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ASIC Design Lab 2: 

Introduction to Various Styles of Verilog Source Code and 

Design Test Benches 
In this lab, you will: 

• Create and Test Verilog code for the STRUCTURAL model of the Sensor Error Detector System 

using ModelSim (sensor_s.sv) 

• Create and Test Verilog code for the DATAFLOW model of the Sensor Error Detector System 

using ModelSim (sensor_d.sv) 

• Create and Test Verilog code for the BEHVIORAL model of the Sensor Error Detector System 

using ModelSim (sensor_b.sv) 

• Modify the Makefile to optimize the 3 versions of the design that you are examining 

• Create and Test Verilog code for a 1-bit Full Adder using Modelsim (adder_1bit.sv) 

• Create and Test Verilog code for a 4-bit Ripple Carry Adder using Modelsim (adder_4bit.sv) 

• Create and Test Verilog code for a parameterized N-bit Ripple Carry using Modelsim 

(adder_nbit.sv) 

• Create and Test Verilog code for two Synchronizers using Modelsim (sync_low.sv & sync.high.sv) 

NOTE: For this class you must name the Verilog source code file the same name as the module name, plus 

the ".sv" extension. For example, if the module name is "sensor_d", then the file name should be 

“sensor_d.sv”. Also, all module, port, and filenames must be all lowercase in this class. 

1. Lab Exercises 

1.1. Lab Setup 
In a UNIX terminal window, issue the following commands, to setup your Lab 2 workspace:  

mkdir –p ~/ece337/Lab2 

cd ~/ece337/Lab2 

dirset 

setup2 

The setup2 command is an alias to a script file that will check your Lab 2 directory structure and give you 

file needed for starting the lab. If you have trouble with this step please ask for assistance from your 

TA.  

Make sure to add this new workspace into your 337 Repository, like you did in Lab1. This way, you will 

always have the original copy in storage. 
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1.2. Sensor Error Detector Design 

1.2.1. Structural Style Sensor Error Detector Design 

1.2.1.1. Structural Style Sensor Error Detector Specifications 

The required module name is: sensor_s 

The required filename is: sensor_s.sv 

The module must have only the following ports (case-sensitive port names): 

input wire [3:0] sensors 

output wire error 

Create the source file using the following ‘ch’ script command from your Lab2 folder: 

ch sensor_s.sv 

1.2.1.2. Structural Coding of Sensor Error Detector 

A structural model for a Verilog model is much like what would be consider a pure netlist description of 

the cell. A netlist is essentially a text representation that describes a circuit in terms of the explicit 

interconnections between sub-blocks. This explicit description describes what signals are input to a sub-

block and what signals are outputs from this sub-block and how they interact with the other sub-blocks in 

the design. This is the style that is probably the easiest to understand and create a design in. This is the case 

because it is relatively easy to map a K-Map derived expression for a logic function into this style of 

Verilog. Therefore, this is the Verilog style that will seem the most logical to most students; however, this 

style is not the most powerful of the design styles for Verilog. The structural model is one that lends itself 

to directly illustrating a hierarchal design in Verilog. A hierarchal design is one in which you use several 

smaller designs to create a larger design. An example of a hierarchal design would be a 16-bit adder that is 

built from a combination of 1-bit adders. In this design, you would have 16 instantiations of the 1-bit adder 

design that are interconnected in order to perform the function of a 16-bit adder. 

The hierarchal design methodology is what is employed in industry. This should make sense to you simply 

from a design point of view. The majority of the designs being done in industry are at such a degree of 

complexity that no one person on the design team knows every detail of the overall system. Instead, the 

overall system is divided into units which are divided into blocks, which are divided into sub-blocks. These 

sub-blocks are relatively easy to manage aspects of the overall project that one engineer or a small group 

can be responsible for. Even these sub-blocks have a hierarchal aspect to them. For instance, one portion 

of the design may be highly optimized because it is the most critical portion of the sub-block. This optimized 

portion of the sub-block is then encapsulated in a symbol and placed into schematic at a higher level in the 

sub-blocks internal hierarchy. 

This hierarchal design methodology has an additional benefit in terms of testability of a design also. 

Logically, small blocks are able to be more thoroughly tested than larger blocks. This statement is derived 

from the fact that smaller blocks generally have fewer inputs, so it is possible to run a small block through 

its entire range of input values to make sure it is functioning correctly. However, as one moves up the levels 

in the design hierarchy the ability to thoroughly test a design becomes more difficult. In the case of 

microprocessors, thoroughly and completely simulating a design is simply not a feasible option. In order to 

test a microprocessor all its possible input vectors would require an enormous amount of compute cycles, 

not to mention the incredible amount of engineer hours it would require to generate the test vectors and 

ensure that the person designing the test vectors also determines the correct response that should be 

generated from each test vector. From this, one should see that it is imperative that the lower levels in the 

hierarchy be tested thoroughly to ensure that they function properly. Ensuring that the lowest levels in the 
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hierarchy function correctly allows the top-level design testing process to be an attainable goal, as opposed 

to an insurmountable goal. 

In lab 1’s post lab, you derived a logic expression from a K-Map for the Sensor Error Detector circuit. This 

logical expression that you derived was in the SUM OF PRODUCTS form. You are now going to 

implement this logic equation using the structural Verilog coding style. The list of 2-input logic cells (and 

their ports) that you might need from the standard cell library is as follows: 

Logic Cell Function Logic Cell Module Declaration 

2-Input AND Gate AND2X1 (input A, input B, output Y) 

Inverter INVX1 (input A, output Y) 

2-Input NAND Gate NAND2X1 (input A, input B, output Y) 

2-Input NOR Gate NOR2X1 (input A, input B, output Y) 

2-Input OR Gate OR2X1 (input A, input B, output Y) 

2-Input XOR Gate XOR2X1 (input A, input B, output Y) 

2-Input XNOR Gate XNOR2X1 (input A, input B, output Y) 

 

For example, the following line of code creates an instance of a 2-input AND gate with a label of ‘A1’, 

with signals ‘a’ and ‘b’ connected to its inputs, and signal ‘int_and1’ connected to its output. 

AND2X1 A1 (.Y(int_and1), .A(a), .B(b)); 

Utilizing this information, the specifications in section 1.2.1.1, your sum-of-products equation from lab 1’s 

postlab, and any Verilog code syntax references, create the structural style sensor detector code in your lab 

2 source folder.  

1.2.1.3. Testing of the structural style Sensor Error Detector 

Part of what the setup2 script did was give you a copy of a Verilog code file (tb_sensor_s.sv), which is what 

we call a test bench file. This code file is a module that creates an instance of the design file it is used to 

test and controls the values of this instance’s inputs in order to force the design being tested through a 

variety of test cases that were implemented with the test bench module. This is the way all designs for the 

rest of the course will be tested, as it is much more powerful and more efficient than using force statements 

like you did in lab 1. To simplify the usage of test benches for testing designs, the makefile provided by 

dirset also has simulation targets for simulating test benches of single file designs. To simulate the provided 

test bench for the structural sensor detector module, execute the following command from your lab 2 folder. 

make tbsim_sensor_s_source 

This make target compiles both the test bench file tb_sensor_s.sv and the design file sensor_s.sv if needed 

and then starts a simulation of the tb_sensor_s test bench module. Once the simulation has loaded, add the 

design’s port signals and the signal named ‘test_number’ to the waves window and then tell ModelSim to 

run for 200 ns. At this point have your TA verify your Waveforms window. 
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Now check the design’s output for correctness for each test case (‘test_number’ should always increment 

when a new test case starts). If an incorrect output is found, make corrections to your design’s code, 

recompile the design (this can be done easily from within modelsim by right clicking on the design instance 

in the “source_work” library and selecting recompile), and restart the simulation (“restart –f”), and rerun 

the simulation. 

After a fully correct source simulation, synthesize the design and simulate the mapped design with the same 

provided test bench to check for any errors during design synthesis. The command for simulating the 

mapped design with its test bench is 

make tbsim_sensor_s_mapped 

Once you have a fully working design proceed to the next section. 

1.2.1.4. Automated Grading of the Structural Sensor Error Detector 

In this class all design code will be graded via a set of grading scripts and custom grading test benches that 

are run during via submission commands. To submit your structural sensor detector design for grading, 

issue the following command at the terminal (can be from anywhere). 

submit Lab2s 

1.2.2. Dataflow Style Sensor Error Detector Design 

1.2.2.1. Dataflow Style Sensor Error Detector Specifications 

The required module name is: sensor_d 

The required filename is: sensor_d.sv 

The module must have only the following ports (case-sensitive port names): 

input wire [3:0] sensors 

output wire error 

Create the source file using the following ‘ch’ script command from your Lab2 folder: 

ch sensor_d.sv 

1.2.2.2. Dataflow Coding of Sensor Error Detector 

Utilizing the dataflow syntax examples from the lab 1 manual, lab notes, and other Verilog references, 

create a dataflow style design according to the requirements in section 1.2.2.1. Remember that a purely 

dataflow style design cannot have any procedural blocks and all value assignments must be done with the 

‘assign’ syntax. Additionally the setup2 script has provided you with a test bench module for the dataflow 

style sensor detector as well (tb_sensor_d.sv). Make sure that the design is fully working before proceeding 

to the next section and submitting it for grading. 

Also, as a reminder of the use of the makefile’s pattern rules for simulation, the make targets for simulating 

the dataflow source and mapped versions respectively are 

make tbsim_sensor_d_source 

and 

make tbsim_sensor_d_mapped 

1.2.2.3. Automated Grading of the Dataflow Sensor Error Detector 

To submit your dataflow sensor detector design for grading, issue the following command at the terminal 

(can be from anywhere). 

submit Lab2d 
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1.2.3. Behavioral Style Sensor Error Detector Design 

1.2.3.1. Behavioral Style Sensor Error Detector Specifications 

The required module name is: sensor_b 

The required filename is: sensor_b.sv 

The module must have only the following ports (case-sensitive port names): 

input wire [3:0] sensors 

output reg error 

Create the source file using the following ‘ch’ script command from your Lab2 folder: 

ch sensor_b.sv 

1.2.3.2. Behavioral Coding of Sensor Error Detector 

Utilizing the dataflow syntax examples from the lab 1 manual, lab notes, and other Verilog references, 

create a behavioral style design according to the requirements in section1.2.3.1. Remember that a purely 

behavioral style design cannot have any functional/logic code outside of the procedural blocks, and the 

combinational logic should be handled inside an ‘always’ block with each of its input signals in the 

sensitivity list. Also, for this class initial blocks are forbidden inside design modules, and are only allowed 

to be used in test benches. Additionally the setup2 script has provided you with a test bench module for the 

dataflow style sensor detector as well (tb_sensor_b.sv). Make sure that the design is fully working in its 

mapped/synthesized form before proceeding to the next section and submitting it for grading. 

Also, as a reminder of the use of the makefile’s pattern rules for simulation, the make targets for simulating 

the behavioral source and mapped versions respectively are 

make tbsim_sensor_b_source 

and 

make tbsim_sensor_b_mapped 

1.2.3.3. Automated Grading of the Behavioral Sensor Error Detector 

To submit your structural sensor detector design for grading issue the following command at the terminal 

(can be from anywhere). 

submit Lab2b 
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1.3. Design Schematics for Synthesized Design Code 
In this section you will be viewing schematic representations of the gate net lists synthesized from your 3 

sensor detector implementations.  

1.3.1. Viewing the Structural Style Schematic  

In your terminal, in your Lab 2 directory, bring up the Design Compiler GUI (yes, our synthesis tool has a 

GUI, called Design Vision, but we won’t be using it much) by typing  

dv  

In the window that comes up, select:  

File → Read  

Open the file “mapped/sensor_s.v” and select OK.  

At the very right of the toolbar below the menu is a box where can choose the current design.   

Make sure that the top-level module name is selected (sensor_s). Now go to the menu and select  

Schematic → New Design Schematic View  

If you zoom in (View → Zoom) you can see the component types and names, as well as signal names.  If 

your design has sub-components (though this design probably won’t), you can see their schematics by 

selecting them with the LMB and selecting Schematic → Move Down.  You can return to the top level by 

selecting Schematic → Move Up.  

Once you have generated a schematic view using Design Vision, have a TA check off your work up 

to this point. 

 

1.3.2. Viewing the Dataflow Style Schematic  

Analyze the schematic of your mapped dataflow implementation (mapped/sensor_d.v) with Design Vision, 

as before.  

Once you have generated the schematic in Design Vision, have a TA check off your work up to this 

point. 

 

1.3.3. Viewing the Behavioral Style Schematic  

Use Design Vision to examine the schematic for you mapped behavioral implementation 

(mapped/sensor_b.v), remembering that you can view internal blocks in the design hierarchy by moving up 

or down in the schematic. Once you have a clean schematic (no extraneous wires), have a TA check off 

your work up to this point. Also, make sure to update the versions of your sensor code in Git using 

the checkin (‘ci’) command.  
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1.3.4. Design Synthesis Optimization  

The designs you just synthesized are incredibly simply hardware systems and so will be naturally very fast 

and easy for the tools to optimize. This will likely result in your three design schematics looking either 

identical or very similar. When working with more complex designs such as the provide 16-bit adder design 

it may become necessary to utilize different synthesis commands in order to guide, and sometimes force, 

the tools to optimize the design further than initial synthesis attempts in order to meet either area or timing 

constraints for the design usage. 

Therefore, you are going to alter your “SYN_CMDS” variable in the makefile so that it will cause Synopsys 

to perform two compilation passes. In modifying your makefile to accommodate a second compilation 

pass, you will add a timing constraint to the compile options and instruct Synopsys to allow the 

mapped design to be restructured. In order to apply the timing constraint, you will have to use the 

command 'set_max_delay’, which has the following syntax: 

set_max_delay <Delay> -from "<Input>" -to "<Output>" 

where: 

• <Delay> is the numerical value of the delay you wish to obtain 

• <Input> is the name of the input signal from which the path starts 

• <Output> is the name of the output signal on which the path terminates 

The values for <Delay>, <Input>, and <Output> can be found by examining the report file generated for 

the adder_16 design (reports/adder_16.rep), specifically you should examine the critical path report that 

was generated. It should be noted that <Input> is equivalent to Startpoint and <Output> is equivalent to 

Endpoint. The Delay value should be set to something at least 10% smaller than the data arrival time (full 

circuit delay) of the non-optimized pass. 

In addition to adding the above constraint to your script, you will need to add the following command in 

order to instruct Synopsys to restructure your design: 

set_structure true -design <Design_Name> -boolean true  

-boolean_effort medium 

Where <Design_Name> is the name of the design(s) which you wish to restructure. 

Note: the above command is long and needs two lines in this document but must be a single line in your 

makefile. 

The first command, set_structure, instructs Synopsys on how to approach the structure of a Verilog Design. 

It allows you to customize what type of structuring is used in the design. By default, DC Shell uses timing-

driven structure. That is, it structures the designs so as to find optimal timing. However, the above command 

is changing the structuring method in order to use Boolean optimization.  

A note about accessing the documentation for Synopsys should be stated right now. With these tools you 

have 2 ways of accessing documentation on the tools and the options. Inside DC Shell you can get help on 

any command by changing you shell to DC Shell by using the command dc_shell-t and issuing the 

following command at the dc_shell-t prompt: 

man <command> 

Where <Command> is the DC Shell function that you wish to receive help on. 
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You can also issue the 'help' command in DC Shell to obtain a list of all available commands and options 

available in DC Shell. You can use `man' in association with 'help' by typing 'help', finding a command you 

want to know more about, then issuing the 'man' command on that function or option in order to obtain a 

detailed description of the command. 

You can also bring up the online documentation for Synopsys tools at a UNIX prompt by typing: 

sold & 

This will bring up an Adobe Acrobat Reader session that has all the documentation for the Synopsys tools. 

To exit the DC Shell and return to your native shell, just use the command quit. 

At this time you may find it useful to bring up the man pages on the command 'compile' (in DC Shell) 

because for the second compilation pass in the makefile you will be required to change the mapping 

effort to HIGH and set the option to allow BOUNDARY OPTIMIZATION. 

Now you are ready to begin editing your makefile. As stated above you will need to add a timing constraint 

to the commands variable, add the command to allow for Boolean optimization and alter your compile 

statement for the second compile pass so that it uses a HIGH mapping effort and allows BOUNDARY 

OPTIMIZATIONS. When you finish modifying your makefile, its SYN_CMDS variable definition should 

look like the following: 

Define SYN_CMDS 

‘# Step 1:  Read in the source file                                 

analyze -format sverilog -lib WORK {$(DEP_SUB_FILES) $(MAIN_FILE)}  

elaborate $(MOD_NAME)-lib WORK 

uniqify                              

                                                                    

# Step 2: Set design constraints                                    

# Uncomment below to set timing, area, power, etc. constraints      

# set_max_delay <delay> -from "<input>" -to "<output>"                

# set_max_area <area>                                               

# set_max_total_power <power> mW                                    

$(if $(and $(CLOCK_NAME), $(CLOCK_PERIOD)), create_clock 

"$(CLOCK_NAME)" -name "$(CLOCK_NAME)" -period $(CLOCK_PERIOD))      

 

# Step 3: Compile the design                                        

compile -map_effort medium                                          

                                                                    

# Step 4: Output reports                                            

report_timing -path full -delay max -max_paths 1 -nworst 1 > 

reports/$(MOD_NAME).rep                                             

report_area >> reports/$(MOD_NAME).rep                              

report_power -hier >> reports/$(MOD_NAME).rep                       

                                                                    

# Step 5: Output final Verilog and Verilog files                    

write_file -format verilog -hierarchy -output "mapped/$(MOD_NAME).v”     

                                                                    

# Second Compilation Run.  Repeat Steps 2-5                         

# Step 2:  Put the max delay constrains in the second pass only.  

set_max_delay <delay> -from "<input>" -to "<output>"   
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# Step 3: Compile the design                                        

set_structure true -design $(MOD_NAME) -boolean true -boolean_effort 

medium                                                              

compile <You Supply Options for Compile>                            

                                                                    

# Step 4: Output reports                                            

report_timing -path full -delay max -max_paths 1 -nworst 1 > 

reports/$(MOD_NAME)_1.rep                                           

report_area >> reports/$(MOD_NAME)_1.rep                            

report_power -hier >> reports/$(MOD_NAME)_1.rep                     

                                                                    

# Step 5: Output final Verilog and Verilog files                    

write_file -format verilog -hierarchy -output "mapped/$(MOD_NAME)_1.v”   

                                                                    

echo "\nScript Done\n"                                              

echo "\nChecking Design\n"                                          

check_design                                                        

exit’ 

endef 

At this point it should be stated that ‘MOD_NAME’ is a make variable that holds the name of the design it 

is currently synthesizing. You can obtain the value of 'MOD_NAME' by enclosing it in '$()'. Thus for the 

adder_16.sv design file, $(MOD_NAME) results in 'adder_16' being substituted in for the 

'$(MOD_NAME)’ statement. 

Once you have modified your makefile and resynthesized the adder_16 design so that your second pass of 

the design produces a timing result that is improved relative to the first pass, have a TA check off your 

work up to this point. 

 

Next, please answer the following questions on your Evaluation sheet. 

For the adder_16 with the modified makefile, what is the Critical Path Delay and Area of the circuit 

resulting from the first compilation pass? 

For the adder_16 with the modified makefile, what is the Critical Path Delay and Area of the circuit 

resulting from the second compilation pass? 

Which Style of Verilog Code: DATAFLOW, STRUCTURAL, or BEHAVIORAL is the easiest to modify 

if the number of bits in the input data bus were altered? Why? 

 

Do not forget to check your work back into the GIT Repository. 

  



ASIC Design Lab Lab 2 Spring 2018 

 10 

2. Postlab Exercises (Building Blocks Design) 

2.1. 1-bit Full Adder Design 
Design (code and verify) a 1-bit Full Adder module with the following specifications: 

The required module name is: adder_1bit 

The required filename is: adder_1bit.sv 

The module must have exactly the following ports (case-sensitive port names): 

Signal Direction Description 

a input One of two primary inputs 

b input Second of two primary inputs 

carry_in input The overflow value carried in from a prior addition column 

sum output The computed sum value 

carry_out output The overflow value sent to the next addition column 

 

In case you don’t remember, the equations for calculating the sum and carryout values are below: 

s     = c_in xor (a xor b) 

c_out = ((not c_in) and b and a) or (c_in and (b or a)) 

To submit your working 1-bit Adder for grading use the ‘submit Lab2adder1’command. 

2.2. Connecting 1-Bit Adder components to make a 4-Bit Adder 
The next step is to create the 4-Bit Ripple Carry Adder. Figure 1 illustrates how a 3-Bit ripple carry adder 

can be constructed from three 1-Bit full adders. 

 
Figure 1: 3-bit Ripple Carry Adder Diagram 

The required module name is: adder_4bit 

The required filename is: adder_4bit.sv 

The module must have exactly the following ports (case-sensitive port names): 

Signal Direction Description 

a[3:0] input One of two primary inputs 

b[3:0] input Second of two primary inputs 

carry_in input The overflow value carried in from a prior addition column 

sum[3:0] output The computed sum value 

overflow output The overflow value from the calculation 
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We would like you to use the structural style of coding to create the 4-Bit adder from your 1-bit Full Adder 

design you made. At simulation time, ModelSim will look for matching module declarations in the work 

library used and any additional libraries specified with the vsim command. The makefile will take care of 

specifying the additional libraries for mapped version gates and provided course IP modules. Although it 

would still be a good idea to investigate how the makefile does that for you. 

For this lab, an intermediate signal you will use is the one that connects the carrys between adders and/or 

output pins. Declare this signal and give it an appropriate name (we will use the name carrys, 4 bits in size, 

to illustrate our point). After you declare the intermediate signal(s) you will need, you can start connecting 

the components. The following code is an example of how you would port map the first three 1-bit adder 

instances: 

adder_1bit I00 (.a(a[0], .b(b[0], .carry_in(carry_in), .sum(sum[0]), 

  .carry_out(carrys[0])); 

adder_1bit I01 (.a(a[1], .b(b[1], .carry_in(carrys[0]), .sum(sum[1]), 

  .carry_out(carrys[1])); 

adder_1bit I02 (.a(a[2], .b(b[2], .carry_in(carrys[1]), .sum(sum[2]), 

  .carry_out(carrys[2])); 

Now based on the limited Verilog syntax that shown so far, one may think that it is necessary to directly 

type out (or copy, paste, and modify) each 1-bit adder instance. However, there is a powerful syntax to 

simplify repetitive structural/dataflow tasks such as this. It’s known as a generate loop and results in far 

more efficiently written code, and fewer port mapping typographical errors. Below is an example of how 

one can use the generate syntax to exploit the iterative pattern for the 1-bit adder port maps to save a lot of 

time and frustration.  

wire [4:0] carrys; 

genvar i; 

 

assign carrys[0] = carry_in; 

generate 

  for(i = 0; i <= 3; i = i + 1) 

  begin 

    adder_1bit IX (.a(a[i]), .b(b[i]), .carry_in(carrys[i]), 

      .sum(sum[i]), .carry_out(carrys[i+1])); 

  end 

endgenerate 

assign overflow = carrys[4]; 

After you have finished creating your generate based 4-bit adder version, extend the exhaustive test bench 

provided for the 1-bit adder to exhaustively test your 4-bit adder for verifying your design. The simulation 

commands you have been using previously will only work for designs with only one source file, and one 

test bench involved. In order to simulate multi-file designs, referred to as hierarchical designs, you will 

need to use the ‘full’ commands (sim_full_source and sim_full_mapped) instead and populate the following 

variables in the makefile: 

• The “TOP_LEVEL_FILE” variable in your makefile must contain the filename of your 4-bit adder 

design (not including the source folder) 

• The “COMPONENT_FILES” variable in your makefile must contain the filename of your 1-bit 

and design (not including the source folder) 

To submit your working 4-bit adder and exhaustive test bench for grading use the ‘submit 

Lab2adder4’command. 
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2.3. Creating a Scalable Ripple Carry Adder Design with Parameters 

2.3.1. Verilog Parameters 

Verilog parameters are effectively constants that are specific to a module instead of being a global constant 

like “`define” constants. They are rather similar to the ‘const’ in C. One difference between Verilog 

parameters and C ‘const’ is that there are two classes of parameters in Verilog. The first class is ‘localparam’ 

which is pretty much the same as a C ‘const’, as it is a constant local to namespace (the module) in which 

it’s declared/defined and can’t be modified. The second class is ‘parameter’ which is a constant that is local 

to the namespace (the module) in which it’s declared/defined, but its value can be modified on a per instance 

level during the via the instance’s port map. This allows us to be able to design the code of a module around 

a ‘parameter’ and then simply choose the value of the parameter at the instance’s port map or use the 

‘default’ value if we don’t want to set the parameter’s value during the port map. Both types of parameters 

are declared/defined in the same way, as shown below. 

parameter <name> = <default value>; 

localparam <name> = <value>; 

However, since parameters are intended to have their value modified and will often be used to scale internal 

data sizes and corresponding port sizes, they should be declared inside the module declaration as follows. 

module <module name> 

#( 

  <parameter declaration>, 

  … 

  <parameter declaration> 

) 

( 

  <port declaration>, 

  … 

  <port declaration> 

); 

When creating module definitions for a parameterized design it often is necessary to have one or more 

port(s) scale based on a parameter. Doing this is as simple as directly using the parameter to determine the 

port dimensions. Below is a simple example: 

module example_scalable_design 

#( 

  parameter NUM_BITS = 4 

) 

( 

  input wire [(NUM_BITS – 1):0] operand_a, 

  … 

); 

  



ASIC Design Lab Lab 2 Spring 2018 

 13 

2.3.2. Creating a Parameterized Ripple Carry Adder Design 

Using the above discussion of parameters and your generate syntax based 4-bit Ripple Carry Adder, create 

a parameterized Ripple Carry Adder with a parameter called ‘BIT_WIDTH’ that determines the number of 

bit pairs added and the size of the ‘a’ and ‘b’ ports. The default value for this parameter must be 4. 

The required module name is: adder_nbit 

The required filename is: adder_nbit.sv 

The module must have exactly the following ports (case-sensitive port names): 

Signal Direction Description 

a[#:0] input 
One of two primary inputs. The actual port declaration should use 

the BIT_WIDTH parameter value to determine the value of the ‘#’. 

b[#:0] input 
Second of two primary inputs. The actual port declaration should use 

the BIT_WIDTH parameter value to determine the value of the ‘#’. 

carry_in input The overflow value carried in from a prior addition column 

sum[#:0] output 
The computed sum value. The actual port declaration should use the 

BIT_WIDTH parameter value to determine the value of the ‘#’. 

overflow output The overflow value from the calculation 

 

When verifying your parameterized version, you should be able to use it with a copy of your 4-bit test bench 

to test the unscaled (default value sized) source and mapped functionality with only updating the design 

port map in the test bench to be for your ‘adder_nbit’ design instead of your ‘adder_4bit’ design.  

2.3.3. Mapped testing of your Scaled/Parameterized Ripple Carry Adder Design 

Only source versions of designs can be scaled or modified by parameters. Therefore in order to test the 

mapped functionality of the scaled version (where something other than the default value is used) you will 

need to use a wrapper file that includes your scalable design and then overrides the parameter size locally. 

Then this wrapper file must be synthesized together with the flexible design’s source code in order to create 

the full scaled size mapped design file that can be compiled and tested. A template 8-bit adder file 

(adder_8bit.sv) has been provided to you via the setup2 script to aid you in this task. The module declaration 

has been defined for you in, but you must insert the proper port map code for using your scalable ripple 

carry adder. 

Be sure to update the make variables used for hierarchical designs to match your new system: 

• When testing your N-bit adder directly using it’s default values: 

• The “TOP_LEVEL_FILE” variable in your makefile must contain the filename of your n-bit adder 

design (not including the source folder) 

• The “COMPONENT_FILES” variable in your makefile must contain the filename of your 1-bit 

adder design (not including the source folder) 

• When testing your mapped scaled 8-bit adder: 

• The “TOP_LEVEL_FILE” variable in your makefile must contain the filename of your 8-bit 

wrapper file (not including the source folder) 

• The “COMPONENT_FILES” variable in your makefile must contain the filename of your 1-bit 

and n-bit adder designs (not including the source folder) 

To submit your working scalable Ripple Carry Adder, 8-bit adder wrapper file, and exhaustive 8-bit adder 

test bench for grading use the ‘submit Lab2addern’command. 
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2.4. Synchronizer Design 

2.4.1. Verilog Syntax for Describing Flip-Flops 

Flip-Flops are the basic synchronous storage cell for CMOS designs and form the basis for all ‘registers’. 

The most common is the D-Flip-Flop with Set and Reset signals that allow the design to be 

cleared/reset/initialized to a known operating state. The syntax for describing a Flip-Flop is rather simple 

and straight-forward but is different than the combinational logic that you have been working with primarily 

so far. The most common Flip-Flip used in designs and the primary one used for any designs in this course 

is a rising-edge sensitive Flip-Flop with an active low reset, which has the following syntax: 

always_ff @ (posedge clk, negedge n_rst) 

begin [: <block tag name>] 

  if(1’b0 == n_rst) 

  begin 

    <Flip-Flop Signal Name> <= <reset value>; 

  end 

  else 

  begin 

    <Flip-Flop Signal Name> <= <Flip-Flop input signal>; 

  end 

end 

This syntax implements a Flip-Flop due to the nature of how the sensitivity list is used and the “always_ff” 

tells the compiler that you intend for it to be flip-flop so it should give error messages if the code is not 

correct for a flip-flop. One can also use the “always_comb” block instead of the “always” block for 

combination logic for similar purpose as the “always_ff” block for flip-flops/registers.  
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2.4.2. Synchronizer Design Specifications 

2.4.2.1. Reset to Logic Low Synchronizer 

Design (code and verify) the synchronizer module you diagramed in lab 1’s postlab with the following 

specifications: 

The required module name is: sync_low 

The required filename is: sync_low.sv 

The module must have only the following ports (case-sensitive port names): 

Signal Direction Description 

clk input The system clock. (1 GHz)  

n_rst input 

This is an asynchronous, active-low system reset.  When this line is 

asserted (logic ‘0’), all registers/flip-flops in the device must reset to 

an initial value of logic ‘0’. 

async_in input 
This is the asynchronous input port (the original signal which is not 

synchronized to the supplied clock signal). 

sync_out output 
This is the synchronous output port (the form of the input that is now 

synchronized with the supplied clock signal). 

 

 
Figure 2: Timing waveform for 2-stage synchronizer for an active high input 
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2.4.2.2. Reset to Logic High Synchronizer 

Design (code and verify) a simple modified versions of the synchronizer module you diagramed in lab 1’s 

postlab with the following specifications: 

The required module name is: sync_high 

The required filename is: sync_high.sv 

The module must have only the following ports (case-sensitive port names): 

Signal Direction Description 

clk input The system clock. (1 GHz)  

n_rst input 

This is an asynchronous, active-low system reset.  When this line is 

asserted (logic ‘0’), all registers/flip-flops in the device must reset to 

an initial value of logic ‘1’. 

async_in input 
This is the asynchronous input port (the original signal which is not 

synchronized to the supplied clock signal). 

sync_out output 
This is the synchronous output port (the form of the input that is now 

synchronized with the supplied clock signal). 

 

 

Figure 3: Timing waveform for 2-stage synchronizer for an active low input 
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2.4.3. Synchronizer Design Testing 

Unlike you prior designs, which were purely combinational, the synchronizers are sequential designs which 

mean that input timing combinations now become important instead of just value combinations. However, 

it is possible to effectively exhaustively test a design as simple as a synchronizer, one just has to focus on 

the classes of input timings that are important for the design. In this case there are three major timing classes 

with respect to the clock and a data input value: setup time violations, hold time violations, and nominal 

timings. Within each of these input timing classes, the behavior of a synchronizer will be the same for all 

different timing combinations, so one only needs to create a single scenario for each class in order to 

effectively exhaustively test those three classes of design behavior. To aid you in your testing you have 

been provided with a starter test bench for the synchronizer which has test cases for all three timing classes 

for the clock signal and one data input value, as well as reset conditions. You will need to extend it to cover 

the three timing cases for the other data input value. Also, pay attention to the behavior of the stored/output 

values of the flip-flops involved during the timing violation cases and compare that to what you know about 

the role of a synchronizer in a system and the discussion of metastability in prior digital design classes.  

Since the purpose of a synchronizer is to filter out metastability from an input directly or indirectly via 

timing violations source simulations are not really useful outside of verifying nominal operations. This is 

because source simulations do not model timing information for any aspect of the system which is a critical 

part of the non-ideal behavior for synchronizers. Additionally, since source simulations do not involve 

actual gate or flip-flop models they do not even approximate the analog load characteristics of the flip-flops 

that actually cause the synchronizer to work. Therefore, source simulations of the provided test bench and 

any proper synchronizer test benches will have erroneous behavior and should fail any non-ideal test cases. 

For these reasons, the only want to test a synchronizer in non-ideal test cases effectively is to use mapped 

simulations where the flip-flop loads and behaviors are at least approximated. 

To submit your working synchronizer designs and exhaustive test benches for grading use the ‘submit 

Lab2sync’command.  

Note: Only submit once you have both synchronizers and their respective test benches working correctly 

as they are graded as a group. 
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