
1 | P a g e

Ryerson University

Department of Electrical and Computer Engineering

COE/BME 328 – Digital Systems

Lab 6 35 Marks (3 weeks)

Design of a Simple General-Purpose Processor Due Date: Week 12

Objective:

This objective of this laboratory experiment is to design and construct an Arithmetic and Logic

Unit (ALU) in VHDL environment and implement it on an FPGA board.

 Design and build all functions of the ALU.

 Design, simulate and program the ALU using VHDL on an Altera FPGA board (Based

on Functional Simulation in Quartus Simulator).

 Download the program on the FPGA board and display the desired outputs on LEDs and

7-segment displays.

Procedure:

This unit consists of different parts that would come together to create a functional ALU. A

processing unit is usually divided to 4 distinct components. The control unit performs the

fetching of instructions and signals. The bus controls access to data values throughout the

processing unit - these registers act as temporary storage units. The ALU Core performs the

arithmetic and logical operations on desired inputs and produces the required outputs. This

project focuses on all four components of a typical ALU.

Part I: Procuring input data

The ALU is to perform a set of arithmetical and logical functions on two 8-bit inputs A and B.

These inputs are first utilized in simulation phase through waveform editor on Quartus II, and

then will also be used when the program is downloaded on the FPGA board through DIP

switches. Inputs A and B are procured using the last four digits of your lab partner’s student ID.

For instance, if the student ID of your partner is 500864395, then and ,

translating to

Make sure that you ask for the last four digits of your lab partner’s student ID and utilize those

values for the rest of this project as inputs A and B. Ensure to report these values at the

beginning of your lab session to your TA.

2 | P a g e

Figure 1. The Block Diagram of the GPU

Part II: Storage Unit (Register)

The storage units which are sometimes called Registers are utilized to temporary store the input

values and then pass them to the following components in the system. As portrayed in Figure 1,

two 8-bit register units are utilized in the ALU to store inputs A and B. The register reads the bit

values on its input on the rising edge of the clock signal and passes those bit values to the output

port on the next rising edge of the clock signal.

Write the VHDL code using Figure 2 for a register unit and confirm its functionality with the

help of a truth table. Thereafter, create a symbol of your design to be utilized in the final circuit

design. Next, import the symbol to the GPU project. Import the same symbol twice as the system

needs one register unit for each respective 8-bit input.

3 | P a g e

 Figure 2. Code template for implementing Register Storage Unit.

Part III: Control Unit

The Control unit decides the microcode that is to be delivered to the ALU core and will act as the

operations-selector for the ALU core. The Control Unit produces an output OP, which is passed

to ALU core as the operations selector. This component consists of two sub-components – the

FSM and a 4 to 16 decoder.

Part III (a): Finite State Machine (FSM)

The FSM component of the Control unit decides the pattern of the controller sequence. The

student has the option to utilize the FSM design from one of the previous labs in this section

while some modification may still be required. The FSM designed in the previous lab has 9

different states which are cycled through using the clock signal. The same design is to be

implemented in this section.

In the initial design of the Control unit, the current state of the FSM is to be passed to the

decoder unit. In other words, the FSM sub-component in the initial Control unit design will only

act as an up-counter, cycling through states 0 to 8 consecutively (modification required for

consecutive state transition) and back to state 0 while the student_id will be displayed on a 7-

segment. The FSM takes the clock signal as the input, and produces the 4-bit output

current_state and passes it to the decoder sub-component. Upon completing the FSM design,

create a symbol representing the FSM sub-component which is to be used in the final design.

4 | P a g e

Part III (b): 4 to 16 Decoder (4x16 Dec)

The decoder is tasked with receiving the signal current_state from FSM and decoding it to the

operation-selector microcode. In the initial design of the Control unit, the Decoder unit passes

the signal OP to the ALU core, which will then translate to operations selector for the ALU core

and follow the functions enlisted in Table 1.

A 3x8 decoder design has been designed and utilized in the previous labs. You can import the

same design and extend it to the 4x16 decoder following the schematics portrayed in Figure 2.

When the decoder design is completed, create a symbol of the sub-component to be utilized in

the final circuit design.

Figure 3. Implementation of 4x16 Decoder using 3x8 decoders

5 | P a g e

Part IV: Description of the ALU core

The heart of every GPU unit is the ALU core where all arithmetic and logical operations are to

be implemented and applied as required. In this part students are required to implement all

functionalities and operations using VHDL syntax compatible with Altera FPGA boards. The

ALU core will take two 8-bit inputs (A and B) and a 16-bit input from Control unit. The

microcode input from controller unit is the operation-selector signal, deciding the operation that

is to be applied on the inputs A and B. Although the microcode received from the Control unit is

16 bits, only 9 distinct operations are to be implemented. The functionalities of the ALU core

and their corresponding microcode are listed in Table 1. The microcode is delivered from the

Control unit and will decide what operation the inputs would undergo.

Operations listed in Table 1 are to be implemented in the ALU core by writing the proper VHDL

code for the ALU core. The 8-bit output (Result) of the ALU Core is to be displayed on two 7-

segment display or LEDs. When the ALU Core design is completed, create a symbol to represent

this component in the final design.

Table 1. ALU Core Operations for Problem 1

Function # Microcode
Boolean Operation /

Function
1 0000000000000001 sum(A, B)

2 0000000000000010 diff(A, B)

3 0000000000000100

4 0000000000001000

5 0000000000010000

6 0000000000100000 A B

7 0000000001000000 A B

8 0000000010000000 A + B

9 0000000100000000

6 | P a g e

Figure 4. Code Template for ALU Core.

Part V: Displaying the Output

The ALU core produces an 8-bit output called Result, which is the result of the operations

applied on A and B.

In the simulation phase of the design, the output Result is to be displayed in bit-value format in

the waveform editor window. In implementation phase where the design is programed on the

FPGA board, this output is to be displayed on two 7-segment displays in hexadecimal format.

7 | P a g e

For example, if then the 7-segment combined unit displays as illustrated in

Figure 4.

Figure 5. Typical 8-bit Seven Segment Display

Part VI: Final Design

As the designs for different components (Register, ALU Core, FSM and Decoder units) are

completed, they should all be ported to one final circuit design.

1. Open a new schematic design and import all the required units. When importing is

completed, you should have the following components: two Registers (one per input),

one ALU Core, one FSM, Decoder, three 7-segment displays (one for student_id and

two for the output Result from the ALU).

2. Create the 8-bit input ports A and B, 8-bit output port Result and the single-bit input

Clock port.

3. Connect all the components using single and multi-bit data buses. Follow the schematics

portrayed in Appendix A. Figure 6.

4. Name the data buses to represent the proper signals, for e.g. OP and A.

When your final circuit looks similar to Appendix A. Figure 6, synthesize and simulate your

design. Verify the functionality of your ALU and present the results to the TA. The waveforms

must be included as part of the final report submission.

Part VII: Implementation on FPGA board

Now that the final design has been simulated and its functionality is confirmed, you can

implement the ALU circuit design on the FPGA board.

1. Compile the final circuit design.

2. Assign dedicated I/O pins to the ports using the pin assignment

a. Assign A[7..0] to toggle switch SW[7..0]

8 | P a g e

b. Assign B[7..0] to toggle switch SW[15..8]

c. Assign Clock to push button KEY[3].

d. Assign output Result to the 7-segment displays for 7-Seg Digit 2 and 7-Seg Digit 3.

e. Assign data_in to SW[17].

f. Assign common circuit Reset to KEY[0].

3. Recompile the block schematic design.

4. Program the FPGA board with the updated pin assignments.

5. Test your design and demonstrate functionality and results to your TA

Part VIII: Problem Sets

In this section, you should address the following problems and showcase the results to your TA.

Problem 1: Initial Design

Implement the initial design of the General Processor Unit (GPU). In this design, the FSM output

current_state follows an up-counting pattern, which will then dictate the operation selector

signal to the ALU core. Thus, the output of the ALU core, Result, will represent the outputs of

operations shown in Table 1 and following the same order. This result shall be represented on

two 7-segment digits on the FPGA board.

Design, compile and download the program on the FPGA board. Test the outputs and showcase

the results to your TA.

Problem 2: Modified ALU Core

In this problem, the student is tasked to modify the ALU core and its functionalities. The TA will

assign each student with one of the following modifications to the ALU core.

a)

Function # Operation / Function
1 Increment A by 2

2 Shift B to right by two bits, input bit = 0 (SHR)

3 Shift A to right by four bits, input bit = 1 (SHR)

4 Find the smaller value of A and B and produce the results (Min(A,B))

5 Rotate A to right by two bits (ROR)

6 Invert the bit-significance order of B

7 Produce the result of XORing A and B

8 Produce the summation of A and B, then decrease it by 4

9 Produce all high bits on the output

b)

Function # Operation / Function
1 Swap the lower and upper 4 bits of A

2 Produce the result of ORing A and B

9 | P a g e

3 Decrement B by 5

4 Invert all bits of A

5 Invert the bit-significance order of A

6 Find the greater value of A and B and produce the results (Max(A,B))

7 Produce the difference between A and B

8 Produce the result of XNORing A and B

9 Rotate B to left by three bits (ROL)

c)

Function # Operation / Function
1 Produce the difference between A and B

2 Produce the 2’s complement of B

3 Swap the lower 4 bits of A with lower 4 bits of B

4 Produce null on the output

5 Decrement B by 5

6 Invert the bit-significance order of A

7 Shift B to left by three bits, input bit = 1 (SHL)

8 Increment A by 3

9 Invert all bits of B

d)

Function # Operation / Function
1 Shift A to right by two bits, input bit = 1 (SHR)

2 Produce the difference of A and B and then increment by 4

3 Find the greater value of A and B and produce the results (Max(A,B))

4 Swap the upper 4 bits of A by the lower 4 bits of B

5 Increment A by 1

6 Produce the result of ANDing A and B

7 Invert the upper four bits of A

8 Rotate B to left by 3 bits (ROL)

9 Show null on the output

e)

Function # Operation / Function
1 Replace the odd bits of A with odd bits of B

2 Produce the result of NANDing A and B

3 Calculate the summation of A and B and decrease it by 5

4 Produce the 2’s complement of B

5 Invert the even bits of B

6 Shift A to left by 2 bits, input bit = 1 (SHL)

7 Produce null on the output

8 Produce 2’s complement of A

9 Rotate B to right by 2 bits (ROR)

10 | P a g e

f)

Function # Operation / Function
1 Decrement B by 9

2 Swap the lower and upper 4 bits of B

3 Shift A to left by 2 bits, input bit = 0 (SHL)

4 Produce the result of NANDing A and B

5 Find the greater value of A and B and produce the results (Max(A,B))

6 Invert the even bits of B

7 Produce null on the output

8 Replace the upper four bits of B by upper four bits of A

9 Show A on the output

g)

Function # Operation / Function
1 Invert the bit-significance order of A

2 Shift A to left by 4 bits, input bit = 1 (SHL)

3 Invert upper four bits of B

4 Find the smaller value of A and B and produce the results (Min(A,B))

5 Calculate the summation of A and B and increase it by 4

6 Increment A by 3

7 Replace the even bits of A with even bits of B

8 Produce the result of XNORing A and B

9 Rotate B to right by 3 bits (ROR)

h)

Function # Operation / Function
1 Rotate A to right by 4 bits (ROR)

2 Produce the result of XORing A and B

3 Invert the bit-significance order of B

4 Calculate the summation of A and B and decrease it by 2

5 Rotate B to left by 2 bits (ROL)

6 Invert the even bits of B

7 Swap the lower 4 bits of B with lower 4 bits of A

8 Shift B to right by 2 bits, input bit = 0 (SHR)

9 Invert lower four bits of A

Problem 3: Modified Control Unit (FSM)

In this problem, students are assigned the task to utilize the student_id output from the FSM

sub-component of the Control Unit. Use the ALU and the microcode from the initial design

section as described in Figure 1 and modify it so that it can process 4 inputs as per the diagram in

Appendix A. Figure 7. Implement the functionalities described below which are assigned by

11 | P a g e

your TA. Some modifications to the 7 segment may also be needed to display “y” or “n”. The

TA shall assign one of the following problems for each student.

a) For each microcode instruction, display 'y' if the FSM output (student_id) is odd and 'n'

otherwise

b) For each microcode instruction, display 'y' if the FSM output (student_id) is even and 'n'

otherwise

c) For each microcode instruction, display 'y' if the FSM output (student_id) had an odd parity

and 'n' otherwise

d) For each microcode instruction, display 'y' if the FSM output (student_id) had an even parity

and 'n' otherwise

e) For each microcode instruction, display 'y' if one of the 2 digits of A are greater than FSM

output (student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

f) For each microcode instruction, 'y' if one of the 2 digits of A are less than FSM output

(student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

g) For each microcode instruction, 'y' if one of the 2 digits of A are equal to FSM output

(student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

h) For each microcode instruction, display 'y' if one of the 2 digits of B are greater than FSM

output (student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

i) For each microcode instruction, 'y' if one of the 2 digits of B are less than FSM output

(student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

j) For each microcode instruction, 'y' if one of the 2 digits of B are equal to FSM output

(student_id) and 'n' otherwise. Use the microcode instruction from part 1 of the lab.

12 | P a g e

 Appendix A

Figure 6. Typical Block Schematic for Problem 1

13 | P a g e

Figure 7. Typical Block Schematic for Problem 3

