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1. Overview 
MultiDIC (Multi Digital Image Correlation) is an open-source MATLAB toolbox by Dana Solav. Three-dimensional 

(stereo) Digital Image Correlation (3D-DIC) is an important technique for measuring the mechanical behavior of 

materials. MultiDIC was developed to allow fast calibration even for a large number of cameras, and be easily 

adaptable to different experimental requirements. It integrates the 2D-DIC subset-based software Ncorr with several 

camera calibration algorithms to reconstruct 3D surfaces from multiple stereo image pairs. Moreover, it contains 

algorithms for merging multiple surfaces, and for computing and plotting displacement, deformation and strain 

measures. High-level scripts allow users to perform 3D-DIC analyses with minimal interaction with MATLAB syntax, 

while proficient MATLAB users can use stand-alone functions and data-structures to write custom scripts for specific 

experimental requirements. Comprehensive documentation, user guide, and sample data are included. 

 

2. Installation 
2.1 Installation Requirements 
2.1.1 Operating system requirements 
MultiDIC was developed on 64-bit Windows 10 and has not yet been tested on other operating systems. 

2.1.2 MATLAB requirements 
MultiDIC was developed on MATLAB versions R2017a and R2017b, and has not yet been tested on prior versions.  

Matlab toolbox requirements:  

 Bioinformatics Toolbox 

 Image Processing Toolbox 

 Statistics and Machine Learning Toolbox 

 Computer Vision System Toolbox 

MultiDIC includes the 2D-DIC software Ncorr:  

http://www.ncorr.com/ and https://github.com/justinblaber/ncorr_2D_matlab 

Ncorr requires a MEX (C++) compiler. More details can be found in the Ncorr instruction manual which is also 
included in MultiDIC. The following compiler was found to work well for us using 64-bit Windows 10 and MATLAB 
version R2017a/b: 

https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c++-compiler 

MultiDIC also uses functions from GibbonCode, the Geometry and Image-Based Bioengineering add-On: 
https://www.gibboncode.org/ 

All the necessary functions from GibbonCode are already included in MultiDIC, however you are encouraged to check 
out what other capabilities GibbonCode has to offer (finite element analysis, meshing tools, image segmentation, 
and more). 

2.1.3 Installation 
After MEX is set up correctly, in Matlab, navigate to the directory where you saved MultiDIC, and type 
installMyltiDIC in the MATLAB terminal. This will compile all the necessary files for Ncorr and will save the 
Matlab MEX files in the Ncorr folder. It has to be done only the first time. 
 

3. Preparation 
The following items are required to complete a 3D-DIC analysis: 

https://www.media.mit.edu/people/danask/
https://www.github.com/justinblaber/ncorr_2D_matlab
http://www.ncorr.com/
https://github.com/justinblaber/ncorr_2D_matlab
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c++-compiler
https://www.gibboncode.org/


 A set of stereo calibration images, in which a 3D calibration object is imaged from all the cameras. 

 A set of speckle images, in which the speckle test object is imaged by all cameras in a reference (e.g. 

undeformed) configuration and optionally also deformed configurations. 

 A set of flat checkerboard images, necessary only in case distortion correction is required. 

The preparation steps required for each of these steps are described in detailed in the following sections. 

3.1 Calibration Objects 
3.1.1 Stereo calibration object 
Currently, the toolbox and the documentation are designed for a cylindrical or semi-cylindrical calibration object 

(see for example Figure 1) with black control points over white background. In order to calibrate a stereo pair of 

cameras, both cameras need to view an overlapping region of the calibration target which contains at least 6 control 

points in their field of view. However, it is recommended that a much larger number of points is visible, in order to 

increase the calibration accuracy. For example, in Figure 1, camera 1 and camera 2, each have 200 points in their 

field of view, 120 of them are mutual for both cameras. Any number of stereo pairs can be positioned around the 

cylinder, as long as each pair has a valid field of view. It is not required to use the entire 360° around the cylinder, a 

cylindrical calibration object can be used also for reconstructing only certain portions of the space. 

This points on the calibration object are arranged in 𝑁𝑟 rows and 𝑁𝑐  columns. It is recommended to include the 

column number above/below each column (See Figure 1).The dots can be square, circular, or any other shape, as 

long as their centroid coordinates are known with sufficient accuracy. A MAT file has to be created, containing a 

𝑁𝑟 − 𝑏𝑦 − 𝑁𝑐 − 𝑏𝑦 − 3 array of the 3D world coordinates of the calibration target arranged by 

[𝑟𝑜𝑤𝑠, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠, 𝑥𝑦𝑧], where 𝑧 is the vertical coordinate, the rows are arranged from bottom to top (increasing 𝑧 

value) and the columns arranged counter-clockwise, such that the column number increases from left to right on 

the image. An example for such file can be found in the sample data. 

 

Figure 1. Calibration object prepared by applying a sticker paper with a printed dot pattern on an aluminum cylinder. 

 



3.1.2 Flat checkerboard 
This is only necessary if you wish to include distortion correction. 

Print an asymmetric checkerboard image (odd number of rows and even number of columns, for example) with 
known square size. You can use the function createCheckerBoardImage. Attach the image on a flat surface (as 
perfectly flat as possible, a simple solution is printing on a sticker paper and sticking it on a glass picture frame). See 
for example Figure 2. 

Take a few dozen (at least 20, preferably closer to 50) images with the checkerboard positioned in different distances 
from the camera and tilted different angles, covering the entire field of view of the camera. Delete images where 
the board is cut (not entirely visible in the image), blurry/unfocused images, etc. It is not mandatory to do so, as the 
function calculateCBcalibrationParameters will automatically discard those images, but it will take more 
time to run. 

 

Figure 2. Example images of a checkerboard calibration target. 

3.2 File Naming 
3.2.1 Stereo calibration images 
Name each image with a name ending with the camera number after an underscore. For example: 
calibrationImage_01.jpg, IM_35.gif, Cam_0001, etc. 

3.2.2 Checkerboard images 
Save the images taken by each camera in a separate folder. The folder name must end with the camera number after 
an underscore or just be the camera number (for example “Cam_02” or “C_2” or “02”, but not “cam2”). The image 
names don’t matter. 

3.2.3 Speckle images 
Save the images in a folder named with the camera number at the end (after an underscore, or just a number, for 
example “cam_02”, “camera_7”, “007” or “9” but not “cam05”). The camera numbers must match those of the 
calibration steps. Inside each folder, the images should be named with the time frame after an underscore, in a way 
that will determine their order (For example cam01image_001, cam01image_002… or im_01, im_03…). Image 



number 1 is always considered as the reference image. The rest of the images will be ordered according to their 
numbers but they do not have to be consecutive. 

3.3 Speckling 

As a rule of thumb, speckles should be at least 3-5 pixels in size, have good contrast, equal size black and white areas, 

and no directionality (random pattern) [1]. Various methods for applying the speckles onto the surface exist, such 

as spray painting, stamping, printing, airbrushing, etc. A recent review on speckle pattern fabrication can assist you 

to select a preferable method, according to your application [2]. 

3.4 Viewing and saving 3D figures 

This toolbox uses GibbonCode’s functions for plotting 3D points and meshes. It adds the vcw (View Control Widget) 

which allows users to better manipulate a view in 3D. Click the  button or type v to activate it. If you re-open an 

existing figure, and the widget doesn’t appear, type vcw in the command window to enable it. The widget allows 

the user to rotate, pan and zoom a figure using key presses and mouse gestures (right mouse button for zoom, left 

for panning, and middle/scroll for zooming. press i to show help information: 

 

Figure 3. View Control Widget input options 

Moreover, clicking the   links to the export_fig function where users can specify file names, formats, and more. 

For more details:  http://www.mathworks.com/matlabcentral/fileexchange/23629-export-fig. 

Furthermore, in the animated figures, another set of widgets will appear on the window: . Use these 

buttons to play or scroll through the plots, change playing speed or cycle, and export animated .gif files. 

 

http://www.gibboncode.org/
http://www.mathworks.com/matlabcentral/fileexchange/23629-export-fig


4. User Guide 
4.1 Program Flow 

The work flow of MultiDIC is composed of 5 steps, each of them is executed using a main script. STEP0 is optional, 
and is only necessary in cases where the cameras’ lens distortion is not negligible. STEP1 and STEP2 are both 
necessary, but the order in which they are performed is not important. STEP2 involves matching 2D points from 
stereo speckle image pairs while the imaged object is moving and/or deforming. STEP1 involves finding the 
calibration parameters for transforming these pairs of corresponding 2D image points into 3D world points. These 
parameters are calculated by analyzing stereo images of a 3D calibration object. STEP 1 can be done before or after 
the speckled object images are analyzed, and the calibration results from STEP1 can be used for more than one 
dynamic analysis, as long as all the optical settings are identical. Next, STEP3 uses the results from STEP1 (stereo 
calibration parameters for each camera) and of STEP2 (corresponding speckle image points), and optionally also 
STEP 0 (distortion parameters for each camera), and calculates the resultant 3D points for each pair of cameras. In 
addition, in STEP3 a triangular mesh is calculated, as well as the displacements, deformations, strains, and rigid-body 
motion of the object. The work flow is illustrated in Figure 4.The user guide in this sections provides all the necessary 
instructions for running the scripts, without interacting with the codes themselves and with MATLAB syntax. For a 
deeper look into the codes, and ways to modify refer to Section 5.  

 

 

Figure 4. software workflow 

4.2 Projects in MultiDIC 

When you perform a complete 3D-DIC analysis, the output files are stored and can be used multiple times. For 

example, once calibration parameters are calculated and saved, they can be used in multiple analyses of speckle 

images, as long as the cameras were not moved. Moreover, once distortion parameter calculation was performed, 

they can be used for multiple tests, as long as the cameras’ intrinsics have not been changed. 

  



4.3 Step 0: Calculate Distortion Parameters 

STEP0_CalcDistortionParameters is the main script to calculate the distortion parameters of the cameras. 
The script uses camera calibration functions from Matlab Computer Vision System Toolbox [3], which is based on 
the works of Zhang [4], Heikkila and Silven [5], Bouguet [6], and Bradski and Kaehler [7]. 

The script perform the following main steps: 

1. Estimate camera parameters from multiple checkerboard images. 
2. Use these parameters to correct for image distortion. 
3. Plot the camera parameters and reprojection errors, before and after the correction. 

The distortion parameters found in this step can be used to correct the distortion on all the images taken by the 
same camera, as long as the intrinsic parameters are left unchanged (the camera can be moved but the focus should 
not be changed). Specifically, these parameters are used in STEP1p and in STEP3, to correct the distortion on the 
points found on the calibration and speckle images, respectively. 

This step is optional, and can be skipped if no distortion correction is required. If you are not sure whether or not 
you need distortion correction, you can run this step and assess the distortion parameters. If they are adequately 
small, you can choose to skip the distortion correction in STEP1p and STEP3. Alternatively, you can first assess the 
reprojection errors obtained in STEP1p without distortion correction, and if they are sufficiently small, STEP0 can be 
skipped. 

 

Run STEP0_CalcDistortionParameters 

1. Select whether this is a new analysis or a repeated one. Repeated analysis means you already ran the analysis 

for these cameras with the same images, but you want to repeat with a different distortion model. This option 

is faster than running a new analysis, because the checkerboard corner points need not by detected again. 

2. Select one or multiple folders containing checkerboard images (one folder per camera).  

3. Select whether or not to save the results. If ‘Yes’, select a folder for the results to be saved in. 

4. Select whether or not to save the undistorted images. 

5. Select the checkerboard parameters: number of rows, number of columns, and square size. Warning: the 
function detectCheckerboardPoints might cause this code to be slow if the number of images is very large. 

6. Select the distortion model: number of coefficients for radial distortion (2 or 3), tangential distortion (0 or 1) 
and skew (0 or 1). Refer to [3] for details. 

 

Step 0 script outputs 

1. For each camera, a MATLAB structure cameraCBparameters is saved under the file name 

cameraCBparameters_cam_#, where # is the camera number taken from the folder name.  

2. cameraCBparametersAllCams: a Ncam-by-1 cell array, where Ncam is the number of cameras, and each cell 

contains a cameraCBparameters structure. 

3. The undistorted images, saved in a folder named “undistorted” in the same folder where the images are stored. 

4. Figures plotting the calibration results: 

 For each camera, a figure showing the intrinsic and extrinsic parameters, and the reprojection errors (the 
first tab plots the results before distortion correction and the second tab plots the results after distortion 
correction). See for example Figure 5. 

 For each camera, a figure showing the reprojected points and the reprojection error statistics on each image 
(one figure for the original images and one figure after distortion correction). See for example Figure 6. 



 For all cameras together, a figure showing the statistics of the camera intrinsic parameters before and after 
distortion correction.  

 If the saving option was selected, a folder is created where all the results figures are saved. 
 

 

Figure 5. Example of the results figure obtained in step 0 for one camera. The figure plots the camera’s intrinsic parameters, a 
visualization fo the extrinsic parameters, and the reprojection error distribution of all points and all images, as well as the mean 
for each image and the statistics over all images. 



 

Figure 6. An example of the plot showing the detected and reprojected image points and the associated reprojected errors. Scroll 
through the tabs to view all images. 

 

4.4 Step 1: Calculate DLT Parameters (Stereo Calibration) 

STEP1_CalcDLTparameters is the main script for running as stereo calibration. The script utilizes the DLT method 
[9], whereby the closed-form solution of the mapping between 2D image points and 3D world points based on a 
distortion-free pin-hole camera model is obtained. It requires images of a non-planar calibration object with control 
points whose 3D positions in a global reference system are known with sufficient accuracy. 

 

Run STEP1_CalcDLTparameters 

1. Select the images of the 3D calibration target for the current analysis.  

2. Select whether or not to save the results. If ‘Yes’, select a folder for the results to be saved in. 
3. Select the MAT file containing the true 3D world coordinates of the calibration object.  
4. The script will loop over all the selected cameras, and will perform the following steps for each camera: 

A. Turn the image to grayscale (if it is RGB). 

B. Open a GUI for masking the image, where you need to draw a polygon around the region of interest, 
which comprises of the portion of the image containing the calibration control points (Figure 7A). Use 
the zoom button in the figure, if necessary. The polygon is drawn by clicking on image points. At the 
end it is necessary to close the polygon by clicking again on the first point. After the polygon is closed, 
it is possible to move its vertices by dragging them (the cursor will turn to a circle). When the polygon 
is correctly completed, double click on it to finish. 



C. The masked image will be displayed (Figure 7B), and then the user has to approve it, or select to start 
over the masking GUI. When the mask is approved, the user has to enter the column numbers of the 
first and last columns inside the region of interest. 

D. Based on the mask and the column numbers entered, the number of dots is calculated and the positions 
of the centroids of the black dots are calculated and plotted on the image. The user can modify the 
gray intensity threshold, by which the black dots are identified, to achieve more accurate centroid 
positions (Figure 7C). A higher threshold will increase the size of the regions and carry the risk of them 
merging together, and a lower threshold might cause regions to shrink and split or disappear. Usually, 
if the lighting conditions and the contrast are adequate on the entire image, the initial guess should be 
good. If different regions of the image have significantly different lighting (brightness), there won’t be 
one threshold that fits the entire image. This means that you have to improve your experimental setup 
to have a more uniform lighting condition. Alternatively, modify the images using Photoshop or a 
similar tool (less recommended). 

E. After selecting the threshold, the centroids are fixed, and are then sorted by columns counterclockwise 
(left to right) and by rows from bottom to top. The sorted points will be displayed on the image, and 
then the same procedure will start for the next camera (Figure 7D). 

Step 0 script outputs 

For each camera, a MAT file named DLTstruct_cam_# is saved, which contains the DLT parameters of camera 
number #, as well as the control points and column numbers used for calculation. These files can be then used to 
reconstruct the 3D positions of corresponding image points from stereo camera pairs (in STEP1p these are the 
calibration object control points and in in STEP3 these are the speckle image points). 

 



 

Figure 7. The steps of the DLT calibration process. (A) Draw a polygon around the calibration object points. (B) The image is 
masked based on the polygon. (C) The centroids are detected based on the detected gray level threshold between the white and 
black regions. Here you can change the threshold using the slide bar. (D) The centroids are sorted by rows and columns. 



4.4.1 Step 1p: Calculate reprojection errors 
In this step, which is optional and not required for completing the analysis, the results from STEP1 are used to 
reconstruct the 3D positions of the calibration object control points from corresponding image points of camera 
pairs. Then, the reprojection errors are calculated and plotted. This step is used to evaluate the reprojection errors 
of the calibration step. Here, different distortion models can be used for distortion correction. 

Run STEP1p_DLTreprojection 

1. Select DLTstruct files obtained in STEP1 from at least 1 camera pair (at least 2 cameras). 
2. Select the indices of the camera pairs (pairs of cameras which have an overlapping region in their field of views). 

The format is 2 cameras in each row, e.g. if there are three pairs: (2,3) (3,4), (6,7), then type in [2 3; 3 6; 6 7]. 
3. Select whether or not to correct for distortion. If ‘Yes’, then select the distortion parameters calculated in STEP0 

for the selected cameras. 

Outputs of step 1p 

1. The 3D reconstructed points and the corresponding reprojection errors are calculated, and saved in a file named 
DLTstructPairs. 

2. The reprojected points and reprojection errors are plotted for all cameras, and the figures are saved in the 
results folder. See Figure 8 for example. 
 

 

Figure 8. Example of results plot obtained in step 1p. The 3D points of the calibration object were reconstructed using images 
from 6 cameras which comprise 5 stereo-pairs. The reprojected points are plotted against the true points (left), and the 3D 
reprojection errors are plotted for each pair (center), and their statistics are reported as boxplots (right). 

  



4.5 Step 2: 2D-DIC Using Ncorr 

STEP2_2DDICusingNcorr is the main script for analyzing stereo images of the speckled object using 2D-DIC. This 
script utilized the open-source software Ncorr [10]. It can be performed either before or after STEP1. This step has 
to be performed once for each camera pair, and must be completed before the 3D points and surfaces can be 
reconstructed in Step 3. For each camera pair, one camera is considered as the reference camera and the other one 
is considered as the deformed camera. It means that images taken by the deformed camera are analyzed as 
deformed versions of the images taken by the reference camera. 

 

4.5.1 Run STEP2_2DDICusingNcorr 
1. Select the folders of the reference camera and of the deformed camera, containing the speckle images.  

2. Select saving and overwriting options. 

3. A figure showing the image pairs from both cameras will appear (see Figure 9A). Review the image sets by 
clicking on the play button, or by scrolling using the arrows or the bottom bar. This figure is helpful for selecting 
the region of interest (ROI). If you clicked the play button, click the stop button and then click enter in MATLAB 
command window to continue to the Ncorr analysis. 

4. Select a Region of Interest (ROI) option:  

o New means drawing a new mask using polygons. Select the number of ROIs. An ROI is defined by 
drawing a polygon on the reference image (see Figure 9B). Make sure that the ROI is visible on all the 
images (from both cameras). Click on the image to select the first vertex and continue placing new 
vertices by clicking on image points. To close the polygon, click on the first vertex. Once the polygon is 
closed, vertices can be moved by dragging them (the cursor will turn to a circle when you hover over a 
vertex). Also, the entire can be translated by dragging. To finish, double-click on the polygon. 

o Saved means you already have a saved mask and you want to use it again. For example, if you ran the 
analysis and now you just want to run it again with different options in Ncorr such as subset size or 
spacing, etc. In this case, you need to select an ROI for the correct camera pair. 

o Ncorr means you will draw the ROI in Ncorr. Ncorr has more options for drawing shapes and cutting 
holes in the ROI, but the GUI is smaller and you don’t have the option to scroll through the images to 
assist with ROI placement. 



 

Figure 9. (A) Review the stereo image set by clicking play or scrolling. (B) Select the ROI by drawing a polygon (if the New ROI 
option selected. (C) The ROI opened in Ncorr. 

 

5. Next, the Ncorr window will appear, where the 2D-DIC analysis is performed. The following steps have to be 
completed in this window: 

A. If you already set the ROI, the ROI will be displayed (see Figure 9C). Click Finish. If not, draw an ROI in 
Ncorr (refer to Ncorr instruction manual for details if necessary). 



B. When the ROI is set, the next step is to set the DIC parameters. Select the Analysis tab on the top menu, 
then Set DIC parameters. A window will pop up where the Subset radius and Subset spacing can be 
selected (see Figure 10). These parameters are visualized on the image on the right. These are some 
points to consider when selecting these parameters: 

 The subset radius should be large enough to include at least 2-3 speckles along its width and 
height, in order to contain enough unique and identifiable features. 

 The subset size should be small enough to satisfy the assumption that the deformation is 
homogeneous inside the subset. 

 The subset spacing determines the distance between data points. Small spacing means the 
point grid will be denser. As a result, the analysis will take longer to run, but the shape will be 
smoother, and the deformation measures will be more local. 

 More information on subset size and spacing selection can be found in [1], [11]. 

C. Select the desired parameters and click Finish. There is no need to change the other options. A window 
showing all the selected parameters will pop up. Click Yes. 

 

 

Figure 10. Subset radius and Subset spacing selection in Ncorr. Select a subset radius such that the circle contains at least 2-3 well 
defined speckles. The green point can be dragged over the ROI to inspect speckles in different regions. 

 

D. Select the Analysis tab, then Perform DIC analysis. A Select region window will pop up. Click on Select 
region and then on one of the white regions on the image (if the ROI is composed of only one region, 
then you will have only one option). 



E. After selecting a region, a Set seeds window will pop up. Click on Set seeds and then click on a point 
inside the ROI. Select a point that is clearly visible from both views, and that is not too close to the 
edges of the ROI. See Ncorr documentation for more details on optimal seed placement, if necessary. 
Click Finish. 

F. When processing seeds is finished, a Seed Preview window will pop up (see Figure 11). Scroll through 
all the images to make sure that the seed point was detected correctly in all of them. If they look 
correct, click Finish. If the correlation coefficient between the subsets around the detected seeds is too 
high, an error prompt will appear. This usually means that the seed point was not detected correctly 
on at least one of the images. If this is the case, click cancel, move the seed to a better position, and 
try again until seed placement is successful. 

 

 

Figure 11. The seed preview window. Scroll through all current images, and ensure that the seeds were placed correctly by 
inspecting their positions on the images (here marked in red circles), and the value of the correlation coefficient (here in red 
rectangle). If the seed point is placed in a region which is very deformed due to the angled view, the seed placement might 
occasionally be wrong. In this case, place the seed in a better position and try again. 

 



G. When the seeds are properly placed and you click Finish, the DIC analysis will start running, propagating 
from the seed points to the rest of the ROIs. When the analysis is done, a message will pop up stating 
that DIC analysis completed successfully. Press OK to finish. 

H. Click on Analysis once again, and select Format displacements. There is no need to select anything in 
this window or change the settings. Just click Finish and then Yes. Since this is a 2D analysis of stereo 
images, the displacements here do not have a physical meaning that you can easily inspect. Only after 
the 3D reconstruction step, you will be able to see the 3D displacements.  

I. At this point the Ncorr analysis is complete. There is no need to run the Calculate strains part. Go back 
to MATLAB main window without closing the Ncorr window yet and press enter in the command 
window. Then, the results will be imported from Ncorr, and a results structure named 
DIC2DpairResults_C_#1_C_#2 will be saved, where #1 is the index of the reference camera and 
#2 is the index of the deformed camera. 

J. You might get a warning from Ncorr: prior DIC has been detected and will be deleted. You can click Yes, 
as all the necessary analysis results for 3D-DIC are saved outside Ncorr. 

6. Select if you want to plot the results now. If you select Yes, you will be requested to select if you want to change 
the limits of the correlation coefficients for display (leave this blank to use the default limits, which are between 
0 and the maximum value of the correlation coefficient found in this analysis. Three animation figures will 
appear:  

 Figure 1 plotting the reference image on the left and all the current images on the right (from both 
views). Corresponded points are displayed on the images with the color depicting the value of the 
correlation coefficient (see Figure 12). 

 Figure 2 plotting the same as 1, but the images from the two views are plotted on the left and right 
subplots separately. 

 Figure 3 plotting the same as 3, but instead of points, the triangular faces are plotted, and the face 
colors represent the combined (maximal) correlation coefficient of the three vertices. 

Note: You can also run the function plotNcorrPairResults separately, after the results are stored. If you run 
plotNcorrPairResults without any input, you will be requested to select a DIC2DpairResults structure by 
browsing. Otherwise, if the DIC2DpairResults is already in the workspace, you can give it as an input to the 
function: plotNcorrPairResults (DIC2DpairResults). 



 

Figure 12. 2D-DIC results on a set of stereo images. Corresponding points are plotted with colors depicting the matching 
correlation coefficients. Higher correlation coefficient are obtained in regions where the deformation due to the stereo angle is 
higher. 

 

 

4.6 Step 3: 3D reconstruction 

STEP3_3DreconstructionDLT is the main script for transforming pairs of corresponding points from the speckle 
images obtained in step 2 into 3D points and surfaces using the DLT parameters obtained in step 1. For each camera 



pair, a dynamic 3D surface will be reconstructed, and the associated displacements, deformations, strains, and other 
measures are calculated, saved, and plotted. 

Here, you can select distortion correction options. If distortion correction is selected, the speckle image points will 
be corrected as well as the DLT parameters, based on the distortion parameters selected.   

 

Run STEP3_3DreconstructionDLT 

1. Select the following: 

A. One or more 2D-DIC results files (DIC2DpairResults) to be reconstructed. 

B. The folder where the DLT parameters (DLTstruct_cam_#) for the relevant cameras are stored. 

C. Distortion correction options. If distortion correction is required, you will be asked to select the 
cameraCBparameters_cam_# of the relevant cameras. 

D. Saving options. 

2. The following steps are then performed for each camera pair: 

A. If distortion correction is required, the 2D points and the DLT parameters are corrected according to the 
distortion parameters of each camera. Warning: distortion correction might be time consuming if the 
number of points is large. 

B. The 3D points are reconstructed using the DLT algorithm. 

C. The displacements, deformation, stretches, and strains, are calculated. The results for each pair are saved 
in a structure named DIC3DpairResults_C_#R_C_#D, where #R is the index of the first (reference) 
camera of the pair, and #D is the index of the second (deformed) camera. 

3. When all the pairs are calculated, a cell array containing all result structures for this analysis is saved under the 
name DIC3Dall#PairsResults, where # is the number of camera pairs in this analysis. 

4. Select whether or not you want to plot the results now. If you select Yes, you will be requested to select which 
measures you want to plot. Each measure you selected will be plotted in a separate animation figure, where the 
static/dynamic behavior of the measure can be viewed (see Figure 13 for a few examples).  

Note: You can also run the function plotMultiDICPairResults independently, after the results are stored. If 
you run plotMultiDICPairResults without any input, you will be requested to select the result structures by 
browsing. You can select one or multiple DIC3DPairsResults files, or a DIC3DAllPairsResults file already 
containing results from multiple pairs. Otherwise, if DIC3DAllPairsResults is already in the MATLAB 
workspace, you can give it as an input to the function, like this: 

plotMultiDICPairResults(DIC3DAllPairsResults); 



 

Figure 13. Examples of a few plotting options for 3D-DIC results. The figure shows two reconstructed surfaces, reconstructed 
from three cameras (two adjacent camera pairs). The triangular faces are plotted with the colors depicting the index of the pair 
(left). The vertices are plotted with the colors depicting the combined correlation coefficient (center). The faces are plotted with 
the colors depicting the strain magnitude (right). In this example, since the object was rigidly moved, the strain represents the 
measurement error of the raw data (without smoothing). 

  



5. A Deeper Look into MultiDIC 
 

This section provides a more detailed description of the codes, and is targeted for users who wish to get a deeper 

understanding of it, to modify the codes, or to add new functions or batch scripts.  

5.1 Step 0 

 The initial parameters that appear in the dialog boxes (e.g. checkerboard parameters and distortion model) 

can be changed in the code to appear as the default options.  

 

 Each of the fields of the cameraCBparameters structure is described in the following table: 

Field Sub-field Class/size Description 

icam  integer 
The index of the camera (as given by the 
user in the name of the folder). 

imagesUsed  
1-by-N array 
integer 

A vector containing the indices of the 
images used for calibration (images might 
be discarded if the checkerboard points 
cannot be detected correctly). 

boardSize  
1-by-2 array 
integer 

Checkerboard dimensions, as a 2-element 
[height, width] vector. The dimensions of 
the checkerboard are expressed in terms of 
the number of squares. Height must be 
uneven and width must be even. 

squareSize  double Checkerboard square size in [m] units. 

imagesInfo  Struct  

 Nimages integer 
The number of checkerboard images 
selected for calibration. 

 imageFileNames 
1-by-Nimages cell array 
of chars 

The paths for each of the images. 

 imageType char 

The image file format, indicating the 
standard file extension, such as 
‘jpg’,’png’,’tif’, etc.. 

 imageSize 1-by-2 integer 
Image size in pixels, specified as [rows, 
columns] or [height, width]. 

imagePoints  
Npoints-by-2-by-
Nimages 
double 

The detected checkerboard corner 
coordinates for all images. The second 
dimension refers to the [x,y] coordinates 

cameraParameters  Struct 

a structure containing the standard MATLAB 
cameraParameters object 
(https://www.mathworks.com/help/vision/
ref/cameraparameters.html) 

 RadialDistortion 
1-by-3 or 1-by-2 
double 

The radial distortion coefficients [k1, k2] or 
[k1, k2, k3], according to the selected 
camera model. 

 TangentialDistortion 
1-by-2 
double 

The tangential distortion coefficients [p1, 
p2]. 

 Skew double 
The camera axes skew, specified as a scalar 
representing the angle between the axes. 

https://www.mathworks.com/help/vision/ref/cameraparameters.html
https://www.mathworks.com/help/vision/ref/cameraparameters.html


 
NumRadialDistortionCo
efficients 

2 or 3 (double) Number of radial distortion coefficients 

 EstimateSkew logical 

Estimate skew flag. When set to true, the 
object estimates the image axes skew. 
When set to false, the image axes are 
estimated to be exactly perpendicular. 

 
EstimateTangentialDis
tortion 

logical 

Estimate tangential distortion flag. When 
set to true, the tangential distortion 
parameters are estimated. When set 
to false, it is assumed that the tangential 
distortion is negligible and 
TangentialDistortion is set to [0,0]. 

 PrincipalPoint 
1-by-2 
double 

The optical center [cx,cy] in pixels, 
representing the coordinates of the optical 
center of the camera. 

 FocalLength 
1-by-2 
double 

The focal length in the x and y directions 
[fx, fy] in pixel units, where:  fx=F*sx and 
fy=F*sy. F is the focal length in world units, 
typically in millimeters, and [sx, sy] are the 
number of pixels per world unit. 

 WorldPoints 
Npoints-by-2 
double 

World coordinates of the corner points on 
the checkerboard pattern. 

 WorldUnits char 
World points units, specified as a character 
vector (typically ‘mm’). 

 Numpatterns integer 

Number of calibration patterns (number 
checkerboard images) that estimates 
camera parameters. 

 ReprojectedPoints 
Npoints-by-2-by-
Nimages 
double 

World points reprojected onto the 
calibration images. 

 ReprojectionErrors 
Npoints-by-2-by-
Nimages 
double 

The difference between the detected and 
reprojected points. 

 MeanReprojectionError double 

The average Euclidean distance between 
reprojected and detected points, specified 
in pixels. 

estimationErrors   

The standard errors structure of estimated 
camera parameters, returned as a 
MATLAB cameraCalibrationErrors object, 
(https://www.mathworks.com/help/vision/
ref/cameracalibrationerrors.html). The 
estimation errors represent the uncertainty 
of each estimated parameter (the standard 
error corresponding to each estimated 
camera parameter). The returned standard 
error 𝜎 (in the same units as the 
corresponding parameter) can be used to 
calculate confidence intervals. For example 
±1.96𝜎 corresponds to the 95% confidence 
interval. In other words, the probability that 
the actual value of a given parameter is 
within 1.96𝜎 of its estimate is 95%. 

https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html
https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html
https://www.mathworks.com/help/vision/ref/cameracalibrationerrors.html


cameraParametersAUD   

Same as cameraParameters, but after the 
distortion correction (AUD stands for After 
UnDistortion). 

estimationErrorsAUD   

Same as estimationErrors, but after the 
distortion correction (AUD stands for After 
UnDistortion). 

imagePointsAUD   

Same as imagePoints, but after the 
distortion correction (AUD stands for After 
UnDistortion).. 

 

5.2 Step 1 

 Each of the fields of the DLTstructCam structure is described in the following table: 

Field Sub-field Class/size Description 
indCam  integer camera index 

DLTparams  11-by-1 double The 11 DLT parameters 

columns  1-by-Ncolumns 
The indices of the columns of the calibration 
object  

imageCentroids  
Npoints-by-2 
double 

The centroids image coordinates (pixels) 

C3Dtrue  
Nrows-by-Ncolumns-
by-3 
double 

True 3D coordinates of the calibration 
object arranged by rows (bottom to top)  - 
columns (left to right) -xyz 

 

5.3 Step 1p 

 Each of the fields of the DLTstructPairs structure is described in the following table: 

Field Sub-field Class/size Description 

indCams  
1-by-Ncams 
integer 

Array of the camera indices 

indPairs  
Npairs-by-2 
integer 

Array of the camera indices of each camera 
stereo pair. Each row represents a pair, 
where the first column is the reference 
camera and the second column is the 
deformed column. 

DLTparams  1-by-Ncams cell array 
In each cell, the DLT parameters 11-by-1 
double array. 

columns  1-by-Ncams cell array 
the indices of the columns of the calibration 
object used by each camera 

imageCentroids  1-by-Ncams cell array 
in each cell the Npoints -by-2 array of the 
centroids image coordinates 

truePoints  
Nrows-by-Ncolumns-
by-3 
double 

True 3D coordinates of the calibration 
object arranged by rows (bottom to top)  - 
columns (left to right) -xyz 

reprojectPoints  1-by-Npairs cell array 
In each cell, an Npoints-by-3 array of the 3D 
coordinates of the reconstructed points 
seen by the pair of cameras. 



reprojectErr  1-by-Npairs cell array 
In each cell, an Npoints-by-3 array of the 3D 
errors (difference vector) between the 
reconstructed points and the true points 

distortionModel  1-by-Ncams cell array 

In each cell, the intrinsic camera parameters  
(cameraParameters object) used for 
correcting the distortion on the image 
points and associated DLT parameters. If no 
distortion correction was performed, it is 
set to ‘none’. 

5.4 Step 2 

 Each of the fields of the DIC2DpairResults structure is described in the following table: 

Field Sub-field Class/size Description 
nCamRef  integer index of the reference camera of the pair 

nCamDef  integer index of the deformed camera of the pair 

nImages  integer 
number of images in the set (time frames, 
including the reference) 

IMpaths  
2*nImages-by-1 cell 
array 

Each cell contains the paths to one images 

ROImask  
imageSize1-by-
imageSize2 
logical 

Matrix the same size as the reference image, 
with 1 in the pixels inside the ROI and 0 
outside the ROI.  

Points  
2*nImages-by-1 cell 
array 

Each cell contains an Npoints-by-2 array of 
the correlated points between this image 
and the reference image (the points indices 
are corresponding between all images. 
Points can have NaN values if they could not 
be matched in some images). 

CorCoeffVec  
2*nImages-by-1 cell 
array 

Each cell contains an Npoints-by-1 array of 
the correlation coefficients between the 
current image and the reference image (the 
points indices are corresponding). 

Faces  
Nfaces-by-3 
integer 

Each row represents a triangular face, and 
the 3 columns represent the indices of the 
vertices of that triangular face. 

FaceColors  
Nfaces-by-1 
Uint8 
 

Each row represents a triangular face, and 
the value represent the grayscale intensity 
from the reference image, as a mean of the 
grayscale intensity of the three pixels where 
the three vertices of the triangles are 
located. 

ncorrInfo  struct 

handles_ncorr.data_dic.dispinfo 
containing ncorr information, such as the 
subset radius and subset spacing. 

 

5.5 Step 3 

 Each of the fields of the DIC3DpairResults structure is described in the following table: 

Field Sub-field Class/size Description 



cameraPairInd  
1-by-2 
integer 

The camera indices: [nRef nDef] 

 

Faces  
Nfaces-by-3 
integer 

The vertex indices of all the triangular faces 

distortionModel  1-by-2 cell array 
The distortion model (camera intrinsic 
parameters) used for each of the cameras in 
the pair. 

FaceColors  
Nf-by-1 
 

The greyscale pixel intensities imposed on 
the faces (from the reference image) 

Points3D  Nframes-by-1 cell array 

Each cell represents a time frame and 
contains Npoints-by-3 array of the 3D 
coordinates of all the points. 

Disp  structure Displacement structure with two fields 

 DispVec Nframes-by-1 cell array 

Each cell contains an Npoints-by-3 array 
representing the displacement vectors from 
the reference to the current configuration. 

 DispMgn Nframes-by-1 cell array 

Each cell contains an Npoints-by-1 array 
representing the displacement magnitude 
from the reference to the current 
configuration. 

FaceCentroids  Nframes-by-1 cell array 
Each cell contains an Nfaces-by-3 array 
corresponding to the 3D coordinates of the 
centroid of each face. 

corrComb  Nframes-by-1 cell array 

Each cell contains an Npoints-by-1 array 
corresponding to the combined correlation 
coefficient of each 3D point. 

FaceIsoInd  struct 

Nf-by-1 array corresponding to the isotropy 
index of each face in the reference 
configuration. 

Deform  structure  

A structure containing all the deformation 
parameters, containing the fields below, 
each of the fields contains a is a Nframes-by-
1 cell array (one cell for each time frame), so 
the specified size refers to what is inside 
each cell. 

 Fmat 
3-by-3-by-Nfaces 
double 

Deformation gradient tensor 

 J 
Nfaces-by-1 
double 

Dilitation (det(F)) 

 Cmat 
3-by-3-by-Nfaces 
double 

Right Cauchy-Green deformation tensor 

 Lamda1 
Nfaces-by-1 
double 

First principal surface stretch (smallest) 

 Lamda2 
Nfaces-by-1 
double 

Second principal surface stretch (largest) 

 Emat 
3-by-3-by-Nfaces 
double 

Lagrangian strain tensor 

 emat 
3-by-3-by-Nfaces 
double 

Almansi strain tensor 

 Emgn 
Nfaces-by-1 
double 

Lagrangian strain tensor magnitude 

 emgn 
Nfaces-by-1 
double 

Almansi strain tensor magnitude 



 d3 
Nfaces-by-3 
double 

Face normal in current configuration 

 Epc1 
Nfaces-by-1 
double 

First principal surface Lagrangian strain 
(smallest) 

 Epc2 
Nfaces-by-1 
double 

Second principal surface Lagrangian strain 
(largest) 

 Epc1vec 
Nfaces-by-3 
double 

First principal surface Lagrangian strain 
direction (largest) 

 Epc1vecCur 
Nfaces-by-3 
double 

First principal surface Lagrangian strain 
direction (largest), transformed into the 
current configuration 

 Epc2vec 
Nfaces-by-3 
double 

Second principal surface Lagrangian strain 
direction (smallest). 

 Epc2vecCur 
Nfaces-by-3 
double 

Second principal surface Lagrangian strain 
direction (smallest), transformed into the 
current configuration 

 epc1 
Nfaces-by-1 
double 

First principal surface Almansi strain 
(smallest) 

 epc2 
Nfaces-by-1 
double 

Second principal surface Almansi strain 
(largest) 

 epc1vec 
Nfaces-by-3 
double 

First principal surface Almansi strain 
direction (smallest). 

 epc2vec 
Nfaces-by-3 
double 

Second principal surface Almansi strain 
direction (largest). 
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