
 Previous Page Next Page

Advertisements

Maven is a project management and comprehension tool that provides

developers a complete build lifecycle framework. Development team can

automate the project's build infrastructure in almost no time as Maven uses a

standard directory layout and a default build lifecycle.

In case of multiple development teams environment, Maven can set-up the

way to work as per standards in a very short time. As most of the project

setups are simple and reusable, Maven makes life of developer easy while

creating reports, checks, build and testing automation setups.

Maven provides developers ways to manage the following −

Builds

Documentation

Reporting

Dependencies

SCMs

Releases

Distribution

Mailing list

To summarize, Maven simplifies and standardizes the project build process. It

handles compilation, distribution, documentation, team collaboration and other

 



Ryu
Underline

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

tasks seamlessly. Maven increases reusability and takes care of most of the

build related tasks.

Maven was originally designed to simplify building processes in Jakarta Turbine

project. There were several projects and each project contained slightly

different ANT build files. JARs were checked into CVS.

Apache group then developed Maven which can build multiple projects

together, publish projects information, deploy projects, share JARs across

several projects and help in collaboration of teams.

The primary goal of Maven is to provide developer with the following −

A comprehensive model for projects, which is reusable, maintainable,

and easier to comprehend.

Plugins or tools that interact with this declarative model.

Maven project structure and contents are declared in an xml file, pom.xml,

referred as Project Object Model (POM), which is the fundamental unit of the

entire Maven system. In later chapters, we will explain POM in detail.

Maven uses Convention over Configuration, which means developers are

not required to create build process themselves.

Developers do not have to mention each and every configuration detail. Maven

provides sensible default behavior for projects. When a Maven project is

created, Maven creates default project structure. Developer is only required to

place files accordingly and he/she need not to define any configuration in

pom.xml.

As an example, following table shows the default values for project source

code files, resource files and other configurations. Assuming, ${basedir}

denotes the project location −

Item Default

source code ${basedir}/src/main/java

Resources ${basedir}/src/main/resources

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Squiggly

Tests ${basedir}/src/test

Complied byte code ${basedir}/target

distributable JAR ${basedir}/target/classes

In order to build the project, Maven provides developers with options to

mention life-cycle goals and project dependencies (that rely on Maven plugin

capabilities and on its default conventions). Much of the project management

and build related tasks are maintained by Maven plugins.

Developers can build any given Maven project without the need to understand

how the individual plugins work. We will discuss Maven Plugins in detail in the

later chapters.

Simple project setup that follows best practices.

Consistent usage across all projects.

Dependency management including automatic updating.

A large and growing repository of libraries.

Extensible, with the ability to easily write plugins in Java or scripting

languages.

Instant access to new features with little or no extra configuration.

Model-based builds − Maven is able to build any number of projects

into predefined output types such as jar, war, metadata.

Coherent site of project information − Using the same metadata

as per the build process, maven is able to generate a website and a

PDF including complete documentation.

Release management and distribution publication − Without

additional configuration, maven will integrate with your source control

system such as CVS and manages the release of a project.

Backward Compatibility − You can easily port the multiple modules

of a project into Maven 3 from older versions of Maven. It can support

the older versions also.

Automatic parent versioning − No need to specify the parent in the

sub module for maintenance.

Ryu
Underline

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Parallel builds − It analyzes the project dependency graph and

enables you to build schedule modules in parallel. Using this, you can

achieve the performance improvements of 20-50%.

Better Error and Integrity Reporting − Maven improved error

reporting, and it provides you with a link to the Maven wiki page where

you will get full description of the error.

Maven is a Java based tool, so the very first requirement is to have JDK

installed on your machine.

JDK 1.7 or above.

Memory No minimum requirement.

Disk Space No minimum requirement.

Operating System No minimum requirement.

Open console and execute the following java command.

OS Task Command

Windows Open Command Console c:\> java -version

Linux Open Command Terminal $ java -version

Mac Open Terminal machine:~ joseph$ java -version

Let's verify the output for all the operating systems −

OS Output

Windows

java version "1.7.0_60"

Java(TM) SE Runtime Environment (build 1.7.0_60-b19)

Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed

mode)

Linux java version "1.7.0_60"

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Java(TM) SE Runtime Environment (build 1.7.0_60-b19)

Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed

mode)

Mac

java version "1.7.0_60"

Java(TM) SE Runtime Environment (build 1.7.0_60-b19)

Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed

mode)

If you do not have Java installed, install the Java Software Development Kit

(SDK) from

https://www.oracle.com/technetwork/java/javase/downloads/index.html .

We are assuming Java 1.7.0.60 as installed version for this tutorial.

Set the JAVA_HOME environment variable to point to the base directory

location where Java is installed on your machine. For example −

OS Output

Windows Set the environment variable JAVA_HOME to C:\Program

Files\Java\jdk1.7.0_60

Linux export JAVA_HOME=/usr/local/java-current

Mac export JAVA_HOME=/Library/Java/Home

Append Java compiler location to System Path.

OS Output

Windows Append the string “;C:\Program Files\Java\jdk1.7.0.60\bin” to the end

of the system variable, Path.

Linux export PATH=$PATH:$JAVA_HOME/bin/

Mac not required

Verify Java Installation using java -version command as explained above.

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Download Maven 2.2.1 from https://maven.apache.org/download.cgi .

OS Archive name

Windows apache-maven-3.3.1-bin.zip

Linux apache-maven-3.3.1-bin.tar.gz

Mac apache-maven-3.3.1-bin.tar.gz

Extract the archive, to the directory you wish to install Maven 3.3.1. The

subdirectory apache-maven-3.3.1 will be created from the archive.

OS Location (can be different based on your installation)

Windows C:\Program Files\Apache Software Foundation\apache-

maven-3.3.1

Linux /usr/local/apache-maven

Mac /usr/local/apache-maven

Add M2_HOME, M2, MAVEN_OPTS to environment variables.

OS Output

Windows

Set the environment variables using system properties.

M2_HOME=C:\Program Files\Apache Software

Foundation\apache-maven-3.3.1 M2=%M2_HOME%\bin

MAVEN_OPTS=-Xms256m -Xmx512m

Linux

Open command terminal and set environment variables.

export M2_HOME=/usr/local/apache-maven/apache-

maven-3.3.1 export M2=$M2_HOME/bin

export MAVEN_OPTS=-Xms256m -Xmx512m

Mac Open command terminal and set environment variables.

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

export M2_HOME=/usr/local/apache-maven/apache-

maven-3.3.1

export M2=$M2_HOME/bin

export MAVEN_OPTS=-Xms256m -Xmx512m

Now append M2 variable to System Path.

OS Output

Windows Append the string ;%M2% to the end of the system variable,

Path.

Linux export PATH=$M2:$PATH

Mac export PATH=$M2:$PATH

Now open console and execute the following mvn command.

OS Task Command

Windows Open Command Console c:\> mvn --version

Linux Open Command Terminal $ mvn --version

Mac Open Terminal machine:~ joseph$ mvn --version

Finally, verify the output of the above commands, which should be as follows

−

OS Output

Windows

Apache Maven 3.3.1 (r801777; 2009-08-07

00:46:01+0530)

Java version: 1.7.0_60

Java home: C:\Program Files\Java\jdk1.7.0_60 \jre

Linux

Ryu
Highlight

Ryu
Insert Text
u

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Apache Maven 3.3.1 (r801777; 2009-08-07

00:46:01+0530)

Java version: 1.7.0_60

Java home: C:\Program Files\Java\jdk1.7.0_60 \jre

Mac

Apache Maven 3.3.1 (r801777; 2009-08-07

00:46:01+0530)

Java version: 1.7.0_60

Java home: C:\Program Files\Java\jdk1.7.0_60 \jre

POM stands for Project Object Model. It is fundamental unit of work in Maven.

It is an XML file that resides in the base directory of the project as pom.xml.

The POM contains information about the project and various configuration

detail used by Maven to build the project(s).

POM also contains the goals and plugins. While executing a task or goal,

Maven looks for the POM in the current directory. It reads the POM, gets the

needed configuration information, and then executes the goal. Some of the

configuration that can be specified in the POM are following −

project dependencies

plugins

goals

build profiles

project version

developers

mailing list

Before creating a POM, we should first decide the project group (groupId), its

name (artifactId) and its version as these attributes help in uniquely

identifying the project in repository.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Highlight

<modelVersion>4.0.0</modelVersion>

<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>

</project>

It should be noted that there should be a single POM file for each project.

All POM files require the project element and three mandatory fields:

groupId, artifactId, version.

Projects notation in repository is groupId:artifactId:version.

Minimal requirements for a POM −

Sr.No. Node & Description

1 Project root

This is project root tag. You need to specify the basic schema

settings such as apache schema and w3.org specification.

2 Model version

Model version should be 4.0.0.

3 groupId

This is an Id of project's group. This is generally unique amongst an

organization or a project. For example, a banking group

com.company.bank has all bank related projects.

4 artifactId

This is an Id of the project. This is generally name of the project.

For example, consumer-banking. Along with the groupId, the

artifactId defines the artifact's location within the repository.

5 version

This is the version of the project. Along with the groupId, It is used

within an artifact's repository to separate versions from each other.

For example −

com.company.bank:consumer-banking:1.0

com.company.bank:consumer-banking:1.1.

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

The Super POM is Maven’s default POM. All POMs inherit from a parent or

default (despite explicitly defined or not). This base POM is known as the

Super POM, and contains values inherited by default.

Maven use the effective POM (configuration from super pom plus project

configuration) to execute relevant goal. It helps developers to specify

minimum configuration detail in his/her pom.xml. Although configurations can

be overridden easily.

An easy way to look at the default configurations of the super POM is by

running the following command: mvn help:effective-pom

Create a pom.xml in any directory on your computer.Use the content of above

mentioned example pom.

In example below, We've created a pom.xml in C:\MVN\project folder.

Now open command console, go the folder containing pom.xml and execute

the following mvn command.

C:\MVN\project>mvn help:effective-pom

Maven will start processing and display the effective-pom.

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: 'help'.

[INFO] --

[INFO] Building Unnamed - com.companyname.project-group:project-name:jar:1.0

[INFO] task-segment: [help:effective-pom] (aggregator-style)

[INFO] --

[INFO] [help:effective-pom {execution: default-cli}]

[INFO]

.....

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: < 1 second

[INFO] Finished at: Thu Jul 05 11:41:51 IST 2012

[INFO] Final Memory: 6M/15M

[INFO] --

Effective POM displayed as result in console, after inheritance, interpolation,

and profiles are applied.

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

Ryu
Underline

Ryu
Underline

Ryu
Highlight

<?xml version="1.0" encoding="UTF-8"?>
<!-- == -->
<!-- -->
<!-- Generated by Maven Help Plugin on 2015-04-09T11:41:51 -->
<!-- See: http://maven.apache.org/plugins/maven-help-plugin/ -->
<!-- -->
<!-- ==-->

<!-- ==-->
<!-- -->
<!-- Effective POM for project -->
<!-- 'com.companyname.project-group:project-name:jar:1.0' -->
<!-- -->
<!-- == -->

<project xmlns = "http://maven.apache.org/POM/4.0.0" xmlns:xsi = "http://www.w3.org/

2001/XMLSchema-instance" xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.project-group</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<build>

<sourceDirectory>C:\MVN\project\src\main\java</sourceDirectory>
<scriptSourceDirectory>src/main/scripts</scriptSourceDirectory>

<testSourceDirectory>C:\MVN\project\src\test\java</testSourceDirectory>
<outputDirectory>C:\MVN\project\target\classes</outputDirectory>
<testOutputDirectory>C:\MVN\project\target\test-classes</testOutputDirectory>
<resources>

<resource>
<mergeId>resource-0</mergeId>
<directory>C:\MVN\project\src\main\resources</directory>

</resource>
</resources>
<testResources>

<testResource>
<mergeId>resource-1</mergeId>
<directory>C:\MVN\project\src\test\resources</directory>

</testResource>
</testResources>
<directory>C:\MVN\project\target</directory>
<finalName>project-1.0</finalName>

<pluginManagement>
<plugins>

<plugin>
<artifactId>maven-antrun-plugin</artifactId>
<version>1.3</version>

</plugin>
<plugin>

<artifactId>maven-assembly-plugin< /artifactId>
<version>2.2-beta-2</version>

</plugin>
<plugin>

<artifactId>maven-clean-plugin< /artifactId>
<version>2.2</version>

</plugin>

Ryu
Highlight

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.0.2</version>

</plugin>
<plugin>

<artifactId>maven-dependency-plugin</artifactId>
<version>2.0</version>

</plugin>
<plugin>

<artifactId>maven-deploy-plugin</artifactId>
<version>2.4</version>

</plugin>

<plugin>
<artifactId>maven-ear-plugin</artifactId>
<version>2.3.1</version>

</plugin>
<plugin>

<artifactId>maven-ejb-plugin</artifactId>
<version>2.1</version>

</plugin>
<plugin>

<artifactId>maven-install-plugin</artifactId>
<version>2.2</version>

</plugin>

<plugin>
<artifactId>maven-jar-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-javadoc-plugin</artifactId>
<version>2.5</version>

</plugin>
<plugin>

<artifactId>maven-plugin-plugin</artifactId>
<version>2.4.3</version>

</plugin>

<plugin>
<artifactId>maven-rar-plugin</artifactId>
<version>2.2</version>

</plugin>
<plugin>

<artifactId>maven-release-plugin</artifactId>
<version>2.0-beta-8</version>

</plugin>
<plugin>

<artifactId>maven-resources-plugin</artifactId>
<version>2.3</version>

</plugin>

<plugin>
<artifactId>maven-site-plugin</artifactId>
<version>2.0-beta-7</version>

</plugin>
<plugin>

<artifactId>maven-source-plugin</artifactId>
<version>2.0.4</version>

</plugin>

<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.4.3</version>

</plugin>
<plugin>

<artifactId>maven-war-plugin</artifactId>
<version>2.1-alpha-2</version>

</plugin>
</plugins>

</pluginManagement>

<plugins>
<plugin>

<artifactId>maven-help-plugin</artifactId>
<version>2.1.1</version>

</plugin>
</plugins>

</build>

<repositories>
<repository>

<snapshots>
<enabled>false</enabled>

</snapshots>
<id>central</id>
<name>Maven Repository Switchboard</name>
<url>http://repo1.maven.org/maven2</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<releases>

<updatePolicy>never</updatePolicy>
</releases>
<snapshots>

<enabled>false</enabled>
</snapshots>
<id>central</id>
<name>Maven Plugin Repository</name>
<url>http://repo1.maven.org/maven2</url>

</pluginRepository>
</pluginRepositories>
<reporting>

<outputDirectory>C:\MVN\project\target/site</outputDirectory>
</reporting>

</project>

In above pom.xml, you can see the default project source folders structure,

output directory, plug-ins required, repositories, reporting directory, which

Maven will be using while executing the desired goals.

Maven pom.xml is also not required to be written manually. Maven provides

numerous archetype plugins to create projects, which in order, create the

project structure and pom.xml

Ryu
Highlight

Ryu
Oval

Ryu
Highlight

Ryu
Highlight

A Build Lifecycle is a well-defined sequence of phases, which define the order

in which the goals are to be executed. Here phase represents a stage in life

cycle. As an example, a typical Maven Build Lifecycle consists of the

following sequence of phases.

Phase Handles Description

prepare-resources resource copying
Resource copying can be customized in

this phase.

validate
Validating the

information

Validates if the project is correct and if

all necessary information is available.

compile compilation
Source code compilation is done in this

phase.

Test Testing
Tests the compiled source code suitable

for testing framework.

package packaging

This phase creates the JAR/WAR

package as mentioned in the packaging

in POM.xml.

install installation
This phase installs the package in

local/remote maven repository.

Deploy Deploying
Copies the final package to the remote

repository.

There are always pre and post phases to register goals, which must run prior

to, or after a particular phase.

When Maven starts building a project, it steps through a defined sequence of

phases and executes goals, which are registered with each phase.

Maven has the following three standard lifecycles −

clean

default(or build)

site

A goal represents a specific task which contributes to the building and

managing of a project. It may be bound to zero or more build phases. A goal

Ryu
Highlight

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

not bound to any build phase could be executed outside of the build lifecycle

by direct invocation.

The order of execution depends on the order in which the goal(s) and the build

phase(s) are invoked. For example, consider the command below. The clean

and package arguments are build phases while the dependency:copy-

dependencies is a goal.

mvn clean dependency:copy-dependencies package

Here the clean phase will be executed first, followed by the

dependency:copy-dependencies goal, and finally package phase will be

executed.

When we execute mvn post-clean command, Maven invokes the clean lifecycle

consisting of the following phases.

pre-clean

clean

post-clean

Maven clean goal (clean:clean) is bound to the clean phase in the clean

lifecycle. Its clean:cleangoal deletes the output of a build by deleting the

build directory. Thus, when mvn clean command executes, Maven deletes the

build directory.

We can customize this behavior by mentioning goals in any of the above

phases of clean life cycle.

In the following example, We'll attach maven-antrun-plugin:run goal to the

pre-clean, clean, and post-clean phases. This will allow us to echo text

messages displaying the phases of the clean lifecycle.

We've created a pom.xml in C:\MVN\project folder.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>
<id>id.pre-clean</id>
<phase>pre-clean</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>pre-clean phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.clean</id>
<phase>clean</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>clean phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.post-clean</id>
<phase>post-clean</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>post-clean phase</echo>

</tasks>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Now open command console, go to the folder containing pom.xml and execute

the following mvn command.

C:\MVN\project>mvn post-clean

Maven will start processing and displaying all the phases of clean life cycle.

[INFO] Scanning for projects...

[INFO] ---

-

[INFO] Building Unnamed - com.companyname.projectgroup:project:jar:1.0

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

[INFO] task-segment: [post-clean]

[INFO] --

[INFO] [antrun:run {execution: id.pre-clean}]

[INFO] Executing tasks

[echo] pre-clean phase

[INFO] Executed tasks

[INFO] [clean:clean {execution: default-clean}]

[INFO] [antrun:run {execution: id.clean}]

[INFO] Executing tasks

[echo] clean phase

[INFO] Executed tasks

[INFO] [antrun:run {execution: id.post-clean}]

[INFO] Executing tasks

[echo] post-clean phase

[INFO] Executed tasks

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: > 1 second

[INFO] Finished at: Sat Jul 07 13:38:59 IST 2012

[INFO] Final Memory: 4M/44M

[INFO] --

You can try tuning mvn clean command, which will display pre-clean and

clean. Nothing will be executed for post-clean phase.

This is the primary life cycle of Maven and is used to build the application. It

has the following 23 phases.

Sr.No. Lifecycle Phase & Description

1 validate

Validates whether project is correct and all necessary information is

available to complete the build process.

2 initialize

Initializes build state, for example set properties.

3 generate-sources

Generate any source code to be included in compilation phase.

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

4 process-sources

Process the source code, for example, filter any value.

5 generate-resources

Generate resources to be included in the package.

6 process-resources

Copy and process the resources into the destination directory,

ready for packaging phase.

7 compile

Compile the source code of the project.

8 process-classes

Post-process the generated files from compilation, for example to

do bytecode enhancement/optimization on Java classes.

9 generate-test-sources

Generate any test source code to be included in compilation phase.

10 process-test-sources

Process the test source code, for example, filter any values.

11 test-compile

Compile the test source code into the test destination directory.

12 process-test-classes

Process the generated files from test code file compilation.

13 test

Run tests using a suitable unit testing framework (Junit is one).

14 prepare-package

Perform any operations necessary to prepare a package before the

actual packaging.

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

15 package

Take the compiled code and package it in its distributable format,

such as a JAR, WAR, or EAR file.

16 pre-integration-test

Perform actions required before integration tests are executed. For

example, setting up the required environment.

17 integration-test

Process and deploy the package if necessary into an environment

where integration tests can be run.

18 post-integration-test

Perform actions required after integration tests have been

executed. For example, cleaning up the environment.

19 verify

Run any check-ups to verify the package is valid and meets quality

criteria.

20 install

Install the package into the local repository, which can be used as a

dependency in other projects locally.

21 deploy

Copies the final package to the remote repository for sharing with

other developers and projects.

There are few important concepts related to Maven Lifecycles, which are worth

to mention −

When a phase is called via Maven command, for example mvn

compile, only phases up to and including that phase will execute.

Different maven goals will be bound to different phases of Maven

lifecycle depending upon the type of packaging (JAR / WAR / EAR).

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Squiggly

In the following example, we will attach maven-antrun-plugin:run goal to few

of the phases of Build lifecycle. This will allow us to echo text messages

displaying the phases of the lifecycle.

We've updated pom.xml in C:\MVN\project folder.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>
<id>id.validate</id>
<phase>validate</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>validate phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.compile</id>
<phase>compile</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>compile phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.test</id>
<phase>test</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>test phase</echo>

</tasks>
</configuration>

</execution>

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

<execution>
<id>id.package</id>
<phase>package</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>package phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.deploy</id>
<phase>deploy</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>deploy phase</echo>

</tasks>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Now open command console, go the folder containing pom.xml and execute

the following mvn command.

C:\MVN\project>mvn compile

Maven will start processing and display phases of build life cycle up to the

compile phase.

[INFO] Scanning for projects...

[INFO] ---

-

[INFO] Building Unnamed - com.companyname.projectgroup:project:jar:1.0

[INFO] task-segment: [compile]

[INFO] ---

-

[INFO] [antrun:run {execution: id.validate}]

[INFO] Executing tasks

[echo] validate phase

[INFO] Executed tasks

[INFO] [resources:resources {execution: default-resources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered

resources,

Ryu
Squiggly

Ryu
Squiggly

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory

C:\MVN\project\src\main\resources

[INFO] [compiler:compile {execution: default-compile}]

[INFO] Nothing to compile - all classes are up to date

[INFO] [antrun:run {execution: id.compile}]

[INFO] Executing tasks

[echo] compile phase

[INFO] Executed tasks

[INFO] ---

-

[INFO] BUILD SUCCESSFUL

[INFO] ---

-

[INFO] Total time: 2 seconds

[INFO] Finished at: Sat Jul 07 20:18:25 IST 2012

[INFO] Final Memory: 7M/64M

[INFO] ---

-

Maven Site plugin is generally used to create fresh documentation to create

reports, deploy site, etc. It has the following phases −

pre-site

site

post-site

site-deploy

In the following example, we will attach maven-antrun-plugin:run goal to all

the phases of Site lifecycle. This will allow us to echo text messages displaying

the phases of the lifecycle.

We've updated pom.xml in C:\MVN\project folder.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<build>

<plugins>
<plugin>

Ryu
Squiggly

Ryu
Underline

Ryu
Highlight

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>
<id>id.pre-site</id>
<phase>pre-site</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>pre-site phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.site</id>
<phase>site</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>site phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.post-site</id>
<phase>post-site</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>post-site phase</echo>

</tasks>
</configuration>

</execution>

<execution>
<id>id.site-deploy</id>
<phase>site-deploy</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>site-deploy phase</echo>

</tasks>
</configuration>

</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Now open the command console, go the folder containing pom.xml and

execute the following mvn command.

C:\MVN\project>mvn site

Maven will start processing and displaying the phases of site life cycle up to

site phase.

[INFO] Scanning for projects...

[INFO] --

[INFO] Building Unnamed - com.companyname.projectgroup:project:jar:1.0

[INFO] task-segment: [site]

[INFO] --

[INFO] [antrun:run {execution: id.pre-site}]

[INFO] Executing tasks

[echo] pre-site phase

[INFO] Executed tasks

[INFO] [site:site {execution: default-site}]

[INFO] Generating "About" report.

[INFO] Generating "Issue Tracking" report.

[INFO] Generating "Project Team" report.

[INFO] Generating "Dependencies" report.

[INFO] Generating "Project Plugins" report.

[INFO] Generating "Continuous Integration" report.

[INFO] Generating "Source Repository" report.

[INFO] Generating "Project License" report.

[INFO] Generating "Mailing Lists" report.

[INFO] Generating "Plugin Management" report.

[INFO] Generating "Project Summary" report.

[INFO] [antrun:run {execution: id.site}]

[INFO] Executing tasks

[echo] site phase

[INFO] Executed tasks

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 3 seconds

[INFO] Finished at: Sat Jul 07 15:25:10 IST 2012

[INFO] Final Memory: 24M/149M

[INFO] --

A Build profile is a set of configuration values, which can be used to set or

override default values of Maven build. Using a build profile, you can customize

build for different environments such as Production v/s Development

environments.

Profiles are specified in pom.xml file using its activeProfiles/profiles elements

and are triggered in variety of ways. Profiles modify the POM at build time, and

are used to give parameters different target environments (for example, the

path of the database server in the development, testing, and production

environments).

Build profiles are majorly of three types.

Type Where it is defined

Per Project Defined in the project POM file, pom.xml

Per User Defined in Maven settings xml file

(%USER_HOME%/.m2/settings.xml)

Global Defined in Maven global settings xml file

(%M2_HOME%/conf/settings.xml)

A Maven Build Profile can be activated in various ways.

Explicitly using command console input.

Through maven settings.

Based on environment variables (User/System variables).

OS Settings (for example, Windows family).

Present/missing files.

Let us assume the following directory structure of your project −

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Highlight

Now, under src/main/resources, there are three environment specific files

−

Sr.No. File Name & Description

1 env.properties

default configuration used if no profile is mentioned.

2 env.test.properties

test configuration when test profile is used.

3 env.prod.properties

production configuration when prod profile is used.

In the following example, we will attach maven-antrun-plugin:run goal to test

the phase. This will allow us to echo text messages for different profiles. We

will be using pom.xml to define different profiles and will activate profile at

command console using maven command.

Assume, we've created the following pom.xml in C:\MVN\project folder.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>

Ryu
Oval

<artifactId>project</artifactId>
<version>1.0</version>
<profiles>

<profile>
<id>test</id>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>
<phase>test</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>Using env.test.properties</echo>
<copy file="src/main/resources/env.test.properties"

tofile="${project.build.outputDirectory}
 /env.properties"/>

</tasks>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</profile>

</profiles>
</project>

Now open the command console, go to the folder containing pom.xml and

execute the following mvn command. Pass the profile name as argument

using -P option.

C:\MVN\project>mvn test -Ptest

Maven will start processing and displaying the result of test build profile.

[INFO] Scanning for projects...

[INFO] --

[INFO] Building Unnamed - com.companyname.projectgroup:project:jar:1.0

[INFO] task-segment: [test]

[INFO] --

[INFO] [resources:resources {execution: default-resources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] Copying 3 resources

[INFO] [compiler:compile {execution: default-compile}]

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Oval

Ryu
Highlight

Ryu
Squiggly

Ryu
Highlight

Ryu
Underline

Ryu
Underline

[INFO] Nothing to compile - all classes are up to date

[INFO] [resources:testResources {execution: default-testResources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\MVN\project\src\test\resources

[INFO] [compiler:testCompile {execution: default-testCompile}]

[INFO] Nothing to compile - all classes are up to date

[INFO] [surefire:test {execution: default-test}]

[INFO] Surefire report directory: C:\MVN\project\target\surefire-reports

T E S T S

There are no tests to run.

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

[INFO] [antrun:run {execution: default}]

[INFO] Executing tasks

[echo] Using env.test.properties

[INFO] Executed tasks

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 1 second

[INFO] Finished at: Sun Jul 08 14:55:41 IST 2012

[INFO] Final Memory: 8M/64M

[INFO] --

Now as an exercise, you can perform the following steps −

Add another profile element to profiles element of pom.xml (copy

existing profile element and paste it where profile elements ends).

Update id of this profile element from test to normal.

Update task section to echo env.properties and copy env.properties to

target directory.

Again repeat the above three steps, update id to prod and task section

for env.prod.properties.

That's all. Now you've three build profiles ready (normal/test/prod).

Now open the command console, go to the folder containing pom.xml and

execute the following mvn commands. Pass the profile names as argument

using -P option.

C:\MVN\project>mvn test -Pnormal

C:\MVN\project>mvn test -Pprod

Check the output of the build to see the difference.

Open Maven settings.xml file available in %USER_HOME%/.m2 directory

where %USER_HOME% represents the user home directory. If settings.xml

file is not there, then create a new one.

Add test profile as an active profile using active Profiles node as shown below

in example.

<settings xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/settings-1.0.0.xsd">
<mirrors>

<mirror>
<id>maven.dev.snaponglobal.com</id>
<name>Internal Artifactory Maven repository</name>
<url>http://repo1.maven.org/maven2/</url>
<mirrorOf>*</mirrorOf>

</mirror>
</mirrors>
<activeProfiles>

<activeProfile>test</activeProfile>
</activeProfiles>

</settings>

Now open command console, go to the folder containing pom.xml and execute

the following mvn command. Do not pass the profile name using -P option.

Maven will display result of test profile being an active profile.

C:\MVN\project>mvn test

Now remove active profile from maven settings.xml and update the test profile

mentioned in pom.xml. Add activation element to profile element as shown

below.

The test profile will trigger when the system property "env" is specified with

the value "test". Create an environment variable "env" and set its value as

"test".

<profile>
<id>test</id>
<activation>

<property>
<name>env</name>
<value>test</value>

</property>
</activation>

</profile>

Let's open command console, go to the folder containing pom.xml and execute

the following mvn command.

C:\MVN\project>mvn test

Activation element to include os detail as shown below. This test profile will

trigger when the system is windows XP.

<profile>
<id>test</id>
<activation>

<os>
<name>Windows XP</name>
<family>Windows</family>
<arch>x86</arch>
<version>5.1.2600</version>

</os>
</activation>

</profile>

Now open command console, go to the folder containing pom.xml and execute

the following mvn commands. Do not pass the profile name using -P option.

Maven will display result of test profile being an active profile.

C:\MVN\project>mvn test

Now activation element to include OS details as shown below. The test profile

will trigger when target/generated-

sources/axistools/wsdl2java/com/companyname/group is missing.

<profile>
<id>test</id>
<activation>

<file>
<missing>target/generated-sources/axistools/wsdl2java/

 com/companyname/group</missing>
</file>

</activation>
</profile>

Now open the command console, go to the folder containing pom.xml and

execute the following mvn commands. Do not pass the profile name using -P

option. Maven will display result of test profile being an active profile.

C:\MVN\project>mvn test

In Maven terminology, a repository is a directory where all the project jars,

library jar, plugins or any other project specific artifacts are stored and can be

used by Maven easily.

Maven repository are of three types. The following illustration will give an idea

regarding these three types.

local

central

remote

Maven local repository is a folder location on your machine. It gets created

when you run any maven command for the first time.

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Oval

Ryu
Oval

Ryu
Oval

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Maven local repository keeps your project's all dependencies (library jars,

plugin jars etc.). When you run a Maven build, then Maven automatically

downloads all the dependency jars into the local repository. It helps to avoid

references to dependencies stored on remote machine every time a project is

build.

Maven local repository by default get created by Maven in %USER_HOME%

directory. To override the default location, mention another path in Maven

settings.xml file available at %M2_HOME%\conf directory.

<settings xmlns = "http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/SETTINGS/1.0.0

 http://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository>C:/MyLocalRepository</localRepository>

</settings>

When you run Maven command, Maven will download dependencies to your

custom path.

Maven central repository is repository provided by Maven community. It

contains a large number of commonly used libraries.

When Maven does not find any dependency in local repository, it starts

searching in central repository using following URL −

https://repo1.maven.org/maven2/

Key concepts of Central repository are as follows −

This repository is managed by Maven community.

It is not required to be configured.

It requires internet access to be searched.

To browse the content of central maven repository, maven community has

provided a URL − https://search.maven.org/#browse . Using this library, a

developer can search all the available libraries in central repository.

Sometimes, Maven does not find a mentioned dependency in central repository

as well. It then stops the build process and output error message to console.

To prevent such situation, Maven provides concept of Remote Repository,

which is developer's own custom repository containing required libraries or

other project jars.

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

For example, using below mentioned POM.xml, Maven will download

dependency (not available in central repository) from Remote Repositories

mentioned in the same pom.xml.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<dependencies>

<dependency>
<groupId>com.companyname.common-lib</groupId>
<artifactId>common-lib</artifactId>
<version>1.0.0</version>

</dependency>
<dependencies>
<repositories>

<repository>
<id>companyname.lib1</id>
<url>http://download.companyname.org/maven2/lib1</url>

</repository>
<repository>

<id>companyname.lib2</id>
<url>http://download.companyname.org/maven2/lib2</url>

</repository>
</repositories>

</project>

When we execute Maven build commands, Maven starts looking for

dependency libraries in the following sequence −

Step 1 − Search dependency in local repository, if not found, move to

step 2 else perform the further processing.

Step 2 − Search dependency in central repository, if not found and

remote repository/repositories is/are mentioned then move to step 4.

Else it is downloaded to local repository for future reference.

Step 3 − If a remote repository has not been mentioned, Maven

simply stops the processing and throws error (Unable to find

dependency).

Step 4 − Search dependency in remote repository or repositories, if

found then it is downloaded to local repository for future reference.

Otherwise, Maven stops processing and throws error (Unable to find

dependency).

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Maven is actually a plugin execution framework where every task is actually

done by plugins. Maven Plugins are generally used to −

create jar file

create war file

compile code files

unit testing of code

create project documentation

create project reports

A plugin generally provides a set of goals, which can be executed using the

following syntax −

mvn [plugin-name]:[goal-name]

For example, a Java project can be compiled with the maven-compiler-plugin's

compile-goal by running the following command.

mvn compiler:compile

Maven provided the following two types of Plugins −

Sr.No. Type & Description

1 Build plugins

They execute during the build process and should be configured in

the <build/> element of pom.xml.

2 Reporting plugins

They execute during the site generation process and they should be

configured in the <reporting/> element of the pom.xml.

Following is the list of few common plugins −

Sr.No. Plugin & Description

1

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Oval

Ryu
Oval

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

clean

Cleans up target after the build. Deletes the target directory.

2 compiler

Compiles Java source files.

3 surefire

Runs the JUnit unit tests. Creates test reports.

4 jar

Builds a JAR file from the current project.

5 war

Builds a WAR file from the current project.

6 javadoc

Generates Javadoc for the project.

7 antrun

Runs a set of ant tasks from any phase mentioned of the build.

Example

We've used maven-antrun-plugin extensively in our examples to print data

on console. Refer Build Profiles chapter. Let us understand it in a better way

and create a pom.xml in C:\MVN\project folder.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<version>1.1</version>
<executions>

<execution>

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Highlight

<id>id.clean</id>
<phase>clean</phase>
<goals>

<goal>run</goal>
</goals>
<configuration>

<tasks>
<echo>clean phase</echo>

</tasks>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Next, open the command console and go to the folder containing pom.xml and

execute the following mvn command.

C:\MVN\project>mvn clean

Maven will start processing and displaying the clean phase of clean life cycle.

[INFO] Scanning for projects...

[INFO] --

[INFO] Building Unnamed - com.companyname.projectgroup:project:jar:1.0

[INFO] task-segment: [post-clean]

[INFO] --

[INFO] [clean:clean {execution: default-clean}]

[INFO] [antrun:run {execution: id.clean}]

[INFO] Executing tasks

 [echo] clean phase

[INFO] Executed tasks

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: < 1 second

[INFO] Finished at: Sat Jul 07 13:38:59 IST 2012

[INFO] Final Memory: 4M/44M

[INFO] --

The above example illustrates the following key concepts −

Plugins are specified in pom.xml using plugins element.

Each plugin can have multiple goals.

You can define phase from where plugin should starts its processing

using its phase element. We've used clean phase.

Ryu
Squiggly

Ryu
Highlight

Ryu
Oval

Ryu
Squiggly

Ryu
Squiggly

Ryu
Oval

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

You can configure tasks to be executed by binding them to goals of

plugin. We've bound echo task with run goal of maven-antrun-plugin.

Maven will then download the plugin if not available in local repository

and start its processing.

Maven uses archetype plugins to create projects. To create a simple java

application, we'll use maven-archetype-quickstart plugin. In example below,

we'll create a maven based java application project in C:\MVN folder.

Let's open the command console, go to the C:\MVN directory and execute the

following mvn command.

C:\MVN>mvn archetype:generate

-DgroupId = com.companyname.bank

-DartifactId = consumerBanking

-DarchetypeArtifactId = maven-archetype-quickstart

-DinteractiveMode = false

Maven will start processing and will create the complete java application

project structure.

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: 'archetype'.

[INFO] ---

[INFO] Building Maven Default Project

[INFO] task-segment: [archetype:generate] (aggregator-style)

[INFO] ---

[INFO] Preparing archetype:generate

[INFO] No goals needed for project - skipping

[INFO] [archetype:generate {execution: default-cli}]

[INFO] Generating project in Batch mode

[INFO] ---

[INFO] Using following parameters for creating project

from Old (1.x) Archetype: maven-archetype-quickstart:1.0

[INFO] ---

[INFO] Parameter: groupId, Value: com.companyname.bank

[INFO] Parameter: packageName, Value: com.companyname.bank

[INFO] Parameter: package, Value: com.companyname.bank

[INFO] Parameter: artifactId, Value: consumerBanking

[INFO] Parameter: basedir, Value: C:\MVN

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

[INFO] project created from Old (1.x) Archetype in dir: C:\MVN\consumerBanking

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

[INFO] Total time: 14 seconds

[INFO] Finished at: Tue Jul 10 15:38:58 IST 2012

[INFO] Final Memory: 21M/124M

[INFO] --

Now go to C:/MVN directory. You'll see a java application project created,

named consumer Banking (as specified in artifactId). Maven uses a standard

directory layout as shown below −

Using the above example, we can understand the following key concepts −

Sr.No. Folder Structure & Description

1 consumerBanking

contains src folder and pom.xml

2 src/main/java

contains java code files under the package structure

(com/companyName/bank).

3 src/main/test

contains test java code files under the package structure

(com/companyName/bank).

Ryu
Oval

Ryu
Oval

Ryu
Highlight

Ryu
Underline

4 src/main/resources

it contains images/properties files (In above example, we need to

create this structure manually).

If you observe, you will find that Maven also created a sample Java Source file

and Java Test file. Open

C:\MVN\consumerBanking\src\main\java\com\companyname\bank folder, you

will see App.java.

package com.companyname.bank;

/**
 * Hello world!
 *
 */
public class App {

public static void main(String[] args){
System.out.println("Hello World!");

}
}

Open C:\MVN\consumerBanking\src\test\java\com\companyname\bank folder

to see AppTest.java.

package com.companyname.bank;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

/**
 * Unit test for simple App.
 */
public class AppTest extends TestCase {

/**
 * Create the test case
 *
 * @param testName name of the test case
 */

public AppTest(String testName) {
super(testName);

}

/**
 * @return the suite of tests being tested
 */

public static Test suite() {
return new TestSuite(AppTest.class);

}

/**
 * Rigourous Test :-)
 */

public void testApp() {
 assertTrue(true);

}
}

Developers are required to place their files as mentioned in table above and

Maven handles all the build related complexities.

In the next chapter, we'll discuss how to build and test the project using

maven Build and Test Project.

What we learnt in Project Creation chapter is how to create a Java application

using Maven. Now we'll see how to build and test the application.

Go to C:/MVN directory where you've created your java application. Open

consumerBanking folder. You will see the POM.xml file with the following

contents.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.projectgroup</groupId>
<artifactId>project</artifactId>
<version>1.0</version>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>

</dependency>
</dependencies>

</project>

Here you can see, Maven already added Junit as test framework. By default,

Maven adds a source file App.java and a test file AppTest.java in its default

directory structure, as discussed in the previous chapter.

Let's open the command console, go the C:\MVN\consumerBanking directory

and execute the following mvn command.

C:\MVN\consumerBanking>mvn clean package

Maven will start building the project.

[INFO] Scanning for projects...

[INFO] ---

[INFO] Building consumerBanking

[INFO] task-segment: [clean, package]

Ryu
Highlight

Ryu
Squiggly

Ryu
Oval

Ryu
Highlight

Ryu
Oval

Ryu
Oval

[INFO] ---

[INFO] [clean:clean {execution: default-clean}]

[INFO] Deleting directory C:\MVN\consumerBanking\target

[INFO] [resources:resources {execution: default-resources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\MVN\consumerBanking\src\main\resources

[INFO] [compiler:compile {execution: default-compile}]

[INFO] Compiling 1 source file to C:\MVN\consumerBanking\target\classes

[INFO] [resources:testResources {execution: default-testResources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\MVN\consumerBanking\src\test\resources

[INFO] [compiler:testCompile {execution: default-testCompile}]

[INFO] Compiling 1 source file to C:\MVN\consumerBanking\target\test-classes

[INFO] [surefire:test {execution: default-test}]

[INFO] Surefire report directory: C:\MVN\consumerBanking\target\surefire-reports

T E S T S

Running com.companyname.bank.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.027 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar {execution: default-jar}]

[INFO] Building jar: C:\MVN\consumerBanking\target\

consumerBanking-1.0-SNAPSHOT.jar

[INFO]---

[INFO] BUILD SUCCESSFUL

[INFO]---

[INFO] Total time: 2 seconds

[INFO] Finished at: Tue Jul 10 16:52:18 IST 2012

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Squiggly

[INFO] Final Memory: 16M/89M

[INFO]---

You've built your project and created final jar file, following are the key

learning concepts −

We give maven two goals, first to clean the target directory (clean)

and then package the project build output as jar (package).

Packaged jar is available in consumerBanking\target folder as

consumerBanking-1.0-SNAPSHOT.jar.

Test reports are available in consumerBanking\target\surefire-reports

folder.

Maven compiles the source code file(s) and then tests the source code

file(s).

Then Maven runs the test cases.

Finally, Maven creates the package.

Now open the command console, go the

C:\MVN\consumerBanking\target\classes directory and execute the following

java command.

>java com.companyname.bank.App

You will see the result as follows −

Hello World!

Let's see how we can add additional Java files in our project. Open

C:\MVN\consumerBanking\src\main\java\com\companyname\bank folder,

create Util class in it as Util.java.

package com.companyname.bank;

public class Util {
public static void printMessage(String message){

System.out.println(message);
}

}

Update the App class to use Util class.

package com.companyname.bank;

/**
 * Hello world!

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

 *
*/

public class App {
public static void main(String[] args){

Util.printMessage("Hello World!");
}

}

Now open the command console, go the C:\MVN\consumerBanking

directory and execute the following mvn command.

>mvn clean compile

After Maven build is successful, go to the

C:\MVN\consumerBanking\target\classes directory and execute the following

java command.

>java -cp com.companyname.bank.App

You will see the result as follows −

Hello World!

As you know, Maven does the dependency management using the concept of

Repositories. But what happens if dependency is not available in any of remote

repositories and central repository? Maven provides answer for such scenario

using concept of External Dependency.

For example, let us do the following changes to the project created in ‘Creating

Java Project’ chapter.

Add lib folder to the src folder.

Copy any jar into the lib folder. We've used ldapjdk.jar, which is a

helper library for LDAP operations.

Now our project structure should look like the following −

Ryu
Highlight

Ryu
Oval

Ryu
Oval

Ryu
Oval

Ryu
Highlight

Here you are having your own library, specific to the project, which is an usual

case and it contains jars, which may not be available in any repository for

maven to download from. If your code is using this library with Maven, then

Maven build will fail as it cannot download or refer to this library during

compilation phase.

To handle the situation, let's add this external dependency to maven pom.xml

using the following way.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.bank</groupId>
<artifactId>consumerBanking</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>consumerBanking</name>
<url>http://maven.apache.org</url>

<dependencies>
<dependency>

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>ldapjdk</groupId>
<artifactId>ldapjdk</artifactId>
<scope>system</scope>
<version>1.0</version>
<systemPath>${basedir}\src\lib\ldapjdk.jar</systemPath>

</dependency>
</dependencies>

</project>

Look at the second dependency element under dependencies in the above

example, which clears the following key concepts about External

Dependency.

External dependencies (library jar location) can be configured in

pom.xml in same way as other dependencies.

Specify groupId same as the name of the library.

Specify artifactId same as the name of the library.

Specify scope as system.

Specify system path relative to the project location.

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Oval

Ryu
Oval

Ryu
Oval

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Highlight

Hope now you are clear about external dependencies and you will be able to

specify external dependencies in your Maven project.

This tutorial will teach you how to create documentation of the application in

one go. So let's start, go to C:/MVN directory where you had created your java

consumerBanking application using the examples given in the previous

chapters. Open consumerBanking folder and execute the following mvn

command.

C:\MVN>mvn site

Maven will start building the project.

[INFO] Scanning for projects...

[INFO]---

[INFO] Building consumerBanking

[INFO] task-segment: [site]

[INFO]---

[INFO] [site:site {execution: default-site}]

[INFO] artifact org.apache.maven.skins:maven-default-skin:

checking for updates from central

[INFO] Generating "About" report.

[INFO] Generating "Issue Tracking" report.

[INFO] Generating "Project Team" report.

[INFO] Generating "Dependencies" report.

[INFO] Generating "Continuous Integration" report.

[INFO] Generating "Source Repository" report.

[INFO] Generating "Project License" report.

[INFO] Generating "Mailing Lists" report.

[INFO] Generating "Plugin Management" report.

[INFO] Generating "Project Summary" report.

[INFO]---

[INFO] BUILD SUCCESSFUL

[INFO]---

[INFO] Total time: 16 seconds

[INFO] Finished at: Wed Jul 11 18:11:18 IST 2012

[INFO] Final Memory: 23M/148M

[INFO]---

Your project documentation is now ready. Maven has created a site within the

target directory.

Ryu
Highlight

Ryu
Oval

Ryu
Highlight

Open C:\MVN\consumerBanking\target\site folder. Click on index.html to see

the documentation.

Maven creates the documentation using a documentation-processing engine

called Doxia which reads multiple source formats into a common document

model. To write documentation for your project, you can write your content in

a following few commonly used formats which are parsed by Doxia.

Format

Name

Description Reference

Ryu
Oval

Ryu
Oval

Ryu
Highlight

Ryu
Underline

Ryu
Highlight

XDoc A Maven 1.x

documentation

format

https://jakarta.apache.org/site

FML Used for FAQ

documents

https://maven.apache.org

Maven provides users, a very large list of different types of project templates

(614 in numbers) using the concept of Archetype. Maven helps users to

quickly start a new java project using the following command.

mvn archetype:generate

Archetype is a Maven plugin whose task is to create a project structure as per

its template. We are going to use quickstart archetype plugin to create a

simple java application here.

Let's open the command console, go to the C:\ > MVN directory and execute

the following mvn command.

C:\MVN>mvn archetype:generate

Maven will start processing and will ask to choose the required archetype.

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: 'archetype'.

[INFO] ---

[INFO] Building Maven Default Project

[INFO] task-segment: [archetype:generate] (aggregator-style)

[INFO] ---

[INFO] Preparing archetype:generate

...

600: remote −> org.trailsframework:trails-archetype (-)

601: remote −> org.trailsframework:trails-secure-archetype (-)

602: remote −> org.tynamo:tynamo-archetype (-)

603: remote −> org.wicketstuff.scala:wicket-scala-archetype (-)

604: remote −> org.wicketstuff.scala:wicketstuff-scala-archetype

Basic setup for a project that combines Scala and Wicket,

Ryu
Squiggly

Ryu
Oval

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Underline

depending on the Wicket-Scala project.

Includes an example Specs test.)

605: remote −> org.wikbook:wikbook.archetype (-)

606: remote −> org.xaloon.archetype:xaloon-archetype-wicket-jpa-glassfish (-)

607: remote −> org.xaloon.archetype:xaloon-archetype-wicket-jpa-spring (-)

608: remote −> org.xwiki.commons:xwiki-commons-component-archetype

 (Make it easy to create a maven project for creating XWiki Components.)

609: remote −> org.xwiki.rendering:xwiki-rendering-archetype-macro

 (Make it easy to create a maven project for creating XWiki Rendering Macros.)

610: remote −> org.zkoss:zk-archetype-component (The ZK Component archetype)

611: remote −> org.zkoss:zk-archetype-webapp (The ZK wepapp archetype)

612: remote −> ru.circumflex:circumflex-archetype (-)

613: remote −> se.vgregion.javg.maven.archetypes:javg-minimal-archetype (-)

614: remote −> sk.seges.sesam:sesam-annotation-archetype (-)

Choose a number or apply filter

(format: [groupId:]artifactId, case sensitive contains): 203:

Press Enter to choose to default option (203: maven-archetype-quickstart)

Maven will ask for particular version of archetype.

Choose org.apache.maven.archetypes:maven-archetype-quickstart version:

1: 1.0-alpha-1

2: 1.0-alpha-2

3: 1.0-alpha-3

4: 1.0-alpha-4

5: 1.0

6: 1.1

Choose a number: 6:

Press Enter to choose to default option (6: maven-archetype-quickstart:1.1)

Maven will ask for the project detail. Enter project detail as asked. Press Enter

if the default value is provided. You can override them by entering your own

value.

Define value for property 'groupId': : com.companyname.insurance
Define value for property 'artifactId': : health
Define value for property 'version': 1.0-SNAPSHOT:
Define value for property 'package': com.companyname.insurance:

Maven will ask for the project detail confirmation. Press enter or press Y.

Confirm properties configuration:
groupId: com.companyname.insurance
artifactId: health
version: 1.0-SNAPSHOT

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Underline

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

Ryu
Squiggly

package: com.companyname.insurance
Y:

Now Maven will start creating the project structure and will display the

following −

[INFO]---

[INFO] Using following parameters for creating project

from Old (1.x) Archetype: maven-archetype-quickstart:1.1

[INFO]---

[INFO] Parameter: groupId, Value: com.companyname.insurance

[INFO] Parameter: packageName, Value: com.companyname.insurance

[INFO] Parameter: package, Value: com.companyname.insurance

[INFO] Parameter: artifactId, Value: health

[INFO] Parameter: basedir, Value: C:\MVN

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from Old (1.x) Archetype in dir: C:\MVN\health

[INFO]---

[INFO] BUILD SUCCESSFUL

[INFO]---

[INFO] Total time: 4 minutes 12 seconds

[INFO] Finished at: Fri Jul 13 11:10:12 IST 2012

[INFO] Final Memory: 20M/90M

[INFO]---

Now go to C:\ > MVN directory. You'll see a java application project created,

named health, which was given as artifactId at the time of project creation.

Maven will create a standard directory layout for the project as shown below −

Ryu
Squiggly

Ryu
Underline

Ryu
Oval

Ryu
Oval

Maven generates a POM.xml file for the project as listed below −

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.insurance</groupId>
<artifactId>health</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>health</name>
<url>http://maven.apache.org</url>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>

<dependency>
<groupId>junit</groupId>

<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Maven generates sample java source file, App.java for the project as listed

below −

Location: C:\ > MVN > health > src > main > java > com >

companyname > insurance > App.java.

package com.companyname.insurance;

/**
 * Hello world!
 *
*/
public class App {

public static void main(String[] args) {
System.out.println("Hello World!");

}
}

Maven generates sample java source test file, AppTest.java for the project as

listed below −

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Location: C:\ > MVN > health > src > test > java > com >

companyname > insurance > AppTest.java.

package com.companyname.insurance;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

/**
 * Unit test for simple App.
*/
public class AppTest extends TestCase {

/**
 * Create the test case
 *
 * @param testName name of the test case
 */

public AppTest(String testName) {
super(testName);

}
/**

 * @return the suite of tests being tested
 */

public static Test suite() {
return new TestSuite(AppTest.class);

}
/**

 * Rigourous Test :-)
 */

public void testApp() {
 assertTrue(true);

}
}

Now you can see the power of Maven. You can create any kind of project using

single command in maven and can kick-start your development.

Sr.No. Archetype ArtifactIds & Description

1 maven-archetype-archetype

An archetype, which contains a sample archetype.

2 maven-archetype-j2ee-simple

An archetype, which contains a simplified sample J2EE application.

3 maven-archetype-mojo

An archetype, which contains a sample a sample Maven plugin.

Ryu
Underline

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

4 maven-archetype-plugin

An archetype, which contains a sample Maven plugin.

5 maven-archetype-plugin-site

An archetype, which contains a sample Maven plugin site.

6 maven-archetype-portlet

An archetype, which contains a sample JSR-268 Portlet.

7 maven-archetype-quickstart

An archetype, which contains a sample Maven project.

8 maven-archetype-simple

An archetype, which contains a simple Maven project.

9 maven-archetype-site

An archetype, which contains a sample Maven site to demonstrates

some of the supported document types like APT, XDoc, and FML

and demonstrates how to i18n your site.

10 maven-archetype-site-simple

An archetype, which contains a sample Maven site.

11 maven-archetype-webapp

An archetype, which contains a sample Maven Webapp project.

A large software application generally consists of multiple modules and it is

common scenario where multiple teams are working on different modules of

same application. For example, consider a team is working on the front end of

the application as app-ui project (app-ui.jar:1.0) and they are using data-

service project (data-service.jar:1.0).

Now it may happen that team working on data-service is undergoing bug fixing

or enhancements at rapid pace and they are releasing the library to remote

repository almost every other day.

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Now if data-service team uploads a new version every other day, then

following problems will arise −

data-service team should tell app-ui team every time when they have

released an updated code.

app-ui team required to update their pom.xml regularly to get the

updated version.

To handle such kind of situation, SNAPSHOT concept comes into play.

SNAPSHOT is a special version that indicates a current development copy.

Unlike regular versions, Maven checks for a new SNAPSHOT version in a

remote repository for every build.

Now data-service team will release SNAPSHOT of its updated code every time

to repository, say data-service: 1.0-SNAPSHOT, replacing an older SNAPSHOT

jar.

In case of Version, if Maven once downloaded the mentioned version, say

data-service:1.0, it will never try to download a newer 1.0 available in

repository. To download the updated code, data-service version is be upgraded

to 1.1.

In case of SNAPSHOT, Maven will automatically fetch the latest SNAPSHOT

(data-service:1.0-SNAPSHOT) every time app-ui team build their project.

app-ui project is using 1.0-SNAPSHOT of data-service.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>app-ui</groupId>
<artifactId>app-ui</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<name>health</name>
<url>http://maven.apache.org</url>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

<dependency>
<groupId>data-service</groupId>

<artifactId>data-service</artifactId>
<version>1.0-SNAPSHOT</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

data-service project is releasing 1.0-SNAPSHOT for every minor change.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>data-service</groupId>
<artifactId>data-service</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>health</name>
<url>http://maven.apache.org</url>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

</project>

Although, in case of SNAPSHOT, Maven automatically fetches the latest

SNAPSHOT on daily basis, you can force maven to download latest snapshot

build using -U switch to any maven command.

mvn clean package -U

Let's open the command console, go to the C:\ > MVN > app-ui directory

and execute the following mvn command.

C:\MVN\app-ui>mvn clean package -U

Maven will start building the project after downloading the latest SNAPSHOT of

data-service.

[INFO] Scanning for projects...

[INFO]--

[INFO] Building consumerBanking

[INFO] task-segment: [clean, package]

[INFO]--

[INFO] Downloading data-service:1.0-SNAPSHOT

[INFO] 290K downloaded.

[INFO] [clean:clean {execution: default-clean}]

[INFO] Deleting directory C:\MVN\app-ui\target

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Oval

Ryu
Highlight

[INFO] [resources:resources {execution: default-resources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\MVN\app-ui\src\main\resources

[INFO] [compiler:compile {execution:default-compile}]

[INFO] Compiling 1 source file to C:\MVN\app-ui\target\classes

[INFO] [resources:testResources {execution: default-testResources}]

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,

i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory C:\MVN\app-ui\src\test\resources

[INFO] [compiler:testCompile {execution: default-testCompile}]

[INFO] Compiling 1 source file to C:\MVN\app-ui\target\test-classes

[INFO] [surefire:test {execution: default-test}]

[INFO] Surefire report directory: C:\MVN\app-ui\target\

surefire-reports

--

 T E S T S

--

Running com.companyname.bank.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.027 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar {execution: default-jar}]

[INFO] Building jar: C:\MVN\app-ui\target\

app-ui-1.0-SNAPSHOT.jar

[INFO]--

[INFO] BUILD SUCCESSFUL

[INFO]--

[INFO] Total time: 2 seconds

[INFO] Finished at: 2015-09-27T12:30:02+05:30

[INFO] Final Memory: 16M/89M

[INFO]--

Build Automation defines the scenario where dependent project(s) build

process gets started once the project build is successfully completed, in order

to ensure that dependent project(s) is/are stable.

Example

Consider a team is developing a project bus-core-api on which two other

projects app-web-ui and app-desktop-ui are dependent.

app-web-ui project is using 1.0-SNAPSHOT of bus-core-api project.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>app-web-ui</groupId>
<artifactId>app-web-ui</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<dependencies>

<dependency>
<groupId>bus-core-api</groupId>

<artifactId>bus-core-api</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>
</dependencies>

</project>

app-desktop-ui project is using 1.0-SNAPSHOT of bus-core-api project.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>app_desktop_ui</groupId>
<artifactId>app_desktop_ui</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<name>app_desktop_ui</name>
<url>http://maven.apache.org</url>
<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>bus_core_api</groupId>
<artifactId>bus_core_api</artifactId>

<version>1.0-SNAPSHOT</version>
<scope>system</scope>
<systemPath>C:\MVN\bus_core_api\target\bus_core_api-1.0-SNAPSHOT.jar</systemPath>

</dependency>
</dependencies>

</project>

bus-core-api project −

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>bus_core_api</groupId>
<artifactId>bus_core_api</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

</project>

Now, teams of app-web-ui and app-desktop-ui projects require that their

build process should kick off whenever bus-core-api project changes.

Using snapshot, ensures that the latest bus-core-api project should be used

but to meet the above requirement we need to do something extra.

We can proceed with the following two ways −

Add a post-build goal in bus-core-api pom to kick-off app-web-ui and

app-desktop-ui builds.

Use a Continuous Integration (CI) Server like Hudson to manage build

automation automatically.

Update bus-core-api project pom.xml.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>bus-core-api</groupId>
<artifactId>bus-core-api</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<build>

<plugins>
<plugin>
<artifactId>maven-invoker-plugin</artifactId>
<version>1.6</version>
<configuration>

<debug>true</debug>

<pomIncludes>
<pomInclude>app-web-ui/pom.xml</pomInclude>
<pomInclude>app-desktop-ui/pom.xml</pomInclude>

</pomIncludes>
</configuration>
<executions>

<execution>
<id>build</id>
<goals>

<goal>run</goal>
</goals>

</execution>
</executions>
</plugin>

</plugins>
<build>

</project>

Let's open the command console, go to the C:\ > MVN > bus-core-api

directory and execute the following mvn command.

>mvn clean package -U

Maven will start building the project bus-core-api.

[INFO] Scanning for projects...

[INFO] --

[INFO] Building bus-core-api

[INFO] task-segment: [clean, package]

[INFO] --

...

[INFO] [jar:jar {execution: default-jar}]

[INFO] Building jar: C:\MVN\bus-core-ui\target\

bus-core-ui-1.0-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

Once bus-core-api build is successful, Maven will start building the app-web-

ui project.

[INFO] --

[INFO] Building app-web-ui

[INFO] task-segment: [package]

[INFO] --

...

[INFO] [jar:jar {execution: default-jar}]

[INFO] Building jar: C:\MVN\app-web-ui\target\

app-web-ui-1.0-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESSFUL

[INFO] --

Once app-web-ui build is successful, Maven will start building the app-

desktop-ui project.

[INFO] --

[INFO] Building app-desktop-ui

[INFO] task-segment: [package]

[INFO] --

...

[INFO] [jar:jar {execution: default-jar}]

[INFO] Building jar: C:\MVN\app-desktop-ui\target\

app-desktop-ui-1.0-SNAPSHOT.jar

[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

Using a CI Server is more preferable to developers. It is not required to update

the bus-core-api project, every time a new project (for example, app-mobile-

ui) is added, as dependent project on bus-core-api project. Hudsion is a

continuous integration tool written in java, which in a servlet container, such

as, Apache tomcat and glassfish application server. Hudson automatically

manages build automation using Maven dependency management. The

following snapshot will define the role of Hudson tool.

Hudson considers each project build as job. Once a project code is checked-in

to SVN (or any Source Management Tool mapped to Hudson), Hudson starts

its build job and once this job gets completed, it start other dependent jobs

(other dependent projects) automatically.

In the above example, when bus-core-ui source code is updated in SVN,

Hudson starts its build. Once build is successful, Hudson looks for dependent

projects automatically, and starts building app-web-ui and app-desktop-ui

projects.

One of the core features of Maven is Dependency Management. Managing

dependencies is a difficult task once we've to deal with multi-module projects

(consisting of hundreds of modules/sub-projects). Maven provides a high

degree of control to manage such scenarios.

It is pretty often a case, when a library, say A, depends upon other library, say

B. In case another project C wants to use A, then that project requires to use

library B too.

Maven helps to avoid such requirements to discover all the libraries required.

Maven does so by reading project files (pom.xml) of dependencies, figure out

their dependencies and so on.

We only need to define direct dependency in each project pom. Maven handles

the rest automatically.

With transitive dependencies, the graph of included libraries can quickly grow

to a large extent. Cases can arise when there are duplicate libraries. Maven

provides few features to control extent of transitive dependencies.

Sr.No. Feature & Description

1 Dependency mediation

Determines what version of a dependency is to be used when

multiple versions of an artifact are encountered. If two dependency

versions are at the same depth in the dependency tree, the first

declared dependency will be used.

2 Dependency management

Directly specify the versions of artifacts to be used when they are

encountered in transitive dependencies. For an example project C

can include B as a dependency in its dependency Management

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

section and directly control which version of B is to be used when it

is ever referenced.

3 Dependency scope

Includes dependencies as per the current stage of the build.

4 Excluded dependencies

Any transitive dependency can be excluded using "exclusion"

element. As example, A depends upon B and B depends upon C,

then A can mark C as excluded.

5 Optional dependencies

Any transitive dependency can be marked as optional using

"optional" element. As example, A depends upon B and B depends

upon C. Now B marked C as optional. Then A will not use C.

Transitive Dependencies Discovery can be restricted using various Dependency

Scope as mentioned below.

Sr.No. Scope & Description

1 compile

This scope indicates that dependency is available in classpath of

project. It is default scope.

2 provided

This scope indicates that dependency is to be provided by JDK or

web-Server/Container at runtime.

3 runtime

This scope indicates that dependency is not required for

compilation, but is required during execution.

4 test

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

This scope indicates that the dependency is only available for the

test compilation and execution phases.

5 system

This scope indicates that you have to provide the system path.

6 import

This scope is only used when dependency is of type pom. This

scope indicates that the specified POM should be replaced with the

dependencies in that POM's <dependencyManagement> section.

Usually, we have a set of project under a common project. In such case, we

can create a common pom having all the common dependencies and then

make this pom, the parent of sub-project's poms. Following example will help

you understand this concept.

Following are the detail of the above dependency graph −

App-UI-WAR depends upon App-Core-lib and App-Data-lib.

Root is parent of App-Core-lib and App-Data-lib.

Root defines Lib1, lib2, Lib3 as dependencies in its dependency section.

App-UI-WAR

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.groupname</groupId>
<artifactId>App-UI-WAR</artifactId>
<version>1.0</version>
<packaging>war</packaging>

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

<dependencies>
<dependency>

<groupId>com.companyname.groupname</groupId>
<artifactId>App-Core-lib</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
<dependencies>

<dependency>
<groupId>com.companyname.groupname</groupId>
<artifactId>App-Data-lib</artifactId>
<version>1.0</version>

</dependency>
</dependencies>

</project>

App-Core-lib

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>

<artifactId>Root</artifactId>
<groupId>com.companyname.groupname</groupId>
<version>1.0</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.groupname</groupId>
<artifactId>App-Core-lib</artifactId>
<version>1.0</version>
<packaging>jar</packaging>

</project>

App-Data-lib

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>

<artifactId>Root</artifactId>
<groupId>com.companyname.groupname</groupId>
<version>1.0</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.groupname</groupId>
<artifactId>App-Data-lib</artifactId>
<version>1.0</version>
<packaging>jar</packaging>

</project>

Root

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Underline

Ryu
Underline

<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.groupname</groupId>
<artifactId>Root</artifactId>
<version>1.0</version>
<packaging>pom</packaging>
<dependencies>

<dependency>
<groupId>com.companyname.groupname1</groupId>
<artifactId>Lib1</artifactId>
<version>1.0</version>

</dependency>
</dependencies>
<dependencies>

<dependency>
<groupId>com.companyname.groupname2</groupId>
<artifactId>Lib2</artifactId>
<version>2.1</version>

</dependency>
</dependencies>
<dependencies>

<dependency>
<groupId>com.companyname.groupname3</groupId>
<artifactId>Lib3</artifactId>
<version>1.1</version>

</dependency>
</dependencies>

</project>

Now when we build App-UI-WAR project, Maven will discover all the

dependencies by traversing the dependency graph and build the application.

From above example, we can learn the following key concepts −

Common dependencies can be placed at single place using concept of

parent pom. Dependencies of App-Data-lib and App-Core-lib project

are listed in Root project (See the packaging type of Root. It is POM).

There is no need to specify Lib1, lib2, Lib3 as dependency in App-UI-

WAR. Maven use the Transitive Dependency Mechanism to manage

such detail.

In project development, normally a deployment process consists of the

following steps −

Check-in the code from all project in progress into the SVN (version

control system) or source code repository and tag it.

Download the complete source code from SVN.

Build the application.

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Store the build output either WAR or EAR file to a common network

location.

Get the file from network and deploy the file to the production site.

Updated the documentation with date and updated version number of

the application.

There are normally multiple people involved in the above mentioned

deployment process. One team may handle check-in of code, other may

handle build and so on. It is very likely that any step may be missed out due

to manual efforts involved and owing to multi-team environment. For example,

older build may not be replaced on network machine and deployment team

deployed the older build again.

Automate the deployment process by combining the following −

Maven, to build and release projects.

SubVersion, source code repository, to manage source code.

Remote Repository Manager (Jfrog/Nexus) to manage project binaries.

We will be using Maven Release plug-in to create an automated release

process.

For Example: bus-core-api project POM.xml.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>bus-core-api</groupId>
<artifactId>bus-core-api</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<scm>

<url>http://www.svn.com</url>
<connection>scm:svn:http://localhost:8080/svn/jrepo/trunk/

 Framework</connection>
<developerConnection>scm:svn:${username}/${password}@localhost:8080:

 common_core_api:1101:code</developerConnection>
</scm>
<distributionManagement>

<repository>

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text
o

Ryu
Oval

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

<id>Core-API-Java-Release</id>
<name>Release repository</name>
<url>http://localhost:8081/nexus/content/repositories/

 Core-Api-Release</url>
</repository>

</distributionManagement>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-release-plugin</artifactId>
<version>2.0-beta-9</version>
<configuration>

<useReleaseProfile>false</useReleaseProfile>
<goals>deploy</goals>
<scmCommentPrefix>[bus-core-api-release-checkin]-<

 /scmCommentPrefix>
</configuration>

</plugin>
</plugins>

</build>
</project>

In Pom.xml, following are the important elements we have used −

Sr.No. Element & Description

1 SCM

Configures the SVN location from where Maven will check out the

source code.

2 Repositories

Location where built WAR/EAR/JAR or any other artifact will be

stored after code build is successful.

3 Plugin

maven-release-plugin is configured to automate the deployment

process.

The Maven does the following useful tasks using maven-release-plugin.

mvn release:clean

It cleans the workspace in case the last release process was not successful.

mvn release:rollback

Ryu
Oval

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Rollback the changes done to workspace code and configuration in case the

last release process was not successful.

mvn release:prepare

Performs multiple number of operations, such as −

Checks whether there are any uncommitted local changes or not.

Ensures that there are no SNAPSHOT dependencies.

Changes the version of the application and removes SNAPSHOT from

the version to make release.

Update pom files to SVN.

Run test cases.

Commit the modified POM files.

Tag the code in subversion

Increment the version number and append SNAPSHOT for future

release.

Commit the modified POM files to SVN.

mvn release:perform

Checks out the code using the previously defined tag and run the Maven

deploy goal, to deploy the war or built artifact to repository.

Let's open the command console, go to the C:\ > MVN >bus-core-api

directory and execute the following mvn command.

>mvn release:prepare

Maven will start building the project. Once build is successful run the following

mvn command.

>mvn release:perform

Once build is successful you can verify the uploaded JAR file in your repository.

This chapter teaches you how to manage a web based project using Maven.

Here you will learn how to create/build/deploy and run a web application.

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

Ryu
Insert Text

Ryu
Highlight

Ryu
Insert Text

Ryu
Insert Text

To create a simple java web application, we will use maven-archetype-

webapp plugin. So, let's open the command console, go to the C:\MVN

directory and execute the following mvn command.

C:\MVN>mvn archetype:generate
-DgroupId = com.companyname.automobile
-DartifactId = trucks
-DarchetypeArtifactId = maven-archetype-webapp
-DinteractiveMode = false

Maven will start processing and will create the complete web based java

application project structure as follows −

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: 'archetype'.

[INFO] ---

[INFO] Building Maven Default Project

[INFO] task-segment: [archetype:generate] (aggregator-style)

[INFO] ---

[INFO] Preparing archetype:generate

[INFO] No goals needed for project - skipping

[INFO] [archetype:generate {execution: default-cli}]

[INFO] Generating project in Batch mode

[INFO] --

[INFO] Using following parameters for creating project

from Old (1.x) Archetype: maven-archetype-webapp:1.0

[INFO] --

[INFO] Parameter: groupId, Value: com.companyname.automobile

[INFO] Parameter: packageName, Value: com.companyname.automobile

[INFO] Parameter: package, Value: com.companyname.automobile

[INFO] Parameter: artifactId, Value: trucks

[INFO] Parameter: basedir, Value: C:\MVN

[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from Old (1.x) Archetype in dir: C:\MVN\trucks

[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

[INFO] Total time: 16 seconds

[INFO] Finished at: Tue Jul 17 11:00:00 IST 2012

Ryu
Highlight

Ryu
Oval

Ryu
Line

Ryu
Line

[INFO] Final Memory: 20M/89M

[INFO] ---

Now go to C:/MVN directory. You'll see a java application project created,

named trucks (as specified in artifactId) as specified in the following snapshot.

The following directory structure is generally used for web applications −

Maven uses a standard directory layout. Using the above example, we can

understand the following key concepts −

Sr.No. Folder Structure & Description

1 trucks

contains src folder and pom.xml.

2 src/main/webapp

contains index.jsp and WEB-INF folder.

3 src/main/webapp/WEB-INF

contains web.xml

4 src/main/resources

it contains images/properties files.

<project xmlns = "http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.companyname.automobile</groupId>

Ryu
Oval

Ryu
Oval

Ryu
Line

Ryu
Line

Ryu
Line

Ryu
Highlight

Ryu
Underline

Ryu
Underline

Ryu
Insert Text

Ryu
Insert Text

<artifactId>trucks</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>
<name>trucks Maven Webapp</name>
<url>http://maven.apache.org</url>
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>
<build>

<finalName>trucks</finalName>
</build>

</project>

If you observe, you will find that Maven also created a sample JSP Source file.

Open C:\ > MVN > trucks > src > main > webapp > folder to see

index.jsp with the following code −

<html>
<body>

<h2>Hello World!</h2>
</body>

</html>

Let's open the command console, go to the C:\MVN\trucks directory and

execute the following mvn command.

C:\MVN\trucks>mvn clean package

Maven will start building the project.

[INFO] Scanning for projects...

[INFO] ---

[INFO] Building trucks Maven Webapp

[INFO] task-segment: [clean, package]

[INFO] ---

[INFO] [clean:clean {execution: default-clean}]

[INFO] [resources:resources {execution: default-resources}]

[WARNING] Using platform encoding (Cp1252 actually) to

copy filtered resources,i.e. build is platform dependent!

[INFO] Copying 0 resource

[INFO] [compiler:compile {execution: default-compile}]

Ryu
Highlight

Ryu
Highlight

Ryu
Underline

Ryu
Highlight

Ryu
Highlight

Ryu
Oval

[INFO] No sources to compile

[INFO] [resources:testResources {execution: default-testResources}]

[WARNING] Using platform encoding (Cp1252 actually) to

copy filtered resources,i.e. build is platform dependent!

[INFO] skip non existing resourceDirectory

C:\MVN\trucks\src\test\resources

[INFO] [compiler:testCompile {execution: default-testCompile}]

[INFO] No sources to compile

[INFO] [surefire:test {execution: default-test}]

[INFO] No tests to run.

[INFO] [war:war {execution: default-war}]

[INFO] Packaging webapp

[INFO] Assembling webapp[trucks] in [C:\MVN\trucks\target\trucks]

[INFO] Processing war project

[INFO] Copying webapp resources[C:\MVN\trucks\src\main\webapp]

[INFO] Webapp assembled in[77 msecs]

[INFO] Building war: C:\MVN\trucks\target\trucks.war

[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

[INFO] Total time: 3 seconds

[INFO] Finished at: Tue Jul 17 11:22:45 IST 2012

[INFO] Final Memory: 11M/85M

[INFO] ---

Now copy the trucks.war created in C:\ > MVN > trucks > target > folder

to your webserver webapp directory and restart the webserver.

Run the web-application using URL: http://<server-name>:<port-

number>/trucks/index.jsp.

Verify the output.

Ryu
Underline

Ryu
Underline

Ryu
Underline

Ryu
Highlight

Ryu
Insert Text

Ryu
Underline

Ryu
Insert Text

Eclipse provides an excellent plugin m2eclipse which seamlessly integrates

Maven and Eclipse together.

Some of features of m2eclipse are listed below −

You can run Maven goals from Eclipse.

You can view the output of Maven commands inside the Eclipse, using

its own console.

You can update maven dependencies with IDE.

You can Launch Maven builds from within Eclipse.

It does the dependency management for Eclipse build path based on

Maven's pom.xml.

It resolves Maven dependencies from the Eclipse workspace without

installing to local Maven repository (requires dependency project be in

same workspace).

It automatic downloads the required dependencies and sources from

the remote Maven repositories.

It provides wizards for creating new Maven projects, pom.xml and to

enable Maven support on existing projects

It provides quick search for dependencies in remote Maven

repositories.

Use one of the following links to install m2eclipse −

Eclipse URL

Eclipse 3.5 (Gallileo) Installing m2eclipse in Eclipse 3.5 (Gallileo)

Eclipse 3.6 (Helios) Installing m2eclipse in Eclipse 3.6 (Helios)

Following example will help you to leverage benefits of integrating Eclipse and

maven.

Open Eclipse.

Select File > Import > option.

Select Maven Projects Option. Click on Next Button.

Select Project location, where a project was created using Maven.

We've created a Java Project consumer Banking in the previous

chapters. Go to ‘Creating Java Project’ chapter, to see how to create a

project using Maven.

Click Finish Button.

Now, you can see the maven project in eclipse.

Now, have a look at consumer Banking project properties. You can see that

Eclipse has added Maven dependencies to java build path.

Now, it is time to build this project using maven capability of eclipse.

Right Click on consumerBanking project to open context menu.

Select Run as option.

Then maven package option.

Maven will start building the project. You can see the output in Eclipse Console

as follows −

[INFO] Scanning for projects...

[INFO] ---

[INFO] Building consumerBanking

[INFO]

[INFO] Id: com.companyname.bank:consumerBanking:jar:1.0-SNAPSHOT

[INFO] task-segment: [package]

[INFO] ---

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:compile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [resources:testResources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:testCompile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [surefire:test]

[INFO] Surefire report directory:

C:\MVN\consumerBanking\target\surefire-reports

T E S T S

Running com.companyname.bank.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.047 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] [jar:jar]

[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

[INFO] Total time: 1 second

[INFO] Finished at: Thu Jul 12 18:18:24 IST 2012

[INFO] Final Memory: 2M/15M

[INFO] ---

Now, right click on App.java. Select Run As option. Then select Java

Application.

You will see the result as follows −

Hello World!

NetBeans 6.7 and newer has in-built support for Maven. In case of previous

version, Maven plugin is available in plugin Manager. We are using NetBeans

6.9 in this example.

Some of features of NetBeans are listed below −

You can run Maven goals from NetBeans.

You can view the output of Maven commands inside the NetBeans

using its own console.

You can update maven dependencies with IDE.

You can Launch Maven builds from within NetBeans.

NetBeans does the dependency management automatically based on

Maven's pom.xml.

NetBeans resolves Maven dependencies from its workspace without

installing to local Maven repository (requires dependency project be in

same workspace).

NetBeans automatic downloads required dependencies and sources

from the remote Maven repositories.

NetBeans provides wizards for creating new Maven projects, pom.xml.

NetBeans provides a Maven Repository browser that enables you to

view your local repository and registered external Maven repositories.

Following example will help you to leverage benefits of integrating NetBeans

and Maven.

Open NetBeans.

Select File Menu > Open Project option.

Select Project location, where a project was created using Maven.

We've created a Java Project consumerBanking. Go to ‘Creating Java

Project’ chapter, to see how to create a project using Maven.

Now, you can see the maven project in NetBeans. Have a look at

consumerBanking project Libraries and Test Libraries. You can see that

NetBeans has added Maven dependencies to its build path.

Now, Its time to build this project using maven capability of NetBeans.

Right Click on consumerBanking project to open context menu.

Select Clean and Build as option.

Maven will start building the project. You can see the output in NetBeans

Console as follows −

NetBeans: Executing 'mvn.bat -Dnetbeans.execution = true clean install'
NetBeans: JAVA_HOME = C:\Program Files\Java\jdk1.6.0_21
Scanning for projects...
--

Building consumerBanking
 task-segment: [clean, install]
--
[clean:clean]
[resources:resources]
[WARNING] Using platform encoding (Cp1252 actually)
to copy filtered resources, i.e. build is platform dependent!
skip non existing resourceDirectory C:\MVN\consumerBanking\src\main\resources
[compiler:compile]
Compiling 2 source files to C:\MVN\consumerBanking\target\classes
[resources:testResources]
[WARNING] Using platform encoding (Cp1252 actually)
to copy filtered resources, i.e. build is platform dependent!
skip non existing resourceDirectory C:\MVN\consumerBanking\src\test\resources
[compiler:testCompile]
Compiling 1 source file to C:\MVN\consumerBanking\target\test-classes
[surefire:test]
Surefire report directory: C:\MVN\consumerBanking\target\surefire-reports

 T E S T S

Running com.companyname.bank.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.023 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[jar:jar]
Building jar: C:\MVN\consumerBanking\target\consumerBanking-1.0-SNAPSHOT.jar
[install:install]
Installing C:\MVN\consumerBanking\target\consumerBanking-1.0-SNAPSHOT.jar
to C:\Users\GB3824\.m2\repository\com\companyname\bank\consumerBanking\
1.0-SNAPSHOT\consumerBanking-1.0-SNAPSHOT.jar
--
BUILD SUCCESSFUL
--
Total time: 9 seconds
Finished at: Thu Jul 19 12:57:28 IST 2012
Final Memory: 16M/85M
--

Now, right click on App.java. Select Run File as option. You will see the result

in the NetBeans Console.

NetBeans: Executing 'mvn.bat -Dexec.classpathScope = runtime

-Dexec.args = -classpath %classpath com.companyname.bank.App

-Dexec.executable = C:\Program Files\Java\jdk1.6.0_21\bin\java.exe

-Dnetbeans.execution = true process-classes

org.codehaus.mojo:exec-maven-plugin:1.1.1:exec'

NetBeans: JAVA_HOME = C:\Program Files\Java\jdk1.6.0_21

Scanning for projects...

--

Building consumerBanking

 task-segment: [process-classes,

 org.codehaus.mojo:exec-maven-plugin:1.1.1:exec]

--

[resources:resources]

[WARNING] Using platform encoding (Cp1252 actually)

to copy filtered resources, i.e. build is platform dependent!

skip non existing resourceDirectory C:\MVN\consumerBanking\src\main\resources

[compiler:compile]

Nothing to compile - all classes are up to date

[exec:exec]

Hello World!

--

BUILD SUCCESSFUL

--

Total time: 1 second

Finished at: Thu Jul 19 14:18:13 IST 2012

Final Memory: 7M/64M

--

IntelliJ IDEA has in-built support for Maven. We are using IntelliJ IDEA

Community Edition 11.1 in this example.

Some of the features of IntelliJ IDEA are listed below −

You can run Maven goals from IntelliJ IDEA.

You can view the output of Maven commands inside the IntelliJ IDEA

using its own console.

You can update maven dependencies within IDE.

You can Launch Maven builds from within IntelliJ IDEA.

IntelliJ IDEA does the dependency management automatically based

on Maven's pom.xml.

IntelliJ IDEA resolves Maven dependencies from its workspace without

installing to local Maven repository (requires dependency project be in

same workspace).

IntelliJ IDEA automatically downloads the required dependencies and

sources from the remote Maven repositories.

IntelliJ IDEA provides wizards for creating new Maven projects,

pom.xml.

Following example will help you to leverage benefits of integrating IntelliJ IDEA

and Maven.

We will import Maven project using New Project Wizard.

Open IntelliJ IDEA.

Select File Menu > New Project Option.

Select import project from existing model.

Select Maven option

Select Project location, where a project was created using Maven. We

have created a Java Project consumerBanking. Go to ‘Creating Java

Project' chapter, to see how to create a project using Maven.

Select Maven project to import.

Enter name of the project and click finish.

Now, you can see the maven project in IntelliJ IDEA. Have a look at

consumerBanking project external libraries. You can see that IntelliJ

IDEA has added Maven dependencies to its build path under Maven

section.

Now, it is time to build this project using capability of IntelliJ IDEA.

Select consumerBanking project.

Select Buid menu > Rebuild Project Option

You can see the output in IntelliJ IDEA Console

4:01:56 PM Compilation completed successfully

Select consumerBanking project.

Right click on App.java to open context menu.

select Run App.main()

You will see the result in IntelliJ IDEA Console.

"C:\Program Files\Java\jdk1.6.0_21\bin\java"

-Didea.launcher.port=7533

"-Didea.launcher.bin.path=

C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 11.1.2\bin"

-Dfile.encoding=UTF-8

-classpath "C:\Program Files\Java\jdk1.6.0_21\jre\lib\charsets.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\deploy.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\javaws.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\jce.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\jsse.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\management-agent.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\plugin.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\resources.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\rt.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\ext\dnsns.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\ext\localedata.jar;

 Previous Page Next Page

C:\Program Files\Java\jdk1.6.0_21\jre\lib\ext\sunjce_provider.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\ext\sunmscapi.jar;

C:\Program Files\Java\jdk1.6.0_21\jre\lib\ext\sunpkcs11.jar

C:\MVN\consumerBanking\target\classes;

C:\Program Files\JetBrains\

IntelliJ IDEA Community Edition 11.1.2\lib\idea_rt.jar"

com.intellij.rt.execution.application.AppMain com.companyname.bank.App

Hello World!

Process finished with exit code 0

 

Advertisements

embeddedsoftware.imagi... VISIT SITE

Download C/C++ Tool

Ad

Tutorials Point (India) Pvt. Ltd.

YouTube 999+

Write for us FAQ's Helping Contact

© Copyright 2017. All Rights Reserved.

go

