
 OSD335x EEPROM During Boot
 Rev.1 6/11/2018

	

	
Octavo	Systems	LLC	
Copyright	2018	

1 Introduction
When	creating	a	new	embedded	Linux	design,	getting	a	printed	circuit	board	(PCB)	to	boot	for	the	first	
time	can	have	many	unique	challenges.		These	challenges	can	be	hardware	related:	incorrect	
connections,	improper	voltages,	bad	component	values,	etc.	or	software	related:		incorrect	device	tree,	
improper	drivers,	bad	configuration	values	etc.		One	common	challenge:		how	to	properly	load	and	
configure	software	drivers	during	boot	
	
It	is	important	for	the	software	running	on	the	new	design	to	recognize	the	unique	set	of	peripherals	
and	components	used	on	the	PCB	so	that	the	drivers	can	be	properly	loaded	and	configured.		This	can	be	
accomplished	in	many	different	ways:		pulling	GPIO	pins,	programming	hardware	fuses,	storing	values	in	
non-volatile	memory,	etc.		This	is	an	area	where	having	non-volatile	storage,	like	EEPROM,	either	inside	
a	System-in-Package,	as	in	the	OSD335x-SM,	or	on	the	board	can	help.		The	Linux	images	from	
BeagleBoard.org	used	for	the	OSD335x	Family	of	devices,	identify	designs	by	a	unique	code,	a	board	ID,	
that	is	stored	within	an	EEPROM	attached	to	the	I2C0	bus.		This	board	ID	is	then	used	within	U-Boot	to	
properly	configure	the	system.	
	
This	article	will	discuss:		how	the	board	ID	is	used	in	U-Boot	(Section	3);	how	to	modify	U-Boot	to	ignore	
the	board	ID	(Section	4);	and	how	to	program	the	board	ID	in	an	EEPROM	either	before	boot	(Section	6)	
or	within	U-Boot	(Section	5).		Your	preferred	method	to	program	the	board	ID,	depends	on	the	
hardware	in	your	system.		For	example,	if	you	can	boot	from	a	microSD	card,	then	modifying	U-Boot	to	
program	the	board	ID	(either	Section	4.2	or	Section	5)	might	be	your	preferred	method.		Similarly,	if	you	
have	an	external	I2C	programmer,	you	would	prefer	the	programming	method	outlined	in	Section	6.1.		If	
you	would	like	to	program	the	EEPROM	over	USB	from	a	host	PC	(Section	6.2),	software	has	been	
provided	in	the	associated	zip	file	and	can	also	be	found	in	Sections	8	and	9.	

Notice:	The	information	provided	within	this	document	is	for	informational	use	only.	Octavo	Systems	
provides	no	guarantees	or	warranty	to	the	information	contained.	

2	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

Table of Contents
1	 Introduction	..	1	
2	 Revision	History	...	3	
3	 Understanding	the	Board	ID	..	4	
4	 Modifying	U-Boot	to	Ignore	the	Board	ID	...	6	

4.1	 Hard-Coding	the	Board	ID	..	6	
4.2	 Recognizing	a	“Blank”	Board	ID	..	7	

5	 Programming	the	Board	ID	Within	U-Boot	..	9	
6	 Programming	the	Board	ID	Outside	of	U-Boot	..	11	

6.1	 Using	an	External	I2C	Programmer	..	11	
6.2	 Over	USB	From	a	Host	PC	...	12	

6.2.1	 Installing	the	Tools	..	12	
6.2.2	 Compiling	the	Binary	...	13	
6.2.3	 Programming	the	Device	...	14	

7	 References	...	18	
8	 Appendix	A:		hsi2cEeprom.c	..	19	
9	 Appendix	B:		hsi2cEeprom.lds	...	26	
	

3	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

2 Revision History
Revision	Number	 Revision	Date	 Changes	 Author	

1	 6/11/2018	 Initial	Release	 Erik	Welsh	

4	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

3 Understanding the Board ID
A	board	ID	can	be	used	for	many	different	functions:	
	

• Distinguishing	between	different	hardware	designs	
• Allowing	inventory	management	and	board	tracking,	such	as	differentiating	between	

manufacturers	
• Identifying	and	tracking	failures	for	yield	analysis	
• Compatibility	checking	for	software	
• Encoding	board	revisions	for	debug	

	
During	boot,	it	is	especially	important	to	distinguish	between	different	hardware	designs	so	that	
software	drivers	can	be	properly	configured	and	loaded.		As	part	of	the	Linux	boot	process	for	the	
OSD335x	Family	of	devices,	U-Boot	uses	the	board	ID	to	determine	the	printed	circuit	board	(board)	on	
which	it	is	running.		This	makes	U-Boot	more	flexible	and	allows	a	single	U-Boot	image	to	be	used	for	
many	different	development	platforms.		You	can	see	that	there	are	many	functions	defined	in	the	U-
Boot	file	“./board/ti/am335x/board.h”	that	are	used	to	control	what	functions	are	performed	during	the	
boot	process	(you	can	find	the	files	by	viewing	the	U-Boot	source	code,	see	reference	section	on	page	
18).		For	example,	the	following	function	is	used	to	determine	if	the	board	is	the	Beagleboard.org®	
PocketBeagle®:	
	

	
This	function	uses	a	common	board	detect	infrastructure	defined	in	
“./board/ti/common/board_detect.c”	and	“./board/ti/common/board_detect.h”	to	determine	the	
board.		The	board	detect	infrastructure	in	turn	relies	on	a	specific	data	structure,	a	ti_am_eeprom	struct.		
This	structure	is	found	at	the	beginning	of	an	EEPROM	on	an	I2C	bus	(I2C0	in	the	case	of	the	AM335x	
devices):	
	

static	inline	int	board_is_pb(void)	
{	
								return	board_ti_is("A335PBGL");	
}		

/**	
	*	struct	ti_am_eeprom	-	This	structure	holds	data	read	in	from	the	
	*																					AM335x,	AM437x,	AM57xx	TI	EVM	EEPROMs.	
	*	@header:	This	holds	the	magic	number	
	*	@name:	The	name	of	the	board	
	*	@version:	Board	revision	
	*	@serial:	Board	serial	number	
	*	@config:	Reserved	
	*	@mac_addr:	Any	MAC	addresses	written	in	the	EEPROM	
	*	
	*	The	data	is	this	structure	is	read	from	the	EEPROM	on	the	board.	
	*	It	is	used	for	board	detection	which	is	based	on	name.	It	is	used	
	*	to	configure	specific	TI	boards.	This	allows	booting	of	multiple	
	*	TI	boards	with	a	single	MLO	and	u-boot.	
	*/	
struct	ti_am_eeprom	{	
								unsigned	int	header;	
								char	name[TI_EEPROM_HDR_NAME_LEN];	
								char	version[TI_EEPROM_HDR_REV_LEN];	
								char	serial[TI_EEPROM_HDR_SERIAL_LEN];	
								char	config[TI_EEPROM_HDR_CONFIG_LEN];	
								char	mac_addr[TI_EEPROM_HDR_NO_OF_MAC_ADDR][TI_EEPROM_HDR_ETH_ALEN];	
}	__attribute__	((__packed__));	

5	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

	
In	the	definition	above,	the	header	field	is	a	“magic	number”,	i.e.	a	constant,	
TI_EEPROM_HEADER_MAGIC,	with	a	value	of	0xEE3355AA.		This	structure	can	be	generically	referred	to	
as	a	“board	ID”	even	though	it	has	many	different	pieces	of	information.		If	you	read	the	contents	of	an	
EEPROM	from	the	Octavo	Systems	development	board	OSD3358-SM-RED,	you	can	see	that	it	follows	the	
above	data	structure	format:	
	

	
Unfortunately,	the	reliance	on	the	board	ID	during	U-Boot	can	cause	problems	when	first	booting	a	
board	after	manufacturing.		By	default,	all	EEPROMs	are	initially	unprogrammed	(i.e.	all	bytes	have	a	
value	of	0xFF)	when	placed	on	a	board.		Therefore,	when	U-Boot	first	comes	up	and	reads	the	
unprogrammed	board	ID,	it	will	read	a	value	that	does	not	match	any	board	causing	the	software	to	
hang	because	U-Boot	is	unable	to	know	how	to	configure	any	peripheral	to	continue	the	boot.		
Unfortunately,	the	software	hang	occurs	before	the	U-Boot	console	is	active	which	can	be	mistaken	for	
hardware	bring-up	problems	(i.e.	power	is	applied	to	the	board,	but	nothing	happens).	
	
To	mitigate	this	issue,	you	can	either	modify	U-Boot	to	ignore	the	board	ID	information	within	the	
EEPROM	(i.e.	hard	code	the	board	ID),	or	you	can	program	the	EEPROM	to	have	the	correct	board	ID	
information	for	the	given	system.	
	

	

Address				Value																																															ASCII	Value	
00000000			AA	55	33	EE		41	33	33	35		42	4E	4C	54		4F	53	30	30		.U3.A335BNLTOS00	
00000010			00	00	00	00		00	00	00	00		00	00	00	00		FF	FF	FF	FF		

6	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

4 Modifying U-Boot to Ignore the Board ID

One	way	to	overcome	an	unprogrammed	EEPROM	is	to	modify	U-Boot	itself	so	that	either	the	board	ID	
is	ignored	by	U-Boot	or	that	the	value	of	an	unprogrammed	EEPROM	is	recognized	as	a	“blank”	board.		
While	modifying	U-Boot	can	be	a	good	short-term	solution	to	work	around	this	condition,	it	is	not	
necessarily	a	good	long-term	solution	to	have	U-Boot	either	ignore	the	board	ID	or	for	the	board	to	be	
recognized	as	“blank”.		Doing	this	in	a	production	software	image	can	be	problematic	in	the	case	that	
revisions	of	the	system	have	components	that	must	be	handled	differently	during	boot.		It	also	limits	the	
reusability	of	the	production	software	image	across	multiple	products.		Therefore,	it	is	recommended	to	
only	ignore	the	board	ID	during	the	prototyping	phase	of	a	design	and	to	program	the	EEPROM	with	a	
valid	board	ID	during	production	(See	Section	5).	
	
To	modify	U-Boot,	you	first	must	be	familiar	with	the	process	needed	to	build	U-Boot.		You	can	find	
instructions	on	how	to	do	this	at	https://eewiki.net/display/linuxonarm/BeagleBone+Black		Once	you	
are	familiar	with	the	process,	there	are	two	methods	you	can	follow	to	update	U-Boot	to	bypass	the	
board	ID	checks.	
	

4.1 Hard-Coding the Board ID

In	this	first	method,	you	can	manually	modify	U-Boot	to	hard	code	a	function	within	
“./board/ti/am335x/board.h”	so	that	the	board	has	a	fixed	identity	(i.e.	the	board	ID	is	“hard	coded”).		
For	example,	to	make	U-Boot	always	identify	the	board	as	“BeagleBone®	Black”,	you	will	need	to	make	
the	following	modification:	
	

	
By	returning	“1”	(i.e.	true),	this	function	will	make	U-Boot	believe	that	the	board	is	BeagleBone®	Black	
and	follow	the	boot	process	for	BeagleBone®	Black.		If	this	works	for	your	system	(i.e.	you	have	similar	
components	to	the	BeagleBone®	Black	for	booting,	like	an	eMMC	on	MMC1	and	an	SD	card	on	MMC0),	
then	you	can	use	this	to	bypass	the	board	ID	check.	
	
	

static	inline	int	board_is_bone_lt(void)	
{	
//						return	board_ti_is("A335BNLT");		--	Hard	code	board	ID	to	BeagleBone	Black	
								return	1;	
}	

7	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

4.2 Recognizing a “Blank” Board ID
Another	method	to	ignore	the	board	ID,	is	to	update	U-Boot	to	recognize	the	unprogrammed	EEPROM	
value	as	“blank”.		To	do	this,	a	patch	has	been	created	that	can	help	with	this	process.		As	part	of	the	U-
Boot	build	process	there	are	two	patches	that	must	be	downloaded	and	applied	to	the	U-Boot	code	
base:	
	

	
In	addition	to	these	patches,	another	patch	can	be	downloaded	that	will	configure	U-Boot	to	recognize	
the	unprogrammed	EEPROM	value	as	a	“blank”	board	and	potentially	program	the	EEPROM	with	a	
board	ID.		You	can	find	this	patch	at:	
	
https://github.com/RobertCNelson/Bootloader-Builder/blob/master/patches/v2018.03-rc1/0002-
NFM-Production-eeprom-assume-device-is-BeagleBone-Bl.patch		

	
If	you	look	at	the	patch,	you	can	see	how	the	files	in	U-Boot	will	be	modified	to	ignore	the	board	ID	by	
recognizing	the	unprogrammed	EEPROM	as	a	“blank”	(i.e.	“A335BLNK”)	board	and	then	potentially	
program	a	board	ID	value	into	the	EEPROM.		If	you	look	at	lines	153	to	167	of	the	patch:		
	

	
You	can	see	that	if	the	board	is	“blank”	(i.e.	“A335BLNK”),	then	the	boot	process	will	check	to	see	if	the	
file	“/boot/.eeprom.txt”	exists	in	the	root	file	system	of	the	boot	image.		If	it	does,	then	it	will	
automatically	run	the	eeprom_program	command,	defined	in	0001-am335x_evm-uEnv.txt-bootz-n-
fixes.patch,	utilizing	the	variables	set	in	the	“/boot/.eeprom.txt”	file.		If	you	look	at	the	eeprom_program	
command	(lines	1607	to	1617	of	0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch):	
	

wget	-c	https://rcn-ee.com/repos/git/u-boot-patches/v2018.03/0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch	
wget	-c	https://rcn-ee.com/repos/git/u-boot-patches/v2018.03/0002-U-Boot-BeagleBone-Cape-Manager.patch	

Caveat:	
	
The	version	of	U-Boot	and	the	patches	listed	above	may	not	have	be	the	same	in	the	future.		The	
correct	versions	and	names	should	be	listed	in	the	instructions	to	build	U-Boot.	

@@	-190,6	+190,14	@@	
		 	 	 	 "setenv	fdtfile	am335x-boneblack.dtb;	"	\	
		 	 	 "fi;	"	\	
		 	 "fi;	"	\	
+	 	 "if	test	$board_name	=	A335BLNK;	then	"	\	
+	 	 	 "if	test	-e	mmc	0:1	/boot/.eeprom.txt;	then	"	\	
+	 	 	 	 "load	mmc	0:1	${loadaddr}	/boot/.eeprom.txt;"	\	
+	 	 	 	 "env	import	-t	${loadaddr}	${filesize};"	\	
+	 	 	 	 "echo	Loaded	environment	from	/boot/.eeprom.txt;"	\	
+	 	 	 	 "run	eeprom_program;	"	\	
+	 	 	 "fi;"	\	
+	 	 	 "setenv	fdtfile	am335x-boneblack-emmc-overlay.dtb;	fi;	"	\	
		 	 "if	test	$board_name	=	BBBW;	then	"	\	
		 	 	 "setenv	fdtfile	am335x-boneblack-wireless.dtb;	fi;	"	\	
		 	 "if	test	$board_name	=	BBG1;	then	"	\	

8	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

	
You	can	see	that	depending	on	the	value	of	the	variable	board_eeprom_header,	the	appropriate	board	
ID	value	will	be	programmed	into	the	EEPROM.		As	of	this	writing,	the	acceptable	values	for	
board_eeprom_header	are:	
	

• board_eeprom_header=bbb_blank	
• board_eeprom_header=bbbl_blank	
• board_eeprom_header=bbbw_blank	
• board_eeprom_header=os00_blank	
• board_eeprom_header=beaglelogic_blank	

	
If	you	need	to	add	in	a	custom	board	ID	value	to	be	programmed	into	the	EEPROM,	it	is	straight	forward	
to	extend	the	code	from	the	patches	(i.e.	the	eeprom_program	command	and	the	
EEPROM_PROGRAMMING	#define).		In	this	way,	you	can	use	the	updated	U-Boot	image	to	program	all	
of	your	systems	so	that	they	can	have	a	valid	board	ID.	

	

+	 "eeprom_program="\	
+	 	 "if	test	$board_eeprom_header	=	bbb_blank;	then	"	\	
+	 	 	 "run	eeprom_dump;	run	eeprom_blank;	run	eeprom_bbb_header;	run	eeprom_dump;	
reset;	fi;	"	\	
+	 	 "if	test	$board_eeprom_header	=	bbbl_blank;	then	"	\	
+	 	 	 "run	eeprom_dump;	run	eeprom_blank;	run	eeprom_bbb_header;	run	
eeprom_bbbl_footer;	run	eeprom_dump;	reset;	fi;	"	\	
+	 	 "if	test	$board_eeprom_header	=	bbbw_blank;	then	"	\	
+	 	 	 "run	eeprom_dump;	run	eeprom_blank;	run	eeprom_bbb_header;	run	
eeprom_bbbw_footer;	run	eeprom_dump;	reset;	fi;	"	\	
+	 	 "if	test	$board_eeprom_header	=	os00_blank;	then	"	\	
+	 	 	 "run	eeprom_dump;	run	eeprom_blank;	run	eeprom_bbb_header;	run	
eeprom_os00_footer;	run	eeprom_dump;	reset;	fi;	"	\	
+	 	 "if	test	$board_eeprom_header	=	beaglelogic_blank;	then	"	\	
+	 	 	 "run	eeprom_dump;	run	eeprom_blank;	run	eeprom_beaglelogic;	run	eeprom_dump;	
reset;	fi;		\0"	\	

9	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

5 Programming the Board ID Within U-Boot

If	you	used	the	“hard-coding	method”	or	did	not	use	the	automated	EEPROM	programming	functions	of	
the	“blank	method”	in	Section	4,	you	can	still	program	the	board	ID	manually	in	U-Boot.		Once	you	have	
been	able	to	boot	to	the	U-Boot	console	(i.e.	you	have	bypassed	the	board	ID	check),	it	is	straight	
forward	to	program	values	in	the	EEPROM	corresponding	to	the	board	ID	structure.		From	the	U-Boot	
prompt,	you	only	need	to	use	the	i2c	command	to	program	the	EEPROM	with	the	appropriate	value.		
The	commands	below	can	be	used	to	program	the	board	ID	for	the	OSD3358-SM-RED	board.	
	

	
Each	of	the	values	passed	to	the	I2C	write	command	(e.g.	42	or	4e)	is	a	hexadecimal	ASCII	value	
(https://www.asciitable.com/).		Once	the	name	and	version	fields	of	the	EEPROM	data	structure	are	
written,	you	can	check	that	the	programming	was	successful	using	an	I2C	read	command:	
	

	

//	Set	i2c	device	
i2c	dev	0	
	
//	Set	the	EEPROM	header	“magic	number”:		0xAA5533EE	
i2c	mw	0x50	0x00.2	aa	
i2c	mw	0x50	0x01.2	55	
i2c	mw	0x50	0x02.2	33	
i2c	mw	0x50	0x03.2	ee	
	
//	Set	the	EEPROM	name	(bytes	0	–	4):		“A335”	
i2c	mw	0x50	0x04.2	41	
i2c	mw	0x50	0x05.2	33	
i2c	mw	0x50	0x06.2	33	
i2c	mw	0x50	0x07.2	35	
	
//	Set	the	EEPROM	name	(bytes	4	–	7):		“BNLT”	
i2c	mw	0x50	0x08.2	42	
i2c	mw	0x50	0x09.2	4e	
i2c	mw	0x50	0x0a.2	4c	
i2c	mw	0x50	0x0b.2	54	
	
//	Set	the	EEPROM	version:		“OS00”	–	OSD3358-SM-RED	development	platform	
i2c	mw	0x50	0x0c.2	4f	
i2c	mw	0x50	0x0d.2	53	
i2c	mw	0x50	0x0e.2	30	
i2c	mw	0x50	0x0f.2	30	

=>	i2c	dev	0	
Setting	bus	to	0	
	
=>	i2c	md	0x50	0x00.2	20	
0000:	aa	55	33	ee	41	33	33	35	42	4e	4c	54	4f	53	30	30				.U3.A335BNLTOS00	
0010:	00	00	00	00	00	00	00	00	00	00	00	00	ff	ff	ff	ff				

Caveat:	
	
The	version	field	of	early	revisions	of	the	OSD3358-SM-RED	had	a	value	of	“BBNR”	(i.e.	42	42	4e	52)	

10	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

At	this	point,	the	board	has	been	successfully	programmed	so	that	it	can	now	boot	a	default	Linux	image	
from	BeagleBoard.org®.		However,	if	you	would	also	like	to	add	a	serial	number	to	the	EEPROM,	you	
may	do	so	in	the	next	twelve	(12)	bytes	(above	example	has	a	serial	number	of:	000000000000).	

	

11	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

6 Programming the Board ID Outside of U-Boot

If	there	is	no	removable	media,	like	an	microSD	card,	in	a	system,	it	can	be	difficult	to	modify	and	load	
U-Boot	to	program	an	EEPROM.		However,	it	is	possible	to	program	the	board	ID	directly	without	
modifying	U-Boot	by	either	using	an	external	I2C	programmer	or	over	USB	from	a	host	PC.	
	

6.1 Using an External I2C Programmer
To	program	the	board	ID	using	an	external	I2C	programmer,	there	are	two	requirements:	
	

1. The	I2C0	pins	must	be	accessible	(i.e.	the	pins	must	be	brought	out	to	a	header	or	test	points)	so	
that	they	can	be	connected	to	an	external	I2C	programmer	

2. The	AM335x	within	the	OSD335x	family	of	devices	should	be	held	in	reset	(i.e.	WARMRSTN	
should	be	held	low).	

	
Making	the	I2C0	pins	accessible	is	straight	forward	but	must	be	added	during	the	hardware	design	phase	
of	your	system.		If	the	I2C0	pins	are	not	accessible,	it	will	make	using	an	external	I2C	programmer	
difficult	to	impossible.	
	
Also,	the	AM335x	within	the	OSD335x	family	of	devices	should	be	held	in	reset	when	using	an	external	
I2C	programmer.		This	will	guarantee	that	there	is	only	one	master	on	the	I2C0	bus	and	that	there	will	be	
no	conflicts	with	the	AM335x	trying	to	control	the	bus.		This	requires	that	a	reset	button	or	header	exists	
that	can	hold	the	WARMRSTN	pin	low.	
	
	

12	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

6.2 Over USB From a Host PC

To	program	the	board	ID	over	USB	from	host	PC,	you	can	use	a	custom	bare-metal	program	that	will	
write	values	to	the	EEPROM.		This	method	requires:	
	

• AM335x	StarterWare	02.00.01.01	
• GCC	cross	compiler	
• CCS	UniFlash	v3.4.1	
• Target	system	to	boot	from	USB	
• Optional:		UART-to-USB	adapter	and	Terminal	Emulator	(such	as	Putty2)	

	
For	the	target	system	to	boot	from	USB,	the	boot	mode	must	try	to	use	the	USB	peripheral	to	download	
a	boot	image.		For	example,	if	the	SYSBOOT[4:0]	pins	have	a	value	of	11000b,	i.e.	the	boot	mode	
selected	by	the	SD	Boot	button	on	the	OSD3358-SM-RED,	then	the	processor	will	try	SPI0,	MMC0,	USB0,	
and	UART0,	in	that	order,	to	boot.		This	will	allow	programming	over	USB0.	
	

6.2.1 Instal l ing the Tools

To	install	StarterWare	and	the	GCC	cross	compiler,	please	follow	the	instructions	from	Sections	3	
(Installing	StarterWare	for	AM335x)	and	4	(Installing	Linaro	GCC	Compiler)	of	the	Bare	Metal	
Applications	on	OSD335x	using	U-Boot	application	note	which	can	be	found	here.		The	instructions	
provided	below	assume	that	both	of	these	tools	were	installed	on	a	Linux	system	(Ubuntu	16.04	was	
used	in	the	example).		However,	the	instructions	should	be	similar	for	a	Windows	system	as	long	as	the	
GCC	compiler	is	used.	
	
To	install	the	CCS	UniFlash	first	follow	the	Installation	Instructions	from:	
	 http://processors.wiki.ti.com/index.php/CCS_UniFlash_v3.4.1_Release_Notes	
	
The	instructions	provided	below	assume	that	this	tool	was	installed	on	a	Windows	system	(Window	10	
was	used	in	the	example).		However,	the	instructions	should	be	similar	for	a	Linux	system.	
	
Once	the	UniFlash	tool	is	installed,	you	will	need	to	modify	the	configuration	files	so	that	the	tool	uses	
more	appropriate	IP	addresses.		By	default,	the	configuration	files	use	the	192.168.100	subnet.		
However,	the	USB	RNDIS	connection	on	the	example	system	was	configured	to	use	the	192.168.0	
subnet.		Therefore,	the	following	configuration	files	need	to	be	modified:	
	
File	uniflash_3.4/third_party/sitara/opendhcp.ini:	
	

• Line	22:	
o Original	version:	

§ 192.168.100.1

o New	version:	
§ 192.168.0.1

• Lines	117	–	119:	
o Original	version:	

§ DHCPRange=192.168.100.2-192.168.100.254
§ NextServer=192.168.100.1
§ Router=192.168.100.1

13	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

o New	version:	
§ DHCPRange=192.168.0.2-192.168.0.254
§ NextServer=192.168.0.1
§ Router=192.168.0.1

	
File	uniflash_3.4/third_party/sitara/opentftp.ini:	
	

• Line	23:	
o Original	version	

§ 192.168.100.1

o New	version	
§ 192.168.0.1

	
Depending	on	your	USB	RNDIS	connection	configuration,	you	should	adjust	the	default	subnet	
accordingly.		If	you	do	not	wish	to	modify	the	configuration	files,	you	can	always	manually	modify	the	
subnet	values	when	running	the	tool.	
	

6.2.2 Compil ing the Binary

Next,	you	will	need	to	modify	the	hsi2c_eeprom	example	in	order	to	create	a	program	that	will	program	
a	custom	value	into	the	EEPROM	to	set	the	board	ID.		As	part	of	the	installation	instruction	for	the	GCC	
cross	compiler,	you	should	have	set	the	LIB_PATH	environment	variable.		This	variable	must	be	set	for	
the	makefiles	for	the	GCC	build	to	work	correctly.			
	

1. Replace	the	hsi2cEeprom.c	file	with	the	one	provided	(see	Appendix	A:		hsi2cEeprom.c)	
a. Change	directories	to:	

AM335X_StarterWare_02_00_01_01/examples/beaglebone/hsi2c_eeprom	
b. Replace	the	contents	of	hsi2cEeprom.c	with	the	provided	code.		This	code	uses	a	polling	

I2C	method	to	read	values	from	and	write	values	to	the	EEPROM.	
	

2. Modify	the	hsi2cEeprom.c	file	with	your	appropriate	board	ID	value	
a. On	approximately	line	85,	there	are	two	#define	variables	that	tell	the	program	the	

number	of	bytes	to	write	the	EEPROM	(NUM_BYTES_TO_WRITE)	as	well	as	the	values	to	
write	to	the	EEPROM	(EEPROM_VALUE_TO_WRITE).	

b. Currently,	these	values	are	set	to	the	OSD3358-SM-RED	board	ID.		These	values	should	
be	updated	to	program	your	board	ID.	

	
3. Replace	the	hsi2c_eeprom	linker	command	file	with	the	one	provided(See	Appendix	B:		

hsi2cEeprom.lds):	
a. Change	directories	to:	

AM335X_StarterWare_02_00_01_01/build/armv7a/gcc/am335x/beaglebone/hsi2c_eep
rom	

b. Replace	the	contents	of	the	linker	command	file,	hsi2cEeprom.lds,	with	the	provided	
code.		This	will	place	the	program	within	the	internal	AM335x	memory	so	that	it	can	be	
used	directly	as	a	Secondary	Program	Loader	(SPL)	without	having	to	initialize	DDR.	

	
	

14	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

4. Build	the	program	
a. In	the	same	directory	as	the	linker	command	file:	

AM335X_StarterWare_02_00_01_01/build/armv7a/gcc/am335x/beaglebone/hsi2c_eep
rom	

b. Execute	the	following	commands:	
i. make clean

ii. make

	
5. Collect	the	compiled	binary	to	program	into	the	device	

a. Change	directories	to:		
AM335X_StarterWare_02_00_01_01/binary/armv7a/gcc/am335x/beaglebone/hsi2c_ee
prom/Debug	

b. Collect	the	following	file	to	be	used	to	program	the	device:		hsi2cEeprom.bin	
	
If	you	need	to	change	the	value	programmed	into	the	EEPROM	for	the	board	ID,	you	can	update	the	
hsi2cEeprom.c	file	from	Step	2	and	then	recompile	the	executable	using	Step	4.	
	

6.2.3 Programming the Device

Now	that	you	have	the	executable	program,	hsi2cEeprom.bin,	that	will	program	the	board	ID	into	the	
EEPROM,	you	need	to	use	the	UniFlash	tool	to	load	and	run	the	program.	
	

1. Update	the	UniFlash	file	to	load	into	the	device	
a. Open	folder:		C:\AM335x_Flashtool\images	
b. Copy	hsi2cEeprom.bin	to	this	directory	
c. Change	the	name	of	the	file	to	u-boot-spl-restore.bin	

	

	
	
	 	

15	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

2. Setup	the	UniFlash	tool	
a. Open	the	UniFlash	tool	
b. Select	“New	Target	Configuration”	
c. Select	“Sitara	Flash	Connections”	for	“Conection”	
d. Select	“Sitara	Flash	Devices”	for	“Board	or	Device”	

	

	
	

e. At	this	point,	you	should	see	the	following	settings	in	the	tool	(These	can	be	adjusted	if	
they	are	not	correct	for	your	setup).	

	

	
	

16	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

3. Optional:		View	program	output	
a. Connection	UART-to-USB	adapter	to	the	UART0	interface	of	the	target	system	
b. Start	a	terminal	emulator	program	(such	as	Putty)	

	
This	will	allow	you	to	see	the	output	of	the	program	on	UART0	but	is	optional.	
	

4. Load	and	execute	the	program	
a. Connect	a	USB	cable	from	the	appropriate	USB	interface	of	the	target	system	to	the	

host	system	that	is	running	CCS	UniFlash.	
b. Boot	the	board	in	the	appropriate	boot	mode	

i. Note:		In	Windows,	you	should	hear	a	notification	that	the	target	system	has	
connected	to	the	host	using	USB	RNDIS.		You	should	also	be	able	to	see	this	
connection	in	the	“Network	Connections”	window.		By	looking	at	this	
connection,	you	can	debug	any	IP	address	issues	you	may	have	with	the	
UniFlash	IP	settings.	

c. Click	the	“Start	Flashing”	button	in	UniFlash	
	

	
	

d. After	a	few	seconds	(up	to	a	minute),	you	should	see	the	target	system	populate	a	line	
in	the	“Status	View”.		This	will	always	show	a	“Progress	%”	of	“0%”	even	though	the	
program	has	been	loaded	and	executed	by	the	target	system.		You	can	view	the	
download	of	the	executable	with	a	tool	such	as	WireShark3.	

	 	

17	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

e. If	you	have	the	optional	program	output	enabled,	then	you	should	see	the	following	
output	on	the	UART0	interface	(with	the	value	that	you	set	in	the	program	instead	of	
the	default	value	pictured	below).	

	

	
	

f. Close	UniFlash	since	the	target	system	has	been	successfully	programmed.	
	

	

	

Caveat:	
	
Please	ensure	that	the	EEPROM	is	not	write	protected	when	you	try	to	write	the	board	ID	value	into	
the	EEPROM.		For	the	OSD335x-SM,	this	means	pulling	the	EEPROM_WP	pin	low.	

18	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

7 References
	
For	more	information	on	software	and	optional	tools,	please	refer	to	the	following	links:	
	

1. U-Boot	 	 https://github.com/u-boot/u-boot		
2. Putty		 	 https://www.putty.org/		
3. WireShark		 https://www.wireshark.org/	

	 	

19	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

8 Appendix A: hsi2cEeprom.c
/**
 * \file eeprom_writer.c
 *
 * \brief Application to write a blank EEPROM with a value. This will allow
 * customers to set the Board ID to configure U-Boot.
 *
 * Application Configuration:
 *
 * Modules Used:
 * I2C0
 * UART0
 *
 * Configurable parameters:
 * NUM_BYTES_TO_WRITE
 * EEPROM_VALUE_TO_WRITE
 *
 * Hard-coded configuration of other parameters:
 * Bus frequency - 100kHz
 * Addressing mode - 7bit
 * I2C Instance - 0
 * Slave Address - 0x50
 * EEPROM memory address - 0x0000
 *
 * Limitations:
 * With no flashed data in EEPROM, if the application tries to read from
 * EEPROM, then the data values read would be "0xFF", which indicates an
 * invalid EEPROM data.
 */

/*
* Copyright (C) 2018 Octavo Systems, LLC - http://www.octavosystems.com/
*/
/*
* Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
*/
/*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/

20	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

#include "hw_types.h"
#include "hw_control_AM335x.h"
#include "hw_cm_wkup.h"
#include "watchdog.h"
#include "evmAM335x.h"
#include "hsi2c.h"
#include "uartStdio.h"
#include "soc_AM335x.h"
#include "stdio.h"

/**
** INTERNAL MACRO DEFINITIONS
***/

//
// MODIFY THIS CODE
// - NUM_BYTES_TO_WRITE should match the number of data values provided in
EEPROM_VALUE_TO_WRITE
// - NUM_BYTES_TO_WRITE should not exceed BUFFER_SIZE
//

#define NUM_BYTES_TO_WRITE (16)
#define EEPROM_VALUE_TO_WRITE {0xAA, 0x55, 0x33, 0xEE, 0x41, 0x33, 0x33, 0x35, 0x42,
0x4E, 0x4C, 0x54, 0x4F, 0x53, 0x30, 0x30}

//
// END MODIFY THIS CODE
//

/* I2C address of AT24C256 eeprom */
#define I2C_SLAVE_ADDR (0x50)

/* Higher byte address (i.e A8-A15) */
#define E2PROM_ADDR_MSB (0x00)

/* Lower byte address (i.e A0-A7) */
#define E2PROM_ADDR_LSB (0x00)

/* I2C instance */
#define I2C_0 (0x0u)

/* System clock fed to I2C module - 48Mhz */
#define I2C_SYSTEM_CLOCK (48000000u)

/* Internal clock used by I2C module - 12Mhz */
#define I2C_INTERNAL_CLOCK (12000000u)

/* I2C bus speed or frequency - 100Khz */
#define I2C_OUTPUT_CLOCK (100000u)

/* I2C interrupt flags to clear */
#define I2C_INTERRUPT_FLAG_TO_CLR (0x7FF)

/* Buffer Size */
#define BUFFER_SIZE (1024)

/**
** INTERNAL FUNCTION PROTOTYPES
***/
static void setup_platform(void);
static void print_data(unsigned char *data, unsigned int size);
static void setup_I2C(void);
static void setup_UART(void);
static void SetupI2CTransmit(unsigned int dcount);
static void SetupReception(unsigned int dcount);

21	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

/**
** INTERNAL VARIABLE DEFINITIONS
***/
volatile unsigned char dataToSlave[BUFFER_SIZE];
volatile unsigned char dataFromSlave[BUFFER_SIZE];
volatile unsigned int tCount;
volatile unsigned int rCount;

/**
** FUNCTION DEFINITIONS
**/

int main(void)
{
 volatile unsigned char data[NUM_BYTES_TO_WRITE] = EEPROM_VALUE_TO_WRITE;
 volatile unsigned int i, j;

 // Setup the platform
 setup_platform();

 // Initialize variables
 for (i = 0; i < (NUM_BYTES_TO_WRITE + 2); i++) {
 dataToSlave[i] = 0;
 dataFromSlave[i] = 0;
 }

 UARTPuts("Octavo Systems EEPROM Writer v0.1\n", -1);

 // Write data to the EEPROM
 // - Setup Address
 // - Copy data to write
 // - Transmit data
 //
 UARTPuts("Writing value to EEPROM\n", -1);
 tCount = 0;
 dataToSlave[0] = E2PROM_ADDR_MSB;
 dataToSlave[1] = E2PROM_ADDR_LSB;
 for (i = 0; i < NUM_BYTES_TO_WRITE; i++) {dataToSlave[i + 2] = data[i];}
 print_data((unsigned char *)&dataToSlave[2], NUM_BYTES_TO_WRITE);

 SetupI2CTransmit(NUM_BYTES_TO_WRITE + 2);

 UARTPuts("Done writing.\n", -1);

 // Wait for EEPROM to finish writing
 j = 0;
 for (i = 0; i < 1000000; i++) {
 j++;
 }

 // Read data back from EEPROM
 // - Use the address from the current dataToSlave buffer
 rCount = 0;
 tCount = 0;

 SetupReception(NUM_BYTES_TO_WRITE);

 // Print data from EEPROM
 UARTPuts("Value Written:\n", -1);
 print_data((unsigned char *)dataFromSlave, NUM_BYTES_TO_WRITE);

 UARTPuts("Done.\n", -1);

 while(1);
}

22	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

/*
 * \brief This function Initializes WDT, UART, and I2C
 *
 * \param none
 *
 * \return none
*/
void setup_platform(void)
{
 // Disable WDT
 HWREG(SOC_WDT_1_REGS + WDT_WSPR) = 0xAAAAu;
 while(HWREG(SOC_WDT_1_REGS + WDT_WWPS) != 0x00);

 HWREG(SOC_WDT_1_REGS + WDT_WSPR) = 0x5555u;
 while(HWREG(SOC_WDT_1_REGS + WDT_WWPS) != 0x00);

 /* Enable the control module */
 HWREG(SOC_CM_WKUP_REGS + CM_WKUP_CONTROL_CLKCTRL) =
 CM_WKUP_CONTROL_CLKCTRL_MODULEMODE_ENABLE;

 /* UART Initialization */
 setup_UART();
 UARTStdioInit();

 /* I2C Initialization */
 setup_I2C();
}

/*
** Print data
*/
static void print_data(unsigned char *data, unsigned int size) {
 unsigned char ch[2];
 unsigned char temp;
 unsigned int i;

 if ((BUFFER_SIZE / 4) < size) {
 // Print error message
 UARTPuts("Too much data requested \n", -1);
 return;
 }

 ch[1] = 0;

 // Print first character
 UARTPuts("[", 1);

 for (i = 0; i < size; i++) {
 // Collect the Most Significant Nibble of the data byte
 temp = ((data[i] & 0xF0) >> 4);

 if (temp < 10) {
 // UARTPrintf("%c", (temp + 0x30));
 ch[0] = temp + 0x30;
 UARTPuts(ch, 1);
 } else {
 // UARTPrintf("%c", (temp + 0x37));
 ch[0] = temp + 0x37;
 UARTPuts(ch, 1);
 }

 // Collect the Least Significant Nibble of the data byte
 temp = (data[i] & 0x0F);

 if (temp < 10) {
 // UARTPrintf("%c", (temp + 0x30));
 ch[0] = temp + 0x30;

23	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

 UARTPuts(ch, 1);
 } else {
 // UARTPrintf("%c", (temp + 0x37));
 ch[0] = temp + 0x37;
 UARTPuts(ch, 1);
 }

 if (i < (size - 1)) {
 UARTPuts(", ", 2);
 }
 }

 // Print final character
 UARTPuts("]\n", -1);
}

/**
** I2C FUNCTION DEFINITIONS
**/

/*
 * \brief Configure I2C0 on which the PMIC is interfaced
 *
 * \param none
 *
 * \return none
 */
void setup_I2C(void)
{
 /* Enable the clock for I2C0 */
 I2C0ModuleClkConfig();

 I2CPinMuxSetup(I2C_0);

 /* Put i2c in reset/disabled state */
 I2CMasterDisable(SOC_I2C_0_REGS);

 /* Disable auto Idle functionality */
 I2CAutoIdleDisable(SOC_I2C_0_REGS);

 /* Configure i2c bus speed to 100khz */
 I2CMasterInitExpClk(SOC_I2C_0_REGS, I2C_SYSTEM_CLOCK, I2C_INTERNAL_CLOCK,
 I2C_OUTPUT_CLOCK);

 /* Set i2c slave address */
 I2CMasterSlaveAddrSet(SOC_I2C_0_REGS, I2C_SLAVE_ADDR);

 /* Bring I2C out of reset */
 I2CMasterEnable(SOC_I2C_0_REGS);

 while(!I2CSystemStatusGet(SOC_I2C_0_REGS));
}

/*
 * \brief Clear the status of all interrupts
 *
 * \param none.
 *
 * \return none
 */
void CleanupInterrupts(void)
{
 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INTERRUPT_FLAG_TO_CLR);
}

24	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

/*
 * \brief Transmits data over I2C0 bus
 *
 * \param none
 *
 * \return none
 */
void SetupI2CTransmit(unsigned int dcount)
{
 I2CSetDataCount(SOC_I2C_0_REGS, dcount);

 CleanupInterrupts();

 I2CMasterControl(SOC_I2C_0_REGS, I2C_CFG_MST_TX);

 I2CMasterStart(SOC_I2C_0_REGS);

 while(I2CMasterBusBusy(SOC_I2C_0_REGS) == 0);

 while((I2C_INT_TRANSMIT_READY == (I2CMasterIntRawStatus(SOC_I2C_0_REGS)
 & I2C_INT_TRANSMIT_READY)) && dcount--)
 {
 I2CMasterDataPut(SOC_I2C_0_REGS, dataToSlave[tCount++]);

 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INT_TRANSMIT_READY);
 }

 I2CMasterStop(SOC_I2C_0_REGS);

 while(0 == (I2CMasterIntRawStatus(SOC_I2C_0_REGS) & I2C_INT_STOP_CONDITION));

 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INT_STOP_CONDITION);
}

/*
 * \brief Receives data over I2C0 bus
 *
 * \param dcount - Number of bytes to receive.
 *
 * \return none
 */

void SetupReception(unsigned int dcount)
{
 unsigned int num_addr_bytes = 2;

 // Transmit Address Bytes
 I2CSetDataCount(SOC_I2C_0_REGS, num_addr_bytes);

 CleanupInterrupts();

 I2CMasterControl(SOC_I2C_0_REGS, I2C_CFG_MST_TX);

 I2CMasterStart(SOC_I2C_0_REGS);

 while(I2CMasterBusBusy(SOC_I2C_0_REGS) == 0);

 while((I2C_INT_TRANSMIT_READY == (I2CMasterIntRawStatus(SOC_I2C_0_REGS)
 & I2C_INT_TRANSMIT_READY)) && num_addr_bytes--)
 {
 I2CMasterDataPut(SOC_I2C_0_REGS, dataToSlave[tCount++]);

 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INT_TRANSMIT_READY);
 }

 I2CMasterStop(SOC_I2C_0_REGS);

 while(0 == (I2CMasterIntRawStatus(SOC_I2C_0_REGS) & I2C_INT_ADRR_READY_ACESS));

25	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

 // Receive Data Bytes
 I2CSetDataCount(SOC_I2C_0_REGS, dcount);

 CleanupInterrupts();

 I2CMasterControl(SOC_I2C_0_REGS, I2C_CFG_MST_RX);

 I2CMasterStart(SOC_I2C_0_REGS);

 /* Wait till the bus if free */
 while(I2CMasterBusBusy(SOC_I2C_0_REGS) == 0);

 /* Read the data from slave of dcount */
 while((dcount--))
 {
 while(0 == (I2CMasterIntRawStatus(SOC_I2C_0_REGS) & I2C_INT_RECV_READY));

 dataFromSlave[rCount++] = I2CMasterDataGet(SOC_I2C_0_REGS);

 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INT_RECV_READY);
 }

 I2CMasterStop(SOC_I2C_0_REGS);

 while(0 == (I2CMasterIntRawStatus(SOC_I2C_0_REGS) & I2C_INT_STOP_CONDITION));

 I2CMasterIntClearEx(SOC_I2C_0_REGS, I2C_INT_STOP_CONDITION);
}

/**
** UART FUNCTION DEFINITIONS
**/

/*
 * \brief This function is used to initialize and configure UART Module.
 *
 * \param none.
 *
 * \return none
*/

void setup_UART(void)
{
 volatile unsigned int regVal;

 /* Enable clock for UART0 */
 regVal = (HWREG(SOC_CM_WKUP_REGS + CM_WKUP_UART0_CLKCTRL) &
 ~(CM_WKUP_UART0_CLKCTRL_MODULEMODE));

 regVal |= CM_WKUP_UART0_CLKCTRL_MODULEMODE_ENABLE;

 HWREG(SOC_CM_WKUP_REGS + CM_WKUP_UART0_CLKCTRL) = regVal;

 UARTStdioInit();
}

	

26	
OSD335x EEPROM During Boot

 Rev.1 6/11/2018	
	

	
Octavo	Systems	LLC	
Copyright	2018	

9 Appendix B: hsi2cEeprom.lds
/*
* Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/
*/
/*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/

/* ld script for StarterWare AM335x. */

/*
** The stack is kept at end of the image, and its size is 128 MB.
** The heap section is placed above the stack to support I/O
** operations using semihosting. The size of the section is 2KB.
*/

MEMORY
{
 IRAM_MEM : o = 0x402F0400, l = 0x1FBFF /* 127k internal Memory */
}

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)

SECTIONS
{

 .rsthand :
 {
 . = ALIGN(4);
 *bl_init.o (.text)
 } >IRAM_MEM

 .text :
 {
 . = ALIGN(4);
 (.text)
 (.rodata)
 } >IRAM_MEM

 .data :

27	
 OSD335x EEPROM During Boot

 Rev.1 6/11/2018

	

Octavo	Systems	LLC	
Copyright	2018	

 {
 . = ALIGN(4);
 (.data)
 } >IRAM_MEM

 .bss :
 {
 . = ALIGN(4);
 _bss_start = .;
 (.bss)
 *(COMMON)
 _bss_end = .;
 } >IRAM_MEM

 .heap :
 {
 . = ALIGN(4);
 __end__ = .;
 end = __end__;
 __HeapBase = __end__;
 (.heap)
 . = . + 0x800;
 __HeapLimit = .;
 } >IRAM_MEM

 .stack :
 {
 . = ALIGN(256);
 __StackLimit = . ;
 (.stack)
 . = . + 0x800;
 __StackTop = .;
 } >IRAM_MEM
 _stack = __StackTop;

}

