Freescale MQX™ RTOS User's Guide

Document Number: MQXUG
Rev. 14, 04/2015

\

“freescale

A X

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

Contents
Section number Title Page
Chapter 1
Before You Begin
L. ADBOUt MQXTM RTOS... .ottt ettt ettt ettt e te st et e st e st e st es e et e eseese et eesees et e seas e s ensensensansensentaseaseeseeseeseaseeseeseasensensansan 17
1.2 ADOUL THIS BOOK....couiiiiiiiiiiiiiitet ettt st b bbb e ettt e bt e s bt eat e sb e et e sbe e aesbe et e sbsenbeeenebeenn 18
1.3 COMVENLIONS. ...niiiiiieiteieeiteett ettt ettt et ettt et sa et e st e e s bt e b e et e e st e eae et e eae e st e aeesaeeasesaeeasesaeemneeaee b e eusenseeesenseennenneenne 18
| 5C T8 T I o TSSOSO URSURSURR 18
L.3.2 NS ittt ettt ettt ettt b et e h e bt e bt bt e st s bt ea e bt e et h et h et e h et eh e et ea e nae st nbeea b e nbe et she et e sbeens 18
1.3.3 CAULIONS. ¢ttt ettt ettt st e e st a e st b e e e b e e e bt e e bt e st e e bt eaa e eat et e a e e ne e atenaeeane bt e s e heeanenbe e 19
Chapter 2
MQX RTOS at a Glance
2.1 Organization of MQX RTOS.... ..ottt st s e st e e bt e et e e bt e sab e e bt e sabeenbtesabeenbeesaneenne 21
B 11 VL5 1714 (o) WO OO PO USTTSRRRTRRPRRSRI 23
2.3 TaSK MANAZEIMENL.eutiuiiiiiiiieitenteeite sttt ettt ettt bttt e at et e bt s bt ea e sb et e sb e eate e bt e st e s bt en b e eb e et e eb e e bt eb e e bt entenbeeneenaee 23
2.4 SCREAUIINE. ..cotteeiteeee ettt ettt e s ht e et eea bt et e e s ab e ea bt e shb e ea bt e sht e e bt e e h bt e e bt e e ab e e bt e sab e e bt e sab e e beeeaneeabes 24
2.5 Managing Memory with dynamic memory allOCALOTS.cc.eeruiruieriirierie ettt ettt ettt sbeeeeesaeeneesaeas 24
2.6 Managing Memory with Fixed-Size BIocks (Partitions).........ccc.coeeierieiiinieninienieiienieetesiceteste ettt 25
2.7 CONLTOIING CACKES.....c.utiiiiiiiieiiieet ettt ettt et a bt et esat e e bt e s ab e et e e shbeeab e e s ab e e bt e ssb e ea b e e sabeenbeesabeenbeesaseebeesnneenses 25
2.8 Controlling AN MIMUL........ccuiiuiiiiiiet ettt ettt ettt ettt et ea e et e ea e e e et eaeeeb e eaeesbe et e ebeenbeeh e et e nt et e e st e bt eneeeaeenes 26
2.9 Lightweight Memory Mana@eIMENL.........cocueruerteriirtiriieiinieeteeteete st ettt ete st este st s e bt eat et e ets e bt este bt eseesbeentesaeeneesbeenaenueen 26
2,10 LAhtWeIZNE EVENLS.....oiiiiiieiiieiteeit ettt b et b e et e bt e s et e s bt e sab e e b b e sabeenbeeeabeeaseesabeesbbesabeenbbesnseeseenas 26
21T VIS ..ttt ettt ettt h et h e bt e et bt eh e e bt eR e e b e ea bt ke eat e ea e e bt ea e e bt eneeebeente bt ea b e eb e et e ehee bt eneeneenee 26
2.12 Lightweight SEMAPROTES.......couiiiiriiiiiiiee ettt ettt b ettt b et s bt et ebe et e saeesaeestenbeenaenaeen 27
2,13 SEIMAPNOTES. ...eeuteeiieeitteite ettt ettt ettt et e st et e s bt e e bt e sut e e bt e e st e e abeesabeeabeesht e e bt e eat e e bt e eab e e bt e sab e e bt e sa bt e bt e eabe e baeenbeenees 27
214 IMIUEEXES. .ottt ettt ettt ettt e b e et e bt et e bt sa bt e bt e e at e e bt e e ab e e bt e a bt e bt sa bt e eh e e e a bt e bt e e ae e e bt e eab e e bt sat e e beenateenbeeeate et 27
2.15 Lightweight Message QUEUE.......c.eetirtirtiriietieieete ettt ettt ettt ettt eb et e be et e bt e bt e st e sbeeate s bt essesbeeabesbe et eebeenseebaenaeenee 27
2160 IMIESSAZES. ..t euvteiuteeiteeitte et et e sttt et e bt et e e e ate et esab e e a bt e e bt e et e e eht e e bt e e h bt e a bt ea bt e bt e eht e e bt e eh bt e bt e e ab e e bt e ea bt e bt e sat e e bt e eabe e baeenbeeaees 28
21T TASK QUEUES. ...t e ettt ettt e e ettt e e et e e et e e eeaaeeeeaaee e eteeeeeaseeeesseeeeaseeeesseeeesseeeeaseeeenteeeeesseeeaaeeeeenteeeenaeeeeeseeeans 28
2.18 Inter-Processor COMIMUNICALION.co.tirtertertiritenteeiteeteett ettt steetesteeste bt ebesbteteee s e beeas et ees s e bt eate bt estesbeentesaeentesbeenaenaeen 28

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 3

Section number Title Page
2,19 TIME COMPONENL....tiutiriiitieititiettentteite et et st e e ett e st e ett e bt ettesbeesteebeeateebeentesbeesbeeatesbeestesbeeabesbeeatesbeenteebeenbeentenueeneesbeenaenueen 28
2.20 LAGREWEIZNE TIIMNETS. ¢ .eeiutieiieiieeite ettt ettt ettt et e bt et e e bt e et e e bt e sa bt e s bt e eabe e bt e eabe e bt e eabeesbtesabeessseeabeenbeesnseenseean 29
B8 B 1131 1<) 6 F OO OO UTUSURPTRRRRPRORI 29
222 WACHAOZS ...ttt ettt et b e et h e et e b e st e eb e st e bt et e bt e bt et s bt e bt s bt et e bt et bt et e bttt e bt e naeenee 29
2.23 Interrupt and EXCeption HANAIING.cc.eeiiiiiiiiiiiiiiieiieiteeie ettt ettt ettt sttt e st et e st e enbaesabeebee s 29
224 T/O DIIVEIS...eutttieuieettete ettt ettt ettt ea et e et e et e et e a e et e ea e e et ea e e ebeeaeeebeea s e eb e em b e b e en b e es e emteeneenb e en e e bt eneeeaeeneeabeenneaneenteebeans 30
2.24.1 FOrmatted I/O.....co.eiiiiiiiiiiee ettt ettt h et h et b et bttt st nae et be e nbe s 30
2.24.2 /O SubSYSEM(INTIO)...c..eiiiiiiiiieieiteiteieet ettt ettt ettt et e b bt st sttt et sttt et et eae et ebeebeebeebe st 30
2.24.2.1 NIO SeIIal DITVET...c..eeuiiitieiieiieit ettt ettt et et ea e sbe et e saeentesseebesbeebesseenbeeseeeeens 30
225 LLO@S ettt h bt h bt e a bt et bt e et bt et eh e Rt bt et e h e e bt e a e eh e st s bt et e bt e b e bt et e bt et ebae b enee 31
2.26 LAGNEWEIZNE LLOZS...eeiutiiiieeieeeiteet ettt ettt b et b e st et e s a bt e bt e sat e e b e e e st e e bt e sab e e bt e sab e e bt e eabe e baeenbeeaees 31
227 KEIMEL LLOZ. ettt ettt ettt e a et e e e e bt e et e e bt e st e e bt ea e b e en b e e bt en bt ekt et e eae e bt enteeaeeneeabeenneeneenneereans 31
228 STACK USAZR...c.eventieitetieitieieete ettt ettt ettt b et h et eb et e bttt e a e e sb e e st e sb e e st sb e e et bt et h e et eh et ehe e bt ebe e nbe et e nbeentenbeen 31
2.29 TaSK EITOT COUCS.......eouiiiieiiiiieieeitett ettt ettt ettt et ettt e a e et sa e et e s bt e s s bt eanesbe et e ebe et e eaeesneennenneeaee 31
2.30 EXCeption HAanAIINg.coouiiuiiiiiieieieeee ettt ettt h et bt et e b et e h et e h e et e ea e e bt en e e bt et e nae et e nbeeaeenean 31
2.31 RUN-TIME TESINE...cveeutiiiiiieiterteete sttt ettt ettt ettt et sb et sb et sbe et sbt e e et b e bt et s et e ebt et e eatesbeentesbeenaesbeeaesbnebesanens 32
2.32 QUEUE MANTPUIALION. ¢...teeiteiiiteiteet ettt ettt ettt e she e et e bt e et e e sabeeab e e shbeeabeenbe e e bt essbeeabeesabeeabeesabeenbeenaeeeabeesaneeases 32
2.33 INAME COIMPONEIL....c..vtitiiiiieite ettt ettt e et e bt e et e bt esateesbeesateesbeeeate e beeesbe e bt e sabeeabeesateeabeesbteeabeeeaeeeabeesmseeaseenbteenbeenneeas 32

Chapter 3
Using MQX RTOS

T B 2 Te) (0 (S (o] 1 2T 1 FO OSSP 33
3.2 Initializing and Starting MQX RTIOS......cc.eoriiiiiieie ettt sttt ettt et sb et sbe et st sae e 33
3.2.1 MQX RTOS InitialiZation STIUCIUTE.......cccuviiieirieieiieeestieeeiteeeeetteeesiteeesseeessaeeassseessssesessseeessseeesssessssseeesssesennsns 33
3.2.1.1 Default MQX RTOS Initialization StrUCIUIE..........c..coeiiiiieeieeeiie et e ettt eeee et e e e eaees 34
32,2 Task TeMPIALE LISt ...coueiiiriiiiiiiiieiterte ettt ettt ettt et st be et e bt et bt et e bt et e ebeeaesmeeneeenees 34
3.2.2.1 AsSINING TaASK PrIOTITIES. ce..veitieriiiiiieiie ettt ettt sttt e sbae et e bt sbeesaee e 35
3.2.2.2 AsSigNING TaSK ATIIIDULES.cceiitieiiitieieet ettt ettt ettt e b s et et et e e eaeeaesaeeaeeaean 35
3.2.2.3 Default Task TemPlate LiSt........cocieriiriiriiiiriiiieniieteneeteeit ettt sttt 36
3.224 Example: A Task Template LiSt........coouieiiiiniiiiieiie ettt sttt e 36

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

4 Freescale Semiconductor, Inc.

Section number Title Page
3.2.2.5 Example: Creating an Autostart TasK........cocceciriiriiiiiniiiiicniceetceeteceeescee et 36
3.2.2.5.1 Compiling the Application and Linking it with MQX RTOS............c.ccccceniiiinnninn. 37
3.3 MANAZING TASKS. ..ottt ettt a et a ettt h et e h e bt e h e e bt e et e bt et e bt en e e bt e bt eh e e bt eneenbeeneennes 37
3301 Creating TasKS. c..eoueeieeiieieete ettt ettt et b e e bbbt b et b et be et sbe e e eates 38
3.3.2 GENG TASK IDIS ittt ettt et ettt e b e st et esab e et e e s st e e bt e sabeeabeesatesabeesabeeaneeneee 39
3.3.3 Setting a Task ENVIFONMENL........ccoiiiiiiiiiiriiniiieeietetetetet ettt sttt ettt ettt ea ettt nee 39
334 Managing TasK EITOTS.co.ciouiiiiiiiiiiiieiteeet ettt ettt ettt et et e e bt et s bt et satenbeeanenbeeanenbeeen 39
3.3.5 RESLATTING TASKS...eeuiiitiiiteitieite ettt ettt e b e s ae e et esat e et e e s ab e e bt e sab e e bt e st e eabeesabe e bt esabeebeenanes 40
33,6 Terminating TaSKS.c.eeouiiietieiet ettt ettt et he et s e e be e et e bt e st e bt en b et e enteeb e et e e st ebeeneeneeeneas 40
3.3.7 Example: Creating TasKS.......oooi ittt sttt sttt ettt ettt et sbe et ebee e st e naeeaees 41
3.3.7.1 Code for the Creating Tasks EXaAmPIe........cccuerriiriiiiiiiiiiiiiiieeieeieeee ettt e 42
3.3.7.2 Compiling the Application and Linking it with MQX RTOS.........cccoiiiiiiiiiieeeeee e 42
3.4 SCREAUIING TASKS...cutiiiiiieieeiteteet ettt ettt e at e bt ea e bt et e eb e et e sbt e bt sb e e bt sb s et e ebb e bt esbe bt ennesaeenee 43
3.4.1 FIFO SCREAULING. ..ottt nes 43
3.4.2 Round Robin SCREAUIING.ooiiiiiiiiee ettt sttt et et e sttt e sae et e saeeneas 43
B3i4.2.1 PIEEIMPLION. c.ueitiutieiieteeiteeteete ettt ettt ettt et b et s bt et s bt et sb b e bt ebt e bt ee b e bt e bt e b e eateebeenee 45
3.5 Managing Memory with Variable-Size BIOCKS........cccutiriiiiiiiiiiiiiiie et sttt 45
3.5.1 Managing Lightweight Memory with Variable-Size BIOCKS..........ccoiiiiiiiiiiiiiieec e 47
3.5.2 Managing Memory with Fixed-Size Blocks (Partitions)........cc.cecueeierieriiniinieninieneeienieeeeseeresieeresieeve e 48
3.5.2.1 Creating the Partition Component for Dynamic Partitions............ccceeeveevierniiiiieeniieniieenienieeieeeeeene 48
3.5.2.2 Creating PartitiOnS...........ceouiiieiieieie oottt ettt b et e st e e bt et e eae e be e st et e ene et enteeneenes 48
3.5.2.3 Allocating and Freeing Partition BIOCKS.........cccceiiiiriiiiiniiniiiineiicenceetceeeceteseee e 49
3.5.24 Destroying a Dynamic PartitiOn...........c.ceviiiriiinieiiiinieeieesiieeitesite ettt ettt s 49
3.52.5 Example: TWO Partitions........coeveriiriiriinieniiieieieieietetee sttt ettt s 49
3.5.3 CoNIOIING CACRES.ciiiiiiiiiiiiiiieitet ettt ettt b ettt et e bt et sbe et e e bt e bt eatesbeeanenbeeanenbeens 51
3.5.3.1 Flushing Data CaChe.......ccc.eeiiiiiiiiiieiieeie ettt ettt st ettt e sbb e et esbe e sbeesseesateas 51
3.5.3.2 Invalidating Data or InsStruction CaChe...........cooieiiiiiiiiiiiiieie e 51
3.5.4 Controlling the MMU (Virtual MEIMOTY).....ccoueriirierieniiniienieeienitete ettt st st sttt ettt ene st e sttt e e ebeentesseeneeenees 52
3.5.4.1 Example: Initializing the MMU with Virtual MemOTY........cccevveeriiiniieniiiiienieeieenteeeeesee e 54

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 5

Section number Title Page
3.5.4.2 Example: Setting Up @ Virtual CONEXT......cceeruiriiririiniiiienieeienteetesteeteste ettt 54
3.5.4.3 Example: Creating Tasks with @ Virtual CONEXt.......cueeviiriirrieriiiiniieeieeiee ettt 55
3.6 SYNCRIONMIZING TASKS. .. .eutiiiiiiieieite ettt ettt et et e e s ae e e sh e e e e e bt et e e b e en bt ese et e es e e bt eneenbeeneesaeeneenaes 55
301 EVEILS..oiiiiiiiiiiece e et et e et ettt b e st 56
3.6.1.1 Creating the Event COMPONENL.......ccueritiitieriieiiienieesite st esite et ebee e e sitesebeesiaesteesbaeeseesaeesabeesseesane 57
3.6.1.2 Creating an EVEnt GIOUP.cciiieiuirieie ittt ettt ettt et sae et sbe et e sbe et e e bt et ese e beeneeseeenes 57
3.6.1.3 Opening a Connection to an EVENt GIroUP.......c..cccueviriiriiiiiniiniineeienecesiteneseee st 58
3.6.1.4 Waiting for Event BitS (EVENLS).......coiiiiiiiiiiiiiiiie ettt sttt sttt s 58
3.6.1.5 Setting EVENt BItS.....coouiiuiiiiieieii ettt et ettt eae e 58
3.6.1.6 Clearing EVent BitS........coioiiiiiiiiiiiiiieteeeet ettt et ettt st s 59
3.6.1.7 Closing a Connection to an EVENt GIOUP........cccocteiiiriieiiiiiienie ettt sttt et 59
3.6.1.8 Destroying an EVENt GIOUP........cc.coerueriiiiieieieieteteteie ettt sttt ettt e 59
3.6.1.9 Example: USING EVENTS....c..cooiiriiiiiiiiiiiiiieetcetescete sttt ettt st 59
3.6.1.9.1 Code for the Using Events EXample..........ccoceeriiiiiiiiiiiiiiiiieeciccieeceee e 59
3.6.1.9.2 Compiling the Application and Linking it with MQX RTOS........ccccccccevininnninininns 61
3.6.2 LIghtWeIZNt EVENTS....cuiiiiiiiiiiiitiit ettt ettt et et ettt e be et ebte et e bt e 61
3.6.2.1 Creating a Lightweight EVENt GIrOUD......c.ccoiiiiiiiiiiieiieiie ettt ettt s 62
3.6.2.2 Waiting for EVENTt BitS.......ccouiiiiiiiieiieieeeee ettt ettt st eneas 62
3.6.2.3 Setting EVENT BItS..c..coiiiiiiiiiiiiieiiee ettt sttt 62
3.6.2.4 Clearing EVENt BilS.....ccc.oiiiiiiiiiiiiieeeeete ettt sttt st ettt et st 62
3.6.2.5 Destroying a Lightweight EVENt GIOUP.........ccceeriiiiriiiieieeiesieeest et 63
3.6.3 About Semaphore-TYPE ODJECLS. ...cc.uirtiitiriiiiiriieierttete ettt ettt ettt ettt et sbe et sbeesaesbeenbesanenbeas 63
30031 SHIICHNESS ...ttt e 63
3.6.3.2 PriOTity INVEISION. . ceitiiiiitieiieitieie ettt et ettt et b et e bt e s e b e s e bt en et e et e eseeteeaeenaesaeenbeenean 63
3.6.3.3 Example: Priority INVEISION.cocceoiiriiiiiiiiriiiienicritccet ettt sttt 63
3.6.3.4 Avoiding Priority Inversion with Priority INheritance............ccocueveuieniiiieiiiiiiiieiesieeeec e 64
3.6.3.5 Avoiding Priority Inversion with Priority Protection............ccccceoeiiiiiiiiiinieieeceeeee e 65
3.6.4 Lightweight SemMapPROres.cc.coiiriiiiiiiieitetee ettt sttt ettt et b et sbe et e bt e et saeeneeeaees 66
3.6.4.1 Creating a Lightweight Semaphore.cocviiiiiiiiiiiiee et 66

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

6 Freescale Semiconductor, Inc.

Section number Title Page

3.6.4.2 Waiting for and Posting a Lightweight Semaphore............ccccoiviiniiiininiiniiicececeee 66

3.6.4.3 Destroying a Lightweight SEmaphore..........coocuiiiiiiiiiiiiiiie e 67

3.6.4.4 Example: Producers and CONSUIMET.c..coutiiiriierieriietesiieteeteeieeite e eaee st eeeseeenee st eeesseeneeseesbeennens 67
3.6.4.4.1 Definitions and Structures for the Example..........c..ccoccrvieniriininiiininiiinieinceenceee 67

3.6.4.4.2 Task Templates for the Producers and Consumers Example.........ccccccoouervieeniennennnennne. 68

3.6.44.3 Code fOr @ WIIte TasK........coiiiiiiieiiiieieiee e 68

3.6.44.4 Code fOr Read TasK........coceiviriiriiiiniiiiniiece ettt 68

3.6.4.4.5 Compiling the Application and Linking It with MQX RTOS.........ccccceviiiiiiniinniennens 69

TR N 1S5 11 1) 1 0 (LS U PO SRRPRSRTR 70
3.6.5.1 USING @ SEMAPNOTE.ccutiiiiiiiiiiiiiiieiteee ettt ettt ettt et b et b ettt e e sbe e et bt eeesbeenaesaeen 70

3.6.5.2 Creating the Semaphore COMPONENL......cccuteiuiirriieriieiieeriieeiterite et estte et ebeesbeesieesebeesseesaeeesbeesaneennes 71

3.6.5.3 Creating @ SEMAPROTE.ooiuiiiiiieiei ettt ettt et ae et s st et saeenae et nbeeneens 71

3.6.5.4 Opening a Connection to @ SEMAPNOTE.cceertiriiriiriiiiniieieetete ettt ettt st ees 72

3.6.5.5 Waiting for a Semaphore and Posting a Semaphore............covierieiriiiiiniieiiieeceeeee e 72

3.6.5.6 Closing a Connection to & SEMAPROTE..........cccuiiieiiiiiiiiieeeete ettt 72

3.6.5.7 Destroying a SEMAPROTE.c..cotiviiriiriiiiireeteeteete sttt ettt ettt ettt et s nae st nbeeanens 72

3.6.5.8 Example: Task Synchronization and Mutual EXCIUSION.........ccceeviiiiiiiiiiiiiinieniceiecceec e 73
3.6.5.8.1 Definitions and Structures for the EXample............cccccerviiriniininieninenieeeee e 73

3.6.5.8.2 Task Templates for the Task Synchronization and Mutual Exclusion Example............ 74

3.6.5.8.3 Code for Main TasK.......ccccoieiiiriiiiiiiiiiieiceecee ettt 74

3.6.5.8.4 Code for the Read Task.........ccceouirieiiiiiiiieiiiee e e 75

3.6.5.8.5 Code for the WIite TasK......c.cceoeriiriiriiiiiiiinicetceeseee et 76

3.6.5.8.6 Compiling the application and linking it with MQX RTOS..........cccoceiiiiniiniiniiieee 77

BU0.0 IVIULEXES. ..ttt ettt ettt ettt ettt e e e bt et e ekt em et et e e et e st e et e et e bt e a e e bt ea e e bt ea s e bt en s e b e en b ekt e n bt ekt et e eee e bt eneenbeentenbeennenbean 77
3.6.6.1 Creating the MUteX COMPONENL.....c..cctertiriiriirtintietenteete ettt sttt et stt ettt et e eatesbeestesbeeeesaeeneenaee 78

3.6.60.2 MULEX ALITDULES. ..c..eetieiiiiieiiiiteteet ettt ettt ettt e sttt et b e be e eeaeenee 78

3.6.6.3 WaltiNg PrOtOCOLS. ..c.ueiiiiieiiee ettt ettt sttt et et et et ea et e st et e et e eaeeeesaeeaeenean 78

3.6.6.4 Scheduling ProtOCOIS. ...c..couiiiiiiiiiieeieecese ettt ettt sttt 79

3.6.6.5 Creating and INTtHAliZing @ MULEX......ccouiiiiiiniiiiiieiie ettt sttt ettt e be e 79

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 7

Section number Title Page

3.6.60.0 LOCKING @ IMULEX.c..ceuviiiiiiiiiiieetteteett ettt ettt sttt sttt et ettt et b et sbe et sbtetesbeenaeeatenbeeanens 80

3.6.6.7 UNIOCKING @ MULEX....cutiiutieiiieeiieiite ettt ettt ettt ettt e b e st e bt e sateesbeesa b e e bt e sabeebtessseenbeesnbesnseenas 80

3.6.6.8 DEStrOYING & IMULEK....ccutiuietieiietieiteitiete ettt et ettt e steesteseeete s bt enbe s bt et e ese et e ese e teeneenseensesseeneesneensesnean 80

3.6.6.9 Example: USING @ IMULBX.....coueetiriiiieiienieiteritetentt ettt ettt ettt ettt et st ae bt b s et ein e beestesbeenee 80
3.6.6.9.1 Code for Using a Mutex EXample.........cccociiriiiiiiniiiiienieiieeeieeieeste e 81

3.6.6.9.2 Compiling the Application and Linking it with MQX RTOS........ccccccccevinviniinniininns 82

30T IVIESSAZES . euveeuteitetenitete ettt ettt ettt et eh et s h et ht et e h bbbt bt e e bt at bttt e h e et sh e a e e h b nhe e st nbeee b bt et bt et sbe e 82
3.6.7.1 Creating the Message COMPONENL..........cccuiiriirriierieiieertie et este et et e eteebeesbeesteesibeesseesateenbeesanesases 83

3.6.7.2 USING MESSAZE POOIS. ..ottt ettt b ettt b et b e st eb et e e 83

3.6.7.3 Allocating and Freeing MeESSAZES.co.cveeruirtiriiriiniieienieeteeieete ettt sttt ettt eate e 84

3.0.7.4 SENAING MESSAZES. ..ccuverutieriiieiteeiit ettt et et e st e stt e st e e bt e e bt e beesabeesbeesateesstesabeesbbeesseenbeesabeenneenane 85

3.6.7.5 MESSAZE QQUEUELS. ... e ueeuteeiieteeiieiti ettt ettt et et e bt e atesae e st e s bt eate s bt enbeeb e et e eb e et e es e et e enee bt eneeebeeneesneensesnean 85
3.0.7.5.1 16-Bit QUEUE IDS....ccuiiiiiiiiiiciiniciricerctrtctetc ettt ettt 85

3.6.7.5.2 32-Bit QUEUE IDS.....cuiiiiiiiiiiciiicieice et 85

3.6.7.6 Using Private Message Queues to Receive MEeSSAZES.ccveruieiiriierieriieieiiieie et 86

3.6.7.7 Using System Message Queues to Receive MesSages.......coueuieieririinienieneenieneeieneeiesieesiesieenieens 86

3.6.7.8 Determining the Number of Pending MeSSages.c.cevvirriierieiiieiieeiienieeieeeeesite et 86

3.6.7.9 Notification FUNCHOMS.cuiitieiieieie ettt ettt et st et e st e et et enteebeenes 86
3.6.7.10 Example: CLHent/Server MOdEL..........cocoviiiiriiiiiiiieniiceeiteeet ettt 87
3.6.7.10.1 Message DEfINItION.ceiiiiriiiriiieiieeie ettt ettt ettt st ettt e s baesbeenbeeeas 87

3.6.7.10.2 Task Templates for the Client/Server Model Example..........cccceceiieieninninienciieenee. 88

3.6.7.10.3 Code fOr SErver TasK.........ccccoiviiiiiiiiiiiiiiiiiicieece s 88

3.6.7.10.4 Code for Client TasK..........ccccouiiiiiiiiiiiiiiii e 88

3.6.7.10.5 Compiling the Application and Linking it with MQX RTOS........ccccccccevininininiininns 89

3.6.8 Lightweight Message QUEUE.couiiiriiriieiiieete ettt ettt ettt ettt e e bt et saeenbesatenbeeanenbeeanenbeens 89
3.6.8.1 [Initialization of a Lightweight Message QUEUE...........cocueiiiiriiiiiiiiieiieeit ettt 90

3.6.8.2 SeNAING MESSAZES. ...cuveureurenreiieiieiteiieiteit ettt sttt sttt ettt ettt eat st e st e ae bt be et et be st et enee 90

3.6.8.3 RECEIVING IMESSAZES. c...cveeuiiiieniiriietieiteteeit ettt et et s et at et sbe et e sbt e bt sbt e b e set et e e bt e bt e st e nbeeaeesaeeneenaee 90

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

8 Freescale Semiconductor, Inc.

Section number Title Page

3.6.8.4 Example: CLHent/Server MOdEL..........cocoviiiiriiiiriiieniiceeteeetee ettt 91
3.6.8.4.1 MesSage DEfINItION.ciiiiiiiiriiiiiieeie ettt sttt e sbeenaee e 91
3.6.8.4.2 Task Templates for the Client/Server Model............ccccouecuiiiniiiininininininceeneneene 91
3.6.8.4.3 Code fOr SErver TasK.........cccooiviiiiiiiiiiiiiiiiiiicc s 92
3.6.8.4.4 Code for Client TasK..........cccoouiiiiiiiiiiiiiiiiicce e 92
3.6.8.4.5 Compiling the application and linking it with MQX RTOS..........ccccceoivininininininenn 93
3.0.9 TaSK QUEUES.ueiieiiieeeeiiie ettt e et ee e ettt e ettt e e ettt e e eteeeetaee e tbeeeeasseesassesassseeeassaeeeassaeessseeaassssessssesasseeesseseassseessseaans 93
3.6.9.1 Creating and Destroying Task QUEUES.........cceuerruieiiiiiiieiie ittt ettt ettt 94
3.6.9.2 Suspending @ TasK.......ccceviriiiriiniiiieeee ettt st 94
3.6.9.3 ReSUMING @ TaASK...cueiiiiiiiiiiiiie ettt ettt 94
3.6.9.4 Example: Synchronizing TasKS........c.coceeiiiiiiiniiiiieeeeese ettt s 94
3.6.9.4.1 Code as an EXaMPIe......cccoueiiiiiiiiiiiiiiieenescteeeceteteteeet ettt 94
3.6.9.42 Compiling the Application and Linking it with MQX RTOS........cc.ccocceviniinininncnnne 95
3.7 Communication BetWeen ProCESSOIS.........ccooiiiiiiiiiiiiiiiiiiicccc e 96
3.7.1 Sending Messages t0 ReMOLE PrOCESSOTS.co.ivuiriiriiriiriiiiiiieieeeiet ettt s 96
3.7.1.1 Example: Four-Processor APPLCAtION........cccciieririiriiriinienieieetesiceteste ettt st 97
3.7.1.1.1 Routing Table for Processor L.........ccocuiiriiiiiiiiinieiiie ettt 97
3.7.2 Creating and Destroying Tasks on Remote ProCESSOTS.ccccviririiriiriiniinieniiicieieieeeeeteeeveee e 97
3.7.3 Accessing Event Groups on Remote ProCESSOTS.c...couiriiriiiiiniiiiniiiieiteert ettt 98
3.7.4 Creating and Initializing TPC.........cooiiiiiiiiiie ettt ettt e st e e st e e b e saee s 98
3.7.4.1 Building an IPC Routing Table..........ccccoiriiriiiiiiiiiiieieineeeeseseee et 98
3.7.4.1.1 Routing Table for Processor One.............ccceouerieriiriiniieiinieeiineeieseeniestene e 99
3.7.4.1.2 Routing Table for Processor TWO........ccocuieriiriiiniinieiiteeeee et 99
3.7.4.1.3 Routing Table for Processor TRIee...........ccccceviriririninininineniciceeeeeeeeeeeeeeean 99
3.7.4.1.4 Routing Table for Processor FOUT...........cccociviiiiiiiniiiiniiicencetceeeeee e 99
3.7.4.2 Building an IPC Protocol Initialization Table............cccceeriiiriiriiiiiienieeic ettt 99

3.74.3 TPC UsSing I/O PCB DeVIiCe DITVETS.....cc.eeuiiiiriieiieienieeie sttt sttt ettt st eeeeaees 100

3.7.4.4 Starting IPC TasK.....ocuoouiiiiriiiiieeee ettt st ettt st nbe e 100

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 9

Section number Title Page
3.7.4.5 Example: IPC Initialization InfOrmation..........c..coceevueriiiiiniininiiinieieeeeneeese et 100
3.7.4.5.1 IPC Initialization Information............cccooieiiiniiiiiieniiiecceeeceeeeeee e e 101

3.7.4.5.2 Code fOr ProCeSSOr ONe.......ccuieuieiieiieie ettt ettt ee et et e e st esaeeneas 101

3.7.4.5.3 Code fOr ProCeSSOr TWO....c..couiiiiriiiiieiieieeiesieete sttt s 103

3.74.5.4 Compiling the Application and Linking it with MQX RTOS............c.ccccceniiiinininnn. 104

3.7.5 Endian Conversion of Message HEaders...........coeiiiiiiriiiiiieeiiee ettt 105
B8 THIMIIE ettt ettt ettt e b et h e s bt e st s bt e st s bt et e e bt e st e e bt et e e bt et e e a e e bt e a e e eb e Rt eb e et sh e e bt eb e et e e bt e beetnenteeae 105
3.8.1 Rollover of MQX RTOS TIIME........eeeiciiieeiiiieeiiieesiieeeiteeeeteeesteeesteeesssaeessseeesssaeesssesassseeasssesesssseessssseessseeennes 105
3.8.2 Accuracy of MQX RTOS TIIME.....ccueeieiuieiiitieietiee ettt ettt ettt ettt et et et eaeeteeseesbeeaeesbeeneesbeebesaeensens 106
3.8.3 TIME COMPOMENL....utiriiiutiriiitieitinteeterte ettt et st et ettt et e bt eatesbee st e ebeestesbeesaesatenbeeab e bt eabe bt estesbeesteebeentesmeenbeenees 106
3.8.3.1 Second/MilliSECONd TIME.......coceeiuiriiriiiiiiirieieetete ettt sttt et ae e 108

3.8.3.2 THIME SEAIMP...cutieuietieiieti ettt ettt ettt ettt ettt et e e st e bt e et e bt em e ebeen e e ebeemeeeaeensesaeenbesstebesneenbeeneenneas 108

3.8.3.3 THCK THIME. ..ttt et 108

3.8.3:4 EIAPSEA TIMIC...couuiiiuiiiiieitieeite ettt ettt st e b e st et esat e e bt e sab e e bt e sab e e bt e sabeenbeesnbesbee e 108

3.8.3.5 TiME RESOIUIION. ...c..iiuiiiiieii ittt ettt ettt sttt st e st s e et e st e bt ea et e et e eae et e eaeeneeene 109

3.8.3.0 ADSOIULE TIIMC....ccutiiieiiieiiitieitete ettt sttt ettt ettt et sb et bt et sbe e bt s bt enbesbsenbeeanenbeens 109

3.8.3.7 Time in Date FOrMAtS........cccociiiiiiiiiiiiiiieiecee ettt et s 110
3.8.3.7.1 DATE_STRUCTccoeiiiiriiiriitcetetet ettt 110

3.8.3.7.2 TM STRUCT ...ttt ettt 110

3.8.3.8 THIMEOULS. ...ttt ettt et ettt ettt sat et esaeeae st e aeeas e b eeane bt esnesueenee 110

B84 THIMICTS. ¢ ettt ettt ettt a ettt et e e e et e st e e bt e ae e e bt e m b e e bt ea s e eb e em b e e bt em b e eh e et e e a e e bt e aeeeheen e e eheenteebeenbeebeenteeneens 111
3.8.4.1 Creating the Timer COMPONENL......c..cocuiriiiiririeriietenit ettt ettt ste ettt este st stesbb e besenenbeeseesbeenee 112

3.8.4.2 SHATTNG TIMIETS...eeiuttitieiiieiiee ettt ettt ettt et s bt e e bt e s bt e s bt e satesabeessbeeabeesbbeenbeesabeenbeesaeesnres 112

3.8.4.3 Cancelling Outstanding Timer REqUESES.........cccueiuiiiiiiiiiiiieieeiee e 113

3.8.4.4 Example: USING TIMETS.....cceiiiriiiiiirientieiteeieete ettt ettt ettt sttt ettt et et ettt sae e saeeneesaeen 113
3.8.4.4.1 Code for Timer EXamPIe.........ccceovuiiiiiiiiiiiieiiieiieeieeiteeeeee sttt 113

3.8.4.4.2 Compiling the Application and Linking it with MQX RTOS..........cccoceriiniiiiiiiinne 114

3.8.5 LAGIEWEIZNE TIMETS. c..eutiiieiiiiieieeieete ettt ettt eb et sttt et be et b e e bt e sb e e st e s bt eabesbe et e ebeeneeeae 115
3.8.5.1 Starting LightwWeight TImMETS.coiiiiiiiiiiiiiieeieeiee ettt sttt ettt e baesabeeaees 115

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

10

Freescale Semiconductor, Inc.

Section number Title Page
3.8.5.2 Cancelling Outstanding Lightweight Timer Requests...........ccoceeviiririiiniinniniiniineencneencecseeeeee 115

3.8.0 WALCIAOZS. ¢ttt ettt b e st e bt s et e bt e s at e e bt e e a bt et e s a bt e bt e shb e e bt e e ht e e bt e sabe e beesabeebee e 116
3.8.6.1 Creating the Watchdog COMPONENL.........ccuiitiriiriieiertieie ettt ettt et seeeeeseeeeeeeee 116

3.8.6.2 Starting or Restarting @ WatChdOg..........cocceviiiiriiiiniiiiiienecieeeeeseee ettt 117

3.8.6.3 Stopping @ WatCRAOZ.eeiuiiiiiiiiieiieee ettt sttt st ettt e ba e e bt e sbeesbeenaeeeane 117

3.8.6.4 Example: Using WatChdO@s.cooviiuiiiiiieie ittt st ene 117

3.8.6.4.1 Compiling the Application and Linking it with MQX RTOS........cccccoceeviniinininninne 118

3.9 Handling Interrupts and EXCEPLIONS. ...c..utitiiiitiiieeie ittt ettt et e sttt e s b e e bt e sbt e e bt e sabesabeesabesabeesaneebeenaeean 119
3.9.1 Initializing Interrupt HANAIINE........ccocoiiiiiiiiiiiiecceecet ettt 120

3.9.2 Installing Application-Defined ISRS........ccccoiiiriiiiiiiiiiee ettt 121

3.9.3 ResStrictions 0N ISRS......oouiiiiiiiiie ettt et ettt ettt e 121
3.9.3.1 Functions That the ISR Cannot Call............cccoiiiiiiiiiiiieee e 121

3.9.3.2 Functions That ISRs should not Call.........c..ccceiiiiiniiiiiniiiicee e 122

3.9.3.3 NON-Maskable INTETTUPLS.eoviiriiiriieiieeieeite ettt ettt sttt ettt et e beesaee e 123

39.34 MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration Parameter............c.ccccccecuenene. 123

3.9.4 Changing Default ISRS.......couiiiiiiiiiiiee ettt ettt ettt ettt e e bt et sbeenesieens 126

3.9.5 Handling EXCEPUONS. ...ccutiiiiiiiieiteeiteiiteet ettt ettt e h e et e bt e bt e s bt e sab e e sbte e st e e sbbeeabeenbeesabeesatesabeesanesabeens 127

3.9.6 Handling ISR EXCEPLIONS.c.ceiiuiiiiitiiiiitirtitestertet ettt ettt sttt sttt ettt ettt eb e bt et snenaen 127

3.9.7 Handling Task EXCEPLIONS.coiiiiriiiiiiiitiitieteteeteett ettt ettt ettt ettt ettt s bt et bt saeeaeenaeeanes 128

3.9.8 Example: Installing an ISRcooiiiiiiiiiieee ettt ettt ettt et st ettt e bt e bee 128
3.9.8.1 Compiling the Application and Linking it with MQX RTOS.......c..cccccciiiiiiiiiiiinneneeen 129

310 INSIIUMEIEALION.ettiiiiitieteetteteett ettt ettt ettt sttt sb et sb et ebb e bt e bt et ebt e bt es b e e bt e st e sbeemtesbe et e ebe e bt sb b e bt ebbe bt ess e bt ennenbeenee 129
BLL0.T L0 ittt a sttt h etttk ettt e ettt sa et eaeaee 130
3.10.1.1 Creating the Log COMPONENL.ccutiieitieietieieeteeie ettt ettt et st e st steesbeesee st estesbeetesbeeneesseeneesee 130

3.10.1.2 Creating @ LO@. . o.eoue ittt ettt et sa ettt st eaees 130

3.10.1.3 Format 0f @ LOZ ENTY..c..coiiiiiiiiieeiieee ettt st ettt et et sat e e e s e sanes 131

3.10. 1.4 WIIHNGZ 10 8 LLO ittt ettt ettt st ettt et s bt e bt e et e b e e st et e et e eaeeneesaeeneeseie 131

3.10.1.5 Reading From @ LOZ......cc.cooiiiiriiiiiiieiieeseee ettt ettt st e 131

3.10.1.6 Disabling and Enabling Writing t0 @ LOZ......ccouiiiiiiiiiiieiieeieerie ettt 131

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 11

Section number Title Page
3.10.1.7 RESEHING @ LLOZ ittt b et ettt sbe et sttt enaeeaeen 132
3.10.1.8 EXample: USING LOZS..uuteruiiiiiiiiiiiiieeiteeitesite ettt ettt ettt ettt et ettt st et e st esbaeeabeenbaeenbeennee s 132

3.10.1.8.1 Compiling the Application and Linking it with MQX RTOS..........cccoceriiniiiiniiinne 133

3.10.2 LAGhEWEIZNE LLOZS. . .eoutitiiiiiiteitettet ettt ettt ettt et s b et sb et s bt et sb b et sb b et e bt et eaeeae 133
3.10.2.1 Creating the Lightweight Log COMPONENL......cccuiiriiiiiiiiniiiiiieiieeieeiteeecete et sttt 134
3.10.2.2 Creating a LightWeiZht LOZ.....cc.eoiuiiiiieiee et sttt 134
3.10.2.3 Format of a Lightweight Log ENtry.......ccccooiiiiiiiiiiiiiiitct ettt 135
3.10.2.4 Writing to @ LightWei@ht LOZ....cc.coiiiiiiiiiieiieee et sttt 135
3.10.2.5 Reading From a LightWeiZht LOZ.......ccciuiiiiiiiiiiieeeeee et 135
3.10.2.6 Disabling and Enabling Writing to a Lightweight Log.........cccvviiniiiiniininiiiccciceeceecee 135
3.10.2.7 Resetting a LightWei@ht LOZ....cc.cooiuiiiiiiiiiiiieiee ettt et s 135
3.10.2.8 Example: Using LightWeight LOgS.......cocvoiiiiiiiiiiiieiecieeee et 136
3.10.2.8.1 Compiling the Application and Linking it with MQX RTOS...........ccccccccvvivininnninns 137

3U10.3 KETNET LLO. ittt ettt et e h e et e s bt st eshb e e it e e s bt e e bt e nhe e e bt e eate e bt e eabe e beeshte e bt enaee s 137
3.10.3.1 USING KEIMEL LLOZ..c.tteutitieniieiiett ettt ettt ettt ettt et et e saeebe s st ebesseenbeeneenseens 138
3.10.3.2 Disabling Kernel LOZZING......cc.coiiiiriiiiiniiiieiieitetese ettt ettt et saeen 139
3.10.3.3 Example: USing Kernel LOZ......c..ooruiiriiiiiiiieeiieiieeitese ettt ettt st 139
3.10.3.3.1 Compiling the Application and Linking it with MQX RTOS..........cccoceviiniiiiniiinne 140

3.10.4 Stack USAZE ULIIEIES. c..eeveruteieeiterieeitenieet ettt ettt ettt ettt et et b e eabesb et eb e et e ebe et ebeenaesatenbeestenbeeanenbeas 140
BULT UHIEIES. .ttt et a et ettt e b es e st a st e et a et et s e sttt e b s 141
BLL1.1 QUBUES....ueteeieee et e ettt e e ettt e e e e ettt e e e e e e taaeeeeesataeeeeeaaataaaaaeeaaaaaaaeeeaaabaaaeeaaaataaeeeeaataaaeaeaaatbraaaeeeanntaereeeaarres 141
311,101 QUEUE DAt SIIUCIUTES.vviiieeiieeeieieeeiiee et e e ettt e ettt e eetteeeeteeeetbeeeaseeessseeeessseeeaseeesaseseessseessseeenssaeans 141
3112 Creating @ QUEUC.ecuveeiieiiteeeiteeie ettt ettt et ettt esat e et e s bt e e bt enbeesabeesatesabeessbeeabeesbbeenseenbeesnbeenseesanes 142
3.11.1.3 Adding Elements TO @ QUEUE.ccueitieiiriieieitieie ettt ettt ettt ettt s e e saeeneeseesbeeneens 142
3.11.1.4 Removing Elements From a QUEUE..........ccccecuiriiriiniiriiiieiiicecnicetc ettt 142

3.11.2 NAME COMPONENL..c.uttriutieiieriiieriieettentte et ettt ebeesttesateestaeaateesbteeseesstesabeesstesateessseaaseesbteesseenseesabeenseesaseessnesseens 142
3.11.2.1 Creating the Name COMPONENL..........ccciruirriiitieieiieteetieteeteesteetee st eeesteeteseeetesseensesseenbesseenbeeneenseens 143

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

12

Freescale Semiconductor, Inc.

Section number Title Page
3113 RUN-TIME TESTIMZ. . e.veeutiiteiieiienieiterte ettt ettt ettt et ettt b e s bt ea e s bt et e s bt et e e bt ea b e e bt et e ebe et ebee bt eaeenaeennen 143
3.11.3.1 Example: Doing RUN-Time TeStING.....c.cueerteriimiiiiiiiiiieriie ettt sttt st 144
3.11.3.1.1 Compiling the Application and Linking it with MQX RTOS..........cccoceeiiniiiiniiinne 146
3114 AdItIoNAl ULIIEES..c..oveveviieiirieiricirtetrtet ettt sttt ettt ettt b et b et es e et sae st eneneas 146
3.12 User Mode Tasks and MemOTY Prot@CtiON.eicuiiiiiiriiiniiiiteeie ettt sttt ettt et st e it e st e e saaesabeesbaeeaseenaee s 147
3.12.1 Configuring the USer-mode SUPPOIT.......cc.eiiiiiiiiiiiiiieitieieettete ettt ettt ettt ettt et et et e et e bt enbesbeentesneeneeens 148
3.12.2 MQX RTOS InitialiZation STIUCIUIE........ccuviiiiiiieiiieeeeiteeeetee e et e e ettt e eetteeeeveeeestseeeaseeesaseeesasseeesssesensseeessreaennns 148
3.12.2.1 Default Initialization VALUES........cc.cociiriiiiiiriiiiiiieieneeereeeeeeee et 149
3.12.3 Declaring and Creating User-mode Tasks........cccoieiiiiiiiiii et 150
3.12.4 Access Rights for Global Variables.........c.c.coieiiriiiiniiiiiienieitenee ettt et s 150
3125 APL et 151
3.12.6 Handling interrupts in USET MOME.cecuiruiiiiriieiieiiete ettt ettt ettt et st et eaeete et enaesaeenbeeseesbeensenneas 152
3.13 Embedded DEDUZZING.....cc.eoouiiiiiiiiiiieiteeet ettt ettt ettt et et et be et bt et be et bt et e bbbt bbbt enaesbeen 152
3.14 Configuring MQX RTOS at Compile TIME........eocuiiiiiiriieiiieniieeteeite ettt ettt et ettt st e e st e ebeesibeebeesaee s 153
3.14.1 MQX RTOS Compile-Time Configuration OPtionS...........cceeruerieruerieniieiienieetesteeeeeee e seee e see e eeesbeesesieens 153
3.14.2 RecOMMENAEA SEUNES.ccviriieiiriiiiiritete ittt ettt ettt ettt et eb et ebtente e st e s bt eate s bt eatesbeeabe s bt enbesbeenteebeeneenae 160
Chapter 4
Rebuilding MQX RTOS
4.1 Why Rebuild MQX RTOS ..ottt sttt st be e 163
4.2 BefOTE YOU BEZIN..cuuiiiiiiiiiiiiieitee ettt ettt e b e s et e bt e e ate e bt e s a b e et e e sab e e bt e sat e e bt e eabeebeesateebee e 163
4.3 Freescale MQX RTOS DireCtOry STIUCIUIE.cc.eetirtiertieiiertieiesttete et ete st etesteeteetee e este et eseesaeeneesseeneesaeensesseensesseensens 164
4.3.1 MQX RTOS DiIr€CtOry STIUCIUIR.coueeteriteieritenieritenteeitenttetteeteeteeteetesseesteeseesbeestesbeeasesbeesbesteenteeseenseeseenaeenees 166
4.3.2 PSP SUDAITECIOIIES.cuiiiiiiiiiiiiiiccie e s 166
4.3.3 BSP SUDGITECIOTIES. ..c..eeteeiieitieiiestiete ettt ettt ettt et et e e st e et e st e eatesheebeeb e et e ese et e eseenteeseeseeneesseeneesaeensesaeensesnean 167
4.3.4 T/O SUDGITECHOTIES. ...ttt et st sttt ettt e eaenes 167
4.3.5 Other Source SUDAITECIOTIES.cciiuiiuiiiiiiiiiiii it st 167
4.4 Freescale MQX RTOS BUIld PrOJECES. ..c.uiiuiitieiieiieiieit ettt ettt sttt e b st e bt et e b et e b eneeeneenes 167
441 PSP BUILA PIOJECT..c..eiiieiiiitieitete ettt ettt sttt sttt ettt ettt et s be et sbeeneenaeen 167
442 BSP BUILA PrOJECL.....cuiiiiiieieiieeeec et 168

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 13

Section number Title Page
4,43 POSt-BUILA PTOCESSING.cvtitiiiiiiiiiieiteeteettete ettt ettt sttt et bt et eat et ebtesb e e st e sbeeaesbeenbesbtenbesanens 168

444 BUILA TAT@ELS...eeutteiiteeiieiiieei ettt ettt sttt e bt e bt e sat e e bt e sateea bt e sbteeabeeabbeeabe e bt e sabeesatesabeessbeenseebaesnbeenneens 169

4.5 Rebuilding Freescale MQX RTOS.......coooiiiiiiiiiieneeteese ettt st sttt ettt 169
4.6 Why Create @ New CONfIGUIATIONT.......ootiitiiiiriiitirteet ettt ettt ettt et et et st e e s bt et s bt et e ebte bt ebt e bt eseesbeeneenae 169
4.7 Cloning EXiSting CONfiIGUIATION.eiutiitiiiiieitit ittt sttt ettt ettt et et e st e e sbtesab e e bt e sabeebeesabeeabeesabeenbaessseenbeesaneenne 170

Chapter 5
Developing a New BSP

5.1 What 38 @ BSP7.. ettt 173
5.2 OVEIVIBW ..ntitientiettett ettt ettt et s et et s et e et s et et e e st e bt ea e et e ea e e es e ea e e eeeem st ee e e bt ee e e bt es e e bt eat e bt emte bt en b e eh e enteehe e bt enee bt entenaeennennean 173
5.3 Selecting @ BasEliNe BSP.....c..coiiiiiiiiii ettt sttt 174
5.4 Editing the Debugger Configuration FIIES.........ccuoiiiiiiiiiiiieieee ettt ettt et 175
5.5 Modifying BSP-Specific INCIUAE FIleS........cc.iiiiiiiiiiiiiieee ettt ettt et et se e s 175
5.5.1 DS P PIV Nttt e a e bt et sb et s b e bbb e b st b ean et eae 176

5.5 2 B8P Ne ettt 176

5.5.3 QDOAIAS Mo et h et e h et e h e b h e e bt en et e en e e bt enteenee bt eneenaeenean 176

5.6 MOdifying StArtUP COAe. ... cueeuiiriiiiiriiiieritet ettt ettt ettt et b et b ettt et e bttt e bt e bt eb b e st e et e saeentesbeentenueen 177
5.6.1 DOOL.™ and KCOMPIIETS.Cuuuviiiiiiiiiiiiieeiierite ettt et b e et e bt st e s bt e sab e e be e et e e beesabeenbeesabeeseesates 177

5.7 MOAIfYING SOUICE COUR.....c..eiutiiiiitieiieetiee ettt ettt ettt b et b et e et e st e eh e e s et e st e bt e st e bt eaeeabeemtesbeensesbeenseebeanseeneansens 178
ST TEE DSPContiieiie ettt ettt st b e bt bbbttt b e a e bt et bt st sb et sbt et b e et et e b 178
STLL _DSP_PTE_IITL()uteeutieriteeteeeite ettt ettt ettt et e st et e e sttt e bt e s abeeabeesa b e e bt e sateesbbesabeesbaeenbee bt e sabeenaaenane 178

T B o1 o T | 11 L SO OO RU SR RRUPTPRRUPRPON 178

5.7.1.3 _DSP_tIMET_IST().ereureeiretieitentieiteet ettt ettt sttt ettt et ettt et ettt sttt he et bt et b et enae b eneas 179

S5.7.1.4 _bSp_eXIt_NANAIET()...eeetieriieiiieeiiieteeee ettt sttt e b e st b e bt sats 179

5.7.2 get_usec.Cc _time_get_MICTOSECOMAS()...vevrrurerririeriieiertieteetieteetteteette st estesteeneeseeeeesseebeeseebesseenbeeseenteeneenseenes 179

5.7.3 get_nsec.c _time_get_NANOSECONAS()...c.eerirreeruirierierienieeienieetente ettt et et et e ebtesteeaeesbeeseesbeesaesbeenbesbeensesaeenaeane 179

ST 11 1o b G 1 11 L X OO OO OSSOSO PUT R OPRRRSROP 180

5.8 Creating Default Initialization fOr I/O DITVETS.......cccuiiuiiiiiiieiiiieee ettt ettt et 180
581 ML _KAEVE.Cotnriniiiieiirtet ettt sttt sttt et b ettt h ettt sttt bt ene 180

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
14 Freescale Semiconductor, Inc.

Section number Title Page
Chapter 6
FAQs
6.1 GEINCTAL ...ttt ettt h e a b b a e ettt ettt ea e bt a e a et besa e e b n et eaee 181
0.2 BVEILS....iiiiiiiiiiitiiii et h b et h e a ettt et a bt ea e eb et e sa s 181
6.3 GLODAL CONSIIUCTOTS. ...ttt bbb s e bt a e en e 181
6.4 TAIE TASK. ..ottt ettt h bbb ettt ettt et ettt b e bt et n e b e 181
0.5 TIEEITUPES. ¢ttt ettt ettt b et h et b et e bt et e bt et e e bt e bt eb e e s bt e et sb e ea b bt e et bt e et bt e at e eb e et eht et e bt e b eatenaes 182
(O T (55 1110 o OO OO OO OO OO PPRRUPTUTROTUPRRTRRIOt 183
6.7 IMESSAZE PASSINE...c.teiuiitieiteetiete ettt ettt ettt b et e bt et e bt et eh e bt ea e e bt e a e e bt e a e e ehe et e bt et e e bt et e e bt et e ene e bt eneenaeeaee 183
6.8 IMIULEXES. .. vttt ettt a ettt e h b a e eh b b sttt et ea e a e a e eae et b sa st saens 184
0.9 SEIMAPNOTES. ...eeutiiiieeitieiteete ettt ettt et e s ae et e e s at e e bt e e st e e e bt e sabe e bt esh st e bt e eat e e bt e e a bt e bt e sa bt e bt e sa bt e bt e eabe e baeenbeeneas 184
6.10 Task Exit Handler Versus Task Exception Handler.............ccooiiioiiiiiiiiieiiee et 185
.11 TaASK QUEUES.eveieeerieeeiieeetiee ettt ettt e et e e ettt e eetaeeeeteeeetseseeaseeeaaseeaestseeasseeeassaeaassseeaasseeesesaeeassaseeassseensseeeasseseansseeesseeans 185
6.12 TASKS .ttt bbb e h ettt et h et et eeh e e b e a e sa st a et st ae et et 185
6.13 TIME STICES. ettt ettt ettt ettt et et et e et eae bt e bt e bt eb b b sttt e et et et eseeat e st enteueebeebeeaeebe b nee 186
6.14 TIIMIEIS ...ttt b bt s a et b e s b e st b e b ettt e a e bt bt e b e bbb st b e bt ettt et eae bt be e 186

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 15

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

16

Freescale Semiconductor, Inc.

Chapter 1
Before You Begin

1.1 About MQX™ RTOS

The MQX™ Real-Time Operating System is designed for uniprocessor, multiprocessor,
and distributed-processor embedded real-time systems.

To leverage the success of the MQX operating system, Freescale Semiconductor adopted
this software platform for its microprocessors. Compared to the original MQX RTOS
distributions, the Freescale MQX RTOS distribution was made simpler to configure and
use. One single release now contains the MQX operating system plus all the other
software components supported for a given microprocessor part. In this document, the
sections specific to Freescale MQX RTOS release are marked as below.

Table 1-1. Note formatting

|Note |This is how notes specific to Freescale MQX RTOS release are marked in this document. |

MQX RTOS provides a run-time library of functions that programs use to become real-
time multitasking applications. The main features of MQX RTOS are scalable size,
component-oriented architecture, and ease of use.

MQX RTOS supports multiprocessor applications and can be used with flexible
embedded I/O products for networking, data communications, and file management.

Throughout this book, we use MQX RTOS as the abbreviation for Message Queue
Executive Real Time Operating System.

Table 1-2. Relative paths

<KSDK_DIR> Directory where the Kinetis SDK package is installed on your hardware.

<MQX_DIR> Directory where MQX RTOS is located within KSDK. Specifically, <KSDK_DIR>\rtos\mgx.
<board> Replaces board name (for example, TWR-K64F120M).

<mcu> Replaces processor name (for example, MK64F120M).

<tool> Replaces toolchain name (for example, 1AR).

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 17

About This Book
Table 1-2. Relative paths (continued)

<target> Replaces project target name (for example, Debug).

<library> Replaces library name (for example, PSP).

1.2 About This Book

Use this book in conjunction with:

* MQX RTOS Reference - contains MQX RTOS simple and complex data types and
alphabetically-ordered listings of MQX RTOS function prototypes.

Table 1-3. Release Contents

Note Freescale MQX RTOS release includes also other software products, based on MQX operating
system. See also user guides and reference manuals for RTCS TCP/IP stack, USB Host
Development Kit, USB Device Development Kit, MFS File System and others.

1.3 Conventions

The following tips, notes, and cautions represent the conventions used in MQX RTOS
documentation.

1.3.1 Tips

Tips point out useful information.

Table 1-4. Generic Tip Format

|Tip |The most efficient way to allocate a message from an ISR is to use _msg_alloc().

1.3.2 Notes

Notes point out important information.

Table 1-5. Generic Notes Format

|Note |Non-strict semaphores do not have priority inheritance.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
18 Freescale Semiconductor, Inc.

4
Chapter 1 Before You Begin

1.3.3 Cautions

Cautions tell you about commands or procedures that could have unexpected or
undesirable side effects or could be dangerous to your files or your hardware.

Table 1-6. Generic Cautions Format

|Caution |If you modify MQX RTOS data types, some MQX RTOS Host Tools might not operate properly.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 19

Conventions

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

20 Freescale Semiconductor, Inc.

Chapter 2
MQX RTOS at a Glance

2.1 Organization of MQX RTOS

MQX RTOS consists of core (non-optional) and optional components. Functions that
MQX RTOS or an application calls are the only functions included in the application

image for core components. To match application requirements, an application can be
extended by adding optional components.

The following diagram shows core components in the center with optional components
around the outside.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 21

A ————
Organization of MQX RTOS

Core Components

A minimal image is Name

configured based only .
Vi

on functions called by Queues Sl Interrupts

the MQX RTOS or the

applications. Partitions OPTIONAL Messages
Utilities Events
Watchdogs Initialization
Task errors
h
. Lightweight CORE Core memory SETERIEES
Timers semaphores services
Task Automatic task Mutexes
Formatted Management creation Optional
Components
scheduling Applications
extend and
o Exception configure core
subsystems handling components by
adding optional
components.
New, custom,
components

can be added

Figure 2-1. Core and Optional Components

The following table summarizes core and optional components, each of which is briefly
described in subsequent sections of the chapter.

Table 2-1. Core and Optional Components

Component Includes Type
Initialization Initialization and automatic task creation Core
Task management Dynamic task management Core
Scheduling Round robin and FIFO Core
Explicit using task queues Optional
Task synchronization and Lightweight semaphores Core
communication Semaphores Optional
Lightweight events Optional
Events Optional
Mutexes Optional
Lightweight message queue Optional
Messages Optional
Task queues Optional

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

22 Freescale Semiconductor, Inc.

Chapter 2 MQX RTOS at a Glance

Table 2-1. Core and Optional Components (continued)

Interprocessor communication Optional
Timing Time component Optional (BSP)
Lightweight timers Optional
Timers Optional
Watchdogs Optional
Memory management Memory with variable-size blocks Core
Memory with fixed-size blocks (partitions) Optional
MMU, cache, and virtual memory Optional
Lightweight memory Optional
Interrupt handling Optional (BSP)
I/O drivers I/O subsystem (NIO) Optional (BSP)
Formatted 1/O MQX_STDLIB
Instrumentation Stack usage Core
Kernel log Optional
Logs Optional
Lightweight logs Optional
Error handling Task error codes, exception handling, runtime testing Core
Queue manipulation Core
Name component Optional

2.2 Initialization

Initialization is a core component. The application starts when _mgqx() runs. The function
initializes the hardware and starts MQX RTOS. When MQX RTOS starts, it creates tasks
that the application defines as autostart tasks.

2.3 Task Management
Task management is a core component.

Because it automatically creates tasks when MQX RTOS starts, an application can also
create, manage, and terminate tasks as the application runs. It can create multiple
instances of the same task, and there is no limit to the total number of tasks in an
application. The application can dynamically change the attributes of any task. MQX
RTOS frees task resources, when it terminates a task.

Also, for each task you can specify:

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 23

A ————
Scheduling
* An exit function, which MQX RTOS calls when it terminates the task.
* An exception handler, which MQX RTOS calls if an exception occurs while the task
is active.

2.4 Scheduling
Scheduling complies with POSIX.4 (real-time extensions) and supports these policies:

* FIFO (also called priority-based preemptive) scheduling is a core component - the
active task is the highest-priority task that has been ready the longest.

* Round robin (also called time slice) scheduling is a core component - the active task
is the highest-priority task that has been ready the longest without consuming its time
slice.

» Explicit scheduling (using task queues) is an optional component - you can use task
queues to explicitly schedule tasks or to create more complex synchronization
mechanisms. Because task queues provide minimal functionality, they are fast. An
application can specify a FIFO or round robin scheduling policy when it creates the
task queue.

2.5 Managing Memory with dynamic memory allocators

To allocate and free variable-size pieces (called memory blocks) of memory, MQX
RTOS provides core services that are similar to malloc() and free(), which most C run-
time libraries provide. You can choose one of the three implementations of dynamic
allocation - LWMEM, MEM or TLSF. The first two use a first fit policy, which has a
time complexity of O(n) and their execution time is therefore not bounded. On the other
hand TLSF, as its name says, uses a two-level segregate fit policy, which has a constant
time complexity O(1) for both allocation and deallocation. TLSF was designed especially
for hard real-time applications, which require a bounded worst case execution time.
However with all allocator options enabled, such as garbage collection (MQX RTOS
frees the memory owned by the terminating task automatically), the TLSF allocator has a
slightly bigger code size footprint. For comparison, see the following table:

Table 2-2. RAM footprint comparison [in bytes]

TLSF LWMEM MEM
Per block overhead 8~24 12 28
Per instance/pool overhead 384~3324 44 72

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
24 Freescale Semiconductor, Inc.

Chapter 2 MQX RTOS at a Glance

Table 2-3. Code size footprint comparison [in bytes]

TLSF LWMEM MEM
Release target build size 2092 1048 1968

Table 2-4. Execution time [in cycles]

TLSF LWMEM MEM
Average allocation time 900 360 450
Average deallocation time 600 300 1000
malloc() WCET* after several seconds of runin |900 4200+ 4500+
webserver application
free() WCET™* after several seconds of run in 600 4300+ 4300+
webserver application
Time complexity o(1) O(n) O(n)
* worst case execution time

For systems, which have only a few kilobytes of RAM, it is advised to use the LWMEM
allocator. It has a lower initial RAM footprint and its linear time complexity is not a
problem if the number of free blocks in the free list cannot grow much - the RAM is
small and there is a minimum size for an allocated block. However for all other
applications, it is advised to switch to the new TLSF allocators.

2.6 Managing Memory with Fixed-Size Blocks (Partitions)

Partitions are an optional component. You can allocate and manage fixed-size pieces
(called partition blocks) of memory. The partition component supports fast, deterministic
memory allocation, which reduces memory fragmentation and conserves memory
resources. Partitions can be in the default memory pool (dynamic partitions) and outside
it (static partitions). You can allocate partition blocks to a task or to the system. Partition
blocks allocated to a task are a resource of the task, and MQX RTOS frees them if the
allocating task terminates.

2.7 Controlling Caches

MQX RTOS functions let you control the instruction cache and data cache that some
CPUs have.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 25

A ————
Controlling an MMU

2.8 Controlling an MMU

For some CPUs, you must initialize the memory management unit (MMU) before you
enable caches. MQX RTOS functions let you initialize, enable, and disable an MMU, and
add a memory region to it. You can control an MMU by using MMU page tables.

2.9 Lightweight Memory Management

If an application is constrained by data- and code-size requirements, lightweight memory
can be used. It has fewer interface functions and smaller code and data sizes. As a result,
some areas have less robustness (removal of header checksums) and are slower (task-
destruction times).

If you change a compile-time configuration option, MQX RTOS uses the lightweight-
memory component when it allocates memory. For more information, see Configuring
MQX RTOS at Compile Time.

2.10 Lightweight Events

Lightweight events (LWEvents) are an optional component. They are a low-overhead
way for tasks to synchronize using bit state changes. Lightweight events require a
minimal amount of memory and run quickly.

2.11 Events

Events are an optional component. They support the dynamic management of objects that
are formatted as bit fields. Tasks and interrupt service routines can use events to
synchronize and convey simple information in the form of bit-state changes. There are
named and fast-event groups. Event groups can have autoclearing event bits, whereby
MQX RTOS clears the bits immediately after they are set. An application can set event
bits in an event group that is on a remote processor.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

26 Freescale Semiconductor, Inc.

4
Chapter 2 MQX RTOS at a Glance

2.12 Lightweight Semaphores

Lightweight semaphores (LW Sems) are a core component. They are a low-overhead way
for tasks to synchronize their access to shared resources. LWSems require a minimal
amount of memory and run quickly. LWSems are counting FIFO semaphores without
priority inheritance.

2.13 Semaphores

Semaphores are an optional component. They are counting semaphores. You can use
semaphores to synchronize tasks. You can use a semaphore to guard access to a shared
resource, or to implement a producer/consumer-signalling mechanism. Semaphores
provide FIFO queuing, priority queuing, and priority inheritance. Semaphores can be
strict or non-strict. There are named and fast semaphores.

2.14 Mutexes

Mutexes are an optional component. A mutex provides mutual exclusion among tasks,
when they access a shared resource. Mutexes provide polling, FIFO queuing, priority
queuing, spin-only and limited-spin queuing, priority inheritance, and priority protection.
Mutexes are strict; that is, a task cannot unlock a mutex, unless it had first locked the
mutex.

2.15 Lightweight Message Queue

Lightweight message queue is an optional component. It deals with low-overhead
implementation of standard MQX RTOS messages. Tasks send messages to lightweight
message queues and receive messages from lightweight message queues. A message in
the message pool has a fixed size, a multiple of 32 bits. Blocking reads and blocking
writes are provided.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 27

Messages

2.16 Messages

Messages are an optional component. Tasks can communicate with each other by sending
messages to message queues that are opened by other tasks. Each task opens its own
input-message queues. A message queue is uniquely identified by its queue ID, which
MQX RTOS assigns when the queue is created. Only the task that opens a message queue
can receive messages from the queue. Any task can send to any previously opened
message queue, if it knows the queue ID of the opened queue.

Tasks allocate messages from message pools. There are system-message pools and
private-message pools. Any task can allocate a message (system message) from system-
message pools. Any task with the pool ID can allocate a message (private message) from
a private-message pool.

2.17 Task Queues

In addition to providing a scheduling mechanism, task queues provide a simple and
efficient way to synchronize tasks. You can suspend tasks in the task queue and remove
them from the task queue.

2.18 Inter-Processor Communication
Inter-processor communication (IPC) is an optional component.

An application can run concurrently on multiple processors with one executable image of
MQX RTOS on each processor. The images communicate and cooperate using messages
that are transferred by memory or over communication links using inter-processor
communication. The application tasks in each image need not be the same and, indeed,
are usually different.

2.19 Time Component

Time is an optional component that you can enable and disable at the BSP level. There is
elapsed time and absolute time. You can change absolute time. The time resolution
depends on the application-defined resolution that is set for the target hardware when
MQX RTOS starts.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

28 Freescale Semiconductor, Inc.

4
Chapter 2 MQX RTOS at a Glance

2.20 Lightweight Timers

Lightweight timers are an optional component and provide a low-overhead mechanism
for calling application functions at periodic intervals. Lightweight timers are installed by
creating a periodic queue, then adding a timer to expire at some offset from the start of
the period.

When you add a lightweight timer to the queue, you specify a notification function that is
called by the MQX RTOS tick ISR when the timer expires. Since the timer runs from an
ISR, not all MQX RTOS functions can be called from the timer.

2.21 Timers

Timers are an optional component. They provide periodic execution of an application
function. MQX RTOS supports one-shot timers (they expire once) and periodic timers
(they expire repeatedly at a given interval). You can set timers to start at a specified time
or after a specified duration.

When you set a timer, you specify the notification function that timer task calls when the
timer expires. The notification function can be used to synchronize tasks by sending
messages, setting events, or using one of the other MQX RTOS synchronization
mechanisms.

2.22 Watchdogs

Watchdogs are option components that let the user detect task starvation and deadlock
conditions at the task level.

2.23 Interrupt and Exception Handling

Interrupt and exception handling is optional at the PSP level. MQX RTOS services all
hardware interrupts within a range that the BSP defines, and saves a minimum context for
the active task. MQX RTOS supports fully nested interrupts, if the CPU supports nested
interrupts. Once inside an interrupt service routine (ISR), an application can re-enable
any interrupt level. To further reduce interrupt latencies, MQX RTOS defers task

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 29

A
I/0 Drivers

rescheduling until after all ISRs have run. In addition, MQX RTOS reschedules only if a
new task has been made ready by an ISR. To reduce stack size, MQX RTOS supports a
separate interrupt stack.

An ISR is not a task; it is a small, high-speed routine that reacts quickly to hardware
interrupts. An ISR is usually written in C language. Its duties include resetting the device,
getting its data, and signaling the appropriate task. An ISR can be used to signal a task
with any of the non-blocking MQX RTOS functions.

2.24 1/O Drivers

I/O drivers are an optional component at the BSP level. They consist of formatted I/O and
the I/O subsystem . I/O drivers are not described in this book.

2.24.1 Formatted I/O
MQX RTOS provides of formatted 1/0O functions that is the API to the I/O subsystem.

2.24.2 1/0 Subsystem(NIO)

You can dynamically install I/O device drivers, after which any task can open them.

2.24.2.1 NIO Serial Driver

MQX for KSDK(not standard MQX) NIO serial driver is is one of the drivers
implemented in the NIO framework. It means that user can access to serial driver services
using top level NIO API. NIO serial driver provides an abstraction above the various
serial peripheral modules such as UART, LPUART and LPSCI. Driver provides these
features:

» Buffered receive/transmit transfers.

» Optional buffer size for receive and transmit. Buffer size can be set in "init_bsp.c"
file in initialization struct "nio_serial_default_init" under property RX/
TX_BUFF_SIZE. Default configuration is 64 bytes for receive and transmit.

» Read/write functions are implemented as blocking transfer with non-active waiting.
However transmitting data from buffer into/from real FIFO happens using interrupts.
In case of using read function, program never returns until desired number of data
was received. For reading cancellation can be used IOCTL_ABORT command.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

30 Freescale Semiconductor, Inc.

4
Chapter 2 MQX RTOS at a Glance

2.25 Logs

Logs are an optional component that lets you store and retrieve application-specific
information. Each log entry has a timestamp and sequence number. You can use the
information to test, debug, verify, and analyze performance.

2.26 Lightweight Logs

Lightweight logs are similar to logs, but use only fixed-sized entries. They are faster than
the conventional application logs and are used by kernel log.

2.27 Kernel Log

Kernel log is an optional component that lets you record MQX RTOS activity. You can
create kernel log at a specific location or let MQX RTOS choose the location. You can
configure kernel log to record all MQX RTOS function calls, context switches, and
interrupt servicing. Performance tool uses kernel log.

2.28 Stack Usage

MQX RTOS has core functions that let you dynamically examine the interrupt stack and
the stack usage by all tasks, so that you can determine whether you have allocated enough
stack space.

2.29 Task Error Codes

Each task has a task error code, which is associated with the task's context. Specific
MQX RTOS functions read and update the task error code.

2.30 Exception Handling

You can specify a default ISR that runs for all unhandled interrupts, and an ISR-specific
exception handler that runs if the ISR generates an exception.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 31

Run-Time Testing

2.31 Run-Time Testing

MQX RTOS provides core run-time test functions that an application can call during its
normal operation. There are test functions for the following components:

* events and lightweight events

* kernel log and lightweight logs

* memory with fixed-size blocks (partitions)
e memory with variable-size memory blocks and lightweight memory
» message pools and message queues

* mutexes

* name component

* queues (application-defined)

» semaphores and lightweight semaphores

* task queues

* timers and lightweight timers

» watchdogs

2.32 Queue Manipulation

There is a core component that implements a double-linked list of queue elements. You
can initialize a queue, add elements, remove elements, and peek at elements.

2.33 Name Component

The name component is optional. It provides a names database that maps a string to a
dynamically defined scalar, such as a queue ID.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

32 Freescale Semiconductor, Inc.

Chapter 3
Using MQX RTOS

3.1 Before You Begin

This chapter describes how to use MQX RTOS. It includes examples that you can
compile and run.

Table 3-1. References

For this information See
Prototype for each function that is mentioned in this chapter. MQX RTOS Reference Manual
Data types that are mentioned in this chapter. MQX RTOS Reference Manual

3.2 Initializing and Starting MQX RTOS

MQX RTOS is started with _mqx(), which takes the MQX RTOS initialization structure
as its argument. Based on the values in the structure, MQX RTOS does the following:

* It sets up and initializes the data that MQX RTOS uses internally, including the
default memory pool, ready queues, the interrupt stack, and task stacks.

* It initializes the hardware (for example, chip selects).

* It enables timers.

* It sets the default time slice value.

* It creates the Idle task, which is active if no other task is ready.

* [t creates tasks that the task template list defines as autostart tasks.

* It starts scheduling the tasks.

3.2.1 MQX RTOS Initialization Structure

The MQX RTOS initialization structure defines parameters of the application and target
hardware.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 33

A
Initializing and Starting MQX RTOS

typedef struct mgx_initialization struct

_mgx_uint PROCESSOR NUMBER;

void * START_OF_ KERNEL_MEMORY;
void * END_OF KERNEL_MEMORY;
_mgx_uint INTERRUPT STACK SIZE;

TASK TEMPLATE STRUCT_PTR TASK TEMPLATE LIST;
_mgx_uint MQX_HARDWARE INTERRUPT LEVEL MAX;
_mgx_uint MAX MSGPOOLS;

_mgx_uint MAX MSGQS;

char +* IO_CHANNEL;

char * I0_OPEN MODE;

mgx uint RESERVED [2] ;

} MQX_INTITIALIZATION STRUCT, * MQX_ INITIALIZATION STRUCT PTR;

For a description of each field, see Freescale MOX™ RTOS Reference Manual.

3.2.1.1 Default MQX RTOS Initialization Structure

You can either define your own initialization values of the MQX RTOS initialization
structure or use the default initialization that is provided with each BSP. The default
initialization variable is called MQX_init_struct and is in mgx_init.c in the appropriate
BSP directory. The function has been compiled and linked with MQX RTOS.

Note For task-aware debugging host tools to work, the MQX RTOS initialization structure variable must be
called MQX_init_struct.

The examples in this chapter use the following MQX_init_struct.

MQOX INITIALIZATION STRUCT MQX init struct =

/* PROCESSOR NUMBER */ BSP_DEFAULT PROCESSOR NUMBER,

/* START OF KERNEL MEMORY */ BSP DEFAULT START OF KERNEL MEMORY,
/* END_OF KERNEI, MEMORY */ BSP_DEFAULT END OF KERNEL_MEMORY,
/* INTERRUPT STACK SIZE */ BSP_DEFAULT INTERRUPT STACK_SIZE,
/* TASK_TEMPLATE LIST */ (void *)MQX template list,

/* MQX HARDWARE INTERRUPT LEVEL MAX*/
BSP_DEFAULT_MQX HARDWARE INTERRUPT LEVEL MAX,

/* MAX MSGPOOLS */ BSP_DEFAULT MAX MSGPOOLS,
/* MAX MSGQS */ BSP_DEFAULT MAX MSGQS,

/* I0_CHANNEL */ BSP_DEFAULT IO_CHANNEL,
/* I0_OPEN MODE */ BSP_DEFAULT IO OPEN MODE,
|Note Initialize both elements of the RESERVED field to zero.

3.2.2 Task Template List

The task template list, which is a list of task templates
(TASK_TEMPLATE_STRUCT), defines an initial set of templates that are used to
create tasks on the processor.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

34 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

At initialization, MQX RTOS creates one instance of each task, whose template defines it
as an autostart task. In addition, while an application is running, it can create other tasks

using a task template that either the task template list defines or the application defines
dynamically. The end of the task template list is a zero-filled task template.

typedef struct task template struct

_mgx_uint TASK TEMPLATE INDEX;
TASK FPTR TASK ADDRESS;
_mem_size TASK STACKSIZE;
_mgx_uint TASK PRIORITY;
char * TASK NAME;
_mgx_uint TASK ATTRIBUTES;
uint32 t CREATION PARAMETER;
_mgx_uint DEFAULT TIME SLICE;
} TASK TEMPLATE STRUCT, * TASK TEMPLATE STRUCT PTR;

For a description of each field, see the Freescale MOX™ RTOS Reference Manual.

3.2.2.1 Assigning Task Priorities

Note If you assign priority zero to a task, the task runs with interrupts disabled.

On some target processor platforms (e.g., ColdFire), certain task priority levels are reserved and are
mapped to processor interrupt priority levels. Tasks running at such a special priority may prevent
lower priority interrupts to be serviced. See more details about interrupt handling in section Handling
Interrupts and Exceptions.

When you assign task priorities in the task template list, note that:

* MQX RTOS creates one ready queue for each priority up to the lowest priority
(highest number).

* While an application is running, it cannot create a task that has a lower priority (a
higher number) than the lowest-priority task in the task template list.

3.2.2.2 Assigning Task Attributes

You can assign any combination of the following attributes to a task:

* Autostart - when MQX RTOS starts, it creates one instance of the task.

* DSP - MQX RTOS saves the DSP co-processor registers as part of the task's context.

* Floating point - MQX RTOS saves floating-point registers as part of the task's
context.

* Time slice - MQX RTOS uses round robin scheduling for the task (the default is
FIFO scheduling).

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 35

A ————
Initializing and Starting MQX RTOS

3.2.2.3 Default Task Template List

You can initialize your own task template list or use the default, which is called
MQX_template_list.

3.2.2.4 Example: A Task Template List

TASK TEMPLATE STRUCT MQX template list([] =

{ MAIN TASK, world task, 0x2000, 5, "world task",
MQX AUTO_ START_TASK, oL, O},
{ HELLO, hello task, 0x2000, 5, "hello task",
MQX TIME SLICE TASK, oL, 100},
{ FLOAT, float task 0x2000, 5, "Float task",
MQX AUTO START TASK | MQOX FLOATING . POINT " TASK, 0L, O},
}{o 0, 0, 0, 0, 0L, O }
world_task

The world_task is an autostart task. So, at initialization, MQX RTOS creates one instance
of the task with a creation parameter of zero. The application defines the task template
index (MAIN_TASK). The task is of priority five. The function world_task() is the
code-entry point for the task. The stack size is 0x2000 single-addressable units.

hello_task

The hello_task task is a time-slice task with a time slice of 100, in milliseconds, if the
default compile-time configuration options are used. For information about these options,
see page Configuring MQX RTOS at Compile Time.

Float_task

The Float_task task is both a floating-point task and an autostart task.

3.2.2.5 Example: Creating an Autostart Task
A single task prints Hello World.

/* hello.c */
#include <mgx.h>

#include <fio.h>

/* Task IDs */

#define HELLO TASK 5

extern void hello task(uint32 t);

const TASK TEMPLATE STRUCT MQX template list[] =

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

36 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time
Slice */
{ HELLO TASK, hello task, 1500, 8, "hello", MQX AUTO START TASK, O, o},

{o}
void hello task(uint32 t initial data)

printf ("\n Hello World \n");

_mgx_exit (0);

}

3.2.2.5.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\hello
2. See the MOX™ RTOS Release Notes document for instructions on how to build and
run the application.

The following appears on the output device:

Hello World

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS for more details about supported tool chains.

3.3 Managing Tasks

Multiple tasks, created from the same task template can coexist, and each task is a unique
instance. MQX RTOS maintains each instance by saving its context; that is, its program
counter, registers, and stack. Each task has an application-unique 32-bit task ID, which
MQX RTOS and other tasks use to identify the task.

The section on initialization (page Initializing and Starting MQX RTOS) shows how a
task can be started automatically when MQX RTOS initializes. You can also create,
manage, and terminate tasks, while the application runs.

Table 3-2. Summary: Managing Tasks

_task_abort Terminates the task after running its task exit handler and releasing its
resources.

_task_check_stack Determines whether the task's stack is out of bounds.

_task_create Allocates and starts (makes ready) a new task.

_task_create_blocked Allocates a new task in the blocked state.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 37

Managing Tasks

Table 3-2. Summary: Managing Tasks (continued)

_task_create_at

Creates a new task with the stack location specified.

_task_destroy

Terminates the task after freeing its resources.

_task_disable_fp

Disable floating-point context switching for the task, if the task is a floating-
point task.

_task_enable_fp

Enables floating-point context switching for the task.

_task_errno

Gets the task error code for the active task.

_task_get_creator

Gets the task ID of the task that created the task.

_task_get_environment

Gets a pointer to the environment data for a task.

_task_get_error

Gets the task error code.

_task_get_error_ptr

Gets a pointer to the task error code.

_task_get_exit_handler

Gets a task's exit handler.

_task_get _id

Gets the task ID.

_task_get_id_from_name

Gets the task ID of the first task with this name in the task template.

_task_get_index_from_id

Gets the task template index for the task ID.

_task_get_parameter

Gets the task-creation parameter.

_task_get_parameter_for

Gets the task-creation parameter for a task.

_task_get_processor

Gets the processor number on which a task resides.

_task_get_td

Converts a task ID to a pointer to a task descriptor.

_task_get_template_index

Gets the task template index of a task name.

_task_get_template_ptr

Gets a pointer to the task template for the task ID.

_task_restart

Restarts a task at the beginning of the task's function; keeps the same task
descriptor, task ID, and task stack.

_task_set_environment

Sets a pointer to the environment data for a task.

_task_set_error

Sets the task error code.

_task_set_exit_handler

Sets the task's exit handler.

_task_set_parameter

Sets the task creation parameter.

_task_set_parameter_for

Sets the task creation parameter for a task.

3.3.1 Creating Tasks

Any task (creator) can create another task (child) by calling _task_create(),
_task_create_at()or _task_create_blocked(), and passing the processor number, a task
template index, and a task-creation parameter. The application defines one creation
parameter, which is normally used to provide initialization information to the child. A
task can also create a task that is not defined in the task template list, by specifying a

template index of zero. In this case, MQX RTOS interprets the task-creation parameter as
a pointer to a task template.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

38 Freescale Semiconductor, Inc.

4

Chapter 3 Using MQX RTOS
The functions initialize the child's stack. The function _task_create() puts the child in the
ready queue for the task's priority. If the child is of higher priority than the creator, the
child becomes the active task, because it is the highest-priority ready task. If the creator is
of higher or equal priority, it remains the active task.

The function _task_create_blocked() creates a task that is blocked. The task is not ready
to run, until another task calls _task_ready().

The function _task_create_at() creates a task with the stack location specified, i.e., task
stack is not dynamically allocated but has to be allocated before the
_task_create_at()function is issued.

3.3.2 Getting Task IDs

A task can directly get its task ID with _task_get_id(). If a function takes a task ID as a
parameter, you can specify MQX_NULL_TASK_ID to refer to the task ID of the active
task.

A task can directly get the task ID of its creator with _task_get_creator(). The function
_task_create() returns the child's task ID to the creator.

A task ID can also be determined from the task name in the task template, from which the
task was created. This is done with _task_get_id_from_name(), which returns the task
ID of the first task that matches the name in the task template list.

3.3.3 Setting a Task Environment

A task can save an application-specific environment pointer with
_task_set_environment(). Other tasks can access the environment pointer with
_task_get_environment().

3.3.4 Managing Task Errors

Each task has an error code (the task error code) associated with the task's context. Some
MQX RTOS functions update the task error code when they detect an error.

If an MQX RTOS function detects an error and the application ignores the error,
additional errors might still occur. Usually the first error best indicates the problem;
subsequent errors might be misleading. To provide a reliable opportunity to diagnose

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 39

A
Managing Tasks

problems after MQX RTOS sets the task error code to a value other than MQX_OK,
MQX RTOS does not further change the task error code until the task explicitly resets it
to MQX_OK.

A task can get its task error code from:

o _task_get_error()
e task _errno

A task resets its task error code by calling _task_set_error() with MQX_OK. The
function returns the previous task error code and sets the task error code to MQX_OK.

Using _task_set_error(), a task can attempt to set its task error code to a value other than
MQX_OK. However, only if the current task error code is MQX_OK, does MQX RTOS
change the task error code to the new value.

If MQX_CHECK_ERRORS is set to 0 (see MQX RTOS Compile-Time Configuration
Options), then not all error codes listed for a particular function are returned.

3.3.5 Restarting Tasks

An application can restart a task by calling _task_restart(), which restarts the task at the
beginning of its function with the same task descriptor, task ID, and task stack.

3.3.6 Terminating Tasks

A task can terminate itself or any other task, whose task ID it knows. When a task is
terminated, its children are not terminated. When a task is terminated, MQX RTOS frees
the task's MQX RTOS-managed resources. These resources include:

* dynamically allocated memory blocks and partition blocks
* message queues

* messages

* mutexes

* non-strict semaphores

* strict semaphores after posting them

* queued connections are dequeued

* task descriptor

Note The user is responsible for destroying all lightweight objects (lightweight semaphores, lightweight events,
lightweight timers, etc.) before terminating a task as this is not done by the MQX RTOS task termination
functions!

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

40 Freescale Semiconductor, Inc.

L __4

Chapter 3 Using MQX RTOS
An application can terminate a task immediately (after MQX RTOS frees the task's
resources) with _task_destroy() or gracefully with _task_abort(). While
_task_destroy() causes the task destroy to happen from the context of the caller and is
performed immediately, _task_abort() causes the victim task to be removed from any
queues it is blocked on, its PC is effectively set to the task exit handler and then the
victim task is added to the ready to run queue. Normal task scheduling and priority rules
apply, so the actual task destruction may be deferred indefinitely (or for a long time). The
implication is that there is no guarantee that the victim task is destroyed upon return from
_task_abort().

When the to-be-terminated task becomes active, an application-defined task exit handler
runs. The exit handler could clean up resources that MQX RTOS does not manage.

The task exit handler is set with _task_set_exit_handler(), and obtained with
_task_get_exit_handler().

MQX RTOS also calls the task exit handler if the task returns from its task body.

3.3.7 Example: Creating Tasks

This example adds a second task (world_task) to the example on page Example: Creating
an Autostart Task. We modify that example's task template list to include information
about world_task, and to change hello_task, so that it is not an autostart task. The
world_task task is an autostart task.

When MQX RTOS starts, it creates world_task. The world_task then creates hello_task
by calling _task_create() with hello_task as a parameter. MQX RTOS uses the
hello_task template to create an instance of hello_task.

If _task_create() is successful, it returns the task ID of the new child task; otherwise, it
returns MQX_NULL_TASK_ID.

The new hello_task task 1s put in the ready queue for the task's priority. Since it has a
higher priority than world_task, it becomes active. The active task prints Hello. The
world_task task then becomes active and checks to see whether hello_task was created
successfully. If it was, world_task prints World; otherwise, world_task prints an error
message.

If you change the priority of world_task to be of the same priority as hello_task, the
output is World Hello only. The world_task runs before hello_task, because world_task
has the same priority and does not relinquish control with a blocking function. When the
world_task becomes blocked, the hello_task becomes active.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 41

Managing Tasks

3.3.7.1 Code for the Creating Tasks Example

/* hello2.c */

#include <mgx.h>
#include <fio.h>

/* Task IDs */

#define HELLO TASK 5

#define WORLD TASK 6

extern void hello task(uint32 t);

extern void world task(uint32 t);

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time

Slice */
{ WORLD TASK, world task, 1000, 9, "world", MQX_ AUTO START TASK, O, 0},
{ HELLO TASK, hello task, 1000, 8, "hello", O, 0, 0},
{ o

bi

/TS K* = = = = = mm o m

*

* Task Name : world_ task

* Comments

* This task creates hello task and then prints "World".

*

void world task(uint32 t initial data)
{
_task id hello task_id;
hello task id = task create(0, HELLO TASK, O0);
if (hello task id == MQX NULL TASK ID) {
printf ("\n Could not create hello task\n");
} else {
printf (" World \n");
}

_mgx_exit (0) ;

}

/F TS, = = m = mm o m e e oo
*

* Task Name : hello task

* Comments

* This task prints "Hello".

*

void hello task(uint32 t initial data)

{
printf (" Hello \n");
_task_block () ;

}

3.3.7.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
42 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

mgx\examples\hello2
2. See the MOX™ RTOS Release Notes for instructions on how to build and run the
application.

This message appears on the output device:

Hello

World

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS document.

3.4 Scheduling Tasks
MQX RTOS provides these task-scheduling policies:

* FIFO

* Round Robin

» Explicit, using task queues (described in a subsequent section on page Lightweight
Message Queue).

You can set the scheduling policy to FIFO or round robin for the processor and separately
for each task. As a result, an application might consist of tasks that use any combination
of FIFO or round robin scheduling.

3.4.1 FIFO Scheduling

FIFO is the default scheduling policy. With FIFO scheduling, the task that runs (becomes
active) next is the highest-priority task that has been waiting the longest time. The active
task runs, until any of the following occurs:

» The active task voluntarily relinquishes the processor, because it calls a blocking
MQX RTOS function.

* An interrupt occurs that has higher priority than the active task.

* A task that has priority higher than the active task, becomes ready.

You can change the priority of a task with _task_set_priority().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 43

A ————
Scheduling Tasks

3.4.2 Round Robin Scheduling

Round robin scheduling is similar to FIFO scheduling, but with the additional constraint
that each round robin task has a maximum amount of time (the time slice), during which
it can be active.

A task uses round robin scheduling only if the MQX_TIME_SLICE_TASK attribute is
set in its task template. The task's time slice is determined by the value of the template's
DEFAULT TIME_ SLICE. However, if the value is zero, the task's time slice is the
default time slice for the processor. Initially, the default time slice for the processor is ten
times the interval of the periodic timer interrupt. Since the interval on most BSPs is five
milliseconds, the initial default time slice for the processor is usually 50 milliseconds.
You can change the default time slice for the processor with _sched_set_rr_interval() or
_sched_set_rr_interval_ticks(), passing the task ID parameter as
MQX_DEFAULT_TASK_ID.

When the time slice expires for an active round robin task, MQX RTOS saves the task's
context. MQX RTOS then performs a dispatch operation, in which it examines the ready
queues to determine, which task should become active. MQX RTOS moves the expired
task to the end of the task's ready queue, an action that causes control to pass to the next
task in the ready queue. If there are no other tasks in the ready queue, the expired task
continues to run.

With round robin scheduling, tasks of the same priority can share the processor in a time-
equitable manner.

Table 3-3. Summary: Getting and Setting Scheduling Info

_sched_get_max_priority Gets the highest priority allowed for any task; always returns zero.
_sched_get_min_priority Gets the lowest priority for any task.

_sched_get_policy Gets the scheduling policy.

_sched_get_rr_interval Gets the time slice in milliseconds.
_sched_get_rr_interval_ticks Gets the time slice in tick time.

_sched_set_policy Sets the scheduling policy.

_sched_set_rr_interval Sets the time slice in milliseconds.
_sched_set_rr_interval_ticks Sets the time slice in tick time.

Table 3-4. Summary: Scheduling Tasks

_sched_yield Moves the active task to the end of its ready queue, which yields the processor
to the next ready task of equal priority.

_task_block Blocks the task.

_task_get_priority Gets a task's priority.

_task_ready Makes a task ready.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

44 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-4. Summary: Scheduling Tasks (continued)

_task_set_priority Sets a task's priority.
_task_start_preemption Re-enables preemption for the task.
_task_stop_preemption Disables preemption for the task.

Each task is in one of the following logical states:

» Blocked - task is not ready to become active, because it is waiting for a condition to
occur; when the condition occurs, the task becomes ready.

» Ready - task is ready to become active, but it is not active, because it is of the same
priority as, or lower priority than the active task.

* Active - task is running.

If the active task becomes blocked or is preemptied, MQX RTOS performs a dispatch
operation, in which it examines the ready queues to determine, which task should become
active. MQX RTOS makes the highest-priority ready task the active task. If more than
one task of the same priority is ready, the task at the start of that ready queue becomes the
active task. That is, each ready queue is in FIFO order.

3.4.2.1 Preemption

The active task can be preemptied. Preemption occurs, when a higher-priority task
becomes ready, and thus becomes the active task. The previously active task is still ready,
but is no longer the active task. Preemption occurs, when an interrupt handler causes a
higher-priority task to become ready, or the active task makes a higher-priority task
ready.

3.5 Managing Memory with Variable-Size Blocks

By default, MQX RTOS allocates memory blocks from its default memory pool. Tasks
can also create memory pools outside the default memory pool, and allocate memory
blocks from them.

Both allocation processes are similar to using malloc() and free(), which are in most C
run-time libraries.

Note You cannot use a memory block as a message. You must allocate messages from message pools (see
Messages).

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 45

Managing Memory with Variable-Size Blocks

A memory block can be a private memory block (a resource owned by the task that
allocates it) or a system memory block (not owned by any task). When a task is
terminated, MQX RTOS returns the task's private memory blocks to memory.

When MQX RTOS allocates a memory block, it allocates a block of at least the requested
size (the block might be larger).

A task can transfer ownership of a memory block to another task (_mem_transfer()).

Table 3-5. Summary: Managing Memory with Variable-Size Blocks

_mem_alloc Allocates a private memory block from the default memory pool.

_mem_alloc_from Allocates a private memory block from the specified memory pool.

_mem_alloc_zero Allocates a zero-filled private memory block from the default memory
pool.

_mem_alloc_zero_from Allocates a zero-filled private memory block from the specified memory
pool.

_mem_alloc_system Allocates a system memory block from the default memory.

_mem_alloc_system_from Allocates a system memory block from the specified memory pool.

_mem_alloc_system_zero Allocates a zero-filled system memory block from the default memory
pool.

_mem_alloc_system_zero_from Allocates a zero-filled system memory block from the specified memory
pool.

_mem_alloc_align Allocates an aligned private memory block from the default memory pool.

_mem_alloc_align_from Allocates an aligned private memory block from the specified memory
pool.

_mem_alloc_system_align Allocates an aligned system memory block from the default memory pool.

_mem_alloc_system_align_from Allocates an aligned system memory block from the specified memory
pool.

_mem_alloc_at Allocates a private memory block at the defined start address.

_mem_copy Copies data from one memory location to another.

_mem_create_pool Creates a memory pool outside the default memory pool.

_mem_extend Adds additional memory to the default memory pool; the additional
memory must by outside the current default memory pool, but need not
be contiguous with it.

_mem_extend_pool Adds additional memory to a memory pool that is outside the default
memory pool; the additional memory must be outside the memory pool,
but it needs not to be contiguous with the pool.

_mem_free Frees a memory block that is inside or outside the default memory pool.

_mem_free_part Frees part of a memory block (used if the memory block is larger than
requested, or if it is larger than needed).

_mem_get_error Gets a pointer to the memory block that caused _mem_test() to indicate
an error.

_mem_get_error_pool Gets a pointer to the last memory block that caused _mem_test_pool()
to indicate an error.

_mem_get_highwater Gets the highest memory address that has been allocated in the default
memory pool (it might have since been freed).

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

46 Freescale Semiconductor, Inc.

Chapter 3 Using MQX RTOS

Table 3-5. Summary: Managing Memory with Variable-Size Blocks (continued)

_mem_get_highwater_pool

Gets the highest memory pool address that has been allocated (it might
have since been freed)

_mem_get_size

Gets the size of a memory block; the size might be larger than the
requested size.

_mem_swap_endian

Converts to the other endian format.

_mem_test

Tests the default memory pool; this is, checking the internal checksums
to determine, whether the integrity of the memory has been violated
(usually the cause of failure is that an application writes past the end of a
memory block).

_mem_test_and_set

Tests and sets a memory location.

_mem_test_pool

Tests the memory pool for errors, as described for _mem_test().

_mem_transfer

Transfers ownership of a memory block to another task.

_mem_zero

Sets all or part of a memory block to zero.

3.5.1 Managing Lightweight Memory with Variable-Size Blocks

Lightweight memory functions are similar to the functions for regular memory that are
described in Managing Memory with Variable-Size Blocks. However, they have less

overhead in data and code.

If you change an MQX RTOS compile-time configuration option, MQX RTOS uses the
lightweight memory component when it allocates memory. For more information, see
page Configuring MQX RTOS at Compile Time.

Table 3-6. Summary: Managing Lightweight Memory with Variable-Size

Blocks

Lightweight memory uses certain structures and constants,
which are defined in Iwmem.h.

Lightweight memory uses certain structures and constants,
which are defined in Iwmem.h.

_lwmem_alloc

Allocates a private lightweight-memory block from the
default lightweight-memory pool.

_lwmem_alloc_from

Allocates a private lightweight-memory block from the
specified lightweight-memory pool.

_lwmem_alloc_zero

Allocates a zero-filled private lightweight-memory block from
the default lightweight-memory pool.

_lwmem_alloc_zero_from

Allocates a zero-filled private lightweight-memory block from
the specified lightweight-memory pool.

_lwmem_alloc_system

Allocates a system lightweight-memory block from the
default lightweight-memory pool.

_lwmem_alloc_system_from

Allocates a system lightweight-memory block from the
specified lightweight-memory pool.

_lwmem_alloc_system_zero

Allocates a zero-filled system lightweight-memory block
from the default lightweight-memory pool.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

47

Managing Memory with Variable-Size Blocks

Table 3-6. Summary: Managing Lightweight Memory with Variable-Size Blocks (continued)

_lwmem_alloc_system_zero_from Allocates a zero-filled system memory block from the
specified lightweight-memory pool.

_lwmem_alloc_align Allocates an aligned private lightweight-memory block from
the default lightweight-memory pool.

_lwmem_alloc_align_from Allocates an aligned private lightweight-memory block from
the specified lightweight-memory pool.

_lwmem_alloc_system_align Allocates an aligned system lightweight-memory block from
the default lightweight-memory pool.

_lwmem_alloc_system_align_from Allocates an aligned system lightweight memory block from
the specified lightweight memory pool.

_lwmem_alloc_at Allocates a private lightweight-memory block at the defined
start address.

_lwmem_create_pool Creates a lightweight-memory pool.

_lwmem_free Frees a lightweight-memory block.

_lwmem_get_size Gets the size of a lightweight-memory block; the size might
be larger than the requested size.

_lwmem_set_default_pool Sets the pool to be used for the default lightweight-memory
pool.

_lwmem_test Tests all lightweight memory pools.

_lwmem_transfer Transfers ownership of a lightweight-memory block to

another task.

3.5.2 Managing Memory with Fixed-Size Blocks (Partitions)

With the partition component, you can manage partitions of fixed-size memory blocks,
whose size the task specifies when it creates the partition. There are dynamic partitions
(in the default memory pool) that can grow, and static partitions (outside the default
memory pool) that cannot grow.

3.5.2.1 Creating the Partition Component for Dynamic Partitions

You can explicitly create the partition component with _partition_create_component(). If
you do not explicitly create it, MQX RTOS creates it the first time an application creates
a partition. There are no parameters.

3.5.2.2 Creating Partitions

There are two types of partitions.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

48 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-7. Static and Dynamic Partitions

Type of partition: Created from: By calling:
Dynamic Default-memory pool _partition_create()
Static Outside default-memory pool _partition_create_at()

If you create a static partition, you must ensure that the memory does not overlap code or
data space that your application uses.

3.5.2.3 Allocating and Freeing Partition Blocks

An application can allocate two types of partition blocks from either a dynamic or static
partition.

Table 3-8. Private and System Partition Blocks

Type of partition block: Allocated by calling: Is a resource of: Can be freed by:
Private _partition_alloc() Task that allocated it Owner only
System _partition_alloc_system() No one task Any task

If the task is terminated, its private partition blocks are freed.

3.5.2.4 Destroying a Dynamic Partition

If all the partition blocks in a dynamic partition are freed, any task can destroy the
partition by calling _partition_destroy(). You cannot destroy a static partition.

3.5.2.5 Example: Two Partitions

The following diagram shows one static partition and one dynamic partition.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 49

Managing Memory with Variable-Size Blocks

memory
core
memory
data
code

dynamic partition partition block

lg— (fixed size)

static partition

Figure 3-1. Example: Two Partitions

Table 3-9. Summary: Managing Memory with Fixed-Sixe Blocks (Partitions)

_partition_alloc

Allocates a private partition block from a partition.

_partition_alloc_system

Allocates a system partition block from a partition.

_partition_alloc_system_zero

Allocates a zero-filled system partition block from a partition.

_partition_alloc_zero

Allocates a zero-filled private partition block from a partition.

_partition_calculate_blocks

Calculates the number of partition blocks from the partition block size
and the partition size (for static partitions).

_partition_calculate_size

Calculates the size of a partition from the partition block size and the
number of blocks.

_partition_create

Creates a partition from the default memory pool (dynamic partition).

_partition_create_at

Creates a partition at a specific location outside the default memory
pool (static partition).

_partition_create_component

Creates the partition component.

_partition_destroy

Destroys a dynamic partition that has no allocated partition blocks.

_partition_extend

Adds memory to a static partition; the added memory is divided into
partition blocks that are the same size as other blocks in the partition.

_partition_free

Returns a partition block to a partition.

_partition_get_block_size

Gets the size of partition blocks in a partition.

_partition_get_free_blocks

Gets the number of free partition blocks in a partition.

_partition_get_max_used_blocks

Gets the number of allocated partition blocks in a partition; this is, a
highwater mark that indicates the maximum number that have been
allocated simultaneously, not necessarily the number that are currently
allocated.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

50

Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-9. Summary: Managing Memory with Fixed-Sixe Blocks (Partitions) (continued)

_partition_get_total_blocks Gets the number of partition blocks in a partition.

_partition_get_total_size Gets the size of a partition, including extensions.

_partition_test Tests the partition component.

_partition_transfer Transfers ownership of a partition block to another task (including the
system); only the new owner can free the partition block.

3.5.3 Controlling Caches

MQX RTOS functions let you control the instruction cache and data cache that some
CPUs have.

So that you can write an application that applies to both cached and non-cached systems,
MQX RTOS wraps the functions in macros. For CPUs that do not have the cache, the

macros do not map to a function. Some CPUs implement a unified cache (one cache is
used for both data and code), in which case, the _DCACHE_ and _ICACHE_ macros
map to the same function.

3.5.3.1 Flushing Data Cache

MQX RTOS uses the term flush to mean flushing the entire data cache. Unwritten data
that is in the cache is written to physical memory.

3.5.3.2 Invalidating Data or Instruction Cache

MQX RTOS uses the term invalidate to mean invalidating all the cache entries. Data or
instructions that are left in the cache, and have not been written to memory, are lost. A
subsequent access reloads the cache with data or instructions from physical memory.

Table 3-10. Summary: Controlling Data Caches

_DCACHE_DISABLE Disables the data cache.

_DCACHE_ENABLE Enables the data cache.

_DCACHE_FLUSH Flushes the entire data cache.

_DCACHE_FLUSH_LINE Flushes the data-cache line containing the specified address.
_DCACHE_FLUSH_ MLINES Flushes the data-cache lines containing the specified memory region.
_DCACHE_INVALIDATE Invalidates the data cache.

_DCACHE_INVALIDATE_ LINE Invalidates the data-cache line containing the specified address.
_DCACHE_INVALIDATE_ MLINES Invalidates the data-cache lines containing the specified memory region.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 51

Managing Memory with Variable-Size Blocks

Table 3-11. Summary: Controlling Instruction Caches

_ICACHE_DISABLE Disables the instruction cache.

_ICACHE_ENABLE Enables the instruction cache.

_ICACHE_INVALIDATE Invalidates the instruction cache.

_ICACHE_INVALIDATE_ LINE Invalidates the instruction cache line containing the specified address.
_ICACHE_INVALIDATE_MLINES Invalidates the instruction cache lines containing the specified memory region.

Note

The flushing and invalidating functions always operate with whole cache lines. In case the data entity is not
aligned to the cache line size, these operations affect data that precedes and follows data area currently being
flushed/invalidated.

The MQX RTOS memory allocators align data entity to the cache line size by default. Once an entity is declared
statically the alignment to the cache line size is not guaranteed (unless align pragma is used).

3.5.4 Controlling the MMU (Virtual Memory)

For some CPUs, you must initialize the memory management unit (MMU) before you
enable caches. MQX RTOS functions let you initialize, enable, and disable an MMU, and
add a memory region to it. MMU functions are not supported on all architectures.

You can control an MMU by using MMU page tables.

The virtual memory component lets an application control the MMU page tables.

The following diagram shows the relationship between virtual address, MMU page
tables, MMU pages, physical page, and physical address.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

52

Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

virtual address

pl pd

MMU page table (L1)

g1

LB | attributes

addr

With the virtual memory component, an application can manage virtual memory, which

maps to physical addresses.

An application can use the virtual memory component to create a virtual context for a
task. Virtual context provides memory that is private to a task, and is visible only while
the task is the active task.

MMU page table (L2)

p2

attributes physical > physical page

addr
‘|

- physical addr

Figure 3-2. Virtual and Physical Addresses

The functions are called when the BSP is initialized.

Table 3-12. Summary: Managing Virtual Memory

_mmu_add_vcontext

Adds a memory region to a virtual context.

_mmu_add_vregion

Adds a memory region to the MMU page tables that all tasks and MQX

RTOS can use.

_mmu_create_vcontext

Creates a virtual context for a task.

_mmu_create_vtask

Creates a task with an initialized virtual context.

_mmu_destroy_vcontext

Destroys a virtual context for a task.

_mmu_get_vmem_attributes

Gets the virtual memory attributes of an MMU page.

_mmu_get_vpage_size

Gets the size of an MMU page.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

53

Managing Memory with Variable-Size Blocks

Table 3-12. Summary: Managing Virtual Memory (continued)

_mmu_set_vmem_attributes Modifies the virtual memory attributes of an MMU page.
_mmu_vdisable Disables virtual memory.

_mmu_venable Enables virtual memory.

_mmu_vinit Initializes the MMU to use MMU page tables.

_mmu_vtop Gets the physical address that corresponds to a virtual address.

3.5.4.1 Example: Initializing the MMU with Virtual Memory

Add a number of memory regions to support both instruction caching and data caching.
All tasks can access the regions.

_mgx_uint bsp enable operation(void)

{

_mmu_vinit (MPC860 MMU PAGE SIZE 4K, NULL);

/* Set up and initialize the instruction cache: */

_mmu_add_vregion (BSP_FLASH BASE, BSP_FLASH BASE,
BSP FLASH SIZE, PSP MMU CODE CACHE | PSP MMU CACHED) ;

_mmu_add_vregion(BSP_DIMM BASE, BSP_DIMM BASE, BSP DIMM SIZE,
PSP _MMU CODE_CACHE | PSP _MMU CACHED) ;

_mmu_add_vregion (BSP_RAM BASE, BSP_RAM BASE, BSP_RAM SIZE,
PSP_MMU CODE CACHE | PSP _MMU CACHED) ;

/* Set up and initialize the data cache: */

_mmu_add_vregion (BSP_FLASH BASE, BSP FLASH BASE,
BSP_FLASH SIZE, PSP_MMU DATA CACHE |
PSP_MMU CACHE INHIBITED) ;

_mmu_add_vregion (BSP_PCI_MEMORY BASE, BSP_PCI_MEMORY BASE,
BSP_PCI_MEMORY SIZE, PSP MMU DATA CACHE |
PSP _MMU CACHE INHIBITED) ;

_mmu_add_vregion(BSP_PCI_IO BASE, BSP PCI_ IO BASE,
BSP_PCI IO SIZE, PSP MMU DATA CACHE |
PSP _MMU CACHE INHIBITED) ;

_mmu_add_vregion (BSP_DIMM BASE, BSP_DIMM BASE, BSP DIMM SIZE,
PSP_MMU DATA CACHE | PSP _MMU CACHE INHIBITED) ;

~mmu_add_vregion (BSP_RAM BASE, BSP_RAM BASE,
BSP_COMMON RAM SIZE, PSP MMU DATA CACHE |
PSP_MMU CACHE INHIBITED) ;

_mmu_venable () ;

_ICACHE ENABLE (0) ;

_DCACHE_ENABLE (0) ;

3.5.4.2 Example: Setting Up a Virtual Context
Set the active task to access 64 KB of private memory at 0xA0000000.

void * virtual mem ptr;
uint32_t size;
virtual mem ptr = (void *)0xA0000000;

size = 0x10000L;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

54 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

result = mmu_create vcontext (MQX NULL TASK ID) ;
if (result != MQOX OK) ({

result = mmu_add vcontext (MQX NULL TASK ID,
virtual _mem ptr, size, 0);
if (result != MQOX OK) ({

3.5.4.3 Example: Creating Tasks with a Virtual Context

Create tasks with a virtual context and a copy of common data.

/* Task template number for the virtual-context task: */

#define VMEM_TTN 10
/* Global variable: */

unsigned char * data to duplicate[0x10000] = { O0xl, 0x2, 0x3 };

void * virtual mem ptr;

virtual_mem _ptr = (void *)0xA0000000;

result = mmu create vtask(VMEM TTN, 0, &data to duplicate,
virtual mem ptr, sizeof(data to duplicate), 0);

if (result == MQX NULL TASK ID) ({

result = mmu create vtask(VMEM TTN, 0, &data to duplicate,
virtual mem ptr, sizeof(data to duplicate), 0);

if (result == MQX NULL TASK ID) ({

3.6 Synchronizing Tasks

You can synchronize tasks by using one or more of the following mechanisms, which are
described in subsequent sections:

» Events - tasks can wait for a combination of event bits to become set. A task can set
or clear a combination of event bits.

Lightweight events - simpler implementation of events.

Semaphores - tasks can wait for a semaphore to be incremented from non-zero. A
task can post (increment) the semaphore. MQX RTOS semaphores prevent priority
inversion by providing priority inheritance. For a discussion of priority inversion, see
page Priority Inversion.

Lightweight semaphores - simple counting semaphores.

Mutexes - tasks can use a mutex to ensure that only one task at a time accesses
shared data. To access shared data, a task locks a mutex, waiting if the mutex is
already locked. When the task is finished accessing the shared data, it unlocks the
mutex. Mutexes prevent priority inversion by providing priority inheritance and
priority protection. For details, see page Mutexes.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 55

A
Synchronizing Tasks
* Message passing - lets tasks transfer data between themselves. A task fills a message
with data and sends it to a particular message queue. Another task waits for messages
to arrive at the message queue (receives messages).
» Lightweight Message Queue - simpler implementation of Messages.
» Task queues - let an application suspend and resume tasks.

3.6.1 Events

Events can be used to synchronize a task with another task or with an ISR.

The event component consists of event groups, which are groupings of event bits. The
number of event bits in an event group is the number of bits in _mqx_uint.

Any task can wait for event bits in an event group. If the event bits are not set, the task
blocks. Any other task or ISR can set the event bits. When the event bits are set, MQX
RTOS puts all waiting tasks, whose waiting condition is met, into the task's ready queue.
If the event group has autoclearing event bits, MQX RTOS clears the event bits as soon
as they are set, and makes one task ready.

Note To optimize code and data memory requirements on some target platforms, the event component
is not compiled in the MQX RTOS kernel by default. To test this feature, you need to enable it
first in the MQX RTOS user configuration file, and recompile the MQX RTOS PSP, BSP, and
other core components. See Rebuilding Freescale MQX RTOS for more details.

There can be named event groups, which are identified by a unique string name, and fast
event groups, which are identified by a unique number.

An application can open an event group on a remote processor by specifying the
processor number in the string that it uses to open the event group. After opening the
remote-processor event group, an application can set any event bit in the event group. An
application cannot wait for event bits in a remote event group.

Table 3-13. Summary: Using the Event Component

Event! Description

_event_clear Clears the specified event bits in an event group.
_event_close Closes a connection to an event group.

_event_create Creates a named event group.
_event_create_auto_clear Creates a named event group with autoclearing event bits.
_event_create_component Creates the event component.

_event_create_fast Creates a fast event group.
_event_create_fast_auto_clear Creates a fast event group with autoclearing event bits.
_event_destroy Destroys a named event group.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

56 Freescale Semiconductor, Inc.

Chapter 3 Using MQX RTOS

Table 3-13. Summary: Using the Event Component (continued)

_event_destroy_fast

Destroys a fast event group.

_event_get_value

Gets the value of an event group.

_event_get_wait_count

Gets the number of tasks waiting for event bits in an event group.

_event_open

Opens a connection to a named event group.

_event_open_fast

Opens a connection to a fast event group.

_event_set Sets the specified event bits in an event group on the local processor or on
a remote processor.
_event_test Tests the event component.

_event_wait_all

Waits for all the specified event bits in an event group for a specified
number of milliseconds.

_event_wait_all_for

Waits for all the specified event bits in an event group for a specified tick-
time period (including hardware ticks).

_event_wait_all_ticks

Waits for all the specified event bits in an event group for a specified
number of ticks.

_event_wait_all_until

Waits for all the specified event bits in an event group until a specified tick
time.

_event_wait_any

Waits for any of the specified event bits in an event group for a specified
number of milliseconds.

_event_wait_any_for

Waits for any of the specified event bits in an event group for a specified tick
time period.

_event_wait_any_ticks

Waits for any of the specified event bits in an event group for a specified
number of ticks.

_event_wait_any_until

Waits for any of the specified event bits in an event group until a specified
tick time.

1. Events use certain structures and constants, which are defined in event.h.

3.6.1.1 Creating the Event Component

You can explicitly create the event component with _event_create_component(). If you
do not explicitly create it, MQX RTOS creates it with default values the first time an

application creates an event group.

Table 3-14. Default Event Component Values

Parameter Meaning Default
Initial number Initial number of event groups that can be created 8
Grow number Number of additional event groups that can be created if all the 8
event groups are created, until the maximum number is reached
Maximum number If grow number is not 0, maximum number of event groups that can |0 (unlimited)
be created

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

57

Synchronizing Tasks
3.6.1.2 Creating an Event Group
Before a task can use the event component, it must create an event group.

Table 3-15. Event Group Creation

To create this type of event Call: With:
group:
Fast (with autoclearing event bits) | _event_create_fast() Index (must be within the limits specified,

_event_create_fast_auto_clear() when the event component was created)

Named (with autoclearing event |_event_create() String name
bits)

_event_create_auto_ clear()

If an event group is created with autoclearing event bits, MQX RTOS clears the bits as
soon as they are set. This action makes ready any tasks that are waiting for the bits,
without the tasks having to clear the bits.

3.6.1.3 Opening a Connection to an Event Group

Before a task can use the event component, it must open a connection to a created event
group.

Table 3-16. Event Group Open

To open a connection to this type |Call: With:
of event group:

Fast _event_open_fast() Index, which must be within the limits that were
specified, when the event component was created.

Named _event_open() String name

Both functions return a unique handle to the event group.

3.6.1.4 Waiting for Event Bits (Events)

A task waits for a pattern of event bits (a mask) in an event group with _event_wait_all()
or _event_wait_any(). When a bit is set, MQX RTOS makes ready the tasks that are
waiting for the bit. If the event group is created with autoclearing event bits
(_event_create_auto_clear() or _event_create_fast_auto_clear()), MQX RTOS clears
the bit so that the waiting tasks need not clear it.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

58 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.1.5 Setting Event Bits

A task can set a pattern of event bits (a mask) in an event group with _event_set(). The
event group can be local or on a remote processor. When an event bit is set, tasks waiting
for the bit are made ready. If the event group is created with autoclearing event bits,
MQX RTOS clears the bits as soon as they are set.

3.6.1.6 Clearing Event Bits

A task can clear a pattern of event bits (a mask) in an event group with _event_clear().
However, if the event group is created with autoclearing event bits, MQX RTOS clears
the bits as soon as they are set.

3.6.1.7 Closing a Connection to an Event Group

When a task no longer needs to use an event group, it can close its connection to the
group with _event_close().

3.6.1.8 Destroying an Event Group

If tasks are blocked, waiting for an event bit in the to-be-destroyed event group, MQX
RTOS moves them to their ready queues.

3.6.1.9 Example: Using Events

Simulated_tick ISR sets an event bit each time it runs. Service task performs a certain
action each time a tick occurs, and therefore waits for the event bit that Simulated_tick
sets.

3.6.1.9.1 Code for the Using Events Example

/* event.c */
#include <mgx.h>

#include <fio.h>

#include <event.h>

/* Task IDs */

#define SERVICE TASK 5

#define ISR_TASK 6

/* Function Prototypes */

extern void simulated ISR task(uint32 t);

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 59

Synchronizing Tasks

extern void service_ task(uint32_t);
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Prio, Name, Attributes, Param,
TS */
{ SERVICE TASK, service_task, 2000, 8, "service", MQX AUTO_ START TASK, O, O},
{ ISR TASK, simulated ISR task, 2000, 8, "simulated ISR", O, 0, 0},
{0}
F T ASK* = = = m m m mm e e oo

* Task Name : simulated ISR task
* Comments
*

This task opens a connection to the event. After

* delaying the event bits are set.

void simulated ISR task(uint32 t initial data)
{
void * event ptr;
/* open event connection */
if (_event open("global", &event ptr) != MOX OK) {
printf ("\nOpen Event failed");

_mgx_exit (0);

}

while (TRUE) ({

_time_delay(1000) ;
if (_event set(event ptr, 0x01) != MQOX OK) {
printf ("\nSet Event failed");

_mgx_exit (0) ;

}

JFTASK, = = == = = m e m m e e e e e
*

* Task Name : service_task

* Comments :

* This task creates an event and the simulated ISR task

* task. It opens a connection to the event and waits.

* After all bits have been set "Tick" is printed and

* the event is cleared.

HEND* - - - - —m - m - e e e e ————m - */

void service task(uint32 t initial data)

{

void * event ptr;

_task id second task id;

/* setup event */

if (_event create("global") != MQX OK) ({
printf ("\nMake event failed");
_mgx_exit (0) ;

if (_event open("global", &event ptr) != MQOX OK)
printf ("\nOpen event failed");

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

60

Freescale Semiconductor, Inc.

Chapter 3 Using MQX RTOS
_mgx_exit (0) ;

}

/* create task */
second_task_id = _task create(0, ISR _TASK, 0);
if (second task id == MQX NULL TASK ID) {
printf ("Could not create simulated ISR task \n");
_mgx_exit (0) ;

while (TRUE) ({
if (_event wait_all(event ptr, 0x01, 0) != MQX OK) ({
printf ("\nEvent Wait failed");
_mgx_exit (0) ;

if (_event clear(event ptr, 0x01) != MQX OK) ({
printf ("\nEvent Clear Failed");
_mgx_exit (0) ;

}

printf (" Tick \n");

3.6.1.9.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\event

2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

Event task prints a message each time an event bit is set.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOSdocument for more details about supported
tool chains.

3.6.2 Lightweight Events
Lightweight events are a simpler, low-overhead implementation of events.

The lightweight event component consists of lightweight event groups, which are
groupings of event bits. The number of event bits in a lightweight event group is the
number of bits in _mqgx_uint.

Any task can wait for event bits in a lightweight event group. If the event bits are not set,
the task blocks. Any other task or ISR can set the event bits. When the event bits are set,

MQX RTOS puts all waiting tasks, whose waiting condition is met, into the task's ready

queue. If the lightweight event group has autoclearing event bits, MQX RTOS clears the
event bits as soon as they are set and makes one task ready.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 61

Synchronizing Tasks

Lightweight event groups are created from static-data structures and are not multi-
processor.

Table 3-17. Summary: Using the Lightweight Event Component

Event! Description

_lwevent_clear Clears the specified event bits in a lightweight event group.

_lwevent_create Creates a lightweight event group, indicating whether it has autoclearing event bits.
_lwevent_destroy Destroys a lightweight event group.

_lwevent_set Sets the specified event bits in a lightweight event group.

_lwevent_test Tests the lightweight event component.

_lwevent_wait_for Waits for all or any of the specified event bits in a lightweight event group for a

specified tick-time period.

_lwevent_wait_ticks Waits for all or any of the specified event bits in a lightweight event group for a
specified number of ticks.

_lwevent_wait_until Waits for all or any of the specified event bits in a lightweight event group until a
specified tick time.

1. Lightweight events use certain structures and constants, which are defined in lwevent.h.

3.6.2.1 Creating a Lightweight Event Group

To create a lightweight event group, an application declares a variable of type
LWEVENT_STRUCT, and initializes it by calling _lwevent_create() with a pointer to
the variable and a flag indicating, whether the event group has autoclearing event bits.

3.6.2.2 Waiting for Event Bits

A task waits a pattern of event bits (a mask) in a lightweight event group with one of the
_Iwevent_wait functions. If the waiting condition is not met, the function waits for a
specified time to expire.

3.6.2.3 Setting Event Bits

A task sets a pattern of event bits (a mask) in a lightweight event group with
_Iwevent_set(). If tasks are waiting for the appropriate bits, MQX RTOS makes them
ready. If the event group has autoclearing event bits, MQX RTOS makes ready only the
first task that is waiting.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
62 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.2.4 Clearing Event Bits

A task can clear a pattern of event bits (a mask) in a lightweight event group with
_lwevent_clear(). However, if the lightweight event group is created with autoclearing
event bits, MQX RTOS clears the bits as soon as they are set.

3.6.2.5 Destroying a Lightweight Event Group

When a task no longer needs a lightweight event group, it can destroy the event group
with _lwevent_destroy().

3.6.3 About Semaphore-Type Objects
MQX RTOS provides lightweight semaphores (LWSems), semaphores, and mutexes.

You can use both types of semaphores for task synchronization and mutual exclusion. A
task waits for a semaphore. If the semaphore count is zero, MQX RTOS blocks the task;
otherwise, MQX RTOS decrements the semaphore count, gives the task the semaphore,
and the task continues to run. When the task is finished with the semaphore, it posts the
semaphore; the task remains ready. If a task is waiting for the semaphore, MQX RTOS
puts the task in the task ready queue; otherwise, MQX RTOS increments the semaphore
count.

You can use mutexes for mutual exclusion. A mutex is sometimes called a binary
semaphore because its counter can be only zero or one.

3.6.3.1 Strictness

If a semaphore-type object is strict, a task must first wait for and get the object, before it
can release the object. If the object is non-strict, a task does not need to get the object
before it releases the object.

3.6.3.2 Priority Inversion

Task priority inversion is a classic condition, where the relative priorities of tasks appear
to be reversed. Priority inversion might occur, when tasks use semaphores or mutexes to
gain access to a shared resource.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 63

Synchronizing Tasks

3.6.3.3 Example: Priority Inversion

There are three tasks of three different priorities. The mid-priority task prevents the
highest-priority task from running.

Table 3-18. Priority Inversion Example

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)
1 * Runs
5 ¢ Gets semaphore
3 ¢ |s made ready
4 * Preempties Task_3 and
runs

5 ¢ |Is made ready
6 * Preempties Task_2 and

runs
7 * Tries to get semaphore

that Task_3 has
8 ¢ Blocks, waiting for the

semaphore
9 * Runs and keeps running

3.6.3.4 Avoiding Priority Inversion with Priority Inheritance

When you create an MQX RTOS semaphore or mutex, one of the properties that you can
specify is priority inheritance, which prevents priority inversion.

If you specify priority inheritance, during the time that a task has locked a semaphore or
mutex, the task's priority is never lower than the priority of any task that waits for the
semaphore or mutex. If a higher-priority task waits for the semaphore or mutex, MQX
RTOS temporarily raises the priority of the task that has the semaphore or mutex to the
priority of the waiting task.

Table 3-19. Priority Inheritance Properties

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)
1 * Runs

2 ¢ Gets semaphore

3 * |s made ready

4 * Preempties Task_3 and runs

5 ¢ |s made ready

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

64 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-19. Priority Inheritance Properties (continued)

6 * Preempties Task_2 and
runs
7 e Tries to get semaphore
that Task_3 has
8 ¢ Raises priority of Task_3
to P1 and blocks
9 * Preempts Task_1 and runs
10 ¢ Finishes work and posts
semaphore
11 * Priority is lowered to P3
12 ¢ Preempts Task_3 and
Task_2 and runs
13 ¢ Gets semaphore

3.6.3.5 Avoiding Priority Inversion with Priority Protection

When you create an MQX RTOS mutex, you can specify the mutex attributes of priority
protection and a mutex priority. These attributes prevent priority inversion.

If the priority of a task that requests to lock the mutex is not at least as high as the mutex

priority, MQX RTOS temporarily raises the task's priority to the mutex priority for as
long, as the task has the mutex locked.

Table 3-20. Mutex Attributes

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)

1 * Runs

2 * Locks mutex (with priority P1);
priority is boosted to P1

3 * |s made ready

4 ¢ Does not preempt Task_3

5 * Is made ready

6 e Does not preempt Task_3

7 * Finishes with mutex and
unlocks it

8 ¢ Priority is lowered to P3

* Preempts Task_3 and runs
10 * Locks mutex

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

65

Synchronizing Tasks

Table 3-21. Comparison of Lightweight Semaphores, Semaphores, and

Mutexes

Feature LWSem Semaphore Mutex

Timeout Yes Yes No

Queuing FIFO FIFO Priority FIFO Priority Spin only Limited spin

Strict No No or yes Yes

Priority inheritance No Yes Yes

Priority protection No No Yes

Size Smallest Largest Between lightweight semaphores and
semaphores

Speed Fastest Slowest Between lightweight semaphores and
semaphores

3.6.4 Lightweight Semaphores
Lightweight semaphores are a simpler, low-overhead implementation of semaphores.

Lightweight semaphores are created from static-data structures, and are not multi-
processor.

Table 3-22. Summary: Using Lightweight Semaphores

_lwsem_create Creates a lightweight semaphore.

_lwsem_destroy Destroys a lightweight semaphore.

_lwsem_poll Polls for a lightweight semaphore (non-blocking).

_lwsem_post Posts a lightweight semaphore.

_lwsem_test Tests the lightweight semaphore component.

_lwsem_wait Waits for a lightweight semaphore.

_lwsem_wait_for Waits for a lightweight semaphore for a specified tick-time period.
_lwsem_wait_ticks Waits for a lightweight semaphore for a specified number of ticks.
_lwsem_wait_until Waits for a lightweight semaphore, until a specified number of ticks have elapsed.

3.6.4.1 Creating a Lightweight Semaphore

To create a lightweight semaphore, you declare a variable of type LWSEM_STRUCT,
and initialize it by calling _lwsem_create() with a pointer to the variable and an initial
semaphore count. The semaphore count, which indicates the number of requests that can
be concurrently granted the lightweight semaphore, is set to the initial count.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

66 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.4.2 Waiting for and Posting a Lightweight Semaphore

A task waits for a lightweight semaphore with _lwsem_wait(). If the semaphore count is
greater than zero, MQX RTOS decrements it, and the task continues to run. If the count is
zero, MQX RTOS blocks the task, until some other task posts the lightweight semaphore.

To release a lightweight semaphore, a task posts it with _Iwsem_post(). If no tasks are
waiting for the lightweight semaphore, MQX RTOS increments the semaphore count.

Since lightweight semaphores are non-strict, tasks can post without waiting first;
therefore, the semaphore count is not bounded and can increase beyond the initial count.

3.6.4.3 Destroying a Lightweight Semaphore

When a task no longer needs a lightweight semaphore, it can destroy it with
_lwsem_destroy().

3.6.4.4 Example: Producers and Consumer
Producer and consumer tasks synchronize each other with lightweight semaphores.

1. Read task creates:

» Multiple Write tasks and assigns a unique character to each.
e One write LWSem.
e One read LWSem.

2. Each Write task waits for the Write LW Sem, before it writes a character into the
buffer. When the character is written, each Write task posts the Read LWSem,
signaling that a character is available to the Read task.

3. Read waits for the Read LW Sem, before it consumes the character. After it consumes
the character, it posts the Write LWSem, signaling that the buffer is ready for another
character.

3.6.4.4.1 Definitions and Structures for the Example

/* read.h */

/* Number of Writer Tasks */

#define NUM WRITERS 3

/* Task IDs */

#define WRITE TASK 5

#define READ TASK 6

/* Global data structure accessible by read and write tasks.
** Contains two lightweight semaphores that govern access to the
** data variable.

*/

typedef struct sw_fifo

LWSEM_ STRUCT READ SEM;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 67

A ————
Synchronizing Tasks

LWSEM_STRUCT WRITE_ SEM;

uchar DATA;
} SW_FIFO, PTR_SW FIFO PTR;
/* Function prototypes */
extern void write task(uint32_ t initial data);
extern void read_task(uint32_t initial_data);
extern SW_FIFO fifo;

3.6.4.4.2 Task Templates for the Producers and Consumers Example

/* ttl.c */

#include <mgx.h>

#include <bsp.h>

#include "read.h"

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time
Slice */
{ WRITE TASK, write task, 1000, 8, "write", 0, 0, 0},
{ READ TASK, read task, 1000, 8, "read", MQX AUTO START TASK, O, 0},
{0}

7

3.6.4.4.3 Code for a Write Task

/* write.c */
#include <mgx.h>

#include <bsp.h>
#include "read.h"

* Task Name : write task

* Comments : This task waits for the write semaphore,

** then writes a character to "data" and posts a

* read semaphore.

HEND* = = = = = = = = = = = = e e e e e e e */

void write task(uint32 t initial data)

printf ("\nWrite task created: 0x%$1X", initial data);
while (TRUE) ({
if (_lwsem wait (&fifo.WRITE SEM) != MQX OK)
printf ("\n_lwsem wait failed");
_mgx_exit (0) ;

}
fifo.DATA = (uchar)initial data;
_lwsem post (&fifo.READ SEM) ;

}

3.6.4.4.4 Code for Read Task

/* read.c */

#include <mgx.h>
#include <bsp.h>
#include "read.h"
SW_FIFO fifo;

* Task Name : read task
* Comments : This task creates two semaphores and
* NUM WRITER write tasks. Then it waits

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

68 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

* on the read sem and finally outputs the
* "data" variable.
F BN D ¥ = = = = = == = = = m e e e */

void read task(uint32 t initial data)

{

_task id task _id;

_mgx_uint result;

_mgx_uint i;

/* Create the lightweight semaphores */
result = _lwsem create(&fifo.READ SEM, 0);
if (result != MQX OK) ({

printf ("\nCreating read _sem failed: 0x%X", result);
_mgx_exit (0) ;

result = lwsem create(&fifo.WRITE SEM, 1);

if (result != MQX OK) ({
printf ("\nCreating write sem failed: 0x%X", result);
_mgx_exit (0);

}

/* Create write tasks */

for (i = 0; 1 < NUM WRITERS; i++) {
task _id = task create(0, WRITE TASK, (uint32 t) ('A' + 1i));
printf ("\nwrite_task created, id 0x%1X", task_id);

while (TRUE) ({
result = lwsem wait (&fifo.READ SEM) ;
if (result != MQX OK) ({
printf ("\n_ lwsem wait failed: 0x%X", result);
_mgx_exit (0) ;

putchar ('\n') ;
putchar (fifo.DATA) ;
lwsem post (&fifo.WRITE SEM) ;

}
}

3.6.4.4.5 Compiling the Application and Linking It with MQX RTOS
1. Go to this directory:

mgx\examples\lwsem
2. See the MOX™ RTOS Release Notes document (document MQXRN) for instructions
on how to build and run the application.

The following appears on the output device:

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 69

Synchronizing Tasks

Note

With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS document for more details about supported
tool chains.

3.6.5 Semaphores

Semaphores can be used for task synchronization and mutual exclusion. The main
operations that a task performs on a semaphore, are to wait for the semaphore and to post

the semaphore.

Note To optimize code and data memory requirements on some target platforms, the Semaphore
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Table 3-23. Summary: Using Semaphores

Semaphore? Desctiption

_sem_close Closes a connection to a semaphore.

_sem_create Creates a semaphore.

_sem_create_component

Creates the semaphore component.

_sem_create_fast

Creates a fast semaphore.

_sem_destroy

Destroys a named semaphore.

_sem_destroy_fast

Destroys a fast semaphore.

_sem_get_value

Gets the current semaphore count.

_sem_get_wait_count

Gets the number of tasks waiting for a semaphore.

_sem_open

Opens a connection to a named semaphore.

_sem_open_fast

Opens a connection to a fast semaphore.

_sem_post Posts (frees) a semaphore.
_sem_test Tests the semaphore component.
_sem_wait Waits for a semaphore for a number of milliseconds.

_sem_wait_for

Waits for a semaphore for a tick-time period.

_sem_wait_ticks

Waits for a semaphore for a number of ticks.

_sem_wait_until

Waits for a semaphore until a time (in tick time).

1. Semaphores use certain structures and constants, which are defined in sem.h.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

70

Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.5.1 Using a Semaphore

To use a semaphore, a task executes the following steps, each of which is described in
subsequent sections.

Optionally, creates the semaphore component.

Creates the semaphore.

Opens a connection to the semaphore.

If the semaphore is strict, it waits for the semaphore.

When finished using the semaphore for the time being, it posts the semaphore.

If it no longer needs the semaphore, it closes its connection to the semaphore.

If the semaphore is protecting a shared resource that ceases to exist or is no longer
accessible, the task can destroy the semaphore.

NNk =

3.6.5.2 Creating the Semaphore Component

You can explicitly create the semaphore component with _sem_create_component(). If
you do not explicitly create it, MQX RTOS creates it with default values the first time an
application creates a semaphore.

The parameters and their default values are the same as for the event component, which is
described on page Creating the Event Component.

3.6.5.3 Creating a Semaphore
Before a task can use a semaphore, it must create the semaphore.

Table 3-24. Semaphore Creation

Semaphore Type Call With

Fast _sem_create_fast() Index, which must be within the limits that were specified
when the semaphore component was created.

Named _sem_create() String name

When the task creates the semaphore, it also specifies:

e Initial count - the initial value for the semaphore count represents the number of
locks that the semaphore has. (A task can get multiple locks).

e Priority queuing - if priority queuing is specified, the queue of tasks waiting for the
semaphore is in priority order, and MQX RTOS puts the semaphore to the highest-
priority waiting task.

* If priority queuing is not specified, the queue is in FIFO order, and MQX RTOS puts
the semaphore to the longest-waiting task.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 71

A
Synchronizing Tasks
* Priority inheritance - if priority inheritance is specified and a higher-priority task is
waiting for the semaphore, MQX RTOS raises the priority of the tasks that have the
semaphore to the priority of the waiting task. For more information, see the
discussion on priority inheritance on page Avoiding Priority Inversion with Priority
Inheritance. To use priority inheritance, the semaphore must be strict.
* Strictness - if strictness is specified, a task must wait for the semaphore, before it can
post the semaphore. If a semaphore is strict, the initial count is the maximum value
of the semaphore count. If the semaphore is non-strict, the count is unbounded.

3.6.5.4 Opening a Connection to a Semaphore

Before a task can use a semaphore, it must open a connection to the semaphore.

Table 3-25. Opening a Connection to a Semaphore

Semaphore Type Call With

Fast _sem_open_fast() Index, which must be within the limits that were
specified when the semaphore component was
created.

Named _sem_open() String name

Both functions return a unique handle to the semaphore.

3.6.5.5 Waiting for a Semaphore and Posting a Semaphore

A task waits for a semaphore using one of the functions from the _sem_wait_family of
functions. If the semaphore count is zero, MQX RTOS blocks the task, until another task
posts (_sem_post()) the semaphore or the task-specified timeout expires. If the count is
not zero, MQX RTOS decrements the count, and the task continues to run.

When a task posts a semaphore, and there are tasks waiting for the semaphore, MQX
RTOS puts them in their ready queues. If there are no tasks waiting, MQX RTOS
increments the semaphore count. In either case, the posting task remains ready.

3.6.5.6 Closing a Connection to a Semaphore

When a task no longer needs to use a semaphore, it can close its connection with the
semaphore with _sem_close().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

72 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.5.7 Destroying a Semaphore
When the semaphore is no longer needed, a task can destroy it.

Table 3-26. Semaphore Destroying

Semaphore Type Call With

Fast _sem_destroy_fast() Index, which must be within the limits that were
specified when the semaphore component was
created.

Named _sem_destroy() String name

As well, the task can specify, whether to force destruction. If destruction is forced, MQX
RTOS readies tasks that are waiting for the semaphore, and destroys the semaphore after
all the tasks that have the semaphore post the semaphore.

If destruction is not forced, MQX RTOS destroys the semaphore after the last waiting
task gets and posts the semaphore. (This is always the action if the semaphore is strict).

3.6.5.8 Example: Task Synchronization and Mutual Exclusion

This example builds on the lightweight semaphore example on page Example: Producers
and Consumer. It shows, how semaphores can be used for task synchronization and
mutual exclusion.

The example manages a FIFO that multiple tasks can write to and read from. Mutual
exclusion is required for access to the FIFO data structure. Task synchronization is
required to block the writing tasks when the FIFO is full, and to block the reading tasks
when the FIFO is empty. Three semaphores are used:

* Index semaphore for mutual exclusion on the FIFO.
* Read semaphore to synchronize the readers.
* Write semaphore to synchronize the writers.

The example consists of three tasks: Main, Read, and Write. Main initializes the
semaphores, and creates Read and Write.

3.6.5.8.1 Definitions and Structures for the Example

/* main.h

*x Thisg file contains definitions for the semaphore example.
*

/

#define MAIN_TASK
#define WRITE_ TASK
#define READ TASK
#define ARRAY SIZE
#define NUM WRITERS 2

/* Global data structure accessible by read and write tasks.

U g o0 U

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 73

Synchronizing Tasks

** Contains a DATA array that simulates a FIFO. READ INDEX

** and WRITE_INDEX mark the location in the array that the read
** and write tasks are accessing. All data is protected by

** gemaphores.

*/

typedef struct

_task_id DATA[ARRAY SIZE];

uint32_t READ INDEX;

uint32 t WRITE INDEX;
} SW_FIFO, * SW _FIFO PTR;
/* Function prototypes */
extern void main_ task(uint32_t initial data);
extern void write task(uint32 t initial data);
extern void read task(uint32 t initial data);
extern SW_FIFO fifo;

3.6.5.8.2 Task Templates for the Task Synchronization and Mutual
Exclusion Example

/* ttl.c */

#include <mgx.h>

#include "main.h"

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */
{ MAIN TASK, main_task, 2000, 8, "main", MQX AUTO START TASK,O0, 0},

{ WRITE TASK, write task, 2000, 8, "write", 0, 0, 0},

{ READ TASK, read task, 2000, 8, "read", O, 0, 0},

{ o}

}

3.6.5.8.3 Code for Main Task
The Main task creates:

* The semaphore component
* The Index, Read, and Write semaphores
e Read and Write tasks

/* main.c */

#include <mgx.h>
#include <bsp.h>
#include <sem.h>
#include "main.h"
SW_FIFO fifo;

JF TS K* = = = = = = - m o oo
*

* Task Name : main task

* Comments

* This task initializes three semaphores, creates NUM WRITERS
* write tasks, and creates one read task.

X END* = = = = = = == = = mm o m */

¥oid main task(uint32 t initial data)
_task _id task _id;
_mgx_uint i;
fifo.READ_ INDEX = 0;
fifo.WRITE INDEX = O;
/* Create semaphores: */
if (_sem create component (3, 1, 6) != MQX OK) ({
printf ("\nCreating semaphore component failed") ;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

74 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

_mgx_exit (0) ;

if (_sem create("write", ARRAY SIZE, 0) != MQX OK) {
printf ("\nCreating write semaphore failed");
_mgx_exit (0) ;

if (_sem create("read", 0, 0) != MQOX OK) {
printf ("\nCreating read semaphore failed");
_mgx_exit (0) ;

}

if (_sem create("index", 1, 0) != MQX OK) {
printf ("\nCreating index semaphore failed") ;
_mgx_exit (0);

/* Create tasks: */
for (i = 0; 1 < NUM _WRITERS; i++) {
task_id = _task create(0, WRITE TASK, 1i);
printf ("\nwrite task created, id 0x%1lx", task_id);

task id = task create(0, READ TASK, O0);
printf ("\nread task created, id 0x%1lx", task_id);

3.6.5.8.4 Code for the Read Task

/* read.c */

#include <mgx.h>
#include <bsp.h>
#include <sem.h>
#include "main.h"

/F TS K* = = = = = m o m o -
* Task Name : read task

* Comments

* This task opens a connection to all three semaphores, then
*

waits to lock a read semaphore and an index semaphore. One
element in the DATA array is displayed. The index and write
semaphores are then posted.

¥oid read_task(uint32 t initial data)

void * write sem;

void * read sem;

void * 1index sem;

/* Open connections to all semaphores: */

if (_sem open("write", &write sem) != MQX OK) ({
printf ("\nOpening write semaphore failed");
_mgx_exit (0);

}

if (_sem open("index", &index sem) != MQX OK) ({
printf ("\nOpening index semaphore failed");
_mgx_exit (0) ;

if (_sem open("read", &read sem) != MQX OK) ({
printf ("\nOpening read semaphore failed") ;
_mgx_exit (0) ;

while (TRUE) {
/* Wait for the semaphores: */
if (_sem wait(read sem, 0) != MQOX OK) {
printf ("\nWaiting for read semaphore failed");

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 75

A ————
Synchronizing Tasks

_mgx_exit (0) ;

if (_sem wait (index sem, 0) != MQOX OK) {
printf ("\nWaiting for index semaphore failed");
_mgx_exit (0) ;

printf ("\n 0x%1x", fifo.DATA[fifo.READ INDEX++]);
if (fifo.READ INDEX >=ARRAY SIZE) {
fifo.READ INDEX = 0;

/* Post the semaphores: */
_sem_post (index sem) ;
_sem_post (write sem) ;

}

3.6.5.8.5 Code for the Write Task

/* write.c */

#include <mgx.h>
#include <bsp.h>
#include <sem.h>
#include "main.h"

YV NS R i e
* Task Name : write_ task

* Comments

* This task opens a connection to all three semaphores, then
* waits to lock a write and an index semaphore. One element

*

in the DATA array is written to. The index and read
semaphores are then posted.

void write task(uint32 t initial data)
{
void * write sem;
void * read sem;
void * 1index sem;
/* Open connections to all semaphores: */
if (_sem open('"write", &write sem) != MOX OK) ({
printf ("\nOpening write semaphore failed") ;
_mgx_exit (0);

if (_sem open("index", &index sem) != MQX OK) ({
printf ("\nOpening index semaphore failed");
_mgx_exit (0) ;

}

if (_sem open("read", &read sem) != MQX OK) ({
printf ("\nOpening read semaphore failed") ;
_mgx_exit (0) ;

while (TRUE) ({
/* Wait for the semaphores: */
if (_sem wait(write sem, 0) != MQOX OK) {
printf ("\nWaiting for write semaphore failed") ;
_mgx_exit (0) ;

}

if (_sem wait (index sem, 0) != MQOX OK) {
printf ("\nWaiting for index semaphore failed");
_mgx_exit (0) ;

fifo.DATA[fifo.WRITE INDEX++] = _task get id();

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

76 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

if (fifo.WRITE_ INDEX >=ARRAY SIZE) {
fifo.WRITE_INDEX = O;

/* Post the semaphores: */

_sem_post (index sem) ;
_sem_post (read_semn) ;

3.6.5.8.6 Compiling the application and linking it with MQX RTOS
1. Go to this directory:

\mgx\examples\sem
2. See the MOX RTOS Release Notes (document MQXRN) for instructions how to
build and run the application.

Read task prints the data that is written to the FIFO.

Modify the program to remove priority inheritance, and run the application again.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See the Getting Started with Freescale MQX™ RTOS document for more details about the
supported tool chains.

3.6.6 Mutexes

Mutexes are used for mutual exclusion, so that only one task at a time uses a shared
resource such as data or a device. To access the shared resource, a task locks the mutex
associated with the resource. The task owns the mutex, until it unlocks the mutex.

Note To optimize code and data memory requirements on some target platforms, the Mutex
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file, and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Mutexes provide priority inheritance and priority protection to prevent priority inversion.

Table 3-27. Summary: Using Mutexes

Mutex’ Description

_mutex_create_component Creates the mutex component.

_mutex_destroy Destroys a mutex.

_mutex_get_priority_ceiling Gets the priority of a mutex.
_mutex_get_wait_count Gets the number of tasks that are waiting for a mutex.
_mutex_init Initializes a mutex.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 77

Synchronizing Tasks

Table 3-27. Summary: Using Mutexes (continued)

_mutex_lock Locks a mutex.
_mutex_set_priority_ceiling Sets the priority of a mutex.
_mutex_test Tests the mutex component.
_mutex_try_lock Tries to lock a mutex.
_mutex_unlock Unlocks a mutex.

1. Mutexes use certain structures and constants, which are defined in mutex.h.

3.6.6.1 Creating the Mutex Component

You can explicitly create the mutex component with _mutex_create_component(). If
you do not explicitly create it, MQX RTOS creates it the first time an application
initializes a mutex. There are no parameters.

3.6.6.2 Mutex Attributes

A mutex can have attributes with respect to its waiting and scheduling protocols.

3.6.6.3 Waiting Protocols

A mutex can have one of several waiting protocols, which affect tasks that request to lock
an already locked mutex.

Table 3-28. Mutex Waiting Protocols

Waiting protocol’ Description

Queuing (default) Blocks, until another task unlocks the mutex. When the mutex is unlocked, the first task
(regardless of priority) that requested the lock, locks the mutex.

Priority queuing Blocks, until another task unlocks the mutex. When the mutex is unlocked, the highest-priority
task that requested the lock, locks the mutex.

Spin only Spins (is timesliced) indefinitely, until another task unlocks the mutex. This means that MQX
RTOS saves the requesting task's context, and dispatches the next task in the same-priority
ready queue. When all the tasks in this ready queue have run, the requesting task becomes
active again. If the mutex is still locked, the spin repeats.

Limited spin Spins for a specified number of times, or fewer, if another task unlocks the mutex first.

1. If the mutex is already locked, the requesting task does this.
Spin-only protocol functions properly, only if the tasks that share the mutex are either:
* time-slice tasks

* the same priority

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

78 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

If non-time-slice tasks of different priority try to share a spin-only mutex, a higher-
priority task that wants to lock the mutex that is locked by a lower-priority task never gets
the lock (unless the lower-priority task blocks).

Spin-only protocol mutexes are prone to deadlock and are not recommended.

3.6.6.4 Scheduling Protocols

A mutex can have special scheduling protocols that avoid priority inversion. The policies
might affect the priority of a task during the time that the task has the mutex locked. The
default is for neither protocol to be in effect.

Table 3-29. Mutex Scheduling Protocols

Scheduling protocol Meaning

Priority inheritance If the priority of the task that has locked the mutex (task_A) is not as high as the highest-
priority task that is waiting to lock the mutex (task_B), MQX RTOS raises the priority of
task_A to be the same as the priority of task_B, while task_A has the mutex.

Priority protection A mutex can have a priority. If the priority of a task that requests to lock the mutex (task_A)
is not at least as high as the mutex priority, MQX RTOS raises the priority of task_A to the
mutex priority for as long as task_A has the mutex locked.

3.6.6.5 Creating and Initializing a Mutex
A task creates a mutex by first defining a variable of type MUTEX_STRUCT.

To initialize the mutex with the default attributes of a queuing waiting protocol and no
special scheduling protocols, the task calls _mutex_init() with a pointer to the mutex
variable and a NULL pointer.

However, to initialize the mutex with attributes other than the default, the task does the
following:

1. It defines a mutex attributes structure of type MUTEX_ATTR_STRUCT.
2. It initializes the attributes structure with _mutatr_init().
3. It calls various functions to set the appropriate attributes, choosing from:
4. e+ _mutatr_set_priority_ceiling()
e _mutatr_set_sched_protocol()
e _mutatr_set_spin_limit()
* _mutatr_set_wait_protocol()
5. It initializes the mutex by calling _mutex_init() with pointers to the mutex and to the
attributes structure. When the mutex is initialized, any task can use it.
6. It destroys the mutex attributes structure with _mutatr_destroy().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 79

Synchronizing Tasks

Table 3-30. Summary: Using a Mutex Attributes Structure

_mutatr_destroy Destroys a mutex attributes structure.
_mutatr_get_priority_ceiling Gets the priority of a mutex attributes structure.
_mutatr_get_sched_protocol Gets the scheduling protocol of a mutex attributes structure.
_mutatr_get_spin_limit Gets the limited-spin count of a mutex attributes structure.
_mutatr_get_wait_protocol Gets the waiting policy of a mutex attributes structure.
_mutatr_init Initializes a mutex attributes structure.
_mutatr_set_priority_ceiling Sets the priority value in a mutex attributes structure.
_mutatr_set_sched_protocol Sets the scheduling protocol of a mutex attributes structure.
_mutatr_set_spin_limit Sets limited-spin count of a mutex attributes structure.
_mutatr_set_wait_protocol Sets the waiting protocol of a mutex attributes structure.

3.6.6.6 Locking a Mutex

To access a shared resource, a task can lock the mutex that is associated with the resource
by calling _mutex_lock(). If the mutex is not already locked, the task locks it and
continues to run. If the mutex is already locked, depending on the mutex waiting
protocols that are described on page Waiting Protocols, the task might block until the
mutex is unlocked.

To be sure that it does not block, a task can try to lock a mutex with _mutex_trylock(). If
the mutex is not already locked, the task locks it and continues to run. If the task is
already locked, the task does not get the mutex, but continues to run.

3.6.6.7 Unlocking a Mutex

Only the task that has locked a mutex can unlock it (_mutex_unlock()).

3.6.6.8 Destroying a Mutex

If a mutex is no longer needed, a task can destroy it with _mutex_destroy(). If any tasks
are waiting for the mutex, MQX RTOS puts them in their ready queues.

3.6.6.9 Example: Using a Mutex

A mutex is used for mutual exclusion. There are two time-slice tasks, both of which print
to the same device. A mutex prevents the output from being interleaved.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
80 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.6.9.1 Code for Using a Mutex Example
/* main.c */

#include <mgx.h>

#include <bsp.h>

#include <mutex.h>

/* Task IDs */

#define MAIN TASK 5

#define PRINT TASK 6

extern void main_ task(uint32_t initial data);
extern void print task(uint32 t initial data);
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */
{ MAIN TASK, main task, 1000, 8, "main", MQX AUTO START TASK,O, 0},
{ PRINT TASK, print_ task, 1000, 9, "print", 0, 0, 3},

{o

MUTEX_STRUCT print_mutex;

* Task Name : main_task

* Comments : This task creates a mutex, and then two
* instances of the print task.
FEND* = = = = = = = = = = = = = = e e e e e */

void main_task(uint32 t initial data)

MUTEX ATTR_STRUCT mutexattr;
char* stringl = "Hello from Print task 1\n";
char* string2 = "Print task 2 is alive\n";

/* Initialize mutex attributes: */

if (_mutatr init (&mutexattr) != MQOX OK) {
printf ("Initializing mutex attributes failed.\n") ;
_mgx_exit (0) ;

}

/* Initialize the mutex: */

if (_mutex init (&print mutex, &mutexattr) != MQX OK) {
printf ("Initializing print mutex failed.\n");
_mgx_exit (0) ;

}

/* Create the print tasks */

_task create(0, PRINT TASK, (uint32 t)stringl);
_task create(0, PRINT TASK, (uint32 t)string2);

}

J Y) R e i
*

* Task Name : print task

* Comments : This task prints a message. It uses a mutex to

* ensure I/O is not interleaved.

FEND* = = = = — —m m o m o m */

void print task(uint32 t initial data)

while (TRUE) {
if (_mutex lock(&print mutex) != MQX_OK) {
printf ("Mutex lock failed.\n");
_mgx_exit (0) ;

}
_io puts((char *) initial data);
_mutex unlock (&print mutex) ;

}

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 81

Synchronizing Tasks

3.6.6.9.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\mutex

2. See the MOX™ RTOS Release Notes document (document MQXRN) for instructions
on how to build and run the application.

3.6.7 Messages

Tasks can communicate with each other by exchanging messages. Tasks allocate
messages from message pools. Tasks send messages to message queues, and receive
messages from message queues. Messages can be assigned a priority or marked urgent.
Tasks can send broadcast messages.

Note To optimize code and data memory requirements on some target platforms, the Message
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file, and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Table 3-31. Summary: Using Messages

Messages use certain structure definitions and Messages use certain structure definitions and constants, which are

constants, which are defined in message.h. defined in message.h.

_msg_alloc Allocates a message from a private-message pool.

_msg_alloc_system Allocates a message from a system-message pool.

_msg_available Gets the number of free messages in a message pool.

_msg_create_component Creates the message component.

_msg_free Frees a message.

_msg_swap_endian_data Converts the application-defined data in a message to the other endian
format.

_msg_swap_endian_header Converts the message header to the other endian format.

_msgpool_create Creates a private-message pool.

_msgpool_create_system Creates a system-message pool.

_msgpool_destroy Destroys a private-message pool.

_msgpool_test Tests all message pools.

_msgq_close Closes a message queue.

_msgq_get_count Gets the number of messages in a message queue.

_msgq_get_id Converts a queue number and processor number to a queue ID.

_msgq_get_notification_function Gets the natification function that is associated with a message queue.

_msgq_get_owner Gets the task ID of the task that owns a message queue.

_msgqg_open Opens a private-message queue.

_msgq_open_system Opens a system-message queue.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

82 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-31. Summary: Using Messages (continued)

_msgq_peek Gets a pointer to the message that is at the head of a message queue
(does not dequeue the message).

_msgq_poll Poll (non-blocking) for a message in a message queue.

_msgq_receive Receives a message from a message queue, and waits for a specified
number of milliseconds.

_msgq_receive_for Receives a message from a message queue, and waits for a specified
tick-time period.

_msgq_receive_ticks Receives a message from a message queue, and waits for a specified
number of ticks.

_msgq_receive_until Receives a message from a message queue, and waits for a specified
tick time.

_msgq_send Sends a message to a message queue.

_msgq_send_broadcast Sends a message to multiple message queues.

_msgq_send_priority Sends a priority message to a message queue.

_msgq_send_queue Sends a message directly to a message queue (circumvents inter-
processor routing).

_msgq_send_urgent Sends an urgent message to a message queue.

_msgq_set_notification_function Sets the notification function for a message queue.

_msgq_test Tests message queues.

3.6.7.1 Creating the Message Component

You can explicitly create the message component with _msg_create_component(). If
you do not explicitly create it, MQX RTOS creates it the first time that an application
creates a message pool or opens a message queue.

3.6.7.2 Using Message Pools

Tasks allocate messages from message pools, which a task must first create. A task can
create a private-message pool (_msgpool_create()) or a system-message pool
(_msgpool_create_system()).

A task specifies the following info, when it creates a message pool:

Size of the messages in the pool.

Initial number of messages in the pool.

Grow factor: the number of additional messages that MQX RTOS adds to the pool, if
tasks have allocated all the messages.

* Maximum number of messages in the pool (if the grow factor is not zero, zero means
here that the pool can contain an unlimited number of messages).

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 83

Synchronizing Tasks

The function _msgpool_create_system() can be called multiple times to create multiple
system-message pools, each with different characteristics.

The function _msgpool_create() returns a pool ID, which any task can use to access the
private-message pool.

Table 3-32. Using Message Pools

System-message pool Private-message pool
Create a message pool _msgpool_create_system() _msgpool_create()
Allocate a message _msg_alloc_system() _msg_alloc()
(MQX RTOS searches all system-message |(MQX RTOS searches only the specified
pools.) private-message pool.)
Free a message (message owner |_msg_free() _msg_free()
only)
Destroy a message pool A system-message pool cannot be _msgpool_destroy()
destroyed.

(By any task with the pool ID after all
messages in the pool are freed.)

3.6.7.3 Allocating and Freeing Messages

Before a task sends a message, it allocates a message (_msg_alloc_system() or
_msg_alloc()) of the appropriate size from a system- or private-message pool.

System-message pools are not the resource of any task, and any task can allocate a
message from them. Any task with the pool ID can allocate a message from a private-
message pool.

When a task allocates a message from either type of pool, the message becomes the
resource of the task, until the task frees the message (_msg_free()) or puts it in a message
queue (_msgq_send family of functions). When a task gets a message from a message
queue (_msgq_poll() or _msgq_receive family), the message becomes the resource of
the task. Only the task that has the message as its resource can free the message.

Messages begin with a message header MESSAGE_HEADER_STRUCT) that defines
the information that MQX RTOS needs to route the message. Application-defined data
follows the message header.

typedef struct message header struct

_msg_size SIZE;

#if MQX USE_32BIT MESSAGE_QIDS
uintle t PAD;

#endif
_queue_id TARGET QID;
_queue_id SOURCE QID;
uchar CONTROL;

#1if MQOX USE 32BIT MESSAGE QIDS

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

84 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

uchar RESERVED [3] ;
#else

uchar RESERVED;
#endif

} MESSAGE HEADER STRUCT, * MESSAGE HEADER STRUCT PTR;

For a description of each field, see MQX RTOS Reference Manual.

3.6.7.4 Sending Messages

After a task allocates a message and fills in the message header fields and any data fields,
it sends the message with _msgq_send(), which sends the message to the target message
queue that is specified in the message header. Sending a message is not a blocking action.

3.6.7.5 Message Queues

Tasks use message queues to exchange messages. There can be private message queues
and system message queues. When a task opens a message queue (specified by a message
queue number), MQX RTOS returns an application-unique queue 1D, which tasks
subsequently use to access the message queue.

A task can convert a queue number to a queue ID with _msgq_get_id().

3.6.7.5.1 16-Bit Queue IDs

The most-significant byte of a 16-bit queue ID contains the processor number, and the
least-significant byte contains the queue number.

Table 3-33. 16-Bit Queue ID

bit position 158 70
queue ID processor number queue number

3.6.7.5.2 32-Bit Queue IDs

The most significant word of a 32-bit queue ID contains the processor number, and the
least significant word contains the queue number.

Table 3-34. 32-Bit Queue ID
bit position 31 16 150

queue ID processor number queue number

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 85

Synchronizing Tasks

3.6.7.6 Using Private Message Queues to Receive Messages

A task can send a message to any private message queue, but only the task that opened a
private message queue can receive messages from it. Only one task at a time can have the
private message queue open.

A task opens a private message queue (_msgq_open()) by specifying its queue number,
which is a value between eight and the maximum queue number that is specified in the
MQX RTOS initialization structure. (Queue numbers of one through seven are reserved.)
If a task calls _msgq_open() with queue number zero, MQX RTOS opens any of the
task's unopened private message queues.

The task that opened a private message queue can close it with _msgq_close(), which
removes all messages from the message queue and frees the messages.

A task receives a message from one of its private message queues with a function from
the _msgq_receive family, which removes the first message in the specified queue and
returns a pointer to the message. If the task specifies queue ID zero, it receives a message
from any of its open message queues. Receiving a message from a private message queue
1s a blocking action, unless the task specifies a timeout, which is the maximum time the
task waits for a message.

3.6.7.7 Using System Message Queues to Receive Messages

System message queues are not owned by a task, and a task does not block waiting to
receive a message from one. Since it 1s not possible to block waiting for a message in a
system message queue, ISRs can use system message queues. A task or ISR opens a
system message queue with _msgq_open_system().

A task or ISR receives messages from a system message queue with _msgq_poll(). If
there are no messages in the system message queue, the function returns NULL.

3.6.7.8 Determining the Number of Pending Messages

A task can determine how many messages are in a system message queue or in one of its
private message queues with _msgq_get_count().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

86 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.7.9 Notification Functions

With both system and private message queues, a task can specify a notification function
that runs, when a message is sent to the queue. For system message queues, the task
specifies the notification function when it opens the queue. For private message queues,
the task sets the notification function with _msgq_set_notification_function(), after it
opens the queue. Applications can use notification functions to couple another
synchronization service (such as an event or semaphore) to a message queue.

3.6.7.10 Example: Client/Server Model

This client/server model shows communication and task synchronization using message
passing.

Server task blocks waiting for a request message from Client task. When Server receives
the request, it executes the request and returns the message to Client. Two-way message
exchange is used, in order to block Client while Server runs.

Server opens an input message queue that it uses to receive requests from Client tasks
and creates a message pool, from which it allocates request messages. Server then creates
a number of Client tasks. In a real application, the Client tasks most likely would not be
created by Server.

When Server has opened its message queue and created its message pool, it enters a loop,
receiving messages from the message queue, acting on them (in this case, printing the
data), and returning the message to Client.

Client also opens a message queue. It allocates a message from the message pool, fills in
the message field, sends the message to Server, and waits for a response from Server.

3.6.7.10.1 Message Definition

/* server.h */
#include <mgx.h>
#include <message.h>
/* Number of clients */
#define NUM CLIENTS 3
/* Task IDs */
#define SERVER TASK 5
#define CLIENT TASK 6
/* Queue IDs */
#define SERVER QUEUE 8
#define CLIENT QUEUE BASE 9
/* This struct contains a data field and a message struct. */
typedef struct ({
MESSAGE_HEADER STRUCT HEADER;
uchar DATA[5] ;
} SERVER _MESSAGE, * SERVER MESSAGE PTR;
/* Function prototypes */
extern void server task(uint32 t initial data);

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 87

Synchronizing Tasks

extern void client task(uint32 t initial data);
extern _pool_id message pool;

3.6.7.10.2 Task Templates for the Client/Server Model Example

/* ttl.c */

#include <mgx.h>

#include <bsp.h>

#include "server.h"

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time
Slice */

{ SERVER TASK, server task, 1000, 8, "server", MQX AUTO START TASK, O, 0},

{ CLIENT TASK, client task, 1000, 8, "client", O, 0, 0},

{ o}

7

3.6.7.10.3 Code for Server Task

/* server.c */

#include <mgx.h>

#include <bsp.h>

#include "server.h"

/* Declaration of a global message pool: */

_pool_id message_pool;

/TSR, = = = = = = m o e e e e
*

* Task Name : server task

* Comments : This task creates a message queue for itself,

*

allocates a message pool, creates three client tasks, and
then waits for a message. After receiving a message, the
task returns the message to the sender.

void server_task(uint32 t param)

SERVER_MESSAGE_PTR msg_ptr;

uint32 t i;

_queue_id server_qgid;

/* Open a message queue: */

server gid = msgqg_open (SERVER QUEUE, O0) ;

/* Create a message pool: */

message_pool = msgpool create(sizeof (SERVER_MESSAGE) ,

NUM_CLIENTS, 0, 0);

/* Create clients: */

for (i = 0; i1 < NUM _CLIENTS; i++) {
_task _create (0, CLIENT TASK, 1i);

while (TRUE) ({
msg ptr = msgq receive(server gid, 0);
printf (" %c \n", msg ptr->DATA[0]);
/* Return the message: */
msg_ptr->HEADER.TARGET QID = msg ptr->HEADER.SOURCE_ QID;
msg ptr->HEADER.SOURCE QID = server gid;
_msgqg_send (msg_ptr) ;

3.6.7.10.4 Code for Client Task

/* client.c */
#include <string.h>
#include <mgx.h>
#include <bsp.h>

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

88 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

#include "server.h"

J*H TS, = = e
*

* Task Name : client task

* Comments This task creates a message queue and allocates

a message in the message pool. It sends the message to the
server task and waits for a reply. It then frees the message.

void client_task(uint32_t index)

{

SERVER_MESSAGE PTR msg ptr;
_queue_id client qgid;

client gid = msgqg open((gqueue number) (CLIENT QUEUE BASE +
index), 0);

while (TRUE) {
/* Allocate a message: */
msg ptr = (SERVER MESSAGE PTR) msg alloc(message pool) ;
if (msg ptr == NULL) {
printf ("\nCould not allocate a message\n") ;
_mgx_exit (0) ;

}/* AE */

msg_ptr->HEADER.SOURCE_ QID client gid;

msg ptr->HEADER.TARGET QID = msgq get id(0, SERVER_QUEUE) ;

msg ptr->HEADER.SIZE = sizeof (MESSAGE HEADER STRUCT) +
strlen((char *)msg ptr->DATA) + 1;

msg ptr->DATA[0] = ('A'+ index);

printf ("Client Task %d\n", index);
_msgqg_send (msg_ptr) ;

/* Wait for the return message: */

msg ptr = msgq receive(client gid, 0);

/* Free the message: */
_msg_free(msg_ptr) ;

3.6.7.10.5 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\lwmsgqg

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.
3. Run the application.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS document for more details about supported
tool chains.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 89

Synchronizing Tasks
3.6.8 Lightweight Message Queue

Lightweight message queues are a simpler, low-overhead implementation of standard
MQX RTOS messages. Tasks send messages to lightweight message queues and receive
messages from lightweight message queues. A message in the message pool has a fixed
size, a multiple of 32 bits. Blocking reads and blocking writes are provided.

Note To optimize code and data memory requirements on some target platforms, the Lightweight
message queue component is not compiled in the MQX RTOS kernel by default. To test this
feature, you need to enable it first in the MQX RTOS user configuration file, and recompile the
MQX RTOS PSP, BSP, and other core components. See Rebuilding Freescale MQX RTOS for
more details.

Table 3-35. Summary: Using the Lightweight Message Queue Component

Lightweight message queue component uses Lightweight message queue component uses certain structure definitions
certain structure definitions and constants, which |and constants, which are defined in lwmsgq.h.
are defined in Iwmsgq.h.

_lwmsgq_init Create a lightweight message queue.
_lwmsgq_receive Get a message from a lightweight message queue.
_lwmsgq_send Puts a message on a lightweight message queue.

3.6.8.1 Initialization of a Lightweight Message Queue
Lightweight message queue is initialized by calling the _lwmsgq_init()function.

Message pool has to be allocated statically before the initialization of this component.
When a task initializes the lightweight message queue the number of messages to be
created and the size of one message has to be specified.

3.6.8.2 Sending Messages

A task sends a message to the Lightweight message queue using the
_Ilwmsgq_send()function. Special structure of the message is not required, however the
message size must match the message size specified in the _lwmsgq_init() function.

If the queue is full, the task either blocks and waits or the error code is returned. There is
also the possibility to block the task after the message is sent.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

90 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.6.8.3 Receiving Messages

A task gets a message from the Lightweight message queue using the
_Ilwmsgq_receive()function. This function removes the first message from the queue and
copies the message to the user buffer. The message becomes a resource of the task.

If the queue is empty, the reading task performs timeout. There is also the possibility to
block the reading task if the lightweight message queue is empty.

3.6.8.4 Example: Client/Server Model

This example is the modified version of the client/server example described in Example:
Client/Server Model. The Message component is replaced by the Lightweight message
queue component.

Server task initializes the message queues, creates three client tasks, and then waits for a
message. After receiving a message, the task returns the message to the sender. Client
task sends a message to the server task and then waits for a reply.

3.6.8.4.1 Message Definition

/* server.h */

#include <mgx.h>

/* Number of clients */

#define NUM_CLIENTS 3

/* Task IDs */

#define SERVER TASK 5

#define CLIENT TASK 6

/* This structure contains a data field and a message header structure */
#define NUM_MESSAGES 3

#define MSG_SIZE 1

extern uint32 t server queuel];

extern uint32 t client queuel];

/* Function prototypes */

extern void server task (uint32 t initial data);
extern void client task (uint32 t initial data);

3.6.8.4.2 Task Templates for the Client/Server Model

/* ttl.c */

#include <mgx.h>

#include <bsp.h>

#include <lwmsgg.h>

#include "server.h"

uint32_ t server queue [sizeof (LWMSGQ STRUCT) /sizeof (uint32 t) + NUM MESSAGES * MSG_SIZE];
uint32_t client_queue [sizeof (LWMSGQ_STRUCT) /sizeof (uint32_t) + NUM_MESSAGES * MSG_SIZE];
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time
Slice */

{ SERVER TASK, server task, 2000, 8, "server", MQX AUTO START TASK, O, 0},
{ CLIENT TASK, client task, 1000, 8, "client", O, 0, 0},

{0}

I

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 91

A
Synchronizing Tasks

3.6.8.4.3 Code for Server Task

/* server.c */

#include <mgx.h>

#include <bsp.h>

#include <lwmsgqg.h>

#include "server.h"

/A TASKH = = = = = = = o

* Task Name : server task

* Comments : This task initializes the message queues,

* creates three client tasks, and then waits for a message.
* After recieving a message, the task returns the message to
* the sender.

void server_ task
(
uint32 t param

)

_mgx_uint msg [MSG_SIZE] ;

_mgx_uint i;

_mgx_uint result;

result = _lwmsgg_init ((void *)server queue, NUM MESSAGES, MSG_SIZE) ;
if (result != MQX OK) {

// lwmsgq init failed
} /* Endif */
result = _lwmsgg_init ((void *)client queue, NUM _MESSAGES, MSG_SIZE) ;
if (result != MQX OK) {
// lwmsgq init failed
} /* Endif */

/* create the client tasks */
for (i = 0; 1 < NUM_CLIENTS; i++) {
_task create (0, CLIENT TASK, (uint32_t)i);

while (TRUE) ({

_lwmsgg_receive((void *)server_queue, msg, LWMSGQ RECEIVE BLOCK ON EMPTY, 0, O0);
printf (" %c \n", msg[0]);

_lwmsgg send((void *)client queue, msg, LWMSGQ SEND BLOCK ON FULL) ;

3.6.8.4.4 Code for Client Task

/* client.c */
#include <string.h>
#include <mgx.h>
#include <bsp.h>
#include <lwmsgqg.hs>
#include "server.h"

J TSR, = = m - o o e e e
*

* Task Name : client task

* Comments : This task sends a message to the server task and
* then waits for a reply.

Bl D */

void client task
(
uint32_t index

)

_mgx_uint msg [MSG_SIZE] ;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

92 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

while (TRUE) {
msg[0] = ('A'+ index);

printf ("Client Task %1d\n", index);
_lwmsgqg_send((void *)server queue, msg, LWMSGQ SEND BLOCK ON_FULL) ;
_time delay ticks(1);

/* wait for a return message */
_lwmsgqg_receive ((void *)client queue, msg, LWMSGQ RECEIVE BLOCK ON_EMPTY, 0, O0);

3.6.8.4.5 Compiling the application and linking it with MQX RTOS
1. Go to this directory:

/mgx/examples/msg

2. See the MOX RTOS Release Notes for instructions how to build and run the
application.

3. Run the application.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See the Getting Started with Freescale MQX™ RTOS document (MQXKSDKGSUG) for more
details about the supported tool chains.

feature="ksdk_integrated">See the Getting Started with Freescale MQX™ RTOS for Kinetis SDK
(document MQXKSDKGSUG).

3.6.9 Task Queues

You can use a task queue to:

* Schedule a task from an ISR.
* Do explicit task scheduling.
e Implement custom synchronization mechanisms.

Table 3-36. Summary: Using Task Queues

_taskq_create Creates a task queue with the specified queuing policy (FIFO or priority).
_taskq_destroy Destroys a task queue (and puts any waiting tasks in the appropriate ready queues).
_taskq_get_value Gets the size of a task queue.

_taskq_resume Restarts a task that is suspended in a task queue, or restarts all tasks that are in a

task queue (and puts them in their ready queues).

_taskq_suspend Suspends a task and puts it in the specified task queue (and removes it from the
task's ready queue).

_taskq_suspend_task Suspends the non-blocked task and puts it in the specified task queue (and removes
it from the task's ready queue).

_taskq_test Tests all task queues.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 93

Synchronizing Tasks

3.6.9.1 Creating and Destroying Task Queues

Before an application can perform explicit task scheduling, it must first initialize a task
queue by calling _taskq_create() with the queuing policy for the task queue. MQX
RTOS creates the task queue and returns a queue ID, which the task subsequently uses to
access the task queue.

A task queue is not a resource of the task that created it. It is a system resource and is not
destroyed when its creating task is terminated.

A task can explicitly destroy a task queue with _taskq_destroy(). If there are tasks in the
task queue, MQX RTOS moves them to their ready queues.

3.6.9.2 Suspending a Task

A task can suspend itself in a specific task queue with _taskq_suspend(). MQX RTOS
puts the task in the queue (blocks the task) according to the queuing policy of the task
queue.

3.6.9.3 Resuming a Task

A task calls _taskq_resume() to remove either one or all tasks from a specific task
queue. MQX RTOS puts them in their ready queues.

3.6.9.4 Example: Synchronizing Tasks
A task is synchronized with an ISR. A second task simulates the interrupt.

The service_task task waits for a periodic interrupt, and prints a message every time the
interrupt occurs. The task first creates a task queue, then suspends itself in the queue. The
simulated_ISR_task task simulates a periodic interrupt with _time_delay(), and when the
timeout expires, it schedules service_task.

3.6.9.4.1 Code as an Example

/* taskg.c */
#include <mgx.h>
#include <fio.h>

/* Task IDs */
#define SERVICE TASK 5

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

94 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

#define ISR_TASK 6

extern void simulated ISR task(uint32 t);

extern void service task(uint32 t);

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Prio,Name, Attributes, Param, TS
*/

{ SERVICE_TASK,service task, 2000, 8, "service", MQX_AUTO START TASK, 0, 0},
{ ISR TASK, simulated ISR _task,2000, 8, "simulated ISR", O, 0, 0},

{ o}
bi

void * my_ task _queue;

/T A, = — o oo oo e -
*

* Task Name : simulated ISR task

* Comments

* This task pauses and then resumes the task queue.

AEND* - - - - - — - oo ——— - */

void simulated ISR task(uint32 t initial data)

while (TRUE) ({
_time delay(200) ;
taskg resume (my task queue, FALSE) ;

}

s X<

*

* Task Name : service task

* Comments :

* This task creates a task queue and the simulated ISR task
* task. Then it enters an infinite loop, printing "Tick" and
*

suspending the task queue.
void service task(uint32_t initial data)

_task id second task id;
/* Create a task queue: */
my_task_queue = _taskq create (MQX TASK QUEUE FIFO) ;
if (my task queue == NULL) ({
_mgx_exit (0) ;

/* Create the task: */
second task id = task create(0, ISR TASK, 0);
if (second task_id == MQX NULL TASK ID) {
printf ("\n Could not create simulated ISR task\n");
_mgx_exit (0) ;

!
while (TRUE)

printf (" Tick \n");
_taskg _suspend (my_ task queue) ;

3.6.9.4.2 Compiling the Application and Linking it with MQX RTOS
1. Go to the Example application directory:

mgx/examples/taskqg

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.

3. Run the application.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 95

Communication Between Processors

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOSdocument for more details about supported
tool chains.

3.7 Communication Between Processors

With the inter-processor communication (IPC) component, tasks can do the following on
remote processors:

* exchange messages

create tasks (blocked or not blocked)
destroy tasks

open and close named event groups
set event bits in named event groups

All the processors need not be directly connected or be of the same type. The IPC
component routes messages through intermediate processors and converts them to the

appropriate endian format. The IPC component communicates over packet control block
(PCB) device drivers.

When MQX RTOS with the IPC component initializes, it initializes IPC message drivers
and builds message routing tables, which define the paths that messages take to go from
one processor to another. For information that might be specific to your hardware, refer
to the release notes that accompany your MQX RTOS release.

Table 3-37. Summary: Setting Up Inter-Processor Communication

_ipc_add_ipc_handler Adds an IPC handler for an MQX RTOS component.
_ipc_add_io_ipc_handler Adds an IPC handler for an I/O component.
_ipc_msg_route_add Adds a route to the message routing table.
_ipc_msg_route_remove Removes a route from the message routing table.

_ipc_pcb_init Initializes an IPC for a PCB driver.

_ipc_task Task that initializes IPCs, and processes remote service requests.

3.7.1 Sending Messages to Remote Processors

As well as having a message routing table, each processor has one or more IPCs, each of
which consists of:

* input function

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

96 Freescale Semiconductor, Inc.

__4
Chapter 3 Using MQX RTOS
e output function
* output queue

When a task sends a message to a message queue, MQX RTOS examines the destination

processor number, which is part of the queue ID. If the destination processor is not local,
MQX RTOS checks the routing table.

If there is a route, the table indicates the output queue of the IPC to use, in order to reach
the destination processor. MQX RTOS then directs the message to that output queue. The
output function runs and transmits the message on the IPC.

When an IPC receives a message, the input function runs. The input function assembles
the message and calls _msgq_send(). The input function needs not to determine, whether
the input message is for the local processor. If the message is not for the local processor,
MQX RTOS routes the message to the destination processor.

3.7.1.1

The diagram shows a simple, four-processor application. The numbers in the table are
arbitrary, but processor-unique, output queue numbers.

Example: Four-Processor Application

Each processor has two IPCs. There are two possible routes between each processor; for
example, processor one has one IPC to processor two, and one to processor four. The
routing table supports one route, so the best route should be selected. The table illustrates
one possibility for each of the processor's routing tables.

3.7.1.1.1 Routing Table for Processor 1

Table 3-38. Routing Table

Source processor

Destination processor1

Destination processor2

Destination processor3

Destination processor4

1

10

10

11

21

20

20

31

31

30

2
3
4

40

41

41

As in the table, when a task on processor one sends a message to a message queue on
processor three, MQX RTOS sends the message from processor one to processor two
using queue ten, and then from processor two to processor three using queue 20. When
the IPC on processor three receives the message, MQX RTOS directs the message to the
destination (target) message queue.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

97

Communication Between Processors
3.7.2 Creating and Destroying Tasks on Remote Processors

With IPC component, a task can create and destroy tasks on a remote processor by
sending service requests to IPC task on that processor. IPC task runs the request, and
responds to the requesting processor.

3.7.3 Accessing Event Groups on Remote Processors

With the IPC component, a task can open and close a named event group on a remote
processor and set event bits in the event group. However, a task cannot wait for event bits
on a remote processor.

Event groups are opened on remote processors by specifying the processor number
(followed by a colon) in the name of the event. The following example would open the
event Fred on processor number four:

_event open("4:fred", &handle);

3.7.4 Creating and Initializing IPC

For tasks to communicate across processors, the application must create and initialize the
IPC component on each processor, as summarized in the following steps. Each step is
described in subsequent sections using information from the routing table previous
example.

1. Build the IPC routing table.
2. Build the IPC protocol initialization table.

3. Provide IPC protocol initialization functions and data.
4. Create IPC task (_ipc_task()).

3.7.4.1 Building an IPC Routing Table

The IPC routing table defines the routes for inter-processor messages. There is one
routing table per processor and it is called _ipc_routing_table. In the previous example,
on processor two, messages for processor one are directed to queue number 20; messages
for processors three and four are directed to queue number 21.

The routing table is an array of routing structures and ends with a zero-filled entry.

typedef struct ipc routing struct

_processor_number MIN PROC_NUMBER;
_processor_number MAX PROC_NUMBER;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

98 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

_queue_number QUEUE;
} IPC_ROUTING STRUCT, * IPC ROUTING STRUCT PTR;

The fields are described in the MQX RTOS Reference Manual.

3.7.4.11

IPC ROUTING STRUCT _ipc routing tablel[] =
{ {2, 3, 10},
{a, 4, 11},
{Or 0, O}}i

Routing Table for Processor One

3.7.4.1.2 Routing Table for Processor Two

IPC ROUTING STRUCT _ipc routing tablel[] =
{ {1, 1, 21},
{3, 4, 20},
{O, 0, O}};

3.7.4.1.3 Routing Table for Processor Three

IPC ROUTING STRUCT _ipc routing tablel[] =
{ {1, 2, 31},
{a, 4, 30},
{Or 0, O}}i

3.7.4.1.4 Routing Table for Processor Four

IPC ROUTING STRUCT _ipc routing tablel[] =
{ {1, 1, 40},
{2, 3, a1},
{O, 0, O}}i

3.7.4.2 Building an IPC Protocol Initialization Table

The IPC protocol initialization table defines and initializes the protocols that implement
the IPC. Each IPC output queue in the routing table refers to an IPC that must have a
corresponding entry in the protocol initialization table, defining the protocol and
communication path that implement the IPC.

Note The IPC_OUT_QUEUE field in IPC_PROTOCOL_INIT_STRUCT must match the QUEUE field in

IPC_ROUTING_STRUCT.

The protocol initialization table is an array of protocol initialization structures and ends
with a zero-filled entry.

typedef struct ipc protocol init struct

IPC_INIT FPTR IPC PROTOCOL_INIT

void *
char *

IPC_PROTOCOL_INIT DATA;
IPC_NAME;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

Communication Between Processors

_queue_number IPC_OUT QUEUE;
} IPC_PROTOCOL INIT STRUCT, * IPC_PROTOCOL INIT STRUCT PTR;

The fields are described in the MQX RTOS Reference Manual.

When MQX RTOS with the IPC component initializes, it calls the
IPC_PROTOCOL_INIT function for each IPC in the table. It passes to the IPC the
IPC_PROTOCOL_INIT_DATA, which contains [PC-specific initialization
information.

3.7.4.3 IPC Using I/O PCB Device Drivers

While you can develop special-purpose IPCs, MQX RTOS provides a standard IPC that
1s built on I/O packet control block (PCB) device drivers.

Using this IPC, an application can use any I/O PCB device driver to receive and send
messages (See [PC Initialization Information).

Here is an IPC_PROTOCL_INIT_STRUCT that is set up to use the standard MQX
RTOS IPC over PCB device drivers:

{ ipc_pcb_init, &pcb init, "Pcb_to test2", QUEUE TO TEST2 },
{ NULL, NULL, NULL, 0}

3.7.4.4 Starting IPC Task

IPC task examines the IPC protocol initialization table and starts the IPC server, which
initializes each IPC driver. The IPC server accepts messages from other processors to
perform remote procedure calls.

The application must define IPC task as an autostart task in the MQX RTOS initialization
structure for each processor. The pointer to the IPC initialization structure of the
IPC_INIT_STRUCT type has to be passed to the IPC task as a creation parameter. This
structure contains IPC routing table and IPC initialization table pointers. If not provided
the default [IPC_INIT_STRUCT is used. The task template for IPC task is:

{ IPC_TTN, ipc task, IPC DEFAULT STACK SIZE, 6,
" ipc_task", MQX AUTO START TASK, (uint32 t)&ipc_init, 0}

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

100 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.7.4.5 Example: IPC Initialization Information

In this example, two processors set up IPC communication over an asynchronous serial
port using the PCB device drivers that accompany MQX RTOS. Each processor is
connected by interrupt-driven asynchronous character device drivers "ittyb:". The IPC
uses the PCB_MQXA driver, which sends and receives packets that have an MQX
RTOS-defined format.

The ipc_init_table uses the MQX RTOS IPC over PCB 1/O driver initialization function
_ipc_pcb_init() and the data structure needed for its initialization, pcb_init, which
defines:

e The PCB I/O driver name to use when opening the driver.

 The installation function to call, in this case _io_pcb_mgqxa_install() (needs not to
be specified, if the PCB 1/0 driver was previously installed).

e The PCB I/O driver-specific initialization pcb_mqxa_init.

3.7.4.5.1 IPC Initialization Information

/* ipc_ex.h */

#define TEST ID 1
#define IPC_TTN 9
#define MAIN TTN 10
#define QUEUE TO TEST2 63
#define MAIN_ QUEUE 64
#define TEST2_ ID 2
#define RESPONDER TTN 11
#define QUEUE TO TEST 67

#define RESPONDER_QUEUE 65
typedef struct the message

MESSAGE HEADER_STRUCT HEADER;
uint32 t DATA;
} THE MESSAGE, * THE MESSAGE PTR;

3.7.4.5.2 Code for Processor One

/* ipcl.c */

#include <mgx.h>

#include <bsp.h>

#include <message.h>

#include <ipc.h>

#include <ipc pcb.h>

#include <io pcb.h>

#include <pcb mgxa.h>

#include "..\ipc_ex.h"

extern void main task(uint32 t);
IO_PCB MQXA INIT STRUCT pcb mgxa init =

/* IO _PORT_NAME */ "ittyb:", /* must be set by the user */
/* BAUD RATE */ 19200,

/* IS POLLED */ FALSE,

/* INPUT MAX LENGTH */ sizeof (THE MESSAGE) ,

/* INPUT TASK PRIORITY */ 7,
/* OUPUT TASK PRIORITY */ 7

Vi

IPC_PCB_INIT STRUCT pcb init =

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 101

Communication Between Processors

{
/* I0_PORT NAME */ "pch mgxa_ ittyx:",
/* DEVICE INSTALL? */ _lo pcb mgxa install,
/* DEVICE_ INSTALL PARAMETER*/ (void *) &pcb mgxa init,

/* IN MESSAGES MAX SIZE *x/ sizeof (THE MESSAGE) ,
/* IN MESSAGES TO ALLOCATE */ 8,

/* IN MESSAGES TO GROW */ 8,

/* IN MESSAGES MAX ALLOCATE */ 16,

/* OUT_PCBS_ INITIAL */ 8,

/* OUT_PCBS TO GROW */ 8,

/* OUT_PCBS MAX */ 16

}i

const IPC_ROUTING STRUCT ipc_routing table[] =

{ TEST2 ID, TEST2 ID, QUEUE TO TEST2 },
{ o, 0, 0}
}i

const IPC_PROTOCOI,_ INTIT_STRUCT ipc_init_table[] =

{ ipc pcb_init, &pcb init, "Pcb _to test2", QUEUE TO TEST2 },
{ NULL, NULL, NULL, 0}
static const IPC_INIT STRUCT ipc_init = {
ipc_routing table,
ipc_init_table

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name,

Attributes,
Param, Time Slice */

{ 1PC_TIN, _ipc_task, IPC DEFAULT STACK SIZE, 8, " ipc task",
MQX_AUTO_START TASK,
(uint32 t)&ipc init, 0},

{ MAIN TTN, main_task, 2000, 9, "Main",
MQX_AUTO_ START TASK,
0, 0},

{0}
bi

MQOX INITIALIZATION STRUCT MQX init struct =

{

/* PROCESSOR_NUMBER */ TEST 1D,

/* START OF KERNEL_MEMORY */ BSP_DEFAULT_START OF KERNEIL, MEMORY,

/* END_OF KERNEL MEMORY */ BSP_DEFAULT END OF KERNEL MEMORY,

/* INTERRUPT STACK SIZE */ BSP_DEFAULT_ INTERRUPT STACK SIZE,

/* TASK_TEMPLATE LIST */ (void *)MOX template list,

/* MQX_HARDWARE_ INTERRUPT LEVEL_MAX */ BSP_DEFAULT MQX_ HARDWARE INTERRUPT LEVEL_MAX,
/* MAX_MSGPOOLS */ 8,

/* MAX MSGQS */ 16,

/* IO _CHANNEIL */ BSP_DEFAULT_ TO_CHANNEL,

/* I0_OPEN_MODE */ BSP_DEFAULT_ IO _OPEN MODE

/
*
* Task Name : main task
* Comments
* This task creates a message pool and a message queue then
* sends a message to a queue on the second CPU.
* It waits for a return message, validating the message before
* sending a new message.
void main_ task

(

uint32 t dummy
)

_pool id msgpool ;
THE_MESSAGE_PTR msg_ptr;
_queue_id gid;
_queue_id my gid;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

102 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

uint32_t test_number = 0;
my gid = msgqg open(MAIN QUEUE,O0) ;
gid = msgqg _get id(TEST2 ID,RESPONDER_QUEUE) ;
msgpool = msgpool create(sizeof (THE MESSAGE), 8, 8, 16);
while (test number < 64)
msg _ptr = (THE_MESSAGE PTR)_msg alloc (msgpool) ;
msg ptr->HEADER.TARGET QID = gid;
msg ptr->HEADER.SOURCE QID = my gid;
msg_ptr->DATA = test number++;

putchar('-"');

_msgq_send (msg_ptr) ;

msg ptr = msgq receive (MSGQ ANY QUEUE, 10000) ;
if (msg_ptr == NULL) ({

puts ("Receive failed\n");
_mgx_exit (1) ;
} else if (msg ptr->HEADER.SIZE != sizeof (THE MESSAGE))
puts ("Message wrong size\n") ;
_mgx_exit (1) ;
} else if (msg ptr->DATA != test number)
puts ("Message data incorrect\n") ;
_mgx_exit (1) ;
}

_msg_free(msg ptr) ;

puts ("All completel\n") ;
_mgx_exit (0) ;

3.7.4.5.3 Code for Processor Two

/* ipc2.c */

#include <mgx.h>

#include <bsp.h>

#include <message.h>

#include <ipc.h>

#include <ipc_pcb.h>

#include <io_pcb.h>

#include <pcb mgxa.h>

#include "ipc_ex.h"

extern void responder task(uint32_t);
I0_PCB MQXA INIT STRUCT pcb mgxa init =

/* I0_PORT NAME */ "ittyb:", /* must be set by the user */
/* BAUD RATE */ 19200,

/* IS POLLED */ FALSE,

/* INPUT MAX LENGTH */ Sizeof(THE_MESSAGE),

/* INPUT TASK PRIORITY */ 7,
/* OUPUT TASK PRIORITY */ 7

IPC_PCB_INIT STRUCT pcb_init =

/* IO_PORT_NAME */ "pcb_mgxa_ ittyx:",
/* DEVICE INSTALL? */ _io pcb mgxa install,
/* DEVICE INSTALL PARAMETER*/ (void *)&pcb mgxa init,

/* IN_MESSAGES_MAX SIZE */ sizeof (THE_MESSAGE) ,
/* IN MESSAGES TO ALLOCATE */ 8,

/* IN MESSAGES_TO GROW */ 8,

/* IN_MESSAGES_MAX ALLOCATE */ 16,

/* OUT_PCBS_INITIAL */ 8,

/* OUT_PCBS_TO_GROW */ 8,

/* OUT_PCBS_MAX */ 16

bi

const IPC_ROUTING STRUCT ipc_routing table[] =

{ TEST ID, TEST ID, QUEUE TO TEST },
{ o, 0, 0}
Vi

const IPC_PROTOCOL_INIT_ STRUCT ipc_ init_ table[] =

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 103

Communication Between Processors

{
{ ipc pcb init, &pcb_init, "Pcb to test", QUEUE TO TEST },
{ NULL, NULL, NULL, 0}
}i
static const IPC_INIT STRUCT ipc_init = {
ipc_routing table,
ipc_init table
}i

const TASK TEMPLATE_ STRUCT MQX template_list[] =

/* Task Index, Function, Stack, Priority, Name,
Attributes,
Param, Time Slice */

{ 1PC_TTN, _ipc_task, IPC_DEFAULT STACK SIZE, 8, " ipc_task",
MQX_ AUTO START TASK, (uint32 t)e&ipc init, 0},

{ RESPONDER_TTN, responder task, 2000, 9, "Responder",
MQX_AUTO_START TASK, O, 0},

{o}

MQOX INITIALIZATION STRUCT MQX init struct =

{

/* PROCESSOR NUMBER */ TEST2_ 1D,
/* START OF KERNEL MEMORY */ BSP_DEFAULT START OF KERNEL MEMORY,
/* END OF KERNEL MEMORY */ BSP_DEFAULT END OF KERNEL MEMORY,
/* INTERRUPT STACK SIZE */ BSP_DEFAULT INTERRUPT STACK SIZE,
/* TASK TEMPLATE LIST */ (void *)MQOX template list,
/* MQX HARDWARE INTERRUPT LEVEL MAX */ BSP DEFAULT MQX HARDWARE INTERRUPT LEVEL MAX,
/* MAX MSGPOOLS */ 8,
/* MAX_MSGQS */ 16,
/* IO _CHANNEL */ BSP_DEFAULT_ IO_CHANNEL,
/* I0_OPEN MODE */ BSP_DEFAULT IO OPEN MODE

}i

XA K, = = — - m m o e e e e

*

* Task Name : responder task

* Comments

* This task creates a message queue then waits for a message.

* Upon receiving the message the data is incremented before

*

the message is returned to the sender.

void responder task(uint32 t dummy) {
THE MESSAGE PTR msg_ptr;

_queue_id qid;
_queue_id my gid;
puts ("Receiver running...\n");

my gid = msgqg open (RESPONDER QUEUE, O0);
while (TRUE) ({

msg ptr = msgq receive (MSGQ ANY QUEUE, O0);
if (msg_ptr != NULL) ({
gid = msg_ptr->HEADER.SOURCE_ QID;

msg ptr->HEADER.SOURCE QID = my gid;
msg_ptr->HEADER.TARGET QID gid;
msg_ptr->DATA++;
putchar('+');
_msgq_send (msg_ptr) ;

} else {
puts ("RESPONDER RECEIVE ERROR\n") ;
_mgx_exit (1) ;

3.7.4.5.4 Compiling the Application and Linking it with MQX RTOS
1. See the MOX™ RTOS Release Notes document for instructions on how to build and
run the application.
2. Go to this directory to compile for processor one:

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

104 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

mgx \examples\taskqg
Build the project.
4. Go to this directory to compile for processor two:

W

mgx\examples\ipc\cpu2\

Build the project.

Connect ttyb: of processor one to ttyb: of processor two.

Run the application according to the instructions in the MOX™ RTOS Release Notes
document (document MQXRN) . Start processor two before processor one.

Nowm

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS (document MQXGSRTOS) for more details
about supported tool chains.

3.7.5 Endian Conversion of Message Headers

When a processor receives a message from a remote processor, the IPC input function
examines the CONTROL field in the message header to determine, whether the message
1s from a processor that uses the other endian format. In that case the input function
converts the message header to the local processor's own endian format, and sets the
CONTROL field to specify its endian format.

MESSAGE HEADER STRUCT msg_ptr;

if (MSG MUST CONVERT HDR ENDIAN (msg ptr->CONTROL)) {
_msg_swap_endian_header (msg_ptr) ;}

Note The IPC cannot convert the data portion of the message to the other endian format, because it does not
know the format of the data.

It is the responsibility of the application to convert the data portion of received messages to the other
endian format. To check whether conversion is necessary, use the macro
MSG_MUST_CONVERT_DATA_ENDIAN. To convert the message data, use
_msg_swap_endian_data(). Both functions are defined in message.h. For more information, see MQX
RTOS Reference Manual.

3.8 Timing

MQX RTOS provides the core-time component, which can be extended with optional
timer and watchdog components.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 105

Timing
3.8.1 Rollover of MQX RTOS Time

MQX RTOS keeps the time internally as a 64-bit count of the number of tick interrupts,
since the application started to run. This provides a very long time before MQX RTOS
time rolls over. For example, if the tick rate was once per nanosecond, the MQX RTOS
time rolls over when 584 years have passed.

3.8.2 Accuracy of MQX RTOS Time

MQX RTOS keeps the time internally as a 64-bit count of the number of tick interrupts,
but when an application requests the tick time, the time also includes a 32-bit number that
represents the number of hardware "ticks" that have occurred since the last tick interrupt.
Typically, MQX RTOS reads this value from the hardware counter that is used to
program the timer. As a result, the application receives the time as accurately, as it can
possibly be determined.

3.8.3 Time Component

Time is a core component that offers time as elapsed time and absolute time, expressed as
seconds and milliseconds time stamp and (second/millisecond time), as ticks (tick time),
or as a date (date time and tm struct).

Table 3-39. Summary: Using the Time Component

_ticks_to_time Converts tick time to second/millisecond time.

_time_add_day_to_ticks Adds days to tick time.

_time_add_hour_to_ticks Adds hours to tick time.

_time_add_min_to_ticks Adds minutes to tick time.

_time_add_msec_to_ticks Adds milliseconds to tick time.

_time_add_nsec_to_ticks Adds nanoseconds to tick time.

_time_add_psec_to_ticks Adds picoseconds to tick time.

_time_add_sec_to_ticks Adds seconds to tick time.

_time_add_usec_to_ticks Adds microseconds to tick time.

_time_delay Suspends the active task for the specified number of milliseconds.

_time_delay_for Suspends the active task for the specified tick-time period (including hardware
ticks).

_time_delay_ticks Suspends the active task for the specified number of ticks.

_time_delay_until Suspends the active task until the specified tick time.

_time_dequeue Removes a task (specified by its task ID) from the timeout queue.

_time_dequeue_td Removes a task (specified by its task descriptor) from the timeout queue.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

106 Freescale Semiconductor, Inc.

Chapter 3 Using MQX RTOS

Table 3-39. Summary: Using the Time Component (continued)

_time_diff Gets the second/millisecond time difference between two second/millisecond
time structures.
_time_diff_days Gets the time difference in days between two tick times.

_time_diff_hours

Gets the difference in hours between two tick times.

_time_diff_microseconds

Gets the difference in microseconds between two tick times.

_time_diff_milliseconds

Gets the difference in milliseconds between two tick times.

_time_diff_minutes

Gets the difference in minutes between two tick times.

_time_diff_nanoseconds

Gets the difference in nanoseconds between two tick times.

_time_diff_picoseconds

Gets the difference in picoseconds between two tick times.

_time_diff_seconds

Gets the difference in seconds between two tick times.

_time_diff_ticks

Gets the tick-time difference between two tick times.

_time_from_date

Gets second/millisecond time from date time.

_time_get

Gets the absolute time in second/millisecond time.

_time_get_ticks

Gets the absolute time in tick time (includes ticks and hardware ticks).

_time_get_elapsed

Gets the second/millisecond time that has elapsed, since the application
started on this processor.

_time_get_elapsed_ticks

Gets the tick time that has elapsed, since the application started on this
processor.

_time_get_hwticks

Gets the number of hardware ticks since the last tick.

_time_get_hwticks_ per_tick

Gets the number of hardware ticks per tick.

_time_get_microseconds

Gets the calculated number of microseconds, since the last periodic timer
interrupt.

_time_get_nanoseconds

Gets the calculated number of nanoseconds, since the last periodic timer
interrupt.

_time_get_resolution

Gets the resolution of the periodic timer interrupt.

_time_get_ticks_per_sec

Gets the frequency (in ticks per second) of the clock interrupt.

_time_init_ticks

Initializes a tick-time structure with a number of ticks.

_time_notify_kernel

Called by the BSP, when a periodic timer interrupt occurs.

_time_set

Sets the absolute time in second/millisecond time.

_time_set_hwticks_per_tick

Sets the number of hardware ticks per tick.

_time_set_ticks

Sets the absolute time in tick time.

_time_set_resolution

Sets the frequency of the periodic timer interrupt.

_time_set_timer_vector

Sets the periodic timer interrupt vector that MQX RTOS uses.

_time_set_ticks_per_sec

Sets the frequency (in ticks per second) of the clock interrupt.

_time_to_date

Converts second/millisecond time to date time.

_time_to_ticks

Converts second/millisecond time to tick time.

mktime Converts the broken-down time value, expressed as local time, to calendar
time representation.

gmtime_r Converts the calendar time to broken-down time representation, expressed in
Coordinated Universal Time (UTC).

timegm Converts the broken-down time structure, expressed as UTC time, to a

calendar time representation.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

107

Timing

Table 3-39. Summary: Using the Time Component (continued)

localtime_r Converts the calendar time to a broken-down time representation, expressed
in local time.

3.8.3.1 Second/Millisecond Time

Time is available in seconds and milliseconds. To process second/millisecond time is
more complex and CPU intensive, than processing tick time.
typedef struct time struct

uint32 t SECONDS;

uint32 t MILLISECONDS;
} TIME STRUCT, * TIME_STRUCT PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.2 Time Stamp

Time stamp is a system to describe instants in time, which are defined as the number of
seconds that have elapsed since the Epoch, 00:00:00 UTC, 1-1-1970.

typedef uint32 t time t

3.8.3.3 Tick Time

Time is available in tick time. To process tick time is simpler and less CPU intensive,
than processing second/millisecond time.
typedef struct mgx_ tick struct

_mgx_uint TICKS[MQX NUM TICK FIELDS] ;

uint32_t HW_TICKS;
} MOX TICK STRUCT, * MQX TICK STRUCT PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.4 Elapsed Time

Elapsed time is the amount of time since MQX RTOS started on the processor. A task
can get the elapsed time in second/millisecond time with _time_get_elapsed(), and in
tick time with _time_get_elapsed_ticks().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

108 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.8.3.5 Time Resolution

When MQX RTOS starts, it installs the periodic timer ISR, which sets the time resolution
for the hardware. The resolution defines, how often MQX RTOS updates time, or how
often a tick occurs. The resolution is usually 200 ticks per second or five milliseconds. A
task can get the resolution in milliseconds with _time_get_resolution() and in ticks per
second with _time_get_resolution_ticks().

A task can get elapsed time in microsecond resolution by calling _time_get_elapsed(),
followed by _time_get_microseconds(), which gets the number of microseconds since
the last periodic timer interrupt.

A task can get elapsed time in nanosecond resolution by calling _time_get_elapsed()
followed by _time_get_nanoseconds(), which gets the number of nanoseconds since the
last periodic timer interrupt.

A task can also get the number of hardware ticks since the last interrupt by calling
_time_get_hwticks(). A task can get the resolution of the hardware ticks by calling
_time_get_hwticks_per_tick().

3.8.3.6 Absolute Time

So that the tasks on different processors can exchange information that is timestamped
from a common reference, the time component offers absolute time.

Initially, absolute time is the time since the reference date of 0:00:00.000 January 1,
1970. An application can change the absolute time by changing the reference date in
second/millisecond time with _time_set(), or in tick time with _time_set_ticks().

A task gets the absolute time in second/millisecond time with _time_get() or in tick time
with _time_get_ticks().

Unless an application changes the absolute time, the following pairs of functions return
the same values:

o _time_get() and _time_get_elapsed()
o _time_get_ticks() and _time_get_elapsed_ticks()

Note A task should use elapsed time to measure an interval or implement a timer. This prevents the
measurement from being affected by other tasks that might call _time_set() or _time_set_ticks(), and
thereby change the absolute time.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 109

Timing

3.8.3.7 Time in Date Formats

To help you set and interpret absolute time that is expressed in second/millisecond time
or tick time, the time component offers time expressed in a date format and a broken-
down time structure (tm struct).

3.8.3.7.1 DATE_STRUCT

typedef struct date struct

intl6 t YEAR;
int16 t MONTH ;
int16 t DAY;
intle6_t HOUR;
int16 t MINUTE;
int16 t SECOND ;
int16 t MILLISEC;
intl6 t WDAY ;

int16_t YDAY;
} DATE_STRUCT, * DATE_STRUCT PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.7.2 TM STRUCT

struct tm {

int32 t tm_ sec;
int32 t tm min;
int32_t tm_hour;
int32_t tm_mday;
int32 t tm_mon;
int32 t tm year;
int32 t tm_wday;
int32_t tm_yday;
int32 t tm isdst;

The fields are described in MQX RTOS Reference Manual.

3.8.3.8 Timeouts

A task can supply the time as a timeout parameter to several MQX RTOS components,
for example, functions in the _msgq_receive, _lwmsgq_receive, _sem_wait,
_Iwsem_wait, event wait and Iwevent_wait families. Note, that the resolution of all
time functions is always one tick.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

110 Freescale Semiconductor, Inc.

4

Chapter 3 Using MQX RTOS
_time_delay(), _event_wait_all(), _event_wait_any(), _sem_wait(), msgq_receive()
and _sched_set_rr_interval() functions wait at least the specified time in milliseconds.
This time is usually bigger than the requested time, depending on the tick length, on other
scheduled events and their priorities.

_time_delay_ticks() function waits at least the requested number of tick interrupts.
_time_delay_ticks(1) waits at least to the first tick interrupt.

_time_delay(0) and _time_delay_tick(0) cause shed_yield() function calling. For ticks
higher than zero, the actual waiting time is typically shorter than ticks multiplied by tick
time in milliseconds.

A task can also explicitly suspend itself by calling a function from the _time_delay
family. When the time expires, MQX RTOS puts the task in the task's ready queue.

3.8.4 Timers

Timers are an optional component that extends the core-time component. An application
can use timers:

* To cause a notification function to run at a specific time - when MQX RTOS creates
the timer component, it starts Timer task, which maintains timers and their
application-defined notification functions. When a timer expires, Timer Task calls
the appropriate notification function.

* To communicate that a time period has expired.

Note To optimize code and data memory requirements on some target platforms, the Timer
component is not compiled in the MQX kernel by default. To test this feature, you need to enable
it first in the MQX user configuration file and recompile the MQX PSP, BSP, and other core
components. See Rebuilding Freescale MQX RTOS for more details.

A task can start a timer at a specific time or at some specific time after the current time.
Timers can use elapsed time or absolute time.

There are two types of timers:

* One-shot timers, which expire once.
* Periodic timers, which expire repeatedly at a specified interval. When a periodic
timer expires, MQX RTOS resets the timer.

Table 3-40. Summary: Using Timers

Timers use certain structures and constants, which are defined in timer.h.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 111

Timing
Table 3-40. Summary: Using Timers (continued)
_timer_cancel Cancels an outstanding timer request.
_timer_create_component Creates the timer component.
_timer_start_oneshot_after Starts a timer that expires once after a time delay in milliseconds.
_timer_start_oneshot_after_ticks Starts a timer that expires once after a time delay in ticks.
_timer_start_oneshot_at Starts a timer that expires once at a specific time (in second/
millisecond time).
_timer_start_oneshot_at_ticks Starts a timer that expires once at a specific time (in tick time).
_timer_start_periodic_at Starts a periodic timer at a specific time (in second/millisecond
time).
_timer_start_periodic_at_ticks Starts a periodic timer at a specific time (in tick time).
_timer_start_periodic_every Starts a periodic timer every number of milliseconds.
_timer_start_periodic_every_ticks Starts a periodic timer every number of ticks.
_timer_test Tests the timer component.

3.8.4.1 Creating the Timer Component

You can explicitly create the timer component by calling _timer_create_component()
with the priority and stack size for Timer task, which MQX RTOS creates, when it
creates the timer component. Timer task manages timer queues and provides a context for
notification functions.

If you do not explicitly create the timer component, MQX RTOS creates it with default
values the first time an application starts a timer.

Table 3-41. Default Timer Task Parameters

Parameter Default
Priority of Timer task 1
Stack size for Timer task 500

3.8.4.2 Starting Timers
A task starts a timer with one of the following:

e _timer_start_oneshot_after(), _timer_start_oneshot_after_ticks()
_timer_start_oneshot_at(), _timer_start_oneshot_at_ticks()
_timer_start_periodic_at(), _timer_start_periodic_at_ticks()
_timer_start_periodic_every(), _timer_start_periodic_every_ticks()

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

112 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

When a task calls one of these functions, MQX RTOS inserts a timer request into the
queue of outstanding timers. When the timer expires, the notification function runs.

|Note |The stack space for Timer task should include the stack space that the notification function needs. |

3.8.4.3 Cancelling Outstanding Timer Requests

A task can cancel an outstanding timer request by calling _timer_cancel() with the timer
handle that was returned from one of the_timer_start family of functions.

3.8.4.4 Example: Using Timers

Simulate a LED being turned on and off every second. One timer turns the LED on, and
another turns it off. The timers expire every two seconds, offset by one second.

3.8.4.4.1 Code for Timer Example

/* main.c */

#include <mgx.h>
#include <bsp.h>
#include <fio.h>

#include <timer.h>

#define TIMER TASK PRIORITY 2

#define TIMER STACK SIZE 1000

#define MAIN TASK 10

extern void main task(uint32 t);

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice
*/
{ MAIN TASK, main task, 2000, 8, "Main", MQX AUTO_ START TASK, O, O},
} {0}
/*FUNCTION# = = == = = = = = = o = = m e e e e e e e e e e e e e
*
* Function Name : LED on
* Returned Value : none
* Comments :
* This timer function prints "ON"
FEND* - - = = m - m m e e e e e e e e e e — - o */

void LED on
(
_timer id id,
void * data ptr,
MQX TICK STRUCT PTR tick ptr
)
{

printf ("ON\n") ;
JFFUNCTIONY = = = = = = = = = = = = m o oo e

*
* Function Name : LED off

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 113

A ————
Timing

* Returned Value : none
* Comments :
* This timer function prints "OFF"

void LED off
(
_timer id id,
void * data ptr,
MQX_ TICK STRUCT PTR tick_ptr
)

printf ("OFF\n") ;

Task Name : main task

Comments

This task creates two timers, each of a period of 2 seconds,
the second timer offset by 1 second from the first.

* Ok Kk ok kSN
*
H
b
0
~
*

void main_task
(
uint32 t initial data

)

MQX TICK STRUCT ticks;
MQOX TICK STRUCT dticks;

_timer id on_timer;

_timer id off timer;

/*

** Create the timer component with more stack than the default
** in order to handle printf () requirements:

*/

_timer create_component (TIMER DEFAULT TASK PRIORITY, 1024);

_time init ticks(&dticks, 0);

_time add sec to ticks(&dticks, 2);

_time_get_ticks(&ticks);

_time add sec_to_ticks(&ticks, 1);

on _timer = timer start periodic_at ticks(LED on, O,
TIMER ELAPSED TIME MODE, &ticks, &dticks);

_time add sec_to_ ticks(&ticks, 1);

off timer = _timer start periodic_at_ticks(LED off, O,
TIMER ELAPSED TIME MODE, &ticks, &dticks);

_time delay ticks(600);

printf ("\nThe task is finished!");

_timer cancel (on_timer) ;

_timer cancel (off timer);

_mgx_exit (0) ;

3.8.4.4.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\timer
2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

A message is printed each time the timer notification function runs.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
114 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

See Getting Started with Freescale MQX™ RTOS document for more details about supported
tool chains.

3.8.5 Lightweight Timers

Lightweight timers are an optional component that extends the core time component.
Lightweight timers provide periodic notification to the application.

A task can create a periodic queue and add timers to it. The timers expire at the same rate
as the queue's period, but offset from the period's expiry time.

Table 3-42. Summary: Using Lightweight Timers

Lightweight timers use certain structures and Lightweight timers use certain structures and constants, which are

constants, which are defined in Iwtimer.h. defined in Iwtimer.h.

_lwtimer_add_timer_to_queue Adds a lightweight timer to a periodic queue.

_lwtimer_cancel_period Removes all the timers from a periodic queue.

_lwtimer_cancel_timer Removes a timer from a periodic queue.

_lwtimer_create_periodic_queue Creates a periodic queue (with a period of a specified number of ticks),
to which lightweight timers can be added.

_lwtimer_test Tests all the periodic queues and their timers.

3.8.5.1 Starting Lightweight Timers

A task starts a lightweight timer by first creating a periodic queue by calling
_lwtimer_create_periodic_queue() with a pointer to a variable of type
LWTIMER_PERIOD_STRUCT, which specifies the queue's period (in ticks). It then
adds a timer to the queue by calling _lwtimer_add_timer_to_queue() with the address
of the periodic queue variable and a pointer to a variable of type LWTIMER_STRUCT,
which specifies the function that is called when the timer expires.

When the timer expires, the notification function specified by the timer runs.

Note Because the notification function runs in the context of the kernel timer ISR, it is subject to the same
restrictions as the ISR (see page Restrictions on ISRs).

The MQX RTOS interrupt stack size should include the stack space that the notification function needs.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 115

Timing
3.8.5.2 Cancelling Outstanding Lightweight Timer Requests

A task can cancel an outstanding lightweight timer request by calling
_lwtimer_cancel_timer() with the address of the LWTIMER_STRUCT.

A task can cancel all the timers on a lightweight timer queue by calling
_lwtimer_cancel_period() with the address of the LWTIMER_PERIOD_STRUCT.

3.8.6 Watchdogs

Most embedded systems have a hardware watchdog timer. If the application does not
reset the timer within a certain time (perhaps because of deadlock or some other error
condition), the hardware generates a reset operation. As such, a hardware watchdog timer
monitors the entire application on a processor; it does not monitor individual tasks.

Note To optimize code and data memory requirements on some target platforms, the Watchdog
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

The MQX RTOS watchdog component provides a software watchdog for each task. If a
single task starves or runs beyond certain timing constraints, the watchdog provides a
way to detect the problem. Initially, the task starts its watchdog with a specific time
value, and if the task fails to stop or restart the watchdog before that time expires, MQX
RTOS calls a processor-unique, application-supplied expiry function that can initiate
eITor recovery.

Table 3-43. Summary: Using Watchdogs

Watchdogs use certain structures and constants, Watchdogs use certain structures and constants, which are defined in
which are defined in watchdog.h. watchdog.h.

_watchdog_create_component Creates the watchdog component.

_watchdog_start Starts or restarts the watchdog (time is specified in milliseconds).
_watchdog_start_ticks Starts or restarts the watchdog (time is specified in ticks).
_watchdog_stop Stops the watchdog.

_watchdog_test Tests the watchdog component.

3.8.6.1 Creating the Watchdog Component

Before a task can use the watchdog component, the application must explicitly create it
by calling _watchdog_create_component() with the interrupt vector of the periodic
timer device and a pointer to the function that MQX RTOS calls if a watchdog expires.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

116 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.8.6.2 Starting or Restarting a Watchdog
A task starts or restarts its watchdog by calling either:

» _watchdog_start() with the number of milliseconds, before the watchdog expires.
» _watchdog_start_ticks() with the number of ticks, before the watchdog expires.

If the task does not restart or stop its watchdog before the watchdog expires, MQX RTOS
calls the expiration function.

3.8.6.3 Stopping a Watchdog
A task can stop its watchdog with _watchdog_stop().

3.8.6.4 Example: Using Watchdogs

A task creates the watchdog component on the periodic timer interrupt vector and
specifies the expiry function (handle_watchdog_expiry()). Then it starts a watchdog that
expires after two seconds. To prevent its watchdog from expiring, the task must either
stop or restart the watchdog within two seconds.

/*watchdog.c */

#include <mgx.hs>

#include <bsp.h>
#include <watchdog.h>

#define MAIN TASK 10
extern void main task(uint32 t);
extern void handle watchdog expiry(void *);

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice
*/
{ MAIN TASK, main task, 2000, 8, "Main", MQX_ AUTO START TASK, O, 0},
} {0}
JHFFUNCT I ON® = = = = = = = = = m e o o e e e e e e e
*
* Function Name : handle watchdog expiry
* Returned Value : none
* Comments :
* This function is called when a watchdog has expired.
HEND* = = = = = = = = = = = = = = e e e e e oo */

void handle watchdog expiry(void * td ptr)

{

printf ("\nwatchdog expired for task: %$p", td ptr);

8 e i)
*

* Function Name : waste time

* Returned Value : input value times 10

* Comments :

* This function loops the specified number of times,

*

essentially wasting time.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 117

Timing

_mgx_uint waste_time
(
_mgx_uint n
{)
_mgx_uint i;
volatile mgx uint result;
result = 0;
for (i = 0; 1 < n; i++) {
result += 1;

return result*10;

}

JFTASK, = = == = = e e m m e e e e e e
*

* Task Name : main_task

* Comments

* This task creates a watchdog, then loops, performing

*

work for longer and longer periods until the watchdog fires.

void main_task
(
uint32 t initial data

)

MQX TICK STRUCT ticks;
_mgx_uint result;
_mgx_uint n;

_time init ticks(&ticks, 10);

result = watchdog create component (BSP_TIMER INTERRUPT VECTOR,
handle_watchdog expiry) ;

if (result != MQX OK) ({
printf ("\nError creating watchdog component") ;
_mgx_exit (0) ;

n = 100;
while (TRUE) ({
result = watchdog_start_ ticks (&ticks) ;

n = waste time(n);
_watchdog_stop () ;
printf ("\n %d4", n);

3.8.6.4.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\watchdog

2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

When the watchdog expires, the Main task prints a message to the output device.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build.

See Getting Started with Freescale MQX™ RTOS document for more details about supported
tool chains.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

118 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.9 Handling Interrupts and Exceptions

MQX RTOS handles hardware interrupts and exceptions with interrupt service routines
(ISRs). An ISR is not a task; it is a small, high-speed routine that reacts quickly to
hardware interrupts or exceptions. ISRs are usually written in C. The duties of an ISR
might include:

* servicing a device
e clearing an error condition
* signaling a task

When MQX RTOS calls an ISR, it passes a parameter, which the application defines,
when the application installs the ISR. The parameter might, for example, be a pointer to a
configuration structure that is specific to the device.

Note The parameter should not point to data on a task's stack, because this memory might not be available to
the ISR.

The ISR might run with some interrupts disabled, depending on the priority of the
interrupt being serviced. Therefore, it is important that the ISR performs a minimal
number of functions. The ISR usually causes a task to become ready. It is the priority of
this task that then determines, how quickly the information gathered from the interrupting
device can be processed. The ISR can ready a task in a number of ways: through
lightweight events, events, lightweight semaphores, semaphores, messages, lightweight
message queues or task queues.

MQX RTOS provides a kernel ISR, which is written in assembly language. The kernel
ISR runs before any other ISR, and does the following:

* [t saves the context of the active task.

* [t switches to the interrupt stack.

* It calls the appropriate ISR.

 After the ISR has returned, it restores the context of the highest-priority ready task.

When MQX RTOS starts, it installs the default kernel ISR (_int_kernel_isr()) for all
possible interrupts.

When the ISR returns to the kernel ISR, the kernel ISR performs a task dispatch
operation if the ISR readied a task that is of higher priority, than the one that was active
at the time of the interrupt. This means that the context of the previously active task is
saved, and the higher-priority task becomes the active task.

The following diagram shows, how MQX RTOS handles interrupts.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 119

Handling Interrupts and Exceptions

kernel
ISR

first_user ISR sk
as
14/. first_user_ISR+1
ﬁ task
L task
last_user_ISR

Figure 3-3. Handling Interrupts

Table 3-44. Summary: Handling Interrupts and Exceptions

_int_disable Disables hardware interrupts.
_int_enable Enables hardware interrupts.
_int_get_isr Gets the ISR for a vector number.

_int_get_isr_data

Gets the data pointer associated with an interrupt.

_int_get_isr_depth

Gets the current ISR nesting depth.

_int_get_kernel_isr

Gets the kernel ISR for an interrupt.

_int_get_previous_vector_table

Gets a pointer to the interrupt vector table that is stored when MQX RTOS
starts.

_int_get_vector_table

Gets a pointer to the current interrupt vector table.

_int_install_isr

Installs an application-defined ISR.

_int_install_kernel_isr

Installs a kernel ISR.

_int_install_unexpected_isr

Installs _int_unexpected_isr() as the default ISR.

_int_kernel_isr

The default kernel ISR.

_int_set_isr_data

Sets the data associated with a specific interrupt.

_int_set_vector_table

Changes the location of the vector table.

3.9.1

Initializing Interrupt Handling

When MQX RTOS starts, it initializes its ISR table, which has an entry for each interrupt
number. Each entry consists of:

* A pointer to the ISR to call.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

120

Freescale Semiconductor, Inc.

L __4
Chapter 3 Using MQX RTOS
 Data to pass as a parameter to the ISR.
* A pointer to an exception handler for that ISR.

Initially, the ISR for each entry is the default ISR _int_default_isr(), which blocks the
active task.

3.9.2 Installing Application-Defined ISRs

With _int_install_isr(), an application can replace the ISR with an application-defined,
interrupt-specific ISR, which MQX RTOS calls, when the interrupt occurs. The
application should do the replacement before it initializes the device.

The parameters for _int_install_isr() are:

* interrupt number

* pointer to the ISR function

* ISR data

* An application-defined ISR usually signals a task, which can be done by:

 Setting an event bit (_event_set()).

* Posting a lightweight semaphore (_lwsem_post()).

* Posting a non-strict semaphore (_sem_post()).

* Sending a message to a message queue. An ISR can also receive a message from a
system message queue (_msgq_send family).

|Note |The most efficient way to allocate a message from an ISR is to use _msg_alloc().

* dequeuing a task from a task queue, which puts the task in the task's ready queue.
Task queues let you implement signaling methods that are customized for your
application (_taskq_resume()).

3.9.3 Restrictions on ISRs

The following table contains information about ISR restrictions.

3.9.3.1 Functions That the ISR Cannot Call
MQX RTOS returns an error, if the ISR calls any of the following functions.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 121

Handling Interrupts and Exceptions

Table 3-45. Functions That the ISR Cannot Call

Component

Function

Events

_event_close() _event_create() _event_create_auto_clear()
_event_create_component() _event_create_fast()
_event_create_fast_auto_clear() _event_destroy() _event_destroy_fast()
_event_wait_all family _event_wait_any family

Lightweight events

_lwevent_destroy() _Iwevent_test() _Iwevent_wait family

Lightweight logs

_lwlog_create_component()

Lightweight message queue

_lwmsgq_send()

(when LWMSGQ_SEND_BLOCK_ON_FULL or
LWMSGQ_SEND_BLOCK_ON_SEND flags used)

_lwmsgq_receive()

Lightweight semaphores

_lwsem_test() _lwsem_wait()

Logs _log_create_component()

Messages _msg_create_component() _msgq_receive family

Mutexes _mutex_create_component() _mutex_lock()

Names _hame_add() _name_create_component() _name_delete()

Partitions _partition_create_component()

Semaphores _sem_close() _sem_create() _sem_create_component() _sem_create_fast()

_sem_destroy() _sem_destroy_fast() _sem_post() (for strict semaphores only)
_sem_wait family

Task queues

_taskq_create() _taskq_destroy() _taskq_suspend() _taskq_suspend_task()
_taskq_test()

Timers

_timer_create_component() _timer_cancel()

Watchdogs

_watchdog_create_component()

3.9.3.2 Functions That ISRs should not call
ISRs should not call MQX RTOS functions that might block or take a long time to run.

These include:

* most functions from the _io_ family

* _event_wait family

_int_default_isr()

_int_unexpected_isr()

_klog_display()

_klog_show_stack_usage()

_Iwevent_wait family

e _lwmsgq_send() (when LWMSGQ_SEND_BLOCK_ON_FULL or
LWMSGQ_SEND_BLOCK_ON_SEND flags used)

* _lwmsgq_receive()

e _lwsem_wait family

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

122 Freescale Semiconductor, Inc.

e

Chapter 3 Using MQX RTOS
* _msgq_receive family

_mutatr_set_wait_protocol()

_mutex_lock()

_partition_create_component()

_task_block()

_task_create() and _task_create_blocked()

_task_destroy()

_time_delay family

_timer_start family

3.9.3.3 Non-Maskable Interrupts

Non-Maskable Interrupts (NMI) are defined as interrupts that cannot be disabled
(masked) by software. It is possible to use such interrupts in MQX RTOS applications,
but NMI service routines must be installed directly to vector table as kernel ISRs (use
_int_install_kernel_isr() instead of _int_install_isr()). The NMI service routines are not
allowed to call any MQX RTOS API function.

Note that _int_install_kernel_isr() call is only enabled if the vector table is located in
RAM memory (see MQX_ROM_VECTORS configuration option in section Configuring
MQX RTOS at Compile Time).

3.9.3.4 MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration
Parameter

On some processor platforms an internal concept of disabling "all interrupt levels" may
be re-configured in a way that only interrupt levels up to the
MQX_HARDWARE_INTERRUPT_LEVEL_MAX (field in the
MQX_INITTALIZATION_STRUCT) are disabled. This effectively enables critical
interrupt requests above that maximum level to be serviced asynchronously to MQX
RTOS kernel execution and with minimum possible latency. From the MQX RTOS
perspective, such an interrupt is considerred as a non-maskable interrupt and the same
restrictions as for NMI apply.

Tables below summarize values written into the SR/BASEPRI register when switching to
the task withthe defined priority, considering the value of the
MQX_HARDWARE_INTERRUPT_LEVEL_MAX.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 123

A
Handling Interrupts and Exceptions

As an example for ColdFire platform, when
MQX_HARDWARE_INTERRUPT_LEVEL_MAX is set to 7 switching to the task with
the priority of 4 causes the SR register is loaded by the value of 2. It means that this task
cannot be interrupted by the interrupts with the priority lower than 3.

Table 3-46. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ColdFire platforms

MQX_HARDWARE_INTERRU Task Priority
PT_LEVEL_MAX

1 |2 |3 4 5 6 7

NOT ALLOWED. EFFECTIVELY CHANGES TO
MQX_HARDWARE_INTERRUPT_LEVEL_MAX=1

1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0
4 3 2 1 0 0 0 0 0
5 4 3 2 1 0 0 0 0
6 5 4 3 2 1 0 0 0
7 6 5 4 3 2 1 0 0
8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=70

On Cortex®-M4® and Cortex®-A5® core based platforms, the MQX RTOS interrupt
processing is designed this way. Kinetis K family MCUs support 16 hardware interrupt
priority levels. Internally MQX RTOS maps even levels (0, 2, 4, .., 14) for MQX RTOS
applications while odd levels (1, 3, .., 15) are used internally. MQX RTOS application
interrupt levels are O to 7, the mapping from MQX RTOS application levels O to 7 to
hardware priority levels (0, 2 to 14) is implemented in the _bsp_int_init() function.

To install an MQX RTOS application defined ISR on Kinetis K, use the following code:

_int _install isr(vector, isr ptr, isr data);
_bsp _int init(vector, priority, subpriority, enable);

vector - number of non-core vector (for example, 37 for LLWU, defined in
IRQInterruptIndex in the MCU header file).

priority - priority of the interrupt source. Allowed values: any integer between
MQX_HARDWARE_INTERRUPT_LEVEL_MAX and 7 (including both values), the
lower number, the higher priority is expected.

subpriority - omitted on Kinetis K.

enable - TRUE to enable the interrupt vector source in NVIC.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

124 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

To install a kernel ISR on Kinetis K (to bypass MQX RTOS), use the following code:

_int install kernel isr(Vector, isr ptr); /* works only for vector table located in the RAM
*/

_bsp_int_init(vector, priority, subpriority, enable);

vector - number of non-core vector (for example, 79 for FTM1, defined in
IRQInterruptIndex in the MCU header file).

priority - priority of the interrupt source. Allowed values: O (for the highest priority
interrupt) up to 7.

subpriority - omitted on Kinetis K.
enable - TRUE to enable the interrupt vector source in NVIC.

Notice that due to the ARM® hardware interrupt stacking feature, the kernel isr can be
any C function with declaration void my_kernel_isr(void).

ARM Cortex®-M4 BASEPRI register values for different task priorities and different
values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX are shown in the image
below. Note the most significant nibble is used to set-up the priority. Refer the ARM
Reference Manual for BASEPRI register description.

Example: BASEPRI=0x20, the most significant nibble is 0x2, which means only
interrupt with hardware priority level 1 or O can interrupt this task.

Table 3-47. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ARM Cortex®-M4 core based platforms

MQX_HARDWARE_INTERRU Task Priority
PT_LEVEL_MAX

1 2 E O O O
NOT ALLOWED. EFFECTIVELY CHANGES TO
MQX_HARDWARE_INTERRUPT_LEVEL MAX=1

1 0x20 0x40 0x60 0x80 0xAO0 0xCO0 OxEO 0
2 0x40 0x60 0x80 0xAO0 0xCO0 OxEO 0 0
3 0x60 0x80 0xAO0 0xCo O0xEOQ 0 0 0
4 0x80 0xAO0 0xCO0 OxEO 0 0 0 0
5 0xAO0 0xCO0 OxEO 0 0 0 0 0
6 0xCO0 OxEO 0 0 0 0 0 0
7 OxEO 0 0 0 0 0 0 0
8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=70

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 125

A
Handling Interrupts and Exceptions

ARM Cortex-AS interrupt priority mask register (GICC_PMR — GIC register) values for
different task priorities and different values of
MQX_HARDWARE_INTERRUPT_LEVEL_MAX are shown in the following table.
Note the most significant nibble is used to set-up the priority. Refer to the ARM Generic
Interrupt Controller Architecture Specification for GICC_PMR register description.

Table 3-48. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ARM® Cortex®-A5 core based platforms

MQX_HARDWARE_INTERRU Task Priority
PT_LEVEL_MAX

1 2 [O O O
NOT ALLOWED. EFFECTIVELY CHANGES TO
MQX_HARDWARE_INTERRUPT_LEVEL MAX=T1

1 0x20 0x40 0x80 0xA0 0xCO0 O0xEOQ OxFF OxFF
2 0x40 0x80 0xAO0 0xCO0 O0xEOQ OxFF OxFF OxFF
3 0x80 0xAO0 0xCo OxEO OxFF OxFF OxFF OxFF
4 0xAOQ 0xCO0 OxEO OxFF OxFF OxFF OxFF OxFF
5 0xCO0 OxEO OxFF OxFF OxFF OxFF OxFF OxFF
6 O0xEOQ OxFF OxFF OxFF OxFF OxFF OxFF OxFF
7 OxFF OxFF OxFF OxFF OxFF OxFF OxFF OxFF
8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=7

For Freescale PowerPC® devices and ARM® Cortex®-MO0O+ devices, there is no support
for automatic switching of interrupt levels based on priority of running task and all

peripheral interrupts are always disabled by _int_disable regardless of
MQX_HARDWARE_INTERRUPT_LEVEL_MAX setting.

3.9.4 Changing Default ISRs

When MQX RTOS handles an interrupt, it calls _int_kernel_isr(), which calls a default
ISR with the interrupt number, if either of these conditions is true:

» The application has not installed an application-defined ISR for the interrupt number.
* The interrupt number is outside the range of the ISR table.

The application can get a pointer to the default ISR with _int_get_default_isr().

The application can change the default ISR as described in the following table.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

126 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-49. Default ISRs

Default ISR Description Modify or install with

_int_default_isr MQX RTOS installs it as the default ISR, To modify: _int_install_default_ isr()
when MQX RTOS starts. It blocks the task.

_int_exception_isr Implements MQX RTOS exception handling. | To install: _int_install_exception_ isr()

_int_unexpected_ isr Similar to _int_default_isr(), but also prints |To install: _int_install_unexpected_ isr()
a message to the default console, identifying
the unhandled interrupt.

3.9.5 Handling Exceptions

To implement MQX RTOS exception handling, an application should call
_int_install_exception_isr(), which installs _int_exception_isr() as the default ISR.
Thus, _int_exception_isr() is called, when an exception or unhandled interrupt occurs.
The function _int_exception_isr() does the following when an exception occurs:

* If the exception occurs when a task is running and a task exception ISR exists, MQX
RTOS runs the ISR; if a task exception ISR does not exist, MQX RTOS aborts the
task by calling _task_abort().

* If the exception occurs when an ISR is running and an ISR exception ISR exists,
MQX RTOS aborts the running ISR and runs the ISR's exception ISR.

* The function walks the interrupt stack looking for information about the ISR or task
that was running before the exception occurred.

Note If the MQX RTOS exception ISR determines that the interrupt stack contains incorrect information, it
calls _maqx_fatal_error() with error code MQX_CORRUPT_INTERRUPT_STACK.

3.9.6 Handling ISR Exceptions

An application can install an ISR exception handler for each ISR. If an exception occurs
while the ISR is running, MQX RTOS calls the handler and terminates the ISR. If the
application has not installed an exception handler, MQX RTOS simply terminates the
ISR.

When MQX RTOS calls the exception handler, it passes:

e current ISR number

* data pointer for the ISR

* exception number

* address on the stack of the exception frame

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 127

Handling Interrupts and Exceptions

Table 3-50. Summary: Handling ISR Exceptions

_int_get_exception_handler Gets a pointer to the current exception handler for the ISR.

_int_set_exception_handler Sets the address of the current ISR exception handler for the interrupt.

3.9.7 Handling Task Exceptions

A task can install a task-exception handler, which MQX RTOS calls, if the task causes an
exception that is not supported.

Table 3-51. Summary: Handling Task Exceptions

_task_get_exception_handler Gets the task-exception handler.

_task_set_exception_handler Sets the task-exception handler.

3.9.8 Example: Installing an ISR

Install an ISR to intercept the kernel timer interrupt. Chain the ISR to the previous ISR,
which is the BSP-provided periodic timer ISR.

/* isr.c */

#include <mgx.h>

#include <bsp.h>

#define MAIN TASK 10

extern void main_task (uint32_t);

extern void new tick isr(void *);

const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice
*/

{ MAIN TASK, main task, 2000, 8, "Main", MQX AUTO START TASK, O, 0},

{0}

typedef struct

void * OLD_ ISR DATA;
INT ISR FPTR OLD_ISR;
_mgx_uint TICK COUNT;
} MY ISR STRUCT, * MY ISR _STRUCT PTR;

* ISR Name : new_tick isr

* Comments :

* This ISR replaces the existing timer ISR, then calls the
* old timer ISR.

void new tick isr
(
void * user_ isr ptr

)
MY ISR _STRUCT PTR isr ptr;
isr ptr = (MY_ISR_STRUCT_PTR)user isr ptr;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

128 Freescale Semiconductor, Inc.

L __4
Chapter 3 Using MQX RTOS
isr_ptr->TICK_COUNT++;

/* Chain to previous notifier */
(*isr ptr->OLD_ISR) (isr_ ptr->OLD_ ISR DATA) ;

}

/TSR, = = m - o o o e e e oo
*

* Task Name : main task

* Comments

* This task installs a new ISR to replace the timer ISR.

* It then waits for some time, finally printing out the

* number of times the ISR ran.

void main_task
(
uint32 t initial data

)
MY TSR _STRUCT PTR isr ptr;

isr ptr = mem alloc zero(sizeof (MY ISR STRUCT)) ;
isr_ptr->TICK_COUNT = 0;
isr ptr->OLD_ ISR DATA =
int _get isr data(BSP_TIMER INTERRUPT VECTOR) ;
isr ptr->OLD ISR =
int get_ isr (BSP_TIMER INTERRUPT VECTOR) ;
_int_install isr(BSP_TIMER_ INTERRUPT VECTOR, new_tick_ isr,
isr ptr);
_time delay ticks(200);
printf ("\nTick count = %d\n", isr ptr->TICK COUNT) ;
_mgx_exit (0) ;

3.9.8.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\isr
2. See the MOQX™ RTOS Release Notes document for instructions on how to build and
run the application.

Main task displays the number of times the application ISR was called.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build. See Getting Started with Freescale MQX™ RTOS for
more details about supported tool chains.

3.10 Instrumentation
Instrumentation includes the following components:

* logs

* lightweight logs

* kernel log

* stack usage utilities

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 129

Instrumentation

3.10.1 Logs

Many real-time applications need to record information about significant conditions, such
as events, state transitions, or function entry and exit information. If the application
records the information as it occurs, you can analyze the sequence to determine whether
the application processed conditions correctly. If each piece of information has a
timestamp (in absolute time), you can determine, where the application spends processing
time, and therefore, which code should be optimized.

Note To optimize code and data memory requirements on some target platforms, the Log component
is not compiled in the MQX RTOS kernel by default. To test this feature, you need to enable it
first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP, and
other core components. See Rebuilding Freescale MQX RTOS for more details.

With the log component, you can store data into and retrieve it from a maximum of 16
logs. Each log has a predetermined number of entries. Each entry contains a timestamp
(in absolute time), a sequence number, and application-defined data.

Table 3-52. Summary: Using Logs

Logs use certain structures and Logs use certain structures and constants, which are defined in log.h.
constants, which are defined in log.h.

_log_create Creates a log.
_log_create_component Creates the log component.
_log_destroy Destroys a log.
_log_disable Disables logging.
_log_enable Enables logging.

_log_read Reads from a log.
_log_reset Resets the contents of a log.
_log_test Tests the log component.
_log_write Writes to a log.

3.10.1.1 Creating the Log Component

You can explicitly create the log component with _log_create_component(). If you do
not explicitly create it, MQX RTOS creates it the first time an application creates a log or
kernel log.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

130 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.10.1.2 Creating a Log
To create a log, a task calls _log_create() and specifies:

* Log number, in range of zero through 15.

* Maximum number of _mqx_uint quantities to be stored in the log (this includes
headers).

* What happens when the log is full. The default behavior is that no additional data is
written. Another behavior 1s that new entries overwrite the oldest ones.

3.10.1.3 Format of a Log Entry

Each log entry consists of a log header (LOG_ENTRY_STRUCT), followed by
application-defined data.

typedef struct

_mgx_uint SIZE;
_mgx_uint SEQUENCE NUMBER;

uint32_t SECONDS ;
uintlé_t MILLISECONDS;
uintlé_t MICROSECONDS;

} LOG_ENTRY STRUCT, * LOG ENTRY STRUCT PTR;

The fields are described in MQX RTOS Reference Manual.

3.10.1.4 Writingto a Log

Tasks write to a log with _log_write().

3.10.1.5 Reading From a Log

Tasks read from a log by calling _log_read(), and specifying, how to read the log.
Possible ways to read the log are:

* To read the newest entry.

* To read the oldest entry.

* To read the next entry from the previous one read (used with read oldest).
* To read the oldest entry and delete it.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 131

Instrumentation

3.10.1.6 Disabling and Enabling Writing to a Log

Any task can disable logging to a specific log with _log_disable(). Any task can
subsequently enable logging to the log with _log_enable().

3.10.1.7 Resetting a Log

A task can reset the contents of a log to its initial state of no data with _log_reset().

3.10.1.8 Example: Using Logs

/* log.c */

#include <mgx.h>

#include <bsp.h>

#include <log.h>

#define MAIN TASK 10

#define MY LOG 1

extern void main task(uint32 t initial data);
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name,
*/
{ MAIN TASK, main task, 2000, 8, "Main",

{0}
Vi
typedef struct entry struct

LOG_ENTRY_ STRUCT HEADER;
_mgx_uint C;
_mgx_uint I;

} ENTRY STRUCT, * ENTRY STRUCT PTR;

* Task Name : main task
* Comments

Attributes, Param, Time Slice

MQX_AUTO START TASK, 0, 0},

* This task logs 10 keystroke entries then prints out the log.

void main_ task
(
uint32 t initial data

)

ENTRY STRUCT entry;

_mgx_uint result;
_mgx_uint i;
uchar c;
/* Create the log component. */
result = log create component () ;
if (result != MQX OK) ({
printf ("Main task - _log create component failed!");

_mgx_exit (0) ;

}

/* Create a log */

result = log create (MY LOG,

10 * (sizeof (ENTRY STRUCT) /sizeof (_mgx uint)),
if (result != MQX OK) ({

printf ("Main task - log create failed!");

_mgx_exit (0) ;

0);

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

132

Freescale Semiconductor, Inc.

Chapter 3 Using MQX RTOS
}

/* Write data into the log */
printf ("Please type in 10 characters:\n");

for (i = 0; i < 10; i++) {
c = getchar () ;
result = _log write(MY LOG, 2, (_mgx uint)c, i);
if (result != MQX OK) {
printf ("Main task - _log write failed!");

/* Read data from the log */
printf ("\nLog contains:\n") ;
while (_log read (MY LOG, LOG_READ OLDEST_AND DELETE, 2,

(LOG_ENTRY STRUCT PTR)&entry) == MQX_OK)

printf ("Time: %1d.%03d%03d, c=%c, i=%d\n",
entry.HEADER.SECONDS,
(_qu_uint)entry.HEADER.MILLISECONDS,
(_qu_uint)entry.HEADER.MICROSECONDS,
(uchar)entry.C & Oxff,
entry.I);

/* Delete the log */
_log destroy (MY LOG) ;
_mgx_exit (0) ;

}

3.10.1.8.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\log

2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

3. Type ten characters on the input console.

The program logs the characters, and displays the log entry on the console.

Note With Freescale MQX RTOS, the CodeWarrior Development Studio is the preferred environment
for MQX RTOS development and build. See Getting Started with Freescale MQX™ RTOS
document for more details about supported tool chains.

3.10.2 Lightweight Logs
Lightweight logs are similar to logs (see Logs), but with the following differences:

 All entries in all lightweight logs are the same size.

* You can create a lightweight log at a particular memory location.

 Lightweight logs can be timestamped in tick time or second/millisecond time,
depending on how MQX RTOS was configured at compile time (for more
information, see Configuring MQX RTOS at Compile Time).

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 133

Instrumentation

Note To optimize code and data memory requirements on some target platforms, the LWLog
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Table 3-53. Summary: Using Lightweight Logs

Lightweight logs use certain structures and
constants, which are defined in Iwlog.h.

Lightweight logs use certain structures and constants, which are defined in
Iwlog.h.

_lwlog_calculate_size

Calculates the size needed for a lightweight log with a specified maximum
number of entries.

_lwlog_create

Creates a lightweight log.

_lwlog_create_at

Creates a lightweight log at a location.

_lwlog_create_component

Creates the lightweight log component.

_lwlog_destroy

Destroys a lightweight log.

_lwlog_disable

Disables logging to lightweight logs.

_lwlog_enable

Enables logging to lightweight logs.

_lwlog_read Reads from a lightweight log.
_lwlog_reset Resets the contents of a lightweight log.
_lwlog_test Tests the lightweight log component.
_lwlog_write Writes to a lightweight log.

3.10.2.1 Creating the Lightweight Log Component

You can explicitly create the lightweight log component with
_Iwlog_create_component(). If you do not explicitly create it, MQX RTOS creates it the
first time an application creates a lightweight log or kernel log.

3.10.2.2 Creating a Lightweight Log

A task can create a lightweight log at a particular location (_lwlog_create_at()), or let
MQX RTOS choose the location (_lwlog_create()).

With either function, the task specifies:

* Log number in the range of one through 15 (zero is reserved for kernel log).

* Maximum number of entries in the log.

e What happens when the log is full. The default behavior is that no additional data is
written. Another behavior is that new entries overwrite the oldest ones.

In the case of _lwlog_create_at(), the task also specifies the address of the log.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

134

Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

3.10.2.3 Format of a Lightweight Log Entry

Each lightweight log entry has the following structure.

typedef struct lwlog entry struct
_mgx_uint SEQUENCE_NUMBER;

#if MQX LWLOG TIME STAMP IN TICKS == 0
/* Time at which the entry was written: */
uint32 t SECONDS ;
uint32_t MILLISECONDS;
uint32_t MICROSECONDS;
#telse

/* Time (in ticks) at which the entry was written: */
MQX TICK STRUCT TIMESTAMP;

#endif
_mgx_max_type DATA [LWLOG_MAXIMUM DATA ENETRIES] ;
struct lwlog entry_ struct * NEXT_PTR;

} LWLOG_ENTRY STRUCT, * LWLOG_ENTRY STRUCT PTR;

The fields are described in MQX RTOS Reference Manual.

3.10.2.4 Writing to a Lightweight Log
Tasks write to a lightweight log with _lwlog_write().

3.10.2.5 Reading From a Lightweight Log

Tasks read from a lightweight log by calling _Iwlog_read() and specifying, how to read
the log. Possible ways to read the log are:

* To read the newest entry.

* To read the oldest entry.

* To read the next entry from the previous one read (used with read oldest).
* To read the oldest entry and delete it.

3.10.2.6 Disabling and Enabling Writing to a Lightweight Log

Any task can disable logging to a specific lightweight log with _lwlog_disable(). Any
task can subsequently enable logging to the lightweight log with _lwlog_enable().

3.10.2.7 Resetting a Lightweight Log

A task can reset the contents of a lightweight log to its initial state of no data with
_lwlog_reset().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 135

Instrumentation

3.10.2.8 Example: Using Lightweight Logs

/* lwlog.c */

#include <mgx.h>

#include <bsp.h>

#include <lwlog.h>

#define MAIN TASK 10

#define MY LOG 1

extern void main task(uint32 t initial data);
const TASK TEMPLATE STRUCT MQX template list[] =

{

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice
*/
{ MAIN TASK, main task, 2000, 8, "Main", MQX AUTO START TASK, O, 0},
} {0}
/T AS K, = = = = m o o m o e e e e e e
*
* Task Name : main task
* Comments
* This task logs 10 keystroke entries in a lightweight log,
*

then prints out the log.

void main_task

(
uint32 t initial data

)

LWLOG_ENTRY STRUCT entry;

_mgx_uint result;
_mgx_uint i;
uchar c;
/* Create the lightweight log component */
result = 1lwlog create component () ;
if (result != MQX OK) {
printf ("Main task: _1lwlog create component failed.");

_mgx_exit (0);

}

/* Create a log */

result = 1lwlog create (MY LOG, 10, 0);
if (result != MQX OK) ({
printf ("Main task: 1lwlog create failed.");

_mgx_exit (0) ;

/* Write data to the log */
printf ("Enter 10 characters:\n");

for (i = 0; i < 10; i++) {
c = getchar () ;
result = 1lwlog write (MY LOG, (mgx max_type)c,
(_mgx max type)i, 0, 0, 0, 0, 0);
if (result != MQX OK)

printf ("Main task: 1lwlog write failed.");

/* Read data from the log */

printf ("\nLog contains:\n") ;

while (_ lwlog read(MY LOG, LOG READ OLDEST AND DELETE,
&entry) == MQX OK)

printf ("Time: ") ;
#if MOX LWLOG TIME STAMP IN TICKS

_psp_print ticks((PSP_TICK STRUCT PTR)&entry.TIMESTAMP) ;
#else

printf ("$1d.%$031d%031d", entry.SECONDS, entry.MILLISECONDS,

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

136 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

entry.MICROSECONDS) ;
#endif
printf(, c=%c, I=%d\n", (uchar)entry.DATA[0] & Oxff,
(_mgx_uint)entry.DATA[1]);

}
/* Destroy the log */

_log destroy (MY LOG) ;
_mgx_exit (0) ;

3.10.2.8.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\lwlog

2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

3. Type ten characters on the input console.

The program logs the characters and displays the log entry on the console.

3.10.3 Kernel Log

Kernel log lets an application log any combination of:

 Function entry and exit information for all calls to MQX RTOS functions.
Function entry and exit information for specific function calls.

Context switches.

Interrupts.

Note To optimize code and data memory requirements on some target platforms, the KLog component
is not compiled in the MQX RTOS kernel by default. To test this feature, you need to enable it
first in the MQX RTOS user configuration file, and recompile the MQX RTOS PSP, BSP, and
other core components. See Rebuilding Freescale MQX RTOS for more details.

Performance tool uses kernel log data to analyze, how an application operates and how it
uses resources. For more information, see the MQX RTOS Host Tools User's Guide .

Table 3-54. Summary: Using Kernel Log

Kernel log uses certain structures and Kernel log uses certain structures and constants, which are defined in
constants, which are defined in log.h, Iwlog.h, log.h, Iwlog.h, and klog.h.

and klog.h.

_klog_control Control kernel logging.

_klog_create Creates kernel log.

_klog_create_at Creates kernel log at a specific location.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015
Freescale Semiconductor, Inc. 137

Instrumentation

Table 3-54. Summary: Using Kernel Log (continued)

_klog_disable_logging_task Disables kernel logging for the specified task.
_klog_enable_logging_task Enables kernel logging for the specified task.
_klog_display Displays an entry in kernel log.

3.10.3.1 Using Kernel Log
To use kernel log, an application follows these general steps.

1. Optionally create the lightweight log component as described on page Creating the
Lightweight Log Component.

2. Create kernel log with _klog_create(). This is similar to creating a lightweight log,
which is described on page Creating the Lightweight Log Component. You can also
create kernel log at a specific location with _klog_create_at().

3. Set up control for logging by calling _klog_control(), and specifying any
combination of bit flags, as described in the following table.

Table 3-55. Logged Functions Overview

Select flags for:

* MQX RTOS component Select for: These functions are logged:

Errors For example, _mqx_exit(), _task_set_error(),
_maqx_fatal_error().

Events Most from the _event family.
Interrupts Certain ones from the _int family.
LWSems The _lwsem family.
Memory Certain ones from the _mem family.
Messages Certain ones from the _msg, _msgpool, and _msgq families.
Mutexes Certain ones from the _mutatr and _mutex families.
Names The _name family.
Partitions Certain ones from the _partition family.
Semaphores Most from the _sem family.
Tasking The _sched, _task, _taskq, and _time families.
Timing The _timer family; certain ones from the _time family.
Watchdogs The _watchdog family.

» Specific tasks only (task For each task to log, |For each task to log, call one of:

qualified) call one of: _Kklog_disable_logging_task()

_klog_disable_loggi

ng_task() _klog_enable_logging_task()

_klog_enable_loggin
g_task()

¢ Interrupts ¢ Interrupts ¢ Interrupts

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

138 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-55. Logged Functions Overview

¢ Periodic timer interrupts ¢ Periodic timer * Periodic timer interrupts (system clock)
(system clock) interrupts ¢ Context switches
¢ Context switches (system clock)
¢ Context
switches

3.10.3.2 Disabling Kernel Logging

Kernel logging can make your application use more resources and run slower. After you
have tested and verified the application, you might want to create a version that does not
include the ability to log to kernel log. To remove kernel logging for any part of MQX
RTOS, you must recompile MQX RTOS with the MQX_KERNEL_LOGGING option
set to zero. For more information, see MQX RTOS Compile-Time Configuration
Options." The complete procedure for recompiling MQX RTOS is described in
Rebuilding Freescale MQX RTOS.

3.10.3.3 Example: Using Kernel Log

Log all calls to the timer component and all periodic timer interrupts.

/* klog.c */

#include <mgx.h>

#include <bsp.h>

#include <log.h>

#include <klog.h>

extern void main task(uint32 t initial data);
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice
*/
{ 10 , main task, 1500, 8, "Main", MQX AUTO START TASK, O, 0},
} { o}
=
*
* Task Name : main task
* Comments
* This task logs timer interrupts to the kernel log,
*

then prints out the log.

void main_ task
(
uint32 t initial data
)
{

_mgx_uint result;
_mgx_uint i;

/* Create kernel log */

result = klog create (4096, 0);
if (result != MQX OK) ({
printf ("Main task - _klog create failed!");

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 139

Instrumentation

_mgx_exit (0) ;

/* Enable kernel log */

_klog_control (KLOG_ENABLED | KLOG_ CONTEXT ENABLED |
KLOG_INTERRUPTS ENABLED| KLOG SYSTEM CLOCK INT ENABLED |
KLOG FUNCTIONS ENABLED | KLOG TIME FUNCTIONS |
KLOG INTERRUPT FUNCTIONS, TRUE) ;

/* Write data into kernel log */

for (1 = 0; 1 < 10; i++) {

_time delay ticks(5 * 1i);

/* Disable kernel log */

_klog control (OXFFFFFFFF, FALSE) ;
/* Read data from kernel log */
printf ("\nKernel log contains:\n");
while (klog display()){

}

_mgx_exit (0) ;

}

3.10.3.3.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\klog

2. See the MOX™ RTOS Release Notes (document MQXRN) for instructions on how to
build and run the application.

After about three seconds, Main_task() displays the contents of kernel log.

3.10.4 Stack Usage Utilities

MQX RTOS offers core utilities that let you examine and refine the size of the interrupt
stack and the size of each task's stack.

Table 3-56. Summary: Stack Usage Utilities

To use these utilities, you must have configured |To use these utilities, you must have configured MQX RTOS with

MQX RTOS with MQX_MONITOR_STACK. For |MQX_MONITOR_STACK. For more information, see MQX RTOS

more information, see MQX RTOS Compile-Time | Compile-Time Configuration Options." The complete procedure for
Configuration Options." The complete procedure |recompiling MQX RTOS is described in Rebuilding Freescale MQX RTOS
for recompiling MQX RTOS is described in
Rebuilding Freescale MQX RTOS.

_klog_get_interrupt_stack_ usage Gets the interrupt stack boundary and the total amount of stack used.

_klog_get_task_stack_usage Gets the stack size and the total amount of the stack used for a specific
task.

_klog_show_stack_usage Calculates and displays the amount of stack used by each task and the

interrupt stack.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

140 Freescale Semiconductor, Inc.

3.11 Utilities

Utilities include:

* queues

Chapter 3 Using MQX RTOS

¢* name Component

* run-time testing

¢ additional utilities

3.11.1 Queues

The queue component lets you manage doubly linked lists of elements.

Note

To optimize code and data memory requirements on some target platforms, the Queue
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Table 3-57. Summary: Using Queues

_queue_dequeue

Removes the element that is at the start of the queue.

_queue_enqueue

Adds the element to the end of the queue.

_queue_get_size

Gets the number of elements in the queue.

_queue_head

Gets (but doesn't remove) the element that is at the start of the queue.

_queue_init

Initializes the queue.

_queue_insert

Inserts the element in the queue.

_queue_is_empty

Determines, whether the queue is empty.

_queue_next

Gets (but doesn't remove) the next element in the queue.

_queue_test

Tests the queue.

_queue_unlink

Removes the specific element from the queue.

3.11.1.1 Queue Data Structures

The queue component requires two data structures, which are defined in mgx.h:

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 141

A
Utilities
* QUEUE_STRUCT- keeps track of the size of the queue, and pointers to the start
and end of the queue. MQX RTOS initializes the structure, when a task creates the
queue.
« QUEUE_ELEMENT_STRUCT- defines the structure of a queue element. The
structure is the header structure of an application-defined object that the task wants to
queue.

3.11.1.2 Creating a Queue

A task creates and initializes a queue by calling _queue_init() with a pointer to a queue
object and the maximum size of the queue.

3.11.1.3 Adding Elements To a Queue

A task adds an element to the end of a queue by calling _queue_enqueue() with pointers
to the queue and to queue element object, which is the header structure of the object that
the task wants to queue.

3.11.1.4 Removing Elements From a Queue

A task gets and removes an element from the start of a queue by calling
_queue_dequeue() with a pointer to the queue.

3.11.2 Name Component

With the name component, tasks can associate a 32-bit number with a string or symbolic
name. MQX RTOS stores the association in a names database that all tasks on the
processor can use. The database avoids global variables.

Note To optimize code and data memory requirements on some target platforms, the Name
component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to
enable it first in the MQX RTOS user configuration file and recompile the RTOS MQX PSP, BSP,
and other core components. See Rebuilding Freescale MQX RTOS for more details.

Table 3-58. Summary: Using the Name Component

The name component uses certain structures | The name component uses certain structures and constants, which are
and constants, which are defined in name.h. |defined in name.h.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

142 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-58. Summary: Using the Name Component (continued)

_nhame_add Adds a name to the names database (a name is a NULL-terminated string,
max length 32 characters, including NULL).

_name_create_component Creates the name component.

_nhame_delete Deletes a name from the names database.

_name_find Looks up a name in the names database and gets its number.

_name_find_by_number Looks up a number in the names database and gets its name.

_hame_test Tests the name component.

3.11.2.1 Creating the Name Component

An application can explicitly create the name component with
_name_create_component(). If you do not explicitly create it, MQX RTOS creates it
with default values the first time an application uses the names database.

The parameters and their default values are the same as for the event component, which is
described on page Creating the Event Component.

3.11.3 Run-Time Testing

MQX RTOS provides core run-time testing that tests the integrity of most MQX RTOS
components.

A test determines, whether the data that is associated with the component is valid and not
corrupted. MQX RTOS considers the data in a structure valid, if the structure's VALID
field is a known value. MQX RTOS considers data in a structure corrupted, if its
CHECKSUM field is incorrect or pointers are incorrect.

An application can use run-time testing during its normal operation.

Table 3-59. Summary: Run-Time Testing

_event_test Events

_log_test Logs

_lwevent_test Lightweight events

_lwlog_test Lightweight logs

_lwmem_test Lightweight memory with variable-size blocks
_lwsem_test Lightweight semaphores

_lwtimer_test Lightweight timers

_mem_test Memory with variable-size blocks
_msgpool_test Message pools

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 143

Utilities
Table 3-59. Summary: Run-Time Testing (continued)
_msgq_test Message queues
_mutex_test Mutexes
_name_test Name component
_partition_test Memory with fixed-size blocks (partitions)
_queue_test Application-implemented queue
_sem_test Semaphores
_taskq_test Task queues
_timer_test Timers
_watchdog_test Watchdogs

3.11.3.1 Example: Doing Run-Time Testing

The application uses all MQX RTOS components. A low-priority task tests all the
components. If it finds an error, it stops the application.

/* test.c */
#include <mgx.h>
#include <fio.h>

#include <event.h>

#include <log.h>

#include <lwevent.h>

#include <lwlog.h>

#include <lwmem.h>

#include <lwtimer.h>

#include <message.h>

#include <mutex.h>

#include <name.h>

#include <part.h>

#include <sem.h>

#include <timer.h>

#include <watchdog.h>

extern void background test task(uint32 t);
const TASK TEMPLATE STRUCT MQX template list[] =

/* Task Index,Function, Stack, Prio,Name, Attributes, Param, Time Slice */
{ 10 , background test task,2000, 8, "Main",MQX AUTO START TASK,O, 0},
}{ 0}
s =
*
* Task Name : background test_ task
* Comments
* This task is meant to run in the background testing for
*

integrity of MQX RTOS component data structures.

void background test task

(
uint32 t parameter

)
_partition id partition;
_lwmem pool id lwmem pool id;
void * error ptr;
void * error2_ptr;

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

144 Freescale Semiconductor, Inc.

_mgx_uint error;
_mgx_uint result;
while (TRUE) ({
result = event test(&error ptr);
if (result != MQX OK) {
printf ("\nFailed _event test: 0x%X.", result);

_mgx_exit (1) ;

}

result = log test (&error) ;
if (result != MQX OK) {
printf ("\nFailed log_test: 0x%X.", result);

_mgx_exit (2);

result = lwevent test(&error ptr, &error2 ptr);
if (result != MQX OK) {
printf ("\nFailed lwevent test: 0x%X.", result);

_mgx_exit(3);

}

result = lwlog test (&error) ;
if (result != MQX OK) {
printf ("\nFailed 1lwlog test: 0x%X.", result);

_mgx_exit (4);

result = lwsem test (&error ptr, &error2 ptr);
if (result != MQX OK) {
printf ("\nFailed _lwsem test: 0x%X.", result);

_mgx_exit (5);

}

result = _lwmem test (&lwmem pool id, &error ptr);
if (result != MQX OK) {
printf ("\nFailed lwmem test: 0x%X.", result);

_mgx_exit (6) ;

result = lwtimer test(&error ptr, &error2 ptr);
if (result != MQX OK) {
printf ("\nFailed lwtimer test: 0x%X.", result);

_mgx_exit(7);

}

result = mem test_all(&error ptr);
if (result != MQX OK) {
printf ("\nFailed mem test all,");
printf ("\nError = 0x%X, pool = 0x%X.", result,

(_mgx_uint)error ptr);
_mgx_exit(8);

}
/*

** Create the message component.

** Verify the integrity of message pools and message queues.

*/
if (_msg_create component () != MQX OK) {

printf ("\nError creating the message component.");

_mgx_exit(9);

if (_msgpool test (&error ptr, &error2 ptr) != MQX OK) {

printf ("\nFailed msgpool test.");
_mgx_exit (10);

if (_msgqg_test (&error ptr, &error2 ptr) != MQX OK) {

printf ("\nFailed msgqg_test.");
_mgx_exit (11);

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Chapter 3 Using MQX RTOS

Freescale Semiconductor, Inc.

145

AR
Utilities

if (_mutex test(&error ptr) != MQOX OK) {
printf ("\nFailed mutex_test.");
_mgx_exit (12);

if (_name_ test (&error ptr, &error2 ptr) != MQX OK) {
printf ("\nFailed name test.");
_mgx_exit (13);

if (_partition_test (&partition, &error_ ptr, &error2_ptr)
1= MQX_ OK)

printf ("\nFailed partition test.");
_mgx_exit (14);

if (_sem test (&error ptr) != MQX OK) {
printf ("\nFailed _sem test.");
_mgx_exit (15) ;

if (_taskqg test(&error ptr, &error2 ptr) != MOX OK) {
printf ("\nFailed _takqg test.");
_mgx_exit (16) ;

}
if (_timer test(&error ptr) != MOX OK)
printf ("\nFailed _timer test.");
_mgx_exit (17);

if (_watchdog test (&error ptr, &error2 ptr) != MQOX OK) {
printf ("\nFailed watchlog test.");
_mgx_exit (18);

printf ("All tests passed.");
_mgx_exit (0) ;

}
}

3.11.3.1.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mgx\examples\test

2. See the MOQX™ RTOS Release Notes document for instructions on how to build and
run the application.

3.11.4 Additional Utilities
Table 3-60. Summary: Additional Utilities

_mqgx_bsp_revision Revision of the BSP.
_mqx_copyright Pointer to the MQX RTOS copyright string.
_mqx_date Pointer to the string that indicates, when MQX RTOS was built.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

146 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

Table 3-60. Summary: Additional Utilities (continued)

_maqx_fatal_error Indicates that an error has been detected that is severe enough that MQX
RTOS or the application can no longer function properly.

_mqx_generic_revision Revision of the generic MQX RTOS code.

_mqgx_get_counter Gets a processor-unique 32-bit number.

_maqx_get_cpu_type Gets the processor type.

_mqx_get_exit_handler Gets a pointer to the MQX RTOS exit handler, which MQX RTOS calls when
it exits.

_maqx_get_kernel_data Gets a pointer to kernel data.

_mqx_get_system_task_id Gets the task ID of System task descriptor.

_mqx_get_tad_data Gets the TAD_RESERVED field from a task descriptor.

_mqx_idle_task Idle task.

_mgx_io_revision I/O revision for the BSP.

_mqx_monitor_type Monitor type.

_maqx_psp_revision Revision of the PSP.

_maqx_set_cpu_type Sets the processor type.

_mqx_set_exit_handler Sets the address of the MQX RTOS exit handler, which MQX RTOS calls,
when it exits.

_mqx_set_tad_data Sets the TAD_RESERVED field in a task descriptor.

_mgx_version Pointer to the string that indicates the version of MQX RTOS.

_mqx_zero_tick_struct A constant zero-initialized tick structure that an application can use to
initialize one of its tick structures to zero.

_str_mqx_uint_to_hex_string Converts an _mqx_uint value to a hexadecimal string.

_strnlen Calculates the length of a limited-length string.

3.12 User Mode Tasks and Memory Protection

Starting with MQX RTOS 3.8, there is a support of the Memory Protection Unit, the
module integrated with selected Freescale Kinetis microprocessor devices. The MPU is
able to restrict access and protect up to 16 memory regions against code running in so-
called "User Mode". Setting up the memory protection and all other special core
operations (including the interrupt servicing) is handled when software is running in so-
called "Privileged" or "Supervisor" mode.

In previous MQX RTOS versions (MQX RTOS 3.7 and earlier) all code was always
running in privileged mode and had access to any part of the memory without any
restriction. This was (and still is) true even for devices with an advanced Memory
Management Unit (MMU). The MMU is different than the MPU and it enables not only a
memory protection, but also virtual memory translation, different cache setup for
different parts of the memory, etc. On such devices, the MMU is supported by MQX
RTOS only for the cache control.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 147

A ————
User Mode Tasks and Memory Protection

First introduced in MQX RTOS 3.8 for Kinetis K60 device, the MPU and User-mode
tasks are supported through extended MQX RTOS API. When User-mode support is
enabled in the MQX RTOS configuration header file, the BSP startup code enables the
MPU and sets up read-only mode for key RAM areas. The protection covers the kernel-
owned variables, default memory allocation pool and all other data structures which are
necessary for proper operation of MQX RTOS scheduler.

The user is able to declare tasks in Task Template List as "User Tasks". Such a User Task
runs in a restricted CPU mode and all MPU protections are active. The task has no
chance to corrupt the kernel memory or affect tasks running in privileged mode. It still
can affect other User-mode tasks. In case the User task tries to violate the protection, an
exception is generated and handled as configured in the system.

The MQX RTOS API which may be used from the User tasks is limited. In general only
the lightweight synchronization objects, lightweight memory management and limited
task creation is supported for User-mode tasks.

More details about User-mode support can be found in the following sections. The
reference of all API functions can be found in the MQX RTOS Reference Manual.

3.12.1 Configuring the User-mode Support

The User-mode support is enabled by defining the MQX_ENABLE_USER_MODE to 1
in the user_config.h file. By default this macro is defined to O and the User-mode support
1s disabled.

When the User-mode is enabled, another configuration options can be defined:

* MQX_DEFAULT_USER_ACCESS_RW can be set zero or nonzero to disable or
enable User-mode access to global variables whose access mode is not explicitly
defined. See more details about variable access below.

* MQX_ENABLE_USER_STDAPI can be set to non-zero to mimic the standard API
also in the User-mode tasks. When disabled, the User-tasks must explicitly call
usr-prefixed API (for example _usr_Ilwsem_post). When this option is enabled, the
User-mode task may call the standard API (e.g., _Ilwsem_post) and the system takes
care about forwarding the call to the appropriate _usr_ API function.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

148 Freescale Semiconductor, Inc.

3.12.2 MQX RTOS Initialization Structure

When the User-mode support is enabled, the MQX_INITIALIZATION_STRUCT is
extended to contain additional runtime configuration parameters for setting up the MPU
and User-mode behavior. In a typical case, most of the values are provided by the linker
file which defines all memory segments and RAM area definitions needed for both

Privileged and User tasks.

Chapter 3 Using MQX RTOS

The following data members are added to the MQX RTOS initialization structure:

« START_OF_KERNEL_AREA, END_OF_KERNEL_AREA : An area with
restricted access for User-mode tasks. It covers the KERNEL_DATA structure,
default memory heap and other privileged MQX RTOS structures and data, including
the kernel-owned globals.

 START_OF_USER_DEFAULT_MEMORY,
END_OF_USER_DEFAULT_MEMORY: Default data sections (.data for initialized
global variables and .bss for un-initialized zeroed global variables).

* START_OF_USER_HEAP, END_OF_USER_HEAP: User heap - an area for
dynamic memory allocations in User-mode.

« START_OF_USER_RW_MEMORY, END_OF_USER_RW_MEMORY: An area
with global variables explicitly declared for read-write access rights in User-mode.

 START_OF_USER_RO_MEMORY, END_OF_USER_RO_MEMORY: An area
with global variables explicitly declared for read-only access rights in User-mode.

 START_OF_USER_NO_MEMORY, END_OF_USER_NO_MEMORY: An area
with global variables explicitly declared without any access rights in User-mode.

* MAX_USER_TASK_PRIORITY: A limit value for user task priority - user tasks can
only run with the same or lower priority (numerically, this is the smallest number the
user task may use as a priority).

e MAX USER_TASK COUNT: Maximum number of user tasks which can be

created in the system.

3.12.2.1 Default Initialization Values

Table 3-61.

MQX RTOS Default Initialization Values

MQX RTOS Initialization Structure
member

BSP default macro constant

LINKER file symbol (example for the
IAR EWARM tool)

START_OF_KERNEL_AREA

BSP_DEFAULT_START_OF_KERNEL_AREA

_ KERNEL_DATA_START

END_OF_KERNEL_AREA

BSP_DEFAULT_END_OF_KERNEL_AREA

_ KERNEL_DATA_END

START_OF_USER_DEFAULT_ME
MORY

BSP_DEFAULT_START_OF_USER_DEFAULT_
MEMORY

_ sfb("USER_DEFAULT_MEMORY
D)

END_OF_USER_DEFAULT_MEMO
RY

BSP_DEFAULT_END_OF_USER_DEFAULT_M
EMORY

__sfe("USER_DEFAULT_MEMORY
Il)

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

149

User Mode Tasks and Memory Protection

Table 3-61. MQX RTOS Default Initialization Values (continued)

START_OF_USER_HEAP BSP_DEFAULT_START_OF_USER_HEAP __sfb("USER_HEAP")

END_OF_USER_HEAP BSP_DEFAULT_END_OF_USER_HEAP __USER_AREA_END

START_OF_USER_RW_MEMORY |BSP_DEFAULT_START_OF_USER_RW_MEM |__sfb("USER_RW_MEMORY")
ORY

END_OF_USER_RW_MEMORY BSP_DEFAULT_END_OF_USER_RW_MEMOR |__sfe("USER_RW_MEMORY")
Y

START_OF_USER_RO_MEMORY |BSP_DEFAULT_START_OF_USER_RO_MEM |__sfb("USER_RO_MEMORY")
ORY

END_OF_USER_RO_MEMORY BSP_DEFAULT_END_OF_USER_RO_MEMOR |__sfe("USER_RO_MEMORY")
Y

START_OF_USER_NO_MEMORY |BSP_DEFAULT_START_OF_USER_NO_MEM |__sfb("USER_NO_MEMORY")
ORY

END_OF_USER_NO_MEMORY BSP_DEFAULT_END_OF_USER_NO_MEMOR |__sfe("USER_NO_MEMORY")
Y

MAX_USER_TASK_PRIORITY BSP_DEFAULT_MAX_USER_TASK_PRIORITY |n/a

MAX_USER_TASK_COUNT BSP_DEFAULT_MAX_USER_TASK_COUNT n/a

3.12.3 Declaring and Creating User-mode Tasks

User mode tasks are defined by the MQX_USER_TASK flag in the MQX RTOS task
template list. You can mix this flag with other standard task flags like
MQX_AUTO_START_TASK, MQX_FLOATING_POINT_TASK,
MQX_TIME_SLICE_TASK and others as per kernel configuration.

An application creates a user task the standard way by using a _task_create API from a
privileged task or from another user task by calling _usr_task_create. Privileged tasks can
only be created from a privileged task.

As described above, there are two members of MQX RTOS Initialization structure which
affect creating of the User-mode tasks:

« MAX_USER_TASK_PRIORITY: A limit value for user task priority.
* MAX USER_TASK COUNT: Maximum number of user tasks which can be
created in the system.

3.12.4 Access Rights for Global Variables

User-mode access to global variables can be defined explicitly with modifiers declared as
follows:

* USER_RW_ACCESS - variable is normally accessible from User-mode tasks.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

150 Freescale Semiconductor, Inc.

e
Chapter 3 Using MQX RTOS
« USER_RO_ACCESS - variable is read-only for User-mode tasks.
e USER_NO_ACCESS - variable is not accessible User-mode tasks.

For example:

USER_RO_ACCESS int counter; /* read-only for user-mode task */
USER_NO_ACCESS char state; /* not accessible for user-mode task */

An access to variables which are not explicitly declared (default .data and .bss segments)
is determined by the MQX_DEFAULT_USER_ACCESS_RW configuration option.
When it is not defined or is defined as 0, the global variables are declared read-only for
User-mode tasks. When the configuration option is set non-zero, the read-write access is
granted to the global variables.

3.12.5 API

This section gives an overview of the API subset which is also available to User-mode
tasks. The API can be identified easily by the _usr_ prefix. Beware that the API function
prototypes are only declared when User-mode is enabled in the MQX RTOS
configuration.

Table 3-62. User Mode API Overview

USERMODE function PRIVILEGE original
_usr_lwsem_poll _lwsem_poll
_usr_lwsem_post _lwsem_post
_usr_lwsem_wait _lwsem_wait

_usr_lwsem_create

_lwsem_create

_usr_lwsem_wait_for

_lwsem_wait_for

_usr_lwsem_wait_ticks

_lwsem_wait_ticks

_usr_lwsem_wait_until

_lwsem_wait_until

_usr_lwsem_destroy

_lwsem_destroy

_usr_lwevent_clear

_lwevent_clear

_usr_lwevent_set

_Ilwevent_set

_usr_lwevent_set_auto_clear

_lwevent_set_auto_clear

_usr_lwevent_wait_for

_Ilwevent_wait_for

_usr_lwevent_wait_ticks

_lwevent_wait_ticks

_usr_lwevent_wait_until

_lwevent_wait_until

_usr_lwevent_get_signalled

_lwevent_get_signalled

_usr_lwevent_create

_lwevent_create

_usr_lwevent_destroy

_lwevent_destroy

_usr_task_create

_task_create

_usr_task_destroy

_task_destroy

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

151

A ————
Embedded Debugging

Table 3-62. User Mode API Overview (continued)

_usr_task_abort _task_abort
_usr_task_ready _task_ready
_usr_task_set_error _task_set_error
_usr_task_get_td _task_get_td
_usr_lwmem_alloc _lwmem_alloc
_usr_lwmem_alloc_from _lwmem_alloc_from
_usr_lwmem_free _lwmem_free
_usr_lwmem_create_pool _lwmem_create_pool
_mem_set_pool_access n/a
_usr_time_delay_ticks _time_delay_ticks
_usr_time_get_elapsed_ticks _time_get_elapsed_ticks
_usr_lwmsgq_init _lwmsgq_init
_usr_lwmsgq_receive _lwmsgq_receive
_usr_lwmsgq_send _lwmsgq_send

3.12.6 Handling interrupts in User mode

MQX RTOS does not support handling interrupts in User-mode but this can be quite
easily implemented with a lightweight semaphore or event functionality. The interrupt
service routine (running in a privileged mode) may acknowledge or just disable the
interrupt source and post a semaphore or event to an application task. Such a task (user-
mode task or tasks) wait for the event and when activated, it can finish processing of the
interrupt and re-enable the interrupt source.

Note that Freescale Kinetis platforms enable User-mode access to peripheral registers
selected in the system configuration bridge. You can use this bridge to extend User-mode
protection to peripheral modules.

3.13 Embedded Debugging
There are several ways to debug MQX RTOS-based applications:

» Using plain debugger environment, which is not aware about the MQX RTOS
operating system. This simple approach may work well, when using breakpoints and
single-stepping through application code.

» Using opearating system awareness in the debugger (so called task-aware debugger
or TAD). This approach helps to see the debugged code in the context of individual

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

152 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

tasks. It also helps to examine the internal MQX RTOS data strucutres in a user-
friendly way.

3.14 Configuring MQX RTOS at Compile Time

MQX RTOS is built with certain features that you can include or exclude by changing the
value of compile-time configuration options. If you change any configuration value, you
must recompile MQX RTOS and relink it with your target application.

As the MQX RTOS library may also depend on some MQX RTOS configuration options,
it must be typically recompiled as well.

Like MQX RTOS library, there are also other code components that use the MQX OS
services (for example RTCS, MFS, USB). These components need to be re-compiled
after MQX RTOS.

Note Comparing with original ARC versions, Freescale MQX RTOS introduces a different method of
compile-time configuration of the MQX OS and other components.

Original method used the compiler command-line -D options or source\psp\platform
\psp_cnfg.asm file.

In Freescale MQX RTOS, there is a central user configuration file user_config.h in the
config/imcu/<mcu> directory, which can be used to override default configuration options. The
same configuration file is used by other system components like RTCS, MFS, or USB.

3.14.1 MQX RTOS Compile-Time Configuration Options

This section provides a list of MQX RTOS configuration options. The default value of
any of these options can be overridden in the config/<board>/user_config.h file.

The default values are defined in the mgx/source/include/mqgx_cnfg.h file.

Note Do not change the mgx_cnfg.h file directly. Always use the board-specific or project-specific
user_config.h file in your config directory.

MQX_CHECK_ERRORS
Default is one.
One: MQX RTOS components perform error checking on all their parameters.

Zero: MQX RTOS components do not perform parameters checking. Not all error codes
listed for a particular function are returned.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 153

A ————
Configuring MQX RTOS at Compile Time

MQX_CHECK_MEMORY_ALLOCATION_ERRORS

Default is one.

One: MQX RTOS components check all memory allocations for errors and verify that the
allocations are successful.

MQX_CHECK_VALIDITY

Default is one.

One: MQX RTOS checks the VALID field of all structures when it accesses them.
MQX_COMPONENT_DESTRUCTION

Default is one.

One: MQX RTOS includes the functions that allow MQX RTOS components (such as
the semaphore component or event component) to be destroyed. MQX RTOS reclaims all
the resources that the component allocated.

MQX_DEFAULT_TIME_SLICE_IN_TICKS

Default is one.

One: Default time slice in the task template structure is in units of ticks.
Zero: Default time slice in the task template structure is in milliseconds.

The value also affects the time-slice field in the task template, because the value is used
to set a task's default time slice.

MQX_EXIT_ENABLED

Default is one.

One: MQX RTOS includes code to allow the application to return from the _mqx() call.
MQX_HAS_TIME_SLICE

Default is one.

One: MQX RTOS includes code to allow time-slice scheduling of tasks at the same
priority.

MQX_HAS_DYNAMIC_PRIORITIES
Default is one.

One: MQX RTOS includes code to change task priorities dynamically by
_task_set_priority() call or by priority inheritance or priority boosting.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

154 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

MQX_HAS_EXCEPTION_HANDLER
Default is one.

One MQX RTOS includes code to handle exceptions (see psp/<psp>/int_xcpt.c) and to
set/get task exception handler routine by using the _task_set_exception_handler and
_task_get_exception_handler calls.

MQX_HAS_EXIT_HANDLER
Default is one.

One: MQX RTOS includes code to execute task exit handler before the task exits. Also
the _task_set_exit_handler and _task_get_exit_handler calls are included.

MQX_HAS_HW_TICKS
Default is one.

One: MQX RTOS includes support for hardware ticks and associated calls:
_time_get_hwticks, _time_get_hwticks_per_tick and _psp_usecs_to_ticks. Note that
hardware ticks also need to be supported by the BSP.

MQX_HAS_TASK_ENVIRONMENT
Default is one.

One: MQX RTOS includes code to set and get task environment data
pointer:_task_set_environment and _task_get_environment.

MQX_HAS_TICK
Default is one. It is recommended to leave this option enabled.

One: MQX RTOS includes support for tick time and all related functionality of delaying
tasks, waiting for synchronization objects with timeout etc.

MQX_KD_HAS_COUNTER
Default is one.

One: The MQX RTOS kernel maintains the counter value, which is automatically
increamented any time the value is queried by the _mqx_get_counter call.

MQX_TD_HAS_PARENT
Default is one.

One: The MQX RTOS task descriptors maintain the task's creator ID, which is available
through _task_get_creator call.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 155

A ————
Configuring MQX RTOS at Compile Time

MQX_TD_HAS_TEMPLATE_INDEX
Default is one.

One: The MQX RTOS task descriptors maintain the original index value coming from
the TASK_TEMPLATE_ STRUCT array. This value is maintained for backward
compatiblity only and is not used by MQX RTOS kernel.

MQX_TD_HAS_TASK_TEMPLATE_PTR
Default is one.

One: The MQX RTOS task descriptors maintain the pointer to original
TASK_TEMPLATE_STRUCT structure used for task creation. This pointer is used by
task restart call _task_restart() and by several lookup functions like
_task_get_id_from_name().

MQX_TD_HAS_ERROR_CODE
Default is one.

One: The MQX RTOS task descriptors maintain the error code which is accessible with
_task_set_error and _task_get_error calls.

MQX_TD_HAS_STACK_LIMIT
Default is one.

One: The MQX RTOS task descriptors maintain the task limit value which is needed by
various stack overflow checking calls like _task_check_stack.

MQX_INCLUDE_FLOATING_POINT_IO

Default is zero.

One: _io_printf() and _io_scanf() include floating point I/O code.

MQX_IS_ MULTI_PROCESSOR

Default is one.

One: MQX RTOS includes code to support multiprocessor MQX RTOS applications.
MQX_KERNEL_LOGGING

Default is one.

One: Certain functions in each component write to kernel log, when they are entered and
as they exit. The setting reduces performance, only if you enable logging for the
component. You can control, which component is logged with _klog_control().

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

156 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

MQX_LWLOG_TIME_STAMP_IN_TICKS

Default is one.

One: Timestamp in lightweight logs is in ticks.

Zero: Timestamp is in seconds, milliseconds, and microseconds.
MQX_MEMORY_FREE_LIST_SORTED

Default is one.

One: MQX RTOS sorts the freelist of memory blocks by address. This reduces memory
fragmentation, but increases the time MQX RTOS takes to free memory.

MQX_MONITOR_STACK
Default is one.

One: MQX RTOS initializes all task and interrupt stacks to a known value, so that MQX
RTOS components and debuggers can calculate how much stack is used. The setting
reduces performance, only when MQX RTOS creates a task.

You must set the option to one in order to make use of:

* _klog get_interrupt_stack_usage()
» klog get_task_stack_usage()
* _klog_show_stack_usage()

MQX_MUTEX_HAS_POLLING
Default is one.

One: MQX RTOS includes code to support the mutex options MUTEX_SPIN_ONLY
and MUTEX_LIMITED_SPIN.

MQX_PROFILING_ENABLE
Default is zero.

One: Code to support an external profiling tool is compiled into MQX RTOS. Profiling
adds to the size of the compiled image, and MQX RTOS runs slower. You can use
profiling, only if the toolset that you are using supports profiling.

MQX_RUN_TIME_ERR_CHECK_ENABLE
Default is zero.

One: Code to support an external run-time error-checking tool is compiled into MQX
RTOS. This adds to the size of the compiled image, and MQX RTOS runs slower. You
can use run-time error checking, only if the toolset that you are using supports it.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 157

A ————
Configuring MQX RTOS at Compile Time

MQX_ROM_VECTORS

Default is zero.

One: The interrupt vector table is not copied into RAM. The ROM-based table is set up
correctly to handle all interrupts by the default MQX RTOS interrupt dispatcher. The
application is still able to install interrupt service routine by using the _int_install_isr
call. However, the _int_install kernel isr call cannot be used to install the low-level
interrupt service routines directly in the vector table.

MQX_SPARSE_ISR_TABLE
Default is zero.

One: The MQX RTOS interrupt service routine table is allocated as an "array of linked
lists" instead of linear array. This option is independent on the MQX_ROM_VECTORS
as it deals with the "logical" table managed by the interrupt dispatcher in MQX RTOS.
With the sparse ISR table, only the ISRs installed by the _int_install_isr call consume
RAM memory. Interrupt latency increases as MQX RTOS needs to walk the list to find
user ISR to be invoked.

MQX_SPARSE_ISR_SHIFT
Default is 3.

When MQX_SPARSE_ISR_TABLE is defined as 1, this MQX_SPARSE_ISR_SHIFT
option determines the number of bits the vector number is shifted to get index of ISR
linked list root. For example, with 256 potential interrupt sources and with shift value of
3, it makes 256>>3=32 lists each with maximum depth of eight ISR entries. Shift value
of 8 would yield one big linked list of all ISR entries.

MQX_TASK_CREATION_BLOCKS
Default is one. The option applies to multiprocessor applications only.

One: A task blocks, when it calls _task_create() to create a task on another processor.
The creating task blocks, until the new task is created and an error code is returned.

MQX_TASK_DESTRUCTION
Default is one.

One: MQX RTOS allows tasks to be terminated. As a result, MQX RTOS includes code
that frees all the MQX RTOS-managed resources that terminated tasks own.

MQX_TIMER_USES_TICKS_ONLY

Default is zero.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

158 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

One: Timer task processes periodic-timer and one-shot timer requests using tick time for
timeout reporting, rather than second/millisecond time.

MQX_USE_32BIT_MESSAGE_QIDS
Default is zero.
Zero: Message-component data types (_queue_number and _queue_id) are uint16_t.

One: Message-component data types (_queue_number and _queue_id) are uint32_t.
This allows for more than 256 message queues on a processor and more than 256
processors in a multiprocessor network.

MQX_USE_IDLE_TASK
Default is one.

One: the kernel creates the idle task which executes when no other tasks are ready,
otherwise, the processor stops when there are no tasks to run.

MQX_USE_INLINE_MACROS
Default is one.

One: Some internal functions that MQX RTOS calls are changed from function calls to
in-line code. The setting optimizes MQX RTOS for speed.

Zero: MQX RTOS is optimized for code size.
MQX_USE_IO
Default is one.

One: MQX RTOS implements the I/O subsystem calls needed by I/O drivers. Without the
I/O subsystem, no driver can be installed or used and tasks are not able to use stdin/
stdout/stderr handles.

MQX_USE_LWMEM_ALLOCATOR
Default is zero.

One: Calls to the _mem family of functions are replaced with calls to the corresponding
function in the _lwmem family.

MQXCFG_ENABLE_FP

Default value depends on the MQXCFG_MEM_COPY_NEON. If
MQXCFG_MEM_COPY_NEON is set, default value is 1. Otherwise, default value is
0.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 159

A ————
Configuring MQX RTOS at Compile Time

If it 1s set, enables FPU support in MQX RTOS. Scheduler stores and restores the FPU
context and provides API for float point support in tasks and interrupts.

MQX_SAVE_FP_ALWAYS

Default value depends on the MQXCFG_MEM_COPY_NEON. If
MQXCFG_MEM_COPY_NEON is set, default value is 1. Otherwise, default value is
0.

Enables the MQX_FLOATING_POINT_TASK flag to be set at each task. MQX RTOS
stores and restores the FPU context in the scheduler. FPU context is stored in the
interrupt prologue and restored in the interrupt epilogue. The user cannot disable FPU
context storing during run time.

MQX_INCLUDE_FLOATING_POINT_IO
The default value is O.

Enables floating point types, such as printt and scant, in the MQX RTOS I/O function
and enables float point conversion API.

MQXCFG_MEM_COPY
Default value is 0.

If it 1s set, it enables MQX RTOS to have a unique memory copy. Otherwise, it uses
memcpy from the compiler library.

MQXCFG_MEM_COPY_NEON
Default value is 0.

If it is set, MQX RTOS uses special memory copy implementation with NEON
instructions. This feature requires FPU to be supported in MQX RTOS. The options
MQXCFG_ENABLE_FP, MQX_SAVE_FP_ALWAYS are setto 1.

3.14.2 Recommended Settings

The settings you choose for compile-time configuration options depend on the
requirements of your application.

Note The MQX RTOS build process and its compile-time configuration is specific for given target board
(set in config/<board>/user_config.h directory).

You may want to create your own configurations, specific to the custom board or even the
application. See more details about this process in Why Create a New Configuration?.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

160 Freescale Semiconductor, Inc.

4
Chapter 3 Using MQX RTOS

The following table shows common settings you can use as you develop your application.

Table 3-63. Compile-time Configuration Setting

Option Default Debug Speed Size
MQX_ALLOW_TYPED_MEMORY 1 1 0 0,1
MQX_CHECK_ERRORS 1 1 0 0
MQX_CHECK_MEMORY_ALLOCATION_ ERRORS 1 1 0 0
MQX_CHECK_VALIDITY 1 1 0 0
MQX_COMPONENT_DESTRUCTION 1 0%, 1 o* 0~
MQX_DEFAULT_TIME_SLICE_IN_TICKS 0 0,1 1 1
MQX_EXIT_ENABLED 1 0,1 0 0
MQX_HAS_DYNAMIC_PRIORITIES 1 0,1 0 0
MQX_HAS_EXIT_HANDLER 1 0,1 0 0
MQX_HAS_TASK_ENVIRONMENT 1 0,1 0 0
MQX_HAS_TIME_SLICE 1 0,1 0 0
MQX_INCLUDE_FLOATING_POINT_IO 0 0,1 0 0
MQX_IS_MULTI_PROCESSOR 1 0,1 0 0
MQX_KD_HAS_COUNTER 1 0,1 0,1 0
MQX_KERNEL_LOGGING 1 1 0 0
MQX_LWLOG_TIME_STAMP_IN_TICKS 1 0 1 1
MQX_MEMORY_FREE_LIST_SORTED 1 1 0 0
MQX_MONITOR_STACK 1 1 0 0
MQX_MUTEX_HAS_POLLING 1 0,1 0 0
MQX_PROFILING_ENABLE 0 1 0 0
MQX_ROM_VECTORS 0 0,1 0,1 1
MQX_RUN_TIME_ERR_CHECK_ENABLE 0 1 0 0
MQX_SPARSE_ISR_TABLE 0 0,1 0 1
MQX_SPARSE_ISR_SHIFT (in range 1-8) 3 any lower higher
MQX_TASK_CREATION_BLOCKS (for multiprocessor 1 1 0 0,1
applications)

MQX_TASK_DESTRUCTION 1 0,1 0 0
MQX_TD_HAS_ERROR_CODE 1 0,1 0 0
MQX_TD_HAS_PARENT 1 0,1 0 0
MQX_TD_HAS_STACK_LIMIT 1 0,1 0 0
MQX_TD_HAS_TASK_TEMPLATE_PTR 1 0, 1 0 0
MQX_TD_HAS_TEMPLATE_INDEX 1 0,1 0 0
MQX_TIMER_USES_TICKS_ONLY 0 0,1 1 1
MQX_USE_32BIT_MESSAGE_QIDS 0 0, 1 1 1
MQX_USE_IDLE_TASK 1 0,1 0,1 0
MQX_USE_INLINE_MACROS 1 0,1 1 0
MQX_USE_LWMEM_ALLOCATOR 0 0,1 1 1
MQX_VERIFY_KERNEL_DATA 1 1 0 0

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

161

A ————
Configuring MQX RTOS at Compile Time

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

162 Freescale Semiconductor, Inc.

Chapter 4
Rebuilding MQX RTOS

4.1 Why Rebuild MQX RTOS?

Starting at version 4.0, the factory-precompiled libraries are not available within MQX
RTOS distribution. To start working with the MQX RTOS you have to build all
necessary MQX RTOS libraries first. Read this chapter to find out how to do that and
what are the necessary steps.

In general, building or re-building the MQX RTOS libraries is required when you do any
of the following:

* After installing a fresh MQX RTOS package without factory-precompiled libraries.

* If you change compiler options (for example optimization level).

e If you change MQX RTOS compile-time configuration options in the config/
<board>/user_config.h file.

* If you develop a new BSP (for example by adding a new I/O driver).

* If you incorporate changes that you made to MQX RTOS source code.

4.2 Before You Begin
Before you compile or build MQX RTOS:

* Read the Freescale MOX™ RTOS Release Notes that accompany Freescale MQX
RTOS, to get information that is specific to your target environment.

* Ensure you have the required tools for your target environment:

e compiler

* assembler

* linker

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 163

A
Freescale MQX RTOS Directory Structure
* librarian
* Be familiar with the MQX RTOS directory structure and re-build instructions, as
they are described in the Getting Started with Freescale MOX™ RTOS document and
also the instructions provided later in this section.

Note Freescale MQX RTOS can be conveniently built by using one of the supported development
environments.

4.3 Freescale MQX RTOS Directory Structure

The following figure shows the directory structure of the whole Freescale MQX RTOS
distribution.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

164 Freescale Semiconductor, Inc.

= [Freescale MQX_4 1]

[build]
[[common]
= 1 twrkG0F 120m]
[[cw10gee]
[fiar]
[[make]
[[uvd]
[[config]
[[common]
[jtwri60F 120m]
[_J [demo]
[[doc]
= Fs]
[[uild]
[_ 7 [examples]
[[source]
[fib]
=) frwrk60F 120m_cw 10gcc]
[[debug]
[[release]
[_J ftwrk60f 120m.goc_arm]
[ptwric60f 120m.iar]
[ptwric60F 120m _uv4]
= [mec]
[[uild]
[[examples]
[[source]
=1 [mfs]
[[uild]
[[examples]
[[source]
=1 [mag]
[[uild]
[[examples]
[[source]
= JItes]
[[uild]
[[examples]
[[source]
=1 [shell]
[[uild]
[[source]
[J tools]
=1 [usb]
[7 [common]
=1 [device]
[Muild]
[[examples]
[[source]
=1 Ihost]
[build]
[[examples]
[[source]

Chapter 4 Rebuilding MQX RTOS

Figure 4-1. Directory Structure of Freescale MQX RTOS

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

165

Freescale MQX RTOS Directory Structure

4.3.1 MQX RTOS Directory Structure

The following figure shows the directory structure of the MQX RTOS component located
in the top-level mgx directory in more detail.

=) [max]
= [[build] Project files to build BSP and PSP libraries
__J[bat] Post build batch files used to copy header files to the output (/lib) folder
1 Jlcw10] CodeWarrior project files (FSL compiler)
T __I [cw 10gcc]) CodeWarrior project files (GNU compller)
] [ds5]) Design Studio 5 project files
T _j [iar] IAR Embedded Workbench project files
) [make] Makefiles (Support all compilers)
[[uv4] ARM MDK Keil uVision project files
+ [_] [examples]
- | [source]
t+ :J [bsp] BSP source code specific for particular board
o]
__J include]
+ _Jlio) IO drivers source code
| [kemel] MQX generic source code
-1 Jlpspl] Platform specific part of PSP library
] [coldfire]
] [cortex_a]
+) [cortex_m]
| Ipowerpc]
__J [string]
I tad]

Figure 4-2. MQX RTOS Directory Structure

4.3.2 PSP Subdirectories

The mgx\source\psp\ directory contains the platform-dependent code of the PSP library.
For example, the ColdFire subdirectory contains the MQX RTOS kernel parts specific to
the Freescale ColdFire architecture (core initialization, register save/restore code for
interrupt handling, stack handling, cache control functions, etc.). This directory also
contains processor definition files for each supported processor derivative.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

166 Freescale Semiconductor, Inc.

4
Chapter 4 Rebuilding MQX RTOS

4.3.3 BSP Subdirectories

The subdirectories in mgx\source\bsp typically follow the name of the board, and contain
low-level startup code, processor, and board initialization code. The BSP also contains
data structures used to initialize various I/O drivers in a way suitable for a given board.

This code compiles (together with the I/O drivers code) into the BSP library.

4.3.4 1/0 Subdirectories

Subdirectories in the mgx\source\io contain source code for MQX RTOS I/O drivers.
Typically, source files in each I/O driver directory are further split to device-specific and
device-independent. The I/O drivers, suitable for given board, are part of the BSP build
project, and are compiled into the BSP library.

4.3.5 Other Source Subdirectories

All other directories in the source contain generic parts of the MQX RTOS. Together
with the platform-dependent PSP code, the generic sources are compiled into the PSP
library.

4.4 Freescale MQX RTOS Build Projects

All necessary build projects are located in the mgx\build\<compiler> directory. For each
board, there are two build projects available, PSP and BSP. The BSP project contains
board-specific code, while PSP is platform-specific (for example ColdFire) only. The
PSP project does not contain any board-specific code. Despite this, both projects refer to
the board name in their file names, and both also generate the binary output file into the
same board-specific directory lib\<board>.<compiler>.

The board-independent PSP library is also compiled to board-specific output directory
because the compile-time configuration file is taken from board-specific directory config
\<board>. In other words, even if the PSP source code itself does not depend on the
board features, the user may want to build a different PSP for different boards.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 167

A ————
Freescale MQX RTOS Build Projects

4.4.1 PSP Build Project

The PSP project is used to build the PSP library, which contains the platform-dependent
parts from mgx\source\psp and also contains generic MQX RTOS code.

4.4.2 BSP Build Project

The BSP project is used to build the BSP library, which contains the board-specific code
from mgx\source\bsp\<board> and also the selected I/O drivers from mgx\source\io
directory.

MQXRTOS
. “ " i - “BSP" library compiled as bsp.a
PSP" library compiled as psp.a »
e.0. /cw10/psp_m52259evb > ow10gec/psp_twrk60d100m = J%Lmﬁsg—g?;fff_?}’;1}’;“;&3;“&,?&;"&“;‘°°m
s D D i Lo LS [y Jib/m52250evb.cw10/ - Aibwrk60d100m cwl Dgee/
Nib/m5225%vb.cw 10/ —= Mlibfiwrk60d100m.cw10gcc!
mgx/source/* (except bsp, psp and io) mgx/source/io/* i
Generic RTOS Kernel 10 Drivers e
(platform- and device-independent ANSI C Code) (each driver is typically split to
device-independent code and
code specific to device or family Includad by all MQX files
of devices) ¥
Linked libraryfiles and
related publicheaderfiles
mgx/source/psp/<platform> mgx/source/bsp/<board>
PSP: Platform-specific Code BSP: Device-and - S,
(e.g. ColdFire-specific low-level routines, assembler-optimized parts of Board-speciﬁc code lj_b:: - wjztam:b::b:p
scheduler, interrupt context savelrestore, cache control, ...) (startup, vectortable, device, memory = =y
. and board initialization, starting _maqx, . . .
PSP: Device-dependent Code installing IO drivers) Binary Libraries
(e.g. mcf5225.h register structures and macros) linked by apps.

Figure 4-3. BSP Build Project

4.4.3 Post-Build Processing

All build projects are configured to generate the resulting binary library file in the top-
level lib\<board>.<compiler> directory.

Both BSP and PSP build projects are also set up to execute the post-build batch file,
which copies all the public header files to the destination /ib directoryThis makes the
output /lib folder the only place accessed by the MQX RTOS application code. The MQX
RTOS application build projects do not need to make any reference to the MQX RTOS
source tree at all.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

168 Freescale Semiconductor, Inc.

4
Chapter 4 Rebuilding MQX RTOS

4.4.4 Build Targets

All supported development environment enables you to have multiple build
configurations, called build targets.

e Debug target - Compiler optimizations are set low to enable easy debugging.
Libraries built using this target are copied into the respective folder of the /ib
\<board>.<compiler>\debug directory.

» Release target - Compiler optimizations are set to maximum, to achieve the smallest
code size and fast execution. The resulting code is very hard to debug. Libraries built
using this target are copied into the respective folder of the lib\<board>.<compiler>
\release directory

4.5 Rebuilding Freescale MQX RTOS

Rebuilding the MQX RTOS libraries is a simple task that involves opening the proper
build projects for PSP and BSP in the development environment and building them. Do
not forget to select the proper build target to be built or build all targets.

For specific information about rebuilding MQX RTOS and the examples that accompany
it, see the release notes document in the MQX RTOS installation directory.

4.6 Why Create a New Configuration?
Typical scenarios when you need to create a new set of build projects, include:

* You want to have two or more different kernel configurations for a single board
being used simultaneously in different applications. This is a rather simple task of
"cloning" the existing configuration directory, and modifying the existing build
projects (changing name and output folder).

* You need to create a new BSP for custom board. This is more complex task, and may
involve some new I/O driver development, or advanced configuration changes.
However, the first step is to start with the most similar existing BSP, clone it to
assign a new name, and further modify.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 169

Cloning Existing Configuration

4.7 Cloning Existing Configuration

As described in the previous sections, both the PSP and BSP build projects (as well as
projects for other MQX RTOS core components like RTCS, MFS, or USB) are bound to
the target board name. Using an example of TWR-K60D100M board, the following items
depend on this name:

» User configuration is taken from config\<board> directory (for example config
\rwrk60d100m).

* Build project include-search paths are set to point to the user configuration directory.

* Build projects are set up to produce resulting binary library files in lib
\<board>.<compiler>\<target name> output directory (for example lib
\rwrk60d100m.cw10gcc\debug).

* Build projects are named to reflect the board name mgx\build\<compiler>
\bsp_<board>.<prj> (for example mgx\build\cw10gcc\bsp_twrk60d100m\.project)

* Post-link batch files set in build projects are also specific to the board. (for example
mgx\build\bat\bsp_twrk60d100m.bat).

The steps to clone (copy) an existing configuration and save it under a different name are
demonstrated on the TWR-K60D100M example used with CodeWarrior build tools:

» Copy existing config\twrk60d100m directory, and assign a new board-specific or
configuration-specific name to it (for example config\twrk60d100m_test).

* Create new output directory in the /ib folder (for example /ib
\rwrk60d100m_test.cwlOgcc).

 Create a copy of BSP and PSP build project folders (mgx\build\cwl0gcc
\bsp_twrk60d100m folder and mgx\build\cw10gcc\bsp_twrk60d100mfolder).

* Open project settings, and change include-search paths referencing the old user-
configuration directory (i.e. edit the config\twrk60d100m search path to config
\twrk60d100m_test).

* In the project settings, change the output directory to the one newly created in the /ib
directory (from lib\ewrk60d100m.cw10gcc to lib\vwrk60d100m_test.cw10gcc).

 Consider, if you also want to clone the post-link batch files, and change the project
settings accordingly. This step is not required in case your new BSP has the same set
of drivers).

* Ensure you have done the project settings change in all build targets available
(Debug and Release).

» Repeat all the steps above for other MQX RTOS libraries like RTCS, MFS, or USB
if needed.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

170 Freescale Semiconductor, Inc.

4

Chapter 4 Rebuilding MQX RTOS
Having a new configuration and build projects ready, you may start modifying the build-
time configuration without affecting the original BSP libraries. In case you want to create
a completely new BSP, you will need to create new BSP source files and change the
content of the "cloned" BSP project. #developing_a_new_bsp describes the new BSP
development.

Another possibility how to clone existing BSP is to use the BSP Cloning Wizard tool that
is available in the MQX RTOS installation package. The BSP Cloning Wizard provides
an easy way of making copies (clones) of BSP files and projects. This is especially useful
for the customers who prepare their own version of the board based on the processor
already supported by MQX RTOS.

EME&!

¥| RTCS Shell Examples

| RTCS USB Device Examples
| USB Device Examples

¥| USB Host Examples

Select all or deselect all

=i Dv':ivuc

) H
M WA

IMQX BSP Generator

’
W BSP Cloning Wizard for MQX lo | B e
| File View Settings Help

w1
B customnkS0nS512.yml I3 =0
MQX Projects Generator O
IDEs Libraries Examples
Select IDEs for which projects will be Select the projects to be generated Select the projects to be generated
o v BSP 7 MQX Examples
¥ CodeWarrior 10.x v|psp V] MFS RTCS Shell Examples
V] 1AR Embedded Werkbench v| MFS | MFS RTCS Shell USB Host Example:
V| Keil uVisiond J|RTCS [¥] MFS RTCS USB Host Examples
Select all or deselect all | Shell || MFS Shell Examples
| USB Device ¥ | MFS Shell USB Host Examples
/| USB Host | MQX Shell TSS Examples
Select all or deselect all || RTCS Examples

Figure 4-4. BSP Cloning Wizard for MQX RTOS

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

171

Cloning Existing Configuration

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

172 Freescale Semiconductor, Inc.

Chapter 5
Developing a New BSP

5.1 What is a BSP?

A board support package (BSP) is a collection of hardware-dependent files that rely on
the specific features of a single-board computer. You may want to develop BSP that is
not yet available. Also, if your target hardware is customization of the one that is
supported, it is recommended to develop a new BSP.

In the previous section, you have learnt how to clone an existing BSP, and build projects
for the new hardware configuration. This section further describes what to keep in mind,
when developing a new BSP code.

5.2 Overview
To develop a new BSP:

Select a baseline BSP to modify.

Clone selected BSP (and PSP) projects, configuration, and source code.
Prepare BSP-specific Debugger Configuration.

Modify BSP-specific include files.

Modify startup code.

Modify source code.

Create default initialization for I/O device drivers.

NNk L=

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 173

A ————
Selecting a Baseline BSP

5.3 Selecting a Baseline BSP

It is usually easiest to select an existing baseline BSP, and modify the baseline to suit
your hardware. In most cases, select a baseline BSP that uses the same or similar
processor. The most straightforward way of creating a clone of the existing BSP sources
and projects is using the BSP Cloning Wizard tool. The shortcut to the application can be
found in the start menu in the Freescale MQX RTOS group.

The clone may be also created manually. To do so the following instruction can be used:

1.

W

Create a new BSP source directory, for example:

source\bsp\myk60d100mboard
Go to the baseline directory, for example:

source\bsp\twrk60d4100m
Copy the contents of the baseline directory to the new directory.

In the new directory, rename the old board-specific names <board>.* to the name of
the new BSP.
Create additional files and directories related to the new BSP

* New BSP configuration directory

config\bsp\myk60d100mboard
e New build output directory

1lib\myk60d100mboard

Clone BSP and PSP build projects as described in Cloning Existing Configuration.
Do not forget to change the project settings in each build target.
» remove the old board-specific source code files from the project (<board>.*)
and add the newly-created files.
* redirect the include search paths to the new configuration directory
* redirect the output library path to the new output directory
* optionally change the name of the output library file being built
* clone the batch files in the build\bat directory and select them in the project
settings as a new post-linker action.

. In the all files, change all occurrences (uppercase and lowercase) of the name of the

old BSP or processor to the name of the new BSP/processor.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

174

Freescale Semiconductor, Inc.

4
Chapter 5 Developing a New BSP

5.4 Editing the Debugger Configuration Files

The board-specific configuration files are stored with the BSP sources (in the /dbg
subdirectory) and they are copied into the output //ib folder by the post-linker batch. The
BSP project itself makes no other use of the debugger configuration files. It is the
application project, built with a particular BSP, which refers to the debugger files in its
project.

You might need to modify debugger initialization files, such as *.cfg or *.mem to support
the new board. Typical changes needed in the debugger initialization file include external
memory setup (external bus signals, timing, memory area location etc).

Note Use the debugger configuration files for evaluation boards based on the same processor device coming with

the debugger tool as an example.

5.5 Modifying BSP-Specific Include Files

BSP-specific include files are in:

mgx\source\bsp\<boards\

where <board> is the BSP name.

The following table shows the effort needed to modify BSP source files for a new board.

Table 5-1. Effort in Modifying BSP Source Files

File Effort if porting to the same |Effort if porting to a similar Effort if porting to a different
microprocessor processor within the same |processor (same code and
sub-family PSP)
bsp.h medium medium high
init_hw.c (bsp_init.c) medium medium high
bsp_prv.h medium medium high
bsp_rev.h low low low
enet_ini.c low medium high
get_usec.c low low low
gpio_init.c medium high high
init_bsp.c medium high high
init_<driver_name>.c low low low
<board_name>.h low medium high
mgqx_init.c low low low

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

175

A ————
Modifying BSP-Specific Include Files

Table 5-1. Effort in Modifying BSP Source Files
(continued)

vectors.c low medium medium
Compiler-specific code low low low
cw/*.c

Linker configuration low medium high
cw/*.Icf

Debugger configuration low medium high
cw/dbg/*.mem, *.cfg

PSP processor files low high high

5.5.1 bsp_prv.h

The file contains:

* Prototypes for private functions that the BSP uses.
* Prototypes for device-initialization structures for devices in the BSP (in source\io\).

5.5.2 bsp.h

The file includes #include statements for files the applications can use to access board
resources and device driver APIL. It also declares prototypes of public BSP functions
exported to be used by applications or by IO drivers (e.g. board-specific pin initialization
functions).

* processor-specific header file <board>.h
* processor-specific source code files
* .h files for device driver API

5.5.3 <board>.h

The <board>.h file (where <board> is the name of the target board) declares board-
specific definitions for:

* The board type

* Memory map symbols of the board, such as the base addresses and size of different
memory areas (Flash, RAM, External memory etc.).

» Resolution and frequency of the periodic timer interrupt.

* Bus clock and system clock values.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

176 Freescale Semiconductor, Inc.

4
Chapter 5 Developing a New BSP
e Range of interrupts for which an application can install ISRs.
* Interrupt vector numbers and interrupt priorities for device drivers, including the
periodic timer.
* Default values for the MQX RTOS initialization structure.
* All other hardware definitions that are unique to the board, such as board-specific
registers, symbolic names for buttons, LEDs, Analog channels etc.
 Default configuration options for the I/O drivers.

5.6 Modifying Startup Code

A BSP provides default startup functions that set up the run-time environment and then
call _mqx(), which starts the MQX RTOS. For some boards, the startup code is located in
a compiler-specific subdirectory within the BSP. For most of the new platforms the
startup code is board-independent and is located in the compiler-specific subdirectory in
the PSP. Depending on the implementation, the startup code may partly reuse code from
a standard startup process available in the compiler-specific runtime library.

5.6.1 boot.* and <compiler>.c

The boot file (either coded in C or Assembler) and the <compiler>.c file (where
<compiler> is an abbreviated name of the compiler tool) implement the compiler-
dependent code required for starting up the processor and for run-time board setup. These
files are typically located in a subdirectory with other compiler-dependent source and
configuration files.

The code in the boot.* file handles the reset condition:

* [t disables interrupts.

* It sets up a initial stack for the rest of the boot up process.

* It initializes the hardware registers such as vector base address, peripheral register
base address, internal memory base address etc.

* It sets up key processor resources such as clock source, PLL, external bus etc.

* [t passes the control to the standard compiler-specific startup function which takes
care about C variable initialization and invoking the main() function.

The main() function is implemented in the BSP source code (in the mgx_main.c file).
Body of the main() function passes control to the MQX RTOS kernel by calling the
_mgx() function.

int main

(

void

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 177

A
Modifying Source Code

)

{ /* Body */
extern const MQX INITIALIZATION STRUCT MQX init struct;
/* Start MQX */
_mgx ((MQX INITIALIZATION STRUCT_PTR) &MQX init struct);
return 0;

} /* Endbody */

5.7 Modifying Source Code

This section describes key BSP files, which needs to be modified when supporting a
different board or processor.

5.7.1 init_bsp.c
The file contains:

* Pre-initialization function for initialization of OS vital functions like timer (system
tick), interrupt controller, memory management, etc. (_bsp_pre_init()).

* Initialization function for the 10 initialization that is specific to the board
(_bsp_init()).

* Periodic timer ISR (_bsp_timer_isr()).

* MQX RTOS exit handler (_bsp_exit_handler()).

* Support for hardware-tick time if available (_bsp_get_hwticks()).

* Initialize hardware watchdog if available (_bsp_setup_watchdog()).

5.7.1.1 _bsp_pre_init()
Part way through initialization, MQX RTOS calls the function to do the following:

* Initialize processor-support facilities. A PSP can provide facilities for managing CPU
resources such as CPU-based memory or baud-rate generators

* Initialize interrupt support. The function _psp_int_init() creates and installs the
MQX RTOS interrupt table.

* Initialize cache and MMU and optionally enable them. The PSP provides support
functions for CPUs that have caches and MMUs.

e Install and initialize the periodic timer ISR.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

178 Freescale Semiconductor, Inc.

4
Chapter 5 Developing a New BSP

5.7.1.2 _bsp_init

This function initializes the I/O subsystem and installs I/O device drivers. This code uses
conditional compilation to install selected I/O drivers only. See <board>.h for drivers
enabled by default. The settings can be changed in the user_config.h or directly in the
<board>.h file.

5.7.1.3 _bsp_timer_isr()

This function is the interrupt service routine for the periodic timer interrupt. It clears the
interrupt and, if required, restarts the timer. It calls _time_notify_kernel(), so that MQX
RTOS knows that the interrupt occurred.

The _bsp_timer_isr handler services also the hardware watchdog counter if this is
available.

5.7.1.4 _bsp_exit_handler()

This function is called, when an application calls _mqx_exit(). It shuts down the devices
that are no longer used.

5.7.2 get_usec.c _time_get_microseconds()

This function returns the number of microseconds since the last periodic timer interrupt.
If it is not possible to determine the time since the last periodic timer interrupt, the
function should return zero.

Modify the function only if you are using a different timer; in which case, call its
_timer_get_usec function.

5.7.3 get_nsec.c _time_get_nanoseconds()

The function returns the time in nanoseconds since the last periodic timer interrupt. If it is
not possible to determine the time since the last periodic timer interrupt, the function
returns zero.

Modify the function only if you are using a different timer. In this case, call its
_timer_get_nsec function.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 179

Creating Default Initialization for I/O Drivers

5.7.4 mqx_init.c

This file contains the board's default MQX RTOS initialization structure so that simple
applications or applications that use default values (defined in target.h) need not define
an initialization structure. An application can create a new MQX RTOS initialization
structure that uses some of the default values and overrides others.

Note For MQX RTOS host tools to work properly, the MQX RTOS initialization structure variable must be called
MQX_init_struct.

5.8 Creating Default Initialization for I/O Drivers

A number of initialization files might be needed to provide default information, when I/O
drivers are installed with _bsp_init().

5.8.1 init_<dev>.c

The init_<dev>.c files, where <dev> is the name of a device driver, which provides
default initialization structure and other information needed to install specific I/O drivers.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

180 Freescale Semiconductor, Inc.

Chapter 6
FAQs

6.1 General
My application stopped. How do I tell if MQX RTOS is still running?

If the time is being updated, MQX RTOS is processing the periodic timer interrupt. If
Idle task is running, MQX RTOS is running.

6.2 Events

Two tasks use an event group. The connection works for one task, but not for the
other. Why?

The tasks are probably sharing the same global connection, rather than having their own
local, individual connection. Each task should call _event_open() or _event_open_fast()
to get its own connection.

6.3 Global Constructors

I need to initialize some global constructors, which use the 'new' operator, before I
call 'main'; that is, before I start MQX RTOS. The 'new' operator calls malloc(),
which I redefine to call the MQX RTOS function _mem_alloc(). How do I do this?

Initialize the constructors from _bsp_pre_init() (in init_bsp.c), which MQX RTOS calls
after it initializes the memory management component.

6.4 Idle Task
What happens if Idle task blocks because of an exception?

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 181

A
Interrupts

If Idle task blocks, System task, which is really a system task descriptor that has no code,
becomes the active task. System task descriptor sets up the interrupt stack, then re-
enables interrupts. As a result, the application can continue to run.

6.5 Interrupts

An interrupt comes at periodic intervals that my application must respond to very
quickly - quicker than MQX RTOS allows. What can I do?

Call _int_install_kernel_isr() to replace the kernel ISR (_int_kernel_isr()). Your
replacement ISR must:

» Save all registers on entry, and restore them on exit.

e It must not call any MQX RTOS functions.

* Pass information to other tasks (if required) by an application-implemented
mechanism (usually ring buffers with head and tail pointers and total size fields).

My application consists of several tasks that should run only when a certain signal
comes in by an interrupt. How can my ISR that handles the interrupt communicate
to the appropriate tasks?

If the target hardware allows it, set the priority of the interrupt to be higher than what
MQX RTOS uses, when it disables interrupts (see the
MQX_HARDWARE_INTERRUPT_LEVEL_MAX field in the
MQX_INITIALIZATION_STRUCT). If you do so, the interrupt is able to interrupt an
MQX RTOS-critical section. For example, on an ARCtangent processor, MQX RTOS
can be configured to never disable level-2 interrupts and to use only level-1 interrupts to
disable/enable in critical sections.

If the target hardware does not allow you to set the priority of the interrupt as described
in the preceding paragraph, use the event component to send a signal from the ISR to
several tasks. The tasks open connections to an event group, and one of the tasks gives
the ISR the connection. Each task calls _event_wait_any() or _event_wait_all() and
blocks. The ISR calls _event_set() to unblock the tasks.

When I save, and then restore an ISR for a specific interrupt, how do I get the value
of the data pointer that was associated with the original ISR?

Call _int_get_isr_data() before you install the temporary ISR. This function returns a
pointer to the data of the specific vector that you pass to it.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

182 Freescale Semiconductor, Inc.

.4
Chapter 6 FAQs

6.6 Memory
How does a task transfer a memory block that it does not own?

Although the task that owns the memory is the one that usually transfers it, a non-owner
can do so with _mem_transfer().

My task allocates a 10-byte memory block, but it always gets more. Why?

When MQX RTOS allocates a memory block, it aligns the block to the appropriate
memory boundary and associates an internal header with the block. It also enforces a
minimum size.

Can a task allocate a memory block for another task?

No. Tasks allocate their own memory. However, a task can subsequently transfer the
memory to another task.

If _partition_test() detects a problem, does it try to repair the problem?

No. This indicates that memory is corrupted. Debug the application to determine the
cause.

When I extend the default memory pool, must the additional memory be contiguous
with the existing end of the pool?

No. The additional memory can be anywhere.

What does _mem_get_highwater() return, if I extend the default-memory pool with
non-contiguous memory?

The highwater mark is the highest memory location, from which MQX RTOS has
allocated a memory block.

I have tasks on several processors that need to share memory. How can I provide
mutual exclusion to the memory?

Depending on your hardware, you might be able to use a spin mutex to protect the shared
memory. Spin mutexes call _mem_test_and_set(), which is multiprocessor safe, when
the hardware supports locking shared memory.

6.7 Message Passing

How can I guarantee that target message queue IDs are associated with the correct
task?

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 183

A
Mutexes

Create one task that uses the names database to associate each message queue number
with a name. Each task then gets the queue number by specifying the name.

Can I send messages between a PC and my target hardware?

Yes. Create a program to run on your PC that sends and receives data packets to/from the
application either serially, over PCI, or over ethernet. As long as the packets are
formatted correctly, MQX RTOS passes on any that it receives.

My task successfully calls _msgq_send() several times with a newly allocated
message each time. Eventually _msgq_send() fails.

You have probably run out of messages. Each time you allocate a new message to send,
check whether the return is NULL. If it is, the receiving task is probably not freeing the
messages, or is not getting an opportunity to run.

6.8 Mutexes

What happens, when the task that owns a mutex data structure is destroyed? Do
tasks that are waiting to lock the mutex wait forever?

No. All components have cleanup functions. When a task is terminated, the cleanup
function determines what resources the task is using and frees them. If a task has a mutex
locked, MQX RTOS unlocks the mutex when it terminates the task. A task should not
own the mutex structure memory; it should create the structure as a global variable or
allocate it from a system memory block.

6.9 Semaphores
What happens if I ''force destroy'' a strict semaphore?

If the force destroy flag is set when you destroy a strict semaphore, MQX RTOS does not
destroy the semaphore, until all the waiting tasks get and post the semaphore. (If the
semaphore is non-strict, MQX RTOS immediately readies all the tasks that are waiting
for the semaphore.)

Two tasks use a semaphore. The connection works for one task, but not for the
other. Why?

The tasks are probably sharing the same global connection, rather than having their own
local, individual connection. Each task should call _sem_open() or _sem_open_fast() to
get its own connection.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

184 Freescale Semiconductor, Inc.

.4
Chapter 6 FAQs

6.10 Task Exit Handler Versus Task Exception Handler
What is the difference between the two?

MQX RTOS calls the task exit handler when a task calls _task_abort(), or when a task
returns from its task body. If MQX RTOS exception handling is installed, MQX RTOS
calls the task exception handler, if the task causes an exception that is not supported.

6.11 Task Queues

My application puts several tasks of the same priority in a priority task queue? How
are they ordered?

Tasks are in FIFO order within a priority.

6.12 Tasks

Do I always need at least one autostart task?

Yes. In an application, at least one autostart application task is required in order to start
the application. In a multiprocessor application (the application can create tasks
remotely), each image need not have an autostart application task; however, each image
must include IPC task as an autostart task in the task template list. If no application task
is created on a processor, Idle task runs.

One autostart task creates all my other tasks and initializes global memory. Can I
terminate it without affecting the child tasks?

Yes. When MQX RTOS terminates the creator, it frees the creator's resources (memory,
partitions, queues, and so on) and stack space. The resources of the child tasks are
independent of the creator and are not affected.

Does the creator task own its child task?

No. The only relationship between the two is that the child can get the task ID of its
creator. The child has its own stack space and automatic variables.

What are tasks, and how are they created?

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc. 185

A
Time Slices

Tasks share the same code space, if they execute the same root function. A task always
starts executing at the entry point of the root function even if the function is its creator's
root function. This is not the same behavior as fork() in UNIX.

Can I move a created task to another processor?

No.

6.13 Time Slices

How does MQX RTOS measure a time slice? Is the time slice absolute or relative?
That is, if a task has a 10 ms time slice and starts at time = 0 ms, does it give up the
processor at time = 10 ms, or does it give up the processor after 10 ms of execution?

With a 10 ms time slice, MQX RTOS counts the number of periodic timer interrupts that
have occurred, while the task is active. If the equivalent of ten or more milliseconds have
expired, MQX RTOS effectively runs _sched_yield() for the task. As a result, a task does
not get 10 ms of linear time since higher-priority tasks will preempt it. Also, if the task
calls a scheduling function (for example _task_block() or _sched_yield()), MQX RTOS
sets the task's time-slice counter back to zero.

As with timeouts, the time that MQX RTOS allocates is plus or minus
BSP_ALARM_FREQUENCY ticks per second.

6.14 Timers

My application is on more than one processor. I have a master processor that sends
a synchronization message to the other processors that causes them to reset their
time. How can I make sure that the reset messages don't interfere with the timers
that the application uses?

So that timers are not affected by changes to absolute time (_time_set()), start timers
with relative time (TIMER_ELAPSED_TIME), rather than absolute time
(TIMER_KERNEL_TIME_MODE).

What happens if _timer_start_oneshot_at() is given an expiry time that is in the
past?

MQX RTOS puts the element in the timer queue. When the next periodic timer interrupt
occurs, MQX RTOS determines that the current time is greater than, or equal to the
expiry time, so the timer triggers and MQX RTOS calls the notification function.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

186 Freescale Semiconductor, Inc.

Appendix A
Revision History

The following table contains a history of changes made to this block guide.

To provide the most up-to-date information, the revision of our documents on
freescale.com are the most current. Your printed copy may be an earlier revision. To
verify you have the latest information available, see www.freescale.com/mgx.

Topic Cross-Reference

Change Description

MQX RTOS User's Guide Rev. 0

Initial release coming with MQX RTOS 3.0

MQX RTOS User's Guide Rev. 0B

Text edited and formatting changed for MQX RTOS 3.1
release.

Configuring MQX RTOS at Compile Time
#rebuilding_magx
Configuring MQX RTOS at Compile Time

New MQX RTOS compile-time configuration options
described in Section Configuring MQX RTOS at Compile
Time. BSP porting instructions updated in #rebuilding_magx
and Configuring MQX RTOS at Compile Time.

Semaphores

Example: Using Kernel Log

Section Semaphores updated. Example: Using Kernel Log
added.

Assigning Task Priorities
Example: Using Kernel Log
Configuring MQX RTOS at Compile Time

Interrupt-level taks priorities described in Assigning Task
Priorities. NMI handling text edited in Example: Using Kernel
Log. Configuring MQX RTOS at Compile Time updated.

MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter

“lightweight semaphores” were removed from the list of freed
resources in section 3.4.6. Description of the
MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter added.

Communication Between Processors
Terminating Tasks
User Mode Tasks and Memory Protection

MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter

Communication Between Processors and Terminating Tasks
updated. New section added: User Mode Tasks and Memory
Protection, “Using Freescale CodeWarrior Development
Studio” section removed (the same is described in “Getting
Started with Freescale MQX™ RTOS”).
MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter updated by Kinetis platform related
data.

Terminating Tasks

Mutexes

Terminating Tasks and Mutexes updated.

Table continues on the next page...

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

Freescale Semiconductor, Inc.

187

http://www.freescale.com/mqx

Topic Cross-Reference

Change Description

MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter

#before_you_begin
#rebuilding_magx

#developing_a_new_bsp

MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter updated. #before_you_begin,
#rebuilding_maqx, and #developing_a_new_bsp updated.

MQX RTOS Compile-Time Configuration Options
Managing Task Errors

Managing Tasks

Controlling Caches

Timeouts

Managing Lightweight Memory with Variable-Size Blocks

#developing_a_new_bsp

MQX_CHECK_ERRORS description in MQX RTOS Compile-
Time Configuration Options updated. Managing Task Errors,
Managing Tasks, Controlling Caches, Timeouts, and
Managing Lightweight Memory with Variable-Size Blocks
updated. Description of Lightweight Message Queue
component added. Task Template Structure definiton in
example codes updated. #developing_a_new_bsp,
MQX_HARDWARE_INTERRUPT_LEVEL_MAX
Configuration Parameter updated.

Entire document.

Minor language edits and updated format.

MQX RTOS Compile-Time Configuration Options

Added MQXCFG_ENABLE_FP, MQX_SAVE_FP_ALWAYS,
MQX_INCLUDE_FLOATING_POINT_IO,
MQXCFG_MEM_COPY, and
MQXCFG_MEM_COPY_NEON in MQX Compile-Time
Configuration Options.

Entire document

Updated entire document to reflect the transition from MQX
RTOS types to C99 types.

Entire document

Updated board references.

Entire document

MQX RTOS 4.1.2 updates.

Entire document

MQX RTOS 4.2.0 updates.

Freescale MQX™ RTOS User's Guide, Rev. 14, 04/2015

188

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

oY=
o]
o
Wi
=
<)
o
|

ARM

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to
any products herein. Freescale makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in
Freescale data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: freescale.com/
SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior,
ColdFire, ColdFire+, C-Ware, Energy Efficient Solutions logo, Kinetis,
mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorivva, StarCore,
Symphony, and VortiQa are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, CoreNet,
Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorlQ
Qonverge, QUICC Engine, Ready Play, SafeAssure, SafeAssure logo,
SMARTMOS, Tower, TurboLink, Vybrid, and Xtrinsic are trademarks of
Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number MQXUG
Revision 14, 04/2015

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Chapter 1​: Before You Begin
	About MQX™ RTOS
	About This Book
	Conventions
	Tips
	Notes
	Cautions

	Chapter 2​: MQX RTOS at a Glance
	Organization of MQX RTOS
	Initialization
	Task Management
	Scheduling
	Managing Memory with dynamic memory allocators
	Managing Memory with Fixed-Size Blocks (Partitions)
	Controlling Caches
	Controlling an MMU
	Lightweight Memory Management
	Lightweight Events
	Events
	Lightweight Semaphores
	Semaphores
	Mutexes
	Lightweight Message Queue
	Messages
	Task Queues
	Inter-Processor Communication
	Time Component
	Lightweight Timers
	Timers
	Watchdogs
	Interrupt and Exception Handling
	I/O Drivers
	Formatted I/O
	I/O Subsystem(NIO)
	NIO Serial Driver

	Logs
	Lightweight Logs
	Kernel Log
	Stack Usage
	Task Error Codes
	Exception Handling
	Run-Time Testing
	Queue Manipulation
	Name Component

	Chapter 3​: Using MQX RTOS
	Before You Begin
	Initializing and Starting MQX RTOS
	MQX RTOS Initialization Structure
	Default MQX RTOS Initialization Structure

	Task Template List
	Assigning Task Priorities
	Assigning Task Attributes
	Default Task Template List
	Example: A Task Template List
	Example: Creating an Autostart Task
	Compiling the Application and Linking it with MQX RTOS

	Managing Tasks
	Creating Tasks
	Getting Task IDs
	Setting a Task Environment
	Managing Task Errors
	Restarting Tasks
	Terminating Tasks
	Example: Creating Tasks
	Code for the Creating Tasks Example
	Compiling the Application and Linking it with MQX RTOS

	Scheduling Tasks
	FIFO Scheduling
	Round Robin Scheduling
	Preemption

	Managing Memory with Variable-Size Blocks
	Managing Lightweight Memory with Variable-Size Blocks
	Managing Memory with Fixed-Size Blocks (Partitions)
	Creating the Partition Component for Dynamic Partitions
	Creating Partitions
	Allocating and Freeing Partition Blocks
	Destroying a Dynamic Partition
	Example: Two Partitions

	Controlling Caches
	Flushing Data Cache
	Invalidating Data or Instruction Cache

	Controlling the MMU (Virtual Memory)
	Example: Initializing the MMU with Virtual Memory
	Example: Setting Up a Virtual Context
	Example: Creating Tasks with a Virtual Context

	Synchronizing Tasks
	Events
	Creating the Event Component
	Creating an Event Group
	Opening a Connection to an Event Group
	Waiting for Event Bits (Events)
	Setting Event Bits
	Clearing Event Bits
	Closing a Connection to an Event Group
	Destroying an Event Group
	Example: Using Events
	Code for the Using Events Example
	Compiling the Application and Linking it with MQX RTOS

	Lightweight Events
	Creating a Lightweight Event Group
	Waiting for Event Bits
	Setting Event Bits
	Clearing Event Bits
	Destroying a Lightweight Event Group

	About Semaphore-Type Objects
	Strictness
	Priority Inversion
	Example: Priority Inversion
	Avoiding Priority Inversion with Priority Inheritance
	Avoiding Priority Inversion with Priority Protection

	Lightweight Semaphores
	Creating a Lightweight Semaphore
	Waiting for and Posting a Lightweight Semaphore
	Destroying a Lightweight Semaphore
	Example: Producers and Consumer
	Definitions and Structures for the Example
	Task Templates for the Producers and Consumers Example
	Code for a Write Task
	Code for Read Task
	Compiling the Application and Linking It with MQX RTOS

	Semaphores
	Using a Semaphore
	Creating the Semaphore Component
	Creating a Semaphore
	Opening a Connection to a Semaphore
	Waiting for a Semaphore and Posting a Semaphore
	Closing a Connection to a Semaphore
	Destroying a Semaphore
	Example: Task Synchronization and Mutual Exclusion
	Definitions and Structures for the Example
	Task Templates for the Task Synchronization and Mutual Exclusion Example
	Code for Main Task
	Code for the Read Task
	Code for the Write Task
	Compiling the application and linking it with MQX RTOS

	Mutexes
	Creating the Mutex Component
	Mutex Attributes
	Waiting Protocols
	Scheduling Protocols
	Creating and Initializing a Mutex
	Locking a Mutex
	Unlocking a Mutex
	Destroying a Mutex
	Example: Using a Mutex
	Code for Using a Mutex Example
	Compiling the Application and Linking it with MQX RTOS

	Messages
	Creating the Message Component
	Using Message Pools
	Allocating and Freeing Messages
	Sending Messages
	Message Queues
	16-Bit Queue IDs
	32-Bit Queue IDs

	Using Private Message Queues to Receive Messages
	Using System Message Queues to Receive Messages
	Determining the Number of Pending Messages
	Notification Functions
	Example: Client/Server Model
	Message Definition
	Task Templates for the Client/Server Model Example
	Code for Server Task
	Code for Client Task
	Compiling the Application and Linking it with MQX RTOS

	Lightweight Message Queue
	Initialization of a Lightweight Message Queue
	Sending Messages
	Receiving Messages
	Example: Client/Server Model
	Message Definition
	Task Templates for the Client/Server Model
	Code for Server Task
	Code for Client Task
	Compiling the application and linking it with MQX RTOS

	Task Queues
	Creating and Destroying Task Queues
	Suspending a Task
	Resuming a Task
	Example: Synchronizing Tasks
	Code as an Example
	Compiling the Application and Linking it with MQX RTOS

	Communication Between Processors
	Sending Messages to Remote Processors
	Example: Four-Processor Application
	Routing Table for Processor 1

	Creating and Destroying Tasks on Remote Processors
	Accessing Event Groups on Remote Processors
	Creating and Initializing IPC
	Building an IPC Routing Table
	Routing Table for Processor One
	Routing Table for Processor Two
	Routing Table for Processor Three
	Routing Table for Processor Four

	Building an IPC Protocol Initialization Table
	IPC Using I/O PCB Device Drivers
	Starting IPC Task
	Example: IPC Initialization Information
	IPC Initialization Information
	Code for Processor One
	Code for Processor Two
	Compiling the Application and Linking it with MQX RTOS

	Endian Conversion of Message Headers

	Timing
	Rollover of MQX RTOS Time
	Accuracy of MQX RTOS Time
	Time Component
	Second/Millisecond Time
	Time Stamp
	Tick Time
	Elapsed Time
	Time Resolution
	Absolute Time
	Time in Date Formats
	DATE_STRUCT
	TM STRUCT

	Timeouts

	Timers
	Creating the Timer Component
	Starting Timers
	Cancelling Outstanding Timer Requests
	Example: Using Timers
	Code for Timer Example
	Compiling the Application and Linking it with MQX RTOS

	Lightweight Timers
	Starting Lightweight Timers
	Cancelling Outstanding Lightweight Timer Requests

	Watchdogs
	Creating the Watchdog Component
	Starting or Restarting a Watchdog
	Stopping a Watchdog
	Example: Using Watchdogs
	Compiling the Application and Linking it with MQX RTOS

	Handling Interrupts and Exceptions
	Initializing Interrupt Handling
	Installing Application-Defined ISRs
	Restrictions on ISRs
	Functions That the ISR Cannot Call
	Functions That ISRs should not call
	Non-Maskable Interrupts
	MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration Parameter

	Changing Default ISRs
	Handling Exceptions
	Handling ISR Exceptions
	Handling Task Exceptions
	Example: Installing an ISR
	Compiling the Application and Linking it with MQX RTOS

	Instrumentation
	Logs
	Creating the Log Component
	Creating a Log
	Format of a Log Entry
	Writing to a Log
	Reading From a Log
	Disabling and Enabling Writing to a Log
	Resetting a Log
	Example: Using Logs
	Compiling the Application and Linking it with MQX RTOS

	Lightweight Logs
	Creating the Lightweight Log Component
	Creating a Lightweight Log
	Format of a Lightweight Log Entry
	Writing to a Lightweight Log
	Reading From a Lightweight Log
	Disabling and Enabling Writing to a Lightweight Log
	Resetting a Lightweight Log
	Example: Using Lightweight Logs
	Compiling the Application and Linking it with MQX RTOS

	Kernel Log
	Using Kernel Log
	Disabling Kernel Logging
	Example: Using Kernel Log
	Compiling the Application and Linking it with MQX RTOS

	Stack Usage Utilities

	Utilities
	Queues
	Queue Data Structures
	Creating a Queue
	Adding Elements To a Queue
	Removing Elements From a Queue

	Name Component
	Creating the Name Component

	Run-Time Testing
	Example: Doing Run-Time Testing
	Compiling the Application and Linking it with MQX RTOS

	Additional Utilities

	User Mode Tasks and Memory Protection
	Configuring the User-mode Support
	MQX RTOS Initialization Structure
	Default Initialization Values

	Declaring and Creating User-mode Tasks
	Access Rights for Global Variables
	API
	Handling interrupts in User mode

	Embedded Debugging
	Configuring MQX RTOS at Compile Time
	MQX RTOS Compile-Time Configuration Options
	Recommended Settings

	Chapter 4​: Rebuilding MQX RTOS
	Why Rebuild MQX RTOS?
	Before You Begin
	Freescale MQX RTOS Directory Structure
	MQX RTOS Directory Structure
	PSP Subdirectories
	BSP Subdirectories
	I/O Subdirectories
	Other Source Subdirectories

	Freescale MQX RTOS Build Projects
	PSP Build Project
	BSP Build Project
	Post-Build Processing
	Build Targets

	Rebuilding Freescale MQX RTOS
	Why Create a New Configuration?
	Cloning Existing Configuration

	Chapter 5​: Developing a New BSP
	What is a BSP?
	Overview
	Selecting a Baseline BSP
	Editing the Debugger Configuration Files
	Modifying BSP-Specific Include Files
	bsp_prv.h
	bsp.h
	<board>.h

	Modifying Startup Code
	boot.* and <compiler>.c

	Modifying Source Code
	init_bsp.c
	_bsp_pre_init()
	_bsp_init
	_bsp_timer_isr()
	_bsp_exit_handler()

	get_usec.c _time_get_microseconds()
	get_nsec.c _time_get_nanoseconds()
	mqx_init.c

	Creating Default Initialization for I/O Drivers
	init_<dev>.c

	Chapter 6​: FAQs
	General
	Events
	Global Constructors
	Idle Task
	Interrupts
	Memory
	Message Passing
	Mutexes
	Semaphores
	Task Exit Handler Versus Task Exception Handler
	Task Queues
	Tasks
	Time Slices
	Timers

	Appendix A: Revision History

