
MongoDB Architecture Guide
MongoDB 3.4
November 2016

A MongoDB White Paper

Table of Contents
1Introduction

1How we Build & Run Modern Apps

2The Nexus Architecture

3MongoDB Multimodel Architecture

4MongoDB Data Model

6MongoDB Query Model

8MongoDB Data Management

9Consistency & Durability

10Availability

12Performance & Compression

12Security

13Operational Management

15MongoDB Atlas

15Conclusion

16We Can Help

16Resources

Introduction

“MongoDB wasn’t designed in a lab. We built MongoDB

from our own experiences building large-scale, high

availability, robust systems. We didn’t start from scratch, we

really tried to figure out what was broken, and tackle that.

So the way I think about MongoDB is that if you take

MySQL, and change the data model from relational to

document-based, you get a lot of great features:

embedded docs for speed, manageability, agile

development with dynamic schemas, easier horizontal

scalability because joins aren’t as important. There are a lot

of things that work great in relational databases: indexes,

dynamic queries and updates to name a few, and we

haven’t changed much there. For example, the way you

design your indexes in MongoDB should be exactly the

way you do it in MySQL or Oracle, you just have the option

of indexing an embedded field.”

— Eliot Horowitz, MongoDB CTO and Co-Founder

MongoDB is designed for how we build and run

data-driven applications with modern development

techniques, programming models, computing resources,

and operational automation.

How We Build & Run Modern
Applications

Relational databases have a long-standing position in most

organizations, and for good reason. Relational databases

underpin existing applications that meet current business

needs; they are supported by an extensive ecosystem of

tools; and there is a large pool of labor qualified to

implement and maintain these systems.

But organizations are increasingly considering alternatives

to legacy relational infrastructure, driven by challenges

presented in building modern applications:

• Developers are working with applications that create

massive volumes of new, rapidly changing data types —

structured, semi-structured, unstructured and

polymorphic data.

• Long gone is the twelve-to-eighteen month waterfall

development cycle. Now small teams work in agile

sprints, iterating quickly and pushing code every week

or two, some even multiple times every day.

1

• Applications that once served a finite audience are now

delivered as services that must be always-on, accessible

from many different devices on any channel, and scaled

globally to millions of users.

• Organizations are now turning to scale-out architectures

using open source software, commodity servers and

cloud computing instead of large monolithic servers and

storage infrastructure.

The Nexus Architecture

MongoDB’s design philosophy is focused on combining the

critical capabilities of relational databases with the

innovations of NoSQL technologies. Our vision is to

leverage the work that Oracle and others have done over

the last 40 years to make relational databases what they

are today. Rather than discard decades of proven database

maturity, MongoDB is picking up where they left off by

combining key relational database capabilities with the

work that Internet pioneers have done to address the

requirements of modern applications.

FigurFigure 1:e 1: MongoDB Nexus Architecture, blending the best
of relational and NoSQL technologies

Relational databases have reliably served applications for

many years, and offer features that remain critical today as

developers build the next generation of applications:

• ExprExpressive query language & secondary Indexesessive query language & secondary Indexes.

Users should be able to access and manipulate their

data in sophisticated ways to support both operational

and analytical applications. Indexes play a critical role in

providing efficient access to data, supported natively by

the database rather than maintained in application code.

• StrStrong consistencyong consistency.. Applications should be able to

immediately read what has been written to the

database. It is much more complex to build applications

around an eventually consistent model, imposing

significant work on the developer, even for the most

sophisticated engineering teams.

• Enterprise Management and Integrations.Enterprise Management and Integrations.

Databases are just one piece of application

infrastructure, and need to fit seamlessly into the

enterprise IT stack. Organizations need a database that

can be secured, monitored, automated, and integrated

with their existing technology infrastructure, processes,

and staff, including operations teams, DBAs, and data

engineers.

However, modern applications impose requirements not

addressed by relational databases, and this has driven the

development of NoSQL databases which offer:

• Flexible DatFlexible Data Model.a Model. NoSQL databases emerged to

address the requirements for the data we see

dominating modern applications. Whether document,

graph, key-value, or wide-column, all of them offer a

flexible data model, making it easy to store and combine

data of any structure and allow dynamic modification of

the schema without downtime or performance impact.

• ScScalability and Palability and Performance.erformance. NoSQL databases were

all built with a focus on scalability, so they all include

some form of sharding or partitioning. This allows the

database to be scaled out across commodity hardware

deployed on-premises or in the cloud, enabling almost

unlimited growth with higher throughput and lower

latency than relational databases.

• Always-Always-On Global Deployments.On Global Deployments. NoSQL databases

are designed for continuously available systems that

provide a consistent, high quality experience for users

all over the world. They are designed to run across many

nodes, including replication to automatically synchronize

data across servers, racks, and

geographically-dispersed data centers.

While offering these innovations, NoSQL systems have

sacrificed the critical capabilities that people have come to

expect and rely upon from relational databases. MongoDB

offers a different approach. With its Nexus Architecture,

MongoDB is the only database that harnesses the

2

FigurFigure 2:e 2: Flexible Storage Architecture, optimising MongoDB for unique application demands

innovations of NoSQL while maintaining the foundation of

relational databases.

MongoDB Multimodel
Architecture

MongoDB embraces two key trends in modern IT:

• Organizations are rapidly expanding the range of

applications they deliver to digitally transform the

business.

• CIOs are rationalizing their technology portfolios to a

strategic set of vendors they can leverage to more

efficiently support their business.

With MongoDB, organizations can address diverse

application needs, hardware resources, and deployment

designs with a single database technology:

• MongoDB’s flexible document data model presents a

superset of other database models. It allows data be

represented as simple key-value pairs and flat, table-like

structures, through to rich documents and objects with

deeply nested arrays and sub-documents

• With an expressive query language, documents can be

queried in many ways – from simple lookups to creating

sophisticated processing pipelines for data analytics

and transformations, through to faceted search, JOINs

and graph traversals.

• With a flexible storage architecture, application owners

can deploy storage engines optimized for different

workload and operational requirements.

MongoDB’s multimodel design significantly reduces

developer and operational complexity when compared to

running multiple distinct database technologies to meet

different applications needs. Users can leverage the same

MongoDB query language, data model, scaling, security,

and operational tooling across different parts of their

application, with each powered by the optimal storage

engine.

Flexible Storage Architecture

MongoDB uniquely allows users to mix and match multiple

storage engines within a single deployment. This flexibility

provides a more simple and reliable approach to meeting

diverse application needs for data. Traditionally, multiple

database technologies would need to be managed to meet

these needs, with complex, custom integration code to

move data between the technologies, and to ensure

consistent, secure access. With MongoDB’s flexible

storage architecture, the database automatically manages

the movement of data between storage engine

technologies using native replication.

3

MongoDB 3.4 ships with four supported storage engines,

all of which can coexist within a single MongoDB replica

set. This makes it easy to evaluate and migrate between

them, and to optimize for specific application requirements

– for example combining the in-memory engine for ultra

low-latency operations with a disk-based engine for

persistence. The supported storage engines include:

• The default WiredTiger storage engine. For many

applications, WiredTiger's granular concurrency control

and native compression will provide the best all round

performance and storage efficiency for the broadest

range of applications.

• The Encrypted storage engine protecting highly

sensitive data, without the performance or management

overhead of separate filesystem encryption. (Requires

MongoDB Enterprise Advanced).

• The In-Memory storage engine delivering the extreme

performance coupled with real time analytics for the

most demanding, latency-sensitive applications.

(Requires MongoDB Enterprise Advanced).

• The MMAPv1 engine, an improved version of the

storage engine used in pre-3.x MongoDB releases.

MongoDB Data Model

Data As Documents

MongoDB stores data in a binary representation called

BSON (Binary JSON). The BSON encoding extends the

popular JSON (JavaScript Object Notation) representation

to include additional types such as int, long, date, floating

point, and decimal128. BSON documents contain one or

more fields, and each field contains a value of a specific

data type, including arrays, binary data and sub-documents.

FigurFigure 3:e 3: Example relational data model for a blogging
application

Documents that tend to share a similar structure are

organized as collections. It may be helpful to think of

collections as being analogous to a table in a relational

database: documents are similar to rows, and fields are

similar to columns.

For example, consider the data model for a blogging

application. In a relational database the data model would

comprise multiple tables. To simplify the example, assume

there are tables for Categories, Tags, Users, Comments

and Articles.

In MongoDB the data could be modeled as two collections,

one for users, and the other for articles. In each blog

document there might be multiple comments, multiple tags,

and multiple categories, each expressed as an embedded

array.

4

https://www.mongodb.com/products/mongodb-enterprise-advanced
http://bsonspec.org/

FigurFigure 4:e 4: Data as documents: simpler for developers,
faster for users.

As this example illustrates, MongoDB documents tend to

have all data for a given record in a single document,

whereas in a relational database information for a given

record is usually spread across many tables. With the

MongoDB document model, data is more localized, which

significantly reduces the need to JOIN separate tables.

The result is dramatically higher performance and

scalability across commodity hardware as a single read to

the database can retrieve the entire document containing

all related data. Unlike many NoSQL databases, users don’t

need to give up JOINs entirely. For additional flexibility,

MongoDB provides the ability to perform left-outer JOINs

that combine data from multiple collections.

MongoDB BSON documents are closely aligned to the

structure of objects in the programming language. This

makes it simpler and faster for developers to model how

data in the application will map to data stored in the

database.

Dynamic Schema without Compromising
Data Governance

MongoDB documents can vary in structure. For example,

all documents that describe users might contain the user id

and the last date they logged into the system, but only

some of these documents might contain the user’s identity

for one or more third party applications. Fields can vary

from document to document; there is no need to declare

the structure of documents to the system – documents are

self describing. If a new field needs to be added to a

document then the field can be created without affecting

all other documents in the system, without updating a

central system catalog, and without taking the system

offline.

Developers can start writing code and persist the objects

as they are created. And when developers add more

features, MongoDB continues to store the updated objects

without the need to perform costly ALTER TABLE

operations, or worse – having to re-design the schema

from scratch.

Document Validation

Dynamic schemas bring great agility, but it is also important

that controls can be implemented to maintain data quality,

especially if the database is shared by multiple

applications. Unlike NoSQL databases that push

enforcement of these controls back into application code,

MongoDB provides document validation within the

database. Users can enforce checks on document

structure, data types, data ranges and the presence of

mandatory fields. As a result, DBAs can apply data

governance standards, while developers maintain the

benefits of a flexible document model.

Schema Design

Although MongoDB provides schema flexibility, schema

design is still important. Developers and DBAs should

consider a number of topics, including the types of queries

the application will need to perform, relationships between

data, how objects are managed in the application code, and

how documents will change over time. Schema design is an

extensive topic that is beyond the scope of this document.

5

For more information, please see Data Modeling

Considerations.

MongoDB Query Model

Idiomatic Drivers

MongoDB provides native drivers for all popular

programming languages and frameworks to make

development natural. Supported drivers include Java,

Javascript, .NET, Python, Perl, PHP, Scala and others, in

addition to 30+ community-developed drivers. MongoDB

drivers are designed to be idiomatic for the given language.

One fundamental difference with relational databases is

that the MongoDB query model is implemented as

methods or functions within the API of a specific

programming language, as opposed to a completely

separate language like SQL. This, coupled with the affinity

between MongoDB’s JSON document model and the data

structures used in object-oriented programming, makes

integration with applications simple. For a complete list of

drivers see the MongoDB Drivers page.

Interacting with the Database

MongoDB offers developers and administrators a range of

tools for interacting with the database, independent of the

drivers.

The mongo shell is a rich, interactive JavaScript shell that is

included with all MongoDB distributions. Additionally

MongoDB Compass is a sophisticated and intuitive GUI for

MongoDB. Offering rich schema exploration and

management, Compass allows DBAs to modify documents,

create validation rules, and efficiently optimize query

performance by visualizing explain plans and index usage.

Sophisticated queries can be built and executed by simply

selecting document elements from the user interface, with

the results viewed both graphically, and as a set of JSON

documents. All of these tasks can be accomplished from a

point and click interface, and all with zero knowledge of

MongoDB's query language.

MongoDB Compass is included with both MongoDB

Professional and MongoDB Enterprise Advanced

subscriptions used with your self-managed instances, or

hosted MongoDB Atlas instances. MongoDB Compass is

free to use for evaluation and in development

environments.

FigurFigure 5:e 5: Interactively build and execute database queries
with MongoDB Compass

Querying and Visualizing Data

Unlike NoSQL databases, MongoDB is not limited to

simple Key-Value operations. Developers can build rich

applications using complex queries, aggregations and

secondary indexes that unlock the value in structured,

semi-structured and unstructured data.

A key element of this flexibility is MongoDB's support for

many types of queries. A query may return a document, a

subset of specific fields within the document or complex

aggregations and transformation of many documents:

• KKey-value queriesey-value queries return results based on any field in

the document, often the primary key.

• Range queriesRange queries return results based on values defined

as inequalities (e.g, greater than, less than or equal to,

between).

• Geospatial queriesGeospatial queries return results based on proximity

criteria, intersection and inclusion as specified by a

point, line, circle or polygon.

• SearSearcchh queries return results in relevance order and in

faceted groups, based on text arguments using Boolean

operators (e.g., AND, OR, NOT), and through bucketing,

grouping and counting of query results. With support for

collations, data comparison and sorting order can be

defined for over 100 different languages and locales.

6

http://docs.mongodb.org/manual/data-modeling/
http://docs.mongodb.org/manual/data-modeling/
http://docs.mongodb.org/ecosystem/drivers/
http://docs.mongodb.org/getting-started/shell/client/
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/cloud

• AggrAggregation Fegation Frameworkramework queries return aggregations

and transformations of values returned by the query

(e.g., count, min, max, average, similar to a SQL GROUP

BY statement).

• JOIJOINs and graph traversals.Ns and graph traversals. Through the $lookup

stage of the aggregation pipeline, documents from

separate collections can be combined through a left

outer JOIN operation. $graphLookup brings native

graph processing within MongoDB, enabling efficient

traversals across trees, graphs and hierarchical data to

uncover patterns and surface previously unidentified

connections.

• MapReduce queriesMapReduce queries execute complex data processing

that is expressed in JavaScript and executed across

data in the database.

Additionally the MongoDB Connector for Apache Spark

exposes Spark’s Scala, Java, Python, and R libraries.

MongoDB data is materialized as DataFrames and

Datasets for analysis through machine learning, graph,

streaming, and SQL APIs.

Data Visualization with BI Tools

With the MongoDB Connector for BI included in MongoDB

Enterprise Advanced, modern application data can be

easily analyzed with industry-standard SQL-based BI and

analytics platforms. Business analysts and data scientists

can seamlessly analyze semi and unstructured data

managed in MongoDB, alongside traditional data in their

SQL databases using the same BI tools deployed within

millions of enterprises.

Indexing

Indexes are a crucial mechanism for optimizing system

performance and scalability while providing flexible access

to the data. Like most database management systems,

while indexes will improve the performance of some

operations by orders of magnitude, they incur associated

overhead in write operations, disk usage, and memory

consumption. By default, the WiredTiger storage engine

compresses indexes in RAM, freeing up more of the

working set for documents.

MongoDB includes support for many types of secondary

indexes that can be declared on any field in the document,

including fields within arrays:

• Unique IndexesUnique Indexes. By specifying an index as unique,

MongoDB will reject inserts of new documents or the

update of a document with an existing value for the field

for which the unique index has been created. By default

all indexes are not set as unique. If a compound index is

specified as unique, the combination of values must be

unique.

• Compound Indexes.Compound Indexes. It can be useful to create

compound indexes for queries that specify multiple

predicates For example, consider an application that

stores data about customers. The application may need

to find customers based on last name, first name, and

city of residence. With a compound index on last name,

first name, and city of residence, queries could

efficiently locate people with all three of these values

specified. An additional benefit of a compound index is

that any leading field within the index can be used, so

fewer indexes on single fields may be necessary: this

compound index would also optimize queries looking for

customers by last name.

• Array Indexes.Array Indexes. For fields that contain an array, each

array value is stored as a separate index entry. For

example, documents that describe products might

include a field for components. If there is an index on

the component field, each component is indexed and

queries on the component field can be optimized by this

index. There is no special syntax required for creating

array indexes – if the field contains an array, it will be

indexed as a array index.

• TTTL Indexes.TL Indexes. In some cases data should expire out of

the system automatically. Time to Live (TTL) indexes

allow the user to specify a period of time after which the

data will automatically be deleted from the database. A

common use of TTL indexes is applications that

maintain a rolling window of history (e.g., most recent

100 days) for user actions such as clickstreams.

• Geospatial Indexes.Geospatial Indexes. MongoDB provides geospatial

indexes to optimize queries related to location within a

two dimensional space, such as projection systems for

the earth. These indexes allow MongoDB to optimize

queries for documents that contain points or a polygon

7

https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/products/bi-connector

that are closest to a given point or line; that are within a

circle, rectangle, or polygon; or that intersect with a

circle, rectangle, or polygon.

• Partial Indexes.Partial Indexes. By specifying a filtering expression

during index creation, a user can instruct MongoDB to

include only documents that meet the desired

conditions, for example by only indexing active

customers. Partial indexes balance delivering low

latency query performance while reducing system

overhead.

• Sparse Indexes.Sparse Indexes. Sparse indexes only contain entries

for documents that contain the specified field. Because

the document data model of MongoDB allows for

flexibility in the data model from document to document,

it is common for some fields to be present only in a

subset of all documents. Sparse indexes allow for

smaller, more efficient indexes when fields are not

present in all documents.

• TText Searext Searcch Indexes.h Indexes. MongoDB provides a specialized

index for text search that uses advanced,

language-specific linguistic rules for stemming,

tokenization, case sensitivity and stop words. Queries

that use the text search index will return documents in

relevance order. One or more fields can be included in

the text index.

Query Optimization

MongoDB automatically optimizes queries to make

evaluation as efficient as possible. Evaluation normally

includes selecting data based on predicates, and sorting

data based on the sort criteria provided. The query

optimizer selects the best index to use by periodically

running alternate query plans and selecting the index with

the best response time for each query type. The results of

this empirical test are stored as a cached query plan and

are updated periodically. Developers can review and

optimize plans using the powerful explain method and

index filters. Using MongoDB Compass, DBAs can

visualize index coverage, enabling them to determine which

specific fields are indexed, their type, size, and how often

they are used. Compass also provides the ability to

visualize explain plans, presenting key information on how

a query performed – for example the number of documents

returned, execution time, index usage, and more. Each

stage of the execution pipeline is represented as a node in

a tree, making it simple to view explain plans from queries

distributed across multiple nodes.

Index intersection provides additional flexibility by enabling

MongoDB to use more than one index to optimize an

ad-hoc query at run-time.

Covered Queries

Queries that return results containing only indexed fields

are called covered queries. These results can be returned

without reading from the source documents. With the

appropriate indexes, workloads can be optimized to use

predominantly covered queries.

MongoDB Data Management

Auto-Sharding

MongoDB provides horizontal scale-out for databases on

low cost, commodity hardware or cloud infrastructure using

a technique called sharding, which is transparent to

applications. Sharding distributes data across multiple

physical partitions called shards. Sharding allows

MongoDB deployments to address the hardware

limitations of a single server, such as bottlenecks in RAM

or disk I/O, without adding complexity to the application.

MongoDB automatically balances the data in the sharded

cluster as the data grows or the size of the cluster

increases or decreases.

Unlike relational databases, sharding is automatic and built

into the database. Developers don't face the complexity of

building sharding logic into their application code, which

then needs to be updated as shards are migrated.

Operations teams don't need to deploy additional

clustering software or expensive shared-disk infrastructure

to manage process and data distribution or failure recovery.

FigurFigure 6:e 6: Automatic sharding provides horizontal scalability
in MongoDB.

8

https://docs.mongodb.org/manual/core/sharding-introduction/

Unlike other distributed databases, multiple sharding

policies are available that enable developers and

administrators to distribute data across a cluster according

to query patterns or data locality. As a result, MongoDB

delivers much higher scalability across a diverse set of

workloads:

• Range SharRange Sharding.ding. Documents are partitioned across

shards according to the shard key value. Documents

with shard key values close to one another are likely to

be co-located on the same shard. This approach is well

suited for applications that need to optimize range

based queries.

• Hash SharHash Sharding.ding. Documents are distributed according

to an MD5 hash of the shard key value. This approach

guarantees a uniform distribution of writes across

shards, but is less optimal for range-based queries.

• Zone SharZone Sharding.ding. Provides the the ability for DBAs and

operations teams to define specific rules governing data

placement in a sharded cluster. Zones accommodate a

range of deployment scenarios – for example locating

data by geographic region, by hardware configuration

for tiered storage architectures, or by application

feature. Administrators can continuously refine data

placement rules by modifying shard key ranges, and

MongoDB will automatically migrate the data to its new

zone.

Tens of thousands of organizations use MongoDB to build

high-performance systems at scale. You can read more

about them on the MongoDB scaling page.

Query Router

Sharding is transparent to applications; whether there is

one or one hundred shards, the application code for

querying MongoDB is the same. Applications issue queries

to a query router that dispatches the query to the

appropriate shards.

For key-value queries that are based on the shard key, the

query router will dispatch the query to the shard that

manages the document with the requested key. When

using range-based sharding, queries that specify ranges on

the shard key are only dispatched to shards that contain

documents with values within the range. For queries that

don’t use the shard key, the query router will broadcast the

query to all shards, aggregating and sorting the results as

appropriate. Multiple query routers can be used with a

MongoDB system, and the appropriate number is

determined based on performance and availability

requirements of the application.

FigurFigure 7:e 7: Sharding is transparent to applications.

Consistency

Transaction Model & Configurable Write
Availability

MongoDB is ACID compliant at the document level. One or

more fields may be written in a single operation, including

updates to multiple sub-documents and elements of an

array. The ACID guarantees provided by MongoDB ensures

complete isolation as a document is updated; any errors

cause the operation to roll back and clients receive a

consistent view of the document.

MongoDB also allows users to specify write availability in

the system using an option called the write concern. The

default write concern acknowledges writes from the

application, allowing the client to catch network exceptions

and duplicate key errors. Developers can use MongoDB's

Write Concerns to configure operations to commit to the

application only after specific policies have been fulfilled –

for example only after the operation has been flushed to

the journal on disk. This is the same mode used by many

traditional relational databases to provide durability

guarantees. As a distributed system, MongoDB presents

additional flexibility in enabling users to achieve their

desired durability goals, such as writing to at least two

replicas in one data center and one replica in a second

data center. Each query can specify the appropriate write

concern, ranging from unacknowledged to

9

http://www.mongodb.com/mongodb-scale

acknowledgement that writes have been committed to all

replicas.

Availability

Replication

MongoDB maintains multiple copies of data called replica

sets using native replication. A replica set is a fully

self-healing shard that helps prevent database downtime

and can be used to scale read operations. Replica failover

is fully automated, eliminating the need for administrators

to intervene manually.

A replica set consists of multiple replicas. At any given time

one member acts as the primary replica set member and

the other members act as secondary replica set members.

MongoDB is strongly consistent by default: reads and

writes are issued to a primary copy of the data. If the

primary member fails for any reason (e.g., hardware failure,

network partition) one of the secondary members is

automatically elected to primary, typically within several

seconds. As discussed below, sophisticated rules govern

which secondary replicas are evaluated for promotion to

the primary member.

FigurFigure 8:e 8: Self-Healing MongoDB Replica Sets for High
Availability

The number of replicas in a MongoDB replica set is

configurable: a larger number of replicas provides

increased data durability and protection against database

downtime (e.g., in case of multiple machine failures, rack

failures, data center failures, or network partitions). Up to

50 members can be provisioned per replica set.

Enabling tunable consistency, applications can optionally

read from secondary replicas, where data is eventually

consistent by default. Reads from secondaries can be

useful in scenarios where it is acceptable for data to be

slightly out of date, such as some reporting and analytical

applications. Administrators can control which secondary

members service a query, based on a consistency window

defined in the driver. For data-center aware reads,

applications can also read from the closest copy of the

data as measured by ping distance to reduce the effects of

geographic latency . For more on reading from secondaries

see the entry on Read Preference.

Replica sets also provide operational flexibility by providing

a way to upgrade hardware and software without requiring

10

http://docs.mongodb.org/manual/replication/
http://docs.mongodb.org/manual/core/read-preference/

the database to be taken offline. This is an important

feature as these types of operations can account for as

much as one third of all downtime in traditional systems.

Replica Set Oplog

Operations that modify a database on the primary replica

set member are replicated to the secondary members

using the oplog (operations log). The oplog contains an

ordered set of idempotent operations that are replayed on

the secondaries. The size of the oplog is configurable and

by default is 5% of the available free disk space. For most

applications, this size represents many hours of operations

and defines the recovery window for a secondary, should

this replica go offline for some period of time and need to

catch up to the primary when it recovers.

If a secondary replica set member is down for a period

longer than is maintained by the oplog, it must be

recovered from the primary replica using a process called

initial synchronization. During this process all databases

with their collections and indexes are copied from the

primary or another replica to the secondary. Initial

synchronization is also performed when adding a new

member to a replica set, or migrating between MongoDB

storage engines. For more information see the page on

Replica Set Data Synchronization.

Elections And Failover

Replica sets reduce operational overhead and improve

system availability. If the primary replica for a shard fails,

secondary replicas together determine which replica

should be elected as the new primary using an extended

implementation of the Raft consensus algorithm. Once the

election process has determined the new primary, the

secondary members automatically start replicating from it.

If the original primary comes back online, it will recognize

it’s change in state and automatically assume the role of a

secondary.

Election Priority

Sophisticated algorithms control the replica set election

process, ensuring only the most suitable secondary

member is promoted to primary, and reducing the risk of

unnecessary failovers (also known as "false positives"). In a

typical deployment, a new primary replica set member is

promoted within several seconds of the original primary

failing. During this time, queries configured with the

appropriate read preference can continue to be serviced by

secondary replica set members. The election algorithms

evaluate a range of parameters including analysis of

election identifiers and timestamps to identify those replica

set members that have applied the most recent updates

from the primary; heartbeat and connectivity status; and

user-defined priorities assigned to replica set members. In

an election, the replica set elects an eligible member with

the highest priority value as primary. By default, all

members have a priority of 1 and have an equal chance of

becoming primary; however, it is possible to set priority

values that affect the likelihood of a replica becoming

primary.

In some deployments, there may be operational

requirements that can be addressed with election priorities.

For instance, all replicas located in a secondary data center

could be configured with a priority so that one of them

would only become primary if the main data center fails.

Performance & Compression

In-Memory Performance With On-Disk
Capacity

With the In-Memory storage engine, MongoDB users can

realize the performance advantages of in-memory

computing for operational and real-time analytics

workloads. The In-Memory storage engine delivers the

extreme throughput and predictable latency demanded by

the most performance-intensive applications in AdTech,

finance, telecoms, IoT, eCommerce and more, eliminating

the need for separate caching layers.

MongoDB replica sets allow for hybrid in-memory and

on-disk database deployments. Data managed by the

In-Memory engine can be processed and analyzed in real

time, before being automatically replicated to MongoDB

instances configured with the persistent disk-based

WiredTiger storage engine. Lengthy ETL cycles typical

when moving data between different databases is avoided,

11

http://docs.mongodb.org/manual/core/replica-set-sync/

and users no longer have to trade away the scalable

capacity or durability guarantees offered by disk storage.

Storage & Network Efficiency with
Compression

The WiredTiger and Encrypted storage engines support

native compression, reducing physical storage footprint by

as much as 80%. In addition to reduced storage space,

compression enables much higher storage I/O scalability

as fewer bits are read from disk.

Administrators have the flexibility to configure specific

compression algorithms for collections, indexes and the

journal, choosing between:

• Snappy (the default library for documents and the

journal), provides the optimum balance between high

document compression ratio – typically around 70%,

dependent on data types – with low CPU overhead.

• zlib, providing higher document compression ratios for

storage-intensive applications at the expense of extra

CPU overhead.

• Prefix compression for indexes reducing the in-memory

footprint of index storage by around 50%, freeing up

more of the working set in RAM for frequently accessed

documents. As with snappy, the actual compression

ratio will be dependent on workload.

Administrators can modify the default compression

settings for all collections and indexes. Compression is also

configurable on a per-collection and per-index basis during

collection and index creation.

As a distributed database, MongoDB relies on efficient

network transport during query routing and inter-node

replication. In addition to storage, MongoDB also offers

intra-cluster network compression. Based on the snappy

compression algorithm, network traffic can be compressed

by up to 70%, providing major performance benefits in

bandwidth-constrained environments, and reducing

networking costs.

Security

The frequency and severity of data breaches continues to

escalate. Industry analysts predict cybercrime will cost the

global economy $6 trillion annually by 2021. Organizations

face an onslaught of new threat classes and threat actors

with phishing, ransomware and intellectual property theft

growing more than 50% year on year, and key

infrastructure subject to increased disruption. With

databases storing an organization’s most important

information assets, securing them is top of mind for

administrators.

MongoDB Enterprise Advanced features extensive

capabilities to defend, detect, and control access to data:

• AuthenticAuthentication.ation. Simplifying access control to the

database, MongoDB offers integration with external

security mechanisms including LDAP, Windows Active

Directory, Kerberos, and x.509 certificates.

• Authorization.Authorization. User-defined roles enable

administrators to configure granular permissions for a

user or an application based on the privileges they need

to do their job. These can be defined in MongoDB, or

centrally within an LDAP server. Additionally,

administrators can define views that expose only a

subset of data from an underlying collection, i.e. a view

that filters or masks specific fields, such as Personally

Identifiable Information (PII) from customer data or

health records.

• Auditing.Auditing. For regulatory compliance, security

administrators can use MongoDB's native audit log to

track any operation taken against the database –

whether DML, DCL or DDL.

• Encryption.Encryption. MongoDB data can be encrypted on the

network, on disk and in backups. With the Encrypted

storage engine, protection of data at-rest is an integral

feature within the database. By natively encrypting

database files on disk, administrators eliminate both the

management and performance overhead of external

encryption mechanisms. Only those staff who have the

appropriate database authorization credentials can

access the encrypted data, providing additional levels of

defence.

12

To learn more, download the MongoDB Security Reference

Architecture Whitepaper.

Managing MongoDB -
Provisioning, Monitoring and
Disaster Recovery

Created by the engineers who develop the database,

MongoDB Ops Manager is the simplest way to run

MongoDB in your own environment, making it easy for

operations teams to deploy, monitor, backup and scale

MongoDB. The capabilities of Ops Manager are also

available in the MongoDB Cloud Manager tool hosted in

the cloud. Organizations who run with MongoDB Enterprise

Advanced can choose between Ops Manager and Cloud

Manager for their deployments.

Ops Manager incorporates best practices to help keep

managed databases healthy and optimized. They ensures

operational continuity by converting complex manual tasks

into reliable, automated procedures with the click of a

button.

• Deployment.Deployment. Any topology, at any scale;

• Upgrade.Upgrade. In minutes, with no downtime;

• ScScale.ale. Add capacity, without taking the application

offline;

• VVisualize.isualize. Graphically display query performance to

identify and fix slow running operations;

• PPoint-in-time, Scoint-in-time, Scheduled Bacheduled Backups.kups. Restore

complete running clusters to any point in time with just

a few clicks, because disasters aren't predictable

• PPerformance Alerts.erformance Alerts. Monitor 100+ system metrics

and get custom alerts before the system degrades.

Deployments and Upgrades

Ops Manager coordinates critical operational tasks across

the servers in a MongoDB system. It communicates with

the infrastructure through agents installed on each server.

The servers can reside in the public cloud or a private data

center. Ops Manager reliably orchestrates the tasks that

administrators have traditionally performed manually –

deploying a new cluster, upgrades, creating point in time

backups, and many other operational activities.

Ops Manager is designed to adapt to problems as they

arise by continuously assessing state and making

adjustments as needed. Using a sophisticated rules engine,

agents adjust their individual plans as conditions change. In

the face of many failure scenarios – such as server failures

and network partitions – agents will revise their plans to

reach a safe state.

In addition to initial deployment, Ops Manager makes it

possible to dynamically resize capacity by adding shards

and replica set members. Other maintenance tasks such as

upgrading MongoDB, building new indexes across replica

sets or resizing the oplog can be reduced from dozens or

hundreds of manual steps to the click of a button, all with

zero downtime.

Administrators can use the Ops Manager interface directly,

or invoke the Ops Manager RESTful API from existing

enterprise tools.

Monitoring

High-performance distributed systems benefit from

comprehensive monitoring. Ops Manager and Cloud

Manager have been developed to give administrators the

insights needed to ensure smooth operations and a great

experience for end users.

Featuring charts, custom dashboards, and automated

alerting, Ops Manager tracks 100+ key database and

systems health metrics including operations counters,

memory and CPU utilization, replication status, open

connections, queues and any node status.

The metrics are securely reported to Ops Manager where

they are processed, aggregated, alerted and visualized in a

browser, letting administrators easily determine the health

of MongoDB in real-time. Historic performance can be

reviewed in order to create operational baselines and to

support capacity planning. The Visual Query Profiler

provides a quick and convenient way for DBAs to analyze

the performance of specific queries or query families. It can

also provide recommendations on the addition of indexes

that would improve performance of common operations.

13

https://www.mongodb.com/collateral/mongodb-security-architecture
https://www.mongodb.com/collateral/mongodb-security-architecture
https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/products/cloud-manager

FigurFigure 9:e 9: Ops Manager self-service portal: simple, intuitive and powerful. Deploy and upgrade entire clusters with a single
click.

Integration with existing monitoring tools is also

straightforward via the Ops Manager and Cloud Manager

RESTful API, and with packaged integrations to leading

Application Performance Management (APM) platforms

such as New Relic. This integration allows MongoDB

status to be consolidated and monitored alongside the rest

FigurFigure 1e 10:0: Ops Manager provides real time & historic
visibility into the MongoDB deployment.

of your application infrastructure, all from a single pane of

glass.

Ops Manager allows administrators to set custom alerts

when key metrics are out of range. Alerts can be

configured for a range of parameters affecting individual

hosts, replica sets, agents and backup. Alerts can be sent

via SMS and email or integrated into existing incident

management systems such as PagerDuty, Slack, HipChat

and others to proactively warn of potential issues, before

they escalate to costly outages.

If using Cloud Manager, access to real-time monitoring

data can also be shared with MongoDB support engineers,

providing fast issue resolution by eliminating the need to

ship logs between different teams.

Disaster Recovery: Backups &
Point-in-Time Recovery

A backup and recovery strategy is necessary to protect

your mission-critical data against catastrophic failure, such

14

as a fire or flood in a data center, or human error, such as

code errors or accidentally dropping collections. With a

backup and recovery strategy in place, administrators can

restore business operations without data loss, and the

organization can meet regulatory and compliance

requirements. Taking regular backups offers other

advantages, as well. The backups can be used to create

new environments for development, staging, or QA without

impacting production.

Ops Manager and Cloud Manager backups are maintained

continuously, just a few seconds behind the operational

system. Because Ops Manager only reads the oplog, the

ongoing performance impact is minimal – similar to that of

adding an additional replica to a replica set. If the

MongoDB cluster experiences a failure, the most recent

backup is only moments behind, minimizing exposure to

data loss. Ops Manager and Cloud Manager offer

point-in-time backup of replica sets and cluster-wide

snapshots of sharded clusters. You can restore to precisely

the moment you need, quickly and safely.

Automation-driven restores allows fully a configured

cluster to be re-deployed directly from the database

snapshots in a just few clicks.

By using MongoDB Enterprise Advanced you can deploy

Ops Manager to control backups in your local data center,

or use the Cloud Manager service which offers a fully

managed backup solution with a pay-as-you-go model.

Dedicated MongoDB engineers monitor user backups on a

24x365 basis, alerting operations teams if problems arise.

SNMP: Integrating MongoDB with
External Monitoring Solutions

In addition to Ops Manager and Cloud Manager, MongoDB

Enterprise Advanced can report system information to

SNMP traps, supporting centralized data collection and

aggregation via external monitoring solutions. Review the

documentation to learn more about SNMP integration.

MongoDB Atlas: Database as a
Service For MongoDB

MongoDB Atlas provides all of the features of MongoDB,

without the operational heavy lifting required for any new

application. MongoDB Atlas is available on-demand

through a pay-as-you-go model and billed on an hourly

basis, letting you focus on what you do best.

It’s easy to get started – use a simple GUI to select the

instance size, region, and features you need. MongoDB

Atlas provides:

• Security features to protect access to your data

• Built in replication for always-on availability, tolerating

complete data center failure

• Backups and point in time recovery to protect against

data corruption

• Fine-grained monitoring to let you know when to scale.

Additional instances can be provisioned with the push

of a button

• Automated patching and one-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• A choice of cloud providers, regions, and billing options

MongoDB Atlas is versatile. It’s great for everything from a

quick Proof of Concept, to test/QA environments, to

complete production clusters. If you decide you want to

bring operations back under your control, it is easy to move

your databases onto your own infrastructure and manage

them using MongoDB Ops Manager or MongoDB Cloud

Manager. The user experience across MongoDB Atlas,

Cloud Manager, and Ops Manager is consistent, ensuring

that disruption is minimal if you decide to migrate to your

own infrastructure.

MongoDB Atlas is automated, it’s easy, and it’s from the

creators of MongoDB. Learn more and take it for a spin.

Conclusion

MongoDB is the database for today's applications:

innovative, fast time-to-market, globally scalable, reliable,

15

http://docs.mongodb.org/manual/tutorial/monitor-with-snmp/
http://docs.mongodb.org/manual/tutorial/monitor-with-snmp/
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud

and inexpensive to operate. In this guide we have explored

the fundamental concepts and assumptions that underly

the architecture of MongoDB. Other guides on topics such

as Operations Best Practices can be found at

mongodb.com.

We Can Help

We are the MongoDB experts. Over 2,000 organizations

rely on our commercial products, including startups and

more than 50% of the Fortune 100. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It’s a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Professional helps you manage your

deployment and keep it running smoothly. It includes

support from MongoDB engineers, as well as access to

MongoDB Cloud Manager.

Development Support helps you get up and running quickly.

It gives you a complete package of software and services

for the early stages of your project.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you’re a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

New York • Palo Alto • Washington, D.C. • London • Dublin • Barcelona • Sydney • Tel Aviv
US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2016 MongoDB, Inc. All rights reserved.

16

http://www.mongodb.com/white-papers
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/mongodb-professional
https://www.mongodb.com/products/development-support
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud

	Table of Contents
	Introduction1
	How we Build & Run Modern Apps1
	The Nexus Architecture2
	MongoDB Multimodel Architecture3
	MongoDB Data Model4
	MongoDB Query Model6
	MongoDB Data Management8
	Consistency & Durability9
	Availability10
	Performance & Compression12
	Security12
	Operational Management13
	MongoDB Atlas15
	Conclusion15
	We Can Help16
	Resources16
	Introduction
	How We Build & Run Modern Applications
	The Nexus Architecture
	MongoDB Multimodel Architecture
	Flexible Storage Architecture

	MongoDB Data Model
	Data As Documents
	Dynamic Schema without Compromising Data Governance
	Document Validation

	Schema Design

	MongoDB Query Model
	Idiomatic Drivers
	Interacting with the Database
	Querying and Visualizing Data
	Data Visualization with BI Tools

	Indexing
	Query Optimization
	Covered Queries

	MongoDB Data Management
	Auto-Sharding
	Query Router

	Consistency
	Transaction Model & Configurable Write Availability

	Availability
	Replication
	Replica Set Oplog
	Elections And Failover
	Election Priority

	Performance & Compression
	In-Memory Performance With On-Disk Capacity
	Storage & Network Efficiency with Compression

	Security
	Managing MongoDB - Provisioning, Monitoring and Disaster Recovery
	Deployments and Upgrades
	Monitoring
	Disaster Recovery: Backups & Point-in-Time Recovery
	SNMP: Integrating MongoDB with External Monitoring Solutions

	MongoDB Atlas: Database as a Service For MongoDB
	Conclusion
	We Can Help
	Resources

