup your database on a regular basis). The upgrade script will apply all the database
changes that are required to upgrade a database being used for a specified KonaKart version to the next.

As an example a script called upgrade_2.2.0.0_to_2.2.0.1.sql is provided that will upgrade your database
being used on a KonaKart v2.2.0.0 system to one suitable for a KonaKart v2.2.0.1 system.

If you chose to skip KonaKart releases for whatever reason, you will have to apply the upgrade scripts
for all intermediate releases - upgrade scripts for all supported versions are planned to be shipped with
all future releases.

Another option is to run the full database creation script (see above) which is always provided for every
release. Note that this has the disadvantage of clearing away all of the data you may have set up for your
KonaKart store (eg. your special configuration data, your catalogs etc) so will probably not be the preferred
option for existing storekeepers.

Install KonaKart
Once you have java (java 6, java 7 or java 8) installed and a database (either pre-loaded with all the
necessary tables etc or ready to be loaded), you are ready to install KonaKart itself. To do this, download
an installation kit, compatible with your chosen platform, and follow the installation instructions below
for your platform :

Note that if the GUI or silent installers do not work on your platform you should download the zip version
of KonaKart and follow the manual installation instructions.

Installing KonaKart on Windows
Run the set-up program that executes a graphical installation wizard - see Graphical Installation Wizard
below. (You can use the "Silent Mode" installation if you prefer, but the graphical version is probably
easier if you're installing for the first time).

Installing KonaKart on Unix/Linux
Create a terminal session on your machine and enter the following: (You may prefer to use commands to
do the same thing from your X-desktop if you have one installed).

$# (replace 2.2.6.0 with the version you have downloaded)
$ chmod +x KonaKart-2.2.6.0-Linux-Install
$./KonaKart-2.2.6.0-Linux-Install

Installation

23

If you have a graphical environment on your Linux/Unix machine you will be able to run the GUI. In
which case see the Graphical Installation Wizard below (identical steps to the Windows installation).

If you don't have a graphical environment you will see this warning message:

$./KonaKart-2.1.0.0-Linux-Install
This program must be run in a graphical environment
or in silent, unattended mode (with the -S option).

Silent Mode Installations
When running in "silent" (-S) (or "unattended") mode you are able to specify configuration parameters
on the command line, for example:

$./KonaKart-8.1.0.0-Linux-Install -S \
 -DDatabaseType mysql \
 -DDatabaseDriver com.mysql.jdbc.Driver \
 -DDatabaseUrl jdbc:mysql://localhost:3306/mykkdb \
 -DDatabaseUsername kkdbusr \
 -DDatabasePassword ikk8271 \
 -DLoadDB 1 \
 -DJavaJRE "/usr/lib/jvm/java-7-sun/"

Ensure that $HOME is defined before running the silent installer.

Silent Mode Parameters

The following parameters can be added to the command line, as in the example above, to specify default
values for KonaKart at installation time:

Parameter Default Value Explanation

DatabaseType mysql mysql, postgresql, db2net, or-
acle, mssql

DatabaseUrl jdbc:mysql://
localhost:3306/db-
name?zeroDateTimeBehavior=convertToNull
&useSSL=false (on one line)

Database URL

DatabaseUsername root Database User's Username

DatabasePassword Database User's Password

DatabaseDriver com.mysql.jdbc.Driver Database Driver

mssqlDBO dbo Database Owner (only used
by MS SQL Server)

InstallationDir Windows: C:\KonaKart

*nix (as root): /usr/local

*nix (as user): ~/konakart

Installation Directory

LoadDB 0 1=Load DB

0=Do not Load DB

Installation

24

JavaJRE The Java runtime location

PortNumber 8780 KonaKart Port Number

HTTPSPortNumber 8783 KonaKart HTTPS Port Num-
ber

SMTPServer ENTER_YOUR_SMTP_SERVER_HERE SMTP Server

SMTPPort 25 SMTP Server Port

SMTPSecure false SMTP Server requires au-
thentication?

SMTPUser user@yourdomain.com SMTP Server Username

SMTPPassword SMTP Server password

sqlEncoding utf-8 Encoding for files

addToClasspath Custom classpath entry

Note: the value specified for addToClasspath will be added to the installer's classpath (after a classpath
separator suitable for the platform) so that it is made available when the installer executes java utilities
during the installation process. This can be very handy for specifying a JDBC driver that isn't shipped
with KonaKart. This could be useful, for example, for specifying a Microsoft SQL Server JDBC driver
for setting up the KonaKart data in a MS SQL Server database.

Note: Only set sqlEncoding if you have encoding problems during the installation on your particular plat-
form. It is not normally required to be set. If you need to set it, choose an encoding that your platform
can use (many choices are available including: cp860 cp861 cp862 cp863 cp864 tis-620 cp865 cp866
cp869 dingbats macCentEuro cp874 macUkraine jis0201 macThai iso8859-10 iso2022-jp iso2022 macI-
celand iso8859-13 iso8859-14 cp737 iso8859-15 iso8859-16 Symbol macRomania gb1988 iso2022-kr
macTurkish macGreek ascii cp437 macRoman iso8859-1 iso8859-2 iso8859-3 macCroatian iso8859-4
koi8-r ebcdic iso8859-5 cp1250 macCyrillic iso8859-6 cp1251 iso8859-7 cp1252 koi8-u macDingbats
iso8859-8 cp1253 iso8859-9 cp1254 cp850 cp1255 cp1256 identity cp852 cp1257 cp1258 utf-8 cp855
cp775 symbol cp857 unicode).

Graphical Installation Wizard

This shows a typical installation that uses the wizard:

Either double-click on the installation setup program (either KonaKart-2.2.0.4-Windows-Setup.exe on
Windows, or KonaKart-2.2.0.4-Linux-Install on Linux - or respective later version numbers) or run it from
a command shell (with optional arguments as documented above for the Silent Mode Install). You are
first presented with this small window which allows you to confirm that you wish to proceed with the
installation:

Click on Yes to continue to:

Installation

25

Check that you have the correct version number and click on next to get to the next screen. Note in pass-
ing the email address for support questions. Please contact us and / or search the forum if you have any
difficulties at all with the installation and we will endeavour to help you as soon as possible.

Installation

26

Please read the license agreement carefully and if you are happy to do so under the terms of the agreement,
click on the "I accept the terms of the license agreement" bullet and click next to continue. If you are not
prepared to accept that license agreement please quit the installation at this point.

Click on next to reach:

This is where you specify where you want KonaKart to be installed. On Windows this defaults to "C:
\KonaKart", on Linux this is the user's home directory (if the user is not root) or "/usr/local" (if the user
is root). This can be specified in the silent mode of on the command line of the GUI version using -
DInstallationDir.

It is recommended that you accept the default location, but this is not essential.

On clicking next you reach:

Installation

27

Here you have to confirm or specify the location of the java runtime environment. The wizard will try
to find this for you but it is not always successful. In the cases where it isn't successful (or you wish to
change its selection) you will have to enter the location manually. If you have installed java v6 in the
default location or it appears in your environment's path, the wizard should find it for you.

The java location selected is validated to help you avoid typing errors and will only allow you to proceed
in the wizard when it validates the location successfully.

Click on next to get to:

Installation

28

This is where you define the port number that KonaKart will run on. Actually, KonaKart uses Apache
Tomcat, so this is the port number that Tomcat is configured to run on. Whilst it is certainly possible to
choose another port, it's advisable to accept the default which is 8780. KonaKart will not start up if another
application is using the port you select, so make sure the port you select here is not currently being used.

Clicking next moves you on to:

Installation

29

This is your final chance to check your settings before copying the files into position.

Clicking next will start the process of copying the KonaKart files into position as can be seen on the next
screen:

Installation

30

After about a minute or so the file copying will have completed and you are presented with this screen to
choose the Database Type that you wish to use:

Installation

31

Choose your preferred database type. You must set up the database yourself - this is not done as part of
the installation (see database creation).

Click next to continue to :

It is very likely that you will have to modify values on this screen. You have to define the database con-
nection parameters to KonaKart for the database that you created earlier (see database creation)

KonaKart currently supports MySQL, PostgreSQL, Oracle, DB2 and MS SQL Server and includes all the
JDBC driver jars required to access these.

Note that you must append "?zeroDateTimeBehavior=convertToNull&useSSL=false" to your Database
URL if you're using MySQL. Typically, for MySQL, you will need to change "dbname" in the default
URL for the name of your own database schema. A good example for such a name might be "store1" or
"konakart" but you are free to choose whatever name you like.

After clicking next, the installer will check the database connection and report the results on the next screen
as follows. For an unsuccessful connection you will see something like this:

Installation

32

At this point you can go back and modify the database connection parameters and then click next to try
the database connection test again. If successful you will see a screen like this:

Installation

33

If the database connection fails, you can choose to click on next and finish the installation without execut-
ing the database initialisation. Normally, for a fresh install, you are advised to correct your database con-
nection parameters so that you see a successful database connection message, then proceed to the database
initialisation screen which looks like this:

Note that the default is that the database initialisation is NOT executed. To execute it you must click on
the checkbox and click next to reach the next step.

Be warned that the database initialisation script will drop and re-create all the KonaKart tables and populate
them with a default set of starting data. This default starting position is ideal for users who are setting up
KonaKart for the first time but this is probably not what you want to do if you already have a KonaKart
database with a product catalog loaded for your store.

If you do not check the 'Create the tables..' box then click next you would jump to the final page of the
wizard. Alternatively, if you do check the 'Create the tables...' box then click next, you will be presented
with a screen that shows the loading of the database initialisation script in a scolling window which will
look like this:

Installation

34

In the above example the script ran successfully (see last comment "SQL executed successfully" in the
scrollable text area). If the script does not run successfully you will see the error message in this window.

After clicking next you reach the following screen:

Finally you are congratulated on a successful installation on the final screen of the wizard:

Installation

35

Finally you have the option to create a desktop icon (which is defined to start the KonaKart server and
launch the GUI) and launch the application immediately after the installation has completed. The "Launch
KonaKart" option executes a startup of the KonaKart server and then launches the default browser to show
the KonaKart UI, and the KonaKart Administration Application.

Manual Installation
If you are installing on a platform that supports the GUI installer (Windows, Linux, Unix), it is recom-
mended that you use that. If not, but you are on a platform that supports the silent form of the installer
(again Windows, Linux, Unix), it is recommended that you use that. Otherwise, use the manual installation.

If you plan to install KonaKart in an existing servlet container, it is still advisable to run through the GUI
installer if you can. The reason for this is that it will populate all the properties files for you and load your
database automatically. Once you have done this you can make WARs from the GUI-installed version of
KonaKart (details below) and deploy them elsewhere as you please.

The KonaKart Installation section contains general KonaKart installation instructions (although focuses
on using the GUI-driven and silent versions of the installer) and contains important information that is
also relevant for the manual installation so check this before starting out.

In general, you need to follow all the documented installation instructions except for the "Install KonaKart"
section which explains how to use the automated GUI and Silent versions of the installation.

Perform all the documented installation instructions for:

• A Java runtime environment

• A database loaded with KonaKart tables

Installation

36

For the purposes of this FAQ we'll use MySQL and a database named "konakart".

Using a downloaded zip file for manual installation from the Downloads [http://www.konakart.com/down-
loads] page on the KonaKart website unzip to a suitable location and then follow the following steps:

1. Populate the Database

Make sure you have created an empty database instance in the RDBMS of choice as per the FAQ
instructions: eg:

$ mysql> create database konakart

To create the database load konakart_demo.sql for the database you have chosen. In this case:

$ mysql -u root -p konakart < ./konakart/database/MySQL/konakart_demo.sql

2. Copy the Duplicated Jars

For users of the "zip" installations - take note!

In order to minimize the size of the download files quite a few of the jars are not copied into multiple
webapps where they are required to run KonaKart successfully. A platform-specific script is provided
that will copy the duplicated jars (and a few other file types) from the konakart webapp to the other
webapps. The appropriate ("bat" or "sh") script must be run to complete a successful installation. The
scripts (both called "copyDuplicates" can be found in the custom directory under the installation home.
Both scripts require a single parameter which is the installation home directory. For example, on Win-
dows:

C:\KonaKart\custom>copyDuplicates C:\KonaKart
C:\KonaKart\custom>REM
C:\KonaKart\custom>REM Copy duplicate files
C:\KonaKart\custom>REM

3. Set Database Parameters

Set DB name (and other database connection parameters) in konakart.properties and
konakartadmin.properties Change the string "dbname" to the name of your database (in this case "kon-
akart") in the following files:

{konakart}/webapps/konakart/WEB-INF/classes/konakart.properties

{konakart}/webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties

This is documented in the "Defining the Database Parameters" section below.

4. Deployment

Now, when it comes to deployment, there is a choice.

Either: run KonaKart using the tomcat that was provided in the download kit or create WARs and load
them into your chosen servlet container.

a. Deploy to the tomcat provided

http://www.konakart.com/downloads
http://www.konakart.com/downloads
http://www.konakart.com/downloads

Installation

37

i. Start tomcat using {konakart}/bin/startkonakart.sh (or, if you are working on Windows, use
{konakart}\bin\StartAndLaunchKonaKart.bat).

ii. Run KonaKart and KonaKartAdmin

Try http://localhost:8780/konakart/ [http://localhost:8780/konakart/] and http://local-
host:8780/konakartadmin/ [http://localhost:8780/konakartadmin/] in your browser.

b. Create WARs and deploy in another servlet container

i. Generate and deploy the war files.

$ cd {konakart}/custom
$./custom/bin/ant make_wars

More detailed instruction for building the war files are available in the customization section if
you need them.

Deploy the generated WAR files. This is different for different servlet containers, but for tomcat,
just copy the .war files in {konakart}/custom/war to your tomcat's webapps directory.

Restart the servlet container if necessary.

ii. Run KonaKart and KonaKartAdmin

Try http://localhost:8780/konakart/ [http://localhost:8780/konakart/] and http://local-
host:8780/konakartadmin/ [http://localhost:8780/konakartadmin/] in your browser, adjusting the
port as necessary if you deployed to a different port number.

Starting Up and Shutting Down KonaKart
If you are not using the default bundled tomcat refer to your chosen servlet container's startup/shutdown
procedures. If you have installed the default KonaKart system with a bundled tomcat, you can follow these
instructions to startup and shutdown KonaKart:

Starting up KonaKart
The KonaKart Server can be started by executing the following commands:

c:\> %CATALINA_HOME%\bin\startkonakart.bat (Windows)

$ ${CATALINA_HOME}/bin/startkonakart.sh (Unix/Linux)

On Windows there are also shortcuts created under the KonaKart program group that can be used to:

• start the KonaKart Server

• stop the KonaKart Server

• launch the KonaKart application in your default browser

• launch the KonaKart Administration application in your default browser

http://localhost:8780/konakart/
http://localhost:8780/konakart/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakart/
http://localhost:8780/konakart/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakartadmin/

Installation

38

• uninstall KonaKart

Shutting down KonaKart
KonaKart can be shut down by executing the following command:

c:\> %CATALINA_HOME%\bin\stopkonakart.bat (Windows)

$ ${CATALINA_HOME}/bin/stopkonakart.sh (Unix/Linux)

On Windows a shortcut is created under the KonaKart program group that can be used to shut down the
KonaKart server.

Setting up KonaKart as a Windows Service
You can run KonaKart as a Windows Service if you wish. A special service.bat file is provided (in the
KonaKart/bin directory) to make the installation and removal of KonaKart as a service extremely straight-
forward.

To install KonaKart as a service run:

REM ---
REM To install KonaKart as a Windows Service
REM ---

C:\KonaKart\bin>service install
Installing the service 'KonaKart' ...
Using CATALINA_HOME: "C:\KonaKart"
Using CATALINA_BASE: "C:\KonaKart"
Using JAVA_HOME: "C:\Program Files\Java\jdk1.7.0_65"
Using JRE_HOME: "C:\Program Files\Java\jdk1.7.0_65\jre"
Using JVM: "C:\Program Files\Java\jdk1.7.0_65\jre\bin\server\jvm.dll"
The service 'KonaKart' has been installed.

To remove KonaKart as a service run:

REM ---
REM To remove KonaKart as a Windows Service
REM ---

C:\KonaKart\bin>service remove KonaKart
The service 'KonaKart' has been removed

Note that the tomcat8.exe provided in the bin directory is a 64' executable. This needs to work with a 64'
version of Java (a 64' version of the jvm.dll). If you do not have a 64' version of java you can replace the
tomcat8.exe with a 32' version and use the 32' version of java. You can use the supplied tomcat8w.exe
client tool to modify the system properties for your service.

To configure KonaKart as a service run:

REM ---
REM To configure KonaKart as a Windows Service
REM ---

C:\KonaKart\bin>tomcat8w //ES/KonaKart

Installation

39

Note that you may need to configure a compatible jvm.dll and suitable memory settings for your environ-
ment. If the service fails to start or runs out of memory these are signs that you need to review the service
configuration.

Default Admin App Credentials
Three users are created with different roles assigned.

Username Password Roles

admin@konakart.com princess KonaKart Super-User

doe@konakart.com password Sample User

cat@konakart.com princess KonaKart Catalog Maintainer

order@konakart.com princess KonaKart Order and Customer Manager

Choose new usernames and passwords to secure the KonaKart Administration Application at the earliest
opportunity.

The default users and roles are set up as examples of typical configurations of the role-based security
system. You may wish to add new Admin users or adjust some of the roles as you see fit. The three users
above should give you a few ideas about how the system can be configured.

The three users above are defined as "Admin Users". Note that "Admin Users" can actually log in to the
KonaKart store using the same credentials. It doesn't work the other way around however: "Non Admin
Users" cannot log into the Admin Application.

Although it's not recommended, it is possible to disable security completely if you wish. To configure
this, see the comments inside the konakartadmin.properties file which can be found under the konakart
installation directory at:

webapps\konakartadmin\WEB-INF\classes\konakartadmin.properties

(There are a number of additional configuration options that you can adjust to modify the behaviour of
the KonaKart Administration Application with respect to security - please refer to the comments in in the
above properties file for details).

Admin Password Validation

Admin passwords can be validated against a set of configurable rules defined in the
konakartadmin.properties file. The options for password validation are as follows:

Installation

40

Min/Max length for Admin Passwords
#(set min password length for Admin app to match - default also 8)

konakart.password.minimumChars = 8
konakart.password.maximumChars = 20

An upper case character is any character in A..Z
konakart.password.mustContainUpperCase = true

A lower case character is any character in a..z
konakart.password.mustContainLowerCase = true

A numeric character is any character in 0..9
konakart.password.mustContainNumeric = true

A "special" character is any character that is not a..z, A..Z, or 0..9
konakart.password.mustContainSpecialChar = true

When a password is changed the new one can't be the same as any of the previous N
Set to -1 to not carry out this check
konakart.password.mustDifferFromLastNPasswords = 4

Login will not be successful if the password has expired
Admin App users will be forced to change their password if it has expired
Set to -1 if you don't ever want passwords to expire
konakart.password.expiryDays = 90

Note that from the 7.3.0.0 release of KonaKart the Admin passwords will, by default, expire after 90 days.
If you do not want this behaviour, modify the konakart.password.expiryDays property as required.

If an Admin App user attempts to log in with a password that has expired a dialog box will appear which
allows the user to change that password.

An Admin App user can use the Change Password option when inside the Admin App to change his
password at any time.

Remember that the admin usernames may be used in other areas in the KonaKart system (eg. for quartz
jobs) so remember that these passwords can also expire according to the same rules as for Admin App users.

Super User
A "Super User" must be an Admin User with a role that has the super_user indicator set.

Since the "Super User" has privileges to change all the configuration settings in a KonaKart store, you
must guard these credentials carefully.

Ensure that you change the password of the "Super User" account(s) as required by your Site Security
policy for highly-privileged accounts.

Installation Notes for Databases
Defining the Database Parameters

You define the database parameters in two configuration files underneath your konakart installation di-
rectory at:

webapps\konakart\WEB-INF\classes\konakart.properties
 and
webapps\konakartadmin\WEB-INF\classes\konakartadmin.properties

Installation

41

(Therefore, the default on Windows will be at C:\KonaKart\webapps\konakart\WEB-INF\class-
es\konakart.properties).

Inside these files you will find: (the url parameter is broken into two lines for readability only - you should
keep it on one line)

D A T A B A S E P R O P E R T I E S
Database Connection Parameters Set by Installer on 20-Jan-2009

torque.applicationRoot = .

torque.database.default = store1

torque.database.store1.adapter = mysql
torque.dsfactory.store1.connection.driver = com.mysql.jdbc.Driver
torque.dsfactory.store1.connection.url =
 jdbc:mysql://localhost:3306/store1?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.store1.connection.user = fruit
torque.dsfactory.store1.connection.password = secret

Leave the torque.database.default equal to store1.

You need to set the five parameters appropriate for your environment:

• torque.database.store1.adapter (either "mysql", "oracle", "db2net", "mssql" "postgresql")

• torque.dsfactory.store1.connection.driver (All JDBC drivers for the supported databases are on the de-
fault classpath)

• torque.dsfactory.store1.connection.url (keep the value on the same line after the equals sign)

• torque.dsfactory.store1.connection.user

• torque.dsfactory.store1.connection.password

Encrypting the Database Parameters
If you wish you can encrypt the database credentials in the KonaKart properties files by using the Cre-
atePassword utility that is provided in the Enterprise Extensions.

You can obtain usage information for the utility by issuing the "-?" parameter as follows:

@blackburn:~/konakart/utils/createPassword: ./createPassword.sh -?
==
KonaKart Create Password Utility
==

Usage: CreatePassword
 -f properties-file - the properties file where the results
 will be written
 -k - the key of the property to encrypt
 -p new-value - the new-value to encrypt (typically,
 this will be the username or password)
 [-en file encoding] - file encoding (default is ISO-8859-1)
 [-ce console encoding] - console encoding (default is utf-8)
 [-d] - outputs debug information
 [-?] - shows this usage information

A ReadMe.txt file is provided in the createPassword directory with instructions on how to use the utility.

Installation

42

After running the utility you end up with an encrypted password in the specified properties along with an
associated encryption key.

KonaKart itself has been modified to recognise and decrypt these encrypted passwords by using the asso-
ciated encryption keys.

If you create the encrypted passwords for copying into another properties file elsewhere, always remember
that the encrypted database password needs its associated encryption key - so remember to copy both
properties! These associated encryption key values are written on the line following the property itself so
they are easy to locate.

If you specify the "-p new-value" parameter the utility will encrypt the specified "new-value". If you do
not specify the "-p new-value" parameter at all, the utility will encrypt the current value of the property.

Note that it is also possible to encrypt the database username in exactly the same way as the password.
KonaKart will also handle encrypted usernames in the properties files.

Defining the Database Parameters - Using JNDI
It is also possible to define your data source using JNDI. (For various optional configurations not covered
here please refer to the Torque Database Configuration documentation on the Apache site.)

In this example Torque is configured to create a JNDI Data Source and deploy it into JNDI:

You would modify your konakart.properties files by commenting out the connection properties used by
the default SharedPoolDataSourceFactory factory and replace them as follows:

torque.dsfactory.store1.factory = org.apache.torque.dsfactory.JndiDataSourceFactory
torque.dsfactory.store1.jndi.path = jdbc/konakart
torque.dsfactory.store1.jndi.ttl = 60000
torque.dsfactory.store1.datasource.classname = org.apache.commons.dbcp.BasicDataSource

torque.database.store1.adapter = mysql

torque.dsfactory.store1.jndi.java.naming.factory.initial = \
 org.apache.naming.java.javaURLContextFactory

torque.dsfactory.store1.datasource.driverClassName = com.mysql.jdbc.Driver
torque.dsfactory.store1.datasource.url = \
 jdbc:mysql://localhost:3306/store1?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.store1.datasource.username = fruit
torque.dsfactory.store1.datasource.password = secret

#For JNDI you also need to comment out the following line (as it has been replaced above):
#torque.dsfactory.store1.factory=org.apache.torque.dsfactory.SharedPoolDataSourceFactory

In this example Tomcat (v7.0.54) is configured to create a JNDI Data Source and deploy it into JNDI and
the konakart.properties definition binds to that existing data source: (Note that different definitions will
be required for other application servers so refer to the documentation on those for detailed configuration
specifications).

In conf/context.xml:

<Resource name="jdbc/villa1" auth="Container" type="javax.sql.DataSource"
 maxActive="100" maxIdle="30" maxWait="10000"
 username="kkUser" password="fred" driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/villa1?zeroDateTimeBehavior=convertToNull&useSSL=false"
/>

Installation

43

In your konakart.properties and konakartadmin.properties files:

torque.dsfactory.store1.factory = org.apache.torque.dsfactory.JndiDataSourceFactory
torque.database.default = store1

torque.dsfactory.store1.jndi.path = java:/comp/env/jdbc/villa1
torque.dsfactory.store1.jndi.java.naming.factory.initial \
 = org.apache.naming.java.javaURLContextFactory
torque.dsfactory.store1.jndi.java.naming.factory.url.pkgs \
 = org.apache.naming
torque.dsfactory.store1.jndi.ttl = 60000

#For JNDI you also need to comment out the following line (as it has been replaced above):
#torque.dsfactory.store1.factory=org.apache.torque.dsfactory.SharedPoolDataSourceFactory

For the database definition for the BIRT reporting engine you need to leave the original connection prop-
erties either in a separate properties file or in konakartadmin.properties as follows:

Leave these for the BIRT reports

torque.dsfactory.store1.connection.driver = com.mysql.jdbc.Driver
torque.dsfactory.store1.connection.url = \
 jdbc:mysql://localhost:3306/store1?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.store1.connection.user = fruit
torque.dsfactory.store1.connection.password = secret

Note that if you chose to use a separate file, remember to add that file name to the "var dbPropsFile"
definition in the "...\webapps\birtviewer\reports\lib\konakart.rptlibrary" file.

Notes for DB2 and Oracle
In addition to the settings above, you have to set the validationQuery for DB2 and Oracle slightly differ-
ently to the others, as follows. This section is defined just below the database parameter definitions in the
two properties files (konakart.properties and konakartadmin.properties):

The SQL query that will be used to validate connections from this pool before
returning them to the caller. If specified, this query MUST be an SQL SELECT
statement that returns at least one row.
Recommended settings:
for MySQL/PostgreSQL/MS SQL use: SELECT 1
for Oracle use: SELECT 1 from dual
for DB2 use: SELECT 1 FROM sysibm.sysdummy1

torque.dsfactory.store1.pool.validationQuery=SELECT 1
#torque.dsfactory.store2.pool.validationQuery=SELECT 1

Notes for Postgresql
Note that the SQL that is optionally run at installation time uses the "DROP TABLE IF EXISTS TA-
BLE-NAME;" command. This works fine for PostgreSQL 8.2 and above (which support "IF EXISTS")
but not for earlier versions.

This is only a problem during the installation process; KonaKart performs well on versions of PostgreSQL
prior to and after 8.2. To workaround this problem, for example for PostgreSQL 8.1, you will have to edit
the database/konakart_demo.sql file and remove all the "DROP TABLE" commands then run this SQL

Installation

44

manually. In addition to modifying the "IF EXISTS" syntax you will also have to add SQL statements to
create sequences for all the SERIAL primary keys. For example, for the counter table, which is created
like this:

CREATE TABLE counter (
 counter_id SERIAL,
 startdate char(8),
 counter integer,
 PRIMARY KEY (counter_id)
);

You have to create the SEQUENCEs with these conventions:

CREATE SEQUENCE <table>_<SERIAL column>_seq

for example:

.. for the counter_id column in the counter table above, you need to create a SEQUENCE like this:

CREATE SEQUENCE counter_counter_id_seq
 INCREMENT 1
 MINVALUE 1
 MAXVALUE 9223372036854775807
 START 1
 CACHE 1;

Another, preferable, alternative is to update to the latest version of PostgreSQL and run the standard GUI
installation and have all the data loaded by the installer.

Notes for MySQL
Note that the SQL that is optionally run at installation time uses the "DROP TABLE IF EXISTS" syntax.
This works fine for MySQL 5 and above, but not on MySQL 4.1.

This is only a problem during the installation process; KonaKart performs well on MySQL 4.1 (and above)
but you have to modify the konakat_demo.sql file and run it yourself manually. You have to edit the
database/konakart_demo.sql file and remove all the "DROP TABLE" commands then run this SQL man-
ually. After successfully running this SQL you will be able to run KonaKart with MySQL 4.1.

Notes for Microsoft SQL Server
The default database definition is fine if you don't need to support double-byte unicode characters in every
column. If you do need to support double-byte unicode (eg. Chinese characters) in additional columns
you will need to convert the selected varchar columns to nvarchar columns. This isn't done by default for
every textual column in the schema in order to maximise performance for those cases where the special
characters are not required. Note that the Unicode columns will take up twice as many bytes (two per
"character") as the non-Unicode columns (one per character) so you may also need to increase the size of
columns that you convert to Unicode.

From v8.1.0.0 of KonaKart the default set-up for SQL Server uses NVARCHAR for columns where it
is expected that Unicode data may be required. For example, NVARCHAR is used for columns that are
populated by users (such as first name, last name etc).

Installation

45

From v8.7.0.0 of KonaKart the default adapter ("torque.database.store1.adapter = msssql" in the database
definition in the properties files) used for SQL Server takes advantage of the "OFFSET A ROWS FETCH
NEXT B ROWS ONLY" syntax for improved paging performance. Note that this syntax was only intro-
duced for SQL Server 2012 and won't work in earlier versions of that database. For earlier versions you
must use the mssql2008 adapter (set "torque.database.store1.adapter = mssql2008" in the database defini-
tion in the properties files).

46

Chapter 6. Installation of KonaKart
Enterprise Extensions

This chapter explains how to install the KonaKart Enterprise Extensions.

Please read this section carefully before attempting to install the Enterprise Extensions.

Before You Begin
The KonaKart Enterprise Extensions are installed "on top of" a standard Community Edition installation
of KonaKart. Therefore, before you begin, ensure that you have installed KonaKart Community Edition
successfully.

The Enterprise Extensions require a Community Edition installation of the same version. Therefore, if you
are using an earlier version of KonaKart, you will need to upgrade to the appropriate Community Edition
version before attempting an installation of the Enterprise Extensions. There are database upgrade scripts
available to help you migrate up to new versions of KonaKart - see the KonaKart installation for details.

Ensure that KonaKart has been stopped before you start the installation process.

Ensure that you have backed up your existing KonaKart data before proceeding. This is a critical step
before any upgrade or installation of KonaKart.

There are no additional platform requirements for the Enterprise Extensions - so if your Community Edi-
tion of KonaKart is running successfully on your particular platform, you can have confidence that the
Enterprise Extensions will also work.

Licensing
You will need a valid license to run the Enterprise Extensions. You need to obtain a license owner code
and a license key from KonaKart then enter this in the Licensing Panel of the KonaKart Administration
Application. The key will have an expiry date that will be displayed on the Licensing Panel.

Pre-requisites
The only pre-requisite is:

• A successfully installed KonaKart Community Edition

Create a Database
You will already have created a database for your Community Edition installation which should be working
successfully in the standard single-store mode.

Note that when this section of the guide talks about a "database" what it means is a defined set of tables
for a defined user and password. Different database suppliers implement this separation differently but so
long as you set up your database so that your defined user can create and access his own tables, you can
set up your database as you like. In some cases you may wish to load the KonaKart tables in an existing
schema for ease of integration to other applications. So long as there are no database object (tables names
etc) conflicts, this is fine.

Now you have to consider whether or not you need a new database for the Enterprise Extensions. The
KonaKart Engine Mode you require will affect what databases you will have to create.

Installation of KonaKart
Enterprise Extensions

47

• Single Store Mode

No new databases are required. The original database set up for your existing Community Edition will
be used.

• Multi-Store Shared DB Mode

No new databases are required. All new stores will use the existing Community Edition database.

• Multi-Store Non-Shared DB Mode

A new database ("schema", "user" etc. - see above) is required for every new store. The KonaKart
Enterprise Extensions installation only supports the population of a second store (called "store2"). If
you need to set up additional stores in this mode you will have to create additional databases for those
and configure the konakart properties files manually. This is easy to do by following the examples that
the Enterprise Extensions installation creates for "store1" and "store2".

You will need to populate these newly created databases (that is, databases you create after "store2"
which is populated by the installer). Populate them using the konakart_demo.sql SQL script which can
be found for all supported databases under the database directory under your KonaKart installation
directory.

Installing Enterprise Extensions
Use of the KonaKart Enterprise Extensions requires that you first sign an "End User License Agreement".
Please see the KonaKart website for further details.

Once you have signed the license agreement you can proceed to install the Enterprise Extensions.

Note that if the GUI or silent installers do not work on your platform you should download the zip version
of KonaKart and follow the manual installation instructions.

Take Careful Note: The installation can be configured to execute SQL commands that will change data
in your database. Ensure that you have saved a backup of your database before you begin the installation
just in case you have to revert.

Installing KonaKart Enterprise Extensions on Windows
Run the set-up program that executes a graphical installation wizard - see Graphical Installation Wizard
below. (You can use the "Silent Mode" installation if you prefer, but the graphical version is probably
easier if you're installing for the first time).

Installing KonaKart Enterprise Extensions on Unix/Linux
Create a terminal session on your machine and enter the following: (You may prefer to use commands to
do the same thing from your X-desktop if you have one installed).

$# (replace 3.2.0.0 with the version you wish to install)
$ chmod +x KonaKart-Enterprise-3.2.0.0-Linux-Install

If you have a graphical environment on your Linux/Unix machine you will be able to run the GUI. In
which case see the Graphical Installation Wizard below (identical steps to the Windows installation).

If you don't have a graphical environment you will see this warning message:

Installation of KonaKart
Enterprise Extensions

48

../../src/programlistings/PL_graphical_env.xml

Silent Mode Installations
When running in "silent" (-S) (or "unattended") mode you are able to specify configuration parameters
on the command line, for example:

$./KonaKart-Enterprise-8.1.0.0-Linux-Install -S \
 -DDatabaseType mysql \
 -DDatabaseDriver com.mysql.jdbc.Driver \
 -DSharedCustomers True \
 -DEngineMode 2 \
 -DLoadDB 1 \
 -DJavaJRE "/usr/lib/jvm/java-7-sun/"

Note that by default the database tables are not created or populated. If you want the tables created and
populated you need to set the LoadDB parameter to 1.

Silent Mode Parameters
The following parameters can be added to the command line, as in the example above, to specify default
values for KonaKart at installation time:

Note that the database user, password and URL are only required when you need to define a new database
(for example when creating a Multi-Store Multi-Database installation - which is Engine Mode 1).

(Engine mode 0 is for Single Store. Engine mode 1 is Multi-Store, Multi-DB. Engine Mode 2 is Mul-
ti-Store, Single-DB).

Parameter Default Value Explanation

DatabaseType mysql mysql, postgresql, db2net, or-
acle, mssql

DatabaseUrl jdbc:mysql://
localhost:3306/db-
name?zeroDateTimeBehavior=convertToNull
&useSSL=false (on one line)

Database URL

DatabaseUsername root Database User's Username

DatabasePassword Database User's Password

DatabaseDriver com.mysql.jdbc.Driver Database Driver

mssqlDBO dbo Database Owner (only used
by MS SQL Server)

InstallationDir Windows: C:\KonaKart

*nix (as root): /usr/local

*nix (as user): ~/konakart

Installation Directory

LoadDB 0 1=Load DB

0=Do not Load DB

JavaJRE The Java runtime location

EngineMode 0 KonaKart Engine Mode (0,1
or 2)

Installation of KonaKart
Enterprise Extensions

49

SharedCustomers True Share Customers (true or
false)

SharedProducts False Share Products (true or false)

SharedCategories False Share Categories (true or
false)

Note that currently if you share Categories you must also share Products.

Graphical Installation Wizard
This shows a typical installation that uses the wizard:

Either double-click on the installation setup program (either KonaKart-Enterprise-3.2.0.0-Win-
dows-Setup.exe on Windows, or KonaKart-Enterprise-3.2.0.0-Linux-Install on Linux - or respective later
version numbers) or run it from a command shell. You are first presented with this small window which
allows you to confirm that you wish to proceed with the installation:

Click on Yes to continue to:

Installation of KonaKart
Enterprise Extensions

50

Check that you have the correct version number and click on next to get to the next screen. Note in pass-
ing the email address for support questions. Please contact us and / or search the forum if you have any
difficulties at all with the installation and we will endeavour to help you as soon as possible.

Please read the license agreement carefully and if you are happy to do so under the terms of the agreement,
click on the "I accept the terms of the license agreement" bullet and click next to continue. If you are not
prepared to accept that license agreement please quit the installation at this point and delete all copies of
the software.

Click on next to reach:

Installation of KonaKart
Enterprise Extensions

51

This is where you specify where you previously installed the Community Edition of KonaKart. On Win-
dows this defaults to "C:\Program Files\", on Linux this is the user's home directory (if the user is not root)
or "/usr/local" (if the user is root). This can be specified in the silent mode of on the command line of the
GUI version using -DInstallationDir.

The location specified must match the location of your Community Edition installation.

On clicking next you reach:

Installation of KonaKart
Enterprise Extensions

52

Here you have to confirm or specify the location of the java runtime environment. The wizard will try to
find this for you but it is not always successful. In the cases where it isn't successful you will have to enter
the location manually. If you have installed java in the default location or it appears in your environment's
path, the wizard should find it for you.

Click on next to get to:

Installation of KonaKart
Enterprise Extensions

53

This is where you define KonaKart Engine Mode. There are three choices here:

• Single Store (Engine Mode 0)

This is similar to the way the Community Edition works. There is one database with one store.

• Multi-Store Multiple Databases (Engine Mode 1)

In this mode, one instance of KonaKart manages multiple stores with the data for each store being held
in a separate database. This mode offers some security advantages (database credentials are not shared
between stores) but is more effort to maintain as you cannot dynamically-create new stores.

• Multi-Store Single Database (Engine Mode 2)

In Engine Mode 2 one KonaKart instance manages multiple stores in one database. This is a flexible
mode that allows the creation of new stores dynamically. Within this mode there are additional options
to define which KonaKart objects (products/customers) you wish to "share" between stores:

• Shared Products Mode

In this mode products may be shared amongst the different stores in the KonaKart "mall". Therefore, a
product can be made available for sale in any subset of the stores in the mall in Shared Products Mode.

If some subset of the products are shared between stores, this mode can be advantageous because
there is only one copy of each product so maintenance of products can be reduced. If you update the
description for a shared product, this description will be available in all stores that share that product.

• Non-Shared Products Mode

Installation of KonaKart
Enterprise Extensions

54

In this mode, the products are not sharable between the individual stores in the mall. The products
must be maintained independently for each store.

• Shared Categories Mode

In this mode categories may be shared amongst the different stores in the KonaKart "mall". To use
Shared Categories you must also have Shared Products.

If categories are shared between stores, this mode can be advantageous because there is only one
copy of each category so maintenance can be reduced.

• Non-Shared Categories Mode

In this mode, the categories are not sharable between the individual stores in the mall. The categories
must be maintained independently for each store but it allows different categories for each store. In
Non-Shared Categories Mode it's possible to have Shared Products OR Non-Shared Products.

• Shared Customers Mode

In this mode customers are shared amongst the different stores in the KonaKart "mall". Therefore, a
customer who has registered an account with one of the stores in the KonaKart instance, can use the
same credentials to log on to any other store managed by the KonaKart instance.

• Non-Shared Customers Mode

In this mode, one instance of KonaKart manages multiple stores with the data for each store being
held in a separate database. This mode offers some security advantages (database credentials are not
shared between stores) but, if you need to create a large number of stores, requires more effort to
maintain as you cannot dynamically-create new stores.

• Supported Shared Modes

• Nothing Shared

• Customers Shared

• Products Shared

• Customers and Products Shared

• Products and Categories Shared

• Customers and Products and Categories Shared

The next screen shown is dependent on which Engine Mode you select. If you select Multi-Store Single
DB, you will be presented with this screen, offering you the choice of having "Shared Catgeories" or "Non-
Shared Categories":

Installation of KonaKart
Enterprise Extensions

55

If you click the checkbox to choose Shared Categories Mode the system will automatically use Shared
Products as well. If you do not select Shared Categories you can choose between Shared Products or non-
Shared Products on the next screen:

Installation of KonaKart
Enterprise Extensions

56

When you click on the "Next" button you are presented with the following screen where you choose
between Shared and Non-Shared Customers:

Click the checkbox to choose Shared Customers Mode which will allow customers who register in one
of the stores in your KonaKart instance, to be able to log in to the other stores in the KonaKart instance
using the same credentials.

When you click on the "Next" button you will be back on the same path as if you'd chosen one of the other
Engine Modes on an earlier screen in the wizard.

If you had selected not to Share Products but to Share Customers the next screen will appear as follows:

Installation of KonaKart
Enterprise Extensions

57

If you had selected Shared Products Mode and Shared Customers Mode this screen would appear as fol-
lows:

Installation of KonaKart
Enterprise Extensions

58

This is your final chance to check your settings before copying the files into position. (The values shown
on the screen are dependent on the settings you have selected earlier in the wizard).

Clicking next will start the process of copying the KonaKart Enterprise Edition files into position. The
copying of the files is shown on an "Installing Files..." window but there aren't very many files so you may
find that it only flashes up for a second or two before moving forward automatically to the next screen.

The next screen in the wizard is again dependent on the selected Engine Mode.

For Single Store Mode you are taken to the very last screen in the wizard which tells you whether or not
the installation has been successful and gives you the option to restart KonaKart with the newly installed
Enterprise Extensions.

For Multi-Store Multiple DB Mode you are taken to a screen that asks for the database connection param-
eters for your second store:

After setting these parameters and clicking on the "Next" button you are taken to a database connection
test screen (as below for the Multi-Store Single Database mode)

For Multi-Store Single DB Mode you are taken to a Database Connection Test window which will check
to see whether or not it can connect to the database that your existing Community Edition installation of
KonaKart is using. This screen looks like this after a successful connection test:

Installation of KonaKart
Enterprise Extensions

59

After a successful database connection test, you are asked whether or not you want to load the database
with the new Multi-Store data. In most cases you will want to load the data, so click the checkbox on
this screen:

Installation of KonaKart
Enterprise Extensions

60

After about 10 secs (Single DB mode) or about 60 secs (Multiple DB mode) you will be presented with a
screen that will report the success or failure of the database load. (Naturally, the time it takes to complete
the database load will depend on how fast your system operates).

If there's a problem with the database load, double-check these installation instructions, check the Kon-
aKart forum for similar problems or, if you have a support contract, contact the KonaKart support team
for assistance.

After a successful installation of the KonaKart Enterprise Extensions you will be presented with the fol-
lowing screen:

If you leave the checkbox as it is (the default is checked) the wizard will re-start KonaKart with the
Enterprise Extensions, running in the Engine Mode you have chosen.

Click "Finish" to finish the installation.

Run KonaKart and KonaKartAdmin exactly as you did with the Community Edition by entering:

http://localhost:8780/konakart/ [http://localhost:8780/konakart/] or http://localhost:8780/konakartadmin/
[http://localhost:8780/konakartadmin/] in your browser, adjusting the port as necessary if you deployed
to a different port number.

Manual Installation of the Enterprise Exten-
sions

If you are installing on a platform that supports the GUI installer (Windows, Linux, Unix), it is recom-
mended that you use that. If not, but you are on a platform that supports the silent form of the installer
(again Windows, Linux, Unix), it is recommended that you use that. Otherwise, or if you have other re-
quirements, use the manual installation.

http://localhost:8780/konakart/
http://localhost:8780/konakart/
http://localhost:8780/konakartadmin/
http://localhost:8780/konakartadmin/

Installation of KonaKart
Enterprise Extensions

61

The installation work required is dependent on your target environment. Follow the guidelines for manual
installation for your target platform that are documented for the Community Edition. These instructions
will supplement those.

However you plan to install KonaKart Enterprise Extensions, it is still advisable to run through the GUI
installer if you can. The reason for this is that it will populate all the properties files for you and load your
database automatically. Once you have done this you can make WARs from the GUI-installed version of
KonaKart (details below) and deploy them elsewhere as you please.

The KonaKart Enterprise Extensions Installation section contains general KonaKart Enterprise Extensions
installation instructions (although focuses on using the GUI-driven and silent versions of the installer)
and contains important information that is also relevant for the manual installation so check this before
starting out.

In general, you need to follow all the documented installation instructions except for the "Install Enterprise
Extensions" section which explains how to use the automated GUI and Silent versions of the installation.

Perform all the documented installation instructions for:

• A Java runtime environment

• A database loaded with KonaKart tables

• A successfully working KonaKart Community Edition

For the purposes of this guide we'll use MySQL and a database named "store1" (and "store2" where ap-
plicable).

1. Copy the Enterprise Extensions files into position

Unzip the KonaKart-Enterprise-n.n.n.n.zip file for your version on top of the existing KonaKart Com-
munity edition installation. Ensure that you unzip to the home directory of the existing KonaKart in-
stallation so that all the files are loaded into the correct positions.

2. Modify the KonaKart Configuration Files

a. Set Database Parameters

Modifications should only be required if you have chosen Multi-Store Multiple Database Mode
(Engine Mode 1). For all other modes, the database parameters should already be set correctly.

Set DB name (and other database connection parameters) in konakart.properties and
konakartadmin.properties Change the string "dbname" in the URL for MySQL to the name of your
database (in this case "konakart") in the following files:

{konakart}/webapps/konakart/WEB-INF/classes/konakart.properties

{konakart}/webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties

This is documented in the "Defining the Database Parameters" section of the Community Edition
installation.

For Multi-Store Single DB Modes (Engine Mode 2) there is no difference to the database definition
required in the two properties files. However, if you are using the Multi-Store Multiple DBs Mode
(Engine Mode 1) you will need to enter database connection credentials for each of your stores. An
example of a two-store set-up is:

Installation of KonaKart
Enterprise Extensions

62

D A T A B A S E P R O P E R T I E S

torque.applicationRoot = .

torque.database.default = store1

torque.database.store1.adapter = mysql
torque.dsfactory.store1.connection.driver = com.mysql.jdbc.Driver
torque.dsfactory.store1.connection.url =
 jdbc:mysql://localhost:3306/store1?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.store1.connection.user = root
torque.dsfactory.store1.connection.password =

Enterprise Feature
torque.database.store2.adapter = mysql
torque.dsfactory.store2.connection.driver = com.mysql.jdbc.Driver
torque.dsfactory.store2.connection.url =
 jdbc:mysql://localhost:3306/store2?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.store2.connection.user = root
torque.dsfactory.store2.connection.password =

C O N N E C T I O N P O O L P R O P E R T I E S

We can leave the defaults

Using commons-dbcp

torque.dsfactory.store1.factory=org.apache.torque.dsfactory.SharedPoolDataSourceFactory
torque.dsfactory.store2.factory=org.apache.torque.dsfactory.SharedPoolDataSourceFactory

The maximum number of active connections that can be allocated from this pool at
the same time, or zero for no limit.

torque.dsfactory.store1.pool.maxActive=0
torque.dsfactory.store2.pool.maxActive=0

The maximum number of active connections that can remain idle in the pool, without
extra ones being released, or zero for no limit.

torque.dsfactory.store1.pool.maxIdle=10
torque.dsfactory.store2.pool.maxIdle=10

The maximum number of milliseconds that the pool will wait (when there are no
available connections) for a connection to be returned before throwing an exception,
or -1 to wait indefinitely.

torque.dsfactory.store1.pool.maxWait=-1
torque.dsfactory.store2.pool.maxWait=-1

The indication of whether objects will be validated before being borrowed from the
pool. If the object fails to validate, it will be dropped from the pool, and we will
attempt to borrow another.

torque.dsfactory.store1.pool.testOnBorrow=true
torque.dsfactory.store2.pool.testOnBorrow=true

The SQL query that will be used to validate connections from this pool before
returning them to the caller. If specified, this query MUST be an SQL SELECT
statement that returns at least one row.
Recommended settings:
for MySQL/PostgreSQL/MS SQL use: SELECT 1
for Oracle use: SELECT 1 from dual
for DB2 use: SELECT 1 FROM sysibm.sysdummy1

torque.dsfactory.store1.pool.validationQuery=SELECT 1
torque.dsfactory.store2.pool.validationQuery=SELECT 1

Notice how most of the Torque parameters are repeated for each store.

Installation of KonaKart
Enterprise Extensions

63

Configure the "EE" variants of the managers in konakart.properties as required:

konakart.manager.ContentMgr = com.konakart.bl.ContentMgrEE
konakart.manager.CustomerMgr = com.konakart.bl.CustomerMgrEE
konakart.manager.ExportMgr = com.konakart.bl.ExportMgrEE
konakart.manager.ProductMgr = com.konakart.bl.ProductMgrEE
konakart.manager.SecurityMgr = com.konakart.bl.SecurityMgrEE
konakart.manager.OrderMgr = com.konakart.bl.OrderMgrEE

b. konakartadmin.properties

The changes required are dependent on the chosen Engine Mode.

For Multi-Store Multiple Databases Mode (Engine Mode 1) you need to define the databases that
are used for each store. These parameters can be ignored for other Engine Modes. This is an example
of a two database setup with databases store1 and store2:

Enterprise Feature
The databases actually used in a multi store / multi database environment
The "used" database definitions must map to the Torque definitions above
The "description.*" definitions are friendly names for the Stores

konakart.databases.used = store1 store2
konakart.databases.description.store1 = Store1
konakart.databases.description.store2 = Store2

For Multi-Store Single Database Mode (Engine Mode 2) you need to define whether or not you are
operating in the Shared Customers Mode. This setting is not used for other engine modes. This is an
example of a definition for defining that you wish to use Shared Customers:

Enterprise Feature
When in multi-store single database mode, the customers can be shared between stores

konakart.customersShared = true

For Multi-Store Single Database Mode (Engine Mode 2) you also need to define whether or not you
are operating in the Shared Products Mode. This setting is not used for other engine modes. This is
an example of a definition for defining that you wish to use Shared Products:

Enterprise Feature
When in multi-store single database mode, the products can be shared between stores

konakart.productsShared = true

For Multi-Store Single Database Mode (Engine Mode 2) you also need to define whether or not you
are operating in the Shared Categories Mode. This setting is not used for other engine modes. This
is an example of a definition for defining that you wish to use Shared Categories:

Installation of KonaKart
Enterprise Extensions

64

Enterprise Feature
When in multi-store single database mode, the categories can be shared between stores

konakart.categoriesShared = true

Set the "EE" variants of the managers in konakartadmin.properties as required:

konakart.admin_manager.AdminContentMgr = com.konakartadmin.bl.AdminContentMgrEE
konakart.admin_manager.AdminCustomerMgr = com.konakartadmin.bl.AdminCustomerMgrEE
konakart.admin_manager.AdminEngineCacheMgr = com.konakartadmin.bl.AdminEngineCacheMgrEE
konakart.admin_manager.AdminFileMgr = com.konakartadmin.bl.AdminFileMgrEE
konakart.admin_manager.AdminFilterMgr = com.konakartadmin.bl.AdminFilterMgrEE
konakart.admin_manager.AdminImportMgr = com.konakartadmin.bl.AdminImportMgrEE
konakart.admin_manager.AdminOrderMgr = com.konakartadmin.bl.AdminOrderMgrEE
konakart.admin_manager.AdminProductMgr = com.konakartadmin.bl.AdminProductMgrEE
konakart.admin_manager.AdminSecurityMgr = com.konakartadmin.bl.AdminSecurityMgrEE
konakart.admin_manager.AdminServletMgr = com.konakartadmin.bl.AdminServletMgrEE
konakart.admin_manager.ExportMgr = com.konakart.bl.ExportMgrEE

c. konakartadmin_gwt.properties

Modify this file as required to set the Engine class that will be used for the Admin Application. The
file is deployed to {konakart}/webapps/konakartadmin/WEB-INF/classes/ .

The following example shows a setup where the JSON version of the Admin Engine is used:

--
KonaKart engine class used by the KonaKart Admin Application users
#
For the default engine use: com.konakartadmin.bl.KKAdmin
For the web services engine use: com.konakartadmin.ws.KKWSAdmin
For the RMI services engine use: com.konakartadmin.rmi.KKRMIAdminEng
For the JSON services engine use: com.konakartadmin.json.KKJSONAdminEng
For the JAXWS services engine use: com.konakartadmin.jws.KKJAXWSAdmin

#konakartadmin.gwt.engineclass=com.konakartadmin.bl.KKAdmin
#konakartadmin.gwt.engineclass=com.konakartadmin.ws.KKWSAdmin
#konakartadmin.gwt.engineclass=com.konakartadmin.rmi.KKRMIAdminEng

konakartadmin.gwt.engineclass=com.konakartadmin.json.KKJSONAdminEng

#konakartadmin.gwt.engineclass=com.konakartadmin.jws.KKJAXWSAdmin

d. konakart.properties

The changes required are dependent on the chosen Engine Mode.

The database parameters should be set up in the same way as you did in the konakartadmin.properties
file (see above).

For Multi-Store Multiple Databases Mode (Engine Mode 1) you need to define the databases that
are used for each store. These parameters can be ignored for other Engine Modes. This is an example
of a two database setup with databases store1 and store2:

Installation of KonaKart
Enterprise Extensions

65

Enterprise Feature
The databases actually used in a multi store / multi database environment
konakart.databases.used = store1 store2

e. Populate the Database ready for the Enterprise Extensions

This is an example of a Windows BAT file that you should run for setting up a Multi-Store Single
DB (Engine Mode 2) system. This utility also creates a second sample store (called "store2") just as
is done in the automated installation process. You need to configure the properties files (see above)
before executing this program because it needs to know the chosen configuration:

@echo off
rem
rem Set up database for KonaKart Enterprise Extensions
rem Also sets up a second sample store (store2) in the database
rem - Manual Installation Only
rem
rem Normally this is executed by the Enterprise Extensions Installation Wizard.
rem
rem Always use the Enterprise Extensions Installation Wizard in preference to
rem running this manually.
rem

set INSTALL_DIR=C:\KonaKart
set WEBAPPS_DIR=C:\KonaKart\webapps
set DBDIR=MySQL
set SHARED_CUSTOMERS=True
set SHARED_PRODUCTS=True
set SHARED_CATS=True

set CP=%WEBAPPS_DIR%\konakartadmin\WEB-INF\classes
set CP=%CP%;%WEBAPPS_DIR%\konakartadmin\WEB-INF\lib*
set CP=%CP%;%WEBAPPS_DIR%\konakart\WEB-INF\lib*

"%JAVA_HOME%\bin\java" -cp "%CP%" ^
 com.konakartadmin.utils.CreateEnterpriseDB ^
 -p "%WEBAPPS_DIR%/konakartadmin/WEB-INF/classes/konakartadmin.properties" ^
 -h "%INSTALL_DIR%" ^
 -db %DBDIR% ^
 -ps %SHARED_PRODUCTS% ^
 -cs %SHARED_CATS% ^
 -c %SHARED_CUSTOMERS%

rem
rem The "-d" parameter can be added to enable debugging. This is useful if you
rem have problems.
rem

Users created by the Enterprise Extensions In-
stallation

This section describes the users that are created by default during the standard KonaKart installations. For
more details on creating new stores and defining new users for these new stores, see the section in this
User Guide on Multi-Store Configuration .

When you install the Community Edition, the following users are automatically created:

Three users are created with different roles assigned.

Installation of KonaKart
Enterprise Extensions

66

Username Password Roles

admin@konakart.com princess KonaKart Super-User

doe@konakart.com password Sample User

cat@konakart.com princess KonaKart Catalog Maintainer

order@konakart.com princess KonaKart Order and Customer Manager

The above users remain after installing the KonaKart Enterprise Extensions but additional users are created
for use with the second store (if one of the Multi-Store Modes is chosen). The above users remain with
the same privileges they had originally and can log in to both the Application and the Admin App for
store1 as before.

In addition, if and only if, the Multi-Store Single Database with Shared Customers Mode is selected, these
users will be able to log on to the Applications for other stores managed by the KonaKart instance. Note
that only the Super User user above (admin@konakart.com) is granted privileges to log on to the Admin
App for the other stores This is the standard behavior when you opt to allow Shared Customers.

Single Store Mode
No new users are created.

Multi-Store Multiple DB Mode
If Multi-Store Multiple Databases Mode is selected, the users created in store2 match those for store1 since
the same data load is performed. In case you need to execute it manually, the SQL file executed is called
konakart_demo.sql and can be modified (carefully!) to suit local requirements. A konakart_demo.sql SQL
script file is provided for each of the supported databases under the database directory under your Kon-
aKart home directory. In Multi-Store Multiple Databases Mode there is no support for shared customers
so the users created are only authorized to log in to their own stores.

Multi-Store Single DB Mode with Shared Customers
If Multi-Store Single Database Mode with Shared Customers is selected, the following user is created:

One user is created with the Store Administrator's role.

Username Password Roles

store2-admin@konakart.com princess KonaKart Store Administrator

By default the "Store Administrator" role allows the created user to administer the more business-related
aspects of a specific store, but not the configuration settings. By "business-related" it means the store
administrator user can maintain the products, manufacturers, categories (etc) and administer orders. The
"Store Administrator" can log on to the application of any the stores managed by the KonaKart instance,
but is not granted any privileges to administer any store other than the one assigned (which is store2 in
this case).

In this mode there is no need to create a new "Super User" user as the original "Super User" created for
the Community Edition, called admin@konakart.com , has sufficient privileges to Administer all other
stores in a Shared Customer environment. Note the power of the "Super User"! Ensure that you change
all the user passwords as soon as possible and deny access to the "Super User" account to all who who
should not be able to use it.

Installation of KonaKart
Enterprise Extensions

67

Multi-Store Single DB Mode NON-Shared Customers
If Multi-Store Single Database Mode without Shared Customers is selected, the following users are created
by the installer:

One user is created with the Store Administrator's role.

Username Password Roles

store2-admin@konakart.com princess KonaKart Store Administrator

store2-super@konakart.com princess KonaKart Store Super User

store2-doe@konakart.com password Sample User

store2-cat@konakart.com princess KonaKart Catalog Maintainer

store2-order@konakart.com princess KonaKart Order and Customer Manager

By default the "Store Administrator" role allows the created user to administer the more business-related
aspects of a store, but not the configuration settings. By "business-related" it means the store administra-
tor user can maintain the products, manufacturers, categories (etc) and administer orders. This user can
administer only the store he has been assigned and no others, because he isn't a "Super User".

In this non-customer shared mode, the "Store Administrator" cannot log in to the application of any other
store (than the one that he is assigned to) managed by the KonaKart instance because the users aren't shared.

Also, in this mode, a new "Super User" user (store2-super@konakart.com) is created for administering the
more-technical configuration settings of the new store. Note that this new user will have broad Super-User
privileges by default. By default, this user will be able to log on and administer all of stores in the mall
by virtue of being a "Super User". Some customers may decide not to disclose the credentials of this
newly-created "Super User" account, whereas others may decide to change the role that is assigned to this
"Super User". You can define the role to be assigned in the Multi-Store Configuration - see details on
configuring Multi-Store.

68

Chapter 7. Installation of KonaKart on
other Application Servers

By default, KonaKart is provided with Tomcat, but it is actually designed to be usable on any compliant
J2EE Application Server. This section provides some notes to help you install and configure KonaKart on
a selection of other leading Application Servers.

Most Application Servers give users a variety of choices for application deployment. Some like to import
EARs, others prefer WAR files. Some Application Servers accept "exploded" directory structures as the
source for deployment whereas others require "un-exploded" EAR or WAR files.

There is nothing in KonaKart that should prevent you from choosing the deployment system you prefer
for your chosen Application Server.

In most cases the best way to begin is to run a complete installation of KonaKart from the GUI installer
(or silent mode if you prefer), verifying and populating the database as part of this process. It can save
you some time if you select the port number the target Application Server will use as the KonaKart port
number during this installation process so that there is less configuration to do later on (for example, if
your target Application Server is BEA WebLogic, you would choose to install KonaKart at port 7001).

Once KonaKart is installed you have the choice to use the expanded webapps for deployment or use the
included ant build files to produce WAR and EAR files as you require.

In most cases, the easiest approach will be to use the ant scripts to produce an EAR file containing the
3 KonaKart webapps (konakart , konakartadmin and birtviewer). It can be advantageous to produce an
EAR file as the whole application can be deployed in one go, rather than 3 separate WAR installations
(which is, of course, perfectly possible, and may even be more-appropriate in some situations - see JBoss
notes below).

To produce the EAR, (and the 3 WARs as a by-product), run the " ant make_ear " command in the "
custom " directory of your KonaKart installation as in the example below:

For WebLogic add the "-Dweblogic=true" argument so that it builds a slightly-modified birtviewer War
file that is compatible with WebLogic.

Installation of KonaKart on
other Application Servers

69

C:\KonaKart\custom>.\bin\ant make_ear
Buildfile: build.xml

clean_wars:
 [echo] Cleanup WARs...
 [echo] Cleanup EARs...

make_wars:
 [mkdir] Created dir: C:\KonaKart\custom\war
 [echo] Create konakart.war
 [war] Building war: C:\KonaKart\custom\war\konakart.war
 [echo] Create konakartadmin.war
 [war] Building war: C:\KonaKart\custom\war\konakartadmin.war
 [echo] Create birtviewer.war
 [war] Building war: C:\KonaKart\custom\war\birtviewer.war

make_ear:
 [mkdir] Created dir: C:\KonaKart\custom\ear
 [echo] Create konakart.ear
 [ear] Building ear: C:\KonaKart\custom\ear\konakart.ear
 [echo] Create exploded version of konakart.ear
 [mkdir] Created dir: C:\KonaKart\custom\konakart.ear
 [unzip] Expanding: C:\KonaKart\custom\ear\konakart.ear into
 C:\KonaKart\custom\konakart.ear
 [move] Moving 1 file to C:\KonaKart\custom\konakart.ear
 [move] Moving 1 file to C:\KonaKart\custom\konakart.ear
 [move] Moving 1 file to C:\KonaKart\custom\konakart.ear
 [unzip] Expanding: C:\KonaKart\custom\konakart.ear\birtviewer.war.tmp into
 C:\KonaKart\custom\konakart.ear\birtviewer.war
 [unzip] Expanding: C:\KonaKart\custom\konakart.ear\konakart.war.tmp into
 C:\KonaKart\custom\konakart.ear\konakart.war
 [unzip] Expanding: C:\KonaKart\custom\konakart.ear\konakartadmin.war.tmp into
 C:\KonaKart\custom\konakart.ear\konakartadmin.war

BUILD SUCCESSFUL
Total time: 1 minute 0 seconds

In the following sections you will find guidance notes for installing KonaKart on selected Application
Servers.

Note that from KonaKart v5.8.0.0 a java 1.6 (or later) runtime environment is required. Therefore Kon-
aKart v5.8.0.0 will not run on App Servers which cannot support java 1.6 (or later) applications.

Note that from KonaKart v8.1.0.0 a java 1.7 (or later) runtime environment is required. Therefore Kon-
aKart v8.1.0.0 will not run on App Servers which cannot support java 1.7 (or later) applications.

General Notes on Installing KonaKart on Appli-
cation Servers

These general notes apply to installations on most application servers. Note any specific exceptions below
in the sections dedicated to each Application Server.

In most cases the SOAP interfaces of KonaKart are disabled when the WARs are created for the application
servers. It may be possible to configure the SOAP (Axis 1.4 and JAXWS) interfaces to work in the other
application servers but it's not a supported configuration.

Edit Config Files - Admin Application Functionality
In the KonaKart Admin Application there is a feature that allows you to define a set of files to view and
edit from the Admin App. The files that are made available to view and edit are defined in the XML file
called konakart_config_files.xml . This control file must be available on the classpath of the KonaKart

Installation of KonaKart on
other Application Servers

70

Admin Application. In the default installation that includes Tomcat, this file is set up with relative paths
to various properties files. This is hardly ever appropriate for other application servers so if this feature is
required, the control file must be updated to suite your environment.

Rather than use relative pathnames for these files, it is often easier to use full path names.

Some examples of file references are: (note that on Windows you must use forward rather than backward
slashes)

WebSphere:

<file>
 <displayName>KonaKart Properties File</displayName>
 <fileName>
 C:/Program Files/IBM/WebSphere/AppServer/profiles/AppSrv01/
 installedApps/swindonNode01Cell/KonaKart.ear/konakart.war/WEB-INF/
 classes/konakart.properties
 </fileName>
</file>

(file name shown split over 3 lines but leave it on one line in the file)

WebSphere Community Edition:

<file>
 <displayName>KonaKart Properties File</displayName>
 <fileName>
 C:/Program Files/IBM/WebSphere/AppServerCommunityEdition/repository/default/
 Application_KonaKart/1216389520400/Application_KonaKart-1216389520400.car/
 konakart.war/WEB-INF/classes/konakart.properties
 </fileName>
</file>

(file name shown split over multiple lines but leave it on one line in the file)

JBoss: (for exploded deployments only)

<file>
 <displayName>KonaKart Properties File</displayName>
 <fileName>
 C:/jboss-4.2.2.GA/server/default/deploy/konakart.war/WEB-INF/
 classes/konakart.properties
 </fileName>
</file>

(file name shown split over 2 lines but leave it on one line in the file)

WebLogic: (for exploded deployments only)

<file>
 <displayName>KonaKart Properties File</displayName>
 <fileName>
 C:/KonaKart/custom/konakart.ear/konakart.war/
 WEB-INF/classes/konakart.properties
 </fileName>
</file>

(file name shown split over 2 lines but leave it on one line in the file)

Installation of KonaKart on
other Application Servers

71

Glassfish:

<file>
 <displayName>KonaKart Properties File</displayName>
 <fileName>
 C:/glassfish/domains/domain1/applications/j2ee-apps/konakart/
 konakart_war/WEB-INF/classes/konakart.properties
 </fileName>
</file>

(file name shown split over 2 lines but leave it on one line in the file)

Email Properties File
If you use additional email properties (most people will not need to) you place these in a properties file
called konakart_mail.properties . You have to define this filename in the KonaKart Admin Application
under the Configuration > Email Options panel. You have to specify the full path name here (for the
KonaKart mail properties filename field.

Some examples of mail properties file references are: (note that on Windows you must use forward rather
than backward slashes)

Tomcat Default:

C:/KonaKart/conf/konakart_mail.properties

JBoss:

C:/jboss-4.2.2.GA/server/default/conf/konakart_mail.properties

Reporting Port Numbers and Report Location
1. Set the port number for reporting as required (set these using the KonaKart Admin App under the

Configuration > Reports section). Use the standard HTTP port for your application server, eg. 8080
(Tomcat/JBoss), 7001 (WebLogic), 9080 (WebSphere) etc..

2. Set the location (the " Report definitions base path ") of the reports to your chosen location. This can be
anywhere on the disk that's accessible to your application server. This could be the location where you
first installed KonaKart in order to produce the EAR files. If so, you can leave the default for this field.

Configuring Parameters for Images
1. Set the port number for the image base URL as required (set these using the KonaKart Admin App

under the Configuration > Images section). Use the standard HTTP port for your application server,
eg. 8080 (Tomcat/JBoss), 7001 (WebLogic), 9080 (WebSphere) etc..

2. In a similar fashion to the above, set the image base path to the appropriate location for your environ-
ment. Typically, this will be the images directory under your konakart webapp. Some examples:

Tomcat Default:

C:/KonaKart/conf/konakart_mail.properties

JBoss:

C:/jboss-4.2.2.GA/server/default/deploy/konakart.war/images

Installation of KonaKart on
other Application Servers

72

Setting the Optimum Memory Values
If you find that you run out of memory you will need to define more memory for your Application Server.
This can be done in a variety of ways, so check the documentation for your chosen Application Server
for setting memory flags.

When setting memory settings by defining values for CATALINA_OPTS or JAVA_OPTS you might need
to set values such as these:

-XX:PermSize=256m -XX:MaxPermSize=256m -Xms512m -Xmx1024m

(You may find you need different settings for your particular environment).

Some Application Servers allow you to define JVM parameters from within their Administrative Consoles.
An example of this is WebSphere where you need to navigate to Server > Server Infrastructure > Java &
Process Management > Process Defn then set your values for Maximum Heap Size (eg. 1024) and Initial
Heap Size (eg. 512). (You may need require different settings to suit your own environment).

Installing KonaKart on BEA's WebLogic Appli-
cation Server

Verified on WebLogic 10.0 MP1 on Windows

Verified on WebLogic 10.3.5.0 (11g) on Windows (with exploded EAR files)

Refer to the general notes for installing KonaKart on all Application Servers .

Installation
Use the deployment method of choice. If you want to be able to edit KonaKart configuration files (eg
konakart.properties) without having to re-deploy the application you will have to install using exploded
directories. If you don't need this functionality, you can simply deploy KonaKart as an EAR file.

When using the custom ANT command to produce the EAR for WebLogic add the -Dweblogic=true
argument so that it creates a compatible birtviewer.war for WebLogic.

Deploying using WebLogic's Install Application Assistant in the Administration Console is particularly
straightforward but WebLogic has a variety of deployment options you could also use (such as the autode-
ploy facility or their command-line driven deploy tool).

Follow these steps when using the Administration Console for deployment: (as applicable for your version
of WebLogic)

"Lock and Edit" then choose "Install", then browse to your EAR file (for non-exploded deployments) or
to the directory (a directory called konakart.ear under the custom directory of your KonaKart installation)
where your exploded version of the EAR is located (for exploded deployments).

If you used the ant build file to create the EAR file and the exploded EAR file these will be located under
your KonaKart installation directory at:

1. /custom/ear/konakart.ear (the non-exploded EAR file)

2. /custom/konakart.ear (the exploded EAR file directory)

Ensure that your EAR is on a directory path that does not contain spaces (such as with "Program Files"
on Windows).

Installation of KonaKart on
other Application Servers

73

Once selected, proceed through the wizard. For "Targeting style" choose "Install this deployment as an
application". Accept all other defaults, click on "Finish", then finally click on "Activate Changes" when
successful.

Eventually, you should see the message "All changes have been activated. No restarts are necessary." and
there should be no errors in the WebLogic log.

Next, click on the checkbox next to konakart and start the application by choosing "Start Servicing All
Requests" from the "Start" dropdown list. Confirm this action on the next screen and check theWebLogic
log for any errors.

Configuration
1. Set the port numbers (7001) for the reporting configuration variables as required (set these using the

KonaKart Admin App under the Configuration > Reports section)

2. To set-up KonaKart to use SSL you need for set it up in the KonaKart Admin App and the BEA We-
bLogc Administration Console as follows:

Set the HTTP (7001) and HTTPS (7002) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section)

To enable SSL in WebLogic first click the 'Lock and Edit' button under the Change Center. Under the
"Domain Structure" navigate through "Environment" then "Servers" then click on your server listed
under the "Servers" table on the right hand side. (The default server will be called "AdminServer").

On the General Configurations panel, check the "SSL Listen Port Enabled" checkbox. Leave the port
number for SSL as 7002 and ensure this matches the port number specified above in the KonaKart
Admin Application.

Click on the "Save" button, then click on "Activate Changes" to save these changes in your WebLogic
environment.

3. Set the memory parameters to suit your environment. Set your memory arguments inside the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (Unix/Linux) files.

Set a new USER_MEM_ARGS environment variable with your chosen memory flags, or modify the
existing MEM_FLAGS environment variable assignment to suit your requirements. Take note of the
code that follows the assignment to MEM_FLAGS - you might find that then your values are overrid-
den.

Restart WebLogic for the changes to take effect and double-check the beginning of the WebLogic log
to see what memory settings you actually achieved!

Installing KonaKart on JBoss or Wildfly
Verified on JBoss 5.1.0 GA through JBoss 7.1.1. Verified on Wildfly 8.1.0 through Wildfly 10.0.0

Refer to the general notes for installing KonaKart on all Application Servers .

Installation
For JBoss and Wildfly we recommend that you deploy KonaKart as an exploded EAR file, or exploded
WAR files so that you can guarantee the full path names of the various configuration files. This is useful
so that you can define these full path names and subsequently edit these files from within the comfort of
the KonaKart Admin Application.

Installation of KonaKart on
other Application Servers

74

Use the ANT targets: "make_ear -Djboss=true" or "make_ear -Dwildfly=true" to produce your EAR for
JBoss and Wildfly respectively.

The JAXWS interfaces are disabled under JBoss and Wildfly.

1. The KonaKart applications can be deployed in the 'server configuration' directory of your choice. In this
example we will use the 'default' configuration. In this example we also assume a Windows installation
in the C:\jboss-4.2.2.GA directory.

2. Here we follow the procedure for the 3 WAR installation (but for the exploded EAR procedure follow
an almost identical path). Create three new directories under C:\jboss-4.2.2.GA\server\default\deploy :

1. konakart.war

2. konakartadmin.war

3. birtviewer.war

3. Expand konakart.war into the konakart.war directory and do the same for konakartadmin and birtviewer.

4. Start JBoss.

5. Check the JBoss log to ensure that there are no errors.

If you do not deploy as 3 separate exploded WAR files, JBoss generates its own temporary directories
to hold these deployments. This wouldn't be so bad except that JBoss creates new temporary directories
every time you restart JBoss.

It's still possible to deploy KonaKart into JBoss using an "unexploded" konakart.ear file but you will not be
able to use the "Edit Config Files" functionality in the KonaKart Admin Application. If you wish to deploy
using the EAR file you simply drop it into the deploy directory of your JBoss installation for automatic
deployment. Check your JBoss server log; there should be no errors during this deployment.

Configuration
1. Set the port numbers (8080) for reporting as required (set these using the KonaKart Admin App under

the Configuration > Reports section)

2. Set the HTTP (8080) and HTTPS (8443) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section). You will also have to setup SSL in JBoss if you
haven't already done so (refer to JBoss documentation to find out how to do this). A quick way to do this
if you don't have a keystore already (and for development purposes only) is to copy the conf/.keystore
file from your KonaKart installation to the C:\jboss-4.2.2.GA\server\default\conf directory of JBoss,
then edit your C:\jboss-4.2.2.GA\server\default\deploy\jboss-web.deployer\server.xml file as follows:

<!-- Define a SSL HTTP/1.1 Connector on port 8443
 This connector uses the JSSE configuration, when using APR, the
 connector should be using the OpenSSL style configuration
 described in the APR documentation -->

<Connector port="8443"
 protocol="HTTP/1.1"
 SSLEnabled="true"
 clientAuth="false"
 sslProtocol="TLS"
 keystoreFile="conf/.keystore"
 keystorePass="kkpassword" />

Installation of KonaKart on
other Application Servers

75

3. Set the memory parameters to suit your environment (eg. I set JAVA_OPTS=-XX:PermSize=256m -
XX:MaxPermSize=256m -Xms512m -Xmx1024m).

Installing KonaKart on IBM's WebSphere Appli-
cation Server

Verified on WebSphere 6.1 on Windows

Refer to the general notes for installing KonaKart on all Application Servers .

Usage Limitation: Reports with embedded charts produced using EMF 2.2 cannot be run in the default
WebSphere 6.1 installation due to a conflict between versions of EMF (WebSphere 6.1 uses 2.1 whereas
KonaKart/BIRT use EMF 2.2). If reports with embedded charts are important to you, you can either write
new, compatible, reports using EMF 2.1 or modify the class-loading mode of the KonaKart application to
parent last (as described in various reports on the subject on the Internet).

Note that the default download kit of KonaKart contains code compiled with a java 1.6 target therefore it
will not work on WebSphere 6.0 which uses a 1.4 JRE.

Installation
Use the deployment method of choice. Loading using an EAR is probably the simplest by navigating to
Enterprise Applications in the Administrative Console, "Install" application, browse to your EAR file, then
proceed through the wizard accepting all the defaults.

Configuration
1. If you are not using a Sun JRE for WebSphere, you will need to add two jars jsse.jar and jce.jar from

your Sun JRE to support some SSL and mail functionality of KonaKart. Either package these in the
WARs of konakart.war and konakartadmin.war, or place them in the lib directories of these applications
once deployed.

2. Set the port numbers (9080) for the reporting configuration variables as required (set these using the
KonaKart Admin App under the Configuration > Reports section)

3. Set the HTTP (9080) and HTTPS (9443) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section)

4. Set the memory parameters to suit your environment. Use the WebSpehere Administrative Console to
set the JVM parameters. Navigate to Server > Server Infrastructure > Java & Process Management
> Process Defn then your values for Maximum Heap Size (eg. 1024) and Initial Heap Size (eg. 512).
(You may need require different settings to suit your own environment).

Installing KonaKart on IBM's WebSphere Appli-
cation Server Community Edition

Verified on WebSphere ASCE 2.0.0.2 on Windows

Refer to the general notes for installing KonaKart on all Application Servers .

Installation of KonaKart on
other Application Servers

76

Installation
Load the KonaKart EAR using the Administrative console, accepting all defaults. (Some XML descriptor
validation warnings appear in the console log but these can be ignored - there are no geronimo-web.xml
files included).

Configuration
1. Set the port numbers (8080) for reporting as required (set these using the KonaKart Admin App under

the Configuration > Reports section)

2. Set the HTTP (8080) and HTTPS (8443) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section)

3. Set the memory parameters to suit your environment (eg. I set JAVA_OPTS=-XX:PermSize=256m -
XX:MaxPermSize=256m -Xms400m -Xmx700m)

Installing KonaKart on GlassFish
Verified on GlassFish v2 UR2 b04 (also known as Sun Java System Application Server 9.1_02 b04-fcs),
Glassfish 3.1.2, Glassfish 4.0, Glassfish 4.1 and Glassfish 4.1.2.

Refer to the general notes for installing KonaKart on all Application Servers .

Installation
When using the custom ANT command to produce the EAR for Glassfish add the -Dglassfish=true argu-
ment so that it creates compatible WARs for Glassfish.

Assuming a vanilla installation of Glassfish, simply place the KonaKart EAR in the domains/domain1/au-
todeploy/ directory of the GlassFish installation. The KonaKart EAR is loaded automatically by GlassFish.
Check the GlassFish server log to ensure there are no errors.

Alternatively you can deploy the EAR file by using the GlassFish admin console (typically at http://loa-
clhost:4848)

Configuration
1. Set the port numbers (8080) for reporting as required (set these using the KonaKart Admin App under

the Configuration > Reports section)

2. Set the HTTP (8080) and HTTPS (8181) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section). You can use the default SSL setup of GlassFish
for development purposes.

3. If you find you run out of memory, adjust the JVM memory parameters to suit your environment.
The easiest way to do this with GlassFish is by using the Admin Console under Configurations >
server-config > JVM Settings

4. Configure the image locations in the Admin App under Configuration > Images . Set the image base url
to http://localhost:8080/konakart/images/ and the image base path to something like C:/glassfish/do-

Installation of KonaKart on
other Application Servers

77

mains/domain1/applications/j2ee-apps/konakart/ konakart_war/images (or the equivalent in your in-
stallation).

Installing KonaKart on JOnAS with Tomcat
Verified on JOnAS v4.9.2 / Apache Tomcat v5.5.26 on Windows

Refer to the general notes for installing KonaKart on all Application Servers .

Installation
Place the KonaKart EAR in the apps/autoload directory of the JOnAS installation. The KonaKart EAR is
loaded automatically by JOnAS (some warnings about the use of DTDs can be ignored: "konakart.ear is
using DTDs, WsGen needs Schema only : WEB-INF/web.xml use a DTD").

Configuration
1. Set the port numbers (9000) for reporting as required (set these using the KonaKart Admin App under

the Configuration > Reports section)

2. Set the HTTP (9000) and HTTPS (9043) port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section). You will also have to setup SSL in JOnAS/
Tomcat if you haven't already done so (refer to JOnAS and Tomcat documentation to find out how to
do this). A quick way to do this if you don't have a keystore already (and for development purposes
only) is to copy the conf/.keystore file from your KonaKart installation to the conf directory of JOnAS,
then add to your server.xml file as follows:

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 9043 -->

<Connector port="9043"
 maxHttpHeaderSize="8192"
 maxThreads="150"
 minSpareThreads="25"
 maxSpareThreads="75"
 enableLookups="false"
 disableUploadTimeout="true"
 acceptCount="100"
 scheme="https" secure="true"
 clientAuth="false"
 sslProtocol="TLS"
 keystoreFile="conf/.keystore"
 keystorePass="kkpassword" />

3. Set the memory parameters to suit your environment (eg. I set JONAS_OPTS=-XX:PermSize=256m -
XX:MaxPermSize=256m -Xms400m -Xmx700m). (You may need different settings).

4. Configure the image locations in the Admin App under Configuration > Images . Set the image base url
to http://localhost:9000/konakart/images/ and the image base path to something like C:/JOnAS-4.9.2/
tomcat/work/webapps/jonas/ear/konakart/konakart/images (or the equivalent in your installation).

Installing KonaKart on JOnAS with Jetty
Verified on JOnAS v4.9.2 / Jetty v5.1.10 on Windows

Refer to the general notes for installing KonaKart on all Application Servers .

Installation of KonaKart on
other Application Servers

78

Installation
Place the KonaKart EAR in the apps/autoload directory of the JOnAS installation. The KonaKart EAR is
loaded automatically by JOnAS (some warnings about the use of DTDs can be ignored: "konakart.ear is
using DTDs, WsGen needs Schema only : WEB-INF/web.xml use a DTD").

Configuration
1. Set the port numbers (9000) for reporting as required (set these using the KonaKart Admin App under

the Configuration > Reports section)

2. Set the HTTP (9000) and HTTPS (9043)port numbers as required (set these using the KonaKart Admin
App under the Configuration > HTTP/HTTPS section). You will also have to setup SSL in JOnAS/
Jetty if you haven't already done so (refer to JOnAS and Jetty documentation to find out how to do
this). A quick way to do this if you don't have a keystore already (and for development purposes only)
is to copy the conf/.keystore file from your KonaKart installation to the conf directory of JOnAS, then
add to edit your jetty5.xml file as follows:

<!-- -->
<!-- Add a HTTPS SSL listener on port 9043 -->
<!-- -->
<!-- UNCOMMENT TO ACTIVATE -->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">9043</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">100</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">2000</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home" default="."/>
 ./../../conf/.keystore</Set>
 <Set name="Password">kkpassword</Set>
 <Set name="KeyPassword">kkpassword</Set>
 </New>
 </Arg>
</Call>

3. Set the memory parameters to suit your environment (eg. I set JONAS_OPTS=-XX:PermSize=256m -
XX:MaxPermSize=256m -Xms400m -Xmx700m). ("You may need different settings).

4. Configure the image locations in the Admin App under Configuration > Images . Set the image base url
to http://localhost:9000/konakart/images/ and the image base path to something like C:/JOnAS-4.9.2/
jetty/work/webapps/jonas/ear/konakart/konakart/images (or the equivalent in your installation).

79

Chapter 8. Upgrading
KonaKart has been designed with upgrading in mind. If you customize KonaKart using the recommended
techniques (particularly if you've used the APIs) the upgrade process should be a fairly straightforward
process. This section provides advice on the processes to follow in order to achieve a painless upgrade.

Of fundamental importance is that the KonaKart APIs remain backwards-compatible between releases.
(Very occasionally a "backwards-compatibility warning" is issued when an API changes but this is very
rare).

This means that code that you have written against the APIs will continue to work for a later version.
Therefore, your investment in the code you have written is preserved.

This is in contrast to many other eCommerce systems where customisations are deeply-integrated with the
core system resulting in extremely costly and time-consuming upgrades.

You may have written your storefront application in a certain technology of your choice (for example
Apache Wicket, JSF etc) that uses the KonaKart APIs. In theory, the upgrade process will simply be a
matter of replacing the jars from the earlier version with the new jars in the version you wish to upgrade to.
Your storefront may not be able to take advantage of the new features provided in the new version (without
modifying your storefront application to use the new features) but your storefront should continue to work
as before because the APIs are backwards-compatible. In practice the upgrade process can sometimes be a
little more complicated than just replacing the jars and some of the more complicated cases are discussed
below.

Recommended Upgrade Steps
It's difficult to define an ideal set of steps for every situation as the approach you take depends a lot on
what your starting position is. The following should be taken as a set of recommended steps to consider
in the overall process but not all will be applicable to every upgrade.

Before starting it is advised that you read the release notes for the version you are planning to upgrade
to. These can be found at http://www.konakart.com/downloads/release-notes [http://www.konakart.com/
downloads/release-notes]

Backup
It is always recommended that you backup all data and code belonging to the version that you wish to
upgrade. Ensure you have backups before proceeding.

Installation of the new Version
Install the new version alongside the old version (use a new database schema so that they don't collide).
Installation using the graphical wizards is recommended for one-off installations but the silent installation
may be preferable in highly-automated environments where installations need to be repeated several times.

This new installation will include the default version of the new storefront client and any new directories,
configuration files, documentation and jars provided in the new version.

This new installation will provide an extremely useful reference platform that you can use for a variety of
purposes such as verifying the behaviour of new features.

http://www.konakart.com/downloads/release-notes
http://www.konakart.com/downloads/release-notes
http://www.konakart.com/downloads/release-notes

Upgrading

80

All the updated source code provided with KonaKart will be included in this new installation so if any of
these items have been customised these customisations may need to be merged with the new versions.

Database Upgrade
An upgrade SQL file (one for each database type) is provided that needs to be run to upgrade the database
from one version to the next. If you are jumping a few versions you must run each upgrade SQL file in
sequence in order to prepare the database for the new version. The database upgrade scripts will not destroy
your data (customers, orders, products etc) but it is highly-recommended to run the upgrade process on a
test environment before applying it to any production database.

On Windows, (assuming KonaKart was installed in the default location), the database upgrade scripts for
MySQL can be found in the following directory:

C:/KonaKart/database/MySQL

Test new Installation against Upgraded Database
Having upgraded the database from the previous version you can verify that the new version of KonaKart
runs fine against the upgraded database by changing the database parameters in the konakart.properties and
konakartadmin.properties files in the new installation's webapps (konakart and konakartadmin webapps).

Re-build Custom Code
If you have custom code (including your own order total, shipping and payment modules, one-page-check-
out code etc) that uses the KonaKart libraries you will need to recompile it against the new jars.

Exactly how you go about this task will depend on various factors including how you have structured your
development environment and build system.

If you use the supplied ANT build files to build your custom code you should copy your custom sources
across to the new custom directory and build from there. This will pick up the new ANT build file and the
new libraries that will be required. Depending on what you have done in your custom code it is possible
that you may have compilation errors to fix at this stage.

If you have your own build system in place for your custom code you should copy the dependent jars from
the new installation to your custom build system and rebuild. Again, depending on what you have done in
your custom code, it is possible that you may have compilation errors to fix at this stage.

Upgrade the Struts Storefront
Of all the upgrade tasks this can be the most complex as it involves the careful comparison of your store-
front code with the storefront code in the new version.

Because of the backwards compatibility of the APIs in theory you should not need to change your modified
storefront at all and it will continue working as before.

You only need to change your storefront code if you want to upgrade your storefront to the new storefront
code which will use the new features introduced in the new version of KonaKart.

If you wish to upgrade your storefront you will have to merge your own changes with the new code in
the following areas:

• Struts Configuration Files

Upgrading

81

• Struts Action Classes, business logic and forms

• JSPs

The best way to execute the merges will depend on how many changes you've made. If you have made a
very large number of changes in these areas it's likely that the easiest option is to merge the new storefront
features into your current storefront code. If, on the other hand, you have made very few changes to the
storefront code, the best option is probably to merge those few changes into a copy of the new storefront
code.

Assess Changes to WebApp Configuration files
Sometimes changes are made to the webapp configuration files. An example is when JSON was introduced
a new section was introduced into the web.xml file for the konakart webapp to define the new servlet.

These key configuration files should be compared with your current versions to assess whether the changes
are required. Files to pay particular attention to are:

• ${KONAKART_HOME}/webapps/konakart/WEB-INF/web.xml

• ${KONAKART_HOME}/webapps/konakartadmin/WEB-INF/web.xml

• ${KONAKART_HOME}/webapps/birtviewer/WEB-INF/web.xml

Assess Changes to Tomcat Configuration files
Some releases include an upgrade of tomcat. If you use tomcat for KonaKart you will probably want to
upgrade to the same version of tomcat and move your current system across to the new tomcat installation.

Some releases use the same version of tomcat (as the previous version) but have modified configuration
files that should be compared with your current versions to assess whether the changes are required. Files
to pay particular attention to are:

• ${KONAKART_HOME}/conf/context.xml

• ${KONAKART_HOME}/conf/server.xml

• ${KONAKART_HOME}/conf/web.xml

KonaKart Directory Structure Changes
Sometimes new releases provide new functionality that requires a new directory structure. An example is
when Solr was first introduced a new solr directory was added at the base of the KonaKart home directory.
Check your reference installation for any new directories and consider introducing them into your existing
structure (where you place them will depend a lot on which App Server you happen to be using).

KonaKart Message Changes
Most new releases introduce new message strings that may need to be translated into the languages you
need to support in your system. The message files to consider are:

• ${KONAKART_HOME}/webapps/konakart/WEB-INF/classes/Messages.properties

• ${KONAKART_HOME}/webapps/konakartadmin/WEB-INF/classes/AdminMessages.properties

Upgrading

82

• ${KONAKART_HOME}/webapps/konakartadmin/WEB-INF/
classes/AdminHelpMessages.properties

To help identify the new messages introduced between particular versions of KonaKart you can refer to
the files in the ${KONAKART_HOME}/utils/kkMessages/new-Messages , ${KONAKART_HOME}/utils/
kkMessages/new-AdminMessages and ${KONAKART_HOME}/utils/kkMessages/new-AdminHelpMes-
sages directories. When new messages are introduced between the specified versions in the above 3 Mes-
sage properties file types a file is created that contains only the newly introduced messages.

If a particular *Message_X.X.X.X_to_Y.Y.Y.Y.properties properties file is missing from the
${KONAKART_HOME}/utils/kkMessages/new-* directory it means that no new messages of that type
were introduced between the two versions.

Documentation and javadoc Changes
It is highly-recommended that the "doc" directory of the new installation is checked for the latest docu-
mentation. The User Guide will be updated for every release and additional documentation may be added
to this directory covering specific areas. Note also that the javadoc will change in each new release so
if you refer to a local copy for the javadoc you should reference that in the new installation under we-
bapps/javadoc/ .

Admin App Changes
New panels are often added to the Admin App in new versions of KonaKart. You need to check that the
roles that you have defined for your Admin App users are appropriate for your needs. You may find that
you need to allow access to some or all of the new panels otherwise they will not become visible to your
Admin App users. It can be useful to install a fresh copy of KonaKart alongside your development system
(use a new database schema) to allow you to refer to the default set-up for the Admin App. This default set
up will show you all the roles that are assigned to the admin@konakart.com user with a standard default
installation.

83

Chapter 9. Administration and
Configuration

This chapter seeks to explain the many different ways in which KonaKart can be configured.

Most of the Administration and Configuration of KonaKart can be carried out using the KonaKart Ad-
ministration Application.

KonaKart Administration Application
KonaKart includes a sophisticated browser based administration application. It uses AJAX technology to
provide a snappy user interface while the maintaining the advantages of running the application from a
browser. Each application window has an on-line help facility which is the first place to look in order to
understand the available functionality.

It incorporates a security subsystem with role based security. Each user can be assigned one or more roles
that determine access to the available functionality with read / insert / edit and delete granularity. The
username / password based access, has the facility to block users for a programmable period after a number
of unsuccessful login attempts.

Auditing may be enabled for all Admin App API calls with two levels of detail. All audit data is stored in
the KonaKart database and may be browsed and filtered through the Admin App.

The admin application is fully internationalized and can be translated via a message catalog. Each panel
has an online help facility that explains the functionality available.

Administration and Configuration

84

KonaKart Admin Application - Status View

Main Features
The main features of the admin app are:

• Store status summary (i.e. number of orders, number of products etc.)

• Store maintenance

• Create new stores

• Edit existing stores

• Change state of stores (i.e. enable / disable, maintenance mode)

• Delete stores

• Maintenance of configuration variables

• Product maintenance

• Product Category maintenance

Administration and Configuration

85

• Product Option maintenance

• Product Manufacturer maintenance

• Product Tag Group and Tag maintenance

• Product Payment Schedule maintenance

• Product Review maintenance

• Product Custom Attribute Template and Custom Attribute maintenance

• Product Catalog maintenance

• Miscellaneous Item Type and Item maintenance

• Installation and removal of modules (payment, shipping, order total and other modules)

• Customer maintenance

• Send email

• Role maintenance

• Reset Password

• Login to eCommerce application on behalf of a customer. Useful for call center applications.

• Customer Group maintenance

• Customer review maintenance

• Customer booking maintenance

• Orders

• Generate invoice (template based)

• Generate packing slip (template based)

• Change state of order and send email

• View all payment gateway notifications associated with order

• Manage returns

• Marketing

• Promotion maintenance

• Coupon maintenance

• Customer Tag and Expression maintenance

• Customer Communications where you can send template based eMails to all customers, to all cus-
tomers who have requested to receive the newsletter, to customers that have asked to be notified about
any updates for a particular product and to customers belonging to a particular group or satisying a
certain expression.

Administration and Configuration

86

• Create Mailing Lists for import into 3rd Party email systems (such as MailChimp) containing defined
segments of your customers.

• Content Management.

• Locations / Taxes

• Country maintenance>

• Zone maintenance

• Tax Area maintenance

• Tax Class maintenance

• Tax Rate maintenance

• Localizations

• Currency maintenance

• Language maintenance

• Message maintenance

• Order Status maintenance

• Address Format maintenance

• Reports

• View Audit Data

• Tools

• Delete expired sessions

• Refresh caches

• Manage Solr search engine

• Custom panels - Add custom panels that implement your custom business logic.

Reporting
The KonaKart admin application provides powerful reporting functionality through integration with BIRT
[http://www.eclipse.org/birt/phoenix/] , the very popular open source Business Intelligence and Reporting
Tool. Although an ever expanding list of useful reports is provided in the KonaKart download, the inte-
gration is done in such a way that allows users and system integrators to develop and customize their own
reports by using the BIRT Eclipse based development environment.

Reporting - BIRT Viewer Security
By default the BIRT Viewer webapp is protected by a configurable layer of security that ensures that
only suitably-authorised Administrators with active sessions are permitted to execute the reports using the
BIRT Viewer webapp.

http://www.eclipse.org/birt/phoenix/
http://www.eclipse.org/birt/phoenix/

Administration and Configuration

87

To disable the security completely you can set the "securityEnabled" initialisation parameter to "false" in
the birtviewer web.xml.

When security is enabled, a user is allowed access to the reports through BIRT viewer if and only if:

• A valid sessionId is passed as a parameter to the birtviewer webapp. A valid sessionId is one that exists
in the database for the specified user and store and that it hasn't expired.

• The user has been granted access to run the reports through role-based security.

To be able to run the reports the user must be assigned a role that permits that user to execute the reports.
This is defined on the privileges screen of the role-based security section of the Admin Application (Under
Customers >> Maintain Roles).

The "custom1" flag must be unticked to allow the user to run the reports:

Reports Privileges

You can easily customise the pages that users are redirected to in the event of session expiry and unautho-
rised access. The URLs of the pages that are used are defined in the birtviewer webapp's web.xml file.

The BIRT Viewer servlet needs access to the database in order to authenticate the user. The location of the
properties file containing the database credentials is defined in the birtviewer web.xml in the ViewerServlet
servlet tag.

Role-based Security and Configuration
Many panels in the admin application may be configured to display or hide certain fields and buttons. The
configuration is set by selecting a role in the Maintain Roles panel and then by clicking on the Privileges
button on the same panel. A pop-up panel should appear similar to the image shown below:

Role Privileges

Administration and Configuration

88

Each panel has a number of checkboxes to assign privileges. The standard privileges are Insert, Edit and
Delete, although some panels have custom privileges which are highlighted in green. In order to understand
what a green highlighted checkbox refers to, a yellow popup will appear when you move your mouse over
it. For example the Edit Order panel has a couple of configuration options which are:

• Enable the read and edit of credit card details.

• Enable the read and edit of custom fields, order number and tracking number.

Initial Locked-Down Configuration
As a security precaution certain API calls and Admin Console functions are disabled when you first install
KonaKart. This cautious initial configuration allows the administrator to enable certain more sensitive
functionality only when the consequences of doing so are understood and the environment is secure.

To enable these API calls and in doing so enable the functions in the Admin Console that rely on these,
you must uncomment and set these quantities in the konakartadmin.properties file to "true":

Enable / Disable File-I/O API calls.
By default the following File-I/O API calls are disabled:
deleteFile
copyFile
copyFiles
renameFile
renameFiles
getFileContents
saveFileContents
These are disabled as a security precaution because their use in an unprotected
default installation can allow an intruder to modify files on your system that are
accessible to the account running KonaKart.
Before enabling these to gain full operation of the File-I/O API calls (including
their use from the KonaKart Admin Console) be sure that you take precautions to
protect your installation. For example:
Always change the default passwords of the Admin users
Always run the Admin Console under SSL (HTTPS)
Restrict access to certain functions in the Admin Console (such as Edit Config Files)
to only those Admin users who need access to these functions.
If possible, only run the Admin Console inside your firewall or on a secure VPN

#konakart.api.copyFile.enabled = true
#konakart.api.deleteFile.enabled = true
#konakart.api.renameFile.enabled = true
#konakart.api.getFileContents.enabled = true
#konakart.api.saveFileContents.enabled = true

Use the permittedLocations parameter to define locations that you allow for file I/O
operations. (File I/O operations include copyFile, renameFile, deleteFile, and saveFileContents)
Use a space-separated list of regular expressions to define the permitted locations
(use the forward slash as a directory symbol even if you are on Windows).

konakart.permittedLocations = .*/[Kk]ona[Kk]art/.*/reports/.* \
 .*/[Kk]ona[Kk]art/webapps/konakart/images/.* \
 .*/[Kk]ona[Kk]art/batchlogs/.* \
 .*/[Kk]ona[Kk]art/data/.* \
 .*/[Kk]ona[Kk]art/templates/.*.vm \
 .*/[Kk]ona[Kk]art/logs/.*

For example, if you leave the konakart.api.saveFileContents.enabled property commented or set to false
an Administrator will not be able to, edit Config Files, Velocity Templates, BIRT reports or Mailing Lists.

To restrict file I/O operations only to permitted locations you can set these in konakartadmin.properties
file (see above example).

Administration and Configuration

89

To restrict digital download access only to permitted locations you can set these permitted locations in the
konakart.properties file as follows:

Use the permittedLocations parameter to define locations that you allow for file
I/O operations. (File I/O operations include the access to digital download files).
Use a space-separated list of regular expressions to define the permitted locations
(use the forward slash as a directory symbol even if you are on Windows).

konakart.permittedLocations = .*/[Kk]ona[Kk]art/.*/digitalDownload/.*

To restrict access only to permitted locations for the DisplayFile servlet in the konakartadmin webapp
you can set these permitted locations in the servlet parameter of the DisplayFile servlet in the konakart
web.xml as follows:

<!--
 DisplayFile
 Use the permittedLocations parameter to define locations that you allow to display.
 Use a comma-separated list of regular expressions to define the permitted locations
 (use the forward slash as a directory symbol even if you are on Windows).
 If there is an attempt to display a file at a path that does not contain one of the
 permittedLocations strings an Exception will be thrown.
-->
<servlet>
 <servlet-name>DisplayFile</servlet-name>
 <servlet-class>
 com.konakartadmin.servlet.DisplayFile
 </servlet-class>
 <init-param>
 <param-name>permittedLocations</param-name>
 <param-value>.*/pdf/.*</param-value>
 </init-param>
</servlet>

To restrict access only to permitted locations for the FileUpload servlet in the konakartadmin webapp
you can set these permitted locations in the servlet parameter of the FileUpload servlet in the konakart
web.xml as follows:

<!--
 FileUpload
 Use the permittedLocations parameter to define locations that you allow to upload to.
 Use a comma-separated list of regular expressions to define the permitted locations
 (use the forward slash as a directory symbol even if you are on Windows).
 If there is an attempt to upload a file to a path that does not contain one of the
 permittedLocations strings an Exception will be thrown.
-->
<servlet>
 <servlet-name>FileUpload</servlet-name>
 <servlet-class>
 com.konakartadmin.servlet.FileUpload
 </servlet-class>
 <init-param>
 <param-name>permittedLocations</param-name>
 <param-value>
 .*/[Kk]ona[Kk]art/webapps/konakart/images/.*,
 .*/[Kk]ona[Kk]art/webapps/konakart/digitalDownloads/.*
 </param-value>
 </init-param>
</servlet>

Administration and Configuration

90

Filters
Filters are an Enterprise-Only feature that can be used to filter records on a per user basis. Initially the
filtering is only supported in the base product for Orders.

The idea is that you can create filtering rules that define for each user which orders they can see. This
feature can be used to implement order processing workflow.

You maintain the filtering rules on the "Filter" panel as illustrated below:

Filter Panel

If filters (one or more) are defined for a particular user, when that user executes a search for Orders (using
the KKAdminIf API), the filters are added to the order query.

There are some special-purpose "filter" columns on orders to help you configure your filtering rules. These
are filter1, filter2 and filterDecimal1 on the orders table (it is your responsibility to set these as you wish
during your order processing).

You don't have to restrict your filters to using the special filter columns. You can use other columns on the
orders table as required. A typical case would be to create filters which use the orders_status column to
restrict access to orders of a certain set of states for different users. This could be used to implement order

Administration and Configuration

91

procesing workflow in either the Admin Console or your own workflow system that uses the KKAdminIf
APIs to retrieve orders.

Filters also have custom fields which may be used for any custom purposes. By default these are hidden
from view in the Admin Console but can be enabled using FBC (File-Based Configuration) by setting
the relevant porperties (fbc.kk_panel_filters.hide_custom1 and fbc.kk_panel_filters.hide_custom1 in this
case) to false.

File-based Configuration

It is possible to configure the Admin Application on a global basis by defining certain properties in the
konakartadmin_gwt.properties file (which can be found in the classes directory of the konakartadmin we-
bapp).

The configurations you make in this file-based technique are for every user of the Admin App (deployed
in the associated webapp) no matter what roles are defined for each user.

By default, the file-based configuration ("FBC") properties are commented out and as such have no effect.
To enable them you need to uncomment the relevant line(s).

The supported configuration properties are defined in the konakartadmin_gwt.properties file and will be
updated over time. Here is a sub-set of the currently-supported configuration options:

Administration and Configuration

92

Enterprise Feature
File-based Configuration
These settings make global changes to the Admin App for all users

#fbc.kk_panel_communications.hide_expression_selection = true

Use this to set the default for the "Use Customer Language" checkbox
(default is true if not defined)
#fbc.kk_panel_communications.default_use_cust_lang = false

#fbc.kk_panel_editProduct.hide_attributes_tab = true

#fbc.kk_panel_products.hide_name_show_sku = true

#fbc.kk_panel_editCustomer.address.hide_city = true
#fbc.kk_panel_editCustomer.custom.hide_custom1 = true

#fbc.kk_panel_editCustomer.personal.hide_customerGroup = true
#fbc.kk_panel_editCustomer.personal.hide_dateOfBirth = true
#fbc.kk_panel_editCustomer.personal.hide_fax = true
#fbc.kk_panel_editCustomer.personal.hide_first_name = true
#fbc.kk_panel_editCustomer.personal.hide_gender = true
#fbc.kk_panel_editCustomer.personal.hide_last_name = true
#fbc.kk_panel_editCustomer.personal.hide_newsletter = true
#fbc.kk_panel_editCustomer.personal.hide_state = true
#fbc.kk_panel_editCustomer.personal.hide_tel = true
#fbc.kk_panel_editCustomer.personal.hide_tel_other = true
#fbc.kk_panel_editCustomer.personal.hide_type = true
#fbc.kk_panel_editCustomer.personal.hide_visibility = true

#fbc.kk_panel_editCustomer.hide_address_tab = true
#fbc.kk_panel_editCustomer.hide_custom_tab = true
#fbc.kk_panel_editCustomer.hide_points_tab = true
#fbc.kk_panel_editCustomer.hide_tags_tab = true

#fbc.g.kk_panel_login.enter_store_as_text_not_droplist = true

#fbc.kk_panel_promRules.hide_categories = true

Hide the Print button on the Order Invoice view
#fbc.kk_display_panel.invoice.hide_print_btn = true

Stops logout after a browser refresh
#fbc.save_session_in_cookie = true

etc...
check your own kit to discover the properties available in your version

After uncommenting a property it is necessary to refresh the caches (you can do this from the Tools section
of the Admin App) then refresh your browser so that the changes to the Admin App User interface will
be enabled.

Product Image Uploads

It is possible to define the way images are created during the image upload process using File-based Con-
figuration.

Currently, the supported image extensions are: JPG, JPEG, GIF and PNG.

By default, every time a product image is imported, 4 images are created from the imported image
scaled to 4 different sizes. The number of images created and the sizes of each can be defined in
konakartadmin_gwt.propeties. Other characteristics (such as maximum number of images to display per
product and directory structure) can also be defined.

The supported configuration properties are defined in the konakartadmin_gwt.properties file and will be
updated over time. Here are the currently-supported configuration options for image uploads:

Administration and Configuration

93

Image Scaling
Only relevant to the images.tab.version = 2 (new images tab introduced with v6.5.0.0)
Default, if not specified is "big;360;360 medium;150;150 small;80;80 tiny;60;60"
#
For each size defn this is name;height;width
#
This means that for any uploaded image these four images are created with the following
characteristics:
Image 1: {product_UUID}_1_big.XXX (360x360 pixels)
: {product_UUID}_1_medium.XXX (150x150 pixels)
: {product_UUID}_1_small.XXX (80x80 pixels)
: {product_UUID}_1_tiny.XXX (60x60 pixels)
XXX = the original file extension (used if add_extension is not set to false - see below)
#
Retaining the original aspect ratio:
Use big;;300 to create an image with width 300 pixels and unspecified height to
retain aspect ratio
Use big;200; to create an image with height 200 pixels and unspecified width to
retain aspect ratio
#
Create a version identical to the original:
Use big;; to create an image with the same height and width as the original

For best results order the images definitions from large to small
#fbc.kk_panel_editProduct.images.options = big;360;360 medium;150;150 small;80;80 tiny;60;60

Defines whether or not to append a period and an extension to the generated image file
names:
#fbc.kk_panel_editProduct.images.add_extension = false

Defines how many images are displayed for editing on the Edit Product panel (default is 8)
#fbc.kk_panel_editProduct.images.max = 8

Defines the depth of the directory tree used for constructing image file names (default
is 4)
If 0 is used, all images will placed in the same directory under the Image Base Path
If >0 the file path is created by using directories named by the first n characters of the
UUID
The purpose of the directory tree for images is to avoid having too many files in each
directory so you should choose use a high value for the depth if you have a very large
number of images.
#fbc.kk_panel_editProduct.images.dir.depth = 4

Defines the name of a directory that will be used to construct a filename for storing
the product images. This directory (defaults to "prod") will be added to the Image Base
defined for the store.
It can be left blank if you want no product image directory added at all.
#fbc.kk_panel_editProduct.images.dir.name = prod

It's better if you can decide what your image formats will be before you load all your images as the defi-
nitions only affect the scaling that takes place after product images are uploaded. Making a change to the
image scaling and creation configuration parameters will not affect existing product images (but you can
reload them if you wish).

Manufacturer Image Uploads

It is possible to define where manufacturer images are created during the image upload process using File-
based Configuration.

By default, manufacturer images are uploaded to a filename that is a concatenation of the image base path
(a configuration variable defined in the Administration Application) a "manufacturer" image directory
name (defined in File-based Configuration and defaulting to "manufacturer") and the filename itself. The
target directory and filename (except the image base path) is displayed in the image upload dialogue after
selecting an image from the local file system. This directory and filename can be modified to change the
target location that the file will be uploaded to.

Administration and Configuration

94

The manufacturer directory configuration property is defined in the konakartadmin_gwt.properties file as
follows:

Defines the name of a directory that will be used to construct a filename for storing the
manufacturer images. This directory (defaults to "manufacturer") will be added to the
Image Base defined for the store. It can be left blank if you want no manufacturer image
directory added at all.
#fbc.kk_panel_manufacturers.images.dir.name = manufacturer

The manufacturer directory configuration property is only used for creating new images. Once the image
has been uploaded the file location is saved in the database in the manufacturer table.

Launching the Admin App
Normally, whenever the Admin App is launched using the standard URL (http://localhost:8780/konakar-
tadmin/), the administrator is presented with a login panel where he must enter his credentials in order to
gain access to the application. In a multi-store environment there is also a drop list of store names so that
the administrator may choose the store that he wants to log in for.

By using a Launcher servlet, the startup process of the Admin App may be modified as follows:

The store id may be passed to the launcher servlet so that the administrator is not given the possibility
to choose a store from the drop list. The drop list is no longer shown on the login panel. An example of
calling the launcher for storeId = store1:

http://localhost:8780/konakartadmin/launcher?storeId=store1

In order to achieve Single Sign On, credential checking may be delegated to the AdminAppAuthentica-
tionMgr class. This class has a method to authenticate the request and a method that returns a URL that
may redirect to an SSO login screen if the administrator isn't logged in. If the authentication method de-
termines that the customer is already logged in, then the Admin App will start without displaying the login
screen at all. Note that the user identified by the userId returned by the authentication method, must exist
in the KonaKart database as an Admin User.

The source code of the launcher and authentication manager are supplied in the /KonaKart/custom/admi-
nappn/src/com/konakartadmin/servlet directory.

Configuring KonaKart for HTTPS / SSL
SSL can be enabled and configured in the Configuration>>HTTP/HTTPS section of the Admin App. When
SSL is enabled and the port numbers are correctly defined, KonaKart will automatically switch between
HTTP and HTTPS depending on whether the customer is logged in or not. Whenever the customer is
logged in, a session id is passed back and forth, so the protocol is set to HTTPS. Whenever the customer
isn't logged in, the protocol is set to HTTP.

Editing the KonaKart Configuration Files
The most important configuration files can be found under your KonaKart installation directory at:

webapps\konakart\WEB-INF\classes\konakart.properties
 and
webapps\konakartadmin\WEB-INF\classes\konakartadmin.properties

Administration and Configuration

95

They can be edited using any text editor. Alternatively, they can be edited from the
Configuration>>Configuration Files section of the Admin Tool. Note that most changes will not take
effect until KonaKart is restarted.

Changing the Editable File List in the Admin
App

In the Configuration Files section of the Admin Tool a list of files is shown that can be edited. By default
these are the main KonaKart properties and logging files.

You can add any files you like to that list so long as they are accessible to the KonaKart server - wherever
that's running in your configuration.

There's a simple XML file (called konakart_config_files.xml) where the files that are shown are defined.
It looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<konakart-config-files>
 <file>
 <displayName>
 KonaKart Properties File
 </displayName>
 <fileName>
 ../webapps/konakart/WEB-INF/classes/konakart.properties
 </fileName>
 </file>

 <file>
 <displayName>
 KonaKart Admin Properties File
 </displayName>
 <fileName>
 ../webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties
 </fileName>
 </file>

 <file>
 <displayName>
 KonaKart Logging Configuration File
 </displayName>
 <fileName>
 ../webapps/konakart/WEB-INF/classes/konakart-logging.xml
 </fileName>
 </file>

 <file>
 <displayName>
 KonaKart Admin Logging Configuration File
 </displayName>
 <fileName>
 ../webapps/konakartadmin/WEB-INF/classes/konakart-logging.xml
 </fileName>
 </file>
</konakart-config-files>

You'll find this file under webapps/konakartadmin/WEB-INF/classes . In the default installa-
tion on Windows that is: C:\Program Files\KonaKart\webapps\konakartadmin\WEB-INF\class-
es\konakart_config_files.xml .

You'll see that you define a path to the file and a "display name" which is the name you see in the list
in the Admin Tool.

Administration and Configuration

96

A point to note if no files are listed:

Depending on your configuration (eg. if you are not using the default tomcat container supplied in
the download kit) you may find that the default definitions of the relative paths in the supplied
konakart_config_files.xml will not work - you will have to amend these to suit your environment.

KonaKart Properties Files
KonaKart uses a number of properties files for configuration and by default these have the following names
and locations (assuming KonaKart was installed on Linux under /home):

KonaKart engine server properties file:

 /home/konakart/webapps/konakart/classes/konakart.properties

KonaKart Storefront Application client properties file:

 /home/konakart/webapps/konakart/classes/konakart_app.properties

KonaKart Storefront engine AXIS (SOAP) client properties file:

 /home/konakart/webapps/konakart/classes/konakart_axis_client.properties

KonaKart Storefront engine JAXWS (SOAP) client properties file:

 /home/konakart/webapps/konakart/classes/konakart_jaxws_client.properties

KonaKartAdmin engine server properties file:

 /home/konakart/webapps/konakartadmin/classes/konakartadmin.properties

KonaKartAdmin Admin App Client properties file:

 /home/konakart/webapps/konakartadmin/classes/konakartadmin_gwt.properties

KonaKartAdmin Admin engine AXIS (SOAP) client properties file:

 /home/konakart/webapps/konakartadmin/classes/konakartadmin_axis_client.properties

KonaKartAdmin Admin engine JAXWS (SOAP) client properties file:

 /home/konakart/webapps/konakartadmin/classes/konakartadmin_jaxws_client.properties

KonaKart engine Velocity properties file:

 /home/konakart/webapps/konakart/classes/konakart_velocity.properties

KonaKart Admin engine Velocity properties file:

 /home/konakart/webapps/konakartadmin/classes/konakart_velocity.properties

Using the above default properties file names is fine for most installations but if multiple versions of each
are required there are ways to configure KonaKart in order to use properties files with different names
and locations.

Some of the properties file names and locations can be specified as part of "EngineConfig" objects (En-
gineConfig for the Application Engine and AdminEngineConfig for the Admin Engine) which are speci-
fied as parameters when you create the respective engines.

Administration and Configuration

97

If still more flexibility is required it is possible to override the properties file names and locations in a cus-
tomizable java class called PropertyFileNames.java . PropertyFileNames.java is provided in every down-
load kit and can be found under /home/konakart/custom/utils/com/konakart/util. PropertyFileNames.java
has a simple structure and allows you to override any properties file by modifying the getFileName()
method. getFileName() takes two parameters:

propertyFileCode : an integer code that identifies the particular proper-
ties file (eg. PropertyFileNames.KONAKARTADMIN_SERVER_PROPERTIES_FILE and
PropertyFileNames.KONAKART_SERVER_PROPERTIES_FILE are two examples)

def : the default value. By default this is returned for every properties file type.

Having modified the code in the getFileName() method it can be built using the standard custom build. The
updated PropertyFileNames.class will be placed in the konakart_custom_utils.jar by the standard build
as illustrated below:

C:\KonaKart\custom>.\bin\kkant compile_utils, make_jar_custom_utils
Buildfile: build.xml

compile_utils:
 [echo] Compile the customisable utils code
 [javac] Compiling 2 source files to C:\KonaKart\custom\utils\classes

make_jar_custom_utils:
 [echo] Create the konakart_custom_utils.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom_utils.jar

BUILD SUCCESSFUL
Total time: 1 second

Once built successfully the new konakart_custom_utils.jar should be copied to the lib directories of the
konakart and konakartadmin webapps as required.

Configuration of Messages
With KonaKart you can store application messages either in the database or in files. The default is to use
files (sometimes called message catalogs or message properties files).

A configuration variable (called "USE_DB_FOR_MESSAGES") defines whether the messages are stored
in the database or in files. This can be set in the Admin App under Configuration >> Admin App Con-
figuration.

Switching to Database Messages
By default, no messages will be loaded into the database. A utility called kkMessages is provided to load
messages from your own message properties files. Once loaded you can switch to database messages by
simply changing the "USE_DB_FOR_MESSAGES" configuration variable to "true".

Once loaded into the database the messages can be maintained on the Messages panel of the Admin App.

KKMessages Utility
A utility called "kkMessages" is provided to assist with the migration of messages from files to the
database.

Administration and Configuration

98

The kkMessages utility can be found under the utils directory wherever you installed KonaKart (from
v5.2.0.0 only). Some sample scripts are provided to make the kkMessages utility easy to use. A number
of functions are supported as can be seen by calling the utility with the "-?" parameter:

mike@luton:~/konakart/utils/kkMessages$./kkMessages.sh -?
===
KonaKart Messages Utility
===

Usage: KKMessages
 -i file - import a file of messages
 [-en file encoding] - file encoding (default is ISO-8859-1)
 [-ce console encoding] - console encoding (default is utf-8)
 -r - when importing first remove all existing
 messages with the specified type and
 locale (default is not to remove them)
 -x file - export messages to a file
 -q file - export messages as SQL to a file that can
 be used to import the messages elsewhere
 -l locale - locale (eg en_GB)
 -t (1|2|3) - message type
 1 = Application Message
 2 = Admin App Message
 3 = Admin App Help Message
 -ll - print a list of the current langauges
 -lm - print a list of the current messages
 [-u username] - username
 [-p password] - password
 [-s storeId] - storeId
 [-e (0|1|2)] - engine mode
 [-c] - shared customers - default is not shared
 [-ps] - shared products - default is not shared
 [-ae adminengine classname] - default is com.konakartadmin.bl.KKAdmin
 [-?] - shows this usage information

You need to load messages for each of the 3 types (type 1 (storefront application messages), 2 (Admin App
messages) and 3 (Admin App Help Messages)) for every locale you wish to support. It is important that
all of your language records contain a locale definition and this locale is used to define the messages for
that locale. You can verify that all your languages have a locale defined by using the kkMessages utility to
list your languages with the "-ll" option (see example below). You can update the locale for each language
using the Languages panel of the Admin App.

A few example scripts demonstrating the usage of the kkMessages utility are provided.
See kkMessages_Load_en_GB.sh, kkMessages_Load_en_GB.bat, kkMessages_Load_Defaults.sh and
kkMessages_Load_Defaults.bat.

With a default installation of KonaKart where the following languages are defined:

mike@luton:~/konakart/utils/kkMessages$./kkMessages.sh -ll
===
KonaKart Messages Utility
===
Languages:
 ID Name Code Locale
 1 English en en_GB
 2 Deutsch de de_DE
 3 Español es es_ES
 4 Português pt pt_BR

With a default installation you can run the kkMessages_Load_Defaults script ("sh" or "bat" versions de-
pending on your platform) to load the 3 message types for the 4 default languages.

Administration and Configuration

99

Logging

Log4j2 Logging
KonaKart uses standard log4j2 logging. (Prior to version 8.7.0.0 KonaKart used log4j).

The KonaKart engines search for logging properties files in the following order on the classpath:

1. If not null the file defined by the System property "kk.log4j.configuration"

2. If not null the file defined by the System property "log4j.configuration"

3. konakart-logging.xml

4. log4j2.xml

5. log4j2.json

6. log4j2.properties

If none of the above are found on the classpath no logging is explicitly set by KonaKart.

Logging can be enabled for selected parts of the system and the level of the logging tuned as required.
Use the following logging levels:

• ERROR

• WARN

• INFO

• DEBUG

"DEBUG" logging will show the most detail.

The logging configuration file "konakart-logging.xml" contains a set of the most commonly-used Kon-
aKart logging settings. Simply edit this file to modify the logging level of the subsystem you need logging
for. (You will find the file under the classes directories of both the konakart and konakartadmin webapps
- e.g. webapps/konakart/WEB-INF/classes)

A very common example is to set the logging to display SQL that is being executed by KonaKart. You
do this by setting the following:

<!-- KonaKart Persistence layer - Set to INFO to see the SQL
 (Set to TRACE to see more detail) -->

<Logger name="com.konakart.db" level="INFO" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>

Logging changes will take effect without needing to restart your application server so long as you have set
the monitorInterval attribute in your logging configuration file to a number greater than 0 (the default is 100
so logging settings are refreshed within 100 seconds of changes being made to logging configuration files).

Administration and Configuration

100

AXIS/SOAP Logging

KonaKart uses AXIS 1.4 for it's SOAP web services.

There are a number of options available to inspect the AXIS/SOAP request and response messages.

One technique is to use a proxy sitting between the client and the KonaKart server to intercept messages
and display them. The "tcpmon" tool is one such proxy tool and is delivered as part of the KonaKart kit
(it's actually part of AXIS - so search for "AXIS tcpmon" for full details on how to use it).

If you just want to enable the logging of request and response SOAP messages there is a single log flag
to set:

<!-- To log AXIS requests and responses set com.konakart.ws.KKWSLogHandler
 to DEBUG for complete messages and INFO for just the SOAP body -->

<!-- SOAP Logging -->
<Logger name="org.apache.axis" level="INFO" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakart.ws" level="INFO" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.ws" level="INFO" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>

<Logger name="com.konakart.ws.KKWSLogHandler" level="INFO" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<!-- End of SOAP Logging -->

If you set this log flag to INFO you would see the following for a login request and response:

18-Jul 13:22:56 INFO (KKWSLogHandler.java:invoke:79) Request:
 <soapenv:Body>
 <ns2:login xmlns:ns2="http://ws.konakartadmin.com"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <in0 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">admin@konakart.com</in0>
 <in1 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">princess</in1>
 </ns2:login>
 </soapenv:Body>
18-Jul 13:22:56 INFO (KKWSLogHandler.java:invoke:68) Response:
 <soapenv:Body>
 <ns1:loginResponse xmlns:ns1="http://ws.konakartadmin.com"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <loginReturn xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">02154a53d0528f106bf96a9551a3fcff</loginReturn>
 </ns1:loginResponse>
 </soapenv:Body>

If you set this log flag to DEBUG you would see the following for a login request and response:

Administration and Configuration

101

18-Jul 18:49:33 DEBUG (KKWSLogHandler.java:invoke:52) Request:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <ns1:storeId xmlns:ns1="urn:KonaKartNamespace"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
 soapenv:mustUnderstand="0"
 xsi:type="soapenc:string">store1</ns1:storeId>
 </soapenv:Header>
 <soapenv:Body>
 <ns2:login xmlns:ns2="http://ws.konakart.com"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <emailAddr xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">doe@konakart.com</emailAddr>
 <password xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">password</password>
 </ns2:login>
 </soapenv:Body>
</soapenv:Envelope>

18-Jul 18:49:33 DEBUG (KKWSLogHandler.java:invoke:44) Response:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:loginResponse xmlns:ns1="http://ws.konakart.com"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <loginReturn xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="soapenc:string">3c1d6367149073d9c66908b2d45d1e68</loginReturn>
 </ns1:loginResponse>
 </soapenv:Body>
</soapenv:Envelope>

Be careful because leaving this log flag on can produce extremely large log files.

Indeed, when you enable these log flags you clearly see how "heavy" the SOAP messages are. If perfor-
mance or minimising network traffic is important we recommend using the JSON versions of the APIs
because, compared to SOAP, the JSON messages carry very little overhead.

Internationalization of KonaKart
KonaKart is completely multi-lingual both at the database level and at the UI level.

Translating the KonaKart Application
The data within the database such as product descriptions and category names etc. may exist in different
languages. The database contains a languages table that contains information about each of the supported
languages. When a new product is added to the database through the administration tool, it is possible to
enter a description in multiple languages.

Languages in the database have an attribute (specifically a column called display_only that indicates
whether the language is only used for display purposes and not for product descriptions (and other Kon-
aKart objects that have different variants for each data type). By default when you install KonaKart every
language that is defined in the database has this display_only attribute set to 0 (false) which means that all
KonaKart objects that require a variant for each language must have a value defined for each language.

If you wish to introduce a language for use with the Admin App but not be required to add KonaKart object
definitions for the language you can check the Display Only checkbox for the language (this can be found

Administration and Configuration

102

on the Languages Panel of the Admin App). You will have to provide a message catalog file for the new
language and name the file in the appropriate fashion for the chosen locale.

With KonaKart you can either store the application messages in message catalog files on disk or in the
database. The default is to use message catalog files but from the v5.2.0.0 release it became possible to use
the database to store these messages. Some users prefer to manage the messages in the database whereas
others prefer files. The choice is yours!

A configuration parameter called "USE_DB_FOR_MESSAGES" is used by the system to determine
whether the messages are stored in the database or in files. You can set this value in the Admin Application
under Configuration >> Admin App Configuration. The label used in English for this field is "Use D/B
For Messages" and it can have a value of "true" or "false".

When the messages (the storefront Application messages, the Admin Application messages and the Admin
Application Help messages) are stored in the database you should use the Messages panel of the Admin
Application to maintain the messages.

KonaKart Admin Application - Messages Panel

Note that when editing the messages using the Messages Panel of the Admin Application you can click on
the "Switch Editor" icon (to the right of the "Locale" field) to switch between the Rich Text Editor and the
Plain Text Editor. This is sometimes useful to gain greater control over the HTML that is saved (the HTML
that is created by the Rich Text Editor can be slightly different depending on which browser you use).

Administration and Configuration

103

When the messages are stored in message catalog files, there is a message catalog for each language. These
can be found in the webapps/konakart/WEB-INF/classes directory of the application server. The default
message catalog is called Messages.properties and is used if the language specific catalog isn't found.

The naming convention of the message catalogs is as follows:

// contains all the storefront strings
Messages_[language-code].properties

For [language_code] you should use the 2-character language code that you have set up in the languages
section of the admin application. For example, you might have "fr" for French, "zh" for Chinese, "de" for
German, "ja" for Japanese etc. You can also use the full locale if you prefer (such as "en_UK", "es_ES",
"pt_BR" etc).

In order to change the language of the storefront application the current customer clicks a link which runs
the code in SetLocaleAction.java

Translating the country names
The KonaKart database allows for only one definition of a country name. In some cases (where only one
language is used for the store) this is sufficient and no translation of these names is required. In cases
where it's required to show the country names in the language of the supported locales you need to follow
the following instructions.

You can display a list of countries (for example for display on the customer registration form) in the
language of the currently-selected locale by taking the following steps:

• Set the translated country names in the message catalog for each supported locale (or set these values in
the database if you use the database for your messages). The key to use is defined for each country in the
countries table of the database (as an example, the default key for the "United States" is "CTRY.USA").

• Enable the lookup of the translated messages by setting the Use Country Names in Msg Cat configura-
tion variable to true. (The configuration variable key is USE_MSG_CAT_FOR_COUNTRY_NAMES).
You can find this configuration setting on the Configuration >> Store Configuration tab of the Admin
Application.

Once set up you can use a call on the KonaKart Application Client Engine (KKAppEng) called getAll-
Countries() to get a list of countries with the translated names. The list of country names returned is ordered
according to the collation rules of the selected locale. You can see examples of the use of this call in the
RegisterCustomerBody.jsp source file provided in the download kits.

Translating the KonaKart Admin Application
The KonaKart Administration Application can be completely translated by either editing the messages in
two message catalog files (for file-based messages) or by editing the messages stored in the database using
the Admin Application itself.

To make the Admin Application available in a new language you need to supply two new message catalog
files (for file-based messages) or simply add a complete set of database records for the new language (when
KonaKart is configured for database-based messages).

Whichever language you use this is also a handy way to re-label the "custom" fields that appear on many
of the important objects within KonaKart to reflect the meaning in your particular system.

Administration and Configuration

104

In the case of file-based messages, your new message catalogs must be called:

// contains all the strings except the help page text
AdminMessages_[language-code].properties

// contains just the text on the help pages
AdminHelpMessages_[language-code].properties

For [language_code] you should use the 2-character language code that you have set up in the languages
section of the admin application. For example, you might have "fr" for French, "zh" for Chinese, "de" for
German, "ja" for Japanese etc. You can also use the full locale if you prefer (such as "en_UK", "es_ES",
"pt_BR" etc).

For file-based messages you should place your completed message catalogs in this directory:

webapps/konakartadmin/WEB-INF/classes

Since there are quite a large number of messages to translate, you might choose to do this over a period of
time. A recommended approach is to start your new message catalogs with copies of the default (English)
catalogs (called AdminMessages.properties and AdminHelpMessages.properties) then translate the mes-
sages that are most important to you first and complete the rest as time permits.

You can use a "substitution" syntax in AdminHelpMessages.properties if you wish to create messages
that are too large for the database to store (4000 bytes in Oracle and DB2). The substitution syntax
is like the UNIX shell variable format: ${variable}. An example of the technique is provided for the
help.editProductDetails property in AdminHelpMessages.properties where it is defined as the concatena-
tion of two other properties (help.editProductDetails_1 and help.editProductDetails_2) that are also de-
clared in AdminHelpMessages.properties.

There are also a number of strings in the database that need to be translated. These are used by the Admin
App to label some of the configuration parameters and provide helpful comments. If you issue a: "SELECT
configuration_title, configuration_description FROM configuration;" SQL query, you will see the values
that you can update.

Also, you may wish to include translations for the velocity templates (eg. EmailNewPassword, OrderDe-
tails, OrderInvoice, OrderPackingList and OrderStatusChange).

Once you have completed the message catalogs, velocity templates and a sql update script for your lan-
guage, please contribute these to the KonaKart Community by posting them to the contributions section
of our forum for the benefit of other users.

Changing the Logo on the KonaKart Admin Ap-
plication

This has been made a lot easier from version 5.4.0.0 where you can use your own logo instead of the
default KonaKart logo by simply replacing the file that contains the KonaKart logo directly under the
konakartadmin webapp (the file is approximately 6KB in size). You must use a jpg file and the dimensions
should ideally be the same as the KonaKart Logo which are: 240x60 pixels.

For example you can replace the KonaKart logo with your own logo as illustrated below:

Administration and Configuration

105

KonaKart Admin Application - Custom Logo

Changing the Date Format in the KonaKart Ap-
plication

The templates are stored in the message catalog:

-- Date formats --
date.format=dd/MM/yyyy
date.time.format=dd/MM/yyyy HH:mm
jquery datepicker has a different formatter to standard java
datepicker.date.format=dd/mm/yy

date.format and date.time.format are used for formatting dates within the storefront application.
datepicker.date.format is used to format the date received from the jQuery date picker widget.

Formatting of Addresses
In the admin app under Localizations >> Address Formats, there are a number of templates which can be
associated to countries, in order to format addresses correctly for the country. Valid template key words are:

• $cr - Carriage return (new line)

• $firstname

• $lastname

Administration and Configuration

106

• $company

• $streets = $street + line break + $suburb

• $street

• $street1

• $suburb

• $city

• $postcode

• $state

• $telephone

• $telephone1

• $email

• $country

The formatting is performed by substituting the above keywords with the actual values within the address
object. A typical template could be : $company$cr$firstname $lastname$cr$streets$cr$city, $postcode$cr
$state, $country$crtel: $telephone$crtel1: $telephone1$creMail: $email .

Email Configuration
In most cases email can be configured completely within the KonaKart Admin App in the
Configuration>>Email Options section (see image below). Here you can set up your SMTP server host,
your SMTP username, SMTP password and whether or not the SMTP server requires authentication:

Administration and Configuration

107

KonaKart Admin Application - Email Configuration

As with all fields in the Admin App, use the floatover text on each label to find out more about each
configuration option.

For more advanced users there is a konakart_mail.properties file in which you can define additional mail
properties. (In fact, you can rename this file if you wish and change its location - so long as you define the
filename holding these values in the Admin App - see "KonaKart mail properties filename in the image
above)). A common example of the use of this konakart_mail.properties file is for setting up access to
the Google Mail SMTPS server (this uses a non-standard port (465), requires authentication and uses
encryption. An example of the parameters to set to use the Google SMTPS mail gateway is provided in
the default konakart_mail.properties file.

Modifying the Email Templates
If configured to do so, KonaKart will send out emails after registration, to confirm orders and to distribute
new passwords. The emails are generated using Velocity [http://velocity.apache.org] templates which can
be found under the templates directory under the installation home. The current templates are all files
following the pattern *.vm. Note that the file name must end with an underscore followed by a two letter
country code (i.e. OrderConfirmation_en.vm).

When the state of an order is changed through the Admin App, an eMail may be sent to the cus-
tomer based on the template called OrderStatusChange_xx.vm where xx is the two letter country
code. A different template may be defined for each order state where the naming convention is
OrderStatusChange_stateId_xx.vm . For example if the order changes state from state 1 to state 2, it will
use the template called OrderStatusChange_2_xx.vm if it exists. If it doesn't exist, KonaKart will use the
default OrderStatusChange_xx.vm template.

Receiving Notification EMails of Exceptions

A "notifySysAdmin" API call was added in v8.8.0.0 of KonaKart which is used to notify the defined
"SysAdmin" user of important events that occur in KonaKart. The "SysAdmin" user must have a Customer
account in KonaKart.

By default, notifications will be sent by email to the defined "SysAdmin" user to report exceptions that
occur in each of the following cases:

• Storefront exceptions (typically also reported to users)

• KKEng exceptions

• KKAdmin exceptions

Notifications of each exceptions category can be enabled or disabled in the Admin Console.

Adding Custom Business Objects for use in Velocity
Templates

In the Enterprise version it is possible to use your own business objects in your Veloci-
ty templates. To add your own business objects to the Velocity context you must create a

http://velocity.apache.org
http://velocity.apache.org

Administration and Configuration

108

class that implements com.konakart.blif.VelocityContextMgrIf (similarly for the Admin version at
com.konakartadmin.blif.AdminVelocityContextMgrIf) .

An example of adding an object to the Velocity context is provided in the default implementation which
can be found at "custom\appnEE\src\com\konakart\bl\VelocityContextMgr.java" (under the installation
home directory).

You can modify the above source file (and the equivalent one for the admin engine at "cus-
tom\adminappnEE\src\com\konakartadmin\bl\AdminVelocityContextMgr.java" as required), then ex-
ecute the ANT build file under the custom directory to create a new konakart_customEE.jar (or
konakartadmin_customEE.jar as applicable) containing your new implementation.

Once your modifications to the VelocityContextMgrs are built you can then reference your own business
objects from your Velocity templates.

Search Engine Optimization (SEO) Features
The SEO features can be configured through the message catalogs with the attributes beginning with
"seo." (e.g seo.default.meta.description or seo.meta.keywords.template). The catalogs contain multi-lin-
gual templates in order to write product information (name, model, manufacturer, category) into:

• The URL

• The window title

• The meta description

• The meta keywords

The templates may contain the following placeholders : $category, $manufacturer, $name, $model which
are substituted by real data depending on what is being viewed at the time. Each attribute within the
message catalog has a description which explains how it is used.

From version 5.7.5.0 the URL formatting is configurable. The default formatting creates a URL with a
tree like structure:

/DVD-Movies/Action/Warner/Fire-Down-Below/DVD-FDBL/2_11.action

The other option, selectable from the Admin App (Configuration >> Store Configuration) adds parameters
to the URL:

SelectProd.action?prodId=11&manufacturer=Warner&category=Action&name=Fire+Down
+Below&model=DVD-FDBL

The source of the code that reformats the URLs is available in the Struts actions of the storefront appli-
cation.

Sitemap Generation
The Enterprise version of KonaKart contains a batch program to generate an XML sitemap. Sitemaps are
an easy way for to inform search engines about pages that are available for crawling.

The program class is called createSitemapBatch and can be found in KonaKart\custom\batch\src\com
\konakartadmin\bl\AdminProductBatchMgr.java . It may be scheduled to run at regular intervals using
Quartz or may be run interactively from the Admin App by clicking on Scheduler on the menu bar.

Administration and Configuration

109

A number of files are produced by the batch program:

• sitemap.xml - the sitemap index file that includes the other sitemap files

• sitemap-products_n.xml - includes links to all of the product detail pages. Depending on the number
of products in the database, multiple files may be produced named sitemap-products_1.xml, sitemap-
products_2.xml etc.

• sitemap-categories.xml - includes links to all of the top level category landing pages.

• sitemap-pages.xml - includes the home page and various static pages

You may need to edit the program in order to include more or remove some of the static pages depending
on the content of your eCommerce storefront application.

The files are created in a directory defined by a configuration variable which can be set through the Config-
uration >> Sitemap Configuration panel of the Admin App. If you need to modify the batch program and
to add more configurable parameters, they may be added to this panel. In order to be picked up by a search
engine the files must be placed under the root directory of the storefront; e.g. http://www.kkstore.com/
sitemap.xml. If the batch file cannot reach this location, you may still automate the process by setting up
a cron job or using some other utility to move the generated files. More information on sitemaps may be
found at http://www.sitemaps.org .

If you need to make modifications to the sitemap generation program such as adding or removing static
pages, modifying priority of entries or the URL change frequency, you may modify the source code and
recompile.

Caching
The Enterprise version of KonaKart provides functionality to configure caches for a growing number of
KonaKart objects.

By default the Open Source Ehcache cache is used which can be configured in the konakart_ehcache.xml
configuration file. This file is located in the webapps/konakart/WEB-INF/classes directory of a standard
installation.

Three cache types are currently available with different characteristics:

• Ehcache - the default cache. This allows very flexible configuration in konakart_ehcache.xml and stores
serialized objects on the JVM heap.

• Big Memory Go - the Terracotta cache. This allows very flexible configuration in
konakart_ehcache.xml, stores serialized objects and can store the cache off the JVM heap thereby util-
ising up to 32Gb of memory space. This gives you an opportunity to store very large caches in memory
without being restricted by the standard JVM heap limit on your platform. To use the free version of
the Big Memory Go cache you need to obtain a license key from Terracotta (see below for details).

• KonaKart cache - this is the highest performance cache since it stores java objects so no serialization/de-
serialization is required. The disadvantages are that there are no configuration or monitoring options
and the data must be held on the JVM heap (so there are restrictions in how much data can be stored).

Currently there are two caches supported but the number is likely to grow in the future as more opportu-
nities for improving performance are implemented:

• Product Cache - a cache of complete products

Administration and Configuration

110

• Product Image Names Cache - a cache for storing the set of image names that have been defined for
a product.

In the Configuration >> Cache panel in the Administration Application you can choose to enable or
disable each of the above two caches.

To use the KonaKart cache simply remove the konakart_ehcache.xml file (if that file is found on the
classpath an Ehcache cache will be used).

To use a Big Memory Go cache you need to take the following steps:

• Follow the instructions here: http://terracotta.org/documentation/4.0/bigmemorygo/get-started

• Replace the ehcache jar used in KonaKart with the ehcache-ee-* jar in BigMemoryGo.

• Add the bigmemory-* jar to the konakart webapp lib directory

• Obtain a license key file for using BigMemory Go and add it to the classpath (eg. add it to webapps/kon-
akart/WEB-INF/classes

• Configure the konakart_ehcache.xml file according to your requirements (eg add Off Heap caching) EG:

 <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 name="KonaKart-Ehcache"
 updateCheck="true"
 monitoring="off"
 dynamicConfig="false"
 maxBytesLocalHeap="1M"
 maxBytesLocalOffHeap="2G">

• Add -XX:MaxDirectMemorySize=4G to your JVM initialisation parameters (or equivalent setting for
your platform).

• Use the BigMemory Go Management Console to manage the Cache if required.

If you need more control over which products are cached and which are not you can create your own version
of the ProductMgr and override the cacheThisProduct product. This method takes a product as an argument
and returns true if the product should be cached and false if not. An example of such a ProductMgr class
is provided at "java_api_examples\src\com\konakart\apiexamples\MyProductMgrEE.java".

Adding Custom Functionality to the Admin App
From version 2.2.6.0 the Admin App allows you to define custom panels and custom buttons in defined
areas, to allow you to extend the Admin App by adding your own administration functionality outside the
standard Admin App.

Adding Panels
There are two types of custom panels that can be added. One type is set in the Custom Section of the
Administration Application, the other type allows you to set them in the other sections (e.g. "products",
"orders" etc).

In total there are 20 custom panels that display a predefined URL in a frame. The 10 URLs that are
used for the Custom Panels in the Custom Section of the Administration Application are defined in the

Administration and Configuration

111

Configuration>>Custom Panel Config section of the Admin App. The 10 URLs for the "floating" Custom
Panels are defined in the konakartadmin_gwt.properties file in "File-Based Configuration".

More details on how to configure the "floating" Custom Panels can be found in the
konakartadmin_gwt.properties file.

In all cases the labels of the panels can be changed by editing the message catalog. The panel links can
be rendered visible / invisible by configuring the role based security. The session id of the logged in user
is appended to the URL so that the custom application can control security using the Admin Engine API.
The string appended to each url is similar to the following, except that the session id will be random:

sess=6596bd465a824bb9cdfa6080af07e02f

With the Enterprise version a few extra parameters are added:

• langId - Currently selected display language Id

• panelName - Name of the panel

• userId - Id of the logged in Admin User

• storeId - Id of the current store

• mode - Engine mode

• cush - Customers Shared

• prsh - Products Shared

• cash - Categories Shared

An example for the Enterprise version is:

• sess=6596bd465a824bb9cdfa6080af07e02f

• &langId=1

• &panelName=kk_panel_customE

• &userId=2

• &storeId=storeX

• &mode=2

• &cush=true

• &prsh=true

• &cash=false

You can also add your own parameters to the URLs that you define. For example:

http://www.mycustom.com/custom1.action?parm1=abc

Each custom panel may have its own online help. The text for the online help is defined in the file
AdminHelpMessages.properties under the keys, help.customPanel1 to help.customPanel10.

Administration and Configuration

112

You can set the height of the custom panel frame to suit your needs by specifying a number of pixels (e.g.
700px). In the Enterprise version you can configure the width and height of each panel individually in the
konakartadmin_gwt.properties file.

Adding Custom Configuration Panel
A "User Defined" panel is available to use for maintaining custom or user defined configuration parameters
that are specific to your own store system.

All you need to do is to insert configuration parameters into the configurations table in your KonaKart
database in configuration group 31 and they will appear automatially on the User Defined Configurations
panel of the Administration Application.

As a guide to inserting configuration parameters refer to the values already in the configuratons table and
or take a look at the konakart_demo.sql file (under the database directory in your KonaKart installation)
for many example SQL statements for creating configuration parameters.

Adding Buttons
The buttons will call pre-defined urls and will normally pass some parameters to allow you to check
security and/or operate on selected objects. The button labels are defined in the Configuration>>Admin
App Configuration section of the Admin App and the buttons remain invisible until the button labels are
set with some text. The buttons and parameters available are in the following panels:

• Customer Panel

• id - the customer id

• sess - the session id of the admin user

• Returned Products Panel

• order_return_id - id of the OrderReturn object

• order_id - id of the Order object

• total_inc_tax - total amount of the Order

• sess - session id

• tx_id - gateway transaction

Adding A Custom Application - Insert Product Wizard
The Enterprise version of KK contains an Insert Product Wizard to illustrate an example of how a custom
panel may be used to provide functionality directly tailored for your unique business requirements. The
wizard consists of a separate application which can be found in the konakartadmin_app directory under
webapps.

It’s a simple application that allows you to insert a product in four easy wizard driven steps. This example
was chosen because the Insert / Edit Product panel of the KonaKart Admin App can be rather daunting
for non-technical users since it allows you to configure all aspects of a product. Most customers don’t use
all of the product features and many desire a very simple insert product panel that can be used by non-
technical staff and that displays only the required attributes.

Administration and Configuration

113

The application uses the same Struts2 / JSP technology used by the storefront application. In reality all of
the functionality is displayed by a single JSP called InsertProduct.jsp which displays the wizard. There are
no page refreshes. The wizard tabs are populated using AJAX calls and the form validation uses jquery
validate. The wizard steps are:

• Insert product details

• Select a manufacturer

• Select one or more categories

• Select the product images

The controlling JavaScript is in a file called kk.admin.js in the script directory.

The example should provide a good starting point for you to build your own custom panel implementing
whatever functionality your business requires.

Searching with wildcards
In version 5.0.0.0 of KonaKart, the search constraints for most objects are paired with a search rule that
can be configured in order to determine whether a wildcard is added before, after or before and after

Administration and Configuration

114

the search string. These "rule" attributes can be set when making the API call that searches for products,
orders, customers etc.

The admin application has a properties file called konakartadmin_gwt.properties which is used to config-
ure the search rules for the various panels of the Admin App.

--
Default wild card settings for the Admin GWT Application
--
#
Allows you to set wild card settings when searching
for data using the Admin App. The accepted values are:
#
SEARCH_EXACT = 0;
SEARCH_ADD_WILDCARD_BEFORE = 1;
SEARCH_ADD_WILDCARD_AFTER = 2;
SEARCH_ADD_WILDCARD_BEFORE_AND_AFTER = 3;
SEARCH_USE_GLOBAL_CONFIG = 4;
#
When set to 4, the search parameters will use the global settings
defined by the configuration variables: ADMIN_APP_ADD_WILDCARD_BEFORE
and ADMIN_APP_ADD_WILDCARD_AFTER. The global settings will also be used if
this file is not found.
If not set the default value is 4 (SEARCH_USE_GLOBAL_CONFIG).
#--

#sr.address.company.name = 4

#sr.address.format = 4
#sr.address.summary.format = 4

#sr.catalog.name = 4

#sr.country.iso2 = 4
#sr.country.iso3 = 4
#sr.country.name = 4

#sr.coupon.code = 4
#sr.coupon.name = 4

#sr.currency.name = 4

#sr.customer.email = 4
#sr.customer.city = 4
#sr.customer.first.name = 4
#sr.customer.last.name = 4
#sr.customer.postcode = 4
#sr.customer.street = 4

etc. etc.

Note: Prior to v6.6.0.0 these parameters were defined in a file called AdminSearchRules.properties which
is no longer used.

As can be seen in the example above, there are various rules such as SEARCH_EXACT and
SEARCH_ADD_WILDCARD_BEFORE etc. which map to integer values. If for example I want to be
able to search for customers using the customer last name with a trailing wildcard, I must set:

sr.customer.last.name = 2

Before version 5.0.0.0, there were global configuration variables for the admin app called:

• ADMIN_APP_ADD_WILDCARD_BEFORE

• ADMIN_APP_ADD_WILDCARD_AFTER

Administration and Configuration

115

These variables still exist and will be used when the rules are set to the value
SEARCH_USE_GLOBAL_CONFIG, which is the default case for backwards compatibility.

Case In-Sensitive Searching
From version 6.6.0.0 of KonaKart it is possible to configure case-insensitive searching, for selected at-
tributes, for databases that don't support case insensitive searching by default (such as PostgreSQL, Oracle
and DB2). For the Admin App, the case-sensitivity configuration is defined using the File-Based Config-
uration mechanism provided in the Enterprise version of KonaKart.

These particular settings make no difference for databases that use case insensitive searching by default
(such as MySQL).

The File-Based Configuration is set in the properties file called konakartadmin_gwt.properties as follows:

#--
Use this to define which search fields case should be ignored
(default is false = case is not ignored)

fbc.kk_panel_customers.first_name_ignore_case = true
fbc.kk_panel_customers.last_name_ignore_case = true
fbc.kk_panel_customers.email_address_ignore_case = true
fbc.kk_panel_customers.street_address_ignore_case = true
fbc.kk_panel_customers.street_address1_ignore_case = true
fbc.kk_panel_customers.postcode_ignore_case = true
fbc.kk_panel_customers.city_ignore_case = true

fbc.kk_panel_products.search_ignore_case = true
fbc.kk_panel_products.sku_ignore_case = true

You can choose to set "ignore case" on all of the attributes supported or just a subset of them.

Both Community Edition and Enterprise Editions support this case insensitive search possibility through
the APIs because the AdminProductSearch and AdminCustomerSearch have attributes that define the case-
insensitivity for the respective attributes.

Before setting these particular "ignore case" settings please pay attention to the impact on performance
that might occur. You are most likely to get better performance if you do not set "ignore Case" to "true".

There are other techniques to achieve case-insensitive searching in those databases that don't support this
by default. Refer to database-specific instructions if you choose to take this alternative option.

For example, with DB2 you can define the case sensitivity behaviour when ordering results by setting the
database collating sequence. In Oracle you can set case-sensitivity using the NLS_COMP and NLS_SORT
configuration variables.

Making something happen when a product
needs to be reordered

When the number of products in stock hits the reorder level defined by the configura-
tion property STOCK_REORDER_LEVEL, KonaKart instantiates a class defined by the prop-
erty STOCK_REORDER_CLASS. If this property isn't set, the class that is instantiated is
com.konakart.bl.ReorderMgr. If you write a custom class it must implement the interface
com.konakart.bl.ReorderMgrInterface which contains only one method:

Administration and Configuration

116

public void reorder(int productId, String sku, int currentQuantity) throws Exception;

After the class is instantiated, the reorder method is called and information regarding the productId, the
SKU and current product quantity is passed to the method so that it can use this information to trigger an
event. This mechanism is a useful generic way to interface KonaKart to external systems since the custom
class could write data to a database, call a web service or write data to a file etc.

If the configuration variable STOCK_REORDER_EMAIL is set, then KonaKart will also send an eMail
alert using the LowStockAlert template.

All of the configuration variables can be edited in the Configuration>>Stock and Orders section of the
Admin App.

Making something happen when the state of an
order changes

When an order is saved in the database or the status of an order is changed (i.e. through the callback of a pay-
ment gateway), KonaKart instantiates a class defined by the property ORDER_INTEGRATION_CLASS.
If this property isn't set, the class that is instantiated is com.konakart.bl.OrderIntegrationMgr. If you write
a custom class it must implement the interface com.konakart.bl.OrderIntegrationMgrInterface which con-
tains some methods:

Administration and Configuration

117

 /**
 * Called just after an order has been saved. The order details are passed to the method so that
 * all the information should be available in order to integrate with external systems.
 *
 * @param order
 */
 public void saveOrder(OrderIf order);

 /**
 * Called just before an order has been saved. This method gives the opportunity to modify any
 * detail of the order before it is saved. If null is returned, then no action is taken. If a
 * non null Order is returned, then this is the order that will be saved.
 *
 * @param order
 * @return Returns an order object which will be saved
 */
 public OrderIf beforeSaveOrder(OrderIf order);

 /**
 * Called just after an order status change
 *
 * @param orderId
 * @param currentStatus
 * @param newStatus
 */
 public void changeOrderStatus(int orderId, int currentStatus, int newStatus);

 /**
 * This method allows you to introduce a proprietary algorithm for creating the order number for
 * an order just before the order is saved. It is called by the saveOrder() method.
 * The value returned by this method populates the orderNumber attribute of the
 * order when it is saved.
 * If a null value is returned, then the order number of the order is left unchanged.
 * If an exception is thrown, the exception will be also thrown by the saveOrder() method and
 * the order will not be saved.
 *
 * @param order
 * @return Return the order number for the new order
 * @throws Exception
 */
 public String createOrderNumber(OrderIf order) throws Exception;

 /**
 * This method allows you to generate a tracking number for an order just before the order is
 * saved. It is called by the saveOrder() method. The value returned by this method
 * populates the trackingNumber attribute of the order when it is saved.
 * If a null value is returned, then the tracking number of the order is left unchanged.
 * If an exception is thrown, the exception will be also thrown by the saveOrder() method and
 * the order will not be saved.
 *
 * @param order
 * @return Return the tracking number for the new order
 * @throws Exception
 */
 public String createTrackingNumber(OrderIf order) throws Exception;

 /**
 * Called just before a subscription is inserted. This method gives the opportunity to modify
 * any detail of the subscription before it is inserted. If null is returned, then no action is
 * taken. If a non null subscription is returned, then this is the subscription that will be
 * saved.
 *
 * @param subscription
 * @return Returns a Subscription
 * @throws Exception
 */
 public SubscriptionIf beforeInsertSubscription(SubscriptionIf subscription) throws Exception;

 and more........

The state of an order may be changed manually through the Admin App. In this case KonaKart instantiates
a class defined by the property ADMIN_ORDER_INTEGRATION_CLASS. If this property isn't set,

Administration and Configuration

118

the class that is instantiated is com.konakartadmin.bl.AdminOrderIntegrationMgr. If you write a custom
class it must implement the interface com.konakartadmin.bl.AdminOrderIntegrationMgrInterface which
contains the method:

 /**
 * Called just after an order status change
 *
 * @param orderId
 * Id of the order
 * @param currentStatus
 * Current state of the order
 * @param newStatus
 * New state of the order
 */
 public void changeOrderStatus(int orderId, int currentStatus, int newStatus);

 /**
 * This method may be customized in order to implement an algorithm that creates an RMA code for
 * the order. The Administration Application will use the returned value (if not null) to
 * automatically populate the RMA code entry field.
 *
 * @param orderId
 * Id of the order
 * @return Returns an RMA Code
 */
 public String getRMACode(int orderId);

This mechanism is a useful generic way to interface KonaKart to external systems since the custom classes
could write data to a database, call a web service or write data to a file etc.

The ORDER_INTEGRATION_CLASS and ADMIN_ORDER_INTEGRATION_CLASS properties can
be edited in the Configuration>>Stock and Orders section of the Admin App.

PDF Invoices
PDF invoices can be created by KonaKart for a variety of different purposes including:

• To send to customers as email attachments in order confirmation emails.

• For internal record-keeping - some store owners may wish to save all their invoices in PDF format.

• For display and download from both the store front (under the customer's "My Account" page) and the
Admin Application. In order to activate the download links, you must set the "Enable" configuration
variable in the Configuration >> PDF Configuration section of the Admin App.

By default, no PDF invoices are created by KonaKart. They can be created in a number of different ways:

• The application code can be modified to create the PDF invoices typically at the point when an order is
confirmed or when payment is received. The methods that need to be modified are getEmailOptions()
in CheckoutConfirmationSubmitAction.java (for when an order is confirmed) and sendOrderConfirma-
tionMail() in BaseGatewayAction.java (for when payment is received).

• A batch job is provided that can be executed from Quartz (using standard KonaKart job scheduling) that
will create invoices for orders that haven't yet had invoices created. This batch job can be modified to
suit your particular requirements - for example you may only want invoices to be created when an order
reaches a certain order status. Full source code is provided for the batch jobs to enable you to make any
modifications required. By default the batch job is not scheduled to execute. To schedule it to run you
need to uncomment the cron-expression tag for the CreateInvoicesTrigger in your konakart_jobs.xml
Quartz job definition file.

Administration and Configuration

119

• Invoices can be created by calling a "createInvoice()" method from the OrderIntegrationMgr and/or the
AdminOrderIntegrationMgr. This call is commented out in the supplied versions of these two order
integration managers making it easy to modify to create the invoices at this stage. As in the batch job,
it would also be easy to code logic here that only created invoices when the order reached a certain
specified order status if that was required.

• Invoices can be created "on-the-fly" by calling the GetPDF servlet. This is useful when you don't ever
want to create a permanent record of the PDF file on the file system (possibly for Data Protection
restrictions). The GetPDF servlet will return the PDF invoice if it already exists or, if it doesn't exist,
create the PDF invoice dynamically and then return the contents of this.

By default, KonaKart stores the created invoices in a hierarchical structure on the file system. The directory
structure is deep to distribute the files evenly across multiple directories to avoid the possibility of creat-
ing too many files in a single directory. The root location is defined in the "PDF_BASE_DIRECTORY"
configuration variable. This can be set to any location accessible to the KonaKart code that creates the
invoices.

An example PDF invoice filename, on Linux, is: "/home/greg/konakart/pdf/
store1/2/2010/3/199-547b759d-735c-48bb-a23d-4cf526be9c3a.pdf"

In turn, the directories used are:

• "store1" - the storeId

• "2" - 2 is the code for an Invoice (other document types are packing slips (3) and order details (1))

• "2010" - the year at the time the invoice was created (YYYY)

• "3" - the month at the time the invoice was created (M)

• "199-547b759d-735c-48bb-a23d-4cf526be9c3a.pdf" - the filename has the format: orderId + "-" +
UUID + ".pdf"

Activating a Promotion
You must follow these steps :

• Ensure that the promotion module that you want to use, is installed. All promotion modules can be found
in the Modules>>Order Total section of the Admin App.

• Create a new promotion in the Products>>Promotions section of the Admin App. The online help
provides extra information and most attributes have floatover text with a more detailed description.
When creating the promotion, you must select which promotion module to use from the Promotion
Type drop list. The configuration data required, depends on the promotion type. Once the promotion
has been saved, it is immediately active as long as the Active check box was ticked and the current date
lies between the promotion start and end dates.

• Rules may be added to the promotion by clicking on the Rules button. When a rule is selected, a pop-
up window opens where the rule can be configured (e.g. Activate promotion for products belonging
to a certain category). When the pop-up window is closed, the rule is saved and the Promotion Rules
window shows a summary of the rules that have been set.

• If the promotion needs to be activated through a coupon, you can create a coupon by clicking the
Coupons button. The coupon must be given a name and a code (the text entered by the customer to

Administration and Configuration

120

activate the coupon). The coupon may also be programmed so that it can only be used a defined number
of times. The final step is to enable the coupon entry field in the UI during checkout. To do this you must
set the "Display Coupon Entry Field" to true in the Configuration>>My Store section of the Admin App.

If your store is in a different time zone compared to your server, or you are running in multi-store
mode where the stores are in different time zones, then you may set the time zone of your store in
the TZ DB Time Zone configuration variable in the Configuration >> Store Configuration section
of the Admin App. The time zone must be set as a tz database time zone such as US/Pacific, Aus-
tralia/Perth or Europe/London. A list of valid zones may be found on Wikipedia [https://en.wikipedia.org/
wiki/List_of_tz_database_time_zones] . The time zone calculation using the tz database time zones will
automatically compensate for daylight savings time if the time zone supports it.

Once the time zone has been configured, you may set the promotion start and end dates in your local time
and the KonaKart server will compensate for any time difference between your store time zone and the
time zone where your KonaKart server is running.

Testing a Promotion
In the Enterprise version of KonaKart a promotion can be put in test mode so that it can be tested in a
live system by a predefined group of users. The test mode users are defined using a customer tag called
PROMOTION_TESTER.

After a default installation of KonaKart, an expression is installed called PromotionTester which evaluates
to true for all customers with the PROMOTION_TESTER tag set to true.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Administration and Configuration

121

When in test mode, a promotion is only active for the set of test users that have the PROMOTION_TESTER
tag set to true. The way that it works is that when a promotion is put in test mode, the PromotionTester
expression rule is automatically added to the promotion.

In order to enable, disable or put a promotion in test mode, you can use the State drop list shown above.
When a promotion is in test mode, the state in the array of promotions is displayed as an amber dot. An
active promotion has a green dot and a disabled promotion has a red dot.

Administration and Configuration

122

The name of the expression used to determine test users is defined by a configuration variable which can
be set in the Admin App under Configuration >> Customer Details . The default expression is called
PromotionTester but this may be changed to the name of any existing expression in order to use that
expression for determining test users based on any of their tag values.

Applying Promotions to Products
In KonaKart a promotion is calculated by an OrderTotal module. When an order is created, the promotion
module calculates the value of the promotion discount considering all of the data contained in the order
and generates a promotion line item (OrderTotal) for the order containing the discount.

Sometimes it is convenient to calculate and display the promotion discount for an array of products without
requiring that the customer has added the products to the cart. In this way the customer may see the discount
and be tempted to add the products to the cart.

A KonaKart OrderTotal module has a method that may be implemented to calculate a discount for a single
product. The method is called:

PromotionResult getPromotionResult(Product product, Promotion promotion)

An example of its implementation may be seen in the ProductDiscount promotion module which can be
found under the custom\modules\src\com\konakart\bl\modules\ordertotal\productdiscount directory. The
method creates and returns a PromotionResult object which contains information to identify the promo-
tion, the value of the promotion, whether it is a percentage or value discount and other information. The
PromotionResult is attached to the product by the KonaKart engine. If the product is configurable (i.e.
size, color etc.) each configuration may have it's own array of PromotionResult objects enabling you to
discount for example a blue shirt but not a red one.

The API call that evaluates the promotions for an array of products (Enterprise Only) is:

ProductIf[] getPromotionsPerProducts(String sessionId, int customerId, ProductIf[] products, Promo-
tionIf[] promotions, String[] couponCodes, PromotionOptionsIf options)

A full description can be found in the Javadoc. The method receives an array of products and returns an
array of products with attached PromotionResult objects that contain the results of one or more of the
promotions passed in as a parameter. A list of active promotions can be fetched using the following API
call:

PromotionIf[] getAllPromotions()

In the KonaKart demo storefront application, the promotions are cached in order not to retrieve them every
time since this would degrade performance. The promotions may also be filtered and only a subset sent
to the API call to calculate the discount.

An example of this promotion functionality may be found in CatalogMainPageAction.java . The code
(which is commented out) passes the array of new products to the API call in order to determine whether
any promotions apply to the products. The JSP called NewProductsWithDetailBody.jsp displays the pro-
motion name next to the product image if the product has a promotion.

So to summarize, to activate the promotion for products functionality in our demo storefront application
for the display of the "Latest Products", you need to take the following steps:

• Using the Admin App, create a ProductDiscount promotion and activate the ProductDiscount Order
Total Module.

• In CatalogMainPageAction.java, uncomment the code that makes the getPromotionsPerProducts() API
call and compile the action class.

Administration and Configuration

123

• At this point, the Latest Products tile on the home page of the storefront should display the promotion
name next to each product if the promotion is active. You may want to modify this to display an image
showing the promotion details.

• In order to activate this functionality in other parts of the storefront app, you will need to add code in
other struts action classes similar to the code in CatalogMainPageAction.java.

Displaying Coupon Entry Fields in your Store
You must set the "Display Coupon Entry Field" to true in the Configuration>>My Store section of the
Admin App.

Configuring Digital Downloads
KonaKart supports digital downloads which can be downloaded from the KonaKart on line store, as soon
as payment is received for the products. A new section appears on the customer's Account page, with a
link for each downloadable product in the order.

To configure KonaKart for selling digital downloads, the following steps must be taken :

• Using the Admin App, ensure that the "Product Type" attribute of all downloadable products is set to
"Digital Download". You must also enter the "File Path" and the "Content Type"

• File Path : The File Path will be concatenated to the "Base Path" defined by a configuration variable.
For example, if the Base Path is set to "C:/images/" and the File Path is set to "cities/london.jpg",
then the downloaded file will be C:/images/cities/london.jpg . If the Base Path is left empty (default
value) then the File Path must be set to the full name, i.e. C:/images/cities/london.jpg . Note that if
the Base Path ends with a "/" then the file path should not start with a "/" because the two strings are
concatenated to create the full path for the digital product.

• Content Type : The Content Type describes the content of the file. Examples are "image/jpeg" or
"application/pdf". A list of Content Types may be found here.

• Using the Admin App in the section Configuration>>Configure Digital Downloads you may configure
some parameters regarding the digital download functionality. These are:

• Base Path : The base path of the downloadable files as explained above.

• Max Number of Downloads : The maximum number of times that the file can be downloaded. -1 for
an unlimited number of downloads.

• Number of days link is valid : The number of days that the download link is valid for. -1 for an
unlimited number of days.

• Delete record on expiration : When the download link expires, the database table record defining
the link will be automatically deleted. Setting this to true avoids having to do manual cleanup of the
database.

• Download as an attachment : When set to true, the digital download is downloaded as an attached
file that can be saved on disk. When set to false, the browser attempts to display or run the file.

• The digital downloads shipping module must be installed in the Modules>>Shipping section of the
Admin App. This shipping module activates automatically when the whole of the order consists of digital
downloads and displays a $0 shipping cost. Any other shipping module should not return a shipping
quote in the case of a digital download order.

Administration and Configuration

124

Configuring Bookable Products
The Enterprise version of KonaKart supports bookable products. A bookable product is a product that has
a start and end time and may also have a schedule associated with it (i.e. a course which may be given for
two hours a day on Wednesdays and Thursdays).

To configure KonaKart for selling bookable products, the following steps must be taken :

• Using the Admin App, ensure that the "Product Type" attribute of all bookable products is set to "Book-
able Product". When this is set, a sub folder appears which allows you to enter the specific data for
bookable products:

• The start and end dates are required attributes. They may be equal if a product is only valid for one
day. Note that the Admin App automatically sets the time of the start date to be 00:00 and that of the
end date to 23:59. If you are using the API directly, we recommend that you use the same convention.
Once these have been entered, the "New Time Slot" button is enabled which allows you to insert time
slots for the product. A time slot defines a start and end time for any day that lies between the start
and end dates. A day may have multiple time slots. For example a course could be given for 2 hours
in the morning and 1 hour in the afternoon.

• Other attributes include the maximum number of bookings available and the current number of book-
ings, which is updated automatically as bookings are made. There are a number of custom fields that
can be used to store information applicable to the type of bookable product.

If your application doesn't support bookable products, you may remove the "Bookable Product" entry from
the product type drop lists in the Admin App, by setting the Hidden Product Types configuration variable
from the Configuration >> Admin App Configuration section of the Admin App. As can be read in the
Online Help, the id for Bookable Products is 6 .

Whenever a bookable product is purchased, the code that processes the order may be found in the Order-
IntegrationMgr and the AdminOrderIntegrationMgr in the manageBookings() method. For performance
reasons the code that calls this method (within the managers) is commented out and must be uncommented.
The manageBookings() method parses the order and creates one or more booking objects which are saved
in the database. These booking objects are related to the bookable product, the customer and to the order
so that the bookings for any product, customer or order may be fetched using the KonaKart APIs.

The Admin App allows you to view and edit bookings. The Products Panel, Customers Panel and Orders
Panel all have a "Bookings" button that opens up a Bookings panel that displays the bookings for the
selected object. The button is not displayed if the role of the admin user doesn't allow him to view the
Bookings panel.

The Application API contains a method (getBookableProductConflict()) that determines whether for a
customer, a new booking may conflict with bookings that the customer has already made.

Import/Export of KonaKart Data

Export of Orders using exportOrder
An exportOrder API call is available for exporting a specified Order to a file.

The exportOrder interface requires an options parameters that is used to define the type of export to execute.
Two examples that can be used for this code are:

• KKConstants.EXP_ORDER_FULL_ORDER_TO_XML

Administration and Configuration

125

• KKConstants.EXP_ORDER_BY_SHIPPING_MODULE

When the KKConstants.EXP_ORDER_BY_SHIPPING_MODULE code is used, the idea is that the ship-
ping module should provide an implementation of the order export that is specifically designed for inte-
gration with a shipping application for that shipping gateway.

An example of such a shipping module exportOrder implementation is provided for UPS for integration
with UPS WorldShip. In this case the KonaKart order is exported as an XML file suitable for use with
the Auto-Import feature of UPS WorldShip. The operator of UPS WorldShip should configure the Au-
to-Import directory (in UPS WorldShip) to be the directory where KonaKart exports its orders (by default,
for store1 and UPS, this is under the KonaKart home directory in: orders/store1/2/ups/ where "2" is the
value of the EXP_ORDER_BY_SHIPPING_MODULE constant, "ups" is the shipping module code, and
"store1" is the storeId).

Two export order functions are available on the Orders panel of the Administration Appli-
cation. These two export order functions correspond to the two export codes listed above
(EXP_ORDER_FULL_ORDER_TO_XML and EXP_ORDER_BY_SHIPPING_MODULE). These
functions are useful for ad-hoc order exports.

In some implementations of KonaKart it may be useful to export orders during normal order processing
(rather than relying on manual intervention for this). There are many ways to implement the automatic
export of orders. A common technique would be to use the OrderIntegrationMgr and AdminOrderIntegra-
tionMgr to export orders whenever the order's status reached a certain value (such as "payment_received").
An example of doing just this is provided in the OrderIntegrtaionMgr source code and all that is required
to get it to work is to uncomment the calls.

Import/Export of KonaKart Data using XML_IO
XML_IO is a tool, provided in the Enterprise Extensions of KonaKart, that allows you to import and export
KonaKart data in XML files.

Note the Warning section below. XML_IO does import compliant XML data files but in a specific way
which may not be appropriate for your needs. Since KonaKart has a complete set of Administration APIs
most users find it more flexible to write their own import/output routines (using the KonaKart KKAdminIf
APIs) designed for their own specific-purposes than using the generic XML_IO facility.

It can be found in the xml_io directory which is located directly under the KonaKart installation directory.

The XML_IO utility can be configured to backup KonaKart systems, transfer product data from one system
to another (e.g. from some kind of staging system to the live system), or any other use you can think of
involving the import and export of XML data!

For some users it may be a useful way to export products or orders in XML format for subsequent com-
munication with other systems. Indeed it could also be a useful way to import customers or products into
KonaKart that are defined in other systems that can produce compatible XML files.

These are merely examples and it is expected that users will end up using the XML_IO utility in many
different ways to suit their own specific requirements.

Configuration of XML_IO

A properties file allows you to define which KonaKart data objects you would like to be imported or
exported providing tremendous flexibility of usage.

The properties file allows you to define the following:

Administration and Configuration

126

When not modified, the default setting is true.

#accessoryProducts = false
#addressFormats = false
#audit = false
#bundledProducts = false
#categories = false
#categoriesToTagGroups = false
#configurationGroups = false
#configurations = false
#content = false
#contentTypes = false
#countries = false
#coupons = false
#crossSellProducts = false
#customerGroups = false
#customerTags = false
#customerTagsForCusts = false
#currencies = false
#customers = false
#dependentProducts = false
#digitalDownloads = false
#expressions = false
#geoZones = false
#ipnHistory = false
#languages = false
#manufacturers = false
#messages = false
#productOptions = false
#orders = false
#orderStatuses = false
#productCategories = false
#productOptionValues = false
#products = false
#productsToStores = false
#productTags = false
#reviews = false
#subZones = false
#tagGroups = false
#tagGroupToTags = false
#tags = false
#taxClasses = false
#taxRates = false
#upSellProducts = false
#wishLists = false
#zones = false

The properties file allows you to define the data to be imported/exported using the Xml_IO import/export
utility in KonaKart. You can call the properties file anything you like as its name is specified as an argument
to the XML_IO command line utility (for details of the "usage" of the command line utility, see below).

If no properties are defined (or a properties file is not specified to the XML_IO utility) the default im-
port/export configuration is used. By default all values are set to true. This means that by default all data
is imported/exported. ** Note that this may take a long time if if you have a lot of data!

If you define properties in this configuration properties file the values in it will override the default settings
of the XML_IO utility.

A sample file is provided in the download kit for you to modify for your own purposes. Uncomment only
the fields you want to define for import/export.

If you leave them commented out "true" is used by default.

If you are planning to import your exported data into another system where the Ids of the data are different,
you should ensure that you export the appropriate dependent data objects (see below for some warnings
about mapping of Ids). If, on the other hand, you are planning to import the exported data into a system
where you know the Ids of the referenced objects will be the same, you can improve the performance of

Administration and Configuration

127

the export/import process by choosing only the higher level objects for export and import. If in doubt, you
should export and import all the data objects so that you know you have a complete set of data for the site.

XML_IO Usage

You can discover the parameters for the XML_IO command line utility by issuing a "-?" as your argument
as follows (example from a Linux system):

summersb@luton:~/konakart/xml_io$. ./setClasspath.sh
summersb@luton:~/konakart/xml_io$ ${JAVA_HOME}/bin/java -cp ${IMP_EXP_CLASSPATH} \
 com.konakart.importer.xml.Xml_io -?
Usage: Xml_io
 (-i|-o) Import or Export
 [-b bootstrapFile] Bootstrap file - an sql file run prior to importing
 data to initialise the DB. If not set no bootstrap
 is executed.
 [-e emptyDBFile] An sql file used that's run prior to importing data
 to empty the DB. If not set no empty DB is executed.
 [-r xmlRootDir] Root directory of the XML data files on disk.
 Default: ./xml_io
 The directory is created if it doesn't exist.
 [-prop propsFile] Konakart Admin properties file name which must be
 on the classpath. Default:
 konakartadmin.properties
 [-conf confFile] Configuration file that defines which parts of the
 KonaKart database are imported/exported.
 [-usr userName] User name to access the Konakart Admin engine.
 Default: admin@konakart.com
 [-pwd password] Password to access the Konakart Admin engine.
 Default: princess
 [-s storeId] The store to import to or export from.
 Default: store1
 [-m engineMode] KonaKart Engine Mode
 0 = Single Store (default)
 1 = Multi Store MultipleDB
 2 = Multi Store SingleDB
 [-c (true|false)] Shared customers (only relevant in Engine Mode 2).
 Default is false.
 [-ps (true|false)] Shared products (only relevant in Engine Mode 2).
 Default is false.
 [-cas (true|false)] Shared categories (only relevant in Engine Mode 2).
 Default is false.
 [-soap] Use SOAP to access the Admin Engine.
 Default is to use direct java calls
 [-ws url] The endpoint for the Admin Web Services. Default:
 http://localhost:8780/konakartadmin/services/KKWSAdmin
 Only relevant when -soap is specified
 [-d] to enable debug
 [-h|-?] to show usage information

Warning

A word of warning when using the XML_IO utility! Loading data from one system to another can be a
very complicated process so proceed with extreme caution. It is suggested that you backup your systems
before executing XML_IO imports in the event that an import doesn't function the way you expect.

Complications arise in a number of different areas. One is in the case where exported Ids (and keys) from
one system do not match those on the target system to import into. The XML_IO utility does have the
"intelligence" necessary to "map" these ids during the import process and does this in a number of different
ways. One way to ensure the mappings are correct is to include the necessary reference data in the XML_IO
export so that this can be used during the import process by XML_IO to figure out the correct mappings.
An example is to include the languages export when you export the products so that when the products are
subsequently loaded into a different system (where languages could easily be defined with different Ids)
the language Ids can be mapped on the imported products.

Administration and Configuration

128

Nevertheless, it is important to note that even when you include all the necessary reference data there
are, unavoidably, occasions when XML_IO cannot calculate a mapping successfully. This can occur, for
example, when it tries to locate a language by name in the target system (in order to figure out the mapping
of Ids) but fails to find exactly one match. In such cases the XML_IO utility will report the mapping failure
as a "Warning" in the log.

Therefore, it is strongly advised that you check your import/export processes carefully before unleashing
in production. XML_IO is a very powerful utility but if used incorrectly can lead to duplicate records and
in some cases a loss of integrity in your database.

KonaKart has a complete set of Administration APIs so most users find it more flexible to write their own
import/output routines designed for their own specific-purposes than using the generic XML_IO facility.

Examples

In the xml_io directory, located under the KonaKart installation home directory, you will find some ex-
ample scripts for running XML_IO either directly using the "engine" or via SOAP. These may be useful
as they stand or they could be used as templates for your own XML_IO scripts that are tailored for your
own particular environment.

Custom Imports Using the Importer Panel

The Enterprise version of the Administration Application provides an Importer Panel that allows you to
define your own custom Import routines that you can assign to custom import buttons.

There are three custom import buttons available for three custom commands. An example import routine
is provided and set up on custom import button number 1. This example imports products from an XML
file (that you select before clicking on Import) whose format definition can be found under the installation
home in "\xml_io\schema\konakart_xml_io.n.n.n.n.xsd" (refer to AdminProductsXML).

Note that this particular import is just a simple example. It only imports products with SKUs that are not
specified or do not already exist in the KonaKart database. It does not update products at all. It does not
attempt to match the names of referenced objects but just uses the Ids specified in the data file. If, for
example, a product's manufacturer Id refers to a manufacturer that doesn't exist, the product insert will fail.

The example is provided just to give you a starting point for your own custom import routines and show
you how to make them accessible to your Admin users. It is likely that you will have specific requirements
for your imports that will not be satisfied by this simple example.

The example source code can be found under the installation home at "xml_io/src/com/konakart/im-
porter/xml/ImportXml.java"

Configuration of the Importer Panel

Using File-based configuration (in konakartadmin_gwt.properties) you can define any custom import rou-
tine to be associated with each of the three import buttons.

For example, by default, the example import routine is set up on custom import button 1:

Administration and Configuration

129

#--
#
Importer Configuration
#
#--
#
Allows you to specify custom jobs on each of the 3 Custom Import
buttons.

Enterprise Only
#
Set the custom import button labels in the AdminMessages.properties file
for each of your supported languages in these properties:
#
button.importer.custom1
button.importer.custom2
button.importer.custom3
#
If the job class is undefined for a Custom Import button
it will not be shown on the Importer Panel.
#--

fbc.import.custom1.job.class = com.konakart.importer.xml.ImportXml
fbc.import.custom1.job.method = importXml

#fbc.import.custom2.job.class = custom2.class
#fbc.import.custom2.job.method = custom2.method

#fbc.import.custom3.job.class = custom3.class
#fbc.import.custom3.job.method = custom3.method

Your custom routine must have a constructor that takes a KKAdminIf object and the method that you
specify must receive an array of Strings. For example:

 /**
 * Constructor that takes an Admin Engine
 *
 * @param adEng
 * KKAdminIf engine
 */
 public ImportXml(KKAdminIf adEng)
 {
 // You will probably want to save the engine:
 setAdminEng(adEng);
 }

 /**
 * ImportXml using the specified command line args
 *
 * @param args arguments: will be called by the Admin App with:
 * -se sessionId (of the logged-in admin user)
 * -i comma-separated list of filenames or directories
 * -o log-filename
 *
 * The log filename will use a concatenation of the selected files
 * with a file-friendly timestamp and ".log" appended.
 */
 public void importXml(String[] args)
 {
 // Add your custom import code !
 }

As for all button labels, the custom import button labels are defined in the AdminMessages.properties file
for each supported language. The default (English) version defines these:

Administration and Configuration

130

button.importer.custom1 = Import
button.importer.custom2 = Import2
button.importer.custom3 = Import3

By default the Importer Panel appears as follows: (showing the online help as well):

Importer Panel - also showing the on-line help

Importer Log Files

Log files created by the importer jobs can be viewed from the "View Importer Logs" panel. The location
for the importer log files can be specified in a configuration variable - See Configurations >> Importer
Configurations.

Reset Database Tool
The Enterprise version of the Administration Application provides a Reset Database Tool that can be
executed to reset your KonaKart database to a state containing just a minimal set of reference data (and
customers) ready for you to add your own categories, manufacturers and products.

Therefore, it should be used with extreme care. Do not remove all your products by accident!

Configuration of the Reset Database Tool Option

You can replace the name of the command on the Tools menu with the name of a custom tool of your own
specification and change the definition of the class and method that is executed to change what happens
when that option is selected.

Using File-based configuration (in konakartadmin_gwt.properties) you can define any custom routine to
be associated with the Reset Database option.

Administration and Configuration

131

By default, if the values in the konakartadmin_gwt.properties are commented out, the emptyDatabase
method of the com.konakartadmin.utils.ResetDatabase class is executed. You can specify your own values
here instead to change the functionality:

#--
#
Tools Configuration
#
--
#
Allows you to specify a custom tool to replace the Reset Database
operation.
#
Enterprise Only
#
Specify your own class and method to repace the Reset Database
operation with your own.
Default values are shown commented out
#
#--

#fbc.tools.resetdb.job.class = com.konakartadmin.utils.ResetDatabase
#fbc.tools.resetdb.job.method = emptyDatabase

Your custom routine must have a constructor that takes a KKAdminIf object and the method that you
specify must recieve an array of Strings. For example:

 /**
 * Constructor that takes an Admin Engine
 *
 * @param adEng
 * KKAdminIf engine
 */
 public ResetDatabase(KKAdminIf adEng)
 {
 // You will probably want to save the engine:
 setAdminEng(adEng);
 }

 /**
 * Empty Database using the specified command line args
 *
 * @param args arguments: will be called by the Admin App with:
 * -se sessionId (of the logged-in admin user)
 * -o output-filename
 *
 * The output filename will use the method name that you define
 * with ".log" appended so in the case of the default example,
 * this is emptyDatabase.log
 */
 public void emptyDatabase(String[] args)
 {
 // Add your custom code !
 }

As for all Admin Application messages, the Reset database messages can be changed by modifying the
following properties in the AdminMessages.properties file for each supported language. The default (En-
glish) version defines these:

Administration and Configuration

132

panel.resetDatabase = Reset Database
question.resetDatabase = Are you sure you want to Reset the Database?
msg.resetDatabase = Click on the Delete button to empty your database of
 Products\, Categories\, Orders and other important data
 items (see the Help for more details).

PROCEED
 WITH CAUTION - do not Click on Delete unless you are
 sure you want to reset your database...
msg.resettingDatabase = Resetting Database...
help.resetDatabase = Reset the Database

You can also change the help text that is associated with the panel by changing the help.resetDatabase
property in the various AdminHelpMessages.properties files.

By default the Reset Database option appears as follows: (after clicking on the Delete button you get a
warning before proceeding):

Reset Database Panel - with warning dialog

View System Log Files

A Log file is created by the Reset Database command. This, as well as other system log files, can be viewed
from the "View System Logs" panel.

Multiple Prices for Products
Each KonaKart product object has 4 price fields that can be used to store 4 different prices. For example,
these may be retail price, wholesale price, MRP, employee price etc.

The prices may be stored just for reporting purposes since whenever a product is added to an Order and an
OrderProduct object is created which becomes an attribute of the Order object, this OrderProduct contains
all of the product prices. This means that whenever documentation is generated from the order, you can
show customers information such as the discount from the MRP etc.

The prices may also be used to display different prices to different customers based on what customer
group they belong to.

In order to have an unlimited number of prices, they may be stored in a separate database table and ref-
erenced by a catalog id. The database table is called kk_product_prices. In order to pick up the external

Administration and Configuration

133

prices, the Application Engine must be configured with the correct catalog id. The catalog id can be cal-
culated in a number of ways and is application specific. For example, it may depend on the country that the
customer is accessing from, or the URL or the type of customer etc. One way of configuring the application
engine is in the KKAppEngCallouts class as shown below:

/**
 * Callouts to add custom code to the KKAppEng
 */
public class KKAppEngCallouts
{
 /**
 * Called at the start of startup
 *
 * @param eng
 */
 public void beforeStartup(KKAppEng eng)
 {
 System.out.println("Set product options for current customer");
 FetchProductOptionsIf fpo = new FetchProductOptions();
 fpo.setCatalogId("cat1");
 fpo.setUseExternalPrice(true);
 fpo.setUseExternalQuantity(true);
 eng.setFetchProdOptions(fpo);
 }

 /**
 * Called at the end of startup
 *
 * @param eng
 */
 public void afterStartup(KKAppEng eng)
 {
 }

The catalogId must be set to the id of a valid catalog and the the UseExternalPrice attribute must be set
to true. Note that when using the application API directly, this functionality is available on all of the API
calls that accept an Options object such as FetchProductOptions or AddToBasketOptions. The Options
object for each API call must be configured in a similar way as shown above.

The kk_product_prices table may be loaded in various ways:

Administration and Configuration

134

• Using the Generate Catalog Prices panel of the Admin App (see the panel online help) or programmat-
ically using the createCatalogPricesFromRules() Admin App API call which provides the same func-
tionality as the panel. This API call generates product prices based on rules at the category level. Before
generating the prices you have to insert a number of rules for categories using the addCatalogRules()
API call. For each category and its sub categories you can define whether to include or exclude products.
When a product is excluded, the product will not be visible on the storefront when that catalog id is
selected. When a category is included you can add a calculation to the rule to provide a percentage price
adjustment (up or down) or a fixed price for all products in the category. The rules are hierarchical,
which means that if a category is not assigned a rule, it inherits the rule of its parent or grandparent etc.

In order to add exceptions at the product level, you must add the product to an invisible category to
which you have added an exception rule. For example, you could have invisible categories for 20%,
30%, 40% discounts etc. If a product is in multiple categories, it will always pick up the rules from
the invisible category assuming one of the categories is invisible. If a product is in multiple visible
categories with different rules, the algorithm doesn't guarantee which rule will be used.

• Using the Admin App insertProductWithOptions() or editProductWithOptions() API calls . The Admin-
ProductMgrOptions object must be set with the correct catalogId and configured to use external prices.
When the call is made, the product and product attribute prices are written to the kk_product_prices
table rather than to the standard product tables.

• Directly using the appropriate database tools. This may be the most convenient way if the prices already
exist in the database in other tables.

Administration and Configuration

135

Once the product prices have been generated or inserted, the Admin App may also be used to maintain the
external product prices for individual products. The Catalog must first be defined using the Catalogs panel.
Once defined, it appears in a drop list in the panel header. When selected in the drop list, all product related
API calls made by the admin app attempt to use the catalog. i.e. If you edit a product, the prices, attribute
prices and tier prices are all written to the kk_product_prices table rather than to the standard tables. When
inserting a product, the prices are written both to the kk_product_prices table as well as the standard tables.

Note that if a catalog is defined but the product does not have entries in the kk_product_prices table, then it
will not be displayed in the Products Panel after a search. In order to add the prices to the kk_product_prices
table you must take the following steps:

• Select "No Catalog" from the catalog drop list.

• Click the Edit button for the selected product.

• Modify the prices for that product.

• Select the catalog from the drop list.

• Click the Save button to save the prices in the kk_product_prices table for the chosen catalog.

Note that the API calls using the kk_product_prices table are only available when the Enterprise Extensions
are installed.

Sale Price
A sale price may be defined for each product with a start and end date for the sale period. The price is
defined using the Admin App, in the Prices tab of the Edit Product panel.

The image above shows how the special price is defined for a product. Below, we show an example of
how the sale price may be displayed in the storefront application by using a strike-through-

In the Enterprise version of KonaKart, a batch job is supplied, called
AdminProductBatchMgr.setSpecialPriceStateBatch() which disables the special price if it has expired or

Administration and Configuration

136

isn't active yet. The reason for disabling the special price is that if not disabled, the special price is still
used to order and filter products by price even though the current date may not lie within the defined date
range (This is done for performance reasons).

Note that special price functionality is not supported when using catalog prices.

Tier Pricing
Tier Pricing is a way to encourage shoppers to buy larger quantities of a product by applying discounts
based on the quantity ordered. These discounts may be "tiered" so that they increase as the order amount
is raised. KonaKart supports the definition of actual tier prices as well as percentage discounts. The prices
are defined using the Admin App, in the Prices tab of the Edit Product panel.

The image above shows how tier prices may be defined for a product. Below, we show an example of how
these prices may be displayed in the storefront application.

The image below displays an example of how percentage based tier prices may be defined. The percentage
amount is entered in the normal price field and the "Use Percentage Discount" checkbox is checked.

Administration and Configuration

137

Below, we show an example of how percentage based tier pricing may be displayed in the storefront
application.

Dynamic product prices
The price of a product may be defined at the moment that it is added to the cart. This functionality is useful
when the application logic is responsible for calculating the product price.

Administration and Configuration

138

 BasketIf b = new Basket();
 b.setQuantity(1);
 b.setProductId(selectedProd.getId());
 b.setFinalPriceExTax(new BigDecimal("22.22"));
 kkAppEng.getBasketMgr().addToBasket(b, /* refresh */true);

In order to define your own price, you must set the FinalPriceExTax attribute of the Basket object as shown
above. Normally this isn't set and the price is retrieved from the Product. The above example is taken from
one of the storefront application action classes which is communicating with the KonaKart client engine.
The concept is the same when communicating directly with the server engine.

In order to allow this functionality, the "Allow to use Basket Price" configuration variable must be set.
This can be done through the Admin App under Configuration >> Security and Auditing. Note that if
the Web Services interface is publicly available, a programmer has the possibility of writing a utility to
add a product to the cart with any price. Therefore we advise using this functionality only when the Web
Services interface isn't available over the web (the normal case).

Tax Configuration
KonaKart includes a powerful tax calculation system containing the following entities:

• Zone: A physical area and is normally a state or region within a country.

• Tax Area: An area defined for tax purposes and can be mapped to a zone or a country.

• Tax Class: Defines a type of product for tax purposes because products within the same tax area may be
taxed differently depending on their tax class. For example, children's clothes or basic necessities such
as milk, may be taxed differently to luxury goods.

• Tax Rate: A percentage number used to actually calculate the tax on a product. It has to be associated
with a tax area and a tax class.

To start, you should define all of the zones for the country that you are interested in. Our database comes
pre-populated with zones for a few countries. Even if the tax rate doesn't change between zones, it is still
a good idea to populate them since this helps customers when entering addresses because they can be
displayed in a drop down list.

Next, you should define the tax areas which may map directly to the zones. For example, the state of Texas
may map directly to a tax area. Once you've defined all of you tax areas, you should map them to the
zones using the Admin App.

The following step is to define the tax classes which are needed before entering any products. Once these
are defined, the final step is to insert all of the tax rates that could be applied and map them with a tax
area and a tax class.

If for some reason you need to look up the tax rate to be applied for a product from an external system,
this rate can be applied to the order before saving it. In order to do this you must loop through all of the
OrderProduct objects contained in the order and call the setTaxRate() method to set the tax rate. Once
this has been done, you can call the getOrderTotals() engine call which re-calculates the order for the new
tax rates.

Multiple Tax Areas Within a State

In the US there are cases where a state contains multiple tax areas which may be determined by the zip
code or a combination of zip code and county or some other details of the address. In this case, all of

Administration and Configuration

139

these physical zones may be added to the list of zones but made invisible so that when displaying the list
of zones for a country, the list box does not show thousands of zones. For example, lets say that state
ABC has 3000 different tax areas delimited by zip code. In this case all of these zones could be stored
by KonaKart and all display the same name (i.e. state ABC). Therefore the zones table will contain 3001
zones for state ABC, 3000 of which are invisible and so are not returned by the getZonesPerCountry() API
call. When registering, the customer selects the one visible zone called ABC and clicks the register button.
Before calling the RegisterCustomer() API call, some custom code needs to call the searchForZones() API
call with the zip code and state code as search criteria in order to get the correct zone. Once the correct
zone has been fetched, the custom code must set the zone id in the CustomerRegistration object so that the
registration uses that id. Note that the Zone object has a search field which must be set when inserting the
zone to text that can be used to search for it (i.e. zip code in this example).

The procedure for handling the case when a customer is editing his address, is slightly different. In this
case the customer may have registered with a zoneId that points to an invisible zone and so the zone is not
present when a list is returned from the getZonesPerCountry() API call. Therefore, there needs to be custom
code that retrieves the customer's zone using the searchForZones() API call and that removes the generic
zone that describes the state so that the state does not appear twice. As in the RegisterCustomer() case,
when the customer clicks the save button, the custom code must figure out the real zone of the customer
using data within the address and populate the zoneId attribute of the address object before saving. The
useZoneId attribute of the address object must also be set to true to stop the server code from attempting
to determine the customer's zone.

Tax algorithm and numeric precision
Different countries and tax jurisdictions tend to define different ways of calculating tax. There are various
ways of customizing KonaKart in order to make it compliant.

The configuration variable labeled "No of decimal places for currency" in the Configuration >> Admin
App Configuration section of the Admin App allows you to set the precision of the price entry fields.
Although your currency only uses two decimal places, you may want to enter net prices to more decimal
places. If you are entering net prices but displaying prices after tax has been added (gross prices) you may
need this extra precision in order to enable you to generate all gross prices. This can be set differently
for each store in a multi-store environment. The precision defined by this variable is also the precision
used for tax calculations.

The configuration variable labeled "Tax Quantity Rule" in the Configuration >> Stock and Orders section
of the Admin App allows you to set the algorithm used for making the tax calculation. The actual code that
calculates the tax is supplied in source code format under KonaKart/custom/utils/src/com/konakart/util
and is called TaxUtils.java. As you can see from the code within TaxUtils.java there are currently two
algorithms defined by the variables:

• public static final int TAX_ON_TOTAL = 1

• public static final int TAX_PER_ITEM = 2

The default TAX_ON_TOTAL algorithm calculates the total cost of an order line item by multiplying
the unit price with the quantity and then calculates the tax. The TAX_PER_ITEM algorithm calculates
and rounds the tax for a single item before multiplying the result by the quantity. The latter is useful in
countries where the prices are displayed inclusive of tax and are calculated from the net price. Using this
algorithm you are assured that the displayed price of an article remains consistent when the quantity bought
is greater than 1.

If the current implementations defined within TaxUtils.java do not meet your requirements, you may cus-
tomize this class and compile the modified code using the techniques defined elsewhere within this doc-
ument.

Administration and Configuration

140

Validation of Order Totals
KonaKart supports tax and shipping modules that interface to external services in order to gather the
requested data. These services may not always be available or may not return relevant data because of
erroneous input data such as a non existent address.

One way of circumventing the problem for shipping modules is to provide a backup table driven module
that only returns a quote if the primary module is unable to. This method always guarantees a shipping
quote, allowing your customer to complete the transaction and to checkout. The table driven module may
not return a 100% accurate shipping cost, but many merchants are happy to take a small risk on shipping
charges rather than to risk an abandoned cart.

An alternative approach is to not allow your customer to checkout if all of the required order total
modules do not exist. KonaKart includes code that allows you validate the order total modules using
your own business rules. The code is in the KKAppEngCallouts class in a method called public boolean
validateOrderTotals(KKAppEng eng, OrderIf order) . This class may be found under the custom\appn\src
\com\konakart\al directory. The method provides sample code that determines whether certain modules
are active and if so, checks to see whether an order total exists on the order for the active module. If it
doesn't exist, the result is passed back to the customer in the form of a popup panel in the order confirma-
tion screen, informing him that he cannot checkout because a problem has been encountered.

Multiple Quantities for Products
Each KonaKart product object has a quantity field that can be used to store the quantity of the product in
stock. There is also an availability date used to store the date that the product will become available if it
is out of stock. Configurable products (i.e. red shirt, size medium) have separate quantity and available
date attributes for each configuration.

As is the case for product prices, a product may be associated with multiple quantities and available dates.
This quantity data is stored in a separate database table called kk_catalog_quantity and the key that deter-
mines which quantity data is actually used is the catalogId.

One way of configuring the application engine to use external quantity data is in the KKAppEngCallouts
class as shown below:

Administration and Configuration

141

/**
 * Callouts to add custom code to the KKAppEng
 */
public class KKAppEngCallouts
{
 /**
 * Called at the start of startup
 *
 * @param eng
 */
 public void beforeStartup(KKAppEng eng)
 {
 System.out.println("Set product options for current customer");
 FetchProductOptionsIf fpo = new FetchProductOptions();
 fpo.setCatalogId("cat1");
 fpo.setUseExternalPrice(true);
 fpo.setUseExternalQuantity(true);
 eng.setFetchProdOptions(fpo);
 }

 /**
 * Called at the end of startup
 *
 * @param eng
 */
 public void afterStartup(KKAppEng eng)
 {
 }

The catalogId must be set to the id of a valid catalog and the the UseExternalQuantity attribute must be set
to true. Note that when using the API directly, this functionality is available on all of the application API
calls that accept an Options object such as FetchProductOptions or AddToBasketOptions. The Options
object for each API call must be configured in a similar way as shown above.

The kk_catalog_quantity table may be loaded directly using the appropriate database tools or it may be
loaded and read through the Admin App API using various API calls:

• setProductQuantityWithOptions()

• getProductQuantityWithOptions()

• setProductAvailabilityWithOptions()

• getProductAvailabilityWithOptions()

• getProductWithOptions()

• editProductWithOptions()

When any of the above calls are made with the options object configured to use external quantities, the
quantity data is written to and read from the kk_catalog_quantity table rather than the standard product
tables.

The Admin App may also be used to maintain the external product quantities. The Catalog must first be
defined using the Catalogs panel. Once defined, it appears in a drop list in the panel header. When selected
in the drop list, all product related API calls made by the admin app attempt to use the catalog. i.e. If you
edit a product, the quantities are all written to the kk_catalog_quantity table rather than to the standard
tables. When inserting a product, the quantities are written both to the kk_catalog_quantity table as well
as the standard tables.

Note that if a catalog is defined but the product does not have entries in the kk_catalog_quantity table,
then it will not be displayed in the Products Panel after a search. In order to add the quantities to the
kk_catalog_quantity table you must take the following steps:

Administration and Configuration

142

• Select "No Catalog" from the catalog drop list.

• Click the Edit button for the selected product.

• Modify the quantities for that product.

• Select the catalog from the drop list.

• Click the Save button to save the quantities in the kk_catalog_quantity table for the chosen catalog.

Note that the API calls using the kk_catalog_quantity table are only available when the Enterprise Exten-
sions are installed. Also note that special price functionality is not supported when using catalog prices.

Default Sort Order for Products
To set the default sort order for products retrieved using the client API you must use the setDefaultOrder-
By() call on the com.konakart.al.ProductMgr. This sets the default sort order used by the following calls:

• fetchProductsPerCategory()

• fetchAllSpecials()

• searchForProducts()

• fetchProductsPerManufacturer()

• fetchAlsoPurchasedArray()

• fetchRelatedProducts()

setDefaultOrderBy() should be called in the struts action class prior to making the API call that
actually fetches the data from the DB. The parameter accepted by setDefaultOrderBy() must be
an attribute of com.konakart.app.DataDescConstants such as ORDER_BY_NAME_ASCENDING or
ORDER_BY_MANUFACTURER etc.

Bundle Configuration
From version 2.2.6.0, KonaKart supports bundled products. To define a bundle, the following steps must
be taken using the Admin App:

• When inserting or editing a product, select a product type of "Bundle" or "Bundle with free shipping".

• Using the "Select Products" button which appears next to the Product Type drop list, open a pop-up
window to select the bundled products.

• When you return to the main window after having selected the bundled products, you can get the Admin
App to calculate the price and the weight of the bundle. When calculating the price, a percentage or
total discount may be configured. The calculated values can be overridden before saving. The quantity
is read only and is always a calculated value based on the quantity of bundled products in stock.

Within the application, bundle products are treated in the same way as other products. The products that
make up the bundle (bundled products) can be retrieved through the API using the getRelatedProducts()
API call. ProductDetailsBody.jsp has been modified to display description information for each bundled
product when it exists. Just like other products, the quantity in stock of a bundle product is retrieved using

Administration and Configuration

143

the updateBasketWithStockInfo() method. The quantity returned is calculated based on the availability of
the bundled products and when a bundle product is sold, the stock info of the bundled products is modified.

Product Options
Product options allow a customer to configure a product before adding it to the cart. Options may be
created and maintained using the Products >> Product Options panel in the Admin App. An option may be
added to a product in the Attributes folder of the Edit Product panel. When adding an option to a product,
a positive or negative price may be defined which will be added to or subtracted from the main product
price when the option is added to the product.

KonaKart supports four different option types. The image below shows how they are rendered in the
standard storefront application.

1. The Standard type is where each option value defines a product attribute which may or may not modify
the price of the product (e.g. Small, Medium and Large for an option called Size or Black, Brown and
Red for an option called Color). The above image shows an option called Model with a value called
Premium that increases the price of the product by $20.00.

2. The Customer Text type (Enterprise Only) option allows a customer to enter text which for example
could be used to personalize the product with a name, initials or a greeting. In this case the option could
be called Engrave and the option value called Name. The option may be given a price which will be
added to the product price in order to charge for the customization service. The above image shows an
increment of $10.00 if text is added.

3. The Variable Quantity type (Enterprise Only) is an option, the value of which may take a customer
defined quantity. For example if the option is named Disk you may define one option value called GB
and in the storefront UI a data entry text box is displayed to the user (rather than a list of fixed option

Administration and Configuration

144

values) where the user may enter the number of Gigabytes of additional disk space he requires. In this
case the price defined when adding the option to a product, becomes the unit price and will be multiplied
by the quantity entered by the customer in order to determine the final price of the option.

4. The Customer Price type (Enterprise Only) allows the customer to enter a price for the option. This
could for example be used for making donations where the customer can enter the donation amount. In
this case the option could be called Donation and one option value could be defined named $. In the
storefront UI a data entry text box is displayed to the user where an amount may be entered. The option
price is ignored and the price taken is the amount entered by the customer which is added to the product
price. In the case of a donation the product price could be set to zero.

Product Tags
From version 2.2.6.0, KonaKart supports product tags. Tags are attributes that can be associated to a
product and can be used to refine product searches. For example, in the case of a digital camera the tags
could be arranged as follows:

MegaPixels Optical Zoom Weight

6.0 3x less than 100g

8.0 4x between 100g and 200g

10.0 5x greater than 200g

The Optical Zoom tags (3x,4x and 5x) are contained within a tag group called Optical Zoom. All tags must
belong to a tag group and a tag may belong to multiple groups. The purpose of a tag group is to organize
tags and a tag group may be associated to a category so that it can be automatically displayed in a context
sensitive fashion when a customer is viewing products belonging to a specific category.

For example, the image below shows that the MPAA Movie rating and the DVD Format tag groups are
displayed in the DVD Movie>>Action category . When a customer clicks on a tag , he refines the search
to only show products that include that tag information. Multiple tags may be selected . When within the
same tag group, they are OR'ed together. e.g. I want to see all movies with rating PG or PG-13. When
within different groups they are AND'ed together. e.g. Show me all movies that have a PG or PG-13 rating
and are available in Blu-ray format.

Administration and Configuration

145

Tag functionality is available through the application API. The ProductSearch object has been enhanced
to include an array of Tag Group objects, each of which may contain a number of tags. There is also a new
API call getTagGroupsPerCategory() to enable you to determine which tag groups have been associated
to a category. The Product object now has a tags attribute which is populated in the getProduct() method
with an array of tags, so that you may see which tags have been associated to a product.

Managing Product Reviews
Product reviews may be managed through the Admin App where they can be edited, deleted and assigned
different states. A review may be in one of 3 different states:

• Visible state - The review is visible in the storefront. i.e. The KonaKart engine API calls will return
the review.

• Invisible state - The review is not visible in the storefront. i.e. The KonaKart engine API calls will not
return the review.

• Invisible Rejected state - The review is not visible in the storefront. i.e. The KonaKart engine API calls
will not return the review.

When a review is created by a customer, it may be assigned a default state which is defined by the config-
uration variable found in the Admin App under Configuration >> Security and Auditing . The default state
should be either Visible or Invisible, depending on whether you intend to immediately display reviews or
approve them before display. The procedure for approving them is to use the Reviews Panel in the Admin
App and apply a search filter to display only invisible reviews. One by one, the review state may then be
set to visible or rejected or the review may be deleted if you don't intend keeping inappropriate reviews.
The reviews remain invisible when in the rejected state, but having them in this state informs you that they
have been reviewed so that you can filter them out when reviewing a new batch of reviews.

Using CLOBs for Product Descriptions
To enable the use of CLOBs for product descriptions you need to modify the type
of the "products_description" column in the "products_descriptions" table and set the
"FETCH_PRODUCT_DESCRIPTIONS_SEPARATELY" configuration variable to "true". For conve-
nience a little SQL script called database/Oracle/UseCLOBForProductDescriptions.sql is provided for this
purpose.

The "Fetch Descriptions Separately" configuration variable can also be set in the Admin App.

In most situations you should leave this configuration variable set to "false" for better performance. The
purpose is to modify the way product descriptions are retrieved from the database. If this is set to "true"
the product descriptions are retrieved separately after the main product queries have been completed. This
is required when using databases where the type of the products_description column has been changed
from the KonaKart default value (for example to CLOB in Oracle) which cannot be used as part of the
standard KonaKart product queries.

Credit Card Refunds
Real time credit card refunds through the payment gateway can be managed from the Admin App. You
can also insert, edit and delete refund information in the database.

The code that performs the payment gateway credit transaction is within an AdminPay-
ment class. An example of the AdminPayment class is provided for AuthorizeNet. It

Administration and Configuration

146

must implement the com.konakartadmin.modules.AdminPaymentIf interface and by extending
com.konakartadmin.modules.AdminBasePayment it inherits useful methods for sending the data to the
payment gateway. The source code of all of these classes is supplied. Note that it is only possible to carry
out a real time refund transaction if the payment gateway (during the original payment transaction) saves
the transaction id and populates the Admin Payment Class attribute with the class name of the class that the
Admin App can use to perform the refund. Again, a full example has been implemented for AuthorizeNet,
and can be seen in the class com.konakart.actions.gateways.AuthorizenetAction.java

After concluding a payment gateway credit transaction, the order is placed either in a "Refund Approved"
or "Refund Declined" state. From the Admin App you can decide whether a template based email should
be sent directly to the customer with details of the transaction.

The above refund functionality is only available in the Enterprise version of KonaKart. For Community
users a custom button has been introduced in the panel that processes returns. This feature allows you to
extend the Admin App by adding your own administration functionality outside the standard Admin App.
The following parameters are added to your defined URL to allow you to check security and/or operate
on selected objects:

• order_return_id - id of the OrderReturn object

• order_id - id of the Order object

• total_inc_tax - total amount of the Order

• sess - session id

• tx_id - gateway transaction id

Note that this button will not be visible unless you define the label to be non-empty in the Admin App
Configuration Panel.

Saving and Editing of Credit Card details

Configuration of Admin Application

The admin app now allows you to enter and/or edit credit card details for any order using the "edit order"
panel, which is opened by selecting an order and clicking the edit button. This functionality is only available
if the role allows it. In order to set privileges you must navigate to Customers>>Maintain Roles and select
a role. Once the role has been selected you must click the Privileges button and set the check box on the
Edit Order panel shown below.

In order for the new role information to be picked up, you must log out and log in again, at which point
in the edit order screen you should see the following fields (see below) which can be modified and saved.
The information is saved in the database in fields e1 to e6 of the orders table in an encrypted format.

Administration and Configuration

147

Configuration of Store Front Application

A new API call has been introduced in order to set the credit card details on an order.

 /**
 * The credit card details in the CreditCard object passed in as a parameter, are saved in the
 * database for an existing order. Before being saved, this sensitive information is encrypted.
 * No update or insert is done for attributes of the CreditCard object that are set to null. The
 * credit card details are mapped as follows to attributes in the order object:
 *
 * e1 - Credit Card owner
 * e2 - Credit Card number
 * e3 - Credit Card expiration
 * e4 - Credit Card CVV
 * e5 - Credit Card Type
 *
 *
 * @param sessionId
 * The session id of the logged in user
 * @param OrderId
 * The numeric id of the order
 * @param card
 * CreditCard object containing the credit card details
 * @throws KKException
 */

 public void setCreditCardDetailsOnOrder(String sessionId, int orderId, CreditCardIf card)
 throws KKException;

This API call can be integrated into the application where you see fit. i.e. You could write a simplified
payment gateway that just collects the credit card information and saves it rather than sending it to a
payment gateway. A configuration variable has been added which can be set in the admin app under
configuration>>Stock and Orders .

Administration and Configuration

148

This config variable could be used in your code to determine whether or not to save the credit card details.
Using AuthorizenetAction as an example :

Edit Order Number and Custom Fields
The admin app now allows you to enter and/or edit the order number and custom fields for any order using
the "edit order" panel, which is opened by selecting an order and clicking the edit button. This functionality
is only available if the role allows it. In order to set privileges you must navigate to Customers>>Maintain
Roles and select a role. Once the role has been selected you must click the Privileges button and set the
check box on the Edit Order panel shown below.

In order for the new role information to be picked up, you must log out and log in again, at which point in
the edit order screen you should see the following fields (see below) which can be modified and saved.

Administration and Configuration

149

Shippers and Shipments
The Enterprise version of KonaKart allows you to define multiple shipments for an order so that this
information is stored in the database and returned as an array of OrderShipment objects whenever a detailed
order is retrieved through the APIs. The shipment information is displayed by default in the order details
view of the storefront application and has been included in the velocity template for the eMail sent on an
order state change (OrderStatusChange_3_en.vm) when the state changes to shipped. A similar template
may be created for the partially shipped state.

In order to configure the shipment functionality, the first step is to define one or more shippers under the Lo-
calizations >> Shippers section of the Admin App. Only the name (e.g. FedEx, UPS) is required although
it may be useful to also enter the tracking URL template including the placeholder string {TRACK_NUM}
which will be automatically substituted with the tracking number when a shipment is inserted. E.g.

Administration and Configuration

150

https://tools.usps.com/go/TrackConfirmAction!input.action?tLabels= {TRACK_NUM}

In this way the tracking URL can be made available to customers without having to enter it every time
a new shipment is inserted.

Once the shippers have been defined, one or more shipments may be created for an order by clicking the
Shipments button on the Orders panel after having selected an order. The online help of the Shipments
panel provides more details regarding the process.

When in multi-vendor mode, whenever a shipment is inserted by a vendor, the information is automatically
propagated to the parent order which is visible to the customer.

Wish Lists
Wish List functionality can be enabled in the Configuration>>Store Configuration section of the Admin
App. Once enabled, the store front application will display an "Add to Wish List" button when viewing
product details, and a Wish List tile containing products that have been added to the wish list. By de-
fault, wish lists are only available to logged in customers. However, a configuration variable, again in the
Configuration>>Store Configuration section of the Admin App, may be set to enable wish list function-
ality for non logged in customers. In this case, when the customer logs in or registers, his temporary wish
list is transferred to a permanent wish list belonging to the registered customer.

There is a Wish List screen that allows a customer to remove products from the list and also to transfer
them directly to the shopping cart.

Gift Registries
Gift Registry functionality can be enabled in the Configuration>>Store Configuration section of the Ad-
min App. Once enabled, the store front application will display Wedding List functionality. Note that it
is relatively straightforward to customize the store front application to handle other types of gift registries
such as birthday lists.

Only a registered customer can create a wedding list after logging into the application by clicking a link
in the Wedding List section of the My Account page. The wedding list can be made public or private and
once created, the shipping address and other details may be modified by clicking the edit link that will
appear in the Wedding List section of the My Account page.

Products can be added to the wedding list by navigating to the product details page and clicking on the add
to wedding list link. Note that you will see a link for each wedding list that you have created and the link
will contain the name of the list. Once a product has been added to the list, you may modify the priority
and the quantity desired attribute.

Any shopper can search for a public wedding list by clicking the Wedding Lists link at the top of the
screen next to the Cart Contents and Checkout links. If no constraints are entered, all wedding lists are
found and can be paged through. Otherwise constraints such as the wedding date or name of bride etc.
can be used to narrow down the search. Once a wedding list has been found, you may click on it's name
in order to see the list of gifts sorted by priority. You may select one or more gifts and add them to the
cart, ready for checkout. When gifts are added to the cart from this screen, the system will ensure that the
wedding list is updated with quantity received (once the order has been paid for) and the default shipping
address will be the address of the wedding list. During the checkout process, you can change the shipping
address if you desire.

Administration and Configuration

151

Gift Certificates
In KonaKart, a Gift Certificate is a product of type gift certificate, that can be bought by a customer
and delivered as a digital download, through eMail or even regular mail. The gift certificate contains a
promotion code which is usable only once to obtain a discount on an order.

Behind the scenes, a gift certificate object needs to be related to a promotion which can only be activated
through the use of a coupon code. When an order containing one or more gift certificates is paid for, a
coupon code and document must be created for each gift certificate. For example, the document could be a
stylish pdf file containing the coupon code which the customer can download. The generation of the actual
document is a customization that needs to be carried out, since the example source code just generates a
simple txt file containing only the coupon code.

com.konakart.bl.OrderIntegrationMgr and com.konakartadmin.bl.AdminOrderIntegrationMgr are the
two files that contain the code that is run when an order changes state after payment is received. The ap-
plication code is run when the state is changed through the application (i.e. when a customer pays using
a credit card) and the admin app code is run when the state is changed through the admin app. The actual
method to look at is called manageGiftCertificates() . As you can see from the source code, this method
implements the following tasks:

• Find the promotion attached to the gift certificate.

• Create a coupon code.

• Create a coupon with the new code.

• Attach the coupon to the promotion.

• Insert the coupon code into a downloadable product that can be downloaded by the customer. This
becomes the gift certificate that the customer can forward on to the receiver of the gift..

Depending on your requirements, the method can be customized. For example, you may not wish the file
to be made available as a digital download or you may wish to generate a more simple coupon code. An
almost obligatory customization is the getGiftCertificateFilePath() method which at the moment produces
a simple txt file just containing the coupon code. For production usage it should create maybe a pdf or
html document that resembles a real gift certificate.

Enable Gift Certificates
In order to enable the gift certificate entry field in the storefront application, the configuration variable
must be set in the Configuration>>Store Configuration section of the admin app.

Creating a Gift Certificate
The following steps must be taken to create a gift certificate:

Create a product of type gift certificate using the admin app. You may choose different products for dif-
ferent amounts or choose a single product and configure the amounts as product attributes which can be
selected by the customer before adding the certificate to the shopping cart.

Administration and Configuration

152

For each gift certificate, create a promotion of type Gift Certificate, where the value is equivalent to the
value of the gift certificate. The promotion should require a coupon.

Once the promotion has been created you need to click the Gift Certificates button on the promotions panel
in order to connect the promotion to a gift certificate.

Administration and Configuration

153

The above example shows a Gift Certificate product that has three options (Gold, Silver, Bronze) which
are expanded out when the product is selected. It is important the promotion is only associated with one
of these options so the other two must be removed as shown below.

Administration and Configuration

154

Note that a gift certificate product may be connected to any type of promotion, which means that you
could, for example create a gift certificate that gives 10% discount for an order. Also the standard rules can
be added to the promotion in order to filter it for certain products, categories, manufacturers, customers
and expressions.

Creating a new Admin App User
New Admin App users can be created and configured using the Admin App, if you are logged in as a user
with the required privileges.

Each KonaKart user can be assigned one or more roles in order to define the functionality available to that
user. The first step is to create a new user in the Customers>>Customers section of the Admin App. The
user type must be set to "Admin User".

Once the user has been created, roles may be assigned in the Customers>>Assign Roles section of the
Admin App. The role assignment becomes active the next time the user logs in.

Creating New Roles
The default KonaKart database already contains a number of roles. New roles may be created (and existing
roles may be edited) in the Customers>>Maintain Roles section of the Admin App.

Administration and Configuration

155

Each role is mapped to a number of panels with a set of privileges. Each role to panel association may
have a combination of read / insert / edit / delete privileges.

API call security may also be enabled in the Configuration>>Security and Auditing section of the Admin
App. When enabled, this allows you to map roles to API calls and is useful for enforcing security through
the SOAP Web Service interface of the Admin App.

Precise instructions on how to create new roles, can be found in the on-line help.

Default Customer Configuration
A Default Customer can be defined using the Admin Application. Only one default customer should be
defined. It is a fictitious customer used to create a temporary order for displaying order totals before the
checkout process. This is useful for example to create estimated shipping costs and promotional discounts
(the order totals of the order), which can be displayed to a customer in the edit cart screen without him
having to log in or register. The address of the default customer should be an address that will generate
average shipping costs. i.e. If the majority of your business is national then it shouldn’t be an international
address.

The default customer is used by the application API method createOrderWithOptions(String sessionId,
BasketIf[] basketItemArray, CreateOrderOptionsIf options, int languageId) if the options object is set to
use the default customer. In this case the sessionId may be set to null.

Making Customers Invisible
By default when a customer is created, it is created as a "visible" customer. An attribute on the customer
record called invisible is set to 0 to indicate that the customer is visible.

Also by default, an Admin App user with access to the customers panel will only be able to view and edit
"visible" customers.

In some situations it might be useful to set a customer to be "invisible". This can be performed through the
API when the customer is created using exportCustomer or for an existing customer using an editCustomer
API call.

When customers are made "invisible" they are not accessible from the Admin App unless the Admin User
is assigned a special privilege that allows him to access both visible and invisible customers.

To allow an Admin User to access both visible and invisible customers you need to set the custom1 flag
on the "Customers 2" panel for the required role on the Privileges panel as illustrated below:

Unlike the "Customers" panel, the "Customers 2" panel shown above is not a real panel but a "virtual"
panel which only exists for the purpose of setting this privilege to access invisible customers. Additional
privileges may be added to this virtual panel in the future.

Customer Groups
Customer Group functionality has been available in KonaKart since Version 2.2.3.0.

Administration and Configuration

156

A customer group is a way of aggregating customers that are similar in some way. For example, you
may use them to distinguish between retail and wholesale customers or between company employees and
external customers etc.

Customer groups may be created and maintained using the KonaKart Admin application. Once a group
has been created, you can associate a customer to that group through a drop list in the Edit Customer panel.
When editing a customer, if the Customer group is changed to a valid new group, you will be prompted to
send a template based email to the customer. This is a useful feature for when the customer is going through
an approval process. For example, a customer may have registered through the application as a wholesale
customer. During registration he was placed in a "Waiting for Approval" customer group and now the
administrator may approve or decline the request. As a result of the approval, the customer may receive an
email informing him of the decision. The template used is in the form CustGroupChange_groupId_lang.vm
e.g. CustGroupChange_2_en.vm, if the customer has been moved to the group with id equals 2 in a system
where the language code is "en". This means that different templates can be used depending on which group
the customer has been moved to. i.e. You could have different templates for approved and denied requests.

Groups may be used to:

• Control what prices are displayed to customers.

• Each group has a PriceId attribute which may have a value of 0 to 3. When set to 0, a customer
belonging to that group will see the normal price of the product (i.e. the price attribute). When set to
1, the customer will see the price defined in the Price 1 attribute of the product and so on for 2 and
3. This functionality for example, allows you to display wholesale prices to wholesale customers and
retail prices to retail customers. If a customer belongs to no groups, then the price from the normal
price attribute is displayed. Note that in the Admin App you may change the price labels from Price1,
Price2 etc. to a more meaningful description such as Wholesale price, MRP, Employee price etc.

• Enable promotions.

• Promotions may be enabled for customers belonging to a particular group. i.e. You may want to
enable certain promotions just for your retail customers.

• Send communications.

• Bulk emails may be sent to only customers belonging to a particular customer group.

• Mailing Lists can be created containing only customers belonging to a particular customer group.

Auditing
Auditing can be enabled on the Admin App API in order to keep track of when API calls are made and
by whom. All audit data is written to the KonaKart database and can be viewed in the Audit Data>>Audit
Data section of the Admin App.

Auditing can be configured in the Configuration>>Configure Auditing section of the Admin App. It can
be configured independently for Reads / Edits / Inserts and Deletes. The level may be set to "summary"
or "detailed" :

• Summary : The name of the API call, the type of Action (read , write etc.) , the id of the object being
edited, inserted etc. (where applicable) and the time stamp are saved.

• Detailed : Where possible, the objects being deleted, edited etc. are also saved in a serialized form .
Note that enabling detailed auditing can have a detrimental affect on performance and may save a large
amount of data.

Administration and Configuration

157

Forgotten Password
When a customer forgets his password, he can request a new one from the storefront application. A new
password is generated and sent out in an email using the EmailNewPassword_xx.vm template.

The temporary password is only valid for a configurable number of minutes (see above) and expires once
this time has elapsed. If the customer uses it before it expires, he is redirected to the change password form
immediately after logging in, and prompted to enter a new password.

If the customer attempts to use it after it has expired, a warning is issued, prompting the user to request
a new temporary password.

Authentication with Username or Telephone
Starting from the Enterprise version 8.7.0.0, you can log into the KonaKart engine (KKEngIf) using the
customer's username or telephone number rather than the eMail address.

The API call that must be used is loginWithOptions(LoginInputIf input) since in the LoginInput parameter
you can specify whether you want to use the eMail address, the username or the customer's primary or
secondary telephone numbers.

If you allow a customer to use the username or telephone number to login, you may want to guarantee their
uniqueness whenever a customer registers or customer information is edited. During registration both the

Administration and Configuration

158

CustomerRegistration and AdminCustomerRegistration objects have boolean attributes (telephoneUnique
, telephone1Unique and usernameUnique) that when set, instruct KonaKart to throw an exception if a reg-
istered customer already exists with the same username or telephone number. In the KonaKart Admin App
the uniqueness check can be configured using configuration variables in konakartadmin_gwt.properties
(see online help for more details). When using telephone numbers, in order for the check to work properly
you should enforce a common formatting of the numbers whenever they are entered into the KonaKart
system.

The KKEngIf API call you should use for editing customer information is editCustomerWithOptions() and
for KKAdminIf is updateCustomerWithOptions . Both API calls have an options parameter object, where
in a similar fashion as for registration you can set telephoneUnique , telephone1Unique and usernameU-
nique to test that a registered customer doesn't already exists with the same username or telephone number.

Note that by default the customers_username , customers_telephone and customers_telephone_1 columns
of the customers database table have not be assigned indexes. If you do decide to use them for logging in,
you may want to consider adding an index for performance.

Custom Credential Checking
When the login() method is called, KonaKart instantiates a class defined by the proper-
ty LOGIN_INTEGRATION_CLASS . If this property isn't set, the class that is instantiated is
com.konakart.bl.LoginIntegrationMgr . If you write a custom class it must implement the interface
com.konakart.bl.LoginIntegrationMgrInterface which contains the method:

public int checkCredentials(String emailAddr, String password)
 throws KKException;

The checkCredentials() method can return the following values:

• A negative number in order for the login attempt to fail. The KonaKart login() method will return a
null sessionId.

• Zero, to signal that this method is not implemented. The KonaKart login() method will perform the
credential check.

• A positive number for the login attempt to pass. The KonaKart login() will not check credentials, and
will log in the customer, returning a valid session id.

A similar mechanism exists for the Admin App. The property is called
ADMIN_LOGIN_INTEGRATION_CLASS and if it isn't set then the class that is instantiated is
com.konakartadmin.bl.AdminLoginIntegrationMgr . If you write a custom class it must implement the
interface com.konakartadmin.bl.AdminLoginIntegrationMgrInterface which contains the method as de-
scribed above.

public int checkCredentials(String emailAddr, String password)
 throws KKAdminException;

This mechanism is a useful generic way to implement a Single Sign On system or just to implement your
own custom credentials checking..

The LOGIN_INTEGRATION_CLASS and ADMIN_LOGIN_INTEGRATION_CLASS properties can be
edited in the Configuration>>Security and Auditing section of the Admin App.

Administration and Configuration

159

Custom Credential Checking - LDAP
The Enterprise version of KonaKart contains an LDAP module which can be configured through the Admin
App. As can be seen from the image below, once installed, the module may be enabled / disabled by setting
the status to true or false.

The LDAP username, password and URL are used to connect to the LDAP directory. The defaults shown
above are those for Apache Directory. The Person Object DN is the distinguished name for accessing a per-
son object within the LDAP directory. The default value of "ou=people,dc=example,dc=com" is valid for
the example LDIF file which can be found in the KonaKart/custom/modules/src/com/konakartadmin/mod-
ules/others/ldap file system directory after installing KonaKart. This file contains a couple of entries (peo-
ple) which match the default Person Object DN and can be used to test the LDAP module. For production
use, the Person Object DN will need to be changed to match the tree structure of your LDAP directory.

The source of the code that connects to LDAP and verifies the customer's credentials can be found in the
file KonaKart/custom/appnEE/src/com/konakart/bl/LDAPMgrCore.java in the method:

public int checkCredentials(String emailAddr, String password) throws Exception

This code may be modified and compiled in order to apply specific logic for the structure of your LDAP
directory. The code has many comments and debug statements in order to be self-explanatory. As in the
case of the LoginIntegrationMgr the checkCredentials() method can return the following values:

• A negative number in order for the login attempt to fail. The KonaKart login() method will return a
null sessionId.

• Zero, to signal that this method is not implemented. The KonaKart login() method will perform the
credential check.

Administration and Configuration

160

• A positive number for the login attempt to pass. The KonaKart login() will not check credentials, and
will log in the customer, returning a valid session id.

The Admin App allows you to define a class name for the LDAP object that gets instantiated for both the
application engine and the admin engine whenever a person attempts to log in. The default class for the
application engine is com.konakart.bl.LDAPMgr and can be found in the KonaKart/custom/appnEE/src/
com/konakart/bl directory. The class for the admin engine is com.konakartadmin.bl.AdminLDAPMgr and
can be found in the KonaKart/custom/adminappnEE/src/com/konakartadmin/bl directory . They both im-
plement interfaces and so can be substituted with other classes that implement the same interfaces. These
classes only contain a small amount of code that reads the configuration variables to set up the LDAP
module, The code that actually makes the connection (and validates the credentials) can be found in Kon-
aKart/custom/appnEE/src/com/konakart/bl/LDAPMgrCore.java and is common to both the application
and admin engines.

Multi-Store Configuration and Administration
Multi-Store functionality is provided as part of the KonaKart Enterprise Extensions.

Before Multi-Store can be configured it must be installed by following the instructions for installing the
KonaKart Enterprise Extensions .

Introduction
Since version 3.0.1.0, the enterprise version of KonaKart can run in multi-store mode. When in this mode,
one instance of the KonaKart engine can manage multiple stores. Previous to this version, each store would
have required its own instance of the KonaKart engine. Each store still requires its own database schema
(i.e. its own instance of database tables).

Configuring KonaKart to function in Multi-Store Mode
The instructions that follow, are to set up two stores on localhost using the Tomcat servlet engine in the
download kit. Obviously this isn't a production scenario, but will quickly allow you to use two KonaKart
stores picking up separate data but running on a single KonaKart deployment. The URLs to access the
stores will be :

• http://store1.store:8780/konakart/Welcome.action

• http://store2.store:8780/konakart/Welcome.action

The first step is to install the KonaKart Enterprise Extensions. It is recommended that you use the auto-
mated GUI installation but it is also possible to install manually. During the installation process you are
prompted to choose one of the multi-store modes that KonaKart supports. All of the modes are compatible
with the following steps that need to be taken.

Configuration Steps

Mapping

DNS has to be set up to map store1.store and store2.store to 127.0.0.1. This can be done by editing your
hosts file as follows:

127.0.0.1 store1.store
127.0.0.1 store2.store

Administration and Configuration

161

Note that this is a manual configuration step that is not carried out by the Enterprise Extensions installation.

BaseAction.java

The Java class com.konakart.actions.BaseAction.java contains a method called getStoreIdFromRequest().
The purpose of this method is to derive the storeId from the HttpServletRequest so that the correct storeId
can be passed to the KonaKart engine when it is instantiated. Below you can see an example where the
store id is derived from the server name. It returns store1 when the server name is store1.store and store2
when the server name is store2.store. You can find the source for this class in the KonaKart\custom\appn
\src\com\konakart\actions directory. Depending on your environment you may need to modify the default
implementation. If you do you will also need to follow the instructions for rebuilding the jars that you
can find in other parts of the User Guide. There is an ant build file in the KonaKart\custom directory with
suitable targets for building and deploying the modified jars.

 /**
 * In a multi-store scenario, you should implement your own logic here to extract the storeId
 * from the request and return it.
 *
 * @param request
 * @return Returns the storeId
 */
 private String getStoreIdFromRequest(HttpServletRequest request)
 {
 /*
 * In multi-store mode we extract the storeId from the serverName attribute of the request.
 * In this simple implementation we look for "storeX.store." and return the first part
 * (storeX in this example) as the storeId.
 */

 if (AppEngServlet.isMultiStore())
 {
 if (request != null && request.getServerName() != null)
 {
 String[] nameArray = request.getServerName().split("\\.");
 if (nameArray.length >= 2 && nameArray[1].equals("store"))
 {
 return nameArray[0];
 }
 }
 }

 return AppEngServlet.getDefaultStoreId();
 }

Final Steps

Assuming the database tables for store1 and store2 both contain valid data, you should
be able to navigate directly to http://store1.store:8780/konakart/Welcome.action [http://
store1.store:8780/konakart/Welcome.action] and to http://store2.store:8780/konakart/Welcome.action
[http://store2.store:8780/konakart/Welcome.action] .

In order to configure KonaKart separately for each store, the Admin App now allows you to choose the
store before logging in.

http://store1.store:8780/konakart/Welcome.action
http://store1.store:8780/konakart/Welcome.action
http://store1.store:8780/konakart/Welcome.action
http://store2.store:8780/konakart/Welcome.action
http://store2.store:8780/konakart/Welcome.action

Administration and Configuration

162

Choose store during login

Once you've logged you will will be able to configure the store that was chosen from the drop down list.

Multi-Store Configuration

This section describes the functions and configuration options available to a KonaKart administrator once
Multi-Store has been successfully installed.

All functionality related to the creation of new stores is only relevant if the Multi-Store Single Database
Mode is selected.

The administration panels are made accessible to an Admin App user by virtue of role settings that have to
be applied by a Super User of the KonaKart system. By default, following a successful installation of the
Enterprise Extensions, the "Super User" user(s) created will have access to the panels described below.

By contrast, the panels discussed below will not be visible in the Admin App (by default) in Single-Store
Mode, or Multi-Store Multiple DB modes where the functionality is not available.

Multi-Store Management Panel

Assuming you have sufficient privileges, you can maintain multiple stores on the Multi-Store Management
Panel:

Administration and Configuration

163

KonaKart Admin Application - Store Maintenance

If you have been granted sufficient privileges, you may search for a store in the mall by entering any
combination of the search criteria at the top of the panel then clicking the Search button.

The search is not case sensitive unless your database is configured to be non-case sensitive. Wildcard con-
figuration parameters control the precise searches of substrings (See Configuration>>Admin App Config-
uration) but with the default settings a wildcard is added before and after all search text which means that,
for example, storeId StoreX will be returned if you enter tor as the StoreId.

In a similar fashion you can search for a store in the mall on whether or not it is enabled or disabled, under
maintenance or not under maintenance and whether or not it is marked as deleted.

Only the stores you are authorized to maintain will be returned.

Any displayed stores may be edited or deleted by selecting them in the table then clicking the respective
buttons at the bottom of the list assuming the relevant privileges have been granted to the current user.

The user must have edit store privileges for the Edit Store panel in order for the Edit button to be visible.

Creating a New Store - Without Cloning

Note that storeIds must contain no embedded spaces and no special characters that cannot be used when
creating directory names.

To create a new store without cloning click the New button whereupon a new panel will be displayed on
which you define the attributes for the new store.

Stores can have a number of different statuses. These are defined as follows:

Enabled = active stores that are available for use. If disabled a store is not accessible to application or
admin app users.

Under Maintenance = stores that are currently being maintained so are inaccessible to application users,
but can be accessed by admin app users.

Administration and Configuration

164

Deleted = stores that are deleted are no longer available for use by application or admin app users. These
stores are not physically deleted from the database but only marked as "deleted". Therefore it is possible
to "Un-delete" a store if required simply by changing the deleted status back to false.

When a new store is created, the following new users are created:

• Multi-Store Single Database - Shared Customers Mode:

One user is created with the Store Administrator's role.

Username Password Roles

{new store Id}-
admin@konakart.com

princess KonaKart Store Administrator

• Multi-Store Single Database - NON-Shared Customers Mode:

One user is created with the Store Administrator's role, and one user with the Super User role.

Username Password Roles

{new store Id}-
admin@konakart.com

princess KonaKart Store Administrator

{new store Id}-
super@konakart.com

princess KonaKart Store Super User

The users created above will have the {new store Id} replaced with the storeId of the new store. Thus, if
the new store was called "store3" the new users would be named store3-admin@konakart.com and store3-
super@konakart.com as applicable.

The particular role that is assigned to the each user can be defined in the Admin App. You can configure
the roles themselves as you wish so that when new stores are created, the users that are created will have
only the permissions that you have defined.

In the case of the Non-Shared Customers Mode, where a new "Super User" is created, you can decide to
provide these credentials to a "Super User" of the new store or keep them secret.

Creating a New Store - With Cloning

To create a new store by cloning another store, select the row containing the store you wish to clone and
click the Clone button whereupon a new dialogue will be displayed on which you define the attributes
for the new store.

For cloning you are prompted for the credentials of a user authorized to export data from the store to be
cloned.

Differences between "New" and "Clone"

Both the New and Clone options can be used to create a new store. The major difference between the two
options is that in the case of the clone, a lot more data is cloned for the new store.

When you create a new store using the "New" option, the following objects are created in the new store:

• Standard users and their respective role assignments (see above).

• Address formats, Countries, Languages, Tax zones, Currencies.

• Order Statuses, Configuration Data.

Administration and Configuration

165

When you clone a store, using the "Clone" option, in addition to the above, the following objects are
exported from the store to be cloned and imported into the new store:

• Products, Categories, Manufacturers, Coupons

• Customer Groups

• Zones, Sub-Zones, Tax Classes, Tax Rates.

• Tags and Tag Groups.

Note that cloning does not include the copying of the following objects:

• Auditing Data, IPN (payment gateway responses).

• Customers, Reviews

• Configuration Groups (this table is no longer used by KonaKart)

You can edit stores using the Edit Store Panel:

KonaKart Admin Application - Edit or Insert Store

Multi-Store Table Sharing

These details will not be of interest to many KonaKart Administrators as they will regard this as an im-
plementation detail but it could be useful when analyzing the database directly for various purposes.

Administration and Configuration

166

When in MultiStore Single DB Mode (engine mode 2) database tables are shared between stores. In most
cases the data is segmented for each store using a store_id column to identify which store the data belongs
to. Some tables are shared across all stores so no store_id column is created, whereas some tables are
shared only in customer shared or products shared mode.

When tables are "shared" there is either no store_id column on the table to identify which store the data
belongs to, or if the store_id column is present, it isn't used.

Tables that are Always Shared • configuration_group

• kk_api_call

• kk_cookie

• kk_panel

• kk_role

• kk_role_to_api_call

• kk_role_to_panel

• kk_store

• utility

Tables Shared only when Customers are Shared • address_book

• address_format

• countries

• customers

• customers_info

• geo_zones

• kk_customer_group

• kk_customers_to_role

• sessions

• tax_class

• tax_rates

• zones

• zones_to_geo_zones

Tables Shared only when Products are Shared • address_format

• countries

• geo_zones

• kk_payment_schedule

Administration and Configuration

167

• kk_tag

• kk_tag_group

• kk_tag_group_to_tag

• kk_tag_to_product

• languages

• manufacturers

• manufacturers_info

• orders_status

• products

• products_attributes

• products_description

• products_options

• products_options_values

• products_options_values_to_products_options

• products_attributes_download

• reviews

• reviews_description

• specials

• tax_class

• tax_rates

• zones

• zones_to_geo_zones

Multi-Store Configuration Panel

You can configure the following parameters on the Multi-Store Configuration Panel:

Administration and Configuration

168

KonaKart Admin Application - Multi-Store Configuration Parameters

These are the configuration variables that are used in a multi-store installation.

You can define the multi-store template storeId to the store whose reports you wish to copy for new stores
(in the future, more configuration data may be copied from the template store).

You can define the roles that will be assigned to new users that are created when you create new stores.
The number of new users that are created when creating new stores is dependent on whether you are
using Shared or Non-Shared Customers. In Shared Customers mode, only a "Store Administrator" user
is created, but in Non-Shared Customers mode a "Super User" user is also created. You can change the
roles that are assigned for the users and change the roles themselves to configure the permissions granted
to new users exactly as you please.

When new stores are created some SQL commands are run to set up the database in various ways. First
the "KonaKart new store creation SQL" script is run, then KonaKart loads some set-up data that isn't in
any SQL script, then finally this is followed by the execution of the "User new store creation SQL" script.
If you need to change the data that is loaded, you should add your SQL commands to the "User new store
creation SQL" script and not modify the "KonaKart" script.

Note the following default SQL file names: (If you set up your Multi-Store configuration manually rather
than using the automatic installation, you will need to set these up appropriately for your chosen mode.
These are set on the Multi-Store Configuration panel for the value labeled "KonaKart new store creation
SQL").

• konakart_new_store.sql - for multi-store without sharing customers

• konakart_new_store_cs.sql - for multi-store with shared customers

• konakart_new_store_ps.sql - for multi-store with shared products when customers are NOT shared

For more specialized requirements there is a "hook" function that is called whenever a store
is created or modified. If you need special behavior at these points, you have to implement
this class in java (default name is com.konakartadmin.bl.AdminStoreIntegrationMgr) and it will
be executed by KonaKart at the appropriate times. Your implementation must implement the
com.konakartadmin.blif.AdminStoreIntegrationMgrInterface interface which has the following methods:

Administration and Configuration

169

package com.konakartadmin.blif;

import com.konakartadmin.app.AdminStore;

/**
 * Used to provide an integration point when a store is added or changed
 */
public interface AdminStoreIntegrationMgrInterface
{
 /**
 * Called whenever a new store is added
 *
 * @param store
 * The new store
 */
 public void storeAdded(AdminStore store);

 /**
 * Called whenever a store is changed
 *
 * @param oldStore
 * The store object before the change
 * @param newStore
 * The new store object after the change
 */
 public void storeChanged(AdminStore oldStore, AdminStore newStore);
}

If required, you can change the name of the class that is instantiated so long as it implements
com.konakartadmin.blif.AdminStoreIntegrationMgrInterface and you modify its name in the configura-
tion panel in the Admin Store Integration Class field.

Product Synchronization
When running in multi-store shared product / shared category mode, the stores may be used to provide pre-
production environments where products may be inserted and edited without being made live. This means
that sometimes it is useful to run KonaKart in this mode even when you are managing a single store.

The Synchronize Products panel in the Admin App allows you to copy products from the current store to
any other defined store. The copy process creates a new product by cloning the current one and inserts it in
the destination store. When using KonaKart to provide staging environments, all products must be present
in only one store. i.e. You mustn't associate a product with more than one store.

Administration and Configuration

170

KonaKart Admin Application - Synchronize Products

When searching for products to synchronize, you select from the drop list the store that you want to syn-
chronize with and then from the other drop list you may choose to search for new products or products
which are out of sync. New products are products that exist in the current store but have never been copied
to the destination store. Out of sync products are products that exist in both stores but have different last
modified dates. If you are searching for a single product, you may enter the product id or sku as one of
the search filters.

In the case of new products, when you select one and click the copy button, it creates a copy and inserts it
into the destination store. When the copy button is clicked for an out of sync product, the existing product
in the destination store is edited rather than a new one being inserted. In some cases the product may have
associated products such as up-sell, cross sell or bundled products that don't exist in the destination store.
The default functionality is to copy over these products as well. You may decide not to copy them by
unchecking the check box in the confirmation panel.

When you click the Copy All button, all products (new and out of sync) are copied to the destination store
using the batch program in the com.konakartadmin.bl.AdminProductBatchMgr called synchronizeStores-
Batch. A log file is created in the log directory defined in the Admin App under Configuration >> Logging.
The program runs as a background task and progress may be monitored by clicking on the search button
to display the products that haven't been synchronized yet.

When a product is copied from one store to another store, the copied product has a different product
id. However each KonaKart product has a UUID attribute whose value is identical for all copies of the
same product. There is also a last modified date attribute which is used to determine whether products
with identical UUIDs in different stores are synchronized or not. These two attributes allow KonaKart to
determine whether a product already exists in the destination store and if it does exist, whether it is in sync.

Scheduling in KonaKart
Job scheduling in KonaKart is achieved with an integration with the Open Source Quartz scheduler. (It's
also easy to use any other scheduler if you prefer but the notes below refer to integration of the Quartz
scheduler). Quartz integration is provided in the Enterprise Extensions of KonaKart.

Configuring Quartz to execute KonaKart jobs

This section describes how to configure Quartz to execute KonaKart batch jobs. All the files mentioned
are provided as examples in the Enterprise Extensions of KonaKart.

The quartz jar (version 2.2.1 is provided in KonaKart v8.1.0.0) is provided in the kit and is added to the
konakartadmin/WEB-INF/lib directory alongside all the other KonaKart Admin jars.

Configuring web.xml

To start-up Quartz you need to uncomment a section in the konakartadmin webapp's web.xml file (this is
located in the konakartadmin/WEB-INF directory).

You need to uncomment this section so that the QuartzInitializerServlet starts up when KonaKart starts.

Administration and Configuration

171

<!-- Quartz Scheduler
<servlet>
 <servlet-name>QuartzInitializer</servlet-name>
 <servlet-class>org.quartz.ee.servlet.QuartzInitializerServlet</servlet-class>
 <init-param>
 <param-name>shutdown-on-unload</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>
End of Quartz Scheduler -->

Configuring quartz.properties

The Quartz properties file should be placed on the konakartadmin classpath (the installer will place it in
the konakartadmin/WEB-INF/classes directory).

The following is the default for KonaKart:

#==
Configure Main Scheduler Properties
#==

org.quartz.scheduler.instanceName = KonaKartScheduler
org.quartz.scheduler.instanceId = AUTO

#==
Configure ThreadPool
#==

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 3
org.quartz.threadPool.threadPriority = 5

#==
Configure JobStore
#==

org.quartz.jobStore.misfireThreshold = 60000
org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

#==
Configure Plugins
#==

org.quartz.plugin.triggHistory.class = org.quartz.plugins.history.LoggingJobHistoryPlugin

org.quartz.plugin.jobInitializer.class = org.quartz.plugins.xml.XMLSchedulingDataProcessorPlugin
org.quartz.plugin.jobInitializer.fileNames = konakart_jobs.xml
org.quartz.plugin.jobInitializer.failOnFileNotFound = true
org.quartz.plugin.jobInitializer.scanInterval = 60
org.quartz.plugin.jobInitializer.wrapInUserTransaction = false

No longer used
#org.quartz.plugin.jobInitializer.overWriteExistingJobs = true

A useful parameter that you may wish to modify is the fileNames parameter which, by default, is set to
"konakart_jobs.xml". The "konakart_jobs.xml" file contains definitions of the example KonaKart jobs that
can be run.

It is possible that you may wish to have additional job definition files like "konakart_jobs.xml" for defining
batch schedules for other stores in a multi-store environment. Additional job definition files can be added
to the filenames property.

Administration and Configuration

172

Configuring konakart_jobs.xml

The default job definition file is called "konakart_jobs.xml" and is placed in the konakartadmin/WEB-
INF/classes directory.

The following is an extract from "konakart_jobs.xml" that defines a single job:

<job>
 <name>RemoveExpiredCustomers</name>
 <group>KonaKart Batch Jobs</group>
 <description>Removes expired Customers for privacy and performance</description>
 <job-class>com.konakartadmin.bl.ExecuteBatchEE</job-class>
 <durability>false</durability>
 <recover>false</recover>
 <job-data-map>
 <entry>
 <key>credentialsFile</key>
 <value>konakart_jobs.properties</value>
 </entry>
 <entry>
 <key>executionClass</key>
 <value>com.konakartadmin.bl.AdminCustomerBatchMgr</value>
 </entry>
 <entry>
 <key>executionMethod</key>
 <value>removeExpiredCustomersBatch</value>
 </entry>
 <entry>
 <key>param0</key>
 <value>removeExpiredCustomers</value>
 </entry>
 <entry>
 <key>param1</key>
 <value>true</value>
 </entry>
 <entry>
 <key>param2</key>
 <value>25</value>
 </entry>
 <entry>
 <key>param3</key>
 <value>0-1-2-3</value>
 </entry>
 </job-data-map>
</job>

This particular batch job removes expired sessions from KonaKart. Note the following parameters:

job-class = com.konakartadmin.bl.ExecuteBatchEE

The job-class defines the class that Quartz will execute when the job is run. The ExecuteBatchEE class
is the Quartz > KonaKart bridge class that can be used to call KonaKart batch jobs from jobs defined in
Quartz.

Another job-class that can be used here is the com.konakartadmin.bl.ExecuteMultiStoreBatchEE job class.
This Quartz > KonaKart bridge class executes the specified job in a loop, once for every enabled store. Note
that this job will use the credentials specified in the konakart_jobs.properies file to access each store in turn
so these credentials need to be valid for each store. There are two special parameters available for these jobs
used for including stores or excluding stores for execution. The parameters are called includedStores and
excludedStores. You can find examples of their use in the default konakart_jobs.xml file. These parameters
are useful for specifying exactly which stores you want the job to run for and which stores you do not
want the batch jobs to run for.

key: credentialsFile = konakart_jobs.properties

Administration and Configuration

173

Inside the job-data-map tag an entry is defined that contains the name of a KonaKart "Credentials" file.
The file can be named anything you like but it must be located on the class path so that ExecuteBatchEE
can access it. In our example, the file is called "konakart_jobs.properties" (see below for more detail on
the contents of this file). The credentials are required so that the ExecuteBatchEE class can create and
log into a KonaKart Admin Engine, then finally execute the "execute()" API call on that engine to run
the defined batch job.

key: executionClass = com.konakartadmin.bl.AdminCustomerBatchMgr

The execution class is the name of the class that will be instantiated by KonaKart to execute the defined
batch job. It is possible to define your own class as the executionClass which is an excellent way to extend
KonaKart's batch functionality.

key: executionMethod = removeExpiredCustomersBatch

The execution method is the name of the method on the executionClass that will be executed by KonaKart
to run the defined batch job. It is possible to define your own class and methods as described above to
extend KonaKart functionality as you require.

key: param0, param1, ..., paramN

The "param" keys are the parameters that are passed to the batch job. These can be whatever the batch job
needs but must be represented as strings and the ordering is significant.

It is essential that you name the parameters "param0", "param1" and so on for each of the parameters.

In our example, param0, the first argument, is used in this job to define the name of the log file produced
by the batch job.

If you wish to pass the session Id of the logged-on user who will execute the job you can define a parameter
with the special value SESSION_ID . If KonaKart sees a parameter with this value it will replace it with
the session Id used to run the execute() API call which is used by the KonaKart batch architecture. Other
than this runtime replacement the parameter is identical to the other parameters so needs to be defined on
your method signature in the correct position. If in doubt check the examples under the batch directory
of your installation which can be found under the custom directory at the top level of your KonaKart
home directory. Full source code is provided (Enterprise Only) for the example batch jobs such as in *
\KonaKart\custom\batch\src\com\konakartadmin\bl\AdminCustomerBatchMgr.java .

Quartz executes the defined jobs when defined "Triggers" fire. These triggers are also defined in the
konakart_jobs.xml file:

The following is an extract from "konakart_jobs.xml" that defines a single trigger:

<trigger>
 <cron>
 <name>RemoveExpiredCustomersTrigger</name>
 <group>KonaKart Triggers</group>
 <description>Trigger for RemoveExpiredCustomers</description>
 <job-name>RemoveExpiredCustomers</job-name>
 <job-group>KonaKart Batch Jobs</job-group>
 <!-- every hour 0 0 * ? * * -->
 <!-- every 30 seconds 0,30 * * ? * * -->
 <!-- every day @ 9:00pm 0 0 21 ? * * -->
 <cron-expression>0 5 21 ? * *</cron-expression>
 </cron>
</trigger>

Administration and Configuration

174

This is where you define when you want a particular batch job to be executed.

In this case we have chosen to use the cron trigger definition but Quartz provides other trigger mechanisms
that you can easily use instead if you prefer.

Some examples of cron expressions are provided (commented out).

Configuring konakart_jobs.properties

The default job definition credentials file is called "konakart_jobs.properties" and is placed in the kon-
akartadmin/WEB-INF/classes directory.

The file name is actually defined in the "konakart_jobs.xml" file - see the credentialsFile tag above. Hence,
you can easily change the name to suit your needs. You can also have more than one credentials file -
which would be required if you needed to run batch jobs on different stores, in a multi-store configuration,
where the access credentials needed to be different for the different jobs.

The following is an extract from "konakart_jobs.properties" that defines the parameters required to create
and log in to an Admin Engine:

#==
konakart_jobs.properties
#
Used to define the credentials for batch jobs.
If multiple configurations are required, use multiple files and define
these in the credentials tag in konakart_jobs.xml.
#==

Credentials to use for the batch jobs - use these when customers are shared
or for Single Store:

konakart.user = admin@konakart.com
konakart.password = princess

It is recommended that you secure this file appropriately as it could contain the credentials of a privileged
Admin user.

Other configuration options are possible in credentials files (eg. the engine class can be defined and the
properties files it uses can be defined). If the other configuration parameters are left commented out default
values are used.

Clustered Quartz Configuration

By default, Quartz is set up in KonaKart to run in a high-performance RAM store in just one webapp. It's
possible to use a JDBC store and configure Quartz to operate in a load balanced and fault tolerant fashion.
The set-up for this Clustered Quartz mode is described here.

You need to make modifications to the quartz.properties file in the konakartadmin webapp (WEB-INF/
classes directory) as follows:

Uncomment the org.quartz.jobStore parameters and ensure you are using
org.quartz.impl.jdbcjobstore.JobStoreTX as the org.quartz.jobStore.class rather than the default
org.quartz.simpl.RAMJobStore.

Here is an example for PostgreSQL:

Administration and Configuration

175

#==
Configure JobStore
Default is the RAMJobStore which is simple and gives the best performance
See User Guide for Set-Up of the JDBCJobStoreTX
#==

org.quartz.jobStore.misfireThreshold = 60000
#org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreTX
org.quartz.jobStore.isClustered = true
org.quartz.jobStore.clusterCheckinInterval = 1500
org.quartz.jobStore.maxMisfiresToHandleAtATime = 1

org.quartz.jobStore.dataSource = myDS

#==
Configure DataSource
#==

org.quartz.dataSource.myDS.driver = org.postgresql.Driver
org.quartz.dataSource.myDS.URL = jdbc:postgresql://chelski:5432/chelski12
org.quartz.dataSource.myDS.user = chelski1
org.quartz.dataSource.myDS.password = myPassword
org.quartz.dataSource.myDS.maxConnections = 10
org.quartz.dataSource.myDS.validationQuery = SELECT 1

org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.PostgreSQLDelegate

Ensure that the data source is correctly defined in the quartz.properties file . The tables Quartz needs to
implement its clustering are populated with your batch job details at the start-up of Quartz.

A quartz_setup.sql script needs to be run to create the tables needed by Quartz to implement its clustering.
We provide a script for each supported database (in a file called quartz_setup.sql in the database directory
for each database). The provided script should work but if not refer to the Quartz website where various
set-up scripts are contributed for this purpose. (There are different scripts for different versions of the
databases).

It is possible that you may need an alternative org.quartz.jobStore.driverDelegateClass definition to the
one specified by default for your database. Refer to the Quartz website where various alternative Delegate
classes are explained for this purpose.

Customizing the KonaKart jobs

This section describes how to customize the batch jobs provided or create new ones and rebuild them.
Source and build files are provided in the Enterprise Extensions of KonaKart.

The java source files can be found under the KonaKart installation directory under custom/batch . The
java files can be modified here and new ones added as required to implement different or new batch
functionality.

To rebuild the konakartadmin_batch.jar (the jar containing all of the batch class files) execute the ANT
build script as follows:

Administration and Configuration

176

C:\KonaKart\custom\batch>..\bin\ant
Buildfile: build.xml

clean:
 [echo] Cleanup...

compile:
 [echo] Compile the batch sources
 [mkdir] Created dir: C:\KonaKart\custom\batch\classes
 [javac] Compiling 4 source files to C:\KonaKart\custom\batch\classes

make_batch_jar:
 [echo] Create the batch jar
 [mkdir] Created dir: C:\KonaKart\custom\batch\jar
 [jar] Building jar: C:\KonaKart\custom\batch\jar\konakartadmin_batch.jar

build:

BUILD SUCCESSFUL
Total time: 2 seconds

Once rebuilt, for convenience, you can use the copy_jars ANT target to copy the konakartadmin_batch.jar
into the konakartadmin webapp.

C:\KonaKart\custom\batch>..\bin\ant
Buildfile: build.xml

copy_jars:
 [echo] Copy the batch jar to the lib directory
 [copy] Copying 1 file to C:\KonaKart\webapps\konakartadmin\WEB-INF\lib

BUILD SUCCESSFUL
Total time: 0 seconds

After possible reconfiguration of the scheduling configuration files (which you would need to do if you
have added a new batch job - see above), restart tomcat to test your new jobs.

Deletion of Expired Data
In order to keep KonaKart running efficiently, expired data should be deleted from the database at regular
intervals. If not deleted, the data in some database tables, tends to grow and reduce the overall system
performance. A batch job that can be scheduled through Quartz is provided for this task. The name of the
job is AdminCustomerBatchMgr.deleteTemporaryDataBatch .

Expired sessions are deleted from the sessions table. These accumulate because most customers tend not
to do a formal logout from the application after they've logged in. Another table that tends to grow is the
kk_cookie table. Whenever a guest comes to the store, a cookie is created which contains the key to a
kk_cookie table record. A temporary customer id is contained within this record and this id is used to insert
and fetch shopping cart data so that a customer's cart is persisted even if he is a non-registered customer.
The batch job deletes the cookie and cart records if they haven't been read for a programmable number of
days. Finally, there is a counter table which is used to get unique ids for temporary customers. The batch
job also deletes the data from this table.

Data Integrity
KonaKart includes a data integrity checking utility that can be used to check and optionally repair your
data. The data integrity checker can be called directly using the KonaKart Admin API or indirectly by
using one of the scripts provided.

Administration and Configuration

177

The KonaKart data integrity checker is designed to be extended over time but currently covers the check-
ing of Customer Groups, Order Status, Miscellaneous Items, Product, Manufacturer and Category Data
Integrity only.

The KonaKart data shouldn't become corrupted under normal usage but if data is added to the KonaKart
database through channels that don't preserve the integrity (such as via SQL commands) the database can
lose its integrity. The purpose of the Data Integrity Checking utilities is to fix the data to restore it to a
form that KonaKart can use. A common example of when the KonaKart database loses integrity is when
languages are added to the system but records are not added for those languages to all KonaKart objects
that must have a row for each language (for example for Order Status Names and Products).

Executing the Data Integrity Checker from a Script
The scripts are provided in the KonaKart Enterprise Extensions Edition.

Open a command shell in the utils/dataIntegrity directory that can be found immediately under your Kon-
aKart installation directory. You can find out the arguments that are required for running the utility by
entering a "-?" as your argument as follows:

C:\KonaKart\utils\dataIntegrity>checkDataIntegrity.bat -?

==
Check the Integrity of the KonaKart Database
==

Usage: DataIntegrityChecker
 -a n - data area where n is:
 0 = All
 1 = Customer Groups
 2 = Order Statuses
 3 = Misc Item Types
 4 = Products
 5 = Categories
 6 = Manufacturers
 7 = Tags
 8 = Tag Groups
 9 = Content
 10 = Content Types
 -u username - username
 -p password - password
 [-s storeId] - storeId
 [-r] - attempt repair - default is false
 [-e (0|1|2)] - engine mode
 [-c] - shared customers - default is not shared
 [-ps] - shared products - default is not shared
 [-cs] - shared categories - default is not shared
 [-ae adminengine classname] - default is com.konakartadmin.bl.KKAdmin
 [-cu custom] - custom option for DI Checker
 [-?] - shows this usage information

To run the data integrity checker just to check the integrity of the data, but not attempt to fix it, run it
without the "-r" parameter. For example (lines have been broken up to show the output more clearly):

C:\KonaKart\utils\dataIntegrity>
 checkDataIntegrity.bat -a 1 -u admin@konakart.com -p princess -e 2

==
Check the Integrity of the KonaKart Database
==

11-Sep 10:48:56 WARN (AdminDataIntegrityMgr.java:checkCustomerGroups:142)
 CustomerGroup record missing for Retail pt (id 1) language 5

Administration and Configuration

178

To run the data integrity checker and attempt to fix any data integrity problems that are discovered, run it
with the "-r" parameter. For example (lines have been broken up to show the output more clearly):

C:\KonaKart\utils\dataIntegrity>
 checkDataIntegrity.bat -a 1 -u admin@konakart.com -p princess -e 2 -r

==
Check the Integrity of the KonaKart Database
==
11-Sep 10:51:46 WARN (AdminDataIntegrityMgr.java:checkCustomerGroups:142)
 CustomerGroup record missing for Retail pt (id 1) language 5
11-Sep 10:51:46 WARN (AdminDataIntegrityMgr.java:checkCustomerGroups:155)
 CustomerGroup record added for: Retail pt (id 1) language 5

Configuring KonaKart to use Analytics Tools
This feature of KonaKart can be used to integrate with Google Analytics or any other analytics engines
assuming their requirement is simply to insert some code into each page. Indeed, it's also possible to use
this feature to insert some code into each page for any other purpose that you might have!

Configuring KonaKart to use Google Analytics
The standard Struts2 based storefront application integrates Google Analytics with enhanced commerce
features. By default, the following events are tracked:

• When a customer visits a product details page, the product information is sent to Google.

• When a customer terminates a checkout, the details of the order are sent to Google.

• When a product is added or removed from the cart, the product name and id is sent to Google.

The steps required in order to activate the analytics are quite simple. First you need to create an account
with Google Analytics - see http://www.google.com/analytics/ for details.

http://www.google.com/analytics/

Administration and Configuration

179

KonaKart - Google Analytics Integration

Setting up Google Analytics

Following Google's guidelines, create an account for your KonaKart site. Once the account has been cre-
ated, it’s important that you enable eCommerce and advanced eCommerce for the account.

Take note of the javascript "Tracking Code" that Google generates for your account. You will need this
to configure KonaKart (see below).

Setting up KonaKart to use Google Analytics

KonaKart will insert the Google Analytics "Tracking Code" for your site into every page of the Kon-
aKart store. For KonaKart to use your own unique code, you will have to copy this and add it to your
Messages.properties file (or your own locale version of this file, as appropriate).

You must add the text of the "Tracking Code" on one line as the value of the analytics.code property. It
may be convenient to use the default tracking code value that is included by default - but if you do this
you must ensure that you replace the dummy UA-9999999-1 identifier with your own.

Once the analytics code is defined in the Messages.properties file you have to enable analytics in the
KonaKart Admin App. You can find this configuration parameter under the Configuration >> Logging
section.

Now sit back and wait for the data to be collected and enjoy studying the reports that Google produces!

Be patient, however, because data does not appear in your Google account for 24 hours or more.

Configuring KonaKart to use Other Analytics Tools
This feature of KonaKart can be used to integrate with other analytics engines assuming their requirement
is simply to insert some code into each page. If you require more detailed reporting as has been imple-
mented using the enhanced commerce features of Google Analytics, then you can search for and modify
the JavaScript used to send data to Google, in order to send data to your analytics engine instead.

Defining the Code to be inserted

For KonaKart to insert your own code into each page, you have to define it in your Messages.properties
file (or your own locale version of this file, as appropriate).

You must add the code on one line as the value of the analytics.code property overwriting whatever is
defined there by default.

Administration and Configuration

180

Once your code is defined in the Messages.properties file, you have to enable analytics in the KonaKart
Admin App. You can find this configuration parameter under the Configuration >> Logging section.
Whilst you may not actually be using the feature for "analytics", you still need to enable this setting so
that the code is inserted in each page.

Setting up RMI Services
With the Enterprise Extensions version of KonaKart it is possible to configure KonaKart to use RMI
versions of the engines. In simple terms, RMI ("Remote Method Invocation") is a way of distributing
KonaKart processing over a network rather like SOAP web services but using a different protocol.

This section describes a step-by-step guide to setting up KonaKart on two servers that communicate using
RMI.

Step by Step Guide to setting Up KonaKart to use RMI
This guide assumes that we will be setting up KonaKart on two machines (we'll call them chester (our
"client") and wolves (our "server")).

• Install the KonaKart Enterprise Extensions on both machines. The easiest way to do this is to use the
installation wizards. It is only necessary to populate the database during one of the two installations
because we will be using the same database for this distributed configuration.

• On the "client" machine (chester) we will run only the KonaKart application client engine (KKAppEng)
which is used by the storefront client and the Admin Application client part. The KKAppEng client
engine will communicate with the application engine (KKEng) on the server machine. The Admin Ap-
plication client will communicate with the Admin Engine (KKAdmin) on the server machine.

The KonaKart application server engine (KKEng) and the KonaKart admin server engine (KKAdmin)
will both run on the "server" machine (wolves).

• On the client machine (chester) modify the following files:

• webapps/konakart/WEB-INF/struts-config.xml - (Applicable only if you're using the Struts-1 store-
front - this isn't required if you're using the Struts-2 storefront) ensure that only the KKAppEng plug-
in is started. At the bottom of this file you should set it as follows (notice how the KKEngPlugin
block is commented out):

<!-- START: This one for a full konakart.war configuration
<plug-in className="com.konakart.plugins.KKEngPlugin">
 <set-property property="propertiesPath" value="konakart.properties"/>
 <set-property property="mode" value="2"/>
 <set-property property="customersShared" value="false"/>
 <set-property property="productsShared" value="false"/>
 <set-property property="definitions-debug" value="2"/>
</plug-in>
END: This one for a full konakart.war configuration -->
<!-- START: This one for a full konakart_axis_client.war configuration -->
<plug-in className="com.konakart.plugins.KKAppEngPlugin">
 <set-property property="propertiesPath" value="konakart.properties"/>
 <set-property property="appPropertiesPath" value="konakart_app.properties"/>
 <set-property property="mode" value="2"/>
 <set-property property="customersShared" value="false"/>
 <set-property property="productsShared" value="false"/>
 <set-property property="definitions-debug" value="2"/>
</plug-in>
<!-- END: This one for a full konakart_axis_client.war configuration -->

Administration and Configuration

181

• webapps/konakart/WEB-INF/konakart_app.properties - specify the RMI Application Engine as fol-
lows:

KonaKart engine class used by the KonaKart Application users
#
For the default engine use: com.konakart.app.KKEng
For the JAXWS engine use: com.konakart.jws.KKJAXWSEng
For the web services engine use: com.konakart.app.KKWSEng
For the RMI services engine use: com.konakart.rmi.KKRMIEng

#konakart.app.engineclass=com.konakart.app.KKEng
#konakart.app.engineclass=com.konakart.jws.KKJAXWSEng
#konakart.app.engineclass=com.konakart.app.KKWSEng
konakart.app.engineclass=com.konakart.rmi.KKRMIEng

• webapps/konakart/WEB-INF/konakart.properties - ensure that you specify the server machine as
wolves as follows:

RMI Registry Location - This is used to locate (not create) the RMI Registry
The definition for the port that the RMI Registry will listen on is in the web.xml

konakart.rmi.host = wolves
konakart.rmi.port = 8790

• webapps/konakartadmin/WEB-INF/konakartadmin_gwt.properties - ensure that you specify the RMI
Admin Engine as follows:

--
KonaKart engine class used by the KonaKart Admin Application users
#
For the default engine use: com.konakartadmin.bl.KKAdmin
For the web services engine use: com.konakartadmin.ws.KKWSAdmin
For the RMI services engine use: com.konakartadmin.rmi.KKRMIAdminEng
For the JSON services engine use: com.konakartadmin.json.KKJSONAdminEng

#konakartadmin.gwt.engineclass=com.konakartadmin.bl.KKAdmin
#konakartadmin.gwt.engineclass=com.konakartadmin.ws.KKWSAdmin
konakartadmin.gwt.engineclass=com.konakartadmin.rmi.KKRMIAdminEng
#konakartadmin.gwt.engineclass=com.konakartadmin.json.KKJSONAdminEng

• webapps/konakartadmin/WEB-INF/konakartadmin.properties - ensure that you specify the server
machine as wolves as follows (in this example this is the same as the konakart.properties version
above - but they don't have to be!):

RMI Registry Location - This is used to locate (not create) the RMI Registry
The definition for the port that the RMI Registry will listen on is in the web.xml

konakart.rmi.host = wolves
konakart.rmi.port = 8790

• On the "server" machine (wolves) there is very little to configure if you have installed using the wizard
installation kits. We just need to ensure that the RMI services are configured to start up in the respective
web.xml files as follows:

Administration and Configuration

182

• webapps/konakart/WEB-INF/web.xml - enable the RMI server for the Application engine as follows
(basically just ensure that this section is uncommented):

<!-- RMI Server -->
<servlet>
 <servlet-name>KonakartRMIServlet</servlet-name>
 <display-name>KonaKart RMI Server</display-name>
 <description>KonaKart RMI Server</description>
 <servlet-class>
 com.konakart.rmi.KKRMIServer
 </servlet-class>
 <init-param>
 <param-name>port</param-name>
 <param-value>8790</param-value>
 </init-param>
 <init-param>
 <param-name>rmiEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>20</load-on-startup>
</servlet>
<!-- End of RMI Server -->

• webapps/konakartadmin/WEB-INF/web.xml - similar to the above, enable the RMI server for the
Admin engine as follows:

<!-- RMI Server -->
<servlet>
 <servlet-name>KonakartAdminRMIServlet</servlet-name>
 <display-name>KonaKartAdmin RMI Server</display-name>
 <description>KonaKartAdmin RMI Server</description>
 <servlet-class>
 com.konakartadmin.rmi.KKRMIAdminServer
 </servlet-class>
 <init-param>
 <param-name>port</param-name>
 <param-value>8790</param-value>
 </init-param>
 <init-param>
 <param-name>rmiEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>20</load-on-startup>
</servlet>
<!-- End of RMI Server -->

• You may wish to configure the report that is shown in the status panel of the Admin App to use the
birtviewer on the wolves machine if your chester machine does not have access to the shared database.
Set this in the Configuration >> Reports section of the Admin App.

• Start up tomcat on the server machine and then start up tomcat on the client machine then click on the
following links (or appropriate versions in your environment!) to test:

• Storefront Application [http://chester:8780/konakart/]

• Admin App [http://chester:8780/konakartadmin/]

Integrating a Java Message Queue
KonaKart (Enterprise Extensions Only) provides the functionality to post messages to and read messages
from java Message Queues with the integration of the Apache ActiveMQ messaging framework.

http://chester:8780/konakart/
http://chester:8780/konakart/
http://chester:8780/konakartadmin/
http://chester:8780/konakartadmin/

Administration and Configuration

183

According to their web site (ActiveMQ [http://activemq.apache.org]) Apache ActiveMQ is the most
popular and powerful open source messaging and Integration Patterns provider. ActiveMQ fully supports
JMS 1.1 with support for transient, persistent, transactional and XA messaging.

Whilst ActiveMQ has a rich and extensive feature set the integration from KonaKart only accesses a small
fraction of the available functionality.

The integration from KonaKart allows the programmer to post messages to a specified message
queue ("postMessageToQueue") and read messages from a specified message queue ("readMessage-
FromQueue"). Engine API calls are provided to make these fundamental queue operations extremely easy
to use. Note that these two calls provide very easy-to-use message manipulation functions but do not ex-
pose the full power of ActiveMQ. In most cases the only message queue functionality required by a Kon-
aKart system will be to post a simple message to a queue so the simple abstraction provided is helpful in
that it masks all the underlying complexity. See the javadoc on these API calls for more details.

A typical use for a message queue within a KonaKart implementation is to ensure guaranteed delivery
of an order to an external system. A common approach would be to post a message containing the order
information to a message queue when that order reaches a certain status in KonaKart (for example, that
status could be PAYMENT_RECEIVED). In KonaKart, a convenient place to add the code to do this is in
the OrderIntegrationMgr and the AdminOrderIntegrationMgr. Rather than delivering the message to the
external system from these classes and risking the loss of that communication if the external system was
unavailable, the order can be placed on a message queue to be picked up by the external system when it
comes back on line. The delivery to the message queue is guaranteed and running in the same JVM as
KonaKart (the ActiveMQ broker is "embedded" in the konakart webapp).

Examples of posting order messages to a message queue are provided in the installation kits (in the Or-
derIntegratonMgr, the AdminOrderIntegrationMgr and in the java API examples). An example of reading
messages from the order message queue is also provided (in the java API examples).

Whilst it's conceivable that you may wish to make use of the "readMessageFromQueue" API calls to read
messages sent from external systems in your IT infrastructure, there are no implementations of this API
call in the standard KonaKart installation (other than example code to demonstrate how to make the calls).

Setting Up The Java Message Queue

The ActiveMQ Broker is embedded in the konakart webapp. You need to uncomment the ActiveMQ
section in the konakart web.xml to enable the start-up of the broker and define a number of parameters:

http://activemq.apache.org
http://activemq.apache.org

Administration and Configuration

184

<!-- Servlet for Apache Message Queue

Uncomment this if you want to use the Apache MQ

ApacheMQ Server parameters:
 uri = The broker URI
 mqEnabled = Enable (true) or Disable (false) the Apache Message Queue
 mqJMXRMIPort = The management port for JMX RMI connections (default is 1099)
 mqName = A name for this Broker to make it unique (. + hostname will be added)
 mqAdminUserName = admin username
 mqAdminUserPassword = admin password
 mqUserUserName = username
 mqUserPassword = password
 mqKonaKartQStub = users are authorised to use Queue Names starting with this prefix
 mqStoreLimitMB = disk space (in MB) reserved for persistent messages (using KahaDB)
 mqTempLimitMB = disk space (in MB) reserved for non-persistent messages
 mqMemoryLimitMB = JVM Memory (in MB) available for the broker
 mqPropertiesFile = name of the properties file containing additional configurations
-->

<!-- Apache ActiveMQ -->
<servlet>
 <servlet-name>KonakartMQServlet</servlet-name>
 <display-name>KonaKart MQ</display-name>
 <description>KonaKart MQ</description>
 <servlet-class>
 com.konakart.mq.KKMQServer
 </servlet-class>
 <init-param>
 <param-name>uri</param-name><param-value>tcp://localhost:8791</param-value>
 </init-param>
 <init-param>
 <param-name>mqEnabled</param-name><param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>mqJMXRMIPort</param-name><param-value>1099</param-value>
 </init-param>
 <init-param>
 <param-name>mqName</param-name><param-value>KonaKart.Broker.1</param-value>
 </init-param>
 <init-param>
 <param-name>mqAdminUserName</param-name><param-value>kkadmin</param-value>
 </init-param>
 <init-param>
 <param-name>mqAdminUserPassword</param-name><param-value>princess</param-value>
 </init-param>
 <init-param>
 <param-name>mqUserUserName</param-name><param-value>kkuser</param-value>
 </init-param>
 <init-param>
 <param-name>mqUserPassword</param-name><param-value>prince</param-value>
 </init-param>
 <init-param>
 <param-name>mqKonaKartQStub</param-name><param-value>KonaKart.</param-value>
 </init-param>
 <init-param>
 <param-name>mqStoreLimitMB</param-name><param-value>1024</param-value>
 </init-param>
 <init-param>
 <param-name>mqTempLimitMB</param-name><param-value>256</param-value>
 </init-param>
 <init-param>
 <param-name>mqMemoryLimitMB</param-name><param-value>64</param-value>
 </init-param>
 <init-param>
 <param-name>mqPropertiesFile</param-name><param-value>konakart.properties</param-value>
 </init-param>
 <load-on-startup>20</load-on-startup>
</servlet>
<!-- End of Apache ActiveMQ -->

In addition to the parameters in the konakart web.xml you must also define properties in the
konakart.properties and konakartadmin.proprties files as follows:

Administration and Configuration

185

Message Queue Configuration

konakart.mq.broker.uri = tcp://localhost:8791
konakart.mq.username = kkuser
konakart.mq.password = prince
konakart.mq.orders.queue = KonaKart.Orders.Queue

#konakart.mq.ERP.queue = KonaKart.ERP.Q

Extended Configuration for Network / Broker / Queue Configurations
If these are set, by uncommenting, NetworkConnections are set up with the specified
statically-defined Queue and credentials

#konakart.mq.connector.store1.uri = static:(tcp://localhost:61616)
#konakart.mq.connector.store1.queue = KonaKart.store1.Q
#konakart.mq.connector.store1.user = user_store1
#konakart.mq.connector.store1.password = prince_store1

#konakart.mq.connector.store2.uri = static:(tcp://localhost:61617)
#konakart.mq.connector.store2.queue = KonaKart.store2.Q
#konakart.mq.connector.store2.user = user_store2
#konakart.mq.connector.store2.password = prince_store2

The "konakart.mq.broker.uri" property defines the URI of the broker.

The "konakart.mq.username" and "konakart.mq.password" properties define the credentials used to post
and read messages.

The "konakart.mq.orders.queue" property defines the name of the queue to post messages to and read mes-
sages from. Note that the prefix "KonaKart." matches the "mqKonaKartQStub" parameter in the web.xml.
The "mqUserUserName" defined in the web.xml (and also here in the konakart.properties file) is autho-
rised to post messages to and read messages from queues whose name begins with this prefix.

By default the location for the broker's persistent data is defined to be "%CATALINA_HOME%/mq".
This is defined in the startkonakart.bat and startkonakart.sh scripts in the KonaKart\bin directory. The
location is defined as a System Property called "activemq.store.dir" and by default it is added to the
CATALINA_OPTS environment variable in the above scripts.

The extended properties are for setting up network connections to remote brokers for defining a topology
of queues.

Monitoring The Java Message Queue
Apache ActiveMQ provides a web-based monitoring tool which can be configured to monitor and admin-
ister the ActiveMQ message queue embedded within KonaKart. This tool is free and can be downloaded
from the ActiveMQ [http://activemq.apache.org] website.

For basic monitoring tasks it's also very easy to use the jconsole tool that's provided in your java/bin
directory.

kkCmd - Command line tool
Command line access to KonaKart (Enterprise Extensions Only) is provided with the kkCmd utility (in-
troduced in v8 of KonaKart).

kkCmd provides command line access to a subset of the API calls to allow an operator to easily interrogate
objects (such as configuration variables, products and customers) by using a command line tool.

http://activemq.apache.org
http://activemq.apache.org

Administration and Configuration

186

It is anticipated that, following feedback, more commands will be added to kkCmd.

Current commands include:

• help

• postMsg -brokerUrl brokerURL -queue QueueName -qusername user -qpassword password -c1 "The
msg text"

• readCategories [-e 0] [-c] [-ps] [-cs] [-store store1]

• readConfigAdmin -key STORE_NAME [-store store1]

• readCustomerAdmin -custId 3 [-store store1]

• readMsg -brokerUrl brokerURL -queue QueueName -qusername user -qpassword password

• readProduct -prodId 25 [-store store1]

• readProductAdmin -prodId 25 [-store store1]

• readOrderAdmin -orderId 25 [-store store1]

List all available commands by using the -cmds option

Note that a username and password are required for almost all of the commands. These can either be
entered using the options -u (for username) and -p (password) or they can be added to a credentials file
called .kkCmd in the home directory of the user. On Windows the file must be: %UserProfile%\.kkCmd
On Linux the file must be $HOME/.kkCmd

The format of the .kkCmd credentials file is:

user:password

An example is:

admin@konakart.com:princess

Changing the standard password encryption
algorithm

By default KonaKart uses the MD5 Message-Digest Algorithm to encrypt passwords. This is a one way
algorithm which is used to encrypt customer passwords before they are stored in the database. During
the login process when passwords are compared, the password entered by the customer is encrypted and
compared with the stored encrypted password.

The class that is called to encrypt and check the password is called Security.java and may be found in the
KonaKart/custom/utils/src/com/konakart/util directory. The default behaviour is for it to call the standard
KonaKart encryption methods. However, if your requirements necessitate the implementation of a different
encryption algorithm, the methods of Security.java may be customized to implement your own algorithm.
Once modified the class must be compiled following the instructions in the Programming Guide chapter
of this document.

187

Chapter 10. KonaKart Content
Content Overview

KonaKart supports basic Content Management features that may be sufficient for some store owners who
don't want to integrate with a sophisticated Content Management System for more advanced features.

KonaKart allows you to define "Content" objects which can be anything you like including blocks of text,
images and clickable banners. You can set up these content items in the Administration Application and
access them via the KonaKart APIs to show in your storefront. Their use is demonstrated in the sample
store that you get when you install KonaKart.

Each content object contains an extensive set of attributes that can be used to program the storefront. Dif-
ferent content types require different attributes to be specified but there are very few mandatory attributes
giving considerable freedom to use content in creative and flexible ways in the storefront.

There are two main object types used to define KonaKart content. These are called "Content" and "Content
Type" where a piece of content has a content type. An example of one of the provided "Content Types" is
a "Top Banner". An example of a piece of "Content" with a "Content Type" of "Top Banner" is a banner
image.

You can maintain the Content Types in the Admin Application as follows.

KonaKart Content

188

Both "Content Type" and "Content" objects have numerous custom fields that can be used for cus-
tom purposes. By default the Administration Application does not display the "Content" custom fields
for editing but they can be shown by configuring File-Based Configuration not to hide them (see the
konakartadmin_gwt.properties file for details).

In order to start using KonaKart Content you need to enable it in the Adminsitration Application on the
Configuration panel.

Text Content
In the simple case of text content we'll use the "About Us" text as an example of how to define and use
a block of text content.

First you need to define the content in the Administration Application on the Content panel. For text content
the important attribute is the "content" attribute which is defined for each language supported by the store.

You can maintain the Content objects in the Admin Application as follows.

Once the content text is defined you can access it from the storefront using the KonaKart APIs and selecting
the required content by specifying its Content Id which is automatically assigned when the content is
created.

In the demo application (which uses a standard Module View Controller) the About us content (which has
Content Id 23) is retrieved in the AboutUsAction class and displayed in the AboutUsBody JSP.

KonaKart Content

189

Banner Content

In the sample storefront application four distinct banner types are defined (these are defined as KonaKart
"Content Types"):

• Top Banner - at the top of the store's Home Page

• Sub Banner - in the row below the top banner on the home page of the store

• Category Banner - the main category banner

• Sub-Category Banner - the row underneath the main category banner

You can define as many Content Types as you like; you are not restricted to those that are defined in the
sample storefront application

When defining a banner content type it would be typical to provide the images in each supported language.
(If the images are the same for each language you can set these up quickly by setting them up for one
language and using the "Copy" button on the Edit Content panel to duplicate the definitions for each
supported language).

Four images per language are allowed. There are no rules that define what images you should use for each
of the four image attributes but it might be convenient to use the four attributes for different sized images
if you are implementing a storefront with a responsive design (as in the sample storefront).

When you upload an image to associate with "Content" it is stored at a location defined by the concatenation
of the "ImageBasePath" (defined for the store) and the name of the content directory (defaults to "content"
but can be changed in the konakartadmin_gwt.properties file).

Optionally you can assign a "Click URL" to the banner object. This would be useful in the case where
you need to define which URL should be accessed when the banner is clicked by the user. If required,
the Click URL can use a special "{OBJ_ID}" identifier within the string to allow the replacement of the
"Object Id" at runtime. In typical cases the "Object Id" would be the Id of the product or category that
was referenced in the banner itself.

Content Expressions

One of the powerful features of KonaKart content is the ability to select it programmatically by evaluating
KonaKart expressions. You could use this feature to select appropriate banners or text for the particular
customer browsing the storefront.

To use this feature you need to set up KonaKart expressions (which are based on Customer Tags) and
associate an expression to a piece of content. You define this association by setting the expression attribute
on the content object to the appropriate expression. When selecting content you can set an option in your
API call parameters to evaluate expressions. If this is set, only content whose expressions evaluate to True
will be returned (plus the content that has no expression defined).

Content Caching

For performance reasons, Content is cached in the customer's session. This behaviour can be modified
to suit your requirements as the full source code for the Application Engine (KKAppEng) is provided in
the Enterprise Edition.

KonaKart Content

190

Content Access
Content can be retrieved in various ways through the KKEngIf APIs (or for Admin functions by using
the Admin APIs defined on KKAdminIf). Which search criteria you use will depend on your specific
requirements. Content can be retrieved using a wide variety of attributes but the most common search
keys to use are:

• Content Id - the business Id of the content.

• Content Type Id - for retrieving all content of a certain type.

• Content Search Key - for retrieving all content that have a certain search key. In the sample store this
is set to retrieve all the banners applicable to a certain category by using the category's matching search
key. You are free to define any search key to identify content for your own purposes.

• From Date and To Date - for retrieving content appropriate for a certain date. banner

191

Chapter 11. Marketing - Customer Tags
and Expressions

The Enterprise version of KonaKart contains sophisticated marketing functionality that allows you to cap-
ture customer data as the customer uses your KonaKart eCommerce store; and to use that data within
complex expressions in order to show dynamic content, activate promotions, create mailing lists and send
eMail communications.

What are Customer Tags?
A customer tag is an entity that can be associated with a customer (guest or logged in) and given a value
for that customer. The best way of understanding what this really means is to look at the tags included in
the standard KonaKart installation.

• PRODUCTS_VIEWED - A list of the most recently viewed products

• CATEGORIES_VIEWED - A list of the most recently viewed categories

• MANUFACTURERS_VIEWED - A list of the most recently viewed manufacturers

• PRODUCTS_IN_CART - A list of products in the shopping cart

• PRODUCTS_IN_WISHLIST - A list of products in the wish list

• SEARCH_STRING - The search string of the last product search made by the customer

• COUNTRY_CODE - The code of the customer's country

• CART_TOTAL - The currency total of the shopping cart

• WISHLIST_TOTAL - The currency total of the wish list

• BIRTH_DATE - When the customer was born

• LOGIN_DATE - Date of the last successful login

• IS_MALE - The sex of the customer

• PROD_PAGE_SIZE - The number of products shown on a page in list view

• ORDER_PAGE_SIZE - The number of orders shown on a page in list view

• REVIEW_PAGE_SIZE - The number of reviews shown on a page in list view

They tend to be used to keep track of a customer's actions in the storefront application (i.e. what products
have been looked at, what products are in the wish list, what the customer has searched for etc.) and to
store information about the customer such as whether he is male or female and what country he lives
in. New customer tags can easily be added to store whatever information is important for your business
requirements. If you create a new tag, for example, to keep track of how many orders the customer has
placed in the last 6 months, then you also need to create a way of populating the tag value for each customer.
In this example you could use a scheduled batch job that runs once a day.

Tags have a name, a description (used in the expression builder) and a type which can be:

Marketing - Customer
Tags and Expressions

192

• STRING_TYPE - The tag value is in the format of a String. i.e. To store the country from which the
store is being accessed.

• INT_TYPE - The tag type is in the format of an int. i.e. To save the product id of the last product viewed
by the customer.

• MULTI_INT_TYPE - The tag type allows the tag to store an array of ints. When this type is selected,
the Max Number of Ints attribute determines the maximum number of ints in the array. i.e. To store the
ids of the last 5 products viewed by the customer.

• DECIMAL_TYPE - The tag type is in the format of a decimal. i.e. To store the value of all items in
the basket.

• DATE_TYPE - The tag type is in the format of a date. In an expression it can be used to compare the
stored date with another chosen date.

• BOOLEAN_TYPE - The tag type is in the format of a boolean. i.e. To store the customer gender. The
tag could be named IS_MALE and take values of true or false.

• AGE_TYPE - The tag type is used to store dates. Unlike the DATE_TYPE which can compare dates,
this tag is used when in an expression you want to act on the elapsed time (or age) of an event. i.e.
To store the date of the last login for the customer so you can take action if a customer hasn't logged
in for two weeks. Alternatively you could store the age of a customer to offer promotions to certain
age brackets.

What are Expressions?
Expressions are a way of combining customer tag values using AND/OR operators. An expression can be
evaluated for a customer and always returns true or false. For example, I may want to show a banner to a
customer if his cart already contains $50.00 worth of goods and he has Product A in his wish list or he has
recently viewed Product A. Since I know that the customer has shown an interest in Product A, my banner
could attempt to persuade him to add it to the cart. In order to achieve this, I need to create an expression
and run it for a customer before he checks out.

Expressions may be used for three different tasks:

• To show dynamic content such as a banner, as in the example above.

• To activate a promotion. The expression can be selected in the panel used to set promotion rules once
a promotion has been created.

• To filter customers when sending out eMail communications. The expression can be selected in the
Customer Communications panel.

• To filter customers when creating mailing lists. The expression can be selected in the Mailing List panel.

Tutorial for creating an expression using the
standard customer tags

Note that when creating expressions we often use the numeric internal ids of products, categories and
manufacturers to identify them. These ids are visible in the admin app although they may be hidden by
setting the configuration variables under the Admin App Configuration sub menu.

Marketing - Customer
Tags and Expressions

193

The id of a product (and SKU) may be viewed as you move your mouse over the product name in the
Products panel:

It may also be viewed in the Details tab of the Edit Product panel:

The id of a category is visible in the Categories panel:

Marketing - Customer
Tags and Expressions

194

The id of a manufacturer is visible in the Manufacturers panel:

Now that we know where to find the ids, lets move on to the expression that we want to create. As explained
in the example above we want to create an expression to show a banner to a customer if his cart already
contains $50.00 worth of goods and he has Product A in his wish list or he has recently viewed Product
A. For the sake of the tutorial we can attribute a product id of 10 to Product A. Let's create an expression
called MY_EXPRESSION as shown below.

Marketing - Customer
Tags and Expressions

195

Once the expression has been saved, we must click on the Variables button in order to open a new panel
where we can enter the expression variables that define the expression.

Click the New button to create the first variable.

We choose CartTotal from the list of customer tags and give it a value of >= 50. Now we must AND this
tag with the the following two tags OR'ed together. To achieve this, we click the Group button.

After entering the Customer Tag value for product in wish list, we need to OR it with the recently viewed
product tag, by clicking the New button.

Marketing - Customer
Tags and Expressions

196

Now we can click the save button to save the expression variables.

We have created the expression: (Cart_Total >= 50) AND ((prod in wishlist == 10) OR (recently viewed
prod == 10))

The demo store front contains a tile called DynamicContentTile.jsp which is an example of how a tile can
be displayed only if an expression evaluates to true. If you take a look at the source code of the JSP you'll
see that the tile is only dispayed if:

customerTagMgr.evaluateExpression(-1,"MY_EXPRESSION") == true

The CustomerTagMgr of the Client engine eventially calls the KonaKart eCommerce engine API call:

boolean evaluateExpression(String sessionId, int expressionId, String expressionName)

or

boolean evaluateExpressionForGuest(int customerId, int expressionId,String expressionName)

depending on whether the customer is logged in or not.

Note that before experimenting with expressions you must enable customer tags in the Customer Details
section of the configuration variables, as shown below:

The code that sets the wish list and cart customer tags is embedded within the client engine and so this tag
functionality has to be enabled separately. All other customer tags are set within the Struts action classes
such as CustomerRegistrationSubmitAction.java for which the source code is shipped.

At any time, you can view (and edit) the customer tag values for any customer from the Tags folder of
the Edit Customer panel.

Marketing - Customer
Tags and Expressions

197

How to set Customer Tag Values in Java code
The KonaKart Store Front Server eCommerce Engine has methods to get and set the customer tags. These
methods are:

• insertCustomerTag()

• addToCustomerTag()

• getCustomerTag()

• getCustomerTagValue()

• deleteCustomerTag()

• getCustomerTags()

The CustomerTag object has getter and setter methods to set and read data as BigDecimal, Boolean, Date,
Int, Int Array and String. These methods should be used rather than setting the tag value directly as a String
because the internal representation of the tag data may change over time.

The best way of seeing how the customer tag data is set in the store front application is to look at the source
code of the Struts Action classes where this data is set using the Client Engine. Here are a few examples:

Marketing - Customer
Tags and Expressions

198

ShowProductDetailsAction.java

 // Set the PRODUCTS_VIEWED customer tag for this customer
 kkAppEng.getCustomerTagMgr().addToCustomerTag("PRODUCTS_VIEWED", selectedProd.getId());

QuickSearchAction.java

 // Set the SEARCH_STRING customer tag for this customer
 kkAppEng.getCustomerTagMgr().insertCustomerTag("SEARCH_STRING", searchText);

EditCustomerSubmitAction.java

 // Set the BIRTH_DATE customer tag for this customer
 CustomerTag ct = new CustomerTag();
 ct.setValueAsDate(d);
 ct.setName("BIRTH_DATE");
 kkAppEng.getCustomerTagMgr().insertCustomerTag(ct);

Mailing Lists
Using the Mailing List panel of the Admin Console it is possible to create mailing lists of defined segments
of your customer base.

These mailing lists are designed to be imported into 3rd Party mailing tools such as MailChimp.

First you define the subset of customers to be added to the mailing list, then you choose the output format
for the list.

Marketing - Customer
Tags and Expressions

199

Curerntly there are 3 supported output formats as follows:

• CSV with header row

• CSV with no header row

• XML

More output formats can be added by adding drop list options in konakartadmin_gwt.properties (see the
fbc.kk_panel_mailingList.output.options property in that properties file for details).

In addition you would need to specialise the com.konakartadmin.bl.AdminCustomerMgrEE class to add
your own implementations for the methods (as required):

• writeMailingListHeading(BufferedWriter bw, int outputFormat)

• writeMailingListRow(BufferedWriter bw, int outputFormat, AdminCustomer cust)

• writeMailingListFooter(BufferedWriter bw, int outputFormat)

200

Chapter 12. Reward Points
The Enterprise version of KonaKart supports reward points which enable you to increase customer loyalty
and increase sales by rewarding customers for purchases as well as other actions such as registering, writing
a review, referrals etc. During the checkout process, points may be redeemed for discounts up to the total
value of the order.

The mechanism to redeem and allocate points is controlled by the KonaKart promotion sub-system which
means that both actions may be assigned the rules applicable to all promotions. i.e. You may decide to only
accept points redemption if the order value is above a limit or only allocate points for an order containing
a particular product etc.

Configuration of Reward Points
In order to configure the reward point system, you must take the following steps:

In the Configuration>>Reward Points section of the Admin App, the Reward Point functionality must be
enabled. There are also configuration variables to assign a number of points for when a customer registers
or writes a review. More options like this may be easily added to the solution.

The Reward Point and Redeem Point Order Total modules must be installed in the Modules>>Order Totals
section of the Admin App. The sort order of these modules is important. The Redeem Points module must
come before the Total module and the Reward Points module must come after. The reason for this can
be explained by the image below.

Reward Points

201

Now two promotions must be defined that use the modules that have just been installed:

The Reward Points Promotion is the promotion that allocates a number of points to the customer based
on the value of the order. The number of points is calculated by multiplying the order value by the points

Reward Points

202

multiplier attribute. i.e. If the value of the order is $50 and the multiplier is 10, then 50 x 10 = 500 points
will be assigned to the customer when the order is paid for.

The Redeem Points Promotion is the promotion that converts points into a discount. The discount is cal-
culated by multiplying the number of points redeemed by the points multiplier. i.e. If 1000 points are
redeemed and the point multiplier is 0.01, then a discount of 1000 x 0.01 = $10.00 is created. The points
multiplier can also be considered to be the value of a single point. In the example above, a single point
is worth 1 cent.

When a customer logs into the store front application he can view a statement of his reward point transac-
tions and he always has available the total number of points that he can spend.

Reward Points

203

The administrator can view the reward point transactions for any customer, and has the ability to add and
delete points from the customer's account.

Technical Details
Reward points are added and removed from a customer's account when an order is saved or
changes state. The code that manages this is in the com.konakart.bl.OrderIntegrationMgr and
com.konakartadmin.bl.AdminOrderIntegrationMgr.

When an order is saved but hasn't been paid for, redeemed points are reserved so that they can-
not be used twice. If the order is cancelled, these reserved points are returned to the customer, oth-
erwise they are permanently removed once the order is paid for. If the order remains in a waiting
for payment (or similar) state the reserved points are never freed up. There is a batch job called
AdminOrderBatchMgr.freeReservedPointsBatch which will free the reserved points for all orders that
have been in certain states for a programmable period of time. The batch job also allows you to automat-
ically move the processed orders into another state.

If your business requires reward points to expire after a certain period, then you may run the
AdminCustomerBatchMgr.expiredRewardPointBatch which will expire all unused points older than a
specified number of days. Once the points have been expired, they are no longer available to be used by
a customer.

204

Chapter 13. Solr Search Engine
Since version 3.0.1.0, the enterprise version of KonaKart can use the Apache Solr [http://
lucene.apache.org/solr/] search engine. Solr gives you fully indexed search using the Jakarta Lucene search
engine. As well as being very fast regardless of the size of your catalog; it caters for misspellings, syn-
onyms, plurals and alternate spellings.

Solr can be installed on a dedicated search server or on the same server where KonaKart is running.
Prior to v8.5.0.0, KonaKart Enterprise Extensions includes a war called solr.war which will install Solr
when placed in the webapps directory of Tomcat. From v8.5.0.0 Solr executes not as a webapp but as an
independent process. The standard KonaKart installation already creates a solr directory where Solr can
be configured and where the indexed data is stored. After a default installation, the Solr administration
application is available on port 8983. For security reasons, it's important that you configure your firewall
to block all requests using this port number to prevent Solr being accessed by external requests.

From v8.8.0.0 of KonaKart it is possible to choose between a number of different "Solr Access Modes".
The purpose of these is to allow the integration with different configurations of Solr including set-ups
which use a Zookeeper ensemble to manage a cooperating set of Solr instances. The different configuration
options are described in more detail below.

Configuring KonaKart to use Solr

Instructions
The first step is to install Solr. As mentioned above, this can be done on a dedicated search server or by
using the Solr installation provided in the standard KonaKart Enterprise installation package.

The default set-up in KonaKart is to use the "Solr" Solr Access Mode. This is the Solr access mode used
by KonaKart since v8.5.0.0. This requires a Base Solr URL and a Solr path (typically "solr/konakart") to
be defined in the Solr configuration parameters.

For high-performance, fault-tolerant systems you can choose the "Zookeeper" Solr Access Mode. This
Solr access mode requires a Zookeeper connection string to be defined that KonaKart uses to look up the
"live" Solr instances. Multiple Zookeepers (3 or more on different hosts are recommended) and multiple
Solr instances need to be set up in order to use the "Zookeeper" Solr Access Mode. The Zookeeper hosts
string should take the form "127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183". KonaKart connects to one of
these Zookeepers (chosen at random) and looks up the live Solr nodes information to obtain a URL to use
for accessing Solr. From the set of live nodes it retrieves from Zookeeper it will choose one at random in
order to balance the Solr requests to different instances. For setting up Zookeeper ensembles and multiple
Solr instances it is recommended that you refer to Apache Solr website and one of the many tutorials
available on the Internet then tune the set-up to meet your local requirements. In brief, you will need to:

• Install, configure and start your Zookeepers

• Install, configure and start your Solr instances

• Load the Solr config to one of the ZooKeepers. An example command for this is:
bin/solr.cmd zk upconfig -d C:/KonaKart/solr/server/solr/con-
figsets/konakart -n konakart -z 127.0.0.1:2181

• Create a Solr collection for use with KonaKart. An example command for this is:
bin/solr.cmd create -c konakart -n konakart -shards 3 -replication-
Factor 3

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Solr Search Engine

205

When using the "Zookeeper" Solr Acces Mode it is recommended that you set "Do not commit in code"
to "true", "Delete from index on commit" to "false" and "Distributed terms searching" to "true".

In the default setting for the "Zookeeper Hosts" it defines zookeeper IP addreses on the same machine.
In order to gain maximum fault-tolerance you should run your zookeepers and Solr instances on separate
servers.

Whatever your chosen configuration for Solr it is recommended that access to the Solr Admin functionality
is restricted or disabled (by default the Solr installation creates a webapp that allows access to the admin
UI). Various techniques are possible to restrict access; see the Apache Solr website for recommended
solutions.

KonaKart must be told where Solr is located (dependent on the chosen Solr Access Mode) and also instruct-
ed to use Solr rather than the standard database search. This can be achieved in the Configuration>>Solr
Search Engine panel of the Admin App as shown in the screen shot below:

Configure Solr Search Engine

Solr Search Engine

206

Once KonaKart has been configured to use Solr, you must instruct it to index the product catalog currently
in the KonaKart database. This can be done in the Tools >> Manage Solr Search Engine panel of the
Admin App. This tool allows you to index all of the products or to remove all of the products from Solr.
The "add" operation can be performed multiple times. Products that already exist will be overwritten and
not added twice.

Another way of indexing the products is to use the AddAllProductsToSearchEngine batch job available
from the Admin App under Scheduler. This batch job allows you to configure the number of threads being
used and the number of products read in a loop from the database, in order to maximize performance. The
full source code is available and so can be used as a template for creating your own Solr importer where
you may want to add constraints in order to decide which products are added. A log is generated which
may be viewed during the import in order to track the progress.

When KonaKart is enabled to use Solr, the Solr index will be updated automatically whenever a new
product is added or an existing product is edited or deleted using the Admin App.

Customization of Solr
The Solr search engine behaves differently when compared to a relational database, so we make it straight-
forward to customize Solr to allow you to configure the search behavior in order to satisfy your require-
ments. For example, the standard KonaKart behavior when searching for a product using a search string
is to add a wild card before and after the string in order to make the search work reliably. Let's say that
the name of a product is "Hewlett Packard LaserJet 1100Xi" and a search is made for Laserjet. With a
relational database, the product will not be found unless it has a leading and trailing wildcard. i.e. The
search string becomes %laserjet%. However, with Solr the string is tokenized and the search for laserjet
returns a result without requiring any wild cards so by default they are not added because this makes the
query slower and affects the behavior of synonyms. However, if a search is made for Laser, the relational
database with its wild cards will return a result whereas Solr will not return a result unless a wild card is
added so that the search string becomes laser*.

Under KonaKart/java_api_examples/src/com/konakart/apiexamples you will find a Java file called
MySolrMgr.java with a couple of methods that allow you to define how you want wild cards to be used
for Solr searches. One method is used for managing wild cards when searching for products using text
searches. The other method is used for managing the wild cards when searching by matching custom fields.
If you decide to change the default behavior, you must edit the konakart.properties file in order to use the
new manager rather than the standard manager.

konakart.manager.SolrMgr = com.konakart.bl.MySolrMgr

When a search string contains multiple words there is an option to search for an exact match on the string
or to tokenize the string into separate keywords and to search for the keywords AND'ed together. For
example, rather than searching for "Electric Rotary Lawnmower" the search string becomes Electric AND
Rotary AND Lawnmower. In order to activate the tokenizer you must set the tokenizeSolrInput attribute
to true in the ProductSearch object which is sent as a parameter to the SearchForProducts API call.

By default the attributes of a product that are indexed and that can be used for searching are:

• Product Name

• Product Description including comparison data and description custom fields for all languages

• Product Model

• Product Manufacturer

In some cases you may wish to add other product attributes so that they become searchable through Solr.
For example, these may include custom fields or the SKU.

Solr Search Engine

207

Under KonaKart/java_api_examples/src/com/konakartadmin/apiexamples you will find a Java file called
MySolrMgr.java with a method

public String getCustomSearchData(AdminProduct prod, AdminLanguage lang)

that overrides the method of the standard manager. It allows you to choose any data from the prod-
uct object passed in as a parameter and to add it to a string (returned by the method) which will
be indexed in Solr. Note that as explained in the Javadoc for the method, the indexed data will
only be used by the storefront APIs when you set whereToSearch in the ProductSearch object to
ProductSearch.SEARCH_IN_PRODUCT_DESCRIPTION .

If you decide to change the default behavior, you must edit the konakartadmin.properties file in order to
use the new manager rather than the standard manager.

konakart.admin_manager.AdminSolrMgr = com.konakartadmin.apiexamples.MySolrMgr

In some situations you may have a different Solr set-up perhaps using a master slave configuration of some
kind. In order to use other custom configurations effectively you can implement a custom "Solr Access
Mode". If you wish to do this you need to do the following:

• Set Solr Acces Mode to "Custom" in the Admin Console

• Create your own versions of the SolrMgr and he AdminSolrMgr as described above

• Set any required configuration variables you need in the refreshConfigs() method (that you would over-
ride in your versions of the managers. (You can add new configuration variables of your own if you wish)

• In your version of the SolrMgr you need to specialise "public String getSolrUrl()" which needs to return
the Solr Url as a String (for example http://localhost:8983/solr/konakart)

• In your version of the AdminSolrMgr you need to specialise "public URL getSolrUrl()" which needs
to return the Solr Url as a URL.

Forcing Solr Usage
Normally Solr is only used by KonaKart when doing text searches or when returning custom facets. In
order to always use Solr, for example even when returning products for a category or manufacturer, you
must set the forceUseSolr attribute of the ProductSearch object to true. The advantage in using Solr is that
it will return extra information such as the minimum and maximum product prices of the result set, and
manufacturer, category and price facets. The storefront application automatically uses Solr for all product
search related API calls when it has been enabled.

Suggested Search

Suggested Search using Solr terms
When KonaKart is configured to use Solr (as described above), the storefront application automatically
activates a suggested search widget rather than the standard search widget. As you type into the search
box, a list of suggested search items appear matching the typed letters.

The KonaKart suggested search functionality uses Solr terms. For each product a number of terms are
stored. The suggested search list is ordered by popularity of the term, so the more times a term has been
saved, the greater chance it has of appearing in the search list. The default terms stored for each product are:

• The category name(s) of the product. i.e. Televisions

Solr Search Engine

208

• The name of the product manufacturer. i.e. Sony

• The name of the product. i.e. Vaio

• The name of the product model. i.e. VPC-EB42FX

• The name of the category by manufacturer. i.e. Televisions by Sony, Televisions by Philips. The added
word "by" is read from the admin message catalog stored as "label.by".

• The name of the manufacturer in a category. i.e. Sony in Televisions, Sony in Computers. The added
word "in" is read from the admin message catalog stored as "label.in".

Each term is indexed with metadata containing the category, product and manufacturer ids so when a
customer clicks on a term such as "Sony in Televisions" he is directed to a category view, displaying Sony
products within the Televisions category. At this point he can choose another manufacturer remaining
within the category and / or can apply extra filters such as screen size, LED, LCD etc. if the category has
been set up with product tags to allow faceted search.

Under KonaKart/java_api_examples/src/com/konakartadmin/apiexamples you will find a Java file called
MySolrMgr.java with a method that overrides the addTerm() method of the standard manager. This method
allows you to decide which terms you want to index and which you want to exclude. By default, all terms
are indexed. However, if for example all of your products belong to the same manufacturer or category,
you may want to exclude certain terms. If you decide to change the default behavior, you must edit the
konakartadmin.properties file in order to use the new manager rather than the standard manager.

konakart.admin_manager.AdminSolrMgr = com.konakartadmin.apiexamples.MySolrMgr

From version 6.3.0.0 the algorithm used to search for the search string within the term is configurable
using regular expression. As can be seen from the image above, there are two configuration variables
which contain the regex to add before the search string and the regex to add after the search string. The
default for both configuration variables is ".*" which means that there can be any character (.) any number
of times (*) before and after the search string to ensure that it finds substrings within the term. If both of
these configuration variables are left empty, then the original algorithm is used where the search string
has to match from the start of the term. For example if the term is "matrox g200 MMS" and the search
string is "g200" the new algorithm will find the term whereas the old one wont. The old algorithm will
only find the term with a search string of "mat...".

A Solr terms query returns all documents matching the search string including any documents that have
been marked for deletion but not yet removed from the Solr index. In order for the standard Solr Com-
mit command to remove the documents, the expungeDeletes attribute must be set to true. i.e. <commit
expungeDeletes="true" />. Setting this attribute degrades the performance of the Commit operation and so
it can be configured through a configuration variable. The default setting is "true" although if you are not
using Suggested Search it's more efficient to set it to false. In order to completely rebuild the Solr index you
may always issue the Optimize command. e.g. http://localhost:8983/solr/konakart/update?optimize=true .

Suggested Spelling

Functionality
The suggested spelling functionality within KonaKart is automatically used by the storefront application
when a search returns no results. The API call:

public SuggestedSpellingItemIf[] getSuggestedSpellingItems(String sessionId, SuggestedSpellingOption-
sIf options) throws KKException

Solr Search Engine

209

is called with the original search string and it may return an array of SuggestedSpellingItems containing
alternative spelling suggestions. The suggestions all exist in the product catalog so by clicking on the
suggestion link, one or more products should be returned.

The functionality may be enabled or disabled using the Admin App under Configuration >> Solr Search
Engine . You may also control whether spelling correction data is added to Solr for disabled products and
for invisible products.

Setup

Setting up the suggested spelling functionality is not totally automatic. The file KonaKart/solr/server/solr/
configsets/konakart/conf/solrconfig.xml may need to be modified depending on the number of stores and
languages supported.

A search component section and a request handler section needs to be defined for each store / language
combination. Our default installation is configured for the store with a store id: "store1" and language
codes: "en", "de", "es" and "pt".

Solr Search Engine

210

The name of the request handler must follow the convention "spell_storeId_languageCode" (e.g.
spell_store1_en) since the KonaKart engine will dynamically create this string in order to call the correct
request handler depending on the store and language currently being used.

Multiple "Spell Checkers" may be defined by each search component. In the above example, two spell
checkers are defined using the solr.DirectSolrSpellChecker class and the solr.WordBreakSolrSpellChecker
class.

Solr Search Engine

211

Catalog Support for Suggested Search and
Spelling

A product catalog allows you to define product prices and stock levels. When a product is retrieved using
the APIs, the catalog id is passed to the API call and the returned product contains the prices and quantities
defined by the catalog. If a catalog is used to define product prices and / or product quantities but an entry
in the catalog doesn't exist for a product, then that product will never be returned by the API calls. This is
a powerful feature that allows you to define which subset of products are available for a catalog.

When using catalogs to limit the products available, it becomes important for the suggested spelling and
suggested search features to only return suggestions for products defined within the catalog. In order to
configure this, the steps are as follows:

• In the Admin App, under Configuration >> Solr Search Engine, you must set "Add suggested search for
catalog" and "Add spelling suggestions for catalog" to true. The default value is false. "Catalogs used
for product prices" must be set to true is you are using catalogs for prices and likewise "Catalogs used
for product quantities" must be set to true if you are using them for stock levels.

• Once the configuration variables have been set up correctly, the products must be re-indexed in Solr.
The re-indexing ensures that suggestion lists are created for all catalog / language combinations for
your store.

• An extra step for suggested spelling is to add a new section in the file KonaKart/solr/server/solr/con-
figsets/konakart/conf/solrconfig.xml for each store / catalog / language combination. You'll see an ex-
ample entry for store "store1", catalog "cat1" and language "en". The name of the request handler must
follow the convention "spell_storeId_catalogId_languageCode" (e.g. spell_store1_cat1_en) since the
KonaKart engine will dynamically create this string in order to call the correct request handler depend-
ing on the store, catalog and language currently being used.

• Finally when calling the getSuggestedSpellingItems() or the getSuggestedSearchItems() API calls, the
catalogId must be set in the Options object passed in as a parameter.

Faceted Searching

Prices, Manufacturers and Categories
Whenever products are returned through the KonaKart API, attributes in the ProductSearch object can
be set so that the result contains a list of Price, Manufacturer and Category facets, all of which contain
information regarding the number of products available per facet. For Manufacturer and Category facets
the ProductSearch object contains a boolean that must be set to true. In order to return price facets a Price-
FacetOptions object must be instantiated and attached to the ProductSearch object. The PriceFacetOp-
tions object defines how the facets are generated by specifying the facet size, start price and end price.
There is a configuration variable for the storefront application that determines whether price facets or a
price slider is displayed to allow the customer to filter the search by price. The default behaviour is to
display the slider.

Custom Faceted Search
KonaKart allows a configurable way to use the powerful faceted search functionality of Solr by allowing
different facets to be defined for different product types. An example will be used in order to demonstrate
how to use the Administration Application to configure product attributes to be used as facets.

Solr Search Engine

212

The example uses the standard KonaKart demonstration database which contains DVD products under the
DVD Movies >> Action category. The first step is to define a set of custom attributes which can be applied
to DVDs and can be used to return facet values.

As can be seen from the image, each attribute is assigned a facet number (from 1 to 100) which is used to
map that attribute to a facet field in the Solr schema. In this particular example, since the custom attributes
can only take a fixed number of values, a drop list is defined (in the Set Function field) containing the
allowed values. Note that the key for each drop list value is a message catalog entry so that it may be
translated in the storefront. Once the custom attributes have been defined, a custom attribute template must
be created to group the new attributes:

Solr Search Engine

213

Once the template has been inserted, the custom attributes may be added to the template by clicking on
the Attributes button. The next step is to select each of the products within the Action category:

As shown below, each product within the Action category must be associated with the Movie template
created earlier.

Solr Search Engine

214

Once the template has been added to the product, the values of the new custom attributes may be set by
selecting allowed values from the drop lists and clicking the Save button.

At this point, we've completed the setup procedure for products. Now what needs to be done is to create a
Tag Group for each custom attribute mapped to the same facet number as the custom attributes.

As can be seen from the above image, the MPAA Movie Ratings Tag Group is mapped to facet number 2
which is the same as the Movie Ratings custom attribute. This mapping also applies to the DVD Format
Tag Group. Once the Tag Groups have been inserted they must be associated to the Action Category as can
be seen below. The order is important this will be the order in which they are read using the KonaKart API.

Solr Search Engine

215

The reasons for creating a Tag Group for each facet field are twofold. Within KonaKart, Solr faceted search
may only be used if a category id is specified in the search query. A category id is mandatory because only
similar products belonging to the same category and associated with the same template must be returned.
If a DVD and another type of product such as a Keyboard were returned in the same query, it would be
impossible to have a set of facets applicable to both products. When a customer clicks on a category in
the storefront application, the code must retrieve the Tag Groups associated with that category and pass
these to the Product Search API call. Using this information, the KonaKart engine code can determine the
sort order for the returned facet data (i.e. the same as the sort order of the Tag Groups) and if Solr doesn't
return any data for one or more facets, the API call still returns the facet value with no entries so that it
may be displayed on the UI.

Before testing the configuration with some API calls, the products must be added to Solr as shown below:

Solr Search Engine

216

The next part of this tutorial will demonstrate how the KonaKart Engine API may be used to retrieve
products in the Action Category using queries that return facet information and how to add the facet in-
formation as a constraint.

 /*
 * Get the tag groups for the Action Category
 */
 TagGroupIf[] groups = eng.getTagGroupsPerCategory(actionCatId,/* getProdCount */false,
 KKConstants.DEFAULT_LANGUAGE_ID);

 /*
 * Create a ProductSearch object for the search
 */
 ProductSearch search = new ProductSearch();
 search.setReturnCustomFacets(true);
 search.setCategoryId(actionCatId);
 search.setTagGroups(groups);

 ProductsIf prods = eng.searchForProducts(null, null, search, DEFAULT_LANGUAGE);

 for (int i = 0; i < prods.getCustomFacets().length; i++)
 {
 KKFacetIf facet = prods.getCustomFacets()[i];

 System.out.println(facet.getName() + " - " + facet.getNumber());
 if (facet.getValues() != null)
 {
 for (int j = 0; j < facet.getValues().length; j++)
 {
 NameNumberIf value = facet.getValues()[j];
 System.out.println("\t" + value.getName() + "(" + value.getNumber() + ")");
 }
 }
 }

The above code retrieves the Tag Groups for the category. It then creates a ProductSearch object, passing
it the Tag Groups, the Category Id and instructions to return custom facets. The print out from running
the code can be seen below:

DVD Format - 1
 facet.hd.dvd(5)
 facet.blu.ray(4)
MPAA Movie Ratings - 2
 facet.mpaa.g(2)
 facet.mpaa.pg(2)
 facet.mpaa.pg.13(2)
 facet.mpaa.r(2)
 facet.mpaa.nc.17(1)

Solr Search Engine

217

This is what we would expect because there are 9 products in the action category. We can pass a constraint
to the search by adding it to the relevant Product Group as shown below. The constraint is that the DVD
Format must be "facet.hd.dvd". Note that DVD Format is the first Tag Group in the list.

 /*
 * Get the tag groups for the Drama Category
 */
 TagGroupIf[] groups = eng.getTagGroupsPerCategory(actionCatId,/* getProdCount */false,
 KKConstants.DEFAULT_LANGUAGE_ID);

 /*
 * Create a ProductSearch object for the search
 */
 ProductSearch search = new ProductSearch();
 search.setReturnCustomFacets(true);
 search.setCategoryId(actionCatId);
 groups[0].setFacetConstraint("facet.hd.dvd");
 search.setTagGroups(groups);

 ProductsIf prods = eng.searchForProducts(null, null, search, DEFAULT_LANGUAGE);

 for (int i = 0; i < prods.getCustomFacets().length; i++)
 {
 KKFacetIf facet = prods.getCustomFacets()[i];

 System.out.println(facet.getName() + " - " + facet.getNumber());
 if (facet.getValues() != null)
 {
 for (int j = 0; j < facet.getValues().length; j++)
 {
 NameNumberIf value = facet.getValues()[j];
 System.out.println("\t" + value.getName() + "(" + value.getNumber() + ")");
 }
 }
 }

This constraints forces KonaKart to return only 5 products as can be seen from the print out:

DVD Format - 1
 facet.hd.dvd(5)
MPAA Movie Ratings - 2
 facet.mpaa.pg.13(2)
 facet.mpaa.r(2)
 facet.mpaa.nc.17(1)

Multi-Valued Facets

In some cases it is convenient to display a facet such as color, which may have multiple values for the
same product. For example a shirt may come in blue and red but not yellow. The instructions for setting
up this type of facet are as follows.

1) For each color create a custom attribute:

Solr Search Engine

218

The Set Function should be entered as shown in the image above option(yellow=yes,=no) so that only one
value is created to select all yellow shirts and not all non-yellow shirts. For multi-lingual web sites you
should substitute the word "yellow" with a message catalog key.

2) For each color create a Tag Group with the same facet number as the color:

Solr Search Engine

219

Ensure that the name of each tag group is identical as shown above where they have all been called Color
(circled in red).

3) Associate the tag group to the category that contains the products.

4) Add all colors to a Custom Attribute Template and add this template to a product so that the values may
be edited from the edit product panel as shown below.

In the storefront application the color facets will be displayed as shown below:

Solr Search Engine

220

The JSP that displays the facets (Facets.jsp) loops through all of the tag groups for the category but only
creates a new heading if the next tag group has a different name to the previous tag group. This is why it
is important for all tag groups to have the same name.

221

Chapter 14. Payment, Shipping and
OrderTotal Modules
Module Types

KonaKart has a flexible plug-in architecture to support the addition of modules for "payment", "shipping"
and "order-totals".

Payment Modules
Payment modules shipped with KonaKart are installed and configured through the Administration Appli-
cation.

If you wish to add a new payment gateway and are not a programmer, please contact us. If you are a Java
programmer, it is possible for you to add your own module by following the examples we provide in the
package. There is a detailed guide below.

The best approach is to learn by example. We supply all of our supported modules in source code format.
They can be found under the KonaKart/custom/modules/src/com/konakart/bl/modules/payment directory.
All payment modules should extend com.konakart.bl.modules.payment.BasePaymentModule and imple-
ment com.konakart.bl.modules.payment.PaymentInterface.

In order to determine which Payment Modules are installed, the KonaKart engine reads the
"MODULE_PAYMENT_INSTALLED" configuration property which should contain a semicolon delim-
ited list of payment modules installed. For backwards compatibility reasons, the property may contain
a list of names with a php extension (i.e. cc.php;cod.php). KonaKart ignores the extension. Let's say
that you introduce a new module called "MyModule". In this case, KonaKart will look for a class called
MyModule.class in the package "com.konakart.bl.modules.payment.mymodule". Note that the package
name is always the class name converted to lower case.

The interface that the payment module implements is relatively simple . The main method is called
getPaymentDetails(Order order, PaymentInfo info) . The module is passed in the Order object and a Pay-
mentInfo object . The PaymentInfo object contains details on zone information so that the module can be
disabled if the delivery address isn't within a zone. It also contains details used mainly for IPN (Instant
Payment Notification) such as the host and port details for the return notification and a secret key that can
be used to validate the return notification. The order object contains all details about the order, some of
which, may be required. In the case of the PayPal example, the final piece of the puzzle is contained in a
Struts action class called com.konakart.actions.ipn.PayPalAction. This action is called by PayPal in order
to return the status of the payment. When received, the action class may change the state of the order as
well as updating the inventory.

Admin App Payment Modules

In some cases it may be necessary to communicate with the payment gateway after the purchase has been
made by the customer using the storefront application. One example is when the credit card transaction is
executed only after the goods have been shipped. Another example is recurring billing.

The Admin App has an API call callPaymentModule which may be used for making any type of transaction
on the payment gateway. When the call is made, the full class name of the payment module object is
passed, along with a PaymentOptions object containing all of the required data such as the order id and
credit card details (if required).

Payment, Shipping and
OrderTotal Modules

222

 PaymentOptions options = new PaymentOptions();
 options.setOrderId(order.getId());
 options.setAction(0);
 NameValue[] retArray = getAdminModulesMgr().callPaymentModule(
 "com.konakartadmin.modules.payment.authorizenet.AdminPayment", options);

An example of the AdminPayment class is provided for AuthorizeNet. It must
implement the com.konakartadmin.modules.AdminPaymentIf interface and by extending
com.konakartadmin.modules.AdminBasePayment it inherits useful methods for sending the data to the
payment gateway. The source code of all of these classes is supplied.

Shipping Modules
Shipping modules shipped with KonaKart are installed and configured through the Administration Appli-
cation.

If you wish to add a new shipping module and are not a programmer, please contact us. If you are a Java
programmer, it is possible for you to add your own module by following the examples we provide in the
package. The best approach is to learn by example. We supply a few examples in source code format:

• com.konakart.bl.modules.shipping.digitaldownload.DigitalDownload.java - If you sell digital down-
load products in your store, then you should install this module.

• com.konakart.bl.modules.shipping.fedex.Fedex.java - A FedEx shipping module

• com.konakart.bl.modules.shipping.flat.Flat.java - A flat rate

• com.konakart.bl.modules.shipping.free.Free.java - You should install this module to provide free ship-
ping.

• com.konakart.bl.modules.shipping.freeproduct.FreeProduct.java - If you have one or more products that
have been configured for free shipping, then you should install this module.

• com.konakart.bl.modules.shipping.item.Item.java - A rate per item

• com.konakart.bl.modules.shipping.table.Table.java - This shipping module implements a rate per order
weight or a rate based on the total cost.

• com.konakart.bl.modules.shipping.ups.Ups.java - UPS shipping module.

• com.konakart.bl.modules.shipping.zones.Zones.java - This shipping module implements a rate per item
weight per zone.

In order to determine which Shipping Modules are installed, the KonaKart engine reads the
"MODULE_SHIPPING_INSTALLED" configuration property which should contain a semicolon delim-
ited list of shipping modules installed. For backwards compatibility reasons, the property may contain a
list of names with a php extension (i.e. flat.php;item.php;table.php). KonaKart ignores the extension. Let's
say that you introduce a new module called "MyModule". In this case, KonaKart will look for a class called
MyModule.class in the package "com.konakart.bl.modules.shipping.mymodule". Note that the package
name is always the class name converted to lower case.

The interface that the shipping module implements is relatively simple . The main method is called
getQuote(Order order, ShippingInfo info) . The module is passed in the Order object and a ShippingInfo
object . The ShippingInfo object contains details on zone information so that the module can be disabled

Payment, Shipping and
OrderTotal Modules

223

if the delivery address isn't within a zone. It also contains information about the number of packages and
their weight etc so that the shipping cost can be calculated . The order object contains all details about the
order, some of which, may be required.

An alternative approach is to contact us with details of the Shipping Module that you would like to integrate
with KonaKart so that we can create the module for you.

Configuring Free Shipping

From version 2.2.3.0, free shipping can be set on a product by product basis. To set free shipping for a
product, you must navigate to the Details tab of the Edit Product panel in the Admin App. There you must
change the product type to "Physical Product - Free Shipping". In order for this mechanism to function
correctly, you must install the Shipping Module called "FreeProduct". This module will return a shipping
quote of zero if it detects that the physical products within the order all have free shipping.

Free shipping for all products can be configured in the Administration Application in the section
Modules>>Order Totals by selecting the Shipping Module.

You may allow free shipping by setting the Allow Free Shipping value to "true" . In order to not show the
shipping cost of zero on the order you must set Display Shipping to "false". Free shipping can be made
conditional for orders over a certain amount or just for a combination of national / international orders.

The text that you display on the screen in the area that you would normally select a shipping method, is
defined in WEB-INF\classes\com\konakart\bl\modules\shipping\Shipping_xx.properties. This can be set
to e.g. "Free shipping for orders over $50", "Free Shipping", "No Shipping" etc.

Note that in order to completely remove shipping from the checkout process, you will need to make mod-
ifications to the checkout process (i.e. JSPs and Struts Actions).

Configuring the Zones Shipping Module

The Zones Shipping Module allows you implement shipping rates based on the weight of the shipment,
for different countries. The module can be installed and configured through the Admin App. The number
of different shipping zones has to be decided before running the Admin App. It is set in the properties file:

/webapps/konakartadmin/WEB-INF/classes/com/konakartadmin/modules/shipping/zones/
Zones.properties

by editing the section:

Set this to the number of zones you require.
MODULE_SHIPPING_ZONES_NUMBER_OF_ZONES=1

The Admin App uses the above information to create a number of entry fields called "Zone 1 Countries",
" Zone 1 Shipping Table", "Zone 1 Handling Fee", "Zone 2 Countries", Zone 2 Shipping Table" etc.
depending on how many shipping zones are required.

For each shipping zone you must enter data in :

• Zone X Countries

Contains a comma separated list of two character ISO country codes that are part of a shipping zone
(i.e. US, CA for USA and Canada)

• Zone X Weight Charges

Payment, Shipping and
OrderTotal Modules

224

Contains shipping rates to shipping zone destinations based on a group of maximum order weights. Ex-
ample: 3:8.50,7:10.50,... Weights less than or equal to 3 cost 8.50 for destinations in this Zone. Weights
greater than 3 but less than or equal to 7, cost 10.50 for destinations in this zone.

• Zone X Handling Fee

Handling Fee for this shipping zone

Order Total Modules
Order Total modules shipped with KonaKart are installed and configured through the Administration Ap-
plication.

If you wish to add a new order total module and are not a programmer, please contact us. If you are a
Java programmer, it is possible for you to add your own module by following the examples we provide
in the package.

The best approach is to learn by example. We supply the source code for all of the examples that are part
of an installation. These include:

• com.konakart.bl.modules.ordertotal.productdiscount.ProductDiscount.java - Discount for individual
products

• com.konakart.bl.modules.ordertotal.shipping.Shipping.java - Displays the shipping cost of the order

• com.konakart.bl.modules.ordertotal.subtotal.Subtotal.java - Calculates the subtotal of the order

• com.konakart.bl.modules.ordertotal.tax.Tax.java - Calculates the tax of the order

• com.konakart.bl.modules.ordertotal.total.Total.java - Calculates the total of the order

• com.konakart.bl.modules.ordertotal.totaldiscount.TotalDiscount.java - Discount on the total of the or-
der

In order to determine which Order Total Modules are installed, the KonaKart engine reads the
"MODULE_ORDER_TOTAL_INSTALLED" configuration property which should contain a semi-
colon delimited list of order total modules installed. For backwards compatibility reasons, the proper-
ty may contain a list of names with a php extension (i.e. ot_subtotal.php;ot_tax.php;ot_shipping.php).
KonaKart ignores the extension. Let's say that you introduce a new module called "MyMod-
ule". In this case, KonaKart will look for a class called MyModule.class in the package
"com.konakart.bl.modules.ordertotal.mymodule". Note that the package name is always the class name
converted to lower case.

The interface that the order total module implements is relatively simple . The main method is called
getOrderTotal(Order order, boolean dispPriceWithTax, Locale locale) . The module is passed in the Order
object which contains all details about the order, some of which, may be required.

An alternative approach is to contact us with details of the Order Total Module that you would like to
integrate with KonaKart so that we can create the module for you.

How to Create a Payment Module
This section explains how to create a new payment module for KonaKart using its module plug-in frame-
work.

Payment, Shipping and
OrderTotal Modules

225

Introduction

KonaKart supports additional payment/shipping/order total/discount modules using a simple plug-in mod-
el.

Payment modules are typically designed to interface between KonaKart and a 3rd Party payment gateway
supplier - like PayPal, Authorize.Net or WorldPay etc.

You can install as many payment gateways as you like with KonaKart but typically you would just have
one configured as there is usually a cost associated with the merchant account that you have to set-up with
each payment organization in order to receive your payments.

Suppose you want to create a brand new payment gateway module to interface between KonaKart and your
chosen payment gateway supplier. For the purposes of this guide, let's call the payment gateway supplier
"KonaPay" (a completely fictitious gateway).

Study the "KonaPay" APIs

First of all you should find out as much as you can about which interfaces "KonaPay" supports. They might
supply an XML interface, a HTTP post interface, a SOAP interface or any kind of weird custom API that
allows you to communicate with them. Some payment gateways do not provide any APIs for providing
credit card information at all and require that your user is directed to their site to enter such sensitive details.

Choose which Interface Type you want for your users

So, you have to consider which type of gateway you want to implement for your users? This may well
affect which gateway supplier you choose. Do you want to collect the credit card details yourself within
KonaKart or do you want to send the users off to a payment gateway site to collect this information? Some
prefer the former, some the latter.

You will see in the code that you need to set the paymentType on the PaymentDetails object, which defines
which of these two modes you want:

// For Authorize.Net,YourPay etc.
setPaymentType(PaymentDetails.SERVER_PAYMENT_GATEWAY);

or

// For PayPal, WorldPay etc.
setPaymentType(PaymentDetails.BROWSER_PAYMENT_GATEWAY);

For the sake of our discussion, KonaPay provides a well-documented HTTP API that allows us to collect
credit card information on the KonaKart site and send these off synchronously for payment authorization
- which we think provides the best user experience at payment time. It's attractive to us because we can
retain the same look and feel of our KonaKart store across the full shopping experience - rather than having
to jump off to a payment gateway page provided by the gateway supplier which doesn't look anything
like the rest of our site.

OK, we've chosen "KonaPay" because it fits our preferred implementation model and it has a well-docu-
mented API, what next?

Payment, Shipping and
OrderTotal Modules

226

Sign up for a Test Account with "KonaPay"

Typically, the payment gateway supplier will provide a free dummy test account so the next step is to
apply for one of these at "KonaPay". Fortunately, "KonaPay" do provide a test account so we sign up and
study the API documentation in a little more detail.

Determine which of the existing payment modules is the
closest match

The next important step is to study the existing payment modules to see which one looks to be the closest fit
to "KonaPay". This step is very important and will save you a great deal of time if you pick a close match.

The good news is that many of the gateways work in very similar ways within the two distinct payment
module groups:

• Payment details are collected inside KonaKart ("Server Mode" - Authorize.Net, YourPay, PayJunction,
USAePay)

• Payment details are collected at Gateway Supplier's Site ("Browser Mode" - WorldPay, PayPal, Chrono-
Pay, ePayBg)

Copy the files of the closest match as the starting point

We decide that PayJunction is the closest match to "KonaPay" so we make copies of all the PayJunction
files and directories - ensuring that we are completely consistent with the naming conventions used by
PayJuntion (ie, the same lower/mixed case conventions as PayJunction). Make copies of the various prop-
erties files as well and rename these as appropriate to "KonaPay", "Konapay" or "konapay" in a consistent
manner.

There will be payment directories to copy under com.konakart.bl.modules.payment and
com.konakartadmin.modules.payment.

We also need to copy modules/src/com/konakart/actions/gateways/PayjunctionAction.java to mod-
ules/src/com/konakart/actions/gateways/KonapayAction.java

Define the configuration parameters

Next, we need to decide which configuration options we will allow an administrator to change once the
"KonaPay" module is installed.

PayJunction allows these to be configured: (the following is the code that initializes these in modules/src/
com/konakartadmin/modules/payment/payjunction/Payjunction.java:)

Payment, Shipping and
OrderTotal Modules

227

configs[i++] = new KKConfiguration(
 /* title */"Enable PayJunction Module",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_STATUS",
 /* value */"true",
 /* description */ "Do you want to accept PayJunction payments? ('true' or 'false')",
 /* groupId */groupId, /* sort Order */i, /* useFun */"",
 /* setFun */"choice('true', 'false')",
 /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"Sort order of display.",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_SORT_ORDER",
 /* value */"0",
 /* description */ "Sort order of display. Lowest is displayed first.",
 /* groupId */groupId, /* sort Order */i, /* useFun */"", /* setFun */"", /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"Payment Zone",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_ZONE",
 /* value */"0",
 /* description */ "If a zone is selected, only enable this payment method for that zone.",
 /* groupId */groupId, /* sort Order */i,
 /* useFun */"tep_get_zone_class_title",
 /* setFun */"tep_cfg_pull_down_zone_classes(",
 /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"PayJunction Username",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_USERNAME",
 /* value */"pj-ql-01",
 /* description */ "The username used to access the PayJunction service",
 /* groupId */groupId, /* sort Order */i, /* useFun */"", /* setFun */"", /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"PayJunction Password",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_PASSWORD",
 /* value */"pj-ql-01p",
 /* description */ "The password used to access the PayJunction service",
 /* groupId */groupId, /* sort Order */i, /* useFun */"", /* setFun */"", /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"Payment Server URL",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_URL",
 /* value */"https://payjunction.com/quick_link",
 /* description */ "URL used by KonaKart to send the transaction details",
 /* groupId */groupId, /* sort Order */i, /* useFun */"", /* setFun */"", /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"Security Options",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_SECURITY",
 /* value */"AWZ|M|false|true|false",
 /* description */
 "Security Options for Pay Junction - refer to PayJunction documentation for details",
 /* groupId */groupId, /* sort Order */i, /* useFun */"", /* setFun */"", /* dateAdd */now);

configs[i++] = new KKConfiguration(
 /* title */"Debug Mode",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_DEBUG_MODE",
 /* value */"true",
 /* description */ "If set to true, the PayJunction module will be set to debug code",
 /* groupId */groupId, /* sort Order */i, /* useFun */"",
 /* setFun */"choice('true', 'false')",
 /* dateAdd */now);

The above are quite a typical combination of fields. Let's look at each one in turn:

• MODULE_PAYMENT_PAYJUNCTION_STATUS - for enabling/disabling the module. Typically
provided for all modules.

• MODULE_PAYMENT_PAYJUNCTION_SORT_ORDER - for order the module is displayed if there
are more than one available. Typically provided for all modules

Payment, Shipping and
OrderTotal Modules

228

• MODULE_PAYMENT_PAYJUNCTION_ZONE - for defining a zone where this payment module can
be used. Typically provided for all modules.

• MODULE_PAYMENT_PAYJUNCTION_USERNAME - username to access the payment gateway
service. Often required for payment modules

• MODULE_PAYMENT_PAYJUNCTION_PASSWORD - password to access the payment gateway
service. Often required for payment modules

• MODULE_PAYMENT_PAYJUNCTION_URL - the payment service URL. Often required for pay-
ment modules (useful for switching between the payment service's test and live services.

• MODULE_PAYMENT_PAYJUNCTION_SECURITY - a special configuration option particular to
PayJunction. Typically payment modules would have one or two of these, but they would be different
between gateway services.

• MODULE_PAYMENT_PAYJUNCTION_DEBUG_MODE - handy for diagnosing problems, espe-
cially in development. Typically provided for all modules

For "KonaPay" we will change the configuration parameter names to include "KONAPAY" rather than
"PAYJUNCTION", so we would have "MODULE_PAYMENT_KONAPAY_STATUS" etc... We need to
replace _PAYJUNCTION_ with _KONAPAY_ throughout all the source and properties files. For "Kon-
aPay" we will assume, for simplicity that we will define the same set as is defined for PayJunction except
the MODULE_PAYMENT_PAYJUNCTION_SECURITY variable which we'll exclude.

Understanding the Configuration Options
Looking more closely at the KKConfiguration structure that is initialized for each configuration object:

configs[i++] = new KKConfiguration(
 /* title */"Enable PayJunction Module",
 /* key */"MODULE_PAYMENT_PAYJUNCTION_STATUS",
 /* value */"true",
 /* description */ "Do you want to accept PayJunction payments? ('true' or 'false')",
 /* groupId */groupId,
 /* sort Order */i,
 /* useFun */"",
 /* setFun */ "choice('true', 'false')",
 /* dateAdd */now);

The comments should help a lot in understanding what these attributes are for. In more detail:

• title - affects what's shown on the screen of the Admin App

• key - the unique key by which this key is known

• value - the default value

• description - this is provided as floatover help in the Admin App

• groupId - the groupId - this is 6 for payment modules

• sortOrder - the order in which these keys are displayed in the Admin App

• useFun - a function that defines how this key should be "used"

• setFun - a function that defines how this key is "set"

Payment, Shipping and
OrderTotal Modules

229

• dateAdd - the date the key is added to the database.

The only slightly complicated ones are the use and set functions. The example above shows the setFun to
use to display a true/false toggle in the Admin App. The setFun and useFun can be null for most simple
text fields. These setFun and useFun formats are used throughout the Admin App and perhaps the easiest
way to see how they work is to look at these columns in the database for each configuration key that
uses them.. eg: Issue "SELECT configuration_title, configuration_key, use_function, set_function FROM
configuration;" against your database to see lots of examples.

** Ask questions to support@konakart.com (if you have a support contract) or in the forum if you're
uncertain about these.

Add the "KonaPay" gateway to the Admin App
In order to see the "KonaPay" payment gateway module in the Admin App we have to add it to the list
of payment modules in webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties. Remember
to match the classname - so be careful with your lower case/upper case characters! Once set, the Admin
App will inclde the "KonaPay" module in the set of modules that can be installed or removed from the
system: (Konapay has been added in bold below):

--
Set the class names of the various modules you would like to make
available. The administrator can still choose to enable or disable
these.
#
Note that if you remove a module from the definitions below that
has already been set up in the database the users may still have
access to the modules in the konakart application. Hence, it is
advisable to remove the modules before they are removed from these
definitions.

Make these space or semi-colon-separated class names - they have
implied prefixes of:
#
com.konakartadmin.modules.payment.{lower case module name}.
com.konakartadmin.modules.shipping.{lower case module name}.
com.konakartadmin.modules.orderTotal.{lower case module name}.

konakart.modules.payment=Authorizenet Yourpay Payjunction Konapay
konakart.modules.shipping=Flat Item Table Zones Free DigitalDownload
konakart.modules.ordertotal=Tax Total ProductDiscount TotalDiscount

Implement the PaymentInterface
Next we need to implement the PaymentInterface in our Konapay class in the
com.konakart.bl.modules.payment.konapay package. If the PayJunction directories were copied correctly
earlier the java file should be at custom/modules/src/com/konakart/bl/modules/payment/konapay

This Konapay.java source extends BasePaymentModule (whose source is provided at custom/appn/src/
com/konakart/bl/modules/payment/BasePaymentModule.java) and implements PaymentInterface.

It's advisable to follow the pattern you see in the file you copied. Therefore, rename all the constants and
variables to names appropriate for "KonaPay" and set up the PaymentDetails object in a similar way in
getPaymentDetails().

Payment, Shipping and
OrderTotal Modules

230

For much of the PaymentDetails, the values set will be very similar between payment modules (eg. the
payment module code, the sort order, title and description etc) but there will always be differences in the
"NameValue[]" parameters that are added further down in the getPaymentDetails() method.

NameValue[] Parameters

Each payment gateway will need different parameter names so to work out which NameValue pairs you
need to add you need to study the API specification. With PayJunction, you can see that the following
are required: dc_logon, dc_password, dc_transaction_type etc. With "KonaPay" there will be different
names and perhaps different encoding rules; the API documentation will define the requirements. Check
the examples in the gateway documentation, these often make it clear what the names and values should
be. Once the parameters are understood, add these to the PaymentDetails - they will be used later to build
the request to the gateway supplier.

Implement the Action code

Next we need to implement the Action code in our KonapayAction class in the
com.konakart.actions.gateways package. The "KonaPay" java file should be called custom/mod-
ules/src/com/konakart/actions/gateways/KonapayAction.java. (Notice that the (usually synchronous)
modules which collect the payment information from the user on the KonaKart site have to have
"com.konakart.actions.gateways" implementations, whereas the (asynchronous) modules that divert the
user off to a page on the gateway's site have to have "com.konakart.actions.ipn" implementations).

This Konapay.java source extends BasePaymentModule (whose source is provided at custom/appn/src/
com/konakart/bl/modules/payment/BasePaymentModule.java) and implements PaymentInterface.

It's advisable to follow the pattern in the file you copied from PayJunction. Therefore, rename all the
constants and variables to names appropriate for "KonaPay" and set up the PaymentDetails object in a
similar way in getPaymentDetails().

The Action files are quite well documented so it should be easy to see where to make modifications for
a new module. Basically you will have to create your message to post to the gateway then process the
returned information to determine success or failure. If there's a failure you can return the user to the credit
card screen to try again (and show the error message that you received). Alternatively, for more serious
errors, you can show the exception in a standard form for the KonaKart site.

Save IPN details

In order for your KonaKart administrator to diagnose payment gateway problems in the fu-
ture, it's a good idea to save details of each transaction with a call to "saveIpnHistory" (see
kkAppEng.getEng().saveIpnHistory()). Set the various attributes on IpnHistoryIf to values that you derive
from the response as you see in the example source. These records are available in the KonaKart Admin
App for inspection and can be useful when diagnosing problems with payment gateways. The records can
also be useful in recording unique transaction codes that are provided by the gateway suppliers for proving
that payments have been made, should that need ever arise.

Save the gateway response to a file

Another technique that you can use to diagnose problems is to save gateway responses to a file on disk.
An example of such code is in the YourpayAction source as follows:

Payment, Shipping and
OrderTotal Modules

231

if (yourPayDebugMode)
{
 // Write the response to an HTML file which is handy for
 // diagnosing problems

 try
 {
 String outputFilename = getLogFileDirectory()
 + "yourpay_resp_"
 + order.getId()
 + ".html";
 File myOutFile = new File(outputFilename);
 if (log.isDebugEnabled())
 {
 log.debug("Write gateway response to " + myOutFile.getAbsolutePath());
 }
 BufferedWriter bw = new BufferedWriter(new FileWriter(myOutFile));
 bw.write(gatewayResp);
 bw.close();
 } catch (Exception e)
 {
 // dump the exception and continue
 e.printStackTrace();
 }
}

Note that the yourPayDebugMode boolean could be set by one of your module configuration parameters
and the log file location that is returned by the getLogFileDirectory() call is defined in the Admin Appli-
cation under the Configuration >> Logging section.

Send payment confirmation email

You have a choice whether or not to send payment confirmation mails in the Action class. (You are also
free to change the format of these emails if you wish by modifying the velocity templates). The call for
sending emails is simply kkAppEng.getEng().sendOrderConfirmationEmail().

Struts mapping

This tutorial was written for a Struts-1 MVC implementation but the concepts are the same for Struts-2.
The easiest way to understand what you have to do is to copy the Actions and structs.xml section for the
payment gateway you are using as a template for KonaPay.

More often that not the Struts mapping code in the Action class will be the same for all the synchronous (or
"server-side") payment modules. Each "mapping string" in the mapping.forward("mapping string") calls
must match the struts-config.xml file as follows: The entry for "KonaPay" has been added below:

Payment, Shipping and
OrderTotal Modules

232

<!-- ================================= Server Side Gateways -->
 <action path="/USAePay"
 type="com.konakart.actions.gateways.UsaepayAction">
 <forward name="Approved" path="/CheckoutFinished.do"/>
 <forward name="TryAgain" path="/CheckoutServerPayment.do"/>
 <forward name="NotLoggedIn" path="/CheckoutDelivery.do"/>
 </action>

 <action path="/AuthorizeNet"
 type="com.konakart.actions.gateways.AuthorizenetAction">
 <forward name="Approved" path="/CheckoutFinished.do"/>
 <forward name="TryAgain" path="/CheckoutServerPayment.do"/>
 <forward name="NotLoggedIn" path="/CheckoutDelivery.do"/>
 </action>

 <action path="/PayJunction"
 type="com.konakart.actions.gateways.PayjunctionAction">
 <forward name="Approved" path="/CheckoutFinished.do"/>
 <forward name="TryAgain" path="/CheckoutServerPayment.do"/>
 <forward name="NotLoggedIn" path="/CheckoutDelivery.do"/>
 </action>

 <action path="/KonaPay"
 type="com.konakart.actions.gateways.KonapayAction">
 <forward name="Approved" path="/CheckoutFinished.do"/>
 <forward name="TryAgain" path="/CheckoutServerPayment.do"/>
 <forward name="NotLoggedIn" path="/CheckoutDelivery.do"/>
 </action>

 <action path="/YourPay"
 type="com.konakart.actions.gateways.YourpayAction">
 <forward name="Approved" path="/CheckoutFinished.do"/>
 <forward name="TryAgain" path="/CheckoutServerPayment.do"/>
 <forward name="NotLoggedIn" path="/CheckoutDelivery.do"/>
 </action>

One other change is required in struts-config.xml (Struts-1) which defines the forwarding for the serv-
er-side payments: It's critical to maintain naming consistency here (use lower or mixed case as in the other
examples - or whatever it takes to match your definitions elsewhere).

<action path="/CheckoutServerPaymentSubmit"
 type="com.konakart.actions.CheckoutServerPaymentSubmitAction"
 name="CreditCardForm" scope="request" validate="true"
 input="/CheckoutServerPayment.do">
 <forward name="usaepay" path="/USAePay.do"/>
 <forward name="authorizenet" path="/AuthorizeNet.do"/>
 <forward name="payjunction" path="/PayJunction.do"/>
 <forward name="konapay" path="/KonaPay.do"/>
 <forward name="yourpay" path="/YourPay.do"/>
</action>

Build, Deploy and Test

Once the java code is built, the properties files and the struts-config.xml have been updated, all that is
required to be done is to execute the ant build, copy the new jars into position, restart tomcat and test!

The gateway suppliers typically provide test credit card numbers for you to use for these tests.

If you have questions on customizing KonaKart please post these on our forum [http://www.konakart.com/
forum] , at http://www.konakart.com/forum

http://www.konakart.com/forum
http://www.konakart.com/forum
http://www.konakart.com/forum

Payment, Shipping and
OrderTotal Modules

233

How to Create a Promotion Module
This section explains how to create a new Promotion module for KonaKart using its module plug-in frame-
work. The process for creating a new promotion module is similar to that for creating a new payment
module described above so here we'll concentrate mainly on how to define the data entry configuration
widgets for a promotion module.

Determine which of the existing Promotion modules is
the closest match

The first important step is to study the existing Promotion modules to see which one looks to be the closest
fit to the type of promotion you are considering. This step is very important and will save you a great
deal of time if you pick a close match. For example, TotalDiscount.java provides a percentage or amount
discount on the total of the order and ProductDiscount.java provides a percentage or amount discount for
individual products. These could be good starting points for your custom promotion.

Copy the files of the closest match as the starting point

If you decide that the TotalDiscount promotion is a good starting point then the next step is to copy the
following promotion directories and contents:

• modules/src/com/konakart/bl/modules/ordertotal/totaldiscount

• modules/src/com/konakartadmin/modules/ordertotal/totaldiscount

to

• modules/src/com/konakart/bl/modules/ordertotal/mytotaldiscount

• modules/src/com/konakartadmin/modules/ordertotal/mytotaldiscount

Rename the files from TotalDiscount*.* to MyTotalDiscount*.*

MyTotalDiscount.java under the konakart directory contains the code that runs in the storefront and calcu-
lates the promotion discount. MyTotalDiscount.java under the konakartadmin directory is used to define
the parameters for configuring the promotion.

Define the configuration parameters

Next, we need to decide which configuration options we will allow an administrator to change when creat-
ing a new promotion. New promotions are created from the Admin App under Marketing >> Promotions.
You pick a promotion type from the drop list and a number of entry fields appear into which you can enter
data that configures the promotion, such as the actual discount amount or percentage value.

The configuration parameters are defined in the file modules/src/com/konakartadmin/modules/orderto-
tal/mytotaldiscount/MyTotalDiscount.java . Each configuration attribute must have a unique key. The first
two attributes are similar for all promotion modules since they define whether the module is active and
the sort order when displayed in a list in the Admin App under Modules >> Order Totals.

Payment, Shipping and
OrderTotal Modules

234

 configs[i] = new KKConfiguration(
 /* title */"Minimum Order Value",
 /* key */"MODULE_ORDER_TOTAL_TOTAL_DISCOUNT_MIN_ORDER_VALUE",
 /* value */"custom1",
 /* description */"The discount only applies if the total of the order,"
 + " equals or is greater than this minimum value",
 /* groupId */groupId,
 /* sortO */i++,
 /* useFun */"invisible",
 /* setFun */"double(0,null)",
 /* dateAdd */now);

Let's look at the example above in order to understand the configuration details.

• title - The label for the data entry widget when configuring the promotion. If an entry in the for-
mat cfg.title.key exists in the message catalog then the label is retrieved from the catalog. e.g.
cfg.title.MODULE_ORDER_TOTAL_TOTAL_DISCOUNT_APPLY_BEFORE_TAX = Apply be-
fore tax.

• key - The key must be unique. All of our modules tend to follow a naming convention as you can see
in the example above.

• value - Each promotion can have up to 10 configuration parameters. The value must be in the range
"custom1" to "custom10".

• description - The description is what a user sees in the Admin App as floatover help
when the mouse is over the label of the data entry widget. If an entry in the format
cfg.desc.key exists in the message catalog then the description is retrieved from the catalog.
e.g. cfg.desc.MODULE_ORDER_TOTAL_TOTAL_DISCOUNT_APPLY_BEFORE_TAX = If set to
true, the discount is calculated on the amount before tax.

• groupId - Set to 6 for promotion modules.

• sortO - This should be left as i++ so that the data entry widgets in the UI match the sort order in which
they are defined in the file.

• useFun - Set to "invisible" for promotions so that they don't appear when activating the module.

• setFun - This is an important attribute since it defines what the data entry widgets will look like and
allows you to add validation. Valid values are:

• integer(min,max) where min and max may be numbers or set to null. i.e. integer(10,null) checks that
the integer has a minimum value of 10 or above. Integer(null,null) just checks that the value entered
is an integer without doing any range checking.

• double(min,max) using the same logic as explained above for decimal numbers.

• string(min,max) using the same logic as explained above for the length of the string.

• choice('true','false') creates a radio button panel with the options of true and false.

• choice('msg.small','msg.medium','msg.large') creates 3 radio buttons where the labels are looked up
in a message catalog. In this case, the text displayed is looked up from the message catalog, whereas
the values saved are always msg.small, msg.medium and msg.large regardless of the language.

• choice('S'='label.small','L'='label.large') creates 2 radio buttons where the labels are looked up in a
message catalog. In this case, the text displayed is looked up from the message catalog, whereas the
values saved are the associated values (eg. 'M' or 'L' in this example).

Payment, Shipping and
OrderTotal Modules

235

• option(0=date.day.long.Sunday,1=date.day.long.Monday,2=date.day.long.Tuesday) creates a drop
list for the first 3 days of the week. The text of the days displayed is retrieved from the message
catalog whereas the saved data is 0 for Sunday, 1 for Monday etc.

• RichText(x) or RichText(x,min,max) where x defines the vertical size (in elements) of the Rich Text
data entry widget. (e.g. RichText(10) for a size of 10em). min and max provide validation for the
length of the string. e.g. If a value is mandatory then min should be set to a value greater than zero.
This widget spans a complete row rather than half a row like the other widgets.

• dateAdd - Set to now.

Promotion Configuration Widgets

The above image shows the widgets that are created based on the setFun parameter. In order to display the
setFun value being used, it has been added to the label and highlighted in yellow.

Add the new promotion module to the Admin App
In order to see the new promotion module in the Admin App under Modules >> Order Totals
we have to add it to the list of Order Total modules in webapps/konakartadmin/WEB-INF/class-
es/konakartadmin.properties. Remember to match the classname - so be careful with your lower case/up-
per case characters! Once set, the Admin App will include the new module in the set of modules that can
be installed or removed from the system.

Build, Deploy and Test
Once the java code is built and the properties file has been updated, all that is required to be done is to
execute the ant build, copy the new jars into position, restart tomcat and test!

236

Chapter 15. Recurring Billing
KonaKart provides support for recurring billing which may be implemented in one of two alternate ways.
The actual payment transactions may be performed by a payment gateway that supports recurring billing,
or they may be performed by a KonaKart batch program that interfaces with the payment gateway to make
the regular payments. We recommend the first approach since it doesn’t require that you store sensitive
credit card information within your local database. The credit card details are transmitted to the payment
gateway so that it can create the subscription and automatically make the payments at predefined intervals.

There are two main objects within KonaKart that provide recurring billing support. These are the Payment
Schedule object and the Subscription object. Both have dedicated panels within the Admin App so that they
may be managed. The Payment Schedule panel may be found under Products, whereas the Subscription
Panel may be found under Orders.

Payment Schedule
A payment schedule defines the frequency of payments for a product as well as the total number. i.e.
Payments may be monthly, lasting for two years. In the case of monthly payments, it allows you to define
the day of the month the payment should be made. It also allows you to define one or more trial payments
which may be for a different amount. i.e. The subscription may consist of monthly payments of $9.99 for
the first 6 months before increasing to $30.00 .

A payment schedule is associated to a product. This is done in the Edit Product panel. A drop list containing
payment schedules will appear in the Details tab of the Edit Product panel if one or more payment schedules
exist. When an order is confirmed by a customer during the checkout process, the products within the order
are examined to detect whether any of them have an associated payment schedule. If a payment schedule
is found, this triggers off the process of creating a recurring billing subscription.

Subscription
A subscription defines the payment amount and start date for the payments. It can be activated / deactivated
and if any problems are found (i.e. credit card expired) during the payment transaction, these problems are
logged in the subscription object . As mentioned above, a subscription is created and saved at the moment
when an order is confirmed, if any of the products within the order are associated to payment schedules. A
subscription can be associated with one or more Payment Info objects, each of which records the amount
paid on a particular date, as well as saving the complete transaction reply from the payment gateway.

A subscription object contains many other attributes such as the last and next billing dates, the order
number, the product SKU and custom fields. These are all optional, but may be used to save important
information that can be used for reporting purposes and to control the actual payments when they are being
managed by KonaKart.

Using a Payment Gateway that supports Recur-
ring Billing

Many payment gateways support recurring billing and provide interfaces to create and manage sub-
scriptions. KonaKart includes a recurring billing implementation for AuthorizeNet in the file called
AdminPayment.java in the KonaKart\custom\modules\src\com\konakartadmin\modules\payment\autho-
rizenet directory. This file contains methods to create, update and cancel an AuthorizeNet subscription

Recurring Billing

237

as well as a method to read the status of a subscription in order to determine whether it is active or has
been cancelled etc. The file also contains a method to perform a standard credit card payment through
AuthorizeNet which could be used when the recurring billing is managed by KonaKart rather than the
payment gateway. In order to create something similar for other payment gateways, this file should be
copied into the relevant directory (e.g. KonaKart\custom\modules\src\com\konakartadmin\modules\pay-
ment\myGateway) and customized in order to implement the protocol of the chosen gateway.

The way to call these payment gateway methods is through the Admin Engine which contains a method
to call a payment gateway called:

public NameValue[] callPaymentModule(String sessionId, String moduleClassName, PaymentOptions
options) throws KKAdminException;

The PaymentOptions object contains data to configure the method and the moduleClassName is the actual
name of the class that is instantiated.

In order to manage a recurring billing subscription the steps are:

Insert a subscription
A subscription must be inserted into the KonaKart database and also sent to the payment gateway since
it is the payment gateway that will actually perform the billing. The trigger for this operation is when a
customer confirms an order in the storefront application. The storefront code must create a subscription
which is saved in the KonaKart database. An example can be found in the file AuthorizenetAction.java
under the directory KonaKart\custom\modules\src\com\konakart\actions\gateways. The method (which is
commented out) is called manageRecurringBilling() . A Subscription object is created and inserted into
the KonaKart database using the insertSubscription() API call . In order to be able to also create a sub-
scription through the payment gateway you can add code to the OrderIntegrationMgr which can be found
in the directory KonaKart\custom\appn\src\com\konakart\bl . As you can see, the OrderIntegrationMgr
has methods that are called before and after inserting and updating a subscription. The example code can
be found in the afterInsertSubscription() method.

/*
 * Create a PaymentOptions object to pass to the method that calls the payment gateway.
 * The payment module gets the subscription code from the payment gateway and updates
 * the subscription in the KonaKart database to add the code.
 */
PaymentOptions options = new PaymentOptions();
options.setSubscriptionId(subscription.getId());
options.setOrderId(subscription.getOrderId());
options.setCreditCard((CreditCard) (subscription.getCreditCard()));
options.setAction(KKConstants.ACTION_CREATE_SUBSCRIPTION);
adEngineMgr.callPaymentModule(getEng().getEngConf(),
 "com.konakartadmin.modules.payment.authorizenet.AdminPayment", options);

This code creates a PaymentOptions object, fills it with the relevant ids and credit card information before
passing it to the payment module in order to create the subscription.

Update a subscription
A subscription may need to be updated for various reasons. Common updates are to modify the amount
that is billed at regular intervals and to add new credit card details when the current card expires.

In order to achieve this, the storefront application must gather the new credit card information from the
customer and call the updateSubscription() API call in the same way as the insertSubscription() API call

Recurring Billing

238

was called above. The example call to AuthorizeNet is again in the OrderIntegrationMgr in the method
called afterUpdateSubscription() . Here you can see that AuthorizeNet is called to update the subscription.

/*
 * Create a PaymentOptions object to pass to the method that calls the payment gateway.
 * The payment module gets the subscription code from the subscription object in the
 * KonaKart database which it looks up using the id in the PaymentOptions.
 */
PaymentOptions options = new PaymentOptions();
options.setSubscriptionId(subscription.getId());
options.setOrderId(subscription.getOrderId());
options.setCreditCard((CreditCard)(subscription.getCreditCard()));
options.setAction(KKConstants.ACTION_UPDATE_SUBSCRIPTION);
adEngineMgr.callPaymentModule(getEng().getEngConf(),
 "com.konakartadmin.modules.payment.authorizenet.AdminPayment", options);

This code creates a PaymentOptions object, fills it with the relevant ids and credit card information before
passing it to the payment module in order to update the subscription.

Read the status of a subscription
AuthorizeNet allows you to detect the status of a subscription through the API. Using this functionality
it's possible to create a batch program that checks the status for all active subscriptions in the KonaKart
database in order to detect whether any require attention. If the credit card has expired, an eMail may
automatically be sent by the batch program to the customer asking him to log into the store front application
and provide new credit card information. Alternatively the payment gateway may generate reports or lists
of accounts that require attention.

Manual Subscription Management
The Admin App allows you to manually insert and update subscriptions. Using the Custom Engine you
can customize the following API calls to mirror the changes in the payment gateway.

• InsertSubscription() : The subscription object is inserted in the KonaKart database before calling the
payment gateway. After having created the subscription, the payment gateway implementation should
update the KonaKart subscription object in the database with the identifier generated by the payment
gateway. This code is used in future communications with the payment gateway in order to identify
the subscription.

• UpdateSubscription() : The KonaKart subscription object being updated contains the payment gateway
subscription code that is used to identify the subscription saved by the payment gateway. This API call
may be used for example to disable the subscription or to modify the subscription amount.

• DeleteSubscription() : The KonaKart subscription object being deleted contains the payment gateway
subscription code that is used to identify the subscription saved by the payment gateway.

Managing Recurring Billing through KonaKart
In this case the credit card details are stored by KonaKart in an encrypted format within the Order object.
The actual payments are made by a KonaKart Batch program that interfaces to the payment gateway to per-
form the payment transaction. An example of this batch is provided in source code format so that it can be
modified. The batch is called recurringBillingBatch() and can be found within AdminOrderBatchMgr.java.
It loops through all subscriptions that are active and that have a nextBillingDate equal to or later than
the current date. Based on the data found within the Subscription object and attached PaymentSchedule

Recurring Billing

239

object, the batch program can make the payment and update the Subscription with a new nextBillingDate.
The subscription object is also updated if the transaction with the payment gateway fails to indicate that
there has been a problem.

The batch uses the callPaymentModule API call to communicate with the payment
gateway. The source code example calls the admin payment module for AuthorizeNet
(com.konakartadmin.modules.payment.authorizenet.AdminPayment).

240

Chapter 16. Multi-Vendor Functionality
KonaKart allows vendors to manage their own products and orders through the Admin App. The storefront
application displays products from all vendors and allows the customer to checkout with any selection of
products in a single order.

During the checkout process the products are grouped by vendor and the customer may select the appro-
priate shipping method for each vendor store from a list of those made available. Once the order has been
confirmed by the customer, it is automatically split up so that each vendor receives an order for his own
products. As the products are shipped by the vendor, the status of the vendor order (and maybe tracking
number) is propagated to the parent order so that the customer only ever sees a single order with a history
trail of events that occur during the lifecycle of the order.

Configuration
Multi-vendor mode is only valid when running KonaKart in multi-store shared products and shared cus-
tomer mode. It may be enabled through a configuration variable under Configuration >> Store Configu-
ration.

Each vendor is allocated a KonaKart virtual store where products may be inserted and edited and each store
may use different shipping modules which are selected from the modules available within the KonaKart
system.

The storefront application uses the parent store or main store which is managed by an administrator. Typ-
ically the main store doesn't actually have any products of its own but it shares the products of the vendor
stores.

Setting up a Main Store

A main store is managed by the administrator and has the following properties:

• It has no products. All products are shared with the vendor stores.

• It must have one or more payment modules defined since the payment process takes place on the main
store.

• It has no shipping modules. All shipping is performed by the vendor stores.

• It shouldn't have a Tax Order Total module since this is created by the system as a sum of the individual
vendor store tax amounts.

• It should have a Shipping Order Total module which will contain the sum of the individual shipping
amounts from the vendor orders.

Multi-Vendor Functionality

241

Main Store Order Total Modules (No Tax modules installed)

Setting up a Vendor Store

A vendor store is managed by the vendor and has the following properties:

• It contains the products sold by the vendor. These products are shared with the main store.

• It has no payment modules. Payment is through the main store.

• It must have one or more shipping modules defined.

• It has the standard Order Total modules including Tax and Shipping.

Multi-Vendor Functionality

242

Share vendor products with the Main Store

Multi-Vendor Functionality

243

Typical Vendor Store Order Total Modules

Orders
The customer, vendor and administrator all have different views of the order.

Multi-Vendor Functionality

244

Customer View of the Order

Customer View of the Order

In the checkout screen example above, a customer is buying a product from Vendor1 Store and one from
Vendor2 Store. Store 1 has multiple shipping options so the customer can choose the desired option from
a list. Store 2 has a single shipping rate which is displayed. Store 1 has been configured to use the Tax
Cloud tax module whereas Store 2 is using internal KonaKart tax calculation. The Sub-Total, Shipping,
Tax and Total are displayed using the order total modules of the main order.

Vendor View of the Order

The Vendor can view the order from the Admin App after having logged into his store.

Multi-Vendor Functionality

245

Vendor View of the Order

The vendor can only see the products that he is responsible for delivering.

Administrator view of the Order

The Administrator can see a full view of the order, including the details for each vendor store. This infor-
mation allows the administrator to determine how to distribute the payment funds to the individual stores.

Multi-Vendor Functionality

246

Administrator View of the Order

Order State Change
A method called manageMultiVendor() has been added to the AdminOrderIntegrationMgr under Kon-
aKart\custom\adminappn\src\com\konakartadmin\bl . The method serves as an example to show how state
changes of vendor orders may be propagated to the main order.

This example implementation defines a couple of states (Delivered and Partially Delivered) and adds them
to the status trail of the main order. If the new state of the vendor order is Delivered, then it looks at the
current states of all of the vendor orders to see whether they have all been fully delivered. If this is the
case then the state of the parent order is set to Delivered otherwise to Partially Delivered.

Order Payment
The customer pays for the order using the payment gateway of the main store so the full amount is received
by the main store. It is the responsibility of the main store administrator to distribute the funds to the
vendors, maybe keeping a percentage depending on the agreement between the vendor and main store.

Multi-Vendor Functionality

247

Vendors

A vendor represents the company that runs one or more stores. It has a name, description, company number
etc. as well as one or more addresses. Customers may submit reviews and ratings for vendors in order for
new customers to evaluate how reliable and efficient the vendor is.

A vendor may be created using the Admin App by opening the Vendor Maintenance panel (Store Main-
tenance >> Vendor Maintenance) or by clicking the Vendor button in the Store Maintenance panel after
having selected a store. Using the second method will associate the new vendor with the selected store.
If a vendor already exists, you may click the Vendor button in the Store Maintenance panel after having
selected a store. This takes you to the Vendor Maintenance panel from where you can search for a vendor
and click the Add Vendor To Store button in order to associate the selected vendor with the selected store.

Vendor Maintenance

From the Vendor Maintenance panel you can click the Stores button to see all of the stores belonging to
the vendor and the Reviews button to manage the vendor reviews which may be modified, deleted and
made visible or invisible.

Multi-Vendor Functionality

248

Store Details

On the storefront each product has a link to the a Store Details page which shows the name and address of
the vendor as well as the vendor reviews. Customers may write new reviews from this page.

The store link from the product details page and the product tiles may be added or removed by using the
following configuration variable under Store Configuration.

Link Configuration

249

Chapter 17. Product Stock Reservation
KonaKart allows you to reserve stock for a predefined amount of time. Once the reservation expiry time
has been reached, the reserved stock becomes available again for other customers. This feature is useful
when you have products that cannot be oversold so you need to ensure that they remain in stock during
the checkout process.

API Calls
The API used to reserve stock is

public BasketIf[] reserveStock(String sessionId, BasketIf[] basketItems, StockReservationOptionsIf op-
tions) throws KKException;

In the standard storefront application, it is called in CheckoutAction.java before displaying the one page
checkout page. When the reservation is successful, the returned array of Basket items is populated both
with general stock information and with reserved stock information. The relevant attributes are:

• reservationId : The reservation identifier. When no reservation is present (maybe the reservation was
not successful), the default value is -1.

• qtyResrvdForResId : The quantity reserved for this reservation id.

• quantityReserved : The total quantity reserved. This is useful information because if the reservation was
not successful but quantityReserved > 0, you may inform your customers that the product is currently
reserved by other customers but may become available shortly if they do not complete the purchase.

• quantityInStock : The total quantity in stock.

• quantityAvailable : The total quantity in stock – the total quantity reserved.

• reservationExpiryDate : When the reservation expires.

• reservationStartDate : When the reservation started.

The StockReservationOptions allows you to:

• Define the number of seconds the reservation is active for. The default is set to -1 which means that
the value defined in the global configuration variable is used. This global variable can be found in the
Admin App under Configuration >> Stock and Orders. A batch job should be scheduled to run at reg-
ular intervals to remove expired reservations. Such a job is part of the download package. It’s called
removeExpiredStockReservationsBatch and can be found within /custom/batch/src/com/konakartad-
min/bl/AdminProductBatchMgr.java after installing KonaKart.

• Define whether you want to allow a partial reservation for a product if the number of items available is
less than the number required. The default behaviour is to not allow partial reservations.

• Define a maximum number of reservations per customer for any one product. This is a defensive measure
to prevent a customer from abandoning multiple checkouts or a (single checkout with a high quantity
number) and so reserving products and preventing other customers from buying them.

AddToBasketOptions has an attribute called getStockReservationInfo . When set to true the basket items
returned have the following attributes populated:

• reservationId : The reservation identifier. When no reservation is present, the default value is -1.

Product Stock Reservation

250

• qtyResrvdForResId : The quantity reserved for this reservation id.

• reservationExpiryDate : When the reservation expires.

• reservationStartDate : When the reservation started.

It applies to the updateBasketWithStockInfoWithOptions() and to the getBasketItemsPerCustomerWith-
Options() API calls.

There are three API calls to remove stock reservation records from the database. These are:

• removeStockReservationsForBasketItems()

• removeStockReservationsForOrderProducts()

• removeStockReservationsForIds()

Under java_api_examples/src/com/konakart/apiexamples there is a Java classs called ReserveStock.java
which demonstrates how the API calls can be used in order to reserve stock.

Storefront Application
In order to activate stock reservation for the storefront application you must set the following configuration
variables which can be found in the Admin App under Configuration >> Stock and Orders.

The reservation time can be set for however long you desire the products to be reserved for. The code
that performs the reservation can be found in CheckoutAction.java. The one page checkout jsp displays
a countdown timer to inform customers how much time they have to checkout. When the timer reaches
zero, the customer is automatically redirected back to the Cart Details page.

This process may not be exactly what you require, in which case it can be easily modified. For example,
you may want to continue showing the countdown time in the page where the customer enters his credit
card details or you may want to reserve the products without showing a countdown timer at all.

Order Integration Manager
The Order Integration Manager contains a method to remove stock reservation records from the database
when an order has been received. The method is called removeStockReservations() .

Product Stock Reservation

251

Reservations for Bookable Products
Bookable products may have a list of bookings associated with them. A booking is typically inserted in
the OrderIntegrationMgr once the order has been paid for. If for example a bookable product represents
a course, then you may define a maximum number of bookings (people attending the course) which is
taken into consideration when inserting new ones. When reserving stock for such a bookable product,
what you really want to reserve are places on the course to give you the time to check out without the
places being lost.

Stock reservation functionality uses the product quantity attribute, so In order to successfully use stock
reservation with bookable products you need to do the following:

• Set the quantity of the product to match the maximum number of bookings available.

• When calling updateInventoryWithOptions() you need to instruct KonaKart not to modify the inventory
for bookable products since this will be done every time a booking is inserted. To do this you have to
set the following attribute on CreateOrderOptions:

setInventoryUpdateExcludeProdTypes(new int[]
{com.konakart.bl.ProductMgr.BOOKABLE_PRODUCT_TYPE})

This instructs KonaKart to not modify the inventory level for all products of type Bookable Product
within the order.

• Finally, every time a booking is inserted you need to set updateInventoryWithBookings to true on the
BookableProductOptions object. When inserting a new booking, we automatically update the bookings-
Made attribute of the BookableProduct object. When this attribute is set to true, we also update the
quantity attribute of the Product object so that it is decreased every time a booking is added by the
quantity of the booking.

For the Admin App there is an updateInventoryWithBookings attribute on the AdminBookableProductOp-
tions object. In this case the quantity attribute of the Product object is modified both when a booking is
inserted and when one is deleted.

Batch Removal of Expired Stock Records
Expired stock reservation records are only automatically removed from the database in the Order Integra-
tion Manager when a customer successfully checks out.

Product Stock Reservation

252

In order to stop expired records accumulating in the database, the RemoveExpiredStockReservations batch
should be run at regular intervals.

253

Chapter 18. Order Management

Order Creation
An order is always created using the KonaKart APIs (not the KonaKart Admin APIs) whenever a customer
checks out. Typically, the order is saved in the database before payment in order to capture payment details
even if the payment is not successful.

As an order goes through its lifecycle, it may change state many times. Each time a state change occurs,
this information is added to the order so that a complete history trail of state changes is maintained. Also
whenever an order changes state, callback methods in the OrderIntegrationMgr or AdminOrderIntegra-
tionMgr are called so that custom code may be run. The state of an order may be changed either using the
KonaKart or KonaKart Admin APIs.

The available order states may be managed through the Admin App. If you require states that aren’t present
in the default database, you may add your own. When inserting your own states, it’s important to use an
id of 100 or above since the first 99 id numbers are reserved for future KonaKart functionality.

Order Management

254

Order Lifecycle Management

Once an order is present in the database it may be managed through the Admin App (or Admin App APIs)
as it progresses through its lifecycle. From the above image you can see that after selecting an order there
are a number of options available by clicking the appropriate button.

Edit allows you to change the order state as well as any of the custom attributes, the order number and
the tracking number.

Returns allows you to capture return information in the database and to generate an RMA code.

Shipments allows you to enter multiple shipment records for the order, each one with its own tracking
code and other shipment information.

Refunds allows you to save refund information in the database. If the payment module supports refunds,
a real time refund transaction may also be performed in order to transfer funds back to the customer.

Order Modification
If the order needs to be changed (e.g. products added or removed, addition of a coupon code or change
of address etc.) this must be done through the KonaKart APIs or the storefront application. Rather than
modifying the existing order, a new order is created and the state of the existing order is changed to the
Archived state.

Configuration variables under Configuration >> Stock and Orders allow you to define the states of orders
that are included or excluded from the storefront. A default installation excludes state 14 which means that
archived orders are not normally displayed to the customer.

Order Management

255

The first step to allow order modification is to set the configuration variables under Configuration >> Store
Configuration as shown above.

Next the customer must be selected in the Admin App Customers panel and the Login button clicked in
order for the administrator to log into the storefront application as the customer.

Order Management

256

As can be seen from the image above, next to each of the customer orders there is an edit button that allows
the administrator to edit the order. Clicking the button takes the administrator to the Manage Shopping
Cart panel where products may be removed and quantities changed. From other areas of the storefront,
new products may also be added to the cart.

Order Management

257

The checkout confirmation panel also has some added functionality as can be seen above.

If at this point, the administrator decides to create a new order rather than to edit an existing order, there
is a link that can be clicked directly underneath the title.

If enabled, the administrator can also manually enter a discount which immediately appears on the order.
This may be useful for cases when the administrator needs to match a lower price seen elsewhere or needs
to apply a special discount for whatever reason. This discount is managed by the "Order Total Discount
Defined By Administrator" promotion module which must be enabled. Also a promotion needs to be
created using this promotion module. When creating the promotion, you may decide to make the discount
an amount or a percentage discount.

Order Management

258

When the Confirm Order button is clicked, the new order is saved and the old order is moved to the
Archived state and is no longer visible in the list of orders in the storefront application. However, whenever
a customer views the details of an order that has an archived order, the details of the archived order may
be viewed by clicking the button shown above. The same applies for the Admin App.

There is no default logic implemented for how payment or refunds should be handled for edit-
ed orders since this will really depend on your implementation and details such as whether the
administrator can enter credit card details over the phone. One possibility is to edit the module
com.konakart.bl.modules.ordertotal.total.Total.java in order to calculate a new total based on the archived
orders of the current order rather than just returning the total of the current order. Some commented code
has been added to com.konakart.bl.modules.ordertotal.total.Total.java that demonstrates how to retrieve
the previous orders of the order currently being edited.

Order Management

259

Whenever a customer order is created by an administrator, we keep track of the user id of the administrator
and save this information with the order in the creator attribute. As can be seen above, this information
is also visible from the Admin App.

API Calls for Archived Orders
The Admin API getOrderForOrderId() populates the ArchivedOrders attribute of the AdminOrder .

On the storefront side when calling the saveOrderWithOptions() API call, in the SaveOrderOptions object
you can set the id of the order to be archived. When this is set, the KonaKart engine links the order being
saved with the order being archived with a unique id.

Still on the storefront side, when retrieving an order using the getOrderWithOptions() API call, the
archivedOrders attribute is populated if you set the populateArchivedOrdersAttribute to true on the
FetchOrderOptions object. When retrieving multiple orders using the searchForOrdersPerCustomer()
API call you must set the populateArchivedOrdersAttribute in the OrderSearch object to populate the
archivedOrders attribute of the returned orders.

Returns
The Admin App contains a panel to manage returns. An order may have multiple returns (i.e. The products
within the order may be returned at different times). The return must contain a Return Merchandise Au-
thorization code (RMA) and may contain text explaining the reason for the return. Each return contains a
number of returned products whose quantity cannot exceed the total number of products within the order.
The return object saved in the database has a number of custom attributes that may be used to save any
proprietary information such as the type or state of the return.

Order Management

260

Each entry in the list of returned products contains information regarding the number of products returned,
the unit refund price for a single product and the number of refund points for a single product. The unit re-
fund price default value is set when the order is created by the manageReturnValues(OrderIf order) method
in the OrderIntegrationMgr . The logic for setting the price may be modified by editing this method. The
default value for the points is set by the points promotion module when the points are allocated. Note that
the initial unit price for refunds (set when the order is created) needs to be modified by any promotion
module that applies a discount so that the correct value is saved in the database.

There is a method called setRefundValues() in BaseOrderTotalModule.java which you can find in the
custom/appn/src/com/konakart/bl/modules/ordertotal directory. It has been implemented for some of the
promotion modules (see JavaDoc for updated list) in order to reduce the product refund amount. The source
code of this calculation is available because this is a tricky area especially when multiple promotions are
active, so it's possible that you may want to tweak the calculations to match your desired result. Currently
it does not modify the refund reward point values.

261

Chapter 19. KonaKart B2B features
The purpose of this chapter is to highlight some of the KonaKart features that are particularly useful in
a business to business environment.

Customer Hierarchy
Customers may be placed within a hierarchical structure where a customer can be assigned a parent and
children. This is useful functionality for a group of corporate buyers that may want to share information
such as orders and that may have roles so that a parent in the hierarchy needs to approve the orders of a
child. The hierarchy can be constructed using the Admin App in the Hierarchy tab of the Edit Customer
panel. The functionality within this tab allows you to assign children to the customer currently being edited.

Using the Admin Engine, in the getCustomerForIdWithOptions() and getCustomerForEmailWithOp-
tions() API calls, you may specify in the AdminGetCustomerOptions object whether to populate the Ad-
minCustomer with its parent, its direct children or all of its child tree.

KonaKart B2B features

262

Using the Application Engine, there is a getCustomerWithOptions() API call which allows you to spec-
ify in the FetchCustomerOptions object whether to populate the returned Customer with its parent, its
direct children or all of its child tree. Also when searching for the orders of a customer you can specify
through the OrderSearch object whether to include the orders of parent, sibling or child customers. This
functionality allows B2B buyers to view orders of their colleagues as well as their own. Similar function-
ality exists for the getOrdersPerCustomerWithOptions() and getOrderWithOptions() API calls using the
FetchOrderOptions object.

Catalog / Contract Prices
KonaKart supports an unlimited number of catalogs that may define product prices, product availability
and product stock. Each B2B customer may be allocated a catalog that includes a subset (or all) of the
available products with personalised prices.

The catalog information may be imported from an external system such as an ERP, set manually through
the Admin App or may be generated using price rules set in the Admin App. More information regarding
Catalog process can be read here .

Customer Tags
Customer tags may be created and used to store any information about a customer. In a B2B scenario
they can be used to store customer privilege information in order to modify the behaviour of the storefront
application for the B2B buyers based on their roles.

KonaKart B2B features

263

After a standard Enterprise installation of KonaKart, a number of B2B specific customer tags are available
that are used by the storefront without having to apply any customisations. These are:

• B2B_CAN_CHANGE_ADDRESS - If set to false the change address links are all disabled, not allowing
the buyer to create a new address or modify an existing one.

• B2B_VIEW_PARENT_ORDERS - When set to true the buyer can view orders placed by his parent in
the hierarchical customer structure.

• B2B_VIEW_CHILD_ORDERS - When set to true the buyer can view orders placed by his direct chil-
dren in the hierarchical customer structure.

• B2B_VIEW_SIBLING_ORDERS - When set to true the buyer can view orders placed by his siblings
in the hierarchical customer structure.

• B2B_ORDER_LIMIT - Before allowing the buyer to checkout, a validation of the order is made to
ensure that it doesn’t exceed the amount set for the order limit.

• B2B_AGGREGATE_ORDER_LIMIT - The aggregate order limit is the maximum total order value
that can be submitted in a period of time. For example, if a corporate buyer can only buy a total of
$10,000 / month, this should be set to 10000. Before allowing the buyer to checkout, a validation
of the order is made to ensure that the order amount, when added to the running total (kept in the
B2B_AGGREGATE_ORDER_TOTAL tag), doesn’t exceed the amount set for the aggregate order
limit.

• B2B_AGGREGATE_ORDER_TOTAL - This tag contains the current total of the orders submitted by
the buyer since the last reset, which could for example be at the start of every month. It is added to the
total of the current order being processed to determine whether the aggregate total is below or above
the aggregate order limit.

Every time an order changes state to Payment Received, the value of this tag is increased by the value
of the order. The calculation is performed in the OrderIntegrationMgr in a method called updateCus-
tomerTags() . By default this method is commented out, so in order to use the aggregate order limit
functionality, you must uncomment it and recompile the OrderIntegrationMgr .

A batch called ResetAggregateOrderTotalCustomerTag is available to reset the value of all
B2B_AGGREGATE_ORDER_TOTAL tags to zero. This batch should be scheduled to run weekly or
monthly etc. depending on the time period desired.

• B2B_CATALOG_KEY - When set to the key of a valid catalog, it is used to determine the products
and their prices displayed to the buyer. The catalog will be used when the buyer logs in and the default
catalog (or no catalog) is reverted back to when the buyer logs out.

• B2B_ORDERS_NEED_APPROVAL - When set to true and a buyer submits an order, the order is saved
and set to a "Waiting for Approval" state.

• B2B_CAN_APPROVE_ORDERS - When set to true, the buyer can approve orders of other buyers.
Typically B2B_VIEW_CHILD_ORDERS would also be set to true so that the buyer can see orders of
other buyers lower in the customer hierarchy.

KonaKart B2B features

264

The above screen shot shows how a manager can approve or deny approval of an order and leave a com-
ment.

B2B Customer Administrator
In version 8.8.0.0 of KonaKart, functionality was added to allow a company B2B administrator to be
defined as a user type. The company admin has the ability to manage the B2B users of his company directly
using the storefront application rather than having to use the admin app.

After logging into the storefront, there is a link on the account page of the company admin, allowing him
to manage users.

KonaKart B2B features

265

The functionality available to the company admin is to

• Add New Users – New users may be created. The new user automatically becomes a child of the com-
pany admin in the customer hierarchy.

• Delete Users – The company admin may delete any user that he can manage.

• Disable Users - The company admin may disable any users that he can manage.

• Edit User Information – The company admin may edit user information including the addresses in the
address book of the user.

• Roles

The company admin may set the roles of the user as can be seen from the screen shot above. The
information is saved in customer tags which enables you to add new roles or remove any one of the
default roles that isn’t required for your implementation.

Company Administrator Security
The company admin is a KonaKart Admin user which means that if he were to have an appropriate role,
he could log into the Admin App. In order to avoid this, all that is necessary is not to assign him a role or
at least a role that doesn’t give him access to any Admin App panels. For tighter security you can enable
API based security under Configuration >> Security and Auditing. Once enabled you can assign the B2B
Customer Admin role to the company admin which will only give him access to the API calls required
to manage his users.

266

Chapter 20. KonaKart ERP Integration
The Enterprise version of KonaKart provides features for integration with an ERP system by exchanging
XML messages on a message queue (Apache MQ is bundled with KonaKart to support this feature). All
of the key integration points are supported between KonaKart and the ERP system and vice versa.

Introduction
ERP Integration is achieved by using the exchange of a set of generic XML messages that are used at the
major "touch-points" between KonaKart and ERP systems.

One of the principal requirements is that the interface be flexible enough to support multiple different ERP
systems built using a variety of technologies. In order to provide this flexibility it was decided to use a file
based protocol consisting of the transfer of XML files. XML was chosen for the following reasons:

• It has near ubiquitous support in a wide array of languages and frameworks. Whatever ERP system
being used, more likely than not there's already a tool available to help extract information from an
XML response and / or create an XML message.

• Schema support. i.e. the ability for party A to specify the format of a document and the ability for party
B to check that they are supplying something that matches this format.

• XML is human readable which can be advantageous in certain situations.

• Compared to other formats such as CSV it's also far more straightforward to create multi level hierar-
chical structures. e.g. An order object consists of an array of order product objects, 3 address objects etc.

• XML allows you to add new attributes whilst retaining backwards compatibility. This should allow
specific ERP implementations to easily update to the latest version of the interface adapter with minimal
or no code changes.

File Transport
Rather than reinventing the wheel and implementing a bespoke mechanism to exchange files, it was de-
cided to use Apache ActiveMQ which is a popular and powerful open source messaging system.

No matter what happens to the physical network connections between KonaKart and the ERP or even if
the recipient is temporarily down, the message service guarantees that the message will be delivered to the
recipient provided there is no catastrophic loss to the persistent data store of a broker along the message
route.

Apache Active MQ supports many cross language clients and protocols which should easily allow any
ERP system to read from and write to the message queues.

XML Message Structure
Each file placed on a message queue may consist of multiple messages, even of different types. The mes-
sage structure is as follows:

KonaKart ERP Integration

267

<?xml version="1.0" encoding="utf-8"?>
<messages>
 <exportCustomer>
 MSG 1
 </exportCustomer>
 <updateProduct>
 MSG 2
 </updateProduct>
 <updateProduct>
 MSG 3
 </updateProduct>
</messages>

The outer tag is <messages> and within this outer tag there may be one or more message sections containing
any type of supported message. The structure of each message is as follows:

<?xml version="1.0" encoding="utf-8"?>
<messages>
 <exportCustomer>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <firstName>firstName</firstName>
 <lastName>lastName</lastName>
 etc.
 </body>
 </exportCustomer>
</messages>

Each message has an outer tag containing the message name that defines what the message is intended
for. In the example above the message is <exportCustomer> so the <body> of the message contains data
required to register a customer. The <body> section of a message always contains the data associated with
the message.

Messages from ERP to KonaKart
Update Product

ERP to KonaKart.

The purpose of this message is to allow the ERP system to update the price and / or quantity of a product
in the KonaKart database.

<updateProduct>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <sku>ABC-123</sku>
 <catalogId>store6</catalogId>
 <quantity>88</quantity>
 <price0>33.56</price0>
 <price1>30.34</price1>
 <price2>26.99</price2>
 <price3>11.52</price3>
 <stockType>1</stockType>
 <disable>false</disable>
 </body>
</updateProduct>

KonaKart ERP Integration

268

Mandatory Attributes

sku Used to identify the product

quantity Quantity in stock (only mandatory if message is used to set the stock level)

price0 The price of the product (only mandatory if message is used to set the price)

disable can be set to "true" or "false" to disable or enable a product. When disabled,
the product is not displayed in the storefront.

stockType The product can be given a stockType which conditions the behaviour of the
storefront application for the case of low stock (see table below)

Note that only one of quantity, price0, disable or stockType is mandatory. They aren't all mandatory.

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

catalogId Only used when using KonaKart catalogs which allow you to set price and
stock information for a specific catalog.

price1-price3 Each KonaKart product has 4 price fields. Only price0 is mandatory.

stockType attribute

Quantity Stock Type Behaviour

>0 Not Set Allow purchase

<=0 Not Set Don't allow purchase and hide Add To Cart button but still display
product

>0 1 Allow purchase

<=0 1 Allow purchase but show a warning

>0 2 Allow purchase

<=0 2 Don't allow purchase and hide Add To Cart button but still display
product

Update Order

ERP to KonaKart.

The purpose of this message is to allow the ERP system to update the state of an order in the KonaKart
database so that it is visible to the customer.

KonaKart ERP Integration

269

<updateOrder>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <orderNumber>ABC123456</orderNumber>
 <kkOrderId>2345</kkOrderId>
 <kkOrderStatusId>7</kkOrderStatusId>
 <updatedById>34</updatedById>
 <notifyCustomer>true</notifyCustomer>
 <comments>Order has been partially shipped</comments>
 <shipment>
 <kkShipperId>3</kkShipperId>
 <shipperName>FedEx</shipperName>
 <trackingNumber>64564564</trackingNumber>
 <trackingURL>http://www.fedex.com/Tracking?tracknumbers=64564564</trackingURL>
 <shipmentNotes>First floor of block of apartments</shipmentNotes>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <shippedProducts>
 <shippedProduct>
 <sku>XDS-456</sku>
 <quantity>1</quantity>
 </shippedProduct>
 <shippedProduct>
 <sku>KLJ-897</sku>
 <quantity>2</quantity>
 </shippedProduct>
 </shippedProducts>
 </shipment>
 </body>
</updateOrder>

Mandatory Attributes

orderNumber or kkO-
rderId

Either the orderNumber or the numeric kkOrderId may be used to identify the
order. Only one of the two should be used. If the order number is generated by
the ERP after KonaKart exports the order, then KonaKart won't be aware of it
so the kkOrderId must be used.

kkOrderStatusId The numeric id of the order state. In KonaKart you can configure a set of order
states that cover the complete life cycle of the order and each state has a unique
id. Typical states are "Payment Received", "Partially Shipped" etc.

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

updatedById The numeric id of a KonaKart administrator responsible for updating the order.

notifyCustomer KonaKart can be configured to automatically send a template based email to a
customer whenever an order moves into a certain state. If the automatic mech-
anism is not used, the decision to send an email may be controlled by setting
this attribute to "true" or "false".

comments Any comment that should be made visible to the customer.

shipment The order state change may regard a shipment of some or all of the products
in the order.

Mandatory Shipment Attributes

KonaKart ERP Integration

270

shippedProduct The shipment section must contain at least one
shipped Product with a valid sku and integer quantity.

Optional Shipment Attributes

kkShipperId Numeric id of the Shipper that exists in the KonaKart
database. If this id is stored, when viewing the ship-
ment in the KonaKart Admin App the correct Shipper
will be displayed on the UI.

shipperName The name of the shipper to display on the storefront
application to the customer. e.g. FedEx, UPS, DHL

trackingNumber The number used to track the shipment.

trackingURL The URL used to track the shipment.

shipmentNotes Any notes connected with the shipment.

custom1-custom3 Custom attributes that may contain any custom data to
be saved in the KonaKart database with the shipment.

Export Invoice
ERP to KonaKart.

The purpose of this message is to allow the ERP system to associate an invoice file (typically in PDF
format) with a KonaKart order with the option of having the invoice sent out to a customer in an email by
KonaKart. The invoice may be downloaded by a customer from the storefront after logging in.

The message is not used for actually transporting the invoice file to the servers hosting KonaKart. The
mechanism for achieving this is still under investigation.

<exportInvoice>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <orderNumber>ABC123456</orderNumber>
 <kkOrderId>2345</kkOrderId>
 <invoiceFilename>inv_165007.pdf</invoiceFilename>
 <attachmentName>Invoice.pdf</attachmentName>
 <invoicePath>/store1/invoices</invoicePath>
 <sendEmail>true</sendEmail>
 <emailTemplate>OrderInvoice_fr.vm</emailTemplate>
 </body>
</exportInvoice>

Mandatory Attributes

orderNumber or kkO-
rderId

Either the orderNumber or the numeric kkOrderId may be used to identify the
order. Only one of the two should be used. If the order number is generated by
the ERP after KonaKart exports the order, then KonaKart won't be aware of it
so the kkOrderId must be used.

invoiceFilename The name of the invoice file which must be present on the servers hosting Kon-
aKart so that KonaKart can read it from the file system.

Optional Attributes

KonaKart ERP Integration

271

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

sendEmail If present, it must be set to true. KonaKart will send out a template based email
with the invoice as an attachment.

emailTemplate If sendEmail is set to true, this attribute must contain the name of the email
template that will be used by KonaKart for the email. The template name may
or may not contain the country code. It should not contain an extension. e.g.

1. ERPIntegrationOrderInvoice_fr - KonaKart will look for
ERPIntegrationOrderInvoice_fr.vm

2. ERPIntegrationOrderInvoice - KonaKart will use the customer's locale on
the order (if present) to attempt to determine the language code.

attachmentName This attribute may be used to give the email attachment a friendly name such
as Invoice .

invoicePath The directory where invoices are stored. If not specified the value that is con-
figured in KonaKart will be used.

Export Customer to KonaKart

ERP to KonaKart.

The purpose of this message is to allow the ERP system to register a customer in KonaKart. A mechanism
to allow the customer to login needs to be present. One alternative is to provide a link similar to the Forgot
Password link so that the new customer is sent a password to his email address when logging in for the
first time.

KonaKart ERP Integration

272

<exportCustomer>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <customerId>ERP007</customerId>
 <kkCustomerGroupId>34</kkCustomerGroupId>
 <gender>m</gender>
 <firstName>Peter</firstName>
 <lastName>Smith</lastName>
 <company>ACME Inc</company>
 <address1>Rose Cottage</address1>
 <address2>32 High Street</address2>
 <address3>MayBank</address3>
 <city>Newcastle</city>
 <state>Staffordshire</state>
 <postcode>ST5 ORT</postcode>
 <ISO3CountryCode>GBR</ISO3CountryCode>
 <ISONumericCountryCode>123</ISONumericCountryCode>
 <telephone1>01782765334</telephone1>
 <telephone2>335624599</telephone2>
 <email>peter.smith@acme.com</email>
 <locale>en_GB</locale>
 <dateOfBirth>03032015</dateOfBirth>
 <fax>01782765335</fax>
 <taxEntity>taxEntity</taxEntity>
 <taxExemption>taxExemption</taxExemption>
 <taxIdentifier>taxIdentifier</taxIdentifier>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 </body>
</exportCustomer>

Mandatory Attributes

customerId This attribute should contain the unique identifier used by the ERP system to
identify the customer. Once the customer has been registered, KonaKart will
send a message back to the ERP which will contain the customer details, the
KKCustomerId and this customerId. In this way, the ERP system will be able
to associate the KKCustomerId with its internal customerId.

firstName The customer's first name.

lastName The customer's last name.

address1 The first line of the street address.

city The customer's city

state The customer's state. If a list of valid states exists in the KonaKart database
for the customer's country then this attribute must contain either the numeric
KonaKart id of one of the states or the state code (e.g. ZH) or the state name
(e.g. Zürich). If a list of states is not present in the database then it may take
any value.

postcode The customer's postcode.

ISO3countryCode or
ISONumericCoun-
tryCode

Either the 3 letter ISO country code or the ISO numeric country code should
be present.

email The email address of the customer.

Optional Attributes

KonaKart ERP Integration

273

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

kkCustomerGroupId If the customer should belong to a KonaKart group, this should contain the
numeric KonaKart group id.

gender This should contain "M", "F" or "X" which stand for male, female and other.

company The customer's company.

address2 The second line of the street address.

address3 The third line of the street address.

telephone1 The customer's primary telephone number.

telephone2 The customer's other telephone number.

locale The customer's locale in the format en_GB.

dateOfBirth The customer's date of birth in the format ddMMyyyy.

fax The customer's fax number.

taxEntity Tax entity information for the customer.

taxExemption Tax exemption information for the customer.

taxIdentifier Tax identifier for the customer.

custom1-custom5 Custom attributes that may contain any custom data to be saved in the KonaKart
database with the customer.

Match Customer to KonaKart
ERP to KonaKart.

The purpose of this message is to allow the ERP system to send an ERP customer id to KonaKart so
that any future customer exports from KonaKart to the ERP system will contain both the KonaKart and
the ERP customer identifiers. This message would typically be sent by the ERP after it has received an
INSERT export customer message from KonaKart since in this case the ERP system may create a new
ERP customer and so a new customer identifier.

The message may not be necessary if the ERP system can use the KonaKart customer ID.

<matchCustomer>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <customerId>ERP007</customerId>
 <kkCustomerId>44</kkCustomerId>
 </body>
</matchCustomer>

Mandatory Attributes

customerId This attribute should contain the unique identifier used by the ERP system to
identify the customer.

kkCustomerId This attribute should contains a unique numeric identifier for the customer. It
is generated by KonaKart when the customer registers.

KonaKart ERP Integration

274

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

Payment Capture
ERP to KonaKart.

In many cases when the customer confirms an order using his credit card, the funds are reserved and not
captured until the products are actually shipped. This message, sent by the ERP, instructs KonaKart to
initiate a credit card capture transaction with the payment gateway for the amount specified.

<paymentCapture>
 <storeId>store2</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <orderNumber>ABC123456</orderNumber>
 <kkOrderId>55</kkOrderId>
 <captureAmount>44.36</captureAmount>
 <gatewayCaptureId>2207759569</gatewayCaptureId>
 </body>
</paymentCapture>

Mandatory Attributes

orderNumber or kkO-
rderId

Either the orderNumber or the numeric kkOrderId may be used to identify the
order. Only one of the two should be used. If the order number is generated by
the ERP after KonaKart exports the order, then KonaKart won't be aware of it
so the kkOrderId must be used.

captureAmount The amount KonaKart should capture on the credit card used for confirming
the order.

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

gatewayCaptureId If the gatewayCaptureId isn't provided in the message, then KonaKart will look
it up from the database using the kkOrderId. If it is provided then it will be used.

Messages from KonaKart to ERP

Export Customer to ERP
KonaKart to ERP.

This message is sent by KonaKart whenever a customer registers using the online store. It contains a
unique numeric customer id generated by KonaKart (kkCustomerId). It is also sent whenever a customer
modifies any information such as his primary address.

KonaKart ERP Integration

275

<exportCustomer>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <kkCustomerId>44</kkCustomerId>
 <customerId>ERP007</customerId>
 <kkCustomerGroupId>34</kkCustomerGroupId>
 <type>INSERT</type>
 <gender>m</gender>
 <firstName>Peter</firstName>
 <lastName>Smith</lastName>
 <company>ACME Inc</company>
 <address1>Rose Cottage</address1>
 <address2>32 High Street</address2>
 <address3>MayBank</address3>
 <city>Newcastle</city>
 <state>Staffordshire</state>
 <postcode>ST5 ORT</postcode>
 <ISO3CountryCode>GBR</ISO3CountryCode>
 <ISONumericCountryCode>123</ISONumericCountryCode>
 <telephone1>01782765334</telephone1>
 <telephone2>335624599</telephone2>
 <email>peter.smith@acme.com</email>
 <locale>en_GB</locale>
 <dateOfBirth>03032015</dateOfBirth>
 <fax>01782765335</fax>
 <taxEntity>taxEntity</taxEntity>
 <taxExemption>taxExemption</taxExemption>
 <taxIdentifier>taxIdentifier</taxIdentifier>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 </body>
</exportCustomer>

Mandatory Attributes

kkCustomerId This attribute should contains a unique numeric identifier for the customer. It
is generated by KonaKart when the customer registers.

type Valid values are INSERT and UPDATE depending on whether it is a new cus-
tomer or an existing customer with modified information such as an updated
address.

firstName The customer's first name.

lastName The customer's last name.

address1 The first line of the street address.

city The customer's city

state The customer's state. If a list of valid states exists in the KonaKart database
for the customer's country then this attribute must contain either the numeric
KonaKart id of one of the states or the state code (e.g. ZH) or the state name
(e.g. Zürich). If a list of states is not present in the database then it may take
any value.

postcode The customer's postcode.

ISO3countryCode or
ISONumericCoun-
tryCode

Either the 3 letter ISO country code or the ISO numeric country code should
be present.

email The email address of the customer.

KonaKart ERP Integration

276

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

customerId This attribute should contain the unique identifier used by the ERP system to
identify the customer. Once the customer has been registered, KonaKart will
send a message back to the ERP which will contain the customer details, the
KKCustomerId and this customerId. In this way, the ERP system will be able
to associate the KKCustomerId with its internal customerId.

kkCustomerGroupId If the customer should belong to a KonaKart group, this should contain the
numeric KonaKart group id.

gender This should contain "M", "F" or "X" which stand for male, female and other.

company The customer's company.

address2 The second line of the street address.

address3 The third line of the street address.

telephone1 The customer's primary telephone number.

telephone2 The customer's other telephone number.

locale The customer's locale in the format en_GB.

dateOfBirth The customer's date of birth in the format ddMMyyyy.

fax The customer's fax number.

taxEntity Tax entity information for the customer.

taxExemption Tax exemption information for the customer.

taxIdentifier Tax identifier for the customer.

custom1-custom5 Custom attributes that may contain any custom data to be saved in the KonaKart
database with the customer.

Match Customer to ERP
KonaKart to ERP.

The purpose of this message is for KonaKart to inform the ERP system of the KonaKart customer identifier
generated when a customer is exported from the ERP system and registered in KonaKart.

<matchCustomer>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <customerId>ERP007</customerId>
 <kkCustomerId>44</kkCustomerId>
 </body>
</matchCustomer>

Mandatory Attributes

customerId This attribute should contain the unique identifier used by the ERP system to
identify the customer.

KonaKart ERP Integration

277

kkCustomerId This attribute should contains a unique numeric identifier for the customer. It
is generated by KonaKart when the customer registers.

Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

storeId The id of the KonaKart virtual store

Order Export to ERP
KonaKart to ERP.

This message is sent by KonaKart whenever an order is placed on on the online store.

This is a large message so in the following pages it is split up for readability with comments on the Manda-
tory and Optional fields inserted at appropriate points. Each of the following message parts can be com-
bined to form one single orderExport message.

<orderExport>
 <time>15:27:53 03032015</time>
 <version>1.0</version>
 <storeId>store1</storeId>
 <body>
 <kkOrderId>55</kkOrderId>
 <orderNumber>32634/2015</orderNumber>
 <kkLifecycleId>c53a3c97-b3b4-443d-9dcc-cdcfc9d06214</kkLifecycleId>
 <orderState>7</orderState>
 <creationDate>16:19:46 03032015</creationDate>
 <kkCustomerId>67</kkCustomerId>
 <customerId>W0000067</customerId>
 <customerLocale>en_GB</customerLocale>
 <currencyCode>GBP</currencyCode>
 <currencyValue>1.36</currencyValue>
 <paymentMethod>Credit Card</paymentMethod>
 <paymentModuleCode>authorizenet</paymentModuleCode>
 <paymentModuleSubCode>paymentModuleSubCode</paymentModuleSubCode>
 <pointsAwarded>150</pointsAwarded>
 <pointsUsed>20</pointsUsed>
 <couponIds>23</couponIds>
 <promotionIds>12</promotionIds>
 <affiliateId>affiliateId</affiliateId>
 <invoiceFileName>32634-2015.pdf</invoiceFileName>
 <shippingModuleCode>fedex</shippingModuleCode>
 <shippingServiceCode>overnight</shippingServiceCode>
 <orderCreator>21</orderCreator>
 <storeName>multi-vendor store name</storeName>
 <kkParentOrderId>66</kkParentOrderId>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 <custom6>custom6</custom6>
 <custom7>custom7</custom7>
 <custom8>custom8</custom8>
 <custom9>custom9</custom9>
 <custom10>custom10</custom10>
 <custom11>custom11</custom11>
 <custom12>custom12</custom12>
 <custom13>custom13</custom13>
 <custom14>custom14</custom14>
 <custom15>custom15</custom15>
 <custom16>custom16</custom16>

KonaKart ERP Integration

278

Simple Mandatory Attributes

kkOrderId A unique numeric id for the order assigned by KonaKart when the order is
saved in the KonaKart database.

orderState An integer identifying the state of the order. The order states may be defined
in the KonaKart database using the KonaKart Admin App.

creationDate The date the order was created in the format HH:mm:ss ddMMyyyy.

customerLocale The customer's locale in the format en_GB.

currencyCode The ISO 4217 Currency Code (e.g. USD, EUR, GBP).

paymentMethod The method used for payment. The value of this attribute is defined by the
KonaKart payment module written to support the chosen payment gateway.

paymentModuleCode The code of the KonaKart payment module. A store may have more than one
payment modules. e.g. There could be a credit card payment module, a cash on
delivery payment module, a pick up in store payment module etc.

shippingModuleCode The code of the KonaKart shipping module. A store may have more than one
shipping module. e.g. There could be a database table driven module with fixed
costs based on order weight for domestic orders and an interface to a web ser-
vice like FedEx for international orders.

orderCreator The numeric KonaKart id of the customer making the order.

Simple Optional Attributes

time Time message was created in format HH:mm:ss ddMMyyyy

version The version of the interface being used

orderId The id of the KonaKart virtual store

storeNumber A unique order number identifying the order. Depending on how this number
is assigned, it may not be present when KonaKart exports the order because it
may be assigned by the ERP.

kkLifecycleId This is a unique UUID assigned to the order by KonaKart. It is present even
before the order is saved in the KonaKart database.

customerId This attribute may be present if the customer has been assigned an id by the
ERP or if there is an algorithm that KonaKart can use to create the ID. e.g.
create an ID of W0000067 from the KonaKart id of 67.

currencyValue Only present if this has been set on the KonaKart currency. It is used to translate
currencies.

paymentModuleSub-
Code

Only present for certain payment gateways that support multiple payment meth-
ods, each of which has a code.

pointsAwarded Only present if reward points is enabled in the storefront and the customer was
awarded points for the order.

pointsUsed Only present if reward points is enabled in the storefront and the customer used
points to pay or partially pay for the order.

couponIds If one or more coupon codes were used, this attribute contains the KonaKart
numeric coupon ids separated by commas.

promotionIds If one or more promotions were used, this attribute contains the KonaKart nu-
meric promotion ids separated by commas.

affiliateId Can be used to contain the id of an affiliate partner.

KonaKart ERP Integration

279

invoiceFileName Can be used to contain the file name of the invoice for the order.

shippingServiceCode Some shipping modules (especially the service based ones) may return multiple
options such as overnight shipping, or 2-day shipping etc.

storeName Only used in multi vendor mode where the order is a vendor order containing
only the products which the vendor needs to ship. It has a parent which is the
main order containing all of the order items.

kkParentOrderId Only used in multi vendor mode where the order is a vendor order containing
only the products which the vendor needs to ship. It has a parent which is the
main order containing all of the order items. The attribute contains the Kon-
aKart order id of the parent order.

custom1-custom16 Custom attributes that may contain any custom data saved in the KonaKart
database with the order.

 <customerAddress>
 <kkAddressId>23</kkAddressId>
 <name>Peter Smith</name>
 <company>ACME Inc</company>
 <address1>Rose Cottage</address1>
 <address2>32 High Street</address2>
 <address3>MayBank</address3>
 <city>Newcastle</city>
 <state>Staffordshire</state>
 <postcode>ST5 ORT</postcode>
 <ISO3CountryCode>GBR</ISO3CountryCode>
 <ISONumericCountryCode>123</ISONumericCountryCode>
 <telephone1>01782765334</telephone1>
 <telephone2>335624599</telephone2>
 <email>peter.smith@acme.com</email>
 </customerAddress>
 <billingAddress>
 <kkAddressId>23</kkAddressId>
 <name>Peter Smith</name>
 <company>ACME Inc</company>
 <address1>Rose Cottage</address1>
 <address2>32 High Street</address2>
 <address3>MayBank</address3>
 <city>Newcastle</city>
 <state>Staffordshire</state>
 <postcode>ST5 ORT</postcode>
 <ISO3CountryCode>GBR</ISO3CountryCode>
 <ISONumericCountryCode>123</ISONumericCountryCode>
 <telephone1>01782765334</telephone1>
 <telephone2>335624599</telephone2>
 <email>peter.smith@acme.com</email>
 </billingAddress>
 <deliveryAddress>
 <kkAddressId>23</kkAddressId>
 <name>Peter Smith</name>
 <company>ACME Inc</company>
 <address1>Rose Cottage</address1>
 <address2>32 High Street</address2>
 <address3>MayBank</address3>
 <city>Newcastle</city>
 <state>Staffordshire</state>
 <postcode>ST5 ORT</postcode>
 <ISO3CountryCode>GBR</ISO3CountryCode>
 <ISONumericCountryCode>123</ISONumericCountryCode>
 <telephone1>01782765334</telephone1>
 <telephone2>335624599</telephone2>
 <email>peter.smith@acme.com</email>
 </deliveryAddress>

Complex Mandatory Attributes - Addresses

KonaKart ERP Integration

280

Each order contains three address sections which may all contain different addresses for Customer, Billing
and Delivery Addresses.

Mandatory Attributes - Addresses

name The person's name.

address1 The first line of the street address.

city The person's city

state The person's state.

postcode The person's postcode.

ISO3countryCode or
ISONumericCoun-
tryCode

Either the 3 letter ISO country code or the ISO numeric country code should
be present.

email The email address of the person (only mandatory for the Customer address, not
the Billing address or Delivery address).

Optional Attributes - Addresses

kkAddressId The numeric id of the KonaKart address. Only useful for immediate use since
the registered customer may remove the address from his address book.

company The person's company.

address2 The second line of the street address.

address3 The third line of the street address.

telephone1 The person's primary telephone number.

telephone2 The person's other telephone number.

 <lineItems>
 <lineItem>
 <kkProductId>45</kkProductId>
 <productSKU>DLI-4567</productSKU>
 <productName>De'Longhi BCO 410</productName>
 <productModel>DLBCO410</productModel>
 <singleProductWeight>15.6</singleProductWeight>
 <quantity>2</quantity>
 <discountPercent>20.00</discountPercent>
 <totalPriceExTax>20.00</totalPriceExTax>
 <totalPriceIncTax>24.00</totalPriceIncTax>
 <totalTax>4.00</totalTax>
 <taxCode>taxCode</taxCode>
 <refundValue>19.20</refundValue>
 <refundPoints>100</refundPoints>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 <custom6>custom6</custom6>
 <custom7>custom7</custom7>
 <custom8>custom8</custom8>
 <custom9>custom9</custom9>
 <custom10>custom10</custom10>
 </lineItem>
 </lineItems>

Complex Mandatory Attributes - Line Items

Each order contains a line item for each product type ordered. There must be at least one line item.

KonaKart ERP Integration

281

Mandatory Attributes - Line Items

kkProductId The KonaKart numeric product id.

productSKU The product SKU which is understood by the ERP system.

productName The name of the product.

productModel The model of the product.

quantity The quantity bought.

totalPriceExTax The total price of the line item (unit price x qty) excluding tax.

totalPriceIncTax The total price of the line item (unit price x qty) including tax.

totalTax The total tax for the line item.

Optional Attributes - Line Items

singleProductWeight The weight of a single product.

discountPercent Used for tier pricing.

taxCode The tax code used for the product.

refundValue The final unit price of a product having taken into account all discounts. May
be used to calculate refunds.

refundPoints The number of points allocated for a single product. May be used to calculate
refunds. Default value is -1 (not set).

custom1-custom10 Custom attributes that may contain any custom data saved in the KonaKart
database with the line item.

 <orderTotals>
 <orderTotal>
 <title>Sub-Total</title>
 <text>£24.00</text>
 <value>24.00</value>
 <className>ot_subtotal</className>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 </orderTotal>
 <orderTotal>
 <title>Flat Rate Shipping</title>
 <text>£5.00</text>
 <value>5.00</value>
 <className>ot_shipping</className>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 </orderTotal>
 <orderTotal>
 <title>Total</title>
 <text>£29.00</text>
 <value>29.00</value>
 <className>ot_total</className>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 </orderTotal>
 </orderTotals>

Complex Mandatory Attributes - Order Totals

KonaKart ERP Integration

282

Each order normally contains a number of order totals for things like sub total, shipping, promotion dis-
count, total etc.

Mandatory Attributes - Order Totals

title Typically displayed on the order. Contains text like Total, Shipping, Sub Total
etc.

text A formatted representation of the amount. e.g €23.45 or £34.56

value A numeric representation of the amountt e.g. 23.45 or 34.56

className This identifies the order total module used to generate the order total.

Optional Attributes - Order Totals

promotionId When the Order Total contains the result of a promotion, it holds the promotion
id.

discountAmount The discount amount defined by the promotion. Only present when the order
total contains the results of a promotion and the promotion defines a discount
amount rather than a discount percentage.

discountPercent The discount percentage defined by the promotion. Only present when the order
total contains the results of a promotion and the promotion defines a discount
percentage rather than a discount amount.

custom1-custom5 Custom attributes that may contain any custom data saved in the KonaKart
database with the order total.

 <statusHistory>
 <status>
 <kkOrderStatusId>1</kkOrderStatusId>
 <updatedBy>5</updatedBy>
 <date>18:54:00 03032015</date>
 <customerNotified>false</customerNotified>
 <comments/>
 </status>
 <status>
 <kkOrderStatusId>5</kkOrderStatusId>
 <updatedBy>5</updatedBy>
 <date>18:54:00 03032015</date>
 <customerNotified>true</customerNotified>
 <comments>
 Authorize.net payment successful.
 Authorize.net TransactionId = 27364
 </comments>
 </status>
 </statusHistory>

Complex Mandatory Attributes - Status History

A status record is added to the order every time the status changes. When the order is exported it will
already have a minimum of one status record associated with it.

Mandatory Attributes - Status History

kkOrderStatusId An integer identifying the state of the order. The order states may be defined
in the KonaKart database using the KonaKart Admin App.

date The date / time the state was changed in format HH:mm:ss ddMMyyyy

customerNotified True if an email was sent to the customer for the state change.

Optional Attributes - Status History

KonaKart ERP Integration

283

updatedBy The id of the KonaKart user that caused the state change.

comments Any comments can be added to accompany the state change.

 <paymentHistory>
 <payment>
 <transactionDate>16:19:46 03032015</transactionDate>
 <transactionAmount>99.99</transactionAmount>
 <kkResult>0</kkResult>
 <kkResultDescription>Transaction OK</kkResultDescription>
 <gatewayResult>1 - This transaction has been approved.</gatewayResult>
 <gatewayFullResponse>gatewayFullResponse</gatewayFullResponse>
 <gatewayTransactionId>0</gatewayTransactionId>
 <gatewayCaptureId>2207759569</gatewayCaptureId>
 <gatewayCreditId>2207759568</gatewayCreditId>
 <moduleCode>authorizenet</moduleCode>
 <custom1>custom1</custom1>
 <custom2>custom2</custom2>
 <custom3>custom3</custom3>
 <custom4>custom4</custom4>
 <custom5>custom5</custom5>
 </payment>
 </paymentHistory>
 </body>
</orderExport>

Complex Mandatory Attributes - Payment History

If the customer has paid by credit card through a payment gateway, KonaKart will have captured payment
details returned by the payment gateway. The Payment History section may consist of more than one
payment object because the customer may make multiple attempts to pay (e.g. using different credit cards)
until payment was successful.

transactionDate The date / time of the transaction in format HH:mm:ss ddMMyyyy

transactionAmount The amount of the transaction.

kkResult The KonaKart result. The value is 0 if the transaction was successful regardless
of the outcome. e.g. A KonaKart value of 0 means that the communication
with the gateway was successful even if the credit card wasn't accepted by the
gateway.

kkResultDescription A description of the KonaKart result.

gatewayResult The result from the gateway which determines whether the credit card was ac-
cepted or not. The value will depend on the actual gateway.

gatewayFullResponse The full response received from the payment gateway. Useful for auditing pur-
poses.

gatewayTransactionId The payment gateway transaction id.

moduleCode The code of the KonaKart module used to communicate with the payment gate-
way.

Optional Attributes - Payment History

gatewayCaptureId May contain a value if the gateway was used to reserve the funds on the credit
card. The captureId is transmitted to the payment gateway in another transac-
tion (typically when the goods are shipped) in order to actually deduct the funds
from the credit card.

gatewayCreditId May contain a value that can be used to refund an amount to the customer if
the products are returned.

KonaKart ERP Integration

284

custom1-custom3 Custom attributes that may contain any custom data saved in the KonaKart
database by the payment module.

Update Object
KonaKart to ERP.

The purpose of this message is to inform the ERP system that a KonaKart object has been modified,
inserted or deleted. It allows the ERP system to use the KonaKart APIs to read the updated objects.

For Customers, a message is sent when the following events occur:

• When a customer registers using the Storefront Engine.

• When a customer updates his personal information using the Storefront Engine.

• When a customer updates his primary address using the Storefront Engine.

• When an administrator registers a customer using the Admin Engine.

• When an administrator updates customer information using the Admin Engine.

• When an administrator updates a customer’s primary address using the Admin Engine.

• When an administrator deletes a customer using the Admin Engine.

For Orders, a message is sent when the following events occur:

• When an order is saved using the Storefront Engine.

• When the state of an order is changed using the Storefront Engine.

• When the state of an order is changed using the Admin Engine.

Note that for orders, the code that sends the message is in the Order Integration Managers, and by default,
the message is only sent when the order is in the Payment Received state.

For Products, a message is sent when the following events occur:

• A product is inserted, edited or deleted.

• The product quantity is changed using setProductQuantity() or setProductQuantityWithOptions().

<updateObject>
 <storeId>store1</storeId>
 <time>16:50:07 26022015</time>
 <version>1.0</version>
 <body>
 <objectType>1</objectType>
 <operationType>2</operationType>
 <kkObjectId>88</kkObjectId>
 <objectId1>ABC</objectId1>
 <objectId2>XYZ</objectId2>
 <value1>32</value1>
 <value2></value2>
 </body>
</updateObject>

Mandatory Attributes

objectType Integer used to identify the object:

KonaKart ERP Integration

285

1. Order

2. Customer

3. Product

operationType Integer used to identify the type of CRUD operation:

1. Create

2. Update

3. Delete

kkObjectId The numeric id of the KonaKart object

Optional Attributes

objectId1 Additional identifier that can be used by the ERP to identify the object.

• For object type 3, it contains the product SKU if available.

objectId2 Additional identifier that can be used by the ERP to identify the object.

• For object type 3, it contains the catalog id if available.

value1 Optional value to simplify the processing of the message.

• For object type 3, it contains the new quantity of the product if the API call
setProductQuantity() or setProductQuantityWithOptions() was called.

• For object type 1, it contains the numeric state of the order.

value2 Optional value to simplify the processing of the message.

Installation and Configuration
By default, after an installation of the Enterprise version of KonaKart, the ERP Integration features will
be disabled so that no integration will occur.

A number of components need to be configured correctly in order for the ERP Integration features to
enabled.

Incoming Message Processor
This processor should be started and configured in the web.xml file of the konakartadmin webapp. The
following is an example of this section of the web.xml file that has been uncommented:

<!-- Incoming Message Processor -->
<servlet>
 <description>Servlet that reads an MQ queue looking for incoming messages</description>
 <servlet-name>ERPIncomingMsgProcessor</servlet-name>
 <servlet-class>com.konakartadmin.servlet.ERPIncomingMsgProcessor</servlet-class>
 <load-on-startup>200</load-on-startup>
</servlet>
<!-- End of Incoming Message Processor -->

The ERP Incoming Message Processor uses the following parameters for initialisation. These are defined
in the konakartadmin.properties file.

KonaKart ERP Integration

286

The konakart.engineMode (this is the engine mode), konakart.customersShared ,
konakart.productsShared and konakart.categoriesShared are used when the incoming message processor
creates engines to process the incoming messages from the ERP system. It's essential that these values
match the rest of the KonaKart system. In fact, the wizard installer should set these values correctly at
installation time but this won't be the case if the system was installed manually.

The konakart.KKAdminIfImplClassName parameter gives you the opportunity to define an alternative Ad-
min engine. This may be required if, for example, you need to run a custom admin engine to process the
incoming messages.

The konakart.KKEngPropertiesFile parameter must contain the full path of the konakart.properties file.
This is required by the KonaKart KKEngIf engine (which the incoming message processor creates) to
operate correctly. Having a reference to a single copy of the konakart.properties file is designed to make
the system as a whole easier to maintain.

Apache ActiveMQ
Messages from external ERP systems are communicated to KonaKart via the Apache ActiveMQ message
queue. The incoming message processor reads the incoming messages from the message queue (the default
queue name is KonaKart.ERP.Q) and then processes the contents for KonaKart. Hence, it is essential that
the Apache ActiveMQ message queue is correctly configured and enabled.

By default KonaKart expects a queue for each store called KonaKart.store1.Q (for store1) and
KonaKart.store2.Q (for store2) which are used for sending messages to the respective store ERP systems.
The remote ERP systems read messages posted on these queues.

Links need to be defined between the brokers to ensure messages are distributed correctly. These defini-
tions are specified in the konakart.properties file for the embedded brokers in KonaKart and in the standard
activemq.xml configuration files for the remote brokers..

An example of the network connection set-up to support these two queues is as follows (in the
konakart.properties file for the embedded brokers in KonaKart):

Message Queue Configuration

konakart.mq.broker.uri = tcp://localhost:8791
konakart.mq.username = kkuser
konakart.mq.password = prince
konakart.mq.orders.queue = KonaKart.Orders.Queue

konakart.mq.ERP.queue = KonaKart.ERP.Q

Extended Configuration for Network / Broker / Queue Configurations
If these are set, by uncommenting, NetworkConnections are set up with the specified
statically-defined Queue and credentials

konakart.mq.connector.store1.uri = static:(tcp://localhost:61616)
konakart.mq.connector.store1.queue = KonaKart.store1.Q
konakart.mq.connector.store1.user = user_store1
konakart.mq.connector.store1.password = prince_store1

konakart.mq.connector.store2.uri = static:(tcp://localhost:61617)
konakart.mq.connector.store2.queue = KonaKart.store2.Q
konakart.mq.connector.store2.user = user_store2
konakart.mq.connector.store2.password = prince_store2

The Extended Configurations are required to set up the queue connections in the embedded broker that
runs by default inside the konakart webapp.

KonaKart ERP Integration

287

Similar network connection configurations will be required in other Apache MQ brokers you have in your
network topology. These will be defined in the activemq.xml files for each broker. You will need to define
network connections like these:

<networkConnectors>
 <networkConnector name="NC-Store1-To-KK1"
 uri="static:(tcp://localhost:8791)"
 staticBridge="true"
 userName="user_store1"
 password="prince_store1"
 conduitSubscriptions="false">
 <staticallyIncludedDestinations>
 <queue physicalName="KonaKart.ERP.Q"/>
 </staticallyIncludedDestinations>
 </networkConnector>
</networkConnectors>

The following configurations need to be set in the konakartadmin.properties file (this is located, by default,
in the classes directory of the konakartadmin webapp):

Message Queue Configuration

konakart.mq.broker.uri = tcp://localhost:8791
konakart.mq.username = kkuser
konakart.mq.password = prince
konakart.mq.orders.queue = KonaKart.Orders.Queue

The Queue that the Incoming Message Processor reads to process messages from the
ERP system. The default is KonaKart.ERP.Q
#konakart.mq.ERP.queue = KonaKart.ERP.Q
konakart.mq.ERP.read.frequency.secs = 30
konakart.mq.ERP.read.timeout.secs = 10

This defines the number of seconds the Incoming Message Processor will sleep before
reading the queue for the first time.
#konakart.mq.ERP.initial.pause.secs = 10

The polling frequency and timeout for the Incoming Message Processor can be set in the
konakart.mq.ERP.read.frequency.secs and konakart.mq.ERP.read.timeout.secs properties respectively.
Note that these quantities are specified in seconds.

The initial pause before reading the Incoming Message Queue for the first time can be set in the
konakart.mq.ERP.initial.pause.secs property. This can be useful to delay the commencement of the queue
reads until other parts of the system (in other webapps) are up and running. It's not critical to delay the
start of the reads but it can stop connection failure exceptions at start-up as different parts of the system
start-up at slightly different times.

The konakart.mq.ERP.queue property defaults to KonaKart.ERP.Q so in most cases this can be left com-
mented out.

Please refer to the Message Queue Set-up section of this User Guide for more information on enabling
and configuring Apache ActiveMQ for KonaKart.

ERP Integration - Configuration Parameters
The ERP Integration can be configured to meet your requirements by editing a set of configuration param-
eters that are made available on a panel under the Configurations section of the KonaKart Admin Console.

The panel is named ERP Integration and contains the following parameters:

KonaKart ERP Integration

288

The title of each variable has float-over help text to provide an explanation of the use and purpose of each
parameter. Note that the variables must be set for each store.

As with other panels in the KonaKart Admin Console more information can be found by clicking on the
Help icon on the panel.

For each store you must define two log directories, one for incoming messages that have been processed
correctly and one for messages that have failed for some reason.

If an email address is entered for failed messages, every time a failed message log is produced, it will
be emailed to this address as a log.txt attachment. Note that the address must be that of a person reg-
istered in the KonaKart system. The velocity template for the failed message log email is defaulted to
ERPIntegrationErrorNotification_en.vm which is the template available in the kit. Each store may have
a different template.

The exportInvoice message from the ERP system may or may not contain an invoicePath attribute. If this
attribute is left empty then KonaKart expects the ERP Invoice Path configuration variable to contain the
path of the directory where the PDF Invoice files may be found.

The velocity template for the email sent to customers containing the invoice as an attachment is defaulted
to ERPIntegrationOrderInvoice_en.vm which is the template available in the kit. Each store may have a
different template.

ERP Integration - OrderIntegrationMgr
In order for messages to be sent to the ERP system at appropriate times, it is necessary to make modi-
fications to the OrderIntegrationMgr. These will be added to the OrderIntegrationMgr from v8.3.0.0 of
KonaKart but you will need to merge these changes into your version of the OrderIntegrationMgr if you
have previously made changes to it and are upgrading. (Note the addition of the calls to exportOrder in
changeOrderStatus and saveOrder).

KonaKart ERP Integration

289

ERP Integration - Logging
In order to gain visibility on the ERP Integration processing within KonaKart the following log flags can
be useful:

<!-- KonaKart ERP Integration -->
<Logger name="com.konakart.bl.ExportMgrEE" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakart.io.bl" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.bl.AdminImportMgrEE" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.bl.ERPQueueReader" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.bl.AdminServletMgrEE" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.servlet.ERPIncomingMsgProcessor" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<Logger name="com.konakartadmin.servlet.ERPIncomingMsgProcessor" level="DEBUG" additivity="false">
 <AppenderRef ref="STDOUT"/>
</Logger>
<!-- End of KonaKart ERP Integration -->

To monitor messages in the Active MQ queues you can use any compatible queue monitoring tool such
as the one provided by hawtio (see http://hawt.io/ for more information).

290

Chapter 21. Custom Validation
Configuring the Validation used in KonaKart.

Custom Validation for the Store-Front
This section defines how you configure the custom validation for the KonaKart application

Configuring validation on data entered through the UI

The forms in the storefront application use jQuery validation to provide JavaScript based validation which
doesn't require a screen refresh.

The internationalized validation error messages are retrieved from the message catalog and are defined in
MainLayout.jsp . The message keys are all prefixed with jquery.validator .

The validation criteria for the form fields are found within the JavaScript file called kk.validation.js . After
installation, this file may be found in the KonaKart\webapps\konakart\script directory.

Custom Validation for the Admin Application
This section defines how you configure the custom validation for the KonaKart Admin application

CustomValidaton.properties file

From release 2.2.3.0 of KonaKart it is possible to modify the default field validation in certain parts of
the Admin App.

A new properties file is provided, called CustomValidation.properties. You will find this in the classes
directory of the konakartadmin webapp.

The format and description of this file is defined within the file itself, but an extract is as follows:

Custom Validation

291

--
#
K O N A K A R T C U S T O M V A L I D A T I O N
#
--
Parameters to define custom validation in the KonaKart Admin App
--

--
If no custom validations are defined (or this file is removed) the
default validation rules are used in the KonaKart Admin App.
#
If you define custom validations in this file they will override
the default rules defined in the KonaKart Admin App.
Therefore, you only need to define the custom validation rules
that are different to the defaults.
--

--
If your intention is to increase the number of characters allowed
in the database for a certain quantity, you will have to modify
the characteristics of that column in the database first. If you
then wish to validate the attribute in the KonaKart Admin App to
allow for the increased column width... you also need to add your
custom validation to this file
--

--
Format:
#
ClassName.Attribute = [min];[max]
#
If min or max are not specified they will not be checked.

Therefore, if you wanted to change the validation on the Product SKU field in the Admin App, you would
specify:

Product.sku = 1;18

Fields Supported by Custom Validation
Only a certain subset of fields can have their validation overridden in this way, but if you need other fields
to be made available for validation please get in touch with support at KonaKart.

All of these fields currently supported are listed in the CustomValidation.properties file. By default they
are commented out.

CustomValidaton Using a Custom Engine
If you have validation requirements that cannot be satisfied using the simpler properties-file-based tech-
niques described above you can add custom validation using a Custom KKAdmin engine.

In order to do this you need to know which APIs are called when you save a record in the Admin App.
Which API is used is usually obvious from the name (eg. editCustomer, updateCustomer etc) but if not
you can establish this by enabling the DEBUG logging on the konakartadmin webapp. Once you know the
interface move the Custom Engine implementation java source file from the "custom/adminengine/gensrc"
directory tree to the "custom/adminengine/src" tree and rebuild your custom engine. Refer to the "Engine
Customization" section in the User Guide for details).

Custom Validation

292

For example, if you want to add some validation before saving an Order you should move ".\custom\admi-
nengine\gensrc\com\konakartadmin\app\UpdateOrder.java" to ".\custom\adminengine\src\com\konakar-
tadmin\app\UpdateOrder.java". (Other Order-saving APIs may also need to be moved and customised de-
pending on what's being saved).

Having moved the source file you need to add your validation code. An example is:

public void updateOrder(String sessionId, int orderId, int orderStatus, String comments,
 boolean notifyCustomer, AdminOrderUpdate updateOrder)
 throws KKAdminException
{
 /**
 Add your custom validation before the record is saved by updateOrder.
 */

 if (Your_Own_Custom_Validation(orderId) == false)
 {
 // Validation failed so we throw an exception back to the Admin App
 throw new KKAdminException("Validation Exception", true /* hideMoreDetails button */);
 }

 /**
 Process normally because the validation was successful.
 */

 kkAdminEng.updateOrder(sessionId, orderId, orderStatus, comments, notifyCustomer,
 updateOrder);
}

Note that when throwing an exception in your custom engine code you have the choice to "HideMoreDe-
tails" (see the throw statement in the example above). This allows you to hide the default "More Details"
button on the error message dialog box in the Admin App when this exception is caught. This allows you
to hide technical validation details from the user (that are displayed by default when the "More Details"
button is clicked) if you so wish.

293

Chapter 22. Custom Product Attributes
and Miscellaneous Items

This chapter describes how to use Custom Attributes, Miscellaneous Items and Product Description Cus-
tom Fields

Using Custom Product Attributes
This section shows you how to create manage and display custom product attributes.

What types of Custom Attributes can be added to a
product?

Every product in KonaKart can be assigned two types of custom attributes and an array of miscellaneous
items. The custom attributes may be maintained in the Custom tab folder of the Edit Product Panel. The
attributes in the Custom Attributes sub folder are mapped to database table attributes in the product table.
This means that they can be added as constraints to product search queries and used to order the result of a
search. The custom attributes consist of 10 strings, 2 integers and 2 decimal fields. Note that in the Admin
App the labels for the entry fields may be customized using the message catalog.

The attributes in the Template Attributes sub folder are defined using the Custom Attributes and Custom
Attribute Templates panels. These attributes have associated metadata which is used to:

• Decide what widget to use when entering data using the Admin App

• Store validation rules used by the Admin App to validate entered data.

• Store a message catalog key for each attribute.

• Store an attribute type and template used by the storefront application to dynamically detect the type of
data being displayed and how to display it using the template.

• Custom fields which may be used by the storefront application to display the data. i.e. to group the
custom attributes.

When saved, these attributes are encoded into an XML structure and saved within a single database at-
tribute of the product table. This means that they may not be used as constraints for searching for products
or ordering the array of products returned by a search.

Whenever a product is returned by an API call of the Admin or Application engine, these attributes are
attached to the product within an array. Each element within the array contains the name, type and value
of the attribute. It may also contain the template, message catalog key and custom fields if these have
been defined.

The miscellaneous items are objects that have a type and a type description as well as a value. They can
be used to add an array of items to any product or category. For example you may want to associate a
product with a number of documents. In this case you define a "document" miscellaneous item type and
a miscellaneous item (of type document) for each document.

Custom Product Attributes
and Miscellaneous Items

294

Creating a Custom Attribute Definition and adding it to a
Template

Custom attributes definitions may be managed using the Custom Attributes panel of the Admin App. The
panel allows you to create new and manage existing attributes. Each custom attribute definition has the
following attributes:

• Name: The unique name of the custom attribute which is a compulsory field. i.e. ScreenSize or MegaPix-
els etc.

• Type: You may choose types from a drop list. This information may be used by the storefront application
when displaying the attribute value. i.e. If it knows the type of attribute it may decide what template
to use in order to display it.

• Set Function: This is used by the Admin App when creating a UI widget to insert the custom attribute
value once it has been added to a product. Valid Set Functions are:

• integer(min,max) where min and max may be numbers or set to null. i.e. integer(10,null) checks that
the integer has a minimum value of 10 or above. integer(null,null) just checks that the value entered
is an integer without doing any range checking.

• double(min,max) using the same logic as explained above for decimal numbers.

• string(min,max) using the same logic as explained above for the length of the string.

• choice('true','false') creates a radio button panel with the options of true and false.

• choice('label.small','label.medium','label.large') creates 3 radio buttons where the labels are looked up
in a message catalog. In this case, the text displayed is looked up from the message catalog, whereas
the values saved are always label.small, labl.medium and label.large regardless of the language.

• choice('S'='label.small','L'='label.large') creates 2 radio buttons where the labels are looked up in a
message catalog. In this case, the text displayed is looked up from the message catalog, whereas the
values saved are the associated values (eg. 'M' or 'L' in this example).

• option(0=date.day.long.Sunday,1=date.day.long.Monday,2=date.day.long.Tuesday) creates a drop
list for the first 3 days of the week. The text of the days displayed is retrieved from the message
catalog whereas the saved data is 0 for Sunday, 1 for Monday and 2 for Tuesday.

• multiselect(0=date.day.long.Sunday,1=date.day.long.Monday,2=date.day.long.Tuesday) creates a
group of check boxes for the first 3 days of the week. The text of the days displayed is retrieved
from the message catalog. The difference between multiselect and option is that with the multiselect
multiple options are saved in a comma-separated list. For example in this case the saved data would
be 0 for Sunday, 0,1 for Sunday and Monday and 1,2 for Monday and Tuesday etc.

• RichText(x) where x defines the vertical size (in elements) of the Rich Text data entry widget. (e.g.
RichText(10) for a size of 10em)

• Template: The template contains a string that may be used by the storefront application to display the
value. i.e. In the case of a date, the storefront application could detect that it is a date from the type and
then use the template to display the date correctly.

• Msg Cat Key: This is used by the storefront and Admin applications to look up the label from the
message catalog. If not present, the name may be used.

Custom Product Attributes
and Miscellaneous Items

295

• Validation: This may contain regular expression such as true|false or [0-9]* which will be used by the
admin app to validate the attribute.

• Custom Fields: The custom fields may contain any metadata for the attribute which can be used by the
storefront application. i.e. A custom field may contain data useful for grouping custom attributes.

The default demo database comes complete with a number of example custom attribute definitions.

Custom attribute definitions may be used by more than one template. In order to assign an attribute to a
product, it first needs to be added to a template since a product is assigned a template and not an array of
custom attributes. Templates are managed using the Custom Attribute Templates panel. Once a template
has been created, it may be assigned a number of custom attributes using a pop-up select panel. The order
in which the attributes are assigned to the template is important since this will be the order of the custom
attributes within the attribute array attached to a product.

Entering Template based Custom Attribute data for a
Product

In the Details folder of the Edit Product Panel, through the use of a pop-up panel, one or more templates
may be chosen for a product. Note that the changes only take effect once the pop-up panel has been closed
and the save button has been clicked. If any of the chosen templates has a number of custom attribute
definitions then an equivalent number of custom fields will appear in the Template Attributes sub folder
of the Custom folder. These entry fields which may include drop lists and radio buttons, allow you to enter
the custom values for each product. The entry fields for the first template in the list are displayed first,
followed by those of the second template etc.

When the product is saved, the custom field data is encoded within an XML structure and saved within
an attribute of the product table in the database.

Displaying the custom data in the storefront Application

If a product includes custom template data, when fetched from the KonaKart Application engine, it will
contain an instantiated customAttrArray with the custom attribute values and metadata. Note that the prod-
uct will also contain an attribute called customAttrs that represents the XML of the custom data. If pre-
ferred, you may display the custom data directly from the XML.

Miscellaneous Items
The Admin App contains a panel for maintaining miscellaneous item types, and one for miscellaneous
items. Miscellaneous items will typically be documents or videos that you want to associate with a product
or category. Each product or category can have an unlimited number of miscellaneous items which are
returned in an array connected to the object. When using an API call that returns an array of products, you
can define in the DataDescriptor object whether you want the miscellaneous items to be populated or not.
When returning a single product or category, the array is populated by default.

The miscellaneous item type panel allows you to define item types where the name and description of the
type needs to be entered for all supported languages. Once item types have been defined, you can then
insert the miscellaneous items for a product or category by clicking on the "Misc Items" button in the
Products or Categories panel after having selected a product or category.

Custom Product Attributes
and Miscellaneous Items

296

Product Description Custom Fields
From v6.6.0.0 of KonaKart is is possible to use custom fields as part of Product Descriptions. The advan-
tage of these custom fields is that they can be defined for each language you support in the system (as with
the other attributes on Product Descriptions such as Name, Description, URL etc).

By default these custom fields are created to use very little space in the database. The reason for this is
to optimise overall KonaKart performance for those users who do not wish to use these fields. For those
users who do wish to use these fields and need them to be able to hold more data in each field it is possible
to increase the size of these columns in the database as required. All that is required is to execute an SQL
statement appropriate for the database you are using. Therefore, to enlarge customd4 to 2000 bytes for a
MySQL database you should execute:

ALTER TABLE products_description MODIFY customd4 VARCHAR(2000);

Having extended the sizes of the these columns the KonaKart APIs will continue to work in the same way
- except that they will return the extended data items from these columns.

By default the product description custom fields are not displayed in the Admin App. To maintain these
product description custom fields in the Admin App you need to enable the "showing" of these using File-
Based Configuration (Enterprise-Only - in the konakartadmin_gwt.properties file). You can enable all of
the custom fields or just the fields that you require:

Product Description Custom fields are all hidden by default
The Admin App displays fields 1-3 in 1-line textboxes and fields 4-6 in multi-line edit areas.
#fbc.kk_panel_editProduct.desc.show_custom1 = true
#fbc.kk_panel_editProduct.desc.show_custom2 = true
#fbc.kk_panel_editProduct.desc.show_custom3 = true
#fbc.kk_panel_editProduct.desc.show_custom4 = true
#fbc.kk_panel_editProduct.desc.show_custom5 = true
#fbc.kk_panel_editProduct.desc.show_custom6 = true

By default the product description custom fields are validated according to their default sizes (and allowing
empty fields). To change the validation for these fields to suit your needs, set the required validation in the
CustomValidation.properties file for example (set these as required and uncomment the respective lines):

Product.desc.custom1 = 0;128
Product.desc.custom2 = 0;128
Product.desc.custom3 = 0;164
Product.desc.custom4 = 0;2000
Product.desc.custom5 = 0;2000
Product.desc.custom6 = 0;2000

297

Chapter 23. Programming Guide
A guide to programming and customizing KonaKart.

One of the most powerful aspects of KonaKart is the flexibility in the number of different ways it can be
customized. This chapter contains descriptions of some of these techniques.

Using the Java APIs
One of the most important features of KonaKart is the availability of a set of open APIs that allow you to
control KonaKart as you require as part of your IT solution. You may wish to add a different front-end for
your KonaKart shopping cart application or you may wish to integrate KonaKart with other applications
in your back office.

When you use the java APIs for whatever purpose you can be confident that they will work with future
releases of KonaKart as backwards compatibility will always be maintained (although some API calls may
be deprecated, they will not be removed).

A number of simple java sources are provided in every KonaKart download kit (you can find them under
the installation directory in a directory called java_api_examples) that demonstrate how you call the direct
POJO form of the KonaKart APIs:

To give you a flavor of the examples in the downloadable sources, here is an extract from one of them that
demonstrates how you can register a new customer using the KonaKart Admin APIs. (See the example
sources for a complete set of java files).

Programming Guide

298

// Instantiate an AdminCustomerRegistration object and set its
// attributes

AdminCustomerRegistration acr = new AdminCustomerRegistration();

// Compulsory attributes

// Gender should be set to "m" or "f" (or "x" if "Other Genders" are enabled)

acr.setGender("m");
acr.setFirstName("Peter");
acr.setLastName("Smith");

// If you do not require the birthdate, just set it to the current
// date. It is compulsory and so needs to be set.

acr.setBirthDate(new Date());
acr.setEmailAddr("peter.smith@konakart.com");
acr.setStreetAddress("23 Halden Close");
acr.setCity("Newcastle");
acr.setPostcode("ST5 ORT");
acr.setTelephoneNumber("01782 639706");
acr.setPassword("secret");

// Optional attributes

acr.setCompany("DS Data Systems Ltd.");

// Country Id needs to be set with the id of a valid country from
// the Countries table

acr.setCountryId(222);
acr.setFaxNumber("01782 639707");

// Newsletter should be set to "0" (don't receive) or "1" (receive)
acr.setNewsletter("1");

acr.setSuburb("May Bank");
acr.setState("Staffordshire");

// Optional Custom fields for customer object

acr.setCustomerCustom1("Number Plate");
acr.setCustomerCustom2("Driver's license");
acr.setCustomerCustom3("Passport");
acr.setCustomerCustom4("custom 4");
acr.setCustomerCustom5("custom 5");

// Optional Custom fields for address object

acr.setAddressCustom1("custom 1");
acr.setAddressCustom2("custom 2");
acr.setAddressCustom3("custom 3");
acr.setAddressCustom4("custom 4");
acr.setAddressCustom5("custom 5");

// Register the customer and get the customer Id

int custId = eng.registerCustomer(sessionId, acr);

System.out.println("Id of the new customer = " + custId);

Using the SOAP Web Service APIs
KonaKart has five major interface types - the direct POJO interface, the SOAP interface, and, if you have
the Enterprise Extensions version, the JSON interface, the JAXWS interface and the RMI interface. Each
of these support exactly the same interface calls. Which one you choose will depend on many factors but
the best performance is likely to come from the direct interface, whereas the SOAP, JAXWS, RMI and
JSON interfaces give greater flexibility in distributed implementations and inter-operability. Using JSON

Programming Guide

299

over low-bandwidth networks and on mobile devices will probably give the best performance in these
environments.

It's remarkably simple to use KonaKart's SOAP interfaces. Although it is easier to use the SOAP engines
that are already available in the KonaKart jars (see later for the recommended approach) if your IDE can
create client stubs from WSDL then you can use that to create your SOAP clients or, if you prefer, you
can use AXIS as in the downloadable example which follows.

There are two WSDL definitions; one for the KonaKart Application API, and the other for the KonaKart
Admin API. They can be seen at these URLs:

• http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl [http://www.konakart.com/
konakart/services/KKWebServiceEng?wsdl]

• http://www.konakart.com/konakartadmin/services/KKWSAdmin?wsdl [http://www.konakart.com/
konakartadmin/services/KKWSAdmin?wsdl]

Enable the SOAP Web Services

Since version 3.2.0.0 of KonaKart, the SOAP APIs are disabled during the installation process. The pur-
pose of this decision is to make the KonaKart engines more secure. The process for enabling the APIs is
very simple and can be achieved by running an ant target called enableWebServices in the KonaKart/cus-
tom directory as shown below. (An equivalent ANT task called enable_JSON is provided to enable JSON).

C:\KonaKart\custom>.\bin\ant enableWebServices
Buildfile: build.xml

enableWebServices:
 [echo] Allow all methods in WSDD files:

BUILD SUCCESSFUL
Total time: 0 seconds

The ant target modifies the files called server-config.wsdd present in the WEB-INF directory of the Kon-
aKart store front and admin applications. The modification is simple:

The line

<parameter name="allowedMethods" value="none"/>

is changed to

<parameter name="allowedMethods" value="*"/>

Securing the SOAP Web Services

KonaKart web services use the AXIS 1 web services framework in a standard manner. This allows you to
add handlers in the request and response pipelines of the web service message processors for a variety of
purposes. Two common examples are for web service monitoring and security.

A step-by-step guide to implementing WS-Security for the KonaKart web services is provided in the
download kits under java_soap_examples in a document called KonaKart-WS-Security.txt.

http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://www.konakart.com/konakart/services/KKWebServiceEng?wsdl
http://www.konakart.com/konakartadmin/services/KKWSAdmin?wsdl
http://www.konakart.com/konakartadmin/services/KKWSAdmin?wsdl
http://www.konakart.com/konakartadmin/services/KKWSAdmin?wsdl

Programming Guide

300

Step-by-step guide to using the SOAP APIs:

1. The SOAP examples kit that is provided in every KonaKart download kit (you can find them under
the installation directory in a directory called java_soap_examples) contains everything you need to
build a simple SOAP client from the KonaKart Application WSDL. First verify that you have the kit
in your version of KonaKart.

2. Next, ensure that KonaKart is running on your machine. After the default installation you should be
able to start KonaKart by clicking on the "Start KonaKart Server" start-up icon (on Windows) or by
executing the {Konakart Home}/bin/startkonakart.sh script (on *nix). You need KonaKart to be running
in order to get responses so your SOAP calls that you will make with the examples.

3. Check that the KonaKart server has started OK - a quick way would be to see if the application appears
at http://localhost:8780/konakart [http://localhost:8780/konakart]

4. Open up a console window and change directory to the location of the java_soap_examples, for example
this would be:

C:\> cd C:\KonaKart\java_soap_examples on Windows.

5. Ensure that the environment variable JAVA_HOME is set correctly. On Windows, a suitable setting
might be:

JAVA_HOME=C:\jdk1.6.0_22

6. Ensure that the JAVA_HOME/bin directory appears on your PATH. On Windows, this might look
something like this:

Path=C:\jdk1.6.0_22\bin;C:\WINDOWS\system32;C:\WINDOWS

{You could also check that when you issue "java -version" you get the java version you expect}

7. If you already have ANT installed, ANT_HOME is defined and ANT's bin directory is on your PATH
you can skip the next two sections. If you don't have ANT installed you can use the cut-down version
of ANT that we include in the KonaKart download kit, but you must set the following environment
variables. Ensure that the environment variable ANT_HOME is set correctly in the command shell that
you are executing (you probably don't want to change the environment variable globally). On Windows,
if you installed KonaKart to the default location (C:\Program Files\KonaKart), it would be (note the
slashes):

ANT_HOME=C:/Program Files/KonaKart/custom/bin

8. Ensure that the ANT_HOME/bin directory appears on your PATH. On Windows, this might look some-
thing like this:

Path=C:\jdk1.6.0_22\bin;C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\KonaKart\cus-
tom\bin

As a sanity check that you are set up ready to build the examples, check that you see the following
when you issue a "ant -p" command:

http://localhost:8780/konakart
http://localhost:8780/konakart

Programming Guide

301

C:\KonaKart\java_soap_examples>ant -p
Buildfile: build.xml

Main targets:

 axis_client_generation Generate client stubs from the WSDL
 build Creates the SOAP clients, compiles and runs a little example
 clean Clears away everything that's created during a build
 compile Compile the examples
 run Run the little example program
Default target: build

[The KonaKart download kit contains just enough of ANT for you to build the examples. For subsequent
development using ANT you should consider installing a complete ANT installation - check the Apache
ANT site [http://ant.apache.org/] for details]

9. Simply execute the "ant" command to compile, then run, the simple SOAP example.

If all is well you should see the following output:

C:\KonaKart\java_soap_examples>..\custom\bin\ant
Buildfile: build.xml

clean:
 [echo] Cleanup...

axis_client_generation:
 [echo] Create the KonaKart client stubs from the WSDL

compile:
 [echo] Compile the examples
 [mkdir] Created dir: C:\KonaKart\java_soap_examples\classes
 [javac] Compiling 59 source files to C:\KonaKart\java_soap_examples\classes
 [javac] Note: Some input files use unchecked or unsafe operations.
 [javac] Note: Recompile with -Xlint:unchecked for details.

run:
 [java] First the low-level version...
 [java]
 [java] There are 239 countries
 [java] There are 10 manufacturers
 [java] The default currency is: USD
 [java] 29 products found
 [java] 29 length of product array
 [java]
 [java] Next the recommended high-level version...
 [java]
 [java] There are 239 countries
 [java] There are 10 manufacturers
 [java] The default currency is: USD
 [java] 29 products found
 [java] 29 length of product array

build:

BUILD SUCCESSFUL
Total time: 10 seconds

The code is very simple; here are a couple of extracts from AxisExample.java. This is the lower-level
version:

http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/

Programming Guide

302

KKWSEngIf port = new KKWSEngIfServiceLocator().getKKWebServiceEng();

// make some example calls

Country[] countries = port.getAllCountries();
System.out.println("There are " + countries.length + " countries");

Manufacturer[] manufacturers = port.getAllManufacturers();
System.out.println("There are " + manufacturers.length + " manufacturers");

Currency curr = port.getDefaultCurrency();
System.out.println("The default currency is: " + curr.getCode());

This is the recommended higher-level version:

EngineConfigIf engConfig = new EngineConfig();
engConfig.setMode(EngineConfig.MODE_SINGLE_STORE);

KKEngIf engine = new KKWSEng(engConfig);

// make some example calls

CountryIf[] countries = engine.getAllCountries();
System.out.println("There are " + countries.length + " countries");

ManufacturerIf[] manufacturers = engine.getAllManufacturers();
System.out.println("There are " + manufacturers.length + " manufacturers");

CurrencyIf curr = engine.getDefaultCurrency();
System.out.println("The default currency is: " + curr.getCode());

Notes:

• If you've installed to a port other than 8780 and you wish to generate your client code you will have
to modify the konakart.wsdl file to match (change the port number right at the end of the file) then
re-run the client stub generation in the ANT file as above.

• If you've installed to a port other than 8780 but do not wish to generate your client code (as
in the case of using the recommended higher-level technique) you will have to modify the
konakart_axis_client.properties and konakartadmin_axis_client.properties file to define your SOAP
endpoint locations.

• The files konakart_axis_client.properties and konakartadmin_axis_client.properties are used to de-
fine the locations of the respective web services. Therefore if these locations are not the default URLs
you will need to modify these files as appropriate.

• If you get "connection refused" - check that your firewall isn't blocking your client calls and that the
endpoints defined in the konakart_axis_client.properties and konakartadmin_axis_client.properties
are actually responding correctly.

• Remember you have to enable the web services - see above for enabling the web services .

Using the JAX Web Service Storefront APIs
It's simple to use KonaKart's JAXWS Storefront interfaces because the JAXWS "engine client" imple-
ments the same KKEngIf interface as all the other engine clients. Therefore, all you have to do to use the

Programming Guide

303

JAXWS version of the APIs is to instantiate com.konakart.jws.KKJAXWSEng and use the interfaces de-
fined on KKEngIf just as if you were using the POJO version and calling the methods on KKEng directly.

The JAXWS APIs are only available in the Enterprise version of KonaKart.

Although it is easier to use the JAXWS client engine that is already available in the KonaKart jars, if your
IDE can create client stubs from WSDL then you can use that to create your JAXWS client. Wherever
possible, we recommend you use the JAXWS client stubs in the KonaKart jars provided rather than gen-
erate new ones from the WSDL.

If you really need to use the WSDL approach to generate your client artefacts the WSDL can be found here:

• http://localhost:8780/konakart/KKJAXWSKKEng?wsdl [http://localhost:8780/konakart/KK-
JAXWSKKEng?wsdl]

The file konakart_jaxws_client.properties is used to define the location of the JAXWS web service. There-
fore if the location is not the default URL (http://localhost:8780/konakart/KKJAXWSKKEng) you will
need to modify this file as appropriate.

Enable the JAX Web Storefront Services

By default the JAXWS Storefront APIs are disabled after the installation process. The purpose of this is to
make the KonaKart engines more secure by default and let the customer open up interfaces (in this case the
JAXWS interface) when the implications are fully understood. The process for enabling the JAXWS APIs
is very simple and can be achieved by running an ant target called enableJAXWS in the KonaKart/custom
directory as shown below. (An equivalent ANT task called enable_JSON is provided to enable JSON).

C:\KonaKart\custom>bin\kkant enable_JAXWS
Buildfile: C:\KonaKart\custom\build.xml

enable_JAXWS:

enable_JAXWS_warning:

enable_JAXWS_enterprise:
 [echo] Fix konakart web.xml to start-up JAXWS

BUILD SUCCESSFUL
Total time: 0 seconds

The ant target modifies the web.xml present in the WEB-INF directory of the KonaKart storefront appli-
cation.

There are a number of sections in the konakart webapp's web.xml file to modify to enable the JAXWS
server. The first is the JAXWS Listener:

<!-- JAX Web Services -->
<listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
</listener>
<!-- End of JAX Web Services -->

Next, you need to enable the KonaKart JAXWS servlet:

http://localhost:8780/konakart/KKJAXWSKKEng?wsdl
http://localhost:8780/konakart/KKJAXWSKKEng?wsdl
http://localhost:8780/konakart/KKJAXWSKKEng?wsdl

Programming Guide

304

<!-- JAX Web Services -->
<servlet>
 <servlet-name>KKJAXWSKKEng</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<!-- End of JAX Web Services -->

For configuring the JAXWS service dynamically you need to enable the JAXWS Storefront Controller
servlet:

<!-- Servlet for JAXWS Storefront Controller

Uncomment the section below if you want to use the JAXWS Storefront Controller Servlet

When sending these commands the password must match the one defined in the
"password" servlet parameter below. Remember to change this password!

Only enable the JAXWS Storefront Controller if you need to and if you do, change the
password.

JAXWS Storefront Controller commands:
 ?cmd=enableJAXWS&pwd=password
 Enables the JAXWS Storefront server
 ?cmd=disableJAXWS&pwd=password
 Disables the JAXWS Storefront server
 ?cmd=excludeInterfaces&pwd=password&Interfaces=Comma separated list of KKEngIf interfaces
 Sets the excludedInterfaces
 ?cmd=includeInterfaces&pwd=password&Interfaces=Comma separated list of KKEngIf interfaces
 Sets the includedInterfaces

JAXWS Storefront Controller parameters:
 jaxwsEnabled = Enable (true) or Disable (false) the JAXWS Storefront Server
 excludedInterfaces = Comma separated list of KKEngIf interfaces that
 are not allowed. If not specified or left empty,
 no interfaces are excluded.
 includedInterfaces = Comma separated list of KKEngIf interfaces that
 are allowed. If not specified or left empty, all
 interfaces are allowed.
-->

<!-- JAXWS Storefront Controller -->
<servlet>
 <servlet-name>KonaKart_JAXWS_Storefront_Controller</servlet-name>
 <servlet-class>
 com.konakart.jws.KKJAXWSStorefrontController
 </servlet-class>
 <init-param>
 <param-name>password</param-name>
 <param-value>jack</param-value>
 </init-param>
 <init-param>
 <param-name>jaxwsEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>excludedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <load-on-startup>29</load-on-startup>
</servlet>
<!-- End of JAXWS Storefront Controller -->

Programming Guide

305

Note the password parameter on the Controller servlet. You should change this as soon as possible to
ensure your controller is secure.

Note the availability of the two JAXWS servlet parameters: "excludedInterfaces" and "includedInterfaces".
These can be used to fine tune the JAXWS services that you make available from your system. It is recom-
mended that you only make available those interfaces that are required by authorised client applications.
In both cases (excludedInterfaces and includedInterfaces) you simply specify a comma separated list of
KKEngIf interfaces that are to be allowed or disallowed. For a list of KKEngIf interfaces available in
your version of KonaKart you will find a list in the comments in the server-config.wsdd file in your kon-
akart/WEB-INF/ directory after a standard installation (provided from version 6.3.0.0). See the web.xml
for the konakart webapp for more details.

Finally the JAXWS servlet mappings must be uncommented:

<!-- JAX Web Services -->
<servlet-mapping>
 <servlet-name>KKJAXWSKKEng</servlet-name>
 <url-pattern>/KKJAXWSKKEng</url-pattern>
</servlet-mapping>
<!-- End of JAX Web Services -->

<!--
 Uncomment the section below if you want to use the JAXWS Storefront Service
-->
<!-- JAXWS Storefront Controller -->
<servlet-mapping>
 <servlet-name>KonaKart_JAXWS_Storefront_Controller</servlet-name>
 <url-pattern>/konakartjaxwscontroller</url-pattern>
</servlet-mapping>
<!-- End of JAXWS Storefront Controller -->

Using the JAX Web Service Admin APIs
Just as with the Storefront JAXWS APIs it's simple to use KonaKart's JAXWS Admin interfaces be-
cause the JAXWS "engine client" implements the same KKAdminIf interface as all the other en-
gine clients. Therefore, all you have to do to use the JAXWS version of the APIs is to instantiate
com.konakartadmin.jws.KKJAXWSAdmin and use the interfaces defined on KKAdminIf just as if you
were using the POJO version and calling the methods on KKAdmin directly.

The JAXWS APIs (for both Storefront and Admin) are only available in the Enterprise version of Kon-
aKart.

Although it is easier to use the JAXWS client engine that is already available in the KonaKart jars, if your
IDE can create client stubs from WSDL then you can use that to create your JAXWS client. Wherever
possible, we recommend you use the JAXWS client stubs in the KonaKart jars provided rather than gen-
erate new ones from the WSDL.

If you really need to use the WSDL approach to generate your client artefacts the WSDL can be found here:

• http://localhost:8796/konakartadmin/KKJAXWSKKAdmin?wsdl [http://localhost:8796/konakartad-
min/KKJAXWSKKAdmin?wsdll]

The file konakartadmin_jaxws_client.properties is used to define the location of the JAXWS Admin
web service. Therefore if the location is not the default URL (http://localhost:8796/konakartadmin/KK-
JAXWSKKAdmin) you will need to modify this file as appropriate.

http://localhost:8796/konakartadmin/KKJAXWSKKAdmin?wsdll
http://localhost:8796/konakartadmin/KKJAXWSKKAdmin?wsdll
http://localhost:8796/konakartadmin/KKJAXWSKKAdmin?wsdll

Programming Guide

306

Enable the JAX Web Admin Services

By default the JAXWS Admin APIs are disabled after the installation process. The purpose of this is to
make the KonaKart engines more secure by default and let the customer open up interfaces (in this case
the JAXWS interface) when the implications are fully understood. The process for enabling the JAXWS
APIs is very simple and can be achieved by running an ant target called enable_KKAdmin_JAXWS in the
KonaKart/custom directory as shown below. (An equivalent ANT task called enable_JAXWS is provided
to enable the Storefront JAXWS services).

C:\KonaKart\custom>bin\kkant enable_KKAdmin_JAXWS
Buildfile: C:\KonaKart\custom\build.xml

enable_KKAdmin_JAXWS:

enable_KKAdmin_JAXWS_warning:

enable_KKAdmin_JAXWS_enterprise:
 [echo] Fix konakartadmin web.xml to start-up JAXWS Server
 [echo] Fix konakartadmin web.xml to start-up JAXWS Admin Controller

BUILD SUCCESSFUL
Total time: 1 seconds

The ant target modifies the web.xml present in the WEB-INF directory of the KonaKart Admin application.

There are a number of sections in the konakartadmin webapp's web.xml file to modify to enable the
JAXWS Admin services. The first is the JAXWS Listener:

<!-- JAX Web Services -->
<listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
</listener>
<!-- End of JAX Web Services -->

Next, you need to enable the KonaKart JAXWS servlet:

<!-- JAX Web Services -->
<servlet>
 <servlet-name>KKJAXWSKKAdmin</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<!-- End of JAX Web Services -->

For configuring the JAXWS service dynamically you need to enable the JAXWS Admin Controller servlet:

Programming Guide

307

<!-- Servlet for JAXWS Admin Controller

Uncomment the section below if you want to use the JAXWS Admin Controller Servlet

When sending these commands the password must match the one defined in the
"password" servlet parameter below. Remember to change this password!

Only enable the JAXWS Admin Controller if you need to and if you do, change the
password.

JAXWS Admin Controller commands:
 ?cmd=enableJAXWS&pwd=password
 Enables the JAXWS Admin server
 ?cmd=disableJAXWS&pwd=password
 Disables the JAXWS Admin server
 ?cmd=excludeInterfaces&pwd=password&Interfaces=Comma separated list of KKAdminIf interfaces
 Sets the excludedInterfaces
 ?cmd=includeInterfaces&pwd=password&Interfaces=Comma separated list of KKAdminIf interfaces
 Sets the includedInterfaces

JAXWS Admin Controller parameters:
 jaxwsEnabled = Enable (true) or Disable (false) the JAXWS Admin Server
 excludedInterfaces = Comma separated list of KKAdminIf interfaces that
 are not allowed. If not specified or left empty,
 no interfaces are excluded.
 includedInterfaces = Comma separated list of KKAdminIf interfaces that
 are allowed. If not specified or left empty, all
 interfaces are allowed.
-->

<!-- JAXWS Admin Controller -->
<servlet>
 <servlet-name>KonaKartAdmin_JAXWS_Admin_Controller</servlet-name>
 <servlet-class>
 com.konakartadmin.jws.KKJAXWSAdminController
 </servlet-class>
 <init-param>
 <param-name>password</param-name>
 <param-value>jack</param-value>
 </init-param>
 <init-param>
 <param-name>jaxwsEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>excludedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <load-on-startup>29</load-on-startup>
</servlet>
<!-- End of JAXWS Admin Controller -->

Note the password parameter on the Controller servlet. You should change this as soon as possible to
ensure your controller is secure.

Note the availability of the two JAXWS servlet parameters: "excludedInterfaces" and "includedInterfaces".
These can be used to fine tune the JAXWS services that you make available from your system. It is recom-
mended that you only make available those interfaces that are required by authorised client applications.
In both cases (excludedInterfaces and includedInterfaces) you simply specify a comma separated list of
KKAdminIf interfaces that are to be allowed or disallowed. For a list of KKAdminIf interfaces available
in your version of KonaKart you will find a list in the comments in the server-config.wsdd file in your
konakartadmin/WEB-INF/ directory after a standard installation (provided from version 6.3.0.0). See the
web.xml for the konakartadmin webapp for more details.

Finally the JAXWS servlet mappings must be uncommented:

Programming Guide

308

<!--
 Uncomment the section below if you want to use the KKAdmin JAXWS Admin Controller
-->
<!-- JAXWS Admin Controller -->
<servlet-mapping>
 <servlet-name>KonaKartAdmin_JAXWS_Admin_Controller</servlet-name>
 <url-pattern>/konakartadminjaxwsadmin</url-pattern>
</servlet-mapping>
<!-- End of JAXWS Admin Controller -->

Using the RMI APIs
With the Enterprise Extensions version of KonaKart you have the ability to communicate with its en-
gines using RMI. The KonaKart Application Engine is registered in an RMI Registry at a spcified
port with the name "konakart.kkeng" and the KonaKart Admin Engine is registered with the name
"konakart.kkadmineng".

By default the RMI Server servlet sections in the respective web.xml files for the konakart and konakar-
tadmin webapps are commented out so no RMI services are enabled.

When enabled in the respective web.xml files, by default the RMI Regsitry is created on port 8790 and
the two engines are bound to the above names.

Once enabled in the web.xml file, this default behavior can be controlled using the following configuration
options in the respective webapp's web.xml: (the first one here is for the konakart webapp):

<!-- Servlet for RMI Server -->
<servlet>
 <servlet-name>KonakartRMIServlet</servlet-name>
 <display-name>KonaKart RMI Server</display-name>
 <description>KonaKart RMI Server</description>
 <servlet-class>
 com.konakart.rmi.KKRMIServer
 </servlet-class>
 <init-param>
 <!-- The port number where the RMI registry will listen -->
 <param-name>port</param-name>
 <param-value>8790</param-value>
 </init-param>
 <init-param>
 <!-- Enable or Disable the RMI interface -->
 <param-name>rmiEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>20</load-on-startup>
</servlet>

Very similar configuration options are available for the RMI version of the KonaKart Admin Engine. The
konakartadmin webapp's web.xml contains this servlet definition:

Programming Guide

309

<!-- Servlet for RMI Server -->
<servlet>
 <servlet-name>KonakartAdminRMIServlet</servlet-name>
 <display-name>KonaKartAdmin RMI Server</display-name>
 <description>KonaKartAdmin RMI Server</description>
 <servlet-class>
 com.konakartadmin.rmi.KKRMIAdminServer
 </servlet-class>
 <init-param>
 <!-- The port number where the RMI registry will listen -->
 <param-name>port</param-name>
 <param-value>8790</param-value>
 </init-param>
 <init-param>
 <!-- Enable or Disable the RMI interface -->
 <param-name>rmiEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>20</load-on-startup>
</servlet>

Both the application and admin engines are bound in the same RMI Registry (assuming the port numbers
remain the same in the respective web.xml configuration files) which is created to listen at the specified
port if it isn't found.

You need to specify the mode that the RMI engines will use in the konakart.properties and
konakartadmin.properties files in their respective webapps.

KonaKart engine class used by the RMI services
For the default engine use: com.konakart.app.KKEng
For the custom engine use: com.konakart.app.KKCustomEng

konakart.app.rmi.engine.classname = com.konakart.app.KKEng

RMI Registry Location - This is used to locate (not create) the RMI Registry
The definition for the port that the RMI Registry will listen on is in the web.xml

konakart.rmi.host = localhost
konakart.rmi.port = 8790

Note that the values at the bottom (port and host) are used to locate the RMI Registry and not to define
where it will be created. (Hence you could consider this a "client-side" definition for using your RMI
services). See the above section that explains that the port number where the RMI Registry is created is
declared in the web.xml.

A very similar definition exists in the konakartadmin.properties file for the KonaKart Admin RMI Engine
definiton:

KonaKart engine class used by the Admin RMI services
For the default engine use: com.konakartadmin.bl.KKAdmin
For the custom engine use: com.konakartadmin.app.KKAdminCustomEng

konakart.admin.rmi.engine.classname = com.konakartadmin.bl.KKAdmin

RMI Registry Location - This is used to locate (not create) the RMI Registry
The definition for the port that the RMI Registry will listen on is in the web.xml

konakart.rmi.host = localhost
konakart.rmi.port = 8790

Programming Guide

310

As with the SOAP versions of the engines, it's easy to select which one you would like to use in your code
by simply specifying it by name at runtime.

A very simple example of this is provided in the GetProduct.java example provided in the download kit
(under the java_api_examples directory). The example demonstrates how simple it is to select different
engines and get the same result with each:

/*
 * Get an instance of the KonaKart engine and retrieve. The method called can be found in
 * BaseApiExample.java
 */
EngineConfig engConf = new EngineConfig();
engConf.setMode(getEngineMode());
engConf.setStoreId(getStoreId());
engConf.setCustomersShared(isCustomersShared());
engConf.setProductsShared(isProductsShared());
engConf.setCategoriesShared(isCategoriesShared());

/*
 * Instantiate a direct java Engine by name - to find a product
 * KKEngIf eng = new KKEng(engConf);
 */
KKEngIf eng = getKKEngByName("com.konakart.app.KKEng", engConf);
System.out.println("Get a product using the KKEng engine");
getProductUsingEngine(eng);

/*
 * Instantiate a java RMI Engine by name - to find a product
 * KKEngIf rmiEng = new KKRMIEng(engConf);
 */
KKEngIf rmiEng = getKKEngByName("com.konakart.rmi.KKRMIEng", engConf);
System.out.println("Get a product using the KKRMIEng engine");
getProductUsingEngine(rmiEng);

Notice how both of the engines implement the KKEngIf. If you code your solution to the KKEngIf interface
(and KKAdminIf interface for the Admin Engine) you can delay the decision about which engine to use
until runtime or (probably more likely) until you have decided how you wish to distribute your KonaKart
solution over multiple machines.

The implementation of the getKKEngByName() call used in the above example is provided in the
GetProduct.java source file.

Since all three of the application engines implement the same KKEngIf interface the javadoc is applicable
for every one. The equivalent is true for the KKAdminIf javadoc.

Using the JSON APIs
The Enterprise version of KonaKart offers you the ability to communicate with the KonaKart engines
using JSON (JavaScript Object Notation). A servlet receives requests in JSON format over HTTP/HTTPS
and passes these on to an application or admin engine that processes the request. The response is returned
in JSON format.

By default the JSON Server servlet sections in the web.xml files for the konakart and konakartadmin
webapps are commented out so JSON services are disabled after a standard install.

A convenient way to enable JSON services is to run the enable_JSON (or enable_KKAdmin_JSON for the
KKAdmin JSON servlet) ANT task provided in the build.xml file in the custom directory of the standard
installation as follows:

Programming Guide

311

C:\KonaKart\custom>bin\kkant enable_JSON
Buildfile: build.xml

enable_JSON:

enable_JSON_warning:

enable_JSON_enterprise:
 [echo] Fix konakart web.xml to start-up JSON

BUILD SUCCESSFUL
Total time: 0 seconds

There are two sections in the konakart and konakartadmin webapp's web.xml files to modify to enable
the JSON server. (In this explanation we refer only to the konakart webapp's web.xml but the same is
applicable to the konakartadmin webapp web.xml for the KKAdmin JSON servlet set-up). The first is the
servlet definition and the second is the servlet mapping. To enable the JSON Server servlet section you
must uncomment the definition in the konakart webapp's web.xml file shown below:

<!-- JSON Server -->
<servlet>
 <servlet-name>KonaKart_JSON_Servlet</servlet-name>
 <display-name>KonaKart JSON Server</display-name>
 <description>KonaKart JSON Server</description>
 <servlet-class>
 com.konakart.json.KKJSONServer
 </servlet-class>
 <init-param>
 <param-name>jsonEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>excludedInterfaces</param-name>
 <param-value></param-value>
 </init-param>
 <load-on-startup>30</load-on-startup>
</servlet>

Note the availability of the two JSON servlet parameters: "excludedInterfaces" and "includedInterfaces".
These can be used to fine tune the JSON services that you make available from your system. It is recom-
mended that you only make available those interfaces that are required by authorised client applications.
In both cases (excludedInterfaces and includedInterfaces) you simply specify a comma separated list of
KKEngIf interfaces that are to be allowed or disallowed. For a list of KKEngIf interfaces available in
your version of KonaKart you will find a list in the comments in the server-config.wsdd file in your kon-
akart/WEB-INF/ directory after a standard installation (provided from version 6.3.0.0). See the web.xml
for the konakart webapp for more details. (See also the web.xml for the konakartadmin webapp for details
for the KKAdmin JSON servlets).

Next, to enable the servlet mapping, you must uncomment the definition shown below. The servlet map-
ping may be set as you wish (the URL used must be used by the clients who wish to call the JSON Server
and is defined in konakart.properties for clients using the client side of the JSON engine). The default
servlet mapping URL is "/konakartjson" but this can be changed if required:

Programming Guide

312

<!-- JSON Server -->
<servlet-mapping>
 <servlet-name>KonaKart_JSON_Servlet</servlet-name>
 <url-pattern>/konakartjson</url-pattern>
</servlet-mapping>

You need to specify the KonaKart engine that the JSON engines will use in the konakart.properties file in
the konakart webapp's WEB-INF/classes directory. This section defines the engine class used to service
the JSON requests with the default being defined as com.konakart.app.KKEng.

Enterprise Feature
KonaKart engine class used by the JSON services
For the default engine use: com.konakart.app.KKEng
For the custom engine use: com.konakart.app.KKCustomEng

konakart.app.json.engine.classname = com.konakart.app.KKEng

Enterprise Feature
URL for the JSON engine servlet

konakart.json.engine.url = http://localhost:8780/konakart/konakartjson

Generate match Id on generated JSON Requests

konakart.json.generateMatchIds = false

Note that the property "konakart.json.engine.url" that defines the URL for the JSON service must match
the web.xml servlet-mapping defintion (see above).

The property "konakart.json.generateMatchIds" defines whether matching Ids are generated in JSON re-
quests that are sent to the engine. The default for this is false which minimizes message size and parsing
time.

As with the POJO, RMI and SOAP versions of the engines, it's easy to select which one you would like
to use in your code by simply specifying it by name at runtime.

A very simple example of this is provided in the GetProduct.java example provided in the download kit
(under the java_api_examples directory). The example demonstrates how simple it is to select different
engines and get the same result with each:

Programming Guide

313

/*
 * Get an instance of the KonaKart engine and retrieve. The method called can be found in
 * BaseApiExample.java
 */
EngineConfig engConf = new EngineConfig();
engConf.setMode(getEngineMode());
engConf.setStoreId(getStoreId());
engConf.setCustomersShared(isCustomersShared());
engConf.setProductsShared(isProductsShared());
engConf.setCategoriesShared(isCategoriesShared());

/*
 * Instantiate a direct java Engine by name - to find a product
 * KKEngIf eng = new KKEng(engConf);
 */
KKEngIf eng = getKKEngByName("com.konakart.app.KKEng", engConf);
System.out.println("Get a product using the KKEng engine");
getProductUsingEngine(eng);

/*
 * Instantiate a java JSON Engine by name - to find a product
 * KKEngIf jsonEng = new KKJSONEng(engConf);
 */
KKEngIf jsonEng = getKKEngByName("com.konakart.json.KKJSONEng", engConf);
System.out.println("Get a product using the KKJSONEng engine");
getProductUsingEngine(jsonEng);

Notice how both of the engines implement the KKEngIf. If you code your solution to the KKEngIf interface
you can delay the decision about which engine to use until runtime or (probably more likely) until you
have decided how you wish to distribute your KonaKart solution over multiple machines.

The implementation of the getKKEngByName() call used in the above example is provided in the
GetProduct.java source file.

Since all four of the application engines implement the same KKEngIf interface the javadoc is applicable
to every one of them.

You do not have to use the client side of the JSON engine if you don't want to. Instead you may wish
to construct your own client requests yourself. You can derive the format of the requests by applying the
standard conventions for translating our KKEngIf into JSON calls as follows.

• "f" : Required. The function name, eg. "getProduct".

• "s" : Optional. The storeId (required in a multi-store enviornment) eg. "store1".

• "i" : Optional. The matchingId (for matching requests with responses - this id is returned in response
messages if specified in the request) eg. "1234".

• input parameters : Required (they must match the names of the input parameters defined in KKEngIf).
Standard JSON format for the input parameters if these are present.

• nulls : attributes with null values can be left out of the request. Attributes wih null values are left out
of all response messages.

Some examples of JSON requests to the KonaKart JSON Server:

Programming Guide

314

A login request:

{
 "emailAddr" : "fred@flintstone.com",
 "password" : "abcde02",
 "f" : "login",
 "s" : "store1"
}

A customer registration request:

{
 "custReg" : {
 "emailAddr" : "robin@batcave.com",
 "city" : "GothamCity",
 "company" : "ACME Inc",
 "countryId" : 223,
 "faxNumber" : "123456",
 "firstName" : "Robin",
 "gender" : "m",
 "lastName" : "Wayne",
 "newsletter" : "0",
 "postcode" : "st5 ort",
 "productNotifications" : -1,
 "streetAddress" : "12345 Alligator Alley",
 "streetAddress1" : "Blue house",
 "suburb" : "Harlem",
 "telephoneNumber" : "654321",
 "birthDate" : 1303223768362,
 "addressCustom1" : "addressCustom1",
 "addressCustom5" : "addressCustom5",
 "customerCustom1" : "customerCustom1",
 "customerCustom5" : "customerCustom5",
 "groupId" : -1,
 "zoneId" : -1,
 "invisible" : false,
 "state" : "Florida",
 "password" : "abcde02"
 },
 "f" : "registerCustomer",
 "s" : "store1"
}

Some examples of JSON responses from the KonaKart JSON Server:

A response to a login request showing the result which is a sessionId:

{
 "r" : "f663832c049322d2fb6882ba0abf4db9"
}

A response from a getCustomer request:

{
 "r" : {
 "id" : 123,
 "type" : 0,
 "birthDate" : 1303223708000,
 "emailAddr" : "robin@batcave.com",
 "firstName" : "Robin",
 "gender" : "m",
 "lastName" : "Wayne",
 "telephoneNumber" : "654321",
 "invisible" : 0,
 "numberOfLogons" : 0,
 "defaultAddrId" : 147,
 "globalProdNotifier" : 0,
 "groupId" : -1
 }
}

Programming Guide

315

If an exception is thrown during the processing of a request, the server will respond with a message in
JSON format as follows:

An exception thrown in any request where a sessionId is required but cannot
be found is transformed into this JSON response:

{
 "e" : "com.konakart.app.KKException",
 "m" : "The session bad-session-id cannot be found"
}

An exception thrown in a login request is transformed into this JSON response:

{
 "e" : "com.konakart.app.KKException",
 "m" : "[5] Cannot find customer with email address = bad-user@localhost"
}

An optional JSON Administration server can be enabled to provide programmatic control of the JSON
server. (The equivalent is also available on the KKAdmin side). By default this is disabled in the konakart
webapp's web.xml. This can be used to enable or disable the JSON server and also to set the included
and excluded interfaces to be supported. Note that changes made via the JSON Administration server take
effect in real time but are not persisted so the definitions specified in the konakart webapp's web.xml file
will take effect on restart of the application.

<!-- Servlet for JSON Admin -->
<servlet>
<!--

 Uncomment the section below if you want to use the JSON Admin Servlet

 When sending these commands the password must match the one defined in the
 "password" servlet parameter below.

 Only enable the JSON Admin server if you need to and if you do, change the
 password.

 JSON Admin commands:
 ?cmd=enableJSON&pwd=password
 Enables the JSON server
 ?cmd=disableJSON&pwd=password
 Disables the JSON server
 ?cmd=excludeInterfaces&pwd=password&Interfaces=A,B,C
 Sets the excludedInterfaces to a comma separated list of KKEngIf interfaces
 ?cmd=includeInterfaces&pwd=password&Interfaces=A,B,C
 Sets the includedInterfaces to a comma separated list of KKEngIf interfaces
-->

<!-- JSON Admin
<servlet>
 <servlet-name>KonaKart_JSON_Admin</servlet-name>
 <display-name>KonaKart JSON Admin</display-name>
 <description>KonaKart JSON Admin</description>
 <servlet-class>
 com.konakart.json.KKJSONServerAdmin
 </servlet-class>
 <init-param>
 <param-name>password</param-name>
 <param-value>jason</param-value>
 </init-param>
 <load-on-startup>29</load-on-startup>
</servlet>
End of JSON Admin -->

Programming Guide

316

Using the JSON APIs to build a JavaScript
client

Through the use of the JSON APIs, KonaKart may be used to power a JavaScript storefront running in
a browser. An example of this is the KonaKart Tiles storefront demo where all of the tiles are grouped
together to create a complete storefront application.

For a production environment, some extra steps must be taken in order to ensure that the application is
secure, since unlike the standard Struts2 storefront application, the engine APIs are now visible directly
to the storefront and to any JSON client that connects itself to the KonaKart engine.

Only make available the API calls that your storefront uses

This is very important and quite easy to achieve by adding the API calls to the web.xml.

For the included interfaces (highlighted above) you simply specify a comma separated list of KKEngIf
interfaces that are to be allowed. All other interfaces will by default be excluded.

Manage transactional API calls in a custom layer

It’s good practice to have your own service layer for transactional API calls such as writeReview(). regis-
terCustomer() and saveOrder(). The two main reasons are:

• It’s more secure not to expose the transactional engine API calls onto the internet. A malicious user
can quite easily build a JSON client in order to attempt to introduce insecure data or just incorrect data

Programming Guide

317

like fake orders. In your own layer, you can escape any input data to remove dangerous characters and
perform any other checks that may be necessary.

• Many transactions require multiple API calls so it’s more efficient and reliable to make server to server
calls rather than many round trips from the browser. For example when registering a customer, you
need to call registerCustomer(), then send the welcome email, followed by logging the customer in and
setting some customer tags.

There are many ways of building your own service layer. KonaKart provides a way allowing you to cre-
ate a custom store service. This is explained in CustomStoreService_CustomAdminService.pdf in the doc
directory after a standard installation. An example is also provided allowing you to register a customer
through a custom service call.

HTML character escaping
It is possible to enable the escaping of certain characters for a number of KKEngIf API calls. Currently
the API calls are :

• registerCustomer()

• editCustomer()

• editCustomerWithOptions()

• addAddressToCustomer()

• editCustomerAddress()

• saveOrder()

• saveOrderWithOptions()

• changeDeliveryAddress()

• writeReview()

The characters that are escaped can be defined in the konakart.properties file:

konakart.escape.chars = [\":"][':'][&:&][<:<][>:>]

By default the property konakart.escape.chars is commented out, which disables the escaping. If uncom-
mented, by default 5 characters are escaped although by modifying the value of the property you can add
more or remove some of the characters.

To provide further flexibility, the CustomerMgr has the following methods:

• public void escapeCustomerRegistration(CustomerRegistrationIf custReg)

• public void escapeAddress(AddressIf addr)

• public void escapeCustomer(CustomerIf cust)

The OrderMgr has:

Programming Guide

318

• public void escapeOrder(OrderIf order)

The ReviewMgr has:

• public void escapeReview(ReviewIf review)

These methods are called to perform the actual escaping and they all follow a similar pattern:

 /**
 * Escape the Strings in the Order object using the rules defined in the properties file by the
 * property konakart.escape.chars . This method may be overridden in a custom manager to add
 * exceptions for attributes that don't need to be escaped or to disable the escaping
 * completely.
 *
 * @param order
 */
 public void escapeOrder(OrderIf order)
 {
 if (getHTMLEscaper() == null || order == null)
 {
 return;
 }
 KKBeanEscaper escaper = new KKBeanEscaper(getHTMLEscaper());
 escaper.escapeOrder(order, null);
 }

From the above snippet of code you can see that the method that actually performs the escaping is escape-
Order() which is passed the order object and a String[] called the excludeArray (in the above case, set to
null) where you can add attributes of the Order object that shouldn’t be escaped. For example, a value of:

String excludeArray = new String[] { "orderProducts.custom1", "custom1" };

would instruct the method to not escape the custom1 attribute of the order and the custom1 attribute of
the orderProducts attribute.

To customize the behaviour of the escaping you may use your own managers with customized versions
of the escape*() methods.

Running Your Own SQL
A convenient way to use the same database connection techniques as KonaKart is as follows:

First a SELECT query... note the processing of the result set after the results are returned.

Programming Guide

319

/*
 * Run a query that selects the product id and product model from
 * all products that have an id less than 10. All Select queries
 * need to be run using the KKBasePeer.executeQuery command
 */

List<Record> records = KKBasePeer
 .executeQuery("select products_id, products_model, " +
 "products_price " +
 "from products " +
 "where products_id < 10");

/*
 * Loop through the result set and print out the results. Note that
 * the first attribute in the Record object is at index = 1 and not
 * index = 0
 */

if (records != null)
{
 for (Iterator<Record>
 iterator = records.iterator();
 iterator.hasNext();)
 {
 Record rec = (Record) iterator.next();
 System.out.println("id = " + rec.getValue(1).asInt()
 + "; model = "
 + rec.getValue(2).asString() + "; price = "
 + rec.getValue(3).asBigDecimal(/* scale */2));
 }
}

Here's a simple UPDATE example:

/*
 * Now let's run another query to change the model name of the
 * product with id = 1.
 *
 * All non select queries need to be run using the
 * KKBasePeer.executeStatement command
 */

KKBasePeer.executeStatement(
 "update products set products_model='Super Turbo' where products_id=1");

The /java_api_examples/src/com/konakart/apiexamples/RunCustomQuery.java example, provided in the
download kit, illustrates this technique.

Database Layer Changes from v7.2.0.0
In v7.2.0.0 KonaKart was upgraded to use Apache Torque 4 as its database layer replacing the previous
Torque 3.3. This provides performance improvements and keeps KonaKart up-to-date with the latest stable
version of Apache Torque.

KonaKart uses Torque (and parts of Village) in order to maintain portability across 5 databases and ensure
that the highest possible performance is achieved with fine-grained control over the SQL that is executed.
(This is not always the case with alternative object-based persistence layers that tend to generate and
execute redundant and less efficient SQL).

In addition to introducing a new version of Torque in v7.2.0.0, KonaKart has also undergone a number
of changes, that you may need to be aware of, associated with the database and programming using the
KonaKart/Torque persistence layer.

Programming Guide

320

Table and Column Name Changes

In order to simplify portability across the supported databases, a few table and column names have been
modified so that they are identical across all platforms. This change also allows a slight performance
gain as KonaKart does not have to calculate the different platform-specific names at runtime as it did in
previous versions.

The "old" table and column names stated below are the ones from MySQL. They will have been truncated
for other databases such as Oracle and DB2. In future all table and column names will be the same across
all databases.

Old Table Name New Table Name

products_options_values_to_products_options prod_opt_vals_to_prod_opt
products_attributes_download products_attrs_download
customers_basket_attributes customers_basket_attrs

Column name changes in table configuration_group:

Old Column Name New Column Name

configuration_group_description configuration_group_desc

Column name changes in table customers_info:

Old Column Name New Column Name

customers_info_date_of_last_logon customers_info_date_last_logon
customers_info_number_of_logons customers_info_number_of_logon
customers_info_date_account_created customers_info_date_created
customers_info_date_account_last_modified customers_info_date_modified

Column name changes in table products_options_values_to_products_options:

Old Column Name New Column Name

products_options_values_to_products_options_id prod_opt_vals_to_prod_opt_id

If you study the database upgrade script (notably the one called upgrade_7.1.1.0_to_7.2.0.0.sql) for your
respective database you will see the SQL that you should run when upgrading from 7.1.1.0 (or 7.1.1.1)
to 7.2.0.0.

KonaKart/Torque Programming Changes

If you have used the KonaKart/Torque programming techniques that were given as examples in previous
versions you will need to update that code to work with the new KonaKart / Torque 4 framework.

There are just a few simple changes to be aware of:

• Use com.konakart.db.KKCriteria instead of org.apache.torque.util.Criteria or
com.konakart.bl.KKCriteria

• Use com.konakart.db.KKBasePeer instead of org.apache.torque.util.BasePeer

• As a guide, take a look at the example source code that is provided which has been updated for the
new version.

Programming Guide

321

Customizable Source Code
Not all of KonaKart source code is provided in the download kits, only the parts designed to be customized.
These include:

• Struts Actions

• Struts Forms

• All JSPs

• All of the Modules (Shipping, Payment, Order Totals, Discount)

• The Client Engine (Enterprise Only)

Source Code Location
Once you have installed KonaKart you will be able to study the customizable source code in the following
locations:

You will find all the java sources and associated properties files under the "custom" directory in every
download kit from KonaKart version 2.2.1.0 and above. (These source files were available in previous
releases but structured slightly differently). In the future, more directories will be added under the custom
directory as more customizable source is made available - so don't be surprised if the directory structure
that you see is different to the one on the left.

Programming Guide

322

The "custom" directory is located directly under the installation directory that was selected for KonaKart.

The "custom" directory has various important source directories underneath: "appn"/"appnEE",
"engine"/"adminengine" and "modules".

The "appn" directory tree holds the java source for the actions, the forms, the module super-classes and
other customisable classes such as CheckoutAction.java.

The "appnEE" directory tree holds the Enterprise-only java source for the actions, the forms, the module
super-classes and other customisable classes such as LDAPMgr.java.

The "appEngEE" directory tree holds all of the java classes required to create the KKAppEng "Application
Engine" - only available in the Enterprise version.

The "engine" directory tree holds all of the java classes required to create a "custom engine" for KKEngIf.

The "adminengine" directory tree holds all of the java classes required to create a "custom engine" for
KKAdminIf.

The "modules" directory tree holds all of the java classes required to implement each of the modules.

The "batch" directory tree holds a selection of example batch jobs that you can modify to suit your own
needs.

An ant build file (build.xml) can be found at the root of the custom directory.

The "bin" directory under custom contains a cut-down ant that is sufficient to build all of the custom code
- all you need is to set JAVA_HOME to your JDK.

The "lib" directory contains jars for ant builds.

Once you have executed an ant build you will see a few more directories under "custom" which are the
products of the build process. For example, you will see classes directories, a new jar directory etc. To
remove the files and directories produced by the build you can execute the "clean" target of the ant build, eg:

$ bin/kkant clean

Building the Customizable Source

An ant file is provided that should make it easy to build the customizable java classes. Use "kkant -p" to
see the ant command targets:

Programming Guide

323

C:\KonaKart\custom>bin\kkant -p
Buildfile: build.xml

Main targets:

 build Compiles all the custom code and creates all the jars
 clean Clears away everything that's created during a build
 clean_admin_portlet_war Clears away the admin portlet war
 clean_manifest_file Clean the MANIFEST file for all jars
 clean_portlet_war Clears away the portlet war
 clean_torque_classes Clears away the generated torque artifacts
 clean_wars Clears away all the WARs and EARs
 compile Compile the customisable application code
 compile_admin_portlet_liferay Compile the Admin portlet utilities for Liferay
 compile_adminappn Compile the customisable admin appn code
 compile_adminappnEE Compile the customisable admin appnEE code
 compile_appEngEE Compile the customisable appEngEE code
 compile_appn Compile the customisable appn code
 compile_appnEE Compile the customisable appnEE code
 compile_custom_adminengine Compile the customisable admin engine code
 compile_custom_engine Compile the customisable engine code
 compile_modules Compile the customisable module code
 compile_utils Compile the customisable utils code
 copy_jars Copy selected custom konakart jars to the lib directories
 create_torque_classes Process the Custom Schema to produce torque classes
 debugenv Debug the environment
 enableWebServices Enable Web Services in deployed server
 enable_JSON Enable JSON in konakart web.xml - EE Only
 enable_KKAdmin_JSON Enable KKAdmin JSON in konakartadmin web.xml - EE Only
 execute_sql_file Execute the specified SQL file
 generate_torque_java Process the Custom Schema to produce torque java files
 make_admin_liferay_portlet_war Create the konakartadmin portlet war for Liferay
 make_ear Create the konakart EAR
 make_eclipse_project Create an Eclipse Project for Developing the Struts-2 Storefront
 make_jar_appEngEE Create the konakart_app.jar
 make_jar_custom Create the konakart_custom jar
 make_jar_customEE Create the konakart_customEE.jar
 make_jar_custom_admin Create the konakartadmin_custom.jar
 make_jar_custom_adminEE Create the konakartadmin_customEE.jar
 make_jar_custom_adminengine Create the konakartadmin_custom_engine.jar
 make_jar_custom_engine Create the konakart_custom_engine.jar
 make_jar_custom_utils Create the konakart_custom_utils.jar
 make_jars Create the konakart custom jars
 make_liferay_portlet_war Create the konakart portlet war for Liferay
 make_manifest_file Create the MANIFEST file for all jars
 make_ordertotal_module_jar Create the ordertotal module jar
 make_other_module_jar Create the other module jar
 make_payment_module_jar Create the payment module jar
 make_shipping_module_jar Create the shipping module jar
 make_torque_jar Create the konakart_custom_db.jar
 make_wars Create the konakart wars
Default target: build

Notice that the default build target compiles all the source files and creates the jars. It doesn't move the
jars or create any wars.

If after building the jars you wish to move these to your webapp lib directories you should use the
"copy_jars" target.

The "make_wars" target is just a convenient means of creating wars out of the KonaKart webapps. It is not
required to be run to build and deploy the custom code so it's not closely-related to the topics discussed
on this page.

The "make_*_portlet_war" targets are for creating JSR-286 compliant WARs out of your current KonaKart
application. See the section of this documentation regarding portlets for more details.

Here is an example of running the default ant target (Community version with default Struts-2 storefront):

Programming Guide

324

C:\KonaKart\custom>bin\kkant
Buildfile: build.xml

debugenv:
 [echo] custom.home = C:\KonaKart\custom
 [echo] java.source = 1.6
 [echo] java.target = 1.6
 [echo] debug_javac = on
 [echo] torque.build.present = ${torque.build.present}
 [echo] adminappn.code.present = true
 [echo] adminappnEE.code.present = ${adminappnEE.code.present}
 [echo] adminengine.code.present = true
 [echo] appn.code.present = true
 [echo] appnEE.code.present = ${appnEE.code.present}
 [echo] engine.code.present = true
 [echo] utils.code.present = true
 [echo] excludeAXIS = ${excludeAXIS}
 [echo] noClean = ${noClean}

clean_torque_classes:

clean_portlet_war:
 [echo] Cleanup portlet WARs...
 [echo] Cleanup portlet classes...
 [echo] Cleanup portlet WAR staging area...

clean_admin_portlet_war:
 [echo] Cleanup admin portlet WARs...
 [echo] Cleanup admin portlet WAR staging area...

clean_wars:
 [echo] Cleanup WARs...
 [echo] Cleanup EARs...

clean:
 [echo] Cleanup...

generate_torque_java:

create_torque_classes:

make_manifest_file:
 [echo] Create the MANIFEST.MF file for all jars

compile:
 [echo] Compile the customisable application code

compile_appn:
 [echo] Copy the properties over to C:\KonaKart\custom/appn/classes
 [copy] Copying 3 files to C:\KonaKart\custom\appn\classes
 [echo] Compile the customisable application code
 [javac] Compiling 133 source files to C:\KonaKart\custom\appn\classes

compile_appnEE:

compile_appEngEE:

compile_adminappn:
 [mkdir] Created dir: C:\KonaKart\custom\adminappn\classes
 [javac] Compiling 10 source files to C:\KonaKart\custom\adminappn\classes

compile_adminappnEE:

compile_utils:
 [echo] Compile the customisable utils code
 [mkdir] Created dir: C:\KonaKart\custom\utils\classes
 [javac] Compiling 3 source files to C:\KonaKart\custom\utils\classes

continued...

Programming Guide

325

continued from above...

compile_modules:
 [echo] Compile the customisable module code
 [mkdir] Created dir: C:\KonaKart\custom\modules\classes
 [javac] Compiling 149 source files to C:\KonaKart\custom\modules\classes

make_payment_module_jar:
 [echo] Create the payment module jar
 [mkdir] Created dir: C:\KonaKart\custom\jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_payment_authorizenet.jar

make_payment_module_jar:
 [echo] Create the payment module jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_payment_elink.jar

 -- other payment, order total and shipping module builds removed

compile_custom_engine:
 [echo] Compile the customisable engine code
 [mkdir] Created dir: C:\KonaKart\custom\engine\classes
 [javac] Compiling 241 source files to C:\KonaKart\custom\engine\classes

compile_custom_adminengine:
 [echo] Compile the customisable admin engine code
 [mkdir] Created dir: C:\KonaKart\custom\adminengine\classes
 [javac] Compiling 440 source files to C:\KonaKart\custom\adminengine\classes

make_jars:
 [echo] Create the konakart custom jars

make_jar_custom:
 [echo] Create the konakart_custom.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom.jar

make_jar_customEE:

make_jar_custom_engine:
 [echo] Create the konakart_custom_engine.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom_engine.jar

make_jar_appEngEE:

make_jar_custom_utils:
 [echo] Create the konakart_custom_utils.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom_utils.jar

make_jar_custom_admin:
 [echo] Create the konakartadmin_custom.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakartadmin_custom.jar

make_jar_custom_adminEE:

make_jar_custom_adminengine:
 [echo] Create the konakartadmin_custom_engine.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakartadmin_custom_engine.jar

make_torque_jar:

build:

BUILD SUCCESSFUL

Note that from KonaKart v6.5.0.0 the default storefront uses Struts-2. Previous versions of the ANT build
file required that if you had installed the Struts-1 storefront you needed to add the "-DS1=true" parameter
to most of the custom ANT commands. This ANT parameter is no longer supported beyond v6.6.0.0 of
KonaKart.

Programming Guide

326

Developing the storefront in Eclipse

The custom ant file contains a target ("make_eclipse_project") that will create an Eclipse project that will
allow you to develop the Struts-2 storefront application conveniently in the rich development environment
provided by Eclipse.

In earlier versions of the ANT build file a similar "make_eclipse_project_s1" command existed for creating
an Eclipse project for working on the Struts-1 storefront. This only worked if you had installed the Struts-1
version of the storefront. This ANT target is no longer included beyond v6.6.0.0 of KonaKart.

Some notes are provided after the Eclipse project is created as follows:

C:\Bob\KonaKart\custom>bin\kkant make_eclipse_project
Buildfile: build.xml

make_eclipse_project:
 [echo] Create an Eclipse Project for Developing the Struts-2 Storefront
 [mkdir] Created dir: C:\Bob\KonaKart\custom\appEngEE\src
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\src
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\build\classes
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\licenses
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\resources
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\WebContent
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\src\com\konakart\bl\modules\others
 [mkdir] Created dir: C:\Bob\KonaKart\custom\kkeclipse\src\com\konakartadmin\modules\others
 [copy] Copying 2 files to C:\Bob\KonaKart\custom\kkeclipse
 [copy] Copying 748 files to C:\Bob\KonaKart\custom\kkeclipse\src
 [copy] Copying 18 files to C:\Bob\KonaKart\custom\kkeclipse\resources
 [copy] Copying 1 file to C:\Bob\KonaKart\custom\kkeclipse\licenses
 [copy] Copying 672 files to C:\Bob\KonaKart\custom\kkeclipse\WebContent
 [echo] ---
 [echo] Eclipse Project Created on disk - called kkeclipse
 [echo] Start Eclipse
 [echo] Create a tomcat server (see 'Servers' in Eclipse)
 [echo] Move the kkeclipse directory to another location for development if you wish
 [echo] Import the kkeclipse project using 'Import existing projects into Workspace'
 [echo] Assign a server for kkeclipse to use (define server under Project Properties)
 [echo] Edit, Debug and Run the KonaKart Storefront in Eclipse!
 [echo] ---

BUILD SUCCESSFUL

You can copy the kkeclipse directory to another location before importing into Eclipse if that is more
convenient.

You have to create the "Server" that you wish to run the kkeclipse project in. In theory you can choose
any server that is supported by Eclipse.

You may have to make one or two modifications to your Eclipse project settings depending on your own
environment.

Developing the Product Creation Wizard in Eclipse

The custom ant file contains a target ("make_eclipse_wizard_project") that will create an Eclipse project
that will allow you to develop the product creation wizard application conveniently in the rich development
environment provided by Eclipse.

Some notes are provided after the Eclipse project is created as follows:

Programming Guide

327

C:\KonaKart\custom>ant make_eclipse_wizard_project
Buildfile: build.xml

make_eclipse_wizard_project:
 [echo] Create an Eclipse Project for Developing the Product Creation Wizard
 [copy] Copying 56 files to C:\Bob\KonaKart\custom\kkeclipseWizard
 [copy] Copying 213 files to C:\Bob\KonaKart\custom\kkeclipseWizard\WebContent
 [echo] ---
 [echo] Eclipse Product Creation Wizard Project Created on disk - called kkeclipseWizard
 [echo] Start Eclipse
 [echo] Create a tomcat server (see 'Servers' in Eclipse)
 [echo] Move the kkeclipseWizard directory to another location for development if you wish
 [echo] Import the kkeclipseWizard project using 'Import existing projects into Workspace'
 [echo] Assign a server for kkeclipseWizard to use (define server under Project Properties)
 [echo] Edit, Debug and Run the KonaKart Product Creation Wizard in Eclipse!
 [echo] ---

BUILD SUCCESSFUL

You can copy the kkeclipseWizard directory to another location before importing into Eclipse if that is
more convenient.

As for the kkeclipse storefront project you have to create the "Server" that you wish to run the kke-
clipseWizard project in. In theory you can choose any server that is supported by Eclipse.

You may have to make one or two modifications to your Eclipse project settings depending on your own
environment.

Customization of the KonaKart Engines
One of the most important features of KonaKart is the availability of a set of open APIs that allow you to
control KonaKart as you require as part of your IT solution. These work fine most of the time but there
are occasions, especially with heavily-customized solutions, where you need to modify the behavior of
the KonaKart APIs.

KonaKart Customization Framework
A simple framework has been developed that allows you to modify what happens when you call the Kon-
aKart APIs.

It may be instructive to start by explaining the architecture so that you get a clear view of where you should
add your customizations.

The interface to the KonaKart application engine is defined in KKEngIf.java . This is implemented by
KKEng.java . A new, custom, implementation of the interface is provided in KKCustomEng.java . For
every API call, there is a method in KKCustomEng.java that in turn calls a method in KKEng.java . The
call is made by instantiating an instance of a class that has the same name as the method and executing
the relevant API call on that class. The source for all of these classes is provided in the download package
(from version 2.2.6.0). If you wish to change the behavior of a certain API call, you simply move the rel-
evant source file from custom/gensrc/com/konakart/app/METHOD.java to custom/src/com/konakart/app/
METHOD.java , then modify the code in that java file, to implement the behavior you require for that
particular API call.

KonaKart has two major API sets - one for the Application [http://www.konakart.com/javadoc/server] ,
and one for Administration [http://www.konakart.com/javadoc/admin] . The paragraph above explained
the classes involved in the Application API but there is an equivalent set for the Administration API as
follows:

http://www.konakart.com/javadoc/server
http://www.konakart.com/javadoc/server
http://www.konakart.com/javadoc/admin
http://www.konakart.com/javadoc/admin

Programming Guide

328

The interface to the KonaKart administration engine is defined in KKAdminIf.java . This is implemented by
KKAdmin.java . A new, custom, implementation of the interface is provided in KKAdminCustomEng.java
. For every API call, there is a method in KKAdminCustomEng.java that in turn calls a method in
KKAdmin.java . The call is made by instantiating an instance of a class that has the same name as the
method and executing the relevant API call on that class. The source for all of these classes is provided
in the download package (from version 2.2.6.0). If you wish to change the behavior of a certain API call,
you simply move the relevant source file from custom/gensrc/com/konakartadmin/app/METHOD.java to
custom/src/com/konakartadmin/app/METHOD.java , then modify the code in that java file, to implement
the behavior you require for that particular API call.

An ANT build file is provided in the standard download kits that help you build your custom code into
jars and wars for subsequent deployment.

The next two sections step through the engine customization process in detail. The first illustrates how to
add your own code in the custom() interface call, and the second shows you how to modify what happens
in the getCustomerForId() API call.

Adding a New API call

As from KonaKart version 2.2.6.0 there are two custom API calls for both the application APIs and the
Admin APIs for this purpose. The default implementations all return null. One of the two calls is called
customSecure ("Secure" because a sessionId is validated before it is executed), and the other simply called
custom . An equivalent pair of calls are available on the Admin API.

The calls are defined as follows (you could also find this information in the javadoc):

/**
 * A custom interface that you have to provide an implementation
 * for. The default implementation will simply return a null.
 *
 * There are two versions, one that requires a valid sessionId
 * (customSecure) and one that does not (custom).
 *
 * You are free to use the two input String parameters in any way
 * you choose, for example you may wish to use one to indicate which
 * of your custom functions to run, and the other might
 * contain XML to give you a great deal of flexibility - but it's up
 * to you!
 *
 * @param input1
 * The first input String - can be anything you choose
 * @param input2
 * The second input String - can be anything you choose
 * @return Returns a String
 * @throws KKException
 */

public String custom(String input1, String input2) throws KKException;

Also, the version that checks the session ID:

Programming Guide

329

/**
 * A custom interface that you have to provide an implementation
 * for. The default implementation will throw an exception for an
 * invalid sessionId or return a null.
 *
 * There are two versions, one that requires a valid sessionId
 * (customSecure) and one that does not (custom).
 *
 * You are free to use the two input String parameters in any way
 * you choose, for example you may wish to use one to indicate which
 * of your custom functions to run, and the other might contain XML
 * to give you a great deal of flexibility - but it's up to you!
 *
 * @param sessionId
 * The session id of the logged in user
 * @param input1
 * The first input String - can be anything you choose
 * @param input2
 * The second input String - can be anything you choose
 * @return Returns a String
 * @throws KKException
 */

public String customSecure(String sessionId, String input1, String input2)
 throws KKException;

So let's work through an example of using the custom API call.

Let's suppose you wanted to create an API call that returns the OrderId of the last order that was processed.
(Yes, it's a simple case, but you can make it do whatever you like once you know how to use this mech-
anism!).

This functionality is best-suited to the Admin API so we'll use that in our example.

1. Move (yes, don't copy but move, because we only want one version of this file to ensure there are no
duplicate classes produced) the Custom.java file from the gensrc directory tree to the src directory tree:

$ mv custom/adminengine/gensrc/com/konakartadmin/app/Custom.java \
 custom/adminengine/src/com/konakartadmin/app/

It is possible to edit these files in the gensrc directory tree but this isn't advisable as it will make it harder
for you to upgrade to a future version of KonaKart. It's better to separate your customized versions out
from the gensrc tree so that you can easily see which interfaces you've customized.

2. Implement the code in Custom.java

Before you change it, Custom.java contains just this:

Programming Guide

330

package com.konakartadmin.app;

import com.konakartadmin.bl.KKAdmin;

/**
 * The KonaKart Custom Engine - Custom -
 * Generated by CreateKKAdminCustomEng
 */
public class Custom
{
 KKAdmin kkAdminEng = null;

 /**
 * Constructor
 */
 public Custom(KKAdmin _kkAdminEng)
 {
 kkAdminEng = _kkAdminEng;
 }

 public String custom(
 String input1, String input2) throws KKAdminException
 {
 return kkAdminEng.custom(input1, input2);
 }
}

Since the default implementation for these custom() and customSecure() methods is simply to return
null we will need to replace the lines above (marked in bold) with the following code: (full source code
for this example is provided in the download kit in custom/adminengine/examples/com/konakartad-
min/app/Custom.java)

public String custom(String input1, String input2)
 throws KKAdminException
{
 /*
 * Run a query that selects the orders_id of the last order
 * processed.
 */

 List<Record> records =
 KKBasePeer.executeQuery("SELECT max(orders_id) FROM orders");

 if (records == null)
 {
 // No Orders Found
 return null;
 } else
 {
 return records.get(0).getValue(1).asString();
 }
}

3. Compile the new Custom class and rebuild the jars

An ANT build file is provided for this purpose - under the custom directory in the download kit.

Programming Guide

331

C:\KonaKart\custom>bin\kkant -p
Buildfile: build.xml

Main targets:

 build Compiles all the custom code and creates all the jars
 clean Clears away everything that's created during a build
 clean_admin_portlet_war Clears away the admin portlet war
 clean_manifest_file Clean the MANIFEST file for all jars
 clean_portlet_war Clears away the portlet war
 clean_torque_classes Clears away the generated torque artifacts
 clean_wars Clears away all the WARs and EARs
 compile Compile the customisable application code
 compile_admin_portlet_liferay Compile the Admin portlet utilities for Liferay
 compile_adminappn Compile the customisable admin appn code
 compile_adminappnEE Compile the customisable admin appnEE code
 compile_appEngEE Compile the customisable appEngEE code
 compile_appn Compile the customisable appn code
 compile_appnEE Compile the customisable appnEE code
 compile_custom_adminengine Compile the customisable admin engine code
 compile_custom_engine Compile the customisable engine code
 compile_modules Compile the customisable module code
 compile_utils Compile the customisable utils code
 copy_jars Copy selected custom konakart jars to the lib directories
 create_torque_classes Process the Custom Schema to produce torque classes
 debugenv Debug the environment
 enableWebServices Enable Web Services in deployed server
 enable_JSON Enable JSON in konakart web.xml - EE Only
 enable_KKAdmin_JSON Enable KKAdmin JSON in konakartadmin web.xml - EE Only
 execute_sql_file Execute the specified SQL file
 generate_torque_java Process the Custom Schema to produce torque java files
 make_admin_liferay_portlet_war Create the konakartadmin portlet war for Liferay
 make_ear Create the konakart EAR
 make_eclipse_project Create an Eclipse Project for Developing the Struts-2 Storefront
 make_jar_appEngEE Create the konakart_app.jar
 make_jar_custom Create the konakart_custom jar
 make_jar_customEE Create the konakart_customEE.jar
 make_jar_custom_admin Create the konakartadmin_custom.jar
 make_jar_custom_adminEE Create the konakartadmin_customEE.jar
 make_jar_custom_adminengine Create the konakartadmin_custom_engine.jar
 make_jar_custom_engine Create the konakart_custom_engine.jar
 make_jar_custom_utils Create the konakart_custom_utils.jar
 make_jars Create the konakart custom jars
 make_liferay_portlet_war Create the konakart portlet war for Liferay
 make_manifest_file Create the MANIFEST file for all jars
 make_ordertotal_module_jar Create the ordertotal module jar
 make_other_module_jar Create the other module jar
 make_payment_module_jar Create the payment module jar
 make_shipping_module_jar Create the shipping module jar
 make_torque_jar Create the konakart_custom_db.jar
 make_wars Create the konakart wars
Default target: build

You can compile and copy the relevant jars in one statement, as follows:

Programming Guide

332

C:\KonaKart\custom>.\bin\ant build,copy_jars
Buildfile: build.xml

clean_torque_classes:

clean_portlet_war:
 [echo] Cleanup portlet WARs...
 [echo] Cleanup portlet classes...
 [echo] Cleanup portlet WAR staging area...

clean_admin_portlet_war:
 [echo] Cleanup admin portlet WARs...
 [echo] Cleanup admin portlet WAR staging area...

clean_wars:
 [echo] Cleanup WARs...
 [echo] Cleanup EARs...

clean:
 [echo] Cleanup...

generate_torque_java:

create_torque_classes:

make_manifest_file:
 [echo] Create the MANIFEST.MF file for all jars

compile:
 [echo] Compile the customisable application code

compile_appn:
 [echo] Copy the properties over to C:\KonaKart\custom/appn/classes
 [copy] Copying 3 files to C:\KonaKart\custom\appn\classes
 [echo] Compile the customisable application code
 [javac] Compiling 133 source files to C:\KonaKart\custom\appn\classes

compile_appnEE:
 [echo] Compile the customisable appnEE code
 [mkdir] Created dir: C:\KonaKart\custom\appnEE\classes
 [javac] Compiling 5 source files to C:\KonaKart\custom\appnEE\classes

compile_appEngEE:
 [echo] Compile the customisable appnEE code
 [mkdir] Created dir: C:\KonaKart\custom\appEngEE\classes
 [javac] Compiling 38 source files to C:\KonaKart\custom\appEngEE\classes

compile_adminappn:
 [mkdir] Created dir: C:\KonaKart\custom\adminappn\classes
 [javac] Compiling 10 source files to C:\KonaKart\custom\adminappn\classes

compile_adminappnEE:
 [echo] Compile the customisable adminappnEE code
 [mkdir] Created dir: C:\KonaKart\custom\adminappnEE\classes
 [javac] Compiling 2 source files to C:\KonaKart\custom\adminappnEE\classes

compile_utils:
 [echo] Compile the customisable utils code
 [mkdir] Created dir: C:\KonaKart\custom\utils\classes
 [javac] Compiling 3 source files to C:\KonaKart\custom\utils\classes

compile_modules:
 [echo] Compile the customisable module code
 [mkdir] Created dir: C:\KonaKart\custom\modules\classes
 [javac] Compiling 152 source files to C:\KonaKart\custom\modules\classes

(- the middle section has been cut out here -)

Programming Guide

333

make_other_module_jar:
 [echo] Create the other module jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_others_uspsaddrval.jar

compile_custom_engine:
 [echo] Compile the customisable engine code
 [mkdir] Created dir: C:\KonaKart\custom\engine\classes
 [javac] Compiling 241 source files to C:\KonaKart\custom\engine\classes

compile_custom_adminengine:
 [echo] Compile the customisable admin engine code
 [mkdir] Created dir: C:\KonaKart\custom\adminengine\classes
 [javac] Compiling 441 source files to C:\KonaKart\custom\adminengine\classes

make_jars:
 [echo] Create the konakart custom jars

make_jar_custom:
 [echo] Create the konakart_custom.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom.jar

make_jar_customEE:
 [echo] Create the konakart_customEE.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_customEE.jar

make_jar_custom_engine:
 [echo] Create the konakart_custom_engine.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom_engine.jar

make_jar_appEngEE:
 [echo] Create the konakart_app.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_app.jar

make_jar_custom_utils:
 [echo] Create the konakart_custom_utils.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakart_custom_utils.jar

make_jar_custom_admin:
 [echo] Create the konakartadmin_custom.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakartadmin_custom.jar

make_jar_custom_adminEE:
 [echo] Create the konakartadmin_customEE.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakartadmin_customEE.jar

make_jar_custom_adminengine:
 [echo] Create the konakartadmin_custom_engine.jar
 [jar] Building jar: C:\KonaKart\custom\jar\konakartadmin_custom_engine.jar

make_torque_jar:

build:

copy_jars:
 [echo] Copy the custom jars to their respective lib directories
 [copy] Copying 54 files to C:\KonaKart\webapps\konakartadmin\WEB-INF\lib
 [echo] Copy the custom jars to their respective lib directories
 [copy] Copying 55 files to C:\KonaKart\webapps\konakart\WEB-INF\lib

BUILD SUCCESSFUL

4. Define the Engine Implementation Class

Your custom code will never be executed if we don't define that KonaKart should instantiate the KKAd-
minCustomEng class as its engine class rather than the default, which is KKAdmin.

A small java program is provided in the download kit (called /java_api_examples/src/com/konakar-
tadmin/apiexamples/CustomExamples.java) which demonstrates how you would call one version of
custom() or the other from a java program.

Programming Guide

334

The code in CustomExamples.java actually calls custom() three times, once with the default
com.konakartadmin.bl.KKAdmin engine, once with the com.konakartadmin.app.KKAdminCustomEng
engine and finally using the web services client engine, called com.konakartadmin.ws.KKWSAdmin .

When calling using the default com.konakartadmin.bl.KKAdmin engine you should see the default re-
sponse from custom() which is a null being returned.

When calling using the com.konakartadmin.app.KKAdminCustomEng engine you should see the re-
sponse from the custom() implementation that we coded above (i.e. it should return the highest orderId
in the database).

Finally when calling using the com.konakartadmin.app.KKAdminCustomEng engine, what you see
depends on which engine the web services are configured to use (they could be using the default
com.konakartadmin.bl.KKAdmin engine or the custom com.konakartadmin.app.KKAdminCustomEng
engine). Which engine is used in this case is defined in the konakartadmin.properties file as follows:

--
KonaKart engine class used by the admin web services
For the default engine use: com.konakartadmin.bl.KKAdmin
For the custom engine use: com.konakartadmin.app.KKAdminCustomEng

konakart.admin.ws.engine.classname = com.konakartadmin.bl.KKAdmin

The above definition is for the Admin App engine class name definition. An equivalent engine class
name definition is required for the application web services, and this is defined in konakart.properties
(you can find this under webapps\konakart\WEB-INF\classes)

--
KonaKart engine class used by the web services
For the default engine use: com.konakart.app.KKEng
For the custom engine use: com.konakart.app.KKCustomEng

konakart.app.ws.engine.classname = com.konakart.app.KKEng

Finally, to actually run the CustomExamples , change directory to the java_api_examples directory
where there is another ANT build file for building and running the examples. (You will have to start
the KonaKart server before running the CustomExamples test if you want a response from the web
service call!):

Programming Guide

335

C:\KonaKart\custom>cd ../java_api_examples

C:\KonaKart\java_api_examples>
 ..\custom\bin\ant clean, compile, runCustomExamples
Buildfile: build.xml

clean:
 [echo] Cleanup...

compile:
 [echo] Compile the examples
 [mkdir] Created dir: C:\KonaKart\java_api_examples\classes
 [javac] Compiling 11 source files to C:\KonaKart\java_api_examples\classes
 [echo] Copy Properties for the examples
 [copy] Copying 1 file to C:\KonaKart\java_api_examples\classes

runCustomExamples:
 [java] (?:init:?) Finished Initialising Log4j
 [java] (?:init:?) The configuration file being used is
 /C:/KonaKart/webapps/konakartadmin/WEB-INF/
 classes/konakartadmin.properties
 [java] (?:init:?) Initialising KKAdmin
 [java] (?:initKonakart:?) KonaKart Admin V2.2.6.0 built 5:03PM 7-Apr-2008 BST
 [java] (?:init:?) Finished Initialising KonaKartAdmin
 [java] (?:init:?) Initialising Torque
 [java] (?:init:?) Initialising KonaKart-Torque for org.apache.torque.adapter.DBMM
 [java] (?:init:?) Finished Initialising Torque
 [java] (?:login:?) User 'admin@konakart.com' has just logged in to the Admin App
 [java]
 [java] Call the custom interface 'Custom' using Engine named
 com.konakartadmin.bl.KKAdmin
 [java] Result was: null
 [java]
 [java] (?:login:?) User 'admin@konakart.com' has just logged in to the Admin App
 [java]
 [java] Call the custom interface 'Custom' using Engine named
 com.konakartadmin.app.KKAdminCustomEng
 [java] Result was: 27
 [java]
 [java] new KKWSAdminSoapBindingStub setup OK to
 http://localhost:8780/konakartadmin/services/KKWSAdmin
 [java]
 [java] Call the custom interface 'Custom' using Engine named
 com.konakartadmin.ws.KKWSAdmin
 [java] Result was: null

BUILD SUCCESSFUL
Total time: 6 seconds

Modifying an Existing API call
We will illustrate how this is done with an example using the getCustomerForId() Admin API call.

The default implementation of getCustomerForId() returns an AdminCustomer object for the specified
customer Id.

Suppose you want to change the data returned for whatever reason. It may be that you have customer data
in another table somewhere that you would like to look up and add to the AdminCustomer object whenever
getCustomerForId() is called (this other table may or may not be a KonaKart table).

Anyway, to keep this really simple so that we don't lose track of the point of this example we will set the
String value "CUSTOM SETTING" in the custom5 attribute of the AdminCustomer object that is returned.
This does mean we will overwrite the previous custom5 attribute value if such existed - so you in a proper
implementation will have to be aware of which fields are freely available for your use (the custom fields
are designed for customers to use in ways that they see fit).

Programming Guide

336

1. Move the GetCustomerForId.java file to the src directory tree.

We need to modify the default implementation and to do this we move the file from the gensrc directory
tree to the src directory tree, specifically, this means we need to move the GetCustomerForId.java from
/custom/adminengine/gensrc/com/konakartadmin/app to /custom/adminengine/src/com/konakartad-
min/app .

2. Add our customizations to GetCustomerForId.java

By default the implementation of GetCustomerForId.java is as follows:

/**
 * The KonaKart Custom Engine - GetCustomerForId
 * Generated by CreateKKAdminCustomEng
 */
public class GetCustomerForId
{
 KKAdmin kkAdminEng = null;

 /**
 * Constructor
 */
 public GetCustomerForId(KKAdmin _kkAdminEng)
 {
 kkAdminEng = _kkAdminEng;
 }

 public AdminCustomer getCustomerForId(
 String sessionId, int customerId) throws KKAdminException
 {
 return kkAdminEng.getCustomerForId(sessionId, customerId);
 }
}

We will add our simple changes so that it looks like this: (this file is included in the download kit under
the custom/adminengine/examples directory structure)

public AdminCustomer getCustomerForId
 (String sessionId, int customerId) throws KKAdminException
{
 // Leave the original call to the KonaKart API unchanged
 AdminCustomer myCustomer = kkAdminEng.getCustomerForId(sessionId, customerId);

 // Now add our special value into custom5:
 // (we may have got this value from a database query?)

 myCustomer.setCustom5("CUSTOM SETTING");

 return myCustomer;
}

3. Compile the new GetCustomerForId class and rebuild the jars:

An ANT build file is provided for this purpose - under the custom directory in the download kit.

Programming Guide

337

C:\KonaKart\custom>bin\kkant -p
Buildfile: build.xml

Main targets:

 build Compiles all the custom code and creates all the jars
 clean Clears away everything that's created during a build
 clean_admin_portlet_war Clears away the admin portlet war
 clean_manifest_file Clean the MANIFEST file for all jars
 clean_portlet_war Clears away the portlet war
 clean_torque_classes Clears away the generated torque artifacts
 clean_wars Clears away all the WARs and EARs
 compile Compile the customisable application code
 compile_admin_portlet_liferay Compile the Admin portlet utilities for Liferay
 compile_adminappn Compile the customisable admin appn code
 compile_adminappnEE Compile the customisable admin appnEE code
 compile_appEngEE Compile the customisable appEngEE code
 compile_appn Compile the customisable appn code
 compile_appnEE Compile the customisable appnEE code
 compile_custom_adminengine Compile the customisable admin engine code
 compile_custom_engine Compile the customisable engine code
 compile_modules Compile the customisable module code
 compile_utils Compile the customisable utils code
 copy_jars Copy selected custom konakart jars to the lib directories
 create_torque_classes Process the Custom Schema to produce torque classes
 debugenv Debug the environment
 enableWebServices Enable Web Services in deployed server
 enable_JSON Enable JSON in konakart web.xml - EE Only
 enable_KKAdmin_JSON Enable KKAdmin JSON in konakartadmin web.xml - EE Only
 execute_sql_file Execute the specified SQL file
 generate_torque_java Process the Custom Schema to produce torque java files
 make_admin_liferay_portlet_war Create the konakartadmin portlet war for Liferay
 make_ear Create the konakart EAR
 make_eclipse_project Create an Eclipse Project for Developing the Struts-2 Storefront
 make_jar_appEngEE Create the konakart_app.jar
 make_jar_custom Create the konakart_custom jar
 make_jar_customEE Create the konakart_customEE.jar
 make_jar_custom_admin Create the konakartadmin_custom.jar
 make_jar_custom_adminEE Create the konakartadmin_customEE.jar
 make_jar_custom_adminengine Create the konakartadmin_custom_engine.jar
 make_jar_custom_engine Create the konakart_custom_engine.jar
 make_jar_custom_utils Create the konakart_custom_utils.jar
 make_jars Create the konakart custom jars
 make_liferay_portlet_war Create the konakart portlet war for Liferay
 make_manifest_file Create the MANIFEST file for all jars
 make_ordertotal_module_jar Create the ordertotal module jar
 make_other_module_jar Create the other module jar
 make_payment_module_jar Create the payment module jar
 make_shipping_module_jar Create the shipping module jar
 make_torque_jar Create the konakart_custom_db.jar
 make_wars Create the konakart wars
Default target: build

You can compile and copy the relevant jars in one statement, as follows:

C:\KonaKart\custom>.\bin\kkant build,copy_jars

4. Define the Engine Implementation Class

Your custom code will never be executed if we don't define that KonaKart should instantiate the KKAd-
minCustomEng class as its engine class rather than the default, which is KKAdmin .

A small java program is provided in the download kit (called /java_api_examples/src/com/konakar-
tadmin/apiexamples/GetCustomerExamples.java) which demonstrates how you would call one ver-
sion of getCustomerForId() or the other from a java program.

Programming Guide

338

The code in GetCustomerExamples.java actually calls getCustomerForId() three
times, once with the default com.konakartadmin.bl.KKAdmin engine, once with the
com.konakartadmin.app.KKAdminCustomEng engine and finally using the web services client engine,
called com.konakartadmin.ws.KKWSAdmin .

When calling using the default com.konakartadmin.bl.KKAdmin engine you should see the default re-
sponse from getCustomerForId() which should show a null being returned for the custom5 attribute
(unless you fill in these values with something else in your own implementation).

When calling using the com.konakartadmin.app.KKAdminCustomEng engine you should see the re-
sponse from the getCustomerForId() implementation that we coded above (i.e. it should return "CUS-
TOM SETTING" in the custom5 attribute).

Finally when calling using the com.konakartadmin.app.KKAdminCustomEng engine, what you see
depends on which engine the web services are configured to use (they could be using the default
com.konakartadmin.bl.KKAdmin engine or the custom com.konakartadmin.app.KKAdminCustomEng
engine). Which engine is used in this case is defined in the konakartadmin.properties file as follows:

--
KonaKart engine class used by the admin web services
For the default engine use: com.konakartadmin.bl.KKAdmin
For the custom engine use: com.konakartadmin.app.KKAdminCustomEng

konakart.admin.ws.engine.classname = com.konakartadmin.bl.KKAdmin

The above definition is for the Admin App engine class name definition. An equivalent engine class
name definition is required for the application web services, and this is defined in konakart.properties
(you can find this under webapps\konakart\WEB-INF\classes)

--
KonaKart engine class used by the web services
For the default engine use: com.konakart.app.KKEng
For the custom engine use: com.konakart.app.KKCustomEng

konakart.app.ws.engine.classname = com.konakart.app.KKEng

Finally, to actually run the GetCustomerExamples , change directory to the java_api_examples direc-
tory where there is another ANT build file for building and running the examples. (You will have to
start the KonaKart server before running the CustomExamples test if you want a response from the web
service call!):

Programming Guide

339

C:\KonaKart\custom>cd ../java_api_examples

C:\KonaKart\java_api_examples>
 ..\custom\bin\ant clean, compile, runGetCustomerExamples
Buildfile: build.xml

clean:
 [echo] Cleanup...

compile:
 [echo] Compile the examples
 [mkdir] Created dir: C:\KonaKart\java_api_examples\classes
 [javac] Compiling 12 source files to C:\KonaKart\java_api_examples\classes
 [echo] Copy Properties for the examples
 [copy] Copying 1 file to C:\KonaKart\java_api_examples\classes

runGetCustomerExamples:
 [java] (?:init:?) Finished Initialising Log4j
 [java] (?:init:?) The configuration file being used is
 C:/KonaKart/webapps/
 konakartadmin/WEB-INF/classes/konakartadmin.properties
 [java] (?:init:?) Initialising KKAdmin
 [java] (?:initKonakart:?) KonaKart Admin V2.2.6.0 built 5:03PM 7-Apr-2008 BST
 [java] (?:init:?) Finished Initialising KonaKartAdmin
 [java] (?:init:?) Initialising Torque
 [java] (?:init:?) Initialising KonaKart-Torque for org.apache.torque.adapter.DBMM
 [java] (?:init:?) Finished Initialising Torque
 [java] (?:login:?) User 'admin@konakart.com' has just logged in to the Admin App
 [java]
 [java] Call the custom interface 'Custom' using Engine named com.konakartadmin.bl.KKAdmin
 [java] Found: John doe
 [java] custom5 = null
 [java]
 [java] (?:login:?) User 'admin@konakart.com' has just logged in to the Admin App
 [java]
 [java] Call the custom interface 'Custom' using Engine named
 com.konakartadmin.app.KKAdminCustomEng
 [java] Found: John doe
 [java] custom5 = CUSTOM SETTING
 [java]
 [java] new KKWSAdminSoapBindingStub setup OK to
 http://localhost:8780/konakartadmin/services/KKWSAdmin
 [java]
 [java] Call the custom interface 'Custom' using Engine named com.konakartadmin.ws.KKWSAdmin
 [java] Found: John doe
 [java] custom5 = null
 [java]

BUILD SUCCESSFUL
Total time: 7 seconds

Enabling Engine Customizations
So, you've made some engine customizations as described above and you want them to be executed when
you run KonaKart.

Assuming you have placed all the newly-built jars in the appropriate lib directories (the ANT build
copy_jars target will do this for you in a standard tomcat installation) you have to modify some proper-
ties files to make KonaKart instantiate the custom engines so that your customizations will actually be
executed.

There is a lot of flexibility here as you can define different engines in different places. It's advisable to
change only those engine definitions that you need to change however.

• webapps/konakart/WEB-INF/classes/konakart_app.properties

Defines which engine the main Struts Application will use

Programming Guide

340

--
KonaKart engine class used by the KonaKart Application users
#
For the default engine use: com.konakart.app.KKEng
For the JAXWS engine use: com.konakart.jws.KKJAXWSEng
For the web services engine use: com.konakart.app.KKWSEng
For the RMI services engine use: com.konakart.rmi.KKRMIEng
For the JSON services engine use: com.konakart.json.KKJSONEng

konakart.app.engineclass = com.konakart.app.KKEng

• webapps/konakart/WEB-INF/classes/konakart.properties

Defines which engine the Application web services will use

--
KonaKart engine class used by the web services
For the default engine use: com.konakart.app.KKEng
For the custom engine use: com.konakart.app.KKCustomEng

konakart.app.ws.engine.classname = com.konakart.app.KKEng

• webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties

Defines which engine the Administration web services will use

--
KonaKart engine class used by the admin web services
For the default engine use: com.konakartadmin.bl.KKAdmin
For the custom engine use: com.konakartadmin.app.KKAdminCustomEng

konakart.admin.ws.engine.classname = com.konakartadmin.bl.KKAdmin

• webapps/konakartadmin/WEB-INF/classes/konakartadmin_gwt.properties

Defines which engine the GWT Admin Application will use

--
KonaKart engine class used by the KonaKart Admin Application users
#
For the default engine use: com.konakartadmin.bl.KKAdmin
For the web services engine use: com.konakartadmin.ws.KKWSAdmin
For the RMI services engine use: com.konakartadmin.rmi.KKRMIAdminEng
For the JSON services engine use: com.konakartadmin.json.KKJSONAdminEng
For the JAXWS services engine use: com.konakartadmin.jws.KKJAXWSAdmin

konakartadmin.gwt.engineclass=com.konakartadmin.bl.KKAdmin
#konakartadmin.gwt.engineclass=com.konakartadmin.ws.KKWSAdmin
#konakartadmin.gwt.engineclass=com.konakartadmin.rmi.KKRMIAdminEng
#konakartadmin.gwt.engineclass=com.konakartadmin.json.KKJSONAdminEng
#konakartadmin.gwt.engineclass=com.konakartadmin.jws.KKJAXWSAdmin

Building with Maven
From v8.0.0.0 all KonaKart jars were numbered in preparation for Maven builds. Enterprise Edition users
can build all the customisable source code using Maven.

Programming Guide

341

JAVA_HOME must set set to point to your JDK (Java Development Kit).

In the maven directory under the installation root directory you will find:

• A copy of Maven itself (in an apache-maven-n.n.n directory)

• All the customisable source code with pom files ready for a Maven build

• Scripts to execute the Maven build. Open a command window in the maven directory then execute the
appropriate script for your platform:

• On Windows, execute mavenBuild.bat

• On Linux, execute mavenBuild.sh

By default a local Maven repository is created in a directory called repo under the maven directory.

All the source can be imported into Eclipse (or equivalent Java IDE) as required.

Pluggable Managers
Since version 3.2.0.0, the internal managers of the KonaKart engines are instantiated by name and adhere
to interfaces so that they can easily be substituted by alternative implementations. The managers are listed
in the konakart and konakartadmin properties files under WEB-INF/classes for both applications.

KonaKart managers
When commented out, the default manager is instantiated

konakart.manager.ProductMgr = com.konakart.bl.ProductMgrEE
#konakart.manager.CacheMgr = com.konakart.bl.CacheMgr
#konakart.manager.CurrencyMgr = com.konakart.bl.CurrencyMgr
konakart.manager.SecurityMgr = com.konakart.bl.SecurityMgrEE
#konakart.manager.CategoryMgr = com.konakart.bl.CategoryMgr
#konakart.manager.ConfigurationMgr = com.konakart.bl.ConfigurationMgr
#konakart.manager.CustomerMgr = com.konakart.bl.CustomerMgr
#konakart.manager.EventMgr = com.konakart.bl.EventMgr
#konakart.manager.LanguageMgr = com.konakart.bl.LanguageMgr
konakart.manager.OrderMgr = com.konakart.bl.OrderMgrEE
#konakart.manager.PromotionMgr = com.konakart.bl.PromotionMgr
#konakart.manager.BasketMgr = com.konakart.bl.BasketMgr
#konakart.manager.ShippingMgr = com.konakart.bl.modules.shipping.ShippingMgr
#konakart.manager.PaymentMgr = com.konakart.bl.modules.payment.PaymentMgr
#konakart.manager.OrderTotalMgr = com.konakart.bl.modules.ordertotal.OrderTotalMgr
#konakart.manager.SolrMgr = com.konakart.bl.SolrMgr
#konakart.manager.TaxMgr = com.konakart.bl.TaxMgr
#konakart.manager.EmailMgr = com.konakart.bl.EmailMgr
#konakart.manager.ManufacturerMgr = com.konakart.bl.ManufacturerMgr
#konakart.manager.ReviewMgr = com.konakart.bl.ReviewMgr
#konakart.manager.WishListMgr = com.konakart.bl.WishListMgr
#konakart.manager.MultiStoreMgr = com.konakart.bl.MultiStoreMgr
#konakart.manager.StoreMgr = com.konakart.bl.StoreMgr
#konakart.manager.CookieMgr = com.konakart.bl.CookieMgr
#konakart.manager.AdminEngineMgr = com.konakartadmin.bl.AdminEngineMgr
#konakart.manager.MqMgr = com.konakart.mq.MqMgr
#konakart.manager.CustomerStatsMgr = com.konakart.bl.CustomerStatsMgr
#konakart.manager.CustomerTagMgr = com.konakart.bl.CustomerTagMgr
#konakart.manager.VelocityContextMgr = com.konakart.bl.VelocityContextMgr
#konakart.manager.MiscItemMgr = com.konakart.bl.MiscItemMgr
#konakart.manager.PunchOutMgr = com.konakart.bl.PunchOutMgr

As you can see, most of them are normally commented out so that the default manager is used. The above
shows a typical set-up for an Enterprise installation.

Programming Guide

342

This pluggable architecture allows the KonaKart professional services team and suitably qualified part-
ners to customize the engine internals in order to satisfy customer requirements that cannot be met by
customizing the API calls.

343

Chapter 24. Reporting
This section describes the KonaKart reporting sub-system. KonaKart uses the popular open source BIRT
[http://www.eclipse.org/birt/] (http://www.eclipse.org/birt/) reporting system but it is loosely-coupled so
it is easy to integrate an alternative or additional reporting system if you wish.

The mechanism of Customer events is also explained, and how they can be used to persist important
information. This information can be used to generate reports to help you understand how customers are
using the KonaKart store and so help you make modifications to improve the overall store performance
in terms of usability and sales.

KonaKart Reporting from the Admin App
The reports are accessible from the "Reports" tab of the KonaKart Admin Application. A new browser
window will be created that will run the BIRT viewer for the selected report.

Modifying the Reports
You will find the report files under the birtviewer webapp at: {konakart home}/webapps/birtviewer/re-
ports/stores/store1 By default the reports have the .rptdesign file extension although this can be set in
the configuration parameters to some other file extension if you wish. For very simple modifications to
the reports you can simply edit the report files (they are XML files). You can edit them directly from the
Admin Application or using a file editor of your choice. For more complicated modifications or for adding
your own new reports, you will have to set up the BIRT/Eclipse report design tools as explained below.

(Note that from version 3.2.0.0 the default reports location has moved to accommodate Multi-Store func-
tionality where each store has its own set of reports. This is why the new location has the store number
at the end of the directory path).

(Note that prior to version 2.2.7.0 the "birtviewer" webapp was called "birt-viewer". The change was made
due to certain application servers not being able to handle the name "birt-viewer" in all circumstances).

Adding New Reports
KonaKart has been designed to allow the integration of any reporting system. although BIRT [http://
www.eclipse.org/birt/] has been used in the download package and makes an excellent choice for adding
addition reporting functionality.

BIRT [http://www.eclipse.org/birt/] is a free Eclipse-based open source reporting system for web applica-
tions, especially those based on Java and J2EE. BIRT has two main components: a report designer based
on Eclipse, and a runtime component that you can add to your app server. BIRT also offers a charting en-
gine that lets you add charts. Included in the KonaKart download package we provide the "BIRT Viewer"
web application that includes the BIRT runtime system which is all you need to produce your reports.

For development of addition reports you are advised to follow the instructions on the BIRT web site for
setting up BIRT in Eclipse. Note that currently we are using BIRT 4.3.0 so it is strongly advised that you
use that version for new reports to ensure compatibility.

Once you have created your new report you can either upload it using the Admin Application or simply
add your report to the directory defined to hold your reports (the directory is a configuration parameter
that is set up default to C:/KonaKart/webapps/birtviewer/reports/stores/store1 (therefore, this will have

http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/
http://www.eclipse.org/birt/

Reporting

344

to be changed if you have not installed KonaKart in the default location on Windows. You can set this
value in the Admin Application under the Reports Configuration section.)

To make your report appear in the list of reports with a friendly name rather than its filename you have to
specify the text to display in the text-property title tag of your BIRT report, for example:

<text-property name="title">
 Orders in last 30 Days (Chart Only)
</text-property>

Defining a Chart to appear on the Status Page of the Ad-
min App

By default KonaKart is configured to display a plot showing number of orders over the preceding 30 days
on the Status page of the Admin Application. What you display in this particular frame is entirely up to
you - you can choose another plot, or indeed any page you like that might even be unrelated to KonaKart.
You define the URL for the page in the Reports Configuration section of the Admin Application.

Reports Configuration
By default KonaKart is configured to use port 8780. If you change this port you will have to modify
the "Report Viewer URL" and the "Status Page Report URL" configuration parameters in the Reports
Configuration section of the Admin Application to reflect the different port. These are set automatically
if you installed using the installer so you should only need to do this if you either installed manually using
the zip package or changed the KonaKart port number after installation. Here's an example of what you
would set these parameters to if you were running KonaKart on port 8080:

KonaKart - Reports Configuration

Defining the Set of Reports Shown in the Admin App
By default KonaKart is configured to search for report files with the .rptdesign extension in the C:/Kon-
aKart/webapps/birtviewer/reports/stores/store1 directory. If you use a different file extension for your
reports or you have installed KonaKart in any location other than C:/KonaKart/ you will have to modify
the configuration parameter to suit your installation. You will have to modify the reporting configuration
parameters in the Administration Application. You define all of the reporting configuration parameters in
the Reports Configuration section of the Admin Application.

Reporting

345

Accessing the Database in the Reports
KonaKart may be looking for the database connection parameters in the wrong file. Check your
konakart.rptlibrary file under webapps/birtviewer/reports/lib/ . Find the beforeOpen section under <da-
ta-sources>:

<data-sources>
 <oda-data-source
 extensionID="org.eclipse.birt.report.data.oda.jdbc"
 name ="KonaKart-Database"
 id ="4">
 <method name="beforeOpen"><![CDATA[

importPackage(Packages.java.util.logging);
importPackage(Packages.com.konakart.reports);

var dbPropsFile =
 "C:/KonaKart/webapps/konakartadmin/WEB-INF/classes/konakartadmin.properties";
var dbparams = new GetDbParams(dbPropsFile);

this.setExtensionProperty("odaDriverClass", dbparams.getDbDriver());
this.setExtensionProperty("odaURL", dbparams.getDbUrl());
this.setExtensionProperty("odaUser", dbparams.getDbUser());
this.setExtensionProperty("odaPassword", dbparams.getDbPassword());

This is how the reports find out how to connect to the database. The konakart.rptlibrary file defines the
location of the konakartadmin.properties file (or it could be your own file so long as it defines the appro-
priate database connection parameters). Therefore you must verify that the filename is correct for your
environment. The default location is as illustrated above which shows the default location when installed
on Windows. (This should be set automatically by the installation wizard but could well be set incorrectly
if you used the manual zip-based installation).

Customer Events
Customer Events are events triggered by customer actions and are persisted in the database. Each event
contains the id of the customer, the date, the event action (to distinguish between different types of events),
the store id and optionally any data related to the event such as the product or customer id.

For example, events allow you to track:

• When the details of a product are being looked at. The id or sku of the product may be saved in the event.

• Whenever a product is added or removed from the cart.

• Whenever a customer visits the store and / or logs in.

• Whenever a customer enters or leaves the checkout process.

The number of events generated by KonaKart is determined by the number of visitors to your store and by
how much tracking information you wish to gather. So as not to impact run time performance, the events
may be written to a different database rather than to the production database. Also, the KonaKart event
manager contains a buffer that receives events from the storefront application and immediately returns
control. The buffer is emptied in the background by a separate thread.

Creating Customer Events
The KonaKart application API contains an insertCustomerEvent(CustomerEventIf event) API call that
may be used to insert events. The Struts action classes of the KonaKart storefront application by default

Reporting

346

insert a certain number of events if these are enabled in the Configuration >> Customer Details section
of the admin app.

The event actions are defined in BaseAction.java.

 /*
 * Event actions
 */
 protected static final int ACTION_NEW_CUSTOMER_VISIT = 1;

 protected static final int ACTION_CUSTOMER_LOGIN = 2;

 protected static final int ACTION_ENTER_CHECKOUT = 3;

 protected static final int ACTION_CONFIRM_ORDER = 4;

 protected static final int ACTION_PAYMENT_METHOD_SELECTED = 5;

 protected static final int ACTION_REMOVE_FROM_CART = 6;

 protected static final int ACTION_PRODUCT_VIEWED = 7;

You may define new actions to insert events for your particular requirements. BaseAction.java also con-
tains helper methods (insertCustomerEvent()) for inserting the events.

Examples of how to use the insertCustomerEvent() method may be found in various struts action classes.
For example, to track products being removed from the cart:

 insertCustomerEvent(kkAppEng, ACTION_REMOVE_FROM_CART, b.getProductId());

konakart.properties contains the definition of the database connection for the database where the events
are written. By default the installer sets it to the production database.

Enterprise Feature
torque.database.kkstats.adapter = mysql
torque.dsfactory.kkstats.connection.driver = com.mysql.jdbc.Driver
torque.dsfactory.kkstats.connection.url = jdbc:mysql://localhost:3306/dbname
 ?zeroDateTimeBehavior=convertToNull&useSSL=false
torque.dsfactory.kkstats.connection.user = root
torque.dsfactory.kkstats.connection.password =

347

Chapter 25. Liferay Portal Integration
Introduction

In order to easily integrate the KonaKart Storefront and Admin applications into the popular Liferay portal
environment, we supply ANT tasks that automatically generate portlets from the applications which can
then be easily imported into Liferay. The storefront application maybe customized within an Eclipse based
project to match you requirements before you generate the portlet.

Creation of portlet WAR files
Note that more detailed instructions for Liferay are included in a separate document called
LiferayPortletInstallation.pdf under the doc directory of your KonaKart installation.

In order to create the WAR file that can be loaded into a portal, you must first install KonaKart normally
and ensure that it is working correctly.

Navigate to the KonaKart\custom directory and run the command .\bin\kkant -p to view the ant targets
in the supplied build file.

Please refer to the LiferayPortletInstallation.pdf document for more details.

348

Chapter 26. Social Login
Social Login allows customers to sign into KonaKart using credentials from a social networking service
such as Facebook, Google+ and PayPal. It is designed to simplify the registration and login process since
customers are not asked for a KonaKart specific username and password.

Social Login is only available in the Enterprise version of KonaKart.

Facebook
In order to allow your customers to use a Facebook account for logging into your storefront, you must
install the Facebook Login module which you can find in the Admin App under Modules >> Other Modules
>> Facebook Login.

After clicking the install button, the only data you need to enter is the Facebook App ID of your application
as shown above.

Social Login

349

Having installed the module, the storefront application will now display a Facebook Login button in the
standard KonaKart login page. When this button is clicked, a Facebook popup window opens up, allowing
the customer to enter credentials which are validated by Facebook. The Facebook account must contain
an email address in order to be able to use this process.

All of the source code that manages the registration and login of the customer can be found in custom/mod-
ules/src/com/konakart/bl/modules/others/facebooklogin/FacebookLogin.java. You can easily modify and
rebuild the module in order to modify the standard process.

Note that when a customer logs out of the KonaKart storefront application, the default implementation of
the Facebook module does not log the customer out of Facebook. This could pose a security threat on a
shared device if the customer is not aware of this.

Google+
In order to allow your customers to use a Google+ account for logging into your storefront, you must
install the Google+ Login module which you can find in the Admin App under Modules >> Other Modules
>> Google+ Login.

Social Login

350

After clicking the install button, the only data you need to enter is the Google+ Client ID of your application
as shown above.

Having installed the module, the storefront application will now display a Google+ Login button in the
standard KonaKart login page. When this button is clicked, a Google+ popup window opens up, allowing

Social Login

351

the customer to enter credentials which are validated by Google. The Google+ account must contain an
email address in order to be able to use this process.

All of the source code that manages the registration and login of the customer can be found in custom/mod-
ules/src/com/konakart/bl/modules/others/googlepluslogin/GooglePlusLogin.java. You can easily modify
and rebuild the module in order to modify the standard process.

Note that when a customer logs out of the KonaKart storefront application, the default implementation
of the Google+ module does not log the customer out of Google. This could pose a security threat on a
shared device if the customer is not aware of this.

PayPal Login
In order to allow your customers to use a PayPal account for logging into your storefront, you must install
the PayPal Login module which you can find in the Admin App under Modules >> Other Modules >>
PayPal Login.

Social Login

352

After clicking the install button, the only data you need to enter is the Client Id and Secret Key of your
PayPal App. You can create an App in the PayPal Developer web site. From the same web site you must
configure your App to allow Log In with PayPal and in that section you should configure it to allow it
to request Personal, Address and Account information from customers. Finally, you also need to set the
Return URL of the PayPal App which should match the Return URL configured in the KonaKart Admin
App. By default the value is http://localhost:8780/konakart/PaypalLogin.action although you may wish to
change localhost to a value that can be resolved remotely.

Having installed the module, the storefront application will now display a PayPal Login button in the
standard KonaKart login page. When this button is clicked, a PayPal popup window opens up, allowing
the customer to enter credentials which are validated by PayPal.

All of the source code that manages the registration and login of the customer can be found in custom/mod-
ules/src/com/konakart/bl/modules/others/paypallogin/PaypalLogin.java. You can easily modify and re-
build the module in order to modify the standard process.

Note that when a customer logs out of the KonaKart storefront application, the default implementation of
the PayPal module does not log the customer out of PayPal. This could pose a security threat on a shared
device if the customer is not aware of this.

Social Login

353

All Modules

The storefront detects that the login was made through a social login module and so after logging in, the My
Account page displays a link allowing the customer to have a KonaKart password sent to his social login
email address. The customer will only need a KonaKart password should he wish to modify his KonaKart
email address. As can be seen from the above screenshot there is also a link to allow the customer to enter
his primary address. The customer will be forced to enter an address only at checkout time. For the case
of PayPal Login, if a customer has an address defined in PayPal, then it will be used during registration,

A customer registered through a social login module is added to the KonaKart database using many default
values which are used by the storefront application to determine that this information has not yet been
entered.

If the email address of the social network account doesn’t already exist within KonaKart, then the customer
is registered using just the email address and maybe the name and gender if these are available. The social
network module sends out the standard welcome email as if the customer had registered normally. If the
email address already exists, this is detected so the customer is logged in without registering.

When viewing a customer through the Admin App using the standard validation rules, the customer record
will not validate and so you will not be able to make a change without entering an address for the cus-
tomer. In order to relax the validation rules, you need to modify webapps/konakartadmin/WEB-INF/class-
es/CustomValidation.properties as shown below:

• Address.city = 1;64

• Address.country = -1;

• Address.postcode = 1;10

• Address.street_address = 1;64

354

Chapter 27. TaxCloud Integration

Introduction
TaxCloud (http://www.taxcloud.net/) is a free sales tax service for online retailers. It instantly calculates
sales tax for any U.S. address. TaxCloud has been certified by the Streamlined Sales Tax Governing Board,
so you can be sure that their tax information is accurate and up-to-date. TaxCloud files your sales tax
returns with all Streamlined member states and provides easy-to-understand reports for you to use with
the remaining states.

How does the integration work?
A TaxCloud order total module can be enabled to replace the standard Tax order total module. This can
be achieved using the Admin App under Modules >> Order Totals. Before saving the change, the module
must be configured correctly as can be seen from the diagram below.

Configure TaxCloud Module

TaxCloud Integration

355

The TaxCloud Login Id and Key can be retrieved after registering with TaxCloud. The address information
is the origin shipping address. Finally, the USPS user id (obtained from USPS) is used to do address
verification lookups. If you already verify all customer addresses before saving them, you can edit the
TaxCloud module to remove the address verification code so that this id is not required.

Whenever, the TaxCloud module is called by the KonaKart engine, it sends order information to the Tax-
Cloud web service which returns the amount of tax due for each cart item in the order. To be able to cal-
culate the correct tax and to determine whether there are exemptions, the TaxCloud service must know the
tax classification for the products in the cart. It figures this out by reading the TIC (Taxability Information
Code) applicable for each product. All product categories may have a TIC associated with them. i.e. The
TIC for school supplies is "20070" and the TIC for computers is "30100" etc. Within KonaKart you must
supply the correct TIC to each defined Tax Class object as shown below. Since every KonaKart product
must have a Tax Class, it will automatically pick up the TIC from the Tax Class.

Configure Tax Class

Reconciliation
In order for TaxCloud to prepare accurate monthly reports, KonaKart must confirm the actual amount of
sales tax that was collected from the customer. This reconciliation event is done in the OrderIntegrationMgr
whenever we detect that the order has been paid for.

By default, the method manageTax() in the OrderIntegrationMgr is commented out. If you decide to use
TaxCloud, you must un-comment this method and re-compile the OrderIntegrationMgr as explained in
another section of this guide (Building Customizable Source).

Points to Note
The TaxCloud order total module will throw an exception and not return an order total if a problem has
occurred. It is advisable to modify the storefront application to detect that the Tax order total is missing and
to take action. i.e. This could mean aborting the order or calling the standard Tax order total that calculates
tax based on data present in the database.

TaxCloud Integration

356

The TaxCloud APIs use the SSL protocol and require you to have installed a valid SSL certificate. The
test certificate present in the download kit is not accepted and an "unable to find valid certification path to
requested target" exception is thrown by TaxCloud. For testing, the way to circumvent this problem is to
add the TaxCloud server certificate to your trusted Java key store. There are programs freely available to
help you to do this. A Google search for "InstallCert" will find many results.

357

Chapter 28. Thomson Reuters
Integration

Introduction
Thomson Reuters (http://thomsonreuters.com/) provide a number of sales tax services for online retailers.
The module provided in KonaKart uses the Thomson Reuters Web Services to calculate and report tax.
It provides a global tax solution.

How does the integration work?
The Thomson Reuters order total module can be enabled to replace the standard Tax order total module.
This can be achieved using the Admin App under Modules >> Order Totals. Before saving the changes,
the module must be configured correctly as can be seen from the diagram below.

It is important that the address details you provide for the Store are accurate and can be validated success-
fully by Thomson Reuters. If Thomson Reuters cannot successfully validate the store address it won't be
able to calculate tax accurately.

Thomson Reuters Integration

358

Configure Thomson Reuters Module

Many of the configuration settings will need to be obtained from Thomson Reuters or the administrator of
your Thomson Reuters system as these are closely-related to the settings in your own system.

Whenever, the Thomson Reuters module is called by the KonaKart engine, it sends order information to
the Thomson Reuters web service which returns the amount of tax due for each cart item in the order. To
be able to calculate the tax correctly the Thomson Reuters service must know the tax classification for the
products in the cart and any relevant tax information for the customer (eg. Tax/VAT Code). Each product
may have a Part Number and or Commodity Code associated with it which is passed to Thomson Reuters.

Auditing of Order Transactions
In order for Thomson Reuters to prepare accurate sales/tax reports, KonaKart must confirm the actual
amount of sales tax that was collected from the customer. This reconciliation event is coded in the Order-
IntegrationMgr whenever an order reaches a certain defined state (usually "Payment Received").

By default, the method manageTax() in the OrderIntegrationMgr is commented out. If you decide to use
Thomson Reuters, you must un-comment this method and re-compile the OrderIntegrationMgr as ex-
plained in another section of this guide (Building Customizable Source).

Thomson Reuters Integration

359

Points to Note
The Thomson Reuters order total module will throw an exception and not return an order total if a problem
has occurred. It is advisable to modify the storefront application to detect that the Tax order total is missing
and to take action. i.e. This could mean aborting the order or calling the standard Tax order total that
calculates tax based on data present in the database.

360

Chapter 29. PunchOut
Introduction

Large companies and government organizations typically use e-procurement systems for purchasing from
external suppliers. These systems allow them to easily interface purchasing to other internal systems such
as accounting and inventory and they provide benefits like the management of purchasing budgets. Pun-
chOut is the name given to the technical protocol that allows the connection of a product catalog (e.g. a
KonaKart store) to an e-procurement system, enabling the system to order from the store.

Currently, KonaKart supports version 4 of the Open Catalog Interface (OCI) standard which is supported
by SAP. It generates OCI compliant XML or an HTML message from an array of products that have been
added to the cart by the corporate customer and transmits this XML or HTML back to the customer's ERP
system.

The process can be described as follows:

PunchOut Process

1. The buyer selects the supplier (KonaKart store) on the procurement application (e.g. SAP).

2. A browser opens for the buyer pointing to the KonaKart application.

3. The PunchOut request is received by the KonaKart application which identifies the B2B buyer, validates
his credentials and redirects him to a welcome page. At this point the buyer begins to add products
to the cart.

4. When the buyer checks out in the KonaKart application, he is directed back to his procurement applica-
tion instead of going through the normal KonaKart check out process. An OCI XML or HTML message
is sent to the buyer's system, containing information about the list of products he is ordering.

PunchOut

361

5. The buyer's procurement system receives the checkout products and a standard procurement order is
created.

Customization of the PunchOut message
KonaKart contains a PunchOut manager which can be configured in order to customize the XML message
or HTML parameters sent by KonaKart. An example of how to do this can be found under the directory
KonaKart\java_api_examples\src\com\konakart\apiexamples in a file called MyPunchOutMgr.java . The
methods that must be overriden are called getData_OCI_XML and getData_OCI_HTML . An example is
shown below. In order to use MyPunchOutMgr instead of the standard PunchOutMgr, you must add it to the
KonaKart\custom\appn\src\com\konakart\bl directory; compile it and then replace konakart_custom.jar
with the new jar created in the KonaKart\custom\jar directory. The konakart.properties file must also be
edited to pick up the new manager:

konakart.manager.PunchOutMgr = com.konakart.bl.MyPunchOutMgr

/**
 * In your own implementation of the PunchOut manager you can override this method to provide
 * your own data for the various tags and tag attributes.
 *
 * @param tagName
 * The name of the tag as it appears in the XML
 * @param attrName
 * The name of the attribute as it appears in the XML
 * @param orderProduct
 * The OrderProduct object. In most cases it will have an attached Product object
 * @param options
 * The PunchOut options
 * @return Returns the data that will be added to the message. Default values are used if null
 * is returned
 */
protected String getData_OCI_XML(String tagName, String attrName, OrderProductIf orderProduct,
 PunchOutOptionsIf options)
{
 if (tagName.equals("Price") && attrName == null)
 {
 /*
 * Return an empty string to not display the price
 */
 return "";
 } else if (tagName.equals("ItemText") && attrName == null)
 {
 /*
 * The product description isn't returned in the standard implementation
 */
 if (orderProduct.getProduct() != null)
 {
 return "" + orderProduct.getProduct().getDescription() + "";
 }
 } else if (tagName.equals("LeadTime") && attrName == null)
 {
 /*
 * The lead time isn't returned in the standard implementation. It could be saved in one
 * of the Product custom fields.
 */
 if (orderProduct.getProduct() != null)
 {
 return orderProduct.getProduct().getCustom1();
 }
 }

 return null;

}

PunchOut

362

The OCI specification states that many of the possible XML tags are optional. By implementing the
getData_OCI_XML() method as shown above, you can configure which tags are returned and can alter
the data within them.

/**
 * In your own implementation of the PunchOut manager you can override this method to customize
 * the data being returned. The parameters are set using code similar to:
 * nvList.add(new NameValue("NEW_ITEM-DESCRIPTION[" + index + "]", op.getName()));
 *
 * @param order
 * The order
 * @param op
 * The order product
 * @param nvList
 * List of NameValue pairs. New data is added to the list.
 * @param index
 * Index used for creating the name value pairs
 * @param scale
 * Scale used for formatting the currency
 * @param options
 * PunchOutOptions
 */
protected void getData_OCI_HTML(OrderIf order, OrderProductIf op, List<NameValue> nvList,
 int index, int scale, PunchOutOptionsIf options)
{

 // NEW_ITEM-DESCRIPTION
 nvList.add(new NameValue("NEW_ITEM-DESCRIPTION[" + index + "]", op.getName()));

 // NEW_ITEM-VENDORMAT
 if (op.getSku() != null)
 {
 nvList.add(new NameValue("NEW_ITEM-VENDORMAT[" + index + "]", op.getSku()));
 }

 // NEW_ITEM-EXT_PRODUCT_ID
 nvList.add(new NameValue("NEW_ITEM-EXT_PRODUCT_ID[" + index + "]", op.getProductId()));

 // NEW_ITEM-QUANTITY
 nvList.add(new NameValue("NEW_ITEM-QUANTITY[" + index + "]", op.getQuantity()));

 // NEW_ITEM-UNIT
 nvList.add(new NameValue("NEW_ITEM-UNIT[" + index + "]", "EA"));

 // NEW_ITEM-CURRENCY
 nvList.add(new NameValue("NEW_ITEM-CURRENCY[" + index + "]", order.getCurrencyCode()));

 // NEW_ITEM-PRICE Price of an item per price unit
 BigDecimal opPrice = op.getPrice().setScale(scale, BigDecimal.ROUND_HALF_UP);
 if (op.getQuantity() > 1)
 {
 opPrice = opPrice.divide(new BigDecimal(op.getQuantity()), BigDecimal.ROUND_HALF_UP);
 }

 nvList.add(new NameValue("NEW_ITEM-PRICE[" + index + "]", opPrice.toPlainString()));

 // NEW_ITEM-PRICEUNIT
 nvList.add(new NameValue("NEW_ITEM-PRICEUNIT[" + index + "]", "1"));

}

This method returns all of the name value pairs for a single Order Product object. It can be customized to
return more or less attributes and to use custom attributes when required.

Application PunchOut Code
Two main Struts action classes control the PunchOut process. They are PunchOutEntryAction.java and
PunchOutCheckoutAction.java .

PunchOut

363

PunchOutEntryAction.java

It is called by the ERP system to start a KonaKart session for the corporate buyer. The customer credentials
are validated and if required this action may be used to set the prices for the customer by configuring
KKAppEng with a specific catalog id. Details of the PunchOut, such as the return URL are saved in a
PunchOut object in KKAppEng.

PunchOutCheckoutAction.java

This action is called when the customer attempts to checkout. It calls the KonaKart engine to get the XML
and together with data previously saved in the PunchOut object, it calls CatalogCheckoutPunchout.jsp to
post the data back to the corporate buyer's ERP system.

	User and Developer Guide
	Table of Contents
	Chapter 1. Introduction
	What is KonaKart ?
	Who is the software intended for?
	Retailer
	Solution Provider / System Integrator / OEM
	ISP

	Important changes from v.6.5.0.0

	Chapter 2. KonaKart Information
	Community and Enterprise Versions
	Is KonaKart Open Source?
	Is the full source code available?

	Chapter 3. KonaKart Features
	General Functionality
	JSR 286 Liferay Portlet
	ERP Integration
	Content Management System Integration
	Basic Content Management
	Setup/Installation
	Design/Layout
	Multi-Store
	Multi-Vendor
	Customer Functionality
	Customer Groups - Wholesale/Retail
	B2B Features
	Call Center Functionality
	Social Login
	One page checkout
	Checkout without registration
	Products
	Digital Downloads
	Bookable Products
	Product Stock Reservation
	Product Bundles
	Gift Certificates
	Reward Points
	Indexed Search
	Suggested Search
	Product Tags and Tag Groups (Faceted Search)
	Merchandising
	Promotions
	Marketing - Customer Tags and Expressions
	Advanced Search Engine Optimization (SEO)
	Reporting
	Payment Functionality
	Recurring Billing
	Shipping Functionality
	Tax Functionality
	Order management
	Returns
	Refunds
	PDF Invoices
	Java Message Queue Integration
	Customer Events
	Exchange Rate Updates
	Filters
	KonaKart and KonaKartAdmin Tiles
	Facebook Messenger Bot.

	Chapter 4. Architecture
	Software Architecture
	Deployment Architecture

	Chapter 5. Installation
	Before You Begin
	Platforms Supported
	Pre-requisites
	Install Java

	Create a Database
	Upgrading the Database between releases of KonaKart

	Install KonaKart
	Installing KonaKart on Windows
	Installing KonaKart on Unix/Linux
	Silent Mode Installations
	Silent Mode Parameters

	Graphical Installation Wizard

	Manual Installation
	Starting Up and Shutting Down KonaKart
	Starting up KonaKart
	Shutting down KonaKart

	Setting up KonaKart as a Windows Service
	Default Admin App Credentials
	Admin Password Validation
	Super User

	Installation Notes for Databases
	Defining the Database Parameters
	Encrypting the Database Parameters
	Defining the Database Parameters - Using JNDI
	Notes for DB2 and Oracle
	Notes for Postgresql
	Notes for MySQL
	Notes for Microsoft SQL Server

	Chapter 6. Installation of KonaKart Enterprise Extensions
	Before You Begin
	Licensing
	Pre-requisites

	Create a Database
	Installing Enterprise Extensions
	Installing KonaKart Enterprise Extensions on Windows
	Installing KonaKart Enterprise Extensions on Unix/Linux
	Silent Mode Installations
	Silent Mode Parameters

	Graphical Installation Wizard

	Manual Installation of the Enterprise Extensions
	Users created by the Enterprise Extensions Installation
	Single Store Mode
	Multi-Store Multiple DB Mode
	Multi-Store Single DB Mode with Shared Customers
	Multi-Store Single DB Mode NON-Shared Customers

	Chapter 7. Installation of KonaKart on other Application Servers
	General Notes on Installing KonaKart on Application Servers
	Edit Config Files - Admin Application Functionality
	Email Properties File
	Reporting Port Numbers and Report Location
	Configuring Parameters for Images
	Setting the Optimum Memory Values

	Installing KonaKart on BEA's WebLogic Application Server
	Installation
	Configuration

	Installing KonaKart on JBoss or Wildfly
	Installation
	Configuration

	Installing KonaKart on IBM's WebSphere Application Server
	Installation
	Configuration

	Installing KonaKart on IBM's WebSphere Application Server Community Edition
	Installation
	Configuration

	Installing KonaKart on GlassFish
	Installation
	Configuration

	Installing KonaKart on JOnAS with Tomcat
	Installation
	Configuration

	Installing KonaKart on JOnAS with Jetty
	Installation
	Configuration

	Chapter 8. Upgrading
	Recommended Upgrade Steps
	Backup
	Installation of the new Version
	Database Upgrade
	Test new Installation against Upgraded Database
	Re-build Custom Code
	Upgrade the Struts Storefront
	Assess Changes to WebApp Configuration files
	Assess Changes to Tomcat Configuration files
	KonaKart Directory Structure Changes
	KonaKart Message Changes
	Documentation and javadoc Changes
	Admin App Changes

	Chapter 9. Administration and Configuration
	KonaKart Administration Application
	Main Features
	Reporting
	Reporting - BIRT Viewer Security
	Role-based Security and Configuration
	Initial Locked-Down Configuration
	Filters
	File-based Configuration
	Product Image Uploads
	Manufacturer Image Uploads

	Launching the Admin App
	Configuring KonaKart for HTTPS / SSL
	Editing the KonaKart Configuration Files
	Changing the Editable File List in the Admin App
	KonaKart Properties Files
	Configuration of Messages
	Switching to Database Messages
	KKMessages Utility

	Logging
	Log4j2 Logging
	AXIS/SOAP Logging

	Internationalization of KonaKart
	Translating the KonaKart Application
	Translating the country names
	Translating the KonaKart Admin Application

	Changing the Logo on the KonaKart Admin Application
	Changing the Date Format in the KonaKart Application
	Formatting of Addresses
	Email Configuration
	Modifying the Email Templates
	Receiving Notification EMails of Exceptions
	Adding Custom Business Objects for use in Velocity Templates

	Search Engine Optimization (SEO) Features
	Sitemap Generation
	Caching
	Adding Custom Functionality to the Admin App
	Adding Panels
	Adding Custom Configuration Panel
	Adding Buttons
	Adding A Custom Application - Insert Product Wizard

	Searching with wildcards
	Case In-Sensitive Searching
	Making something happen when a product needs to be reordered
	Making something happen when the state of an order changes
	PDF Invoices
	Activating a Promotion
	Testing a Promotion
	Applying Promotions to Products
	Displaying Coupon Entry Fields in your Store
	Configuring Digital Downloads
	Configuring Bookable Products
	Import/Export of KonaKart Data
	Export of Orders using exportOrder
	Import/Export of KonaKart Data using XML_IO
	Configuration of XML_IO
	XML_IO Usage
	Warning
	Examples

	Custom Imports Using the Importer Panel
	Configuration of the Importer Panel
	Importer Log Files

	Reset Database Tool
	Configuration of the Reset Database Tool Option
	View System Log Files

	Multiple Prices for Products
	Sale Price
	Tier Pricing
	Dynamic product prices
	Tax Configuration
	Multiple Tax Areas Within a State
	Tax algorithm and numeric precision

	Validation of Order Totals
	Multiple Quantities for Products
	Default Sort Order for Products
	Bundle Configuration
	Product Options
	Product Tags
	Managing Product Reviews
	Using CLOBs for Product Descriptions
	Credit Card Refunds
	Saving and Editing of Credit Card details
	Configuration of Admin Application
	Configuration of Store Front Application

	Edit Order Number and Custom Fields
	Shippers and Shipments
	Wish Lists
	Gift Registries
	Gift Certificates
	Enable Gift Certificates
	Creating a Gift Certificate
	Creating a new Admin App User
	Creating New Roles
	Default Customer Configuration
	Making Customers Invisible
	Customer Groups
	Auditing
	Forgotten Password
	Authentication with Username or Telephone
	Custom Credential Checking
	Custom Credential Checking - LDAP
	Multi-Store Configuration and Administration
	Introduction
	Configuring KonaKart to function in Multi-Store Mode
	
	Configuration Steps
	Mapping
	BaseAction.java
	Final Steps

	Multi-Store Configuration
	Multi-Store Management Panel
	Multi-Store Table Sharing
	Multi-Store Configuration Panel

	Product Synchronization

	Scheduling in KonaKart
	Configuring Quartz to execute KonaKart jobs
	Configuring web.xml
	Configuring quartz.properties
	Configuring konakart_jobs.xml
	Configuring konakart_jobs.properties
	Clustered Quartz Configuration

	Customizing the KonaKart jobs

	Deletion of Expired Data
	Data Integrity
	Executing the Data Integrity Checker from a Script

	Configuring KonaKart to use Analytics Tools
	Configuring KonaKart to use Google Analytics
	Setting up Google Analytics
	Setting up KonaKart to use Google Analytics

	Configuring KonaKart to use Other Analytics Tools
	Defining the Code to be inserted

	Setting up RMI Services
	Step by Step Guide to setting Up KonaKart to use RMI

	Integrating a Java Message Queue
	Setting Up The Java Message Queue
	Monitoring The Java Message Queue

	kkCmd - Command line tool
	Changing the standard password encryption algorithm

	Chapter 10. KonaKart Content
	Content Overview
	Text Content
	Banner Content
	Content Expressions
	Content Caching
	Content Access

	Chapter 11. Marketing - Customer Tags and Expressions
	What are Customer Tags?
	What are Expressions?
	Tutorial for creating an expression using the standard customer tags
	How to set Customer Tag Values in Java code
	Mailing Lists

	Chapter 12. Reward Points
	Configuration of Reward Points
	Technical Details

	Chapter 13. Solr Search Engine
	Configuring KonaKart to use Solr
	Instructions
	Customization of Solr
	Forcing Solr Usage

	Suggested Search
	Suggested Search using Solr terms

	Suggested Spelling
	Functionality
	Setup

	Catalog Support for Suggested Search and Spelling
	Faceted Searching
	Prices, Manufacturers and Categories
	Custom Faceted Search
	Multi-Valued Facets

	Chapter 14. Payment, Shipping and OrderTotal Modules
	Module Types
	Payment Modules
	Admin App Payment Modules

	Shipping Modules
	Configuring Free Shipping
	Configuring the Zones Shipping Module

	Order Total Modules

	How to Create a Payment Module
	Introduction
	Study the "KonaPay" APIs
	Choose which Interface Type you want for your users
	Sign up for a Test Account with "KonaPay"
	Determine which of the existing payment modules is the closest match
	Copy the files of the closest match as the starting point
	Define the configuration parameters
	Understanding the Configuration Options
	Add the "KonaPay" gateway to the Admin App
	Implement the PaymentInterface
	NameValue[] Parameters
	Implement the Action code
	Save IPN details
	Save the gateway response to a file
	Send payment confirmation email
	Struts mapping
	Build, Deploy and Test

	How to Create a Promotion Module
	Determine which of the existing Promotion modules is the closest match
	Copy the files of the closest match as the starting point
	Define the configuration parameters
	Add the new promotion module to the Admin App
	Build, Deploy and Test

	Chapter 15. Recurring Billing
	Payment Schedule
	Subscription
	Using a Payment Gateway that supports Recurring Billing
	Insert a subscription
	Update a subscription
	Read the status of a subscription

	Manual Subscription Management
	Managing Recurring Billing through KonaKart

	Chapter 16. Multi-Vendor Functionality
	Configuration
	Setting up a Main Store
	Setting up a Vendor Store

	Orders
	Customer View of the Order
	Vendor View of the Order
	Administrator view of the Order
	Order State Change
	Order Payment
	Vendors

	Chapter 17. Product Stock Reservation
	API Calls
	Storefront Application
	Order Integration Manager
	Reservations for Bookable Products
	Batch Removal of Expired Stock Records

	Chapter 18. Order Management
	Order Creation
	Order Lifecycle Management
	Order Modification
	API Calls for Archived Orders
	Returns

	Chapter 19. KonaKart B2B features
	Customer Hierarchy
	Catalog / Contract Prices
	Customer Tags
	B2B Customer Administrator
	Company Administrator Security

	Chapter 20. KonaKart ERP Integration
	Introduction
	File Transport
	XML Message Structure
	Messages from ERP to KonaKart
	Update Product
	Update Order
	Export Invoice
	Export Customer to KonaKart
	Match Customer to KonaKart
	Payment Capture

	Messages from KonaKart to ERP
	Export Customer to ERP
	Match Customer to ERP
	Order Export to ERP
	Update Object

	Installation and Configuration
	Incoming Message Processor
	Apache ActiveMQ
	ERP Integration - Configuration Parameters
	ERP Integration - OrderIntegrationMgr
	ERP Integration - Logging

	Chapter 21. Custom Validation
	Custom Validation for the Store-Front
	Configuring validation on data entered through the UI

	Custom Validation for the Admin Application
	CustomValidaton.properties file
	Fields Supported by Custom Validation
	CustomValidaton Using a Custom Engine

	Chapter 22. Custom Product Attributes and Miscellaneous Items
	Using Custom Product Attributes
	What types of Custom Attributes can be added to a product?
	Creating a Custom Attribute Definition and adding it to a Template
	Entering Template based Custom Attribute data for a Product
	Displaying the custom data in the storefront Application

	Miscellaneous Items
	Product Description Custom Fields

	Chapter 23. Programming Guide
	Using the Java APIs
	Using the SOAP Web Service APIs
	Enable the SOAP Web Services
	Securing the SOAP Web Services
	Step-by-step guide to using the SOAP APIs:

	Using the JAX Web Service Storefront APIs
	Enable the JAX Web Storefront Services

	Using the JAX Web Service Admin APIs
	Enable the JAX Web Admin Services

	Using the RMI APIs
	Using the JSON APIs
	Using the JSON APIs to build a JavaScript client
	Only make available the API calls that your storefront uses
	Manage transactional API calls in a custom layer

	HTML character escaping
	Running Your Own SQL
	Database Layer Changes from v7.2.0.0
	Table and Column Name Changes
	KonaKart/Torque Programming Changes

	Customizable Source Code
	Source Code Location
	Building the Customizable Source
	Developing the storefront in Eclipse
	Developing the Product Creation Wizard in Eclipse

	Customization of the KonaKart Engines
	KonaKart Customization Framework
	Adding a New API call
	Modifying an Existing API call
	Enabling Engine Customizations

	Building with Maven
	Pluggable Managers

	Chapter 24. Reporting
	KonaKart Reporting from the Admin App
	Modifying the Reports
	Adding New Reports
	Defining a Chart to appear on the Status Page of the Admin App
	Reports Configuration
	Defining the Set of Reports Shown in the Admin App
	Accessing the Database in the Reports

	Customer Events
	Creating Customer Events

	Chapter 25. Liferay Portal Integration
	Introduction
	Creation of portlet WAR files

	Chapter 26. Social Login
	Facebook
	Google+
	PayPal Login
	All Modules

	Chapter 27. TaxCloud Integration
	Introduction
	How does the integration work?
	Reconciliation
	Points to Note

	Chapter 28. Thomson Reuters Integration
	Introduction
	How does the integration work?
	Auditing of Order Transactions
	Points to Note

	Chapter 29. PunchOut
	Introduction
	Customization of the PunchOut message
	Application PunchOut Code

