
Overview
We will work more with inheritance, extending the ArrayList class (which is a class that works like an
array, but provides more flexibility). Additionally, you will work on a 2-player game, called Pig, to put some
concepts into practice.

Before you get started, read chapters 10.5, 10.6 and 10.7. Answer activities 10.5.1, 10.6.1 and 10.7.1 in a
Word or text file.

Getting Started
After following the import instructions in the assignment page, you should have a Java project in Eclipse
titled Lab 21_11. This PDF document is included in the project in the doc directory. The Java files you will
use in this lab are in the src/pig and src/arraylist directories.

If you have missing links then in the project properties (right click on “Lab 21_11” in the package explorer
and select properties), edit the “Java Build Path”
• Add JUnit4 (click “add library”)
• Add the eduride testing jar (click “add jar”, and locate it in “Lab 21_11/lib/eduride-library.jar”)

Part 1: ArrayList and Inheritance
The java.util class library contains a variety of useful classes. One is the ArrayList class, which
represents a list of elements that can be accessed by position as with an array. An ArrayList, however, can
only contain objects from a specific class. To specify the class that an ArrayList holds, you use < and > to
enclose the class name, like:

ArrayList<String> //can contain a list of strings

Can an ArrayList contain int data? Not directly, no. An ArrayList can only contain objects from a
particular class, and an int is not an object but a primitive: ints don’t have methods, can’t be extended
through inheritance, etc. So,

ArrayList<int> //error!

will cause a compile error in Java.

Can one ArrayList contain both ModNCounter and SeasonCounter objects? Remember,
an ArrayList contains only objects from a single class. However, because of inheritance both objects are
members of Counter, and can be contained in

ArrayList<Counter> //OK

The ArrayList class has numerous methods; we will use several in this lab.
• boolean add(Object obj): Appends the specified element to the end of this list. You don't have to

worry about the current size of the list, it will expand as you add elements, as necessary. Returns true,
since an ArrayList always adds when asked to.

• boolean remove(Object o): Removes a single instance of the specified element from this list, if it is
present. Returns true if an element was removed.

• int size(): Returns the number of elements in this list.

 Lab 11: More Inheritance with Polymorphism
 CSE-021-01, Spr 2018 Points: 20

The Object class whose object obj is a parameter to add() should be the class that you defined
the ArrayList with. For instance, an ArrayListdeclared with

 ArrayList<String> myList = new ArrayList<String>();

would be able to

 myList.add("a string") // OK

but not (for instance)
 myList.add(new Counter()) // this will fail with myList declaration above
 myList.add(5) // this will fail with myList declaration above

Task 1
Consider the ArrayListRunner class, where an ArrayList initialized as follows:

ArrayList<String> words = new ArrayList<String>();

What is the result of executing the code below? Show all the results after every line of code.
 words.add("a");
 words.add("b");
 words.add("c");
 words.remove("b");
 words.add("d");
 words.remove("a");
 words.add("e");
 words.remove("b");
 words.add("d");
 words.remove("c");
 words.remove("d");

Task 2
Using inheritance, define a class TrackedArrayList that behaves just like the ArrayList class except that
it has an extra method:

 public int maxSizeSoFar();

which returns the maximum number of elements in this list at any time since the list was constructed.
For example, if maxSizeSoFar were called immediately after each call in the code sequence in Task 1
above, it would return the following values:

 1
 2
 3
 3
 3
 3
 3
 3
 4
 4
 4

Use the framework code in arraylist/TrackedArrayList.java to get started. You will see the special
format to use when extending ArrayList, in order to refer to the class of the elements that it can contain.

Use the class in ArrayListRunner.java to test your work as you go, if you need to. You may find that the
EduRide feedback tool gives you enough information to solve this task; if so, you’ll need to comment on
the specific feedback that you found useful.

Take advantage of the ArrayList methods and variables as much as possible, using calls to super, rather
than reinventing the wheel.

Part 2: The game of Pig
Consider the game of 2-player Pig, described in Wikipedia as follows:

Each turn, a player repeatedly rolls a die until either a 1 is rolled or the player decides to “hold”:
• If the player rolls a 1, he or she scores nothing, and it becomes the next player’s turn.
• If the player rolls any other number, it is added to his or her turn total and the player’s turn continues.
• If a player chooses to “hold”, the player’s turn total is added to his or her score, and it becomes the next

player’s turn.

The first player to score 100 or more points wins.

For example, the first player, Ann, begins a turn with a roll of 5. Ann could hold and score 5 points, but
chooses to roll again. Ann rolls a 2, and could hold with a turn total of 7 points, but chooses to roll again.
Ann rolls a 1, and must end her turn without scoring. The next player, Bob, rolls the sequence 4-5-3-5-5,
after which he chooses to hold, and adds his turn total of 22 points to his score.

The program PigSimulator.java contains code to simulate playing of several games of Pig.
The main method initializes variables to keep track of how many games each player won. Then it repeatedly
calls the play1game method to play a single game, alternating between the two players, stopping when one
of the players reaches 100 points. The play1turn method simulates the roll of the die, and calls a method
on the Player named tallyRoll to implement the various events listed above.

The Player class keeps track of the die rolls in a turn, and contains a method named throwAgain that
represents a strategy for playing the game. By supplying subclasses for Player that override
the throwAgain method, one can test different strategies against one another. A strategy may be based on a
player’s total score, the number of rolls made so far in the turn, or the total accumulated so far in the turn.

Task 3
The current program refers to ConservativePlayer and RiskyPlayer classes. Write these two classes,
such that a ConservativePlayer will always choose to hold and a RiskyPlayer will never hold.

If you need to, create a class PlayerRunner in which you test your ConservativePlayer and
RiskyPlayer classes.

Task 4
Think about which of these players will play a better game of Pig. Simulate several games (by
executing main of PigSimulator.java) pitting them against each other, and report what happened. Was
your prediction correct?

Task 5
Think of two other strategies and design players (by extending Player) that implement them. Create a
class PlayerRunner (or augment the class if you created it for task 3) that tests your implementations.

http://en.wikipedia.org/wiki/Pig_(dice_game)

Task 6
Test all four players against each other, which will take several simulations. Explain what happened. How
did your strategies do? Did you expect to see the results you saw?

Part 3: (Assessment) Logic Check and Level of Understanding

Consider the following classes in a Java program, with the methods defined in each:

• Pet
 eat()
 sleep()

o Dog extends Pet
 goForAWalk()
 bark()

▪ Pomeranian extends Dog
 yap()

▪ GreatDane extends Dog
 woof()

o Cat extends Pet
 meow()

▪ Siamese extends Cat
 ignoreYou()

For each of the questions below, answer with an ArrayList declaration with the most specific type, if any,
that can work. For instance, the ArrayList that could contain Cat objects is ArrayList<Cat>
1. contain Pomeranian objects
2. contain Pomeranian and Cat objects
3. contain objects of any of the above types that you can call the eat() method on.
4. contain GreatDane objects that you will only call the sleep() method on
5. contain Pomeranian and Siamese objects
6. contain Pomeranian and Siamese objects that you will call yap() and ignoreYou(), as appropriate

What to hand in
When you are done with this lab assignment, submit all your work through CatCourses.

Before you submit, make sure you have done the following:
• Verified your solution with your TA or instructor.
• Included output for code in Lines 19 – 29 of ArrayListRunner.java in a Word or text file named

Part1.
• Attached filled in ArrayListRunner.java, if you used it to test. If you didn’t, describe what parts of

the EduRide feedback tool was useful to you in writing TrackedArrayList.java in the file Part1 you
created for Task1.

• Included answers to questions and explanations for Tasks 4 and 6 in a Word or text file named Part2.
• Included answers to activities 10.5.1, 10.6.1 and 10.7.1, and Assessment questions (1 – 6) in a Word

document or text file named Part3.
• Attached filled-in TrackedArrayList.java file, ConservativePlayer.java, RiskyPlayer.java,

PlayerRunner.java, the source file(s) containing the two classes created for Task 5, Part1, Part2 and
Part3 files

• Filled in your collaborator’s name (if any) in the “Comments…” text-box at the submission page.

