
Open RailsManual
Release 1.2.3706 (draft)

Open Rails

20 January 2017

Contents

1 Legal 1
1.1 Warranty . 1
1.2 Properties Acknowledgment . 1
1.3 Copyright Acknowledgment and License . 1

2 New in This Release 2
2.1 Operation Additions . 2
2.2 Locomotive Additions . 2
2.3 General Improvements . 3
2.4 SystemAdditions . 3
2.5 Bug Fixes . 3

3 Introduction 4
3.1 What is Open Rails? . 4
3.2 About Open Rails . 4
3.3 DoesOpen Rails Require You to HaveMSTS Installed? . 5
3.4 Community . 5
3.5 Raildriver Support . 5
3.6 Highlights of the Current Version . 5

3.6.1 Focus on Compatibility . 5
3.6.2 Focus onOperations . 6
3.6.3 Focus on Realistic Content . 6

4 Use ofMSTS Files byOpen Rails 7
4.1 Overview . 7

4.1.1 YourMSTS Installation and Custom Installations for Open Rails 7
4.2 MSTSDirectories Used byOpen Rails . 7
4.3 MSTS Files Used inWhole or Part byOpen Rails . 8

4.3.1 Route Files . 8
4.3.2 Environment .env files . 8
4.3.3 Activities . 8

4.4 Using a Non-MSTS Folder Structure . 9
4.5 OriginalMSTS Files Usually Needed for AddedMSTS-Compatible Content 9

4.5.1 OriginalMSTS Files Usually Needed for a Non-MSTS-Folder Structure 9
5 Getting Started 11
5.1 Installation Profiles . 11
5.2 Updating OR . 12
5.3 Further General Buttons . 12

5.3.1 Tools . 12
5.3.2 Documents . 12

i

5.3.3 Preliminary Selections . 12
5.4 GamingModes . 12

5.4.1 Traditional Activity and Exploremodes . 13
5.4.2 TimetableMode . 13
5.4.3 Run! . 14
5.4.4 MultiplayerMode . 14
5.4.5 Replay . 14

6 Open Rails Options 15
6.1 General Options . 16

6.1.1 Alerter in Cab . 16
6.1.2 Dispatcher window . 16
6.1.3 Graduated release air brakes . 17
6.1.4 Large address aware binaries . 17
6.1.5 Control confirmations . 17
6.1.6 Retainer valve on all cars . 18
6.1.7 Brake pipe charging rate . 18
6.1.8 Language . 18
6.1.9 Pressure unit . 19
6.1.10 Other units . 19
6.1.11 Disable TCS scripts . 19

6.2 Audio Options . 19
6.3 VideoOptions . 20

6.3.1 Dynamic shadows . 20
6.3.2 Fast full-screen Alt+Tab . 20
6.3.3 Glass on in-gamewindows . 20
6.3.4 Model instancing . 21
6.3.5 Overheadwire . 21
6.3.6 Vertical sync . 21
6.3.7 %Cab 2D Stretch . 21
6.3.8 Viewing distance . 22
6.3.9 DistantMountains . 22
6.3.10 Viewing vertical FOV . 23
6.3.11 World object density . 23
6.3.12 Window size . 23
6.3.13 Ambient daylight brightness . 23

6.4 SimulationOptions . 23
6.4.1 Advanced adhesionmodel . 24
6.4.2 Adhesionmoving average filter size . 24
6.4.3 Break couplers . 24
6.4.4 Curve dependent resistance . 24
6.4.5 Curve dependent speed limit . 25
6.4.6 Tunnel dependent resistance . 25
6.4.7 Override non-electrified route line-voltage . 25
6.4.8 Steam locomotive hot start . 25

6.5 KeyboardOptions . 25
6.6 Data Logger Options . 26
6.7 EvaluationOptions . 27
6.8 Content Options . 28
6.9 Updater Options . 29
6.10 Experimental Options . 30

6.10.1 Super-elevation . 31
6.10.2 Automatically tune settings to keep performance level 32
6.10.3 Double overheadwires . 33
6.10.4 Show shapewarnings . 33
6.10.5 Forced red at station stops . 33
6.10.6 Load night textures only when needed . 33
6.10.7 Signal light glow . 33

ii

6.10.8 Extended AI train shunting . 33
6.10.9 Autopilot . 34
6.10.10 ETCS circular speed gauge . 34
6.10.11 Extend object maximum viewing distance to horizon 34
6.10.12 LoadDDS textures in preference to ACE . 34
6.10.13 Location-linked passing path processing . 35
6.10.14MSTS Environments . 35
6.10.15Adhesion factor correction . 35
6.10.16 Level of detail bias . 35
6.10.17Adhesion proportional to rain/snow/fog . 35
6.10.18Adhesion factor random change . 35
6.10.19 Precipitation Box Size . 35
6.10.20Correct questionable braking parameters . 36

7 Driving a Train 37
7.1 Game Loading . 37
7.2 Entering the Simulation . 37
7.3 Open Rails Driving Controls . 37

7.3.1 Throttle Control . 38
7.3.2 Dynamic Braking . 38
7.3.3 Combined Control . 38
7.3.4 BlendedDynamic Brake . 38
7.3.5 Refill . 38
7.3.6 Specific Features to Optimize Locomotive Driving . 39
7.3.7 Examples of Driving Controls . 39

7.4 Driving aids . 39
7.4.1 Basic Head UpDisplay (HUD) . 39
7.4.2 Electric Locomotives – Additional information . 40
7.4.3 Steam Engine – Additional Information . 40
7.4.4 Multiplayer – Additional Information . 41
7.4.5 CompassWindow . 41
7.4.6 F1 InformationMonitor . 41
7.4.7 F4 TrackMonitor . 43
7.4.8 F6 Siding and PlatformNames . 45
7.4.9 F7 Train Names . 46
7.4.10 F8 SwitchMonitor . 47
7.4.11 F9 Train OperationsMonitor . 48
7.4.12 F10 ActivityMonitor . 49
7.4.13 Odometer . 50

7.5 DispatcherWindow . 50
7.6 Additional Train Operation Commands . 52

7.6.1 Diesel PowerOn/Off . 52
7.6.2 Initialize Brakes . 52
7.6.3 Connect/Disconnect Brake Hoses . 53
7.6.4 Doors andMirror Commands . 53
7.6.5 Wheelslip Reset . 53
7.6.6 Toggle Advanced Adhesion . 53
7.6.7 Request to Clear Signal . 53
7.6.8 Train Oscillation . 53

7.7 Engaging a turntable . 54
7.8 AutopilotMode . 54
7.9 Changing the Train Driven by the Player . 55

7.9.1 General . 55
7.9.2 Switching to a static train . 57
7.9.3 Waiting point considerations . 58

7.10 Changing the View . 58
7.11 Toggling BetweenWindowedMode and Full-screen . 60
7.12 Modifying the Game Environment . 60

iii

7.12.1 Time of Day . 60
7.12.2 Weather . 60
7.12.3 ModifyingWeather at Runtime . 61
7.12.4 Season . 61

7.13 Screenshot - Print Screen . 61
7.14 Suspending or Exiting the Game . 61
7.15 Save and Resume . 62

7.15.1 Saves from Previous ORVersions . 63
7.16 Save and Replay . 63

7.16.1 Exporting and Importing Save Files . 64
7.17 Analysis Tools . 65

7.17.1 ExtendedHUD for Consist Information . 65
7.17.2 ExtendedHUD for Locomotive Information . 66
7.17.3 ExtendedHUD for Brake Information . 66
7.17.4 ExtendedHUD for Train Force Information . 67
7.17.5 ExtendedHUD for Dispatcher Information . 67
7.17.6 ExtendedHUD for Debug Information . 70
7.17.7 Viewing Interactive Track Items . 71
7.17.8 Viewing Signal State and Switches . 71
7.17.9 SoundDebugWindow . 72

7.18 OpenRailsLog.txt Log file . 73
7.19 Code-embedded LoggingOptions . 74
7.20 Testing in AutopilotMode . 74

8 Open Rails Physics 75
8.1 Train Cars (WAG, orWagon Part of ENG file) . 75

8.1.1 Resistive Forces . 75
8.1.2 Coupler Slack . 76
8.1.3 Adhesion of Locomotives – SettingsWithin theWagon Section of ENG files 76

8.2 Engine – Classes ofMotive Power . 78
8.2.1 Diesel Locomotives in General . 78
8.2.2 Diesel-Electric Locomotives . 83
8.2.3 Diesel-Hydraulic Locomotives . 83
8.2.4 Diesel-Mechanical Locomotives . 83

8.3 Electric Locomotives . 83
8.3.1 Pantographs . 83
8.3.2 Circuit breaker . 84
8.3.3 Power supply . 84

8.4 Steam Locomotives . 84
8.4.1 General Introduction to Steam Locomotives . 84
8.4.2 Steam Locomotive Operation . 90
8.4.3 Steam Locomotives – Physics Parameters for Optimal Operation 94
8.4.4 Special Steam Effects for Steam Locomotives . 97
8.4.5 AuxiliaryWater Tenders . 98

8.5 Engines –Multiple Units in Same Consist or AI Engines . 98
8.6 Open Rails Braking . 98

8.6.1 Brake Shoe Adhesion . 99
8.6.2 Train Brake Pipe Losses . 101
8.6.3 Wheel Skidding due to Excessive Brake Force . 101
8.6.4 Using the F5HUDExpanded Braking Information . 101
8.6.5 Dynamic Brakes . 103
8.6.6 Native Open Rails Braking Parameters . 103
8.6.7 Brake Retainers . 104
8.6.8 Emergency Brake Application Key . 104

8.7 Dynamically Evolving Tractive Force . 104
8.8 Curve Resistance - Theory . 105

8.8.1 Introduction . 105
8.8.2 Factors Impacting Curve Friction . 105

iv

8.8.3 Impact of RigidWheelbase . 105
8.8.4 Impact of Super Elevation . 106
8.8.5 Calculation of Curve Resistance . 106
8.8.6 Calculation of Curve Speed Impact . 107
8.8.7 Further background reading . 107

8.9 Curve Resistance - Application in OR . 107
8.9.1 OR Parameter Values . 107
8.9.2 ORDefault Values . 108
8.9.3 Typical RigidWheelbase Values . 108

8.10 Super Elevation (Curve Speed Limit) – Theory . 108
8.10.1 Introduction . 108
8.10.2 19th & 20th Century vsModern Day Railway Design 108
8.10.3 Centrifugal Force . 109
8.10.4 Effect of Centrifugal Force . 109
8.10.5 Use of Super Elevation . 109
8.10.6 Limitation of Super Elevation inMixed Passenger & Freight Routes 110
8.10.7 Limitation of Super Elevation in High Speed Passenger Routes 110
8.10.8 MaximumCurve Velocity . 110
8.10.9 Limitation of Velocity on Curved Track at Zero Cross Level 111
8.10.10Height of Centre of Gravity . 111
8.10.11Calculation of Curve Velocity . 111
8.10.12 Typical Super Elevation Values & Speed Impact –Mixed Passenger & Freight Routes111
8.10.13 Typical Super Elevation Values & Speed Impact – High Speed Passenger Routes . . 112

8.11 Super Elevation (Curve Speed Limit) Application in OR . 112
8.11.1 OR Super Elevation Parameters . 112
8.11.2 OR Super Elevation Default Values . 112

8.12 Tunnel Friction – Theory . 113
8.12.1 Introduction . 113
8.12.2 Factors Impacting Tunnel Friction . 113
8.12.3 Importance of Tunnel Profile . 113
8.12.4 Calculation of Tunnel Resistance . 114

8.13 Tunnel Friction – Application in OR . 114
8.13.1 OR Parameters . 114
8.13.2 ORDefaults . 115

8.14 OR-Specific Include Files forModifyingMSTS File Parameters 115
8.14.1 Modifications to .eng and .wag Files . 115
8.14.2 Modifications to .trk Files . 117

8.15 Train Control System . 117
9 Further Open Rails Rolling Stock Features 120
9.1 Train Engine Lights . 120
9.2 Tilting trains . 120
9.3 Freight animations and pickups . 121

9.3.1 OR implementation ofMSTS freight animations and pickups 121
9.3.2 OR specific freight animations and pickups . 121

10 Open Rails Train Operation 125
10.1 Open Rails Activities . 125

10.1.1 Player Paths, AI Paths, and How Switches Are Handled 125
10.2 Open Rails AI . 125
10.3 ControlMode . 126

10.3.1 AutoMode . 126
10.3.2 ManualMode . 127
10.3.3 Out-of-ControlMode . 128
10.3.4 ExplorerMode . 129

10.4 Track Access Rules . 129
10.5 Deadlock Processing . 129
10.6 Reversal Points . 130

v

10.7 Waiting Points . 130
10.7.1 General . 130
10.7.2 AbsoluteWaiting Points . 130

10.8 Signals at Station Stops . 131
10.9 Speedposts and Speed Limits Set by Signals . 131
10.10Further Features of AI Train Control . 131
10.11Location-linked Passing Path Processing . 132
10.12Other Comparisons Between Running Activities in ORTS orMSTS 133

10.12.1 End of run of AI trains . 133
10.12.2Default Performance and Performance Parameters 133
10.12.3 Calculation of Train Speed Limit . 133
10.12.4 Start of Run of AI train in a Section Reserved by Another Train 134
10.12.5 Stop Time at Stations . 134
10.12.6 Restricted speed zones defined in activities . 135

10.13Extended AI Train Shunting . 135
10.13.1General . 135
10.13.2 Activity Design for Extended AI Train Shunting Functions 135

10.14Signal related files . 139
10.14.1 SignalNumClearAhead . 139
10.14.2 Location of OR-specific sigcfg and sigscr files . 140
10.14.3OR-unique values for SignalNumClearAhead () . 140

10.15OR-specific Signaling Functions . 140
10.15.1 SPEED Signals – a New Signal Function Type . 140
10.15.2 Approach control functions . 142
10.15.3 TrainHasCallOn Function . 146
10.15.4 TrainHasCallOn_Restricted Function . 147
10.15.5 Signalling Function NEXT_NSIG_LR . 148
10.15.6 Signalling Function HASHEAD . 149
10.15.7 Signalling flagOR_NOSPEEDREDUCTION . 149

10.16OR-Specific Additions to Activity Files . 149
10.16.1NoHalt by ActivityMessage Box . 150
10.16.2 AI Train Horn Blow . 150
10.16.3 AI Horn Blow at Level Crossings . 150
10.16.4 Location Event and Time Event Sound File . 151
10.16.5Weather Change Activity Event . 151

11 TimetableMode 153
11.1 Introduction . 153
11.2 General . 154

11.2.1 Data definition . 154
11.2.2 File structure . 154
11.2.3 File and train selection . 154

11.3 Timetable Definition . 154
11.3.1 General . 154
11.3.2 Column definitions . 154
11.3.3 Row definitions . 155
11.3.4 Timing details . 155

11.4 Timetable Data Details . 155
11.4.1 Timetable Description . 155
11.4.2 Train Details . 155
11.4.3 Location Details . 155
11.4.4 Timing Details . 156
11.4.5 Special Columns . 156
11.4.6 Special rows . 156
11.4.7 Control commands . 159
11.4.8 Dispose Commands . 163

11.5 Additional Notes on Timetables . 166
11.5.1 Static Trains . 166

vi

11.5.2 Processing of #dispose Command For Player Train 166
11.5.3 Termination of a Timetable Run . 166
11.5.4 Calculation of Running Delay . 166
11.5.5 No Automatic Coupling . 167
11.5.6 Signalling Requirements and Timetable Concept . 167
11.5.7 Known Problems . 169

11.6 Example of a Timetable File . 169
11.7 What tools are available to develop a Timetable? . 170

12 Open RailsMulti-Player 171
12.1 Goal . 171
12.2 Getting Started . 171
12.3 Requirements . 171
12.4 Technical Issues . 171
12.5 Technical Support . 172
12.6 Starting aMulti-Player Session . 172

12.6.1 Starting as Server . 172
12.6.2 Starting as Client . 173

12.7 In-GameControls . 173
12.8 Summary ofMulti-Player Procedures . 175
12.9 Possible Problems . 176
12.10Using the Public Server . 176

12.10.1 Additional info on using the Public Server . 176
12.11Setting up a Server from YourOwnComputer . 177

12.11.1 IP Address . 177
12.11.2 Port Forwarding . 178

13 Open Rails SoundManagement 182
13.1 OpenRails vs. MSTS SoundManagement . 182
13.2 .sms Instruction Set . 182

13.2.1 Discrete Triggers . 183
13.2.2 OR-Specific Discrete Triggers . 184
13.2.3 Variable Triggers . 185
13.2.4 Sound LoopManagement . 185
13.2.5 Testing Sound Files at Runtime . 186

14 Open Rails Cabs 187
14.1 2DCabs . 187
14.2 High-resolution Cab Backgrounds and Controls . 187

14.2.1 Configurable Fonts . 189
14.3 3D cabs . 190

14.3.1 Development Rules . 190
14.3.2 A Practical Development Example For a Digital Speedometer 191

15 OR-Specific Route Features 192
15.1 Repetition of Snow Terrain Textures . 192
15.2 Operating Turntables . 192

15.2.1 Path laying and operation considerations . 194
15.3 .w File modifiers . 195
15.4 Multiple car spawner lists . 195
15.5 Route specific TrackSections and TrackShapes . 196
15.6 Overheadwire extensions . 197

15.6.1 Double wire . 197
15.6.2 Triphase lines . 197

15.7 Loading screen . 198
15.8 MSTS-Compatible semaphore indexing . 198

16 DevelopingORContent 199
16.1 Rolling Stock . 199

vii

16.2 Routes . 199
16.3 Activities . 200
16.4 Testing andDebugging Tools . 200
16.5 Open Rails Best Practices . 200

16.5.1 Polys vs. DrawCalls –What’s Important . 200
16.6 Support . 200

17 Version 1.2 Known Issues 201
17.1 Empty Effects Section in .eng File . 201
17.2 Curly brackets in file sigscr.dat . 201

18 In CaseOfMalfunction 202
18.1 Introduction . 202
18.2 Overview of Bug Types . 202
18.3 Maybe-Bugs . 202
18.4 Decided bugs . 203
18.5 Additional Notes . 204
18.6 Summary: Bug Report Checklists . 204
18.7 Bug Status in Launchpad . 205
18.8 Disclaimer . 205

19 Open Rails Software Platform 206
19.1 Architecture . 206
19.2 Open Rails Game Engine . 207
19.3 Frames per Second (FPS) Performance . 207
19.4 GameClock and Internal Clock . 208
19.5 Resource Utilization . 208
19.6 Multi-Threaded Coding . 208

20 Plans and Roadmap 209
20.1 User Interface . 209
20.2 Operations . 209
20.3 Open Rails Route Editor . 209

21 Acknowledgements 210
22 Appendices 211
22.1 Units ofMeasure . 211

23 Indices and tables 214

viii

CHAPTER1

Legal

1.1 Warranty
NOWARRANTIES: openrails.org disclaims any warranty, at all, for its Software. The Open Rails software
and any related tools, or documentation is provided “as is” withoutwarranty of any kind, either express or
implied, including suitability for use. You, as the user of this software, acknowledge the entire risk from its
use. See the license for more details.

1.2 Properties Acknowledgment
Open Rails, Open Rails Transport Simulator, ORTS, openrails.org, Open Rails symbol and associated
graphical representations of Open Rails are the property of openrails.org. All other third party brands,
products, service names, trademarks, or registered servicemarks are the property of and used to identify
the products or services of their respective owners.

1.3 Copyright Acknowledgment and License
© 2009-2016 openrails.org. This document is part of Open Rails. Open Rails is free software: you can
redistribute it and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or any later version.
You should have received a copy of the GNUGeneral Public License as part of the Open Rails distribution
in Documentation/Copying.txt. If not, see http://www.gnu.org/licenses/.

1

http://www.gnu.org/licenses/

CHAPTER2

New in This Release

Here are the features which have been added or substantially changed since v1.1 was released, mostly to
providemore realism:

2.1 Operation Additions
• The player’s loco or a wagon may be turned on a turntable in an activity or in explore mode, with
sound andmulti-user support too.

• UKdistant semaphore signals, when on the samepost as a home signal, have been enhanced towork
prototypically.

• Mileposts and diverging switches are now included in the TrackMonitor window.
• Braking friction is now related to speed and locos and stock will now skid if braking is excessive.
• Improvedmodelling of the brake pressure and leakage so that brake controls aremore realistic.
• The Head Up Display (HUD) has better information on brake pressures and now shows the load
weight of freight or passengers.

• Time of day waiting points are easier to use as they no longer require a train to stop if the time has
already passed.

• The Car ID is now visible when using the Car Operationmenu.

2.2 Locomotive Additions
• The switch to night time textures in cabs has been delayed about 45mins, so that daylight has more
time to fade for more realism.

• For steam locos, wheel-slip has been added to match electric and diesel and the level in the water-
glass is now affected by an incline for more realism.

• The tilting behaviour of tilting trains on super-elevated trackwas accidentally removed and has now
been restored.

2

Open RailsManual, Release 1.2.3706 (draft)

• The circuit breaker of an electric locomotive can now be controlled by the driver. The behaviour of
the circuit breaker can be modified using scripts. Specific cabview controls and sound triggers are
available for content creators.

• Double wires and pantograph operation for electric locos with synchronous triphase motors are
now supported.

2.3 General Improvements
• The tracking cameras (no. 2 and 3) no longer tilt on super-elevated track.
• Each road can now have different traffic.
• Each route can now have different track shapes through the use of include files.

2.4 SystemAdditions
• Loading screens can now fill a wide screen and be specific to Open Rails.
• Themultiple warnings when the loading of shape files fail are now disabled by default.

2.5 Bug Fixes
A lot ofminor bugs (e.g. AI trains, freight loading and refuelling) have also beenfixed but our code is reach-
ing the point where these problems are seen only by a few users and not in our regular testing. We need
you to report these events in the usual way as we never see them.

2.3. General Improvements 3

http://openrails.org/contribute/reporting-bugs/

CHAPTER3

Introduction

3.1 What is Open Rails?
Open Rails software (OR) is a community developed andmaintained project from openrails.org. Its objec-
tive is to create anew transport simulator platform that isfirst, compatiblewith routes, activities, consists,
locomotives, and rolling stock created for Microsoft Train Simulator (MSTS); and secondly, a platform for
future content creation freed of the constraints of MSTS (in this manual MSTS means MSTS with MSTS
Bin extensions, if not explicitly stated in a different way).
Our goal is to enhance the railroad simulation hobby through a community-designed and supported plat-
formbuilt to serveas a lasting foundation for anaccurate and immersive simulationexperience. Bymaking
the source code of the platform freely available under the GPL license, we ensure that OR software will
continually evolve tomeet the technical, operational, graphical, and content building needs of the commu-
nity. Open architecture ensures that our considerable investment in building accurate representations of
routes and rolling stock will not become obsolete. Access to the source code eliminates the frustration of
undocumented behavior and simplifies understanding the internal operation of the simulator without the
time-consuming trial and error-prone experimentation typically needed today.
Open Rails software is just what the name implies – a railroad simulation platform that’s open for inspec-
tion, open for continuous improvement, open to third parties and commercial enterprises, open to the
community and, best of all, an open door to the future.

3.2 About Open Rails
To take advantage of almost a decade of content developed by the train simulation community, OpenRails
software is an independent game platform that has backward compatibility withMSTS content. By lever-
aging the community’s knowledge base on how to develop content for MSTS, Open Rails software pro-
vides a rich environment for both community and payware contributors.
The primary objective of the Open Rails project is to create a railroad simulator that will provide true to
life operational experience. The Open Rails software is aimed at the serious train simulation hobbyist;
someone who cares about locomotive physics, train handling, signals, AI behavior, dispatching, and most
of all running trains in a realistic, prototypical manner. While the project team will strive to deliver an
unparalleled graphical experience, eye candy is not the primary objective of Open Rails software.
By developing a completely new railroad simulator, Open Rails software offers the potential to better uti-
lize current and next generation computer resources, like graphics processing units (GPUs), multi-core

4

http://www.openrails.org/

Open RailsManual, Release 1.2.3706 (draft)

CPUs, advanced APIs such as PhysX, and widescreenmonitors, amongmany others. The software is pub-
lished so that the user community can understand how the software functions to facilitate feedback and
to improve the capabilities of Open Rails software.
OpenRails is published under theGPL licensewhich is “copyleft”[1] to ensure that the source code always
remains publicly available.

3.3 DoesOpen Rails Require You to HaveMSTS Installed?
No, it is not requiredby theOpenRails software itself. However. a great deal of the content accessedbyOR
includes files originally delivered withMSTS (e.g., tracks or general sounds). These files must be obtained
from a properly licensed installation ofMSTS.
There are exampleswhere noMSTS content is used (often payware) and in such casesOpenRails does not
requireMSTS to be installed. Read here for further detail.
In all cases, all content files (original orMSTS) must be organized in anMSTS-compatible folder structure.
Such a structure is described here. In this manual such a folder structure will be called anMSTS installation
for clarity, even if this wording is not completely correct.
A proof that Open Rails itself does not need an MSTS installation at all to run is e.g. this route
<http://www.burrinjuck.coalstonewcastle.com.au/route/route-install/>.

3.4 Community
OpenRails software is offeredwithout technical support. Users are encouraged to use their favorite train
simulation forums to get support from the community. We suggest:
• Train-Sim.Com
• UK Train Sim
• Elvas Tower

For users interested in multiplayer sessions, a forum is set up for you to seek and announce hosting ses-
sions: http://www.tsimserver.com.

3.5 Raildriver Support
Open Rails offers native support for the RailDriver Desktop Train Cab Controller. Instructions for setting
up RailDriver for Open Rails are included in the Installation Manual that is included with the Open Rails
Installer, or it can be downloaded separately from theOpen Rails website.

3.6 Highlights of the Current Version
3.6.1 Focus on Compatibility
With this release the announced goal has been reached to make as much of the existing MSTS content
as possible run in Open Rails. The development team’s initial focus has been to provide a fairly complete
visual replacement forMSTS that effectively builds on that content, achieving all the compatibility that is
worthwhile, at the same time delivering a systemwhich is faster andmore robust thanMSTS.

3.3. DoesOpen Rails Require You to HaveMSTS Installed? 5

http://forums.flightsim.com/vbts/
http://forums.uktrainsim.com/index.php
http://www.elvastower.com/forums/index.php?/index
http://www.tsimserver.com

Open RailsManual, Release 1.2.3706 (draft)

3.6.2 Focus onOperations
Release 1.1 clears the way to improving onMSTS in many ways which can be summed up as moving from
Foundation to Realism and eventually to Independence, and already includes features that are beyond
MSTS.Non-player trains can havemovement orders (i.e. pickups, drop offs) based onfiles inMSTS format.
The player can change driven train.

3.6.3 Focus on Realistic Content
The physics underlying adhesion, traction, engine components and their performance are based on a
world-class simulation model that takes into account all of the major components of diesel, electric and
steam engines. This includes elements like friction resistance in curves and tunnels, a very sophisti-
cated steam locomotive physics model, many optional curves to define precise locomotive physics, cou-
pler forces andmuchmore.
Existingmodels that donot have theupgradedOpenRails capabilities continue, of course, to performwell.
In the package of this version ancillary programs (tools) are also delivered, including:
• Track Viewer: a complete track viewer and path editor
• Timetable Editor: a tool for preparing Timetables

3.6. Highlights of the Current Version 6

CHAPTER4

Use ofMSTS Files byOpen Rails

4.1 Overview
4.1.1 YourMSTS Installation and Custom Installations for Open Rails
Open Rails reads only the content folders in each of the MSTS installations you choose to identify for it
and will do so without modifying any of those files. None of the MSTS program folders are used and no
changes to theMSTS directory tree are required.
Open Rails may also be used to read a non-MSTS directory structure that you create.
This document uses the term Root Folder to designate the parent folder of any MSTS or OR-Specific di-
rectory tree (.e.g, \Train Simulator is the Root Folder forMSTS).

4.2 MSTSDirectories Used byOpen Rails
Open Rails software reads and uses all of the data found inmanyMSTS directories:
\Consists
\Paths
\Services
\Shapes
\Sounds
\Textures
\Terrtex
\Tiles
\Traffic
\Trainset
\World

Open Rails uses a file parser to read the MSTS files and will locate many errors that are missed or unre-
ported by the MSTS software or by other utilities. In most cases, the Open Rails software will ignore the
error in the file and run properly. Open Rails software logs these errors in a log file on the user’s desk-
top. This log file may be used to correct problems identified by the Open Rails software. The parser will
also correct some of the problems that stumpedMSTS. For example, if a texture is missing Open Rails will
substitute a neutral gray texture and continue.

7

Open RailsManual, Release 1.2.3706 (draft)

4.3 MSTS Files Used inWhole or Part byOpen Rails
4.3.1 Route Files
Open Rails software uses some of the data in several MSTS Route files, depending on the MSTS features
supported byOpen Rails:
• Route Database file (.rdb) – CarSpawner is supported.
• Reference File (.ref) – a Route Editor is well under way.
• Track Database file (.tdb) – supported
• Route File (.trk) – Level Crossings and overheadwires are supported.
• Sigcfg (.dat) file – Signal & scripting capabilities are supported.
• Sigscr (.dat) file – Signal & scripting capabilities are supported.
• Speedpost (.dat) file – Supported
• Spotter (.dat) file – Supported
• Ssource (.dat) file – Supported
• Telepole (.dat) file – Supported
• Tsection (.dat) file – Supported
• Ttype (.dat) file – Supported
• Hazards (.haz) file – Supported

4.3.2 Environment .env files
Open Rails software does not support advancedwater dynamic effects.

ORDefinedWeather
Open Rails uses its own sky, cloud, sun, moon and precipitation effects developed exclusively for it. When
using the Explore Route feature you may choose season, weather, and time of day. When using the Run
Activity feature they are read from the activity file.

ORWeather usingMSTS Compatibility
Open Rails can replaceMSTS Environmental displays by its own (e.g., Kosmos)

4.3.3 Activities
Many passenger and freight activities created using the MSTS activity editor run without problems in
Open Rails.
Some Activities created using the MSTS activity editor will have slightly different behavior as compared
to running in MSTS. This is often due to slightly different train performance resulting from differences in
how each simulator handles train physics.
A few activities fail to run at all. This appears to be due to the creativity of Activity Designers who have
found ways to do things wholly unanticipated by the Open Rails Team. As these are discovered the Open
Rails teamwill record the bug for future correction.

4.3. MSTS Files Used inWhole or Part byOpen Rails 8

Open RailsManual, Release 1.2.3706 (draft)

4.4 Using a Non-MSTS Folder Structure
OpenRails uses a subset of theMSTS folder structure to run. Youmust create a root folder of any suitable
name and it must contain four folders, together with their related sub-folders:
\GLOBAL
\ROUTES
\TRAINS
\SOUND

No other files or folders are required in the root folder. Within the \GLOBAL folder two sub-folders are
required:
\SHAPES
\TEXTURES

Within the \TRAINS folder two subfolders are required:
\CONSISTS
\TRAINSETS

4.5 Original MSTS Files Usually Needed for Added MSTS-Compatible
Content

4.5.1 OriginalMSTS Files Usually Needed for a Non-MSTS-Folder Structure
A number of MSTS folders and files must be placed into any OR-Specific installation you have created.
Thesemay be obtained from your ownMSTS Installation or, as noted below, from Train Sim Forums

\GLOBAL

Within the \GLOBAL folder only the file tsection.dat is required. Themost current version is best and it can
be downloaded frommany Train Sim forums. Files sigcfg.dat and sigscr.dat are needed if there are routes
that don’t have their own specific files with the same names in their root folder.

\GLOBAL\SHAPES

Many routes use specific track sets, like XTRACKS, UK-finescale etc.
Routes which solely use such sets do not need any of the originalMSTS files fromGLOBAL, as all required
files come from the relevant track set. These sets can be downloaded frommany Train Sim forums. There
are also many routes using super-sets of the original MSTS track sets. These routes will need some or all
the files contained in the SHAPES and TEXTURES subfolders within the GLOBAL folder of your MSTS installa-
tion.

\TRAINS

Requirements are similar to routes. Again, only the folders for the trainsets which are actually used are
required, butmany third-party trainsets refer to originalMSTS files like cabviews and, in particular, sound
files. Many consists refer to engines or wagons from the original MSTS routes but those can be easily
replacedwith other engines or wagons.

4.4. Using a Non-MSTS Folder Structure 9

Open RailsManual, Release 1.2.3706 (draft)

\SOUND

Only very few routes provide a full new sound set, so the original files included in this folder are usually
needed.

\ROUTES

Once all the above directories are populated with files you need only the specific route folder placed into
\Routes to runOpen Rails from a non-MSTS directory.
Note that many routes – in particular freeware routes – use content from the original MSTS routes, and
therefore when installing new routes youmay find their installation requires files from the original MSTS
routes in order to be properly installed.

4.5. OriginalMSTS Files Usually Needed for AddedMSTS-Compatible Content 10

CHAPTER5

Getting Started

After having successfully installed Open Rails (see the Installation Manual), to run the game you must
double-click on theOpen Rails icon on the desktop, or on theOpenRails.exe file.
The OpenRails main window will appear. This displays your available MSTS installation profiles.

5.1 Installation Profiles
In the simplest case, where you have only a basic MSTS installation (see paragraph Does Open Rails need
MSTS to run? for a precise definition of a MSTS installation) OR should already correctly point to that

11

Open RailsManual, Release 1.2.3706 (draft)

installation. To check this, you should initially see under Installation Profile the string - Default -.
Under Route you should see the name of one of theMSTS routes in yourMSTS installation.
You can easily add, remove or move other MSTS installations and select among them (e.g. if you have any
so-called mini-routes installed.). Click on the Options button and select the Content tab. See the Content
Options discussed below for more instructions.

5.2 UpdatingOR
When a new release of OR is available and your computer is online, a link Update to xnnnn appears in
the upper right corner. The string xnnnn is the release number of the newest release that matches your
selected level of update. Various level of updates called Update Channels are available. You may choose
the desired level in the Options-Updatewindow, described below.
When you click on the update link OR will download and install the new release. In this way your version
of Open Rails is always up to date. Note, however, that previously saved games may not be compatible
with newer versions, as described here.
Clicking the link What's new? in the upper centre part of themainmenuwindowwill connect to a website
that summarizes themost recent changes to theOR program.

5.3 Further General Buttons
5.3.1 Tools
By clicking this button you get access to the ancillary tools (see here).

5.3.2 Documents
This button becomes selectable only if you have at least once updated to a testing version or to a stable
version greater than 1.0. By clicking this button you get immediate access to theOR documentation.

5.3.3 Preliminary Selections
Firstly, under Route: select the route onwhich youwish to run.
If you check the Logging checkbox, Open Rails will generate a log file named OpenRailsLog.txt that re-
sides on your desktop. This log file is very useful to document and investigatemalfunctions.
At every restart of the game (that is, after clicking Start or Server or Client) the log file is cleared and a
new one is generated.
If the Windowed checkbox is checked, Open Rails will run in a window instead of full screen.
If you wish to fine-tune Open Rails for your system, click on the Options button. See the Chapter: Open
Rails Optionswhich describes the extensive set of OR options. It is recommended that you read this chap-
ter.

5.4 GamingModes
One of the plus points of Open Rails is the variety of gamingmodes you can select.

5.2. UpdatingOR 12

Open RailsManual, Release 1.2.3706 (draft)

5.4.1 Traditional Activity and Exploremodes
As a default youwill find the radio button Activity selected in the start window, as above.
This will allow you to run an activity or run in exploremode.
If you select -Explore Route- (first entry under Activity:), you will also have to select the consist, the
path, the starting time, the season and the weather with the relevant buttons.
To select the consist you have two possibilities: either you click under Consist:, and the whole list of
available consists will appear, or you first click under Locomotive:, where you can select the desired loco-
motive, and then click under Consist:, where only the consists led by that locomotive will appear.
If you instead select a specific activity, youwon’t have to perform any further selections.
If you have selected the related Experimental Option, at runtime you can switch Autopilot mode on or off,
which allows you to watchOR driving your train, as if youwere a trainspotter or a visitor in the cab.

5.4.2 TimetableMode
If you select the radio button Timetable, themainmenuwindowwill change as follows:

Timetable mode is unique to Open Rails, and is based on a timetable that is created in a spreadsheet
formatted in a predefinedway, defining trains and their timetables, their paths, their consists, some oper-
ations to be done at the end of the train run, and some train synchronization rules.
Timetable mode significantly reduces development time with respect to activities in cases where no spe-
cific shunting or train operation is foreseen. The complete description of the timetablemode can be found
here.
The spreadsheet has a .csv format, but it must be saved in Unicode format with the extension .
timetable_or in a subdirectory named Openrails that must be created in the route’s ACTIVITIES direc-
tory.
A specific tool (Timetable editor) is available under the “Tools” button to ease generation of timetables.

5.4. GamingModes 13

Open RailsManual, Release 1.2.3706 (draft)

For the game player, one of the most interesting features of timetable mode is that any one of the trains
defined in the timetable can be selected as the player train.
The drop-down window Timetable set: allows you to select a timetable file from among those found in
the route’s Activities/Openrails/ folder.
Now you can select in the drop-down window Train: from all of the trains of the timetable the train you
desire to run as the Player train. Season andweather can also be selected.

5.4.3 Run!
Now, click on Start, and OR will start loading the data needed for your game. When loading completes
youwill be within the cab of your locomotive! You can read further in the chapterDriving a Train.

5.4.4 MultiplayerMode
Open Rails also features this exciting game mode: several players, each one on a different computer in a
local network or through the Internet, can play together, each driving a train and seeing the trains of the
other players, even interacting with them by exchanging wagons, under the supervision of a player that
acts as dispatcher. Themultiplayer mode is described in detail here.

5.4.5 Replay
This is not a real gaming mode, but it is nevertheless another way to experience OR. After having run a
game you can save it and replay it: OR will save all the commands that you gave, and will automatically
execute the commands during replay: it’s like you are seeing a video on how you played the game. Replay
is described later together with the save and resume functions.

5.4. GamingModes 14

CHAPTER6

Open Rails Options

Clicking on the Options button opens a multi-panel window. TheMenu > Options panels contain the set-
tings which remain in effect during your simulation. Most of the options are self-explanatory; you may
set them according to your preference and system configuration. For example, you can turn off dynamic
shadowing if your system has low FPS (frames-per-second) capability. The options configuration that you
select is saved when you clickOK. When you restart OR, it will use the last options configuration that you
selected.
There are 10 option panels, described below.

15

Open RailsManual, Release 1.2.3706 (draft)

6.1 General Options

6.1.1 Alerter in Cab
As in real life, when this option is selected, the player driving the train is required to perform specific ac-
tions to demonstrate that he is alive, i.e. press the Alerter Button (or press the Key <Z>). As the playermay
sometimes use a view other than the cabview to follow the train, and therefore will not see the alerter
warning, selecting the related option Also in external views enables the alerter in those views as well.

6.1.2 Dispatcher window
It is suggested to always select this option. When this option is selected, pressing <Ctrl+9> at runtime cre-
ates an additional window like the following. This window coexists with themain Open Rails window, and
<Alt+Tab> switches between it and theOpen Rails window. See the related option Fast fullscreen Alt+Tab.
Through this window you can monitor train movements and also influence them, by setting signals and
switches. A complete description of the dispatcher window can be found here.

6.1. General Options 16

Open RailsManual, Release 1.2.3706 (draft)

6.1.3 Graduated release air brakes
Selecting this option allows a partial release of the brakes. Generally speaking, operating with the option
checked is equivalent to passenger standard and unchecked is equivalent to freight standard. A complete
description of this option can be found here.

6.1.4 Large address aware binaries
It is suggested to leave this option checked. When it is unchecked, Open Rails can use amaximum of 2 GB
of RAM. When it is checked, the maximum is 4 GB for 64-bit Windows systems, and 2 or 3 GB for 32-bit
Windows systems. To increase themaximumRAMused byOR in 32-bitWindows systems from2 to 3GB
see the information found here.
Take note that the RAM increase from 2 to 3 GB in 32-bit systems can slow down computer operation
when not using OR.

6.1.5 Control confirmations
Following MSTS practice, whenever you make adjustments to the train controls (e.g. open the throttle)
OR briefly shows amessage near the bottom of the screen.

6.1. General Options 17

http://knowledge.autodesk.com/support/autocad/troubleshooting/caas/sfdcarticles/sfdcarticles/How-to-enable-a-3GB-switch-on-Windows-Vista-Windows-7-or-Windows-XP-s.html

Open RailsManual, Release 1.2.3706 (draft)

This is helpful for operations that don’t have visible feedback and also allows you to control the trainwith-
out being in the cab.
Uncheck this option if you prefer tomonitor your cab instruments and don’t want to see thesemessages.
OR uses the samemessage scheme for systemmessages such as “Game saved” or “Replay ended” but you
cannot suppress these systemmessages.

6.1.6 Retainer valve on all cars
The player can change the braking capability of all of the cars in the simulation to include Brake Retainers.
These cause the brake cylinder on a car to retain some fixed pressure when the train brakes are released;
this causes the car to produce a constant braking force. If this option is not checked, then brake retainers
are only found on cars that have an appropriate entry, as described here, in their .wag files.

6.1.7 Brake pipe charging rate
TheBrakePipeChargingRate (psi/s) value controls the charging rate of themain air brake pipe. Increasing
the value will reduce the time required to recharge the train (i.e. when releasing the brakes after a brake
application), while decreasing the value will slow the charging rate. See also the paragraphs on the OR
implementation of the braking system.
If this parameter is set at 1000, a simplified,MSTS-like brakingmodel is implemented, providing for faster
brake release and being less influenced by incoherent braking parameters within .eng file.

6.1.8 Language
OR is an internationalized package. It supports many languages, and others can be added by following
the instructions contained in the LocalizationManualwhich can be found in theOpen Rails Source/Trunk/
Documentation folder.
When System is selected, OR automatically selects the language of the hostingOS, if the language is avail-
able.

6.1. General Options 18

Open RailsManual, Release 1.2.3706 (draft)

6.1.9 Pressure unit
The player can select the unit of measure of brake pressure in theHUD display.
When set to automatic the unit of measure is the same as that used in the cabview of the locomotive.

6.1.10 Other units
This selects the units displayed for length, mass, pressure, etc. in the F5 HUD of the simulation.
The option Player’s Location sets the units according to theWindows Language and Region settings on the
player’s computer.
The optionRoute sets the units based on the data in the routefiles. The other options are self-explanatory.
The F5HUD uses the abbreviations stn for short tons (2000 lb) and t or tn for metric tons (tonnes).
Note that the units displayed by the F4 TrackMonitor (e.g. velocity and distance) are always based on data
read from the route files.

6.1.11 Disable TCS scripts
This option disables the train control system scripts for locomotiveswhere these have been implemented.

6.2 AudioOptions

6.2. AudioOptions 19

Open RailsManual, Release 1.2.3706 (draft)

Except for very slow computers, it is suggested that you leave the MSTS Bin compatible sound option
checked and set the Sound detail level to 5.
The% sound volume scroll button allows adjustment of the volume of OR sound.

6.3 VideoOptions

6.3.1 Dynamic shadows
With this option it is possible to enable or disable the display of dynamic shadows. Disabling canbehelpful
if low frame rates are experienced.

6.3.2 Fast full-screen Alt+Tab
When this option is selected, and OR is running full-screen, pressing Alt+Tab leaves OR full-screen and
running, and allows the Dispatcher Window to be shown in front of it. If this option is not selected, OR
is minimized. The Dispatcher Window optionmust also be selected and the Dispatcher Window started
with Ctrl+9 to display the DispatcherWindow. Each successive press of Alt+Tab will toggle between the
Dispatcher window and theORwindow.

6.3.3 Glass on in-gamewindows
When this option is checked, the in-gamewindows are displayed in a semitransparent mode.

6.3. VideoOptions 20

Open RailsManual, Release 1.2.3706 (draft)

6.3.4 Model instancing
When the option is checked, in caseswheremultiple instances of the same object have to be drawn, only a
single draw call is sent to theGPU. Thismeans lower CPU load. It is suggested to always check this option.

6.3.5 Overheadwire
This option will enable or disable display of the overheadwire.

6.3.6 Vertical sync
When this option is selected, the OR update rate cannot be higher than the monitor vertical sync fre-
quency (typically 60Hz). This reduces CPU energy consumption in fast PCs.

6.3.7 %Cab 2D Stretch
ORmanages not only cab interiors using 2D images in aMSTS-compatibleway, but also supports 3Dmod-
els. Most 2D cab images followMSTS practice, being 1024 x 768 pixels to suit monitors with a 4:3 aspect
ratio.
So, the problem arises – how to display these 4:3 cabs on a 16:9 or 16:10monitor?
One possibility is to stretch these images horizontally tomatch other aspect ratios, as shown in the image
below.

To respect the proportions however, by default OR does no stretching and shows the full width of the cab
interior, thus losing a portion from the top and bottom of the image. You can use the Up and Down Arrow
keys to pan and reveal thesemissing portions.
Therefore the setting for%Cab2DStretchhas adefault valueof 0providingno stretching andamaximum
value of 100which stretches the picture so as to cover the complete display. Intermediate values provide
a blend of panning and stretching.

6.3. VideoOptions 21

Open RailsManual, Release 1.2.3706 (draft)

6.3.8 Viewing distance
This optiondefines themaximumdistance atwhich terrain is displayed. At higher distancesDistantMoun-
tains will be displayed (see below). This parameter increases CPU and GPU load. Also, some routes are
optimized for the standardMSTSmaximum viewing distance (2000m).

6.3.9 DistantMountains
Distantmountains are supported in away that is compatiblewithMSTS. Distantmountains are present in
the route if it has a folder called LO_TILE. You may turn the feature on by checking the Distant Mountains
checkbox. In addition toMSTS capability, you can select the viewing distance of the distant mountains.

6.3. VideoOptions 22

Open RailsManual, Release 1.2.3706 (draft)

6.3.10 Viewing vertical FOV
This value defines the vertical angle of the world that is shown. Higher values correspond roughly to a
zoom out effect. The default is 45 degrees.

6.3.11 World object density
This value can be set from 0 to 10; when 10 is selected, all objects defined in the route files are displayed.
Lower values do not display some categories of objects.

6.3.12 Window size
This pair of values defines the size of theORwindow. There are some preconfigured pairs of values, how-
ever youmay alsomanually enter a different size to be used.

6.3.13 Ambient daylight brightness
With this slider you can set the daylight brightness.

6.4 SimulationOptions
Themajority of these options define train physics behavior.

6.4. SimulationOptions 23

Open RailsManual, Release 1.2.3706 (draft)

6.4.1 Advanced adhesionmodel
OR supports two adhesion models: the basic one is similar to the one used by MSTS, while the advanced
one is based on amodel more similar to reality.
For more information read the section on AdhesionModels later in this manual.

6.4.2 Adhesionmoving average filter size
The computations related to adhesion are passed through a moving average filter. Higher values cause
smoother operation, but also less responsiveness. 10 is the default filter size.

6.4.3 Break couplers
When this option is selected, if the force on a coupler is higher than the threshold set in the .eng file, the
coupler breaks and the train is divided into two parts. ORwill display amessage to report this.

6.4.4 Curve dependent resistance
When this option is selected, resistance to train motion is influenced by the radius of the curve on which
the train is running. This option is described in detail here (theory) and also here (OR application).

6.4. SimulationOptions 24

Open RailsManual, Release 1.2.3706 (draft)

6.4.5 Curve dependent speed limit
When this option is selected, OR computes whether the train is running too fast on curves, and if so, a
warningmessage is loggedanddisplayedon themonitor. Excessive speedmay lead tooverturnof cars, this
is alsodisplayedas amessage. This option is described indetailhere (theory) andalsohere (ORapplication).
OR does not display the damage.

6.4.6 Tunnel dependent resistance
When this option is selected, OR takes into account the fact that trains in tunnels are subject to higher
air resistance, and therefore need a higher effort at invariant speed. This option is described in detail here
(theory) and here (OR application).

6.4.7 Override non-electrified route line-voltage
This option allows running (in a non-prototypical way) electric locomotives on non-electrified routes.

6.4.8 Steam locomotive hot start
This option allows starting the game with the boiler water temperature already at a value that allows
running the locomotive. If the option is not selected, you will have to wait until the water temperature
reaches a high enough value.

6.5 KeyboardOptions
In this panel youwill find listed the keyboard keys that are associated with all OR commands.

6.5. KeyboardOptions 25

Open RailsManual, Release 1.2.3706 (draft)

You canmodify them by clicking on a field and pressing the new desired key. Three symbols will appear at
the right of the field: with the first one you validate the change, with the second one you cancel it, with the
third one you return to the default value.
By clicking on CheckOR verifies that the changes made are compatible, that is, that there is no key that is
used for more than one command.
By clicking onDefaults all changes that weremade are reset, and the default values are reloaded.
By clicking on Export a printable text file Open Rails Keyboard.txt is generated on the desktop, showing
all links between commands and keys.

6.6 Data Logger Options
By selecting the option Start logging with the simulation start or by pressing <F12> a file with the name
dump.csv is generated in the configuredOpenRails logging folder (placed on theDesktop by default). This
file can be used for later analysis.

6.6. Data Logger Options 26

Open RailsManual, Release 1.2.3706 (draft)

6.7 EvaluationOptions
When data logging is started (see preceding paragraph), data selected in this panel are logged, allowing a
later evaluation on how the activity was executed by the player.

6.7. EvaluationOptions 27

Open RailsManual, Release 1.2.3706 (draft)

6.8 Content Options
This window allows you to add, remove or modify access to additional MSTS installations or miniroute
installations for Open Rails. Installations located on other drives, or on a USB key, can be added even if
they are not always available.

6.8. Content Options 28

Open RailsManual, Release 1.2.3706 (draft)

Click on the Add button, and locate the desired installation. ORwill automatically enter a proposed name
in the Name: window that will appear in the Installation set: window on the main menu form. Modify the
name if desired, then ClickOK to add the new path and name toOpen Rails.
To remove an entry (note that this does not remove the installation itself!) select the entry in thewindow,
and click Delete, then OK to close the window. To modify an entry, use the Browse... button to access the
location; make the necessary changes, and then Save the changes.

6.9 Updater Options
These options controlwhichORversion update channel is active (see also here). The various options avail-
able are self-explanatory.

6.9. Updater Options 29

Open RailsManual, Release 1.2.3706 (draft)

6.10 Experimental Options
Some experimental features being introduced in Open Rails may be turned on and off through the Experi-
mental tab of theOptions window, as described below:

6.10. Experimental Options 30

Open RailsManual, Release 1.2.3706 (draft)

6.10.1 Super-elevation
If the value set for Level is greater than zero,OR supports super elevation for long curved tracks. The value
Minimum Length determines the length of the shortest curve to have super-elevation. You need to choose
the correct gauge for your route, otherwise some tracksmay not be properly shown.
When superelevation is selected, two viewing effects occur at runtime:
1. If an external camera view is selected, the tracks and the running train will be shown inclined to-
wards the internal part of the curve.

2. When the cab view is selected, the external world will be shown as inclined towards the external
part of the curve.

6.10. Experimental Options 31

Open RailsManual, Release 1.2.3706 (draft)

OR implements super elevated tracks using Dynamic Tracks. You can change the appearance of tracks by
creating a <route folder>/TrackProfiles/ TrProfile.stf file. The document How to Provide Track
Profiles for Open Rails Dynamic Track.docm describing the creation of track profiles can be found in
the OpenRails /Source/Documentation/ folder. Forum discussions about track profiles can also be found
on Elvas Tower.

6.10.2 Automatically tune settings to keep performance level
When this option is selected OR attempts to maintain the selected Target frame rate FPS (Frames per
second). To do this it decreases or increases the viewing distance of the standard terrain. If the option is
selected, also select the desired FPS in the Target frame ratewindow.

6.10. Experimental Options 32

http://www.elvastower.com/forums/index.php?/topic/21119-superelevation/page__view__findpost__p__115247

Open RailsManual, Release 1.2.3706 (draft)

6.10.3 Double overheadwires
MSTS uses a single wire for electrified routes; you may check this box so that OR will show the two over-
headwires that aremore common.

6.10.4 Show shapewarnings
When this option is selected, when OR is loading the shape (.s) files it will report errors in syntax and
structure (even if these don’t cause runtime errors) in the Log file OpenRailsLog.txt on the desktop.

6.10.5 Forced red at station stops
In case a signal is present beyond a station platform and in the same track section (no switches in be-
tween), ORwill set the signal to red until the train has stopped and then hold it as red from that time up to
two minutes before starting time. This is useful in organizing train meets and takeovers, however it does
not always correspond to reality nor to MSTS operation. So with this option the player can decide which
behavior the start signal will have. This option is checked by default. Unchecking the option has an effect
on simulation behavior only if no Timetable mode operation is under way.

6.10.6 Load night textures only when needed
As a default OR loads night textures together with the day textures at daytime. When this option is se-
lected, to reduce loading time and reduce memory used, night textures are not loaded in the daytime and
are only loaded at sunset (if the game continues through sunset time).

6.10.7 Signal light glow
When this option is set, a glowing effect is added to signal semaphoreswhen seen at distance, so that they
are visible at a greater distance. There are routes where this effect has already been natively introduced;
for these, this option is not recommended.

6.10.8 Extended AI train shunting
When this option is selected, further AI train shunting functions are available. This allows for more inter-
esting and varied activities. If an activity is run which makes use of these function, this option must be
selected. This option has no effect in Timetable mode.
The following additional shunting functions are available:
• AI train couples to static consist and restarts with it.
• AI train couples to player or AI train and becomes part of it; coupled AI train continues on its path.
• AI train couples to player or AI train and leaves to it its cars; coupled and coupling train continue on
their path.

• AI train couples to player or AI train and steals its cars; coupled and coupling train continue on their
path.

• AI train uncouples any number of its cars; the uncoupled part becomes a static consist. With the
same function it is possible to couple any number of cars from a static consist.

For content developers
A more detailed description of this feature can be found under Extended AI Train Shunting under Open
Rails Train Operation.

6.10. Experimental Options 33

Open RailsManual, Release 1.2.3706 (draft)

For content developers
Selecting this optionalsoenables thewaitingpoints todeclare anabsolute time-of-day insteadof awaiting
point duration. A more detailed description of this feature can be found in the related paragraph in the
chapterOpen Rails Train Operation.

6.10.9 Autopilot
With this option enabled andwhen in activity mode, it is possible to stay in the cab of the player train, but
to let Open Rails move the train, respecting path, signals, speeds and station stops.
It is possible to switch the player train between autopilot mode and player driven mode at run time. The
Autopilot mode is described here.

6.10.10 ETCS circular speed gauge
When this option is selected, it is possible to add to the cabview a circular speed gauge accordingly to the
European standard train control system ETCS.

For content developers
The gauge is added by the insertion of a block like the following into the .cvf file:
Digital (

Type (SPEEDOMETER DIGITAL)
Style (NEEDLE)
Position (160 255 56 56)
ScaleRange (0 250)
Units (KM_PER_HOUR)

)

6.10.11 Extend object maximum viewing distance to horizon
With this option selected, all objects viewable up to the viewing distance defined in theVideoOptions are
displayed. As a default ORTS only displays objects up to 2000 m distance. Selecting this option improves
display quality but may reduce frame rate.

6.10.12 LoadDDS textures in preference to ACE
Open Rails is capable of loading both ACE andDDS textures. If only one of the two is present, it is loaded.
If both are present, the ACE texture is loaded unless this option has been selected.

6.10. Experimental Options 34

Open RailsManual, Release 1.2.3706 (draft)

6.10.13 Location-linked passing path processing
When this option is NOT selected, ORTS acts similarly to MSTS. That is, if two trains meet whose paths
share some track section in a station, but are both provided with passing paths as defined with theMSTS
Activity Editor, one of themwill run through the passing path, therefore allowing the meet. Passing paths
in this case are only available to the trains whose path has passing paths.
When this option is selected,ORTSmakes available to all trains themain and thepassing pathof theplayer
train. Moreover, it takes into account the train length in selecting which path to assign to a train in case of
ameet.

For content developers
A more detailed description of this feature can be found under Location-Linked Passing Path Processing in
the chapterOpen Rails Train Operation.

6.10.14 MSTS Environments
By default ORTS uses its own environment files and algorithms, e.g. for night sky and for clouds.
With this option selected, ORTS applies the MSTS environment files. This includes support of Kosmos
environments, even if the final effect may be different from the currentMSTS one.

6.10.15 Adhesion factor correction
The adhesion ismultiplied by this percentage factor. Therefore lower values of the slider reduce adhesion
and cause more frequent wheel slips and therefore a more difficult, but more challenging driving experi-
ence.

6.10.16 Level of detail bias
This option is an expansion (and replacement) of an earlier experimental option: Always use highest level of
detail. The new option allows you to increase or reduce the level of detail generally shown independently
of the viewing distance andworld object density.

6.10.17 Adhesion proportional to rain/snow/fog
When this option is selected, adhesion becomes dependent on the intensity of rain and snow and the den-
sity of fog. Intensities and density can bemodified at runtime by the player.

6.10.18 Adhesion factor random change
This factor randomizes the adhesion factor corrector by the entered percentage. The higher the value,
the higher the adhesion variations.

6.10.19 Precipitation Box Size
Open Rails will simulate precipitation – i.e. rain or snow, as falling individual particles. This represents a
significant computing and display system load, especially for systems with limited resources. Therefore,
the region in which the precipitation particles are visible, the Precipitation Box, is limited in size andmoves
with the camera. The size of the box can be set by the entries in the height, width and length boxes. The X
and Z values are centered on the camera location, and falling particles spawn and fall from the top of the
box.

6.10. Experimental Options 35

Open RailsManual, Release 1.2.3706 (draft)

6.10.20 Correct questionable braking parameters
When this option is selected, Open Rails corrects some braking parameters if they are out of a reasonable
range or if they are incoherent. This is due to the fact that many existing .eng files have such issues, that
are not a problem forMSTS,which has amuch simpler brakingmodel, but that are a problem forOR,which
has a more sophisticated braking model. The problem usually is that the train brakes require a long time
to release, and in some times do not release at all.
The following checks and corrections are performed if the option is checked (only for single-pipe brake
system):
• if the compressor restart pressure is smaller or very near to themax system pressure, the compres-
sor restart pressure and if necessary themaxmain reservoir pressure are increased;

• if the main reservoir volume is smaller than 0.3 m3 and the engine mass is higher than 20 tons, the
reservoir volume is raised to 0.78m3;

• the charging rate of the reservoir is derived from the .eng parameter
AirBrakesAirCompressorPowerRating (if this generates a value greater than 0.5 psi/s) instead
of using a default value.

6.10. Experimental Options 36

CHAPTER7

Driving a Train

7.1 Game Loading
Once you have pressed Start, OpenRails loads and processes all the data needed to run the game. During
this phase, the route’s splash screen is shown. If the same session was loaded previously, a bar showing
loading progress is shown at the bottom of the display. During loading, if logging is selected, the log file
OpenRailsLog.txtwill already begin storing data.

7.2 Entering the Simulation
At the end of the loading phase, you are in the cab of the train you will drive.(Note: some newer locomo-
tives have experimental 3D cabs - if no cab interior display appears, then type <Alt+1> to display the cab
interior.) Depending on the configuration of the activity (in case of activity mode), your train will be in
motion or stopped. To look around in the simulation, you can select different views using the keyboard, as
described in Changing the View.

7.3 Open Rails Driving Controls
Open Rails follows MSTS very closely, providing controls to drive steam, electric and diesel locomotives,
both on their own or working together, but also offers additional capabilities.
A very wide range of systems and instruments specified in the ENG and CVF files is supported.
To control the train, you have at your disposal a set of keyboard commands that is equivalent to those
of MSTS, plus some new ones. You can get a printable version of the command set as described in para-
graph Keyboard options, or you can press <F1> to immediately get the scrollable F1 Information Window
as shown and described below.
Alternatively, you can operate the cabview controls by mouse click (buttons) and mouse drag (levers and
rotary switches).

37

Open RailsManual, Release 1.2.3706 (draft)

7.3.1 Throttle Control
Steam locomotives have a continuous throttle or regulator, butmany diesel and electric locomotives have
a notched throttle which moves only in steps. To avoid jerks, some of these steps may be smooth, where
the power is gradually and automatically adjusted to achieve the setting.

7.3.2 Dynamic Braking
Dynamic braking is the use of the traction motors of a locomotive (electric or diesel-electric) as genera-
tors to slow the train. Initially, dynamic braking was applied in mountainous territory where conventional
freight-car brakes were prone to overheating on long downgrades. It was also limited to speeds above
10mph. Dynamic braking controls are usually notched.
In OR, the dynamic brake (controlled by the keys <,> and <.>) is not available unless the throttle is fully
closed; similarly the throttle is not available unless the dynamic brake is fully released (off).
As defined in the CVF file, the tractive and braking forces may be shown on two different instruments, on
one instrumentwith twoneedles or on a single instrumentwhere the braking is shownas a negative value.

7.3.3 Combined Control
Some locomotives are fitted with a combined control where a single lever is used to provide throttle and
brake control together, with negative throttle positions used to apply the brake. The brake element may
be either dynamic or conventional train brakes.
There may be a delay changing between throttle and brake operation, representing the time required to
change the operation of the tractionmotors frommotors to generators.

7.3.4 BlendedDynamic Brake
Some locomotives have blended dynamic brake, which means that the trainbrake lever also con-
trols the dynamic brake. Currently this is implemented to be MSTS compatible, the dynamic
brake force percentage follows the train brake pipe pressure (full service/suppression will set 100%
dynamic brake). The blending percentage run up/ run down follows the airbrake application
MaxApplicationRate(), and release rates MaxReleaseRate(), and also respects the dynamic brake delay
setting DynamicBrakesDelayTimeBeforeEngaging() .eng parameters.
Blending can alsowork if there is nodynamic brake lever configured for the locomotive. If there is dynamic
brake lever defined, then the higher commandwill be applied, except if OrtsDynamicBlendingOverride(1
) is added to the Engine() block, which makes the lever override the blending command, if the dynamic
brake lever is not at full release position.
OrtsDynamicBlendingForceMatch(1) parameter can be added to Engine() block, which makes the dy-
namic brake system to try to achieve the same brake force as the airbrakewould have (even if the airbrake
is bailed off), in the current train brake lever position. Example: if the trainbrake has 22 kN brake force
at 40% trainbrake setting, then the dynamic brake will try to achieve, and maintain 22 kN braking force,
instead of just setting 40% dynamic brake percentage.

7.3.5 Refill
Diesel and steam locomotives must refill their supplies of fuel occasionally, perhaps daily, but steam loco-
motives need water more frequently and have a range of little more than 100 miles. Use the <T> key to
refill with fuel or water at a fuel or water supply location. Use the <Y> key to pick up water from a water
trough under amoving locomotive.
If the locomotive or tender is alongside the pickup point, e.g. a water tank, then the refilling takes place as
the key is held down. If the locomotive is further away, then the distance to the nearest pickup is shown
instead.

7.3. Open Rails Driving Controls 38

Open RailsManual, Release 1.2.3706 (draft)

Note also that the key <Shift+T>will provide immediate refill at any time.

7.3.6 Specific Features toOptimize Locomotive Driving
You are encouraged to read the chapter onOpen Rails Physics to optimize your driving capabilities and to
achieve a realistic feeling of what happens in a real moving train.

7.3.7 Examples of Driving Controls

For content developers
• For continuous throttle, seeMSTSmodel TRAINS\TRAINSET\ACELA\acela.eng
• For a notched non-smooth throttle, see TRAINS\TRAINSET\GP38\gp38.eng
• For a combined throttle and dynamic brake, see TRAINS\TRAINSET\DASH9\dash9.eng
• For a combined throttle and train brake, see TRAINS\TRAINSET\SERIES7000\series7000.eng

7.4 Driving aids
Open Rails provides a large number of driving aids, which support the player during train operation.

7.4.1 Basic Head UpDisplay (HUD)
By pressing <F5> you get some important data displayed at the top left of the display in the so-calledHead
UpDisplay (HUD). If youwant the HUD to disappear, press <F5> again.
TheHUDhas 6 different pages. The basic page is shown at game start. To sequentially switch to the other
pages press <Shift+F5>. After having cycled through all of the extended HUD pages, the basic page is
displayed again.
To hide or redisplay the current extended HUD data while continuing to show the basic HUD, press
<Alt+F5>.
The basic page shows fundamental information. The other pages go intomore detail, and are usedmainly
for debugging or to get deeper information on how OR behaves. They are listed in the Analysis tools sub-
chapter.
The following information is displayed in the basic display:
• Version = The version of theOpen Rails software you are running
• Time =Game time of the Activity
• Speed = the speed inMiles/Hr. or Kilometers/Hr.
• Gradient = Route gradient in % in that point
• Direction = Position of the Reverser - Electric, Diesel and Steam.
• Throttle = Displays the current position of the throttle, expressed as a percentage of full throttle.
Throttle correctly uses Notches and configured % of power for Diesel engines or % of throttle for
steam engines.

• Train Brake = Shows the current position of the train brake system and the pressure value of the
train brakes. Braking correctly reflects the braking system used; hold/release, self-lapping or grad-
uated release. The Train brake HUD line has two Brake Reservoir pressure numbers: the first is the

7.4. Driving aids 39

Open RailsManual, Release 1.2.3706 (draft)

Equalization Reservoir (EQ) and the second is the Brake Cylinder (BC) pressure. The two BP num-
bers report the brake pressure in the lead engine and in the last car of the train. The unit of measure
used for brake pressure is defined by the option Pressure unit.

• Engine Brake = percentage of independent engine brake. Not fully releasing the engine brake will
affect train brake pressures.

• Dynamic brake = if engaged, shows% of dynamic brake
• Engine = shows the running status of the engine. In case of a gear-based engine, after the Engine line
a Gear line appears displaying the actual gear. Nmeans no gear inserted.

• FPS =Number of Frames rendered per second
If the Autopilot is active, an additional line will be shown.
An example of the basic HUD for Diesel locomotives:

7.4.2 Electric Locomotives – Additional information
For electric locomotives information about the pantograph state is also shown and whether the locomo-
tive has power (at least one pantograph raised) or not.

7.4.3 Steam Engine – Additional Information
When using a steam engine the following additional information is displayed in the HUD:
• Steam Usage in lbs/h, based on entirely new physics code developed by the Open Rails team. It is
calculatedbyparsing the .engfile for the followingparameters: numberof cylinders; cylinder stroke;
cylinder diameter; boiler volume; maximum boiler pressure; maximum boiler output; exhaust limit;
and basic steam usage.

• Boiler pressure.
• Water level.
• Levels of coal andwater in %.

7.4. Driving aids 40

Open RailsManual, Release 1.2.3706 (draft)

An example of the basic HUD for Steam locomotives:

The default firing setting is automatic fireman. If manual firing is engaged with <Ctrl+F>, then additional
information is included:

7.4.4 Multiplayer – Additional Information
If a multiplayer session is active, the following additional information is shown: the actual status of the
player (dispatcher, helper or client), the number of players connected and the list of trains with their dis-
tances from the train of the player viewing the computer.

7.4.5 CompassWindow
Open Rails software displays a compass that provides a heading based on the camera’s direction together
with its latitude and longitude.

To activate the compass window press the <0> key. To deactivate the compass window, press the <0> key
a second time.

7.4.6 F1 InformationMonitor
The F1 key displays the following set of panels in a tabbed format, selected by clicking with the mouse on
the desired heading:

7.4. Driving aids 41

Open RailsManual, Release 1.2.3706 (draft)

Key Commands: displays the actions of the keyboard keys

Briefing: displayswhat the activity creator has entered as information to be provided to the player about
the activity:

Timetable: shows the list of the station stops, if any, with scheduled and actual times of arrival and depar-
ture. During the activity the actual performance will be shown on the F10 Activity Monitor.
Work Orders: if defined by the activity creator, lists the coupling and uncoupling operations to be per-
formed. When an operation has been completed, the string Done appears in the last column:

7.4. Driving aids 42

Open RailsManual, Release 1.2.3706 (draft)

Procedures: basic instructions for driving trains in Open Rails.

7.4.7 F4 TrackMonitor
This window, which is displayed by pressing F4, has two different layouts according the the train’s control
mode: Auto Signalmode, Manualmode or Explorermode. (It is strongly suggested to follow the link and
read the related paragraph.)
Auto Signal or Automode is the default modewhen running activities or timetables.
There are however twomain cases where youmust switch to Manualmode by pressing <Ctrl+M>:
• when the activity requires shunting without a predefined path
• when the train runs out of control due to SPAD (Signal Passed At Danger or passing a red signal) or
exits the predefined path by error. If such situations occur you will usually get an emergency stop.
To reset the emergency stop and then move to correct the error, you must first switch to Manual
mode.

To switch tomanual mode press <Ctrl+M>. In timetable mode youmust first stop the train to pass toman-
ual mode.
You can return to automode by pressing <Ctrl+M> againwhen the head of the train is again on the correct
path, with no SPAD situation. In standard situations you can also return to auto mode while the train is
moving. Details are described in the paragraph of the link shown above.
TrackMonitor display in Auto Signal mode:

7.4. Driving aids 43

Open RailsManual, Release 1.2.3706 (draft)

TrackMonitor display inManual mode / Explorer mode:

TrackMonitor: Displayed Symbols (common for Auto andManual mode unless indicated otherwise) :

Notes on the TrackMonitor:
• Distance value is displayed for first object only, and only when within distance of the first fixed
marker. Distance is not shown for next station stop.

7.4. Driving aids 44

Open RailsManual, Release 1.2.3706 (draft)

• When no signal is within the normal display distance but a signal is found at a further distance, the
signal aspect is displayed in the advance signal area. The distance to this signal is also shown. This
only applies to signals, not to speedposts.

• For Automode:
– If the train is moving forward, the line separating the Backward information area is shown in
red, and no Backward information is shown.

– If the train is moving backward, the separation line is shown in white, and Backward informa-
tion is shown if available.

• ForManual mode:
– If the train is on its defined path (and toggling back to Auto control is possible), the own train
symbol is shown in white, otherwise it is shown in red.

• The colour of the track-lines is an indication of the train’s speed compared to themaximum allowed
speed:
– Dark green: low speed, well below allowedmaximum
– Light green: optimal speed, just belowmaximum
– Orange: slight overspeed but within safety margin
– Dark red: serious overspeed, danger of derailment or crashing

Note that the placement of the display objects with respect to the distance offset is indicative only. If
multiple objects are placed at short intermediate distances, the offset in the display is increased such that
the texts do not overlap. As a result, only the first object is always shown at the correct position, all other
objects are as close to their position as allowed by other objects closer to the train.

7.4.8 F6 Siding and PlatformNames
Hit the <F6>key tobringup the siding andplatformnameswithin a region. These canbecrowded sohitting
<Shift+F6>will cycle through showing platforms only, sidings only, and both.
Hitting <F6> again removes both siding and platform names.

7.4. Driving aids 45

Open RailsManual, Release 1.2.3706 (draft)

7.4.9 F7 Train Names
Hitting the <F7> key displays train service names (player train always has Player as identification).
Hitting <Shift+F7> displays the rolling stock IDs.

7.4. Driving aids 46

Open RailsManual, Release 1.2.3706 (draft)

In amultiplayer session, player-controlled trains will have the id specified by the player:

7.4.10 F8 SwitchMonitor
Use the Switch Monitor, enabled by the F8 key, to see the direction of the turnout directly in front and
behind the train.

7.4. Driving aids 47

Open RailsManual, Release 1.2.3706 (draft)

There are 4ways to change the direction:
• Click on the turnout icon in the SwitchMonitor;
• Press the G key (or, for the turnout behind the train, the <Shift+G> key);
• Hold down the Alt key and use the left mouse button to click on the switch in theMainWindow;
• Use the dispatcher window.

Please note that with the last two methods you can throw any switch, not only the one in front but also
the one behind the train.
However, note also that not all switches can be thrown: in some cases the built-in AI dispatcher holds the
switch in a state to allow trains (especially AI trains) to follow their predefined path.
The arrow and eye symbols have the same meaning as in the track monitor. The switch is red when it is
reserved or occupied by the train, and greenwhen it is free.
A switch shown in green can be operated, a switch shown in red is locked.

7.4.11 F9 Train OperationsMonitor
The Open Rails Train Operations window is similar in function to the F9 window in MSTS, but includes
additional features to control the air brake connections of individual cars. For example, it is possible to
control the connection of the air brake hoses between individual cars, to uncouple cars without losing the
air pressure in the train’s air brake hose, or uncouple cars with their air brakes released so that they will
coast.
The unit which the player has selected as the unit from which to control the train, i.e. the lead unit, is
shown in red.
Cars are numbered according to theirUiD in theConsistfile (.con) orUiD in theActivityfile (.act). Scrolling
is accomplished by clicking on the arrows at the left or right bottom corners of the window.

Clicking on the coupler icon between any two cars uncouples the consist at that point.
You can also uncouple cars from your player train by pressing the <U> key and clicking with the mouse on
the couplers in the main window. By clicking on any car in the above window, the Car Operation Menu
appears. By clicking in this menu it is possible:

7.4. Driving aids 48

Open RailsManual, Release 1.2.3706 (draft)

• to apply and release the handbrake of the car;
• to power on or power off the car (if it is a locomotive). This applies for both electric and diesel loco-
motives;

• to connect or disconnect locomotive operation with that of the player locomotive;
• to connect or disconnect the car’s air hoses from the rest of the consist;
• to toggle the angle cocks on the air hoses at either end of the car between open and closed;
• to toggle the bleed valve on the car to vent the air pressure from the car’s reservoir and release the
air brakes tomove the car without brakes (e.g. humping, etc.).

By toggling the angle cocks on individual cars it is possible to close selected angle cocks of the air hoses so
that when the cars are uncoupled, the air pressure in the remaining consist (and optionally in the uncou-
pled consist) is maintained. The remaining consist will then not go into Emergency state.
When working with cars in a switch yard, cars can be coupled, moved and uncoupled without connecting
them to the train’s air braking system (see the F5 HUD for Braking). Braking must then be provided by the
locomotive’s independent brakes. A car or group of cars can be uncoupled with air brakes active so that
they can be recoupled after a short time without recharging the entire brake line (Bottling the Air). To
do this, close the angle cocks on both ends of the car or group before uncoupling. Cars uncoupled while
the consist is moving, that have had their air pressure reduced to zero before uncoupling, will coast freely.
In Open Rails, opening the bleed valve on a car or group of cars performs two functions: it vents the air
pressure from the brake system of the selected cars, and also bypasses the air system around the cars if
they are not at the end of the consist so that the rest of the consist remains connected to themain system.
In real systems the bypass action is performed by a separate valve in each car. In the F5 HUD for Braking
display, the text Bleed appears on the car’s display line until the air pressure has fallen to zero.
More information about manipulating the brakes during coupling and uncoupling can also be found here.

7.4.12 F10 ActivityMonitor
The ActivityMonitor is similar in function toMSTS. It records the required Arrival time of your train and
the actual arrival time as well as the required Depart time and the actual departure time.
A textmessage alerts the engineer as to theproper departure timealongwith awhistle or other departure
sound.

7.4. Driving aids 49

Open RailsManual, Release 1.2.3706 (draft)

7.4.13 Odometer
The odometer display appears in the centre of the main window, toggled on or off by the keys <Shift+Z>.
The direction of the count is toggled by the keys <Shift+Ctrl+Z>, and the odometer is reset or initialized
by <Ctrl+Z>.
When set for counting down, it initializes to the total length of the train. As the trainmoves, the odometer
counts down, reaching zero when the train has moved its length. When set for counting up, it resets to
zero, andmeasures the train’s total movement.
For example, if the odometer is set for counting downand you clickCtrl+Z as the front of the train passes a
location, thenwhen it reaches zero youwill know, without switching views, that the other end of the train
has just reached the same point, e.g. the entrance to a siding, etc.

7.5 DispatcherWindow
The dispatcherwindow is a very useful tool tomonitor and control train operation. TheDispatcher window
optionmust be selected.
The dispatcher window is actually created by pressing <Ctrl+9>. The window is created in a minimized
state, so to display it in front of the OR window you must click on <Alt+Tab> and select the dispatcher
window icon, or click on one of theOR icons in the taskbar. If you are runningOR in full-screenmode, you
must also have the Fast full screenAlt+Taboption selected to have both theORand the dispatcherwindows
displayed at the same time. After the dispatcher window has been selected with <Alt+Tab>, successive
Alt_Tabs will toggle between theORwindow and the dispatcher window.
The dispatcherwindow is resizable and can also bemaximized, e.g. on a second display. You can define the
level of zoom either by changing the value within the Res box or by using the mouse wheel. You can pan
through the route by moving the mouse while pressing the left button. You can hold the shift key while
clicking themouse in a place in themap; thiswill quickly zoom inwith that place in focus. You can holdCtrl
while clicking the mouse in a place in the map, which will zoom out to show the whole route. Holding Alt
and clicking will zoom out to show part of the route.

7.5. DispatcherWindow 50

Open RailsManual, Release 1.2.3706 (draft)

The dispatcher window shows the route layout andmonitors themovement of all trains. While the player
train is identified by the PLAYER string (or by a 0 if autopilot mode is enabled), AI trains are identified by
their OR number (that is also shown in the Extended HUD for Dispatcher Information), followed by the ser-
vice name. Static consists are identified as inMSTS.
The state of the signals is shown (only three states are drawn), that is
• Stop – drawn in red
• Clear_2 – drawn in green
• while all signals with restricting aspect are drawn in yellow.

The state of the switches is also shown. A switch shownwith a black dot indicates the main route, while a
grey dot indicates a side route.
When the Draw path is checked, the first part of the path that the train will follow is drawn in red. If a
trailing switch in the path is not in the correct position for the path, a red X is shown on it.
When left- or right-clicking on a signal, a pop-upmenu appears:

Using themouse, you can force the signal to Stop, Approach or Proceed. Later you can return it to System
Controlledmode.
By left- or right-clicking on a switch, a small pop-up menu with the two selections Main route and Side
route appears. By clicking on them you can throw the switch, provided theORAI dispatcher allows it.

7.5. DispatcherWindow 51

Open RailsManual, Release 1.2.3706 (draft)

With respect to AI trains, as a general rule you can command their signals but not their switches, because
AI trains are not allowed to exit their path.
The two checkboxes Pick Signals and Pick Switches are checked as default. You can uncheck one of
themwhen a signal and a switch are superimposed in a way that it is difficult to select the desired item.
You can click a switch (or signal) in the dispatcher window and press <Ctrl+Alt+G> to jump to that switch
with the free-roam (8-key) camera.
If you click on View Self the dispatcher window will center on the player train. However, if the train
moves, centering will be lost.
You can select a train by left-clicking with the mouse its green reproduction in the dispatcher window,
approximately half way between the train’s head and its name string. The train body becomes red. Then if
you click on the button See in game the main Open Rails windowwill show this train in the views for the
2, 3, 4 or 6 keys, (and the 5-key view if available for this train). Display of the new train may require some
time for OR to compute the new image if the train is far away from the previous camera view.
Take into account that continuous switching from train to train, especially if the trains are far away, can
lead tomemory overflows.
If after a train selection you click on Follow the dispatcher windowwill remain centered on that train.

7.6 Additional Train Operation Commands
OR supports an interesting range of additional train operation commands. Some significant ones are de-
scribed here.

7.6.1 Diesel PowerOn/Off
With the key <Shift+Y> the player diesel engine is alternately powered on or off. At game start the engine
is powered on.
With the key <Ctrl+Y> the helper diesel locomotives are alternately powered on or off. At game start the
engines are powered on.
Note that by using the CarOperationMenu you can also power on or off the helper locomotives individu-
ally.

7.6.2 Initialize Brakes
Entering this command fully releases the train brakes. Usually the trainmust be fully stopped for this to be
allowed. This action is usually not prototypical. Check the keyboard assignment for the keys tobepressed.
The command can be useful in three cases:
• A good number of locomotives do not have correct values for some brake parameters in the .eng

file; MSTS ignores these; however OR uses all these parameters, and it may not allow the brakes to
release fully. Of course, it would bemore advisable to correct these parameters.

• It may happen that the player does not want to wait for the time needed to recharge the brakes;
however the use of the command in this case is not prototypical of course.

• The player may wish to immediately connect brake lines and recharge brakes after a coupling oper-
ation; again, the use of the command is not prototypical.

Note that this command does not work if the Emergency Brake button has been pressed – the buttonmust
be pressed again to cancel the emergency brake condition.

7.6. Additional Train Operation Commands 52

Open RailsManual, Release 1.2.3706 (draft)

7.6.3 Connect/Disconnect Brake Hoses
This command should be used after coupling or decoupling. As the codeuseddepends on keyboard layout,
check the keys to be pressed as described in keyboard options or by pressing F1 at runtime. More informa-
tion on connecting brakes andmanipulating the brake hose connections can be found here and here.

7.6.4 Doors andMirror Commands
Note that the standard keys in OR for these commands are different from those ofMSTS.

7.6.5 Wheelslip Reset
With the keys <Ctrl+X> you get an immediate wheelslip reset.

7.6.6 Toggle Advanced Adhesion
Advanced adhesion can be enabled or disabled by pressing <Ctrl+Alt+X>.

7.6.7 Request to Clear Signal
When the player train has a red signal in front or behind it, it is sometimes necessary to ask for autho-
rization to pass the signal. This can be done by pressing <Tab> for a signal in front and <Shift+Tab> for
a signal behind. You will receive a voice message reporting if you received authorization or not. On the
Trackmonitor window the signal colours will change from red to red/white if permission is granted.
7.6.8 Change Cab - <Ctrl+E>
All locomotives and some passenger cars have a forward-facing cab which is configured through an entry
in the ENG file. For example, theMSTSDash9 file TRAINSET\DASH9\dash9.eng contains the entry:
CabView (dash9.cvf)

Where a vehicle has a cab at both ends, the ENG file may also contain an entry for a reversed cab:
CabView (dash9_rv.cvf)

ORwill recognise the suffix _rv as a rear-facing cab andmake it available as follows.
When double-heading, banking or drivingmultiple passenger units (DMUs and EMUs), your trainwill con-
tain more than one cab and OR allows you to move between cabs to drive the train from a different posi-
tion. If you change to a rear-facing cab, then youwill be driving the train in the opposite direction.
If there aremany cabs in your train, pressing <Ctrl+E>moves you through all forward and rear-facing cabs
in order up to the last cab in the train. If you end up in a rear-facing cab, your new forward directionwill be
your old backward direction. So youwill now drive the train in the opposite direction.
A safety interlock prevents you from changing cabs unless the train is stationary and the direction lever is
in neutral with the throttle closed.

7.6.8 Train Oscillation
You can have train cars oscillating (swaying) by hitting <Ctrl+V>; if you want more oscillation, click
<Ctrl+V> again. Four levels, including the no-oscillation level, are available by repeating <Ctrl+V>.

7.6. Additional Train Operation Commands 53

Open RailsManual, Release 1.2.3706 (draft)

7.7 Engaging a turntable
Turntable operation is possible in explore mode, activity mode and timetable mode. A turntable can be
moved by the player only if it is viewed by him on the screen. If more than one turntable is on view, the
nearest one can be moved. The trainset (or trainsets) to be rotated must be completely on the turntable
to start rotation. Messages of type “Train front on turntable” and “train rear on turntable” help stating
that the train is fully on the rotating bridge. Before starting rotating the train must be fully stopped, with
reverser in neutral position and zeroed throttle. Moreover, if in activity or timetable mode, the player
must first pass to manual mode pressing <Ctrl+M>. At this point you can rotate the turntable clockwise
with keys <Alt+C>, and counterclockwisewith keys <Ctrl+C>. Youmust keep the keys pressed to continue
rotation. When the first of the two rails of the rotating bridge is between the two rails where you want to
stop, release the keys. Rotationwill continue up to perfect alignment. If necessary exit frommanualmode
(if you are again on a path in activity mode) and move the loco out of the turntable. During rotation the
train is in Turntable state (this can be seen in the TrackMonitor).

It is also possible to rotate standalone wagons. They have to be pushed or pulled to the turntable, the
locomotivemust exit the turntable and thewagoncanbe rotated. It is suggested to readalso this paragraph
to better understandwhat is possible with turntables.

7.8 AutopilotMode
Autopilot mode is not a simulation of a train running with cruise control; instead, it is primarily a way to
test activitiesmore easily and quickly; but it can also be used to run an activity (or part of it, as it is possible
to turn autopilot mode on or off at runtime) as a trainspotter or a visitor within the cab.
Autopilot mode is enabled with the related checkbox in the Experimental Options. It is active only in ac-
tivity mode (i.e. not in explorer or timetable modes).
When starting the gamewith any activity, you are in player drivingmode. If you press Alt+A, you enter the
autopilotmode: you are in the loco’s cabviewwith the trainmoving autonomously accordingly to path and
station stops and of course respecting speed limits and signals. You still have control over the horn, bell,
lights, doors, and some other controls that do not affect train movement. The main levers are controlled
by the autopilot mode, and indications are correct.
You can at any moment switch back to player driven mode by pressing <Alt+A>, and can again switch to
autopilot mode by again pressing <Alt+A>.

7.7. Engaging a turntable 54

Open RailsManual, Release 1.2.3706 (draft)

When in player driven mode you can also change cab or direction. However, if you return to autopilot
mode, youmust be on the train’s path; other cases are not managed. When in player drivenmode you can
also switch tomanual, but before returning to autopilot mode youmust first return to automode.
Station stops, waiting points and reverse points are synchronized as far as possible in the twomodes.
Cars can also be uncoupled in autopilotmode (but check that the train will stop in enough time, otherwise
it is better to change to player drivenmode). A static consist can also be coupled in autopilot mode.
The Request to Clear signal (<Tab> key) works in the sense that the signal opens. However in autopilot
mode at the moment that the train stops you must switch to player driven mode to pass the signal and
then you can return to autopilot mode.
Note that if you run with Advanced Adhesion enabled, you may have wheelslip when switching from au-
topilot mode to player drivenmode.
The jerkymovements of the levers in autopilot mode are the result of the way that OR pilots the train.

7.9 Changing the Train Driven by the Player
7.9.1 General
This function only works in activity mode, and allows the player to select another (existing) train from a
list and to start driving it. It requires that the ExperimentalOptions Autopilot and Extended AI Shunting
be checked.
This function can be called more than once. A new information window has been created to support this
function: the Train Listwindow (opened with Alt+F9). It contains a list of all of the AI trains and of the
static trains equippedwith a locomotive with cab, plus the player train.
Here an example of an initial situation:

The current player train is shown in red. The star at the end of the line indicates that the cameras (cab
camera is managed differently) are currently linked to that train.
AI trains whose loco(s) have at least a cab are shown in green. They are eligible for player train switching.

7.9. Changing the Train Driven by the Player 55

Open RailsManual, Release 1.2.3706 (draft)

Static trains with loco and cab are shown in yellow.
Other AI trains are shown in white.
By left-clicking in the list for the first time on an AI train, the cameras become linked to that train. A red
star appears at the end of the line. This is partially equivalent to clicking on <Alt+9>, but in this method
the desired train is immediately selected andmay become the player train.
Here is the intermediate situation:

By left-clicking a second time on the AI train (usually when it has completely appeared on the screen - if
it is far away from the player train this can require several seconds to load theworld around the train) the
switch of control occurs.
The AI train string now becomes red and is moved to the first position.The train can be driven, or set to
autopilot mode. The former player train becomes an AI train.
Here is the final situation:

7.9. Changing the Train Driven by the Player 56

Open RailsManual, Release 1.2.3706 (draft)

If the second left-click was performedwith the Shift key down, the former player train still becomes an AI
train, but it is put in a suspendedmode (only if its speed is 0). It won’t move until it becomes a player train
again. A suspended train is shown in orange color on the Train List window.
The new player train can can be switched tomanual mode, can also request to pass signals at danger with
the <Tab> command, and can be moved outside of its original path. However before switching control to
still another train, the new player train must be returned to the original path or put in suspend mode; or
else it will disappear, as occurs for AI trains running outside their path.
The sequencemay be restarted to switch to a new train or to switch back to the initial player train.
Train switching also works in activity mode together with multiplayer mode, in the sense that the dis-
patcher player can switch its played train, and the related information is sent to the client players.
The Train List window is also available in Timetable mode. In this case the names of all trains except the
player train are shown in white (they can’t be driven), however with a single click on a train in the window
theexternal viewcameras become linked to that train, as occurswith theAlt-9 commanddescribed further
below.

7.9.2 Switching to a static train
In the Train List window the drivable static consists (that is the ones that have at least an engine provided
with a cab) are also listed (in yellow color).
To ease recognition static consists are named STATIC plus the ID number as present in the .act file (e.g.
STATIC - 32768).
The procedure to select a static consist in order to drive it is similar to that used to drive another non-
static train train: with the first click on the static consist line in the Train List window the camera (if there
wasn’t the Cab camera active) moves to the static consist. With the second click the game enters into the
cab of the static consist. If the second click occurswith the Shift key pressed, the old player train goes into
a suspended state (else it enters autopilot mode, autonomously moving itself along its path).
The static consist becomes a standard train without a path - a pathless train. It runs in manual mode,
and so it can be managed with all the thrills and frills available for manual mode. Signals can be cleared
in the dispatcher window or alternatively requests for permission can be issued, switches can be moved,

7.9. Changing the Train Driven by the Player 57

Open RailsManual, Release 1.2.3706 (draft)

direction can be changed, cars can be coupled and uncoupled. If the train goes out of control (e.g. because
of SPAD), CTRL+Mhas to be pressed first to exit emergency braking.
With stopped pathless train, if a new player train is selected in the Train List window, the pathless train
returns to being a STATIC consist.
The pathless train can also couple to another train (e.g. an AI train or the initial player train). The coupled
train becomes incorporated into the pathless train, but nowmore possibilities are available:
• The pathless train incorporating the AI train continues to be driven as a pathless train; later on the
run it could uncouple the incorporated train, which would continue autonomously if it is still on its
path.

• By clicking once on the incorporated AI train line in the Train List window it is the pathless train that
becomes absorbed into theAI train, which nowcan operate on its path in autopilotmode or in player
drivenmode.

• Once the pathless train has coupled to the AI train, an uncouple operation can be performed with
the F9window (between any couple of cars). The pathless train can be driven further (withmodified
composition) and also the AI train can run further, provided both retain at least one locomotive.

7.9.3 Waiting point considerations
Awaiting point icon showing a hand has been added for the TrackMonitor, that is shownwhenWPs (wait-
ing points) for new player trains are met in the path. This because the player should know that his train
(when run as AI train) would stop at a point for a certain time. TheWP is red when approaching it. When
the train stops at it, it becomes yellow, and disappears when the time to depart is reached. When the new
player train is run in autopilot mode, the train automatically stops for the required time at theWP.
If the activity foresees that the new player train has to execute an Extended AI Shunting function, OR
allows this function to be executed. When the train runs in autopilot mode such functions are executed
automatically; when it runs in player drivenmode, the playermust act to uncouple cars; in this case pop-up
messages based on the activity events window appear to help the player.
Care has been taken when the player is driving a train that was foreseen to disappear due to an Extended
AI Shunting function, as e.g. when itmerges into another train orwhen it is part of a join-and-split function
and is incorporatedwithin another train. In these cases, when the coupling occurs, the player is automati-
cally moved to the train that remains alive.

7.10 Changing the View
Open Rails provides all of theMSTS views plus additional view options:
• A 3D interior cabview option (where a 3D cabview file is available);
• Control of the view direction using themouse (with the right-hand button pressed);
• The exterior views (keys 2,3,4,6) and the interior view (key 5) can be attached to any train in the
simulation by the Alt+9 key as described below

• The <Alt+F9> key shows the Train Listwindow, which not only allows attaching the exterior views to
any train, but also, in Activity mode, tomove to the Cab and drive any train in the simulation.

All of the required key presses are shown by the F1 Help key in the game. Note that some of the key
combinations are different in Open Rails than inMSTS. For instance, in Open Rails the cab Headout views
from the cab view are selected by the Home and End keys, and the view direction ismanipulated by the four
arrow keys, or themouse with the right-hand button depressed.
The commands for each of the views are described below.
• Key 1 opens the 2D driver’s view from the interior of the controlling cab of the player locomotive.
The entire cab view canbemoved to other cabs (if available) in the player train by successive presses

7.10. Changing the View 58

Open RailsManual, Release 1.2.3706 (draft)

of Ctrl+E; the train must be stopped and the direction switch in Neutral. The view can be changed
to the fixed left, front, or right view by clicking the left, up or right arrow keys. (The 2D view is
constructed from three 2D images, so the actual camera position can only be modified by editing
the contents of the .cvf file.) The headout views (if available) are selected by Home (right hand side,
looking forward) or End (left hand side, looking back) and the headout view direction is controlled
by the mouse with the right button depressed. If there are multiple locomotives, <Alt+PgUp> and
<Alt+PgDn>move the headout views.

• Key <Alt+1> opens the 3D driver’s view (if the locomotive has a 3D cabview file) from the interior of
the controlling cab of the player locomotive. The camera position and view direction are fully player
controllable.

Rotation of the camera view in any direction is controlled by the mouse with the right-hand button de-
pressed (or alternatively by the four arrow keys). The camera’s position is moved forward or backward
along the train axiswith thePageUpandPageDownkeys, andmoved left or right or up or downwith <Alt>
+ the four arrow keys. The headout views (if available) are selected by <Home> (right hand side, looking for-
ward) or <End> (left hand side, looking back) and theoutside viewdirection is controlled by themousewith
the right button depressed.
• Keys <2> and <3> open exterior views that movewith the active train; these views are centered on a
particular target car in the train. The target car or locomotive canbe changedbypressing <Alt+PgUp>
to select a target closer to the head of the train and <Alt+PgDn> to select a target toward the rear.
The 2-View selects the train’s head end as the initial target, the 3-View the last car. Alt+Home resets
the target to the front, <Alt+End> to the rear of the train.

The camera’s position with respect to the target car is manipulated by the four arrow keys – left or right
arrows rotate the camera’s position left or right, up or down arrows rotate the camera’s position up or
downwhile remaining at a constant distance from the target. The distance from the camera to the target
is changed by zooming with the <PgUp> and <PgDn> keys. Rotation of the camera view direction about the
camera’s position is controlled by holding down the <Alt> keywhile using the arrowbuttons, or bymoving
themousewith the rightmousebuttondepressed. The scrollwheel on themouse zooms the screen image;
the field of view is shown briefly. <Ctrl+8> resets the view angles to their default position relative to the
current target car.
• Key <4> is a trackside view from a fixed camera position with limited player control - the height of
the camera can be adjusted with the up and down arrow keys. Repeated pressing of the 4-key may
change the position along the track.

• Key <5> is an interior view that is active if the active train has a passenger view declaration in any of
its cars (or in the caboose). The view direction can be rotated by the arrow keys or the mouse with
right button pressed. The camera position is moved forward or backward along the train axis with
the PageUp and PageDown keys, and moved left or right or up or downwith <Alt> + the four arrow
keys. Successive presses of the <5> key will move the view to successive views (if they exist) within
the active train. Note that the active trainmay be an AI train selected by <Ctrl+9>.

• Key <6> is the brakeman’s view – the camera is assumed to be at either end of the train, selected
by <Alt+Home> and <Alt+End>. Rotation is controlled by the arrow keys or mouse with right button
depressed. There is no brakeman’s view for a single locomotive.

• Key <8> is the free camera view; the camera starts from the current Key-2 or Key-3 view position,
andmoves forward (<PgUp> key) or back (<PgDn> key) along the view direction. The direction is con-
trolled by the arrow keys or the mouse with right button depressed. The speed of motion is con-
trolledby the <Shift> (increase) or <Ctrl> (decrease) keys. OpenRails saves thepositionof previous
Key 8 views and can recall them by repeatedly pressing <Shift+8>.

• <Alt+9> is an ORTS feature: it controls the target train for the Key 2, 3, 4, 5 and 6 views during ac-
tivities or timetable operations. If there is more than one active train or there are consists declared
in the activity for pickup, pressing this key combinationwill set the view to display each train or con-
sist in turn. To return to the player train, press the <9> key. There may be a delay for each change of
view asOpen Rails calculates the new image. The cab view and data values in the F4window always
remain with the Player train. To directly select which train is to be shown either use the Dispatcher
Window or the <Alt+F9> option described below. In the Dispatcher Window, locate the train that

7.10. Changing the View 59

Open RailsManual, Release 1.2.3706 (draft)

youwish to view, and click themouse on it until the block representing it turns red; then click on the
button Show in game in the DispatcherWindow and then return to theOpen Rails window.

• <Alt+F9> is an enhancement of the <Alt+9> feature that displays the Train List window showing the
names of all of the currently active trains. Click on the name of the desired train to move the exte-
rior views to the selected train. In Activity mode, double-clicking on a train’s name in this window
transfers the Cabview and control of the selected train to the player. In Timetable mode, only the
exterior views are selected.

• Key <9> resets the target train for the Key 2,3,4,5 and 6 views to the Player train.
Holding the <Shift> key with any motion command speeds up the movement, while holding the <Ctrl>
key slows it.
Note that view direction control using the mouse with right button pressed differs slightly from using
<Alt> + the arrow keys – the view direction can pass through the zenith or nadir, and the direction of
vertical motion is then reversed. Passing back through the zenith or nadir restores normal behavior.
Whenever frame rates fall to unacceptable levels players are advised to adjust camera positions to cull
somemodels from being in view and to adjust the camera again to includemoremodels when frame rates
are high.

7.11 Toggling BetweenWindowedMode and Full-screen
You can toggle at any time betweenwindowedmode and full-screen by pressing <Alt+Enter>.

7.12 Modifying the Game Environment
7.12.1 Time of Day
In activity mode Open Rails software reads the StartTime from the MSTS .act file to determine what the
game time is for the activity. In combination with the longitude and latitude of the route and the season,
Open Rails computes the actual sun position in the sky. This provides an extremely realistic represen-
tation of the time of day selected for the activity. For example, 12 noon in the winter will have a lower
sun position in the northern hemisphere than 12 noon in the summer. Open Rails game environment will
accurately represent these differences.
Once the activity is started, Open Rails software allows the player to advance or reverse the environment
time of day independently of the movement of trains. Thus, the player train may sit stationary while the
time of day is moved ahead or backward. The keys to command this depend from the national settings of
the keyboard, and can be derived from the key assignment list shown by pressing <F1>.
In addition, Open Rails offers functionality similar to the time acceleration switch forMSTS.
Use <Alt+PgUp> or <Alt+PgDn> keys to increase or decrease the speed of the game clock.
In amultiplayer session, all clients’ time, weather and season selections are overridden by those set by the
server.

7.12.2 Weather
When in activity mode Open Rails software determines the type of weather to display from theWeather
parameter in the MSTS Activity file. In the other modes the weather can be selected in the start menu.
A Weather Change Activity Event can be included in an activity that will modify the weather during the
activity.

7.11. Toggling BetweenWindowedMode and Full-screen 60

Open RailsManual, Release 1.2.3706 (draft)

7.12.3 ModifyingWeather at Runtime
The following commands are available at runtime (keys not shownhere canbe found in the key assignment
list obtained pressing F1):
• Overcast increase/decrease: increases and decreases the amount of clouds
• fog increase/decrease
• precipitation increase/decrease.

This demonstrates Open Rails software’s foundation for dynamic weather effects in the game.
Moreover, pressing <Alt+P> can change the weather from clear to raining to snowing and back to clear.

7.12.4 Season
In activitymodeOpenRails softwaredetermines the season, and its related alternative textures to display
from the Season parameter in the MSTS Activity file. In other modes the player can select the season in
the start menu.

7.13 Screenshot - Print Screen
Press the keyboard <PrintScreen> key to capture an image of the game window. This will be saved by
default in the file C:\Users\<username>\Pictures\Open Rails\Open Rails <date and time>.png

Although the image is taken immediately, there may be a short pause before the confirmation appears. If
you hold down the Print Screen key, thenOR takesmultiple images as fast as it can.
The key to capture the current window – <Alt+PrintScreen> – is not intercepted byOR.

7.14 Suspending or Exiting the Game
You can suspend or exit the game by pressing the ESC key at any time. Thewindow shown at the right will
appear.

The window is self-explanatory.
If you are running OR in aWindow, you can also exit OR by simply clicking on the x on the right top of the
ORwindow.

7.13. Screenshot - Print Screen 61

Open RailsManual, Release 1.2.3706 (draft)

7.15 Save and Resume
Open Rails provides Save and Resume facilities and keeps every save until you choose to delete it.
During the game you can save your session at any time by pressing <F2>.
You can view the saved sessions by choosing an activity and then pressing the Resume/Replay... button.

This will display the list of any Saves youmade for this activity:

7.15. Save and Resume 62

Open RailsManual, Release 1.2.3706 (draft)

To help you identify a Save, the list provides a screenshot and date and also distance travelled in meters
and the time and position of the player’s train. This window can be widened to show the full width of the
strings in the left panel.

7.15.1 Saves fromPrevious ORVersions
You should be aware that these Saves will only be useful in the short term as each new version of Open
Rails will mark Saves from previous versions as potentially invalid (e.g. the second entry in the list below).

When you resume from such a Save, there will be a warning prompt.

The Save will be tested during the loading process. If a problem is detected, then youwill be notified.

This Save and any Saves of the same age or older will be of no further value and will be marked as invalid
automatically (e.g. the 3rd entry in the list). The button in the bottom left corner of the menu deletes all
the invalid Saves for all activities in Open Rails.

7.16 Save and Replay
As well as resuming from a Save, you can also replay it just like a video. All the adjustments you made to
the controls (e.g. opening the throttle) are repeated at the right moment to re-create the activity. As well
as train controls, changes to the cameras are also repeated.
Just like a black box flight recorder, Open Rails is permanently in recordingmode, so you can save a record-
ing at any time just by pressing <F2> Save.
Normally, youwould choose the replay option by Menu > Resume > Replay from start.

7.16. Save and Replay 63

Open RailsManual, Release 1.2.3706 (draft)

A second option Menu > Resume > Replay from previous save lets you play back a shortened recording. It
resumes from the most recent Save it can find and replays from that point onwards. You might use it to
play back a 5minute segment which starts an hour into an activity.
A warning is given when the replay starts and a replay countdown appears in the F5 Head Up Display.

Fig. 7.1: Warning

By default, the simulation pauses when the replay is
exhausted. Use Pause replay at end on the Saved
Gameswindow to change this.
Little can usefully be achieved by adjusting the train
controls during replay, but the camera controls can be
freely adjusted. If changes are made (e.g. switching
to a different camera view or zooming out), then re-
play of the camera controls is suspended while replay
of the train controls continues. The result is a bit like
editing a video. To resume the replay of the camera

controls, just press Esc to open the PauseMenu and then choose Continue playing.

Fig. 7.2: Countdown

A possible future development may be to edit the replay
file to adjust times or to add messages to provide a com-
mentary. This would allow you to build demonstrations
and tutorials.
Replay is a feature which is unique to Open Rails. You can
use it to make your own recordings and Open Rails pro-
vides a way to exchange themwith other players.

7.16.1 Exporting and Importing Save Files
To export a Save file, use the command: Menu > Options >
Resume > Import/export saves > Export to Save Pack

7.16. Save and Replay 64

Open RailsManual, Release 1.2.3706 (draft)

OR will pack the necessary files into a single archive file
with the extension ORSavePack and place it in the folder
Open Rails\Save Packs.
This ORSavePack file is a zip archive which contains the re-
play commands, a screenshot at themoment of saving, a Save file (so that Open Rails can offer its Resume
option) and a log file. This arrangement means that the ORSavePack archive is ideal for attaching to a bug
report.
You can use the Import Save Pack button on the samewindow to import and unpack a set of files from an
ORSavePack archive. They will then appear in your Saved Gameswindow.

7.17 Analysis Tools
The extended HUDs provide a rich amount of information for analysis, evaluation and to assist in trou-
bleshooting.
You canmove through the sequence of HUD displays by repeatedly pressing <Shift+F5>.
You can turn off any extendedHUD,while continuing to show the basicHUD, by pressing <Alt+F5>. Press-
ing <Alt+F5> again returns the display of the currently active extendedHUD.

7.17.1 ExtendedHUD for Consist Information
This page shows in the first line data about thewhole train. Under Player youwill find the train number as
assigned byOR followed by an F if the forward cab is selected, and an R if the rear cab is selected.

Tilted is true in case the consist name ends with tilted (e.g. ETR460_tilted.con), in which case it means
that it is a tilting train.

7.17. Analysis Tools 65

Open RailsManual, Release 1.2.3706 (draft)

Control mode shows the actual control mode. Readmore about this here.
Cab aspect shows the aspect of next signal.
In the other lines data about the train cars are shown. Data are mostly self-explanatory. Under Drv/Cabs
a D appears if the car is drivable, and an F and/or a R appear if the car has a front and/or a rear cab.

7.17.2 ExtendedHUD for Locomotive Information
The next extendedHUD display shows locomotive information.

As can be seen from this screenshot related to a fictitious train with a diesel, an electric and a steam
loco, information about diesel and electric locomotives is contained on a single line, while information
about steam locomotives includes a large set of parameters, which shows the sophistication ofOR’s steam
physics.
In the bottom part of this HUD twomoving graphs show the evolution in time of the throttle value and of
the power of the player locomotive (the onewhere the active cab resides).

7.17.3 ExtendedHUD for Brake Information

This extended HUD display includes all the information of the basic HUD plus Brake status information.
Information is shown for all cars. The first number shows the car UiD in the train, as found in the consist
file or the activity file; the following alphanumeric string shows the brake system (1P: single-pipe system,
V: vacuum etc.) and the current state of the air brakes on the unit. More information on this display can be
found inOpen Rails Braking and F9 Train Operations Monitor.

7.17. Analysis Tools 66

Open RailsManual, Release 1.2.3706 (draft)

7.17.4 ExtendedHUD for Train Force Information
In the first part of this display some information related to the player locomotive is shown. The informa-
tion format differs if advanced adhesion has been selected or not in the Simulation Options.
The table part shows total force for up to ten locos/cars in the train. The first number shows the position
of the car in the train. The second number is the total force acting on the car. This is the sum of the other
forces after the signs are properly adjusted. The next number is the motive force which should only be
non-zero for locomotives, and that becomes negative during dynamic braking. Next number is the brake
force. Follows the friction force calculated from the Davis equation. The following value is the force due
to gravity. Next values are the friction forces due to the car being in a curve and/or in a tunnel. The next
value is the coupler force between this car and the next (negative is pull and positive is push). The mass
in kg and the track elevation in % under the car follow. All of the force values are in Newtons. Many of
these values are relative to the orientation of the car, but some are relative to the train. If applicable, two
further fields appear: the first is “True” if the car is flipped with respect to the train or False otherwise,
while the second field signals coupler overload.

At the bottom of the picture twomoving graphs are displayed.

The upper graph displays the motive force in % of the player locomotive. Green colour means tractive
force, red colour means dynamic brake force.
The lower graph refers – roughly speaking - to the level of refinement used to compute axle force.

7.17.5 ExtendedHUD for Dispatcher Information
The next extended HUD displays Dispatcher Information. It is very useful to troubleshoot activities or
timetables. The player train and anyAI trainswill show in theDispatcher Information, a line for each train.

A detailed explanation of the various columns follows:

7.17. Analysis Tools 67

Open RailsManual, Release 1.2.3706 (draft)

• Train: Internal train number, with P=Passenger and F=Freight.
• Travelled: distance travelled. Gives an indication if all is well. If a train started an hour ago and
‘travelled’ is still 0.0, something’s clearly wrong.

• Speed: present speed.
• Max: maximum allowed speed.
• AIMode: gives an indication of what the AI train is ‘doing’. Possible states:

– INI: train is initializing. Normally youwould not see this.
– STP: train is stopped other than in a station. The reason for the stop is shown in Authority.
– BRK: train is preparing to stop. Does not mean it is actually braking, but it ‘knows’ it has to
stop, or at least reduce speed, soon. Reason and distance to the related position, are shown in
Authority and Distance.

– ACC: train is accelerating, either away from a stop or because of a raise in allowed speed.
– RUN: train is running at allowed speed.
– FOL: train is following another train in the same signal section. Its speed is now derived from
the speed of the train ahead.

– STA: train is stopped in station.
– WTP: train is stopped at waiting point.
– EOP: train is approaching end of path.
– STC: train is Static train, or train is in Inactivemode if waiting for next action.

• AI data : shows throttle (first three digits) and brake (last three digits) positions when AI train is
running, but shows departure time (booked) when train is stopped at station or waiting point, or
shows activation timewhen train is in inactivemode (state STC).

• Mode:
– SIGN (signal)
– NODE
– MAN: train is in manual mode (only player train, see here)
– OOC: train is out of control
– EXPL: train is in explorermode (only player train)When relevant, this field also shows delay (in
minutes), e.g. S+05mean Signal mode, 5minutes delay.

• Auth: End of “authorization” info - that is, the reasonwhy the train is preparing to stop or slowdown.
Possible reasons are :
– SPDL: speed limit imposed by speed sign.
– SIGL: speed limit imposed by signal.
– STOP: signal set at state “STOP”.
– REST: signal set at state “RESTRICTED” (train is to reduce speed at approaching this signal).
– EOA: end of authority - generally only occurs in non-signaled routes or area, where authority
is based onNODEmode and not SIGNALmode.

– STAT: station.
– TRAH: train ahead.
– EOR: end of train’s route, or subroute in case the train approaches a reversal point.
– AUX: all other authorization types, including auxiliary action authorizations (e.g. waiting
points).

7.17. Analysis Tools 68

Open RailsManual, Release 1.2.3706 (draft)

When the control mode is NODE the column Auth can show following strings:
– EOT: end of track
– EOP: end of path
– RSW: switch reserved by another train
– LP: train is in loop
– TAH: train ahead
– MXD: free run for at least 5000meters
– NOP: no path reserved.

When the control mode is OOC the column Auth can show following strings:
– SPAD: passed signal at danger
– RSPD: passed signal at danger running backwards
– OOAU: passed authority limit
– OOPA: out of path
– SLPP: slipped into path
– SLPT: slipped to end of track
– OOTR: out of track
– MASW:misaligned switch.

• Distance: distance to the authority location.
• Signal: aspect of next signal (if any).
• Distance: distance to this signal. Note that if signal state is STOP, and it is the next authority limit,
there is a difference of about 30m between authority and signal distance. This is the ‘safety margin’
that AI trains keep to avoid accidentally passing a signal at danger.

• Consist: the first part of the train’s service name. Only for the player, always the PLAYER string is
displayed.

• Path: the state of the train’s path. Thefigure left of the “=” sign is the train’s present subpath counter
: a train’s path is split into subpaths when its path contains reversal points. The details between {
and } are the actual subpath. Following the final } can be x<N>, this indicates that at the end of this
subpath the train will move on to the subpath number N. Path details :
– The path shows all track circuit sections which build this train’s path. Track circuit sections are
bounded by nodes, signals or cross-overs, or end-of-track. Each section is indicated by its type:
* - is plain train section.
* > is switch (no distinction is made for facing or trailing switch).
* + is crossover.
* [is end-of-track.

– Following each section is the section state. Numbers in this state refer to the train numbers as
shown at the start of each row. Below, <n> indicates such a number.
* <n> section is occupied by train <n>.
* (<n>) section is reserved for train <n>.
* # (either with <n> or on its own) section is claimed by a train which is waiting for a signal.
* & (always in combination with <n>) section is occupied bymore than one train.
* deadlock info (always linked to a switch node):

7.17. Analysis Tools 69

Open RailsManual, Release 1.2.3706 (draft)

· * possible deadlock location - start of a single track section shared with a train run-
ning in opposite direction.
· ^ active deadlock - train fromopposite direction is occupying or has reserved at least
part of the common single track section. Train will be stopped at this location – gen-
erally at the last signal ahead of this node.
· ~ activedeadlock at that location for other train - canbe significant as this other train
can block this train’s path.

The dispatcher works by reserving track vector nodes for each train. An AI train will be allowed to move
(or start) only if all of the nodes up to thenext potential passing location are not reserved for another train.
If this condition cannot bemet, in TimetableMode the AI train will not spawn.
There are other reasons why an AI train might not appear in Timetable Mode. The current dispatcher
assumes that all routes are unsignaled. The dispatcher issues a track authority (which is similar to a track
warrant) to all trains. For an AI train to start, the tracks it needs must not be already reserved for another
train. Thedispatcher compares thepathsof the trains to identify possible passingpoints and then reserves
tracks for a train up until a passing point. When a train gets near the next passing point the reservation is
extended to the next one. The end result is that in TimetableMode an AI train cannot be placed on a track
if that section of track is already occupied by or reserved for another train. A section of track is any track
bounded by either a switch or a signal.
Also, a train is not created if it would be partly or fully superimposed on an already existing train, or if its
path is not long enough for it. This applies to both TimetableMode and ActivityMode.

7.17.6 ExtendedHUD for Debug Information
The last extendedHUD display showsDebug information.
The first line (Logging enabled) refers to logging as described in paragraphs 6.6 and 6.7.
A wide variety of parameters is shown, from frame wait and render speeds in milliseconds, to number of
primitives, Process Thread resource utilization and number of Logical CPUs from the system’s bios. They
are very useful in case of OR stuttering, to find out where the bottleneck is.
The values in the Camera line refer to the two tile coordinates and to the three coordinates within the tile.

7.17. Analysis Tools 70

Open RailsManual, Release 1.2.3706 (draft)

At the bottomof the picture, somemoving graphs are displayed that show the actual load of the computer.
Referring tomemory use, about at least 400MBmust remain free to avoid out-of-memory exceptions

7.17.7 Viewing Interactive Track Items
By pressing <Ctrl+Alt+F6> at runtime you get a picture like this one that allows you to take note of the
interactive IDs for debugging purposes.

7.17.8 Viewing Signal State and Switches
By pressing <Ctrl+Alt+F11> you get a picture like the following that shows the state of the signals and
switches on the path.

7.17. Analysis Tools 71

Open RailsManual, Release 1.2.3706 (draft)

7.17.9 SoundDebugWindow
By pressing <Alt+S> this window opens:

7.17. Analysis Tools 72

Open RailsManual, Release 1.2.3706 (draft)

It shows in the upper part the list of all active .sms files (track sound apart); by expanding the detail of a
specific .sms file, the list of all sound streams is displayed, aswell as their state. On the left the value of the
analog sound variables is displayed for the selected .sms file. The volume refers to the first stream of the
selected sound file.
Active and inactive sounds toggle passing from internal to external views and vice-versa.

7.18 OpenRailsLog.txt Log file
When the Logging option in the main window is checked, a log file named OpenRailsLog.txt file is gener-
ated. This file contains rich information about the execution of the game session, allowing identification
of critical problems. This file should always be attached to requests of support in case of problems.
The contents of the file are often self-explanatory, and therefore can be evaluated by the same contents
developer. It includes reports of various errors in theMSTS files which are ignored byOR, including miss-
ing sound files, unrecognized terms in some files, etc. Selecting the ExperimentalOption Show shapewarn-
ings allows OR to report errors found in shape files in the log file. It includes also reports about malfunc-
tions in the gaming session, such as trains passing red signals, as well as ORmalfunctions.

7.18. OpenRailsLog.txt Log file 73

Open RailsManual, Release 1.2.3706 (draft)

7.19 Code-embedded LoggingOptions
OR source code is freely downloadable; check the http://www.OpenRails.org website for this. Within the
code there are some debug options that, when activated, generate specific extended log files, e.g. for
analysis of signal and of AI train behavior. Short specific info on this can be provided to people with pro-
gramming skills.

7.20 Testing in AutopilotMode
Autopilot mode is a powerful tool to help in testing activities.

7.19. Code-embedded LoggingOptions 74

http://www.OpenRails.org

CHAPTER8

Open Rails Physics

Open Rails physics is in an advanced stage of development. The physics structure is divided into logical
classes; more generic classes are parent classes, more specialized classes inherit properties and meth-
ods of their parent class. Therefore, the description for train cars physics is also valid for locomotives
(because a locomotive is a special case of a train car). All parameters are defined within the .wag or
.eng file. The definition is based on MSTS file format and some additional ORTS based parameters. To
avoid possible conflicts in MSTS, theORTS prefix is added to every OpenRails specific parameter (such as
ORTSMaxTractiveForceCurves).
The .wag or .eng file may be placed as inMSTS in the TRAINS\TRAINSET\TrainCar\ folder (where TrainCar
is the name of the train car folder). If OR-specific parameters are used, or if different .wag or .eng files
are used for MSTS and OR, the preferred solution is to place the OR-specific .wag or .eng file in a created
folder TRAINS\TRAINSET\TrainCar\OpenRails\ (see here for more).

8.1 Train Cars (WAG, orWagon Part of ENG file)
The behavior of a train car is mainly defined by a resistance / resistive force (a force needed to pull a car).
Train car physics also includes coupler slack and braking. In the description below, the Wagon section of
theWAG / ENG file is discussed.

8.1.1 Resistive Forces
Open Rails physics calculates resistance based on real world physics: gravity, mass, rolling resistance and
optionally curve resistance. This is calculated individually for each car in the train. The program calcu-
lates rolling resistance, or friction, based on the Friction parameters in the Wagon section of .wag/.eng
file. Open Rails identifies whether the .wag file uses the FCalc utility or other friction data. If FCalc was
used to determine the Friction variables within the .wag file, Open Rails compares that data to the Open
Rails Davis equations to identify the closest match with the Open Rails Davis equation. If no-FCalc Fric-
tion parameters are used in the .wag file, Open Rails ignores those values, substituting its actual Davis
equation values for the train car.
A basic (simplified) Davis formula is used in the following form:
Fres =ORTSDavis_A + speedMpS * (ORTSDavis_B +ORTSDavis_C * speedMpS2)
Where Fres is the friction force of the car. The rolling resistance can be defined either by FCalc or ORTS-Davis_A, _B and _C components. If one of theORTSDavis components is zero, FCalc is used. Therefore, e.g.

75

Open RailsManual, Release 1.2.3706 (draft)

if the data doesn’t contain the B part of the Davis formula, a very small number should be used instead of
zero.
When a car is pulled from steady state, an additional force is needed due to higher bearing forces. The
situation is simplified by using a different calculation at low speed (5 mph and lower). Empirical static
friction forces are used for different classes of mass (under 10 tons, 10 to 100 tons and above 100 tons).
In addition, if weather conditions are poor (snowing is set), the static friction is increased.
When running on a curve and if the Curve dependent resistance option is enabled, additional resistance
is calculated, based on the curve radius, rigid wheel base, track gauge and super elevation. The curve
resistance has its lowest value at the curve’s optimal speed. Running at higher or lower speed causes
higher curve resistance. Theworst situation is starting a train from zero speed. The track gauge value can
be set by ORTSTrackGauge parameter, otherwise 1435mm is used. The rigid wheel base can be also set by
ORTSRigidWheelBase, otherwise the value is estimated. Further details are discussed later.
When running on a slope (uphill or downhill), additional resistance is calculated based on the car mass
taking into account the elevation of the car itself. Interactionwith the car vibration feature is a known
issue (if the car vibrates the resistance value oscillate).

8.1.2 Coupler Slack
Slack action for couplers is introduced and calculated the sameway as inMSTS.

8.1.3 Adhesion of Locomotives – SettingsWithin theWagon Section of ENG files
MSTS calculates the adhesion parameters based on a very strange set of parameters filled with an even
stranger range of values. Since ORTS is not able to mimic theMSTS calculation, a standardmethod based
on the adhesion theory is usedwith some known issues in use withMSTS content.
MSTS Adheasion (sic!) parameters are not used in ORTS. Instead, a new set of parameters is used, which
must be inserted within the Wagon section of the .ENG file:
ORTSAdhesion (

ORTSCurtius_Kniffler (A B C D)
)

The A, B and C values are coefficients of a standard form of various empirical formulas, e.g. Curtius-
Kniffler or Kother. The D parameter is used in the advanced adhesionmodel described later.
From A, B and C a coefficient CK is computed, and the adhesion force limit is then calculated by multipli-
cation of CK by the car mass and the acceleration of gravity (9.81), as better explained later.
The adhesion limit is only considered in the adhesionmodel of locomotives.
The adhesion model is calculated in two possible ways. The first one – the simple adhesion model – is
based on a very simple threshold condition and works similarly to theMSTS adhesion model. The second
one – the advanced adhesionmodel – is a dynamicmodel simulating the real world conditions on awheel-
to-rail contact andwill be described later. The advanced adhesionmodel uses some additional parameters
such as:
ORTSAdhesion (

ORTSSlipWarningThreshold (T)
)

where T is the wheelslip percentage considered as a warning value to be displayed to the driver; and:
ORTSAdhesion(

Wheelset (
Axle (

ORTSInertia (
Inertia

8.1. Train Cars (WAG, orWagon Part of ENG file) 76

Open RailsManual, Release 1.2.3706 (draft)

)
)

)
)

where Inertia is the model inertia in kg.m2 and can be set to adjust the advanced adhesion model dynam-
ics. The value considers the inertia of all the axles and traction drives. If not set, the value is estimated
from the locomotivemass andmaximal power.
The first model – simple adhesion model – is a simple tractive force condition-based computation. If the
tractive force reaches its actual maximum, the wheel slip is indicated in HUD view and the tractive force
falls to 10% of the previous value. By reducing the throttle setting adherence is regained. This is called
the simple adhesionmodel.
The second adhesionmodel (advanced adhesionmodel) is based on a simplified dynamic adhesion theory.
Very briefly, there is always some speed difference between the wheel speed of the locomotive and the
longitudinal train speedwhen the tractive force is different from zero. This difference is calledwheel slip /
wheel creep. Theadhesion status is indicated in theHUDForce Informationviewby theWheel Slipparameter
and as awarning in the general area of theHUDview. For simplicity, only one axlemodel is computed (and
animated). A tilting feature and the independent axle adhesionmodel will be introduced in the future.
The heart of themodel is the slip characteristics (picture below).

The wheel creep describes the stable area of the characteristics and is used in the most of the operation
time. When the tractive force reaches the actualmaximumof the slip characteristics, force transition falls
down andmore power is used to speed up the wheels, so calledwheel slip.
To avoid the loss of the tractive force, use the throttle in combination with sanding to return to
the stable area (wheel creep area). A possible sequence of the wheel slip development is shown
on the pictures below. The Wheel slip value is displayed as a value relative to the best adhe-
sion conditions for actual speed and weather. The value of 63% means very good force transi-
tion. For values higher than (ORTSadhesion (ORTSSlipWarningThreshold)) or 70% by de-
fault, the Wheel slip warning is displayed, but the force transition is still very good. This indica-
tion should warn you to use the throttle very carefully. Exceeding 100%, the Wheel slip message
is displayed and the wheels are starting to speed up, which can be seen on the speedometer or
in external view 2. To reduce the wheel slip, use throttle down, sanding or the locomotive brake.

8.1. Train Cars (WAG, orWagon Part of ENG file) 77

Open RailsManual, Release 1.2.3706 (draft)

The actual maximum of the tractive force is based on the Curtius-
Kniffler adhesion theory and can be adjusted by the aforemen-
tioned ORTSCurtius_Kniffler (A B C D) parameters, where A,
B, C are coefficients of Curtius-Kniffler, Kother or similar formula.
By default, Curtius-Kniffler is used.

𝐹𝑎𝑑ℎ𝑀𝐴𝑋 = 𝑊 ·𝑚 [kg] · 9.81
[︁m
s2

]︁
·

(︃
𝐴

𝐵 + 𝑣
[︀
km
h

]︀ + 𝐶

)︃

Where W is the weather coefficient. This means that the maximum
is related to the speed of the train, or to the weather conditions.
The D parameter is used in an advanced adhesionmodel and should

always be 0.7.
There are some additional parameters in the Force InformationHUD view. The axle/wheel is driven by the
Axle drive force and braked by the Axle brake force. The Axle out force is the output force of the adhesion
model (used to pull the train). To compute themodel correctly the FPS rate needs to be divided by a Solver
dividing value in a range from 1 to 50. By default, the Runge-Kutta4 solver is used to obtain the best re-
sults. When the Solver dividing value is higher than 40, in order to reduce CPU load the Euler-modified
solver is used instead.
In some cases when the CPU load is high, the time step for the computation may become very high and
the simulation may start to oscillate (theWheel slip rate of change (in the brackets) becomes very high).
There is a stability correction feature that modifies the dynamics of the adhesion characteristics. Higher
instability can cause a huge wheel slip. You can use the DebugResetWheelSlip (<Ctrl+X> keys by default)
command to reset the adhesion model. If you experience such behavior most of time, use the basic adhe-
sionmodel instead by pressing DebugToggleAdvancedAdhesion (<Ctrl+Alt+X> keys by default).
Another option is to use a Moving average filter available in the Simulation Options. The higher the value,
the more stable the simulation will be. However, the higher value causes slower dynamic response. The
recommended range is between 10 and 50.
To match some of the real world features, theWheel slip event can cause automatic zero throttle setting.
Use the Engine (ORTS (ORTSWheelSlipCausesThrottleDown))Boolean value of the ENG file.

8.2 Engine – Classes ofMotive Power
OpenRails softwareprovides for different classesof engines: diesel, electric, steamanddefault. If needed,
additional classes can be created with unique performance characteristics.

8.2.1 Diesel Locomotives in General
The diesel locomotive model in ORTS simulates the behavior of two basic types of diesel engine driven
locomotives– diesel-electric and diesel-mechanical. The diesel engine model is the same for both types,
but acts differentlybecauseof thedifferent typeof load. Basic controls (direction, throttle, dynamicbrake,
air brakes) are common across all classes of engines. Diesel engines can be started or stopped by pressing
the START/STOP key (<Shift+Y> in English keyboards). The starting and stopping sequence is driven by a
starter logic, which can be customized, or is estimated by the engine parameters.

8.2. Engine – Classes ofMotive Power 78

Open RailsManual, Release 1.2.3706 (draft)

Starting the Diesel Engine
To start the engine, simply press the START/STOPkeyonce. Thedirection controllermust be in theneutral
position (otherwise, a warning message pops up). The engine RPM (revolutions per minute) will increase
according to its speed curve parameters (described later). When the RPM reaches 90% of StartingRPM
(67%of IdleRPMbydefault), the fuel starts toflowand theexhaust emission starts aswell. RPMcontinues
to increase up to StartingConfirmationRPM (110% of IdleRPM by default) and the demanded RPM is set
to idle. The engine is now started and ready to operate.

Stopping the Diesel Engine
To stop the engine, press the START/STOP key once. The direction controller must be in the neutral po-
sition (otherwise, a warning message pops up). The fuel flow is cut off and the RPMwill start to decrease
according to its speed curve parameters. The engine is considered as fully stoppedwhenRPM is zero. The
engine can be restarted evenwhile it is stopping (RPM is not zero).

Starting or Stopping Helper Diesel Engines
By pressing the Diesel helper START/STOP key (<Ctrl+Y> on English keyboards), the diesel engines of
helper locomotives can be started or stopped. Also consider disconnecting the unit from themultiple-unit
(MU) signals instead of stopping the engine (see here, Toggle MU connection).
It is also possible to operate a locomotive with the own engine off and the helper’s engine on.

ORTS Specific Diesel Engine Definition
If no ORTS specific definition is found, a single diesel engine definition is created based on the MSTS set-
tings. SinceMSTS introduces amodelwithout any data crosscheck, the behavior ofMSTS andORTSdiesel
locomotives can be very different. InMSTS,MaxPower is not considered in the sameway and you can get
much better performance than expected. In ORTS, diesel engines cannot be overloaded.
Nomatterwhichenginedefinition is used, thediesel engine is definedby its loadcharacteristics (maximum
output power vs. speed) for optimal fuel flow and/or mechanical characteristics (output torque vs. speed)
for maximum fuel flow. The model computes output power / torque according to these characteristics
and the throttle settings. If the characteristics are not defined (as they are in the example below), they are
calculated based on theMSTS data and common normalized characteristics.

8.2. Engine – Classes ofMotive Power 79

Open RailsManual, Release 1.2.3706 (draft)

In many cases the throttle vs. speed curve is customized because power vs. speed is not linear. A default
linear throttle vs. speed characteristics is built in to avoid engine overloading at lower throttle settings.
Nevertheless, it is recommended to adjust the table below to get more realistic behavior.
In ORTS, single or multiple engines can be set for one locomotive. In case there is more than one engine,
other engines act like helper engines (start/stop control for helpers is <Ctrl+Y> by default). The power of
each active engine is added to the locomotive power. The number of such diesel engines is not limited.
If the ORTS specific definition is used, each parameter is tracked and if one is missing (except in the case
of thosemarkedwithOptional), the simulation falls back to useMSTS parameters.

8.2. Engine – Classes ofMotive Power 80

Open RailsManual, Release 1.2.3706 (draft)

Engine(
...
ORTSDieselEngines (2
Diesel (

IdleRPM (510)
MaxRPM (1250)
StartingRPM (400)
StartingConfirmRPM (570)
ChangeUpRPMpS (50)
ChangeDownRPMpS (20)
RateOfChangeUpRPMpSS (5)
RateOfChangeDownRPMpSS (5)
MaximalPower (300kW)
IdleExhaust (5)
MaxExhaust (50)
ExhaustDynamics (10)
ExhaustDynamicsDown (10)
ExhaustColor (00 fe)
ExhaustTransientColor(

00 00 00 00)
DieselPowerTab (

0 0
510 2000
520 5000
600 2000
800 70000
1000 100000
1100 200000
1200 280000
1250 300000

)
DieselConsumptionTab (

0 0
510 10
1250 245

)
ThrottleRPMTab (

0 510
5 520
10 600
20 700
50 1000
75 1200
100 1250

)
DieselTorqueTab (

0 0
510 25000
1250 200000

)
MinOilPressure (40)
MaxOilPressure (90)
MaxTemperature (120)
Cooling (3)

TempTimeConstant (720)
OptTemperature (90)
IdleTemperature (70)

)
Diesel (...)

Engine section in eng file

Number of engines

Idle RPM
Maximal RPM
Starting RPM
Starting confirmation RPM
Increasing change rate RPM/s
Decreasing change rate RPM/s
Jerk of ChangeUpRPMpS RPM/s^2
Jerk of ChangeDownRPMpS RPM/s^2
Maximal output power
Num of exhaust particles at IdleRPM
Num of exhaust particles at MaxRPM
Exhaust particle mult. at transient
Mult. for down transient (Optional)
Exhaust color at steady state
Exhaust color at RPM changing

Diesel engine power table
RPM Power in Watts

Diesel fuel consumption table
RPM Specific consumption g/kWh

Eengine RPM vs. throttle table
Throttle % Demanded RPM

Diesel engine RPM vs. torque table
RPM Force in Newtons

Min oil pressure PSI
Max oil pressure PSI
Maximal temperature Celsius
Cooling 0=No cooling, 1=Mechanical,
2= Hysteresis, 3=Proportional
Rate of temperature change
Normal temperature Celsius
Idle temperature Celsius

The same as above, or different

8.2. Engine – Classes ofMotive Power 81

Open RailsManual, Release 1.2.3706 (draft)

Diesel Engine Speed Behavior
The engine speed is calculated based on the RPM rate of change and its rate of change. The
usual setting and the corresponding result is shown below. ChangeUpRPMpS means the slope of RPM,
RateOfChangeUpRPMpSSmeans how fast the RPM approaches the demanded RPM.

Fuel Consumption
Following theMSTSmodel, ORTS computes the diesel engine fuel consumption based on .eng file param-
eters. The fuel flow and level are indicated by theHUDview. Final fuel consumption is adjusted according
to the current diesel power output (load).

Diesel Exhaust
The diesel engine exhaust feature can bemodified as needed. Themain idea of this feature is based on the
general combustion engine exhaust. When operating in a steady state, the color of the exhaust is given by
the new ENG parameter engine (ORTS (Diesel (ExhaustColor))).
The amount of particles emitted is given by a linear interpolation of the values of engine(ORTS (Diesel
(IdleExhaust))) and engine(ORTS (Diesel (MaxExhaust))) in the range from 1 to 50. In a transient
state, the amount of the fuel increases but the combustion is not optimal. Thus, the quantity of particles is
temporarily higher: e.g. multiplied by the value of
engine(ORTS (Diesel (ExhaustDynamics))) and displayed with the color given by
engine(ORTS(Diesel(ExhaustTransientColor))).
The format of the color value is (aarrggbb) where:
• aa = intensity of light;
• rr = red color component;
• gg = green color component;
• bb = blue color component;

8.2. Engine – Classes ofMotive Power 82

Open RailsManual, Release 1.2.3706 (draft)

and each component is in HEX number format (00 to ff).

Cooling System
ORTS introduces a simple cooling and oil systemwithin the diesel engine model. The engine temperature
is based on the output power and the cooling system output. A maximum value of 100°C can be reached
with no impact on performance. It is just an indicator, but the impact on the engine’s performance will be
implemented later. The oil pressure feature is simplified and the value is proportional to the RPM. There
will be further improvements of the system later.

8.2.2 Diesel-Electric Locomotives
Diesel-electric locomotives are driven by electric traction motors supplied by a diesel-generator set. The
gen-set is the only power source available, thus the diesel engine power also supplies auxiliaries and other
loads. Therefore, the output power will always be lower than the diesel engine rated power.
In ORTS, the diesel-electric locomotive can use ORTSTractionCharacteristics or tables of
ORTSMaxTractiveForceCurves to provide a better approximation to real world performance. If a ta-
ble is not used, the tractive force is limited byMaxForce,MaxPower andMaxVelocity. The throttle setting
is passed to the ThrottleRPMTab, where the RPM demand is selected. The output force increases with
the Throttle setting, but the power followsmaximal output power available (RPMdependent).

8.2.3 Diesel-Hydraulic Locomotives
Diesel-hydraulic locomotives are not implemented in ORTS. However, by using either
ORTSTractionCharacteristics or ORTSMaxTractiveForceCurves tables, the desired performance
can be achieved, when no gearbox is in use and the DieselEngineType is electric.

8.2.4 Diesel-Mechanical Locomotives
ORTS features a mechanical gearbox feature that mimics MSTS behavior, including automatic or
manual shifting. Some features not well described in MSTS are not yet implemented, such as
GearBoxBackLoadForce, GearBoxCoastingForce and GearBoxEngineBraking.
Output performance is very different comparedwithMSTS. The output force is computed using the diesel
engine torque characteristics to get results that aremore precise.

8.3 Electric Locomotives
At the present time, diesel and electric locomotive physics calculations use the default engine physics.
Default engine physics simply uses the MaxPower and MaxForce parameters to determine the pulling
power of the engine, modified by the Reverser and Throttle positions. The locomotive physics can be
replaced by traction characteristics (speed inmps vs. force in Newtons) as described below.
SomeOR-specific parameters are available in order to improve the realism of the electric system.

8.3.1 Pantographs
The pantographs of all locomotives in a consist are triggered by Control Pantograph First and Control Pan-
tograph Second commands (<P> and <Shift+P> by default). The status of the pantographs is indicated by
the Pantographs value in the HUD view.

8.3. Electric Locomotives 83

Open RailsManual, Release 1.2.3706 (draft)

Since the simulator does not know whether the pantograph in the 3D model is up or down, you can set
some additional parameters in order to add a delay between the time when the command to raise the
pantograph is given andwhen the pantograph is actually up.
In order to do this, you can write in theWagon section of your .eng file or .wag file (since the pantograph
may be on awagon) this optional structure:
ORTSPantographs(

Pantograph(<< This is going to be your first pantograph.
Delay(5s) << Example : a delay of 5 seconds

)
Pantograph(

... parameters for the second pantograph ...
)

)

Other parameters will be added to this structure later, such as power limitations or speed restrictions.

8.3.2 Circuit breaker
The circuit breaker of all locomotives in a consist can be controlled byControl Circuit Breaker Closing Order,
Control Circuit Breaker Opening Order and Control Circuit Breaker Closing Authorization commands (<O>, <I>
and <Shift+O> by default). The status of the circuit breaker is indicated by the Circuit breaker value in the
HUD view.
Two default behaviours are available:
• By default, the circuit breaker of the train closes as soon as power is available on the pantograph.
• The circuit breaker can also be controlled manually by the driver. To get this behaviour, put the
parameter ORTSCircuitBreaker(Manual) in the Engine section of the ENG file.

In order to model a different behaviour of the circuit breaker, a scripting interface is available. The script
can be loadedwith the parameter ORTSCircuitBreaker(<name of the file>).
In real life, the circuit breaker does not close instantly, so you can add a delaywith the optional parameter
ORTSCircuitBreakerClosingDelay() (by default in seconds).

8.3.3 Power supply
The power status is indicated by the Power value in the HUD view.
The power-on sequence timedelay can be adjusted by the optional ORTSPowerOnDelay() value (for exam-
ple: ORTSPowerOnDelay(5s)) within the Engine section of the .eng file (value in seconds). The same delay
for auxiliary systems can be adjusted by the optional parameter ORTSAuxPowerOnDelay() (by default in
seconds).

8.4 Steam Locomotives
8.4.1 General Introduction to Steam Locomotives
Principles of TrainMovement
Key Points to Remember:
• Steam locomotive tractive effort must be greater than the train resistance forces.
• Train resistance is impacted by the train itself, curves, gradients, tunnels, etc.

8.4. Steam Locomotives 84

Open RailsManual, Release 1.2.3706 (draft)

• Tractive effort reduces with speed, and will reach a point where it equals the train resistance, and
thus the train will not be able to go any faster.

• This point will vary as the train resistance varies due to changing track conditions.
• Theoretical tractive effort is determinedby theboiler pressure, cylinder size, drivewheel diameters,
andwill vary between locomotives.

• Low Factors of Adhesion will cause the locomotive’s driving wheels to slip.

Forces Impacting TrainMovement

The steam locomotive is a heat engine which converts heat energy generated through the burning of fuel,
such as coal, into heat and ultimately steam. The steam is then used to dowork by injecting the steam into
the cylinders to drive the wheels around and move the locomotive forward. To understand how a train
will move forward, it is necessary to understand the principal mechanical forces acting on the train. The
diagram below shows the two key forces affecting the ability of a train tomove.

The first force is the tractive effort produced by the locomotive, whilst the second force is the resistance
presented by the train. Whenever the tractive effort is greater than the train resistance the train will
continue tomove forward; once the resistance exceeds the tractive effort, then the train will start to slow
down, and eventually will stopmoving forward.
The sections below describe in more detail the forces of tractive effort and train resistance.

Train Resistance

The movement of the train is opposed by a number of different forces which are collectively grouped to-
gether to form the train resistance.
Themain resistive forces are as follows (the first two values of resistance aremodelled through theDavis
formulas, and only apply on straight level track):
• Journal or Bearing resistance (or friction)
• Air resistance
• Gradient resistance – trains travelling up hills will experience greater resistive forces then those
operating on level track.

• Curve resistance – applies when the train is traveling around a curve, and will be impacted by the
curve radius, speed, and fixedwheel base of the rolling stock.

• Tunnel resistance – applies when a train is travelling through a tunnel.

8.4. Steam Locomotives 85

Open RailsManual, Release 1.2.3706 (draft)

Tractive Effort

Tractive Effort is created by the action of the steam against the pistons, which, through themedia of rods,
crossheads, etc., cause the wheels to revolve and the engine to advance.
Tractive Effort is a function ofmean effective pressure of the steam cylinder and is expressed by following
formula for a simple locomotive. Geared and compound locomotives will have slightly different formula:
TE = Cyl/2 x (M.E.P. x d2 x s) / D

Where:
• Cyl = number of cylinders
• TE = Tractive Effort (lbf)
• M.E.P. = mean effective pressure of cylinder (psi)
• D = diameter of cylinder (in)
• S = stroke of cylinder piston (in)
• D = diameter of drive wheels (in)

Theoretical Tractive Effort

To allow the comparison of different locomotives, as well as determining their relative pulling ability, a
theoretical approximate value of tractive effort is calculated using the boiler gauge pressure and includes
a factor to reduce the value ofM.E.P.
Thus our formula from above becomes:
TE = Cyl/2 x (0.85 x BP x d2 x s) / D

Where:
• BP = Boiler Pressure (gauge pressure - psi)
• 0.85 – factor to account for losses in the engine, typically values between 0.7 and 0.85were used by
different manufacturers and railway companies.

Factor of Adhesion

The factor of adhesion describes the likelihood of the locomotive slipping when force is applied to the
wheels and rails, and is the ratio of the starting Tractive Effort to the weight on the driving wheels of the
locomotive:
FoA = Wd / TE

Where:
• FoA = Factor of Adhesion
• TE = Tractive Effort (lbs)
• Wd =Weight on DrivingWheels (lbs)

Typically the Factor of Adhesion should ideally be between 4.0 & 5.0 for steam locomotives. Values below
this range will typically result in slippage on the rail.

8.4. Steam Locomotives 86

Open RailsManual, Release 1.2.3706 (draft)

Indicated HorsePower (IHP)

Indicated Horsepower is the theoretical power produced by a steam locomotive. The generally accepted
formula for Indicated Horsepower is:
I.H.P. = Cyl/2 x (M.E.P. x L x A x N) / 33000

Where:
• IHP = Indicated Horsepower (hp)
• Cyl = number of cylinders
• M.E.P. = mean effective pressure of cylinder (psi)
• L = stroke of cylinder piston (ft)
• A = area of cylinder (sq in)
• N = number of cylinder piston strokes per min (NB: two piston strokes for every wheel revolution)

As shown in the diagram below, IHP increases with speed, until it reaches a maximum value. This value is
determined by the cylinder’s ability tomaintain an efficient throughput of steam, aswell as for the boiler’s
ability tomaintain sufficient steam generation tomatch the steam usage by the cylinders.

Hauling Capacity of Locomotives

Thus it can be seen that the hauling capacity is determined by the summation of the tractive effort and the
train resistance.
Different locomotives were designed to produce different values of tractive effort, and therefore the
loads that theywere able to haulwould be determined by the track conditions, principally the ruling gradi-
ent for the section, and the load or train weight. Therefore most railway companies and locomotive man-
ufacturers developed load tables for the different locomotives depending upon their theoretical tractive
efforts.
The table below is a sample showing the hauling capacity of an American (4-4-0) locomotive from the
Baldwin Locomotive Company catalogue, listing the relative loads on level track and other grades as the
cylinder size, drive wheel diameter, andweight of the locomotive is varied.

8.4. Steam Locomotives 87

Open RailsManual, Release 1.2.3706 (draft)

Typically the ruling gradient is defined as the maximum uphill grade facing a train in a particular section
of the route, and this grade would typically determine the maximum permissible load that the train could
haul in this section. The permissible load would vary depending upon the direction of travel of the train.

Elements of Steam LocomotiveOperation
A steam locomotive is a very complex piece of machinery that has many component parts, each of which
will influence the performance of the locomotive in different ways. Even at the peak of its development in
the middle of the 20th century, the locomotive designer had at their disposal only a series of factors and
simple formulae to describe its performance. Once designed and built, the performance of the locomotive
was measured and adjusted by empirical means, i.e. by testing and experimentation on the locomotive.
Even locomotives within the same class could exhibit differences in performance.
A simplifieddescriptionof a steam locomotive is providedbelow tohelpunderstand someof thekeybasics
of its operation.
As indicated above, the steam locomotive is a heat enginewhich converts fuel (coal, wood, oil, etc.) to heat;
this is then used to dowork by driving the pistons to turn thewheels. The operation of a steam locomotive
can be thought of in terms of the following broadly defined components:
• Boiler and Fire (Heat conversion)
• Cylinder (Work done)

Boiler and Fire (Heat conversion)

The amount of work that a locomotive can do will be determined by the amount of steam that can be
produced (evaporated) by the boiler.
Boiler steam production is typically dependent upon the Grate Area, and the Boiler Evaporation Area.
• GrateArea– theamountof heat energy releasedby theburningof the fuel is dependentupon the size
of the grate area, draught of air flowing across the grate to support fuel combustion, fuel calorific
value, and the amount of fuel that can be fed to the fire (a human fireman can only shovel so much
coal in an hour). Some locomotives may have had good sized grate areas, but were ‘poor steamers’
because they had small draught capabilities.

• Boiler Evaporation Area – consisted of the part of the firebox in contact with the boiler and the heat
tubes running through theboiler. This area determined the amount of heat that could be transferred
to the water in the boiler. As a rule of thumb a boiler could produce approximately 12-15 lbs/h of
steam per ft2 of evaporation area.

• Boiler Superheater Area – Typically modern steam locomotives are superheated, whereas older loco-
motives used only saturated steam. Superheating is the process of puttingmore heat into the steam
without changing the pressure. This providedmore energy in the steam and allowed the locomotive
to produce more work, but with a reduction in steam and fuel usage. In other words a superheated
locomotive tended to bemore efficient then a saturated locomotive.

8.4. Steam Locomotives 88

Open RailsManual, Release 1.2.3706 (draft)

Cylinder (Work done)

To drive the locomotive forward, steamwas injected into the cylinderwhich pushed the piston backwards
and forwards, and this in turn rotated the drive wheels of the locomotive. Typically the larger the drive
wheels, the faster the locomotive was able to travel.
The faster the locomotive travelled themore steam thatwasneeded todrive the cylinders. The steamable
to be produced by the boiler was typically limited to a finite value depending upon the design of the boiler.
In addition the ability to inject and exhaust steam from the cylinder also tended to reach finite limits as
well. These factors typically combined to place limits on the power of a locomotive depending upon the
design factors used.

Locomotive Types
During the course of their development,manydifferent types of locomotiveswere developed, someof the
more common categories are as follows:
• Simple – simple locomotives had only a single expansion cycle in the cylinder
• Compound– locomotives hadmultiple steamexpansion cycles and typically had ahigh and lowpres-
sure cylinder.

• Saturated – steamwas heated to only just above the boiling point of water.
• Superheated – steam was heated well above the boiling point of water, and therefore was able to
generatemore work in the locomotive.

• Geared – locomotives were geared to increase the tractive effort produced by the locomotive, this
however reduced the speed of operation of the locomotive.

Superheated Locomotives

In the early 1900s, superheaterswere fitted to some locomotives. As the namewas implied a superheater
was designed to raise the steam temperature well above the normal saturated steam temperature. This
had a number of benefits for locomotive engineers in that it eliminated condensation of the steam in the
cylinder, thus reducing the amount of steam required to produce the same amount of work in the cylin-
ders. This resulted in reduced water and coal consumption in the locomotive, and generally improved the
efficiency of the locomotive.
Superheatingwas achievedby installing a superheater element that effectively increased theheating area
of the locomotive.

Geared Locomotives

In industrial type railways, such as those used in the logging industry, spurs to coal mines were often built
to very cheap standards. As a consequence, depending upon the terrain, they were often laid with sharp
curves and steep gradients compared to normalmain line standards.
Typical main line rod type locomotives couldn’t be used on these lines due to their long fixed wheelbase
(coupledwheels) and their relatively low tractive effortwas nomatch for the steep gradients. Thus geared
locomotives found their niche in railway practice.
Geared locomotives typically used bogie wheelsets, which allowed the rigid wheelbase to be reduced
compared to that of rod type locomotives, thus allowing the negotiation of tight curves. In addition the
gearing allowed an increase of their tractive effort to handle the steeper gradients compared tomain line
tracks.
Whilst the gearing allowed more tractive effort to be produced, it also meant that the maximum piston
speedwas reached at a lower track speed.

8.4. Steam Locomotives 89

Open RailsManual, Release 1.2.3706 (draft)

As suggested above, the maximum track speed would depend upon loads and track conditions. As these
types of lines were lightly laid, excessive speeds could result in derailments, etc.
The three principal types of geared locomotives usedwere:
• Shay Locomotives
• Climax
• Heisler

8.4.2 Steam LocomotiveOperation
To successfully drive a steam locomotive it is necessary to consider the performance of the following ele-
ments:
• Boiler and Fire (Heat conversion)
• Cylinder (Work done)

For more details on these elements, refer to the “Elements of Steam Locomotive Operation”
Summary of Driving Tips
• Wherever possible, when running normally, have the regulator at 100%, and use the reverser to
adjust steam usage and speed.

• Avoid jerky movements when starting or running the locomotive, thus reducing the chances of
breaking couplers.

• When starting alwayshave the reverser fullywoundup, andopen the regulator slowly and smoothly,
without slipping the wheels.

Open Rails Steam Functionality (Fireman)
TheOpen Rails Steam locomotive functionality provides two operational options:
• Automatic Fireman (Computer Controlled): In Automatic or Computer Controlled Fireman mode
all locomotivefiring and boilermanagement is done byOpenRails, leaving the player to concentrate
on driving the locomotive. Only the basic controls such as the regulator and throttle are available to
the player.

• Manual Fireman: In Manual Fireman mode all locomotive firing and boiler management must be
done by the player. All of the boiler management and firing controls, such as blower, injector, fuel
rate, are available to the player, and can be adjusted accordingly.

A full listing of the keyboard controls for use when in manual mode is provided on the Keyboard tab of the
Open RailsOptions panel.
Use the keys <Crtl+F> to switch betweenManual and Automatic firingmodes.

Hot or Cold Start
The locomotive can be started either in a hot or cold mode. Hot mode simulates a locomotive which has a
full head of steam and is ready for duty.
Cold mode simulates a locomotive that has only just had the fire raised, and still needs to build up to full
boiler pressure, before having full power available.
This function can be selected through theOpen Rails optionsmenu on the Simulation tab.

8.4. Steam Locomotives 90

Open RailsManual, Release 1.2.3706 (draft)

Main Steam Locomotive Controls
This section will describe the control and management of the steam locomotive based upon the assump-
tion that the Automatic fireman is engaged. The following controls are those typically used by the driver
in this mode of operation:
• Cylinder Cocks – allows water condensation to be exhausted from the cylinders. (Open Rails Keys:
toggle C)

• Regulator – controls the pressure of the steam injected into the cylinders. (Open Rails Keys: D =
increase, A = decrease)

• Reverser – controls the valve gear and when the steam is “cutoff”. Typically it is expressed as a frac-
tion of the cylinder stroke. (Open Rails Keys: W = increase, S = decrease). Continued operation of
theWor S key will eventually reverse the direction of travel for the locomotive.

• Brake – controls the operation of the brakes. (Open Rails Keys: ‘ = increase, ; = decrease)

RecommendedOption Settings

For added realism of the performance of the steam locomotive, it is suggested that the following settings
be considered for selection in theOpen Rails optionsmenu:
• Break couplers
• Curve speed dependent
• Curve resistance speed
• Hot start
• Tunnel resistance dependent

NB: Refer to the relevant sections of themanual for more detailed description of these functions.

Locomotive Starting

Open the cylinder cocks. They are to remain open until the engine has traversed a distance of about an
average train length, consistent with safety.
The locomotive should always be started in full gear (reverser up as high as possible), according to the di-
rection of travel, and kept there for the first few turns of the drivingwheels, before adjusting the reverser.
After ensuring that all brakes are released, open the regulator sufficiently to move the train, care should
be exercised to prevent slipping; do not open the regulator toomuch before the locomotive has gathered
speed. Severe slipping causes excessive wear and tear on the locomotive, disturbance of the fire bed and
blanketing of the spark arrestor. If slipping does occur, the regulator should be closed as appropriate, and
if necessary sand applied.
Also, when starting, a sloweven increase of powerwill allow the couplers all along the train to be gradually
extended, and therefore reduce the risk of coupler breakages.

Locomotive Running

Theoretically, when running, the regulator should always be fully open and the speed of the locomotive
controlled, as desired, by the reverser. For economical use of steam, it is also desirable to operate at the
lowest cut-off values as possible, so the reverser should be operated at low values, especially running at
high speeds.

8.4. Steam Locomotives 91

Open RailsManual, Release 1.2.3706 (draft)

When running a steam locomotive keep an eye on the following key parameters in the Heads up Display
(HUD– F5) as theywill give the driver an indication of the current status and performance of the locomo-
tive with regard to the heat conversion (Boiler and Fire) and work done (Cylinder) processes. Also bear in
mind the above driving tips.

• Direction – indicates the setting on the reverser and the direction of travel. The value is in per cent,
so for example a value of 50 indicates that the cylinder is cutting off at 0.5 of the stroke.

• Throttle – indicates the setting of the regulator in per cent.
• Steam usage – these values represent the current steam usage per hour.
• Boiler Pressure – this should bemaintained close to themaximumworking pressure of the locomo-
tive.

• Boiler water level – indicates the level of water in the boiler. Under operation in Automatic Fireman
mode, the fireman shouldmanage this.

• Fuel levels – indicate the coal andwater levels of the locomotive.
For information on the other parameters, such as the brakes, refer to the relevant sections in themanual.
For the driver of the locomotive the first two steam parameters are the key ones to focus on, as operating
the locomotive for extended periods of timewith steamusage in excess of the steam generation valuewill
result in declining boiler pressure. If this is allowed to continue the locomotive will ultimately lose boiler
pressure, andwill no longer be able to continue to pull its load.
Steam usage will increase with the speed of the locomotive, so the driver will need to adjust the regula-
tor, reverser, and speed of the locomotive to ensure that optimal steam pressure is maintained. However,
a point will finally be reached where the locomotive cannot go any faster without the steam usage ex-
ceeding the steam generation. This point determines the maximum speed of the locomotive and will vary
depending upon load and track conditions

Steam Locomotive Carriage SteamHeatModelling
Overview

In the early days of steam, passenger carriageswere heated by fire burnt in stoveswithin the carriage, but
this type of heating proved to be dangerous, as on a number of occasions the carriages actually caught fire
and burnt.
A number of alternative heating systemswere adopted as a safer replacement.
The Open Rails Model is based upon a direct steam model, ie one that has steam pipes installed in each
carriage, and pumps steam into each car to raise the internal temperature in each car.
Theheatmodel in each car is representedbyFigure1below. Thekeyparameters influencing theoperation
of the model are the values of tc, to, tp, which represent the temperature within the carriage, ambient
temperature outside the carriage, and the temperature of the steam pipe due to steam passing through it.
As shown in the figure the heat model has a number of different elements as follows:

8.4. Steam Locomotives 92

Open RailsManual, Release 1.2.3706 (draft)

Fig. 8.1: HeatModel for Passenger Car

1. Internal heat mass – the air mass in
the carriage (represented by cloud)
is heated to temperature that is
comfortable to the passengers. The
energy required to maintain the
temperature will be determined the
volume of the air in the carriage

2. Heat Loss – Transmission – over time
heat will be lost through the walls,
roof, and floors of the carriage (rep-
resented by outgoing orange ar-
rows), this heat loss will reduce
the temperature of the internal air
mass.

3. Heat Loss – Infiltration – also over
time as carriage doors are opened
and closed at station stops, some
cooler air will enter the carriage
(represented by ingoing blue ar-
rows), and reduce the temperature
of the internal air mass.

4. Steam Heating – to offset the above
heat losses, steam was piped
through each of the carriages (rep-
resented by circular red arrows).
Depending upon theheat input from
the steam pipe, the temperature
would be balanced by offsetting
the steam heating against the heat
losses.

Carriage Heating Implementation in Open Rails

Currently, carriage steam heating is only
available on steam locomotives. To enable
steamheating towork inOpenRails the following parametermust be included in the engine section of the
steam locomotive ENG File:
MaxSteamHeatingPressure(x)

Where: x =maximum steam pressure in the heating pipe – should not exceed 100 psi
If the above parameter is added to the locomotive, then an extra line will appear in the extended HUD to
show the temperature in the train, and the steam heating pipe pressure, etc.
Steam heating will only work if there are passenger cars attached to the locomotive.
Warning messages will be displayed if the temperature inside the carriage goes outside of the limits of
10–15.5°C.
The player can control the train temperature by using the following controls:
• <Alt+U> – increase steam pipe pressure (and hence train temperature)
• <Alt+D> – decrease steam pipe pressure (and hence train temperature)

It should be noted that the impact of steam heating will vary depending upon the season, length of train,
etc.

8.4. Steam Locomotives 93

Open RailsManual, Release 1.2.3706 (draft)

8.4.3 Steam Locomotives – Physics Parameters for Optimal Operation
Required Input ENG andWAGFile Parameters
The OR Steam Locomotive Model (SLM) should work with default MSTS files; however optimal perfor-
mance will only be achieved if the following settings are applied within the ENG file. The following list
only describes the parameters associated with the SLM, other parameters such as brakes, lights, etc.
still need to be included in the file. As always, make sure that you keep a backup of the originalMSTS file.
Open Rails has been designed to do most of the calculations for the modeler, and typically only the key
parameters are required to be included in the ENG or WAG file. The parameters shown in the Locomo-
tive performance Adjustments section should be included only where a specific performance outcome is
required, since default parameters should provide a satisfactory result.
When creating and adjusting ENG orWAG files, a series of tests should be undertaken to ensure that the
performance matches the actual real-world locomotive as closely as possible. For further information on
testing, as well as some suggested test tools, go to this site.
NB: These parameters are subject to change as Open Rails continues to develop.
Notes:
• New – parameter names starting withORTSmeans added as part of OpenRails development
• Existing – parameter namesnot startingwithORTS are original inMSTSor added throughMSTSBIN

Possible Locomotive Reference Info:
1. Steam Locomotive Data
2. ExampleWiki Locomotive Data
3. Testing Resources for Open Rails Steam Locomotives
Parameter Description Recom’d Input Units Typical Examples
General Information (Engine section)
ORTSSteamLocomotive
Type (x)

Describes the type of
locomotive

Simple, Compound,
Geared (Simple)

(Compound)
(Geared)

WheelRadius (x) Radius of drive wheels Distance
(0.648m)
(36in)

MaxSteamHeatingPressure
(x)

Max pressure in steam
heating system for pas-
senger carriages

Pressure, NB: normally
< 100 psi

(80psi)

Boiler Parameters (Engine section)
ORTSSteamBoilerType
(x)

Describes the type of
boiler

Saturated, Super-
heated (Saturated)

(Superheated)
BoilerVolume (x) Volume of boiler. This

parameter is not overly
critical.

Volume, where an act.
value is n/a, use approx.
EvapArea / 8.3

(“220*(ft^3)”)
(“110*(m^3)”)

ORTSEvaporationArea
(x)

Boiler evaporation
area

Area (“2198*(ft^2)”)
(“194*(m^2)”)
Continued on next page

8.4. Steam Locomotives 94

http://coalstonewcastle.com.au/physics/
http://orion.math.iastate.edu/jdhsmith/term/slindex.htm
http://en.wikipedia.org/wiki/SR_Merchant_Navy_class
http://coalstonewcastle.com.au/physics/

Open RailsManual, Release 1.2.3706 (draft)

Table 8.1 – continued from previous page
Parameter Description Recom’d Input Units Typical Examples
MaxBoilerPressure (x) Max boiler working

pressure (gauge)
Pressure

(200psi)
(200kPa)

ORTSSuperheatArea (
x)

Superheating heating
area

Area (“2198*(ft^2)”)
(“194*(m^2)”)

Locomotive Tender Info (Engine section)
MaxTenderWaterMass
(x)

Water in tender Mass
(36500lb)
(16000kg)

MaxTenderCoalMass (
x)

Coal in tender Mass
(13440lb)
(6000kg)

Fire (Engine section)
ORTSGrateArea (x) Locomotive fire grate

area
Area (“2198*(ft^2)”)

(“194*(m^2)”)
ORTSFuelCalorific (x) Calorific value of fuel For coal use 13700

btu/lb
(13700btu/lb)
(33400kj/kg)

ORTSSteamFiremanMax
PossibleFiringRate (x)

Maximum fuel rate
that fireman can shovel
in an hour. (Mass Flow)

Use as def:
UK:3000lb/h
US:5000lb/h
AU:4200lb/h

(4200lb/h)
(2000kg/h)

SteamFiremanIs Me-
chanicalStoker (x
)

Mechanical stoker =
large rate of coal feed

Boolean, 0=no-stoker
1=stoker

(1)

SteamCylinder (Engine section)
NumCylinders (x) Number of steam cylin-

ders
Boolean (2)

CylinderStroke (x) Length of cylinder
stroke

Distance
(26in)
(0.8m)

CylinderDiameter (x) Cylinder diameter Distance
(21in)
(0.6m)

LPNumCylinders (x) Number of steam LP
cylinders (compound
locomotive only)

Boolean (2)

LPCylinderStroke (x) LP cylinder stroke
length (compound
locomotive only)

Distance
(26in)
(0.8m)

LPCylinderDiameter (
x)

Diameter of LP cylin-
der (compound loco-
motive only)

Distance
(21in)
(0.6m)

Friction (Wagon section)
Continued on next page

8.4. Steam Locomotives 95

Open RailsManual, Release 1.2.3706 (draft)

Table 8.1 – continued from previous page
Parameter Description Recom’d Input Units Typical Examples
ORTSDavis_A (x) Journal or roller bear-

ing + mechanical fric-
tion

N, lbf. Use FCalc to cal-
culate (502.8N)

(502.8lb)
ORTSDavis_B (x) Flange friction Nm/s, lbf/mph. Use

FCalc
(1.5465Nm/s)
(1.5465lbf/mph)

ORTSDavis_C (x) Air resistance friction Nm/s^2, lbf/mph^2
Use FCalc

(1.43Nm/s^2)
(1.43lbf/mph^2)

ORTSBearingType (x) Bearing type, defaults
to Friction Roller,

Friction,
Low

(Roller)

Friction (Engine section)
ORTSDriveWheelWeight
(x)

Total weight on the
locomotive driving
wheels

Mass, Leave out if un-
known

(2.12t)

Curve Speed Limit (Wagon section)
ORTSUnbalancedSuper
Elevation (x)

Determines the
amount of Cant De-
ficiency applied to
carriage

Distance, Leave out if
unknown

(3in) (0.075m)

ORTSTrackGauge(x) Track gauge Distance, Leave out if
unknown (4ft 8.5in)

(1.435m)
(4.708ft)

CentreOfGravity (x, y,
z)

Defines the centre of
gravity of a locomotive
or wagon

Distance, Leave out if
unknown (0m, 1.8m, 0m)

(0ft, 5.0ft, 0ft)
Curve Friction (Wagon section)
ORTSRigidWheelBase
(x)

Rigid wheel base of ve-
hicle

Distance, Leave out if
unknown (5ft 6in)

(3.37m)
Locomotive Gearing (Engine section –Only required if locomotive is geared)
ORTSSteamGearRatio
(a, b)

Ratio of gears Numeric (2.55, 0.0)
ORTSSteamMaxGearPiston
Rate (x)

Max speed of piston ft/min (650)
ORTSSteamGearType (
x)

Fixed gearing or se-
lectable gearing

Fixed, Select
(Fixed)
(Select)

Locomotive Performance Adjustments (Engine section –Optional, for experiencedmodellers)
ORTSBoilerEvaporation
Rate (x)

Multipl. factor for ad-
justingmaximumboiler
steam output

Between 10–15, Leave
out if not used

(15.0)

ORTSBurnRate (x, y) Tabular input: Coal
combusted (y) to steam
generated (x)

x – lbs, y – kg, series of
x & y values. Leave out
if unused

Continued on next page

8.4. Steam Locomotives 96

Open RailsManual, Release 1.2.3706 (draft)

Table 8.1 – continued from previous page
Parameter Description Recom’d Input Units Typical Examples
ORTSCylinderEfficiency
Rate (x)

Multipl. factor for
steam cylinder (force)
output

Unlimited, Leave out if
unused

(1.0)

ORTSBoilerEfficiency
(x, y)

Tabular input: boiler ef-
ficiency (y) to coal com-
bustion (x)

x – lbs/ft2/h, series of x
& y values. Leave out if
unused

ORTSCylinderExhaust
Open (x)

Point at which the
cylinder exhaust port
opens

Between 0.1–0.95,
Leave out if unused

(0.1)

ORTSCylinderPortOpening
(x)

Size of cylinder port
opening

Between 0.05–0.12,
Leave out if unused

(0.085)
ORTSCylinderInitial
PressureDrop (x, y)

Tabular input: wheel
speed (x) to pressure
drop factor (y)

x – rpm, series of x & y
values. Leave out if un-
used

ORTSCylinderBackPressure
(x, y)

Tabular input: Loco in-
dicated power (x) to
backpressure (y)

x – hp, y – psi(g), series
of x & y values. Leave
out if unused

8.4.4 Special Steam Effects for Steam Locomotives
Steamexhausts on a steam locomotive can bemodelled inORby defining appropriate steameffects in the
SteamSpecialEffects section of the ENG file.
OR supports the following special steam effects:
• Steam cylinders (named CylindersFX and Cylinders2FX) – two effects are provided which will rep-
resent the steam exhaustedwhen the steam cylinder cocks are opened. Two effects are provided to
represent the steam exhausted at the front and rear of each piston stroke. These effects will appear
whenever the cylinder cocks are opened, and there is sufficient steam pressure at the cylinder to
cause the steam to exhaust, typically the regulator is open (> 0%).

• Stack (named StackFX) – represents the smoke stack emissions. This effect will appear all the time
in different forms depending upon the firing and steaming conditions of the locomotive.

• Compressor (named CompressorFX) – represents a steam leak from the air compressor. Will only
appear when the compressor is operating.

• Generator (named GeneratorFX) – represents the emission from the turbo-generator of the locomo-
tive. This effect operates continually. If a turbo-generator is not fitted to the locomotive it is recom-
mended that this effect is left out of the effects section which will ensure that it is not displayed in
OR.

• Safety valves (named SafetyValvesFX) – represents the discharge of the steam valves if the maxi-
mum boiler pressure is exceeded. It will appear whenever the safety valve operates.

• Whistle (named WhistleFX) – represents the steam discharge from thewhistle.
• Injectors (named Injectors1FX and Injectors2FX) – represents the steamdischarge from the steam
overflow pipe of the injectors. They will appear whenever the respective injectors operate.

NB: If a steam effect is not defined in the SteamSpecialEffects section of the ENG file, then it will not be
displayed in the simulation.
Each effect is defined by inserting a code block into the ENG file similar to the one shown below:
CylindersFX (

-1.0485 1.0 2.8
-1 0 0
0.1

)

8.4. Steam Locomotives 97

Open RailsManual, Release 1.2.3706 (draft)

The code block consists of the following elements:
• Effect name – as described above,
• Effect location on the locomotive (given as an x, y, z offset in metres from the origin of the wagon
shape)

• Effect direction of emission (given as a normal x, y and z)
• Effect nozzle width (in metres)

8.4.5 AuxiliaryWater Tenders
To increase the water carrying capacity of a steam locomotive, an auxiliary tender (or as known in Aus-
tralia as a water gin) would sometimes be coupled to the locomotive. This auxiliary tender would provide
additional water to the locomotive tender via connecting pipes.
Typically, if the connecting pipes were opened between the locomotive tender and the auxiliary tender,
the water level in the two vehicles would equalise at the same height.
To implement this feature in Open Rails, a suitable water carrying vehicle needs to have the following
parameter included in theWAG file.
ORTSAuxTenderWaterMass (70000lb) The units of measure are in mass.
When the auxiliary tender is coupled to the locomotive the tender line in the LOCOMOTIVE INFORMA-
TION HUD will show the two tenders and the water capacity of each. Water (C) is the combined water
capacity of the two tenders, whilstWater (T) shows thewater capacity of the locomotive tender, andWa-
ter (A) the capacity of the auxiliary tender (as shown below).

To allow the auxiliary tender to be filled at a water fuelling point, a water freight animationwill be need to
be added to theWAG file as well. (Refer to Freight Animations for more details).

8.5 Engines –Multiple Units in Same Consist or AI Engines
In anORplayer train one locomotive is controlled by the player, while the other units are controlled by de-
fault by the train’s MU (multiple unit) signals for braking and throttle position, etc. The player-controlled
locomotive generates the MU signals which are passed along to every unit in the train. For AI trains, the
AI software directly generates theMU signals, i.e. there is no player-controlled locomotive. In this way, all
engines use the same physics code for power and friction.
This software model will ensure that non-player controlled engines will behave exactly the same way as
player controlled ones.

8.6 Open Rails Braking
Open Rails software has implemented its own braking physics in the current release. It is based on the
Westinghouse 26C and 26F air brake and controller system. Open Rails braking will parse the type of
braking from the .eng file to determine if the braking physics uses passenger or freight standards, self-
lapping or not. This is controlled within theOptionsmenu as shown inGeneral Options above.
Selecting Graduated Release Air Brakes in Menu > Options allows partial release of the brakes. Some 26C
brake valves have a cut-off valve that has three positions: passenger, freight and cut-out. Checked is
equivalent to passenger standard and unchecked is equivalent to freight standard.
TheGraduated Release Air Brakes option controls two different features. If the train brake controller has a
self-lapping notch and theGraduated Release Air Brakes box is checked, then the amount of brake pressure
can be adjusted up or downby changing the control in this notch. If theGraduated Release Air Brakes option

8.5. Engines –Multiple Units in Same Consist or AI Engines 98

Open RailsManual, Release 1.2.3706 (draft)

is not checked, then the brakes can only be increased in this notch and one of the release positions is
required to release the brakes.
Another capability controlled by the Graduated Release Air Brakes checkbox is the behavior of the brakes
on each car in the train. If theGraduated Release Air Brakes box is checked, then the brake cylinder pressure
is regulated to keep it proportional to the difference between the emergency reservoir pressure and the
brake pipe pressure. If the Graduated Release Air Brakes box is not checked and the brake pipe pressure
rises above the auxiliary reservoir pressure, then the brake cylinder pressure is released completely at a
rate determined by the retainer setting.
The following brake types are implemented in OR:
• Vacuum single
• Air single-pipe
• Air twin-pipe
• EP (Electro-pneumatic)
• Single-transfer-pipe (air and vacuum)

The operation of air single-pipe brakes is described in general below.
The auxiliary reservoir needs to be charged by the brake pipe and, depending on theWAG file parameters
setting, this can delay the brake release. When the Graduated Release Air Brakes box is not checked, the
auxiliary reservoir is also charged by the emergency reservoir (until both are equal and then both are
charged from the pipe). When the Graduated Release Air Brakes box is checked, the auxiliary reservoir is
only charged from thebrake pipe. TheOpenRails software implements it thiswaybecause the emergency
reservoir is used as the source of the reference pressure for regulating the brake cylinder pressure.
The end result is that you will get a slower release when the Graduated Release Air Brakes box is checked.
This should not be an issue with two pipe air brake systems because the second pipe can be the source of
air for charging the auxiliary reservoirs.
OpenRails software hasmodeledmost of this graduated release car brakebehavior basedon the26F con-
trol valve, but this valve is designed for use on locomotives. The valve uses a control reservoir tomaintain
the referencepressure andOpenRails software simply replaced the control reservoirwith the emergency
reservoir.
Increasing the Brake Pipe Charging Rate (psi/s) value controls the charging rate. Increasing the value will
reduce the time required to recharge the train; while decreasing the value will slow the charging rate.
However, this might be limited by the train brake controller parameter settings in the ENG file. The brake
pipe pressure cannot go up faster than that of the equalization reservoir.
The default value, 21, should cause the recharge time from a full set to be about 1 minute for every 12
cars. If the Brake Pipe Charging Rate (psi/s) value is set to 1000, the pipe pressure gradient features will be
disabled andwill also disable some but not all of the other new brake features.
Brake system charging time depends on the train length as it should, but at the moment there is no mod-
eling of main reservoirs and compressors.

8.6.1 Brake Shoe Adhesion
The braking of a train is impacted by the following two types of adhesion (friction coefficients):
• Brakeshoe – the coefficient of friction of the brakeshoe varies due to the type of brake shoe, and the
speed of the wheel increases. Typically older cast iron brake shoes had lower friction coefficients
thenmoremodern composite brakeshoes.

• Wheel – the adhesion or friction coefficient between the wheel and the rail will also vary with dif-
ferent conditions, such as whether the track was dry or wet, and will also vary with the speed of
rotation of the wheel.

8.6. Open Rails Braking 99

Open RailsManual, Release 1.2.3706 (draft)

Thus a train traveling at high speed will have lower brake shoe adhesion, which means that the train will
take a longer time to stop (or alternatively more force needs to be applied to the brakeshoe to achieve
the same slowing effect of the wheel, as at slower speeds). Traveling at high speeds may also result in
insufficient force being available to stop the train, and therefore under some circumstances the train may
become uncontrollable (unstoppable) or runaway on steep falling gradients.
Conversely if too much force is applied to the brakeshoe, then the wheel could lock up, and this could
result in the wheel slipping along the rail once the adhesive force (wagonweight x coefficient of friction) of
the wagon is exceeded by the braking force. In this instance the static friction between the wheel and the
trackwill change to dynamic friction, which is significantly lower than the static friction, and thus the train
will not be stopped in the desired time and distance.
When designing the braking forces railway engineers need to ensure that the maximum braking force
applied to the wheels takes into account the above adhesion factors.
Implementation in Open Rails
Open Rails models the aspects described above, and operates within one of the followingmodes:
• AdvancedAdhesionNOT selected - brake force operates as per previousOR functionality, i.e. - con-
stant brake force regardless of speed.

• Advanced Adhesion SELECTED and legacy WAG files, or NO additional user friction data defined
in WAG file - OR assumes the users assigned friction coefficient have been set at 20% friction co-
efficient for cast iron brakes, and reverse engineers the braking force, and then applies the default
friction curve as the speed varies.

• AdvancedAdhesion SELECTED and additional user friction dataHAS been defined inWAG file - OR
applies the user defined friction/speed curve.

It should be noted that the MaxBrakeForce parameter in the WAG file is the actual force applied to the
wheel after reduction by the friction coefficient.
Option iii) above is the ideal recommendedmethod of operating, and naturallywill require include files, or
variations to theWAG file.
To setup theWAG file, the following values need to be set:
• use the OR parameter ORTSBrakeShoeFriction (x, y) to define an appropriate friction/speed
curve, where x = speed in kph, and y = brakeshoe friction. This parameter needs to be included in the
WAG file near the section defining the brakes. This parameter allows the user to customise to any
brake type.

• Define the MaxBrakeForce value with a friction value equal to the zero speed value of the above
curve, i.e. in the case of the curve below this woyuld be 0.49.

For example, a sample curve definition for a COBRA (COmposition BRAkes) brakeshoe might be as fol-
lows:
ORTSBrakeShoeFriction (0.0 0.49 8.0 80.5 0.298 88.5 0.295 96.6 0.289 104.6
0.288)

The debug FORCES INFORMATIONHUDhas beenmodified by the addition of two extra columns:
• Brk. Frict. - Column shows the current friction value of the brakeshoe andwill vary according to the
speed. (Applies to modes ii) and iii) above). In mode i) it will show friction constant at 100%, which
indicates that the MaxBrakeForce defined in the WAG file is being used without alteration, ie it is
constant regardless of the speed.

• Brk. Slide - indicates that the vehiclewheels are sliding along the track under brake application. (Ref
toWheel Skidding due to Excessive Brake Force)

It should be noted that the Adhesion factor correction slider in the options menu will vary the brakeshoe
coefficient above and below 100% (or unity). It is recommended that this is set @ the default value of
100%.
These changes introduce an extra challenge to train braking, but provide amore realistic train operation.

8.6. Open Rails Braking 100

Open RailsManual, Release 1.2.3706 (draft)

For example, in a lot of normal Westinghouse brake systems, a minimum pressure reduction was applied
by moving the brake controller to the LAP position. Typically Westinghouse recommended values of be-
tween 7 and 10 psi.

8.6.2 Train Brake Pipe Losses
The train brake pipe on a train is subject to air losses through leakage at joints, etc. Typically when the
brake controller is in the RUNNING position, air pressure is maintained in the pipe from the reservoir.
However on some brake systems, especially older ones such as the A6-ET, when the brake controller is in
the LAP position the train brkae pipe is isolated from the air reservoir, and hence over time the pipe will
suffer pressure drops due to leakages. This will result in the brakes being gradually applied.
More modern brake systems have a self lapping feature which compensates for train brake pipe leakage
regardless of the position that the brake controller is in.
Open Rails models this feature whenever the TrainPipeLeakRate parameter is defined in the engine sec-
tion of the ENG file. Typically most railway companies accepted leakage rates of around 5 psi/min in the
train brake pipe before some remedial action needed to be undertaken.
If this parameter is left out of the ENG file, then no leakage will occur.

8.6.3 Wheel Skidding due to Excessive Brake Force
The application of excessive braking force onto a wheel can cause it to lock up and then start to slip along
the rails. This occurs where the wagon braking force exceeds the adhesive weight force of the wagon
wheel, i.e. the wheel to rail friction is overcome, and the wheel no longer grips the rails.
Typically this happens with lightly loaded vehicles at lower speeds, and hence the need to ensure that
braking forces are applied to design standards.
When a vehicle experienceswheel skid, an indication is provided in the FORCES INFORMATIONHUD. To
correct the problem the brakes must be released, and then applied slowly to ensure that the wheels are
not locked up.

8.6.4 Using the F5HUDExpanded Braking Information
This helps users of Open Rails to understand the status of braking within the game and assists in realisti-
cally coupling and uncoupling cars. Open Rails braking physics is more realistic than MSTS, as it models
the connection, charging and exhaust of brake lines.
When coupling to a static consist, note that the brake line for the newly added cars normally does not have
any pressure. This is because the train brake line/hose has not yet been connected. The last columns of
each line shows the condition of the air brake hose connections of each unit in the consist.

The columns underAnglCock describe the state of theAngle Cock, a manually operated valve in each of the
brake hoses of a car: A is the cock at the front, B is the cock at the rear of the car. The symbol + indicates
that the cock is open and the symbol - that it is closed. The columnheaded by T indicates if the hose on the
locomotive or car is interconnected: Tmeans that there is no connection, Imeans it is connected to the
air pressure line. If the angle cocks of two consecutive cars are B+ and A+ respectively, they will pass the
main air hose pressure between the two cars. In this example note that the locomotive air brake lines start
with A- (closed) and endwith B- (closed) before the air hoses are connected to the newly coupled cars. All
of the newly coupled cars in this example have their angle cocks open, including those at the ends, so their
brake pressures are zero. This will be reported as Emergency state.

8.6. Open Rails Braking 101

Open RailsManual, Release 1.2.3706 (draft)

Coupling Cars
Also note that, immediately after coupling, you may also find that the handbrakes of the newly added
cars have their handbrakes set to 100% (see column headed Handbrk). Pressing <Shift+;> (Shift plus
semicolon in English keyboards) will release all the handbrakes on the consist as shown below. Press-
ing <Shift+'> (Shift plus apostrophe on English keyboards) will set all of the handbrakes. Cars without
handbrakes will not have an entry in the handbrake column.
If the newly coupled cars are to be moved without using their air brakes and parked nearby, the brake
pressure in their air hose may be left at zero: i.e. their hoses are not connected to the train’s air hose.
Before the cars are uncoupled in their new location, their handbrakes should be set. The carswill continue
to report State Emergency while coupled to the consist because their BC value is zero; they will not have
any braking. The locomotive brakes must be used for braking. If the cars are uncoupled while in motion,
they will continue coasting.
If the brakes of the newly connected cars are to be controlled by the train’s air pressure as part of the
consist, their hoses must be joined together and to the train’s air hose and their angle cocks set correctly.
Pressing the Backslash key <\>) (in English keyboards; please check the keyboard assignments for other
keyboards) connects the brake hoses between all cars that have been coupled to the engine and sets the
intermediate angle cocks to permit the air pressure to gradually approach the same pressure in the entire
hose. Thismodels the operations performed by the train crew. TheHUDdisplay changes to show the new
condition of the brake hose connections and angle cocks:

All of the hoses are now connected; only the angle cocks on the lead locomotive and the last car are closed
as indicated by the -. The rest of the cocks are open (+) and the air hoses are joined together (all I) to
connect to the air supply on the lead locomotive.
Upon connection of the hoses of the new cars, recharging of the train brake line commences. Open Rails
uses a default charging rate of about 1 minute per every 12 cars. The HUD display may report that the
consist is in Emergency state; this is because the air pressure dropped when the empty car brake systems
were connected. Ultimately the brake pressures reach their stable values:

If you don’t want to wait for the train brake line to charge, pressing <Shift+/> (in English keyboards) exe-
cutes Brakes Initializewhich will immediately fully charge the train brakes line to the final state. However,
this action is not prototypical and also does not allow control of the brake retainers.
The stateof theangle cocks, thehose connections and theair brakepressureof individual coupled cars can
be manipulated by using the F9 Train Operations Monitor, described here. This will permit more realistic
shunting of cars in freight yards.

Uncoupling Cars
When uncoupling cars from a consist, using the F5 HUD Expanded Brake Display in conjunction with the
F9 Train OperationsMonitor display allows the player to set the handbrakes on the cars to be uncoupled,
and to uncouple them without losing the air pressure in the remaining cars. Before uncoupling, close the
angle cock at the rear of the car ahead of the first car to be uncoupled so that the air pressure in the re-
maining consist is not lost when the air hoses to the uncoupled cars are disconnected. If this procedure is

8.6. Open Rails Braking 102

Open RailsManual, Release 1.2.3706 (draft)

not followed, the train braking systemwill go into Emergency state andwill require pressing the <\> (back-
slash) key to connect the air hoses correctly and thenwaiting for the brake pressure to stabilize again.

Setting Brake Retainers
If a long consist is to be taken down a long or steep grade the operator may choose to set the Brake Re-
tainers on some or all of the cars to create a fixed braking force by those cars when the train brakes are
released. (This requires that the retainer capability of the cars be enabled; either by the menu option Re-
tainer valve on all cars, or by the inclusion of an appropriate keyword in the car’s .wag file.) The train must
be fully stopped and themain brakesmust be applied so that there is adequate pressure in the brake cylin-
ders. Pressing <Shift+]> controls howmany cars in the consist have their retainers set, and the pressure
value that is retainedwhen the train brakes are released. The settings are described in Brake Retainers be-
low. Pressing <Shift+[> cancels the settings and exhausts all of the air from the brake cylinders when the
brakes are released. The F5 display shows the symbol RV ZZ for the state of the retainer valve in all cars,
where ZZ is: EX for Exhaust or LP or HP. When the system brakes are released and there are no retainers
set, the air in the brake cylinders in the cars is normally released to the air. The BC pressure for the cars
with retainers set will not fall below the specified value. In order to change the retainer settings, the train
must be fully stopped. A sample F5 viewwith 50% LP is shown below:

8.6.5 Dynamic Brakes
Open Rails software supports dynamic braking for engines. To increase the Dynamic brakes press Period
(.) andComma (,) to decrease them. Dynamic brakes are usually off at train startup (this can be overridden
by the relatedMSTS setting in the .eng file), the throttle works and there is no value shown in the dynamic
brake line in the HUD. To turn on dynamic brakes set the throttle to zero and then press Period. Pressing
Period successively increases the Dynamic braking forces. If the value n in the MSTS parameter Dynam-
icBrakesDelayTimeBeforeEngaging (n) is greater than zero, the dynamic brake will engage only after n
seconds. The throttle will not work when the Dynamic brakes are on.
The Dynamic brake force as a function of control setting and speed can be defined in a DynamicBrake-
ForceCurves table that works like the MaxTractiveForceCurves table. If there is no DynamicBrakeForce-
Curves defined in the ENG file, than one is created based on theMSTS parameter values.

8.6.6 NativeOpen Rails Braking Parameters
Open Rails has implemented additional specific braking parameters to deliver realism in braking perfor-
mance in the simulation.
Following are a list of specific OR parameters and their default values. The default values are used in
place of MSTS braking parameters; however, two MSTS parameters are used for the release state: Max-
AuxilaryChargingRate and EmergencyResChargingRate.
• wagon(brakepipevolume – Volume of car’s brake pipe in cubic feet (default .5). This is dependent on
the train length calculated from the ENG to the last car in the train. This aggregate factor is used to
approximate the effects of train length on other factors. Strictly speaking this value should depend
on the car length, but the Open Rails Development team doesn’t believe it is worth the extra com-
plication or CPU time that would be needed to calculate it in real time. We will let the community
customize this effect by adjusting the brake servicetimefactor instead, but the Open Rails Develop-
ment team doesn’t believe this is worth the effort by the user for the added realism.

8.6. Open Rails Braking 103

Open RailsManual, Release 1.2.3706 (draft)

• engine(mainreschargingrate – Rate of main reservoir pressure change in psi per second when the
compressor is on (default .4).

• engine(enginebrakereleaserate – Rate of engine brake pressure decrease in psi per second (de-
fault 12.5).

• engine(enginebrakeapplicationrate – Rate of engine brake pressure increase in psi per second
(default 12.5).

• engine(brakepipechargingrate – Rate of lead engine brake pipe pressure increase in PSI per sec-
ond (default 21).

• engine(brakeservicetimefactor – Time in seconds for lead engine brake pipe pressure to drop to
about 1/3 for service application (default 1.009).

• engine(brakeemergencytimefactor – Time in seconds for lead engine brake pipe pressure to drop
to about 1/3 in emergency (default .1).

• engine(brakepipetimefactor – Time in seconds for a difference in pipe pressure between adjacent
cars to equalize to about 1/3 (default .003).

8.6.7 Brake Retainers
The retainers of a car will only be available if either the General Option Retainer valve on all cars is
checked, or the car’s .wag file contains a retainer valve declaration. To declare a retainer the line
BrakeEquipmentType () in the .wag file must include either the item Retainer_4_Position or the item
Retainer_3_Position. A 4 position retainer includes four states: exhaust, lowpressure (10 psi), high pres-
sure (20psi), and slowdirect (gradual drop to zero). A3position retainer doesnot include the lowpressure
position. The use and display of the retainers is described in Extended HUD for Brake Information.
The setting of the retained pressure and the number of retainers is controlled using the Ctrl+[and Ctrl+]
keys (Ctrl plus the left and right square bracket ([and]) keys on an English keyboard). The Ctrl+[key will
reset the retainer on all cars in the consist to exhaust (the default position). Each time the Ctrl+] key is
pressed the retainer settings are changed in a defined sequence. First the fraction of the cars set at a low
pressure is selected (25%, 50% and then 100% of the cars), then the fraction of the cars at a high pressure
is selected instead, then the fraction at slow direct. For the 25% setting the retainer is set on every fourth
car starting at the rear of the train, 50% sets every other car and 100% sets every car. These changes can
onlybemadewhen the train is stopped. When the retainer is set to exhaust, theENGfile release rate value
is used, otherwise the pressures and release rates are hard codedbasedon someABbrakedocumentation
used by theOpen Rails development team.

8.6.8 Emergency Brake Application Key
The Backspace key is used, as inMSTS, to apply the train brakes in an emergency situation without requir-
ing operation of the train brake lever. However in ORmoving the brake lever back to the Release position
will only causeOR to reportApply Emergency Brake Push Button. The Backspace keymust be pressed again
to cancel the emergency application, then normal operation can be resumed. When the button is active,
the F5HUDwill display Emergency Brake Push Button in the Train Brake line.

8.7 Dynamically Evolving Tractive Force
The Open Rails development team has been experimenting with max/continuous tractive force, where it
can be dynamically altered during game play using the ORTSMaxTractiveForceCurves parameter as shown
earlier. The parameters were based on the Handbook of Railway Vehicle Dynamics. This says the in-
creased traction motor heat increase resistance which decreases current and tractive force. We used a
moving average of the actual tractive force to approximate the heat in the motors. Tractive force is al-
lowed to be at themaximum per the ENG file, if the average heat calculation is near zero. If the average is

8.7. Dynamically Evolving Tractive Force 104

Open RailsManual, Release 1.2.3706 (draft)

near the continuous rating than the tractive force is de-rated to the continuous rating. There is a param-
eter called ORTSContinuousForceTimeFactor that roughly controls the time over which the tractive force
is averaged. The default is 1800 seconds.

8.8 Curve Resistance - Theory
8.8.1 Introduction
Whena train travels around a curve, due to the track resisting the direction of travel (i.e. the trainwants to
continue in a straight line), it experiences increased resistance as it is pushed around the curve. Over the
years there has been much discussion about how to accurately calculate curve friction. The calculation
methodology presented (and used in OR) is meant to be representative of the impacts that curve friction
will have on rolling stock performance.

8.8.2 Factors Impacting Curve Friction
A number of factors impact upon the value of resistance that the curve presents to the trains movement,
as follows:
• Curve radius – the smaller the curve radius the higher the higher the resistance to the train
• Rolling Stock RigidWheelbase – the longer the rigid wheelbase of the vehicle, the higher the resis-
tance to the train. Modern bogie stock tends to have shorter rigid wheelbase values and is not as
bad as the older style 4 wheel wagons.

• Speed – the speed of the train around the curve will impact upon the value of resistance, typically
above and below the equilibrium speed (i.e. when all the wheels of the rolling stock are perfectly
aligned between the tracks). See the section below Impact of superelevation.

The impact of wind resistance on curve friction is ignored.

8.8.3 Impact of RigidWheelbase
The length of the rigidwheelbase of rolling stockwill impact the value of curve resistance. Typically rolling
stock with longer rigid wheelbases will experience a higher degree of rubbing or frictional resistance on
tight curves, compared to stock with smaller wheelbases.
Steam locomotives usually created the biggest problem in regard to this as their drive wheels tended to
be in a single rigid wheelbase as shown in figure. In some instances on routes with tighter curve the inside
wheels of the locomotive were sometimes made flangeless to allow them to float across the track head.
Articulated locomotives, such as Shays, tended to have their drive wheels grouped in bogies similar to
diesel locomotives and hence were favoured for routes with tight curves.

Fig. 8.2: Diagram Source: The Baldwin Locomotive Works – Locomotive Data – 1944 Example of Rigid
Wheelbase in steam locomotive

The value used for the rigid wheelbase is shown asW in figure

8.8. Curve Resistance - Theory 105

Open RailsManual, Release 1.2.3706 (draft)

8.8.4 Impact of Super Elevation
On any curve whose outer rail is super-elevated there is, for any car, one speed of operation at which the
car trucks have no more tendency to run toward either rail than they have on straight track, where both
rail-heads are at the same level (known as the equilibrium speed). At lower speeds the trucks tend con-
stantly to run down against the inside rail of the curve, and thereby increase the flange friction; whilst
at higher speeds they run toward the outer rail, with the same effect. This may be made clearer by
reference to figure below, which represents the forces which operate on a car at its centre of gravity.

Fig. 8.3: Forces on rolling stock transitioning a curve

With the car at rest on the curve there is a compo-
nent of the weightWwhich tends to move the car
down toward the inner rail. When the car moves
along the track centrifugal force Fc comes intoplay
and the car action is controlled by the force Fr
which is the resultant of W and Fc. The force Fr like-
wise has a component which, still tends to move
the car toward the inner rail. This tendency per-
sists until, with increasing speed, the value of Fc
becomes great enough to cause the line of oper-
ation of Fr to coincide with the centre line of the
track perpendicular to the plane of the rails. At
this equilibrium speed there is no longer any ten-
dency of the trucks to run toward either rail. If
the speed be still further increased, the compo-
nent of Fr rises again, but nowon the opposite side
of the centre line of the track and is of opposite
sense, causing the trucks to tend to move toward
the outer instead of the inner rail, and thereby re-
viving theextraflange friction. It shouldbeempha-
sized that the flange friction arising from the play of the forces here under discussion is distinct from and
in excess of the flange frictionwhich arises from the action of the flanges in forcing the truck to follow the
track curvature. This excess being a variable element of curve resistance, wemay expect tofind that curve
resistance reaches aminimum valuewhen this excess reduces to zero, that is, when the car speed reaches
the critical value referred to. This critical speed depends only on the super-elevation, the track gauge, and
the radius of the track curvature. The resulting variation of curve resistance with speed is indicated in
diagram below.

8.8.5 Calculation of Curve Resistance
R =WF (D + L) 2 r
Where:
• R = Curve resistance,
• W= vehicle weight,
• F = Coefficient of Friction,
• 𝜇 = 0.5 for dry, smooth steel-to-steel; wet rail 0.1 – 0.3,
• D = track gauge,
• L = Rigid wheelbase,
• r = curve radius.

(Source: TheModern locomotive by C. Edgar Allen - 1912)

8.8. Curve Resistance - Theory 106

Open RailsManual, Release 1.2.3706 (draft)

8.8.6 Calculation of Curve Speed Impact
The above value represents the least value amount of resistance, which occurs at the equilibrium speed,
and as described above will increase as the train speed increases and decreases from the equilibrium
speed. This concept is shown pictorially in the following graph. Open Rails uses the following formula
tomodel the speed impact on curve resistance:

𝑆𝑝𝑒𝑒𝑑𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑎𝑏𝑠 ((𝑣𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 − 𝑣𝑡𝑟𝑎𝑖𝑛) · 𝑣𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚) ·𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑎𝑟𝑡

Fig. 8.4: Generalisation of Variation of Curve ResistanceWith Speed

8.8.7 Further background reading
http://en.wikipedia.org/wiki/Curve_resistance_(railroad)

8.9 Curve Resistance - Application in OR
Open Rails models this function, and the user may elect to specify the known wheelbase parameters, or
the above standard default values will be used. OR calculates the equilibrium speed in the speed curve
module, however it is not necessary to select both of these functions in the simulator options TAB. Only
select the functiondesired. By studying the Forces Information table in theHUD, youwill be able toobserve
the change in curve resistance as the speed, curve radius, etc. vary.

8.9.1 OR Parameter Values
Typical OR parameter valuesmay be entered in theWagon section of the .wag or .eng file, and are format-
ted as below.:
ORTSRigidWheelBase (3in)
ORTSTrackGauge (4ft 8.5in) // (also used in curve speed module)

8.9. Curve Resistance - Application in OR 107

http://en.wikipedia.org/wiki/Curve_resistance_(railroad)

Open RailsManual, Release 1.2.3706 (draft)

8.9.2 ORDefault Values
The above values can be entered into the relevant files, or alternatively if they are not present, then OR
will use the default values described below.
Rigid Wheelbase – as a default OR uses the figures shown above in the Typical Rigid Wheelbase Values
section. The starting curve resistance value has been assumed to be 200%, and has been built into the
speed impact curves. OR calculates the curve resistance based upon the actual wheelbases provided by
the player or the appropriate defaults. It will use this as the value at Equilibrium Speed, and then depending
upon the actual calculated equilibrium speed (from the speed limit module) it will factor the resistance up
as appropriate to the current train speed.
Steam locomotive wheelbase approximation – the following approximation is used to determine the de-
fault value for the fixedwheelbase of a steam locomotive.

𝑊ℎ𝑒𝑒𝑙𝐵𝑎𝑠𝑒 = 1.25 · (𝑎𝑥𝑙𝑒𝑠− 1) ·𝐷𝑟𝑣𝑊ℎ𝑒𝑒𝑙𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

8.9.3 Typical RigidWheelbase Values
The following values are used as defaults where actual values are not provided by the player.
Rolling Stock Type Typical value
Freight Bogie type stock (2 wheel
bogie)

5’ 6” (1.6764m)
Passenger Bogie type stock (2
wheel bogie)

8’ (2.4384m)
Passenger Bogie type stock (3
wheel bogie)

12’ (3.6576m)
Typical 4 wheel rigid wagon 11’ 6” (3.5052m)
Typical 6 wheel rigid wagon 12’ (3.6576m)
Tender (6 wheel) 14’ 3” (4.3434m)
Diesel, Electric Locomotives Similar to passenger stock
Steam locomotives Dependent on drive wheels #. Can be up to 20’+, e.g. large

2–10–0 locomotives
Modern publications suggest an allowance of approximately 0.8 lb per ton (US) per degree of curvature
for standard gauge tracks. At very slow speeds, say 1 or 2 mph, the curve resistance is closer to 1.0 lb (or
0.05% up grade) per ton per degree of curve.

8.10 Super Elevation (Curve Speed Limit) – Theory
8.10.1 Introduction
When a train rounds a curve, it tends to travel in a straight direction and the track must resist this move-
ment, and force the train to move around the curve. The opposing movement of the train and the track
result in a number of different forces being in play.

8.10.2 19th & 20th Century vsModern Day Railway Design
In the early days of railway construction financial considerations were a big factor in route design and
selection. Given that the speed of competing transport, such as horses and water transport was not very
great, speed was not seen as a major factor in the design process. However as railway transportation
became a more vital need for society, the need to increase the speed of trains became more and more
important. This led to many improvements in railway practices and engineering. A number of factors,
such as the design of the rolling stock, aswell as the track design, ultimately influence themaximum speed
of a train. Today’s high speed railway routes are specifically designed for the speeds expectedof the rolling
stock.

8.10. Super Elevation (Curve Speed Limit) – Theory 108

Open RailsManual, Release 1.2.3706 (draft)

8.10.3 Centrifugal Force
Railway locomotives, wagons and carriages, hereafter referred to as rolling stock, when rounding a curve
come under the influence of centrifugal force. Centrifugal force is commonly defined as:
• The apparent force that is felt by an object moving in a curved path that acts outwardly away from
the centre of rotation.

• An outward force on a body rotating about an axis, assumed equal and opposite to the centripetal
force and postulated to account for the phenomena seen by an observer in the rotating body.

For this article the use of the phrase centrifugal force shall be understood to be an apparent force as de-
fined above.

8.10.4 Effect of Centrifugal Force

Fig. 8.5: Forces at work when a train rounds a curve

When rolling stock rounds a curve, if the rails of
the track are at the same elevation (i.e. the two
tracks are at the same level) the combination of
centrifugal force Fc and the weight of the rolling
stockWwill produce a resulting force Fr that does
not coincidewith the centre line of track, thus pro-
ducing a downward force on the outside rail of the
curve that is greater than the downward force on
the inside rail (Refer to Figure 1). The greater the
velocity and the smaller the radius of the curve
(some railways have curve radius as low as 100m),
the farther the resulting force Fr will move away
from the centre line of track. Equilibrium velocity
was the velocity at which a train could negotiate
a curve with the rolling stock weight equally dis-
tributed across all the wheels.
If the position of the resulting force Fr approaches
the outside rail, then the rolling stock is at risk of
falling off the track or overturning. The following
drawing, illustrates the basic concept described.
Lateral displacement of the centre of gravity per-
mitted by the suspension system of the rolling
stock is not illustrated.

8.10.5 Use of Super Elevation

Fig. 8.6: This illustrates the concept.

In order to counteract the effect of centrifugal
force Fc the outside rail of the curve may be ele-
vated above the inside rail, effectively moving the
centre of gravity of the rolling stock laterally to-
ward the inside rail.
This procedure is generally referred to as super el-
evation. If the combination of lateral displacement
of the centre of gravity provided by the super el-
evation, velocity of the rolling stock and radius of
curve is such that resulting force Fr becomes cen-
tred between and perpendicular to a line across
the running rails the downward pressure on the
outside and inside rails of the curve will be the

8.10. Super Elevation (Curve Speed Limit) – Theory 109

Open RailsManual, Release 1.2.3706 (draft)

same. The super elevation that produces this con-
dition for a given velocity and radius of curve is
known as the balanced or equilibrium elevation.

8.10.6 Limitation of Super Elevation in
Mixed Passenger & Freight Routes
Typical early railway operation resulted in rolling
stock being operated at less than equilibrium ve-
locity (all wheels equally sharing the rolling stock
weight), or coming to a complete stop on curves. Under such circumstances excess super elevation may
lead to a downward force sufficient to damage the inside rail of the curve, or cause derailment of rolling
stock toward the centre of the curve when draft force is applied to a train. Routine operation of loaded
freight trains at low velocity on a curve superelevated to permit operation of higher velocity passenger
trains will result in excess wear of the inside rail of the curve by the freight trains.
Thus on these types of routes, super elevation is generally limited to nomore than 6 inches.

8.10.7 Limitation of Super Elevation in High Speed Passenger Routes
Modern high speed passenger routes do not carry slower speed trains, nor expect trains to stop on curves,
so it is possible to operate these routes with higher track super elevation values. Curves on these types
of route are also designed with a relatively gentle radius, and are typically in excess of 2000m (2km) or
7000m (7km) depending on the speed limit of the route.
Parameters France Germany Spain Korea Japan
Speed (km/h) 300/350 300 350 300/350 350
Horizontal curve radius
(m)

10000
(10km)

7000 (7km) 7000 (7km) 7000
(7km)

4000 (4km)
Super elevation (mm) 180 170 150 130 180
MaxGrade (mm/m) 35 40 12.5 25 15
Cant Gradient (mm/s) 50 34.7 32 N/A N/A
Min Vertical radius (m) 16000

(16km)
14000
(14km)

24000
(24km)

N/A 10000
(10km)

Table: Curve Parameters for High SpeedOperations (Railway Track Engineering by J. S. Mundrey)

8.10.8 MaximumCurve Velocity
The maximum velocity on a curve may exceed the equilibrium velocity, but must be limited to provide a
margin of safety before overturning velocity is reached or a downward force sufficient to damage the out-
side rail of the curve is developed. This velocity is generally referred to as maximum safe velocity or safe
speed. Although operation at maximum safe velocity will avoid overturning of rolling stock or rail dam-
age, a passenger riding in a conventional passenger car will experience centrifugal force perceived as a
tendency to slide laterally on their seat, creating an uncomfortable sensation of instability. To avoid pas-
senger discomfort, the maximum velocity on a curve is therefore limited to what is generally referred to
asmaximumcomfortable velocity or comfortable speed. Operating experiencewith conventional passen-
ger cars has led to the generally accepted practice, circa 1980, of designating the maximum velocity for a
given curve to be equal to the result for the calculation of equilibriumvelocitywith an extra amount added
to the actual super elevation that will be applied to the curve. This is often referred to as unbalanced su-
per elevation or cant deficiency. Tilt trains have been introduced to allow faster train operation on tracks
not originally designed for high speed operation, as well as high speed railway operation. The tilting of the
passenger cab allows greater values of unbalanced super elevation to be used.

8.10. Super Elevation (Curve Speed Limit) – Theory 110

Open RailsManual, Release 1.2.3706 (draft)

8.10.9 Limitation of Velocity on Curved Track at Zero Cross Level
The concept of maximum comfortable velocity may also be used to determine the maximum velocity at
which rolling stock is permitted to round curved track without super elevation and maintained at zero
cross level. The lead curve of a turnout located between the heel of the switch and the toe of the frog is an
example of curved track that is generally not super elevated. Other similar locations would include yard
tracks and industrial tracks where the increased velocity capability made possible by super elevation is
not required. In such circumstances the maximum comfortable velocity for a given curve may also be the
maximum velocity permitted on tangent track adjoining the curve.

8.10.10 Height of Centre of Gravity
Operation on a curve at equilibrium velocity results in the centre of gravity of the rolling stock coinciding
with a point on a line that is perpendicular to a line across the running rails and the origin of which is
midway between the rails. Under this condition the height of the centre of gravity is of no consequence
as the resulting force Fr coincides with the perpendicular line described above. When rolling stock stops
on a super elevated curve or rounds a curve under any condition of non-equilibrium the resulting force Fr
will not coincide with the perpendicular line previously described and the height of the centre of gravity
then becomes significant in determining the location of the resulting force Fr relative to the centre line of
the track. The elasticity of the suspension system of rolling stock under conditions of non-equilibriumwill
introduce a roll element that affects the horizontal displacement of the centre of gravity and that must
also be consideredwhen determining the location of the resulting force Fr.

8.10.11 Calculation of Curve Velocity
The generic formula for calculating the various curve velocities is as follows:

𝑣 =
√︀
𝐸 · 𝑔 · 𝑟 ·𝐺

Where:
• E = Ea (track super elevation) + Ec (unbalanced super elevation)
• g = acceleration due to gravity
• r = radius of curve
• G = track gauge

8.10.12 Typical Super Elevation Values & Speed Impact – Mixed Passenger & Freight
Routes

The values quoted below are “typical” but may vary from country to country.
Track super elevation typically will not be more than 6 inches (150mm). Naturally, depending upon the
radius of the curve, speed restrictionsmay apply.
Normally unbalanced super elevation is typically restricted to3 inches (75mm), and is usually only allowed
for passenger stock.
Tilt trains may have values of up to 12 inches (305mm).

8.10. Super Elevation (Curve Speed Limit) – Theory 111

Open RailsManual, Release 1.2.3706 (draft)

8.10.13 Typical Super Elevation Values & Speed Impact – High Speed Passenger
Routes

Cant D
(SuperElevation)
(mm)

Cant deficiency (Unbalanced
SuperElevation) I (mm)

CEN (draft) – Tilting trains 180–200 300
Czech Rep. – Tilting trains 150 270
France – Tilting trains 180 260
Germany – Tilting trains 180 300
Italy – Tilting trains 160 275
Norway – Tilting trains 150 280
Spain – Tilting trains (equivalent for
standard gauge)

160 (139) 210 (182)
Sweden – Tilting trains 150 245
UK – Tilting trains 180 300
Table: Super Elevation limits (source - Tracks for tilting trains -A studywithin the FastAndComfortable
Trains (FACT) project by B. Kufver, R. Persson)

8.11 Super Elevation (Curve Speed Limit) Application in OR
OpenRails implements this function, andhas standarddefault values applied. Theusermayelect to specify
some of the standard parameters used in the above formula.

8.11.1 OR Super Elevation Parameters
Typical OR parameters can be entered in theWagon section of the .wag or .eng file, and are formatted as
below.
ORTSUnbalancedSuperElevation (3in)
ORTSTrackGauge(4ft 8.5in)

8.11.2 OR Super Elevation Default Values
The above values can be entered into the relevant files, or alternatively OR will default to the following
functionality.
OR will initially use the speed limit value from the route’s .trk file to determine whether the route is a
conventional mixed freight and passenger route or a high speed route.
• Speed limit < 200km/h (125mph) –Mixed Freight and Pass route
• Speed limit > 200km/h (125mph) – High speed passenger route

Default values of tracksuperelevation will be applied based upon the above classifications.
Track gaugewill default to the standard value of 4’ 8.5” (1435mm).
Unbalancedsuperelevation (Cant Deficiency) will be determined from the value entered by the user, or
will default to the following values:
• Conventional Freight – 0” (0mm)
• Conventional Passenger – 3” (75mm)
• Engines & tenders – 6” (150mm)

8.11. Super Elevation (Curve Speed Limit) Application in OR 112

Open RailsManual, Release 1.2.3706 (draft)

Tilting trains require the addition of the relevant unbalancedsuperelevation information to the relevant
rolling stock files.

8.12 Tunnel Friction – Theory
8.12.1 Introduction
When a train travels through a tunnel it experiences increased resistance to the forwardmovement.
Over the years there has been much discussion about how to accurately calculate tunnel resistance. The
calculation methodology presented (and used in OR) is meant to provide an indicative representation of
the impacts that tunnel resistance will have on rolling stock performance.

8.12.2 Factors Impacting Tunnel Friction
In general, the train aerodynamics are related to aerodynamic drag, pressure variations inside the train,
train-induced flows, cross-wind effects, ground effects, pressure waves inside the tunnel, impulse waves
at the exit of tunnel, noise and vibration, etc. The aerodynamic drag is dependent on the cross-sectional
area of the train body, train length, the shape of train fore- and after-bodies, the surface roughness of
train body, and geographical conditions around the traveling train. The train-induced flows can influence
passengers on a subway platformand is also associatedwith the cross-sectional area of the train body, the
train length, the shape of train fore- and after-bodies, surface roughness of train body, etc.
A high speed train entering a tunnel generates a compression wave at the entry portal that moves at the
speed of sound in front of the train. The friction of the displaced air with the tunnel wall produces a pres-
sure gradient and, as a consequence, a rise in pressure in front of the train. On reaching the exit portal
of the tunnel, the compression wave is reflected back as an expansion wave but part of it exits the tun-
nel and radiates outside as a micro-pressure wave. This wave could cause a sonic boom that may lead to
structural vibration and noise pollution in the surrounding environment. The entry of the tail of the train
into the tunnel produces an expansion wave that moves through the annulus between the train and the
tunnel. When the expansion pressure wave reaches the entry portal, it is reflected towards the interior
of the tunnel as a compression wave. These compression and expansion waves propagate backwards and
forwards along the tunnel and experience further reflections when meeting with the nose and tail of the
train or reaching the entry and exit portals of the tunnel until they eventually dissipate completely.
The presence of this system of pressure waves in a tunnel affects the design and operation of trains, and
they are a source of energy losses, noise, vibrations and aural discomfort for passengers.
These problems are even worse when two or more trains are in a tunnel at the same time. Aural comfort
is one of the major factors determining the area of new tunnels or the maximum train speed in existing
tunnels.

8.12.3 Importance of Tunnel Profile
As described above, a train travelling through a tunnel will create a bowwave of air movement in front of
it, which is similar to a piston effect. Themagnitude and impact of this effect will principally be determined
by the tunnel profile, train profile and speed.

8.12. Tunnel Friction – Theory 113

Open RailsManual, Release 1.2.3706 (draft)

Typical tunnel profiles are shown in the diagrams.
As can be seen from these diagrams, the smaller the tunnel cross sectional area compared to the train
cross sectional area, the less air that can escape around the train, and hence the greater the resistance ex-
periencedby the train. Thus it canbeunderstood that a single train in adouble track tunnelwill experience
less resistance then a single train in a single track tunnel.

8.12.4 Calculation of Tunnel Resistance

𝑊𝑡 =
𝐴𝐿𝑡𝑟

(𝑃 +𝐺)
𝑣2

⎛⎝1− 1

1 +
√︁

𝐵+𝐶(𝐿𝑡−𝐿𝑡𝑟)
𝐿𝑡𝑟

⎞⎠2

where
𝐴 =

0.00003318 · 𝜌 · 𝐹𝑡

(1− 𝐹𝑡𝑟/𝐹𝑡)2
,

𝐵 = 174.419(1− 𝐹𝑡𝑟/𝐹𝑡)
2,

𝐶 = 2.907
(1− 𝐹𝑡𝑟/𝐹𝑡)

2

4𝐹𝑡/𝑅𝑡
.

Ft – tunnel cross-sectional area (m2) Ftr – train cross-sectional area (m2)
𝜌 – density of air (= 1.2 kg/m3) Rt – tunnel perimeter (m)Ltr – length of train (m) Lt – length of tunnel (m)v – train velocity (m/s) P – locomotivemass (t)
Wt – additional aerodynamic drag in tunnel (N/kN) G – train mass (t)
Source: Reasonable compensation coefficient of maximum gradient in long railway tunnels by Sirong
YI*, Liangtao NIE, Yanheng CHEN, FangfangQIN

8.13 Tunnel Friction – Application in OR
To enable this calculation capability it is necessary to select the Tunnel dependent resistance option on the
Open Rails Menu. The implication of tunnel resistance is designed to model the relative impact, and does
not take into account multiple trains in the tunnel at the same time.
Tunnel resistance values can be seen in the Train Forces HUD.
The default tunnel profile is determined by the route speed recorded in the TRK file.

8.13.1 OR Parameters
The following parameters maybe included in the TRK file to overwrite standard default values used by
Open Rails:
• ORTSSingleTunnelArea (x) – Cross section area of single track tunnel – units area
• ORTSSingleTunnelPerimeter (x) – Perimeter of single track tunnel – units distance
• ORTSDoubleTunnelArea (x) – Cross section area of double track tunnel – units area

8.13. Tunnel Friction – Application in OR 114

Open RailsManual, Release 1.2.3706 (draft)

• ORTSDoubleTunnelPerimeter (x) – Perimeter of double track tunnel – units distance
To insert these values in the .trk file, it is suggested that you add them just prior to the last parenthesis.
Youmay also use an Include filemethod, described here.

8.13.2 ORDefaults
Open Rails uses the following standard defaults, unless overridden by values included in the TRK file.
Speed 1 track 2 tracks
Tunnel Perimeter
< 160 km/h 21.3m 31.0m
160 < 200 km/h 25.0m 34.5m
200 < 250 km/h 28.0m 35.0m
250 < 350 km/h 32.0m 37.5m
Tunnel Cross Sectional Area
< 120 km/h 27.0m2 45.0m2
< 160 km/h 42.0m2 76.0m2
200 km/h 50.0m2 80.0m2
250 km/h 58.0m2 90.0m2
350 km/h 70.0m2 100.0m2

8.14 OR-Specific Include Files forModifyingMSTS File Parameters
8.14.1 Modifications to .eng and .wag Files
In the preceding paragraphsmany references have beenmade toOR-specific parameters and tables to be
included in .eng and .wag files. MSTS is in general quite tolerant if it finds unknown parameters and even
blocks within .eng and .wag files, and continues running normally. However this way of operating is not
encouraged by theOR team. Instead, a cleaner approach, as described here, has been implemented.
Within the trainset folder containing the .eng and .wag files to be upgraded, create a subfolder named
OpenRails. Only OR will read files from this folder. Within this subfolder a text file named xxxx.eng or
xxxx.wag, where xxxx.eng or xxxx.wag is the name of the original file, must be created.
This new file may contain either:
• all of the information included in the original file (using (modified parts where desired) plus the OR-
specific parts if any, or:

• at its beginning only an include reference to the original file, followed by the modified parts and the
OR-specific parts. This does not apply to the Name() statement and the Loco Description Informa-
tion, where in any case the data in the base .eng file is retained.

An example of anOR-specific bc13ge70tonner.engfile to be placed into theOpenRails subfolder that uses
the second possibility is as follows:
include (..\bc13ge70tonner.eng)
Wagon (

MaxReleaseRate (2.17)
MaxApplicationRate (3.37)
MaxAuxilaryChargingRate (.4)
EmergencyResChargingRate (.4)
BrakePipeVolume (.4)
ORTSUnbalancedSuperElevation (3in)

Engine (
AirBrakeMainresvolume (16)
MainResChargingRate (.5)
BrakePipeChargingRate (21)

8.14. OR-Specific Include Files forModifyingMSTS File Parameters 115

Open RailsManual, Release 1.2.3706 (draft)

EngineBrakeReleaseRate (12.5)
EngineBrakeApplicationRate (12.5)
BrakePipeTimeFactor (.00446)
BrakeServiceTimeFactor (1.46)
BrakeEmergencyTimeFactor (.15)
ORTSMaxTractiveForceCurves (

0 (
0 0 50 0)

.125 (
0 23125
.3 23125
1 6984
2 3492
5 1397
10 698
20 349
50 140)

.25 (
0 46250
.61 46250
1 27940
2 13969
5 5588
10 2794
20 1397
50 559)

.375 (
0 69375
.91 69375
2 31430
5 12572
10 6287
20 3143
50 1257)

.5 (
0 92500
1.21 92500
5 22350
10 11175
20 5588
50 2235)

.625 (
0 115625
1.51 115625
5 34922
10 17461
20 8730
50 3492)

.75 (
0 138750
1.82 138750
5 50288
10 25144
20 12572
50 5029)

.875 (
0 161875
2.12 161875
5 68447
10 34223
20 17112
50 6845)

1 (

8.14. OR-Specific Include Files forModifyingMSTS File Parameters 116

Open RailsManual, Release 1.2.3706 (draft)

0 185000
2.42 185000
5 89400
10 44700
20 22350
50 8940)

)
)

)

Take into account that the first linemust be blank (before the include line).
The ORTSMaxTractiveForceCurves are formed by blocks of pairs of parameters representing speed inme-
tres per second and tractive force in Newtons; these blocks are each related to the value of the throttle
setting present at the top of each block. For intermediate values of the speed an interpolated value is
computed to get the tractive force, and the samemethod applies for intermediate values of the throttle.
If the parameter that is modified for OR is located within a named (i.e. bracketed) block in the original
file, then in the OpenRails file it must be included in a matching bracketed block. For instance, it is not
possible to replace only a part of the Lights() block. It must be replaced in its entirety. For example, to
use a different Cabview(), it must be enclosed in an Engine block:
Engine (BNSF4773

CabView (dash9OR.cvf)
)

This is also required in the case of certain Brake parameters; to correctly manage reinitialization of brake
parameters, the entire block containing themmust be present in the .eng file in theOpenRails folder.
This use of the Include command can be extended to apply to sections of groups of .wag or .eng files that
theuserwishes to replaceby a specific blockof data – theparameters canbeprovidedby a textfile located
outside the usualMSTS folders; e.g. brake parameters.

8.14.2 Modifications to .trk Files
This Include method is also applicable to the .trk file in the root folder of a route. For example, OR and
MSTSprocess the position of trees close to the track differently for certain routes. Thismay result in trees
appearing in the path of trains inOR. AnOR-specifc parameter can be added to the .trk file of the route to
eliminate this. Alternatively, the original .trk file can be left unmodified, and a new .trk file inserted into an
OpenRails folder in the root folder of the route. This .trk file will contain:
include (../Surfliner2.trk)

ORTSUserPreferenceForestClearDistance (2)

Where the parameter represents a minimum distance in metres from the track for placement of forests.
Only ORwill look in the Openrails folder.

8.15 Train Control System
The Train Control System is a system that ensures the safety of the train.
InMSTS, 4 TCSmonitorswere defined: the vigilancemonitor, the overspeedmonitor, the emergency stop
monitor and the AWSmonitor. Open Rails does not support the AWSmonitor.
In order to define the behavior of the monitors, you must add a group of parameters for each monitor
in the Engine section of the .eng file. These groups are called VigilanceMonitor(), OverspeedMonitor(),
EmergencyStopMonitor() and AWSMonitor().
In each group, you can define several parameters, which are described in the tables below.

8.15. Train Control System 117

Open RailsManual, Release 1.2.3706 (draft)

Parameter Description Recom’d
Input
Units

Typical
Exam-
ples

General Parameters
MonitoringDeviceMonitor-
TimeLimit(x
)

Period of time elapsed before the alarm
or the penalty is triggered

Time (5s)

MonitoringDeviceAlarmTime-
Limit(x
)

Period for which the alarm sounds prior
to the penalty being applied

Time (5s)

MonitoringDevicePenalty-
TimeLimit(x
)

Period in seconds before the penalty can
be reset once triggered

Time (5s)

MonitoringDeviceCritical-
Level(x
)

Speed at whichmonitor triggers Speed (200kph)

MonitoringDeviceResetLevel(
x)

Speed at whichmonitor resets Speed (5kph)

MonitoringDeviceAppliesFull-
Brake(x
)

Sets whether full braking will be applied Boolean –
0 or 1

(0)

MonitoringDeviceAppliesE-
mergencyBrake(x
)

Sets whether emergency braking will be
applied

Boolean –
0 or 1

(1)

MonitoringDeviceAppliesCut-
sPower(x
)

Sets whether the power will be cut to the
locomotive

Boolean –
0 or 1

(1)

MonitoringDeviceAp-
pliesShutsDownEngine(x
)

Sets whether the engine will be shut
down

Boolean –
0 or 1

(0)

MonitoringDeviceResetOnDi-
rectionNeutral(x
)

Sets whether themonitor resets when
the reverser is in the neutral position

Boolean –
0 or 1

(0)

MonitoringDeviceResetOnRe-
setButton(x
)

Sets whether themonitor resets when
the reset button is pushed

Boolean –
0 or 1

(0)

MonitoringDeviceResetOnZe-
roSpeed(x
)

Set whether themonitor resets when the
speed is null

Boolean –
0 or 1

(1)

Specific parameters of theOverspeedMonitor
MonitoringDeviceAlarmTime-
BeforeOverSpeed(x
)

Period for which the alarm sounds prior
to the penalty being applied

Time (2s)

MonitoringDeviceTrig-
gerOnOverspeed(x
)

Maximum allowed speed Speed (200kph)

MonitoringDeviceTriggerOn-
TrackOverspeed(x
)

Activates the overspeedmargin control Boolean –
0 or 1

(1)

MonitoringDeviceTriggerOn-
TrackOverspeedMargin(x
)

Allowed overspeed Speed (5kph)

Two other parameters in the Engine section of the ENG file are used by the TCS:
• DoesBrakeCutPower(x) sets whether applying brake on the locomotive cuts the traction (1 for
enabled, 0 for disabled)

• BrakeCutsPowerAtBrakeCylinderPressure(x) sets the minimum pressure in the brake cylinder

8.15. Train Control System 118

Open RailsManual, Release 1.2.3706 (draft)

that cuts the traction (by default 4 PSI)

8.15. Train Control System 119

CHAPTER9

Further Open Rails Rolling Stock Features

9.1 Train Engine Lights
OR supports the whole set of lights accepted byMSTS.

9.2 Tilting trains
OR supports tilting trains. A train tilts when its .con file name contains the tilted string: e.g.
ETR460_tilted.con.

120

Open RailsManual, Release 1.2.3706 (draft)

9.3 Freight animations and pickups
9.3.1 OR implementation ofMSTS freight animations and pickups
OR supports the freight animations as MSTS does (refueling of water, coal and diesel); when refueling
from a water column the animation of the column arm is supported; coal level in the tender of the player
loco decreases with consumption and increases when refueling.
The following pickup parameters are taken into consideration byOR for theMSTS animations:
• Pickup type
• Speed range
• Anim length

The pickup animation frame rate is computed as the ratio between the number of frames defined in the .s
file, divided by the Anim length.
As inMSTS, Freight Animations are treated differently for tenders than for other vehicles.
Tenders:
• First numeric parameter: shape vertical position when full, relative to its origin, in meters
• Second numeric parameter: shape vertical position when empty, relative to its origin, in meters.
• Third numeric parameter: set to any positive value, or omitted, causes the shape to drop - see below.

– As long as the second parameter is lower than the first and the third parameter is either omit-
ted or has a non-zero value, the shapewill drop, based on fuel consumption.

– If the second parameter is not lower than the first, nomovement will take place irrespective of
the 3rd parameter.

Other Vehicles:
• The numeric parameters are not used.

9.3.2 OR specific freight animations and pickups
General
In addition to the support of theMSTS freight animations,OpenRails provides a largeextension for freight
animations (calledOR freightanims below) and pickups.
Following are the native features Open Rails offers:
• two types of OR freightanims: continuous and static
• continuousOR freightanims are related to commodity loads, like coal, or stones: the load level in the
trainset varies accordingly to the amount of load

• static OR freightanims are in fact additional shapes that can be attached to themain trainset shape
• both types of OR freightanims can be present in the same trainset, and can coexist with original
MSTS freight animations

• both types of OR freightanims can be related to locomotives or wagons
• more than one static OR freightanim can be present in a single trainset
• a wagon can be loadedwith different commodities in different moments
• commodities can be loaded (in pickup stations) and unloaded (in unloading stations).
• wagons supporting continuous OR freightanims may be provided with a physical animation that is
triggeredwhen unloading the wagon (like opening its bottom or fully rotating)

9.3. Freight animations and pickups 121

Open RailsManual, Release 1.2.3706 (draft)

• ORfreightanimsaredefinedwithanORTSFreightAnims ()blockwithin the .wagorwithin thewagon
section of an .eng file. It is suggested that this block be defined within an include file as described
here.

ContinuousOR Freightanims
A description of this feature is best achieved by showing an example of an include file, (in this case named
AECX1636.wag and located in an Openrails subfolder within the wagon’s folder). Note that the first line of
the file must be blank.:
include (../AECX1636.wag)

Wagon (
ORTSFreightAnims
(

MSTSFreightAnimEnabled (0)
WagonEmptyWeight(22t)
IsGondola(1)
UnloadingStartDelay (7)
FreightAnimContinuous
(

IntakePoint (0.0 6.0 FreightCoal)
Shape(Coal.s)
MaxHeight(0.3)
MinHeight(-2.0)
FreightWeightWhenFull(99t)
FullAtStart(0)

)
FreightAnimContinuous
(

IntakePoint (0.0 6.0 FuelCoal)
Shape(Coal.s)
MaxHeight(0.3)
MinHeight(-2.0)
FreightWeightWhenFull(99t)
FullAtStart(0)

)
)

)

The ORTSFreightAnims block is composed by a set of general parameters followed by the description of
theOR freightanims. Here below the general parameters are described:
• MSTSFreightAnimEnabled specifies if eventual MSTS freight animations within the trainset are en-
abled (1) or not (0). This is useful if onewants to use awagonwhere the load is already shownwith a
(static) MSTS freight animation. In such a case theMSTS freight animation must be disabled, to use
theOR freightanim, that allows tomodify the vertical position of the freight shape.

• WagonEmptyWeight defines the mass of the wagon when empty. If the parameter is missing, the
weight of the load is not considered and the weight of the wagon is always the value present in the
root .eng file.

• IsGondola specifies (in case it is set to 1) if the load has to be rotated during unloading, as happens
in a gondola wagon. If absent the parameter is set to 0.

• UnloadingStartDelay specifies, if present, after how many seconds after pressing of the T key the
unloading starts. This is due to the fact that some seconds may be needed before the wagon is set
in a unloading layout. For example, a gondola must rotate more than a certain number of degrees
before the load begins to fall down.

There may be more than one FreightAnimContinuous subblock, one for each possible load type. The pa-
rameters of the subblock are described below:

9.3. Freight animations and pickups 122

Open RailsManual, Release 1.2.3706 (draft)

• IntakePoint has the same format and the samemeaning of the IntakePoint line within the standard
MSTS freight animations. Following types of loads are accepted: FreightGrain, FreightCoal, Freight-
Gravel, FreightSand, FuelWater, FuelCoal, FuelDiesel. All these types of loads can be defined also
for a pickupwith theMSTS Route editor.

• Shape defines the path of the shape to be displayed for the load
• MaxHeight defines the height of the shape over its 0 position at full load
• MinHeight defines the height of the shape over its 0 position at zero load
• FreightWeightWhenFull defines the mass of the freight when the wagon is full; the mass of the
wagon is computed by adding themass of the empty wagon to the actual mass of the freight

• FullAtStart defineswether thewagon is fully loaded (1) or is empty at game start; if there aremore
continuousOR freightanims that have FullAtStart set to 1, only the first one is considered.

As already outlined, the wagonmay have a physical animation linkedwith the unload operation.
In a gondola this could be used to rotate the whole wagon, while in a hopper it could be used to open the
bottom of the wagon.
The base matrix within the wagon shape that has to be animated must have a name that starts with
ANIMATED_PARTS. There may be more than one, like ANIMATED_PARTS1, ANIMATED_PARTS2 and so on. Its
frame rate is fixed, and is 1 frame per second as for the other types of OR trainset animations.
Todefineapickuppoint as anunloadpoint, its shapemust be inserted in the .reffile of the route as apickup
object . Here is an example of the .ref block:
Pickup (

FileName (rotary_dump.s)
Shadow (DYNAMIC)
Class ("Track Objects")
PickupType (_FUEL_COAL_)
Description ("Rotary dumper")

)

When laying it down in the route with theMSTS Route Editor, its fill rate must be set to a negative value.
Such a pickup (which in reality is an unloader) may be animated too. As for the MSTS standard pickups,
the pickup animation frame rate is computed as the ratio between the number of frames defined in the .s
file, divided by the Anim length.
By combining a physical animation of the wagon with an unloader animation effects like that of a wagon
within a rotary dumpermay be achieved, as seen in the picture below.

9.3. Freight animations and pickups 123

Open RailsManual, Release 1.2.3706 (draft)

Loading and unloading a trainset is triggered by pressing the <T> key when the trainset is at the
pickup/unloader location.

Static OR Freightanims
Only the two general parameters shown below are used for static OR freightanims:
MSTSFreightAnimEnabled (0)
WagonEmptyWeight(22t)

The subblock (to be inserted within the ORTSFreightAnims block) has the following format:
FreightAnimStatic
(

SubType(Default)
Shape(xxshape.s)
Offset(XOffset, YOffset, ZOffset)
FreightWeight(weight)
Flip()

)

Where:
• SubType is not currently used
• Shape is the path of the shape file.
• XOffset, YOffset and ZOffset are the offsets of the shape with respect to its zero position, and are
useful to place the shape precisely.

• FreightWeight is theweight of the specific load. Thisweight is added to the WagonEmptyWeight value
(if present) toprovide the totalweightof thewagon. Ifmore staticOR freightanimsarepresent, each
of their weights is added to define the total weight of the wagon.

• Flip(), if present, flips the shape around its pivot point.
Because more static OR freightanims may be defined for a wagon, in the case of a container wagon that
is able to carry more than one container, even as a double stack, it is therefore possible to use a static OR
freightanim for each container, defining its position within the wagon.

9.3. Freight animations and pickups 124

CHAPTER10

Open Rails Train Operation

Note that this document details behaviour while in single-player mode only. Formulti-player mode, differ-
ent rules may apply.

10.1 Open Rails Activities
OR has the aim of running in a compatible waymost of the activities written forMSTS.
Also, activities specifically forOR can be created, using the additional functionsOR features, like Extended
AI Shunting. Discussions of the execution of some functions in ORTS andMSTS are given here.

10.1.1 Player Paths, AI Paths, andHow Switches Are Handled
If the player path requires a switch to be aligned both ways, the alignment that is the last on the path is
used. If an AI train crosses the player path before the player train gets there, the AI train will leave the
switches aligned for themain route (the default setting for most switches)
If you throw a switch tomove into a siding, the switch at the far end of the siding is aligned to let you leave
when your train first occupies the siding. But after that it is not changed back to its original setting. If
the switch gets thrown the other way, you can leave the siding with the switch aligned incorrectly. If you
uncouple and re-couple to the train while it occupies the misaligned switch, the rear end of the train will
switch tracks.

10.2 Open Rails AI
Basic AI Functionality
• OR supports AI trains. The AI system is becomingmore andmore advancedwith new features.
• OR supports two distinctways of controlling trains: it supports traditional activities in compatibility
with MSTS, and it also supports Timetablemode. Note that various options and settings are some-
times limited to either activity or Timetable mode.

• AI trains canmeet if both paths have passing sections defined at the sameplace, or if their paths lead
them to different tracks at themeet station.

125

Open RailsManual, Release 1.2.3706 (draft)

• Waiting points and reverse points work. Reverse points can be used in both Activity and Timetable
modes, while waiting points can only be used in Activity mode.

• AI trains throw switches not lined properly before engaging them.
• In activitymodeAI trains can perform shunting actions, provided the ExtendedAI shunting option has
been selected.

• Priorities: AI trains should start as scheduled as long as there is nootherAI train alreadyona conflict
path.

10.3 ControlMode
Control Mode defines what interactions there are between the player and the control system, and the
level of control of the player on signals and switches.
There are two basic modes: AutoMode andManual Mode.
Use the <Ctrl+M> key to toggle between thesemodes.

10.3.1 AutoMode
InAutoMode the control systemsets the train’s path and signals, and the player cannot change the setting
of the switches or request for signals at danger to clear. The train’s route is taken from the path as defined
in the Activity Editor or timetable definition, and the system will attempt to clear the route ahead of the
train according to the signalling rules and interaction with other trains.
No route is cleared in the reversedirectionas the train is assumednot to run in reverse. Selecting a reverse
cab or changing the position of the reverser does not change the direction of the route. In fact, the route
will not be reversed other than at reversal points as defined in the train’s path. At these reversal points,
the route will reverse automatically as soon as the train stops.
If the train does accidentally run backward, e.g. due to slipping or setting back after overshooting a plat-
form, only safety checks are performed for the rear end of the train with respect to signals, switch align-
ment, other trains and end of track. There is no check on speed limits behind the train.
Setting switches using the F8 window or <G>/<Shift+G> is not allowed. Setting switches using Alt+left
mouseclick is possible, but is not allowed for switches in the train’s path. However, any switches set man-
ually will automatically be reset by an approaching train according to that train’s path. So, in Auto Mode
the train cannot deviate from the defined path.
A request to clear a signal ahead of the train using the Tab command is only allowedwhen the track ahead
is occupied by another train which is at a stand-still, and when that track is in the train’s route. A request
to clear a signal which would lead the train off its route is not allowed. A request to clear a signal behind
the train using Shift+Tab is also not possible.
AutoMode is intended for normal running under control of signals or traffic control. Shunting moves can
be performed if fully defined in the train’s path, using reversal points etc..

Details on AutoMode: Auto Signal& Auto Node
There are two sub-modes to AutoMode: Auto Signal and Auto Node.
Auto Signal is the normal mode on signalled routes. The train’s route is generally cleared from signal to
signal. Only in specifically defined situations can routes be cleared short of a signal as detailed below.
Auto Node is set when the train has not encountered any signals yet, e.g. on unsignalled routes or at the
start of the routewhen there is no signal along the path of the train as far as it can be cleared - e.g. in yards
where the train starts but has no clear route yet to the first signal.

10.3. ControlMode 126

Open RailsManual, Release 1.2.3706 (draft)

Auto Node can also be set if the route ahead cannot be fully cleared up to the next signal, and partial clear-
ing is allowed.
Anumberof sub-states aredefined inAutoNode, dependingon the reason that clearance is terminated. In
the list below, (A) indicates a subtype which can occur if no signal has yet been encountered, (B) indicates
a subtype when a route from a signal is partially cleared.
The following states are possible :
• (A) route ahead is clear to themaximum distance for which the track is cleared. The control mode is
set to Auto Node –MaxDistance.

• (A) route ahead is blocked at a switchwhich is aligned for and occupied or reserved by another train.
Control mode is set to Auto Node –Misaligned Switch.

• (A)(B – only if signal allows access to occupied track, or after <Tab> command) route ahead is occu-
pied by a stationary train or train moving in the same direction. Control mode is set to Auto Node –
Train Ahead.

• Note that, for (A), it should not be possible that the route ahead is occupied by a train moving in
opposite direction - in that case, there should always be amisaligned switch in the train’s path.

• For (B), a signal will never clear when the train ahead ismoving in the opposite direction, norwill the
Tab request be granted.

• (A)(B) the train’s defined path terminates short of the next signal, or there is a reversal point short of
the next signal, and there is at least one switch between this point and the next signal. The control
mode changes to Auto Node – End of Path. Note that if there is no switch between the terminating
or reversal point and the next signal the route is automatically extended to the next signal.

• (A)(B) the train has passed the last signal before the endof the track, or the train has reached the end
of track without encountering any signal. The control mode changes to Auto Node – End of Track.

Changes from Auto Node to Auto Signal and vice-versa are automatic and cannot be influenced by the
player.

10.3.2 ManualMode
When it is required that a train move off its defined path, a player can switch his train to Manual Mode.
This will allow the player to set switches and request to clear signals off its path. However, there are a
number of restrictions when running a train inManualMode.
In Manual Mode, a route is cleared from the train in both directions, ahead of and behind the train. The
route is cleared to a shorter distance as compared to Auto Mode, and is never cleared automatically be-
yond the first signal. If a train is moving and passes a signal in the opposite direction, the route behind the
train will automatically retract to that signal as that is now the next signal in the reverse route. The same
restrictions apply with respect to signals aheadwhen the train is running in reverse.
The route orientation will not change whatever direction the train is running. It is fixed to the orientation
of the route as it was the moment the player switched to Manual Mode. So, changing to a reverse-facing
cab or changing the position of the loco’s reverser does not change the direction of the route orientation.
This is not a limitation to the train’s behaviour, as routes are always cleared in both directions. It does,
however, affect the display of the F4 and F8 windows, as the top/bottom direction of these windows is
linked to the route direction and will therefore not change if the train reverses. To assist the player in his
orientation in which direction the train is moving, an “eye” has been added to these displays symbolizing
the direction of the cabview, and an “arrow” has been added to symbolize the direction of the reverser.
Theplayer can set all switches in the train’s pathusing theF8windowor the<G>/<Shift+G>keys. TheGkey
will set thefirst switch aheadof the train (as definedby the routedirection), Shift+Gsets the switchbehind
the train. It is also possible to set switches as required using the Alt+Left Mouseclick command. Switches
can be set even if they are in the train’s path and a signal has been cleared over that path. Switches, of
course, can not be set if already set as part of a cleared route for another train.
The following rules apply to the setting of switches :

10.3. ControlMode 127

Open RailsManual, Release 1.2.3706 (draft)

• all switches will remain in the position in which they were set by the last train passing over that
switch. If no train has yet passed over the switch, it is in its default position.

• when inManualMode, trailing switcheswill not be automatically aligned for the approaching player
train, except :

• when a route is cleared through a signal while in Manual Mode, any trailing switches in the train’s
path up to the end of authority (e.g. next signal) will be aligned. Note that in this case, trailing
switches in the path cleared by the signal can no longer be reset.

Signals which the train approaches will not be cleared automatically. The player must request clearance
of all signals encountered, by using the <Tab> or <Shift+Tab> keys.
The <Tab> key will clear the signal ahead of the train (according to the route direction), the <Shift+Tab>
key will clear the signal behind the train. Repeated use of (<Shift> +)‘‘<Tab>‘‘ will clear the next signal
beyond the first cleared signal etc., but only up to themaximum clearing distance.
Signals will always clear on request except when the section immediately behind the signal is already
cleared for a train from the opposite direction. The normal route-setting limitations etc. are ignored. The
signal will only clear to the first available most restrictive aspect above Stop.
Note that, in contrast to the situation inAutoMode, as the signalwill clear even if the full route behind the
signal is not available, a cleared signal is no indication of the cleared distance beyond that signal. It may
be that the first switch beyond the signal is already cleared for another train. Therefore, when in Manual
Mode, use of the F4windowor theDispatcherwindow to check on the route availability is essential when
running in an area with AI traffic.
When in Manual Mode, deadlock prevention processing is switched off. This is because the changes in
the train’s route and direction which are likely to occur in Manual Mode could jeopardise the stability of
the deadlock processing. So care should be taken when using Manual Mode in an area with AI traffic,
specifically on single track sections.
Switching from Auto Mode to Manual Mode can be performed with the train at a standstill or with the
train moving. The <Ctrl+M> key toggles between Auto Mode and Manual Mode. When switching from
AutoMode toManualMode, all signals already clearedwill be reset, and new routes are cleared ahead of
and behind the train for themaximum distance if possible, or up to the first signal.
To switch back fromManual Mode to Auto Mode the front of the train must be on the path as defined in
the Activity Editor. If the path contains reversal points, the train must be in between the same reversal
points as it was when it switched toManualMode (i.e. same subpath).
If the train is moving in the direction as the path defines, switching back to AutoMode can be done while
the train is moving. The rear of the train need not be on the defined path, only the front.
If the train is moving in the opposite direction, it must be at a standstill in order to switch back to Auto
Mode. If the orientation of the train’s routewas somehow reversed (e.g. bymoving through a balloon-line
or a Y-section) and differs from the direction in the defined path, both the front and rear must be on the
defined path. In this situation, the orientation will switch back to the direction as defined in the path.

10.3.3 Out-of-ControlMode
This is a special mode. Normally, the player train should not be in this mode. The out-of-control mode is
activated when the player violates a security rule. Such incidents are:
• when the player train passes a signal at danger (SPAD);
• when the player train passes over amisaligned switch;
• when the player train runs beyond the end of the authorised path.

These actions will place the player train into out-of-control mode. In this situation, the emergency brake
is activated and maintained until the train is stopped. The player has no control over his train until it is at
a standstill.

10.3. ControlMode 128

Open RailsManual, Release 1.2.3706 (draft)

Once the train has stopped, the player can switch to Manual Mode to try to return to a correct situation
(e.g. get back to in front of the signal at danger, authorised path etc.). Once a normal situation has been
restored, the player can switch back toAutoMode. If the action led the player train onto a section of track
already cleared for another train, that train is also stopped.

10.3.4 ExplorerMode
WhenOR is started in ExplorerMode instead of in an activity, the train is set to ExplorerMode. The player
has full control over all switches. Signals will clear as normal but signals can be cleared over routes which
are not normally available using the <Tab> or <Shift+Tab> commands.

10.4 Track Access Rules
All trains clear their ownpath. When inAutoSignalmode, part of that function is transferred to the signals.
In Auto Nodemode, trains will clear their path up to 5000metres, or the distance covered in 2mins at the
maximum allowed speed, whichever is greater. In Auto Signalmode, the number of signals cleared ahead
of the train is taken from the value of the SignalNumClearAhead parameter as defined in the sigcfg.dat
file for the first signal ahead of the train.
InManual mode, the distance cleared is 3000metres maximum, or as limited by signals.
Distances in ExplorerMode are similar to those in AutoMode.
If a train is stopped at a signal it can claim the track ahead ensuring it will get priority as the next train onto
that section, but to avoid needless blocking of other possible routes, no claim is made if the train ahead is
also stopped.
No distinctions aremade between types of train, and there are no priority rules.

10.5 Deadlock Processing
When a train is started, it will check its path against all other trains (including those not yet started). If a
section is found on which this train and the other train are due in opposite directions, the boundaries of
that total common section are determined, and deadlock traps are set at those boundaries, for each train in
the appropriate direction. These boundaries are always switch nodes. When a train passes a node which
has a deadlock trap for that train, the trap is sprung. When a train approaches a node which has an active
deadlock, it will stop at that node, or at the last signal ahead of it if there is one. This train will now also
spring its deadlock traps, and will claim the full common section of that deadlock to ensure it will be the
next train allowed onto that section. The deadlock traps are removedwhen a train passes the end node of
a deadlock section.
When a train is started, and the train’s path includes one or more reversal points, deadlocks are only
checked for the part of the path up to the first reversal point. On reversal, deadlocks are checked for
the next part, etc..
Deadlock traps are removedwhena train switches toManualmode. When the train switches back toAuto
mode, the deadlock check is performed again.
There are no deadlock checks in ExplorerMode as there are no AI trains when running in this mode.
If an alternative path is defined (using the Passing Path definition inMSTS Activity Editor), and the train is
setting a route to the start node of this alternative path, it will check if a deadlock is set for the related end
node. If so, and the alternative path is clear, it will take the alternative path, allowing the other train to use
the main path. If the alternative path is already occupied, the train will wait short of the node where the
path starts (or the last signal in front, if any); this is to prevent blocking both tracks which would leave the
opposite train nowhere to go.
Further rules for the use of alternative paths :

10.4. Track Access Rules 129

Open RailsManual, Release 1.2.3706 (draft)

• Trains from both directionmust have the samemain path through the area.
• If only one train has an alternative path defined, and the trains are to pass, that train will always use
the alternative path; the other train will always use the main path regardless of which train arrives
first.

• If both trains have an alternative path defined, and the trains are to pass, the first train to clear its
route will take the alternative path. Note that this need not always be the first train to arrive - it
could be that the train which first clears its path takes much longer to actually get to the passing
loop.

10.6 Reversal Points
If a reversal point is defined, the path will be extended beyond that point to the end of the section, this is
to the next switch or signal or the end of track.
The diverging point is determined – this is the switch node where the reverse route diverges from the
incoming route. From this point, a search is made for the last signal facing the reverse direction which is
located such that the full trainwillfit in between the signal and the end of the path. If there is such a signal,
this will become the diverging point. In order for a train to be able to reverse, the rear of the train must be
clear of this diverging point.
Reversal for AI trains occurs as in MSTS; that is, when the AI train’s first car reaches the reversal point.
If at that point the rear of the train has not yet cleared the diverging point, the reversal takes place later,
when the diverging point is cleared.
For player trains the reversal can take place starting from 50 meters before the reversal point provided
the diverging point is cleared.
As in MSTS, double reversal points can be used to set a signal at red after such reversal points. However
waiting points are recommended for this, as explained in the next paragraph.

10.7 Waiting Points
10.7.1 General
Waiting points (WP) set in a path used by an AI train are regularly respected by the train, and executed
when the head of the train reaches theWP.
Differently fromMSTS, waiting points do not influence the length of the reserved path, except when the
WP is followed by a signal in the same track section (no nodes – that is switches – in between).
WPs set in a path used by a player train have no influence on the train run, except – again – when theWP
is followed by a signal in the same track section. In such cases, for bothAI trains and player train, the signal
is set to red when the train approaches theWP.
ForAI trains the signal returns to green (if the block conditions after the signal allow this) one second after
expiration of theWP.
For player trains the signal returns to green 5 seconds after expiration of theWP.
If there aremoreWPs in the track sectionwhere the signal resides, only the last one influences the signal.
Waiting points cannot be used in Timetable mode.

10.7.2 AbsoluteWaiting Points
When the Extended AI shunting option is selected and OR is not in Timetable Mode, waiting points with
a waiting time between 30000 and 32359 are interpreted as absolute time-of-day waiting points, with a
format 3HHMM,where HH andMMare the hour andminute of the day in standard decimal notation.

10.6. Reversal Points 130

Open RailsManual, Release 1.2.3706 (draft)

If the AI train will reach theWP before this time of day, the WP will expire at HH:MM. If the AI train will
reach theWP later, theWPwill be alreay expired. This type ofWP can also be used in conjunction with a
signal in the same track section, as explained in preceding paragraph.
Again, such waiting points won’t have an effect on a player train if there is no signal in the same section; if
instead there is a signal, it will stay red until theWP has expired.
Absolute waiting points are a comfortable way of synchronizing and scheduling train operation.

10.8 Signals at Station Stops
If the Experimental Option Forced red at station stops has been selected, and if there is a signal at the end
of a platform, that signal will be held at danger up to 2minutes before the booked departure. If the station
stop is less than 2 minutes, the signal will clear as the train comes to a stand. This applies to both AI train
and player trains.
However, if the platform length is less than half the train length, the signal will not be held but will clear
as normal to allow the train to properly position itself along the platform. Signals which only protect plain
track will also not be held.
In some railway control systems trains do not get a red at the station starting signal when they have to
stop in that station. In these cases the above optionmust be disabled.

10.9 Speedposts and Speed Limits Set by Signals
Speed limits which raise the allowed speed, as set by speedposts or signals, only become valid when the
rear of the train has cleared the position of speedpost or signal.
When a speed limit set by a signal is lower than the speed limit set by the last speedpost, the speed limit is
set to the lower value. However, when a speed limit as set by a signal is higher than the present speed limit
set by the last speedpost, the limit defined by the speedpost will be maintained. If a lower speed limit was
in force due to a limit set by another signal, the allowed limit is set to that as defined by the speedpost.
In timetablemode if a speedpost sets a limit which is higher than that set by the last signal, the limit set by
the signal is overruled and the allowed limit is set to that as defined by the speedpost.
In activity mode in the preceding case the lower of the two limits becomes valid.

10.10 Further Features of AI Train Control
• AI trains always run in Auto control mode.
• AI trainswill ignore anymanual setting of switches andwill reset all switches as defined in their path.
• AI trains will stop at stations andwill adhere to the booked station departure times if possible.
• AI trains will stop at a platform such that the middle of the train is in the middle of the platform.
If the train is longer than the platform, both the front and rear of the train will extend outside the
platform. If the platform has a signal at the end, and this signal is held at danger (see further above),
and the train is too long for the platform, it will stop at the signal. But if the train length is more than
double the platform length, the signal will not be held.

• AI trains will adhere to the speed limits.
• AI trains will stop at a signal approximately 30m. short of a signal at danger in Timetable mode, and
at a shorter distance in activity mode.

10.8. Signals at Station Stops 131

Open RailsManual, Release 1.2.3706 (draft)

• Where AI trains are allowed to follow other trains in the same section passing permissive signals,
the train will adjust its speed to that of the train ahead, and follow at a distance of approx. 300m. If
the train ahead has stopped, the train behind will draw up to a distance of about 50m. However, if
the train ahead is stopped in a station, and the train behind is also booked to stop at that station, the
train will draw up behind the first train up to a distance of a fewmetres.

• The control of AI trains before the start of an activity is similar to the normal control during an ac-
tivity, except that the update frequency is reduced from the normal update rate to just once per
second. But all rules regarding speed limits, station stops, deadlock, interaction between AI trains
(signals etc.) are followed. The position of all AI trains at the start of an activity therefore is as close
as possible towhat it would have been if the activity had been started at the start time of the first AI
train.

10.11 Location-linked Passing Path Processing
Passing paths can be used to allow trains to pass one another on single track routes. The required passing
paths are defined per train path in the MSTS Activity Editor or in the native ORTS path editor included
within TrackViewer.
The present version is an ‘intermediate’ stage leading to complete new processing. The data structure
and processing have already been prepared for the next stage, when ‘alternative paths’ (not just a single
passingpathbutmultiple paths througha certain area)will bedefinedper location, andno longer per train.
The present version, however, is still based on theMSTS activity and path definition, and therefore is still
based on the definition of alternative paths per train.
The setup of this version is as detailed below :
• Passing paths defined for the player train are available to all trains – in both directions. The ‘through’
path of the player train is taken to be the “main” path through that location. This only applies to
Activity mode, as there is no predefined player train when running in Timetable mode.

• Each train can have definitions for additional passing paths, these will be available to that train only.
Note that this implies that there can bemore than one passing path per location.

• When possible passing locations are determined for each pair of trains, the train lengths are taken
into consideration. A location is only ‘valid’ as a passing location if at least one of the trains fits into
the shortest of the available passing paths.

• The order in which passing paths are selected:
– If no train is approaching from the opposite direction (through route):

* Train’s own path.
* “Main” path.
* Any alternative path.

– If train is to pass another train approaching from the opposite direction (passing route):
* Train’s own path (if not the same as “main” path).
* Alternative path.
* “Main” path.

However, in the situationwhere the train does notfit on all paths, for thefirst train to claim a path through
the area, preference is given to the paths (if any) where the train will fit.
The setting of the ‘deadlock’ trap (the logic which prevents trains from getting on a single track from both
directions) has also been changed.
In the ‘old’ version, the trap was ‘sprung’ as a train claimed its path through a possible passing area.
However, this often lead to quite early blocking of trains in the opposite direction.

10.11. Location-linked Passing Path Processing 132

Open RailsManual, Release 1.2.3706 (draft)

In this version the trap is ‘sprung’ when a train actually claims its path in the single track section itself.
One slight flaw in this logic is that this can lead to the train which is to wait being allocated to the “main”
path, while the trainwhich can pass is directed over the “loop”. This can happenwhen two trains approach
a single track section at almost the same time, each one claiming its path through the passing areas at
either end before the deadlock trap is actually sprung.
If a passing location contains platforms and there are passenger trainswhich are booked to stop there, OR
will try to locate an alternate platformon the passing path, and if it canfind it, this platformwill replace the
original one as the stop platform. This behavior occurs only if the Location-linked Passing Path Processing
option has been checked.
Selecting this type of passing path with the related experimental option processing can lead to consider-
able changes in the behaviour of trains on single track routes – and behaviour that is certainly significantly
different from that inMSTS.

10.12 Other Comparisons Between Running Activities in ORTS or
MSTS

10.12.1 End of run of AI trains
AI trains end their run where the end point of their path resides, as in MSTS. However they always end
their run at zero speed.

10.12.2 Default Performance and Performance Parameters
If the AI train does not make station stops, its maxspeed (not considering signal, speedpost and route
speed) is given by the first MaxVelocity parameter in the .con file, expressed in meters per second, mul-
tiplied by the “Default performance” parameter (divided by 100) that can be found and modified in the
MSTS AE in the “Service editor”. Such parameter divided by 100 is written by the AE in the .srv file as
“Efficiency”.
If the AI train makes station stops, its maxspeed depends from the “Performance” parameter for every
route section, as can be seen and defined in the AI train timetable (that is maxspeed is the product of the
firstMAxVelocity parameter by the “Performance” parameter divided by 100).
Such performance parameter list is written (divided by 100) by the AE in “Service_Definition” block in the
activity editor, again as “Efficiency” (for every station stop).
From the starting location of the AI train up to the first station, the “Performance” linked to such station is
used; from the first station to the second one, the “Performance” linked to the second station is used and
so on. From the last station up to end of path the “Default performance” mentioned above is used.
This corresponds toMSTS behaviour.
Moreover the Efficiency parameter is used also to compute acceleration and braking curves.

10.12.3 Calculation of Train Speed Limit
For the player train: speed limit is the lowest among:

• route speed limit as defined in the .trk file
• local signal speed limit
• local speedpost speed limit
• local temporary speedpost speed limit
• first parameter MaxVelocityA in .con file, if bigger than zero and not equal 40

10.12. Other Comparisons Between Running Activities in ORTS orMSTS 133

Open RailsManual, Release 1.2.3706 (draft)

• locomotive speed limit in .eng file in the other cases.
For the AI trains: speed limit is the lowest among:
• route speed limit as defined in the .trk file
• local signal speed limit
• local speedpost speed limit
• local temporary speedpost speed limit
• first parameter MaxVelocityA in .con file, if bigger than zero and not equal 40
• locomotive speed limit in .eng file in the other cases.
• route speed limit as defined in the .trk file
• local signal speed limit
• local speedpost speed limit
• local temporary speedpost speed limit
• first parameter MaxVelocityA in .con file, if bigger than zero, multiplied by the Efficiency
as explained :ref:here <operation-performance>.

10.12.4 Start of Run of AI train in a Section Reserved by Another Train
The AI train is created as in MSTS. It is up to the activity creator not to generate deadlocks. Creation of a
train in a section where another train resides is possible only if the created train is not front-to-front with
the existing train.

10.12.5 Stop Time at Stations
The platform passenger number as defined by theMSTS activity editor is read byOR.
Each passenger requires 10 seconds to board. This time must be divided by the number of passenger
wagons within the platform boundaries. Also locomotives with the line PassengerCapacity in their .eng
file count as passenger wagons (EMU, DMU). The criterion to define if a passenger wagon is within the
platform boundaries is different for player trains and AI trains. For player trains an individual check is
made on every passenger wagon to check if it is within the plaform boundaries (it is assumed that this is
OK if at least two thirds of the wagon are within). For AI trains instead the number of wagons + engines
within the platform is computed, and all of them, up to the number of the passengerwagons in the consist,
are considered as passengerwagons. The player or AI train boarding time is added to the real arrival time,
giving a new departure time; this new departure time is comparedwith the scheduled departure time and
the higher value is selected as the real departure time.
A train is considered to be a passenger train if at least onewagon (or engine) carries passengers.
AI real freight trains (0 passenger cars) stop 20 seconds at stations as inMSTS if scheduled starting times
are not present. If they are present the freight trains will stop up to the scheduled starting time or up to
the real arrival time plus 20 seconds, whichever is higher.
A special behaviour has been introduced for trains with more than 10 cars and having a single passenger
car. This type of train has been used in MSTS to have the possibility of also defining schedules for freight
trains. These trains aremanaged – likeMSTS – as passenger trainswith the rules defined above. However
a simplification for the player has been introduced for the player train: if the train stops with the single
passenger car outside of the platform, the stop is still considered valid.
All this is compatible withMSTS operation; only the fact that the scheduled departure time is considered
for AI trains differs, as it is considered an improvement.

10.12. Other Comparisons Between Running Activities in ORTS orMSTS 134

Open RailsManual, Release 1.2.3706 (draft)

10.12.6 Restricted speed zones defined in activities
ORmanages restricted speed zones defined in activities as MSTS. Start of a restricted speed zone can be
recognized on the TrackMonitorWindow because themaxspeed is shown in red; themaxspeed at an end
of a restricted speed zone is shown in green.

10.13 Extended AI Train Shunting
10.13.1 General
When this option is selected further AI train shunting functions are available. Note that this option is not
available in Timetable mode.
The following additional shunting functions are available:
1. AI train couples to a static consist and restarts with it.
2. AI train couples to a player or AI train and becomes part of it; the coupled train continues on its path.
3. AI train couples to aplayerorAI train and leaves to it its cars; the coupledandcoupling train continue
on their path.

4. AI train couples to a player or AI train and steals its cars; the coupled and coupling train continue on
their path.

5. AI train uncouples any number of its cars; the uncoupled part becomes a static consist. With the
same function it is possible to couple any number of cars from a static consist.

6. AI train couples to a player or AI train; the resulting combined train runs for part of the path, then
stops; the train is split there into two parts that continue on their own paths (join and split function).

7. AI train can get permission to pass a signal at danger.
These functions are described in detail below.
A sample activity can be found in Documentation\SampleFiles\Manual\Show_AI_shunting.zip.

10.13.2 Activity Design for Extended AI Train Shunting Functions
Activity design can be performedwith theMSTSActivity Editor, and does not need post-processing of the
created files.

Extended AI Functions 1 to 4 (these all involve coupling)
It is not always desired that AI trains couple to other trains; e.g. the activity could have been designed
so that the trains proceed separately, but then, at runtime, they could be at the same place at the same
moment because of timing problems. In such a case it would be undesirable that the trains couple. So
coupling is activated only if certain conditions aremet.
In general the signal protection rules apply, that is, anAI trainwillfinda red signal if its path leads it directly
to another train. So in general these functions canbeusedonly if there areno signals between the coupling
train and the coupled train. However, this can be overcome in threemodes:
• by the activity developer, by inserting a double reversal point between the signal and the coupled
train (this works only if the double reversal point is not in the track section occupied by the coupled
train).

• by the player, forcing the signal to the clear state by using the dispatcher window.
• or even better, by using extended AI shunting function #7, which is described further below, that
allows the AI train to pass a signal at danger.

10.13. Extended AI Train Shunting 135

Open RailsManual, Release 1.2.3706 (draft)

Coupling with a static consist is not subject to other conditions, since if the activity designer decided that
the path would lead an AI train up to against a static consist, it was also desired that the AI train would
couple to it.
Coupling with another AI train or with the player train is subject to the following conditions. Either:
• the coupling happens in the last path section of the coupling AI train, and the path end point is under
the coupled train or beyond it in the same section, or

• the coupling happens in the last section before a reverse point of the coupling AI train, and the re-
verse point is under the coupled train or beyond it in the same section.

In this way undesired couplings are avoided in case the AI train has its path running in the same direction
beyond the coupled train.
Just after coupling OR performs another check to definewhat happens next.
In the case where the coupled train is static:
• if there is at least one reverse point further in the path or if there are more than 5 track sections
further in the path, the coupling train couples with the static train, and then the resulting formed
train restarts following the path of the coupling train, or

• if not, the coupling train couples with the static train and becomes part of the static train itself (is
absorbed by it), stoppingmovement.

In case the coupled train is a player train or an AI train:
• if there is at least one reverse point under the coupling train or further in the same track section, the
coupling train couples with the coupled train; at that point there are two possibilities:
1. The trainset coupling to the coupled train is awagon: in this case the coupling train leaves to the
coupled train all the cars between its locomotive and the coupled train, decouples and moves
further in its own path (it can only reverse due to above conditions). The coupled train follows
its own path.

2. The trainset coupling to the coupled train is a locomotive: in this case the coupling train steals
from the coupled train all the cars between the coupled train’s locomotive and the coupling
train, decouples and moves further in its own path (it can only reverse due to the above condi-
tions). The coupled train follows its own path.

• or if there is no reverse point further in the path of the coupling train, the coupling train coupleswith
the coupled train and becomes part of it (is absorbed by it). The coupled train follows its own path.

Now on how to design paths:
• If one wants the coupling train to be absorbed by the coupled train: simply put the end point of the
path of the coupling train below the coupled train or further, but in the same track section.

• If one wants the coupling train to move further on in its path after having coupled with the coupled
train: put in the path of the coupling train a reverse point below the coupled train. If one also wants
that the coupling train does not immediately restart, but that it performs a pause, a waiting point
has to be added in the path of the coupling train, subsequent to the reverse point. It is suggested
to put the waiting point near the reverse point, and in any case in the same track section. OR will
execute the waiting point even if it is not exactly below what remains of the coupling train after
coupling/decoupling is only the locomotive.

• If the coupled train is an AI train, obviously it must be stopped on a waiting point when it has to be
coupled by the coupling train.

Extended AI Function 5 (AI train uncouples any number of its cars)
To uncouple a predefined number of cars from an AI train, a special waiting point (WP) has to be inserted.

10.13. Extended AI Train Shunting 136

Open RailsManual, Release 1.2.3706 (draft)

The format of this waiting point (in decimal notation) is usually 4NNSS, where NN is the number of cars
in front of the AI train that are NOT uncoupled, locomotive included, and SS is the duration of the waiting
point in seconds.
The 5NNSS format is also accepted. In this case the remaining AI train is formed by NN cars (locomotives
included) starting from the rear of the train. Of course there must be at least one locomotive in this part
of the train.
It must be noted that the “front” of the AI train is the part which is at the front of the train in the actual
forward direction. So, if the consist has been created with the locomotive at first place, the locomotive
will be at the front up to the first reverse point. At that point, “front” will become the last car and so on.
The following possibilities arise:
• TheAI train proceeds and stopswith the locomotive at the front, andwants touncouple andproceed
in the same direction: aWPwith the format 4NNSS is insertedwhere theAI trainwill stop, counting
cars starting from the locomotive.

• The AI train proceeds with the locomotive at the rear, and wants to uncouple and proceed in the
reverse direction: a reverse point has to be put in the point where the train will stop, and a 4NNSS
WP has to be put sequentially after the reverse point, somewhere under the part of the train that
will remain with the train, formatted as above. As the train has changed direction at the reverse
point, again cars are counted starting from the locomotive.

• The AI locomotive proceeds and couples to a loose consist, and wants to get only a part of it: a re-
verse point is inserted under the loose consist, and a 4NNSS WP is inserted sequentially after the
reverse point, somewhere under the part of the train that will remain with the train, formatted as
above.

What isNOTcurrently possible is the ability to couple theAI train to the player train or to anotherAI train,
and to “steal” from it a predefined number of cars. With the currently available functions it is only possible
to steal all the cars or to pass all the cars. If it is desired that only a number of cars be passed from an AI or
player train to the other, the first AI train has to uncouple these cars as described above, then move a bit
forward, and thenmake the second AI train couple to these cars.

Function 6 (Join and split)
Introduction
Join and split means that two trains (AI or player) each start running on their own path; then they join and
run coupled together a part of their path, and then they split and run further each on its own path (in the
same direction or in opposite directions).
This can have e.g. the following example applications:
Application 1:
• a pair of helper locomotives couples to the rear or to the front of a long train;
• the resulting train runs uphill;
• when they have arrived uphill, the helper locomotives uncouple from the train.

– if the helpers were coupled to the rear of the other train, the train continues forward on its
path, while the helper locomotives return downhill.

– If the helpers were coupled to the front, the helpers will enter a siding and stop; the train will
continue forward on its path, and when the train has passed, thee helpers can reverse and re-
turn downhill.

This means that a complete helper cycle can be simulated.
Application 2:
• a passenger train is formed from two parts that join (e.g. two sections of a HST);
• the train reaches an intermediate station and the two sections decouple;

10.13. Extended AI Train Shunting 137

Open RailsManual, Release 1.2.3706 (draft)

• one section takes themain line, while the other one takes a branch line (this can happen in any direc-
tion for both trains).

• Both the joining train (the one that moves and couples to the other train – the joined train) and the
joined train may be an AI train or a player train.

Activity development
1. The two trains start as separate trains, couple together and decouple later in the game . After that
of course such trains can couple to other trains, and so on.

2. The coupling train becomes an “Incorporated” train after coupling, that is it has no more cars or
locomotives (they all become part of the coupled train) and is a sort of virtual train. In this phase it
is not shown in the Dispatcher information HUD. It will return to life when an uncoupling command
(automatic or manual) is issued.

3. To become an “Incorporated” train, the coupling train if of AI type, must pass in its path before cou-
pling over aWaiting Point with value 60001 (the effectivewaiting time is 0 seconds); suchWP is not
necessary if the coupling train is the player train.

4. For the coupling train to couple to the rear of the coupled train there are noparticular requirements;
if however youwant tohavevery short runs fromcoupling train start to couplingmoment, it couldbe
necessary to insert a couple of reversal points in between, or else the train could stop and avoid cou-
pling. Please don’t disdain double reversals: they are sometimes the only way to limit the authority
range of a train.

5. If the coupling train has to couple to the front of the coupled train, obviously a reversal point is
needed for the coupling train: it must be laid somewhere under the coupled train, or even farther
down in the same track section; also in this case there can be a problem of authority, that could
require that the coupled train has a couple of reversal points after the point where it waits to be
coupled.

6. The incorporated train has its own path, but from coupling to decoupling point it must pass over the
same track sections of the path of the incorporating train. The incorporated train must not have
waiting points nor station stops in the common path part (the coupled train insteadmay have them).
If there are reversals within the common path part, theymust be present in both paths.

7. At the point of decoupling the number of cars and locomotives to be decoupled from the train can
be different from the number of the original train.

8. The whole train part to be decoupled must lie on the same track section. After decoupling, the “in-
corporated” train returns to being a standard AI train.

9. Manual decoupling (for player trains) occurs using theF9window; automatic decouplingoccurswith
the 4NNSS and 5NNSS commands (see previous paragraph); the first one has to be used when the
part to be decoupled is at the rear of the train, and the second one where the part is at the front of
the train.

10. In the standard case where the main part of the train continues in the same direction, the following
cases can occur:
• If the decoupled part is on the front, this decoupled part can only proceed further in the same
direction (aheadof themain part of the train). To avoid it starting immediately after decoupling,
it is wise to set a WP of some tens of seconds in the path of the decoupled train. This WP
can be set at the beginning of the section where decoupling occurs; OR will move it under the
decoupled part, so you don’t need to be precise in positioning it.

• If the decoupled part is on the rear, two cases are possible: either the decoupled part reverses
or the decoupled part continues in the same direction. In the first case a reversal point has to
be put anywhere in the section where the decoupling occurs (better towards the end of the
section), and OR will move it to the right place so that the train reverses at the point where
decoupling occurred; moreover it is also advised to put aWP of some tens of seconds, so that
the train does not restart immediately. This WP must be located logically after the reversal
point, and in the same track section; ORwill move it under the decoupled train.

10.13. Extended AI Train Shunting 138

Open RailsManual, Release 1.2.3706 (draft)

• If the decoupled part continues in the samedirection, neitherWPnorRP are needed. This train
part will wait that the part aheadwill clear the path before starting.

Activity run hints
• When you run as player, you have to uncouple the train where foreseen by the activity (the uncou-
pled train must lay in a route section present in its path). If you don’t uncouple on a track section
present in the path of the uncoupled train, the uncoupled train will become a static train, because
it’s not on its path.

• You can run the train formed by the original train plus the incorporated train from any cab (also in a
cab of the incorporated train). However before uncoupling (splitting) the trains, you have to return
to a cab of the original train.

Function 7 (Permission to pass signal at danger for AI train)
During AI train shunting there are caseswhere it is necessary that the AI train is conditionally able to pass
a red signal, in a similar way of the player trains when pressing TAB.
This can be accomplished by defining a specificWP with value 60002 to be laid down in the AI train path
before the signal to be passed (in the track section just in front of the signal).

10.14 Signal related files
For content developers
OR manages signals as defined in the files sigcfg.dat and sigscr.dat in a way that is highly compatible
to MSTS. A description of their contents and how to modify these two files is contained in theWord doc-
ument How_to_make_Signal_config_and_Script_files.doc that is found in the TECH DOCS folder of an
MSTS installation. Note that these files must be edited with a Unicode text editor.

10.14.1 SignalNumClearAhead
Specific rules, however, apply to the sigcfg.dat parameter SignalNumClearAhead (), that is not managed
in a consistent way byMSTS.
In this paragraph the standard case is discussed, where sigcfg.dat and sigscr.dat are located in the root of
of the route.
If for a SignalType only one SignalNumClearAhead () is defined (as is standard in MSTS files), then this
parameter defines the number of NORMAL signal heads (not signals!) that are cleared down the route,
including the signal heads of the signal where the SignalType resides. This is not exactly as inMSTS, where
quite complex and strange calculations are perfomed, and in some cases could lead to too few signals be-
ing cleared for a satisfactory train operation. MoreoverMSTSdoesn’t consider the SignalNumClearAhead
() value related to the signal, but the maximum SignalNumClearAhead () encountered in the signal types
used in the route. Therefore, if it is desired that OR approaches the MSTS operation, the value of Sig-
nalNumClearAhead ()of all signals must be set at the same maximum value. To avoid affecting also MSTS
operation, there are two approaches that are described here below.
If for a SignalType a second SignalNumClearAhead () parameter is added just before the existing one, OR
interprets it as the number of NORMAL SIGNALS that are cleared down the route, including the signal
where the SignalType resides.
MSTSwill skip thisfirst SignalNumClearAhead () andwill consider only the second. In thisway this change
to sigcfg.dat does not affect its use inMSTS.
However, instead of modifying the copy of the file sigcfg.dat residing in the route’s root, the approach
described in the next paragraph is recommended.

10.14. Signal related files 139

Open RailsManual, Release 1.2.3706 (draft)

10.14.2 Location of OR-specific sigcfg and sigscr files
By simply copying the original sigscr.dat and sigcfg.dat into a subfolder named OpenRails created within
the main folder of the route, OR will no longer consider the pair of files located in the route’s root folder,
and will interpret the (single) SignalNumClearAhead () line as defining the number of signals cleared. So
OR interprets sigscr.dat in a different way, depending whether there is a copy of this file in the OpenRails
subfolder or not. In this way the problem of too few signals cleared for satisfactory train operation is
usually solved.
If however this single line standard sigscr.dat doesn’t behave satisfactorily even counting signals (a reason
has been described in preceding paragraph), it will have to be optimized for OR bymodifying the parame-
ter SignalNumClearAhead () for the unsatisfactory signals; if preferred the line can stay as it is, and an op-
timized line can be added before the existing one, and it will again count signals. In this case the sigscr.dat
file behaves the same as if it would if located in the route’s root folder.
Sigcfg.dat must keep its name, while the sigscr files can also have other names, provided that within
sigcfg.dat there is a reference to these other names.

10.14.3 OR-unique values for SignalNumClearAhead ()
OR recognizes two additional unique values of the parameter SignalNumClearAhead (), when this param-
eter is located on a line preceding the line with the MSTS value, or if the sigcfg.dat file is located in the
subfolder OpenRails:
• 0 : no signal will be cleared beyond this signal until train passes this signal.
• -1: signal does not count when determining the number of signals to clear.

10.15 OR-specific Signaling Functions
A set of powerful OR-specific signaling functions are available. Sigcfg and sigscr files referring to these
functionsmust be located as described in the previous paragraph.

10.15.1 SPEED Signals – a New Signal Function Type
The SPEED signal function type allows a signal object marker to be used as a speed sign.
The advantages of such a use are :
• The signal object marker only applies to the track on which it is placed. Original speed signs always
also affect any nearby lines, making it difficult and sometimes impossible to set a specific speed limit
on just one track in complex areas.

• As a signal object, the SPEED signal can have multiple states defined and a script function to select
the required state, e.g. based on route selection. This allows different speed limits to be defined for
different routes through the area, e.g. no limit for the main line but specific limits for a number of
diverging routes.

The SPEED signal is fully processed as a speed limit and not as a signal, and it has no effect on any other
signals.
Limitation: it is not possible to define different speeds related to type of train (passenger or freight).
Definition and usage
The definition is similar to that of any other signal, with SignalFnType set to SPEED.
It allows the definition of drawstates and aspects like any other signal. Different speed values can be de-
fined per aspect as normal.

10.15. OR-specific Signaling Functions 140

Open RailsManual, Release 1.2.3706 (draft)

An aspect can be set to not have an active speed limit. If this aspect is active, the speed limit will not be
changed. This can, for instance, be used if a route-linked speed limit is required. This aspect can then be
set for a route for which no speed limit is required.
An aspect can also be set to not have an active speed limit but with a special signal flag : OR_SPEEDRESET.
If this flag is set, the speed limit will be reset to the limit as set by the last speed limit sign. This can be used
to reset any limit imposed by a specific signal aspect. Note that this does not overrule any speed limits set
by another SPEED signal as those limits are processed as if set by a speed limit sign.
Example 1:
SignalType ("SpeedSignal"

SignalFnType (SPEED)
SignalLightTex ("ltex")
SignalDrawStates (5

SignalDrawState (0
"speed25"

)
SignalDrawState (1

"speed40"
)
SignalDrawState (2

"speed50"
)
SignalDrawState (3

"speed60"
)
SignalDrawState (4

"speed70"
)

)
SignalAspects (5

SignalAspect (APPROACH_1 "speed25" SpeedMPH (25))
SignalAspect (APPROACH_2 "speed40" SpeedMPH (40))
SignalAspect (APPROACH_3 "speed50" SpeedMPH (50))
SignalAspect (CLEAR_1 "speed60" SpeedMPH (60))
SignalAspect (CLEAR_2 "speed70" SpeedMPH (70))

)
SignalNumClearAhead (2)

)

Notes:
• The SignalNumClearAhead valuemust be included to satisfy syntax but has no function.
• The actual speed can be set either using fixed aspect selection through user functions, or can be
route linked.

The actual use is defined in the related script and the related shape definition.
Example 2:
SignalType ("SpeedReset"

SignalFnType (SPEED)
SignalLightTex ("ltex")
SignalDrawStates (1

SignalDrawState (0
"Red"

)
)
SignalAspects (1

SignalAspect (STOP "Red" signalflags (OR_SPEEDRESET))
)

10.15. OR-specific Signaling Functions 141

Open RailsManual, Release 1.2.3706 (draft)

SignalNumClearAhead (2)
)

This example resets the speed to the limit as set by the last speed sign, overruling any speed limits set by
signal aspects.

10.15.2 Approach control functions
Approach control signals are used, specifically in theUK, to keep a signal at ‘danger’ until the train iswithin
a specific distance ahead of the signal, or has reduced its speed to a specific value. Such control is used for
diverging routes, to ensure the speed of the train is reduced sufficiently to safely negotiate the switches
onto the diverging route.
Two script functions for use inORhave been definedwhich can be used to control the signal until the train
has reached a specific position or has reduced its speed.
These functions are:
APPROACH_CONTROL_POSITION(position)
APPROACH_CONTROL_SPEED(position, speed)

These functions areBoolean functions: the returned value is ‘true’ if a train is approaching the signal and is
within the required distance of the signal and, for APPROACH_CONTROL_SPEED, has reduced its speed
below the required values.
Parameters :
• position : required distance of train approaching the signal, in meters
• speed : required speed, in m/s

Note that the speed is checked only when the train is within the defined distance.
Important note : although the script uses ‘float’ to define local variables, these are in fact all integers. This
is also true for the values used in these functions : if direct values are used, thesemust be integer values.
The values may be set directly in the signal script, either as variables or as numbers in the function call.
However, it is also possible to define the required limits in the sigcfg.dat file as part of the signal definition.
The syntax definition for this is:
ApproachControlLimits (<definitions>)

Allowed definitions :
• Position :

– Positionm : position inmeters.
– Positionkm : position in kilometers.
– Positionmiles : position inmiles.
– Positionyd : position in yards.

• Speed :
– Speedkph : speed in km / hour.
– Speedmph : speed inmiles / hour.

These values are referenced in the script file using the following variable names :
• Approach_Control_Req_Position

• Approach_Control_Req_Speed

10.15. OR-specific Signaling Functions 142

Open RailsManual, Release 1.2.3706 (draft)

These variables must not be defined as floats etc., but can be used directly without prior definition.
Note that the values as defined in the sigcfg.dat file will be converted to meters and meters/sec and
rounded to the nearest integer value.
The following example is for a three-head search light signal, which uses Approach Control if the route is
set to the ‘lower’ head.
Route selection is through ‘dummy’ DISTANCE type route-selection signals.
Signal definition:
SignalType ("SL_J_40_LAC"

SignalFnType (NORMAL)
SignalLightTex ("bltex")
SigFlashDuration (0.5 0.5)
SignalLights (8

SignalLight (0 "Red Light"
Position (0 6.3 0.11)
Radius (0.125)

)
SignalLight (1 "Amber Light"

Position (0 6.3 0.11)
Radius (0.125)

)
SignalLight (2 "Green Light"

Position (0 6.3 0.11)
Radius (0.125)

)
SignalLight (3 "Red Light"

Position (0 4.5 0.11)
Radius (0.125)

)
SignalLight (4 "Amber Light"

Position (0 4.5 0.11)
Radius (0.125)

)
SignalLight (5 "Green Light"

Position (0 4.5 0.11)
Radius (0.125)

)
SignalLight (6 "Amber Light"

Position (0 2.7 0.11)
Radius (0.125)

)
SignalLight (7 "White Light"

Position (0 2.7 0.11)
Radius (0.125)

)
)
SignalDrawStates (8

SignalDrawState (0
"Red"
DrawLights (1

DrawLight (0)
)

)
SignalDrawState (1

"TopYellow"
DrawLights (1

DrawLight (1)
)

)
SignalDrawState (2

10.15. OR-specific Signaling Functions 143

Open RailsManual, Release 1.2.3706 (draft)

"TopGreen"
DrawLights (1

DrawLight (2)
)

)
SignalDrawState (3

"TopYellowMidGreen"
DrawLights (2

DrawLight (1)
DrawLight (5)

)
)
SignalDrawState (4

"MidYellow"
DrawLights (2

DrawLight (0)
DrawLight (4)

)
)
SignalDrawState (5

"MidGreen"
DrawLights (2

DrawLight (0)
DrawLight (5)

)
)
SignalDrawState (6

"LowYellow"
DrawLights (3

DrawLight (0)
DrawLight (3)
DrawLight (6)

)
)
SignalDrawState (7

"LowWhite"
DrawLights (3

DrawLight (0)
DrawLight (3)
DrawLight (7 SignalFlags (FLASHING))

)
)

)
SignalAspects (8

SignalAspect (STOP "Red")
SignalAspect (STOP_AND_PROCEED "LowWhite" SpeedMPH(25))
SignalAspect (RESTRICTING "LowYellow" SpeedMPH(25))
SignalAspect (APPROACH_1 "MidYellow" SpeedMPH(40))
SignalAspect (APPROACH_2 "TopYellowMidGreen")
SignalAspect (APPROACH_3 "TopYellow")
SignalAspect (CLEAR_1 "MidGreen" SpeedMPH(40))
SignalAspect (CLEAR_2 "TopGreen")

)
ApproachControlSettings (

PositionM (500)
SpeedMpH (10)

)
SignalNumClearAhead (5)

)

Signal function (reduced to show use of approach control only). This function uses approach control for
the ‘lower’ route.:

10.15. OR-specific Signaling Functions 144

Open RailsManual, Release 1.2.3706 (draft)

SCRIPT SL_J_40_LAC

// Searchlight Top Main Junction
extern float block_state ();
extern float route_set ();
extern float def_draw_state ();
extern float next_sig_lr ();
extern float sig_feature ();
extern float state;
extern float draw_state;
extern float enabled;
//
// Returned states
// drawn :
// SIGASP_STOP
//
// Top Cleared :
// SIGASP_APPROACH_3
// SIGASP_APPROACH_2
// SIGASP_CLEAR_2
//
// Middle Cleared :
// SIGASP_APPROACH_1
// SIGASP_CLEAR_1
//
// Lower Cleared :
// SIGASP_RESTRICTING
// SIGASP_STOP_AND_PROCEED
//
// User Flags
//
// USER1 : copy top approach
// USER2 : top approach junction
// USER3 : copy middle approach
// USER4 : no check block for lower
//
float clearstate;
float setstate;
float diststate;
float adiststate;
float nextstate;
float routestate;
float blockstate;

blockstate = 0;
clearstate = 0;
routestate = 0;
setstate = 0;
nextstate = next_sig_lr(SIGFN_NORMAL);
diststate = next_sig_lr(SIGFN_DISTANCE);
adiststate = diststate;

if (diststate ==# SIGASP_CLEAR_1)
{

diststate = SIGASP_CLEAR_2;
}
if (diststate ==# SIGASP_APPROACH_1)
{

diststate = SIGASP_APPROACH_3;
}

// get block state
if (!enabled)

10.15. OR-specific Signaling Functions 145

Open RailsManual, Release 1.2.3706 (draft)

{
clearstate = -1;

}

if (block_state () ==# BLOCK_JN_OBSTRUCTED)
{

clearstate = -1;
}

if (block_state() ==# BLOCK_OCCUPIED)
{

blockstate = -1;
}

// check if distant indicates correct route
if (diststate ==# SIGASP_STOP)
{

clearstate = -1;
}

// top route
state = SIGASP_STOP;

if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_CLEAR_2)
{

// aspect selection for top route (not shown)
.......

}

// middle route
if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_APPROACH_3)
{

// aspect selection for middle route (not shown)
.......

}

// lower route
if (blockstate == 0 && clearstate == 0 && diststate ==# SIGASP_RESTRICTING)
{

if (Approach_Control_Speed(Approach_Control_Req_Position, Approach_Control_Req_Speed))
{

state = SIGASP_RESTRICTING;
}

}

// Get draw state
draw_state = def_draw_state (state);

10.15.3 TrainHasCallOn Function
This function is intended specifically to allow trains to ‘call on’ in Timetable mode when allowed to do so
as defined in the timetable. The use of this function allows a train to ‘call on’ into a platform in Timetable
modewithout jeopardizing the functionality in normal Activity mode.
It is a Boolean function and returns state as follows:
• ActivityMode :

– Returns true if :
* Route from signal is not leading into a platform.

• TimetableMode :

10.15. OR-specific Signaling Functions 146

Open RailsManual, Release 1.2.3706 (draft)

– Returns true if :
* Route from signal is not leading into a platform.
* Route fromsignal is leading into aplatformand the trainhas abooked stop in that platform,and any of the following states is true:

· Train has $CallOn command set for this station.
· Train has $Attach command set for this station and the train in the platform is the train
which it has to attach to.
· Train is part of RunRound command, and is to attach to the train presently in the plat-
form.

The use of this functionmust be combinedwith a check for:
blockstate ==# BLOCK_OCCUPIED

Note : this functionmustNOT be used in combination with:
blockstate ==# JN_OBSTRUCTED

The state JN_OBSTRUCTED is used to indicate that the route is not accessible to the train (e.g. switch set
against the train, opposite movement taking place etc.).
Some signal scripts allow signals to clear on blockstate ==# JN_OBSTRUCTED. This can lead to all kinds of
incorrect situations. These problems are not due to programming errors but to route signal script errors.
Example (part of script only):
if (enabled && route_set())
{

if (block_state == #BLOCK_CLEAR)
{
// normal clear, e.g.

state = #SIGASP_CLEAR_1;
}
else if (block_state == #BLOCK_OCCUPIED && TrainHasCallOn())
{
// clear on occupied track and CallOn allowed

state = #SIGASP_STOP_AND_PROCEED;
}
else
{
// track is not clear or CallOn not allowed

state = #SIGASP_STOP;
}

}

10.15.4 TrainHasCallOn_Restricted Function
This function has been introduced because signals with call-on aspects can be used not only as entrance
signals for stations, but also on ‘free line’ sections, that is, away from stations.
TrainHasCallOn always allows call-on if the signal is on a ‘free-line’ section. This is to allowproperworking
for USA-type permissive signals.
Some signal systems however use these signals on sectionswhere call-on is not allowed. For this case, the
TrainHasCallOn_Restricted function has been introduced.
When approaching a station, both functions behave the same, but on ‘free line’ sections, the
TrainHasCallOn_Restricted()will never allow call-on.
So, in a nutshell :

10.15. OR-specific Signaling Functions 147

Open RailsManual, Release 1.2.3706 (draft)

• Use on approach to stations:
– TrainHasCallOn() and TrainHasCallOn_Restricted():

* Activity: call-on not allowed
* Timetable: call-on allowed in specific situations (with $callon, $stable or $attach com-
mands)

• Use on ‘free line’ :
– TrainHasCallOn():

* Activity or Timetable: call-on always allowed
– TrainsHasCallOn_Restricted():

* Activity or Timetable: call-on never allowed
These signals can be laid down with theMSTS RE. In the .tdb file only a reference to the SignalType name
is written, an in the world file only a reference to the signal head is written. As these are accordingly to
MSTS standards, no need tomanually edit route files exists.

10.15.5 Signalling Function NEXT_NSIG_LR
This function is similar to NEXT_SIG_LR, except that it returns the state of the nth signal ahead.
Function call:
state = NEXT_NSIG_LR(MstsSignalFunction fn_type, int n).

Returned value:
• state of nth signal ahead, except,

– When there are less than n signals ahead of the train.
– when any of the intermediate signals is at danger.
In those situations, the function will return SIGASP_STOP.

Usage : take, for instance, the sequence of signals as shown below.

The distance between signals B and C, as well as between C and D, is shorter than the required braking
distance. Therefore, if D is at danger, both C and Bmust show yellow; similar, if C is at danger, both B and
Amust be yellow.
Problem now is what aspect should be shown at A : if B is yellow, is it because C is at red, so Amust also be
yellow, or is it because C is at yellow as D is at red – in which case A can show green. One could, of course,
use two different states for yellow at C, but that soon gets rather complicated, and also one might soon
run out of available aspects.
With the new function, it becomes simpler : if B is at yellow, A can directly check the state of C, and so
decide if it can clear to green ormust show yellow.
Suppose state SIGASP_STOP shows red, SIGASP_APPROACH_1 shows yellow and SIGASP_CLEAR_1 shows
green for all signals, the related part of the script could be as follows:
if (next_sig_lr(SIGFN_NORMAL) == SIGASP_APPROACH_1)
{

if (next_nsig_lr(SIGFN_NORMAL, 2) == SIGASP_STOP)
{

state = SIGASP_APPROACH_1;
}

10.15. OR-specific Signaling Functions 148

Open RailsManual, Release 1.2.3706 (draft)

else
{

state = SIGASP_CLEAR_1;
}

}

The function is also very useful when a distant signal is to reflect the state of more than one home signal,
but dist_multi_sig_mr cannot be used because there is no distant signal further on.

10.15.6 Signalling Function HASHEAD
This function can be used for any optional SIGNAL_HEAD as defined for the relevant signalshape in
sigcfg.dat, to check if that has been selected for this signal or not.
Using ‘DECOR’ dummy heads, this allows these heads to be used as additional user settings, and as such
are kind of an extension to the four available SIGFEAT_USER flags.
Please note that this function is still experimental.
Function call:
state = HASHEAD(headname);

Function returns 1 if head is set, else 0.

10.15.7 Signalling flagOR_NOSPEEDREDUCTION
Differently from MSTS, as default AI trains pass signals with aspect RESTRICTED or STOP_AND_PROCEED at
reduced speed. To provide also anMSTS-compatible operation and to take into account signalling systems
where no a speed reduction is requiredwhen passing such signals, theflag OR_NOSPEEDREDUCTION has been
introduced. This is an example of usage of such flag:
SignalAspects (7

SignalAspect (STOP "Red")
SignalAspect (STOP_AND_PROCEED "LowYellowFlash" SpeedMPH(25) signalflags (OR_

→˓NOSPEEDREDUCTION))
SignalAspect (RESTRICTING "LowYellow" SpeedMPH(25) signalflags (OR_NOSPEEDREDUCTION))
SignalAspect (APPROACH_2 "TopYellowMidGreen")
SignalAspect (APPROACH_3 "TopYellow")
SignalAspect (CLEAR_1 "MidGreen")
SignalAspect (CLEAR_2 "TopGreen")

)

With this flag set, no speed reduction is applied when passing the signal.

10.16 OR-Specific Additions to Activity Files
The additions described below will be ignored by MSTS. Make these additions to the .act file with a
Unicode-enabled editor. Note that these additions will be removed by the MSTS Activity Editor if the
.act activity file is opened and saved as an .act file by the AE. However, if the activity is opened in the AE
and saved in an .apk Activity Package, the additions will instead be included.
Since activity files are not used in Timetable mode, none of the following features will operate in that
mode.

10.16. OR-Specific Additions to Activity Files 149

Open RailsManual, Release 1.2.3706 (draft)

10.16.1 NoHalt by ActivityMessage Box
MSTS activitiesmay contain instructions to display amessage boxwhen the player train reaches a specific
location in the activity, or at a specific time. Normally the simulation is halted when the message box is
displayed until the player manually closes the box. This behavior can bemodified if the line:
ORTSContinue (nn)

Where nn = number of seconds to display the box, is added to the event declaration (EventTypeLocation
or EventTypeTime) in the .act file.
For example:
EventCategoryLocation (

EventTypeLocation ()
ID (1)
Activation_Level (1)
Outcomes (

DisplayMessage ("Test nopause.")
)
Name (Location1)
Location (-146 14082 -1016.56 762.16 10)
TriggerOnStop (0)
ORTSContinue (10)

)

Now, the activity will continue to run while the message window is displayed. If the player does nothing,
the window disappears automatically after nn seconds. The player may close the window manually or
pause the activity by clicking on the appropriate button in the window. Note that this modification does
not work for the terminating event of the activity.

10.16.2 AI Train Horn Blow
This feature requires selection of the Extended AI train shunting option.
Horn blow by AI trains is achieved by inserting into the AI train path a waiting point with a waiting time
value between 60011 (1 second horn blow) and 60020 (10 seconds horn blow).
The AI train will not stop at these waiting points, but will continue at its regular speed.
If a “normal”waiting point follows a horn blowwaiting point, the horn blowmust be terminated before the
normal waiting point is reached (just in case).
On the other hand, a horn blow waiting point may be positioned just after a normal WP (thus achieving
the effect that the train blows the horn when it restarts).

10.16.3 AI Horn Blow at Level Crossings
If the line:
ORTSAIHornAtCrossings (1)

is inserted into the activity file following the line:
NextActivityObjectUID (32768)

(note that the number in the brackets may be different), then AI trains will blow their horn at level cross-
ings for a random time between 2 and 5 seconds.The level crossing must be defined as such in the MSTS
route editor. Simple road crossings, not defined as level crossings, may also be present in the route. The AI
trainwill not blow thehorn at these crossings. Examining the routewith TrackViewer allows identification

10.16. OR-Specific Additions to Activity Files 150

Open RailsManual, Release 1.2.3706 (draft)

of the true level crossings. If a horn blow is also desired for a simple road crossing, the featureAI Train Horn
Blow described abovemust be used.

10.16.4 Location Event and Time Event Sound File
An activity file can bemodified so that a sound file is played when the train reaches a location specified in
an EventTypeLocation event in the .act file, or when a certain time interval specified in an EventTypeTime
event has elapsed since the start of the activity. Add the line:
ORTSActSoundFile (Filename SoundType)

to the EventCategoryLocation or EventCategoryTime event, where:
• Filename = name, in quotations, of a .wav file located in the SOUND folder of the route. (If the
.wav file is located elsewhere in the computer, the string must contain also the path from the
SOUND folder to the location where the sound is located.)

• Soundtype = any one of the strings:
– Everywhere – sound is played in all views at the same volume without fading effects
– Cab – sound is played only in the cab
– Pass – sound is played only in the active passenger view
– Ground – sound is played externally from a fixed position, the one that the locomotive

has reached when the event is triggered. The sound is also heard in internal views in
an attenuatedway, and becomes attenuated bymoving away from the position.

For example:
EventCategoryLocation (

EventTypeLocation ()
ID (7)
Activation_Level (1)
Outcomes (

DisplayMessage ("Won't be shown because ORTSContinue = 0")
)
Name (Location6)
Location (-146 14082 -1016.56 762.16 10)
TriggerOnStop (0)
ORTSContinue (0)
ORTSActSoundFile ("x_Next_stop_MiClei.wav" "Pass")

)

Including the ORTSContinue line (explained above) inhibits the normal halting of the activity by the event.
Also, if the value of 0 is inserted in the line as in the example above, the display of the event message is
completely suppressed. Only one sound file per event is allowed.

10.16.5 Weather Change Activity Event
An activity can be modified so that the weather changes when running the activity in ORTS. MSTS oper-
ation is not affected by theseWeatherChange events. The following block can be added within an Event
Block (either a Location or a Time event) of the .act file:
ORTSWeatherChange (

ORTSOvercast (
final_overcastFactor(float)
overcast_transitionTime(int)

)
ORTSFog (final_fogDistance(float) fog_transitionTime(int))
ORTSPrecipitationIntensity (

10.16. OR-Specific Additions to Activity Files 151

Open RailsManual, Release 1.2.3706 (draft)

final_precipitationIntensity(float)
precipitationIntensity_transitionTime(int)

)
ORTSPrecipitationLiquidity (

final_precipitationLiquidity(float)
precipitationLiquidity_transitionTime(int)

)
)

Theweather will change accordingly during the activity. The ranges of the factors are as follows:
• final_overcastFactor: value from 0 to 1.
• final_fogDistance: value from 10 (meters) to 100000.
• final_precipitationIntensity: value from 0 to 0.020 (clamped to 0.010 if a 16 bit graphics card is used).
• final_precipitationLiquidity: value from 0 to 1.

Theweather type will change accordingly to the following rules:
• when precipitationIntensity falls to 0, the weather type is set to Clear.
• when precipitationIntensity rises above 0 the weather type is selected accordingly to fi-
nal_precipitationLiquidity.

• when precipitationLiquidity is above 0.3 the weather type is set to Rain.
• when precipitationLiquidity is below or equal to 0.3, weather type is set to Snow.

The parameter ORTSPrecipitationLiquidity allows for a smooth transition from rain (ORTSPrecipita-
tionLiquidity = 1) to snow (ORTSPrecipitationLiquidity = 0) and vice-versa.
The xx_transitionTime is expressed in seconds, and indicates the time needed to pass from the initial
weather feature value (overcastFactor, fogDistance and so on) to the final weather feature value. If such
xx_transitionTime is set to 0, the weather feature takes immediately the final value. This is useful to start
activities with weather features in intermediate states.
The event can also include anORTSContinue (0) line, therefore not displayingmessages andnot suspend-
ing activity execution.
Manual commands related to weather interrupt the weather change triggered by the above events.
Each Event Block in the activity file may include only one WeatherChange block, and every Weather-
Change blockmay include one to all of the lines specified above.
Event blocks includingWeatherChangeblocksmaybepartly interlaced (execution of oneblock canbe still
active at themoment a newWeatherChange block is triggered). Execution of the variousweather param-
eter changes remains independent. If one weather parameter is present in both events, the execution of
the parameter change commanded by the first block is stopped and the one commanded by the second
block is started.
Note: editing the .act file with theMSTS Activity Editor after inclusion ofWeatherChange events will re-
move them, so they should be backed up separately. Opening an .act file that contains WeatherChange
events with the MSTS Activity Editor and packaging it without editing it generates an .apk file that con-
tains theWeatherChange events.

10.16. OR-Specific Additions to Activity Files 152

CHAPTER11

TimetableMode

11.1 Introduction
The timetable concept is not a replacement for the activity definition, but is an alternativeway of defining
both player and computer-controlled (AI and Static) trains.
In an activity, the player train is defined explicitly, and all AI trains are defined in a traffic definition. Static
trains are defined separately.
In a timetable all trains are defined in a similarway. On starting a timetable run, the required player train is
selected from the list of available trains. In the timetable definition itself, no distinction is made between
running trains – any of the running trains can be selected as player train, and if not selected as such they
will be run as AI trains. Static trains are also defined in the sameway but cannot be selected as the player
train.
As a result, the number of different ‘activities’ that can be played using the same timetable file is equal to
the number of trains which are defined in the timetable.
The development of the timetable concept is still very much a work in progress. This document details
the state as it is at the moment, but also includes items yet to be produced, or items which have yet to be
developed further.
To distinguish between these items, the following styles are used in the description of timetable mode.
Items shown in black italics are available but only in a provisional implementation, or in a limited context. Further
development of these items is still required.
Important aspects where the use of specific OR orMSTS items for timetables differs significantly from
its use in an activity are shown in bold.
Apart from the items indicated as above, it should be realised that as work continues, all items are still
subject to change.

153

Open RailsManual, Release 1.2.3706 (draft)

11.2 General
11.2.1 Data definition
The timetabledata is defined in aSpreadsheet, and savedas a *.csvfile (character separatedfile) inUnicode
format. As the separation character, either ‘,’ (comma) or ‘;’ (semi-colon) must be used.
Do not select space or tab as the separation character.
As ‘;’ or ‘,’ are possible separation characters, these symbols must not be used anywhere within the actual
data. Enclosure of text by quotes (either single or double) has no effect. Also, the character ‘#’ should not
be used in train names, since it is the prefix for reservedwords in the Timetable.

11.2.2 File structure
The saved *.csv files must be renamed with the extension *.timetable_or. The timetable files must be
placed in a subdirectory named OpenRails created in the route’s Activities directory.

11.2.3 File and train selection
When starting a timetable run, themode Timetable is selected in themenu. The desired timetablefilemust
then be selected in the Timetable set display.
After selecting the required timetable, a list of all trains contained in that timetable is displayed and the
required train can be selected.
Season andweather can also be selected; these are not preset within the timetable definition.

11.3 Timetable Definition
11.3.1 General
A timetable consists of a list of trains, and, per train, the required timing of these trains. The timing can be
limited to just the start time, or it can include intermediate times as well.
At present, intermediate timings are limited to ‘platform’ locations as created using theMSTS Route Editor.
Each column in the spreadsheet contains data for a train and each row represents a location. A cell at the
intersection of a train and location contains the timing data for that particular train at that location.
Special rows and columns can be defined for general information or control commands.
The first row for each column contains the train definition.
The first column for each row contains the location definition.
The cell at the intersection of the first row and first columnmust be empty.
This paragraph only lists themain outline, a fuller detailed description will follow in the next paragraphs.

11.3.2 Column definitions
A column is defined by the contents of the first row.
Default, the first row defines the train name.
Special columns can be defined using the following syntax :
• #comment: column contains comment only and is ignoredwhen reading the timetable.

11.2. General 154

Open RailsManual, Release 1.2.3706 (draft)

• <blank>: column is extension of preceding column.

11.3.3 Row definitions
A row is defined by the contents of the first column.
Default, the first column defines the stop location.
Special columns can be defined using the following syntax :
• #comment: row contains comment only and is ignoredwhen reading the timetable
• <blank>: row is extension of row above
• #path: defines train path
• #consist: defines train consist
• #start: defines timewhen train is started
• #note: defines general notes for this train
• #dispose: defines how train is handled after it has terminated

11.3.4 Timing details
Each cell which is at an intersection of a train columnand a location row, can contain timing details for that
train at that location.
Presently, only train stop details can be defined. Later on, passing times will also be defined; these passing times
can be used to determine a train’s delay.
Control commands can be set at locations where the train stops, but can also be set for locations where
no timing is inserted as the train passes through that location without stopping.

11.4 Timetable Data Details
11.4.1 Timetable Description
Although #comment rows and columns are generally ignored, the contents of the cell at the intersection of
the first #comment row and first #comment column is used as the timetable description and appears as the
timetable’s name in theOpen Rails menu.

11.4.2 Train Details
The train name as defined in the first row must be unique for each train in a timetable file. This name is
also usedwhen referencing this train in a train command; see details below.
The sequence of trains is not important.

11.4.3 Location Details
At present, the possible locations are restricted to ‘platforms’ as defined in theMSTS Route Editor.
Each locationmust be set to the ‘Station Name’ as defined in the platform definitions.
The name used in the timetable must exactly match the name as used in the route definition (*.tdb file),
otherwise the location cannot be found and therefore cannot be processed.
Also, each location namemust be unique, as otherwise its position in the train path could be ambiguous.

11.4. Timetable Data Details 155

Open RailsManual, Release 1.2.3706 (draft)

The sequence of the locations is not important, as the order in which the stations are passed by a train is
defined in that train’s path. For the same reason, a train’s path can be set to just run in between some of
the locations, or be set to bypass certain stations.

11.4.4 Timing Details
Each cell at an intersection of train and location can contain the timing details of that train at that location.
Times are defined as HH:mm, and the 24-hour clockmust be used.
If a single time is inserted it is taken as the departure time (except at the final location).
If both arrival and departure time are to be defined, thesemust be separated by ‘-‘.
Additional control commands can be included. Such commands can also be set for locations where the
train does not stop and therefore has no timing details, but the train must pass through that location for
the commands to be effective.
Although a location itself can be defined more than once in a timetable, it is not possible to define timing
details for trains for a location more than once. If a train follows a route which takes it through the same
locationmore than once, the train must be ‘split’ into separate train entries.

11.4.5 Special Columns
• #Comment column.
A column with the #comment definition in the first row is a comment column and is ignored when
reading the timetable, except for the cell at the intersection of the first comment column and the
first comment row.

• <Blank> column.
A column with a blank (empty) cell in the first row is taken as a continuation of the preceding col-
umn. It can be used to insert control commands which apply to the details in the preceding column.
This can be useful when timings are derived automatically through formulas in the spreadsheet as
inserting commands in the timing cell itself would exclude the use of such formulas.

11.4.6 Special rows
• #Comment row.
A rowwith the #comment definition in the first column is a comment row and is ignoredwhen read-
ing the timetable, except for the cell at the intersection of the first comment column and the first
comment row.

• <Blank> row.
A rowwith a blank (empty) cell in the first column is taken as a continuation of the preceding row.

• #Path row.
The #path row defines the path of that train. The path must be a *.pat file as defined by the MSTS
Activity Editor or by Trackviewer, and must be located in the route’s Path directory. This field is
compulsory.
The timetable uses the same paths as those defined for activities.
However, waiting points must not be defined in paths for use in timetables as the processing of
waiting points is not supported in the timetable concept. Waiting points within a timetable must
be defined using the specific control commands.
The #path statement can take a qualifier: /binary.

11.4. Timetable Data Details 156

Open RailsManual, Release 1.2.3706 (draft)

Large timetables can require many paths, and loading those paths can take considerable time (sev-
eralminutes). To reduce this loading time, the paths canbe stored in a processed, binary format. This
format is the same as used in the ‘save’ command. Note that the binary path information cannot be
directly accessed by the user, either for reading or forwriting. When /binary is set, the programwill
check if a binary path exists. If so, it will read that path. If not, it will read the ‘normal’ path, and will
then store this as binary for future use. Binary paths are stored in a subdirectory named OpenRails
whichmust be created in the Paths directory of the route.
Important:
– If a path is edited, the binary versionmust be deletedmanually, otherwise the programwill still
use this older version.

– If a route is edited, such that the .tdbmighthavebeenchanged, all binarypathsmustbedeleted.
• #Consist row
The #consist row defines the consist used for that train. This field is compulsory.
However, if the train is run as anAI train and it is ‘formed’ out of another train (seebelow), the consist
information is ignored and the train uses the consist of the train out of which it was formed.
For the player train, the consist is always used even if the train is formed out of another train. The
consist definitionmust be a *.con file as defined by theMSTSActivity Editor or by the TSRE5 consist
editor, andmust be stored in the defined consist directory.
Also amore complex syntax of the consist definition is possible, as described below.
This allows a consist definition to be not just a single string directly referring to a file, but a combina-
tion of strings, with the possibility to use (part of) the consist in reverse.
The general syntax is:
consist [$reverse] [+ consists [$reverse] [+ ...]]

Example: a loco-hauled train, using the same set of coaches, running in both directions. Two consists
are defined: c_loco and c_wagons. The consist definitions which can now be used are:

c_loco + c_wagons, and for reverse:
c_loco $reverse + c_wagons $reverse

Please note that $reverse always applies only to the sub-consist with which it is defined, not for the
complete combined consist.
If this train sometimes has some additional wagons, e.g. during rush hours, the consists can be de-
fined as follows (with c_add the definition of the additional wagons):

c_loco + c_wagons + c_add, and for reverse:
c_loco $reverse + c_add $reverse + c_wagons $reverse

Clearly, this can save on the definition of the total required consists, and in particular saves the te-
dious task of having to define ‘reverse’ consists. When usingmultiple units, this is evenmore useful.
Suppose there are two sets of multiple units, running either as single trains or combined. Normally,
six different consists would be required to cover all trains, but now only two will suffice : set_a and
set_b. The various combinations are:

set_a, reverse set_a $reverse.
set_b, reverse set_b $reverse.
set_a + set_b, reverse set_b $reverse + set_a $reverse.

Consist strings which contain ‘+’ or ‘$’ can be used in timetables but must be enclosed by < >. For
instance :
<loco+wagon>+<$loco+wagon>$reverse

11.4. Timetable Data Details 157

Open RailsManual, Release 1.2.3706 (draft)

• #Start row
The #start row defines the time at which the train is started. It must be defined as HH:mm, and the
24 hour clockmust be used. This field is compulsory.
Use of start time for AI trains :
– When a train is formed out of another train and this other train is included to run in the
timetable, the time defined in #start is only used to definewhen the train becomes active.

Use of start time for player train :
– The time as defined in #start is normally used as the start time of the timetable ‘activity’.

If a train is formed out of another train and this train is included in the timetable, then if this train
is delayed and has not arrived before the defined start time, the starting of this train is also delayed
until the train out of which it is formed has arrived. This applies to both AI and player train. This
means that the start of the player activity can be delayed.
For details on starting and running of trains aroundmidnight see the paragraph below.
The #start field can also contain the following command:
$create[=<time>] [/ahead=<train>]

The $create commandwill create that train at the time as indicated. If no time is set, the trainwill be
created before the start of the first train. The train will be ‘static’ until the time as set as start time.
The normal rules for train placement still apply, so a train cannot be placed onto a section of track
already occupied by another train.
However, storage sidings often hold multiple trains. To allow for this, and to ensure the trains are
stored in proper order (first one out up front), the parameter [/ahead=<train>]must be used.
The train will now be placed ahead of the referenced train, in the direction of the train’s path. Multi-
ple trains can be stored on a single siding, but care must be taken to set the proper references. The
reference must always be to the previous train - two trains cannot reference the same train in the
/ahead parameter as that would cause conflict.
If the total lengthof all trains exceeds the lengthof the sidings, the trainswill ‘spill out’ ontowhatever
lies beyond.
Note that a train referenced in an /ahead parameter must be created before or at the same time as
the train which uses that reference.

• #Note row
The #note row can be used to defined control commandswhich are not location related but apply to
the full run of the train. It can also be used to set commands for trains which do not stop at or pass
through any defined location. This row is optional.
The following commands can be inserted in the #note field of each train:
$acc=n
$dec=n

These commands setmultiplication factors for theacceleration ($acc) anddeceleration ($dec) values
used for that train.
The program uses average acceleration and deceleration values for all trains (different values for
freight, passenger and high speed trains). But these values are not always adequate, especially for
modern trains. This can lead to delays when trying to run to a real life timetable.
Using the $acc and $dec commands, the values used can be modified. Note that these commands
do not define an actual value, but define a factor; the default value will be multiplied by this factor.
However, setting a higher value for acceleration and deceleration does not mean that the trains will
always accelerate and decelerate faster according to the set value. Most of the time, the train be-
haviour is controlled through the physics. But especially the $dec factor does have an important

11.4. Timetable Data Details 158

Open RailsManual, Release 1.2.3706 (draft)

side effect. The deceleration value is also used to calculate the expected required braking distance.
Setting a higher deceleration will reduce the required braking distance, allowing the train to con-
tinue to run at maximum allowed speed for longer distances. This can have a significant effect on
the timing. Take care, though, not to set the value too high - the calculated braking distance must of
course be sufficient to allow for proper braking, otherwise the train cannot stop in time resulting in
SPADs etc.
A typical value for modern stock for the $dec command is 2 or 3.

• #Dispose row
The #dispose row defines what happens to an AI train when it has reached the end of its run, i.e.
it has reached the end of the defined path. The information in the #dispose row can detail if the
train is to be formed into another train, and, if so, how and where. For details see the commands as
described further down.
This row is optional and if included, the use per train is also optional. If the row is not included or the
field is not set for a particular train, the train is removed from the activity after it has terminated.
The #dispose row presently does not affect the end of the run for the player train.

11.4.7 Control commands
General
Control commands can be set to control train and signaling behaviour and actions. There are four sets of
commands available:
• Location commands
• Train control commands
• Create commands
• Dispose commands

Command syntax
All commands have the same basic syntax. A command consists of:
• Syntax name : defines the control command.
• Syntax value : set the value related to the command. Not all commands take a value.
• Syntax qualifiers : adds additional information to the command. Not all commands have qualifiers.
Some qualifiers may be optional but others may be compulsory, or compulsory only in combination
with other qualifiers.

• Syntax qualifier values : a qualifier may require a value
Command syntax:
$name = value /qualifier=value

Multiple values may be set, separated by ‘+’. Note that any qualifiers always apply to all values.

Train Reference
Many commands require a reference to another train. This reference is the other train’s name as defined
in the first row.

11.4. Timetable Data Details 159

Open RailsManual, Release 1.2.3706 (draft)

Location Commands
Location commands are:
$hold
$forcehold
$nowaitsignal
$terminal

These commands are also available as train control commands and are detailed in that paragraph.

Train control commands
All available train control commands are detailed below.
These commands can be set for each timing cell, i.e. at each intersection of train column and location row.
The commands will apply at and from the location onward (if applicable).
Some commands can also be set in the #note row, in which case they apply from the start of the train.
These commands are indicated below by an asterisk (*) behind the command name
The commands $hold and $nosignalwait can also be set as location commands.
$hold, $nohold and $forcehold

If $hold is set, it defines that the exit signal for that location must be held at danger up to 2
minutes before train departure.
An exit signal is allocated to a platform if this signal is beyond the end platformmarker (in the
direction of travel), but is still within the same track node - so theremust not be any points etc.
between the platformmarker and the signal.
By default, the signal will not be held.
If set per location, it will apply to all trains, but can be overridden for any specific train by defin-
ing $nohold in that train’s column. If set per train, it will apply to that train only.
$forceholdwill set the first signal beyond the platform as the ‘hold’ signal, even if this signal is
not allocated to the platform as exit signal. This can be useful at locations with complex layout
where signals are not directly at the platform ends, but not holding the signals could lead to
delay to other trains.

$callon

This will allow a train to ‘call on’ into a platform occupied by another train.
For full details, see the discussion above on the relationship between signalling and timetable.

$connect

Syntax : $connect=<train> /maxdelay=n /hold=h

Defines that a train is towait at a station until another train has arrived, so as to let passengers
make the connection between the trains.
The trainwill be timetabled toallow this connection, and the $connect command is set tomain-
tain this connection if the arriving train is running late.
Note that the $connect command will not lock the signal. If the paths of this train and the
arriving train conflict before the arriving train reaches the station, additional $wait or $hold
commandsmust be set to avoid deadlock.
Command value: reference to train which is to be waited for, this is compulsory.
Command qualifiers :

/maxdelay=n : n is themaximumdelay (inminutes) of the arriving train forwhich this
train is held.

11.4. Timetable Data Details 160

Open RailsManual, Release 1.2.3706 (draft)

If the delay of the arriving train exceeds this value the train will not wait.
Themaximum delay is independent from this train’s own delay.
This qualifier and its value are compulsory.

/hold=h : h is the time (in minutes) the train is still held after the other train has
arrived, and relates to the time required by the passengers tomake the connection.

This qualifier and its value are compulsory.
$wait *

Syntax : $wait=<train> /maxdelay=n /notstarted /owndelay=n

Defines that a train is to wait for the referenced train to allow this train to proceed first. The
referenced train can be routed in the same or the opposite direction as this train itself. A
search is done for the first track section which is common to both trains, starting at the lo-
cation where the $wait is defined, or at the start of the path if defined in the #note row.
If the start location is already common for both trains, then first a search is done for the first
section which is not common to both trains, and the wait is applied to the next first common
section beyond that.
If the wait is set, the section will not be cleared for this train until the referenced train has
passed this section. This will force the train to wait. The referenced train must exist for the
wait to be valid.
However, if /notstarted is set, the wait will also be set even if the referenced train has not yet
been started. This can be usedwhere thewait position is very close to the start position of the
referenced train, and there is a risk that the train may clear the section before the referenced
train is started.
Care should be taken when defining a $wait at a location where the train is to reverse. As the
search is performed for the active subpath only, a $wait defined at a location where the train
is to reverse will not be effective as the common section will be in the next subpath after the
reversal. In such a situation, the train should be ‘split’ into two separate definitions, one up to
the reversal location and another starting at that location.
Command value : referenced train, this is compulsory.
Command qualifiers :

/maxdelay=n: n is the maximum delay (in minutes) of the referenced train for which
the wait is still valid.

This delay is compensated for any delay of the train which is to wait, e.g. if
maxdelay is 5minutes, the referenced train has adelay of 8minutes but this
train itself has a delay of 4minutes, the compensated delay is 4minutes and
so the wait is still valid.
This parameter is optional, if not set a maxdelay of 0 minutes is set as de-
fault.

/notstarted: thewait will also be applied if the referenced train has not yet started.
/owndelay=n (n is delay in minutes); the owndelay qualifier command makes the
command valid only if the train in question is delayed by at least the totalminutes as
set for the owndelay qualifier.

This can be used to hold a late-running train such that is does not cause
additional delays to other trains, in particular on single track sections.

$follow *

Syntax : $follow=<train> /maxdelay=n /owndelay=n

This command is very similar to the $wait command, but in this case it is applied to each com-
mon section of both trains beyond a part of the route which was not common. The train is
controlled such that at each section where the paths of the trains re-join after a section which

11.4. Timetable Data Details 161

Open RailsManual, Release 1.2.3706 (draft)

was not common, the train will only proceed if the referenced train has passed that position.
The command therefore works as a $wait which is repeated for each such section.
The command can only be set for trains routed in the same direction. When a wait location
is found and the train is due to be held, a special check is performed to ensure the rear of the
train is not in thepathof the referenced train or, if it is, the referenced train has already cleared
that position. Otherwise, a deadlock would result, with the referenced train not being able to
pass the train which is waiting for it.
Command value: referenced train, this is compulsory.
Command qualifiers:

/maxdelay=n: n is the maximum delay (in minutes) of the referenced train for which
the wait is still valid. This delay is compensated by any delay of the train which is
to wait, e.g. if maxdelay is 5 minutes, the referenced train has a delay of 8 minutes
but this train itself has a delay of 4minutes, the compensated delay is 4minutes and
thus the wait is still valid.

This parameter is optional, if not set a maxdelay of 0 minutes is set as de-
fault.

/owndelay=n (n is delay in minutes): the owndelay qualifier command makes the
command valid only if the train in question is delayed by at least the totalminutes as
set for the owndelay qualifier.

This can be used to hold a late-running train such that is does not cause
additional delays to other trains, in particular on single track sections.

$waitany *

Syntax : $waitany=<path> /both

This commandwill set a wait for any train which is on the path section as defined.
If the qualifier /both is set, the wait will be applied for any train regardless of its direction,
otherwise the wait is set only for trains heading in the same direction as the definition of the
path.
The path defined in the waitany command must have a common section with the path of the
train itself, otherwise nowaiting position can be found.
This command can be set to control trains to wait beyond the normal signal or deadlock rules.
For instance, it can be used to perform a check for a train which is to leave a siding or yard,
checking the line the train is to join for any trains approaching on that line, for a distance fur-
ther back than signalling would normally clear, so as to ensure it does not get into the path of
any train approaching on that line.
With the /both qualifier set, it can be used at the terminating end of single track lines to ensure
a train does not enter that section beyond the last passing loop if there is another train already
in that section as this could lead to irrecoverable deadlocks.

$[no]waitsignal

Syntax:
$waitsignal $nowaitsignal

Normally, if a train is stopped at a station and the next signal ahead is still at danger, the train
will not depart. But, there are situations where this should be overruled.
Some stations are ‘free line’ stations - that is, they are not controlled by signals (usually small
halts, without any switches). The next signal probably is a ‘normal’ block signal and may be
some distance from the station. In that situation, the train does not have towait for that signal
to clear in order to depart.

11.4. Timetable Data Details 162

Open RailsManual, Release 1.2.3706 (draft)

Other situation are for freight trains, light engines and empty stock, which also usually do not
wait for the signal to clear but draw up to the signal so as to take as little as time as possible to
exit the station.
The $nowaitsignal qualifier can be set per station (in the station column), or per train. If set
per station, it can be overruled by $waitsignal per train.

$terminal

The $terminal command changes the calculationof the stopposition, andmakes the train stop
at the terminating end of the platform. Whether the platform is really a terminating platform,
and at which end it terminates, is determined by a check of the train’s path.
If the platform is in the first section of a train’s path, or there are no junctions in the path lead-
ing up to the section which holds the platform, it is assumed the train starts at a terminal plat-
form and the end of the train is placed close to the start of the platform.
If the platform is in the last section if the path or there are no junctions beyond the section
which holds the platform, it is assumed the platform is at the end of the train’s path and the
train will run up to near the end of the platform in its direction of travel.
If neither condition is met, it is assumed it is not a terminal platform after all, and the normal
stop position is calculated.
The $terminal option can be set for a station, or for individual trains. If set for a station it
cannot be overruled by a train.
However, because of the logic as described above, if set for a station which has both terminal
platforms as well as through platforms, trains with paths continuing through those platforms
will have the normal stop positions.

11.4.8 Dispose Commands
Dispose commands can be set in the #dispose row to define what is to be done with the train after it has
terminated. See special notes below on the behaviour of the player train when it is formed out of another
train by a dispose command, or when the player train itself has a dispose command.
$forms

Syntax : $forms=<train> /runround=<path> /rrime=time /setstop

$forms defineswhich new train is to be formed out of this trainwhen the train terminates. The
consist of the new train is formed out of the consist of the terminating train and any consist
definition for the new train is ignored. The new train will be ‘static’ until the time as defined
in #start row for that train. This means that the new train will not try to clear its path, signals
etc., and will not move even if it is not in a station.
If the incoming train is running late, and its arrival time is later as the start timeof thenewtrain,
the start of the new train is also delayed but the new train will immediately become active as
soon as it is formed.
For locomotive-hauled trains, it can be defined that the engine(s) must run round the train
in order for the train to move in the opposite direction. The runround qualifier needs a path
which defines the path the engine(s) is to take when performing the runround. If the train has
more than one leading engine, all engines will be run round. Any other power units within the
train will not bemoved.
For specific rules and conditions for runround to work, see discussion on the relationship be-
tween signalling and the timetable concept.
If runround is defined, the time at which the runround is to take place can be defined. If this
time is not set, the runroundwill take place immediately on termination of the incoming train.
Command value : referenced train, this is compulsory.
Command qualifiers:

11.4. Timetable Data Details 163

Open RailsManual, Release 1.2.3706 (draft)

/runround=<path>: <path> is the path to be used by the engine to perform the run-
round.

This qualifier is optional; if set, the value is compulsory.
/rrtime=time: time is the definition of the time at which the runround is to take
place. The timemust be defined in HH:mm andmust use the 24 hour clock.

This qualifier is only valid in combination with the /runround qualifier, is
optional but if set, the value is compulsory.

/setstop: if this train itself has no station stops defined but the train it is to form
starts at a station, this command will copy the details of the first station stop of the
formed train, to ensure this train will stop at the correct location.

For this qualifier to work correctly, the path of the incoming trainmust ter-
minate in the platform area of the departing train.
This qualifier is optional and takes no values.

$triggers

Syntax : $triggers=<train>
$triggers also defines which new train is to be formed out of this train when the train termi-
nates.
However, when this command is used, the new trainwill be formed using the consist definition
of the new train and the existing consist is removed.
Command value : referenced train, this is compulsory.

$static

Syntax : $static
The train will become a ‘static’ train after it has terminated.
Command value : none.

$stable

Syntax: $stable /out_path=<path> /out_time=time /in_path=<path> /in_time=time
/static /runround=<path> /rrtime= time /rrpos=<runround position> /
forms=<train> /triggers=<train>

$stable is an extended form of either $forms, $triggers or $static, where the train is moved
to another location before the related command is performed. In case of /forms or /triggers,
the train canmove back to the same or to another locationwhere the new train actually starts.
Note that in these cases, the train has tomake twomoves, outward and inward.
A runround can be performed in case /forms is defined.
If /triggers is defined, the change of consist will take place at the ‘stable’ position. Any rever-
sal(s) in the inward path, or at the final inward position, are taken into account when the new
train is build, such that the consist is facing the correct directionwhen the new train is formed
at the final inward position.
The $stable can be used where a train forms another train but when the train must clear the
platform before the new train can be formed to allow other trains to use that platform. It can
also be used to move a train to a siding after completing its last duty, and be ‘stabled’ there as
static train.
Separate timings can be defined for eachmove; if such a time is not defined, themovewill take
place immediately when the previousmove is completed.
If timings are defined, the train will be ‘static’ after completion of the previous move until that
required time.

11.4. Timetable Data Details 164

Open RailsManual, Release 1.2.3706 (draft)

If the formed train has a valid station stop and the return path of the stable command (in_path)
terminates in the area of the platform of the first station stop of the formed train, the ‘setstop’
check (see setstop qualifier in $forms command) will automatically be added
Command value : none.
Command qualifiers :

/out_path=<path>: <path> is the path to beusedby the train tomoveout to the ‘sta-
ble’ position. The start of the path must match the end of the path of the incoming
train.
/out_time = time: time definition when the outward run must be started. Time is
defined as HH:mm andmust use the 24 hour clock.
/in_path=<path>: <path> is the path to be used by the train for the inward run from
the ‘stable’ position to the start of the new train. The start of the path must match
the end of the out_path, the end of the pathmustmatch the start of the path for the
new train.
/in_time = time: time definition when the inward run must be started. Time is
defined as HH:mm andmust use the 24 hour clock.
/runround=<path>: <path> is the path to be used by the engine to perform the run-
round. For details, see the $forms command definition of the time at which the run-
round is to take place. The timemust be defined inHH:mmandmust use the24hour
clock.
/rrtime=time: time is the definition of the time at which the runaround is to take
place. The timemust be defined in HH:mm andmust use the 24 hour clock.
/rrpos = <runround position>: the position within the ‘stable’ move at which the
runround is to take place.

Possible values:
• out: the runroundwill take place before the outwardmove is started.
• stable: the runroundwill take place at the ‘stable’ position.
• in: the runroundwill take place after completion of the inwardmove.

/static: train will become a ‘static’ train after completing the outwardmove.
/forms=<train>: train will form the new train after completion of the inward move.
See the $forms command for details.
/triggers=<train>: train will trigger the new train after completion of the inward
move. The train will change to the consist of the new train at the ‘stable’ position.
See the $triggers command for details.

Use of command qualifiers :
In combination with /static:
• /out_path: compulsory
• /out_time: optional

In combination with /forms:
• /out_path: compulsory
• /out_time: optional
• /in_path: compulsory
• /in_time: optional
• /runround: optional
• /rrtime: optional, only valid if /runround is set

11.4. Timetable Data Details 165

Open RailsManual, Release 1.2.3706 (draft)

• /rrpos: compulsory if /runround is set, otherwise not valid
In combination with /triggers :
• /out_path: compulsory
• /out_time: optional
• /in_path: compulsory
• /in_time: optional

11.5 Additional Notes on Timetables
11.5.1 Static Trains
A static train can be defined by setting $static in the top row (e.g. as the ‘name’ of that train). Consist and
path are still required - the path is used to determinewhere the consist is placed (rear end of train at start
of path). No start-time is required. The train will be created from the start of the timetable - but it cannot
be used for anything within a timetable. It cannot be referenced in any command etc., as it has no name.
At present, it is also not possible to couple to a static train - see below for details.
Note that there are some differences between timetable and activity mode in the way that static trains
are generated. In activity mode, the train is an instance of the Train class, with type STATIC.
In timetable mode, the train is an instance of the TTTrain class (as are all trains in timetable mode), with
type AI, movement AI_STATIC. This difference may lead to different behaviour with respect to sound,
smoke and lights.

11.5.2 Processing of #dispose Command For Player Train
When the player train terminates and a #dispose command is set for that train to form another train (ei-
ther $form, $trigger or $stable), the trainwill indeed form thenext train as detailed, and that next trainwill
now be the new player train. So the player can continue with that train, for instance on a return journey.
On forming the new train, the train will become ‘Inactive’. This is a new state, in which the train is not
authorized tomove.
Note that the F4 Track Monitor information is not updated when the train is ‘Inactive’. The Next Station
display in the F10 ActivityMonitorwill show details onwhen the train is due to start. The trainwill become
‘active’ at the start-time as defined for the formed train. For information, the Activity Monitor window
shows the name of the train which the player is running.

11.5.3 Termination of a Timetable Run
On reaching the end of a timetable run, the program will not be terminated automatically but has to be
terminated by the player.

11.5.4 Calculation of Running Delay
Anapproximatevalueof thedelay is continuouslyupdated. This approximation is derived fromthebooked
arrival time at the next station. If the present time is later as the booked arrival, and that difference ex-
ceeds the present delay, the delay is set to that difference. The time required to reach that station is not
taken into account.
This approximation will result in better regulation where /maxdelay or /owndelay parameters are used.

11.5. Additional Notes on Timetables 166

Open RailsManual, Release 1.2.3706 (draft)

11.5.5 NoAutomatic Coupling
There is logic within the program which for any stopped train checks if it is close enough to another train
to couple to this train. It is this logic which allows the player train to couple to any static train.
However, this logic contains someactionswhich donotmatch the processing of timetable trains. Therefore
this has now been disabled for timetable mode. Presently, therefore, coupling of trains is not possible in timetable
mode except for runround commands in dispose options.
Also uncoupling through the F9 window could be disabled in the near future for timetable mode. In due course,
new attach/detach functions will be included in the timetable concept to replace the existing functions.

11.5.6 Signalling Requirements and Timetable Concept
General
The timetable concept is more demanding of the performance of the signalling system than ‘normal’ ac-
tivities. The main reason for this is that the timetable will often have AI trains running in both directions,
including trains running ahead of the player train in the same direction as the player train. There are very
fewactivitieswith such situations as noeffortwouldof coursebemade todefine trains in an activitywhich
would never be seen, but also becauseMSTS could not always properly handle such a situation.
Anyflaws in signalling, e.g. signals clearing the path of a train too far ahead,will immediately have an effect
on the running of a timetable.
If signals clear too far ahead on a single track line, for instance, it means trains will clear through passing
loops too early, which leads to very longwaits for trains in the opposite direction. This, in turn, can lead to
lock-ups as multiple trains start to converge on a single set of passing loops.
Similar situations can occur at large, busy stations - if trains clear their path through such a station too
early, it will lead to other trains being kept waiting to enter or exit the station.
If $forms or $triggers commands are used to link reversing trains, the problem is exacerbated as any
delays for the incoming train will work through on the return working.

Call On Signal Aspect
Signalling systemsmay allow a train to ‘call on’, i.e. allow a train onto a section of track already occupied by
another train (also known as permissive working).
The difference between ‘call on’ and ‘permissive signals’ (STOP and PROCEED aspects) is that the latter
is also allowed if the train in the section is moving (in the same direction), but ‘call on’ generally is only
allowed if the train in the section is at a standstill.
When a signal allows ‘call on’, AI trains will always pass this signal and run up to a pre-defined distance
behind the train in the section.
In station areas, this can lead to real chaos as trains may run into platforms occupied by other trains such
that the total length of both trains far exceeds the platform length, so the second train will block the ‘sta-
tion throat’ stopping all other trains. This can easily lead to a complete lock-up of all traffic in and around
the station.
To prevent this, calling on should be blocked in station areas even if the signallingwould allow it. To allow a
train to ‘call on’ when this is required in the timetable, the $callon commandmust be set which overrules
the overall block. This applies to both AI and player train
In case the train is to attach to another train in the platform, calling on is automatically set.
Because of the inability of AI trains in MSTS to stop properly behind another train if ‘called on’ onto an
occupied track, most signalling systems do not support ‘call on’ aspects but instead rely on the use of ‘per-
mission requests’. AI trains cannot issue such a request, therefore in such systems $callonwill not work.
In this situation, attach commands can also not work in station areas.

11.5. Additional Notes on Timetables 167

Open RailsManual, Release 1.2.3706 (draft)

Note that the ‘runround’ command also requires ‘call on’ ability for the final move of the engine back to
the train to attach to it. Therefore, when performed in station areas, also the runround can only work if
the signalling supports ‘call on’.
Special signalling functions are available to adapt signals to function as described above, which can be
used in the scripts for relevant signals in the sigscr file.
The function “TRAINHASCALLON()” will return ‘true’ if the section beyond the signal up to the next signal
includes a platform where the train is booked to stop, and the train has the ‘callon’ flag set. This function
will also return ‘true’ if there is no platform in the section beyond the signal.
The function “TRAINHASCALLON_RESTRICTED” returns ‘true’ in similar conditions, except that it always
returns ‘false’ if there is no platform in the section beyond the signal.
Both functionsmust be used in combination with BLOCK_STATE = BLOCK_OCCUPIED.

Wait Commands and Passing Paths
From the location where the ‘wait’ or ‘follow’ is defined, a search is made for the first common section for
both trains, following on from a section where the paths are not common.
However, on single track routes with passing loops where ‘passing paths’ are defined for both trains, the
main path of the trains will run over the same tracks in the passing loops and therefore no not-common
sections will be found. As a result, the waiting point cannot find a location for the train to wait and there-
fore the procedure will not work.
If waiting points are used on single track lines, the trains must have their paths running over different
tracks through the passing loop in order for the waiting points to work properly.
It is a matter of choice by the timetable creator to either pre-set passing locations using the wait com-
mands, or let the systemwork out the passing locations using the passing paths.

Wait Commands and Permissive Signals
The ‘wait’ and ‘follow’ commands are processed through the ‘blockstate’ of the signal control. If at the
locationwhere the train is towait permissive signals areused, and these signals allowa ‘proceed’ aspect on
blockstate JN_OBSTRUCTED, the ‘wait’ or ‘follow’ commandwill notwork as the trainwill not be stopped.
11.5.6.5 Running Trains AroundMidnight.
A timetable can be defined for a full 24 hour day, and so would include trains running aroundmidnight.
The following rules apply for the player train:
• Train booked to start beforemidnight will be started at the end of the day, but will continue to run if
terminating after midnight.

• Trains formed out of other trains starting before midnight will NOT be started if the incoming train
is delayed and as a result the start time is moved after midnight. In this situation, the activity is
aborted.

• Trains booked to start after midnight will instead be started at the beginning of the day.
The following rules apply for AI trains :
• Trains booked to start before midnight will be started at the end of the day, but will continue to run
if terminating after midnight.

• Trains formed out of other trains starting beforemidnight will still be started if the incoming train is
delayed and as a result the start time is moved after midnight.

• Trains booked to start after midnight will instead be started at the beginning of the day.
As a result of these rules, it is not really possible to run an activity around or through midnight with all
required AI trains included.

11.5. Additional Notes on Timetables 168

Open RailsManual, Release 1.2.3706 (draft)

Viewing theOther Active Trains in the Timetable
To change the train that is shown in the external views, click <Alt+F9> to display the Train List and select
the desired train from the list of active trains, or click <Alt+9> as described in Changing the View to cycle
through the active trains.

11.5.7 Known Problems
• If a #dispose command is processed for the player train , and the new train runs in the opposite
direction, the reverser will ‘jump’ to the reverse state on forming that new train.

• A run-round command defined in a #dispose command cannot yet be processed. It will be necessary
to switch toManual to perform that run-round.

• If two trains are to be placed on a single siding using $create with /ahead qualifier, but the trains
have paths in opposite directions, the trains may be placed in incorrect positions.

• If the /binary qualifier is set for #path, but the OpenRails subdirectory in the Paths directory does
not exist, the programwill not be able to load any paths.

11.6 Example of a Timetable File
Here is an excerpt of a timetable file (shown in Excel):

11.6. Example of a Timetable File 169

Open RailsManual, Release 1.2.3706 (draft)

11.7 What tools are available to develop a Timetable?
It is recommended to use a powerful stand-alone program (Excel is not required), called Timetable Editor.
It is included in theOR pack, and accessed from the Tools button on theORmenu.

11.7. What tools are available to develop a Timetable? 170

CHAPTER12

Open RailsMulti-Player

12.1 Goal
The Multi-Player mode implemented in this stage is intended for friends to play OR together, each as-
suming the role of a train engineer operating a train. There is a built-in way to compose and send text
messages, but there is no built-in tool for chatting, thus players are encouraged to use Ventrillo, Skype,
MSN, Yahoo, Teamspeak or other tools to communicate vocally.
The current release utilizes a peer-to-peermode, thus each playermust start and runORon his computer.
A special server was deployed so youmay not need to set up a server from your own computer.

12.2 Getting Started
Oneplayer starts as the server, and then theothers connect as clients. Eachplayerwill choose andoperate
his own consist (and locomotive), but also can jump to watch others’ consists, or couple with others to
work as lead and DPU through a tough route, or even act as a dispatcher to control signals and switches
manually.

12.3 Requirements
The server can start an activity or choose to explore. ClientsMUST choose to explore (or a simple activity
with timetable but no AI trains).
The client must select the same route played by the server.
It is not required for everyone to have the same set of paths, rolling stocks and consists.

12.4 Technical Issues
If you start the server at home, it will be necessary for you to learn your public IP address. You may also
need to configure your router for port forwarding. Details to accomplish these are given in sections that
follow.

171

Open RailsManual, Release 1.2.3706 (draft)

It is recommended that you do not run a server for a prolonged period as the code has not been tightened
for security. Only tell people you trust that you have a server started.

12.5 Technical Support
You can ask questions in the following forums: trainsim.com, elvastower.com, uktrainsim.com, etc.
A web forum has been set for you to post questions and announce servers. You can also request a
private club so that only your friends know of your server. The forum is free to join and post: http:
//www.tsimserver.com/forums

12.6 Starting aMulti-Player Session
12.6.1 Starting as Server

On the ORmain menu you select in a standard way as described in the Getting started chapter on the left
side Route, activity or explore route, and in case of explore route you select as usual locomotive, consist,
path, time, season andweather.
On the lower right side you enter your User Name and the host and port address. If you want to run as
standalone server, or if you want to have more than instance of OR running in MP mode on the same
computer, you must set Host/port to 127.0.0.1:30000. 30000 is the default port, but you can change to
any integer between 10000 and 65536.
If youwant to run in a local area network usually valid host addresses are 192.168.1.2 or 192.168.1.1.
After having inserted theUsername andHost/port data you click on Server.
When server starts, Windows Firewall may ask if you want to allow OR access to the Internet. If so, click
Allow. If you use other firewall software, you may need to configure it to allow OpenRails to access the
Internet.

12.5. Technical Support 172

http://www.tsimserver.com/forums
http://www.tsimserver.com/forums

Open RailsManual, Release 1.2.3706 (draft)

There is no built-in limit of howmany players can connect; a server with good Internet upload bandwidth
can be expected to handle at least 10 client connections.

12.6.2 Starting as Client
On the left side of the main menu you must enter only route, path and consist. The other parameters are
received from the server.
On the right side you enter your username, IP address and port of the server, and click on Client.

12.7 In-Game Controls
Once the server and clients have started and connected, to display MultiPlayer status you must press
F5 to display the basic HUD; at the bottom of it you will see the information. You can watch how many
players and trains are present and how far away you are from others. You can also look if you are acting as
dispatcher (the server always is the dispatcher) or as client.

A player joinedwill have the sameweather, time and season as the server, nomatter what are the original
choices.
The player train may join the world and find that it is inside another train. Don’t panic, you have twomin-
utes tomove your train out before OR thinks youwant to couple with that train.
AI trains are added by the server and broadcast to all players. As a client, do not start an activity with AI
trains; moreover it is recommended that you start in Exploremode on the client.
You can jump to see other trains in sequence by pressing <Alt+9>. OpenRails will cycle through all trains
active on the server with each key press. If you are running an activity OpenRails will include in the cycle
any static consists that are used in the activity. As some trainsmay be far away, OpenRailsmay need a few
seconds to load the surrounding scenery. Thus you may temporarily see a blank screen. You can press F7
to see train names. You can press 9 to return to seeing your own train.
Locations of trains from other players are sent over the Internet. Because Internet routings varymoment
to moment there may be some lag, and trains may jump a bit as OpenRails tries to update the locations
with information received.

12.7. In-Game Controls 173

Open RailsManual, Release 1.2.3706 (draft)

You can couple/decouple as usual. As coupling is controlled in the server, a player needs to drive slowly so
that the server will have accurate information of train positions. If two player trains couple together, one
of themwill becomeahelper, and amessagewill be shownon the left indicating that the player is inHelper
mode. A player in Helper mode cannot control his consist as it falls under control of the lead locomotive.
By pressing <Shift+E> you can swapHelper status with another player on the train. Always press <\> and
<Shift+/> to reset brakes each time after coupling/uncoupling.
Players can uncouple their own trains. Players in the uncoupled trains may need to press <Shift+E> to
gain control; otherwise, the uncoupled trainsmay become a loose consist. Always stop completely before
uncoupling, otherwise weird things may happen. Players may also need to press keys for resetting brake
state after uncoupling (see here).

Players can throw switches by pressing <G> or <Shift+G>, and the switch state will change for all players
on the server. The server has a choice to disallow clients to throw switchesmanually.
Both switches and signals are synchronized through the server (default every 10 seconds).
Player actions, such as sounding the horn or bell, turning on or off headlights, moving the pantograph up
and down, opening and closing doors, moving the mirrors are broadcast to other players. Currently only
the player controlled train has the cone of light shown.
A separate Dispatcher Window (also shown below) showing the route, signals and trains can be activated
by pressingCtrl+9. By default, it isminimized and youmust click on it on the Taskbar tomake it active. You
can hide it by pressing <Ctrl+9> again or by pressing <Esc>when that window has the focus. This window
is an extended version of the DispatcherWindow.
You can zoom in and out by rotating the mouse wheel, or by holding both the left and right mouse button
andmoving themouse (if you do not have amousewheel). You can hold shift key while clicking themouse
in a place in the map, which will quickly zoom in with that place in focus. You can hold Ctrl while clicking
themouse in a place in themap, whichwill zoomout to show thewhole route. Holding Alt and clickingwill
zoom out to show part of the route.

12.7. In-Game Controls 174

Open RailsManual, Release 1.2.3706 (draft)

A red line will be drawn for each train so you can find its intended path.
You can select a train either by clicking on the name in the right bar, or in the map by clicking the green
train body. After that, you can click the Remove button to delete that train from the game.
You can pan the window by dragging it with the left mouse button.
One can click a switch (or signal) and press <Ctrl+Alt+G> to jump to that switch with the free-roam cam-
era.
TheDispatcher player can click a switch (black dot) and chooseMain Route or Side Route to switch. He can
also click on a signal (green, red or orange dot) and choose to change the signal status.
The Dispatcher can choose a player and give the player right to throw switches and change signals, by
clicking the button Assist. The right can be revoked by click theNormal button.
The Dispatcher can choose a player from the avatar list and remove that player from the game.
You can senda textmessageby typing in the top left text input area, andview themost recent 10messages
from the viewing area. You can send message to all after finishing it, or select some avatars and send a
message to those selected.

12.8 Summary ofMulti-Player Procedures
1. Server can start an activity or Explore. Clients must choose to Explore the route or start with an
activity without AI trains.

2. Missing rolling stock in other players’ consists will be automatically replaced by existing cars from
local directory. This can lead to awkward consists.

3. You have twominutes after joining the game tomove your train out of other trains.
4. Use <Alt+9> to see other trains, 9 to see your own train, <Ctrl+9> to view/hide the dispatcher win-
dow. Use themouse wheel to zoom and left mouse button to pan the dispatcher window.

12.8. Summary ofMulti-Player Procedures 175

Open RailsManual, Release 1.2.3706 (draft)

5. We can send and readmessages from the dispatcher window
6. Use <Ctrl+Alt+F11> to see the path trains will follow, and <F7> to see train names
7. Move trains slowly when trying to couple.
8. Use <\> and <Shift+/> (on English keyboards) just after your train is coupled or uncoupled, or when
you just gain back the control of your own train.

9. Use <Shift+E> to gain control of your own train after uncoupling.
10. Use other communication tools (such as Ventrillo or Skype) to communicate with other players.
11. Always completely stop before uncoupling trains with two players coupled together

12.9 Possible Problems
• A servermay not be able to listen on the port specified. Restart the server and choose another port.
• If you cannot connect to the server, verify you have the correct IP address and port number, and that
the server has the port opened.

• If other players have rolling stock you do not have, that train will automatically replace cars from
your own folder, and this replacementmaymake the consist ‘interesting’.

• You may join the game and see you’ve selected the same start point as someone else and that your
train is inside another train. Move the trains apart within twominutes and it will be fine.

• If your train is moving too quickly when trying to couple, the processmay notwork andweird things
can happen.

• As the server has absolute control, clients may notice the switch just changed will be changed back
a few seconds later if the server controlled train wants to pass it.

• Coupling/uncoupling the same set of trains may end upwith weird things.
• <Ctrl+E> locomotive switchmay have train cars flipped.

12.10 Using the Public Server
A special public server is deployed so that you do not need to use your own computer as the server, avoid-
ing the setup problems youmay encounter. You can find the IP and port numbers here.
To connect to this public server youmust act as described here, using IP and port numbers as found on the
above link, with only a difference: the first player entering the session has to enter by clicking on Client
and not on Server, even if he intends to be the dispatcher. If the port has no player yet, whoever connects
first will be declared the dispatcher, others connected later will be normal players.
The public server runs a special code that is not part of OR. If you plan to run such a server for free, please
contact the email listed in http://tsimserver.com/forums/showthread.php?2560.

12.10.1 Additional info on using the Public Server
• If the computer of the player acting as dispatcher crashes or if the connection with it breaks down,
the public server will try to appoint another player as dispatcher. Such player will receive on his
monitor the followingmessage: You are the new dispatcher. Enjoy!

• If a client crashes or loses the connection, its position is held by the server for about twominutes. If
the client re-enters the gamewithin such time frame, it will re-enter the game in the position where
hewas at themoment of the crash.

12.9. Possible Problems 176

http://www.tsimserver.com/ORFiles031205/ServerInfo.html
http://tsimserver.com/forums/showthread.php?2560

Open RailsManual, Release 1.2.3706 (draft)

12.11 Setting up a Server fromYourOwnComputer
As any online game, you need to do some extra work if youwant to host amultiplayer session.

12.11.1 IP Address
If you are running at home and use a router, you may not have a permanent IP. Thus before you start as a
server, youmust find your IP. The quickest ways are the following:
• Using Google: type in find ip address, then Google will tell you

• If the above does not work, try http://whatismyipaddress.com/ip-lookup/, which shows your IP in
themiddle of the page.

12.11. Setting up a Server fromYourOwnComputer 177

http://whatismyipaddress.com/ip-lookup/

Open RailsManual, Release 1.2.3706 (draft)

12.11.2 Port Forwarding
If you are using a router at home with several computers, your router needs to be told which computer
on your home network should receive the network data OpenRails needs. This is done by enabling Port
Forwarding on the router. The default port OpenRails uses is 30,000. If you change that port number
in the game you’ll need to change the forwarded port number in the router as well. Your router must
be told to forward data arriving from the internet on the correct port to the network IP address of the
computer runningOpenRails. Formore information onNetwork Address Translation (NAT) and howPort
Forwarding works, see this site: http://www.4remotesupport.com/4content/remote_support_NAT.html
Here the following are the steps:
1. Go to http://portforward.com/english/routers/port_forwarding/, which contains a lot of ads - just
focus on the center of this page.

2. Locate the name of themanufacturer of your router, i.e. Airlink and click it:

12.11. Setting up a Server fromYourOwnComputer 178

http://www.4remotesupport.com/4content/remote_support_NAT.html
http://portforward.com/english/routers/port_forwarding/

Open RailsManual, Release 1.2.3706 (draft)

3. A pagemay appear allowing you to select your specificmodel of router:

4. It then shows all the programs (games) for which you want to forward ports. Just click ‘Default
Guide’:

12.11. Setting up a Server fromYourOwnComputer 179

Open RailsManual, Release 1.2.3706 (draft)

5. A page like the following should appear. Ignore the part crossed-out but pay special attention to the
part enclosed in red:

12.11. Setting up a Server fromYourOwnComputer 180

Open RailsManual, Release 1.2.3706 (draft)

6. Then follow the steps listed on the screen. Remember you want to forward port 30000 by default,
but if you change that you’ll have to forward the correct port.

If you still cannot get others connected to your computer, please go to http://www.tsimserver.com/forums
and ask questions.

12.11. Setting up a Server fromYourOwnComputer 181

http://www.tsimserver.com/forums

CHAPTER13

Open Rails SoundManagement

13.1 OpenRails vs. MSTS SoundManagement
OR executes .sms files to a very high degree of compatibility withMSTS.

13.2 .sms Instruction Set
OR recognizes and manages the whole MSTS .sms instruction set, in a way generally compatible with
MSTS. The differences are described below.
The Activation () instruction behaves differently from MSTS with regard to cameras (CabCam,
ExternalCam and PassengerCam): in general OR does not consider which cameras are explicitly activated
within the .sms files. Instead, it uses a sort of implicit activation, that as a general rule works as follows:
• when in an inside view (cabview or passenger view) the related inside .sms files are heard, plus all
external .sms files (with the exception of those related to the trainset where the camera is in that
moment): the volume of those external files is attenuated by a 0.75 factor.

• when in an external view all external .sms files are heard.
For an .sms file to be heard, it must be within the activation distance defined in the related instruction.
A hack is available so as to hear only in the cabview some .sms files residing outside the cabview trainset.
This can be used e.g. to implement radio messages. For this to work the related .sms file must be called
within a .wag file, must contain an Activation (CabCam) statement, and the related wagon must be
within a loose consist, within a not yet started AI train or within the consist where the cabview trainset
resides.
The ScalabiltyGroup () instruction behaves differently from MSTS for AI trains. While MSTS uses
ScalabiltyGroup (0) for AI trains, OR uses for AI trains the same ScalabiltyGroup used for player
trains. This way AI train sound can profit from the many more triggers active for AI trains in ORTS. For
instance, Variable2 trigger is not active inMSTS for AI trains, while it is in ORTS.
If a Stereo() line is presentwithin a ScalabiltyGroup, and amono .wav sound is called,MSTSwill play the
sound at double speed. In order to have it play at the correct speed, a frequency curve halving the speed
has to be inserted. OR behaves the same asMSTS in this case.

182

Open RailsManual, Release 1.2.3706 (draft)

13.2.1 Discrete Triggers
Unlike MSTS, OR does not restrict the operation of some discrete triggers related to locomotives to the
cabview related .sms file (usually named ...cab.sms file). OnOR they are all also active in the file related to
the external view (usually named ...eng.sms file).
ORmanages the followingMSTS discrete triggers:

Trigger Function
2 DynamicBrakeIncrease (currently not managed)
3 DynamicBrakeOff
4 SanderOn
5 SanderOff
6 WiperOn
7 WiperOff
8 HornOn
9 HornOff
10 BellOn
11 BellOff
12 CompressorOn
13 CompressorOff
14 TrainBrakePressureIncrease
15 ReverserChange
16 ThrottleChange
17 TrainBrakeChange
18 EngineBrakeChange
20 DynamicBrakeChange
21 EngineBrakePressureIncrease
22 EngineBrakePressureDecrease
27 SteamEjector2On
28 SteamEjector2Off
30 SteamEjector1On
31 SteamEjector1Off
32 DamperChange
33 BlowerChange
34 CylinderCocksToggle
36 FireboxDoorChange
37 LightSwitchToggle
38 WaterScoopDown
39 WaterScoopUp
41 FireboxDoorClose
42 SteamSafetyValveOn
43 SteamSafetyValveOff
44 SteamHeatChange
45 Pantograph1Up
46 Pantograph1Down
47 Pantograph1Toggle
48 VigilanceAlarmReset
54 TrainBrakePressureDecrease
56 VigilanceAlarmOn
57 VigilanceAlarmOff
58 Couple
59 CoupleB (currently not managed)
60 CoupleC (currently not managed)
61 Uncouple
62 UncoupleB (currently not managed)

Continued on next page

13.2. .sms Instruction Set 183

Open RailsManual, Release 1.2.3706 (draft)

Table 13.1 – continued from previous page
Trigger Function
63 UncoupleC (currently not managed)

MSTS .sms files for crossings (crossing.sms), control error and permission announcements (ingame.sms)
together with their triggers, and for fuel tower aremanaged byOR.
MSTS triggers for derailment are currently not managed byOR.
MSTS .sms files related to weather (clear_ex.sms, clear_in.sms, rain_ex.sms, rain_in.sms, snow_ex.
sms, snow_in.sms) are managed byOR.
The signal file (signal.sms) and its discrete trigger 1 is managed byOR.
Moreover, ORmanages the extended set of discrete triggers provided byMSTSbin.

13.2.2 OR-Specific Discrete Triggers
OR manages the following set of new discrete triggers that were not present under MSTS. If MSTS (or
MSTSbin) executes an .smswhere suchdiscrete triggers are used, it simply ignores the related statements.
In addition, OpenRails extends triggers 23 and 24 (electric locomotive power on/power off), that were
introduced by MSTSbin, to diesel engines. Keys <Shift+Y> (for diesel player engine) and <Ctrl+Y> (for
diesel helpers), apart from physically powering on and off the diesel engines, trigger the above triggers.
Trig-
ger

Function
101 GearUp : for gear-based engines, triggered by the <E> key, propagated to all gear-based diesel

engines of a train and run also for AI trains
102 GearDown : for gear-based engines, triggered by the <Shift+E> key, propagated to all

gear-based diesel engines of a train and run also for AI trains
103 ReverserToForwardBackward : reverser moved towards the forward or backward position
104 ReverserToNeutral : reverser moved towards the neutral position
105 DoorOpen : triggered by the <Q> and <Shift+Q> keys and propagated to the wagons of the

consist
106 DoorClose : triggered by the <Q> and <Shift+Q> keys and propagated to the wagons of the

consist
107 MirrorOpen : triggered by the <Shift+Q> key
108 MirrorClose : triggered by the <Shift+Q> key
Triggers from 109 to 118 are used for TCS scripting, as follows:
Trigger Function
109 TrainControlSystemInfo1
110 TrainControlSystemInfo2
111 TrainControlSystemActivate
112 TrainControlSystemDeactivate
113 TrainControlSystemPenalty1
114 TrainControlSystemPenalty2
115 TrainControlSystemWarning1
116 TrainControlSystemWarning2
117 TrainControlSystemAlert1
118 TrainControlSystemAlert2
Triggers from 121 to 136 are used to synchronize steam locomotive chuffs with wheel rotation. The six-
teen triggers are divided into two wheel rotations. Therefore every trigger is separated from the preced-
ing one by a rotation angle of 45 degrees.
Triggers 137 and 138 are used for the cylinder cocks of steam locomotives:

13.2. .sms Instruction Set 184

Open RailsManual, Release 1.2.3706 (draft)

Trigger Function
137 CylinderCocksOpen : triggeredwhen cylinder cocks are opened
138 CylinderCocksClose : triggeredwhen cylinder cocks are closed
Triggers from 139 to 143 can be used tomake looped brake sounds:
Trig-
ger

Function
139 TrainBrakePressureStoppedChanging : for rolling stock equippedwith train brakes, to use with

triggers 14 and 54, triggeredwhen the automatic brake pressure stops changing
140 EngineBrakePressureStoppedChanging : for locomotives with engine/independent brakes, to

use with triggers 21 and 22, triggeredwhen the engine brake pressure stops changing
141 BrakePipePressureIncrease : for rolling stock equippedwith train brakes, triggeredwhen brake

pipe/brakeline pressure increases
142 BrakePipePressureDecrease : for rolling stock equippedwith train brakes, triggeredwhen

brake pipe/brakeline pressure decreases
143 BrakePipePressureStoppedChanging : for rolling stock equippedwith train brakes, triggered

when brake pipe/brakeline pressure stops changing
Triggers from 150 to 158 are used for the circuit breaker sounds.
The following triggers are activated when the state of the circuit breaker changes:
Trigger Function
150 CircuitBreakerOpen
151 CircuitBreakerClosing
152 CircuitBreakerClosed
The following triggers are activated when the driver moves the buttons or switches in the cab:
Trigger Function
153 CircuitBreakerClosingOrderOn
154 CircuitBreakerClosingOrderOff
155 CircuitBreakerOpeningOrderOn
156 CircuitBreakerOpeningOrderOff
157 CircuitBreakerClosingAuthorizationOn
158 CircuitBreakerClosingAuthorizationOff

13.2.3 Variable Triggers
ORmanages all of the variable triggers managed by MSTS. There can be some difference in the relation-
ship between physical locomotive variables (e.g. Force) and the related variable. This applies to Variable2
and Variable3.
New variables introduced byOR:
• BrakeCyl, which contains the brake cylinder pressure in PSI. Like the traditional MSTS variables, it
can be used to control volume or frequency curves (BrakeCylControlled) and within variable trig-
gers (BrakeCyl_Inc_Past and BrakeCyl_Dec_Past).

• CurveForce, in Newtons when the rolling stock is in a curve. Can be used for curve flange sounds,
with two volume curves: one is SpeedControlled, whichmakes the sound speed dependent too, and
CurveForceControlled. Of course CurveForce_Inc_Past, and CurveForce_Dec_Past are also avail-
able for activating and deactivating the sound.

13.2.4 Sound LoopManagement
Sound loopmanagement instructions are executed as follows byOR:
• StartLoop / ReleaseLoopRelease: the .wav file is continuously looped from beginning to end; when
the ReleaseLoopRelease instruction is executed, the .wav file is played up to its end and stopped.

13.2. .sms Instruction Set 185

Open RailsManual, Release 1.2.3706 (draft)

• StartLoopRelease / ReleaseLoopRelease: the .wav file is played from the beginning up to the last
CuePoint, and then continuously looped from first to last CuePoint; when the ReleaseLoopRelease
instruction is executed, the .wav file is played up to its end and stopped.

• StartLoopRelease / ReleaseLoopReleaseWithJump: the .wav file is played from the beginning up
to the last CuePoint, and then continuously looped from the first to the last CuePoint. When the
ReleaseLoopReleaseWithJump instruction is executed, the .wavfile is playedup to thenextCuePoint,
then jumps to the last CuePoint and stops. It is recommended to use this pair of instructions only
where a jump is effectively needed, as e.g. in horns; this because this couple of instructions is more
compute intensive and can lead to short sound breaks in the case of high CPU loads.

13.2.5 Testing Sound Files at Runtime
The sound debug window is a useful tool for testing.

13.2. .sms Instruction Set 186

CHAPTER14

Open Rails Cabs

OR supports bothMSTS-compatible 2D cabs as well as native 3D cabs, even on the same locomotive.

14.1 2DCabs
OR supports with a high degree of compatibility all functions available inMSTS for 2D cabs, and provides
some significant enhancements described in the next paragraphs.
OR adds support for the ETCS circular speed gauge, as described here.

14.2 High-resolution Cab Backgrounds and Controls
In MSTS the resolution of the cab background image is limited to 1024x1024; this limitation does not
apply in OR as a result of OR’s better handling of large textures.
2D cab backgrounds can reach at least to 3072x3072; however very fine results can be obtained with a
resolution of 2560x1600. The image does not have to be square.
2D cab animations have also been greatly improved; you are reminded here that there are two types of
animated rotary gauges, i.e. normal gauges and general animations using multiple frames. In this second
case in MSTS all of the frames had to be present in a single texture with a max resolution of 640x480. In
OR these frames can be as large as desired and OR will scale them to the correct size. In general it is not
necessary to use a resolution greater than 200x200 for every frame.
The syntax to be used in the .cvf file is the standard one as defined byMSTS.
To clarify this, the position parameters of a sample needle block are described here.
In the Position statement, the first 2 numbers are the position of the top left-hand side of the needle
texture in cabview units with the needle in the vertical position. In the Dial type the last 2 numbers are
the size of the needle texture. The last number (50 in the example) controls the scaling of the needle
texture, i.e. changing this changes the size of the needle that OR displays.
Dial (

Type (SPEEDOMETER DIAL)
Position (549 156 10 50)
Graphic (Speed_recorder_needle_2.01.ace)

187

Open RailsManual, Release 1.2.3706 (draft)

Style (NEEDLE)
ScaleRange (0 140)
ScalePos (243 115)
Units (KM_PER_HOUR)
Pivot (38)
DirIncrease (0)

)

Next is an example of a control animation, this one is a simple 3 frame animation. The examples shown in
the following images are the two rotary switches to the right of the two lower brake gauges, both being
3 position. (The left most switch is for the headlights). For these animations the graphic was done at
1600x1600; when each framewas finished it was scaled down to 200x200 and placed into the animation
texture. Note the extreme sharpness of these controls in the inset image.
Adding a slight amount of 2x2 pixel blur helps the animation blend into the background better (this has
been done to the gauge needles).
Below is the appropriate part of the CVF. The scaling is controlled by the last two digits of the Position
statement:
TriState (

Type (DIRECTION TRI_STATE)
Position (445 397 35 35)
Graphic (Switch_nob_3.0_Transmission.ace)
NumFrames (3 3 1)
Style (NONE)
MouseControl (1)
Orientation (0)
DirIncrease (0)

)

Note that the “AirbrakeOn” light (on the panel upper left) has also been animated. This is a simple 2 frame
animation.

14.2. High-resolution Cab Backgrounds and Controls 188

Open RailsManual, Release 1.2.3706 (draft)

Shown above are two pictures of one hi-res 2D cabview, one showing the whole cab, and the other one
showing the detail of some controls. In this example the cab background image used was cut down to
2560x1600. The texture for the Speed Recorder needle is 183x39 and for the brake gauge needles is
181x29, Note the odd number for the width. This is required as OR (and MSTS) assume the needle is in
the center of the image. The Reversing andHeadlight switch animation frames are 116x116.
There are as yet no specific tools to create these cabviews; a standard imagemanipulation program to do
all textures is required, and to create any new items, e.g. the gauge faces, a standard drawing program
can be used. To actual set up the cabview and to position the animations the .cvf file is modified with a
standard text editor, and OR is used as a viewer, using a straight section of track on a quick loading route.
Through successive iterations one arrives quite quickly at a satisfactory result.

14.2.1 Configurable Fonts
ORsupports a configurable font family, with font size selection, and a choice of regular or bold style. More
than one font or size can be used in the same cabview. This does not affect the display inMSTS.
An optional line of the form ORTSfont (fontsize fontstyle "fontfamily") must be inserted into
the .cvf block of the digital control or digital clock, where fontsize is a float (default value 10), fontstyle an
integer having the value 0 (default) for regular and 1 for bold, and fontfamily is a stringwith the font family
name (ex. “Times New Roman”). The default is “Courier New”. A convenient font, if available, is “Quartz
MS” or “Quartz”, whichmodels a 7-segment display.
Here is an example that displays the digital clock with a 12 pt. bold font using the Sans Serif font family:
DigitalClock (

Type (CLOCK DIGITAL_CLOCK)
Position (40 350 56 11)
Style (12HOUR)
Accuracy (1)
ControlColour (255 255 255)

14.2. High-resolution Cab Backgrounds and Controls 189

Open RailsManual, Release 1.2.3706 (draft)

ORTSFont (12 1 "Sans Serif")
)

It is acceptable if only the first parameter of ORTSFont is present, or only the first two, or all three. Note
that you cannot use the MS Cabview editor on the .cvf file after having inserted these optional lines, be-
cause the editor will delete these added lines when the file is saved.

14.3 3D cabs
The key to enter into a 3D cab (if the player locomotive has one) is <Alt+1>, in case locomotive has both
2D and 3D cabs provided. Key <1> can also be used to enter to 3D-cab-only locomotives.

14.3.1 Development Rules
• The 3D cab is described by an .s file, the associated .ace or .dds files, and a .cvf file having the same
name as the .s file. All these files reside in a folder named CABVIEW3D created within the main folder
of the locomotive.

• If the .cvf file cannot be found in the CABVIEW3D folder, the 3D cab is associated with the .cvf file of
the 2D cab.

• Instruments are namedwith the same conventions as 2D cabs, i.e. FRONT_HLIGHT, SPEEDOMETER, etc.
• A cab can have multiple instances of the same instruments, for example multiple clocks or
speedometers.

• Instruments are sorted based on the order of their appearance in the .cvf file, for example
SPEEDOMETER:0 corresponds to the first speedometer in the .cvf file, SPEEDOMETER:1 corresponds to
the second one.

• An instrument can have multiple subgroups to make the animation realistic, for example,
TRAIN_BRAKE:0:0 and TRAIN_BRAKE:0:1 belong to the instrument TRAIN_BRAKE:0. However, if the
instrument is a digital device, the second number will be used to indicate the font size used, for ex-
ample SPEEDOMETER:1:14means the second speedometer (which is digital as defined in .cvf) will be
renderedwith 14pt font. This may be changed in futureOR releases. The important information for
a digital device is its location, thus it can be defined as an object with a small single face in the 3D
model.

• Animation rangesmust be in agreement with the .cvf file
• Within theWagon section of the .eng file a block like the following one has to be generated:

ORTS3DCab(
ORTS3DCabFile (Cab.s)
ORTS3DCabHeadPos (-0.9 2.4 5.2)
RotationLimit (40 60 0)
StartDirection (12 0 0)

)

• It is also possible to animate the wipers, by inserting into the .s file an animation named
EXTERNALWIPERS:0:0

• Gauges of solid type have to be named AMMETER:1:10:100; where the three numbers indicate that
this is the second ammeter, that it has a width 10 mm, and a maximum length of 100 mm. The color
and direction/orientation follow those defined in .cvf files.

• Digits for 3D cabs can now use customACE files; e.g. name the part as CLOCK:1:15:CLOCKS. This will
draw the second clock with 15mm font dimension, with the CLOCKS.ACE file in CABVIEW3D containing
the font. If no ace is specified, the default will be used.

14.3. 3D cabs 190

Open RailsManual, Release 1.2.3706 (draft)

• Mirrors and doors can be operated from 3D cabs. The names used are LEFTDOOR, RIGHTDOOR and
MIRRORS.

• How to control the view in a 3D cab is described here.
A demo trainset with a 3Dcab, that may be useful for developers, can be downloaded from: http://www.
tsimserver.com/Download/Df11G3DCab.zip.

14.3.2 A Practical Development Example For a Digital Speedometer
Let’s suppose youwish to create a digital speedometer using a size 14 font.
To explain it in gmax language, you must have an object called SPEEDOMETER in the cab view and it must be
comprised of at least one face.
As the sample cab has only one digital speedometer, it can be named SPEEDOMETER_0_14.
The number 0 indicates that this is the first speedometer gauge in the cab and the number 14 indicates
the size of the font to display. Note that an underscore is used to separate the numbers as the LODexport
tool does not support the use of colons in object names when exporting. More on this later.
The speed does not display where the face for the SPEEDOMETER object is located but where the pivot point
for the SPEEDOMETER object is located. Normally you would place the SPEEDOMETER object somewhere in
the cabwhere it will not be seen.
With the SPEEDOMETER_0_14 object selected in gmax, go to the Hierarchy tab, select Affect Pivot Only and
click Align to World to reset the orientation to world coordinates. Then use the Select and Move tool to
move the pivot towhere in the cab youwish the numerals to appear. As you have aligned the pivot point to
World coordinates the numerals will display vertically. As most locomotive primary displays are normally
angled youmay have to rotate the pivot point so that it aligns with the angle of the display screen.
Export the .S file for the cab as usually.
Youwill then have to uncompress the .s file for the cab using Shape FileManager or the .S file decompres-
sion tool of your choice.
Then open the .S file with a text editor and search for the letters “speed” until you find the first instance
of SPEEDOMETER_0_14 and change it to be SPEEDOMETER:0:14. Search again and find the second instance of
SPEEDOMETER_0_14 and change that also to SPEEDOMETER:0:14. Save the .S file in the text editor.
Now just onemore thing. Download the DF11G3DCab demo trainset. In the CABVIEW3D folder of that down-
load youwill find an ace file called SPEED.ACE. Copy that file and paste it into the CABVIEW3D folder for your
model.
Now, openOR and test your speedometer.

14.3. 3D cabs 191

http://www.tsimserver.com/Download/Df11G3DCab.zip
http://www.tsimserver.com/Download/Df11G3DCab.zip

CHAPTER15

OR-Specific Route Features

As a general rule and as already stated, Open Rails provides all route functionalities that were already
available forMSTS, plus some opportunities such as also accepting textures in .dds format.

15.1 Repetition of Snow Terrain Textures
ORprovides a simpleway to add snow terrain textures: the following default snow texture names are rec-
ognized: ORTSDefaultSnow.ace and ORTSDefaultDMSnow.ace, to be positionedwithin folder TERRTEX\SNOW
of the concerned route. For the snow textures that are missing in the SNOW subfolder, and only for them,
ORTS uses such files to display snow, if they are present, instead of using file blank.bmp.
To have aminimumworking snow texture set, the file microtex.acemust also be present in the SNOW sub-
folder.

15.2 Operating Turntables
A cool feature available in OR is the one of operating turntables. InMSTS they are static, and can’t rotate
trainsets. The best way to get a turntable to be operational is to refer to an example. So here are the
instructions and the files to test this function, both for route Catania-Messina (SICILIA 1) and for other
routes using a1t27mturntable.s. Route Catania-Messina can be downloaded from here . A .ws file within
theWorld subdirectory must be replaced with file w-005631+014158.zip available in the Open Rails pack
in the DocumentationSampleFilesManual subfolder. (this has nothing to do with turntables, it’s a file that
contains incoherent data that can cause a crash). Pls. note that also the other sample files cited in this
paragraph are available in such subfolder.
Two test paths, included in file Turntable_PATHS.zip, one for each turntable in the route, which can be
used either in explore mode or within activities are available in the Open Rails pack. Within the route’s
folder an OpenRails subfolder must be created, that must contain 2 files. The first one is following file
turntables.dat, which contains the data needed toOR to locate and specify the turntable.
turntables.dat:
2
Turntable(
WFile ("w-005625+014198.w")
UiD (1280)

192

http://www.trainsimhobby.net/infusions/pro_download_panel/download.php?did=544

Open RailsManual, Release 1.2.3706 (draft)

XOffset (0)
YOffset (-1.92177)
ZOffset (13.4)
TrackShapeIndex (253)
Animation ("TRACKPIECE")
Diameter (27)
)
Turntable(
WFile ("w-005631+014158.w")
UiD (638)
XOffset (0)
YOffset (-1.92177)
ZOffset (13.4)
TrackShapeIndex (253)
Animation ("TRACKPIECE")
Diameter (27)
)

To generate this file for other routes following has to be taken into account:
• the first linemust be blank
• the number in the second line (2 in the above file) is the number of operating turntables within the
route

• WFile is the name of the .w file where the turntable is present
• The number in the UiD line is the UiD number of the TrackObj () block within the .w file related to
the turntable

• XOffset, YOffset and ZOffset are the offsets of the center of rotation of the turntable with respect
to the zero of the turntable shape

• TrackShapeIndex is the index of the TrackShape () block within tsection.dat that refers to the
turntable; please note that if a new TrackShape () block for the turntable is needed, it is not nec-
essary tomodify tsection.dat; it is possible to proceed as described here

• The Animation parameter is the name of theMatrix of the rotating part within the .s file
• the Diameter value is the diameter of the turntable in meters.

The above file refers to turntables using the a1t27mturntable.s shape.
The second file to be inserted within the route’s Openrails subfolder is a small integration .trk file that
indicates the name of the .sms sound file to be associated to the turntable. For the route SICILIA 1 such
file is therefore named SICILIA 1.trk, like its parent file. Here is the file content.
SICILIA 1.trk:
include ("../Sicilia 1.trk")

ORTSDefaultTurntableSMS (turntable.sms)

The first linemust be blank.
File a1t27mturntable.smust be modified to add the animation data, as MSTS has provided it as a static
file. To do this, uncompress it with Route Riter or Shapefilemanager and insert just above the last paren-
thesis the contentsoffilea1t27mturntable_animations.zip. If other .sfiles have tobeused for turntables,
or new ones have to be developed, it must be considered that the rotation animation should be as follows:
animation (3599 30

anim_nodes (..
..
..
..
anim_node TRACKPIECE (

controllers (..

15.2. Operating Turntables 193

Open RailsManual, Release 1.2.3706 (draft)

tcb_rot (3
tcb_key (0 0 0 0 1 0 0 0 0 0)
tcb_key (1800 0 1 0 0.0 0 0 0 0 0)
tcb_key (3600 0 0 0 -1 0 0 0 0 0)

)

or as follows:
animation (3599 30

anim_nodes (..
..
..
..

anim_node WHEEL1 (
controllers (1

tcb_rot (5
slerp_rot (0 0 0 0 1)
slerp_rot (900 0 0.7071068 0 0.7071067)
slerp_rot (1800 0 1 0 -1.629207E-07)
slerp_rot (2700 0 -0.7071066 0 0.7071069)
slerp_rot (3600 0 0 0 1)

)
)

)

The above names of the anim_nodes are of course free choice. The animation rotation direction as defined
abovemust be counterclockwise.
Within the base Sound folder (not the one of the route) the .smsfile turntablesSOUND.zip has to be added
to provide sound when the turntable rotates. It uses the two default MSTS .wav files for the sound. They
have a bit a low volume. It is open to everyone to improve such files. Discrete trigger 1 is triggered when
the turntable starts turning empty, discrete trigger 2 is triggered when the turntable starts turning with
train on board, and discrete trigger 3 is triggeredwhen rotation stops.
To help generating the tsection.dat entries for new turntable types a rough .xls spreadsheet
(turntable_sectionidxs.xls) can be found in Documentation\SampleFiles\Manual. It computes the X, Z and
degree parameters to be inserted in the SectionIdx lines of the TrackShape block within the tsection.dat
file. You only have to insert the diameter of the turntable and the degree step. Of course you have to take
only the lines up to the one preceding the onewith degrees = 180.
Already many existing turntables have been successfully animated and many new other have been cre-
ated. More can be read in this forum thread .

15.2.1 Path laying and operation considerations
By building up a path that enters the turntable, exits it from the opposite side and has a reversal point few
meters after the end of the turntable, it is possible to use the turntable in activity mode. The player will
drive the consist into the turntable and stop it. At that point the reversal point will have effect and will
logically lay the consist in the return subpath. The player will put the consist in manual mode, rotate the
turntable by 180 degrees and return to auto mode. At this point the consist will be again on the activity
path. If instead the player wants the consist to exit to other tracks, he must drive the consist in manual
mode out of the turntable. If he later wants to drive back the consist into the turntable and rotate the
train so that it exits the turntable on the track where it initially entered the turntable, he can pass back
the train to auto mode after rotation, provided the path is built as defined above. By using the feature to
change player train it is possible also tomove in and out any locomotive on any track of e.g. a roundhouse.

15.2. Operating Turntables 194

http://www.elvastower.com/forums/index.php?/topic/28591-operational-turntable/

Open RailsManual, Release 1.2.3706 (draft)

15.3 .w File modifiers
An Openrails subfolder can be createdwithin the route’s World folder. Within this subfolder .wfile chunks
can be positioned. ORTSwill first read the base .w files, and thenwill correct such fileswith the file chunks
of the Openrails subfolder. This can be used both tomodify parameters or to addOR-specific parameters.
Here an example of a w. file chunk for USA1 .w file w-011008+014318.w:
SIMISA@@@@@@@@@@JINX0w0t______

Tr_Worldfile (
CarSpawner (

UiD (532)
ORTSListName ("List2")

)
CarSpawner (

UiD (533)
ORTSListName ("List3")

)
Static (

UiD (296)
FileName (hut3.s)

)
)

With the two CarSpawner block chunks OR interprets the CarSpawners with same UiD present in the
base .w file as extended ones (see here). With the Static block OR replaces the shape defined in the Static
block with same UiD within the base .w file with the one defined in the file chunk. WAny Pickup, Trans-
fer, Forest, Signal, Speedpost, LevelCrossing, Hazard, CarSpawner, Static, Gantry may have parameters
modified or added by the “modifying” .w file.

Caution: If the route is edited with a route editor, UiDs could change and so the .w file chunks could
be out of date and should bemodified.

Caution: Entering wrong data in the .w file chunksmay lead to programmalfunctions.

15.4 Multiple car spawner lists
With thisOR-specific feature it is possible to associate any car spawner tooneof additional car lists, there-
fore allowing e.g. to have different vehicles appearing in a highway and in a small country road.
The additional car lists have to be definedwithin a file named carspawn.dat to be inserted in an Openrails
subfolder within the Route’s root folder. Such file must have the structure as in following example:
SIMISA@@@@@@@@@@JINX0v1t______

3
CarSpawnerList(
ListName ("List1")
2
CarSpawnerItem("car1.s" 4)
CarSpawnerItem("postbus.s" 4)
)
CarSpawnerList(
ListName ("List2")
3
CarSpawnerItem("policePHIL.S" 6)

15.3. .w File modifiers 195

Open RailsManual, Release 1.2.3706 (draft)

CarSpawnerItem("truck1.s" 13)
CarSpawnerItem("postbus.s" 6)
)
CarSpawnerList(
ListName ("List3")
2
CarSpawnerItem("US2Pickup.s" 6)
CarSpawnerItem("postbus.s" 13)
)

The first 3 defines the number of the additional car spawner lists. To associate a CarSpawner block to one
of these lists, a line like this one:
ORTSListName ("List2")

has to be inserted in the CarSpawn block, in any position after the UiD line.
If the CarSpawner block does not contain such additional line, it will be associated with the base
carspawn.dat file present in the route’s root directory.

Caution: If the route is edited with theMSTS route editor modifying the .w files referring to the addi-
tional car spawners, the above line will be deleted.

To avoid this problem, two other possibilities are available to insert the additional line. One is described
here. The other one is to use the OR specific TSRE route editor, that natively manages this feature. Also
in the latter case, however, if the route is later edited with the MSTS route editor, the above line will be
deleted.

15.5 Route specific TrackSections and TrackShapes
It quite often occurs that for special routes also special TrackSections and TrackShapes are needed. Be-
ing file tsection.dat unique for every installation, for such routes a so-called mini-route installation was
needed. The present feature overcomes this problem. The route still uses the common tsection.dat,but
it can add to it route-specific TrackSections and TrackShapes, and can modify common ones. This occurs
by putting in an OpenRails subfolder within the route’s root folder a route-specific chunk of tsection.dat,
which includes the TrackSections and TrackShapes to be added or modified. Here a fictitious example for
route USA1 (first linemust be blank):
include ("../../../Global/tsection.dat")
_INFO (Track sections and shapes specific for USA1)
_Skip (
Further comments here
)
TrackSections (40000
_Skip (
Comment here
)
_SKIP (Bernina)

TrackSection (33080
SectionSize (0.9 1.5825815)

)
TrackSection (19950

SectionSize (0.9 12)
)

)
TrackShapes (40000
_Skip (
Comment here

15.5. Route specific TrackSections and TrackShapes 196

Open RailsManual, Release 1.2.3706 (draft)

)
-INFO(Bernina Pass narrow gauge sections / wood tie texture)
_INFO(by Massimo Calvi)
_INFO(straight sections)

TrackShape (30000
FileName (track1_6m_wt.s)
NumPaths (1)
SectionIdx (1 0 0 0 0 33080)

)
TrackShape (19858

FileName (track12m_wt.s)
NumPaths (1)
SectionIdx (1 0 0 0 0 19950)

)
)

In thisfictitious example thefirst TrackSectionandTrackShape is present also in theGlobal tsection.dat, so
the effect is that the original TrackSection and TrackShape aremodified; the second ones are not present,
and so they are added to the lists.

Note: to be able to use these modified items with the actual MSTS RE or with Or’s TSRE5 route editor
it is necessary that these modified items are present also in the original tsection.dat file. However, when
the work with the RE is terminated and route is distributed, it is sufficient to distribute the above route’s
specific tsection.dat.

15.6 Overheadwire extensions
15.6.1 Double wire
ORprovides an experimental function that enables the upper wire for electrified routes. The optional param-
eter ortsdoublewireenabled in the .trk file of the route can force the activation or deactivation of the
option overriding the user setting in the options panel.
In this example the upper wire is enabled overriding the user setting:
OrtsDoubleWireEnabled (On)

while in this one the upper wire is forced to be disabled:
OrtsDoubleWireEnabled (Off)

Another parameter (ortsdoublewireheight) specifies the height of the upper wire relative to the contact
wire; if not specified the default is 1 meter. In this example the upper wire is 130cm above the main wire
(as in most Italian routes):
include ("../tures.trk")

OrtsTriphaseEnabled (Off)
OrtsDoubleWireEnabled (On)
OrtsDoubleWireHeight (130cm)

Of course you can use any distance unit of measure supported byOR.

15.6.2 Triphase lines
Themodern electric locos are powered by DC ormonophase AC, but some years ago there were triphase
ACpowered locos. A triphase circuit needs threewires (one for each phase, nowire is needed for neutral);

15.6. Overheadwire extensions 197

Open RailsManual, Release 1.2.3706 (draft)

in rail systems twowires are overhead and the third is made by the rails.
OR can enable the second overheadwire with the parameter ortstriphaseenabled this way:
OrtsTriphaseEnabled (On)

If the parameter is missing or its value is Off the usual single wire is displayed.
Another parameter (ortstriphasewidth) specifies the space between the two wires with a default (if the
parameter is not declared) of 1meter.

15.7 Loading screen
In the .trk file of the route the parameter loadingscreen can be used as in this example:
LoadingScreen (Load.ace)

If in themain directory of the route there is a filewith the same namebutwith extension .dds and theDDS
texture support is enabled the latter is displayed instead of that with .ace extension. If the parameter is
omitted then the file load.ace is loaded (as inMSTS) or load.dds (if present and, again, the dds support is
enabled).
The loading screen image can have any resolution and aspect ratio; it will be displayed letter-boxed on the
screen keeping the aspect ratio.
Another optional parameter ortsloadingscreenwide, can specify the image to showwhen the user loads
the route on awide (16:9) screen. This parameter is ignoredwhen a traditional 4:3 display is used.

15.8 MSTS-Compatible semaphore indexing
When a signal shape has a semaphore (moving part), and its animation definition within the .s file has only
two lines (e.g slerp_rot lines), MSTS interprets the SemaphorePos() lines within sigcfg.dat accordingly
to following rule:
- SemaphorePos (2) is executed as SemaphorePos (1)
- SemaphorePos (1) is executed as SemaphorePos (0)
- SemaphorePos (0) is executed as SemaphorePos (0).

Open Rails follows this rule, in case one of the SemaphorePos lines has 2 as parameter. It does not follow
this rule in case only 1 and 0 as parameters are present, because in such a case following the above rule
they would be both executed as SemaphorePos (0) and therefore the semaphore would be static.
It is however strongly recommended to always have three animation lines within the .s file, where usually
the third line repeats the parameters of the first line (except for the animation step).

15.7. Loading screen 198

CHAPTER16

DevelopingORContent

Open Rails already has some own development tools and is defining and developing other ones. A path
editor is available within TrackViewer under the Tools button in the main menu window. An editor for
timetablemode is also available under the Toolsbutton. Route editor and consist editor are in an advanced
stageof development andmayalreadybe tested. Youcan readabout anddownload the consist editor here
. You can read about and download the TSRE5 route editor at this link
IT is of course already possible to develop OR content (rolling stock, routes, 3D objects, activities) using
the tools used to develop MSTS content, thanks to the high compatibility that OR has with MSTS. Below,
some of the advantages of OR-specific content are described.

16.1 Rolling Stock
• OR is able to display shapes with many more polygons thanMSTS. Shapes with more than 100.000
polys have been developed and displayedwithout problems.

• Thanks to the additional physics description parameters, a much more realistic behavior of the
rolling stock is achieved.

• 3D cabs add realism.
• OR graphics renders the results of the rolling stock developers at higher resolution.
• Rolling stock running on super-elevated track improves gaming experience.

16.2 Routes
• Routes are displayed in higher resolution.
• Extended viewing distance yields muchmore realism.
• Double overhead wire increases the realism of electrified routes.
• Built-in triphase overhead electric line.
• Extended signaling features providemore realistic signal behavior.
• Widescreen and hi-res loading screen.

199

http://www.elvastower.com/forums/index.php?/topic/28623-new-consist-editor-for-open-rails/
http://www.elvastower.com/forums/index.php?/topic/26669-new-route-editor-for-open-rails/

Open RailsManual, Release 1.2.3706 (draft)

16.3 Activities
• Timetable mode is a new activity type available only in Open Rails that allows for development of
timetable based gaming sessions.

• Byusing thedispatchermonitorwindow, thedispatcherHUD, and theability to switch the camera to
anyAI train, theplayer canmorecloselymonitor andcontrol theexecutionof conventional activities.

• Extended AI shunting greatly increases the interactions between trains.
• NewOR-specific additions to activity (.act) files enhance activities.

16.4 Testing andDebugging Tools
As listed here, a rich and powerful set of analysis tools eases the testing and debugging of content under
development.

16.5 Open Rails Best Practices
16.5.1 Polys vs. DrawCalls –What’s Important
Poly counts are still important in Open Rails software, but with newer video cards they’re much less im-
portant than in the early days ofMSTS.What does remain important toboth environments areDrawCalls.
ADrawCall occurswhen theCPUsends ablockof data to theVideoCard. Eachmodel in view, plus terrain,
will evoke one or more Draw Calls per frame (i.e., a frame rate of 60/second means all of the draw calls
needed to display a scene are repeated 60 times a second). Given the large number of models displayed
in any scene and a reasonable frame rate, the total number of Draw Calls per second creates a very large
demand on the CPU. Open Rails software will adjust the frame rate according to the number of required
Draw Calls. For example, if your CPU can handle 60,000 Draw Calls per second and the scene in view
requires 1000 Draw Calls, your frame rate per second will be 60. For the same CPU, if the scene requires
2000 Draw Calls, your frame rate per second will be 30. Newer design / faster CPU’s can do more Draw
Calls per second than older design / slower CPU’s.
Generally speaking, each Draw Call sends one or more polygon meshes for each occurrence of a texture
file for a model (and usually more when there are multiple material types). What this means in practice is
if you have a model that uses two texture files and there are three instances of that model in view there
will be six draw calls – once for each of themodels (3 in view) times once for each texture file (2 files used),
results in six Draw Calls. As an aid to performance Open Rails will examine a scene and will issue Draw
Calls for only the models that are visible. As you rotate the camera, other models will come into view and
some that were in view will leave the scene, resulting in a variable number of Draw Calls, all of which will
affect the frame rate.
Model builders are advised that the best performance will result by not mixing different material types in
a texture file as well as using the fewest number of texture files as is practical.

16.6 Support
Support can be requested on theOR forum on http://www.elvastower.com/forums.
TheOR development team, within the limits of its possibilities, is willing to support contents developers.

16.3. Activities 200

http://www.elvastower.com/forums

CHAPTER17

Version 1.2 Known Issues

17.1 Empty Effects Section in .eng File
If an .eng file is used that has an Effects() section that contains no data, the engine will not be loaded by
ORTS. In this case it is suggested to fully delete the Effects() section.

17.2 Curly brackets in file sigscr.dat
Open Rails does not correctly handle, and also generates a misleading error message in file OpenRail-
sLog.txt file, when there is a curly bracket at the end of a conditional statement, e.g.:
if (next_hp ==# 0 && next_gue !=# 2) {

Therefore the file must be edited as follows to be correctly interpreted byOpen Rails:
if (next_hp ==# 0 && next_gue !=# 2)
{

201

CHAPTER18

In CaseOfMalfunction

18.1 Introduction
When you have an issuewithOpen Rails (ORTS), nomatter what it is, theOR development team is always
thankful for reports of possible bugs. Of course, it is up to the developers to decide if something is a real
bug, but in any case your reporting of it is an important step in helping the development team to improve
Open Rails.

18.2 Overview of Bug Types
The development team uses twoways of keeping track of bugs:
1. So called “Maybe-Bugs” are reported in a simple forum post: see next paragraph for links. This is
done in order to give developers a chance to filter out problems caused by circumstances the devel-
opment team cannot control such as corrupted content.

2. Decided Bugs are issues a developer has looked at and has found to be a real issue in the program
code of Open Rails. They are reported at our Bug Tracker at https://bugs.Launchpad.net/or/ (regis-
tration is required).

18.3 Maybe-Bugs
If you find an issuewithOpen Rails you should first file aMaybe-Bug report at any of the following forums
monitored by theOpen Rails development team:
• Elvas Tower, “Maybe it’s a bug” section of the Open Rails sub-forum. This is the forum that is most
frequently checked by theOR development team;

• TrainSim.com, “Open Rails discussion” section of theOpen Rails sub-forum
• ...more forumsmay be added in the future

AMaybe-Bug report consists of a simple post in a new topic in the forum. The title of the topic should be
of the form “Open Rails V#### Bug: +++++”, where #### is the version number of the Open Rails release
you are having problemswith, and +++++ is a quick description of the problemyou are having. This format
aids the developers in getting a quick idea of the issue being reported.

202

https://bugs.Launchpad.net/or/
http://www.elvastower.com/
http://www.trainsim.com/

Open RailsManual, Release 1.2.3706 (draft)

The first post in this newly started topic should give further information on your problem: Start out with
exactly what problem you are getting, describing it in narrative and supplementing this description with
screenshots, error messages produced byOpen Rails, and so on.
Next give a clear indication of the content you were using (that is: Route, Activity, Path, Consist, Locomo-
tive and Rolling Stock; whatever is applicable), whether it is freeware or payware, what the exact name
of the downloaded package was and where it can be obtained. Of course, posting a download link to a
trustworthy site or directly attaching files to the post also is OK.
Continue with an exact description of what you were doing when the problem arose (this may already be
included in the first paragraph, if the problem is train-operation-related). Again, screenshots etc. can be
helpful to better describe the situation.
Lastly, take a look at your desktop for a text file entitled OpenRailsLog.txt. Upload and attach this file to
the end of your post. This is very important as the log file contains all relevant program data the user has
no chance to ever see, and thus it is one of the most important sources of information for the developer
trying to solve your problem.
Once your post has been submitted, keep adding further information only in additional posts, in order to
avoid the risk of people not noticing your edits. Also, please be patient with developers responding to
your report. Most forums are checked only once a day, so it may take some time for a developer to see
your report.
Important: Themore information a developer gets from the first post, the quicker hewill be able to locate,
identify and eventually resolve a bug. On the other hand, reports of the form, “I have problem XYZ with
recently installedOpenRails. Can youhelpme?” are of little use, as all required informationmust be asked
for first.
Important: Please donot rush to report aDecidedBugon theBugTracker before a developer has declared
your problem a real bug!
The above description is available in a condensed “checklist” form below.

18.4 Decided bugs
Many bug reports never even make it to the status of a Decided Bug, being a content or user error. Some
Maybe-Bugs, however, will eventually be declared Decided Bugs. Such secured bugs should be reported
at our Bug Tracker, when the developer taking the report asks you to.
The Open Rails Bug Tracker is found at https://bugs.Launchpad.net/or/, following the “Report a bug” link
in the upper half to the right of the screen. You will need to register at Launchpad in order to be able to
report a bug.
Once that is done, follow the steps the software takes you through: In “Summary” copyandpaste thequick
description of the bug you also entered as a forum thread name for theMaybe-Bug report.
Next, look through the list of topics Launchpad thinks your bug may be related to – maybe your issue has
already been reported?
If you cannot relate to any of the suggested bugs, click the “No, I need a new bug report” button and con-
tinue.
In the “Further Information” field, enter the same info you also gave in the Maybe-Bug report (copy
and paste). Screenshots may need to be added as attachments, and you will also need to re-upload the
OpenRailsLog.txt file. Do not forget to include all info you added in additional posts to the original
Maybe-Bug report, and also add a link to the latter at the bottom of the “Further Information” field.
Once your bug has been submitted, keep adding further information only in additional posts, in order to
avoid the risk of developers missing the additional info.
The above description is available in a condensed “checklist” form below.

18.4. Decided bugs 203

https://bugs.Launchpad.net/or/

Open RailsManual, Release 1.2.3706 (draft)

Important: Do not say “All information is included in the linked thread” as skimming through a thread for
the crucial bit of information is a really annoying task. Instead, please provide a concise, but complete
summary of theMaybe-Bug thread in the “Further Information” field.
Important: Pleasedonot rush to report aDecidedBugonourBugTracker before adeveloper has declared
yourMaybe-Bug a real bug!

18.5 Additional Notes
Please do not post feature requests as aMaybe-Bug to the Bug Tracker on Launchpad!
Please do not report the same bugmultiple times, just because the first report did not get attentionwithin
a short time. Sorting out the resulting confusion can slow things down evenmore.
Please do not report Bugs directly to the Bug Tracker when you are not 100% sure it’s a real, significant
bug, or have not been asked to do so.
Don’t be offended by bug statuses - they often sound harsher than they really mean, like “Invalid”.
Don’t expect a speedy response in general – issues will get looked at as andwhen people have the time.
Be prepared to expand upon the initial report – it is remarkably easy to forget some crucial detail that
others need to find and fix your bug, so expect to be asked further questions before work can begin.
Try to avoid comments that add no technical or relevant detail – if youwant to record that the bug affects
you, Launchpad has a dedicated button at the top: “Does this bug affect you?”.
If you wish to follow the progress of someone else’s bug report and get e-mail notifications, you can sub-
scribe to bugmail from the sidebar.

18.6 Summary: Bug Report Checklists
“Maybe-Bug”
• New topic in appropriate sub-forum
• Topic Title: “Open Rails V<version> Bug: <description>”
• Description of problem, supplemented by screenshots etc.
• Content used (Route, Activity, Path, Consist, Locomotive & Rolling Stock; choose applicable); Free-
ware / Payware?; Package name& download location / download link

• Narrative of actions shortly before & at time of problem, supplemented by screenshots etc.
• Attach log file (Desktop: OpenRailsLog.txt)
• Add further info only in additional posts
• Be patient

Decided Bug
• Report to Bug Tracker only if asked to do so
• https://bugs.Launchpad.net/or/ (Registration required) -> “Report a bug”
• “Summary”: Description from the topic title of theMaybe-Bug report
• Look for similar, already reported bugs
• Condense wholeMaybe-Bug thread into “Further information” field
• Add link to originalMaybe-Bug report
• Re-upload and attachOpenRailsLog.txt & explanatory screenshots etc.

18.5. Additional Notes 204

https://bugs.Launchpad.net/or/

Open RailsManual, Release 1.2.3706 (draft)

• Add further info only in additional posts
• Be patient

18.7 Bug Status in Launchpad
• New – this is where all bugs start. At this point, the bug has not been looked at by the right people
to check whether it is complete or if more details are needed.

• Incomplete – a member of the Open Rails teams has decided that the bug needs more information
before it can be fixed. The personwho created the bug report does not have to be the one to provide
the extra details. A bug remaining incomplete for 60 consecutive days is automatically removed.

• Opinion – the bug has been identified as an opinion, meaning that it isn’t clear whether there is ac-
tually a bug or how things should be behaving.

• Invalid – a member of the team believes that the report is not actually a bug report. This may be
because Open Rails is working as designed and expected or it could just be spam. The bug may be
put back to the new state if further information or clarity is provided in comments.

• Won’t Fix – a member of the team has decided that this bug will not be fixed at this time. If the bug
report is a “feature request”, then they have decided that the feature isn’t desired right now. This
status does not mean something will never happen but usually a better reason for fixing the bug or
adding the feature will be needed first.

• Confirmed – a member of the team has been able to experience the bug as well, by following the
instructions in the bug report.

• Triaged – a member of the team has assigned the importance level to the bug or has assigned it to a
specific milestone. Bugs generally need to get to this state before the developers will want to look
at them in detail.

• In Progress – one ormoremembers of the team are currently planning to or actuallyworking on the
bug report. They will be identified by the assignee field.

• Fix Committed – the fix for the bug report or feature request has been completed and checked in
to the source control system, Subversion. Once there, the fix will usually appear in the next experi-
mental release.

• Fix Released – The code containing the bug fix has been released in an official release.

18.8 Disclaimer
Having posted a bug report in a forum or in Launchpad does not generate any obligation or liability or
commitment for theORdevelopment team to examine andfix thebug. TheORdevelopment teamdecides
whether it will examine and fix the bug on a completely voluntary and autonomous basis.

18.7. Bug Status in Launchpad 205

CHAPTER19

Open Rails Software Platform

19.1 Architecture
To better understand how the Open Rails game operates, performs, and functions, the architecture di-
agram below lays out how the software code is organized. The architecture of the Open Rails software
allows for modular extension and development, while providing standardized methods to customize the
simulation experience.

Note: Please note that this diagram includes many capabilities and functions that are yet to be imple-
mented.

206

Open RailsManual, Release 1.2.3706 (draft)

19.2 Open Rails Game Engine
The Open Rails software is built on Microsoft’s XNA game platform using XNA Framework 3.1 and .NET
Framework 3.5 SP1. Source code is developed inMicrosoft’s Visual C# programming language.
The XNA Framework is based on the native implementation of .NET Compact Framework for Xbox 360
development and .NET Framework onWindows. It includes an extensive set of class libraries, specific to
game development, to promote maximum code reuse across target platforms. The framework runs on a
version of the Common Language Runtime that is optimized for gaming to provide a managed execution
environment. The runtime is available forWindowsXP,WindowsVista,Windows 7,Windows 8, andXbox
360. Since XNA games are written for the runtime, they can run on any platform that supports the XNA
Framework withminimal or nomodification of the Game engine.

Warning: A license fee is payable to Microsoft to use XNA Game Studio for Xbox 360 games. At this
time, theOpen Rails team has not investigated whether theOpen Rails software is suitable for Xbox.

19.3 Frames per Second (FPS) Performance
FPS rate is as default not linked to the sync rate of themonitor. However, with this option FPS ratemay be
set at the value of themonitor refresh rate.

19.2. Open Rails Game Engine 207

Open RailsManual, Release 1.2.3706 (draft)

19.4 GameClock and Internal Clock
Like other simulation software, Open Rails software uses two internal clocks; a game clock and an inter-
nal clock. The game clock is required to synchronize the movement of trains, signal status, and present
the correct game environment. The internal clock is used synchronize the software process for optimal
efficiency and correct display of the game environment.
The Open Rails team is dedicated to ensuring the game clock properly manages time in the simulation,
so that a train will cover the proper distance in the correct time. The development team considers this
vital aspect for an accurate simulation by ensuring activities run consistently across communitymembers’
computer systems.

19.5 Resource Utilization
BecauseOpenRails software is designed forMicrosoft’s XNAgame framework, it natively exploits today’s
graphics cards’ ability to offloadmuch of the display rendering workload from the computer’s CPU.

19.6 Multi-Threaded Coding
TheOpenRails software is designed from the ground up to support up to 4CPUs, either as virtual or phys-
ical units. Instead of a single thread looping and updating all the elements of the simulation, the software
uses four threads for themain functions of the software.
• Thread 1 –Main Render Loop (RenderProcess)
• Thread 2 – Physics and Animation (UpdaterProcess)
• Thread 3 – Shape and Texture Loading/Unloading (LoaderProcess)
• Thread 4 – Sound

There are other threads used by the multiplayer code as each opened communication is handled by a
thread.
TheRenderProcess runs in themain game thread. During its initialization, it starts two subsidiary threads,
one of which runs the UpdaterProcess and the other the LoaderProcess. It is important that the Updater-
Process stays a frame ahead of RenderProcess, preparing any updates to camera, sky, terrain, trains, etc.
required before the scene can be properly rendered. If there are not sufficient compute resources for the
UpdaterProcess to prepare the next frame for the RenderProcess, the software reduces the frame rate
until it can catch up.
Initial testing indicates that stutters are significantly reduced because the process (LoaderProcess) asso-
ciatedwith loading shapes and textures when crossing tile boundaries do not compete with themain ren-
dering loop (RenderProcess) for the sameCPU cycles. Thread safety issues are handled primarily through
data partitioning rather than locks or semaphores tomaximise performance.
Ongoing testing by the Open Rails team and the community will determine what and where the practical
limits of the software lie. As the development team receives feedback from the community, improvements
and better optimization of the software will contribute to better overall performance – potentially allow-
ing high polygonmodels with densely populated routes at acceptable frame rates.

19.4. Game Clock and Internal Clock 208

CHAPTER20

Plans and Roadmap

Here are some highlights that the community can expect from the Open Rails team after v1.0. A more
complete roadmap can be found at https://launchpad.net/or/+milestones

20.1 User Interface
A newGraphical User Interface (GUI) within the game.

20.2 Operations
In addition to the new Timetable concept described in this document, some further improvements are
planned:
• Extended ability to customize signals to accommodate regional, geographic, or operational differ-
ences

• Ability to usemixed signal environments – fromdark territory to fully automatic in-cab train control
within the same route

• Specifying random variations for AI trains in consist and delays.
• Specifying separate speed profiles for passenger or freight trains.
• A schedule for AI trains which can depend on other trains (e.g. wait a limited time).

20.3 Open Rails Route Editor
TheOpen Rails Route Editor (called TSRE5) is well under way, and it is expected that in reasonable time it
will replace theMS Route Editor. However, no timetable is available for this work. The route editor already
can use GIS data. it will be possible to lay both track pieces and procedural track. TSRE5 is able to read
route files createdwith theMSRoute Editor, however it extends theMSTS file structure allowing for new
functions. Routes that will use these extensions will in general not run underMSTS.

209

https://launchpad.net/or/+milestones

CHAPTER21

Acknowledgements

Open Rails is the result of true teamwork performed by a group of passionate people. We owe a massive
thanks to all of themand thereforewish tomention thembelowandexcuse ourselves if someonehas been
forgotten:
AdamKane AdamMiles Alex Bloom
AndreMing Anthony Brailsford Barrie Scott
BarryMunro Bill Currey Bill Prieger
Bob Boudoin Bruno Sanches Carlo Santucci
Chris Jakeman Chris VanWagoner Craig Benner
Daniel Leach David B. Clarke Dennis Towlson
DerekMorton Doug Kightley Douglas Jones
Edward Keenan Eric Pannese Eric Swenson
Eugen Rippstein Fabian Joris György Sárosi
Greg Davies Hank Sundermeyer Haifeng Li
James Ross Jan Vytlacil Jean-Louis Chauvin
Jeff Bush Jijun Tang Jim Jendro
JimWard John Sandford JosephHoevet
Joseph Realmuto Larry Steiner Laurie Heath
Lutz Doellermann Marc Nelson Markus Gelbmann
Matêj Pácha Matt Peddlesden MattMunro
Paul Bourke Paul Gausden PaulWright
Péter Gulyás Peter Newark Phil Voxland
Remus Iancu Richard Plokhaar Rick Grout
Rick Hargraves Riemer Grootjans Rob Lane
Robert Hodgson RobertMurphy Roberto Ceccarelli
Robert Roeterdink Samuel Kelly Sándor Tarcsi
ScottMiller Sid Penstone TimMuir
Walter Niehoff Wes Card Piotr Gadecki
and ...
Dave Nelson for providing us ameeting place at Elvas Tower,
Pete Peddlesden for hosting our website and repository,
and of course,Wayne Campbell for inspiring this improbable journey.

210

CHAPTER22

Appendices

22.1 Units ofMeasure
Open Rails supports the same default units of measure as MSTS which are mostly, but not exclusively,
metric.
When creatingmodels just for Open Rails, we recommend you do not use defaults but specify units for all
values that represent physical quantities.
As shown below, Open Rails provides a wider choice of units thanMSTS.
Measure Default

unit
Applies to OR

accepts
MSTS
accepts

Comment
Mass kg kg kg

t t metric tonne (1000 kg)
lb lb
t-uk Imperial ton (2240 lb)
t-us US ton (2000 lb)

Distance mm
cm cm

m m m
km
in in
in/2 in/2 half-inch – historic unit

for tyre diameters
ft
mile

Area m^2
*(m^2) *(m^2)

ft^2 ft^2
*(ft^2) *(ft^2)

Volume l diesel fuel l liter
m^3
*(m^3)
in^3

Continued on next page

211

Open RailsManual, Release 1.2.3706 (draft)

Table 22.1 – continued from previous page
Measure Default

unit
Applies to OR

accepts
MSTS
accepts

Comment
*(in^3)

ft^3 other *(ft^3) *(ft^3) e.g. BoilerVolume
g-uk Imperial gallons
g-us US gallons
gal US gallons
gals gals US gallons

Time s s
m
h

Current amp amp
A

Voltage volt V
kV

Mass Flow g/h
kg/h

lb/h lb/h lb/h
Speed m/s other m/s m/s meter per second

km/h
kph kph kilometer per hour
kmh kmh misspelling accepted

byMSTS
kmph

mph dynamic brake mph mph miles per hour
Frequency Hz Hz Hertz

rps revolutions per second
rpm

Force N N N Newton
kN kN
lbf Pounds force
lb

Power W W Watt
kW
hp horsepower

Stiffness N/m N/m N/m Newton permeter
Resistance N/m/s N/m/s N/m/s Newton per meter per

second
Ns/m Newton seconds per

meter
Angular Resistance N/rad/s N/rad/s
Pressure psi air pressure psi poundsper square inch

bar atmospheres
kPa KiloPascal

inHg vacuum inHg inches of mercury
Pressure Rate of
Change

psi/s psi/s
bar/s
kpa/s
inHg/s

Energy Density kJ/kg kJ/kg kiloJoule per kilogram
J/g
btu/lb Board of Trade Units

per pound
Continued on next page

22.1. Units ofMeasure 212

Open RailsManual, Release 1.2.3706 (draft)

Table 22.1 – continued from previous page
Measure Default

unit
Applies to OR

accepts
MSTS
accepts

Comment
Temperature Differ-
ence

degC degC
degF

Angle radians –
deg

Angular Speed rad/s – rad/s
Other – lb/hp/h e.g. CoalBurnage

22.1. Units ofMeasure 213

CHAPTER23

Indices and tables

• genindex
• search

214

	Legal
	Warranty
	Properties Acknowledgment
	Copyright Acknowledgment and License

	New in This Release
	Operation Additions
	Locomotive Additions
	General Improvements
	System Additions
	Bug Fixes

	Introduction
	What is Open Rails?
	About Open Rails
	Does Open Rails Require You to Have MSTS Installed?
	Community
	Raildriver Support
	Highlights of the Current Version
	Focus on Compatibility
	Focus on Operations
	Focus on Realistic Content

	Use of MSTS Files by Open Rails
	Overview
	Your MSTS Installation and Custom Installations for Open Rails

	MSTS Directories Used by Open Rails
	MSTS Files Used in Whole or Part by Open Rails
	Route Files
	Environment .env files
	Activities

	Using a Non-MSTS Folder Structure
	Original MSTS Files Usually Needed for Added MSTS-Compatible Content
	Original MSTS Files Usually Needed for a Non-MSTS-Folder Structure

	Getting Started
	Installation Profiles
	Updating OR
	Further General Buttons
	Tools
	Documents
	Preliminary Selections

	Gaming Modes
	Traditional Activity and Explore modes
	Timetable Mode
	Run!
	Multiplayer Mode
	Replay

	Open Rails Options
	General Options
	Alerter in Cab
	Dispatcher window
	Graduated release air brakes
	Large address aware binaries
	Control confirmations
	Retainer valve on all cars
	Brake pipe charging rate
	Language
	Pressure unit
	Other units
	Disable TCS scripts

	Audio Options
	Video Options
	Dynamic shadows
	Fast full-screen Alt+Tab
	Glass on in-game windows
	Model instancing
	Overhead wire
	Vertical sync
	% Cab 2D Stretch
	Viewing distance
	Distant Mountains
	Viewing vertical FOV
	World object density
	Window size
	Ambient daylight brightness

	Simulation Options
	Advanced adhesion model
	Adhesion moving average filter size
	Break couplers
	Curve dependent resistance
	Curve dependent speed limit
	Tunnel dependent resistance
	Override non-electrified route line-voltage
	Steam locomotive hot start

	Keyboard Options
	Data Logger Options
	Evaluation Options
	Content Options
	Updater Options
	Experimental Options
	Super-elevation
	Automatically tune settings to keep performance level
	Double overhead wires
	Show shape warnings
	Forced red at station stops
	Load night textures only when needed
	Signal light glow
	Extended AI train shunting
	Autopilot
	ETCS circular speed gauge
	Extend object maximum viewing distance to horizon
	Load DDS textures in preference to ACE
	Location-linked passing path processing
	MSTS Environments
	Adhesion factor correction
	Level of detail bias
	Adhesion proportional to rain/snow/fog
	Adhesion factor random change
	Precipitation Box Size
	Correct questionable braking parameters

	Driving a Train
	Game Loading
	Entering the Simulation
	Open Rails Driving Controls
	Throttle Control
	Dynamic Braking
	Combined Control
	Blended Dynamic Brake
	Refill
	Specific Features to Optimize Locomotive Driving
	Examples of Driving Controls

	Driving aids
	Basic Head Up Display (HUD)
	Electric Locomotives – Additional information
	Steam Engine – Additional Information
	Multiplayer – Additional Information
	Compass Window
	F1 Information Monitor
	F4 Track Monitor
	F6 Siding and Platform Names
	F7 Train Names
	F8 Switch Monitor
	F9 Train Operations Monitor
	F10 Activity Monitor
	Odometer

	Dispatcher Window
	Additional Train Operation Commands
	Diesel Power On/Off
	Initialize Brakes
	Connect/Disconnect Brake Hoses
	Doors and Mirror Commands
	Wheelslip Reset
	Toggle Advanced Adhesion
	Request to Clear Signal
	Train Oscillation

	Engaging a turntable
	Autopilot Mode
	Changing the Train Driven by the Player
	General
	Switching to a static train
	Waiting point considerations

	Changing the View
	Toggling Between Windowed Mode and Full-screen
	Modifying the Game Environment
	Time of Day
	Weather
	Modifying Weather at Runtime
	Season

	Screenshot - Print Screen
	Suspending or Exiting the Game
	Save and Resume
	Saves from Previous OR Versions

	Save and Replay
	Exporting and Importing Save Files

	Analysis Tools
	Extended HUD for Consist Information
	Extended HUD for Locomotive Information
	Extended HUD for Brake Information
	Extended HUD for Train Force Information
	Extended HUD for Dispatcher Information
	Extended HUD for Debug Information
	Viewing Interactive Track Items
	Viewing Signal State and Switches
	Sound Debug Window

	OpenRailsLog.txt Log file
	Code-embedded Logging Options
	Testing in Autopilot Mode

	Open Rails Physics
	Train Cars (WAG, or Wagon Part of ENG file)
	Resistive Forces
	Coupler Slack
	Adhesion of Locomotives – Settings Within the Wagon Section of ENG files

	Engine – Classes of Motive Power
	Diesel Locomotives in General
	Diesel-Electric Locomotives
	Diesel-Hydraulic Locomotives
	Diesel-Mechanical Locomotives

	Electric Locomotives
	Pantographs
	Circuit breaker
	Power supply

	Steam Locomotives
	General Introduction to Steam Locomotives
	Steam Locomotive Operation
	Steam Locomotives – Physics Parameters for Optimal Operation
	Special Steam Effects for Steam Locomotives
	Auxiliary Water Tenders

	Engines – Multiple Units in Same Consist or AI Engines
	Open Rails Braking
	Brake Shoe Adhesion
	Train Brake Pipe Losses
	Wheel Skidding due to Excessive Brake Force
	Using the F5 HUD Expanded Braking Information
	Dynamic Brakes
	Native Open Rails Braking Parameters
	Brake Retainers
	Emergency Brake Application Key

	Dynamically Evolving Tractive Force
	Curve Resistance - Theory
	Introduction
	Factors Impacting Curve Friction
	Impact of Rigid Wheelbase
	Impact of Super Elevation
	Calculation of Curve Resistance
	Calculation of Curve Speed Impact
	Further background reading

	Curve Resistance - Application in OR
	OR Parameter Values
	OR Default Values
	Typical Rigid Wheelbase Values

	Super Elevation (Curve Speed Limit) – Theory
	Introduction
	19th & 20th Century vs Modern Day Railway Design
	Centrifugal Force
	Effect of Centrifugal Force
	Use of Super Elevation
	Limitation of Super Elevation in Mixed Passenger & Freight Routes
	Limitation of Super Elevation in High Speed Passenger Routes
	Maximum Curve Velocity
	Limitation of Velocity on Curved Track at Zero Cross Level
	Height of Centre of Gravity
	Calculation of Curve Velocity
	Typical Super Elevation Values & Speed Impact – Mixed Passenger & Freight Routes
	Typical Super Elevation Values & Speed Impact – High Speed Passenger Routes

	Super Elevation (Curve Speed Limit) Application in OR
	OR Super Elevation Parameters
	OR Super Elevation Default Values

	Tunnel Friction – Theory
	Introduction
	Factors Impacting Tunnel Friction
	Importance of Tunnel Profile
	Calculation of Tunnel Resistance

	Tunnel Friction – Application in OR
	OR Parameters
	OR Defaults

	OR-Specific Include Files for Modifying MSTS File Parameters
	Modifications to .eng and .wag Files
	Modifications to .trk Files

	Train Control System

	Further Open Rails Rolling Stock Features
	Train Engine Lights
	Tilting trains
	Freight animations and pickups
	OR implementation of MSTS freight animations and pickups
	OR specific freight animations and pickups

	Open Rails Train Operation
	Open Rails Activities
	Player Paths, AI Paths, and How Switches Are Handled

	Open Rails AI
	Control Mode
	Auto Mode
	Manual Mode
	Out-of-Control Mode
	Explorer Mode

	Track Access Rules
	Deadlock Processing
	Reversal Points
	Waiting Points
	General
	Absolute Waiting Points

	Signals at Station Stops
	Speedposts and Speed Limits Set by Signals
	Further Features of AI Train Control
	Location-linked Passing Path Processing
	Other Comparisons Between Running Activities in ORTS or MSTS
	End of run of AI trains
	Default Performance and Performance Parameters
	Calculation of Train Speed Limit
	Start of Run of AI train in a Section Reserved by Another Train
	Stop Time at Stations
	Restricted speed zones defined in activities

	Extended AI Train Shunting
	General
	Activity Design for Extended AI Train Shunting Functions

	Signal related files
	SignalNumClearAhead
	Location of OR-specific sigcfg and sigscr files
	OR-unique values for SignalNumClearAhead ()

	OR-specific Signaling Functions
	SPEED Signals – a New Signal Function Type
	Approach control functions
	TrainHasCallOn Function
	TrainHasCallOn_Restricted Function
	Signalling Function NEXT_NSIG_LR
	Signalling Function HASHEAD
	Signalling flag OR_NOSPEEDREDUCTION

	OR-Specific Additions to Activity Files
	No Halt by Activity Message Box
	AI Train Horn Blow
	AI Horn Blow at Level Crossings
	Location Event and Time Event Sound File
	Weather Change Activity Event

	Timetable Mode
	Introduction
	General
	Data definition
	File structure
	File and train selection

	Timetable Definition
	General
	Column definitions
	Row definitions
	Timing details

	Timetable Data Details
	Timetable Description
	Train Details
	Location Details
	Timing Details
	Special Columns
	Special rows
	Control commands
	Dispose Commands

	Additional Notes on Timetables
	Static Trains
	Processing of #dispose Command For Player Train
	Termination of a Timetable Run
	Calculation of Running Delay
	No Automatic Coupling
	Signalling Requirements and Timetable Concept
	Known Problems

	Example of a Timetable File
	What tools are available to develop a Timetable?

	Open Rails Multi-Player
	Goal
	Getting Started
	Requirements
	Technical Issues
	Technical Support
	Starting a Multi-Player Session
	Starting as Server
	Starting as Client

	In-Game Controls
	Summary of Multi-Player Procedures
	Possible Problems
	Using the Public Server
	Additional info on using the Public Server

	Setting up a Server from Your Own Computer
	IP Address
	Port Forwarding

	Open Rails Sound Management
	OpenRails vs. MSTS Sound Management
	.sms Instruction Set
	Discrete Triggers
	OR-Specific Discrete Triggers
	Variable Triggers
	Sound Loop Management
	Testing Sound Files at Runtime

	Open Rails Cabs
	2D Cabs
	High-resolution Cab Backgrounds and Controls
	Configurable Fonts

	3D cabs
	Development Rules
	A Practical Development Example For a Digital Speedometer

	OR-Specific Route Features
	Repetition of Snow Terrain Textures
	Operating Turntables
	Path laying and operation considerations

	.w File modifiers
	Multiple car spawner lists
	Route specific TrackSections and TrackShapes
	Overhead wire extensions
	Double wire
	Triphase lines

	Loading screen
	MSTS-Compatible semaphore indexing

	Developing OR Content
	Rolling Stock
	Routes
	Activities
	Testing and Debugging Tools
	Open Rails Best Practices
	Polys vs. Draw Calls – What's Important

	Support

	Version 1.2 Known Issues
	Empty Effects Section in .eng File
	Curly brackets in file sigscr.dat

	In Case Of Malfunction
	Introduction
	Overview of Bug Types
	Maybe-Bugs
	Decided bugs
	Additional Notes
	Summary: Bug Report Checklists
	Bug Status in Launchpad
	Disclaimer

	Open Rails Software Platform
	Architecture
	Open Rails Game Engine
	Frames per Second (FPS) Performance
	Game Clock and Internal Clock
	Resource Utilization
	Multi-Threaded Coding

	Plans and Roadmap
	User Interface
	Operations
	Open Rails Route Editor

	Acknowledgements
	Appendices
	Units of Measure

	Indices and tables

