

NGPM -- A NSGA-II Program in Matlab

Version 1.4

LIN Song

Aerospace Structural Dynamics Research Laboratory

College of Astronautics, Northwestern Polytechnical University, China

Email: lsssswc@163.com

2011-07-26

Contents

Contents.. i

1. Introduction ... 1

2. How to run the code? .. 1

2.1. ‘CONSTR’ test problem description ... 1

2.2. Step1: Specified optimization model .. 1

2.3. Step2: Create a objective function... 2

2.4. Results ... 3

3. NGPM Options .. 5

3.1. Coding ... 5

3.2. Population options... 5

3.3. Population initialization .. 6

3.4. Selection .. 7

3.5. Crossover... 7

3.6. Mutation .. 8

3.7. Constraint handling ... 8

3.8. Stopping Criteria ... 8

3.9. Output function ... 9

3.10. GUI control ... 9

3.11. Plot interval ... 11

3.12. Parallel computation.. 11

4. R-NSGA-II: Reference-point-based NSGA-II.. 12

4.1. Introduction ... 12

4.2. Using the R-NSGA-II.. 12

5. Test Problems... 13

5.1. TP1: KUR.. 13

5.2. TP2: TNK.. 14

6. Disclaimer .. 17

7. Appendix A: Version history .. 17

 i

NGPM -- A NSGA-II Program in Matlab

1. Introduction

This document gives a brief description about NGPM. NGPM is the abbreviation of “A

NSGA-II Program in Matlab”, which is the implementation of NSGA-II in Matlab. NSGA-II

is a multi-objective genetic algorithm developed by K. Deb[1] . The details of NSGA-II are

not described in this document; please refer to [1] . From version 1.3, R-NSGA-II — a

modified procedure of NSGA-II — is implemented, the details of R-NSGA-II please refer to
[2] .

2. How to run the code?

To use this program to solve a function optimization problem. Optimization model such

as number of design variables, number of objectives, number of constraints, should be

specified in the NSGA-II optimization options structure1 which is created by function

nsgaopt(). The objective function must be created as a function file (*.m), and specify the

function handle options.objfun to this function. The Matlab file TP_CONSTR.m is a script file

which solves a constrained test function. This test problem is 'CONSTR' in [1] .

2.1. ‘CONSTR’ test problem description

(1) Objectives: 2

 1 1

2 2

()

() (1) /

f x x

1f x x x

 (1)

(2) Design variables: 2

 1 2[0.1,1.0], [0,5]x x (2)

(3) Constraints: 2

 1 2 1

2 2 1

() 9 6

() 9 1

g x x x

g x x x

 (3)

Two steps should be done to solve this problem.

2.2. Step1: Specified optimization model

The file TP_CONSTR.m is a script file which specified the optimization model.

1 In this document, all of the italic options is the structure created by nsgaopt().

 1

NGPM -- A NSGA-II Program in Matlab

% TP_CONSTR.m file

% 'CONSTR' test problem

clc; clear; close all

options = nsgaopt(); % create default options structure

options.popsize = 50; % population size

options.maxGen = 100; % max generation

options.numObj = 2; % number of objectives

options.numVar = 2; % number of design variables

options.numCons = 2; % number of constraints

options.lb = [0.1 0]; % lower bound of x

options.ub = [1 5]; % upper bound of x

options.objfun = @objfun; % objective function handle

result = nsga2(options); % start the optimization progress

2.3. Step2: Create a objective function

The file TP_CONSTR_objfun.m is a function file which specified the objective function

evaluation. The objective function is specified by options.objfun parameter created by the

function nsgaopt(). Its prototype is:

[y, cons] = objfun(x, varvargin)

x : Design variables vector, its length must equals options.numVar.

y : Objective values vector, its length must equals options.numObj.

cons : Constraint violations vector. Its length must equals options.numCons. If there is

no constraint, return empty vector [].

varargin : Any variable(s) which are passed to nsga2 function will be finally passed to

this objective function. For example, if you call

result = nsga2(opt, model, param)

The two addition parameter passed to nsga2 — model and param — will be passed to

the objective function as

[y, const]=objfun(x, model, param)

 2

NGPM -- A NSGA-II Program in Matlab

In this function optimization problem, there is no other parameter.

function [y, cons] = objfun(x)

% TP_CONSTR_objfun.m file

% 'CONSTR' test problem

y = [0,0];

cons = [0,0];

y(1) = x(1);

y(2) = (1+x(2)) / x(1);

% calculate the constraint violations

c = x(2) + 9*x(1) - 6;

if(c<0)

 cons(1) = abs(c);

end

c = -x(2) + 9*x(1) - 1;

if(c<0)

 cons(2) = abs(c);

end

2.4. Results

Run the script file TP_CONSTR.m, and you will get the optimization result store in the

result structure. The population will be plotted in a GUI figure. The x-axis is the first

objective, and the y-axis is the second. If user specifies the names of objectives in

options.nameObj, then they will be displayed in the x and y labels.

On the GUI window ‘plotnsga’, the optimization progress could be paused or stop by

press the corresponding buttons. Note that, the progress of optimization would pause or stop

only when the current population evaluation is done!

The Pareto front (or population distribution) of generation 1 and 100 was plot in Fig. 1.

The populations of each generation were outputted to the file ‘populations.txt’ in current path.

 3

NGPM -- A NSGA-II Program in Matlab

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

objective 1

ob
je

ct
iv

e
2

Generation 1 / 100

0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

objective 1

ob
je

ct
iv

e
2

Generation 100 / 100

Fig. 1: Optimization results

In the population file, there is a head section in the beginning which saves some

information of optimization model. The head section begins with “#NSGA2” line, and ends

with “#end” line. And there is a state section in the front of each generation of population,

which begins with “#Generation” line and ends with “#end” line.

Populations.txt file example:

#NSGA2

popsize 50

maxGen 100

numVar 2

numObj 2

numCons 2

stateFieldNames currentGen evaluateCount totalTime firstFrontCount

 frontCount avgEvalTime

#end

#Generation 1 / 100

currentGen 1

evaluateCount 50

totalTime 0.534723

firstFrontCount 7

frontCount 22

avgEvalTime 5.4181e-005

#end

 4

NGPM -- A NSGA-II Program in Matlab

Var1 Var2 Obj1 Obj2 Cons1 Cons2

0.833251 4.52896 0.833251 6.6354 0 0

0.214288 4.56688 0.214288 25.9785 0 3.63829

0.669123 0.487702 0.669123 2.22336 0 0

0.350648 2.73441 0.350648 10.65 0.109757 0.578572

0.961756 4.82444 0.961756 6.05605 0 0

0.241852 4.85296 0.241852 24.2006 0 3.6763

…

3. NGPM Options

This program is written for finite element optimization problem, the “Intermediate

crossover” and “Gaussian mutation” is adequate for my use. Thus, I don’t implement other

genetic operators into NGPM. The real/integer coding, the binary tournament selection, the

Gaussian mutation operator and the intermediate crossover operator work well in my

application. If you want to use other genetic operators, try to modify the code yourself.

The following genetic operators and capabilities are supported in NGPM:

3.1. Coding

Real and integer coding are both supported. If the coding types of design variables are

not specified in options.vartype vector, real coding is use as default.

options.vartype: integer vector, the length must equal to the number of design variables.

1=real, 2=integer. For example, [1 1 2] represents that the first two variables are real, and the

third variable is integer.

3.2. Population options

options.popsize : even integer, population size.

options.numVar : integer, number of design variables.

options.numOb : integer, number of objectives.

options.numCons : integer, number of constraints.

options.lb : vector, lower bound of design variables, the length must equal to

numVar.

options.ub : vector, upper bound of design variables , the length must equal to

numVar.

 5

NGPM -- A NSGA-II Program in Matlab

3.3. Population initialization

There are three ways to initialize the population:

(1) (default) Using uniform distribution random number between the lower and upper

bounds.

(2) Using population file generated in previous optimization.

(3) Using the population result structure in previous optimization.

All these approach are specified in the options.initfun cell array parameter.

3.3.1. Uniform initialization

options.initfun = {@initpop}

Description:

Create a random initial population with a uniform distribution. This is the default

approach.

3.3.2. From exist population file

options.initfun={@initpop, strFileName, ngen}

strFileName : string, the optimization result file name.

ngen : (optional) integer, the generation of population would be used. If this

parameter is not specified, the last population would be used.

Description:

Load population from exist population file and use the last population. If the popsize of

the population from file less than the popsize of current optimization model, then uniform

initialization would be used to fill the whole population.

Example:

options.initfun={@initpop, 'pops.txt'} % Restart from the last generation

options.initfun={@initpop, 'pops.txt', 100} % Restart from the 100 generation

3.3.3. From exist optimization result

options.initfun={@initpop, oldresult, ngen}

oldresult : structure, the optimization result structure in the workspace.

ngen : (optional) integer, the generation of population would be used. If this

parameter is not specified, the last population would be used.

 6

NGPM -- A NSGA-II Program in Matlab

Description: Load population from previous optimization result structure. The result

structure can be:

1. The result generated by last optimization procedure.

2. The result loaded from file by loadpopfile(‘pop.txt’) function.

3. The oldresult generated in the global workspace by the plotnsga(‘pop.txt’)

function. (The plotnsga function calls loadpopfile function too.)

Example:

oldresult=loadpopfile(‘pop.txt’);

options.initfun={@initpop, oldresult} % Restart from the last generation

options.initfun={@initpop, oldresult, 100} % Restart from the 100 generation

3.4. Selection

Only binary tournament selection is supported.

3.5. Crossover

Only intermediate crossover[3] (which also names arithmetic crossover) is supported in

the current version.

3.5.1. Crossover fraction

options.crossoverFraction: scalar or string, crossover fraction of variables of an

individual. If ‘auto’ string is specified, NGPM would used 2/numVar as the

crossoverFraction.

NOTE: All of the individuals in the population would be processed by crossover

operator, and only crossoverFraction of all variables would do crossover.

3.5.2. Intermediate crossover

options.crossover={'intermediate', ratio};

Intermediate crossover [3] creates two children from two parents: parent1 and parent2.

child1 = parent1 + rand×ratio×(parent2 - parent1)

child2 = parent2 - rand×ratio× (parent2 - parent1)

ratio: scalar. If it lies in the range [0, 1], the children created are within the two parent. If

algorithm is premature, try to set ratio larger than 1.0.

 7

NGPM -- A NSGA-II Program in Matlab

3.6. Mutation

Only Gaussian mutation (which also names normal mutation) is supported in the current

version.

3.6.1. Mutation fraction

options.mutaionFraction: scalar or string, mutation fraction of variables of an individual.

If ‘auto’ string is specified, NGPM would use 2/numVar as the mutaionFraction.

NOTE: It’s similar to the crossoverFraction parameter described before. All of the

individuals in the population would be processed, and only mutaionFraction of all variables

would do mutation.

3.6.2. Gaussian mutation

options.mutation = {'gaussian', scale, shrink}

Gaussian mutation[3] adds a normally distributed random number to each variable:

child =parent + S × randn×(ub-lb);

S = scale×(1 - shrink×currGen / maxGen);

scale: scalar, the scale parameter determines the standard deviation of the random

number generated.

shrink: scalar, [0,1]. As the optimization progress goes forward, decrease the mutation

range (for example, shrink∈[0.5, 1.0]) is usually used for local search. If the optimization

problem has many different local Pareto-optimal fronts, such as ZDT4 problem[1] , a large

mutation range is require getting out of the local Pareto-optimal fronts. It means a zero shrink

should be used.

3.7. Constraint handling

NGPM uses binary tournament selection based on constraint-dominate definition to

handle constraint which proposed by Deb[1] .

3.8. Stopping Criteria

Only maximum generation specified by options.maxGen is supported currently.

Example:

options.maxGen=500;

 8

NGPM -- A NSGA-II Program in Matlab

3.9. Output function

3.9.1. Output function

In current version NGPM, the only output function is output2file which outputs the

whole population includes design variables, objectives and constraint violations (if exist) into

the specified file (options.outputfile).

options.outputfuns: cell array, the first element must be the output function handle, such

as @output2file. The other parameter will be passed to this function as variable length input

argument. The output function has the prototype:

function output (opt, state, pop, type, varargin)

opt : the options structure.

state : the state structure.

pop : the current population.

type : use to identify if this call is the last call.

-1 = the last call, use for closing the opened file or other operations.

others(or no exist) = normal output

varargin : the parameter specified in the options.outputfuns cell array. There is no

parameter for the default output function output2file.

3.9.2. Output interval

options.outputInterval : integer, interval between two calls of output function. This

parameter can be assigned a large value for efficiency.

Example:

options.outputInterval = 10;

3.10. GUI control

The GUI window ‘plognsga’ (Fig. 2) is use to plot the result populations or control the

optimization progress. Call plotnsga function to plot the populations:

plotnsga(result)

plotnsga(strPopFile)

result : structure created by nsga2() function.

strPopFile : population file name.

 9

NGPM -- A NSGA-II Program in Matlab

Fig. 2: plotnsga GUI window

3.10.1. Pause, stop

Press “Pause” button to pause the optimization progress, and the button title would be

changed to “Continue”. Then, press “Continue” button to continue the optimization.

Press “Stop” button to stop the optimization progress. This operation would stop the

nsga2 iteration and closed the output file if specified.

NOTE: When ‘pause’ or ‘stop’ button is pressed, the program would response until the

current generation of optimization progress is finished.

3.10.2. Plot in new window

Press “Plot new” button to plot the selected population in a new figure window. This

function is designed to save the figure as EMF file (because the window could not be saved

as EMF file if there is any GUI control on the figure window).

3.10.3. Optimization state

The optimization state list-box lists all fields of the state structure of selected generation.

Table 1: Optimization states

Name Description

currentGen The selected generation ID, begin with 1.

evaluateCount The objective function evaluation count from the beginning.

totalTime The elapsed time from optimization progress start.

firstFrontCount The number of individuals in the first front.

frontCount The number of fronts in current population.

avgEvalTime The average evaluation time of current generation.

 10

NGPM -- A NSGA-II Program in Matlab

3.10.4. Load from result

plotnsga(strPopFile)

strPopFile : string, the optimization result file name.

Description:

The function plotnsga will first call loadpopfile() function to read the specified

optimization result file. A global variable named "oldresult" which contains the optimization

result in the file would be created in global workspace. Then the population loaded from file

would be plotted in the GUI window, and the file name was showed in the figure title.

Example:

plotnsga(‘populations.txt’)

3.11. Plot interval

options.plotInterval : integer, interval between two calls of "plotnsga".

Description:

The overhead of plot in Matlab is very expensive. And it’s not necessary to plot every

generation for function optimization, a large interval value could speedup the optimization.

3.12. Parallel computation

options.useParallel : string, {‘yes’, ‘no’}, specified if parallel computation is used.

options.poolsize : scalar, the number of worker processes. If you have a quat-core

processor, poolsize could be set to 3, then you can do other things when the optimization is

progressing.

Description:

The parallel computation is very useful when the evaluation of objective function is very

time-expensive and you have a multicore/multiple processor(s) computer. If

options.useParallel is specified as ‘yes’, the program would start multiple worker processes

and use parfor to calculate each objective function (Parallel Computation Toolbox in Matlab

is required). This procedure is showed in Fig. 3. Refer Matlab helps for details about parallel

computation.

 11

NGPM -- A NSGA-II Program in Matlab

Fig. 3: Parallel computation in NGPM

Example:

options.useParallel = 'yes';

options.poolsize = 2;

4. R-NSGA-II: Reference-point-based NSGA-II

4.1. Introduction

The two objectives of multi-objective optimization are:

(1) Find the whole Pareto-optimal front.

(2) Get a well-distributed solution set in the front.

NSGA-II could do this well. But at last, only one or several solutions may be chose.

Deb[2] proposed a modified procedure — R-NSGA-II — based on NSGA-II to get

preference solutions by specified reference points. This procedure provides the

decision-maker with a set of solutions near the preference solution(s), so that a better and a

more reliable decision can be made.

4.2. Using the R-NSGA-II

The parameters below would be used in R-NSGA-II:

options.refPoints : matrix, Reference point(s) used to specify preference. Each row is

a reference point in objective space.

options.refWeight : vector, weight factor used in the calculation of Euclidean distance.

If no value is specified, all objectives have the same weight factor 1.0. It’s the in Eq. iw (4).

options.refEpsilon : scalar, a parameter used in epsilon-based selection strategy to

control the spread of solution. All solutions having a weighted normalized Euclidean distance

equal or less than ε would have a large preference distance in the next selection procedure. A

large number (such as 0.01) would get a wide spread solution set near reference points, while

a small value (such as 0.0001) would get a narrow spread solution set.

options. refUseNormDistance : string, {'front', 'ever', 'no'}, specify which approach

 12

NGPM -- A NSGA-II Program in Matlab

would be used to calculate the preference distance in R-NSGA-II.

 "front" : (default) Use maximum and minimum objectives in the front as normalized

factor. It means the max
if and min

if in Eq. (4) are the maximum and minimum objective

values in the front.

 "ever": Use maximum and minimum objectives ever found as normalized factor. It

means the max
if and min

if in Eq. (4) are the maximum and minimum objective values ever

found begin from the initialization population. In many test problems, it’s similar to "front"

parameter.

 "no": Do not use normalized factor, only use Euclidean distance. It means

. max min 1i if f

2

max min
1

()M
i i

ij i
i i i

f z
d w

f f

 x

 (4)

Example:

options.refPoints = [0.1 0.6; 0.3 0.6; 0.5 0.2; 0.7 0.2; 0.9 0;];

options.refWeight = [0.2 0.8];

options.refEpsilon = 0.001;

options.refUseNormDistance = 'no'

A test example ZDT1 can be find in “TP_R-NSGA2” folder.

5. Test Problems

5.1. TP1: KUR

File: TP_KUR.m, TP_KUR_fun.m

The KUR[1] problem has two objective function and no constraint except for bound

constraints.

 2
2 2

1 1 2 3 1
1

3
0.8 3

2 1 2 3
1

min. (, ,) 10exp 0.2

(, ,) | | 5sin

s.t. 5 5, 1,2,3

i i
i

i i
i

i

f x x x x x

f x x x x x

x i

 (5)

 13

NGPM -- A NSGA-II Program in Matlab

Some of the optimization parameters were showed in Table 2.

Table 2: Optimization parameters

Parameter Value

Population size 50

Maximum generation 100

Crossover operator Intermediate, ratio=1.2

Mutation operator Gaussian, scale=0.1, shrink=0.5

Fig. 4 shows the whole population of generation 100.

-20 -19 -18 -17 -16 -15 -14
-12

-10

-8

-6

-4

-2

0

2

objective 1

ob
je

ct
iv

e
2

Generation 100 / 100

Fig. 4: The last population of problem KUR

5.2. TP2: TNK

File: TP_TNK.m, TP_TNK_objfun.m

The TNK[1] problem has two simple objective function and two complicated

constraints except for bound constraints.

 (6)

1 1 2 1

2 1 2 2

2 2
1 1 2 1 2

2 2
2 1 2

min. (,)

(,)

s.t. () 1 0.1cos(16arctan(/)) 0

() (0.5) (0.5) 0.5

[0,], 1,2i

f x x x

f x x x

g x x x x x

g x x x

x i

The optimization parameters are showed in Table 2. Parallel computation is enabled, and

poolsize is assigned 2. Actually, parallel computation is no essential here, and parallel

computation cost more time then serial computation, since the overhead of interprocess

communication exceeds the save time benefit from parallel computation. In my dual-core

computer, the total time of parallel computation is 24.0s, while serial computation costs

 14

NGPM -- A NSGA-II Program in Matlab

12.5s.

Fig. 5 shows the whole population of generation 100.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

obj 1 : f1=x1

ob
j 2

 :
 f

2=
x2

Generation 100 / 100

Fig. 5: The last population of problem TNK

5.3. TP3: Three-objective DTLZ2 — R-NSGA-II

File: TPR_DTLZ2_3obj.m, TPR_DTLZ2_objfun_3obj.m

The DTLZ [4] (Deb-Thiele-Laumanns-Zitzler) test problems are a set of MOPs for

testing and comparing MOEAs. They are scalable to a user defined number of objectives.

 (7)

1 1 2 2

2 1 2 2

3 1 2 2

1 1

min. () (1 ())cos(/ 2)cos(/ 2) cos(/ 2)cos(/ 2)

() (1 ())cos(/ 2)cos(/ 2) cos(/ 2)sin(/ 2)

() (1 ())cos(/ 2)cos(/ 2) sin(/ 2)

() (1 ())cos(/ 2)

M M

M M

M M

M M

f x g x x x x

f x g x x x x

f x g x x x

f x g x

x

x

x

x

2

2

1

sin(/ 2)

() (1 ())sin(/ 2)

. . 0 1, 1,2,...,

() (0.5)
i M

M M

i

M ix

x

f x g x

s t x i n

where g x

 x

x

x

1

1

M

M

where M is the number of objectives, n is the number of variables, Mx represents ix

for . It is recommended that [,]i M n 9n M . For DTLZ2 problem, Pareto-optimal

solutions satisfy , and 2

1
1

M

ii
f

 0.5ix for [,]ni M .

Here, optimization parameters below were used. There are two reference points:

(0.2,0.2,0.6) and (0.8,0.6,1.0). The definition of ε is different from the Deb's definition, thus

ε=0.002 was used instead of 0.01 in [2] .

options.popsize = 200; % populaion size

options.maxGen = 200; % max generation

 15

NGPM -- A NSGA-II Program in Matlab

options.refPoints = [0.2 0.2 0.6; 0.8 0.6 1.0];

options.refEpsilon = 0.002;

Fig. 6 shows the last population of three objective DTLZ2 problem and the true Pareto

front.

0

0.2

0.4

0.6

0.8

1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

objective 2

Generation 200 / 200

objective 1

ob
je

ct
iv

e
3

Fig. 6: The last population of three objective DTLZ2 problem

5.4. TP4: 10-objective DTLZ2 — R-NSGA-II

bj.m

 point: 0.25f for all

1,i [2]

reference point. This is not true when normalized Euclidean

not conce

File: TPR_DTLZ2_10obj.m, TPR_DTLZ2_objfun_10o

For 10-objective DTLZ2 problem, we used reference i

distance is used: the points do

2,...,10 . In Deb's paper , it's said that the solution with fi=0.316 is closest to the

ntrates near fi =0.316. If you want to get similar results as ref [2] ,

options.refUseNormDistance must be specified as 'no':

options.refUseNormDistance = 'no';

Then, similar result would be get as showed in Fig. 7(a). If options.refUseNormDistance

was specified as default value 'front', you will get the result showed in Fig. 7(b).

 16

NGPM -- A NSGA-II Program in Matlab

1 2 3 4 5 6 7 8 9 10
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Objective number

O
bj

ec
tiv

e
va

lu
e

Generation 200 / 200

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

Objective number

O
bj

ec
tiv

e
va

lu
e

Generation 200 / 200

 (a) refUseNormDistance='no' (b) refUseNormDistance='front'

Fig. 7: 10-objective DTLZ2 problem with different refUseNormDistance parameter

6. Disclaimer

This code is distributed for academic purposes only. If you have any comments or find

any bugs, please send an email to lsssswc@163.com.

7. Appendix A: Version history

v1.4 [2011-07-26]

1. Add: Support three or more objectives visualization display in "plotnsga".

2. Add: R-NSGA-II problem: DTLZ2.

3. Improve efficiency for large generation.

v1.3 [2011-07-15]

1. Add: Implement reference-point-based NSGA-II procedure -- R-NSGA-II.

2. Add: NSGA-II test problem: ZDT1, ZDT2, ZDT3 and ZDT6.

3. Improve: Improve the efficiency of "ndsort" function, get a 48% speedup for TP_CONSTR

problem.

4. Improve: Save the output file ID to options structure for no explicit clear in optimization

script file.

5. Modify: Modify the crossover and mutation strategy from individuals to variables.

v1.1 [2011-07-01]

 17

mailto:lsssswc@163.com

NGPM -- A NSGA-II Program in Matlab

 18

1. Add: Load and plot population from previous optimization result file.

2. Add: Initialize population using exist optimization result or file.

v1.0 [2011-04-23]

The first version distributed.

Reference:
[1] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm

NSGA-II[J]. Evolutionary Computation. 2002, 6(2): 182-197.
[2] Deb K, Sundar J, U B R N, et al. Reference point based multi-objective optimization

using evolutionary algorithms[J]. International Journal of Computational Intelligence
Research. 2006, 2(3): 273-286.

[3] Matlab Help, Global optimization toolbox.
[4] Deb K, Thiele L, Laumanns M, et al. Scalable Test Problems for Evolutionary

Multi-Objective Optimization[C]. Piscataway, New Jersey: 2002.

	1. Introduction
	2. How to run the code?
	2.1. ‘CONSTR’ test problem description
	2.2. Step1: Specified optimization model
	2.3. Step2: Create a objective function
	2.4. Results

	3. NGPM Options
	3.1. Coding
	3.2. Population options
	3.3. Population initialization
	3.4. Selection
	3.5. Crossover
	3.6. Mutation
	3.7. Constraint handling
	3.8. Stopping Criteria
	3.9. Output function
	3.10. GUI control
	3.11. Plot interval
	3.12. Parallel computation

	4. R-NSGA-II: Reference-point-based NSGA-II
	4.1. Introduction
	4.2. Using the R-NSGA-II

	5. Test Problems
	5.1. TP1: KUR
	5.2. TP2: TNK
	5.3. TP3: Three-objective DTLZ2 — R-NSGA-II
	5.4. TP4: 10-objective DTLZ2 — R-NSGA-II

	6. Disclaimer
	7. Appendix A: Version history

