
MultiDIC

Instruction Manual

Version 1.0.0

 April 22, 2018

Dana Solav (danask@mit.edu)

Massachusetts Institute of Technology

mailto:danask@mit.edu

Table of Contents
1. Installation .. 3

1.1 Installation Requirements .. 3

1.1.1 Operating system requirements ... 3

1.1.2 MATLAB requirements .. 3

2. Preparation ... 3

2.1 Calibration Objects ... 4

2.1.1 Stereo calibration object ... 4

2.1.2 Flat checkerboard .. 5

2.2 File Naming .. 5

2.2.1 Stereo calibration images .. 5

2.2.2 Checkerboard images .. 5

2.2.3 Speckle images .. 5

2.3 Speckling .. 6

3. User Guide .. 7

3.1 Program Flow ... 7

3.2 Projects in MultiDIC ... 7

3.3 Step 0: Calculate Distortion Parameters .. 8

3.4 Step 1: Calculate DLT Parameters (Stereo Calibration) .. 10

3.4.1 Step 1p: Calculate reprojection errors .. 13

3.5 Step 2: 2D-DIC Using Ncorr .. 14

3.5.1 Run STEP2_2DDICusingNcorr .. 14

3.6 Step 3: 3D reconstruction .. 19

4. A Deeper Look into MultiDIC .. 22

4.1 Step 0 ... 22

4.2 Step 1 ... 24

4.3 Step 1p ... 24

4.4 Step 2 ... 25

4.5 Step 3 ... 25

1. Overview
MultiDIC (Multi Digital Image Correlation) is an open-source MATLAB toolbox by Dana Solav. Three-dimensional

(stereo) Digital Image Correlation (3D-DIC) is an important technique for measuring the mechanical behavior of

materials. MultiDIC was developed to allow fast calibration even for a large number of cameras, and be easily

adaptable to different experimental requirements. It integrates the 2D-DIC subset-based software Ncorr with several

camera calibration algorithms to reconstruct 3D surfaces from multiple stereo image pairs. Moreover, it contains

algorithms for merging multiple surfaces, and for computing and plotting displacement, deformation and strain

measures. High-level scripts allow users to perform 3D-DIC analyses with minimal interaction with MATLAB syntax,

while proficient MATLAB users can use stand-alone functions and data-structures to write custom scripts for specific

experimental requirements. Comprehensive documentation, user guide, and sample data are included.

2. Installation
2.1 Installation Requirements
2.1.1 Operating system requirements
MultiDIC was developed on 64-bit Windows 10 and has not yet been tested on other operating systems.

2.1.2 MATLAB requirements
MultiDIC was developed on MATLAB versions R2017a and R2017b, and has not yet been tested on prior versions.

Matlab toolbox requirements:

 Bioinformatics Toolbox

 Image Processing Toolbox

 Statistics and Machine Learning Toolbox

 Computer Vision System Toolbox

MultiDIC includes the 2D-DIC software Ncorr:

http://www.ncorr.com/ and https://github.com/justinblaber/ncorr_2D_matlab

Ncorr requires a MEX (C++) compiler. More details can be found in the Ncorr instruction manual which is also
included in MultiDIC. The following compiler was found to work well for us using 64-bit Windows 10 and MATLAB
version R2017a/b:

https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c++-compiler

MultiDIC also uses functions from GibbonCode, the Geometry and Image-Based Bioengineering add-On:
https://www.gibboncode.org/

All the necessary functions from GibbonCode are already included in MultiDIC, however you are encouraged to check
out what other capabilities GibbonCode has to offer (finite element analysis, meshing tools, image segmentation,
and more).

2.1.3 Installation
After MEX is set up correctly, in Matlab, navigate to the directory where you saved MultiDIC, and type
installMyltiDIC in the MATLAB terminal. This will compile all the necessary files for Ncorr and will save the
Matlab MEX files in the Ncorr folder. It has to be done only the first time.

3. Preparation
The following items are required to complete a 3D-DIC analysis:

https://www.media.mit.edu/people/danask/
https://www.github.com/justinblaber/ncorr_2D_matlab
http://www.ncorr.com/
https://github.com/justinblaber/ncorr_2D_matlab
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c++-compiler
https://www.gibboncode.org/

 A set of stereo calibration images, in which a 3D calibration object is imaged from all the cameras.

 A set of speckle images, in which the speckle test object is imaged by all cameras in a reference (e.g.

undeformed) configuration and optionally also deformed configurations.

 A set of flat checkerboard images, necessary only in case distortion correction is required.

The preparation steps required for each of these steps are described in detailed in the following sections.

3.1 Calibration Objects
3.1.1 Stereo calibration object
Currently, the toolbox and the documentation are designed for a cylindrical or semi-cylindrical calibration object

(see for example Figure 1) with black control points over white background. In order to calibrate a stereo pair of

cameras, both cameras need to view an overlapping region of the calibration target which contains at least 6 control

points in their field of view. However, it is recommended that a much larger number of points is visible, in order to

increase the calibration accuracy. For example, in Figure 1, camera 1 and camera 2, each have 200 points in their

field of view, 120 of them are mutual for both cameras. Any number of stereo pairs can be positioned around the

cylinder, as long as each pair has a valid field of view. It is not required to use the entire 360° around the cylinder, a

cylindrical calibration object can be used also for reconstructing only certain portions of the space.

This points on the calibration object are arranged in 𝑁𝑟 rows and 𝑁𝑐 columns. It is recommended to include the

column number above/below each column (See Figure 1).The dots can be square, circular, or any other shape, as

long as their centroid coordinates are known with sufficient accuracy. A MAT file has to be created, containing a

𝑁𝑟 − 𝑏𝑦 − 𝑁𝑐 − 𝑏𝑦 − 3 array of the 3D world coordinates of the calibration target arranged by

[𝑟𝑜𝑤𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠, 𝑥𝑦𝑧], where 𝑧 is the vertical coordinate, the rows are arranged from bottom to top (increasing 𝑧

value) and the columns arranged counter-clockwise, such that the column number increases from left to right on

the image. An example for such file can be found in the sample data.

Figure 1. Calibration object prepared by applying a sticker paper with a printed dot pattern on an aluminum cylinder.

3.1.2 Flat checkerboard
This is only necessary if you wish to include distortion correction.

Print an asymmetric checkerboard image (odd number of rows and even number of columns, for example) with
known square size. You can use the function createCheckerBoardImage. Attach the image on a flat surface (as
perfectly flat as possible, a simple solution is printing on a sticker paper and sticking it on a glass picture frame). See
for example Figure 2.

Take a few dozen (at least 20, preferably closer to 50) images with the checkerboard positioned in different distances
from the camera and tilted different angles, covering the entire field of view of the camera. Delete images where
the board is cut (not entirely visible in the image), blurry/unfocused images, etc. It is not mandatory to do so, as the
function calculateCBcalibrationParameters will automatically discard those images, but it will take more
time to run.

Figure 2. Example images of a checkerboard calibration target.

3.2 File Naming
3.2.1 Stereo calibration images
Name each image with a name ending with the camera number after an underscore. For example:
calibrationImage_01.jpg, IM_35.gif, Cam_0001, etc.

3.2.2 Checkerboard images
Save the images taken by each camera in a separate folder. The folder name must end with the camera number after
an underscore or just be the camera number (for example “Cam_02” or “C_2” or “02”, but not “cam2”). The image
names don’t matter.

3.2.3 Speckle images
Save the images in a folder named with the camera number at the end (after an underscore, or just a number, for
example “cam_02”, “camera_7”, “007” or “9” but not “cam05”). The camera numbers must match those of the
calibration steps. Inside each folder, the images should be named with the time frame after an underscore, in a way
that will determine their order (For example cam01image_001, cam01image_002… or im_01, im_03…). Image

number 1 is always considered as the reference image. The rest of the images will be ordered according to their
numbers but they do not have to be consecutive.

3.3 Speckling

As a rule of thumb, speckles should be at least 3-5 pixels in size, have good contrast, equal size black and white areas,

and no directionality (random pattern) [1]. Various methods for applying the speckles onto the surface exist, such

as spray painting, stamping, printing, airbrushing, etc. A recent review on speckle pattern fabrication can assist you

to select a preferable method, according to your application [2].

3.4 Viewing and saving 3D figures

This toolbox uses GibbonCode’s functions for plotting 3D points and meshes. It adds the vcw (View Control Widget)

which allows users to better manipulate a view in 3D. Click the button or type v to activate it. If you re-open an

existing figure, and the widget doesn’t appear, type vcw in the command window to enable it. The widget allows

the user to rotate, pan and zoom a figure using key presses and mouse gestures (right mouse button for zoom, left

for panning, and middle/scroll for zooming. press i to show help information:

Figure 3. View Control Widget input options

Moreover, clicking the links to the export_fig function where users can specify file names, formats, and more.

For more details: http://www.mathworks.com/matlabcentral/fileexchange/23629-export-fig.

Furthermore, in the animated figures, another set of widgets will appear on the window: . Use these

buttons to play or scroll through the plots, change playing speed or cycle, and export animated .gif files.

http://www.gibboncode.org/
http://www.mathworks.com/matlabcentral/fileexchange/23629-export-fig

4. User Guide
4.1 Program Flow

The work flow of MultiDIC is composed of 5 steps, each of them is executed using a main script. STEP0 is optional,
and is only necessary in cases where the cameras’ lens distortion is not negligible. STEP1 and STEP2 are both
necessary, but the order in which they are performed is not important. STEP2 involves matching 2D points from
stereo speckle image pairs while the imaged object is moving and/or deforming. STEP1 involves finding the
calibration parameters for transforming these pairs of corresponding 2D image points into 3D world points. These
parameters are calculated by analyzing stereo images of a 3D calibration object. STEP 1 can be done before or after
the speckled object images are analyzed, and the calibration results from STEP1 can be used for more than one
dynamic analysis, as long as all the optical settings are identical. Next, STEP3 uses the results from STEP1 (stereo
calibration parameters for each camera) and of STEP2 (corresponding speckle image points), and optionally also
STEP 0 (distortion parameters for each camera), and calculates the resultant 3D points for each pair of cameras. In
addition, in STEP3 a triangular mesh is calculated, as well as the displacements, deformations, strains, and rigid-body
motion of the object. The work flow is illustrated in Figure 4.The user guide in this sections provides all the necessary
instructions for running the scripts, without interacting with the codes themselves and with MATLAB syntax. For a
deeper look into the codes, and ways to modify refer to Section 5.

Figure 4. software workflow

4.2 Projects in MultiDIC

When you perform a complete 3D-DIC analysis, the output files are stored and can be used multiple times. For

example, once calibration parameters are calculated and saved, they can be used in multiple analyses of speckle

images, as long as the cameras were not moved. Moreover, once distortion parameter calculation was performed,

they can be used for multiple tests, as long as the cameras’ intrinsics have not been changed.

4.3 Step 0: Calculate Distortion Parameters

STEP0_CalcDistortionParameters is the main script to calculate the distortion parameters of the cameras.
The script uses camera calibration functions from Matlab Computer Vision System Toolbox [3], which is based on
the works of Zhang [4], Heikkila and Silven [5], Bouguet [6], and Bradski and Kaehler [7].

The script perform the following main steps:

1. Estimate camera parameters from multiple checkerboard images.
2. Use these parameters to correct for image distortion.
3. Plot the camera parameters and reprojection errors, before and after the correction.

The distortion parameters found in this step can be used to correct the distortion on all the images taken by the
same camera, as long as the intrinsic parameters are left unchanged (the camera can be moved but the focus should
not be changed). Specifically, these parameters are used in STEP1p and in STEP3, to correct the distortion on the
points found on the calibration and speckle images, respectively.

This step is optional, and can be skipped if no distortion correction is required. If you are not sure whether or not
you need distortion correction, you can run this step and assess the distortion parameters. If they are adequately
small, you can choose to skip the distortion correction in STEP1p and STEP3. Alternatively, you can first assess the
reprojection errors obtained in STEP1p without distortion correction, and if they are sufficiently small, STEP0 can be
skipped.

Run STEP0_CalcDistortionParameters

1. Select whether this is a new analysis or a repeated one. Repeated analysis means you already ran the analysis

for these cameras with the same images, but you want to repeat with a different distortion model. This option

is faster than running a new analysis, because the checkerboard corner points need not by detected again.

2. Select one or multiple folders containing checkerboard images (one folder per camera).

3. Select whether or not to save the results. If ‘Yes’, select a folder for the results to be saved in.

4. Select whether or not to save the undistorted images.

5. Select the checkerboard parameters: number of rows, number of columns, and square size. Warning: the
function detectCheckerboardPoints might cause this code to be slow if the number of images is very large.

6. Select the distortion model: number of coefficients for radial distortion (2 or 3), tangential distortion (0 or 1)
and skew (0 or 1). Refer to [3] for details.

Step 0 script outputs

1. For each camera, a MATLAB structure cameraCBparameters is saved under the file name

cameraCBparameters_cam_#, where # is the camera number taken from the folder name.

2. cameraCBparametersAllCams: a Ncam-by-1 cell array, where Ncam is the number of cameras, and each cell

contains a cameraCBparameters structure.

3. The undistorted images, saved in a folder named “undistorted” in the same folder where the images are stored.

4. Figures plotting the calibration results:

 For each camera, a figure showing the intrinsic and extrinsic parameters, and the reprojection errors (the
first tab plots the results before distortion correction and the second tab plots the results after distortion
correction). See for example Figure 5.

 For each camera, a figure showing the reprojected points and the reprojection error statistics on each image
(one figure for the original images and one figure after distortion correction). See for example Figure 6.

 For all cameras together, a figure showing the statistics of the camera intrinsic parameters before and after
distortion correction.

 If the saving option was selected, a folder is created where all the results figures are saved.

Figure 5. Example of the results figure obtained in step 0 for one camera. The figure plots the camera’s intrinsic parameters, a
visualization fo the extrinsic parameters, and the reprojection error distribution of all points and all images, as well as the mean
for each image and the statistics over all images.

Figure 6. An example of the plot showing the detected and reprojected image points and the associated reprojected errors. Scroll
through the tabs to view all images.

4.4 Step 1: Calculate DLT Parameters (Stereo Calibration)

STEP1_CalcDLTparameters is the main script for running as stereo calibration. The script utilizes the DLT method
[9], whereby the closed-form solution of the mapping between 2D image points and 3D world points based on a
distortion-free pin-hole camera model is obtained. It requires images of a non-planar calibration object with control
points whose 3D positions in a global reference system are known with sufficient accuracy.

Run STEP1_CalcDLTparameters

1. Select the images of the 3D calibration target for the current analysis.

2. Select whether or not to save the results. If ‘Yes’, select a folder for the results to be saved in.
3. Select the MAT file containing the true 3D world coordinates of the calibration object.
4. The script will loop over all the selected cameras, and will perform the following steps for each camera:

A. Turn the image to grayscale (if it is RGB).

B. Open a GUI for masking the image, where you need to draw a polygon around the region of interest,
which comprises of the portion of the image containing the calibration control points (Figure 7A). Use
the zoom button in the figure, if necessary. The polygon is drawn by clicking on image points. At the
end it is necessary to close the polygon by clicking again on the first point. After the polygon is closed,
it is possible to move its vertices by dragging them (the cursor will turn to a circle). When the polygon
is correctly completed, double click on it to finish.

C. The masked image will be displayed (Figure 7B), and then the user has to approve it, or select to start
over the masking GUI. When the mask is approved, the user has to enter the column numbers of the
first and last columns inside the region of interest.

D. Based on the mask and the column numbers entered, the number of dots is calculated and the positions
of the centroids of the black dots are calculated and plotted on the image. The user can modify the
gray intensity threshold, by which the black dots are identified, to achieve more accurate centroid
positions (Figure 7C). A higher threshold will increase the size of the regions and carry the risk of them
merging together, and a lower threshold might cause regions to shrink and split or disappear. Usually,
if the lighting conditions and the contrast are adequate on the entire image, the initial guess should be
good. If different regions of the image have significantly different lighting (brightness), there won’t be
one threshold that fits the entire image. This means that you have to improve your experimental setup
to have a more uniform lighting condition. Alternatively, modify the images using Photoshop or a
similar tool (less recommended).

E. After selecting the threshold, the centroids are fixed, and are then sorted by columns counterclockwise
(left to right) and by rows from bottom to top. The sorted points will be displayed on the image, and
then the same procedure will start for the next camera (Figure 7D).

Step 0 script outputs

For each camera, a MAT file named DLTstruct_cam_# is saved, which contains the DLT parameters of camera
number #, as well as the control points and column numbers used for calculation. These files can be then used to
reconstruct the 3D positions of corresponding image points from stereo camera pairs (in STEP1p these are the
calibration object control points and in in STEP3 these are the speckle image points).

Figure 7. The steps of the DLT calibration process. (A) Draw a polygon around the calibration object points. (B) The image is
masked based on the polygon. (C) The centroids are detected based on the detected gray level threshold between the white and
black regions. Here you can change the threshold using the slide bar. (D) The centroids are sorted by rows and columns.

4.4.1 Step 1p: Calculate reprojection errors
In this step, which is optional and not required for completing the analysis, the results from STEP1 are used to
reconstruct the 3D positions of the calibration object control points from corresponding image points of camera
pairs. Then, the reprojection errors are calculated and plotted. This step is used to evaluate the reprojection errors
of the calibration step. Here, different distortion models can be used for distortion correction.

Run STEP1p_DLTreprojection

1. Select DLTstruct files obtained in STEP1 from at least 1 camera pair (at least 2 cameras).
2. Select the indices of the camera pairs (pairs of cameras which have an overlapping region in their field of views).

The format is 2 cameras in each row, e.g. if there are three pairs: (2,3) (3,4), (6,7), then type in [2 3; 3 6; 6 7].
3. Select whether or not to correct for distortion. If ‘Yes’, then select the distortion parameters calculated in STEP0

for the selected cameras.

Outputs of step 1p

1. The 3D reconstructed points and the corresponding reprojection errors are calculated, and saved in a file named
DLTstructPairs.

2. The reprojected points and reprojection errors are plotted for all cameras, and the figures are saved in the
results folder. See Figure 8 for example.

Figure 8. Example of results plot obtained in step 1p. The 3D points of the calibration object were reconstructed using images
from 6 cameras which comprise 5 stereo-pairs. The reprojected points are plotted against the true points (left), and the 3D
reprojection errors are plotted for each pair (center), and their statistics are reported as boxplots (right).

4.5 Step 2: 2D-DIC Using Ncorr

STEP2_2DDICusingNcorr is the main script for analyzing stereo images of the speckled object using 2D-DIC. This
script utilized the open-source software Ncorr [10]. It can be performed either before or after STEP1. This step has
to be performed once for each camera pair, and must be completed before the 3D points and surfaces can be
reconstructed in Step 3. For each camera pair, one camera is considered as the reference camera and the other one
is considered as the deformed camera. It means that images taken by the deformed camera are analyzed as
deformed versions of the images taken by the reference camera.

4.5.1 Run STEP2_2DDICusingNcorr
1. Select the folders of the reference camera and of the deformed camera, containing the speckle images.

2. Select saving and overwriting options.

3. A figure showing the image pairs from both cameras will appear (see Figure 9A). Review the image sets by
clicking on the play button, or by scrolling using the arrows or the bottom bar. This figure is helpful for selecting
the region of interest (ROI). If you clicked the play button, click the stop button and then click enter in MATLAB
command window to continue to the Ncorr analysis.

4. Select a Region of Interest (ROI) option:

o New means drawing a new mask using polygons. Select the number of ROIs. An ROI is defined by
drawing a polygon on the reference image (see Figure 9B). Make sure that the ROI is visible on all the
images (from both cameras). Click on the image to select the first vertex and continue placing new
vertices by clicking on image points. To close the polygon, click on the first vertex. Once the polygon is
closed, vertices can be moved by dragging them (the cursor will turn to a circle when you hover over a
vertex). Also, the entire can be translated by dragging. To finish, double-click on the polygon.

o Saved means you already have a saved mask and you want to use it again. For example, if you ran the
analysis and now you just want to run it again with different options in Ncorr such as subset size or
spacing, etc. In this case, you need to select an ROI for the correct camera pair.

o Ncorr means you will draw the ROI in Ncorr. Ncorr has more options for drawing shapes and cutting
holes in the ROI, but the GUI is smaller and you don’t have the option to scroll through the images to
assist with ROI placement.

Figure 9. (A) Review the stereo image set by clicking play or scrolling. (B) Select the ROI by drawing a polygon (if the New ROI
option selected. (C) The ROI opened in Ncorr.

5. Next, the Ncorr window will appear, where the 2D-DIC analysis is performed. The following steps have to be
completed in this window:

A. If you already set the ROI, the ROI will be displayed (see Figure 9C). Click Finish. If not, draw an ROI in
Ncorr (refer to Ncorr instruction manual for details if necessary).

B. When the ROI is set, the next step is to set the DIC parameters. Select the Analysis tab on the top menu,
then Set DIC parameters. A window will pop up where the Subset radius and Subset spacing can be
selected (see Figure 10). These parameters are visualized on the image on the right. These are some
points to consider when selecting these parameters:

 The subset radius should be large enough to include at least 2-3 speckles along its width and
height, in order to contain enough unique and identifiable features.

 The subset size should be small enough to satisfy the assumption that the deformation is
homogeneous inside the subset.

 The subset spacing determines the distance between data points. Small spacing means the
point grid will be denser. As a result, the analysis will take longer to run, but the shape will be
smoother, and the deformation measures will be more local.

 More information on subset size and spacing selection can be found in [1], [11].

C. Select the desired parameters and click Finish. There is no need to change the other options. A window
showing all the selected parameters will pop up. Click Yes.

Figure 10. Subset radius and Subset spacing selection in Ncorr. Select a subset radius such that the circle contains at least 2-3 well
defined speckles. The green point can be dragged over the ROI to inspect speckles in different regions.

D. Select the Analysis tab, then Perform DIC analysis. A Select region window will pop up. Click on Select
region and then on one of the white regions on the image (if the ROI is composed of only one region,
then you will have only one option).

E. After selecting a region, a Set seeds window will pop up. Click on Set seeds and then click on a point
inside the ROI. Select a point that is clearly visible from both views, and that is not too close to the
edges of the ROI. See Ncorr documentation for more details on optimal seed placement, if necessary.
Click Finish.

F. When processing seeds is finished, a Seed Preview window will pop up (see Figure 11). Scroll through
all the images to make sure that the seed point was detected correctly in all of them. If they look
correct, click Finish. If the correlation coefficient between the subsets around the detected seeds is too
high, an error prompt will appear. This usually means that the seed point was not detected correctly
on at least one of the images. If this is the case, click cancel, move the seed to a better position, and
try again until seed placement is successful.

Figure 11. The seed preview window. Scroll through all current images, and ensure that the seeds were placed correctly by
inspecting their positions on the images (here marked in red circles), and the value of the correlation coefficient (here in red
rectangle). If the seed point is placed in a region which is very deformed due to the angled view, the seed placement might
occasionally be wrong. In this case, place the seed in a better position and try again.

G. When the seeds are properly placed and you click Finish, the DIC analysis will start running, propagating
from the seed points to the rest of the ROIs. When the analysis is done, a message will pop up stating
that DIC analysis completed successfully. Press OK to finish.

H. Click on Analysis once again, and select Format displacements. There is no need to select anything in
this window or change the settings. Just click Finish and then Yes. Since this is a 2D analysis of stereo
images, the displacements here do not have a physical meaning that you can easily inspect. Only after
the 3D reconstruction step, you will be able to see the 3D displacements.

I. At this point the Ncorr analysis is complete. There is no need to run the Calculate strains part. Go back
to MATLAB main window without closing the Ncorr window yet and press enter in the command
window. Then, the results will be imported from Ncorr, and a results structure named
DIC2DpairResults_C_#1_C_#2 will be saved, where #1 is the index of the reference camera and
#2 is the index of the deformed camera.

J. You might get a warning from Ncorr: prior DIC has been detected and will be deleted. You can click Yes,
as all the necessary analysis results for 3D-DIC are saved outside Ncorr.

6. Select if you want to plot the results now. If you select Yes, you will be requested to select if you want to change
the limits of the correlation coefficients for display (leave this blank to use the default limits, which are between
0 and the maximum value of the correlation coefficient found in this analysis. Three animation figures will
appear:

 Figure 1 plotting the reference image on the left and all the current images on the right (from both
views). Corresponded points are displayed on the images with the color depicting the value of the
correlation coefficient (see Figure 12).

 Figure 2 plotting the same as 1, but the images from the two views are plotted on the left and right
subplots separately.

 Figure 3 plotting the same as 3, but instead of points, the triangular faces are plotted, and the face
colors represent the combined (maximal) correlation coefficient of the three vertices.

Note: You can also run the function plotNcorrPairResults separately, after the results are stored. If you run
plotNcorrPairResults without any input, you will be requested to select a DIC2DpairResults structure by
browsing. Otherwise, if the DIC2DpairResults is already in the workspace, you can give it as an input to the
function: plotNcorrPairResults (DIC2DpairResults).

Figure 12. 2D-DIC results on a set of stereo images. Corresponding points are plotted with colors depicting the matching
correlation coefficients. Higher correlation coefficient are obtained in regions where the deformation due to the stereo angle is
higher.

4.6 Step 3: 3D reconstruction

STEP3_3DreconstructionDLT is the main script for transforming pairs of corresponding points from the speckle
images obtained in step 2 into 3D points and surfaces using the DLT parameters obtained in step 1. For each camera

pair, a dynamic 3D surface will be reconstructed, and the associated displacements, deformations, strains, and other
measures are calculated, saved, and plotted.

Here, you can select distortion correction options. If distortion correction is selected, the speckle image points will
be corrected as well as the DLT parameters, based on the distortion parameters selected.

Run STEP3_3DreconstructionDLT

1. Select the following:

A. One or more 2D-DIC results files (DIC2DpairResults) to be reconstructed.

B. The folder where the DLT parameters (DLTstruct_cam_#) for the relevant cameras are stored.

C. Distortion correction options. If distortion correction is required, you will be asked to select the
cameraCBparameters_cam_# of the relevant cameras.

D. Saving options.

2. The following steps are then performed for each camera pair:

A. If distortion correction is required, the 2D points and the DLT parameters are corrected according to the
distortion parameters of each camera. Warning: distortion correction might be time consuming if the
number of points is large.

B. The 3D points are reconstructed using the DLT algorithm.

C. The displacements, deformation, stretches, and strains, are calculated. The results for each pair are saved
in a structure named DIC3DpairResults_C_#R_C_#D, where #R is the index of the first (reference)
camera of the pair, and #D is the index of the second (deformed) camera.

3. When all the pairs are calculated, a cell array containing all result structures for this analysis is saved under the
name DIC3Dall#PairsResults, where # is the number of camera pairs in this analysis.

4. Select whether or not you want to plot the results now. If you select Yes, you will be requested to select which
measures you want to plot. Each measure you selected will be plotted in a separate animation figure, where the
static/dynamic behavior of the measure can be viewed (see Figure 13 for a few examples).

Note: You can also run the function plotMultiDICPairResults independently, after the results are stored. If
you run plotMultiDICPairResults without any input, you will be requested to select the result structures by
browsing. You can select one or multiple DIC3DPairsResults files, or a DIC3DAllPairsResults file already
containing results from multiple pairs. Otherwise, if DIC3DAllPairsResults is already in the MATLAB
workspace, you can give it as an input to the function, like this:

plotMultiDICPairResults(DIC3DAllPairsResults);

Figure 13. Examples of a few plotting options for 3D-DIC results. The figure shows two reconstructed surfaces, reconstructed
from three cameras (two adjacent camera pairs). The triangular faces are plotted with the colors depicting the index of the pair
(left). The vertices are plotted with the colors depicting the combined correlation coefficient (center). The faces are plotted with
the colors depicting the strain magnitude (right). In this example, since the object was rigidly moved, the strain represents the
measurement error of the raw data (without smoothing).

5. A Deeper Look into MultiDIC

This section provides a more detailed description of the codes, and is targeted for users who wish to get a deeper

understanding of it, to modify the codes, or to add new functions or batch scripts.

5.1 Step 0

 The initial parameters that appear in the dialog boxes (e.g. checkerboard parameters and distortion model)

can be changed in the code to appear as the default options.

 Each of the fields of the cameraCBparameters structure is described in the following table:

Field Sub-field Class/size Description

icam integer
The index of the camera (as given by the
user in the name of the folder).

imagesUsed
1-by-N array
integer

A vector containing the indices of the
images used for calibration (images might
be discarded if the checkerboard points
cannot be detected correctly).

boardSize
1-by-2 array
integer

Checkerboard dimensions, as a 2-element
[height, width] vector. The dimensions of
the checkerboard are expressed in terms of
the number of squares. Height must be
uneven and width must be even.

squareSize double Checkerboard square size in [m] units.

imagesInfo Struct

 Nimages integer
The number of checkerboard images
selected for calibration.

 imageFileNames
1-by-Nimages cell array
of chars

The paths for each of the images.

 imageType char

The image file format, indicating the
standard file extension, such as
‘jpg’,’png’,’tif’, etc..

 imageSize 1-by-2 integer
Image size in pixels, specified as [rows,
columns] or [height, width].

imagePoints
Npoints-by-2-by-
Nimages
double

The detected checkerboard corner
coordinates for all images. The second
dimension refers to the [x,y] coordinates

cameraParameters Struct

a structure containing the standard MATLAB
cameraParameters object
(https://www.mathworks.com/help/vision/
ref/cameraparameters.html)

 RadialDistortion
1-by-3 or 1-by-2
double

The radial distortion coefficients [k1, k2] or
[k1, k2, k3], according to the selected
camera model.

 TangentialDistortion
1-by-2
double

The tangential distortion coefficients [p1,
p2].

 Skew double
The camera axes skew, specified as a scalar
representing the angle between the axes.

https://www.mathworks.com/help/vision/ref/cameraparameters.html
https://www.mathworks.com/help/vision/ref/cameraparameters.html

NumRadialDistortionCo
efficients

2 or 3 (double) Number of radial distortion coefficients

 EstimateSkew logical

Estimate skew flag. When set to true, the
object estimates the image axes skew.
When set to false, the image axes are
estimated to be exactly perpendicular.

EstimateTangentialDis
tortion

logical

Estimate tangential distortion flag. When
set to true, the tangential distortion
parameters are estimated. When set
to false, it is assumed that the tangential
distortion is negligible and
TangentialDistortion is set to [0,0].

 PrincipalPoint
1-by-2
double

The optical center [cx,cy] in pixels,
representing the coordinates of the optical
center of the camera.

 FocalLength
1-by-2
double

The focal length in the x and y directions
[fx, fy] in pixel units, where: fx=F*sx and
fy=F*sy. F is the focal length in world units,
typically in millimeters, and [sx, sy] are the
number of pixels per world unit.

 WorldPoints
Npoints-by-2
double

World coordinates of the corner points on
the checkerboard pattern.

 WorldUnits char
World points units, specified as a character
vector (typically ‘mm’).

 Numpatterns integer

Number of calibration patterns (number
checkerboard images) that estimates
camera parameters.

 ReprojectedPoints
Npoints-by-2-by-
Nimages
double

World points reprojected onto the
calibration images.

 ReprojectionErrors
Npoints-by-2-by-
Nimages
double

The difference between the detected and
reprojected points.

 MeanReprojectionError double

The average Euclidean distance between
reprojected and detected points, specified
in pixels.

estimationErrors

The standard errors structure of estimated
camera parameters, returned as a
MATLAB cameraCalibrationErrors object,
(https://www.mathworks.com/help/vision/
ref/cameracalibrationerrors.html). The
estimation errors represent the uncertainty
of each estimated parameter (the standard
error corresponding to each estimated
camera parameter). The returned standard
error 𝜎 (in the same units as the
corresponding parameter) can be used to
calculate confidence intervals. For example
±1.96𝜎 corresponds to the 95% confidence
interval. In other words, the probability that
the actual value of a given parameter is
within 1.96𝜎 of its estimate is 95%.

https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html
https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html
https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html

cameraParametersAUD

Same as cameraParameters, but after the
distortion correction (AUD stands for After
UnDistortion).

estimationErrorsAUD

Same as estimationErrors, but after the
distortion correction (AUD stands for After
UnDistortion).

imagePointsAUD

Same as imagePoints, but after the
distortion correction (AUD stands for After
UnDistortion)..

5.2 Step 1

 Each of the fields of the DLTstructCam structure is described in the following table:

Field Sub-field Class/size Description
indCam integer camera index

DLTparams 11-by-1 double The 11 DLT parameters

columns 1-by-Ncolumns
The indices of the columns of the calibration
object

imageCentroids
Npoints-by-2
double

The centroids image coordinates (pixels)

C3Dtrue
Nrows-by-Ncolumns-
by-3
double

True 3D coordinates of the calibration
object arranged by rows (bottom to top) -
columns (left to right) -xyz

5.3 Step 1p

 Each of the fields of the DLTstructPairs structure is described in the following table:

Field Sub-field Class/size Description

indCams
1-by-Ncams
integer

Array of the camera indices

indPairs
Npairs-by-2
integer

Array of the camera indices of each camera
stereo pair. Each row represents a pair,
where the first column is the reference
camera and the second column is the
deformed column.

DLTparams 1-by-Ncams cell array
In each cell, the DLT parameters 11-by-1
double array.

columns 1-by-Ncams cell array
the indices of the columns of the calibration
object used by each camera

imageCentroids 1-by-Ncams cell array
in each cell the Npoints -by-2 array of the
centroids image coordinates

truePoints
Nrows-by-Ncolumns-
by-3
double

True 3D coordinates of the calibration
object arranged by rows (bottom to top) -
columns (left to right) -xyz

reprojectPoints 1-by-Npairs cell array
In each cell, an Npoints-by-3 array of the 3D
coordinates of the reconstructed points
seen by the pair of cameras.

reprojectErr 1-by-Npairs cell array
In each cell, an Npoints-by-3 array of the 3D
errors (difference vector) between the
reconstructed points and the true points

distortionModel 1-by-Ncams cell array

In each cell, the intrinsic camera parameters
(cameraParameters object) used for
correcting the distortion on the image
points and associated DLT parameters. If no
distortion correction was performed, it is
set to ‘none’.

5.4 Step 2

 Each of the fields of the DIC2DpairResults structure is described in the following table:

Field Sub-field Class/size Description
nCamRef integer index of the reference camera of the pair

nCamDef integer index of the deformed camera of the pair

nImages integer
number of images in the set (time frames,
including the reference)

IMpaths
2*nImages-by-1 cell
array

Each cell contains the paths to one images

ROImask
imageSize1-by-
imageSize2
logical

Matrix the same size as the reference image,
with 1 in the pixels inside the ROI and 0
outside the ROI.

Points
2*nImages-by-1 cell
array

Each cell contains an Npoints-by-2 array of
the correlated points between this image
and the reference image (the points indices
are corresponding between all images.
Points can have NaN values if they could not
be matched in some images).

CorCoeffVec
2*nImages-by-1 cell
array

Each cell contains an Npoints-by-1 array of
the correlation coefficients between the
current image and the reference image (the
points indices are corresponding).

Faces
Nfaces-by-3
integer

Each row represents a triangular face, and
the 3 columns represent the indices of the
vertices of that triangular face.

FaceColors
Nfaces-by-1
Uint8

Each row represents a triangular face, and
the value represent the grayscale intensity
from the reference image, as a mean of the
grayscale intensity of the three pixels where
the three vertices of the triangles are
located.

ncorrInfo struct

handles_ncorr.data_dic.dispinfo
containing ncorr information, such as the
subset radius and subset spacing.

5.5 Step 3

 Each of the fields of the DIC3DpairResults structure is described in the following table:

Field Sub-field Class/size Description

cameraPairInd
1-by-2
integer

The camera indices: [nRef nDef]

Faces
Nfaces-by-3
integer

The vertex indices of all the triangular faces

distortionModel 1-by-2 cell array
The distortion model (camera intrinsic
parameters) used for each of the cameras in
the pair.

FaceColors
Nf-by-1

The greyscale pixel intensities imposed on
the faces (from the reference image)

Points3D Nframes-by-1 cell array

Each cell represents a time frame and
contains Npoints-by-3 array of the 3D
coordinates of all the points.

Disp structure Displacement structure with two fields

 DispVec Nframes-by-1 cell array

Each cell contains an Npoints-by-3 array
representing the displacement vectors from
the reference to the current configuration.

 DispMgn Nframes-by-1 cell array

Each cell contains an Npoints-by-1 array
representing the displacement magnitude
from the reference to the current
configuration.

FaceCentroids Nframes-by-1 cell array
Each cell contains an Nfaces-by-3 array
corresponding to the 3D coordinates of the
centroid of each face.

corrComb Nframes-by-1 cell array

Each cell contains an Npoints-by-1 array
corresponding to the combined correlation
coefficient of each 3D point.

FaceIsoInd struct

Nf-by-1 array corresponding to the isotropy
index of each face in the reference
configuration.

Deform structure

A structure containing all the deformation
parameters, containing the fields below,
each of the fields contains a is a Nframes-by-
1 cell array (one cell for each time frame), so
the specified size refers to what is inside
each cell.

 Fmat
3-by-3-by-Nfaces
double

Deformation gradient tensor

 J
Nfaces-by-1
double

Dilitation (det(F))

 Cmat
3-by-3-by-Nfaces
double

Right Cauchy-Green deformation tensor

 Lamda1
Nfaces-by-1
double

First principal surface stretch (smallest)

 Lamda2
Nfaces-by-1
double

Second principal surface stretch (largest)

 Emat
3-by-3-by-Nfaces
double

Lagrangian strain tensor

 emat
3-by-3-by-Nfaces
double

Almansi strain tensor

 Emgn
Nfaces-by-1
double

Lagrangian strain tensor magnitude

 emgn
Nfaces-by-1
double

Almansi strain tensor magnitude

 d3
Nfaces-by-3
double

Face normal in current configuration

 Epc1
Nfaces-by-1
double

First principal surface Lagrangian strain
(smallest)

 Epc2
Nfaces-by-1
double

Second principal surface Lagrangian strain
(largest)

 Epc1vec
Nfaces-by-3
double

First principal surface Lagrangian strain
direction (largest)

 Epc1vecCur
Nfaces-by-3
double

First principal surface Lagrangian strain
direction (largest), transformed into the
current configuration

 Epc2vec
Nfaces-by-3
double

Second principal surface Lagrangian strain
direction (smallest).

 Epc2vecCur
Nfaces-by-3
double

Second principal surface Lagrangian strain
direction (smallest), transformed into the
current configuration

 epc1
Nfaces-by-1
double

First principal surface Almansi strain
(smallest)

 epc2
Nfaces-by-1
double

Second principal surface Almansi strain
(largest)

 epc1vec
Nfaces-by-3
double

First principal surface Almansi strain
direction (smallest).

 epc2vec
Nfaces-by-3
double

Second principal surface Almansi strain
direction (largest).

References

[1] M. A. Sutton, “Digital Image Correlation for Shape and Deformation Measurements,” Springer Handb. Exp.
Solid Mech., pp. 565–600, 2008.

[2] Y. L. Dong and B. Pan, “A Review of Speckle Pattern Fabrication and Assessment for Digital Image
Correlation,” Exp. Mech., vol. 57, no. 8, pp. 1161–1181, Oct. 2017.

[3] “What Is Camera Calibration? - MATLAB & Simulink.” [Online]. Available:
https://www.mathworks.com/help/vision/ug/camera-calibration.html.

[4] Z. Zhang, “A Flexible New Technique for Camera Calibration (Technical Report),” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000.

[5] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 1106–1112, 1997.

[6] J. Bouguet, “Camera Calibration Toolbox for Matlab.” [Online]. Available:
http://www.vision.caltech.edu/bouguetj/calib_doc/. [Accessed: 25-Jan-2018].

[7] G. Bradski and A. Kaehler, Learning OpenCV, First Edition. O’Reilly Media, Inc., 2008.

[8] P. L. Reu, “A Study of the Influence of Calibration Uncertainty on the Global Uncertainty for Digital Image
Correlation Using a Monte Carlo Approach,” Exp. Mech., vol. 53, no. 9, pp. 1661–1680, Nov. 2013.

[9] Y. I. Abdel-Aziz, “Direct linear transformation from comparator coordinates in close-range
photogrammetry,” Proc. Am. Soc. Photogramm. Symp. close-range Photogramm. Falls Church (VA). Am.
Soc. Photogramm. Symp. Close-Range Photogramm. 1971, pp. 1–19, 1971.

[10] J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,”
Exp. Mech., vol. 55, no. 6, pp. 1105–1122, 2015.

[11] B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for
speckle patterns,” Opt. Express, vol. 16, no. 10, p. 7037, May 2008.

