
Welcome to MapMagic - a platform for terrain creation and automatic game object placement.

This tool uses a node-based visual scripting interface to determine creation logic. Each node represents a separate algorithm
called a “generator”. Examples of generators include: noise, voronoi, blend, curve, erosion, object scatter, forest, etc. All nodes
are presented on a field called the “graph”.

Quick start
Editor window
Right click menu
Settings

Blend
Blur
Cavity
Constant
Curve
Erosion
Intensity/Bias
Invert

Home

Home

Main concepts

Generators

Map Generators

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/1ea9a90d75b6de3617ef03186adca55c/Header_small.jpg

Noise
Normalize
RAW Input
Shore
Simple Form
Slope
Terrace
Voronoi

Adjust
Blob
Clean Up
Combine
Adjust
Flatten
Forest
Propagate
Rarefy
Scatter
Slide
Split
Stamp
Subtract

Height
Textures
Grass
Objects
Trees
Custom Shader (CSO)
Voxeland
Voxeland Grass
Voxeland Objects

Portal
Group
Biome

Creating a custom generator
Event System
Scripting FAQ
API Reference (n/a yet)

Object Generators

Output Generators

Other Nodes

Sripting

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Group.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Biome.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Event%20System.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/API%20Refence.html

Creating villages with mapmagic
Objects and trees biome blending

General FAQ: How do I ...?
Problem Solving: ... does not work, what should I do?
Scripting FAQ: How do I ... using scripts?

Tutorials

Questions and Answers

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Creating%20Villages%20with%20MapMagic.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Objects%20and%20Trees%20Biome%20Blending.html

The first thing you need to do is create a MapMagic object, which contains the MapMagic script, the initial terrain, and allows the
editor interface to be opened. To create a MapMagic object, click the GameObject menu -> 3D Object -> MapMagic.

A new game object named “MapMagic” will appear in the hierarchy menu. It already has the initial pinned terrain and three
example generators, so the terrain is not flat. Clicking this object will show basic settings in the Inspector.

The “Pin Terrain” button allows pinned terrains to be selected in the Scene view. Left-clicking on an empty area will pin a terrain,
and it will appear in a moment, after it’s been generated. Left-clicking on an already pinned terrain will unpin it. To exit pinning
mode click on the “Pin Terrain” button once more.

Any change made to pinned terrains will be re-written on the next generate. To prevent this, use the terrain lock by pressing the
“Lock Terrain” button and selecting a pinned terrain that should be locked. When using a locked terrain, try not to modify a
height greatly, otherwise you can get noticeable borders between your unchanged, locked terrains and their neighbors that have
a new procedural heightmap with whatever changes you’ve made since locking the previous terrain.

By the default all of the pinned terrains are saved in scene, there is no separate .asset files for them. But in some cases using
separate terrain files could be handy - for example when passing some terrains to another project or for reducing the scene size.
In this case terrain data could be exported to the standard .asset file by pressing the "Store" button and selecting terrain with a

Quick start

Quick start

Part 1: Creating MapMagic

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/717fd17d9fbab47963daa76d01a88c22/QuickStart1.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/bee61cdb3cadcf6243963e10ee7c3ea7/QuickStart3_pin2.gif

green selection frame.

Within the MapMagic object you created, the “Show Editor” button will open up the MapMagic Editor Window. Here you can see
three initial nodes (called generators): Noise, Curve and Height (output generator), all connected together. It's recommended to
dock this window somewhere so it will not overlap the scene view.

To pan (scroll) the editor window click and drag middle mouse button anywhere on the graph. It does not matter if you are
middle-clicking empty space, generator, field or connection wire:

You can use Alt + left click combination if you are using 2-button mouse.

To zoom the graph rotate the mouse wheel up or down:

Part 2: Editor Window

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4a8b3426876d319447fcff49e0ec0469/QuickStart_editorOverview.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6ea3257ce145632cec3967fdfb4544fa/QuickStart_scroll.gif

Alternatively you can use keyboard keys "+" and "-" for zoom.

To move the generator left-click anywhere on generator and drag it:

Try changing the generator values by left-click and drag on the right side of the property field:

You can click on the field and type the new value the standard way too.

You can see that the resulting terrain is changing too - after a short delay. During this delay the new terrain is calculated and

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/67bf9eca90fa5910bfcfecbfacd01e28/QuickStart_zoom.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d65289ac689b10c15c7e122fd9e6009a/QuickStart_moveGen.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/971121a4bd3375d4211655ba3e039268/DPLayoutIcon_Slider.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/1957c302feda126d682673e42e6ff218/QuickStart_clickDrag2.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5cbc1edae723ff79d29fbfe6d4344f67/MapMagic_Loading04.png

applied. You can see the "Generate" mark in the top left corner of the window meaning that the new terrain is currently

calculated.

The generator could be removed by right-clicking anywhere on it and selecting "Remove" from the context menu. Remove all the
3 generators so we could start from scratch.

A new generator could be created by right-clicking on background (empty space) and selecting a proper section and generator
type in context menu.

Create two generators - similar to those we have removed:

Noise: Create -> Maps -> Noise. This generator creates a fractal noise pattern.
Height: Create -> Output -> Height. This node converts the input map to terrain heightmap and applies it.
Move created generators to make the graph look this way:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/794ff034b2dc6855750de8e997880d46/QuickStart_remove.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5fcde5d0eab31d2cfae48935fba9f242/QuickStart_create.gif

The Noise Generator creates a fractal noise pattern (like this). Consider it's a 2D map. After the Noise Generator has been
generated it stores this map in it's output. Now we have to make this output pass to the Height Generator to apply it to terrain.

To do so we have to connect Noise Generator's output to the Height Generator's input by clicking in the blue circle and dragging
the mouse:

You can see that the noise effect applied to terrain.

You can also click at the Height's input circle and drag the line to the Noise's output with the same effect.

You can see that the generators are now linked with a blue line. Blue line connects only blue inputs/outputs, blue color symbolize
a "map" input/output type: . In contrast to blue connections you may see the green lines that connect green inputs/outputs: .
Green means an "object list" connection. You cannot connect green and blue inputs together since their types are incompatible -
to convert an objects list to a map (or vice versa) a special generators should be used.

Technically, "maps" are not actually textures - they use a special Matrix class that use an array of floats internally. Neither
"Object lists" are lists, but spatial hashes.

To unlink the generator you should connect it to void. Click at it's input and drag it to the empty space:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/cbd2ea7d6e4a1c36392a64a842d6f606/QuickStart_graph1.png
https://en.wikipedia.org/wiki/Value_noise#/media/File:Value_noise_2D.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6488e1ac270b133ee3698e74a99b0a79/QuickStart_link2.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/45a0093dd3a5080132cf036ad9e89e25/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6f38f91b25f35547f880de9fe06686ae/Objects_small.png

Clicking and dragging an output to an empty space will have no effect. This is caused by MM's concept: any
output can have any number of connections, but any input can be connected only to one output. So, connecting an
input to void just unlinks it.

All of the generators are grouped together under the Create Menu using this logic:

Map: these nodes work only with 2D maps.
Object: generators that receive or output object lists. The easy way to find out if generator is in Maps or Objects category is
to question yourself if it deal with objects in any way. If id does - then it will be in Objects list, otherwise look for it under the
Maps.
Outputs: a special generators that apply all of the terrain. Unless any of the output generators is not connected MapMagic
will not even start to work. These are the main generators that trigger the linked nodes. Their number is quite limited:

Height: used to generate height. Receives a map, perceives it like a heightmap, converts it to float[,] format and assigns
to terrain.
Textures: used to paint terrain with textures. Receives several maps (supposed to be control texture masks) blends them
together and applies along with the assigned prototypes (i.e. terrain textures and normalmaps).
Grass: to apply grass.
Objects: places game objects (transforms) on terrain according to the "object list" input.
Trees: same as Objects, but uses the Unity terrain trees engine instead of individual transforms.
Custom Shader: same as Texture, but works with MegaSplat, RTP, CTS or other custom terrain shader.
Voxeland Outputs: work only when MapMagic is used as a Voxeland generator.

**Voxeland is a voxel-based 3D terrain, and it requires a different approach to terrain creation rather than 2.5D Unity
terrains. Do not try to make a standard map with expectation to convert it to Voxeland - this will require a lot of changes
to the graph and in some cases will not even be possible.

Add a Textures output: Create -> Output -> Textures:

Part 3: Textures

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e19ced517a91e23c23af74031381f194/QuickStart_unlink2.gif

Assign a texture in a slot shown on the image - this will fill all the terrain with it.

Textures output has a layered structure. The one we've just added has only one layer called "Background". Each layer corresponds
to the texture layer when editing the standard terrain. Each layer has two texture slots - one for the diffuse (albedo) texture, and
one for the normal map, and some parameters like texture size, offset, specular color, gloss, etc.

To add a new layer click the plus button next to the "Layers" label. Assign the other texture to the diffuse slot:

Now try connecting the layer's input to the Noise generator. You can see that the terrain was painted according to the noise map,
the same map used for the height: the higher the values, the more visible the layer is:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/83f5c7d48cf23f45d6f47b9900671f70/QuickStart3_textureOutput.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/26657064ee37bdf8c79b519a7e0bd86b/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ec378f5bf868af4c9814fa146fa4ed87/QuickStart3_textureOutput2.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/fbca6dc22a7db13d756f5f22b062bfd7/QuickStart3_textureOutput3.gif

Try creating some absolutely different map like voronoi (Create -> Map -> Voronoi) and connect it to the layer's input. Just raise
voronoi's intensity value to 15 to make the effect visible:

Note that Background layer does not have input. It just fill all the other layers' values so that their sum is always 1.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/865b40d79e2a09cc6e67b0f5e1bc1db7/QuickStart3_textureOutput4.gif

The Editor Window is the main tool for working with MapMagic, so it is recommended to dock it somewhere if you are going
to work closely with MM. Try not to make it overlap the Scene View to let you see the generation results. This window could
be opened by pressing "Show Editor" button in Inspector when MapMagic, MapMagic data asset or Voxeland are selected.

The Editor window can be scrolled using the middle mouse button or left mouse button with Alt pressed.

To zoom in or out, use the scroll wheel.

To move a generator, left-click and drag anywhere on an individual generator generator window.

Changing any of the generator’s parameters will force the generator and it’s dependent generators to re-calculate.
Once the generators’ results are ready the terrain will be changed.

At the top of the window you can see a toolbar:

From left to right:

Green tick mark changes its appearance depending on the current generation state:
Green tick is displayed when all terrains have been generated successfully and all of them are up-to-date.
Grey “Generating” mark (animated) is displayed when at least one terrain is currently in the progress of being
generated.
Red “Error” mark means that the generator graph has connection error(s): either mandatory connections are empty,

Editor window

Editor window

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/67eb0ea6ddbfa7c8540ecb1254a04608/EditorWindow.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/51edddc2840db9c9785ba5c7fa79c7a9/EditorWindowToolbar.png

or connections have the wrong type, or the graph has an infinite loop. Error connections will be displayed in red on
graph.
When nothing is displayed beside the “Generate” button then terrains have not yet been generated. This is common
when the “Instant Generate” feature is turned off in the settings.

Map Magic is the name of the object this data belongs to. Displaying an objects name could be handy when you select
a separate data .asset file in project view and edit it or work with multiple Voxeland objects.
Generate Changes button will generate only the changed nodes. This happens automatically when "Instant Generate" is
turned on in settings (and it is on by default). But if you'd like to turn "Instant Generate" off for performance or debug
purposes use this button to apply all of the changes.
Force Generate All makes all of the nodes re-calculate from scratch. It could be used to fix terrains if something
unpredictable occurred. It could help you a lot when writing a custom generator.
Exit Biome button is visible only when you are inside a Biome. Pressing it will return you to the main graph.
Focus button displayed as the "target" icon will focus editor window on the center of your graph. It can help to return
editing when you are lost on the infinite graph field.
Zoom button with a "magnifier"* icon will return the zoom value to 100%. On the right of the icon current zoom value is
displayed.

Right-clicking on the empty graph field, generator or the generator output (blue or green circle) will open up a Right-click
Menu. With this menu a new generator could be created, exported, removed, previewed, etc.

A newly created generator can be connected to a currently existing generator system. Just drag and drop it’s input or output
icons to the other generator’s input or output. Note that the generator’s output can have several connections, while an input
accepts only one connection. Some generator inputs are mandatory, that means that they always require some input and
generating will fail if they are not connected. Empty mandatory inputs are highlighted with a red asterisk.

>> Right click menu

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Biome.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Right%20click%20menu.html

Right-clicking on the empty graph, generator or generator output (circle) will open up a Right-click Menu. With this menu a
new generator could be created, exported, removed, previewed, etc.

Create will add a new generator node. Note that all of the generators are grouped by type:
Map Generators connect only with other map generators. Their inputs and outputs are always Maps.
Object Generators connect only with other object generators. They may or may not have map inputs/outputs, but
the Object is always present.
Output Generators directly set terrains and place objects.
The Portal is not actually a generator but a connection technique. Don’t let the name fool you - it is not about
spatial holes to other terrains or dimensions, it’s just a way to better organize the graph better. The portal creates a
‘wireless’ connection when set as an input, that can be paired with a matching output portal that feeds into another
place on your graph, minimizing the amount of long cluttered wires displayed.
With the help of the Group several generators node could be grouped together to quickly move or delete them.
Group can be used to annotate some generator blocks too. To engroup the generator simply drag it into the group
(so that it does not sticks out).
Biome generator contains the biome data with it's own output generators.
Legacy generators list contains all of the generators that were used in previous versions of MapMagic. Creating
new ones is not recommended, but in some cases it could be handy to make something compatible with already
existing graphs.

Export will store the generator (group) in an XML-like .nodes file so it could be imported with an Import feature. It will
export a single generator if clicked on a generator, a group with all the contained generators if clicked on group, or all of
the generators if clicked on the empty field.
Import will import exported generators, appending them to currently existing graph.
Duplicate will create a copy of the generator or a group just below. This feature is disabled if clicked on empty field.

Right click menu

Right click menu

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7473bdef0bfa43c0896724caa4896bb1/RightClickMenu.png

Remove will delete the generator or a group. This feature is disabled if clicked on empty field. If clicked on group it will
ask if you want to delete all of the contained generators with a popup window.
Reset will reset all of the generator values, returning them to the default ones. Note that this will un-link this generator
from the graph.
Any output from any map generator can be viewed using the Preview feature.

On Terrain will color the terrain in a red to green range of colors according to the preview map values. High map
values are colored green, while low values are red.
Moreover, a map can be previewed in a separate window. In Window will open up a window with a grayscale map
displayed. This map can be scrolled and zoomed the way the main graph can.
To exit preview mode, right-click anywhere in the Editor and select Clear.

Note that Preview works only with a generator output, not the generator itself, since the generator could have
several outputs. Make sure you are clicking an output circle, not the node window when trying to use a
preview.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Preview.html

 In playmode MapMagic generates an infinite terrain - new chunks are created when camera approaches them. In editor

you should force generate manually, by using the Pin feature. Press the Pin button, select and click the chunk in the scene
view - now this chunk will be marked as "pinned", it will always persist in scene (but could be disabled in playmode), and it will
be re-generated at all the graph changes.

Pinning terrain is usually used for terrain quality preview or baking. If you are going to use 100 sq km land in your
game it's not recommended to pin 10*10 square because of memory, scene size and performance reasons. Pin only
1-4 terrains and let MapMagic generate others in playmode.

 Any change made to pinned terrains will be re-written on the next generate. To prevent this, use the terrain lock by

pressing the Lock button and selecting a pinned terrain that should be locked. When using a locked terrain, try not to modify
a height greatly, otherwise you can get noticeable borders between your unchanged, locked terrains and their neighbors that
have a new procedural heightmap with whatever changes you’ve made since locking the previous terrain.

 By the default all of the pinned terrains are saved in scene, there is no separate .asset files for them. But in some cases

using separate terrain files could be handy - for example when passing some terrains to another project or for reducing the
scene size. In this case terrain data could be exported to the standard .asset file by pressing the Save button and selecting
terrain with a green selection frame.

Show Editor button will open up an Editor Window.

Settings

Settings

General Settings

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/58736de7ce23af6e2f0d15735e9041b5/SettingsHeader.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6bbc428b593f0ba1fd6a35b4be444c0d/MapMagic_PinIcon.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7da855e9908ca3d0f26c15bd83e736af/MapMagic_LockIcon.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ac71d049c9fcf41efd6367c79bc7ca4d/MapMagic_ExportIcon.png

Seed: MapMagic global seed value. This number is used to initialize pseudo-random generators. Note that pseudo-
random generators use their own Seed parameter, so the final result depends both on the Global Seed and Generator
Seed parameter. Change this value to achieve a different look for all the generators.
Change Seed on Playmode Start: will randomly choose a new seed value once the game/playmode is started. This will
generate unique terrain for each game session. Make sure that no terrains are pinned and locked - otherwise they will
not be able to weld with the generated terrains properly.
Resolution sets the inputs and outputs map size. Increasing resolution will create a more detailed terrain, but note that
generation time will increase quadratically. For example, calculating Erosion Generator - one of the slowest generators -
with 5 iterations for the map size of 512 takes about 2 seconds, while the same action for the map size of 1024 takes
more than 7 seconds.

The calculations comparing terrain generate performance show that terrains with size 500 and resolution 512 are
generating faster in playmode than terrains with size 2000 and resolution 2048. In first case MapMagic does not
generate the areas that are out of range: for instance, with a view range of 800, you will have 3*3 grid of 500/512
terrains within a view range, or 2*2 grid of 2000/2048 terrains. Obviously, the first case is faster. It's not just faster, it's
more than 7 times faster.

It is recommend using the smaller chunks (and resolution) as possible as long as you can avoid noticeable seams of
the erosion, blur or other generators that are masked at the chunk edges. The resolution of 512 seems to be a good
balance between the generate speed and the visual quality. Even if you are baking terrain and not using MapMagic
in playmode - consider using more low-resolution terrains just to reduce the baking time.

Terrain size sets the length of a terrain’s side in units. This parameter just changes the scale of the terrain object and
does not affect performance. Note that changing the size parameter requires terrain height adjustments to make the
terrain look proportional.
Terrain height sets the maximum terrain elevation, i.e. map pixels with values of 1 will set terrain at this level.
Generate Infinite Terrain - when enabled, this dynamically generates new terrains in Play mode when the main camera
comes close to the edge of the current terrain (based on your range settings), creating a virtually infinite world. Infinite

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5bdd03b31db1e1031ef58a79dd48f4ba/SettingsGeneral.png

terrain ranges are measured using max(abs(x), abs(z)) algorithm, so they form a square-size perimeters.
Generate Range - the minimum distance to the terrain border that triggers terrain generation. Note that the
terrain will not appear immediately when the Generate Range is reached, as it will take some time to generate,
depending on the graph generator’s complexity. This parameter ensures that all of the terrains within range are
generated or started generating.
Remove Range - the chunks that are further than this distance from camera are removed to free up memory. It's
recommended to use some buffer distance between the generate and remove ranges to prevent the terrain re-
generate when the player will walk some steps back where he came from.
Enable Range - the chunks that are further than this distance are disabled. The closer chunks are enabled if they
are generated. Used to hide far chunks to gain performance without actually destroying them. Does not work when
"Hide out of range terrains" is off.

Multithreaded: when enabled, Map Magic generate works in a several separate threads. Turning this parameter off
forces Map Magic to work in the main thread only using co-routines only (this could be useful for debugging of custom
generators or for compatibility reasons).

Max Threads: the number of threads MapMagic uses to generate maps. The recommended value is number of
current processor threads -1.
Max Threads Auto: sets the number of threads to processor thread count - 1. This way, on the different hardware
the number of threads will be different. Auto mode works both in editor and in build.
Max Apply Time: Although generate happens in other threads, applying generated results to the terrain, the final
stage, is done using co-routines. This value sets the maximum time spent per frame by co-routine in milliseconds.
Increasing this value will shorten the overall apply time, but can create a noticeable lag. Note that in some cases co-
routine could not be split in smaller parts, so setting this value to 1 will not help to avoid some profiler spikes.

Instant Generate: when this parameter is enabled there is no need to press the “Generate” button after changing any of
the generator parameters: Map Magic triggers the change and forces generation automatically as you make changes to
each node in the graph.
Save Intermediate Results: Map Magic keeps the output results for each terrain for each generator, so on generator
change there is no need to re-generate everything: only the changes in the generator and its dependences are
calculated. When the parameter is disabled MapMagic will clear all generator maps after generation has been
completed. Disabling this option can reduce the memory footprint, but each time any of the generators change the
entire graph will be re-generated from scratch, which can take some time depending on your graph’s complexity.
Hide Frame: hides Unity selection frame/highlight (depending on Unity version) when MapMagic object is selected. This
can avoid the "wired" look of all of the objects placed on terrains.
Weld Margins: Since all of the terrains are generated independently some algorithms like blur or erosion could give
different results on a terrain’s borders. To get rid of this difference Map Magic creates a smooth transition from one
terrain to another. The Margins parameter is the size of the transition in pixels. When the parameter is 0 then terrain
welding is off. Note that it's not a panacea for terrain welding - in most generators you will have to use "Safe Borders" to
generate more or less close results at the borders.

Height Weld Margins: margins applied for heightmap welding
Splat Weld Margins: margins that are applied for terrain texturing welding. Since texturing differences are less
noticeable than height differences, it is recommended to set this parameter lower than Height Weld Margins.

Keep in mind that using high margins values results in longer apply time (i.e. the time when Unity freezes after
generating) and can cause floating objects bugs (when terrain is lowered under the objects to perform the weld).
Keep these values as low as possible and use the Safe Borders parameter to negate the terrain difference.

Hide Out of Range Terrains: hides pinned terrains if they are out of the generate range, otherwise they are always
displayed. Disabling this can give the effect of terrains floating in the air and reduces performance. Use "Enable Range"
value to set the hide range.
Copy Layers and Tags to Terrains: when turned on Map Magic will copy all of the tags and layers assigned to the Map
Magic object to terrains on generate.
Copy Components to Terrains: when turned on Map Magic will copy all the scripts assigned to the Map Magic object
(except MapMagic itself) to terrains on their generate.

By the default the main camera is used as a trigger object to generate new chunks. All the generate, remove and enable
ranges are counted from the main camera, it is the main generate marker. You can add the other markers enabling Around
objects tagged and selecting a proper tag from the field. This could be useful if you have several characters that could have
a vast distance between them.

Moreover, you can turn off using camera as a generate marker by disabling Around Main Camera - for example, if you
camera moves between those characters quickly and you don't want to generate terrain while in motion.

One of the problems related with the vast or infinite worlds lies in floating point precision limitation. When camera is placed
far from the zero coordinate lighting, shadows and z-fighting problems could be experienced. There's a solution called
Floating Origin that can help to solve that. It places the camera closer to origin when it it exceeds some threshold from zero
coordinate. All of the world objects are placed relatively along with the camera so that player does not notice that shift had
happened.

MapMagic already has Floating Origin integrated, so it safely offsets camera and MapMagic object. Since MM works in
multiple threads and co-routines this offset can happen during the terrain generate - in this case MapMagic ensures that the
generated terrains appear at the right position, with the objects scattered properly.

To turn on Floating Origin feature enable the Shift World toggle. Set the Shift threshold to the offset step, so that the
camera will not exceed the double of this distance (for threshold of 4000 maximum camera position is 8000 on any axis).

By the default the graph you are creating is stored in the scene where MapMagic object is saved. But you can export the
graph to use it in another scene or in a biome.

Generate Terrain Markers

Floating Origin Solution

Data

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/0e8f155cf17981c4a6861c267b4e6b81/SettingsMarkers.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/13ce430ab09f1a4d956ce687c27ce863/SettingsFloatingOrigin.png
http://wiki.unity3d.com/index.php?title=Floating_Origin
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3a02421c501584767aaa5e956c846971/SettingsData.png

You can assign a saved data in Data slot - this will replace your current graph with an assigned one. Re-selecting a
MapMagic object is required for changes to take effect.

Reset button will clear current graph and replace it with a blank one;
Store to Assets will export current graph as an .asset file and assigns the stored scene in a data slot. All the further
graph changes will cause changing of the stored asset.
Save as Copy will duplicate current graph and save it as an .asset file. Changing the graph will not affect the stored
asset.

Are equivalent to the settings used for each terrain in the standard terrain’s Settings tab. The only difference is that they are
applied to all of the MapMagic terrains.

Pixel Error: The accuracy of the mapping between the terrain maps (heightmap, textures, etc) and the generated terrain;
higher values indicate lower accuracy but lower rendering overhead. Unlike the standard terrain setting you can set the
value to 0 to force the terrain render full-resolution mesh.
Base Map Distance: The maximum distance at which terrain textures will be displayed at full resolution. Beyond this
distance, a lower resolution composite image will be used for efficiency.
Show Base Map: toggles if base map will be enabled at all.
Cast Shadows: Does the terrain cast shadows?
Apply Terrain Colliders: disabling will turn off terrain and tree colliders for all of MapMagic chunks
Material Type: The material used to render the terrain. This will affect how the color channels of a terrain texture are
interpreted.

Built In Standard: This is the PBR (Physically-Based Rendering) material introduced in Unity 5.0.
Built In Legacy Diffuse: This is the legacy built-in terrain material from Unity 4.x and before.
Built In Legacy Specular: This built-in material uses BlinnPhong (diffuse and specular term) lighting model and has
optional normal map support.
Custom: Use a custom material of your choice to render the terrain. This material should use a shader that is
specialised for terrain rendering (e.g. it should handle texture splatting properly).

Custom Material assign a custom material in this slot.
Assign Material: If you are using Custom Shader Output then the material assigned here is not applied to the terrain
directly, but is used as a template. It is copied for each chunk, the copy has it's unique per-terrain control textures
assigned, and then the copy applied to terrain. To switch to the template mode disable this toggle.

Terrain Settings

Trees, Details and Grass Settings

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2763e7e68bbbc5f4f4ebd52b9fba5965/SettingsTerrain.png
https://docs.unity3d.com/Manual/terrain-OtherSettings.html

Are equivalent to the settings used for each terrain in the standard terrain’s Settings tab. The only difference is that they are
applied to all of the MapMagic terrains.

Draw: Should trees, grass and details be drawn?
Bake Light Probes For Trees: If this option is enabled, Unity will create internal Light Probes at the position of each tree
and apply them to tree renderers for lighting. Otherwise trees are still affected by light probe groups.
Detail Distance: The distance (from camera) beyond which details will be culled.
Detail Density: The number of detail/grass objects in a given unit of area. The value can be set lower to reduce
rendering overhead.
Tree Distance: The distance (from camera) beyond which trees will be culled.
Billboard Start: The distance (from camera) at which 3D tree objects will be replaced by billboard images.
**Fade length Distance over which trees will transition between 3D objects and billboards.
Max Mesh Trees: The maximum number of visible trees that will be represented as solid 3D meshes. Beyond this limit,
trees will be replaced with billboards.
Wind Speed: The speed of the wind as it blows grass.
Wind Size: The size of the “ripples” on grassy areas as the wind blows over them.
Wind Bending: The degree to which grass objects are bent over by the wind.
**Grass Tint Overall color tint applied to grass objects.

Bunch pin or lock of the terrains. Select a rectangle using the offset and size and press pin or lock.

Rectangle size is in MM chunks, not the world units.

This feature is designed to be used with streaming plugins. Using it in all other purposes is not
recommended because of performance reasons.

Plugin summary info. You can look for the current version here.

Mass Pin

About

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3c6eb4e66784a5ab3af54571918211f0/SettingsTrees.png
https://docs.unity3d.com/Manual/terrain-OtherSettings.html

Blends two or more maps together using the specified blend algorithm. This generator acts quite similar to the layer blending
mode in Photoshop or other graphics editor. Think of the “Base” map input as a background layer, and the layers above are
the blending layers.

Some generators like noise or voronoi have their own blend inputs: additive (Input) and multiplicative (Mask). In most cases it is
enough to use them, but in some cases you might need the other blend type or need to blend generator chains or generators
that do not have blend inputs. Blend generator was created to solve that.

 Blend input in all of the blend layers (including Base layer).

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

 Output - the blended result

Map_generators / Blend

Blend

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5528328fc95b7a86edcb1f4e3060cf59/Blend.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Blend Generator input maps are stacked using the layers mode. Each layer could be selected by clicking on it. Above the layers,
next to the "Layers:" label you can see layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Base layer could not be removed or sent up or down.

Each layer (except the Base one) has the algorithm and opacity properties.

Algorithm - determines how exactly the layers are blended
 Opacity - the blending layer opaqueness factor. If the value is 0 the blending result is not visible.

Here are the algorithms the blend generator offers:

Mix: simply blends two maps using the opacity value Algorithm’s formula is { return b };
Add: adds the Blend layer to the Base layer, i.e. the sum of the layers { a+b; }
Subtract: subtracts the Blend layer from Base layer { a-b; }
Multiply: multiplies the two layers. Note that since input values in most cases are less than 1, the multiplied value would be
lesser than any of the input ones. { a*b; }
Divide: the opposite of Multiply. The result can often exceed 1, so use it with care. { a/b; }
Difference: the delta value between two layers { Mathf.Abs(a-b); }
Min: the minimum value between both layers. { Mathf.Min(a,b); }
Max: the maximum value between both layers. Try experimenting with Min and Max blend algorithms as they can bring
clean and useful results { Mathf.Max(a,b); }
Overlay: this effect is often used to process images but the feasibility of using it for blending height or splat maps is
questionable.
if (a > 0.5f) return 1 - 2*(1-a)*(1-b);
else return 2*a*b;

Base layer: voronoi, Blend layer: Noise, Mix algorithm with opacity 0.5

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/89ca8df12a7441ea5ad5ac1e5e119638/MapMagic_Opacity.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6241eaa4a2ed067ea82a19e262a2d5e9/Blend1.jpg

Algorithm: Add, Subtract, Multiply

Algorithm: Difference, Min, Max

Base layer opacity is always 1, and the algorithm is always additive.

In earlier versions of MapMagic Blend Generator had only two layers. If you are looking through MapMagic tutorial you can see
the the legacy Blend - note that it works absolutely the same way the new Blend does, and could be replaced without any
issues:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c95e9edda87d52aef57b4e227f4f1918/Blend2.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/f92df677fbb5f92622af2c3b2df3cc75/Blend3.jpg

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/cd45bc65e11990f8212ef9e35c4626e7/BlendGeneratorTheSame.jpg

Smooths the input map.

 Input - the default map to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

| Source heightmap | Mask map | Masking result |

 Output - stores the generator’s processing result.

Intensity: amount of blur applied per iteration.
Iterations: number of blur iterations applied. Note that increasing the iterations count will reduce blur performance. The
maximum reasonable amount of iterations is about 10, if you want more map smoothness use the Loss parameter.

Map_generators / Blur

Blur

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23f188957ca93343270cb6de917c9580/Blur.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Iterations: 0, 1, 10

Loss: forces the generator to skip some of the input pixels. This will result in a bit more ‘pixelated’ look, but will give the
map extra smoothness. A value of 1 means that no pixels will be skipped. The Loss parameter has virtually no effect on
performance so it could be used to create extremely smooth maps. Use it together with high Intensity and Iterations
counts to avoid noticeable pixelization.

Loss (with Iterations = 10): 1, 20, 60

Do not try to make your map extra-blurry by increasing Iterations value only. This will result in poor Blur performance.
Use Loss value instead.

Safe Borders: masks terrain borders so that the generator effect on the borders is zero, and increases with distance from
the border. This parameter sets the amount (in pixels) until the effect’s full strength. When set to 0 border masking is off.
This parameter is essential for better terrain welding, so always enable it if this generator outputs to height.

Safe Borders: 0 (off), 20, 100

Note that turning Safe Borders off (setting it to 0) will result in seams between chunks.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c5cf89da9fdb19fc86bb832758ac4416/BlurIterations.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/02b0f8e45e9e362eb3b1742a973c21e4/BlurLoss.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7aeff625cdcf81823310fddf8ed2bb03/SafeBorders_0_20_100.jpg

Generates the maps of concavity and convexity. All of the bulges and cambers are regarded as convex and the hollows are
regarded as concave. Note that output maps do not intersect: one pixel can not be convex and concave at the same time.

| Source height | Convex | Concave |

 Input - the heightmap to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

Map_generators / Cavity

Cavity

Inputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5cb3ec7c4510226d8595353d44069e15/Cavity.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4795c396b313aa081ee9e8a4be7c9e62/Cavity.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg

 Output - stores the bulging or hollow areas (depending on a cavity type) and adjustment pixels.

Intensity - the amount of influence of the generator on the input map. When the value is set to 0 the generator effect is
not visible. In other words, it is the generator’s effective opacity.
Spread - since really curving terrain areas are rather rare, the Cavity Generator can expand resulting information on more
level areas.

Spread: 1, 2.5, 5

Normalize Convex+Concave: ensures that all of the convex values combined with concave ones are always equal to 1. If
this parameter is off only convex or concave map is calculated, its antipode is not taken into account. Turn it off to perform
rude but faster calculations.

Safe Borders: masks terrain borders so that the generator effect on the borders is zero, and increases with distance from
the border. This parameter sets the amount (in pixels) until the effect’s full strength. When set to 0 border masking is off.
This parameter is essential for better terrain welding, so always enable it if this generator outputs to height.

Using the example of Blur Generator:
Safe Borders: 0 (off), 20, 100

Note that turning Safe Borders off (setting it to 0) will result in seams between chunks.

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b5f3ff7f3e7a9bd78f5310a56179fec8/CavitySpread.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7aeff625cdcf81823310fddf8ed2bb03/SafeBorders_0_20_100.jpg

Creates a map filled with a given value. This is the most simple generator, used to create transparent masks or flat heightmaps.

The planar at a certain level.

Value: the map will be filled with this value on generate. Value ranges between 0 (no fill, transparent fill or zero ground
level depending on the output where it will be used) and 1 (fully opaque fill or maximum terrain height).

Value: 0, 0.5, 1

Map_generators / Constant

Constant

Output

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c37f415de771d7d00aad1d78aaf620a4/Constant_0_05_1.jpg

Adjusts map values using a user-defined curve. It works similar to the curves adjustment in graphics editors like Photoshop. The
horizontal axis of the curve chart is the input value, vertical axis is the output value.

Map Magic uses Unity’s animation curve interface for curve editing, so working with the Curve Generator is done the same way.
Keys and tangents can be dragged with the left mouse button, the right mouse button is used to create new keys and access
key properties.

This generator provides plenty of opportunities for map editing: it can be used to invert maps, adjust minimum or maximum
values, clamp map values or even make ladder slopes (although a terrace generator could be more handy for this).

For example, to give the map more contrast just move left and right keys horizontally closer to the central line. To invert the
map move the left key to the top and the right key to the bottom so that the diagonal line is inverted (note that key tangents
should be set to auto to achieve a straight line).

 Input(mandatory) - a source map

 Output - a processed map

Curve field: displays a curve preview. Clicking on it will open up a Curve Editor window - the standard Unity curve editing
tool (see Unity manual: https://docs.unity3d.com/Manual/EditingCurves.html for more information).
Range: by default the whole value range from 0 to 1 is used for editing. For more precise editing, minimum and maximum
values could be set for input and output. The left row sets min and max for the input values (curve horizontal), while the
right row sets output min and max (vertical).

Map_generators / Curve

Curve

Inputs:

Outputs:

Properties:

Usage Examples:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d25eb7158825260ad705b338ce844459/Curve.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
https://docs.unity3d.com/Manual/EditingCurves.html

Invert

Contrast

Select Range

Turbulence Ridge

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/040f5e5bf94e414699813b15ec7682e4/CurveInvert.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4a8d603ba7f6e3809eddfa348dce20bf/CurveContrast.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/57a690a2d73e8889890a82d5967d9374/CurveSelectRange.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5a8801c8e1cdc94871b8cd26f7acbe91/CurveTurbulenceRidge.jpg

Terrace

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e569394f96e49d0aaa1177edb7a8dfe3/CurveTerrace.jpg

Reproduces water’s flowing action on the terrain’s surface. Flows erode cliff formation, transport eroded stratum to another
location and settle it as a sediment. Note that all of the flows, erosion and sediment calculations are iterative and very resource
intensive, this makes the Erosion Generator the slowest generator of all the MapMagic generators. It usually takes about 3
seconds to generate erosion with the default parameters on a modern computer - compared to any other generator which are
nearly realtime. But the result is usually worth it.

 Heights - the heightmap to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

 Heights - stores the generator’s changed heightmap result

Map_generators / Erosion

Erosion

Inputs:

Outputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/232bfaf0c809f7812931733f12f09f9b/Erosion.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

 Cliff - stores eroded depth information. The more soil that was eroded from the current pixel - the higher the map pixel

value. This map is multiplied by Cliff Opacity value.
 Sediment - stores the sediment depth information. The more sediment that was brought to the map’s pixel - the higher

its value. This map is multiplied by Sediment Opacity value.

Iterations: number of passes the generator should perform. This parameter determines the performance directly. In most
cases there is no need to set it more than 5-7 as further erosion becomes less noticeable.

Iterations: 1, 5, 15

Durability: determines how durable the input terrain is - i.e. how much it is affected by the flow erosion. Lower values will
erode the land more with each iteration but the overall result will be less accurate and predictable, so it is recommended
to set this value to 0.8 or higher. If value is set to 1 then the land will not be eroded at all. NOTE: since this parameter acts
similarly to Erosion value it will be probably removed in future versions.

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/62ee5daa3d399ba5c68b713ab76b3bc9/ErosionIterations.jpg

Durability: 0, 0.9, 0.98

Erosion: this factor multiplies the amount of stratum that will be raised by the flow to be transported to sediment.

Erosion: 0.5, 1, 2

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/01c8fd6cadcb2c025dd224eb61035152/ErosionDurability.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e108b21ff2bdc07ad5057b0ea4cbcb1d/ErosionErosion.jpg

Sediment: this factor multiplies the amount of stratum that will be settled out of the flow. A value 0 means that all of the
eroded land will be disintegrated or carried away somewhere so that no sediment will be left at all, just eroded land will
remain. A value 2 means that the stratum amount will be magically doubled before it settles. A realistic value should be
slightly below 1, but fine results can be achieved within all of the 0-2 value range.

Sediment: 0, 1, 3

Fluidity iterations: the amount of passes used to calculate flow runs. A higher value means the farther sediment will travel from
where the stratum was originally eroded. Together with the Iterations parameter it affects performance greatly.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e98a3bfa2f11d673921f516c10adc8a3/ErosionSediment.jpg

Fluidity: 1, 5, 15

Ruffle: adds some randomness to the amount of stratum that is being eroded. This results in a more noisy cliff look and a
bit lesser erosion depth.

Ruffle: 0, 0.5, 1

Safe Borders: masks terrain borders so that the generator effect on the borders is zero, and increases with distance from

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7fef8ba86dc849ccd2d6c6f7bed87278/ErosionFluidity.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d25124e53a4b8770bca50a6d8d2c2740/ErosionRuffle.jpg

the border. This parameter sets the amount (in pixels) until the effect’s full strength. When set to 0 border masking is off.
This parameter is essential for better terrain welding, so always enable it if this generator outputs to height.

Using the example of Blur Generator:
Safe Borders: 0 (off), 20, 100

Note that turning Safe Borders off (setting it to 0) will result in seams between chunks.

Cliff and Sediment opacity: factors that multiply Cliff and Sediment outputs to make them more visible.

Usage Example:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7aeff625cdcf81823310fddf8ed2bb03/SafeBorders_0_20_100.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a5f3f30ffbb1b9180637c3bb091ce5d3/ErosionExample.png

Note that the Sediment layer is applied after the Cliff one in Textures Output

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6aa2bb062687453aae2c518cdce7d637/ErosionResult.jpg

A simple way to adjust map contrast. It's useful if you don't want to deal with curves for some reason.

 Input - the default map to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the generator

effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

 Output - stores the generator’s processing result.

Graph used in examples

Map_generators / Intensity_bias

Intensity_bias

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ca29d9629bf541b97d0007831cb09936/IntensityBias.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a7e82bb1ab6d0dc46f1fa6275a8fd9f2/IntensityBias_Graph.png

Intensity: multiplies input values with the value specified. Consider it as "Contrast".

Intensity: 0.5, 1, 2

Bias: adjusts output values by adding value specified. It does not affect anything if Intensity value is 1 and gains effect the
more Intensity is higher or lower from 1.

Bias (Intensity=2): 0, 0.25, 0.5

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/61583dd41490c2aa2e48f9b773210f35/IntensityBais_Intensity_05_1_2.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3d79e0faa2f5fce4c855c4f640ded725/IntensityBias_Bias_0_025_05.jpg

A simple way to invert a map. It's useful if you don't want to deal with curves for some reason. Mathematically it's 1-value
algorithm, or, to be more exact, Level-value.

 Input - the default map to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

 Output - stores the generator’s processing result.

Level: subtrahend in invert algorithm. Determines the height of inverted map.

Map_generators / Invert

Invert

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/0d8c745544abce7438769480e962e3e1/Invert.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/0ca2c6a03c52f7569e15e5539b061823/InvertExample.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Level: 0.5, 0.75, 1

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b1ecfacc38d83d0a15e92caf1f74c526/InvertLevel_05_075_1.jpg

The Noise Generator is one of the most basic generators in MapMagic. It generates a fractal Perlin noise map that is widely
used as a base for various map creation algorithms.

 Input - if no input is specified, noise generator returns the pure noise. If input is specified, noise is added (+) above the

input map.
 Mask - a map that controls a generator’s level of intensity. It multiplies (*) the noise value with a mask value.

It is common for the Noise Generator to be used with no inputs connected, but in order to easily combine it with the
other maps these 2 inputs are used. Connecting noise with an "Input" will result in applying noise additive, and with a
"Mask" will multiply map with a noise.

 Output - a noise map (if no input specified) or an input map with a noise added (if input specified).

Seed - a number used to initialize pseudo-random noise generator. If two generators use equal seed numbers the
resulting pattern will be the same.

High (intensity)- sets the highest noise value. As the name says, consider it as the noise intensity.

Map_generators / Noise

Noise

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7abfc97da2ff9732a4bec78655da425b/Noise.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

High (intensity): 0.1, 0.5, 1

Low - sets the minimum noise value. All of the noise values generated lay within the Low-High range. You can increase
this value to make the noise less contrast, or lower it below zero level to make the noise sharp.

Low: 0, 0.5, 0.9

Size - this parameter determines the size of the biggest fractal. Noise above this value ceases to be fractal being a
standard perlin noise. Lower size values result in a very homogeneous and predictable noise, while high values can create
diverse noise and scenic heightmaps.

Size: 10, 100, 200

Detail - this parameter determines the big and small fractals’ bias. When the parameter is higher than 0.5 then small
fractals have greater impact, which results in a more ‘noisy’ map. When parameter is below 0.5 small fractals are less
significant than the big ones, which results in a smoother noise.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/18342dfa5e4b007e1f84c188ef11ac14/_0003_Intensity_01_05_1.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/63a212a4fe9eb1c9f499657708657aa5/_0002_Low_0_05_09.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/9fd46c29e7c59156dc8610752da77793/_0001_Size_10_100_200.jpg

Detail: 0, 0.4, 0.6

Turbulence - creates "bubbles" (positive) or "ridges" (negative).

Turbulence: 0, 1, -1

Offset - this parameter defines the noise pattern position, shifting it along the x and z axes. These values can be positive or
negative. Offset applies to all of the terrains and sums with the terrain position, so the noise maps continue seamlessly on
all the terrains.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/499a59f72907f5ad40d27e7aaa9d129f/NoiseDetail_0_04_06.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a58b2b2a847326bb18b56266b48c1d52/_0000_Turbulence_-1_0_1.jpg

This generator is used to combine several maps so that their sum is always 1. It could be handy to prepare biome masks:

 Input in all of the layers - source non-normalized maps.

 Map outputs in all if the layers - input maps processed so that any pixel sum of the map values is equal to 1.

Map_generators / Normalize

Normalize

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3e7d06186f532471545ffafb04048442/Normalize.png
https://www.youtube.com/watch?v=rvrZwjWY13c
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Algorithm: determines the way maps are normalized:
** Sum: for every pixel the generator is calculating sum of all map
values. Then each value is divided by that sum. This way all of the layers intensity is scaled proportionally, and no layer has
superiority. The layers order does not matter when using Sum algorithm.
** Layers: This generator acts quite similar to the
layer blending mode in Photoshop or other graphics editor, and the same way Texture Output textures are blended.
Layers are applied from bottom to top, so the top layer is applied without any changes at all.

Normalize Source Maps: Grass, Cliff, Sand

Normalize algorithms: Sum, Layers, Layers (layer order inverted, so 100% filled grass at the top displaces all other maps).

Normalize Generator input maps are stacked using the layers mode. Each layer could be selected by clicking on it. Above the
layers you can see the layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

 Each layer has an Opacity value that multiplies layer's map before applying it.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/78e33157113b6d6a1380960bfb0ca154/NormalizeSources.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ec106cf1b0aaf73d1b20135f79b8bc18/NormalizeAlgorithms.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/cb9e2c19de43a6759da61debf1a369b8/MapMagic_Opacity.png

Raw Input generator was designed to import .raw heightmaps as a base for MapMagic terrains. In order to use it the .raw file
should be properly prepared. It should be:

square (width should be equal to length)
grayscale
16 bits per channel
and it should be saved as .raw file with PC byte order
It does not matter where the heightmap is saved, whether it is the
Assets folder or not, it will be converted to matrix format on import and saved within the scene. A saved .raw file can be
added with the help of the ‘Browse’ button. Please note that MapMagic does not keep track of heightmap changes, so the
‘Refresh’ button should be pressed after any change.

Once the RAW File is loaded it is strongly recommended to make an asset of it using "Save Imported RAW" button, otherwise
it will not be loaded on scene load and will not work in playmode and build.

 Output - the RAW image applied as a MapMagic map.

Intensity: the amount of influence of the generator on the input map. When the value is set to 0 the generator effect is not
visible. In other words, it is the generator’s effective opacity.
Scale: sets the size of heightmap. By default size is equal to one chunk (terrain).

Map_generators / Raw_input

Raw_input

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/518faa22982a1ba214ca36c8e4eefa1c/RawInput.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Scale: 1, 0.2, 2

Offset: moves heightmap along X or Z-axis (in world units).
Wrap Mode: determines how the heightmap should be repeated so that every terrain point will not miss a map:

Once: repeat map only once
Tile: repeat map endlessly the way the standard texture could be tiled
PingPong: will mirror every 2nd map and repeat map endlessly. Use this if you want to fill your land with a heightmap
that is not tilable.

Wrap Mode: Once, Tile, PingPong

If your terrain is not pinned in 0,0 then you might not see any RAW Input effect by default. This happens
because it is tiled once at the scene origin. Set Wrap Mode to Tile or PingPong or adjust the Offset to see the
RAW Input effect

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b8c2f30873463dea409664ac0247dd0c/RawInputSize.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a3e6db21aa54a5d933b251739ff877e6/RawInputWrap_Once_Tile_PingPong.jpg

Creates a shore line with a beach and a ridge.

 Input - the heightmap to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

| Source heightmap | Mask map | Masking result |

Ridge Noise - a map to control diversity of the ridge. Usually just a noise map used here just to make a ridge less
homogeneous.

 Output - stores the generator’s processing result.

 Sand - a map for the Texture Output or mask for placing beach and underwater objects. Determines the beach sand (or

pebbles) opacity.

Intensity: the influence of the generator. Hint: this parameter can also modify the beach incline (setting the lesser value
makes the beach more inclined).
Water Level: the level of the beach from the MM object pivot, in units.

Map_generators / Shore

Shore

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8bc8d909251a1f2383d0389303a0b122/Shore.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Water Level: 100, 50, 10

Beach Size: the size of the beach

Beach Size: 10, 20, 40

Ridge Step (Min): the steepness of the ridge. When the Ridge Noise map is assigned it is used as a ridge minimum
steepness.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2e9278f2a3554be9f77189b0b8f4391b/WaterLevel.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3a594bed700b61a1335d8609a35cb070/BeachSize.jpg

Ridge Step: 0, 10, 20

Ridge Step Max: the maximum ridge steepness when the Ridge Noise map is assigned. When no Ridge Noise map is
assigned this property is not used.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/02a7e27f6d4939327605d34e5b6e9328/BeachRidgeStep.jpg

Easy way to create simple heightmap object. Could be used to mask points of the compass with the Gradient or create an
island base with the Cone.

 Output - stores the generator’s processing result.

Type:
Gradient X: fills a map with an x-axis aligned gradient.
Gradient Z: fills a map with an z-axis aligned gradient.
Pyramid: creates a pyramidal form.
Cone: creates a cone.

Type: Gradient, Pyramid, Cone

Intensity: the height of the simple form figure.
Scale: sets the size of heightmap. By default size is equal to one chunk (terrain).

Map_generators / Simple_form

Simple_form

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6286329f22540d9d32942c52aaa55833/SimpleForm.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a494453286a963e6dbbbecd1c0e78739/SimpleFormTypes.jpg

Scale (pyramid, adjusted by Curve): 1, 0.2, 2

Offset: moves figure along X or Z-axis (in world units).
Wrap Mode: determines how the heightmap should be repeated so that every terrain point will not miss a map:

Once: repeat map only once
Tile: repeat map endlessly the way the standard texture could be tiled
PingPong: will mirror every 2nd map and repeat map endlessly. Use this if you want to fill your land with a figure that
is not tilable.

Wrap Mode: Once, Tile, PingPong

Usage Examples:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b8c2f30873463dea409664ac0247dd0c/RawInputSize.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8d0abdd0fdc54bfd0ab9c3244b1ee8a7/SimpleForm_Tile.jpg

A base for the island

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ba112ec4b91f11630240d064ba5cfd17/SimpleForm_Island.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/bfa38168556d5dd9437239f8b7fd4a09/SimpleForm_IslandGraph.png

To blend biomes from North to South

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6f77c4d84365ca56242e5fa34eca988c/SimpleForm_Biomes.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ca423f3cc6f114e69d0283d6fc5e294c/SimpleForm_BiomesGraph.png

Generates the height difference map. For each map pixel it calculates the average height delta to four nearby pixels. Could be
useful for separating horizontal and vertical surfaces (to fill them with grass and cliff respectively).

 Input: the default map to be processed by the generator.

 Output: stores the generator’s processing result.

Steepness: defines the incline range that will be filled with slope map (in degrees). Minimum parameter sets the start
incline of the stop, maximum - the end of the slope.

Steepness: 5-90, 35-90, 80-90

Range: how gradual will be a slope transition (in degrees)

Map_generators / Slope

Slope

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b5cd2745ba6bdacc5694363054f5bc3d/Slope.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/704bb221000f772afe8e5851e64a93bd/SlopeStepness.jpg

Range: 1, 5, 15

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/dfddb26457f4e53e1425992453ee0cb0/SlopeRange.jpg

Produces step-like land forms on the slopes of hills. Used together with a Noise (as terrace’s input) and Erosion (originates from
terrace's output) Generator, it can produce fine landscapes. Don’t underestimate the Terrace Generator - even if it seems that
pure terrace output is not good enough looking, together with erosion it can make a terrain much more realistic and diverse.

| Initial terrain | Terrace generator | Terrace+Erosion |

 Input - the default map to be processed by the generator.

 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Map_generators / Terrace

Terrace

Inputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c704052b4cbae071f95a44f0cce04672/Terrace.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

 Output - stores the generator’s processing result.

Tread count: each of the terrace’s flat surfaces is called a tread. This parameter sets the number of treads - from 2 (at the
top and bottom of terrain) to any reasonable number (note that making a terrace height lesser than a unit often does not
make sense). This parameter affects the generator performance but since Terrace Generator is relatively fast every value
below 100 will not have an appreciable influence on total the generation time.

Treads: 10, 20, 30

Uniformity: the terrace’s step’s height difference. When set to 1 all of the steps have the same height and when set to 0
the height may vary from zero to twice the uniform height.

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/9969237e03c705a14feadbe240b37c18/TerraceTreads.jpg

_Uniformity: 0, 0.5, 1

Steepness: determines how inclined the step’s vertical plane(riser) is and how acute the bend between the tread and riser
would be. A value of 1 will generate absolutely vertical risers with maximum tread length, while a value of 0 will set the
tread’s length to zero (but that does not mean that terracing would be turned off - to make the terrace effect even less
noticeable use the Intensity parameter).

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5979b1559c7cf1112267f3bb42913ff7/TerraceUniformity.jpg

Steepness: 0, 0.5, 1

Intensity: how visible the effect of the generator is, i.e. generator opacity.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8d423a4dd8397a198a542707f67b3cad/TerraceStepness.jpg

Uses a Voronoi pattern to create maps. Splits the map into cells, generates a random point for each cell, and fills the map using
evaluated distances to the closest point and the second closest point. A Voronoi map looks like a mosaiс composed of irregular
convex polygons.

 Input - if no input is specified Voronoi generator returns the pure Voronoi map. If an input is specified, the Voronoi

effect is added (+) above the input map.
 Mask - multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

Mask, using the example of Blur Generator:
| Source heightmap | Mask map | Masking result |

Output - a voronoi pattern (if no input specified) or an input map with a voronoi pattern added (if input specified).

Type: determines how exactly the final height is calculated:
Flat: fills all of the closest pixels with cell point’s value
Closest: fills pixel with distance to the closest point value
Second Closest: same as Closest, except the distance to the second closest point is calculated

Map_generators / Voronoi

Voronoi

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6283869f35ba86ffb6081e80bbbcb29b/Voronoi.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/af67f24f5cc7eeda82b7906f7b11fcf2/Mask.jpg

Cellular: distance to the second closest point minus the distance to the closest point.
Organic: distance to the second closest point plus the distance to the closest point.

Flat, Closest, Second Closest

Cellular, Organic

Intensity - the amount of influence of the generator on the input map. When the value is set to 0 the generator effect is
not visible. In other words, it is the generator’s effective opacity.

Cell count: the quantity of cells. This parameter sets the size of the Voronoi pattern: The larger the count, the smaller the
polygon size. For better terrain welding it is recommended to use a power of two cell count, however it is not mandatory.

Cell Count: 4, 8, 16

Uniformity: determines the offset of the cell’s point, and as a consequence, the diversity of the polygons. With a value of 1
all polygons are equal, and they get more unique with the decrease in Uniformity value.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/461e3e0f578973385224c8bc465429a1/VoronoiType1.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a43185dcd4be1ccef87fd548db09a620/VoronoiType2.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5de7794f3cfc81cfd481285fe72dcb04/VoronoiCellcount.jpg

Uniformity: 0, 0.5, 1

Seed: a number used to initialize pseudo-random Voronoi generator.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/060928806f2dfcb7f25f245bbb30af15/VoronoiUniformity.jpg

Modifies the height, rotation and size parameters of the objects. Note that object rotation and scale parameters are not taken
into account by Object Output unless it has “Rotate” and “Scale” checkboxes turned on.

 Input - the default object list (hash) to be processed by the generator.

 Intensity - a map that controls a generator’s level of intensity. If some object is placed at the map pixel with value of 0,

no adjust will be applied to it. If the pixel value is 1 then it will be adjusted using full intensity.

 Output - stores the generator’s processing result.

Type: when the “Relative” type is selected all of the adjustment changes are applied to the existing object’s height, rotation
and size. The “Absolute” type resets the old values and then places (and scales) the object as if it was placed on zero level,
having no rotation and having a scale of 1.

| Initial Scene | Relative Size Adjustment (1.5x) | Absolute Size Adjustment (1.5x) |

Height, Rotation, Size parameters: all of these have minimum and maximum values, The resulting value will be selected at
random and will lie within the minimum and maximum.

Object_generators / Adjust

Adjust

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a42beef0fc40a58ba2800d1dfaed575d/AdjustAbsoluteRelative.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7c51ad76d19ae32fa576b1568da9bc46/AdjustHeight.jpg

| No height adjustment | Height: -5, 0 | Height: -5, -5 |

| No rotation adjustment | Rotation: 0-10 | Rotation: 0-360 |

Size Factor: multiplies the changes applied by this generator depending on the initial object size. For example, if the
object’s size is 2 then all of the adjustment values will be doubled if the factor is equal to 1. This is useful for proportional
object changes: if the object should be lowered to half of it’s height, for instance. When the value is 0 all of the objects are
adjusted the same regardless of their size.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e392288026f86cc6547f3513e058db59/AdjustRotation.jpg

Blob Generator draws circles on the map map in places where objects are located. It can be used for painting maps under
objects.

Blob Generator could be also used for creating special masks, for example, a grass mask. to avoid grass growing under the
objects:

Object_generators / Blob

Blob

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a67bccd79e9fcda22f345fa65d367a32/Blob.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7ab2bd6dbfc9c05924727fb77f65bac8/BlobOverview.jpg

Objects (mandatory): objects that would be the centers of the flat areas.
Canvas: the map to stamp blobs. If not specified then blank map will be used.
Mask: the map that controls generator's intensity.

Input canvas with object stamps.

Radius: the size of the blob stamps.

Radius: 5, 10, 20

Size Factor: multiplies the changes applied by this generator depending on the initial object size. For example, if the
object’s size is 2 then all of the adjustment values will be doubled if the factor is equal to 1. This is useful for proportional
object changes: if the object should be lowered to half of it’s height, for instance. When the value is 0 all of the objects are
adjusted the same regardless of their size.

Inputs:

Output

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/448c9a4dd50d6bb04fb6cc189f120bff/BlobOverview2.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d79a1b94000707237b63a95fbf2ba62c/BlobRadius_5_10_20.jpg

Safe Borders: if not equal to zero generator effect will be fading down near the chunk border to prevent seams between
chunks. Property value determines the fade length in world units.
Fallof: flatten intensity depending on the distance from the object center. Left of the curve is periphery, right is the object
center. Think of it like a flat area profile.

Noise: if not zero some noise amount is added to the fallof to prevent unnatural clear slopes look. "A" property sets the
amount of the noise, and "S" - the noise size.

Noise Amount (A): 0, 2, 10

Noise Size (S): 1, 2, 5

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/1fd1ece874a9dc78faee6a622e7f0cf8/BlobFallof.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/22b8ca8943e3503677c2616a5712c990/BlobNoiseAmount_0_2_10.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/35f654788d32438db2bec74bc95d29e8/BlobNoiseSize_1_2_5.jpg

A generator to remove objects using objects intensity mask. It will leave the object if the mask value is 1, remove it if the mask
value is 0. If the mask value is something in-between, it will remove the object at random using Seed property, the less the
value the more the chance to remove the object.

Leaving only the trees on tops using the heightmap as a mask

Object_generators / Clean_up

Clean_up

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/85833d575c378865a1c61feb1078d0b2/CleanUp.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/9779a154808eb7c2fd7c7bc9d41e89a8/CleanUpUsageExample.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b4a808832d3e75e5631f79e45e755582/CleanUpUsageGraph.png

 Input - the default object list (hash) to be processed by the generator.

 Mask - desired objects intensity mask. The higher the values, the more objects will remain.

 Output - the list (hash) with the objects being removed.

Seed - a seed value for the random generator that decides if objects should be removed.

Different seed values

Removing every 2nd object

Inputs:

Outputs:

Properties:

Other Usage Examples:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/21a0956eb96a5d8f95ad5a64005e53ad/CleanUp_Seed.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2780c7a10d11288e3b200ef3dc4615aa/CleanUp_Every2nd.png

Gathers objects from multiple lists (hashes) in one.

 Multiple Inputs - the lists (hashes) with the objects that will be combined in output.

 Output - the list (hash) that has all the objects from all the input lists (hashes) combined.

The number of inputs can be set with the Inputs Count parameter.

Object_generators / Combine

Combine

Inputs:

Outputs:

Properties:

Usage Example:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/52004091295560f7b602690c6a2c6353/Combine.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3a941118e3aa1567cf9e600cd6dcf998/CombineExample.jpg

Combining big and small stones in one output

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3eb809d1ff9bb3d5e0b9a516cad1fbaf/CombineExampleGraph.png

Used to create a flat land under the objects to place houses or structures that require a flat land.

Object_generators / Flatten

Flatten

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/04ce288ce6208c23a812b6379a0e1f2f/Flatten.png
file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenExample.png

 Objects (mandatory): objects that would be the centers of the flat areas.

 Canvas (mandatory): current graph heightmap that will be adjusted with this generator.

 Mask: the map that controls generator's intensity.

 Output: height, input canvas with flattened object stamps.

Radius: the radius of the adjusted areas (not the flat land, but the whole Fallof area).

Radius: 0, 25, 50

Size Factor: multiplies the changes applied by this generator depending on the initial object size. For example, if the object’s
size is 2 then all of the adjustment values will be doubled if the factor is equal to 1. This is useful for proportional object
changes: if the object should be lowered to half of it’s height, for instance. When the value is 0 all of the objects are adjusted
the same regardless of their size.

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenEffect.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenRadius.jpg

Size Factor: 0, 1, 2

Safe Borders: if not equal to zero generator effect will be fading down near the chunk border to prevent seams between
chunks. Property value determines the fade length in world units.

Safe Borders: 0, 10, 50

Fallof: flatten intensity depending on the distance from the object center. Left of the curve is periphery, right is the object
center. Think of it like a flat area profile.

Fallof

** Noise: if not zero some noise amount is added to the fallof to prevent unnatural clear slopes look. "A" property sets the
amount of the noise, and "S" - the noise size.

Noise: 0, 1, 2

file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FalttenSizeFac.jpg
file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenBor.jpg
file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenFallof.jpg
file:///C/Unity/Wiki/MapMagic/web/www.denispahunov.ru/MapMagic/doc/FlattenNoise.jpg

Emulates a natural forest growth: seed dispersal, the growth of trees, the adequacy of lighting, and soil quality. Forest
Generator can generate several forests of one tree type. As forests grow and expand they will be joint together into a single
whole. Each forest starts with a single tree - a seedling.

Along with Erosion Generator this Generator takes some time to compute. Keep in mind that a forest is a system with negative
feedback. Every little change in the beginning causes an absolutely different result in the end. So generating a forest with
slightly different inputs can cause a very different final picture. For example, changing the seedling’s position can cause the
entire forest to die, while other forest arrays would appear in different places.

 Seedlings - the initial trees. Each of the seedlings starts a new forest.

 Extra Shade - additional tree objects that shade the trees. For example, when planting a birch forest it could be more

long-lived trees like oaks. This object hash prevents the forest from growing in the other forest’s area.
 Soil - a map that controls the chance of the tree to live and to produce seeds. Poor quality (low map values) raises the

tree’s chances of dying. Think of it like soil quality but this also could be a height or slope factor or their multiplication. This
parameter can control not only the soil quality, but other aspects like height or slope factor.

 Trees - living trees object hash. The age of each tree in a Tree’s output is recorded as an object size. One year

corresponds to 1 unit in size: the first year’s sapling’s size would be 1, while a hundred year old tree’s size would be 100.

Object_generators / Forest

Forest

Inputs:

Outputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/34c944b4da102442a5e4de0c8c12d6a3/Forest.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/091b36c258bd6c3755e9a0b1d46ee944/Forest.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png

Use Split Generator to sort trees, with the conditions properly set: for example for young trees the Size Condition should
be 0-10, for medium trees 10-30, for big ones 30-200.

Years: number of years passed since the first seedling started to grow. In most cases this parameter determines the size of
the forest, but in some cases the forest can shrink after it matures and even die - this often happens for tall trees (i.e. high
Shade Dist value) and poor soil.

Years: 50, 100, 150

Density: the maximum number of trees in an area of 10*10 units.

Density: 10, 3, 1

Fecundity: how many seedlings the tree produces per year. The more the value the faster the forest spreads.
Seed Dist: how far a tree can throw a seed. Increasing this parameter can make a forest spread fast, but for more realistic
results it is recommended to set this parameter a little higher than Shade Dist.

Seed Dist: 5, 10, 15

Reproductive Age: the age at which the tree starts to produce seedlings around it.
Survival Rate: a chance for the tree to survive each year. This value is multiplied with a Soil Mask.
Max Age: the maximum tree life time. The tree will die when it reaches this age, but it can die earlier because of bad

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/bc15fe6387740989bfa3675e5f7916b0/ForestYears.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/03201385c71b3ac88e388203aebbbbef/ForestShadeDist.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8cd6faaf394a12f79643273044ef4137/ForestSeedDist.jpg

conditions (i.e. Survival Rate).

For each of the input objects Propagate Generator will create a certain number of clones and will offset the created clones from
the object’s position by a certain distance in a random direction on a plane.

| Original object | Propagate with 5 clones | Propagate + Size Adjust + Combine with original |

Note that this generator will not return the input objects themselves, it will just output their offset clones. Use Combine
Generator to combine source objects with propagated ones.

| Original object | Propagate with 5 clones | Propagate + Size Adjust + Combine with original |

 Input - the hashes with the objects that will be combined in output

Object_generators / Propagate

Propagate

Inputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/861d0982c850c3af0d132f4e2c5f60b3/Propagate.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2147bf10b81c974fd11efff01e6a0d11/Propagate.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6cc70fc273054956ef940793021c0432/Propagate1.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png

 Output - a hash that has all the objects from all the input hashes combined.

Growth: minimum and maximum number of clones created for each object by the Generator. This value is a float. For
example, when the growth range is set to 5 - 5.5 the Generator will create 5 clones for 75% 1of the objects and 6 clones
for 25%, so the average number of clones per object will be 5.25.

Growth: 2-2, 6-6, 1-8

Distance: minimum and maximum distance for clone’s offset from the object’s original position.

Distance: 1-1, 4-4, 1-4

Size Factor: impact factor of the original object’s size on the Growth and Range parameters. When set to 0 the object size
is not taken into account, when set to 1 Growth and Range parameters are multiplied by object size. Keep in mind that big
objects will generate many more clones that can end up overflowing the terrain with cloned objects.

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/ec418d1b6803631d59393ce8f5816d5e/PropagateGrowth.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/62595ff8184362362a830ad0650b27e5/PropagateDistance.jpg

Removes objects that are located close to each other withing a single list (hash).

Note that it works within a single objects input. In order to remove closely located objects in two or more inputs you've got to
use Subract Generator.

 Input - the default object list (hash) to be processed by the generator.

 Output - stores the generator’s processing result.

Distance: the minimum distance that is allowed between the objects. If objects are located closed then one of them is
removed.
Size Factor: multiplies the distance value depending on the initial object size. For example, if the object’s size is 2 then all
of the adjustment values will be doubled if the factor is equal to 1. This is useful for proportional object changes: if the
object should be lowered to half of it’s height, for instance. When the value is 0 all of the objects are adjusted the same
regardless of their size.

Object_generators / Rarefy

Rarefy

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/59aca3bd298862fee99004f0426deb96/Rarefy.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/68312b21b44ac77fbd357f962233ce08/Rarefy.gif
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Subtract.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png

Scatters objects in the terrain area, randomly creates new object positions. Usually it's the first generator that starts the objects
nodes chain.

 Probability - the chance to spawn an object at the current map pixel. The higher the pixel values in some of the map

area - the more objects will be spawned there.

 Output - scattered objects

Algorithm: determines the pattern objects are placed before randomizing:
Random: no pattern, pure random
Square Cells: objects are placed using square grid
Hex Cells: objects are placed using triangle (hex) grid

Algorithm: Random, Square Cells, Hex Cells

Density: the quantity of scattered objects per a square kilometer (100*100 units). Note that when using a probability map
the final count is less than the value because of generator’s probability occlusion.

Object_generators / Scatter

Scatter

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/099ba6dfdc809de36c5dc08099ac27a3/Scatter.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7d39990bfa84cd676d908433617edc8c/Scatter_Algoritm_Random_SquareCells_HexCells.jpg

Density (terrain size is 500*500 meters): 10, 100, 1000

Uniformity: determines how evenly objects are distributed along the terrain.
When using square or hex cells algorithm this parameter determines objects offset range after they have been placed
on terrain

Uniformity (square cells): 1, 0.7, 0.3

When using Random algorithm this parameter determines the number of iterations to find equidistant object position.

Note that using high Uniformity value with high objects count in Random mode can result in greatly
increased generate time. Usually there's no point in using Uniformity more that 0.1 in this case. Consider
switching to Square or Hex Cells mode when the objects count is <1000.

Uniformity (random cells): 1, 0.1, 0.001

Relax: pulling apart closely located objects after the random has been applied. Useful at low Uniformity values.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/903347775808d748b54474f5b32abb59/Scatter_Density_10_100_1000.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8c302f274b3064dc8b3f484ba8ed6f7f/Scatter_Uniformity_1_07_03.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/47fd513a7edeaff458de8ee9a4376be3/Scatter_RandomUniformity_1_01_001.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a1642d3ae9a6453aec07f8f9762f0faa/Scatter_Relax_0_025_05.jpg

Relax: 0, 0.25, 0.5

Safe Borders: an offset from the chunk borders to prevent seams (for instance, when using Blob or Flatten with the
scattered objects).

Safe Borders: 0, 10, 50

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/object_generators/Blob-2.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/object_generators/Flatten-2.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/40d9682af83fa33385245796540fbe6d/Scatter_SafeBorders_0_10_50.jpg

Pulls objects downhill. Returns objects that were moved down according to the terrain normals.

 Input - the object hash to be processed by the generator.

 Height - a terrain heightmap. The objects use it to calculate the slope direction at their positions and therefore their

movement direction.

 Output - stores the generator’s processing result.

Iterations: object move direction is evaluated every iteration. Increasing iteration count will result in objects traveling
further, preserving a generator fidelity but increasing generation time.

Iterations: 0, 10, 50

Move Factor: The distance an object travels per iteration. Increasing this value will move objects further, but very far
distances can reduce generation quality: it can make an object move upward or bounce above narrow hollows.
Stop Slope: stops the object on horizontal surface. The object is not moved anywhere when it reached the slope inclined
less than this value (in degrees, 0 is flat and 90 is vertical).

Object_generators / Slide

Slide

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/bc877ff466c9423ade7a171fdf0aad77/Slide.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8834f4524d0da0c27a3af542c9a2f1d5/SlideIterations.jpg

Creates several new outputs and fills them with input’s objects using certain conditions. Split Generator has a layered structure.
Each layer has its own output as well as minimum and maximum range parameters. For each of the input objects, Split
Generator finds a layer that matches the object properties and writes this object to the layer output.

Object_generators / Split

Split

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6cbe7f2d247d48b11627228cefdfdd14/Split.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a6d2ed4737e66234ed905c8219281d1f/Split1imgA.jpg

Two layers with the same conditions. _Using the top one (bushes)

Bushes height starts from 0.2
for every object below Stones layer is used

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e0be5015c50e9f7d5cd50fece6ec378e/Split1imgB.jpg

Bushes height starts from 0.3

 Input - the default object’s hash to be processed by the generator.

Each of the layers has an Output, which stores only those objects from an initial hash that passed the layer conditions filter.

Match Type: Note that the input object will be passed to only one layer output. If the object’s properties matches several
layers’ conditions it will use the top layer if the “Layered” Match Type is selected or it will select a layer at random in the
case of “Random” Match Type.

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/adfa9ac1ee5f6c593312f05111bf7b34/Split1imgC.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png

Stones Height: 0 - 0.25
Bushes Height: 0.15 - 1
Bushes atop

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6f9a62fa89e96122b26cffa28287141b/Split2ImgA.jpg

Stones atop

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/f277f5ba31d302ad23cc6957e8b3f625/Split2ImgB.jpg

Random match type
Note that in range 0.15 - 0.25 bushes and stones are mixed

Split Generator uses the layered system, similar to the system used in Output Generators. Each layer could be selected by
clicking on it. Above the layers, next to the "Layers:" label you can see layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Each of the layers has the following properties:

Height, Rotation, Size conditions: these parameters have minimum and maximum values. If the input object’s parameters
lay within the range of all layer conditions then this layer will be used(if not overlapped by an upper layer).

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/0ac339c05b36ecf68875868a83e746a3/Split2ImgC.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png

Stones Scale Condition: 1-4, 2-4, 3-4

Chance: used if Match Type is set to Random. If an object matches two or more layers then it is selected at random using
the Chance parameter. It determines the probability of using the layer - higher values will give more chances.

| Bushes Chance: 1, Stones Chance: 1 | Bushes: 0.1, Stones: 1 | Bushes: 10, Stones: 1 |

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/257ba16a282f5ca16d9232ce35226959/Split3.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/1b3d8658b85170ba12ca99ad9ccd0c12/Split4.jpg

Takes a map that is used on the whole chunk, scales it down (in most cases), and stamps it on the object positions.

Stamp Source

Stamp Result

Object_generators / Stamp

Stamp

Inputs:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6ef6596b5e37ea1dd88748195048f714/Stamp.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4d6093cff28db6ecabd698f26dc5a0e4/StampSrc.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/02f8662a7afd82376d3c43dbabc12ba6/StampResult.jpg

 Positions: object positions to perform stamps.

 Canvas: a map stamps will be applied to. If nothing specified the empty map is used.

 Stamp: source map that will be scaled and stamped.

 Mask: multiplies the generator intensity by the mask map’s value. For the mask pixels that have a value of 0 the

generator effect is invisible, for the pixels that have a value of 1 the intensity is unchanged.

In some cases (especially when using Simple Form, RAW or Texture Input as Stamp source) when the terrain
is not pinned at 0,0 you might notice that stamp generator seem to have no effect. This happens because the
stamp generator takes the stamp from the current chunk, not from the one with 0,0 coordinate. So, if the
current chunk has nothing to display then it will get nothing to stamp. You can check this by previewing
stamp source on the terrain. Usually the easiest way to fix is enabling WrapMode in Simple Form or
RAW/Texture Input

 Output - canvas (or empty) map with stamps applied.

Radius: the size of the stamps

Radius: 10, 30, 70

Size Factor: multiplies the changes applied by this generator depending on the initial object size. For example, if the
object’s size is 2 then all of the adjustment values will be doubled if the factor is equal to 1. This is useful for proportional
object changes: if the object should be lowered to half of it’s height, for instance. When the value is 0 all of the objects are
adjusted the same regardless of their size.
Safe Borders: if not equal to zero generator effect will be fading down near the chunk border to prevent seams between
chunks. Property value determines the fade length in world units.

Safe Borders: 0, 10, 50

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/dabe1fcd0b4035a4a84e1bdae2c17472/StampRadius_10_30_70.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4793909bbd25c6c985b5caeb4cc0947c/StampSafeBorders_0_10_50.jpg

Returns the modified Minuend Input so that all objects positioned at a certain distance from Subtrahend Input objects are
removed.

Subtracting stones from pines removes all pine objects within range of 5

Object_generators / Subtract

Subtract

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5d0746f2902a9926d55a4f694ec543b2/Subtract.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7d7833fc050e060331771910b3fbd888/SubtractOverview.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/70795f6cbeae3db9f391b78c9d233637/SubtractOverview_a.png

 Input - minuend, the object list (hash) whose objects will be removed.

 Subtrahend - a reference hash that defines which minuend objects will be removed. This object list (hash) is not

changing and is not included in output.

 Output - a minuend object list (hash) with the defined objects removed

Distance: if the distance between the minuend and any of the subtrahend objects is closer than this value, the object will
not be included in the output(i.e. it will be removed). Note that the distance is measured in map resolution units, not in
world units.
Size Factor: makes a distance dependable from closest subtrahend object’s size. Useful for clearing areas around objects
whose size may vary(like stones).

Inputs:

Outputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/25129003704735c6279111fbf9ecfb79/Objects_small.png

Applies the Input map as a terrain height.

Output Generators bring all the map and object inputs to life: convert maps to terrain heightmap, splatmap or detailmap and
place real objects on terrain. All of the generator chains should end up in one (or more) Output Generators - otherwise they
will not be generated at all.

 Input: a map that will be applied to terrain.

A scale parameter resizes the final heightmap before applicationapply: when set to 0.5 the terrain heightmap resolution will be
the half of the map resolution that is set in Settings. When the parameter is equal to 2 it will upscale the map twice with bilinear
filtering.

Scale: 1, 0.5, 2

Output_generators / Height

Height

Output Generator

Inputs:

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/f73fa37cd28cdec05f58a5cbac4d784a/Height.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3541ce2c75c641971144711218fda06d/HeightOutScale.jpg

Applies the terrain texturing information, i.e. “colors” the terrain with textures.

Texture Output final result depends on the layer order. Layers are blended together similarly to the layer system in Photoshop
and other graphics editors: Each of the upper layers overlaps the lower ones. A mathematical algorithm for each layer
generator multiplies all underlying layer values with the inverse value (1-value) of the current layer.

Texture Output layers can have output connections. These connections store a processed and blended layer mask. The sum
of the output map values is always equal to 1. These outputs could be used for further map processing (for example, for
planting grass using the grass map so it really gets on the terrain).

Output_generators / Textures

Textures

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5ad47b5a196f959e7ca9947e9964d722/Textures.png

Each layer could be selected by clicking on it. Above the layers, next to the "Layers:" label you can see layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

The Background layer does not require an input since it is regarded as completely filled (a constant of 1). This layer could not
be removed or sent up or down.

Note that due to better terrain welding splat prototypes the size parameter should be equal to a power of 2.

The layer properties are similar to the standard terrain texture parameters (splat prototypes).

Opacity multiplies all of the input values before applying it

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2261d2a503364cc401814d8c8491020a/TextureOutput1_small.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/41bd85ddb195b22e965bbc030d8bab37/TextureOutput2_small.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
https://docs.unity3d.com/Manual/terrain-Textures.html

Paints grass on terrain using layer’s maps as a mask. This generator can place detail meshes as well.

 Mask - the overall map of grass density. For the mask pixels that have a value of 0 the grass is not planted, for the

pixels that have a value of 1 grass is planted using the full density.

Obscure Layers toggle makes the grass behave the same way as Texture Output layers. If turned on for each new layer
the grass quantity is blended using the layer opacity. If turned off all grass layers are set up independently.
A patch res parameter that applies to all of the layers. It specifies the size in pixels of each individually rendered grass
patch. A larger number reduces draw calls, but might increase triangle count since detail patches are culled on a per
batch basis. A recommended value is 16. If you use a very large detail object distance and your grass is very sparse, it
makes sense to increase the value.

Each layer has the following properties:

Mode: determines whether it will be a standard grass, a billboard grass or a detail mesh
Grass is the default method to display grass using the static planes.
Billboard grass images will rotate so that they always face the camera.
Vertex Lit mode is used to place a detail meshes.
Object mode is used to place custom grass bushes with opacity.

Texture field (for the grass modes): a grass albedo (diffuse) texture

Output_generators / Grass

Grass

Inputs

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/96af8fcf3dfb9c423a13ac5749d09e62/Grass.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/df7706c3324a9caebbaa3536aad11204/Matrix_small.png

Object field (for the object/vertex lit mode): a detail mesh prefab
The Noise Spread value controls the approximate size of the alternating patches, with higher values indicating more
variation within a given area. (Tech note: the noise is actually generated using Perlin noise; the noise spread refers
to the scaling applied between the x,y position on the terrain and the noise image.)
The alternating patches of grass are considered more “healthy” at the centres than at the edges and the
Healthy/Dry Color settings show the health of grass clumps by their color. (Tech note: the noise is actually
generated using Perlin noise; the noise spread refers to the scaling applied between the x, y position on the terrain
and the noise image.)
Width and Height values specify the upper and lower limits of the size of the clumps of grass that are generated.

The grass layer parameters are similar to the standard terrain grass and detail properties

https://docs.unity3d.com/Manual/terrain-Grass.html

Applies objects to terrain. For each layer it instantiates the required number of objects and places them in the position and
height prescribed by layer’s input. Object size and rotation are used too, if the object’s layer “Rotate” and “Scale” parameters
are checked.
Instantiated objects are grouped as terrain’s child transforms.

Objects Output uses the object pool to instantiate objects faster: when the terrain gets out of generate distance its objects are
not destroyed, but used to generate new terrain that appears within generate range. So be careful changing objects that are
placed on terrain: a changed object will appear here and there as the player walks across the land. Use a separate prefab to
make such unique objects.

Regard Prefab Rotation: in some cases your prefab might have an initial connection (for example, 90 degree X-axis
connection for the objects that were exported from 3DS Max). When this feature enabled, the final object rotation will be
combined, allowing you to place those objects properly. If it's disabled the prefab instantiated will have (i.e. 0,Y,0) rotation
no matter of it's origin transform.
Regard Prefab Scale: same as previous for the scale. If enabled, the final scale will be multiplied with the initial prefab scale.
Useful for placing small objects that were upscaled in a prefab.
Instantiate Clones: by default in editor mode new objects will be created maintaining the prefab connection, in playmode
objects are instantiating using prefab clones. Enabling this will make MM instantiate objects using prefab clones both in
editor and playmode. This will increase the apply speed in editor, but the objects instantiated will loose prefab
connections.
Biome Blend: the way objects are blended between the biomes

Settings mentioned above are static, i.e. shared between all the Object Output Generators in scene (including biomes).

Object Generator input maps are stacked using the layers mode. Each layer could be selected by clicking on it. Above the
layers, next to the "Layers:" label you can see layer control buttons:

 Add: will add new layer atop of the selected one.

Output_generators / Objects

Objects

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/acf26e446bde7be325ebe8488d6b12b5/Objects.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Objects%20and%20trees%20biome%20blending-2.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png

 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Each layer has these properties:

Prefab field: a prefab that will be instantiated for each input object
Relative Height: if enabled the objects are placed relatively to the terrain level. If the object height level is 0, it will be
placed exactly on the terrain, if 13 then it will be placed 13 meters above the terrain. When disabled, the object will be
placed relatively to the scene Y zero level: if object level is 13 it will be placed at the height 13 no matter of the terrain
height in current position.

Relative Height On / Off

Rotate: will rotate an object around the Y axis according to its rotation value set in the input object's hash.
Incline By Terrain: will force objects to take the terrain normal.

Incline By Terrain On / Off

Scale: will scale an object. If the Y parameter is turned on then the object will be scaled along the Y-axis (height) only. If it
is off then the object will be scaled uniformly.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/3db75b33729c07fa4ac40cd7c9897c96/ObjectsRelativeHeight.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d6e24d9b55d898e945cbc9b4a81b5441/ObjectsInclineObjects.jpg

Tree Output works similarly to Objects Output: for each layer it instantiates several trees of a given type at the positions
prescribed by layer’s input. The only difference is that trees in this case are not the Transforms but the terrain Tree Instances.

Biome Blend: the way trees are blended between the biomes

Tree Generator input maps are stacked using the layers mode. Each layer could be selected by clicking on it. Above the
layers, next to the "Layers:" label you can see layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Each layer has these properties:

Prefab field: a prefab that will be instantiated for each input object
Rotate: will rotate an object around the Y-axis according to its rotation value set in the input object's hash.
Scale Width, Scale Height: the X/Z and Y scale axes can be toggled independently. Switching Width on and Height off
will make the trees scale along X and Z axises, while Y scale will always be equal to 1, and vice versa. To scale uniform
check both toggles, to disable scaling uncheck both.

Note that prefab trees that do not have LODs (i.e. those who use billboard imposters) could not be rotated
or scaled. It’s not a MapMagic bug, it is the way Unity works. Possible solution. Note that while the tree is not
rotated, it's collider does, so turn off rotation and scale feature if you are using imposter trees.

Color Tint: multiplies tree type with a given color.
Bend Factor: the influence of the tree to the wind zone.

Output_generators / Trees

Trees

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/26b6d1731b9a675144616057e6907c32/Trees.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Objects%20and%20trees%20biome%20blending-2.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
http://answers.unity3d.com/questions/51027/terrain-tree-rotationrandomization.html

A special output generator designed to work with a 3rd party terrain shaders:

Relief Terrain Pack;
MegaSplat;
Complete Terrain Shader
An appropriate asset should be installed.

Furthermore, this output generator can work with almost any terrain shader that uses control textures. If you are using your
own terrain shader switch mode to "Custom".

This generator should be used instead of Texture Output generator.

Mode: selects the type of the shader that should be used.
CTS Profile / MS Texture List / RTP Component: the main shader asset where all of the shader properties are kept. It's used
in MapMagic to get available layers and to perform Instant Update.
In custom mode you will see the control textures list. You can set the control textures names here, and total control
textures count below.

Output_generators / Custom_shader

Custom_shader

Properties:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/bfcb2b66685df6181800c80daaccc193/CustomShader.png
https://assetstore.unity.com/packages/tools/terrain/relief-terrain-pack-v3-3-5664
https://www.assetstore.unity3d.com/en/#!/content/76166
https://www.assetstore.unity3d.com/en/#!/content/91938

A custom material source that will be used to create chunk materials. The material assigned here is not actually used on the
terrain - MapMagic clones it for each chunk, assigns the proper unique control maps to copy and applies copy to terrain.

This field is the instance of the Terrain Settings / Custom Material field.

Theoretically MaterialPropertyBlock could be used instead of material template. It would be faster and will not require
Instant Update, but it cannot be serialized (i.e. saved for pinned terrains). You can try experimenting with
MaterialPropertyBlock by un-commenting the block in Apply method.

Since every chunk uses it's own individual material changing CTS Profile / MS Texture List / RTP Component properties will
have no visual effect. To copy all of the shader asset properties to terrains you have to click "Update Now" button.

Instant Update will click this button every frame the scene view changes.

Don't forget to turn "Instant Update" mode off after you're happy with the shader settings since updating all
the materials every frame is resource intensive.

Textures that control map blending in shaders are called "Control Textures". That's the very textures that are unique for each of
the terrain.

ARGB Format will force using ARGB instead of RGBA. This is required for MegaSplat since v.1.14
Non-readable will turn off the control textures read/write mode after the texture data has been applied. This will reduce
the texture size, but may conflict with the custom shader asset.
Smooth Fallof (MegaSplat) will make gradients between textures a bit more smooth and increase texture transitions areas.

Smooth Fallof: Off / On

Material Template:

Control Texture:

Layers:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/aa52d0ff76ae55e0822dbe062ef20e60/CustomShader_SmoothFallof.jpg

Input maps are stacked using the layers mode. Each layer could be selected by clicking on it. Below the layers you can see layer
control buttons:

 Add (MegaSplat mode): will add new layer atop of the selected one.
 Remove (MegaSplat mode): removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Base layer could not be removed or sent up or down.

Up and down buttons are not displayed if the layer count is zero.

To add, remove or change layer properties an appropriate asset should be used. "Refresh All" in RTP settings might be
required after the first properties change.

Each of the layers (exept Background) has it's own Inputs and Outputs. Layers are blended similarly to Texture Output
generator.

In order to use Custom Shader output properly you've got to set up MapMagic itself:

Switch Material Type to custom in Terrain Settings;
Assign a proper Custom Material template with CTS/MegaSplat/RTP shader;
Turn off "Assign Custom Material" feature - it will apply the Custom Material to terrain, while we need to use it's clones
with a custom control maps;
Disable base map for terrains since most shaders do not use it;
Assign CTS Profile / MS Texture List in a proper slot in generartor. In case of RTP ReliefTerrain component should be
assigned to MapMagic object.

In case if you forget to do something from that list you will see a warning with a "Fix" button. Pressing this button will fix it
automatically.

Create a new scene, add MapMagic object, open editor and add CustomShader Output;
Switch Mode to RTP;
Fix all the warnings pressing "Fix" buttons. On adding RTP component you might see a message that _RTP_LODmanager
object has been created;
Select MapMagic object. In ReliefTerrain component, Layers tab, select each of the layers in Choose Layer (they are not
visible by default) and assign it's diffuse, normal and height textures;

Warnings and Fixes

Tutorials:

Using RTP:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/output_generators/Texture_Output.html

Go to RTP Settings / Main and press Refresh All button;

In Custom Shader Output node / Material Template press Update Now;
Connect Custom Shader Output node layers to the other graph.

Using MegaSplat:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/cb96a8f91f618acd454b0674a1718b59/CustomShader_RTPLayers.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/648e56437bd1ab27868bcedfdafa7aba/CustomShader_RefreshAll.jpg

Create a new scene, add MapMagic object, open editor and add CustomShader Output;
Switch Mode to MegaSplat;
Assign MegaSplat texture list. It is generated from the MS Texture Array Config when pressing "Update" button;

Fix all the warnings pressing "Fix" buttons. Fixing a material will create a new MegaSplat N shader in MegaSplat folder;
In the material in Material Template slot:

Switch Shader Type to terrain;
Layer Mode: Two Layer;
Assign in Albedo/Height, Normal and Smoothness texture arrays slots appropriate texture arrays;

In Custom Shader Output node / Material Template press Update Now;
If you got MegaSplat version <1.14 turn on ARGB Format in Custom Shader Output / Control Texture;

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/419ee3f78f86daa83a42fb5b7c76ea60/CustomShader_MegaSplatUpdate.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/36d6abd4af6832f218861c93ea8e14b7/CustomShader_MegaSplatMaterial.jpg

Add new layers in Clusters section, select textures and connect them to the other graph.

Create a CTS profile with the standard way: create terrain, assign textures, add CTS component, create and apply profile
(menu/Component/CTS/Create and apply profile), delete terrain;
Create MapMagic object, open editor and add Custom Shader Output;
Switch Mode to CTS;
Fix all the warnings pressing "Fix" buttons;
In Custom Shader Output node / Material Template press Update Now;
Connect Custom Shader Output node layers to the other graph.

Create MapMagic object, open editor and add Custom Shader Output;
Switch Mode to Custom;
Set the number of control textures used in your shader;
Set the names of your control textures as they are shown in a shader (they are usually starting with underscore);
Fix all the warnings pressing "Fix" buttons;
Assign or set up material template that uses your shader;
Connect layers to the graph, set the proper control texture and channel for each layer.

Using CTS:

Using proprietary terrain shader

Outputs Voxeland terrain. Requires Voxeland to be installed. This generator replaces the standard both Height and Texture
outputs.

Voxeland Output works only when MapMagic is is used as a Voxeland's generator. In order to use it you
have to create Voxeland terrain, switch Generate Type to MapMagic, and create a new graph.

Voxeland Output block types are stacked using the layers mode. Each layer could be selected by clicking on it. Below the layers
you can see layer control buttons:

 Add: will add new layer atop of the selected one.
 Remove: removes currently selected layer.
 Up: will change the layers order by moving the selected layer up.
 Down: will change the layers order by moving the selected layer down.

Output_generators / Voxeland

Voxeland

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/12c3453178c4848b615db69ddd60aa58/Voxeland.png
https://assetstore.unity.com/packages/tools/terrain/voxeland-9180
https://www.youtube.com/watch?v=jlLALBsAUZY
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/23efb343f87494784c60033ac745c84f/DPLayout_Add.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/46103ae258f0cb2d87edffd41559ee09/DPLayout_Remove.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/b0266f464a9adc8f108c24093353f937/DPLayout_Up.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/64f7c485078e17c376fb4f24071b4dd9/DPLayout_Down.png

Unlike the usual 2D terrains, Voxeland is a true 3D terrain that consists of blocks. Voxeland data stores the information about all
of the blocks, not only the top once. For example, if you dig the grass that should have a bedrock cliff underneath, you will find
that the cliff blocks are still here. This way Voxeland terrain could be just "painted" with some texture, instead all of the blocks in
a volume should be set. Voxeland Output offers a way to do that using layers.

Each layer could be applied using one of these blending types:

Add: adds the layer above already existing terrain. Just like a dump track unloading gravel.

First layer (cliff) applied with the "Add" mode.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/202fbb1ab3fb45dc4efc98f7ff7a0252/Add0.jpg

Second layer (grass) applied with the "Add" mode.

Same layers applied in a reverse sequence.

Absolute: simply sets the layer using the height map provided. The way the layer set depends only on a height values,
and does not depend on the current terrain height. So it can replace already existing layers or even hover above the
terrain.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/5d5a68d23025ed4618b192214fb425af/Add1.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/09e7e410d95ed36777c45c63563543ca/Add2.jpg

If the height is not provided the layer will be applied at the zero level

Providing a height will make it intersect the terrain, crossing all of the existing layers, including the "air" one.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/740bd50f04247f854652e8dc52cd67c9/Absolute0.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/998a5749372876ba1bd9a2cc47bed279/Absolute2.jpg

By switching the layer type to "Empty" you can cut the terrain with the layer, making caves in it.

Clamp/Append: applies the layer at the zero level, comparing two heightmaps:
If the layer height is lower than the terrain height, it clamps the terrain to the level height.
If the layer height is higher that the terrain height, it adds layer type blocks to the terrain until it reach the layer height.
This way the final terrain height should be equal to the layer height.

Terrain heightmap

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8c0e6ebed5e90cad98a4e3434ef0f0fe/Absolute3.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c30adc2bc91d69db980439f5402af679/ClampAppend0a.jpg

Layer heightmap

Clamp/Append effect

Paint: "paints" with the blocks on the terrain. The depth of the paint effect is determined by the "Paint Depth" value
multiplied by layer value. When the layer value is 0 no paint effect is applied, when the layer value is 1 paint effect is equal
to Paint Depth value.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2d88bb5ab9bbb1633743487c529f9aa5/ClampAppend0b.jpg
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2ee0a1efad230cd923a357b587e7581c/ClampAppend1.jpg

Paint effect

You can stack several layers with the same block type.

Note that the existing MapMagic maps could hardly be converted to Voxeland terrain. Textures Output cannot be just
replaced with Voxeland Output node. Voxeland Output uses absolutely different (and more complex) algorithm, it does not just
blends layers in a Photoshop manner, but it creates layers in 3D space. This requires not only the significant graph changes, but
changing the whole approach to the graph creation. That's why I'm not converting Island or Demo scenes to be used with
Voxeland - they will require the whole graph created from scratch, and it will not have much in common with the original one.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/cd25232f6352a6e681e6f8b707630574/Paint.jpg

Outputs Voxeland terrain grass. Requires Voxeland to be installed. This generator replaces the standard Grass output.

Voxeland Output works only when MapMagic is is used as a Voxeland's generator. In order to use it you
have to create Voxeland terrain, switch Generate Type to MapMagic, and create a new graph. See
Voxeland+MapMagic tutorial for details.

Use Voxeland "Grass Blocks" settings to add or remove layers or change their order.

Output_generators / Voxeland grass

Voxeland grass

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/7955eafe2e36608f375a63e3806e3a52/VoxelandGrass.png
https://assetstore.unity.com/packages/tools/terrain/voxeland-9180
https://www.youtube.com/watch?v=85jBqESyTO4

Outputs Voxeland terrain objects. Requires Voxeland to be installed. This generator replaces the standard Objects output.

Voxeland Output works only when MapMagic is is used as a Voxeland's generator. In order to use it you
have to create Voxeland terrain, switch Generate Type to MapMagic, and create a new graph. See
Voxeland+MapMagic tutorial for details.

Use Voxeland "Object Blocks" settings to add or remove layers or change their order.

Output_generators / Voxeland objects

Voxeland objects

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/de2b043248d2519569f95056cb9a06a1/VoxelandObjects.png
https://assetstore.unity.com/packages/tools/terrain/voxeland-9180
https://www.youtube.com/watch?v=85jBqESyTO4

Portals are the special generators used to organize the graph in a more convenient way. Sometimes it is necessary to connect
some inputs and outputs on opposite sides of the graph. It is not easy to connect generators using the furthest zoom and
makes it hard to read the graph.
Portals are the mean to solve the problem. One portal (an input form) has an Input
connection and the other portal (an output form) has an Output connection. On generate the input portal just passes the
object to the output one, connecting the two generators together.
There is no functional difference between a portal
connection and the standard one.

Think of portal connection as a standard connection with no line displayed.

To switch between Input Portal and Output portal use the In/Out button in the middle.
To change the portal In/Out type (Map
or Object) use the Map/Obj button to the left.
One more thing that’s important to know about portals in order to use them is
the portal article. Only those portals that are linked share the same article - in the example above, the article is called “Height”.
So to link the portals you’ve got to type portal article in an Input Portal and then select a typed name in an Output Portal. An
article could be any name you like and which describes portal map the best in your opinion.

Portal

Portal

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8e9ce37e88e6be2fa0d7ca5c7e27d0d9/Portals2.png

Portals are not linked because of an article mismatch

Portals are linked because they share the same article

In a complex graph you would like to use portals with a different articles. Keep in mind that only those portals that share the
same name are connected.

Portals are cross-connected using the article principle

Multiple portal connections are also possible. To create them, use one Input Portal and multiple Output Portals. More complex
combinations are also possible.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e834ca61a1a367b1838b1a4e12a8dd6f/Portals5.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/060e6f36d13e3d38ae865becdc15d15d/Portals6.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/97b57ad340bb482b9697e74c68680cb3/Portals7.png

Possible portals connections

One might ask: “Why use these portals are if they could be replaced with direct connections?” It is even more confusing when
using a simple graph when learning Map Magic. But I’d like to show a portal connection from a rather complex graph:

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/8a1ea3e146c6aa355701b6c4f1fe110a/Portals3.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/c47f4b0c28269021c69846c8d1f8acd1/Portals3.png

Demo scene portal system

So portals should not be used with every connection and not even on every fourth connection but they could be used from
time-to-time to make a graph a bit more pretty and readable. Most likely even a complex graph will not have more than a
dozen different portal articles.

Map/Object: portal input & output. Change the default "Map" it if you are going to create an objects portal.
In/Out: portal type. In-portal have the input, but does not have output. Out-portal is the one that has the output, but

Properties

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/24ae4e5c44d8b2581149e6d9f18cc782/Portals.png

don't have input.
 Button: shows portal connections as lines (for graph debug purpose).
 Focus Button (in output portal): focuses editor window on the linked input portal.

Name field: type portal name (for input portal) or select a link from the list (for output portal).

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/d15a13e3504ce03979de486744073986/MapMagic_ShowConnections.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e93ecb4e08878d2f6e67c39b6d290847/MapMagic_Focus_Small.png

MapMagic can be extended with custom generators. All generators are made as modules, so a custom generator can be
created without changing MapMagic’s code and without the need to re-write it on every MapMagic upgrade.

A generator template can be found in the SampleGenerator.cs file. You can copy this file and store it anywhere in your project.
But for a better understanding an example of gradual generator creating will be given.

First of all let’s start with an empty class. All the generators derive from a base Generator class. It should be marked with a
Serializable attribute and have a GeneratorMenu attributes used to create the generator with a right-click menu:

[System.Serializable]
[GeneratorMenu (
 menu="MyGenerators",
 name ="MyGenerator",
 disengageable = true,
 helpLink = "http://myGeneratorHelp")]
public class MyCustomGenerator : Generator
{

}

GeneratorMenu attribute has the following arguments:

menu: a base menu where Generator will be stored. It could be "Map", "Objects", "Outputs", or something custom. If you
don't want to put your generator into a category (make it like Portal or Biome) leave it blank, but not null: name = "".
name: the way Generator name is displayed in right-click menu.
disengageble: the generator could be turned off with an eye icon next to the generator name at the graph.
helpLink: generator help or usage description on the web. This link is opened when clicking help button next to the
generator name at the graph.

Custom generators should override two abstract functions: Generate and OnGUI.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 public override void Generate (
 CoordRect rect,
 Chunk.Results results,
 Chunk.Size terrainSize,
 int seed,
 Func stop = null)
 { }
 public override void OnGUI public override void OnGUI (GeneratorsAsset gens)
 { }
}

Creating a custom generator

Creating a custom generator

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/4aab9e2713d3d723264e865b20efd13c/MapMagic_GeneratorEnabled.png
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/e39e8b99435b495a2b419fda4a3feaf2/MapMagic_Help.png

Generate function accepts the following arguments:

CoordRect rect: current terrain coordinates. In map space - measured in map pixels rather then world units. So, for the
second chunk with a map resolution 512 it will be 512-1024 even if the chunk size is 1000 world units.

Coord Offset: rect offset, x and z, ints.
Coord Size: rect dimensions, x and z, ints.

Chunk.Results results: a class to store the generated results, contains generate products of all of the generator in the
chunk, not only the current one.
Chunk.Size terrainSize: all the necessary information about a chunk size that is set in General Settings:

int resolution: currently used map resolution
float dimensions: current terrain size in world units
float height: maximum terrain height in world units
float pixelSize, get: returns the size of the pixel in world units (i.e. dimensions/resolution). Useful for converting from
map space to world space.

int seed: a global seed value used in current generate
Func stop: stop callback to check if generate is canceled from the main thread (it could be canceled if the new generate
was started when constantly changing node value). If stop(val) returns true then generator should cancel generate and
return as soon as possible. In further versions float val will be used to get current generate progress, but in MM 1.8 it's not
used.

OnGUI method take the GeneratorsAsset (i.e. graph) it belongs to as an argument.

Now let’s add the generator’s inputs and outputs. To work properly, all the generator’s inputs and outputs should:

be properly initialized
included in the inputs or outputs enumerator
have a graphical representation in the generator’s OnGUI function

So let’s add the Input and Output variables. Inputs and outputs constructors generally take two arguments: the first is the name
of the input/output as it is displayed in the node and the second is its type in the form of InoutType enum (InoutType.Map or
InoutType.Objects). In addition, Input can have an optional “mandatory” property: if set to true it will display a red mark for
unconnected input.
Warning: remove MyGenerator from a graph before applying the following code and create it again when
scripts are compiled. Otherwise it will have a null input/output.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output vars
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 public override void Generate public override void Generate (CoordRect rect, Chunk.Resul
ts results, Chunk.Size terrainSize, int seed, Func stop = null) { }
 public override void OnGUI (GeneratorsAsset gens) { }
}

On generating MapMagic iterates a generator’s inputs and outputs to process each of them. Enumerables are used to do this,
just adding the variables will not make them accessible to MapMagic.
Each input should be included with “yield return”

keyword in an overridden Inputs enumerable, while each output should be included in an overridden outputs enumerable.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output vars
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate public override void Generate (CoordRect rect, Chunk.Resul
ts results, Chunk.Size terrainSize, int seed, Func stop = null) { }
 public override void OnGUI (GeneratorsAsset gens) { }
}

If the generator has, let’s say, three inputs and two outputs it should start with something like this:

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 public Input firstIn = new Input("First", InoutType.Map);
 public Input secondIn = new Input("Second", InoutType.Map);
 public Input thirdIn = new Input("Third", InoutType.Map);
 public Output firstOut = new Output("First", InoutType.Map);
 public Output secondOut = new Output("Second", InoutType.Map);

 public override IEnumerable Inputs()
 { yield return firstIn; yield return secondIn; yield return thirdIn; }
 public override IEnumerable Outputs()
 { yield return firstOut; yield return secondOut; }

 public override void Generate public override void Generate (CoordRect rect, Chunk.Resul
ts results, Chunk.Size terrainSize, int seed, Func stop = null) { }
 public override void OnGUI (GeneratorsAsset gens) { }
}

Now we have a correct and properly set-up generator. It has only two drawbacks: it does nothing and it has no displayed
parameters in the GUI - not even input and output connection nodes.

We will fix the last one by exposing the input and output in the OnGUI function. This function is called when the generator
node is rendered on the graph and uses a Layout wrapper, instead of UnityEditor.EditorGUILayout, which allows element
scrolling, zooming and dragging.
Right now we will not dig into Layout, we will just add a new line with a 20-pixel height(with
zoom=100%) layout.Par function and then draw the input and output (a circle with an icon and a label with input/output name)
at that line by calling their own OnGUI functions.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/2d80517b2804b01d4d161a079c81ea84/Generator1.png

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output vars
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate public override void Generate (CoordRect rect, Chunk.Resul
ts results, Chunk.Size terrainSize, int seed, Func stop = null) { }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20);
 input.DrawIcon(layout);
 output.DrawIcon(layout);
 }
}

Now you can see that MyGenerator has two map connections, and the input connection is displayed as mandatory.

Our 3 inputs and 2 outputs generator will have 3 lines, one input and one (or none) output per line:

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); firstIn.DrawIcon(layout); firstOut.DrawIcon(layout);
 layout.Par(20); secondIn.DrawIcon(layout); secondOut.DrawIcon(layout);
 layout.Par(20); thirdIn.DrawIcon(layout);
 }

Now let’s add a generate function. Let’s say it will do a simple function - it will invert an input map’s value(1-value). There's
already a generator for that, and the same effect could be achieved with curves but as an example it'll do.
Here is the body of
the Generate function. This function overrides the base Generator’s function.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/6ceadd31aaeeeebaf7acb3a6d50db458/Generator2.png

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null) { }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

Now we will load inputs using the input.GetObject function. This function returns an object type, so we have to cast it to the
map’s type, which is internally called “Matrix”. This matrix will be called src (source).

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

Now let’s add two guard clauses to the Generate function. They will exit the function before executing its body to prevent
errors or to save computing time.
The first one occurs in the case where an input gets a null object - if it is not connected or
the previous generator returned null. In this case this generator should not set any objects. The second one will stop the
generate using the "stop" callback. Due to the multithreaded approach it can change its value at any time, and often it does -
during the generate function execution from the main thread. It is recommended to check if the generate has not been
stopped from time to time in your generator code.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{

 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (stop!=null && stop(0)) return;
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

The other way the function can exit early is if the generator is not enabled. But in this case it should pass the input object to the
output. So it uses output.SetObject function and returns.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (stop!=null && stop(0)) return;
 if (!enabled) { output.SetObject(chunk, src); return; }
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

We’re now at the most interesting part. We will do some simple calculations to invert a map. But before doing that let’s make
sure that it will not modify our original “src” matrix. This matrix could be used by other generators and, more importantly, it will
be used by this generator each time it’s parameter changes if “save intermediate results” is checked in the MapMagic settings.
So do not forget this simple rule: do not change the input maps or object hashes, use new matrices or hashes to write values.
So we will create a new matrix to write our changed src values and call it dst (destination). This matrix should have the same
size and the same coordinates as the source matrix. The size and offset information is kept in a matrix.rect struct. We will use
src.rect in a new matrix constructor.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (MapMagic.MapMagic.Chunk chunk)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (stop!=null && stop(0)) return;
 if (!enabled) { output.SetObject(chunk, src); return; }

 Matrix dst = new Matrix(src.rect);
 }

 public override void OnGUI (CoordRect rect, Chunk.Results results, Chunk.Size terrainSiz
e, int seed, Func stop = null)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

In order to invert the matrix we have to iterate all the src pixels and set them to dst = 1 - src. It’s very simple to do this using
matrices. Matrix is a wrapper of a standard single-dimensional array of floats, with an interface that of a 2D array but makes it a
bit faster. And it takes matrix offset into account - so that matrix coordinates start not from zero, but from the offset values.

For example, if we want to get some pixel at a coordinates, let’s say [768,256] we will call matrix[768,256]. If we want to iterate a

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/47a209c68f1fc964242e0f7a3302336e/Matrix.png

matrix that has an offset [1024,0] and a size [512,512] we should use the following code:

for (int x=1024; x<1024+512; x++)
 for (int y=0; y<0+512; y++)
 float val = matrix[x,y];

By the way, since the matrix is used for 3D objects like terrain, and it is applied horizontally, it’s better to use the Z-axis name
instead of Y(which usually indicates height).

So, the simple invert generator code should look like this:

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (stop!=null && stop(0)) return;
 if (!enabled) { output.SetObject(chunk, src); return; }

 Matrix dst = new Matrix(src.rect);
 for (int x=src.rect.offset.x; x< src.rect.offset.x+src.rect.size.x; x++)
 for (int z=src.rect.offset.z; z< src.rect.offset.z+src.rect.size.z; z++)
 dst[x,z] = 1 - src[x,z];
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

We can speed up the code a bit to avoid summing of rect with offset using the Coord struct. Think of Coord like a Vector2,
except that it uses ints instead of floats.

Coord min = src.rect.Min; Coord max = src.rect.Max;
for (int x=min.x; x< max.x; x++)
 for (int z=min.z; z< max.z; z++)
 dst[x,z] = 1 - src[x,z];

And the final step to make a generator work - it should store the generated result using the output.SetObject function. This
function takes two arguments: the first one is a chunk to store an object and the second one is the result object itself.

But before storing an object check that the thread is not stopped. Just in case.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }

 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (stop!=null && stop(0)) return;
 if (!enabled) { output.SetObject(chunk, src); return; }

 Matrix dst = new Matrix(src.rect);

 Coord min = src.rect.Min; Coord max = src.rect.Max;
 for (int x=min.x; x< max.x; x++)
 for (int z=min.z; z< max.z; z++)
 dst[x,z] = 1 - src[x,z];

 if (stop!=null && stop(0)) return;
 output.SetObject(chunk, dst);
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 }
}

Now if we create this generator and connect it to the organic Voronoi Generator you will see that it produces bubbles instead
of caverns - so it works the way we expect.

It has one drawback though - it creates a map somewhere at the top of the terrain which makes it hard to edit or blend the
map with the other ones. This happens because we subtracted src values from 1 - the top terrain level. So if it was replaced
with a custom value we will get a more adequate result. And note that we should monitor the dst value to prevent it from
going below zero.

So let’s add a “level” variable and expose it on the GUI using the layout.SmartField. A smart field is a common MapMagic field
with a text input and a draggable icon to the right. The SmartField function takes two required arguments: the ref of a value we
want to expose and the text that should be displayed in front of it. And we will use two additional parameters: minimum value
(min:0) and maximum value (max:1) because, obviously, the level could not be less than zero or higher than 1.

By default there is no need to create a new line using layout.Par() because this function is already called in a smart field unless
the newLine parameter is set to false.

[System.Serializable]
[GeneratorMenu (menu="MyGenerators", name ="MyGenerator", disengageable = true)]
public class MyCustomGenerator : Generator
{
 //input and output properties
 public Input input = new Input("Input", InoutType.Map, mandatory:true);
 public Output output = new Output("Output", InoutType.Map);

 //including in enumerator
 public override IEnumerable Inputs() { yield return input; }
 public override IEnumerable Outputs() { yield return output; }
 public float level = 1;
 public override void Generate (CoordRect rect, Chunk.Results results, Chunk.Size terrain
Size, int seed, Func stop = null)
 {
 Matrix src = (Matrix)input.GetObject(chunk);

 if (src==null || chunk.stop) return;
 if (!enabled) { output.SetObject(chunk, src); return; }

 Matrix dst = new Matrix(src.rect);

 Coord min = src.rect.Min; Coord max = src.rect.Max;
 for (int x=min.x; x< max.x; x++)
 for (int z=min.z; z< max.z; z++)
 float val = level - src[x,z];
 dst[x,z] = val>0? val : 0;

 if (chunk.stop) return;

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/a179dcbaff9efdf240eb1efb8d7a184d/CustomGen1.jpg

 output.SetObject(chunk, dst);
 }

 public override void OnGUI (GeneratorsAsset gens)
 {
 layout.Par(20); input.DrawIcon(layout); output.DrawIcon(layout);
 layout.Field(ref level, "Level", min:0, max:1);
 }
}

Now we’ve got a nice looking generator, which has an input, output, and an adjustable parameter. It’s also seamless: It appears
as if it’s been in MapMagic forever, but the really cool thing is that it is literally a plugin for MapMagic, we’ve done it without
touching the main code. It could be removed by just deleting the file, sent to a colleague or published online.

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/uploads/1f6df4aa5fdacf444c483d74cbe8167f/CustomGen2.jpg

In some cases you might want to make MapMagic generate without actually creating terrains or using multithreading, just call
pure generate function using some particular graph and terrain coordinates. There is a way to do it. Actually, it is the way
Voxeland is using MapMagic to generate it's terrain. You will need to use graph's Calculate function for that.

Calculate (int offsetX, int offsetZ, int size, Chunk.Results results, Chunk.Size terrainSize,
int seed)
where
- offsetX and offsetZ is the offset of the area to generate (in map pixels)
- size is the dimentions of the area
- results store all of the generate data, including the heightmap. Top access heightmap Matri
x use results.heights value.
- terrainSize is a struct that holds information about world parameters: terrain resolution,
terrain dimentions (it's size in world units), and maximum height value
- seed is a global seed used to generate unique terrain

Note that this function is called not on MapMagic object itself - you can even have no MapMagic in scene at all - but on the
graph, a saved .asset file.

Here is a usage example:

MapMagic.GeneratorsAsset mapMagicGens = MapMagic.instance.gens; //finding current graph asset
MapMagic.Chunk.Results results = new MapMagic.Chunk.Results(); //preparing results
MapMagic.Chunk.Size size = new MapMagic.Chunk.Size(MapMagic.instance.resolution, MapMagic.inst
ance.terrainSize, MapMagic.instance.terrainHeight);
mapMagicGens.Calculate(100, 100, 300, results, size, 12345);

Here is how it used in Voxeland:

area.results = new MapMagic.Chunk.Results();
MapMagic.Chunk.Size size = new MapMagic.Chunk.Size(area.rect.size.x, area.rect.size.x, heightF
actor);
if (mapMagicGens != null)
 mapMagicGens.Calculate(area.rect.offset.x, area.rect.offset.z, area.rect.size.x, area.resu
lts, size, seed);

This example shows the way to incline objects along the terrains. Actually, objects could be inclined out of the box since v.1.8, this
code just shows a practictical example of using OnApply event:

 using UnityEngine;

 namespace MapMagic
 {
 [ExecuteInEditMode]
 public class AlignToNormal : MonoBehaviour
 {

Scripting_faq

Scripting_faq

I want to generate and return heightmap data at some custom area, is there any way to do it?

How to post-process objects applied to terrain?

 public void OnEnable ()
 {
 MapMagic.OnApply -= Align; //just in case it was not called on disable
 MapMagic.OnApply += Align;
 }

 public void OnDisable ()
 {
 MapMagic.OnApply -= Align;
 }

 public void Align (Terrain terrain, object obj)
 {
 TransformPool.InstanceDraft[][] tfmTypeInstances = obj as TransformPool.Instan
ceDraft[][];
 if (tfmTypeInstances == null) return; //in case it is height/splat/grass/fores
t apply

 for (int t=0; t<tfmTypeInstances.Length; t++)
 {
 TransformPool.InstanceDraft[] tfmInstances = tfmTypeInstances[t];

 //there could be a check if an object of this type should be rotated

 for (int i=0; i<tfmInstances.Length; i++)
 {
 TransformPool.InstanceDraft tfmInstance = tfmInstances[i];

 Vector3 terrainNormal = terrain.terrainData.GetInterpolatedNormal(
 tfmInstance.pos.x/terrain.terrainData.size.x,
 tfmInstance.pos.z/terrain.terrainData.size.z);
 Vector3 sideVector = Vector3.Cross(terrainNormal, tfmInstance.rotation
*Vector3.forward);
 Vector3 frontVector = Vector3.Cross(sideVector, terrainNormal);

 tfmInstance.rotation = Quaternion.LookRotation(frontVector, terrainNor
mal);
 tfmInstances[i] = tfmInstance; //saving struct to array
 }
 }
 }
 }
 }

Add the script anywhere in scene - for instance, to Map Magic object. Actually you can do almost anything with such a scripts.

You can export terrain data to asset file using this editor function:

 void ExportTerrainData (Terrain terrain)
 {
 if (!export) return;
 export = false;

 string path= UnityEditor.EditorUtility.SaveFilePanel(
 "Save Terrain as Unity Asset",
 "Assets",
 "ExportedTerrain.asset",
 "asset");
 if (path!=null && path.Length!=0)
 {
 path = path.Replace(Application.dataPath, "Assets");

 Terrain terrain = GetComponent<Terrain>();
 float[,,] splats = terrain.terrainData.GetAlphamaps(0,0,terrain.terrainData.al
phamapResolution, terrain.terrainData.alphamapResolution);

 UnityEditor.AssetDatabase.CreateAsset(terrain.terrainData, path);
 terrain.terrainData.SetAlphamaps(0,0,splats);
 UnityEditor.AssetDatabase.SaveAssets();
 }
 }

Note that somehow just exporting with CreateAsset removes splat map information, but this code has already a workaround for
that. A ready script could be found here. Just assign it to the terrain object and press "export" - it works like a button.

You can use mapMagic.ForceGenerate method - it will make terrain re-generate after seed change:

How can you export terrain data?

How to set random seed each time the game starts?

https://forum.unity3d.com/attachments/untitled-1-jpg.185606/
https://www.dropbox.com/s/tnb3v1s6r5h1ss0/ExportTerrainData.cs?dl=0

mm.seed = newSeed;
mm.ForceGenerate();

Or you can start with a disabled mapMagic object, and enable it once the seed is set in your script's Start method:

void Start()
{
mm.seed = newSeed;
mm.enabled=true;
}

Personally, I prefer the second approach since it works both in multithreading and non-multithreading mode: it does not start
unneeded old-seed generate on scene start that will be erased with ForceGenerate.

If you are going to change only generator of one type (for example, the noise seed):

foreach (MapMagic.NoiseGenerator1 noiseGen in mapMagic.gens.GeneratorsOfType<MapMagic.NoiseGen
erator1>())

Note that there should not be pinned terrains in the scene - since they have an initial seed value they will not match the new
terrains created with the new seed.

https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-
tool.390920/page-20#post-2859860

How to change the dynamic generator linking from the code?

https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-tool.390920/page-20#post-2859860
https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-tool.390920/page-20#post-2859860

I'd like to mention that not everything that run on GPU is automatically fast. I've made some experiments with the compute
shaders and found out that it could be accelerated only with a flexibility loss - for instance, have to give up using multiple
output connections. The reason I prefer multithreading to GPU calculations is that it fits dynamically generated infinite terrain
better. GPU generating usually looks great in the editor, but in playmode, when GPU load is usually 100% it can squeeze
graphics calculations and produce a some lag. While in most cases the processor cores are not so loaded (maybe except the
main unity thread), which allows to use them almost unnoticeable.

MapMagic uses multithreading instead, calculating all of the generators asynchronously in a several separate threads, and just
applies final the result in a main thread. Calculating terrain is mostly fast (dozens milliseconds per generator per thread)
except some generators like erosion, which can take up to several seconds. All the generating runs in a background and
creates no lag in game.

Unfortunately, I don't believe it's possible. Textures Output cannot be just replaced with Voxeland Output node. Voxeland
Output uses absolutely different (and more complex) algorithm, it does not just blends layers in a Photoshop manner, but it
creates layers in 3D space. This requires not only the significant graph changes, but changing the whole approach to the
graph creation. That's why I'm not converting Island or Demo scenes to be used with Voxeland - they will require the whole
graph created from scratch, and it will not have much in common with the original one.
You can find MM+Voxeland tutorial
here, JIC: https://youtu.be/jlLALBsAUZY

No. It's one of MMWG's concepts: chunks are independent. Nor they get any data from a neighbor chunk, neither they send
it. Otherwise each chunk will require all of the neightbour chunks to generate, and they will require all of their neigbours to
be generated, and so on up to infinity.

Actually it's a subject for a whole new plugin, like this one: Terrain To Mesh
(https://www.assetstore.unity3d.com/en/#!/content/47276).
However, there is a way to export terrain into 3D editor without a
plugin - since MM generates the standard terrains their heightmap could be exported using the "Export Raw" button in the
terrain's settings tab. This heightmap could be could be applied to the plane with displace modifier.
But terrain data could be
exported as a standard Unity terrain using this script: https://www.dropbox.com/s/tnb3v1s6r5h1ss0/ExportTerrainData.cs?
dl=0
Place it anywhere inside Assets folder, assign it to terrain and check "Export" (it works like a button).

Feel free to append Community Graphs and Community Generators pages. You can also publish your screenshots on
MMWG Unity forums thread.

General_faq

General_faq

Why do you use multithreading instead of GPU?

Is there any way to change standard MapMagic graphs to make them work with Voxeland?

Is there any way for custom generator to get neighbour chunk information?

Is there any way to export terrain as model?

Is there any way to create villages using MM?

How to remove objects below certain level?

I've created my graph/biome/generator and want to share it, what is the best way to do it?

https://youtu.be/jlLALBsAUZY
https://www.assetstore.unity3d.com/en/#!/content/47276
https://www.dropbox.com/s/tnb3v1s6r5h1ss0/ExportTerrainData.cs?dl=0
https://www.dropbox.com/s/tnb3v1s6r5h1ss0/ExportTerrainData.cs?dl=0
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Community_graphs-2.html
file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Community_generators-2.html
https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-tool.390920/

You can download badlands and snow plains graphs from the Community Grpahs page. Note that the textures are not
included, I hasve no rights to share them. Sorry.

It's better not to use anything baked on a dynamic terrain: not a lightmap nor a navmesh. A dynamic pathfinding should be
used instead, using waypoint navigation, collision detection and steering behaviors. An open terrain is not a maze, so in most
cases it will be enough.
Apex Path boasts dynamic pathfinding, but I have not tested it. Some users claim that they are using
Apex Path alongside MapMagic with great results. (end of page 7)
However, for pinned terrains that can have some complex
POI like villages or cities a manual navmesh could be created with the standard tools.

You need to switch RTP to 8-layer manually using _RTP_LODmanager: RTP features first pass -> 8 LAYERS in first pass.

https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-
tool.390920/page-20#post-2859860

I think that the best way to create the invisible walls is to actually place invisible walls. It should be a collider mesh that should
not be associated with MM in any way, just a separate game object that limits player movement. Or it could be a character
controller script that does not allow character exceed some bounds. Let MM generate the terrains on the background, and
set the map bounds by other means.

You can use Custom Shader Output (CSO) in "Custom"(default) mode. It uses per-channel generate of control maps using
r,g,b and alpha inputs and assigns them to terrain material using the given property name.

Where I can find the graphs shown in the biomes videos?

Is there any way to use navmesh or backed pathfinding on a dynamic terrains?

How to use RTP 8-layers mode?

How to change the dynamic generator linking from the code?

What is the best way to restrict how far the player can go? My idea was to pin the last terrain and
draw a mountain or a invisible wall, is this the way that you guys are working with it?

I'm using custom terrain material with my own shader. Is there any way to make it work with
MapMagic?

file:///C/Unity/Wiki/MapMagic/web/gitlab.com/denispahunov/mapmagic/wikis/Community_graphs-2.html
https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-tool.390920/page-20#post-2859860
https://forum.unity3d.com/threads/map-magic-world-generator-a-node-based-procedural-and-infinite-game-map-tool.390920/page-20#post-2859860

Click the blue circle, not the generator itself. Note that MapMagic object has to be selected to display preview gizmos.

Try resetting Unity layout. Click a "Layout" button at the top right corner of the Unity window and select a new layout. You
can switch back to the layout you like then.

You've encountered one of the Unity limitations: there could not be more than 32K objects with LODs. It's not the matter of
MapMagic in general, you have to use less loded objects or disable LODGroup components. Personally I got rid of this by
disabling LODGroups for the objects that are far from the camera. I used a coroutine to process only several objects per
frame to avoid hiccups.
It seems that Unity has fixed this issue in 5.6, or increased the number of possible LOD Groups.

Forest generator can create new trees, but it does not remove them - this also applies to initial seedlings. To remove them
connect grass mask to scatter's probability input.

Chunks are absolutely independent and do not exchange any data - for instance, when blurring one chunk it cannot get
pixels from the neighbor one to perform a perfect blur. That's why some generators have "Safe Borders" value - it masks the
generator effect closer to chunk edges. Many generators have this value set to 2 by the default, you can try increasing it to
minimize the seam effect.

The combined number of detail object vertices in one single patch is exceeding the limit (6
5k). Try decreasing detail density or detail resolution per patch.
UnityEditor.DockArea:OnGUI()

The combined grass mesh is too complicated: you have to split it. Decrease Patch Res value parameter in Grass Output. If it is
already 8 try to simplify your grass mesh or reduce grass density.

Depending on MapMagic and UNature versions you can get a "type or namespace cannot be found" error in the console on
scripts compile. In order to fix this use the quick fix: https://www.dropbox.com/s/crl0d9xppxmc6f4/UNMapMagic_Manager.cs?
dl=0.

Problem_solving

Problem_solving

I have never been able to get that "preview" option working

I cannot pin a terrain. When I click "Pin" button nothing happens.

I'm getting "Lod "GROUP < 0X7FFF" errors" in a playmode. Why?

Trees are not scaled

I'm using Forest generator with a grass mask. I have trees in the sea, but the grass preview shows
that I shouldn’t have. Any idea?

Why do I have seams on the chunks borders?

I've got this warning when using custom grass detail mesh or high grass density without a mask,
and the grass does not appear in some "stripped" areas:

How to make uNature work with MapMagic?

https://www.dropbox.com/s/crl0d9xppxmc6f4/UNMapMagic_Manager.cs?dl=0
https://www.dropbox.com/s/crl0d9xppxmc6f4/UNMapMagic_Manager.cs?dl=0

Store it in uNature\Scripts\Core\Extensions\Integrations\MapMagic\Integration replacing the older file.

1. Make sure that UN_MapMagic is defined in Scripting Define Symbols (Edit->Project Settings->Player). If it does not -
simply restart Unity (or add it manually).

2. Click Window->uNature->Extensions and find Map Magic. Expand the arrow and make sure "Activated" is checked.
3. Open the scene with Map Magic and click Window->uNature->Foliage and then "Create Foliage Manager"
4. Click on Main Camera and add UNSeeker component
5. Set the Map Magic object / terrain to a different layer. For example, the uNature_Terrain layer (don't use Default layer)
6. Go into the Foliage Manager and find "Prototype Global Settings" change "Maps Generation Mask" to uNature_Terrain

(or whatever layer you picked). It will automatically find the grass / foliage that was setup on the terrain and load them in
"Prototypes Management" in the Foliage Manager"

After all of that in some cases the grass can appear at the zero level for pinned terrains. This could be fixed by clicking
"Regenerate Heights" in Foliage Manager.

I guess that the problem is in the Simple Form wrap mode. Set it to "tile" to use on multiple terrains.

You should press "Bake Textures" button of CTS Profile. This is the way CTS works.

Simple Form with a Stamp does not work on multiple terrains.

I use CTS and Custom Shader Output. If I change texture in CTS Profile it is not updated on the
terrain.

	Local Disk
	Home · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Header_small.jpg %d×%d pixels
	Quick start · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Editor window · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Right click menu · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Settings · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Blend · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Blur · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Cavity · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Constant · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Curve · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Erosion · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Intensity_bias · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Invert · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Noise · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Normalize · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Raw_input · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Shore · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Simple_form · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Slope · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Terrace · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Voronoi · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Adjust · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Blob · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Clean_up · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Combine · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Flatten · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Forest · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Propagate · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Rarefy · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Scatter · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Slide · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Split · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Stamp · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Subtract · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Height · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Textures · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Grass · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Objects · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Trees · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Custom_shader · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Voxeland · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Voxeland grass · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Voxeland objects · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Portal · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Creating a custom generator · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Scripting_faq · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Creating villages with mapmagic · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Objects and trees biome blending · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	General_faq · Wiki · Denis Pahunov / MapMagic World Generator · GitLab
	Problem_solving · Wiki · Denis Pahunov / MapMagic World Generator · GitLab

